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Preface

Static Analysis is recognized as a fundamental tool for program verification, bug
detection, compiler optimization, program understanding, and software maintenance.
The series of Static Analysis Symposia has served as the primary venue for the pre-
sentation of theoretical, practical, and applicational advances in the area. Previous
symposia were held in Edinburgh, Saint-Malo, Munich, Seattle, Deauville, Venice,
Perpignan, Los Angeles, Valencia, Kongens Lyngby, Seoul, London, Verona, San
Diego, Madrid, Paris, Santa Barbara, Pisa, Aachen, Glasgow, and Namur. This volume
contains the papers presented at SAS 2017, the 24th International Static Analysis
Symposium. The conference was held on August 30th - September 1st, 2017 at New
York University, New York City, NY, USA.

The conference received 64 initial abstracts that materialized into 50 full submis-
sions, each of which was reviewed by at least three Program Committee members. The
Program Committee accepted 22 papers, which appear in this volume. As in previous
years, authors of SAS submissions had the chance to submit a virtual machine image
with artifacts presented in the paper. In accordance with this, 16 submissions came with
an artifact. Artifacts were used as an additional source of information during the
evaluation of the submissions.

The Program Committee also invited three outstanding researchers to present invited
talks: Alex Aiken (Stanford University, USA), Francesco Logozzo (Facebook, Seattle,
USA), and Peter Müller (ETH Zurich, Switzerland). Additionally, the program inclu-
ded two invited tutorials given by leading researchers: Josh Berdine (Facebook,
London, UK), Roberto Giacobazzi (IMDEA, Spain and University of Verona, Italy).
We warmly thank them for accepting the invitations.

SAS 2017 featured three associated workshops. The 7th Workshop on Numerical
and Symbolic Abstract Domains (NSAD 2017), the 8th Workshop on Static Analysis
and Systems Biology (SASB 2017), and the 8th Workshop on Tools for Automatic
Program Analysis (TAPAS 2017) were held before SAS, on August 29th, 2017.

Many people and institutions contributed to the success of SAS 2017. We would
like to thank the members of the Program Committee, who worked hard at carefully
reviewing papers, holding insightful discussions during the on-line Program Com-
mittee meeting, and making final selections of accepted papers and invited speakers.
We would also like to thank the additional referees enlisted by Program Committee
members. The work of the Program Committee and the editorial process were greatly
facilitated by the EasyChair conference management system. We are grateful to
Springer for publishing these proceedings. A warm word of thanks goes to Patrick
Cousot for leading the local organization of the conference at New York University.
Finally, we would like to thank our sponsors: Amazon, the Courant Institute of
Mathematical Sciences of New York University, the Dipartimento di Matematica
“Tullio Levi-Civita” of the University of Padova, Facebook, and Springer.

July 2017 Francesco Ranzato
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Proving Program Equality: Recent Progress
and New Applications

Alex Aiken

Stanford University, Stanford CA 94305

Abstract. How can we automatically prove two programs are equal? And why
would we want to? This talk summarizes progress over the last several years on
fully automatic techniques for proving equality of non-trivial programs. The
general approach is to use a combination of static and dynamic analysis, and in
particular to guess the crux of the proof of equivalence from observations of the
states of program executions. We then use standard static verification techniques
to check that the hypothesized equivalence in fact holds. We first motivate the
technique in a simpler setting, a guess-and-check algorithm for finding loop
invariants, and then show how that approach can be extended to a
guess-and-check algorithm for program equivalence.
We will present a number of applications, many of which are related to

proving the correctness of compiled programs. One well-known application for
equality checking is to confirm that the unoptimized and optimized versions of a
particular function produced by a compiler are in fact equal. But because our
method accepts any two programs as input and makes no assumptions at all
about how those programs were produced, we can also compare the output of
different compilers and apply our approach when the infrastructure for tech-
niques such as translation validation does not or cannot exist.
This talk is based on work published in [1–4].

References

1. Churchill, B., Sharma, R., Bastien, J.-F., Aiken, A.: Sound loop superoptimization for google
native client. In: Proceedings of the Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 313–326, April 2017

2. Sharma, R., Aiken, A.: From invariant checking to invariant inference using randomized
search. In: Proceedings of the International Conference on Computer Aided Verification,
pp. 88–105, July 2014

3. Sharma, R., Schkufza, E., Churchill, B., Aiken, A.: Data-driven equivalence checking. In:
Proceedings of the International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 391–406, October 2013

4. Sharma, R., Schkufza, E., Churchill, B., Aiken, A.: Conditionally correct superoptimization.
In: Proceedings of the International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 147–162, October 2015



From Bug Bounty to Static Analysis

Francesco Logozzo

Facebook Inc., Seattle, WA, USA
logozzo@fb.com

In bug bounty programs, individuals get recognition and compensation for reporting
bugs, in particular security vulnerabilities. Facebook, Google, Microsoft, Uber and
many other companies have implemented bug bounty programs. Once a bug is
reported, security engineers should find all the existing instances of the bug and make
sure that they are removed from the code base. They are also in charge to make sure the
bug is not reintroduced in the future. This process is long, tedious, and inherently
non-scalable.

Static analysis can help solving this problem. Given a generic and scalable abstract
interpreter, one can refine or add a new abstract domain to capture the reported bug,
and all the other instances if any. In general this process requires some iterations with
the security engineers, often to add some security-specific knowledge to the analysis.
The new analysis is used to find all the existing instances in the existing codebase. In
some cases it can also patch the code automatically [1]. The refined analysis is auto-
matically run on all the code changes submitted for review, capturing accidental
re-introductions of the bug before it lands on master. The main take aways are that:

(i) Focusing the static analysis on vulnerabilities reported via bug bounty means
having a data- and evidence-based static analyses which focuses on problems that
matter in practice.

(ii) Having a close collaboration between security engineers and static analysis
experts is beneficial for both. Security engineers have a powerful tool that dra-
matically improves their job. Static analysis experts get a very high quality
feedback for the development of the tool.

Reference

1. Logozzo, F., Ball, T.: Modular and verified automatic program repair. In: Proceedings of the
OOPSLA 2012, pp. 133–146. ACM (2012)



Reasoning with Permissions in Viper

Peter Müller

Department of Computer Science, ETH Zurich, Switzerland
peter.mueller@inf.ethz.ch

Many recent verification techniques use the notion of permissions to verify programs
that access resources such as memory. In particular, there are dozens or even hundreds
of separation logics and related formalisms that use permissions to reason about side
effects, various forms of concurrency, memory management, I/O behavior, and liveness
properties. This plethora of logics provides a foundation to tackle a wide variety of
complex verification problems. However, each of these logics requires its own tech-
niques and tools to infer and check program properties, which is a major impediment
for practical applications.

This talk introduces the Viper infrastructure1, which provides an intermediate
language as well as verification backends based on symbolic execution, verification
condition generation, and abstract interpretation, respectively. The intermediate lan-
guage can encode a wide range of verification problems and permission logics. The
backends infer and check program properties; since they operate on the intermediate
language, they can be re-used across source languages and verification logics, which
reduces the effort of building verification tools dramatically. We will give an overview
of the Viper language, illustrate how to encode some advanced verification problems,
and give an overview of the available tool support.

1 http://viper.ethz.ch.

http://viper.ethz.ch
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Probabilistic Horn Clause Verification

Aws Albarghouthi(B)

University of Wisconsin–Madison, Madison, USA
aws@cs.wisc.edu

Abstract. Constrained Horn clauses have proven to be a natural inter-
mediate language for logically characterizing program semantics and rea-
soning about program behavior. In this paper, we present probabilisti-
cally constrained Horn clauses (pchc), which incorporate probabilistic
variables inside otherwise traditional constrained Horn clauses. pchc
enable reasoning about probabilistic programs by encoding them as Horn
clauses. Encoding probabilistic program semantics as pchc allows us to
seamlessly handle procedure calls and recursion, as well as angelic and
demonic forms of nondeterminism. We formalize pchc semantics and
present a verification algorithm that can prove probabilistic safety prop-
erties of programs. We present an implementation and evaluation of our
approach on a number of probabilistic programs and properties.

1 Introduction

Constrained Horn Clauses have emerged as a natural logical formalism for stat-
ing a wide spectrum of program verification and synthesis problems and solving
them automatically with generic Horn clause solvers [5]. For instance, given a
sequential program P and a safety property ϕ, we can construct a set of recursive
Horn clauses whose solution is a safe inductive invariant that entails correctness
of P with respect to ϕ. A key advantage in this two-tiered methodology is the
clear dichotomy between the syntactic object, the program P , and its semantic
interpretation, encoded logically as a set of Horn clauses. Thus, the generic Horn
clause solver is completely unaware of the programming language of P . Indeed,
as Grebenshchikov et al. [25] have shown, a simple Horn clause solver can be
the target of a range of program models and correctness properties—including
concurrent programs and liveness properties over infinite domains.

To handle richer programs and properties, such as termination and temporal
properties, researchers have enriched traditional Horn clauses with additional
features, such as quantifier alternation [4,6]. In this paper, we present an exten-
sion of constrained Horn clauses to the probabilistic setting, in which variables
draw their values from probability distributions. Doing so, we enable reasoning
about safety properties of probabilistic programs: standard programs with prob-
abilistic assignments. Probabilistic programs are used in a plethora of applica-
tions, e.g., modeling biological systems [28,29], cognitive processes [23], cyber-
physical systems [42], programs running on approximate hardware [7,41], and
randomized algorithms like privacy-preserving ones [16], amongst many others.
c© Springer International Publishing AG 2017
F. Ranzato (Ed.): SAS 2017, LNCS 10422, pp. 1–22, 2017.
DOI: 10.1007/978-3-319-66706-5_1



2 A. Albarghouthi

Thus, by extending Horn clauses and their solvers to the probabilistic setting,
we expand their applicability to many new domains.

We define the semantics of probabilistic Horn clauses as a probability distrib-
ution over the set of ground derivations. There are two key high-level advantages
to reasoning about probabilistic programs in terms of probabilistic Horn clauses.
The first advantage of our formulation is that it enables us to define Horn clauses
over any first-order theory with an appropriate probability measure. In the sim-
plest case, we can have propositional Horn clauses, where variables draw their
values from Bernoulli distributions. In more advanced cases, for example, we can
have real arithmetic formulas where variables are drawn from, e.g., Gaussian or
Laplacian distributions. This provides a flexible means for encoding program
semantics with appropriate first-order theories, as is standard in many hardware
and software verification tools. The second advantage we gain from Horn clauses
is that we can naturally encode loops, procedures, and recursion. Thus, our Horn
clauses can encode probabilistic programs with recursion, a combination that is
rarely addressed in the literature. Further, we extend our probabilistic seman-
tics with angelic and demonic non-determinism. This allows us to reason about
variables that receive non-deterministic values, for example, in programs with
calls to unknown libraries. Angelic and demonic non-determinism allow us to
compute best- and worst-case probabilities for an event.

The probabilistic safety properties (queries) we would like to prove about our
Horn clauses are of the form, e.g., P[Q(x) → x > 0] > 0.9, which specifies that
the probability of deriving a positive value in the relation Q (which might encode,
say, the return values of the program) is more than 0.9. To prove probabilistic
properties, we present a verification algorithm that, like its non-probabilistic
counterparts [24,25,27,37], iteratively unrolls recursive Horn clauses to generate
an under-approximating set of Horn clauses that encodes a subset of the total
set of possible derivations. To compute the probability of an event in the under-
approximation, we demonstrate how to encode the problem as a weighted model
counting problem over formulas in a first-order theory [11,12]. The algorithm
iteratively considers deeper and deeper unrollings—maintaining a lower and an
upper bound on the probability of interest—until it is able to prove or disprove
the property of interest.

From a problem formulation perspective, our approach can be seen as an
extension of Chistikov et al.’s probabilistic inference through model counting [12]
to recursive sets of constraints. From an algorithmic perspective, one can view
our approach as an extension of Sankaranarayanan et al.’s algorithm [42] to
programs with recursion and non-determinism.

Contributions. To summarize, this paper makes the following contributions:

– We present probabilistically constrained Horn clauses (pchc) and define their
semantics as a probability distribution over of the set of derivation sequences.
Our formulation allows us to encode probabilistic safety verification problems
over probabilistic programs that contain procedures and recursion.

– We extend the semantics of pchc to encode angelic and demonic forms of non-
determinism, following the semantics used by Chistikov et al. [12]. In the case
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where all variables angelically draw their values and there is no probabilistic
choice, pchc are equivalent to chc.

– We present a verification algorithm for proving or disproving probabilistic
reachability properties. Our algorithm iteratively considers larger and larger
under-approximations of the Horn clauses and reduces the verification prob-
lem to weighted model counting.

– We present an implementation and evaluation of our approach on a number
of probabilistic programs and properties. Our results demonstrate the utility
of our approach at handling probabilistic programs with rich features such as
non-determinism and recursion.

2 Overview

We illustrate our technique (Fig. 1) on two simple examples.

Fig. 1. Overview of proposed approach

Recursive program. Consider the illustrative program in Fig. 2(a). This is
a recursive function that samples a real value for x from a Gaussian distrib-
ution (with mean 0 and standard deviation 10). If the value of x is negative,
it recursively calls itself; otherwise, it returns x. The program almost always
terminates—i.e., terminates with probability 1—and always returns a positive
value.

Figure 2(b) shows a recursive Horn-like encoding of the program as a predi-
cate f . There are two things to note here: First, we allow disjunctions in the body
of the clause (the left hand side of the implication →).1 Second, on the left hand
side of the bar (|) we list probabilistic variables and their corresponding proba-
bility distributions. In this case, we have x∼ gauss(0, 10), indicating the value of
the real-valued variable x is drawn from a normal distribution. Observe how our
clause has both probabilistic variables (x) and traditional ones (y and r). In the
absence of probabilistic variables, the semantics are exactly those of constrained
Horn clauses.

Suppose we want to prove that the program returns a value greater than 5
with probability greater than 0.3. This is a probabilistic safety property, which

1 While in the non-probabilistic setting we can represent the function by two clauses
(one representing the base case and one the recursive call), we need to combine the
two clauses in the probabilistic setting. See Sect. 6 for a detailed explanation.
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Fig. 2. Example probabilistic program and its Horn clause encoding

we encode as a query of the form P[f(r) → r > 5] > 0.3. To prove that this
query holds, we proceed as illustrated in Fig. 1.

Unrolling Horn clauses. We begin by unrolling the recursive Horn clause into
a set of non-recursive clauses. This is analogous to fixing the depth of the stack
in the program. The process is standard top-down unrolling, beginning with the
predicate that appears in the query—this is similar to what is implemented in
constrained Horn solvers [24,37].

Suppose we unroll to depth 1, that is, we allow only a single recursive call.
We arrive at the following two non-recursive clauses:

C1 : x ∼ gauss(0, 10)
∣
∣
∣
∣

x � 0 ∧ r = x
∨ x < 0 ∧ f ′(r) −→ f(r) (1)

C2 : x′ ∼ gauss(0, 10)
∣
∣
∣
∣

x′ � 0 ∧ r′ = x′

∨ x′ < 0 ∧ false −→ f ′(r′) (2)

Observe how the body of C1 refers to f ′(r) and C2 defines the predicate f ′. The
second clause, effectively, encodes a fresh clone of the function f . Observe also
the false in the body of C2; this indicates that no more recursive calls can be
made.

Encoding Horn clauses. Unrolling Horn clauses is effectively producing an
underapproximation of a program’s executions. Thus, if we compute the proba-
bility that the non-recursive clauses satisfy f(r) → r > 5, we get a lower bound
on the actual probability. Similarly, by computing the probability of the nega-
tion of the event, i.e., f(r) → r � 5, we can derive an upper bound on the
actual probability. (We formalize this in Sect. 4.) For illustration, we show how
to compute a lower bound on the probability that the query holds by encoding
non-recursive clauses as a model counting problem.

Our encoding is analogous to that used by constrained Horn solvers. The
result is as follows, where ϕi encodes clause Ci:

ϕ1 ≡ (x � 0 ∧ r = x) ∨ (x < 0 ∧ b) ϕ2 ≡ b ⇒ (x′ � 0 ∧ r′ = x′)

Note the introduction of the Boolean variable b, which indicates whether the
recursive call is taken or not.

Probability computation. Now, to compute the probability that r > 5, we
construct the formula:
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ϕ ≡ ∃b, r, r′. ϕ1 ∧ ϕ2 ∧ r = r′ ∧ r > 5

The free variables of ϕ are only x and x′—i.e., the probabilistic variables. The
constraint r = r′ connects the values of the two clauses. We can now compute the
probability that this formula is satisfied, assuming x and x′ get their assignments
by drawing from the Gaussian distribution gauss(0, 10). Depending on the first-
order theory we are working with, this form of weighted model counting requires
different techniques. Since we are operating over reals, this is an integration
problem. We refer the reader to Sect. 6 where we survey different model counting
techniques.

Eliminating the quantifier from ϕ, we get x � 5 ∨ (x < 0 ∧ x′ � 5). The
probability of satisfying ϕ is thus ∼0.46.2 Note that this is a lower bound on
the actual probability of returning a value that is greater than 5. By looking at
longer unrollings of the Horn clauses, we arrive closer and closer to the actual
probability. For our purposes, however, we have managed to prove that the query
holds with a probability greater than 0.3.

Fig. 3. Simple non-deterministic example and its Horn clause encoding

Forms of non-determinism. In the program discussed above, the only form
of non-determinism in a program’s execution was probabilistic choice. In many
scenarios, we also want to reason about non-deterministic events for which we
cannot assign a probability. We illustrate this with the example shown in Fig. 2.
The variable x gets its value drawn from gauss(0,10). Then, depending on the
value of the Boolean variable flag, which is chosen nondeterministically, x gets
incremented or decremented by 5.

Our approach allows two different treatments of nondeterminism: angelic and
demonic. In the angelic case, the intuition is as follows: an execution satisfies
the property if there exists a set of values for nondeterministic variables that
makes the execution satisfy the property. Our semantics follow those of Chistikov
et al. [12]; effectively, we can think of non-determinism as being able to observe
all probabilistic choices made in an execution, and then make its decision.

In our example, the probability P[q(r) → r > 0] is ∼0.69, assuming flag is
chosen angelically—i.e., flag always takes us through the desired path, the one
2 P[ϕ] = P[x � 5] + P[x < 0] ∗ P[x′ � 5]. Since x, x′ ∼ gauss(0, 10), we have
P[x � 5] ≈ 0.308 and P[x < 0] = 0.5.
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that increments x by 5. Alternatively, we can treat flag as a demonic variable: an
execution satisfies the property if all values of nondeterministic variables satisfy
the property. In our example, the only executions that satisfy q(r) → r > 0 are
the ones where x draws a value that is greater than 5. This is because flag will
demonically steer execution to the else branch of the conditional. Thus, in the
demonic setting, the probability of the query is ∼0.31.

Operationally, angelic variables are handled by existentially quantifying them
in the encoding of unrolled Horn clauses; demonic variables, on the other hand,
are universally quantified.

3 Possibilistic and Probabilistic Horn Clauses

We begin by defining required background on non-probabilistic Horn-like prob-
lems, and define their semantics in terms of derivations. This paves the way for
presenting our extension to the probabilistic setting, described in Sect. 3.3.

3.1 Preliminaries

Formulas. We assume formulas are over a fixed interpreted first-order theory
T , e.g., linear integer arithmetic. We assume we have a set R of uninterpreted
predicate symbols. We use ϕ to denote a formula in the theory T . Given a
formula ϕ, we use vars(ϕ) to denote the set of free variables in ϕ. We say that
a formula is interpreted if it does not contain applications of predicates in R.

CHC. A constrained Horn clause (chc) C is of the form

ϕC → Pn+1(xn+1)

where {P1(x1), . . . , Pn(xn)}n�0 is the set of all uninterpreted predicate appli-
cations that appear in the formula ϕC ; all Pi(xi) appear positively in ϕC (i.e.,
under an even number of negations); and xi denotes a vector of variable argu-
ments to predicate Pi. We will use Pi(xi) ∈ ϕC to denote that Pi(xi) appears
in ϕC . All free variables in a chc are implicitly universally quantified. The left
hand side of the implication (→) is called the body of C, while the right hand
side is its head. Given a clause C, we will use HC to denote its head Pn+1(xn+1).

Ground instance. Given a chc C and a substitution σ, which maps every
variable in C to a constant, we use σC to denote the ground instance of C where
each variable is replaced by its respective substitution in σ, that is, σϕC → σHC .

Example 1. Consider the clause

C : x + y > 0 → f(x)

and the substitution σ = [x 
→ 1, y 
→ 2]. The ground instance σC is

1 + 2 > 0 → f(1)

�
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3.2 Possibilistic Horn-Clause Problems

CHC problems. A chc problem H is a tuple (C,Q), where C is a set of clauses
{C1, . . . , Cn}, and the query Q is of the form Q(x) → ϕ, where Q ∈ R, vars(ϕ) ⊆
x, and there are no uninterpreted predicates in ϕ. We assume that Q does not
appear in the body of any C ∈ C. Throughout the paper, we shall always use Q
to denote the predicate symbol appearing in the query.

Semantics. Intuitively, a chc problem’s semantics are defined by the least solu-
tion (interpretation) of the predicates in R that satisfies all clauses C. We say
that a query Q holds iff in the least solution of H, all elements of Q satisfy ϕ,
i.e., that ∀x. Q(x) → ϕ. In program terms, ϕ is the set of safe states.

Derivation sequences. We shall define least solutions in terms of derivation
sequences. Given a problem H = (C,Q), a derivation sequence d is a finite
sequence of ground instances of clauses in C:

σ1Ci1 , σ2Ci2 , . . . , σnCin

where:

1. For all j ∈ [1, n], each ground predicate in the body of σjCij should appear
as the head of a σkCik , for some k < j; otherwise, it is replaced by false.

2. For all j ∈ [1, n], σjϕCij
is satisfiable.

For a derivation sequence d, we shall use cd to denote the vector of constants in
the head of ground instance σnCin .

It follows that a query Q(x) → ϕ holds iff for every derivation sequence
d that ends with Q as the head of the last ground instance, we have σϕ is
satisfiable, where σ = [x 
→ cd]. For conciseness, we use d |= ϕ to denote that d
derives a value that satisfies ϕ.

Example 2. Consider the two clauses

C1 : x > 0 ∨ g(x) → f(x)
C2 : f(x) ∧ y = x + 1 → f(y)

Consider the two substitutions σ1 = [x 
→ 1] and σ2 = [x 
→ 1, y 
→ 2]. The
sequence d = σ1C1, σ2C2 is a derivation sequence. �

n-derivations. To pave the way for our probabilistic semantics, we shall redefine
what it means for a query to hold in terms of n-derivations: the set of derivations
of length � n. We define all such derivations by first unrolling the set of clauses
C to a new non-recursive set Cn. This is shown in Algorithm 1.

The algorithm unrolls the set of clauses C in a top-down fashion, beginning
with the predicate appearing in the query Q. In unroll, we use C(P k

i ) to denote
the set of all clauses in C whose head is an application of Pi. We use the super-
script k to denote primed values of a predicate symbol; primes are used to ensure
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Require: n > 0
1: function unroll((C, Q), n)
2: rels ← {Q} //Q = Q(x) → ϕ
3: Cn ← ∅
4: for i from 1 to n do
5: cls ← {fresh(C, P k

i ) | C ∈ C(P k
i ), P

k
i ∈ rels}

6: Cn ← Cn ∪ {cls}
7: rels ← {P k

i | P k
i ∈ ϕC , C ∈ cls}

8: return Cn

Algorithm 1: Unrolling a set of Horn clauses

that the resulting unrolling is not recursive. The function fresh(C,P k
i ) takes a

clause C ∈ C and returns a new clause where the predicate in the head of C is
replaced with P k

i , and all occurrences of predicate symbols in the body are given
fresh (unused) superscripts.

We assume that all clauses in Cn have mutually disjoint sets of variables.
We also assume that Cn ⊆ Cn+1, for all n � 1—that is, unroll always picks
canonical names for variables and predicates. We use x∞ to be the vector of all
variables appearing in all clauses in the (potentially infinite) set C∞ =

⋃∞
n=1 Cn.

Variables in x∞ are ordered canonically, e.g., in order of generation in unroll.

Example 3. Recall the Horn clause problem in Fig. 2 from Sect. 2. The prob-
lem was unrolled for n = 2, resulting in the two clauses C1 and C2, shown in
Formulas 1 and 2. �

Queries and n-derivations. Given a (potentially infinite) set of clauses C′ ⊆
C∞, we shall use σC′, where σ maps each variable in x∞ to a constant, to denote
the set of all derivation sequences that (i) are formed from ground instances in
{σC | C ∈ C′} and (ii) end in a clause with Q(c) in the head.

The following theorem formalizes what it means for a query to hold in terms
of ∞-derivations.

Theorem 1. A query Q = Q(x) → ϕ holds iff {σ | d ∈ σC∞ and d �|= ϕ} = ∅.

The idea is that a query holds iff there does not exist a substitution σ that
results in a derivation d that falsifies the formula ϕ.

3.3 Probabilistic Horn-Clause Problems

Now that we have defined traditional Horn clause problems and their semantics,
we are ready to define probabilistically constrained Horn clauses (pchc).

PCHC problems. A pchc problem Hp is a tuple of the form (Cp,Qp) (for clarity,
we drop the superscript p below):

– Each clause C ∈ C is defined as in chc: ϕc → HC . However, the set of
unbound variables that appear in C are divided into two disjoint vectors:
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xp
C and xa

C . We call xp
C the set of probabilistic variables, whose values are

drawn from a joint probability distribution DC . The variables xa
C are angelic

variables.
– The probabilistic query Q is a pair of the form (Q(x) → ϕ, θ), where θ ∈ [0, 1).

We would like to prove that the probability of deriving an element of Q that
satisfies ϕ is greater than θ.

Semantics of PCHC In chc problems, the semantics are such that an element
is either derived or not; here, an element is derived with a probability. The
following semantics of pchc problems are inspired by Kozen’s seminal work on
the semantics of probabilistic programs [31].

Using the unroll procedure in Algorithm1, we analogously unroll clauses C
into sets C1 ⊆ C2 ⊆ . . .. The set of variables x∞ appearing in C∞ =

⋃∞
n=1 Cn is

broken into two disjoint vectors xp
∞ and xa

∞, where xp
∞ denotes all probabilistic

variables, and xa
∞ denotes all angelic variables. We treat the variables xp

∞ as
random variables distributed according to their respective distributions in {DC}.
We shall assume existence of a probability space (Ω,F ,P) where outcomes Ω
are valuations of xp

∞, defined through substitutions σp; events F are sets of
substitutions; and P is a probability measure over sets of substitutions. We
assume existence of events Σφ

n ∈ F defined as

Σφ
n = {σp | ∃σa, d s.t. d ∈ σa(σpCn) and d |= φ},

for n ∈ [1,∞] and interpreted formula φ with free variables in x (the variables in
the query Q). That is, Σφ

n is the set of all substitutions to probabilistic variables
that yield derivations of length � n and satisfy φ. Observe the substitution σa:
this is used to pick values for the angelic variables xa

n. We note that when n is
∞, the definition of Σφ

∞ is as defined above, using the set C∞.
The following theorem states two key properties of Σφ

n that we exploit later.

Theorem 2. (a) For all n ∈ [1,∞), Σφ
n ⊆ Σφ

n+1. (b) Σφ
∞ =

⋃∞
n=1 Σφ

n .

Proof. (a) Suppose that Σϕ
n �⊆ Σϕ

n+1. Then, there must be an assignment
σp ∈ Σϕ

n such that σp �∈ Σϕ
n+1. By construction, we know that there exists

a sequence of unique clauses C1, . . . , Ck ∈ Cn, and a substitution σa to xa such
that derivation d = σpσaC1, . . . , σpσaCk, clause Ck is of the form ... → Q(x),
and d |= ϕ. By monotonicity of unroll, we know that Cn ⊆ Cn+1. So, we know
that d ∈ σpσaCn+1 and therefore σp ∈ Σϕ

n+1.
(b) The ⇐ direction is similar to the above proof, since Cn ⊆ C∞. The ⇒

direction: Take any σp ∈ Σϕ
∞, then there is a σ′

p that is σp with a substitution for
all xa

∞ such that there is a derivation d = σ′
pC1, . . . , σ

′
pCk such that d |= ϕ. By

monotonicity of unroll, we know that {C1, . . . , Ck} ∈ Cl, for some l ∈ [1,∞).
Therefore, d ∈ σ′

pCl and σp ∈ Σϕ
l . �
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Example 4. Recall the function f and its associated pchc problem in Fig. 1. In
Sect. 2, we considered an unrolling with n = 2. The set Σr>5

2 is the following
set of substitutions to xp

∞ = (x, x′, x′′, . . .)—in our unrolling in Sect. 2, we only
have x and x′; variables x′′, . . . appear in longer unrollings:

Σr>5
2 = {[x 
→ c, x′ 
→ c′, x′′ 
→ c′′, . . .] | c � 5 ∨ (c < 0 ∧ c′ � 5)}

Note that only x and x′ are constrained in the substitutions, since they are the
only ones that appear in unrollings of length 2. We computed that P[Σr>5

2 ] is
∼0.46, as the values of c and c′ are drawn from gauss(0, 10). �

The following definition formalizes what it means for a query to hold.

Definition 1. A query Q = (Q(x) → ϕ, θ) holds iff P [Σϕ
∞] > θ.

The intuition is as follows: take the set of all substitutions σp that can derive an
element that satisfies ϕ (for some σa), and compute the probability of picking a
substitution in that set.

We assume that P [Σtrue
∞ ] = 1. In other words, almost all substitutions of the

probabilistic variables result in a derivation. This is analogous to the almost-sure
termination property of probabilistic programs, which stipulates that a program
terminates with probability 1.

4 Probabilistic Horn Clause Verification

Overview. The high-level idea underlying our algorithm is as follows. Ideally,
we would like to compute the probability of picking a substitution σp that results
in a derivation d |= ϕ, for some assignment σa of the angelic variables. However,
σp is over an infinite set of variables. To make the problem manageable, we begin
by considering substitutions that result in derivations |d| � n, for some fixed n.
By doing so, we compute a lower bound on the probability, since we consider
a subset of all possible derivations. By iteratively increasing the value n—i.e.,
look at longer and longer derivations—we converge to the actual probability of
the event of interest.

Since for all n ∈ [1,∞), Σϕ
n ⊆ Σϕ

n+1, we have the fact that P[Σϕ
n ] � P[Σϕ

n+1].
Our algorithm iteratively increases n, computing the probability P[Σϕ

n ] at each
step, until it can prove that P[Σϕ

n ] > θ. Additionally, as we will see, the algorithm
can disprove such properties, i.e., prove that P[Σϕ

n ] � θ, by maintaining an upper
bound on P[Σϕ

n ].

Encoding derivations. The primary step in making the algorithm practical
is to characterize the set Σϕ

n and figure out how to compute the probability
of picking an element in that set. We make the observation that the set Σϕ

n

can be characterized as the set of models of an interpreted formula Ψϕ
n in the

first-order theory T . Then, the probability becomes that of picking a satisfying
assignment of Ψϕ

n . This is a model counting problem, where models additionally
have a probability of occurrence. In what follows, we present an encoding of Ψϕ

n .
In Sect. 6, we discuss different mechanisms for model counting.
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1: function enc(Cn, Q)
2: return ∃b,xa

n. ϕ ∧ encC(Q(x))

3:

4: function encC(P (x))
5: D ← ∅
6: for all ϕC → P (x′) ∈ Cn do
7: map each Pi(xi) ∈ ϕC to fresh Bool variable bi

8: φ ← ϕC [bi/Pi(xi)] ∧∧Pi(xi)∈ϕC
bi ⇒ encC(Pi(xi))

9: D ← D ∪ {φ ∧ x = x′}
10: return

∨
D

Algorithm 2: Encoding of a set of clauses (input Cn is accessible by encC)

Our encoding algorithm is presented in Algorithm 2, as the primary function
enc, which is similar to other encodings of Horn clauses, e.g., [37]. Given a set
of clauses Cn and a query Q = (Q(x) → ϕ, θ), enc encodes the clauses in a
top-down recursive fashion, starting with the predicate Q(x). In each recursive
call to encC(P (x)), it encodes all clauses where P (x) is the head of the clause.
Uninterpreted predicates Pi(xi) in the body of a clause are replaced with fresh
Boolean variables, which indicate whether a predicate is set to true or false in
a derivation. Finally, all angelic variables xa

n and freshly introduced Boolean
variables b are existentially quantified, leaving us with a formula where the only
variables are the probabilistic ones. (Recall the encoding in Sect. 2 for a concrete
example.)

For a fixed n, we shall treat the set of models of Ψϕ
n as a set of substitutions

to xp
n. The following theorem states that the set of models of Ψϕ

n is the same as
the set of substitutions in Σϕ

n .

Theorem 3. For all n � 1, Ψϕ
n = Σϕ

n . (We assume that variables that are not
in Ψϕ

n but in xp
∞ can take any value in models of Ψϕ

n .)

Iterative probability approximation algorithm. Algorithm3 shows our
overall algorithm. For now, ignore the gray lines 9 and 10. As discussed above,
it iteratively increases the value of n attempting to prove that the query holds.

The algorithm verify (without lines 9–10) is sound, that is, only returns
correct solutions. verify is also complete, relative to existence of an oracle for
computing P[Ψϕ

n ] and assuming P[Σϕ
∞] > θ.

Theorem 4. verify is sound. If P[Σϕ
∞] > θ, then verify terminates.

Proof. Soundness follows from Theorem 3. Suppose that the query holds, then we
know, from Theorem 2, that limn→∞ P[Σϕ

n ] > θ and ∀i ∈ N.P[Σϕ
i ] ⊆ P[Σϕ

i+1].
By definition of limit, we know that there exists an n such that P[Σϕ

n ] > θ. �

Disproving queries with upper bounds. The algorithm so far is only able to
prove that a query holds—it cannot prove that a query does not hold, because it
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1: function verify (C, Q)
2: for n ∈ [1, ∞) do
3: Cn ← unroll(C, n)
4: Ψϕ

n ← enc(Cn, Q)
5: � prove that the query holds
6: if P[Ψϕ

n ] > θ then
7: return Q holds
8: � prove that the query does not hold
9: if 1 − P[Ψ¬ϕ

n ] � θ then
10: return Q does not hold

Algorithm 3: Verification algorithm

only computes lower bounds on the probability. Now consider the entire verify
algorithm, i.e., including lines 9 and 10, which also computes upper bounds. We
now provide a sufficient condition for making the algorithm complete in both
directions—proving and disproving that a query holds.

The restriction is as follows: for any query (Q(x) → ϕ, θ),

Σϕ
∞ ∩ Σ¬ϕ

∞ = ∅

Effectively, this ensures that derivations are completely dictated by the proba-
bilistic variables; in program terms, this is (roughly) like ensuring that the only
source of non-determinism in a program is probabilistic choice. Now, we can com-
pute an upper bound for P[Σϕ

∞] by simply computing the value of 1 − P[Σ¬ϕ
n ],

for any n ∈ [1,∞). Thus, if 1 − P[Ψ¬ϕ
n ] � θ, we know that the query does not

hold. If we perform this check at every iteration of verify, we ensure that the
algorithm terminates if P[Σϕ

∞] < θ. Notice that if P[Σϕ
∞] = θ, the upper bound

might come asymptotically close to θ but never get to it.

Theorem 5. verify is sound. If P[Σϕ
∞] �= θ, then verify terminates.

Proof. By definition, P[Σϕ
∞] + P[Σ¬ϕ

∞ ] = 1. Therefore, P[Σϕ
∞] = 1 − P[Σ¬ϕ

∞ ].
Since P[Σ¬ϕ

n ] � P[Σ¬ϕ
∞ ], for any n ∈ [1,∞), we know that P[Σϕ

∞] �
1 − P[Σ¬ϕ

n ], thus ensuring soundness. Termination follows from the fact that
limn→∞ P[Ψ¬ϕ

n ] � 1 − θ, assuming P[Σϕ
∞] < θ. �

5 Angels and Demons

We now discuss extensions of pchc problems with demonic non-determinism.
Analogous to angelic variables, we add a set of demonic variables xd

C for
every clause C. That is, now, every clause C has free variables divided amongst
three disjoint sets: xp

C , xa
C , and xd

C . We now redefine Σϕ
n as follows:

Σϕ
n = {σp | ∀σd.∃σa, d. d ∈ σd(σa(σpCn)) and d |= ϕ}

In other words, we can only add σp to the set if every assignment to demonic
variables leads to a derivation of an element in ϕ.
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Notice that the alternation of quantifiers indicates that demonic non-
determinism is resolved first, followed by angelic non-determinism. We can also
consider arbitrary quantifier alternations, by dividing demonic and angelic vari-
ables into sets of variables that get resolved in a certain order. For our purposes,
we will restrict our attention to cases where demonic non-determinism is resolved
first. Informally, demonic variables can maliciously pick substitutions σd such
that there is no σa that results in a derivation. If we flipped the quantifiers to
∃σa.∀σd, then, effectively, the angelic variables get to divine a substitution for
σa such that no matter what substitution σd the demonic variables are possessed
with, a derivation d |= ϕ exists.

Implementing non-determinism. In the demonic case, we can construct the
formula Ψϕ

n just as in Algorithm2, but we quantify out the demonic variables:
we use ∀xd

n. Ψϕ
n . The intuition behind the choice of quantifier directly follows

from the definition of Σϕ
n above.

In presence of demonic non-determinism, verify loses its termination guar-
antee in Theorem 4.

6 Algorithmic Details

In this section, we discuss some of the subtleties of pchc problems. We then
discuss instantiations of our approach with various model counting techniques.

6.1 Decomposition and Non-determinism

We now discuss key design decisions in encoding and verification.

Decomposition. Consider the following Horn clause C, where unif(0, 10) is
the uniform distribution over reals between 0 and 10.

x ∼ unif(0, 10) | x � 1 ∨ x � 8 → f(x)

Suppose we decompose the clause C into two clauses, C1 and C2, by splitting
the disjunction:

x1 ∼ unif(0, 10) | x1 � 1 → f(x1)
x2 ∼ unif(0, 10) | x2 � 8 → f(x2)

In the non-probabilistic setting, this transformation would result in a seman-
tically equivalent set of clauses. In our setting, however, we get a semantically
different set of clauses. This is because we duplicate the probabilistic variables,
resulting in two independent variables, x1 and x2. Suppose we want to compute
the probability that f(x) → true. In the first case, the answer is 0.3. In the
second case, the answer is 0.28.3

3 Since P[x1 � 1 ∨ x2 � 8] = 1 − P[x1 > 1 ∧ x2 < 8] = 1 − 0.9 ∗ 0.8 = 0.28.
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Remark 1. We could alternatively just assume that x1 and x2 are the same vari-
able in C1 and C2. This view drastically complicates the semantics: we now have
variable sharing between clauses, and the semantics of unrollings need to take
that into account. Given that we also have recursion, we have to reason about
which instances of clauses in the unrolling are sharing variables and which are not
(for instance, in Sect. 2, when we unrolled the recursive clause, we constructed a
new copy with an independent variable x′). To simplify the semantics of pchc,
we opted to enrich the formulas that can appear in Horn clauses, rather than
encode and manage probabilistic variable independence explicitly.

Non-determinism. We now discuss a related issue. One might wonder: why
not compute the probability for each subset of the clauses separately and sum
the answers? In program terms, we can view this as computing the probability
of individual program paths separately, e.g., as in Sankaranarayanan et al.’s
algorithm [42].

Unfortunately, in our setting, non-determinism does not allow us to decom-
pose the problem. Consider the following example:

x ∼ unif(0, 10) | (b ∧ (x � 2 ⇐⇒ r)) ∨ (¬b ∧ (x � 4 ⇐⇒ r)) → f(r)

where b and r are angelic Boolean variables. This encodes the following program:

Suppose we have the query f(r) → r = true. The probability that the query holds
is 8/10, because angelic nondeterminism always leads us through the then branch
of the conditional. Consider the approach where we compute the probability for
one disjunct at a time—i.e., one program path at a time. The following clause
defines path π1, which takes the then branch of the conditional. The clause
satisfies the query with a probability of 8/10:

x ∼ unif(0, 10) | (b ∧ (x � 2 ⇐⇒ r)) → f(r)

The following clause, encoding π2, satisfies the query with probability 6/10:

x ∼ unif(0, 10) | (¬b ∧ (x � 4 ⇐⇒ r)) → f(r)

Adding the two probabilities results in 14/10. Approaches that divide the pro-
gram into paths and sum up the results assume that different paths are mutually
exclusive—i.e., the program is deterministic. In non-deterministic programs, the
events of taking different paths are not mutually exclusive, therefore, we cannot
simply add the probability of the two events. Our approach considers both paths
simultaneously through encoding, resolving the non-determinism and discovering
that the probability of the query is 8/10.
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6.2 Model Counting Modulo Probability Spaces

Overview. In Sect. 4, we assumed existence of an oracle that, given a formula
Ψϕ

n , can compute the probability that it is satisfied, assuming the values of vari-
ables xp

n are drawn from some probability distribution. Suppose, for instance,
that Ψϕ

n is a propositional formula and that there is a joint probability distrib-
ution p(xp

n). Then, we define

P[Ψϕ
n ] =

∑

c∈{0,1}n

1([xp
n 
→ c]Ψϕ

n ) p(c)

where the indicator function 1(φ) is 1 if φ is true and 0 otherwise.
Suppose, alternatively, that Ψp

n is a formula over real linear arithmetic and
there is a joint probability density function p(xp

n). Then, we define

P[Ψϕ
n ] =

∫

1(Ψϕ
n ) p(xp

n) dxp
n

That is, we integrate over region Ψϕ
n ⊆ Rn, weighted by the probability density.

The above problems are hard, for instance, in the propositional setting, the
counting problem is #P-complete. Nonetheless, there are efficient approaches
for various first-order theories; we survey prominent techniques below. Our algo-
rithm, of course, is agnostic to the technique used for computing probabilities.

Approximate guarantees. Approximate techniques come in two flavors:
(i) statistical approaches that utilize concentration inequalities, and (ii) ptime
randomized approximation schemes (pras) with access to an np oracle (e.g., a
sat solver) [43]. Both approaches provide (ε, δ) guarantees, where they produce
a result that is within a multiplicative or additive error of ε from the exact result,
with a probability 1 − δ of being correct. Recently, there has been progress in
practical pras algorithms [2,9,12], due to developments in sat and smt solvers.

Hard guarantees. Other approaches attempt to produce exact answers. For
instance, recent work has utilized cone decomposition [3,14] to integrate poly-
nomial probability density functions over linear real arithmetic formulas. Other
work considered over- and under-approximating linear real and integer arith-
metic formulas as a set of cubes to produce upper and lower bounds on the
probability [42].

7 Implementation and Evaluation

Implementation. We have implemented a prototype of our technique that
(i) takes programs in a simple Python-like language with procedure calls, prob-
abilistic assignments and non-deterministic ones; (ii) converts the program and
a query of interest to a pchc problem; and (iii) verifies the query. All programs
are encoded in linear real arithmetic.



16 A. Albarghouthi

Recall that we need to compute P[Ψϕ
n ] at every iteration of verify, and

that Ψϕ
n is quantified. To do so, we apply a simple Monte-Carlo-based sam-

pling approach that proves P[Ψϕ
n ] > θ with a 0.99 confidence—using Hoeffding’s

concentration inequality. Specifically, the approach draws an assignment for the
probabilistic variables, substitutes the assignment in the formula Ψϕ

n , and checks
whether the result is sat. Given that the formula is quantified, this is an expen-
sive process. If the formula is existentially quantified, then evaluating a sample
is np-complete. One could also eliminate the quantifier, and then each sample
evaluation is just a simplification of the formula. We have, however, found that
quantifier elimination degrades performance in this case, and it is better to eval-
uate each sample with a call the smt solver. On the other hand, for universally
quantified formulas, we have found that it is very important to perform quan-
tifier elimination first, as iteratively calling the smt solver to evaluate samples
on universally quantified formulas is infeasible. As such, we only perform quan-
tifier elimination in the presence of demonic nondeterminism—which requires
universal quantifiers. We use Redlog [1] for quantifier elimination.

Remark 2. We opted for an approximate approach to model counting because
our formulas are over quantified lra and non-trivial distributions, like Gaus-
sians, that established exact volume computation tools are unable to handle.
For example, LattE [14]—which is used in a number of tools [3,22]—can only
integrate a piecewise polynomial function over a polyhedron.

Benchmarks. We collected a set of benchmarks that is meant to exercise the
various features of our approach. Table 1 shows the list of benchmarks along with
a description of each. The family of benchmarks simple* are variants of the
illustrative example in Fig. 1, where we enrich it with angelic and demonic forms
of nondeterminism with which it decides the distribution to draw the value of x
from. We then consider the classic McCarthy91, mc91, recursive function, where
we impose a distribution on the possible inputs and compute the probability
that the return value is greater than 91. We consider an approximate version of
mc91, where the adder may flip the least significant bit from 0 to 1 with a small
probability. mc91-equiv computes the probability that the approximate version
mc91-approx returns the same result as the exact version mc91. The family of
benchmarks chat-* are random-walk programs taken from Chatterjee et al. [10]
(who are interested in termination). The programs contain demonic and angelic
nondeterminism (in case of chat-fig2, both). The query we check is about the
probability that the random walk ends in a certain region on the grid.

Evaluation and discussion. Table 1 shows the results of running our algo-
rithm with a 10min timeout per benchmark (‘–’ indicates timeout). For each
benchmark, we pick three values for θ that gradually increase the difficulty of
the verification process by forcing verify to perform more iterations. Most
benchmarks complete within 90 s.

We found two primary sources of difficulty: The first difficulty is dealing with
universal quantifiers. Consider, for instance, simp-dem with θ = 0.3. Here, ver-
ify needs to unroll the recursion up to depth 5, resulting in a difficult formula
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Table 1. Experimental results: Iters is the number of iterations; θ is the query thresh-
old; Time (s) is the total running time; and QETime is quantifier elimination time.

Benchmark Iters θ Time QETime Description

simple 1 0.4 6.3 0.0 Example from Fig. 2
2 0.6 12.6 0.0
4 0.8 25.4 0.0

simp-ang 1 0.4 6.6 0.0 Example from Fig. 2 with angelic
determinism for the choice of x’s
distribution

2 0.6 13.5 0.0
3 0.8 20.4 0.0

simp-dem 4 0.1 45.5 20.9 Example from Fig. 2 with demonic
determinism for the choice of x’s
distribution

4 0.2 45.4 20.9
5 0.3 530.2 505.9

mc91 2 0.2 6.7 0.0 McCarthy91 function with a
distribution on possible inputs2 0.3 6.6 0.0

– 0.4 – –
mc91-approx 2 0.4 6.8 0.0 McCarthy91 function with an

approximate adder3 0.5 14.0 0.0
6 0.6 51.4 0.0

mc91-equiv 3 0.7 15.2 0.0 Prob. of equivalence between an
approx. and exact mc91—using
self-composition

4 0.8 25.9 0.0
– 0.9 – –

chat-fig2 3 0.2 7.3 1.0 From Chatterjee et al. [10]: random
walk with demonic and angelic
nondeterminism

3 0.3 7.3 1.0
– 0.4 – –

chat-rw1 6 0.1 38.2 0.0 From Chatterjee et al. [10]:
1-dimensional random walk8 0.2 57.8 0.0

11 0.3 90.9 0.0
chat-rw2-dem 3 0.1 14.7 2.3 From Chatterjee et al. [10]:

2-dimensional random walk with
demonic non-determinism

3 0.2 14.6 2.3
– 0.3 – –

for quantifier elimination, as shown by the time taken for quantifier elimination.
Similarly, chat-fig2 and chat-rw2-dem (both of which contain demonic nonde-
terminism) timeout at larger values of θ while waiting for quantifier elimination
to complete. In the future, we plan on investigating efficient underapproxima-
tions of quantifier elimination [26] that result in good-enough lower bounds for
probabilities. The second source of difficulty is the exponential explosion in the
size of the unrolling—and therefore the encoding—which occurs in problems like
mc91. In the non-probabilistic case, recent work [33] has dealt with this problem
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by merging procedure calls on different execution paths to limit the explosion.
It would be interesting to investigate such technique in the probabilistic setting.

To the best of our knowledge, there are no automated verification/analysis
tools that can handle the range of features demonstrated in our benchmark suite.
In the next section, we survey existing works and describe the differences.

8 Related Work and Discussion

Probabilistic program analysis. There is a plethora of work on analyzing
probabilistic programs. Abstraction-based techniques employ abstract domains
to compute approximations of probability distributions [13,38,39]. By unrolling
program executions, our approach does not lose precision due to abstraction. The
closest approach to ours is that of Sankaranyanan et al. [42] where computing the
probability of an event is reduced to summing probabilities of event occurrences
on individual paths. First, our intermediate language of Horn clauses allows nat-
ural handling of recursive calls; additionally, we handle nondeterminism, which,
as discussed in Sect. 6, is handled unsoundly in the path-based technique. Sim-
ilarly, Sampson et al. [41] perform path-based unrolling, but do not provide
whole-program guarantees.

Other techniques for program analysis include axiomatic and exact ones.
Exact techniques, like psi [21], involve finding a closed-form for the return val-
ues of a given program, using rewrite rules and symbolic execution. To our
knowledge, none of the existing exact techniques can handle nondeterminism
and/or recursive procedures. Axiomatic techniques synthesize expectation invari-
ants from which a post-condition of interest may be deduced [8,30,36]. Compared
to our approach, these techniques do not handle procedures, are not guaranteed
to prove properties of the form in this paper, and are restricted in terms of
variable types and distributions used. Axiomatic approaches, however, excel at
characterizing the probability of an event in terms of inputs. It would be very
interesting to study expectation invariants in the context of pchc. Note that our
semantics of non-determinism are slightly different from those used by McIver
and Morgan [36]; we discuss this more below when describing Luckow et al.’s
work [35].

Probabilistic and statistical model checking. Compared to probabilistic
model checking, our approach allows encoding semantics of arbitrary recursive
programs, as long they fit in an appropriate first-order theory. Probabilistic
model checkers like prism [32] are often restricted to reasoning about finite-
state Markov chains. Statistical model checking [34] applies statistical testing
to prove properties with high confidence. We applied statistical testing in our
evaluation to compute probabilities with high confidence, where our testing was
over quantified formulas encoding Horn-clause unrollings.

Model counting. Like other recent techniques, our approach reduces proba-
bilistic analysis to a form of model counting. Chistikov et al. [12] apply a simi-
lar technique to encode single-procedure programs and use approximate model
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counting with an np oracle. Our approach can be viewed as a generalization of
Chistikov et al.’s formulation to programs with procedures and recursive calls.

A number of other analysis techniques for probabilistic programs employ
model counting [19,22,35]. The closest work to ours in that space is that of
Luckow et al. [35]. There, the program also involves non-determinism in the
form of a sequence of Boolean variables (a schedule) and the goal is to find an
assignment that maximizes/minimizes probability of an event. There are two key
differences with our work: First, we do not only admit Boolean non-deterministic
variables, but we can also handle, e.g., real-valued non-determinism. Second, our
non-determinism semantics are slightly different: We follow Chistikov et al. [12],
where non-determinism follows probabilistic choice. In the future, we plan to
investigate the alternate form of non-determinism used by Luckow et al. [35],
where non-deterministic variables are resolved first. In such case, the weighted
model counting problem turns into e-majsat (which is in nppp), where the goal is
to find a satisfying assignment to the non-deterministic variables that maximizes
the weighted model count of the formula.

Probabilistic Horn clauses. In artificial intelligence and databases, Horn
clauses have been extended to the probabilistic setting, e.g., [15,20]. The seman-
tics and usage are quite different from our setting. Probabilities are usually
associated at the level of the clause—e.g., a rule applies with a 0.75 probability.
Our approach incorporates probabilistic variables with the clauses themselves
and is over infinite domains, e.g., reals.

Probabilistic recursive models. There have been a number of proposals
for probabilistic models that involve recursion. For instance, probabilistic push-
down [17] automata and recursive Bayesian networks [40]. In probabilistic push-
down automata, and equivalently recursive Markov chains [18,44], variable
domains are finite and probabilities are applied only on transitions. Our approach
allows for infinite domains and probabilistic choice allows encoding probabilistic
control-flow transitions in a program as well as probabilistic assignments.

Horn clause solving. As discussed throughout the paper, our algorithmic con-
tribution adapts existing Horn clause solving algorithms to the probabilistic
setting. Specifically, most existing algorithms, e.g., hsf [24,25] and Duality [37],
employ an tree unrolling of Horn clauses, but are concerned with finding induc-
tive invariants as opposed to probability bounds.

9 Conclusion

We introduced probabilistically constrained Horn clauses (pchc), and pre-
sented an algorithm for proving/disproving probabilistic queries. Our seman-
tics incorporated a form of angelic/demonic non-determinism, where, effectively,
angelic/demonic variables can look into the future. This is, for instance, dif-
ferent from the semantics used by McIver and Morgan [36]. In the future, we
plan to handle such semantics by extending techniques like Luckow et al. [35] to
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our Horn-clause setting. Another interesting avenue for future work is to incor-
porate some form of loop summarization, so that we can reduce probabilistic
inference over infinitely many derivations to a fixed set, therefore avoiding iter-
ative unrolling.
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Abstract. Alternation of forward and backward analyses is a standard
technique in abstract interpretation of programs, which is in particu-
lar useful when we wish to prove unreachability of some undesired pro-
gram states. The current state-of-the-art technique for combining for-
ward (bottom-up, in logic programming terms) and backward (top-down)
abstract interpretation of Horn clauses is query-answer transformation.
It transforms a system of Horn clauses, such that standard forward analy-
sis can propagate constraints both forward, and backward from a goal.
Query-answer transformation is effective, but has issues that we wish
to address. For that, we introduce a new backward collecting semantics,
which is suitable for alternating forward and backward abstract interpre-
tation of Horn clauses. We show how the alternation can be used to prove
unreachability of the goal and how every subsequent run of an analysis
yields a refined model of the system. Experimentally, we observe that
combining forward and backward analyses is important for analysing
systems that encode questions about reachability in C programs. In par-
ticular, the combination that follows our new semantics improves the
precision of our own abstract interpreter, including when compared to a
forward analysis of a query-answer-transformed system.

1 Introduction

In the past years, there has been much interest in using Horn clauses for program
analysis, i.e., to encode the program semantics and the analysis questions as a
system of Horn clauses and then use a dedicated Horn clause solver to find a
model of the system or show its unsatisfiability (see e.g., [11]). In particular,
collecting semantics of programs and reachability questions can be encoded as
constrained Horn clauses, or CHCs.

With this approach, Horn clauses become a common language that allows dif-
ferent tools to exchange program models, analysis questions and analysis results.
For example, as part of this work, we implemented a polyhedra-based abstract
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interpreter for CHCs. We use an existing tool SeaHorn [22] to convert ques-
tions about reachability in C programs into systems of CHCs, and this way we
can use our abstract interpreter to analyse numeric C programs without having
to ourselves implement the semantics of C. Additionally, Horn clauses allow to
build complicated abstract models of programs, as opposed to implementing the
abstraction mostly as part of the abstract domain. For example, D. Monniaux
and L. Gonnord propose [36] a way to abstract programs that use arrays into
array-free Horn clauses, and we are not aware of a domain that implements their
abstraction.

On the other hand, this approach makes it more important to implement dif-
ferent precision-related techniques and heuristics in the analyser, since we have
little control over how the problem description is formulated, when it is produced
by an external procedure. One technique that is important for disproving reach-
ability using abstract interpretation is the combination of forward and backward
analyses. The idea is to alternate forward and backward analyses, and build an
over-approximation of the set of states that are both reachable from the program
entry and can reach an undesired state (Patrick and Radhia Cousot give a good
explanation of the technique [18, section 4]).

Patrick and Radhia Cousot also propose to use a combination of forward
and backward analyses a for logic programs [17]. Their combination is based
on the intersection of forward (bottom-up, in logic programming terms1) and
backward (top-down) collecting semantics, which, as we observe in Sect. 3, is
too over-approximate for our purposes. The current state-of-the-art technique
for combining forward and backward analyses of Horn clauses is query-answer
transformation [28]. The idea is to transform a system of Horn clauses, such
that standard forward analysis can propagate constraints both forward from
the facts, and backward from a goal. Query-answer transformation is effective,
e.g., B. Kafle and J.P. Gallagher report [28] that it increases the number of
benchmark programs that can be proven safe both by their abstract interpreter
and by a pre-existing CEGAR-based analyser. Still, query-answer transformation
has some issues, which we outline (together with its advantages) in Sect. 2.3 and
revisit in Sect. 3.2.

To address the issues of the existing techniques, we introduce a new back-
ward collecting semantics of CHCs, which offers more precision when combining
forward and backward abstract interpretation. We show how the analysis based
on the new semantics can be used to prove unreachability of a goal and how
every subsequent run of the analysis yields a refined model of the system. In
particular, if the goal is proven to be unreachable, our analysis can produce a
model of the system that is disjoint from the goal, which allows to check the
results of the analysis and to communicate them to other tools. These are the

1 In this paper, we use the terms bottom-up and top-down in the meanings that they
bear in logic programming and thus they correspond to forward and backward analy-
sis respectively. In program analysis, bottom-up may mean from callees to callers or
from children to parents in the AST, but this is not the meaning that we intend in
this paper.
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main contributions of this paper. To evaluate our approach, we take programs
from the categories “loops”, and “recursive” of the Competition on Software
Verification SV-COMP [2]. We use the existing tool SeaHorn to translate these
programs to systems of Horn clauses. We observe that the alternation of forward
and backward analyses following our new semantics improves the precision of our
own abstract interpreter (i.e., it allows to prove safety of more safe programs)
including when compared to forward analysis of a query-answer-transformed
system.

2 Background

We say that a term is a variable, a constant, or an application of an interpreted
function to a vector of terms. To denote vectors of terms, we use bold letters.
Thus, t denotes a vector of terms; ϕ[x] (assuming elements of x are distinct)
denotes a formula ϕ, where the set of free variables is the set of elements of x; and
ϕ[x/t] denotes a formula that is obtained from ϕ by simultaneously replacing
(substituting) every occurrence of xi ∈ x with the corresponding element ti ∈ t.

CHCs. A constrained Horn clause (CHC) is a first order formula of the form

∀X.
(
p1(t1) ∧ p2(t2) ∧ · · · ∧ pn(tn) ∧ ϕ ⇒ pn+1(tn+1)

)

where pi are uninterpreted predicate symbols, ti are vectors of terms; ϕ is a
quantifier-free formula in some background theory and does not contain unin-
terpreted predicates or uninterpreted functions; and X includes all free variables
of the formula under the quantifier. Following standard notation in the literature,
we write a Horn clause as

pn+1(tn+1) ← ϕ, p1(t1), p2(t2), · · · , pn(tn)

that is, with free variables being implicitly universally quantified. We use a
capital letter to denote an application of a predicate to some vector of terms
(while for predicate symbols, we use lowercase letters). Thus, when the terms in
predicate applications are not important, we can write the above clause as

Pn+1 ← ϕ,P1, P2, · · · , Pn

The predicate application Pn+1 is called the head of the clause, and the
conjunction ϕ,P1, P2, · · · , Pn is called the body. A CHC always has a predicate
application as its head. But, we assume that there exists a distinguished 0-ary
predicate f that denotes falsity and is only allowed to appear in the head of
a clause. A clause that has f as its head is called an integrity constraint. For
example, an assertion ψ ← ϕ,P can be written as the integrity constraint:
f ← (ϕ ∧ ¬ψ), P .

A system is a set of CHCs that is interpreted as their conjunction.

Models of CHCs. We say that an atom is a formula of the form p(c1, · · · , cn),
where p is an n-ary predicate symbol and ci are constants. We denote the set of
all atoms by A.
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An interpretation is a set of atoms M ⊆ A. One can say that an interpretation
gives truth assignment to atoms: an atom is interpreted as true if it belongs to the
interpretation and as false otherwise. This way, an interpretation also provides
a truth assignment to every formula, by induction on the formula structure.

For a system of CHCs, a model (or solution) is an interpretation that makes
every clause in the system true (note that all variables in a system of Horn
clauses are universally quantified, and thus the model does not include variable
valuations). We call a model M ⊆ A safe when f /∈ M (many authors prefer to
call an interpretation M a model only when it does not include f, but we prefer
to have both notions). A system of CHCs always has the minimal model w.r.t.
subset ordering (see, e.g., [26, section 4]). If a system has no clauses of the form
P ← ϕ, its least model is ∅. We call a system of CHCs safe iff it has a safe
model. In particular, for a safe system, its least model is safe, and thus, for a
safe system, there exists the smallest safe model. For every system of CHCs, the
set of atoms A is the greatest (unsafe) model, but a safe system in general may
not have the greatest safe model.

Fixed Point Characterization of the Least Model. A system of CHCs H

induces the direct consequence relation TH ⊆ P(A) × A, which is constructed
as follows. A tuple

({p1(c1), · · · , pn(cn)}, pn+1(cn+1)
) ∈ TH iff the system H

contains a clause pn+1(tn+1) ← ϕ, p1(t1), · · · , pn(tn), such that ϕ∧∧n+1
i=1 ci = ti

is satisfiable.2 In particular, every clause of the form p(t) ← ϕ induces a set of
initial transitions (or initial consecutions) of the form (∅, p(c)), where ϕ∧(c = t)
is satisfiable. Direct consequence relation can be seen as a variant of a direct
consequence function discussed by J. Jaffar and M.J. Maher [26, section 4].

Note that TH is unlike an ordinary transition relation and relates a set of
atoms with a single atom that is their direct consequence. To work with such
a relation, we can adapt the standard in program analysis definition of post-
condition as follows:

post(TH,X) = {a′ | ∃A ⊆ X. (A, a′) ∈ TH}

Then, the least model of H can be characterised as the least fixed point:

lfp⊆λX. post(TH,X) (1)

As standard in abstract interpretation, we call the fixed point (1) the for-
ward (bottom-up, in logic programming terms) collecting semantics of H. In
general, every pre-fixpoint of the consequence operator, i.e., every set M , s.t.
post(TH,M) ⊆ M is a model of H.

Analysis Questions. Given a system of CHCs H, the analysis question may
be stated in a number of ways. Often we want to know whether the system is
safe, i.e., whether the least model of H contains f. More generally, we may be

2 There may be a slight abuse of notation here. When writing down the set as
{p1(c1), · · · , pn(cn)}, we do not assume that all pi or all ci are distinct and that the
set has exactly n elements.
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given a set of goal atoms Ag ⊆ A. Then, the analysis question will be whether
the goal is unreachable, i.e. whether the goal and the least model are disjoint.
In this case, we start by computing a (reasonably small) model M of H. If
M ∩ Ag = ∅, we conclude that the goal is unreachable. Otherwise, we either
report an inconclusive result (since the computed M will in general not be the
smallest model), or attempt to compute a refined model M ′ ⊂ M .

Alternatively, we may want to produce a model of H that gives us some
non-trivial information about the object described by H. In this case, we usually
want to produce some reasonably small model, which is what abstract interpre-
tation tries to do. The goal may or may not be given. For example, we may
be only interested in some part of the object (say, a subset of procedures in a
program), which is described by a subset of predicates Π. Then, the goal will be
the corresponding set of atoms Ag = {p(c) | p ∈ Π}.

2.1 Abstract Interpretation of CHCs

Abstract interpretation [15] provides us a way to compute an over-approximation
of the least model, following the fixed point characterization. To do so, we intro-
duce the abstract domain D with the least element ⊥, greatest element �, partial
order  and join �. Every element of the abstract domain d ∈ D represents the
set of atoms γ(d) ⊆ A. Then, we introduce the abstract consequence operator
post� which over-approximates the concrete operator post, i.e., for every d ∈ D,
γ(post�(H, d)) ⊇ post(TH, γ(d)). If we are able to find such element dm ∈ D that
post�(H, dm)  dm then γ(dm) is a pre-fixpoint of the direct consequence oper-
ator and thus a model of H (not necessarily the smallest one). At this point, it
does not matter how we compute dm. It may be a limit of a Kleene-like iteration
sequence (as in our implementation) or it may be produced by policy iteration
[20,31], etc.

One can expect that an element d ∈ D is partitioned by predicate, in the
same way as in program analysis, domain elements are partitioned by program
location. In the simple case, every element d ∈ D will have a logical representation
in some theory and one can think that it maps every predicate pi to a quantifier-
free formula δi[xi], where xi correspond to the arguments of pi. For example,
when using a polyhedral domain, d will map every predicate to a conjunction of
linear constraints. For simplicity of syntactic manipulations, we can assume that
xi are distinct vectors of distinct variables, i.e., a given variable appears only in
one vector xi and only once.

From this, we can derive a recipe for Kleene-like iteration. Let d ∈ D be the
current fixpoint candidate that maps every predicate pi to a formula δi[xi]. We
try to find a clause pn+1(tn+1) ← ϕ, p1(t1), · · · , pn(tn) (where n ≥ 0), such that
the following formula is satisfiable:

ϕ ∧ δ1[x1/t1] ∧ · · · ∧ δn[xn/tn] ∧ ¬δn+1[xn+1/tn+1] (2)

If it is, we find a set of models of (2), and if some model assigns the vector
of constants cn+1 to the variables xn+1, we join the atom pn+1(cn+1) to d.
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In a polyhedral analysis, we usually want to find in every step a convex set
models of (2). Assuming the formula is in negation normal form, there is a
näıve way to generalize a single model to a convex set of models by recursively
traversing the formula and collecting atomic propositions satisfied by the model
(descending into all sub-formulas for a conjunction and into one sub-formula for
a disjunction). In general though, this corresponds to a problem of finding a
model of a Boolean formula that is in some sense optimal (see, e.g., the work of
J. Marques-Silva et al. [34]). When the set of CHCs is produced from a program
by means of large block encoding [10] (e.g., SeaHorn does this by default), then
ϕ is disjunctive and represents some set of paths through the original program.
Finding a convex set of models of (2) corresponds to finding a path through
the original program, along which we need to propagate the post-condition. In
program analysis, a similar technique is called path focusing [23,35].

Checking the Model. Given an element d ∈ D, we can check whether it
represents a model by taking its abstract consequence. If post�(H, d)  d then
γ(d) is a pre-fixpoint of the direct consequence operator and thus is a model of
H. When d can be represented in a logical form and maps every predicate pi

to a formula δi[xi] in some theory, we can check whether it represents a model
(i.e., that for every clause, the formula (2) is unsatisfiable) using an SMT solver.
Being able to check the obtained models provides a building block for making a
verifiable static analyser.

2.2 Program Analysis and CHCs

Different flavours of Horn clauses can be used to encode in logic form different
program analysis questions. In particular, CHCs can be used to encode invari-
ant generation and reachability problems. In such an encoding, uninterpreted
predicates typically denote sets of reachable memory states at different program
locations, clauses of the form Pn+1 ← ϕ,P1, P2, · · · , Pn encode the semantics
of transitions between the locations, clauses of the form P ← ϕ encode the
initial states, and the integrity constraints (of the form f ← ϕ,P ) encode the
assertions. In this paper, we limit ourselves to invariant generation and reacha-
bility, but other program analysis questions (including verification of temporal
properties [9]) can be encoded using other flavours of Horn clauses. For more
information, an interested reader can refer to a recent survey [11].

Example 1 - Parallel Increment. Consider a program in Fig. 1. It starts by
setting two variables, x and y, to zero and then increments both of them in a
loop a non-deterministic number of times. An analyser is supposed to prove that
after the loop finishes, x and y have equal values. This program also has an
unreachable condition x < 0 upon which only x is incremented, which will be
useful in the next example. The program in Fig. 1 can be encoded into CHCs as
shown in Fig. 2, where the predicate p denotes the set of reachable states at the
head of the loop, and its arguments denote the variables x and y respectively.
From the point of view of abstract interpretation, such a system of CHCs repre-
sents a program’s collecting semantics. For simple programs, as the one in Fig. 1,
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Fig. 1. A program that increments x
and y in parallel.

Fig. 2. Horn clause encoding of the
program in Fig. 1.

a model of the system of CHCs directly represents an inductive invariant of the
program. For the more complicated programs (e.g., programs with procedures)
this may no longer be true, but in any case, if we find a safe (not containing f)
model of the system of CHCs, we can usually conclude that the program cannot
reach an assertion violation. A model that we find with abstract interpretation
will assign to every predicate an element of some abstract domain; for a numeric
program this may be a convex polyhedron (or a small number of polyhedra) in
a space where every dimension corresponds to a predicate argument. Thus, for
us to be able to prove safety of a program, the system of CHCs has to have a
safe model of the given form.

Horn clause encoding of programs without procedures is typically straight-
forward and results in a system, where every clause has at most one predicate
application in the body; such clauses are often called linear. Encoding of pro-
grams with procedures is also possible, but there are multiple ways of doing it.
We now give an example of a program with a procedure.

Fig. 3. A program that increments x
and y in parallel using a procedure.

Fig. 4. A possible Horn clause
encoding of the program in Fig. 3.
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Example 2 - Parallel Increment Using a Procedure. Consider a program
in Fig. 3. Similarly to Example 1, it starts by setting two variables, x and y, to
zero and then increments both of them in a loop, but this time by calling an
auxiliary procedure. Again the procedure has an unreachable condition x < 0
upon which it only increments x. If we encode this program into CHCs directly
(without inlining of inc xy), we may arrive at a system as in Fig. 4. This roughly
corresponds to how the tool SeaHorn encodes procedures that do not contain
assertions. As before, the predicate p denotes the reachable states at the loop
head. A new predicate f denotes the input-output relation of the procedure
inc xy. If f(x1, y1, x2, y2) holds, this means that if at the entry of inc xy x = x1

and y = y1 then at the exit of inc xy, it may be the case that x = x2 and y = y2.
In general, every predicate that corresponds to a location inside a procedure, will
have two sets of arguments: one set will correspond to the state at the entry of the
procedure (as the first two arguments of f) and the other, to the corresponding
state at the given location (as the last two arguments of f). Note that another
new predicate, fc, is purely auxiliary and does not denote the reachable states
at the at the initial location of inc xy. To solve the system in Fig. 4, we need to
approximate the full transition relation of inc xy, which includes approximating
the outputs for the inputs, with which the procedure is never called. If we analyse
this program in a polyhedral domain, we will notice that the full input-output
relation of inc xy cannot be approximated in a useful way by a single convex
polyhedron. But if we restrict the analysis to the reachable states, where x ≥ 0
always holds, we will be able to infer that inc xy increments both x and y, and
this will allow to prove safety of the program.

One may argue that we should alter the way we encode procedures and
constrain fc to denote the set of reachable states at the entry of inc xy. But
when building an analysis tool, we should cater for different possible encodings.

2.3 Combination of Forward and Backward Program Analyses

Example 2 demonstrates the general problem of communicating analysis results
between different program locations. In an inter-procedural analysis, often we
do not want to explicitly build the full input-output relation of a procedure.
For the inputs, with which a procedure may be called, we do want to find the
corresponding outputs, but for the other inputs we may want to report that the
output is unknown. This is because often, as in Example 2, the full input-output
relation will not have a useful approximation as a domain element. At the same
time, a useful approximation may exist when we consider only reachable inputs.
Similar considerations hold for intra-procedural analysis. If we want to prove that
an assertion violation is unreachable, we do not need to explicitly represent the
full inductive invariant of a program. Instead, we want to approximate the set of
states that are both reachable from the initial states and may reach an assertion
violation. If this set turns out to be empty, we can conclude that an assertion
violation is unreachable. This technique is standard for program analysis, and
in Sect. 3, we adapt it to CHCs.
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An alternative technique for Horn clauses is query-answer transformation [28].
Given the original system of CHCs H, we build the transformed system H

qa. For
every uninterpreted predicate p in H (including f), H

qa contains a query predicate
pq and an answer predicate pa. The clauses of H

qa are constructed as follows.

– Answer clauses. For every clause Pn+1 ← ϕ,P1, · · · , Pn (where n ≥ 0) in H,
the system H

qa contains the clause P a
n+1 ← ϕ,P q

n+1, P
a
1 , · · · , P a

n .
– Query clauses. For every clause Pn+1 ← ϕ,P1, · · · , Pn (where n ≥ 0) in H,

the system H
qa contains the clauses:

P q
1 ← ϕ,P q

n+1

P q
2 ← ϕ,P q

n+1, P
a
1

· · ·
P q

n ← ϕ,P q
n+1, P

a
1 , · · · , P a

n−1

– Goal clause fq ← true.

Then, forward (bottom-up) analysis of H
qa corresponds to a combination of

forward and backward (top-down) analyses of H.
We experienced several issues with the query-answer transformation. For

linear systems of CHCs, forward analysis of H
qa corresponds to a single run

of backward analysis of H followed by a single run of forward analysis. For
non-linear systems, this gets more complicated, though, as there will be recur-
sive dependencies between query and answer predicates, and the propagation of
information will depend on the order, in which query clauses are created. We
observed that is not enough, and for some systems the analysis needs to prop-
agate the information forward and then backward multiple times. This usually
happens when the abstract domain of the analysis cannot capture the relation
between the program variables.

Example 3. In Fig. 5, we show a synthetic example of a program that needs
more than one alternation of forward and backward analysis to be proven safe.
Notice that this program is safe, as after entering the if-branch in line 4 we have
that x > 0 and x = ky for some k ≥ 0, therefore y is also greater than 0, and this
is not changed by adding x to y in lines 5–6. If we work in a polyhedral domain,
we cannot capture the relation ∃k ≥ 0. x = ky and therefore should proceed
with the safety proof in a different way, e.g., as follows. First, we run a forward
analysis and establish that at lines 5–7, x > 0, since these lines are inside the
if-branch. Then, we run a backward analysis starting with the set of states y < 0
at line 7, which corresponds to the assertion violation. Since the loop in lines
5–6 can only increase y, we establish that for y to be less than zero in line 7, it
also has to be less than zero in lines 1–6. Finally, we run forward analysis again
and establish that for the assertion violation to be reachable, x at line 4 has to
be both greater than zero (so that we enter the if -branch), and less-or-equal to
zero (because x starts being zero and in lines 2–3 we repeatedly add a negative
number to it), which is not possible. While this particular example is synthetic,
in our experiments we observe a small number of SV-COMP programs where a
similar situation arises.
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Fig. 5. Program, where
polyhedral analysis needs
to propagate information
forward and backward
multiple times.

A more subtle (but more benign) issue is that when
solving the query-answer-transformed system, we are
actually not interested in the elements of the interpre-
tation of pa, which are outside of pq, but this is not
captured in H

qa itself. Because of this, pa may be over-
approximated too much as a result of widening or join.
Perhaps this is one of the reasons why B. Kafle and J.P.
Gallagher propose [28] to perform abstract interpreta-
tion in two phases. First, they analyse the transformed
system H

qa. Then, they strengthen the original system
with the interpretations of answer predicates and run
an analysis on the strengthened system.

To address these issues, we decided to adapt the
standard (for program analysis) alternation of forward

and backward analysis to CHCs. We return to the comparison of our approach
to query-answer transformation in Sect. 3.2.

3 Combining Forward and Backward Analysis of CHCs

Patrick and Radhia Cousot proposed a backward (top-down) semantics for Horn
clauses, which collects atoms that can appear in an SLD-resolution proof [17].
We take their definition as a starting point and define a new backward semantics
and a new more precise combined forward-backward semantics. Then we show,
how we can use our new semantics to disprove reachability of a goal and to refine
a model w.r.t. the goal.

Backward Transformers and Collecting Semantics. First, let us introduce
the pre-condition operation as follows. For a system H,

pre(TH, A′) = {a | ∃A ⊆ A.∃a′ ∈ A′.(A, a′) ∈ TH ∧ a ∈ A}
Then, for a system H and a set of goal atoms Ag, the backward (top-down)
semantics is characterized by the least fixed point:

lfp⊆λX.Ag ∪ pre(TH,X) (3)

which corresponds to the semantics proposed by Patrick and Radhia Cousot.
This definition of backward semantics has a drawback though. The intersection
of forward semantics (1) and backward semantics (3) over-approximates the set
of atoms that can be derived from initial clauses (of the form P ← ϕ) and can
be used to derive the goal.

Example 4. Let us consider the following system of CHCs, where p is a unary
predicate and c1, · · · , c5 are constants

p(c1) ← true p(c5) ← p(c3)
p(c2) ← p(c1) p(c5) ← p(c2), p(c4)
p(c3) ← p(c1)

(4)
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The forward semantics (1) for this system is the set {p(c1), p(c2), p(c3), p(c5)}
(note that the atom p(c4) cannot be derived). Let us assume that the set
of goals is Ag = {p(c5)}. Then, the backward semantics (3) for this system
is {p(c1), p(c2), p(c3), p(c4), p(c5)}. The intersection of forward and backward
semantics is {p(c1), p(c2), p(c3), p(c5)}, even though the atom p(c2) is not used
when deriving the goal {p(c5)} (because we cannot derive p(c4)). If we imple-
ment an abstract analysis based on the intersection of semantics (1) and (3),
this will become an additional source of imprecision.

3.1 Forward and Backward Analyses Combined

We wish to define a combination of forward and backward semantics that does
not introduce the over-approximation observed in Example 4. For that, we pro-
pose the restricted pre-condition operation that we define as follows. For a
restricting set R ⊆ A,

pre|R(TH, A′) = {a | ∃A ⊆ R.∃a′ ∈ A′. (A, a′) ∈ TH ∧ a ∈ A}
Now, we can define the combined forward-backward collecting semantics as fol-
lows:

lfp⊆λX.(Ag ∩ M) ∪ pre|M (TH,X)

where M = lfp⊆λX. post(TH,X) (5)

One can show that this semantics denotes the set of atoms that can be derived
from initial clauses (of the form P ← ϕ) and can be used to derive the goal
(we defer an explanation until Sect. 5). For example, one can see that for the
system (4) discussed in Example 4, computing this semantics produces the set
{p(c1), p(c3), p(c5)}, as expected.

Introducing a restricted pre-condition operation is common, when a combi-
nation of analyses cannot be captured by the meet operation in the domain.
For example, assume that we want to analyse the instruction z := x + y in
an interval domain. Assume also that the pre-condition is restricted by x ≥ 3
(e.g., obtained by forward analysis) and the post-condition is z ∈ [0, 2]. In this
case, unrestricted backwards analysis yields no new results. But if we modify the
pre-condition operation to take account of the previously obtained pre-condition
(x ≥ 3 in this case), we can derive the new constraint y ≤ −1.

It may however be unusual to see a restricted pre-condition in concrete
collecting semantics. To explain it, in Sect. 5, we introduce tree semantics of
CHCs and show how concrete collecting semantics is itself an abstraction of tree
semantics. In particular, the intersection of forward and backward tree semantics
abstracts to (5).

Abstract Transformers. As standard in abstract interpretation, we introduce
over-approximate versions of forward and backward transformers, resp. post�

and pre�, s.t. for d, r ∈ D,

γ(post�(H, d)) ⊇ post(TH, γ(d)) γ(pre�|r(H, d)) � pre|γ(r)(TH, γ(d))
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Abstract Iteration Sequence. In concrete world, the combination of forward
and backward analyses is characterized by a pair of fixed points in (5). In par-
ticular, we have the following property:

Proposition 1. If we let M = lfp⊆λX. post(TH,X) and M ′ = lfp⊆λX.(Ag ∩
M) ∪ pre|M (TH,X) then lfp⊆λX.(post(TH,X) ∩ M ′) = M ′.

That is, concrete forward and backward analyses need not be iterated. We give
the proof of this a bit later. In the abstract world, this is not the case, as has
already been noted for program analysis [18]. In general, given the abstract goal
g ∈ D, the combination of abstract forward and backward analyses produces the
sequence:

b0, d1, b1, d2, b2, · · · , where
b0 = �, and for i ≥ 1,

post�(H, di) � bi−1  di (6)
g � di  bi

pre�|di
(H, bi)  bi

In principle, this iterations sequence may be infinitely descending, and to ensure
termination of an analysis, we have to limit how many elements of the sequence
are computed. In our experiments though, the sequence usually stabilizes after
the first few elements.

Propositions 2 and 3 respectively show how we can refine the initial model
w.r.t. the goal and how we can use the iteration sequence to disprove reachability
of the goal.

Proposition 2. For every k ≥ 1, the set γ(dk)∪⋃k−1
i=1

(
γ(di)\γ(bi)

)
is a model

of H.

We present the proof in Appendix A.
Observe that for some abstract domains (e.g., common numeric domains:

intervals, octagons, polyhedra), the meet operation is usually exact, i.e. for
d1, d2 ∈ D, γ(d1 � d2) = γ(d1) ∩ γ(d2). Also, for such domains we can expect
that for r, d ∈ D, pre�|r(H, d)  r. In this case, the forward-backward iteration
sequence is descending: b0 � d1 � b1 � d2 � · · · , and computing every sub-
sequent element di provides a tighter model of H (assuming di is distinct from
di−1). This comes at a cost, though, since the refined model will not in general be
expressible in the abstract domain of the analysis. For example, in a polyhedral
analysis, when di and bi are maps from predicates to convex polyhedra, express-
ing the model given by Proposition 2, requires finite sets of convex polyhedra.
If we wish to check if such an object M is indeed a model of H, we will need to
check that M geometrically covers its post-condition. This can be done using a
polyhedra library that supports powerset domains and geometric coverage (e.g.,
Parma Polyhedra Library [7]) or with an SMT-solver.
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Now, the proof of Proposition 1 becomes straightforward.

Proof (of Proposition 1). Let M ′′ = lfp⊆λX.(post(TH,X) ∩ M ′), i.e. M ′′ ⊆ M ′

by definition. From Proposition 2, (M \ M ′) ∪ M ′′ ⊆ M is a model of H. Since
M is the smallest model, (M \ M ′) ∪ M ′′ = M and M ′′ = M ′.

Proposition 3. If there exists k ≥ 1, s.t. dk = ⊥, then there exists a model M
of H, s.t. M ∩ γ(g) = ∅ (i.e., the goal is unreachable).

Proof. If dk = ⊥ then γ(dk) = ∅, and from Proposition 2, M =
⋃k−1

i=1

(
γ(di) \

γ(bi)
)

is a model of H. From (6), it follows that for every i, γ(g)∩ γ(di) ⊆ γ(bi),
that is (γ(di) \ γ(bi)) ∩ γ(g) = ∅. This means that M ∩ γ(g) = ∅.

Thus, when there exists k s.t. dk = ⊥, we obtain a constructive proof of unreach-
ability of the goal that can later be checked.

Result of the Analysis. Propositions 2 and 3 provide a way to give additional
information to the user of the analysis, apart from the verdict (safe or potentially
unsafe). Suppose, we compute the iteration sequence (6) up to the element dk and
then stop (whether because dk = ⊥, or the sequence stabilized, or we reached a
timeout, etc.). The object dk in itself may not be interesting: it is not a model of
H, it is not a proof or a refutation of reachability of the goal. If the user wishes to
check the results of the analysis, we may give them the whole iteration sequence
up to dk. Then, the user will need to confirm that the sequence indeed satisfies
the conditions of (6). Alternatively, we may give the user the refined model of
H, i.e. some representation of M = γ(dk) ∪ ⋃k−1

i=1

(
γ(di) \ γ(bi)

)
. This will allow

the user to not only check the model, but also, e.g., produce program invariants
that can be used by another verification tool (e.g., Frama-C [3], KeY [5], etc.).
Representation of M may require an abstract domain that is more expressive than
the domain of the analysis, but may be more compact than the whole iteration
sequence. Alternatively, if di and bi can be represented in logical form in some
theory, so can M .

Which Analysis Runs First. In the iteration sequence (6), forward and back-
ward analyses alternate, but which analysis runs first is actually not fixed. We
may start with forward analysis and compute d1 as normal, or we may take
d1 = � and start the computation with backward analysis. A notable option is
to do the first run of backward analysis in a more coarse abstract domain and
switch to a more precise domain in subsequent runs. For example, the initial run
of backward analysis may only identify the predicates that can potentially be
used to derive the goal:

lfp⊆λX.Πg ∪ pre(TΠ,X), where

Πg = {p | p(c) ∈ Ag} (7)

TΠ =
{
(Π, p′) | ∃(A, a′) ∈ TH.Π = {p | p(c) ∈ A} ∧ a′ = p′(c′)

}

Then, we can take d1 = �, b1 to be some abstraction of (7), and starting from
d2, run the analysis with a more precise domain. In program analysis, restricting
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attention to program locations that have a path to (i.e., are backward-reachable
from) some goal location, is a known technique. For example, K. Apinis, H. Seidl,
and V. Voidani describe a sophisticated version of it [6].

3.2 Revisiting the Query-Answer Transformation

In principle, the iteration sequence (6) can be emulated by an iterated simple
query-answer transformation. Let H be the original system of CHCs. Let the
element bk of the iteration sequence (6) map every predicate pi to a formula βi

k.
In particular, b0 will map every pi to true. Then, dk+1 can be found as a model
of the system H

d
k+1. To construct, H

d
k+1, for every CHC Pn+1 ← ϕ,P1, · · · , Pn

(for n ≥ 0) in the original system H, we add to H
d
k+1 the clause Pn+1 ← ϕ ∧

βn+1
k , P1, · · · , Pn. Now let the element dk map every Pi to a formula δi

k. Then,
bk can be found as a model of the system H

b
k that is constructed as follows. For

every CHC in the original system H: Pn+1 ← ϕ,P1, · · · , Pn, we add to H
b
k the

clauses P1 ← ϕ∧∧n
i=1 δi

k, Pn+1 through Pn ← ϕ∧∧n
i=1 δi

k, Pn+1. Also, we add to
H

b
k the goal clause f ← fk. If we compute the elements of the iteration sequence

up to dk, then the function that maps every pi to δi
k ∨∨k−1

j=1 (δi
j ∧¬βi

j) represents
a model of the original system H. In particular, when d1 = �, and k = 2, this
produces a model, where every pi maps to βi

1 ⇒ δi
2.

Thus, one has a choice, whether to take a fixpoint-based approach, as we did,
or a transformation-based approach. From the theoretical point of view, one will
still have to prove that the iterated transformation allows to prove unreachability
of the goal and to build a refined model, i.e., some analog of Propositions 2 and 3.
As one can see in Appendix A, this is not trivial for the steps beyond the second.
From the practical point of view, we believe that our approach allows to more
easily implement some useful minor features. For example, the iteration sequence
(6) naturally constrains bi to be below di and di to be below bi−1, which in some
cases makes widening and join less aggressive. It should be possible though to
achieve a similar effect for the query-answer transformation at the expense of
introducing additional predicates and clauses.

On the other hand, an advantage of query-answer transformation is that
it can be used as a preprocessing step for the analyses that are not based on
abstract interpretation. For example, B. Kafle and J.P. Gallagher report [28]
that it can improve the precision of a CEGAR-based analyser.

4 Implementation and Experiments

We implemented our approach in a prototype abstract interpreter. It can analyse
numeric C programs that were converted to a system of CHCs with the tool Sea-
Horn [22] (the input format is currently a technical limitation, and we wish to
remove it in the future). The implementation is written in OCaml and available
online [4]. A notable feature of SeaHorn is that it introduces Boolean variables
and predicate arguments even for programs without Boolean variables. To repre-
sent sets of valuations of numeric and Boolean variables, we use Bddapron [27].
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We implement Kleene-like iteration as outlined in Sect. 2.1, which is similar to
path focusing [23,35]. Iteration order and choice of widening points are based
on F. Bourdoncle’s [13,14] recursive strategy (except that we implement it using
a worklist with priorities). As an SMT solver, we use Z3 [12]. For comparison,
in addition to the forward-backward iteration sequence (6), we implemented an
analysis based on query-answer transformation.

To evaluate our implementation, we took C programs from the categories
loops and recursive of the Competition on Software Verification SV-COMP [2].
SeaHorn operates on LLVM bytecode produced by Clang [1], and the resulting
system of CHCs depends a lot on Clang optimization settings. For example,
constant folding may remove whole computation paths when they do not depend
on non-deterministic inputs. Or, Clang may replace recursion with a loop, which
will make SeaHorn produce a linear system of CHCs instead of a non-linear
one. In our experiments, we compiled the input programs with two optimization
levels: -O3 (SeaHorn’s default) and . As a result, we get a total of 310 systems
of Horn clauses, out of which 158 are declared safe by SV-COMP. Since we
cannot prove unsafety, our evaluation focuses on safe systems. Out of 158 safe
systems, our tool can work with 123. Other systems use features that are not
yet supported in our tool (division, non-numeric theories, etc.). Out of 158 safe
systems, 74 are non-linear.

First, we evaluate the effect of combined forward-backward analysis. The
results are presented in Table 1. We compare three approaches. The first is the
onewepropose in this paper, i.e., basedon the forward-backward iteration sequence
(6). We compute the elements of (6) up to d5. If we decrease the limit from d5 to
d3, we can prove safety of 2 less programs; increasing the limit to d7 gives no effect.
The second one a 2-step analysis based on query-answer transformation [28]. First,
it runs forward analysis on a query-answer transformed system, then injects the
interpretations of answer predicates in the original system and runs forward analy-
sis again. We implemented this analysis ourselves, and thus we are not directly
comparing our implementation to the tool Rahft [30], where this analysis was first
implemented. Finally, we also run a simple forward analysis. In Table 1, we report
the number of programs that we proved safe with every approach. One can see
that our approach has a small advantage over both query-answer transformation
and simple forward analysis. Interestingly, B. Kafle and J.P. Gallagher report [28] a
much greaterdifferencewhenmoving fromsimple forwardanalysis toquery-answer
transformation. This can be attributed to three factors. First, their set of bench-
marks is different, although it includes many programs from the same SV-COMP
categories. Second, their benchmarks are, to our knowledge, not pre-processed by
Clang. Third, as B. Kafle and J.P. Gallagher themselves report, some issues solved
by adding backward analysis can as well be solved by path focusing, which our tool
implements.

For reference, we also compare our tool to the solver that is integrated with
SeaHorn (to our knowledge, it is based on the tool SPACER. [32,33]). We present
the results in Table 2. SeaHorn can prove safety of more programs, which is
expected since our tool is in an early stage of development.
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Table 1. Comparison of abstract
interpretation strategies.

Proven safe

Safe Supported This paper QA Fwd

158 123 87 82 76

Table 2. Comparison to SeaHorn’s
builtin solver (with 1min timeout).

This paper SeaHorn

Proven safe 87/123 (70%) 133/158 (84%)

5 Tree Semantics of CHCs

In this section, we briefly introduce tree semantics of CHCs. Trees are not conve-
nient objects to work with, and studying tree semantics is not the main purpose
of this paper. Thus, our description will not be fully rigorous. Rather, our goal
is to give the reader an intuition of why we construct collecting semantics (espe-
cially, backward and combined semantics) in the way we do, which is perhaps
best explained when collecting semantics is viewed as an abstraction of tree
semantics.

For the purpose of this section, a tree is either a leaf node containing an
atom, or an interior node that contains an atom and also has a non-zero number
of child subtrees.

Tree ::= leaf (a) | tree(a ← t1, · · · , tn)

where a ∈ A and every ti is a tree. The root atom of a tree is naturally defined as

root(leaf (a)) = a root(tree(a ← t1, · · · , tn)) = a

The set of leaves of a tree is defined as

leaves(leaf (a)) = {a} leaves(tree(a ← t1, · · · , tn)) =
n⋃

i=1

leaves(ti)

The tree semantics of a system of CHCs H is a set of trees, where the parent-child
relation is defined by the direct consequence relation TH. To get more formal,
let us first define the post-condition operation on trees as follows:

postt(H,X) =
{
tree(a′ ← t1, · · · , tn) | t1, · · · , tn ∈ X

∧ ∃(A, a′) ∈ TH. |A| = n ∧ A = {root(t1), · · · , root(tn)}} ∪
{leaf (a) | (∅, a) ∈ TH}

Intuitively, the operation performs two distinct actions: (i) it produces a trivial
tree leaf (a) for every initial transition (∅, a); and (ii) for every non-initial tran-
sition (A, a′), it creates every possible tree tree(a′ ← t1, · · · , tn), where ti are
elements of X, and their roots correspond to distinct elements of A. Then, we
can define the forward tree semantics of H as the least fixed point:

lfp⊆λX. postt(H,X)
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Intuitively, this is the set of trees, where leaves are initial atoms, and parent-
child relation is defined by the direct consequence relation. One can say that
this is the set of derivation trees induced H. A notable property of forward tree
semantics is that it is subtree-closed, i.e., with every tree, it also contains all of
its subtrees.

Let us now define the set-of-atoms abstraction of a set of trees. First, let us
define an auxiliary predicate that tells whether an atom is a node of a tree.

isnode(a, leaf (a′)) = (a = a′)

isnode(a, tree(a′ ← t1, · · · , tn)) = (a = a′) ∨
n∨

i=1

isnode(a, ti)

Then, for a set of trees T , its set-of-atoms abstraction is

αt(T ) = {a | ∃t ∈ T. isnode(a, t)}

In particular, when T is subtree-closed, one can show that

αt(T ) = {root(t) | t ∈ T} (8)

Let us observe that the set-of-atoms abstraction of the forward tree semantics
is exactly the forward collecting semantics:

Proposition 4. αt(lfp⊆λX. postt(H,X)) = lfp⊆λX. post(TH,X)

Proof (sketch). This is an instance of exact fixed point abstraction [16, theorem
7.1.0.4], and to prove the proposition, we need to show that

αt(postt(H, T )) = post(TH, αt(T )) (9)

This is not true for an arbitrary T , but can be shown as true when T is subtree-
closed, as it follows from (8). The postt operation preserves subtree-closure, thus
Proposition 4 can be seen as a fixed point in the lattice of subtree-closed sets,
where (9) holds and thus exact fixed point abstraction holds as well.

Let us now define the backward tree semantics. For a set of trees T , let
pret(H, T ) be the set of trees that are produced from trees in T by replacing a
single leaf containing a′ ∈ A with a subtree tree(a′ ← a1, · · · , an), s.t. a1, · · · , an

are distinct, and (a′, {a1, · · · , an}) ∈ TH. Also let Tg = {leaf (a) | a ∈ Ag}. Then,
the backward tree semantics of H is the least fixed point

lfp⊆λX.Tg ∪ pret(H,X)

Intuitively, this is the set of trees where the root is in Ag, and parent-child
relation is defined by the direct consequence relation.

Let us define a pre-tree of a tree t to be an object that is a tree and that
is produced by selecting a number (possibly, zero) of non-root interior nodes
and replacing every such interior node tree(a ← t1, · · · , tn) with the leaf leaf (a).
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A notable property of backward tree semantics is that it is pre-tree-closed, i.e.,
with every tree, it also contains all of its pre-trees. One can show that when T
is pre-tree closed,

αt(T ) =
⋃

{leaves(t) | t ∈ T}

Similarly to the forward case, the set-of-atoms abstraction of the backward tree
semantics is exactly the backward collecting semantics.

Proposition 5. αt(lfp⊆λX.Tg ∪ pret(H,X)) = lfp⊆λX.Ag ∪ pre(TH,X)

Proof (sketch). The proof idea is similar to that of Proposition 4. We need to
show that αt(Tg ∪ pret(H, T )) = Ag ∪ pre(TH, αt(T )) which does hold when T
is pre-tree-closed; and pre-tree-closure is preserved by the transformer λX.Tg ∪
pret(H,X).

Now, let us consider the intersection of the forward and backward tree seman-
tics:

(
lfp⊆λX. postt(H,X)

) ∩ (
lfp⊆λX.Tg ∪ pret(H,X)

)
. This is the set of trees

that have initial atoms as leaves and a goal atom as root. We can now observe
that the combined forward-backward semantics (5) is exactly the set-of-atoms
abstraction of this object.

Proposition 6. αt
((

lfp⊆λX. postt(H,X)
) ∩ (

lfp⊆λX.Tg ∪ pret(H,X)
))

= lfp⊆λX.(Ag ∩ M) ∪ pre|M (TH,X)

where M = lfp⊆λX. post(TH,X)

To see intuitively why this is true, let t ∈ (
lfp⊆λX. postt(H,X)

)∩(
lfp⊆λX.Tg ∪

pret(H,X)
)

and let us observe which atoms may appear in t at different depth.
We know that root(t) ∈ Ag ∩ M . At depth one, we will observe sub-trees that
have initial atoms as leaves and can be combined to produce t. One can see that
the set of atoms at depth one is pre|M (TH, Ag ∩ M). Similarly, the set of atoms
at depth two is pre|M (TH,pre|M (TH, Ag ∩M)). Continuing this way, we get that
the set-of-atoms abstraction of the intersection of forward and backward tree
semantics is lfp⊆λX.(Ag ∩ M) ∪ pre|M (TH,X).

To summarise, the combined forward-backward semantics (5) is the set-of-
atoms abstraction of the intersection of forward and backward tree semantics.
Since set-of-trees intersection and set-of-states abstraction do not commute, we
need to introduce the restricted pre-condition operation to define the combined
semantics.

6 Related Work

Combining forward and backward analyses is standard when analysing programs.
A good explanation of the technique is given by Patrick and Radhia Cousot
[18, section 4]. They also propose to use it for the analysis of logic programs [17].
Their combination is an intersection of forward and backward collecting semantics.
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F. Benoy and A. King were perhaps the first to apply abstract interpretation
in a polyhedral domain to constraint logic programs [8]. J.P. Gallagher et al. in a
series of works (see, e.g., [28,37]) apply it to specialized CLPs or CHCs. Previous
sections discuss the differences between their approach and ours. Later work by
B. Kafle, J.P. Gallagher, and J.F. Morales [29,30] introduces another analysis
engine that is not based on abstract interpretation. M. Proietti, F. Fioravanti
et al. propose a similar analysis [19] that iteratively specializes the initial system
of CHCs by propagating constraints both forward and backward and by heuris-
tically applying join and widening operators. This process is repeated until the
analysis arrives at a system that can be trivially proven safe or a timeout is
reached. Notably, this analysis avoids explicitly constructing the model of the
original system.

Multiple researchers were advocating using Horn clauses for program verifica-
tion, Including A. Rybalchenko [21], N. Bjørner, and others. A survey was recently
made by N. Bjørner, A. Gurfinkel, K. McMillan, and A. Rybalchenko [11]. Tools
that allow to solve problems stated as systems of Horn clauses include E-HSF [9],
Eldarica [39], Z3 (with PDR [25] and SPACER [32,33] engines), and others. As our
implementation is in early development, we do not make a detailed comparison to
these tools.

Path focusing was described by D. Monniaux and L. Gonnord [35] and imple-
mented by J. Henry, D. Monniaux, and M. Moy in a tool PAGAI [23]. This is
an approach to abstract interpretation, where one uses an SMT solver to find a
path through a program, along which to propagate the post-conditions.

7 Conclusion and Future Work

In this paper, we introduce a new backward collecting semantics, which is
suitable for alternating forward and backward abstract interpretation of Horn
clauses. We show how the alternation can be used to prove unreachability of
the goal and how every subsequent run of an analysis yields a refined model
of the system. Experimentally, we observe that combining forward and back-
ward analyses is important for analysing systems that encode questions about
reachability in C programs. In particular, the combination that follows our new
semantics improves the precision of our own abstract interpreter, including when
compared to a forward analysis of a query-answer-transformed system.

We see the following directions for future work. First, we wish to be able
to infer models that are disjunctive in a meaningful way. Currently, as we use
Bddapron, we produce models where a predicate maps to a disjunctive formula,
but the disjunctions are defined by the Boolean arguments of the predicate, which
are often unrelated to the interesting facts about numeric arguments. We wish
to explore how partitioning approaches designed for program analysis [24,38]
can be applied to the analysis of Horn clauses. Second, we note that currently,
for the combination of forward and backward analyses to work, we need to
explicitly specify the goal (query, in terms of SeaHorn language). It would be
nice though, if we could use the benefits of the combined analysis (e.g., analysing
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the procedures only for reachable inputs) without having an explicit goal. For
that, we will need to be able to distinguish, which of the clauses of the form
P ← ϕ denote the program entry (the main() function in C terms), and which
correspond to the procedures (recall Figs. 3 and 4). So far, the only solution we
see is that this information needs to be communicated to our analyser as part
of the input. Finally, we observe that so far we evaluate our approach using
CHCs that result from reachability questions in relatively simple C programs.
These CHCs are also relatively simple and in particular contain at most two
predicate applications in the bodies. We wish to evaluate our approach using
more complicated CHCs, e.g., that result from cell morphing abstraction [36],
but successfully analysing such systems requires to be able to produce disjunctive
models.

A Proofs

Proposition 2. For every k ≥ 1, the set γ(dk)∪⋃k−1
i=1

(
γ(di)\γ(bi)

)
is a model

of H.

Proof. For convenience, let us replace the direct consequence relation TH with
two objects: the set of initial atoms IH = {a′ | (∅, a′) ∈ TH} and the set
of consecutions T

→
H

= {(A, a′) ∈ TH | A �= ∅}. Then, for every R,X ⊆ A,
post(TH,X) = IH ∪ post(T→

H
,X) and pre|R(TH,X) = pre|R(T→

H
,X).

Now let us consider the first three elements of the descending sequence, d1,
b1, and d2. For d1 it holds that IH ∪ post(T→

H
, γ(d1)) ⊆ γ(d1). That is, γ(d1) is

a model of H and the lemma statement holds for k = 1.
For b1, it holds that (γ(g)∩γ(d1))∪pre|γ(d1)(T

→
H

, γ(b1)) ⊆ γ(b1). This means
that for every conseqution (A, a′) ∈ T

→
H

, if A ⊆ γ(d1) and A∩(γ(d1)\γ(b1)) �= ∅,
then a′ ∈ (γ(d1) \ γ(b1)).

Finally, for d2 it holds that (IH ∪ post(T→
H

, γ(d2))) ∩ γ(b1) ⊆ d2. First, this
means that IH ⊆ (γ(d1)\γ(b1))∪γ(d2). Indeed, by definition of d1, IH ⊆ γ(d1) and
by definition of d2, IH∩γ(b1) ⊆ γ(d2). Second, this means that post(T→

H
, (γ(d1)\

γ(b1))∪γ(d2)) ⊆ (γ(d1)\γ(b1))∪γ(d2). Indeed, let is pick an arbitrary (A, a′) ∈
T

→
H

, s.t. A ⊆ (γ(d1) \ γ(b1)) ∪ γ(d2). There are two possible cases. If A ⊆ γ(d2)
then by definition of d2, either a′ ∈ γ(d2), or a′ ∈ (γ(d1) \ γ(b1)). If A �⊆ γ(d2)
then A∩ (γ(d1)\γ(b1)) �= ∅, and a′ ∈ γ(d1)\γ(b1). This proves the statement of
the lemma for k = 2 and also provides the base case for the following inductive
proof.

Now let k > 2, Lk =
⋃k−1

i=1

(
γ(di) \ γ(bi)

)
, and Mk = γ(dk) ∪ Lk. Let the

induction hypothesis be that: IH ⊆ Mk, post(T→
H

,Mk) ⊆ Mk (i.e., Mk is a model
of H), and for every (A, a′) ∈ T

→
H

, if A ⊆ Mk and A ∩ Lk �= ∅, then a′ ∈ Lk.
Then, let us consider the two subsequent elements: bk and dk+1 and the two

sets: Lk+1 = Mk \ γ(bk) and Mk+1 = Lk+1 ∪ γ(dk+1).
For bk it holds that (γ(g) ∩ γ(dk)) ∪ pre|γ(dk)(T→

H
, γ(bk)) ⊆ γ(bk). That is,

for every (A, a′) ∈ T
→
H

, if A ⊆ γ(dk) and A ∩ (γ(dk) \ γ(bk)) �= ∅, then a′ ∈
(γ(dk) \ γ(bk)).
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For dk+1 it holds that (IH ∪ post(T→
H

, γ(dk+1))) ∩ γ(bk) ⊆ γ(dk+1).
First, observe that IH ⊆ Mk+1. Indeed, we know that IH ⊆ Mk and that

Mk+1 = (Mk \ γ(bk)) ∪ γ(dk+1). By definition of dk+1, IH ∩ γ(bk) ⊆ γ(dk+1).
Thus, IH ⊆ Mk+1.

Second, let us pick an arbitrary (A, a′) ∈ T
→
H

, s.t. A ⊆ Mk+1. Since Mk

is a model of H, we know that a′ ∈ Mk. But then, there are three possible
cases. (i) If A ⊆ γ(dk+1), then either a′ ∈ γ(dk+1), or a′ /∈ γ(bk). That is,
a′ ∈ (Mk \ γ(bk)) ∪ γ(dk+1) = Mk+1. (ii) If A ⊆ γ(dk) and A �⊆ γ(dk+1), then
A∩(γ(dk)\γ(bk)) �= ∅, and a′ ∈ γ(dk)\γ(bk) ⊆ Mk+1. (iii) Finally, if A �⊆ γ(dk),
then A ∩ Lk �= ∅, and from the hypothesis a′ ∈ Lk. There are no other possible
cases. This means that post(T→

H
,Mk+1) ⊆ Mk+1 and thus Mk+1 is a model of

H. Also, from (ii) and (iii) it follows that for (A, a′) ∈ T
→
H

, if A ⊆ Mk+1 and
A ∩ Lk+1 �= ∅, then a′ ∈ Lk+1.
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Abstract. We present an approach for comparing two closely related
concurrent programs, whose goal is to give feedback about interesting
differences without relying on user-provided assertions. This approach
compares two programs in terms of cross-thread interferences and data-
flow, under a parametrized abstraction which can detect any difference
in the limit. We introduce a partial order relation between these abstrac-
tions such that a program change that leads to a “smaller” abstraction is
more likely to be regression-free from the perspective of concurrency. On
the other hand, incomparable or bigger abstractions, which are an indi-
cation of introducing new, possibly undesired, behaviors, lead to succinct
explanations of the semantic differences.

1 Introduction

The lifetime of a software module includes multiple changes that range from
refactoring, addition of new features to bug or performance fixes. Such changes
may introduce regressions which in general are hard to detect and may reveal
themselves much later in the software’s life-cycle. Dealing with this issue is par-
ticularly difficult in the context of concurrent programs, where the bugs are
characterized by subtle interleaving patterns that tend to manifest in the field
while passing an extensive testing phase.

Checking whether a change in a program is regression-free reduces to a stan-
dard, single-program, verification problem assuming a specification of the possi-
ble regressions is provided, for instance, using assertions. However, such specifi-
cations are rarely present in practice.

A different perspective, which avoids the need for specifications, would be to
compare the two versions of a program (before and after the change) under a cer-
tain abstraction, which is precise enough to distinguish common specifications.
Typical examples involve (bi)simulations, sets of reachable configurations1, and

This work is supported in part by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agree-
ment No. 678177).

1 By configuration, we mean the tuple of thread-local states together with the state
of the shared memory.
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equality between input-output relations. Simulations define a partial order over
the set of all programs (bisimulations define an equivalence relation), which in
practice, relates very few programs across refactoring, bug-fixes, or adding new
features. For instance, a transformation that is widely used in bug-fixing consists
in reordering program statements within the same thread. For realistic programs,
there exists no simulation relation between a program obtained by applying such
a transformation and the initial version, or vice-versa. Therefore, using simula-
tions as an indicator of regression-freeness, i.e., the new version is considered
regression-free when it is simulated by the old version, would lead to too many
false negatives. The same holds when comparing two programs with respect to
their reachable sets of configurations. Comparing input-output relations is also
not suitable in our context, because of the concurrency. Such relations are hard
to compute and also, hard to use for checking regression-freeness, because of the
non-determinism introduced by the thread scheduler.

In this paper we propose a new approach for comparing two closely related
concurrent programs (subsequent versions of programs), which allows to relate
more programs than simulations, for instance. The goal of this approach is to
give feedback about interesting differences as opposed to noise from any change,
without relying on user-provided assertions. From the perspective of concur-
rency, interesting differences concern, for instance, enabling new interferences
from other threads (e.g., reading new values written by other threads), or new
violations of atomicity (for some decomposition of the program in atomic blocks,
which is implicit in the mind of the programmer).

The starting point of our approach is a program semantics based on
traces [21], which are compact representations of sets of interleavings. A trace is
a graph where nodes represent read and write actions, and edges represent the
program order, which relates every two actions executed by the same thread, and
data-flow dependencies, i.e., which action writes the value read by a read action,
and in which order values are written to the memory. A trace represents all
the interleavings which are consistent with the program order and the data-flow
dependencies. The traces of two programs can be compared assuming a match-
ing relation between variables and statements in the two programs, such that
matching statements read and respectively, write the same set of variables (mod-
ulo the variable matching). Roughly, if this matching relation is an isomorphism
between two traces of different programs, then the sets of configurations reach-
able in the interleavings represented by these two traces are the same (modulo
the constants used in the statements).

We define a partial order relation between programs based on abstract rep-
resentations of sets of traces. We use abstract representations instead of sets of
(concrete) traces because ordering programs with respect to the latter has the
same disadvantages as the use of simulation relations or sets of reachable config-
urations (see Sect. 2 for an example). For instance, bug fixes based on statement
reordering or modifying the placement of the synchronization primitives lead
straightaway to incomparable sets of traces – the set of actions or the program
order are different.
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As a first abstraction step, we consider “projected” traces, where roughly,
the program order and all the synchronization statements are omitted2. This
allows us to expose differences that concern only the data-flow in the program
and not, for instance, the order in which different variables are assigned, or the
synchronization mechanisms used to constrain the interference between threads.
Replacing lock/unlock primitives with wait/nofity or semaphores induces no
difference with respect to sets of projected traces provided that the set of possible
schedules remains the same.

Then, we define abstractions of sets of projected traces, called abstract traces.
Every abstract trace contains a graph structure describing the union of the
projected traces it represents. The nodes of this graph correspond to program
statements and the edges correspond to data-flow dependencies present in some
projected trace. We restrict ourselves to loop-free programs which implies that
these graphs are of bounded size. Handling loops will require some predefined
equivalence relation between statements, a node in the graph representing an
equivalence class with respect to this relation. Adding information about which
sets of dependencies are present together in the same projected trace allows to
refine a given abstract trace. Abstract traces are parametrized by an integer k
which bounds the size of the sets of dependencies that are tracked (whether they
occur in the same trace). We define a partial order between abstract traces which
essentially corresponds to the fact that every set of dependencies in one abstract
trace occurs in the other one as well. An abstract trace not being “smaller” than
another one implies that the set of concrete traces corresponding to the first
one is not included in the set of concrete traces corresponding to the second one
(and thus reveals a difference in thread interference). However, on the opposite
side, the “smaller than” relation does not imply trace set inclusion unless k is big
enough (roughly, the square of the program size). Instead, it can be thought of as
an indicator for not introducing undesired behaviors, whose precision increases
as bigger values of k are considered.

This abstraction framework enables a succinct representation of the differ-
ence between two programs. For a fixed k, the size of the abstract trace is poly-
nomial in the size of the input program while the size of a complete set of traces
is in general of exponential size. Small values of k allow to explain the difference
between two programs in terms of small sets of dependencies that occur in the
same execution, instead of a complete trace or interleaving.

We show that the problem of deciding the difference with respect to abstract
traces of a fixed rank k between two versions of a loop-free program3 (before
and after a program transformation) can be reduced to a set of assertion check-
ing queries. This reduction holds for programs manipulating arbitrary, possibly
unbounded, data. The assertion checking queries can be discharged using the
existing verification technology. In the context of loop-free boolean programs, we

2 Our framework is not bound to a specific set of program order constraints and
statements to be preserved in the projected traces – they can be chosen arbitrarily.

3 This reduction can be applied to arbitrary programs assuming a bounded unrolling
of loops.
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show that this problem has a lower asymptotic complexity than the problem of
deciding the difference with respect to concrete sets of traces. More precisely, we
prove that the first problem can be reduced to a polynomial number of asser-
tion checking queries and that it is ΔP

2 -complete, while the second problem is
ΣP

2 -complete. (We recall that ΔP
2 , resp., ΣP

2 , is the class of decision problems
solvable by a polynomial time, resp., NP time, Turing machine augmented by an
oracle for an NP-complete problem.) This complexity gap shows that the latter
problem cannot be reduced to a polynomial number of assertion checking queries
unless P = NP.

As a proof of concept, we have applied our framework to a benchmark used
for the ConcurrencySwapper synthesis tool [5]. This benchmark consists of pairs
of programs, before and after a bug fix, that model real concurrency bug fixes
reported in the Linux kernel development archive (www.kernel.org). The reacha-
bility queries have been discharged using the LazyCseq tool [11,12] (with backend
CBMC [8]). These experiments show that comparing abstract traces for small
values of k, i.e., k ∈ {1, 2}, suffices to detect interesting semantic changes while
ignoring the irrelevant ones. Moreover, the semantic changes are presented suc-
cinctly as a small set of data-flow dependencies between program statements,
instead of a complex interleaving. This facilitates the task of spotting bugs by
allowing the programmer to focus on small fragments of the program’s behavior.

2 Motivating Examples

We provide several examples to illustrate the abstract semantic diffing framework
proposed in this paper and its potential use in verifying concurrency bug fixes.

The program on the left of Fig. 1 is a typical concurrency bug found in device
drivers [5], where the second thread may read an uninitialized value of x (initially,
all variables are 0). Since the second thread runs only when flag is set to 1, fixing
such a bug consists in permuting the two instructions in the first thread such that
x is initialized before flag is set to 1. The modified version is listed on the right
of Fig. 1. Note that the two versions (before and after the fix) have incomparable
sets of reachable configurations: the configuration (flag = 1, x = 0) is reachable
in the first program but not in the second, and (flag = 0, x = 1) is reachable
in the second but not in the first one. This also implies that there exists no
simulation relation from the fixed version to the buggy one, or vice-versa.

Our approach compares abstract representations of data-flow dependen-
cies [21] in the two programs. These dependencies come in two forms:

– read-from dependencies from actions writing to a variable to actions reading
that variable (specifying the write that a read receives its value from), and

– store-order dependencies which specify the order in which writes to the same
variable are executed in the memory.

www.kernel.org
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Fig. 1. The program on the left is considered buggy since there exists an execution
where y takes an uninitialized value of x. The second program fixes this bug by per-
muting the statements in the first thread. The bottom part of the figure pictures their
abstract traces of rank 1. Read-from, resp., store-order, dependencies are represented
by edges labeled with ̂rf , resp., ŝo. The second program is a refinement of rank 1 of
the first one, but the reverse is not true.

The bottom part of Fig. 1 pictures an abstract trace for each of the two
programs where only individual dependencies are tracked (whether they occur
in some trace), i.e., of rank 1. We can notice that the set of dependencies in the
fixed version is a strict subset of the set of dependencies in the original (buggy)
version. This fact suggests that the bug fix has removed some behaviors but
introduced none. This is not a theoretical guarantee but its likelihood can be
increased by considering abstract traces of bigger ranks. Moreover, the difference
between the abstract trace of the buggy version and the one of the fixed version
consists of one read-from dependency, from a fictitious write which assigns initial
values to the variables, to the read of x in y = x. This dependency is a succinct
description of all the interleavings containing the bug, which read an uninitialized
value of x. The fact that this dependency doesn’t occur anymore in the fixed
version implies that the buggy behaviors have been removed.

In general, exposing the difference between the data-flow in two programs
may require computing sets of data-flow dependencies occurring in the same
execution of one program and not the other one, i.e., abstract traces of rank
k > 1. Figure 2 lists two programs doing two parallel increments of a shared
variable x, without synchronization on the left and protected by locks on the
right. In this case, there exists no data-flow dependency admitted only by the first
program or only by the second, i.e., the abstract traces of rank 1 are identical.
However, there exists a pair of data-flow dependencies which occur in the same
execution of the buggy program (that has no synchronization) and not in the
corrected one (that uses locks): the two reads of x (from the assignments to temp1
and temp2) can both take their value from the initial state. Our framework allows
to witness such differences for fixed values of the rank k.
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Fig. 2. Two programs doing two parallel increments of x. The bottom part of the figure
pictures their abstract traces of rank 1. For readability, the ŝo dependencies starting
from the assignment representing initial values are omitted. Considering abstract traces
of rank 2, the pair of red ̂rf dependencies belongs to the abstract trace of the buggy
program but not to that of the correct version. The second program is a refinement of
rank 2 of the first one because it has less (pairs of) dependencies which occur in some
execution. The reverse doesn’t hold.

3 Multi-threaded Programs

We consider a simple multi-threaded programming model in which each thread
executes a bounded sequence of steps corresponding to assignments, boolean
tests, and synchronization primitives. The semantics of a program is defined as
a set of traces [21], which are partially-ordered sets of read or write actions.

Let Vars be a set of variables. The grammar of Fig. 3 describes our lan-
guage of multi-threaded programs. For generality, we leave the syntax of expres-
sions e in assignments and assume statements unspecified. We allow expressions
e = ∗ where ∗ is the (nullary) non-deterministic choice operator. Note that
if-then-else conditionals can be modeled using assume statements and the
non-deterministic choice. To simplify the exposition, we assume that the same
variable doesn’t appear in both the left and the right part of an assignment
(e.g., we forbid assignments of the form x := x + 1). This simplifies the trace
semantics given hereafter, and it could be removed assuming that the program
is first rewritten to static single assignment form. Also, we consider a minimal
set of synchronization statements, lock/unlock over a unique lock object. How-
ever, our approach easily extends to any class of synchronization primitives.
The set of variables in a statement s, resp., a program P , denoted by Vars(s),

Fig. 3. The syntax of our language. Each program P is the parallel composition of
a fixed number of threads – ; denotes the sequential composition and [] the non-
deterministic choice between two control-flow paths. Also, x ∈ Vars and e is an expres-
sion over Vars.
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resp., Vars(P ), is defined as usual. The set of statements s over a set of vari-
ables V ⊆ Vars is denoted by Stmts(V ). The set of statements of a program
P is denoted by Stmts(P ). When all the variables range over the booleans, the
program is called a boolean program.

Program configurations are variable valuations, and program executions are
defined as usual, as interleavings of statements (we assume a sequentially con-
sistent semantics). In the following, we define representations of program execu-
tions called traces. For a variable x, W(x) is the set of assignments to x and R(x)
is the set of assume e statements where e contains x together with the set of
assignments reading the variable x (i.e., x occurs in the right part). We assume
that Stmts(P ) contains a fictitious statement init assigning initial values to all
the program variables. We have that init ∈ W(x) for every x. The synchroniza-
tion primitives lock and unlock are interpreted as both a read and a write of a
distinguished variable l. Thus, W(l) = R(l) = {lock, unlock}.

Essentially, a trace consists of three relations over the program statements,
which represent the data and control dependencies from a program execution.
The store order so represents the ordering of write accesses to each variable, and
the read-from relation rf (from writes to reads) indicates the assignment that
a read receives its value from. The program order po represents the ordering
of events issued by the same thread. These relations represent a sequentially
consistent execution when their union is consistent with the composition of rf
and so (known also as the conflict relation).

Definition 1 (Trace). A trace of program P is a tuple t = (S, po, so, rf ) where
S ⊆ Stmts(P ), init ∈ S, and po, so, and rf are binary relations over S such that:

1. po relates statements included in the same thread,
2. so relates statements writing to the same variable, i.e., so ⊆ ⋃

x((S ∩W(x))2,
and for each variable x, it defines a total order between the writes to x where
init is ordered before all the other writes,

3. rf relates writes and reads to the same variable, i.e., rf ⊆ ⋃
x(S ∩ W(x)) ×

(S ∩ R(x)), and associates to every read of a variable x a write to x, i.e., the
inverse of rf is a total function from S ∩ R(x) to S ∩ W(x), and

4. the union of po, so, rf , and rf ◦ so, is acyclic.

For a program P , let Traces(P ) be its set of traces. Figure 4 lists two programs
and their sets of traces.

4 Abstracting Traces

We are interested in comparing the set of behaviors of two programs according
to abstract representations of traces. These representations are defined in two
steps. We first define a projection operator that removes a given set of statements
(defined by a set of variables), e.g., synchronization primitives, and the program
order from all the traces of a given program4. Such a projection operator focuses
4 Our framework can be extended such that the projection operator removes only a

user-specified fragment of the program order.
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Fig. 4. Two programs over the same set of statements but with different program
orders, and different sets of traces. For readability, we write x = y = z = 0 instead of init
for the statement that assigns initial values to variables, and we omit lock/unlock
statements.

on the differences in cross-thread data-flow interferences, and ignores details that
are irrelevant for standard safety specifications (which are agnostic for instance
to the state of the synchronization objects). Then, we define an abstract domain
for representing sets of traces obtained through projection, which is based on a
graph structure describing the union of all the traces in a given set.

For a program P , a set V of variables is called closed when P doesn’t include
a statement s that uses both a variable in V and a variable outside of V , i.e.,
Vars(s) ⊆ V or Vars(s) ∩ V = ∅ for each s ∈ Stmts(P ). For example, in the case
of the programs in Fig. 4, the set of variables {x, y, z} is closed, and {x, y} is not
closed because of the statement z := x + y. For a closed set of variables V , a
V -trace of P is a tuple t = (Stmts(V )∩S, so, rf ) obtained from a standard trace
t′ = (S, po′, so′, rf ′) of P by preserving only the statements over the variables
in V and removing the program order, i.e., so = so′ ∩ (Stmts(V ) ∩ S)2 and
rf = rf ′ ∩ (Stmts(V ) ∩ S)2. Since V is closed, the relations so and rf in t satisfy
the properties (2) and (3) in Definition 1.

The set of all V -traces of a program P is denoted by Traces[V ](P ).
For example, the programs in Fig. 4 have the same set of V -traces where V =

{x, y, z}. This holds because V -traces don’t contain the lock/unlock statements
and the program order.

We define a parametrized abstraction for a set of V -traces that contains
all the statements in those traces, the union of the store order, resp., read-
from, relations, and for a parameter k, all the non-singleton sets of so or rf
dependencies of size at most k that occur together in the same V -trace. As the
parameter k increases, the abstraction is more precise. For two sets A and B,
and k ≥ 2, Pk(A,B) is the set of pairs (A′, B′) where A′ ⊆ A, B′ ⊆ B, and
2 ≤ |A′ ∪ B′| ≤ k.
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Definition 2 (Abstract trace). For k ≥ 1, an abstract trace of rank k is a
tuple t̂ = (S, ŝo, r̂f , ŝets) where S is a set of statements with init ∈ S and

– ŝo and r̂f are two relations over statements in S such that ŝo ⊆ ⋃
x(S ∩

W(x))2, r̂f ⊆ ⋃
x(S ∩ W(x)) × (S ∩ R(x)), and for every variable x,

• ŝo contains (s1, s2) or (s2, s1), for every two assignments s1, s2 ∈ S ∩
W(x), and

• every read on x is related by r̂f to at least one assignment to x
– ŝets = ∅ if k = 1, and ŝets ⊆ Pk(ŝo, r̂f ), otherwise. When k ≥ 2, we assume

that A1 ∪ B1 �⊆ A2 ∪ B2 for all (A1, B1), (A2, B2) ∈ ŝets.

The elements of ŝets are called k-clusters.

The relations ŝo and r̂f represent the union of the store order and read-from
relations in a given set of V -traces, respectively. Therefore, ŝo is not necessarily
a total order, and the inverse of r̂f is not necessarily a total function, when
considering statements that assign or read the same variable (i.e., they don’t
satisfy the properties (2) and (3) in Definition 1). Also, to avoid redundancy,
we assume that the elements of ŝets are incomparable. Figures 1 and 2 contain
examples of abstract traces.

The concretization of an abstract trace t̂ of rank k, denoted by γ(̂t), is the
set of traces formed of some dependencies in t̂ and which contain at least one
set of dependencies in ŝets, if k ≥ 2. Formally, γ(̂t) for an abstract trace t̂ =
(S, ŝo, r̂f , ŝets) of rank k is the set of V -traces t = (S′, so, rf ) where S′ ⊆ S,
so ⊆ ŝo, rf ⊆ r̂f , and if k ≥ 2, then u|1 ⊆ so and u|2 ⊆ rf for some u ∈ ŝets.
We use u|i to denote the i-th component of the tuple u. Note that a trace in the
concretization of t̂ may not necessarily use all the statements in t̂ .

We define an order relation ≤ between abstract traces, which requires that
they contain the same set of statements and the “smaller” trace contains less
dependencies or sets of dependencies.

Definition 3 (Order relation). For k ≥ 1 and two abstract traces t̂1 =
(S, ŝo1 , r̂f1 , ŝets1 ) and t̂2 = (S, ŝo2 , r̂f2 , ŝets2 ) of rank k,

t̂1 ≤ t̂2 iff ŝo1 ⊆ ŝo2 , r̂f1 ⊆ r̂f2 , and ŝets1 ⊆ ŝets2 .

Lemma 1. The order relation ≤ defines a lattice over the set of abstract traces.

5 Interference Refinement

We define a notion of refinement between two programs, called interference
refinement (or refinement for short), which holds under the assumption that the
two programs are structurally similar. Essentially, we assume that there exists a
mapping between variables in the two programs, and a mapping between state-
ments, such that every two related statements read and respectively, write the
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same set of variables (modulo the variable mapping). Then, interference refine-
ment is defined as the inclusion of V -trace sets for some set of variables V (mod-
ulo the statement mapping). We then give an abstract notion of interference
refinement that uses abstract traces instead of sets of V -traces.

Let P1 and P2 be two programs, and V1 and V2 closed sets of variables of P1

and P2, respectively. A pair (v, s) is called a statement matching when v : V1→V2

is a bijection and s : Stmts(P1)∩Stmts(V1)→Stmts(P2)∩Stmts(V2) is a bijection
such that s ∈ W(x) iff s(s) ∈ W(v(x)) and s ∈ R(x) iff s(s) ∈ R(v(x)) for each
s ∈ Stmts(P1) ∩ Stmts(V1) and x ∈ V1. To simplify the exposition, in the rest
of the paper, we consider statement matchings where v and s are the identity.
Extending our notions to the general case is straightforward.

Let P1 and P2 be two programs, and V a set of variables which is closed for
both P1 and P2.

Definition 4 (V -Refinement). A program P1 is a V -interference refine-
ment (or V -refinement for short) of another program P2 iff Traces[V ](P1) ⊆
Traces[V ](P2). Also, P1 and P2 are V -interference equivalent (or V -equivalent
for short) iff P1 is a V -interference refinement of P2 and vice-versa.

We define an approximation of V -refinement, called (V, k)-refinement, that
compares abstract traces of rank k instead of concrete sets of V -traces. More pre-
cisely, (V, k)-refinement compares abstract traces that represent the V -traces of a
program in the following sense: the sets of dependencies in the abstract trace are not
spurious, i.e., they do occur together in a concrete V -trace, and the abstract trace
contains all the sets of dependencies up to size k that occur in the same V -trace.
Forbidding spurious (sets of) dependencies guarantees that V -refinement doesn’t
hold when the approximated version doesn’t hold, while completeness allows to
prove that the approximated version does imply V -refinement for big enough val-
ues of k.

Definition 5. An abstract trace t̂ = (S, ŝo, r̂f , ŝets) of rank k represents a pro-
gram P for a closed set of variables V when

– for every two statements s1, s2 ∈ S, (s1, s2) ∈ ŝo, resp., (s1, s2) ∈ r̂f , iff there
exists a V -trace t = (S′, so, rf ) ∈ Traces[V ](P ) such that (s1, s2) ∈ so, resp.,
(s1, s2) ∈ rf , and

– if k ≥ 2, then for each u ∈ Pk(ŝo, r̂f ), u ∈ ŝets iff there exists a V -trace
t = (S′, so, rf ) ∈ Traces[V ](P ) such that u ∈ Pk(so, rf ).

For any abstract trace t̂ representing a program P for a closed set of variables
V , we have that Traces[V ](P ) ⊆ γ(̂t).

Definition 6 ((V, k)-Refinement/Equivalence). A program P1 is a (V, k)-
refinement of another program P2 iff there exist t̂1 and t̂2 two abstract traces of
rank k representing P1 and P2 for the set of variables V , respectively, such that
t̂1 ≤ t̂2 . Also, P1 and P2 are (V, k)-equivalent iff P1 is a (V, k)-refinement of P2

and vice-versa.
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When V is understood from the context, we may use refinement of rank k
instead of (V, k)-refinement.

Example 1. Distinguishing two programs with respect to the notion of (V, k)-
equivalence may require arbitrarily-large values of k (these values are however
polynomially bounded by the size of the programs). Indeed, we show that there
exist two programs which are (V, k − 1)-equivalent but not (V, k)-equivalent, for
each k ≥ 2.

Figure 5 lists two programs that make k parallel increments to a variable x,
for an arbitrary k ≥ 2. The increments are non-atomic in the first program,
and protected by a semaphore s initialized with k − 1 permits in the second
program (acquire acquires a permit from the semaphore, blocking until one
is available, while release returns one permit to the semaphore)5. The first
program admits all the executions of the second one and one more execution
where all the k threads read the initial value of x. Therefore, the first program
has a trace that contains the set of read-from dependencies from init to each
assignment temp1 = x,. . .,tempk = x (the k read-from dependencies marked in
red in Fig. 5). This is not true for the second program where the semaphore
synchronization disallows such a trace.

Let us consider the closed set of variables V = {x, temp1, . . . , tempk}. Every
set of at most k − 1 so or rf dependencies occur together in the same V -trace
of one program iff this holds for the other program as well. Therefore, the two
programs are (V, k − 1)-equivalent. However, the two programs are not (V, k)-
equivalent, more precisely, the first program is not a (V, k)-refinement of the
second one. The abstract trace representing the first program contains a k-cluster
which is the set of read-from dependencies from init to each assignment temp1
= x,. . .,tempk = x. �

A direct consequence of the definitions is that V -refinement and (V, k)-
refinement coincide for big enough values of k. The number of read-from and
respectively, store-order dependencies, in a V -trace is bounded by |Stmts(P ) ∩
Stmts(V )|2. Therefore, there exist at most 22·|Stmts(P )∩Stmts(V )|2 V -traces, which
implies that V -refinement and (V, k)-refinement coincide when k reaches this
bound. Otherwise, we have only that V -refinement implies (V, k)-refinement.

Theorem 1. For every k ≥ 1, P1 is a (V, k)-refinement of P2 when P1 is a
V -refinement of P2. Moreover, there exists k ≤ 22·|Stmts(P )∩Stmts(V )|2 such that
P1 is a V -refinement of P2 iff P1 is a (V, k)-refinement of P2.

6 Checking Interference Refinement

We show that checking whether a program is not a (V, k)-refinement of another
one, for some closed set of variables V and some k ≥ 1, is polynomial time

5 The simple syntax we considered in Sect. 3 doesn’t include acquire/release actions,
but they can be easily modeled using lock/unlock.
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Fig. 5. Two programs doing k parallel increments of x. The two programs have the
same abstract trace of rank 1 which is partially given in the bottom part of the figure;
we omit some of the ŝo dependencies for readability. The abstract trace of rank k of the
first program contains a k-cluster which is the set of read-from dependencies marked
in red (they occur in the same trace) while this is not true for the second program.

reducible to assertion checking. This reduction holds for programs manipulating
data coming from arbitrary, not necessarily bounded, domains. Instantiating this
reduction to the case of boolean programs, we get that this problem is in ΔP

2

when k is fixed, and in ΣP
2 , otherwise. We show that these upper complexity

bounds match the lower bounds. As a corollary, we get that deciding whether a
program is not a V -refinement of another one is also ΣP

2 -complete.
The following intermediary result shows that checking whether a fixed set

of data-flow dependencies occur together in some V -trace of a program P is
reducible to assertion checking in an instrumentation of P . The instrumentation
uses a set of boolean flags to witness the order between two assignments on the
same variable, in the case of store order dependencies, or that an assignment on
a variable x is the last such assignment before a statement reading the value of
x, in the case of read-from dependencies. For instance, let us consider a fragment
with three threads of the first program in Fig. 5.

temp1 = x;

[

x = temp1 + 1;

rf_saw_first = true;
]

||

temp2 = x;

[

x = temp2 + 1;

if ( rf_saw_first &&

!rf_saw_second )

rf_saw_write = true;
]

||

[

temp3 = x;

if ( rf_saw_first &&

!rf_saw_write )

rf_saw_second = true;
]

x = temp3 + 1;

The read-from dependency from the write to x in the first thread to the read
of x in the third thread can be witnessed using three boolean flags rf saw first,
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rf saw write, and rf saw second, which are initially false and which are
updated atomically with the program’s statements. The flag rf saw second is
true for all executions whose trace contains this read-from dependency (and only
for these executions)6. For readability, we use brackets instead of synchronization
primitives to delimit atomic sections.

The flag rf saw first is set to true when the write in the first thread hap-
pens, rf saw write is set to true when any other write to x, i.e., the write to x in
the second thread, happens after the one in the first thread, and rf saw second is
set to true when the read of x in the last thread happens, provided that the write
in the first thread was the last write to x before this read (which is equivalent to
rf saw write being false). Dealing with store-order dependencies is simpler, it
requires only two flags so saw first and so saw second to witness that a write
happens before another one. Then, witnessing a set of data-flow dependencies
can be done by adding such flags for each dependency, independently. Note that
the placement of the instructions that set or check these flags is only based on
syntax and their addition is easy to automate.

In formal terms, let

Drf ⊆
⋃

x

(Stmts(V ) ∩ W(x)) × (Stmts(V ) ∩ W(x)) and

Dso ⊆
⋃

x

(Stmts(V ) ∩ W(x)) × (Stmts(V ) ∩ W(x))

be two sets of read-from, resp., store-order dependencies, and let D = Drf ∪
Dso. For each (s1, s2) ∈ D, P is instrumented with two boolean variables
saw first[s1, s2] and saw second[s1, s2] such that saw first[s1, s2] is atomi-
cally set to true when s1 is executed, and saw second[s1, s2] is atomically set to
true when s2 is executed, provided that saw first[s1, s2] is already true. Addi-
tionally, when (s1, s2) ∈ Drf , a variable saw write[s1, s2] is set to true whenever
saw first[s1, s2] is true, saw second[s1, s2] is false, and a statement writing to
the same variable as s1 is executed. Also, saw second[s1, s2] is set to true when
additionally, saw write[s1, s2] is false (this is to ensure that s1 is the last write
before s2). The instrumented program is denoted by P [D].

Lemma 2. There exists a V -trace t = (S, so, rf ) of P such that Drf ⊆ rf and
Dso ⊆ so iff P [D] reaches a program configuration where saw second[s1, s2] is
true for all (s1, s2) ∈ D.

For a fixed k, checking (V, k)-refinement needs to consider only fixed size sets
of dependencies. Therefore, the following holds.

Theorem 2. Let P1 and P2 be two programs. Checking whether P1 is not a
(V, k)-refinement of P2 is polynomial time reducible to assertion checking.

6 Equivalently, the assignment rf saw second = true can be replaced by assert

false. Then, this assertion fails whenever this read-from dependency occurs in some
trace of the program.
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Proof. The program P1 is not a (V, k)-refinement of P2 iff there exists a set of
dependencies D (of size at most k) such that D occur together in some V -trace
of P1, but no V -trace of P2. Since the number of possible sets D is polynomial
in the size of P1 and P2, a polynomial reduction to assertion checking consists
in enumerating all the possible instances of D and checking whether D occurs
in the same V -trace of P1 or P2 using the result in Lemma 2. �

The algorithm proposed in the proof of Theorem2 reduces the problem of
checking non (V, k)-refinement, for a fixed k, to a polynomial set of assertion
checking queries and leads the way to the reuse of the existing safety verification
technology. This will be demonstrated in Sect. 7.

For boolean programs, assertion checking is NP-complete7, so checking (V, k)-
refinement for any k is in ΣP

2 . We show that it is also ΣP
2 -hard.

Theorem 3. Let P1 and P2 be two boolean programs. Checking whether P1 is
not a (V, k)-refinement of P2 is ΣP

2 -complete.

Proof. A ΣP
2 algorithm for deciding non (V, k)-refinement starts by guessing a

set of dependencies D (of size at most 2 · |Stmts(P ) ∩ Stmts(V )|2), and then
proceeds by checking that the dependencies in D occur in the same V -trace of
P1 (which by Lemma 2 can be decided in NP) and in none of the traces of P2

(which again by Lemma 2 is in co-NP).
To prove ΣP

2 -hardness we show that deciding the satisfiability of an ∃∗∀∗

boolean formula can be reduced to checking (V, k)-refinement for some k which
depends on the number of existential variables in the boolean formula. Let
∃�x ∀�y. ϕ be a boolean formula in prenex normal form (without free variables),
where �x = (x1, . . . , xn) and �y are vectors of boolean variables. Also, let P1 and
P2 be the following programs:

Program P1:

x1 = 0 [] x1 = 1;

. . .
xn = 0 [] xn = 1;

�y = �;
done = 1;

a = 1;

||

assume done;

t1 = x1;

. . .
tn = xn;

b = a;

assume ¬ϕ;

Program P2:

x1 = 0 [] x1 = 1;

. . .
xn = 0 [] xn = 1;

�y = �;
done = 1;

a = 1;

||

assume done;

t1 = x1;

. . .
tn = xn;

assume ¬ϕ;
b = a;

We assume that all variables are 0 in the initial state. Let D�x be a set of read-
from dependencies that includes either (xi = 0, ti = xi) or (xi = 1, ti = xi)
for each 1 ≤ i ≤ n. Then, let D = D�x ∪{(a = 1, b = a)} (the latter is also in rf ).

Since the assignment b = a in P1 is executed in every complete interleaving,
there exists a trace of P1 that contains all the read-from dependencies from D.
This set of dependencies occurs in a trace of P2 only if there exists some valuation
for �y such that ϕ is false. This implies that P1 is not a (V, n + 1)-refinement of
P2 where V is the set of all variables of P1 iff ∃�x ∀�y. ϕ is satisfiable. �
7 Recall that we consider programs without looping constructs and procedure calls.
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Following the same lines of Theorem 3, we can show that the problem of
checking non (V, k)-refinement becomes ΔP

2 -complete when k is fixed. Essen-
tially, the set of dependencies that need to be tracked are now of fixed size and
they can be enumerated explicitly (as stated in Theorem2).

Theorem 4. Let P1 and P2 be two boolean programs. For a fixed but arbitrary
k ≥ 1, checking whether P1 is not a (V, k)-refinement of P2 is ΔP

2 -complete.

Proof. The problem can be decided using a similar algorithm as in Theo-
rem 3. Instead of non-deterministically guessing the set of dependencies D,
we enumerate all such sets of dependencies of size k which are at most
O(|Stmts(P ) ∩ Stmts(V )|2·k) many.

To prove ΔP
2 -hardness we show that deciding the satisfiability of an ∃∗ ∧ ∀∗

boolean formula can be reduced to checking (V, 1)-refinement. Let ∃�x. ϕ1∧∀�y. ϕ2

be a boolean formula (without free variables), where �x and �y are vectors of
boolean variables. Also, let P1 and P2 be the following programs:

Program P1:

�x = �;
a = 1;

done = 1;

|| assume (done && ϕ1);

b = a;

Program P2:

�y := �;
a = 1;

done = 1;

||assume (done && ¬ϕ2);

b = a;

We assume that all variables are 0 in the initial state. Let V = {a, b} and
D = {(a = 1, b = a)} be a singleton set of read-from dependencies.

The assignment b = a in P1 is executed if and only if there exists some val-
uation for �x such that ϕ1 holds, i.e., the formula ∃�x. ϕ1 is satisfiable. Therefore,
the dependency (a = 1, b = a) occurs in a trace of P1 iff ∃�x. ϕ1 is satisfiable.
By the definition of V , this is the only dependency possible in P1, which may
imply non (V, 1)-refinement. Furthermore, this dependency doesn’t occur in a
trace of P2 if and only if the formula ϕ2 holds for all valuations of �y, i.e., the
formula ∀�y. ϕ2 is satisfiable. Consequently, P1 is not a (V, 1)-refinement of P2 iff
∃�x. ϕ1 ∧ ∀�y. ϕ2 is satisfiable. �
7 Experimental Evaluation

To demonstrate the practical value of our approach, we argue that our notion of
(V, k)-refinement:

– can be checked using the existing verification technology,
– witnesses for semantic differences (bug introduction) with small values of k,
– enables succinct representations for the semantic difference,
– is a relevant indicator of regression-freeness.

To argue these points, we consider a set of bug fixes produced by the Con-
currencySwapper synthesis tool [5] which model concurrency bug fixes for Linux
device drivers reported at www.kernel.org8. We check whether the fixed version
8 They are available at https://github.com/thorstent/ConcurrencySwapper.

www.kernel.org
https://github.com/thorstent/ConcurrencySwapper
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Table 1. Experimental data for checking (V, k)-refinement. The size of the difference
between the abstract trace of the original (buggy) and the fixed version, respectively,
is the number of (sets of) dependencies occurring in one and not the other.

Name #loc #threads k # (sets of) possible
dependencies

Size of the
difference

Time

r8169-1 24 2 1/2/3 6/21/41 1/5/11 6.35 s/12.93 s/20.27 s

r8169-2 25 2 1/2/3 6/21/41 1/5/11 4.93 s/10.22 s/16.44 s

r8169-3 33 3 1/2/3 3/6/7 1/3/3 2.74 s/5.43 s/8.03 s

i2c-hid 27 2 1 27 2 45.65 s

i2c-hid-noA 27 2 1/2 27/237 0/4 42.34 s/24.3 m

rtl8169 256 7 1 94 3 37.27 m

is a (V, k)-refinement of the original one and vice-versa. We use this bench-
mark without modifications, except the use of the pthread library for managing
threads (otherwise, the programs are written in C), and unfolding loops once.

We have added the annotation that reduces (V, k)-refinement checking to
assertion checking (explained in Theorem2) and used LazyCseq [11,12] (with
backend CBMC [8]) for checking the assertions. LazyCseq is a bounded model
checker that explores round-robin schedules up to a given bound on the number
of rounds. We have used a bound of 4 for the number of rounds, which was enough
to compute abstract traces that represent the considered programs (according to
Definition 5). We have checked manually that these abstract traces are complete,
i.e., that they contain all the sets of dependencies which occur in the same V -
trace (up to the given bound). The fact that they don’t contain spurious sets
of dependencies is implied by the completeness of the bounded model checker.
All the bug fixes except i2c-hid and i2c-hid-noA that consist in adding locks,
are based on statement reordering9. This allowed us to consider closed sets of
variables that consist of all variables except variables of type lock, and statement
matchings (v, s) where v and s are the identity.

The results are reported in Table 1. Each line corresponds to a pair of pro-
grams, the version before and after a bug fix or a set of bug fixes implemented
during the evolution of a Linux driver, r8169, i2c-hid, or rtl8169. We list the
number of lines of code (loc) and the number of threads of the original version
(before the bug fix). Checking refinement of rank 1 requires enumerating all
pairs of statements accessing the same variable, at least one being a write, called
possible dependencies, and verifying whether they occur in some execution of the
original or the fixed version. To indicate the difficultly of the benchmark we give
the number of such possible dependencies, or sets of possible dependencies of size
at most k, when k > 1. Note that the number of possible dependencies is usually
much smaller than the square of the number of statements. All measurements
were made on a MacBook Pro 2.5 GHz Intel Core i7 machine.

9 Studies of concurrency errors, e.g., [5,18], have reported that reordering statements
for fixing bugs is very frequent (around 30% of the fixes are based on reorderings).
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We consider several values of k for each example and in all cases we get
that the fixed version is a refinement of rank k of the buggy version. Also,
except for i2c-hid-noA with k = 1, the abstract trace of the correct version
is strictly smaller than the one of the buggy version. The i2c-hid example
contains some assertions that fail only in the buggy version. These assertions
participate in read-from dependencies which allow to distinguish the buggy from
the corrected version with abstract traces of rank 1. Removing these assertions
requires abstract traces of rank 2 to distinguish the two versions. This fact is
demonstrated in the i2c-hid-noA example which is exactly i2c-hid without
those assertions.

These results indicate that comparing abstract traces of small ranks is enough
to reveal interesting behaviors, in particular bugs (the abstract trace of the
buggy version is always different from the one of the corrected version). There-
fore, (V, k)-refinement for small values of k is a relevant indicator of regression-
freeness. Note however that there is no theoretical connection between abstract
trace difference and the presence of bugs. Moreover, (V, k)-refinement continues
to hold when k is increased, as shown by the results in Table 1.

The difference between the abstract traces of the original and the fixed ver-
sion, respectively, consists of few (sets of) dependencies. For the first three exam-
ples and k = 1, the difference consists of a single read-from dependency showing
that a particular variable gets an uninitialized or undesired value (like in the
example from Fig. 1). In the case of the fourth example when assertions are
present, the difference between abstract traces of rank 1 consists of 2 read-from
dependencies which correspond to two failing assertions. When assertions are
removed, i.e., in the example i2c-hid-noA, the difference between the abstract
traces of rank 2 consists of few pairs of dependencies similar to the example
in Fig. 2. The buggy version of the example rtl8169 contains 3 bugs that are
repaired in the correct version. The difference between the abstract traces con-
tains an explanation for each bug.

The running time increases with the number of threads and possible depen-
dencies. However, since the presence of a set of dependencies (in some execution)
reduces to an independently-checkable assertion, the verification process is easily
parallelizable. Also, we didn’t use assertion checking to exclude some dependen-
cies that are obviously not feasible because of thread creation/join (i.e., reading
from a write that belongs to a thread not yet created). As future work, we plan
to investigate static analyses for filtering out such dependencies.

8 Related Work

The work on refinement checking [1] provides a general framework for comparing
traces of two programs. However, in most instances one of the programs serves
as a specification with very limited concurrency.

Joshi et al. [14] checks if a given concurrent program fails an assertion more
often on an input compared to another concurrent program — the second pro-
gram is usually limited to sequential interleavings only. Our approach does not



Abstract Semantic Diffing of Evolving Concurrent Programs 63

require the presence of assertions to compare the two concurrent programs as it
exploits the structural similarity between the two programs. The work closest
to ours is the work on regression verification for multi-threaded programs [7].
This paper proposes a proof rule to prove that the input-output relations for
two multithreaded programs are the same. This approach cannot distinguish
between two transformations that introduce and respectively, remove a bug. In
both cases, the proof rule will fail to establish equivalence w.r.t. the input-output
relation.

Generalizations of good or bad program executions using partial orders have
been previously used in the context of assertion checking or program synthesis
[5,6,9]. The notion of trace robustness proposed in the context of weak memory
models [3,4] compares a program running under a weak memory model with the
same program running under Sequential Consistency (SC). The focus there is to
check if a program admits behaviors which are not possible under SC while our
goal is to compare two programs running under SC.

There has been interest in applying program analysis towards the problem
of comparing two versions of a program, in the context of sequential programs.
Jackson and Ladd [13] used the term semantic diff to compare two sequential
programs in terms of the dependency between input and output variables. For
most concurrency related transformations, such a metric is unlikely to yield any
difference. There has been work on equivalence checking of sequential executions
across program versions using uninterpreted function abstraction and program
verifiers [10,15]. Verification Modulo Versions [16,17] compares two sequential
programs w.r.t. a set of assertions. Differential symbolic execution [20] summa-
rizes differences in summaries of two procedures, and Marinescu et al. [19] use
symbolic execution for generating tests over program differences.

9 Conclusions

We have presented an approach for comparing two closely related concurrent pro-
grams whose goal is to give feedback about interesting differences, without rely-
ing on user-provided assertions. This approach is based on comparing abstract
representations of the data-flow dependencies admitted by two subsequent ver-
sions of the same program. This comparison is reducible to assertion checking
which enables the reuse of the existing verification technology.

As future work, we plan to investigate static analyses for discarding data-
flow dependencies which are not interesting or not feasible. This can be also
used to minimize the number of assertion checking queries when checking (V, k)-
refinement. Moreover, we consider extending our theory to programs that contain
loops where the main difficulty is that traces contain an unbounded number of
copies of the same statement (when inside a loop). The idea would be define a
new abstraction of traces that collapses together occurrences of the same state-
ment from multiple iterations of a loop. On the practical side, we aim at a more
thorough experimental evaluation of this approach in the context of other pro-
gram transformations. On one side, we plan to consider more general program
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edits than reordering statements or modifying synchronization primitives which
need to consider more general statement matchings than the identity. Also, we
plan to investigate other classes of program transformations besides bug-fixing,
such as refactoring, addition of new features or performance fixes. For instance,
in the context of performance fixes, the new version of the program may allow
more behaviors (interleavings). Our approach would produce a succinct repre-
sentation of the new behaviors (in terms of small sets of dependencies), which
may help in validating their correctness.
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Abstract. We present a data-driven verification framework to automat-
ically prove memory safety of heap-manipulating programs. Our core
contribution is a novel statistical machine learning technique that maps
observed program states to (possibly disjunctive) separation logic for-
mulas describing the invariant shape of (possibly nested) data structures
at relevant program locations. We then attempt to verify these predic-
tions using a program verifier, where counterexamples to a predicted
invariant are used as additional input to the shape predictor in a refine-
ment loop. We have implemented our techniques in Locust, an extension
of the GRASShopper verification tool. Locust is able to automatically
prove memory safety of implementations of classical heap-manipulating
programs such as insertionsort, quicksort and traversals of nested data
structures.

1 Introduction

A number of recent projects have shown that it is possible to verify implemen-
tations of systems with complex functional specifications (e.g. CompCert [27],
miTLS [6], seL4 [24], and IronFleet [19]). However, this requires highly skilled
practitioners to manually annotate large programs with appropriate invariants.
While there is little hope of automating the overall process, we believe that this
annotation work could be largely automated.

A key problem in verification of heap-manipulating programs is the inference
of formal data structure descriptions. Separation logic [33,36] has often been used
in automatic reasoning about such programs, as its frame rule favors composi-
tional reasoning and thus promises scalable verification tools. However, the result-
ing techniques have often traded precision and soundness for automation [12],
required extensively annotated inputs [20,31,35], or focused on the restricted case
of singly-linked lists (often without data) [3,5,7,9,13,17,18,29,34].
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Fig. 1. Three heap graphs.

We follow earlier work and infer likely invariants from observed program
runs [14–16,39–43]. At its core, finding a program invariant is searching for a
general “concept” (in the form of a formula) that overapproximates all occurring
program states. This is similar to many of the problems considered in statistical
machine learning, and recent results have shown that program analysis questions
can be treated as such problems [15,16,22,32,38–41]. With the exception of
[32,38], these efforts have focused on numerical program invariants.

We show how to treat the prediction of formulas similarly to predicting nat-
ural language or program source code in Sect. 3. Concretely, we define a simple
grammar for our abstract domain of separation logic formulas with (possibly
nested) inductive predicates. Based on a set of observed states, a formula can
then be predicted starting from the grammar’s start symbol by sequentially
choosing the most likely production step. As our grammar is fixed, each such
step is a simple classification problem from machine learning: “Considering the
program states and the formula produced so far, which is the most likely produc-
tion step?” Our technique can handle arbitrary (pre-defined) inductive predicates
and nesting of such predicates, and can also produce disjunctive formulas.

We show how to use this technique in a refinement loop with an off-the-shelf
program verifier (GRASShopper [35]) to automatically prove memory safety of
programs in Sect. 4. We experimentally evaluate our approach in Sect. 5. There,
we show that our shape analysis performs well on automatically generated syn-
thetic data sets similar to our training data. Furthermore, we show that Locust
is able to fully automatically verify programs from a standard test suite that
are beyond the capabilities of other tools. Finally, we evaluate our method on a
selection of programs handling nested data structures, which are at the core of
much low-level code such as device drivers [5].

2 Example

Our central goal is to predict a separation logic formula describing the data
structures used at a given program location from a set of observed program
states. A core requirement is that the predicted formula should generalize well,
i.e., also describe different, but structurally similar program states. For this,
we first convert program states into heap graphs, in which memory locations are
nodes, pointers are edges and program variables are node labels (we drop all non-
heap information). As examples, consider the three graphs in Fig. 1, representing
program states with a program variable x. These three heap graphs can be
described by the separation logic formula ∃p.Π : ls(x, p, . . .) ∗ ls(p, p, . . .) ∗ emp.
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While we will discuss Π below, the remainder of the formula means that there is
a heap location p such that there is a singly linked list from x to p and a disjoint
list from p to itself. In this section, we discuss in detail how our method proceeds
on the example graphs; the general method and technical details are discussed
in the following sections.

Fig. 2. Syntax tree of ∃p.Π : ls(x, p, . . .) ∗
ls(p, p, . . .) ∗ emp. Expansion of Π skipped,
terminal symbols underlined, boxes indicate
result of a single grammar production, circled
indices indicate the order of productions.

Our method predicts this for-
mula by constructing it iteratively,
following its syntactic structure. We
predict fromulas from a fragment
of separation logic described by a
grammar (cf. Fig. 4). The syntax
tree for the predicted formula in this
grammar is shown in Fig. 2. We gen-
erate formulas by starting with a
singleton tree containing the gram-
mar’s start symbol and repeatedly
expanding the leftmost leaf nonter-
minal in the syntax tree. At each
step, the grammar allows only a
few expansion rules, and we use a
machine learning component to pre-
dict the next expansion step based
on the partial syntax tree gener-
ated so far and the heap graphs pro-
vided as input. These predictions
are made on features that represent
general structural information about graph properties such as cyclicity, con-
nections between labeled nodes, etc. This component is trained beforehand
on a large amount of automatically generated, program-independent data (cf.
Sect. 3.3). Thus, all of our predictions are based on learned patterns that were
observed in the training data, and do not depend on hardcoded rules.

Initially, the syntax tree contains only ϕ. In production step 1 , the root
nonterminal ϕ can be expanded to either ∃V.ϕ or Π : Σ. Intuitively, choosing
the former allows us to introduce a label for a node that we believe we will
need to reference later in the procedure. To decide which production to choose,
we extract a feature vector for each heap node that contains information about
the number of incoming and outgoing edges and distance to other nodes with
labels. Based on these features, our method predicts that we should introduce
an existential quantifier for a fresh variable name (in this case p), and computes
that it is most likely to refer to node 3 in the leftmost graph (resp. 8 in the
second and 10 in the third) in Fig. 1. We attach the label p to these nodes for
the remainder of the procedure, and extend the syntax tree according to the
production ∃p.ϕ.

Next, in step 2 , we expand the newly obtained ϕ nonterminal using the same
procedure, but with a feature vector modified by the newly introduced label.
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This time, the production Π : Σ is chosen. Π is a “pure” formula (i.e., not
concerning heap shapes, but equalities between program variables and similar
information), which we deterministically compute (cf. Sect. 3.3). We thus focus
on Σ, the “spatial” formula describing heap shapes.

In step 3 , the choice is between emp (implying that we believe that we are
done describing the heap) and σ ∗ Σ, which means that we predict that there
are more heap regions to describe. We extract a feature vector summarizing
structural knowledge about the heap graphs, (e.g., “are there nodes with in-
degree i and out-degree j”) and syntactic knowledge about the formula (e.g.,
“how many program variables have not been used yet in the formula”). Based
on this, we predict that Σ should be expanded to σ ∗ Σ, where σ is a “heaplet”
that describes a single shape on the heap.

Now, in step 4 , we choose whether the next heap region we describe is a list
or a tree. We use similar features as for Σ to predict that σ should be expanded
to ls(E,E, . . .),1 i.e., we predict that there is at least one list in the heap.

The E (expression) nonterminals declare where this list begins and ends, and
can be expanded to either a variable or the special 0 value. To make choices in
steps 5 and 6 , we extract a separate feature vector for each program variable
and 0, again combining knowledge from the heap graphs (e.g., “are there nodes
with in-degree i and out-degree j reachable from v”) and from the partially gen-
erated formula (e.g., “has v already been used in the formula”, . . . ). From these
features, we predict the most likely identifier to expand E with. Our predictor
chooses x here, but could equally well return p. Next, we need to expand the
second E nonterminal. Here, we additionally consider a “reachable from syntac-
tic sibling” feature, which allows our system to correctly rule out x and instead
choose p.

The process continues for the remaining nonterminals in the same manner,
using a frame inference to compute the footprint of already generated predicates
p(v1, . . . , vn) (i.e., heap nodes described by p). For instance, for the leftmost
graph of Fig. 1, after predicting ls(x, p, . . .) we compute its footprint as {1, 2}.
We use this information by restricting heap graph feature extraction to nodes
outside of the footprint of already generated predicates; this provides enough
information for the system to make progress and not get “stuck” predicting
the same things repeatedly. Eventually (step B ), we predict that Σ should be
expanded into emp, indicating the empty heap.

3 Predicting Shape Invariants from Heaps

In Sect. 3.1, we first present a general technique to predict derivations in a gram-
mar G from a set of objects H, given functions that compute features from H.
We then show how to apply this to our setting in Sect. 3.2, using a grammar for
separation logic as G and heap graphs as input objects, and discuss the features
used. Practical aspects of extending this core technique to a useful shape analysis
tool (e.g., how to generate training data) are discussed in Sect. 3.3.
1 We will discuss the role of . . . in Sect. 3.2.
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3.1 General Syntax Tree Prediction

Let G be a context-free grammar, S the set of all (terminal and nonterminal)
symbols of G, and N just the nonterminal symbols. We assume that every sen-
tence generated by G has a unique syntax tree, which we represent as a tuple
T = (A, g(·), ch(·)) where A = {1, . . . , A} is the set of nodes for some A ∈ N,
g : A → S maps a node to a terminal or nonterminal symbol from the grammar,
and ch : A → A∗ maps a node to its direct children in the syntax tree. A partial
syntax tree T<a is a syntax tree T restricted to nodes {1, . . . , a − 1}, where the
ordering on nodes comes from the order in which they are predicted.

We assume there is an underlying unknown distribution p(T | H). This
matches the observation that in our setting, there is no unique “correct” for-
mula describing a set of heap graphs. Instead, many formulas (from the trivial
“true” to formulas without inductive predicates, concretely describing the full
observed heap) are valid candidates. Our problem is to learn this distribution,
so that we can predict a syntax tree T given a set of objects H. As the set of
valid syntax trees is extremely large, simply learning a mapping from inputs to
a previously enumerated set of syntax trees is impractical. Instead, we learn this
distribution following a technique that predicts source code from natural lan-
guage [2]. The key idea is that instead of considering the probability of the full
tree, we decompose the problem into learning the probability distributions for
productions in our grammar, conditional on the inputs and the partial syntax
tree generated so far.

p(T | H) �
∏

{a∈A|g(a)∈N}
p(ch(a) | H, T<a)

This decomposition allows us to treat the problem as a sequential prediction
task in which we predict the syntax tree in a depth-first left-to-right node order.
A further simplification step to aid learning is to not operate directly on input
objects and syntax trees, but instead to compute a feature vector encoding exist-
ing domain knowledge f = φN (H, T<a) ∈ R

DN (where DN is the number of fea-
tures for N) that depends on the considered nonterminal N , the input objects
H and the partial syntax tree T<a generated so far.2 The learned probability
distribution is thus p(T | H) �

∏
{a∈A|g(a)∈N} p(ch(a) | φg(a)(H, T<a)).

We use two different models for these per-nonterminal probability distribu-
tions, depending on the production rules for N in G. If N has a fixed number
of production rules in G (for example, ϕ → ∃V.ϕ | Π : Σ) then we view this
as a standard multiclass classification task, i.e., where a probability is assigned
to each allowed production (“class”) based on a feature vector. If N can be
expanded to any terminal from a dynamic set (for example E, which stands for
any variable in scope at this point), then we instead learn a function that assigns

2 While we have experimented with avoiding this simplification to side-step the need
for feature engineering by operating directly on input graphs [28], the resulting
system was substantially harder to train and slightly less precise, as it had to learn
domain knowledge from the training data.
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a score to each production. We then obtain a probability distribution over the
productions from these scores by a normalization procedure (see below). In both
cases, we have a PredictorN (f ; θ) function for each nonterminal N that assigns
probabilities to each production allowed by G based on the input feature vector.
θ denotes learnable parameters of this function. In practice, we use a neural net-
work with one fully connected layer for the classification tasks and a two layer
network for the ranking tasks, such that θ consists of the weights used in each
layer.

The pseudocode for this procedure PlatypusCore is given in Algorithm 1,
which is initially called with a syntax tree containing only the grammar’s start
symbol. Note that Algorithm 1 is entirely independent of the semantics of the
generated syntax tree. All domain knowledge about the meaning of the gener-
ated syntax and how it is related to the input objects needs to be encapsulated
in the construction of φN , which extracts features to be used by the generic
machine learning components. We discuss our choices for φN below.

Algorithm 1. Pseudocode for PlatypusCore (extension of [2])
Input: Grammar G, input objects H, (partial) syntax tree T = (A, g, ch), nonterminal

node a to expand
1: N ← g(a) {nonterminal symbol of a in T }
2: f ← φN (H, T<a) {compute features (see Sect. 3.2)}
3: P ← most likely production N → S∗ from G considering PredictorN (f )
4: T ← insert new nodes into T according to P
5: for all children a′ ∈ ch(a) labeled by nonterminal do
6: T ← PlatypusCore(G, H, T , a′)
7: return T

To train the overall system, we assume we are given a training set of (T ,H)
pairs drawn from the desired distribution (we discuss the details of this procedure
for our setting in Sect. 3.3). To obtain training data for the individual PredictorN
functions, we follow our PlatypusCore procedure. For each syntax tree node a
labeled with a nonterminal N , we extract the feature vector f = φN (H, T<a),
but retrieve the chosen production rule P from the ground truth syntax tree T
to generate a pair (f , P ) which can be used to train the classifier or ranker for
nonterminal N .

3.2 Predicting Separation Logic Formulas

To use the PlatypusCore algorithm for shape analysis, we need to specify the
input objects H, the output grammar G, and the feature extraction function
φN and predictor PredictorN for each nonterminal.

Inputs. Our inputs are directed—possibly cyclic—graphs representing the heap
of a program and the values of program variables. Intuitively, each graph node v
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corresponds to an address in memory at which a sequence of pointers v0, . . . , vt

is stored.3 Edges reflect these pointer values, i.e., v has edges to v0, . . . , vt labeled
with 0, . . . , t. The node 0 is special (corresponding to the null pointer in pro-
grams) and may not have outgoing edges. Furthermore, we use unique node
labels to denote the values of program variables PV and auxiliary variables V,
which can be introduced by existential quantification.

Definition 1 (Heap Graphs). Let PV be a set of program variables and V be
a set of (disjunct) auxiliary variables. The set of Heap Graphs H is then defined
as 2N × 2(N\{0})×N×N × (PV ∪ V → N).

Outputs. We consider a fragment of separation logic [33,36]. Our method allows
the separating conjunction ∗, list-valued points-to expressions v �→ [e1, . . . , en],
existential quantification and higher-order inductive predicates [5], but no −∗.
As pure formulas, we only allow conjunctions of (dis)equalities, and use the
constant 0 as the special null pointer. We will only discuss the singly-linked
list predicate ls and the binary tree predicate tree in the following, though our
method is applicable to generic inductive predicates. The following grammar
describes our formulas, where nonterminals V and PV can be expanded to any
terminal from the corresponding sets.

ϕ::=∃V.ϕ | Π : Σ Σ::=emp | σ ∗ Σ σ::=ls(E, E, λV, V, V, V → ϕ)

Π::=true | π ∧ Π π::=E = E | E �= E | tree(E, λV, V, V, V → ϕ)

E::=0 | V | PV | V 	→ [E . . . E] | PV 	→ [E . . . E]

Semantics are defined as usual for separation logic, i.e., h |= σ1 ∗ σ2 for some
h = (V,E,L) ∈ H if h can be partitioned into two subgraphs h1, h2 such that
h1 (resp. h2) is a model of σ1 (resp. σ2) after substituting variables in σ1 and σ2

according to L. The empty heap emp is true only on empty subgraphs, and v �→
[e1, . . . , en] holds iff V = {v} and for all 1 ≤ i ≤ n, there is some edge (v, i, ei).
For detailed semantics, see [33,36]. The semantics of inductive predicates are
the least fixpoint of their definitions, where nested formulas describe the shape
of a nested data structure. For example, we define ls and tree as follows.

ls(x, y, ϕ) ≡(x = y) ∨ (∃v, n.x 	→ [v, n] ∗ ls(n, y, ϕ) ∗ ϕ(x, y, v, n))

tree(x, ϕ) ≡(∃v, l, r.l �=0 ∧ r �=0:x 	→ [v, l, r] ∗ tree(l, ϕ) ∗ tree(r, ϕ) ∗ ϕ(x, v, l, r))

∨ (∃v, r.r �=0:x 	→ [v, 0, r] ∗ tree(r, ϕ) ∗ ϕ(x, v, 0, r))

∨ (∃v, l.l �=0:x 	→ [v, l, 0] ∗ tree(l, ϕ) ∗ ϕ(x, v, l, 0))

∨ (∃v.x 	→ [v, 0, 0] ∗ ϕ(x, v, 0, 0))

Note that our definition of ls implies that ls(x, x) holds both for empty list
segments as well as cyclic lists, and tree(x) implies that x 
= 0. We use � ≡
λv1, v2, v3, v4 → true : emp to denote “no further nested data structure”. Thus,
ls(x, y, λf1, f2, e1, e2 → tree(e1,�)) describes a list of binary trees from x to y.

3 Here, we discard non-pointer values.
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Example 2. A “pan-handle list” starting in i2 is described by ϕ(i1, i2, i3, i4) ≡
∃p.ls(i2, p,�)∗ls(p, p,�), where an acyclic list segment leads to a cyclic list. Here,
p is the existentially quantified node at which “handle” and “pan” are joined.

Fig. 3. Tree of panhandle lists.

The formula ψ(x) ≡ tree(x, ϕ)
describes a binary tree whose nodes in turn
contain panhandle lists. An example of a
heap satisfying the formula ψ is shown
in Fig. 3. Blue nodes are elements of the
tree data structure, having three outgo-
ing edges labeled 0, 1, 2. Each of the green
boxes in Fig. 3 corresponds to a subheap
that is described by the subformula ϕ.
In each of these subheaps, one node is
labeled with p, which is not a program
variable, but introduced through the exis-
tential quantifier in ϕ.

We found that our procedure PlatypusCore was often unnecessarily imprecise
when generating the pure subformula Π and �→ atoms, which can simply be
computed deterministically. Thus, we restrict our machine learning-based com-
ponent to handle inductive predicates, and generate Π deterministically using
a nullness and aliasing analysis (see Sect. 3.3). While this can lead to predicting
ls(x, y) even if x.next = y in all observed states, our deterministic extension
procedure then yields x 
= y ∧ x.next = y. Our grammar thus simplifies to
Fig. 4, where Π is now a terminal symbol.

Fig. 4. Grammar used by our Platypus procedure.

Predicting Flat Formulas. We will first discuss the definitions of φN for the
case where the input is a single graph h with nodes V , and predict formulas
from a restricted separation logic grammar without nesting.

For any syntax node a, we define I(T<a) as the set of identifiers that are in
scope at point a in the partial syntax tree. Similarly, D(T<a) ⊆ I(T<a) is the set
of “defined” identifiers that occur as first argument of any predicate, following
the intuition that ls(x, y) and SLtree(x) define the data structure starting at x.

An important class of features is based on the notion of n-grams of heap
graphs. A 1-gram simply describes the in-degree and out-degree of some node v,
i.e., is a pair (indeg(v), outdeg(v)) ∈ N

2. n-grams extend this idea to a sequence
of n connected nodes in a heap graph, e.g., a 2-gram is a pair of the 1-grams
for two nodes connected by an edge in h. Based on this, we also define a refined
measure of depth. For a path v1 . . . vt in the heap graph, we define its 1-gram
depth as the number of times the 1-gram changes, i.e., |{i ∈ {1 . . . t − 1} |
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indeg(vi) 
= indeg(vi+1) ∨ outdeg(vi) 
= outdeg(vi+1)}|. Then, depth(v) is the
minimal depth of paths leading from a node labeled by a variable in PV ∪V to v.
In our method, we extend 1-grams by this depth notion, i.e., represent each node
by a (indeg(v), outdeg(v), depth(v)) triple. Intuitively, this information helps to
discover the level of data structure nesting. As an example, consider Fig. 3 again.
There, nodes 1, 10, 5, 15 and 11 have 1-gram depth 0, nodes 3, 4, 13, 6, 7 and
12 have 1-gram depth 1 (note that we haven’t drawn the edges to 0 for some
“tree” nodes), and nodes 8, 9, 2, and 14 have 1-gram depth 2.

As features of a heap graph, we use presence of n-grams in that graph, only
considering the n-grams observed at training time. Thus for the graph in Fig. 3,
we obtain 1gram(0,3,0) = 1 (cf. node 1), 1gram(1,3,1) = 1 (cf. node 3) and so on.

Σ, σ Nonterminals. Intuitively, the production choices for these nonterminals
depend on the structure of the heap graph that has not been described by the
partial syntax tree generated so far. As discussed above, we compute the foot-
print of (i.e., those heap nodes described by) already predicted predicates. We
denote the set of nodes covered by predicates predicted up to syntax node a
as V<a.

Using this, we compute features for Σ, σ as the 1-grams and 2-grams from
above restricted to the nodes V \ V<a, i.e., those nodes that are not covered by
the data structures described by the partial formula predicted so far. Their node
degrees, contained in the 1-gram features, are indicators of the data structures
present in the remaining heap. Additionally, we also include a feature reporting
the number of identifiers not defined yet, i.e., |I(T<a) \ D(T<a)|.

E Nonterminals. Here, we pick an expression as argument to a predicate. This
decision depends on how well the part of the heap graph reachable from the
expression matches the semantics of the surrounding predicate and possibly
already predicted other arguments. The set of legal outputs differs at each syn-
tax node a: When making a prediction for E at node a, the set of legal outputs
is I(T<a)∪{0}; i.e., the set of all identifiers that are in scope at this point and 0,
which varies for each prediction. Thus, we treat this as a ranking task and, unlike
the earlier case where we had a single feature vector, we compute one feature
vector fE,z for each z ∈ I(T<a) ∪ {0}.

To this end, we compute 1-gram and 2-gram features as above for each expres-
sion z separately, restricted to those heap graph nodes reachable from the node
labeled by z. We also extract boolean features signifying if z is part of a non-
trivial strongly connected component of the heap graph, or has a path to a
strongly connected component. Additionally, to relate z to already predicted
arguments of the same predicate, we define the sequence of “enclosing defined
identifiers” e1, . . . , et ∈ I(T<a), i.e., identifiers appearing in predicates enclosing
the currently considered node a. As an example, consider the partially predicted
formula ls(x,E, . . .), where we are interested in predicting the expression at E.
Here, we have e1 = x (for nested data structures, e2, . . . correspond to the iden-
tifiers chosen in the outer data structures). We use a boolean feature to denote
reachability of (resp. from) each e1, . . . , et from (resp. of) z.
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Furthermore, we refine our notion of reachability. We say that v “reaches” v′

if there is path v = v0, . . . , vt = v′ in the heap graph. If furthermore no v1 . . . vt−1

is labeled by another identifier, we say that v “directly reaches” v′. If all edges
used on the path have the same label, then we say that v “simply reaches” v′.
Finally, we also say that x “syntactically reaches” y if our partial syntax tree
T<a contains a predicate p(x, . . . , y, . . .).

Thus, for an identifier z labeling heap graph node v, we use these features:

– The frequency of 1- and 2-grams reachable from v.
– v is part (resp. reaches a node that is part) of a strongly connected component

of the graph.
– v reaches (resp. reaches directly, simply, or syntactically) the enclosing iden-

tifier ei for i = 1 . . . t.
– v is reached (resp. reached directly, simply, or syntactically) by the enclosing

identifier ei for i = 1 . . . t.

To implement PredictorE , we use a neural network NN (with learnable para-
meters θE) to compute scores sz = NN(fE,z; θE) for each identifier. We normal-
ize these scores using the softmax function to get a probability distribution over
identifiers (a common trick to reduce the influence of outliers). The probability
of expanding E by z is thus p(z) = exp(sz)∑

z′∈I(T<a)∪{0} exp(sz′ )
.

ϕ Nonterminals. Here, we need to decide whether to declare new identifiers via
existential quantification, so that we can refer to nodes not labelled by program
variables (e.g., for panhandle lists). Thus, we not only predict that we need a
quantifier, but also by which graph node it should be instantiated. To use this
information later on, we allow modifying the input H after a production step
(between line 4 and 5 of PlatypusCore). In this case, we add the newly introduced
identifier as a label to the corresponding node.

We thus predict, independently for each node v ∈ V , the probability that it
is referred to by a new existential variable. We proceed similar to the E case and
compute a feature vector fϕ,v for each node v ∈ V . As features we again use
standard graph properties, such as membership in a strongly connected compo-
nent, existence of labels for a node, its in-degree and out-degree. Additionally,
we also use features comparing these values to each nodes’ direct neighbors, i.e.,
“has higher in-degree than average in-degree of neighbors”.

To make a prediction, we use a neural network NN (with learnable parame-
ters θϕ) to compute a score sv = NN(fϕ,v; θϕ). Unlike the E case where we have
to choose one option from many, here each v is an independent decision, and so
we use the sigmoid function4 p(v) = exp(sv)

1+exp(sv)
to get the probability that v is

labelled by a new identifier. When choosing a production for ϕ, we thus compute
probabilities for each v independently and return arg maxv p(v) as the proba-
bility of declaring a fresh identifier. If more identifiers are required, they can be
added in subsequent grammar expansion steps.
4 Note that the softmax function used in the E case is the generalization of the sigmoid

function to many values.
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Predicting Nested Formulas. We now discuss the general case, in which
we have several input heap graphs H, and data structures may in turn contain
other data structures. This requires us to make predictions that are based on
the information in all graphs, and sometimes on several subgraphs of each of
the graphs. As an example, consider again the heap in Fig. 3, and imagine that
we have successfully predicted the outer part of the corresponding formula, i.e.,
tree(x, λi1, i2, i3, i4.ϕ), and are now trying to expand ϕ. This subformula needs
to describe all the subheaps corresponding to the contents of the green boxes in
Fig. 3. Again, we modify the input H to reflect the newly introduced identifiers.
So for our example, we would replace H with one heap graph with labels {x �→
1, i1 �→ 3, i2 �→ 8, i3 �→ 0, i4 �→ 0} for the leftmost box, one with labels {x �→
1, i1 �→ 1, i2 �→ 2, i3 �→ 3, i4 �→ 4} for the second box, and so on.

Everything but ϕ Nonterminals. We use the same features from Sect. 3.2, but lift
them to handle a set of heap graphs H. We compute feature vectors for each
heap graph independently as before, and then merge them into a new single
feature vector by computing features based on the maximum fmax , minimum
fmin , and average value favg across all H for each feature f . We also use the
same PredictorN functions.

ϕ Nonterminals. This covers the case in which we predict that we need to insert
an existential quantifier. In Fig. 3, this is the prediction of ∃p, where p corre-
sponds to one node in each of the green boxes. We again lift the feature extraction
as mentioned above, but as the number of nodes may differ between the different
heap graphs, we cannot simply lift the Predictorϕ from above.

This problem is a basic form of the structured prediction problem [4]. Suppose
there are R heap graphs. For each of the graphs, there is a set of nodes Vr which
may require an existential quantifier to be described in our setting (in Fig. 3,
these are the contents of the green boxes). Let yv be a boolean denoting the
event that a new identifier is introduced for node v. We train a neural network
like in the single-heap case so that the probability of introducing an existentially
quantified variable for node v is p(yv = 1) = exp(sv)

1+exp(sv)
, where sv is the score

output by the neural network.
We now need to compute the probability of introducing a new identifier (for

all graphs) in terms of the scores sv (which only take one graph into account). We
first set the probabilities of illegal events (i.e., predicting that one graph requires
an existential quantifier, but another one does not) to 0. Then, the probability of
not declaring a variable is

∏
1≤r≤R

∏
v∈Vr

(1 − p(yv = 1)) =
∏

1≤r≤R
1

Zr
, where

Zr =
∏

v∈Vr
(1 + exp(sv)). The probability of the event yr

v of selecting exactly
node v from graph r is

p(yr
v = 1) =

exp(sv)
1 + exp(sv)

∏

v′∈Vr,v′ �=v

1
1 + exp(sv′)

=
exp(sv)

Zr
.

As the choice of node from each graph is independent given that we are declar-
ing a new identifier, the probability of choosing the set of nodes {vr}1≤r≤R

is the product
∏

1≤r≤R
exp(svr )

Zr
. Noting that all legal joint configurations have
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the same denominator
∏

r Zr, we can drop the denominator and compute the
normalizing constant for the constrained space later. The total unnormalized
probability of declaring a variable is the sum of the unnormalized probabilities
of all ways to choose exactly one node from each graph r, which can be rewritten
as

∏
1≤r≤R

∑
v∈Vr

exp(sv). Normalising this, the probability of not introducing
an existential quantifier is 1

1+
∏

1≤r≤R

∑
v∈Vr

exp(sv)
while the probability of intro-

ducing an existential is
∏

1≤r≤R

∑
v∈Vr

exp(sv)

1+
∏

1≤r≤R

∑
v∈Vr

exp(sv)
.

To make predictions for all graphs at the same time, we use the above to
decide whether to introduce an existential quantifier. If not, we choose the Π : Σ
production. If we decide to use the ∃V.ϕ production, then we draw one node
from each graph according to a softmax over the scores; i.e., the probability of
choosing node v in graph r is exp(sv)∑

v′∈Vr
exp(sv′ )

.

3.3 Shape Analysis with Platypus

To obtain a shape analyzer, we have extended the procedure PlatypusCore to also
produce disjunctive invariants and deterministically compute pure subformulas.
Finally, whereas Algorithm 1 selects a production “greedily” in line 3 (i.e., it will
always pick the most likely one), we have generalized this behavior to instead
also sample productions using the probabilities obtained from the PredictorN
function. This allows to iteratively obtain more and more formulas from Platypus,
recovering from cases where the system is uncertain about the correct formula.

Training the Analyzer. Training the logistic regressors and neural networks
from above requires large amounts of training data, i.e., sets of heap graphs
labeled with corresponding formulas. To obtain this data, we generate synthetic
data by fixing a small set of program variables PV (typically of size 2 or 3) and
enumerate semantically valid derivations of formulas in our grammar, similar in
spirit to [23]. Then, we enumerate models for each formula by expanding induc-
tive predicates until only �→ atoms remain. From this we read off heap graphs
by resolving the remaining ambiguous possible equalities between variables. The
result is a set of pairs (ϕ,H) such that h |= ϕ for every h ∈ H. We compute the
unique syntax tree Tϕ of each ϕ to get the desired training data pairs (Tϕ,H).

Pure Subformulas. We use a deterministic procedure to expand the nontermi-
nal Π describing the pure part of our formulas, using simple aliasing and nullness
analyses. Namely, for all pairs of identifiers x, y ∈ PV ∪ {0}, we check if x = y
or x 
= y holds in all input heap graphs. Similarly, for all fields f and x 
= 0, we
consider the possible equalities x.f = y. Π is then set to the conjunction of all
(dis)equalities that hold in all input graphs.

Handling Disjunctions. We found disjunctive separation logic formulas to
be needed even for surprisingly simple examples, as in many cases, the initial
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or final iteration of a loop requires a different shape description from all other
steps. In our setting, the problem of deciding how many and what disjuncts
are needed can be treated as a clustering problem of heap graphs. In machine
learning, the clustering problem is the task of grouping a set of samples in such
a way as to group “similar” samples together. The notion of similarity depends
on the target application and is normally defined through a distance measure.
A widely used and effective clustering method is k-means clustering, where the
aim is to find k cluster centers such that the sum of the distance of every point
to the closest cluster center is minimized.

For our setting, we convert the input heap graphs into feature vectors cap-
turing reachability between program variables and use the Euclidean distance
between these feature vectors as a distance measure between graphs. Following
our notion of different kinds of reachability from above, we define a function
rh(u, v) ranging from 0 if there is no connection between the nodes labeled by u
and to 1 if u and v are labels on the same node, with steps for different kinds of
reachability. Using this function, we define fh as the vector 〈rh(u, v)〉u,v∈PV for
some fixed order on PV. In our implementation, we run the clustering algorithm
for k ∈ 1..5 and predict formulas for all generated clusterings.

4 Refining and Verifying Shape Invariants

We construct our fully automatic memory safety verifier Locust (pseudocode in
Algorithm 2) by connecting our shape predictor from Sect. 3 with the program
verifier GRASShopper. For this, we keep a list of positive S+(	) and negative
state samples S−(	) for every program location 	 at which program annotations
for GRASShopper are required (i.e., loop invariants and pre/post-conditions for
subprocedures). We first sample initial states (cf. Sect. 4.1) and use these to
collect a first set of positive samples corresponding to valid program runs by
simply executing the program. Then we obtain a set of candidate formulas from
Platypus for each location and enter a refinement loop. If verification using these
candidates fails, we get a counterexample state at some location 	, which we
use to extend the sets S+(	) and S−(	). As it is possible that no correct set of
program annotations can be found (due to an incorrect program or imprecisions
in our procedure), we report failure when the same counterexample is reported
for the second time (i.e., we have stopped making progress).

To simplify the procedure, we assume that Platypus always returns the most
precise formula from our abstract domain holding for the given set of input
heap graphs (†). While this assumption is not formally guaranteed, Platypus was
trained to produce this behavior (by choosing training data according to this
principle), and we have observed that it behaves like this in practice.
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Algorithm 2. Pseudocode for Locust
Input: Program P and entry procedure p with precondition ϕp, locations L requiring

program annotations
1: I ← sample initial states satisfying ϕp {see Sect. 4.1}
2: S+ ← execute P on I to map location � ∈ L to set of observed states
3: while true do
4: for all � ∈ L do
5: while true do
6: ϕ′

� ← obtain fresh formula sample from Platypus(S+(�))
7: if exists ϕ′

� consistent with all S+(�), S−(�) then {see Sect. 4.3}
8: ϕ� ← ϕ′

�

9: break (continue on line 4)
10: P ′ ← annotate P with inferred ϕ�

11: if GRASShopper(P ′) returns counterexample s then
12: if s is new counterexample then
13: update S+, S− to contain s for correct location {see Sect. 4.2}
14: else return FAIL
15: else return SUCCESS

4.1 Initial State Sampling

We assume the existence of some set of preconditions describing the input to
the main procedure of the program in separation logic.5 To sample from these
preconditions, we can add assert false to the beginning of the program. Then,
every counterexample returned by GRASShopper is a model of the precondition.
To get more samples, and to ensure different sizes of input lists, we add cardinal-
ity constraints to the precondition. For example, to force a list starting at lst
to have length ≥ 3, we add requires lst.next.next != null. States at other
locations are then obtained by executing the program from the initial sample.

While this strategy is complete relative to the fragment of separation logic
supported by GRASShopper, it is slow even for simple preconditions. Thus, we
have implemented a simple heuristic sampling algorithm for preconditions using
only simple predicates. If we detect that a precondition is simple enough for our
heuristic, we use it instead to generate sample states of varying sizes.

4.2 Handling Counterexamples

If the program is incorrect, or the current annotations are incorrect or insufficient
to prove the program correct, then GRASShopper returns a counterexample at
a location 	. Depending on the context of such a counterexample and its exact
form, we treat it as a positive or negative program state sample as follows.

5 Conceivably, these could be provided by users in a pre-formal language and trans-
lated to separation logic using an interactive elaboration procedure. Alternatively,
given a test suite, Platypus could predict the initial precondition as well.
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– Case 1: A candidate invariant does not hold on loop entry. The counterex-
ample state is reachable, but is not covered by the candidate loop invariant,
and thus, the counterexample can be added as a positive sample to S+(	).

– Case 2: A candidate loop invariant is not inductive. This is an implication
counterexample [15,40], i.e., a state s that is a model of the candidate loop
invariant and a state s′ reached after evaluating the loop body on s. Based
on our assumption (†), we conclude that s is likely to be a reachable state,
and thus s′ is. Hence, we treat s′ as a positive sample and add it to S+(	).

– Case 3: A postcondition does not hold for a state s. Again, by (†), we conclude
that s is a reachable state, and thus add the counterexample to S+(	).

– Case 4: Invalid heap access inside the loop. The counterexample state is con-
sistent with the candidate loop invariant, but triggers an invalid heap access
such as a null access. It is a negative sample and is added to S−(	).

4.3 Consistency Checking

For each prediction returned by the predictor, we check its consistency with the
positive and negative samples obtained so far. This is needed because Platypus
cannot provide correctness guarantees, and does not make use of negative sam-
ples. Thus we check each returned formula ϕ� for consistency with the observed
samples, i.e., ∀h ∈ S+(	).h |= ϕ� and ∀h ∈ S−(	).h 
|= ϕ�. As in our sampling
strategy, we use the underlying program verifier for this. For this, we translate
a state h into a formula ϕh that describes the sample h exactly, by introducing
variables nv for each node v and representing each edge (n, f, n′) as n.f �→ n′.
Then h is a model of ϕ� iff all models of ϕh also satisfy ϕ�. However, since by
construction ϕh only has the model h, this is equivalent to checking if ϕh ∧ ϕ�

has a model. This can be checked using a complete program verifier such as
GRASShopper by using ϕh ∧ ϕ� as precondition of a procedure whose body is
assert false.

5 Related Work and Experiments

We implemented the procedure PlatypusCore from Algorithm 1 as a stand-alone
tool Platypus in F#, also containing the feature extraction routines and support
for data generation. The core machine learning models (Predictor∗) are imple-
mented in TensorFlow, using a small Python wrapper. Finally, we have extended
GRASShopper [35] with the procedure from Sect. 4. The source code for Locust
and Platypus is available at https://github.com/mmjb/grasshopper.

Limitations. As our method relies on a trained machine learning component,
we cannot give any completeness guarantees. However, our integration with a
program verifier checks that returned results are correct. This means that our
performance depends on that of the underlying verifier, and in fact, time spent
in GRASShopper dominates verification time. As our verification technique relies
on observing a sample of occurring program states, it is sensitive to the choice

https://github.com/mmjb/grasshopper


Learning Shape Analysis 81

of input samples (randomly sampled, taken from a test suite, or provided by a
human) used in the sample collection phase. However, this is a limitation shared
by other dynamic analysis systems, such as Daikon [14].

5.1 Related Work

Memory safety proofs have long been a focus of research, and we only discuss
especially recent and close work here. (Bi)-abduction based shape analyses [10–
12,25,26] have been used successfully in memory safety proofs, and can also
be used to abduce needed preconditions or the required inductive predicates.
In another recent line of work, forest automata have been used to verify heap-
manipulating programs [1], but require hard-coded support for specific data
structures.

In property-directed shape analysis [21], predicate abstraction over user-
provided shape predicates ((sorted) list segments, . . . ) is combined with a vari-
ation of the IC3 property-directed reachability algorithm [8] to prove memory
safety and data properties. This can be viewed as continuation of three-valued
logic-based works (e.g. [37]), reducing the data type specification requirements.
Similary, SplInter extends the Impact [30] safety prover with heap reasoning based
on an interpolation technique for separation logic. Finally, we note that in prior
work on shape analysis for nested data structures [5], abstractions of heap graphs
using inductive predicates were found using manual heuristics and enumerative
search routines. Core parts of our method could be adapted to replace these by
directed, learned search.

A recent line of work is the use of machine learning techniques for inferring
numerical invariants [15,16,22,39–41]. In these methods, a machine learning
model such as a decision tree is trained on observed program states using stan-
dard optimization techniques, and the trained model is interpreted as program
invariant. However, while the translation from separating hyperplanes or deci-
sion trees to standard invariant formats is straightforward for numerical data,
no such correspondence exists in the domain of heap data. In our approach, a
predictor is trained offline, independent of the considered programs, and at test
(i.e., verification) time produces invariant candidates. Thus, our method can-
not make use of negative examples obtained at test time, but does not require
a close correspondence between the structure of the learned model and target
invariants. Closest to this work is [32] which infers likely heap invariants from
program traces (i.e., it infers shapes from usage patterns) using machine learning
techniques.

5.2 Platypus Experiments

To evaluate Platypus itself, we have generated two large data sets following our
procedure from Sect. 3.3. The first set contains all formulas we enumerate for
three variables without using nested predicates (327 formulas in total), and the
second set contains a random sample of 4% of the 36822 formulas we enumerate
for two variables with one data structure nesting level (i.e., we used 1472 formulas
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Table 1. Precision of Platypus on synthetic data

Dataset Greedy Precision @1 @5 @10

Trained on 3 var., no nesting data:

3 var., no nesting 92.68% 86.88% 91.30% 96.43%

Trained on 2 var., nested data:

3 var., no nesting 70.50% 69.37% 73.36% 78.40%

2 var., with nesting 24.11% 24.53% 33.42% 34.19%

in total). For each formula, we have generated 500 models (for the nested dataset,
we subsampled this again, picking 100 of the generated states at random). We
split both datasets into training, validation and test sets using a 3:1:1 split along
the formulas (i.e., no formula appeared in both training and test sets).

For our evaluation, we run Platypus on groups of 5 states generated as models
for the same formula at a time, producing 10 formula predictions for each group
of states. Note that due to our formula-based split into training and test sets,
both the tested states as well as the corresponding ground truth formula have
not been seen by the system before. As checking logical equivalence between
the formulas produced and the ground truth formula is expensive, we instead
approximate this by canonicalizing variable names and the order of commutative
elements in the formulas before comparing for exact (string) equality. We report
accuracy of our “greedy” mode (i.e., the result obtained by always picking the
most likely production) as well as top K accuracy (i.e., how often the correct for-
mula was in the K most probable formulas from the set of 10 sampled formulas)
for K ∈ {1, 5, 10}, and display the results in Table 1.

Table 2. Precision per
nonterminal.

Nonterminal Accuracy

ϕ 73.03%
Σ 99.86%
σ 99.70%
E 87.66%

Furthermore, we evaluate the accuracy of the per-
nonterminal predictors, using a model trained on the
two variable with nesting dataset and tested on the
three variable no nesting dataset. Table 2 reports how
often the production rule predicted with highest prob-
ability (i.e., the one chosen in our “greedy” syntax tree
sampling strategy), using features extracted under the
assumption that all prior nodes of the syntax tree were
predicted correctly, is indeed correct.

Analysis. We observe that on data structures without nesting, Platypus performs
very well, and that it generalizes reasonably well from one dataset to another.
Most notably, we found that generalizing to a larger number of program variables
posed no problem at all. Most wrong predictions are due to wrongly predicting
the need for existential quantifiers, or wrongly identifying the heap graph nodes
corresponding to these.

While performance on nested data structures is less encouraging, a detailed
analysis yielded that most mistakes occurred on formulas that are unlikely to
appear in practice (such as tree(x, λt, l, d, r → ls(d, l,�)), where each tree element
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has a data field containing a list to its left child). In experiments involving more
realistic data structures (cf. below), we observed no such problems.

5.3 Locust Experiments

To validate that we can infer formulas for algorithms used in practice, we have
evaluated Locust on a number of standard example programs. For this, we con-
sider all example programs processing singly-linked lists with integer data dis-
tributed with GRASShopper. These include standard algorithms such as list tra-
versal, filtering and concatenation, as well as more complex algorithms such as
quicksort, mergesort and insertionsort. Furthermore, we considered four simple
traversal routines of nested list/tree data structures. We again use our model
trained on the two variable with nesting dataset and compare Locust as a mem-
ory safety prover to S2/HIP [25,26], Predator [13] and Forester [1]. The full set
of results is displayed in Table 3, where a ✓ indicates that a tool was successful,
and ✗ that it failed (either explicit failure or timeout after 300 s). For Platypus,
we also note the number of disjuncts in generated invariants, and for Locust the
number of iterations in the counterexample-refinement loop.

Table 3. Results of memory safety provers on GRASShopper benchmarks.

Example Platypus Locust S2/HIP Forester Predator

concat ✓ (1 disj.) ✓ (1 it.) ✓ ✗ ✓

copy ✓ (1 disj.) ✓ (1 it.) ✗ ✓ ✓

dispose ✓ (1 disj.) ✓ (1 it.) ✗ ✓ ✓

double all ✓ (1 disj.) ✓ (1 it.) ✗ ✓ ✓

filter ✓ (2 disj.) ✓ (1 it.) ✗ ✓ ✓

insert ✓ (1 disj.) ✓ (1 it.) ✗ ✓ ✓

insertion sort ✓ (2 disj.) ✓ (1 it.) ✗ ✓ ✓

merge sort ✓ (3 disj.) ✓ (4 it.) ✗ ✗ ✗

pairwise sum ✓ (1 disj.) ✓ (1 it.) ✗ ✓ ✓

quicksort ✓ (1 disj.) ✓ (1 it.) ✗ ✗ ✗

remove ✓ (2 disj.) ✓ (1 it.) ✗ ✓ ✓

reverse ✓ (2 disj.) ✓ (1 it.) ✗ ✓ ✓

strand sort ✓ (3 disj.) ✓ (5 it.) ✗ ✓ ✓

traverse ✓ (1 disj.) ✓ (1 it.) ✓ ✓ ✓

ls ls trav ✓ (1 disj.) ✓ (1 it.) ✗ ✗ ✗

ls ls trav rec ✓ (1 disj.) ✓ (1 it.) ✗ ✗ ✗

tr ls trav ✓ (1 disj.) ✓ (1 it.) ✗ ✗ ✗

ls tr trav ✓ (1 disj.) ✓ (1 it.) ✗ ✗ ✗
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Analysis. Our results indicate that generalization from synthetic data used to
train Platypus to programs works well. For example, whereas our training data
was restricted to two program variables, the most complex program example,
strand sort, required an invariant involving six variables. In most cases, our
strategy of sampling initial program states is sufficient, but the merge sort and
strand sort examples show that additional counterexamples are indeed useful
to generalize predictions. Finally, as Locust is not optimized for time (e.g., each
Platypus invocation starts a .Net VM and initializes a Python interpreter) we do
not report detailed runtimes. However, the core shape analysis (factoring out
these startup times) took around a second for these benchmark programs.

6 Conclusion and Future Work

We have presented a new technique for data-driven shape analysis using machine
learning techniques, which can be combined with an off-the-shelf program ver-
ifier to automatically prove memory safety of heap-manipulating programs. All
of our contributions have been implemented in our tool Locust, whose experi-
mental evaluation shows that it is able to automatically prove memory safety of
programs that other state-of-the-art tools fail on.

Future Work. We plan to extend this work in three aspects. Firstly, we aim to
extend Locust to support the introduction of existential quantifiers that Platypus
allows. Secondly, one aspect of Platypus that still requires manual and skilled
work is feature extraction, which can make extending the tool to handle new
inductive separation logic predicates precisely hard. We would like to automate
the extraction of relevant features for each production rule, and have already
made steps in this direction. We recently introduced Gated Graph Sequence
Neural Networks [28] — a technique that leverages deep-learning techniques
to make the predictions directly on graph-structured inputs instead of feature
vectors. We plan to integrate this into our framework. Initial tests have shown
promising results, but some of the features supported by Platypus (most signifi-
cantly, disjunctive formula predictions) are not yet available in this new method.
Finally, we are interested in integrating our method with interactive program
verification assistants, to support verification engineers in their daily work.

Acknowledgements. We thank Martin Hruška and Quang Loc Le for help with
running their tools S2/HIP, Forester, and Predator for the experiments. We also thank
Thomas Wies for valuable feedback on drafts of this paper.
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1. Abdulla, P.A., Hoĺık, L., Jonsson, B., Lengál, O., Trinh, C.Q., Vojnar, T.: Ver-
ification of heap manipulating programs with ordered data by extended forest
automata. Acta Inf. 53(4), 357–385 (2016)

2. Allamanis, M., Tarlow, D., Gordon, A.D., Wei, Y.: Bimodal modelling of source
code and natural language. In: ICML 2015, pp. 2123–2132 (2015)



Learning Shape Analysis 85
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Abstract. Modern optimizing compilers use the single static assign-
ment (SSA) format for programs, as it simplifies program analysis and
transformation. A source program is converted to an equivalent SSA form
before it is optimized. The conversion may, however, create a less secure
program if fresh SSA variables inadvertently leak sensitive values that
are masked in the original program. This work defines a mechanism to
restore a program to its original security level after it has been converted
to SSA form and modified further by a series of optimizing transforma-
tions. The final program is converted out of SSA form by grouping vari-
ables together in a manner that blocks any new leak introduced by the
initial SSA conversion. The grouping relies on taint and leakage infor-
mation about the original program, which is propagated through the
optimizing transformations using refinement proofs.

1 Introduction

A compiler carries out a transformation of a high level, abstract program to low
level executable code. Ensuring that compilation preserves program semantics
is, therefore, a critical question. It has received much attention, both from the
point of view of detecting errors in existing compilers (cf. [11,20] and related
work) and from the viewpoint of formally guaranteeing correct compilation (cf.
[12,15] and related work). In today’s world, it is important to also guarantee that
compilation does not weaken security properties. For example, compiler trans-
formations should not inadvertently introduce new pathways that leak sensitive
data. It is this issue that is considered in this paper.

Correctness and security turn out to be distinct issues. A well-known illustra-
tion is the dead-store elimination optimization, which removes a store instruction
from a program if the value stored is never used. This has an unfortunate con-
sequence that removal of stores may introduce an information leak. A simple
example is the program shown on the left in Fig. 1. It reads a password into a
variable x, checks it for validity, and subsequently clears the secret from x by
setting it to 0. As the value 0 stored to x is never used, this store is removed
(silently) by the dead-store optimization. That leaves the password on the stack
or in a register longer than was originally intended, making it possible for an
attack elsewhere in the program to obtain the password. The optimization is
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correct in that it preserves the input-output behavior of the original program;
however, it is insecure.

In recent work [6], we formulate a notion of a secure program transformation
in terms of information flow (precisely, non-interference as in [7]) and show that
checking the security of a dead-store elimination after the fact is undecidable in
general. We also define a method which limits the removed dead stores to those
where removal provably preserves security. In that paper it is also shown that
the static single assignment (SSA) transformation is insecure. The technique
used for securing dead-store elimination unfortunately does not apply to SSA.
The question of how to secure SSA was left open. In this work, we present a
mechanism to secure the SSA transformation.

Fig. 1. C program illustrating the insecurity of SSA transformation, from [6]

An example of how SSA may cause an information leak is shown in Fig. 1,
taken from [6]. The source program is the password-reading program described
above. The SSA transform introduces fresh names x1 and x2 for the assignments
to x. Suppose that x1 and x2 are assigned distinct registers. The assignment to
x2 then has no effect and at the call to function other, the password is in
the clear, stored in the register assigned to x1. Suppose further that there is a
vulnerability in the function other by which an attacker can gain control of the
program. The attacker can then read off the password, which is either in the
register assigned to x1, or is stored on the call stack. This is a new information
leak, one that is not present in the original program.

The leak can be prevented if x1 and x2 are always allocated the same register
which cannot, however, be guaranteed. Moreover, it is inefficient and not always
correct to forcibly clear any tainted data before an untrusted function call. This
is because a sound taint analysis is generally over-approximate: variables that
are declared tainted may, in fact, always contain either non-sensitive data, or
sensitive data that is used after the function call.

Our method, therefore, does not modify the program in any essential manner.
The unSSA transform groups together related SSA variables and renames every
variable in a group G to a single fresh variable, say zG. A register allocator is
thus forced to assign a single register to the group (subject to live range splitting,
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which we discuss at the end of the paper). For the example program, x1 and
x2 are placed in the same group so the renaming, in effect, restores the original
program.

As grouping and renaming destroys the single assignment property of SSA,
this transformation must be placed in the compiler only after all SSA-dependent
transformations have been performed. This introduces a key problem. A modern
compiler first converts a source program P to its SSA form, say Q0, then applies
a series of SSA-to-SSA optimizations, which result in equivalent but syntacti-
cally different intermediate programs Q1, . . . , Qn. The unSSA conversion must,
therefore, be applied to the final program Qn, but block leaks introduced in the
initial conversion to Q0. Doing so correctly requires preserving leakage-relevant
information through the series of SSA optimizations, which is done with the help
of refinement proofs for each transformation. The unSSA transform uses the pre-
served information to determine a proper grouping of variables in Qn. Although
it is helpful for register allocation to produce small groups, we show that finding
the optimal partitioning is undecidable. The unSSA transformation thus relies
on sound but approximate analysis information to define the grouping.

The unSSA transform converts the SSA program Qn to a non-SSA program
R; the executable program X is then created by register allocation on R. The
overall correctness claim shows that the object code X is at least as secure as
the original program P . This is a relative security claim: one obtains only that
any information leak in X has a corresponding leak in P , not that X is free
of information leaks. It is analogous to the claim of compiler correctness, which
also shows only that every input-output behavior of X can be found in P ; not
that X is correct in an absolute sense with respect to a specification.

To summarize, the paper studies the important question of making certain
that a compiler transformation does not introduce new information leaks. We
show that fresh leaks introduced by conversion to SSA form can be blocked by
a suitable unSSA transformation, which groups SSA variables into equivalence
classes. We show that finding the optimal grouping is, unfortunately, undecid-
able; hence, our algorithm relies on approximate taint and control-flow informa-
tion. We also show that leaks may be introduced during register allocation, in
particular during live-range splitting, and suggest a simple mechanism to block
such a leak. The result is a secure end-to-end compilation.

2 Background

This section contains background on information leakage and taint analysis.
Several basic definitions are taken from [6].

Program Syntax and Semantics. As illustrated in the introductory example,
the SSA transformation leaks information when sensitive data is retained in
registers that can be accessed in a nested procedure call. We can thus consider
the point of invocation of an untrusted procedure as a potential leak point and
require that any leak through a leak point in the final program is a leak that
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occurs in the source. To simplify the formal development and bring out the
key features of the proposed method, the formal development is in terms of
structured WHILE programs over integer variables, defined by the syntax below.
The program operates on a set of input and state variables. Input variables are
partitioned into H (“high security”) and L (“low security”) variables. All state
variables are considered to be low security variables.

x ∈ X variables
e ∈ E ::= c | x | f(e1, . . . , en) expressions: f is a function, c a constant
g ∈ G Boolean conditions on X

S ∈ S ::= skip | out(e) | x := e | ||i : vi := φ(vi,A, vi,B) | S1;S2 |
if g then S1 else S2 fi | while g do S od statements

A program can be represented by its control flow graph (CFG). (The con-
version is standard, and omitted.) A node of the CFG represents a program
location, and an edge is labeled with a guarded command, of the form “g → a”,
where g is a Boolean predicate and a is a primitive statement, one of skip, out
(output), or assignment. A special node, entry, with no incoming edges, defines
the initial program location, while a special node, exit, defines the final program
location. Values for input variables are specified at the beginning of the program
and remain constant throughout execution.

Dominance. Node n of a CFG post-dominates node m if all paths in the CFG
from m to the exit node pass through n.

Program Semantics. The semantics of a program is defined in the standard
manner. A program state s is a triple (m, e, p), where m is a CFG node, referred
to as the location of s; if m is not the entry node, then e is the entry edge, (k,m)
for some k, and p is a function that maps each variable to an integer value.
The function p can be extended to evaluate an expression in the standard way
(omitted). An initial state has the form (entry,⊥, p) where p(x) = 0 for all state
variables x. A final state has the form (exit, e, p).

A pair of states, (s = (m, e, p), t = (n, f, q)) is in the transition relation if
f = (m,n) is an edge of the CFG, and for the guarded command g → a on that
edge, the guard g holds of p, and the function q(y) is identical to p(y) for all
variables y other than those modified by the statement a, for which it is defined
as follows. If a is an assignment x := e, the only variable modified is x and q(x)
equals p(e). For the assignment ||i : vi := φ(vi,A, vi,B), the variables modified
are the vi’s, and q(vi) is given by p(vi,A), if e = A, and by p(vi,B), if e = B. For
skip and out statements, q = p.

The guard predicates for all of the outgoing edges of a node form a parti-
tion of the state space, so that a program is deterministic and deadlock-free. A
execution trace of the program (referred to in short as a trace) from state s is
a sequence of states s0 = s, s1, . . . such that adjacent states are connected by
the transition relation. A computation is a trace from the initial state. A com-
putation is terminating if it is finite and the last state has the exit node as its
location.
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Information Leakage. Information leakage is defined using the standard concept
of non-interference (cf. [3,7]). A program P is said to leak information if there
is a pair of H-input values {a, b}, with a �= b, and an L-input c such that the
computations of P on inputs (H = a, L = c) and (H = b, L = c) either (a) differ
in the sequence of output values, or (b) both terminate but differ in the value
of one of the L-variables at their final states. We call (a, b, c) a leaky triple for
program P .

Taint Proofs. Leakage is approximated by the notion of taint. Each variable in
a program is marked as either “tainted” or “untainted”. High inputs are always
tainted, low inputs are always untainted. The correctness of these markings is
expressed as a taint proof. Each program point is decorated with a taint assertion
E, a function from variables to taint values. In earlier work [6], we define a sound
taint proof system in the style of the Volpano-Irvine-Smith proof system [19],
which sets up consistency conditions on these taint assertions. The soundness of
the proof system implies that a leak cannot occur through any untainted variable.
On the other hand, the fact that a variable is tainted does not necessarily imply
that there is a leak through that variable.

Correct Transformation. For simplicity, we only consider program transforma-
tions which do not alter the set of input variables. A transformation from pro-
gram P to program Q may alter the code of P or the set of state variables. The
transformation is correct if, for every input value a, the execution of Q on a
has a corresponding execution of P on a with an identical sequence of output
values. Termination is considered an output, so that a terminating execution of
Q must have a matching terminating execution of P . A correct transformation
thus offers the relative correctness guarantee that every input-output behavior
of Q is present in P . It does not assure the correctness of either program with
respect to a specification.

Secure Transformation. A transformation is secure if the set of leaky triples for
Q is a subset of the leaky triples for P . A secure transformation ensures relative
security, i.e., that Q is not more leaky than P . It does not ensure that either P
or Q are free of information leaks. Suppose that a transformation from P to Q is
correct. For any leaky triple (a, b, c) for Q, if the computations of Q from inputs
(H = a, L = c) and (H = b, L = c) differ in their output, this difference must
also (by correctness) appear in the corresponding computations in P . Hence, the
only way in which Q can be less secure than P is if the computations on inputs
(H = a, L = c) and (H = b, L = c) terminate in Q with different L-values, but
the corresponding P -computations (which must terminate, too, by correctness)
have identical L-values.

The SSA Transformation. A program P is converted to its SSA form Q essen-
tially by replacing each assignment to a variable x with a fresh name, say xi for
the i’th assignment. φ-functions are inserted at merge points to combine values
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that reach that point from different branches of a conditional or while state-
ment. Not all merge points need a φ function; efficient algorithms to determine
the optimal placement of φ functions are given in [5,18]. To illustrate the SSA
transform by an example, consider the programs shown in Fig. 2. The program
on the left is transformed to the program on the right. In the process, variable x
is given three versions: x1, x2 and x3, and φ-functions are inserted at the start
of the loop to merge the values of x1, x3 into x2, and of i1, i3 into i2.

Fig. 2. Illustrating the SSA transformation.

3 Securing SSA

The problem addressed in this work is stated precisely as follows. A program
P is converted by a compiler to its SSA form, Q0, which is transformed by a
series of SSA-to-SSA optimizations through intermediate programs Q1, . . . , Qn.
The conversion from P to Q0 may introduce new leaks, as illustrated in the
introduction. The goal is to block these new leaks via a new, final transform,
called the “unSSA” transform, which converts Qn into a program R that is at
least as secure as P . We use this naming convention throughout the section.

3.1 An Overview

The essential idea behind the unSSA transform can be understood by considering
the changes that the SSA transformation makes in converting P to Q0. A variable
x of P is represented by several versions, say x1, x2, . . . , xk in Q0. Programs P
and Q0 have identical control-flow graphs and are observationally equivalent:
the bisimulation relation is that at each common program point p, the value of
a variable x at point p in P equals the value of one of its versions, xi, at point
p in Q, where the index i is a function of the location p.

Each version of x in Q0 represents an assignment to x in P . This exposes
all intermediate values of x and is the source of the new leaks, as illustrated
in the introduction. In order to block such leaks, one has to reverse the SSA
transformation, and assign multiple variants of x the same name. This is done
by partitioning the variants of x into groups and rewriting the name of every
variable in a group, say G, to a fresh name, say zG.
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The grouping must, however, be done carefully. One option is to group all
variants of x into a single class, in which case the result is a program isomorphic
to the original P . But that negates an important advantage of the SSA conver-
sion. The conversion naturally splits the live range of a variable x (the extent
to which it is live, or used) into disjoint sub-ranges for x1, x2, . . . , xk, reducing
interference and improving register allocation. Ideally, one would like to choose
a partition that is as fine as possible but no finer: i.e., it should maximize the
number of independent groups. This, unfortunately, is undecidable in general.

Theorem 1. It is undecidable to determine whether two instances of a variable
must be grouped together.

Proof: Consider an arbitrary program P . For a fresh high-security input h and a
fresh low security state variable l, define the program Q(h) as P ; l := h; l := 0.
Its SSA form is P̃ ; l1 := h; l2 := 0, where P̃ is the SSA form of P . The SSA
transformation of Q leaks the value of h if, and only if, P terminates. Hence
{l1, l2} must be grouped together if, and only if, P terminates. EndProof.

The naming scheme followed in Q0 holds clues to the origin of a variable: for
instance, x8 is a variant of the original variable x. This facilitates grouping: x8

is never to be grouped with, say, y3. Subsequent transformations, may, however,
alter the set of variables and modify control flow, making it difficult to recover
the origin of a variable. If, for example, variables x8 and y3 are renamed to
u, v, respectively, it is no longer clear from the names that u and v should not
be in the same group. A key problem that must be resolved, therefore, is the
discovery of the relationships between the variables of the final program Qn

and the variables of Q0, so that the grouping in Qn can be done correctly. Our
solution is to utilize the refinement relations that connect successive programs
Qi and Qi+1. These relations implicitly hold information that relate variables
across transformations. The sketch of the overall procedure is as follows.

– Each transformation from Qi to Qi+1 is witnessed by a refinement relation,
ξi. From this, one identifies a “core” set of variables, Ci, for each Qi. The
core set is defined so that any leak through the core variables of Qi+1 induces
a leak via the core variables of Qi.
The core set C0 for Q0 is defined by the bisimulation relation between P and
Q0. For each variable x of P , its variant xi is in the core set C0 if xi is related
to x by the bisimulation at the exit node. (In the introductory example, the
core set is {x2}.) By transitivity, a leak via the final core set Cn induces a
leak in P .

– The variables in Qn are partitioned into groups, each with a representative
variable that is either a core variable, or an untainted non-core variable. The
unSSA transform converts Qn to R by renaming all occurrences of a variable
in a group G to the name of the representative of G.

Additional properties are required to ensure the existence of such a parti-
tioning, and to ensure the correctness of renaming. Those properties, labeled
(P1)–(P3) below, hold for program Q0 and must be preserved by each trans-
formation.
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The constructions guarantee that correctness is preserved when passing from
P to R. They also ensure end-to-end security: a leak in R translates to a leak
via the core variables of Qn, which translates to a leak in P . The requirement
that properties (P1)–(P3) are preserved across transformations potentially con-
straints the set of transformations that can be applied. We show that several com-
mon transformations do meet those conditions. The rest of this section defines
these concepts and properties and gives a proof of the claimed result.

3.2 Core Sets

A “core” set of Qi+1 relative to Qi is a subset X of the variables of Qi+1 such
that if two end-states of Qi+1 differ in the value of some variable in X, the
corresponding low end-states of Qi differ in the value of some variable in the
core set Ci of Qi. Given the core set Ci of Qi, a set X is a core set of Qi+1 if it
meets the following constraint.

[ξi(t, s) ∧ finali+1(t) ∧ ξi(t′, s′) ∧ finali+1(t′) ∧ s =Ci
s′ ⇒ t =X t′] (1)

In the formulation, the predicate finali(t) holds of a state if its location is the
exit node of program Qi; the relation ξi is a refinement relation from Qi+1 to
Qi; and the relation =Y represents equality of states on the set Y of variables.
I.e., t =X t′ is short for t[x] = t′[x], for all x ∈ X. Informally, the constraint
says that a leak in Qi+1 that is witnessed by end-states t, t′ which differ on some
variable in X has a corresponding leak in Qi, with end states s, s′ that differ in
some variable of Ci.

It is easy to see from the constraint that if X and Y are core sets, so is X ∪Y ;
and if X is a core set and Y a subset of X, then Y is a core set. By closure under
union, there is a largest core set. By closure under subset, the largest core set
can be calculated as the set of variables u of Qi+1 for which the constraint holds
with X = {u}. Thus, the largest core set of Qi+1 relative to Ci, denoted Ci+1,
can be determined with a linear number of validity checks, one for each variable
in Qi+1.

The core set C0 is defined in Sect. 3.1. Starting with C0, one can successively
determine the core sets C1, C2, . . . , Cn using the construction procedure above
for the programs Q1, Q2, . . . , Qn. The main consequence of the core-set definition
is the following theorem.

Lemma 1. For every i, a leak in Qi+1 via its core set Ci+1 has a corresponding
leak in Qi via its core set Ci.

Proof: Consider a leaky triple (a, b, c) for Qi+1. Let the induced computations
on the inputs (H = a, L = c) and (H = b, L = c) be σa and σb. As the leak
is through Ci+1, the final states of these computations, say ta and tb, differ for
some variable in Ci+1. By the refinement relation ξi, there are corresponding
computations δa and δb of Qi whose final states, sa and sb, are related to ta and
tb, respectively, by ξi. From implication (1), sa and sb differ in Ci; thus, there is
a leak in Qi via Ci. EndProof.
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Theorem 2. Any leak in Qn via its core set Cn has a corresponding leak in P .

Proof: Using Lemma 1, by induction on the length of the Q sequence, one
obtains that a leak in Qn via Cn corresponds to a leak in Q0 via C0. By the
definition of C0, this induces a leak in P . EndProof.

3.3 Grouping Variables

While Theorem 2 ensures that a leak through a core set is reflected as a leak
in P , it does not cover leaks via non-core variables in Qn. (In the introductory
example, the variable x1 through which the password is leaked is a non-core
variable.) To stop such leaks, the unSSA transform partitions variables of Qn

into groups. Each variable is given the name of its representative, which is either
a core variable or an untainted non-core variable. The grouping must be such
that (1) it preserves correctness; and (2) it is as lax as possible, i.e., the number
of groups is large, to give the register allocator more freedom.

We satisfy these requirements by requiring the following property: for each
program Qi, there is a taint proof and a partition of its variables into classes
such that

– (P1) Each class of the partition has a representative variable, which is either
a core variable or an untainted non-core variable

– (P2) The variables in a class have mutually disjoint live ranges, assuming
that the core variables Ci are live at the end point (Variables with mutually
disjoint live-ranges are said to be interference-free.)

– (P3) The definition of the representative variable in a class post-dominates
the live range of any other variable in its class

These properties hold of the core set C0 of the initial SSA program, Q0. The
partition has a class for each variable x of the original program P . The class
associated with x holds all variants x1, . . . , xk of x in Q0. The representative of
each class is the variant that is in the core set C0, which satisfies (P1). Property
(P2) holds as the variants of x have disjoint live ranges by definition. Property
(P3) holds as the members of C0 are chosen based on the bisimulation between
P and Q0 at the final states.

We show that these properties, applied to Qn, suffice to define a correct,
secure unSSA transform. We then give sufficient conditions which ensure that a
transformation preserves (P1)–(P3). Since the properties hold of Q0, any series
of transformations which preserve those properties results in a Qn to which the
unSSA transformation can be applied.

3.4 The unSSA Transform

The unSSA transformation from Qn to R operates as follows:

1. Construct the core set Cn

2. Perform a taint analysis of Qn
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3. Partition the variables of Qn into groups such that properties (P1)–(P3)
defined above are satisfied

4. For each class Y , create a fresh variable, rY , and rename each occurrence of
a variable in Y with rY

The result is the program R.

Theorem 3. The unSSA transformation is correct.

Proof Sketch: The variables in each class are interference-free by (P2). Renam-
ing the variables in class Y with a fresh variable, rY , is analogous to the allocation
of a physical register to a group of interference-free variables. Correctness thus
follows from a standard bisimulation property of register allocation (cf. [16]):
the control flow graphs of Qn and R are isomorphic, and at a point p, the value
of rY in program R equals the value of a specific variable of class Y in Qn.
EndProof.

Properties (P1)–(P3) can, in fact, be established through standard coloring
algorithms used for register allocation. The interference graph is built from all
variables. Fix a set of representative variables, which include all core variables
and some untainted non-core variable names. An interference edge between vari-
ables x and y indicates that either the live ranges of x and y intersect, or that
x is a representative variable that does not dominate y. The representative vari-
ables form the set of colors, and are each colored with their own color. The set of
variables that are colored with variable v form the group for v. By construction,
there are no edges between variables colored v, so those variables have mutually
disjoint live ranges and the representative variable dominates all others.

Theorem 4. Any leak in program R induces a corresponding leak in P .

Proof: Let (a, b, c) be a leaky triple for program R. Thus, the computations σa

and σb from respective inputs (H = a, L = c) and (H = b, L = c) differ at their
final states in the value of some variable of R, say rY . Consider the corresponding
computations, δa and δb, of program Qn. Suppose rY corresponds to a class Y
of variables in Qn. By the bisimulation relation for register allocation described
in the proof of Theorem 3, at each point, the value of rY on σa (σb) equals
the value of a specific variable in class Y at the corresponding point on δa (δb).
Assume that rY corresponds to variable u ∈ Y at the end node, then the value
of u is different at the end of σa and σa, hence u cannot be untainted. By (P3),
u must be the representative variable in Y . By (P1), as u is a representative and
tainted, it must be a core variable of Qn. Therefore, δa and δb differ in the value
of a core variable of Qn. By Theorem 2, this leak in Qn via a core variable has
a corresponding leak in P . EndProof.

3.5 Preserving the Partitioning Properties

The previous theorems assume that a partitioning of Qn with properties (P1)–
(P3) can be established. As shown, these properties hold for the initial SSA



98 C. Deng and K.S. Namjoshi

program Q0. We provide sufficient conditions on SSA-to-SSA transformations
which preserve these properties, and show in the following section that these
conditions hold for common transformations such as constant propagation and
loop unrolling.

The conditions require establishing a simulation relation, νi, between the
CFG’s of Qi+1 and Qi that preserve variable definitions and uses, according to
a mapping μ from variables of Qi+1 and Qi. Note that this simulation relation
is structural, and thus different from the ξi relation referred to earlier, which is
on the semantics of the programs.

– (C1) If y is a core or untainted non-core variable of Qi, there is x such that
μ(x) = y and x is a core or untainted non-core variable of Qi+1

– (C2) The simulation relation νi from the CFG of Qi+1 to the CFG of Qi

preserves variable definitions and uses. I.e., for any variable x of Qi+1, if x is
defined on an edge (n, n′) and n is simulated by m, then μ(x) is defined on
the simulating edge (m,m′), and similarly for uses of x

Lemma 2. Consider a transformation from Qi to Qi+1 which satisfies conditions
(C1)–(C2). If variables x, y interfere in Qi+1, then μ(x), μ(y) interfere in Qi.

Proof: We use the fact that both Qi and Qi+1 are in SSA form. For SSA pro-
grams, as shown in [10], variables x and y interfere if, and only if, the definition
of one of the variables, say x, dominates the definition of y, and x is live at
y. Thus, there is a path in the CFG of Qi+1 from definition of x through the
definition of y to a use of x. By (C2), this has a simulating path in Qi which
preserves defs and uses; thus, the corresponding path in Qi starts at the defini-
tion of μ(x), passes through the definition of μ(y) to a use of μ(x). Hence, μ(x)
and μ(y) interfere in Qi. EndProof.

Theorem 5. Consider a transformation from Qi to Qi+1 which satisfies condi-
tions (C1)–(C2). If Qi satisfies (P1)-(P3), so does Qi+1.

Proof: Consider variables x, y to be equivalent in Qi+1 if μ(x) and μ(y) are equiv-
alent in Qi. For a class C of Qi+1, let D be the class of Qi that the members of C
are mapped to by μ. Let d be the representative of D. By (P1), d is either a core
variable or an untainted non-core variable. By (C1), there is a variable c such that
μ(c) = d and c is a core or untainted non-core variable; this variable must be in
class C. Pick one such c as the representative of class C. This establishes (P1).

Now consider variables x, y in C. Then μ(x), μ(y) are in D and are, there-
fore, non-interfering. By the converse of Lemma 2, x and y are non-interfering,
establishing (P2). Finally, let x be any variable in C other than the representa-
tive c. Consider a path σ in the CFG of Qi+1 from a use of x to the exit node.
By (C2), there is a simulating path γ from a use of μ(x) to the exit node. By
(P3) for Qi, γ must pass through an edge e that defines the core variable μ(c).
Hence, the edge corresponding to e on σ defines c. Therefore, every use of x is
post-dominated by the definition of c, establishing (P3). EndProof.
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4 Example Transformations

We give examples of compiler optimizations which preserve properties (P1)–(P3).

4.1 Constant Propagation and Folding

This transformation replaces expressions that have a constant value with the
value. This is illustrated with the programs in Fig. 3. The original program P is
in the top left corner, and has a constant secret value. The SSA transform yields
program Q0 that is in the top right, with core set is {x2}. Constant propagation
and folding optimizes Q0 to Q1 that is in the bottom left. In Q1, the core set
is unchanged and x1 can be grouped with x2. After the unSSA transform, the
result is program R in the bottom right, where the information leak introduced
by SSA from variable x1 is revoked.

Fig. 3. C program illustrating constant propagation and folding

In general, consider a program Qi+1 that is obtained from Qi through con-
stant propagation and folding. The control-flow and variables are unchanged in
the transformation. Suppose that there is a taint proof and a partition of vari-
ables in Qi that satisfies (P1)–(P3). First, note that the same taint proof carries
over to Qi+1. To see this, consider a statement x := e that is replaced with
x := ē, where ē is obtained by replacing variables in e with their constant val-
ues, and folding any constant expressions. Then a taint triple {E}x := e{F} is
valid in Qi if E(e) 	 F (x) and E(y) 	 F (y), for all other variables y. As replac-
ing variables with constants can only lead to a stronger taint value, it is the case
that E(ē) 	 E(e); hence, E(ē) 	 F (x) by transitivity. Let the function μ be
the identity function. As the set of core variables and the taint proof is identical
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in both programs, condition (C1) holds. Let ν be the identity relation on the
control-flow graph nodes; then ν is a simulation which respects uses and defs of
variables, establishing (C2). By Theorem 5, conditions (P1)–(P3) are preserved
across the transformation.

4.2 Loop Unrolling

Loop unrolling is a transformation that replicates the body of a loop. We consider
the basic case in Fig. 4, where the original loop is executed an even number of
times, and the unrolling factor is 2. The program in the top-left is the original
program P , and the program in the top-right is the SSA transformed program Q0

whose core set is {i2, x2}. After loop unrolling, the program Q1 in the bottom-
left is generated, with the same core set. In the course of unrolling the body
of the loop, all statements are duplicated and the phi-assignment and the test
of the loop condition are simplified. The variable partition groups all variants
of i together, and all variants of x together, as the corresponding live ranges
are disjoint. Renaming the variables in each group and simplifying the resulting
statements, one obtains the program R in the bottom-right, which is as secure
as the original program P .

Loop unrolling preserves the set of variables and the core set, introducing new
variables only inside the loop being unrolled. Suppose that there is a taint proof
and a partitioning that satisfies properties (P1)–(P3) for program Qi. Then the
taint proof carries over essentially unchanged to the unrolled loop. In place of
the original taint invariant I for the loop, one has the extended taint invariant
I ′, where I ′(x) = I(x) for any original variable x, and I ′(x′) = I(x), for the
copy x′ of variable x which is introduced in the unrolling. Other taint assertions
are unchanged. Let μ be the function defined by μ(x) = x, if x is an original
variable, and μ(x′) = x, if x′ is the copy of x introduced in the unrolling. As
core variables and taints are unaffected by the transformation, condition (C1)
holds with this definition of μ. Let ν be the relation which connects control-flow
nodes in the copy of the loop body with their original nodes. One may verify
that ν is a simulation which preserves defs and uses according to μ, establishing
(C2). In the example above, x4 is a copy of x2 so μ(x4) = x2. The transition
defining x4 in Qi+1 is matched by the transition defining x2 in Qi; similarly,
the definition of x5 is matched by the transition defining x3. By Theorem 5,
conditions (P1)–(P3) are preserved across the loop unrolling transformation.

4.3 Secure DSE

The transformations considered so far preserve (P1)–(P3) but do not make use
of the properties in defining the transformation itself. This section proposes a
novel dead store elimination (DSE) transformation for SSA programs which does
both. Similar to the DSE transformation introduced in [6], this is a heuristic to
determine whether it is secure to remove a certain dead store. To be precise, for a
SSA program Qi satisfying partitioning properties (P1)–(P3), the transformation
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Fig. 4. C program illustrating loop unrolling



102 C. Deng and K.S. Namjoshi

removes a dead assignment “x := e” is removed if either the partition containing
x has size 1, or x is not a representative variable for its partition.

Lemma 3. The single-step DSE transformation preserves (P1)–(P3).

Proof: Consider a taint proof for program Qi. Let E be the taint assertion just
before the dead assignment to x. As Qi is in SSA form, this is the only assignment
to x. As it is dead, x is never referenced in Qi. At all points in Qi+1, let the taint
status of x be “untainted”. As x is never referenced in Qi, this change does not
affect the taint status of any other variable. As x is never modified in Qi+1, it
is correct to assert that x is untainted throughout.

Suppose the variables in Qi are partitioned into classes Y1, Y2, . . . , Ym,
and variable x comes from class Yk. If the size of Yk is 1, then the original
partitioning is valid for Qi+1, and clearly satisfies the properties (P1)–(P3).
Otherwise, the size of Yk is larger than 1 and x is not the representative of Yk.
Let Y ′

k = Yk\{x}, and let Y ′′
k = {x} be the new classes that are introduced.

Clearly, Y ′′
k satisfies (P1)–(P3). We now consider Y ′

k. The representative for this
class is the representative for Yk. It is easy to check that properties (P1)–(P3)
hold for Y ′

k. EndProof.

Theorem 6. The DSE transformation preserves properties (P1)–(P3).

Proof: The actual DSE transformation is a sequence of steps, each of which
removes only one dead store. Then, this theorem follows immediately from the
preservation of partitioning properties in each step shown in Lemma 3. End-
Proof.

In the introductory example, x2 is the representative variable of its class,
hence the dead assignment to x2 will not be removed by this transformation.
Another example is introduced in Fig. 5. The original program P is on the left,
and the program Q0 on the right is the corresponding SSA transformed program
whose core set is {x3}. There are two non-trivial valid partitions of the three
variables of Q0:

(1) {x1, x3}, {x2}: the core variable x3 is selected as the representative vari-
able of tainted non-core variable x1. In this case, the dead assignment to x2 will
be removed, since x2 is from a class of size 1. After assigning a fresh variable
name to both x1 and x3 by the unSSA transformation, the final program will be
as secure as the original program P .

(2) {x1, x2}, {x3}: the untainted non-core variable x2 is selected as the rep-
resentative variable of tainted non-core variable x1. In this case, the dead assign-
ment to x3 will be removed, since x3 is from a class of size 1. After assigning a
fresh variable name to both x1 and x2 by unSSA transformation, no information
about password could be leaked and the final program becomes more secure than
the original program P .
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Fig. 5. C program illustrating secure DSE

5 Related Work and Conclusions

The SSA transformation is a standard component of modern compilers, including
LLVM and GCC. It continues to be extensively investigated, for its properties
and applications to optimization (cf. the “SSA Book” [1]). The fact that it
introduces information leaks was noted in our earlier work [6]. In this work, we
investigate the question of SSA leaks in some depth, and offer a procedure that
blocks the newly introduced leaks by partially reversing the SSA transformation
prior to register allocation. Existing work on secure compilation (cf. [8,13]) does
not apply to the SSA problem. To the best of our knowledge, the insecurity of
SSA and the design of mechanisms that remedy it has not been investigated
in the literature. The SWIPE algorithm [9] is a source-to-source transformation
which introduces instructions that erase potentially sensitive data after the last
use of such data. While the transformation enhances security at the source level,
the effect of the new erasure instructions may be negated by the compiler’s
internal SSA conversion, as illustrated by the introductory example.

The major technical difficulty is to connect the leakage that may occur in a
program obtained by a series of optimizations to the leakage introduced by the
original conversion to SSA form. Our method tracks these connections using the
refinement relations that witness each transformation. Further constraints are
needed to ensure that the grouping of variables in the unSSA transformation is
correct. We give sufficient conditions to show that transformations preserve those
constraints, which do hold of the original SSA program, and demonstrate that
some common transformations meet these conditions. Loosening the conditions
to accommodate more transformations is an important subject for future work.

This work considers a formulation of security that is binary: either a triple
is leaky or it is not. This ignores the information content of a leak, making
no distinction between, say, the leak of an entire password and the leak of a
single character of the password. It is difficult to formulate and analyze the
quantitative information content of a leak (cf. [17] for a survey) but one may
consider qualitative, knowledge-based formulations (cf. [2]) that are easier to
analyze. The construction of a theory that lets one reason about the reduction
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of the information content of leaks across transformations is an important topic
for further research.

This work has not investigated the security of register allocation, which fol-
lows the unSSA transform. In LLVM, allocation is done after a straightforward
lifting of the program out of SSA form by eliminating phi-functions. Although
allocation directly on SSA form is also possible [14], the unSSA transform already
produces a non-SSA form program, so those techniques cannot be applied.

Register allocation algorithms, in the main, decide to allocate the live range
of a variable either to memory (“spilling”) or to a register. Those operations do
not introduce a security leak. However, in order to better pack live ranges, an
allocator may decide to break up the live range of a variable. This has an effect
similar to that of the SSA transform: for instance, the live range of x in the
introductory example could be broken up into ranges that correspond to those
of the SSA variables x1 and x2. These sub-ranges are individually allocated to
either registers or memory. In order to preserve security, the allocator should
either disable splitting (which could reduce performance) or insert code that
clears unused register or memory locations. For example, suppose the range for
x is divided up into three sections, corresponding to fresh variables x1, x2 and
x3, and x1 is allocated register A; x3 is allocated register B; while x2 is spilled
to memory. If x1 may hold a taint, then the contents of A should be cleared after
they are copied to memory. Similarly, when the content in memory is copied to
B at the start of x3, the memory entry should be cleared. Adding those instruc-
tions also introduces overhead. However, as splitting is usually attempted around
loops [4], it is possible that this overhead is not as considerable as that induced
by entirely avoiding splitting. These questions need to be further investigated in
an experimental setting.
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Abstract. A singleton abstraction occurs in a program analysis when
some results of the analysis are known to be exact: an abstract binding
corresponds to a single concrete binding. In this paper, we develop a
novel approach to constructing singleton abstractions via relative store
fragments. Each store fragment is a locally exact store abstraction in that
it contains only those abstract variable bindings necessary to address a
particular question at a particular program point; it is relative to that
program point and the point of view may be shifted. We show how an
analysis incorporating relative store fragments achieves flow-, context-,
path- and must-alias sensitivity, and can be used as a basis for envi-
ronment analysis, without any machinery put in place for those specific
aims. We build upon recent advances in demand-driven higher-order pro-
gram analysis to achieve this construction as it is fundamentally tied to
demand-driven lookup of variable values.

1 Introduction

A singleton abstraction [Mig10b], also known as a must analysis [Mid12], is a
common thread found across advanced program analyses: some results of the
analysis are known to be exact, meaning the abstraction set is in fact a singleton
in those cases. Singleton abstractions have traditionally been used in must-alias
analyses for first-order programs, e.g. [CWZ90]. For higher-order programs they
have been used in lightweight closure conversion [SW97] in must-alias analysis
[JTWW98], and abstract garbage collection has been used to produce singleton
abstractions [MS06b].

This paper develops a novel approach to constructing singleton abstractions
using relative store fragments. Unlike stores in traditional abstract interpretation,
these are fragments in that they contain information about a subset of the store
necessary to address a particular analysis question; there is no global store. Instead
of storing binding information in terms of global calling context, these fragments
express binding information relative to a particular point in the program using
call path difference information similar to CFA frame strings [MS06a,GM17].
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In this paper we define Demand-driven Relative Store Fragment analysis,
abbreviated DRSF. DRSF incorporates relative store fragments to achieve flow-,
context-, path- and must-alias sensitivity, and can be used as a basis for envi-
ronment analysis [Shi91,BFL+14,GM17], without any extra machinery put in
place for those specific aims. We define for this analysis an algebra of relative
store fragment composition and relativization to combine these fragments in the
process of answering control- and data-flow questions. We now briefly describe
some dimensions of DRSF’s expressiveness.

Path Sensitivity: Path-sensitivity is well-known as an important dimension
of expressiveness in program analyses [BA98,DLS02,XCE03,DMH15,THF10].
Path-sensitive analyses observe control-flow decisions and use this information
to refine their results. DRSF’s store fragments are naturally conducive to path
sensitivity: the values of variables used to dictate control flow are recorded in
store fragments and used to discard impossible control flow combinations.

Must-alias Analysis: The original purpose of singleton analyses was to extract
must-alias properties [CWZ90,JTWW98]. The case where a variable must (not
just may) alias another means an assignment to one must (not just may) also
affect the other. We can additionally use our singleton store abstraction to
achieve must-alias properties over a mutable heap.

Context Sensitivity: Another pleasant aspect of the theory is that context-
sensitivity [Shi91] also comes “for free”: the call path annotations on variables
additionally disambiguate contexts. Creating a multiplicity of store fragments
is expensive, but the multiple purposes they may be put to allows the effort
to be amortized. Along with standard k-CFA style context sensitivity [Shi91],
CPA-style context-sensitivity [Age95,Bes09,VS10] also naturally emerges.

Environment Analysis: While we are primarily focused on fundamentals and not
on potential clients of the analysis, the environment problem is a classic stress
test for higher-order program analyses [Shi91,BFL+14,GM17] and DRSF can
be used a basis to address that problem.

The Context: Demand-Driven Higher-Order Analysis. We work in the
context of DDPA, a demand-driven higher-order analysis [PS16] which applies
ideas of first-order demand-driven analyses [Rep94,DGS97,SR05] to higher-order
programs. DDPA incorporates filters on data lookup for some path-sensitivity
but lacks “alignment”: it considers each variable separately.

Results. This paper is a proof-of-concept study of DRSF: we give a complete
definition of the analysis for a simple functional language, prove some basic
properties, and describe an implementation with additional features including a
mutable heap. While we establish that the algorithm has an exponential worst-
case, in practice on benchmarks it has reasonable performance.
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2 Overview

In this section we will present a series of examples that illustrate the concepts
behind DRSF. The analysis builds on DDPA [PS16], and basic features of that
analysis will be introduced as we go.

2.1 A Simple Example Illustrating Path-Sensitivity

We start with a very simple program in an ML-like language:

The coin flip primitive non-deterministically returns either true or false.
Operator + is overloaded to append strings; it is not defined when the operand
types mismatch – i.e., there is no implicit coercion à la JavaScript. This program
never has a type mismatch: the types of x and y are aligned by b. To observe that
addition is safe in this program, an analysis must observe this alignment. Using
◦̂ for the abstract entity corresponding to a concrete ◦, the analysis must show
x̂ = {̂4} and ŷ = {̂5} occur together (and similarly for the strings), and, more
importantly, prove that x̂ = {̂4} and ŷ = {"̂sf"} do not co-occur. DRSF is path-
sensitive: it preserves this connection. We now outline how this is accomplished.

Both DDPA and DRSF construct a Control-Flow Graph (CFG) of the pro-
gram; the CFG constructed by DRSF here appears to the right of the code.
Given a (perhaps partial) CFG, the analyses answer questions of the type “what
are the possible abstract values that reach this variable at this program point?”
The analyses perform a lookup by traversing the CFG backward, in the direc-
tion opposite to control-flow, until they find a definition, in the tradition of
demand-driven program analyses [Rep94,DGS97,SR05,HT01,PS16]. For exam-
ple, if asked “what are the possible abstract values for b at the end of the pro-
gram?” the analyses would initiate a lookup at the CFG node representing the
end of the program and traverse the graph backward with respect to control-flow
to reach the clause b = coin flip (), producing the result b̂ = {t̂rue, f̂alse}.

There are two complications in building demand-driven analyses for higher-
order languages: the first is preventing unbounded search along cyclic paths
in a CFG; the second is building the CFG itself, because higher-order functions
determine control-flow, so data-flow and control-flow are intertwined. To address
the former, DDPA and DRSF encode the CFG traversal in terms of a PDA
reachability problem, building on ideas in [JSE+14,EMH10,BEM97]. For CFG
construction, the analyses can perform lookups on partial CFGs and let the
results inform the incremental construction of the full CFG.

The CFG above illustrates this process on our running example. The black
and brown edges represent control flow, with black edges determined directly
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from program syntax, and brown edges introduced by the analysis. Initially,
only the bottom-most spine exists, representing the statements at the top level.
The analysis first wires in the upper-left widget for the conditional returning x: a
lookup of b shows it can be true and so the 4 node is wired in. Since the lookup of
b can also be false the "dr" node is also wired in. Similarly the branches of the y
conditional are wired in one by one. In general, both DDPA and DRSF construct
the CFG in a forward manner but use reverse lookup through the (partial) CFG
to find potential values which can inform CFG construction. By induction, all
the information necessary to resolve control-flow at a program point is already
available in the partial CFG when the program point is considered.

With the complete CFG it is possible to look up the potential values of final
expression x + y. This, in turn, requires the lookups of variables x and y. The
key difference between DDPA and DRSF is in how the analyses answer to these
lookups. DDPA produces only sets of abstract values: x̂’s result is {̂4, "̂dr"}
and ŷ’s result is {̂5, "̂sf"}; any path-sensitivity has been lost by the form of
the output. DRSF, in addition to abstract values, produces abstract store sets
associated with them: x̂’s store set is {〈̂4, {b̂ �→ t̂rue, x̂ �→ ̂4}〉, 〈"̂dr", {b̂ �→
f̂alse, x̂ �→ "̂dr"}〉} and ŷ’s store set is {〈̂5, {b̂ �→ t̂rue, ŷ �→ ̂5}〉, 〈"̂sf", {b̂ �→
f̂alse, ŷ �→ "̂sf"}〉}. Observe that each individual store in the store set contain
singletons representing a potential slice of the runtime; it is a pair of a value
and the mappings for each variable that led to that value. The key advantage
of DRSF is that, to compute the addition, a store merge is performed on the
store sets for x̂ and ŷ. This store merge operation eliminates impossible stores;
for example, it discards the combination of x̂ �→ ̂4 and ŷ �→ "̂sf" because the
corresponding abstract stores disagree on their values for b̂. The set of stores
can be non-deterministic, but each store contains singletons which agree on all
mappings. This can be used to solve a whole class of issues concerning correlation
between bindings, such as fake rebinding [VS10].

One important aspect of abstract stores is that they are not absolute for the
whole program, but relative to the program point in which the lookup initiated.
They are also fragments: only the variables incident on the current lookup need
be included. This latter property will be made clear in the subsequent examples.

2.2 A Simple Example of Context-Sensitivity

The following example illustrates a use of higher-order functions:

To look up x from the end of the program assuming the full CFG has been pre-
viously constructed, DRSF traverses the CFG in reverse from the program end.
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Walking backward, call site x in line 4 is the source of the result; the analysis
must then proceed in reverse into c’s body, whereupon it finds a call to h. At this
point it must find which functions h could be; h is a parameter to c, so DRSF
has to exit its body to look for the arguments that could have been passed in.

Now, the analysis faces a dilemma: there are two wirings to c’s body in the
CFG. One is at x, where h is bound to f; the other is at y, where h is bound to g.
The former wiring matches the execution we are tracing but, in a naive walk back
through the CFG, this information has been lost.

DRSF achieves context-sensitivity via traces attached to variables to indicate
the relative call stack context the variable was found in. When f is looked up
from the perspective of the top-level program, the trace is empty: []. The result of
this lookup is f̂ = {〈 ̂fun4, {f̂@[] �→ ̂fun4}〉}: trace [] indicates that the definition
of f̂ was found in the same calling context as where the question was asked.

During our lookup of x, however, we must find a store fragment for ĥ, the
parameter of the ĉ function, from inside of that function’s body. ĥ is defined
in terms of f̂, but that definition occurs in the same calling context as ĉ’s call
site; that is, we must go to where ĉ is called to find the value of f̂. One caller
of ĉ is site x̂ and we use the trace [�̂x] to describe that x̂ is the caller of the
program point where our lookup started. Thus, one store we can obtain in looking
up ĥ from within c is 〈 ̂fun4, {f̂@[�̂x] �→ ̂fun4, ĥ@[] �→ ̂fun4}〉. Similarly, if we
consider that ĉ can be called from site ŷ, we obtain another potential store:
〈 ̂funs, {ĝ@[�̂y] �→ ̂funs, ĥ@[] �→ ̂funs}〉.

Now recall that, in the path we were originally taking to search for x, we
had entered h via call site x. So, to relativize the above stores to the top level
of the program, we must append a�x̂ to the trace on all store variables. This
gives stores containing {f̂@[�̂x,�x̂] �→ ̂fun4, ĥ@[�x̂] �→ ̂fun4} and {ĝ@[�̂y,�x̂] �→
̂funs, ĥ@[�x̂] �→ ̂funs}. Trace [�̂x,�x̂] is a no-op which cancels out to []. On the
other hand, [�̂y,�x̂] is a contradiction since call and return do not align and it
means this latter store can be eliminated and only the former is sound. So, the
lookup of x̂ yields only the result of x̂; this demonstrates context-sensitivity.

Our call string logic is related to CFA’s delta frame strings [MS06a,GM17].
Note that trace-based context-sensitivity also influences path-sensitivity: DRSF
is path-sensitive for sources of non-determinism not related to loss of context
sensitivity: user input, coin flip, integer comparisons in which precision was
lost, and so on. We will see later that, just as in kCFA, the loss of context-
sensitivity takes a toll path-sensitivity as well.

2.3 Precise Non-local Variable Lookup

One of the key features of DDPA inherited by DRSF is precision in non-local
variable lookup. Consider the following program.
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To look up b from the end of the program, DRSF first finds b = a 5 so the
function in a must be entered in reverse to find the value. a itself is a closure over
the function g, so it then has to look up g’s return value, x. But if the analysis
continues traversing the CFG backward with respect to control-flow looking for
x, it comes back to the call site b and proceeds to skip over a and f, failing to find
x at the start of the program. DRSF solves this problem with a statically-scoped
search for non-locals in the style of access links in compiler implementations.

So, at the point where we were looking up x above, DRSF first must look up
the definition of the function that was applied, g, and resume search for x from
there as that is where x’s definition lexically occurs. Searching for g from within
call site b, it is the return value from call site a which continues the search into
f’s body. At that point, it finds g’s definition, and can resume lookup for x from
that CFG location, where it finds that x is the function parameter. So DRSF
returns to the call site a and finds the argument 0, which leads to result b̂ = {̂0}.

2.4 Must-Alias Analysis

Each relative store contains singletons and this property naturally leads to must-
alias analysis expressiveness. Consider the following program.

In looking up r1, we encounter a call to f. Since this is a stateful lookup
unlike earlier lookups above, we must examine the f call for side effects; we
discover that it sets its parameter rx. If we knew that rx must be an alias for
r1 we would have found the most recent assignment to rx, so this condition is
checked. Searching for rx shows it must be r2, which in turn must be r1. So,
there is only one viable store here and in it "dr" is the most recent assignment
to r1. Therefore !r1 always returns a string.

These small examples illustrate DRSF’s expressiveness. Fortunately, the prin-
ciples of the analysis are general: precision is retained on less trivial examples
we run through the implementation in Sect. 4.1. The next step is to formalize
the analysis to make its meaning precise.

3 The Analysis

We formally analyze the grammar of the language in Fig. 1. All expressions in
this language are in A-normal form [FSDF93] to better align the expressions
and the analysis; we also require that every variable declaration is unique. This
grammar is a small subset of the implemented language; we leave out deep pat-
tern matching, state, and atomic data and operators. The operational semantics
for this simplistic call-by-value language is straightforward and is not given here
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for space reasons. For this discussion, it bears mentioning that conditional clause
bodies are functions; when the condition is matched (or not matched), we call
the appropriate function with the matched argument.

Fig. 1. Expression Grammar

As in the previous section, we express the abstraction of a construct ◦ as ◦̂.
In this simple language, these constructs are in fact identical; we use two distinct
forms for readability only.

The DRSF analysis incrementally constructs a control flow graph, a process
which relies heavily upon a variable-value lookup function. Given a variable and
a point in the program, this lookup function generally produces relative store
fragments which indicate possible (abstract) values for that variable as well as
store mappings for any variables which influenced this decision. We begin our
definition of the analysis by defining these relative store fragments and then
specify the lookup function and single-step CFG construction operation in turn.

3.1 Relative Store Fragments

The grammar for the analysis store constructs is given in Fig. 2. We further
restrict Ψ̂ such that there cannot be two mappings ψ̂/ψ̂′ with the same ρ̂, pro-
vided ρ̂ = x̂@Δ̂ and Δ̂ is a full trace. And, we impose an invariant that for any
rooted store 〈ψ̂, Ψ̂〉, ψ̂ ∈ Ψ̂ .

Fig. 2. Abstract Store Grammar

A lookup of a variable in the DRSF analysis does not just produce a set of
abstract values; it more generally returns a set of store fragments σ̂ paired with
locations where they are found (discussed in Sect. 3.2). Each store fragment σ̂ is
a rooted store because it includes a root mapping ρ̂ �→ v̂ indicating the abstract
value v̂ of the looked-up variable (in the Overview we elided the “ρ̂ �→” on the
root mapping for simplicity), as well as a raw store Ψ̂ of mappings for all other
relevant variables in context. Mappings ψ̂ do not map raw variables x̂ to values:
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they map trace-relative variables ρ̂ = x̂@Δ̂ to values, with the traces Δ̂ defining
the context where the variable was defined relative to the current context.

Relative traces come in two forms. The first form is a full trace [. . . ] which
is precise: it describes exactly from where the result of lookup is obtained. The
second form (. . . ] is a partial trace which represents a lossy suffix of the for-
mer, trimmed to allow the analysis to terminate. We formally define a trimming
operation on relative traces here which retains only the rightmost k elements:

Definition 1. We define (Δ̂)�k such that

[δ̂n, . . . , δ̂1]�k=

{
[δ̂n, . . . , δ̂1] when n ≤ k

(δ̂k, . . . , δ̂1] otherwise
(δ̂n, . . . , δ̂1]�k= (δ̂min(k,n), . . . , δ̂1]

We are using standard notation [a1, . . . , an] for regular lists and Δ̂ || Δ̂′ for
list append. Relative traces are list-like, so it is convenient to use similar notation
to our lists when considering list suffixes; for instance, we may write Δ̂ = Δ̂′ ||[δ̂]
to indicate that δ̂ is the last item of the trace Δ̂. Because traces may be partial,
however, we only use this notation when the trace is the left operand and the
right operand is a simple list of trace parts.

We also define here two convenience routines for creating rooted stores and
extracting the underlying value from them:

Definition 2.

1. We define 〈|x̂, v̂|〉, the “store creation” operation, as
〈x̂@[] �→ v̂, {x̂@[] �→ v̂}〉.

2. We define �σ̂�, the “store read” operation, as �〈ρ̂ �→ v̂, Ψ̂〉� = v̂.

Trace Suffixing. Raw stores Ψ̂ map relative trace variables to values. As indi-
cated in Fig. 2, each relative trace variable is a pairing between a variable and a
relative trace which describes the location of that variable relative to the current
program stack. If a value was originally constructed outside of the current func-
tion, for instance, the trace [�̂c] indicates that the call site ĉ was pushed onto
the stack since the value was bound. If lookup found a value originally bound
inside of a function that has since returned, the trace may contain [�ĉ].

As every mapping in a store is relative to the current position of variable
lookup, we must uniformly modify these traces as lookup moves between function
calls. We begin by defining an operation which suffixes an existing relative trace
with a new stack operation. This may cancel redundant values: [�̂c,�ĉ] enters
and exits a function from the same call site and so is a no-op. Trace suffixing
may also fail on impossible stack transformations: [�̂c,�ĉ′] for ĉ 	= ĉ′ returns to
a point not the calling point, an impossibility.

We now define a trace suffixing operation to formalize the above. Traces
longer than a given k are trimmed to partial traces of the form (. . . ] by truncating
the front of the list. This prevents traces from growing arbitrarily long and allows
stores to keep finite context, as described above. We represent suffix failure in
impossible cases by leaving the operation undefined.
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Definition 3. For each k ≥ 0, trace suffixing �k is defined as follows:

[] �k δ̂ = [δ̂]�k (] �k δ̂ = (δ̂]�k

Δ̂ ||[�̂c] �k�ĉ = Δ̂ Δ̂ ||[�̂c1] �k�ĉ2 is undefined if ĉ1 	= ĉ2
Δ̂ ||[�̂c1] �k �̂c2 = (Δ̂ ||[�̂c1, �̂c2])�k Δ̂ ||[�ĉ] �k δ̂ = (Δ̂ ||[�ĉ, δ̂])�k

We extend the trace suffixing operator to operate on pairs of traces. We allow
n = 0 and/or m = 0 below.

Δ̂ �k [δ̂1, . . . , δ̂n] = Δ̂ �k δ̂1 �k . . . �k δ̂n

Δ̂ �k (δ̂1, . . . , δ̂n] = (δ̂1, . . . , δ̂n]�k

Observe that traces are pop/push-bitonic [Mig07] in that they have the form
[�ĉ1, . . .�ĉn, �̂c1, . . . �̂cm] for n,m ≥ 0.

Trace suffixing homomorphically extends to stores and other entities.

Definition 4. We extend trace suffixing to variables, mappings, raw stores, and
rooted stores as follows:

(x̂@Δ̂) �k δ̂ = x̂@(Δ̂ �k δ̂) (x̂@Δ̂) �k Δ̂′ = x̂@(Δ̂ �k Δ̂′)
(ρ̂ �→ v̂) �k δ̂ = (ρ̂ �k δ̂) �→ v̂ (ρ̂ �→ v̂) �k Δ̂ = (ρ̂ �k Δ̂) �→ v̂

Ψ̂ �k δ̂ =
{

ψ̂ �k δ̂
∣

∣

∣ψ̂ ∈ Ψ̂
}

Ψ̂ �k Δ̂ =
{

ψ̂ �k Δ̂
∣

∣

∣ψ̂ ∈ Ψ̂
}

〈ψ̂, Ψ̂〉 �k δ̂ = 〈ψ̂ �k δ̂, Ψ̂ �k δ̂〉 〈ψ̂, Ψ̂〉 �k Δ̂ = 〈ψ̂ �k Δ̂, Ψ̂ �k Δ̂〉
Note that in each case above if any of the �k on the right are undefined, the

suffixing operation on the left is taken to be undefined.

To illustrate how the “undefinedness” of trace suffixing is fully propagated,
x̂@[�̂c1] �k�ĉ2 and {x̂@[�̂c1] �→ v̂, . . .} �k�ĉ2 are both undefined if ĉ1 	= ĉ2.
Hereafter we will take k to be fixed and abbreviate �k as �.

Store Merge. Some lookup operations in DRSF require a subordinate lookup.
For example, before proceeding from a call site into a function body, we must
perform a lookup to make sure that function is called at this site. A key feature
of DRSF is how stores from lookups can be merged : formally, Ψ̂1 ⊕ Ψ̂2. Any store
that represents an inconsistent run-time state can be eliminated in ⊕. There
are two conditions which cause store merge to fail. First, a variable could be
inconsistent: one store maps x to an integer while the other maps x to a record.
Second, the call stack implied by the store could be inconsistent, for example
one store contains r@[�x,�y] and the other contains r@[�x,�z]: these constraints
cannot simultaneously be satisfied and merge fails.

We now define store merge. The first condition – merging inconsistent vari-
ables – is implicitly addressed by the manner in which we propagate the unde-
fined cases of the definitions above. To handle the second condition, we must
define an auxiliary trace relation Δ̂1 � Δ̂2 and apply it to stores.
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Definition 5. 1. We define the trace consistency relation Δ̂1 � Δ̂2 to hold iff
there exist some Δ̂′

0, Δ̂′
1, and Δ̂′

2 such that the following hold:
– No terms of the form �̂c appear in Δ̂′

0, Δ̂′
1, or Δ̂′

2;
– Δ̂1 � Δ̂′

0 = Δ̂′
1, and Δ̂2 � Δ̂′

0 = Δ̂′
2.

2. Two stores Ψ̂1 and Ψ̂2 are trace consistent (written Ψ̂1 � Ψ̂2) iff ∀(x̂1@Δ̂1) �→
v̂1 ∈ Ψ̂1, (x̂2@Δ̂2) �→ v̂2 ∈ Ψ̂2. Δ̂1 � Δ̂2.

3. The merge Ψ̂1 ⊕ Ψ̂2 of two unrooted stores Ψ̂1 and Ψ̂2 is the union of their
mappings, Ψ̂1 ∪ Ψ̂2, provided the following conditions hold:
– For all ρ̂ �→ v̂1 ∈ Ψ̂1 and ρ̂ �→ v̂2 ∈ Ψ̂2, if ρ̂ of form x̂@[. . .] then v̂1 = v̂2
– Ψ̂1 � Ψ̂2

If these conditions do not hold, then Ψ̂1 ⊕ Ψ̂2 is undefined.

Two forms of merge for rooted stores are used in DRSF and we make explicit
definitions for readability. Parallel store merge σ̂1 ⇔ σ̂2 merges two stores com-
puted from the same reference point and the root of the merged store is set to the
root of σ̂1. Serial store merge σ̂1 � σ̂2 merges stores whilst offsetting the refer-
ence point of the first store by the reference point of the second. This adjustment
is used to support the non-local lookups described in Sect. 2.3.

Definition 6. 1. The parallel store merge operation ⇔ is defined as follows:
〈ψ̂1, Ψ̂1〉⇔〈ψ̂2, Ψ̂2〉 = 〈ψ̂1, Ψ̂1 ⊕ Ψ̂2〉

2. The serial store merge operation, �, is defined as follows:
σ̂ �〈x̂@Δ̂ �→ v̂, Ψ̂〉 = (σ̂ � Δ̂)⇔〈x̂@Δ̂ �→ v̂, Ψ̂〉
These operations are undefined when any of the component operations are

undefined.

Singleton Abstractions. At this point we have all the tools necessary to
construct and utilize singleton abstractions in the analysis. Each mapping in a
relative store fragment includes a relative trace Δ̂ which is either partial or full.
Full traces describe in the analysis a set of memory locations at run-time that
share a property, for example, closures over the same lambda or records with
the same fields corresponding to the same variables. The conditions for unrooted
store merge ⊕ (and, by extension, the store merge operations ⇔ and �) are then
used to identify and discard cases in which stores have immediately dissonant
values for full-trace bindings.

Note that immediate dissonance is only evident for values in which the
concrete-to-abstract mapping is one-to-one, as is the case for our functions and
records. When extending DRSF to other kinds of values (for example, numbers
and strings) the analysis must conservatively assume dissonance whenever the
abstract values fall out of the range for which the concrete-to-abstract map-
ping is one-to-one. For those values within the one-to-one mapping, subsequent
lookups of e.g. function non-locals or record fields can be used to check for dis-
sonance deeply within a structure. By induction, when these lookups reach the
leaves of these data structures, they prove that a chain of full-trace bindings
represent singleton abstractions. This allows the analysis we define below to be
a basis for expressing singleton abstractions, though using DRSF to develop e.g.
an environment analysis is beyond the scope of this paper.



116 L. Facchinetti et al.

3.2 Lookup over Control Flow Graphs

Before defining variable lookup for the analysis, we must formally define the con-
trol flow graphs described in Sect. 2. The grammar appears in Fig. 3. Recall that
our simplified language is A-normalized and each variable declaration is unique.
Each â is a program clause (a program point in Overview terminology) and each
â << â is a CFG edge (a brown or black arrow in the Overview CFGs) collected
into set Ĝ, the full CFG. Variable lookup produces a set of positioned stores
Φ̂, which are relative store fragments together with a reference point for them.
This reference point is used to support the statically scoped search described in
Sect. 2.3.

Fig. 3. DRSF Analysis Grammar

For notational purposes, we overload each operation on stores σ̂ to positioned
stores φ̂; for instance, we let 〈â, σ̂〉�δ̂ = 〈â, σ̂�δ̂〉 and �〈â, σ̂〉� = �σ̂�. We overload
each such operation to sets of φ̂; for example, Φ̂ � δ̂ = {φ̂ � δ̂ | φ̂ ∈ Φ̂}.

Let Match(v̂, p̂) be the natural shallow pattern match relation between a
value and a pattern. Let RV(e) be the last variable defined in an expression:
RV([. . . , x̂ = b̂]) = x̂.

We are finally in a position to define variable lookup Ĝ(â, x̂), a function
returning the set of positioned stores that give a value to x̂ from the perspective
of program point â.

Definition 7. For CFG Ĝ, let Ĝ(â0, x̂) be the function returning the least set of

positioned stores Φ̂ for some â1

Ĝ

<< â0 satisfying the following clauses:

1. Variable search
(a) Value Discovery

If â1 = (x̂ = v̂) then 〈â1, 〈|x̂, v̂|〉〉 ∈ Φ̂.
(b) Value Alias

If â1 = (x̂ = x̂′) then Ĝ(â1, x̂
′) ⊆ Φ̂.

(c) Clause Skip

If â1 = (x̂′ = b) and x̂′ 	= x̂, then Ĝ(â1, x̂) ⊆ Φ̂.
2. Function wiring

(a) Function Enter: Parameter Variable

If â1 = (x̂
ĉ�
= x̂′) and ĉ = (x̂′′

1 = x̂′′
2 x̂′), 〈â′, σ̂〉 ∈ Ĝ(â1, x̂

′′
2), then

(Ĝ(â1, x̂
′)⇔ σ̂) � �̂c ⊆ Φ̂.
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(b) Function Exit: Return Variable

If â1 = (x̂
�ĉ
= x̂′), ĉ = (x̂ = x̂′′

2 x̂′′3), 〈â′
1, σ̂1〉 ∈ Ĝ(ĉ, x̂′′

2), 〈â′
2, σ̂2〉 ∈ Ĝ(ĉ, x̂′′

3),
(fun x̂′′

4 -> ( ê )) = �σ̂�, and RV(ê = x̂′), then
((Ĝ(â1, x̂

′) ��ĉ)⇔ σ̂1 ⇔ σ̂2) ⊆ Φ̂.
(c) Function Enter: Non-Local Variable

If â1 = (x̂′′ �̂c
= x̂′), ĉ = (x̂′′

1 = x̂′′2 x̂′), x̂′′ 	= x̂, and 〈â′
1, σ̂1〉 ∈ Ĝ(â1, x̂

′′
2),

〈â′
2, σ̂2〉 ∈ Ĝ(â1, x̂

′), then
((Ĝ(â′

1, x̂)� σ̂1)⇔ σ̂2 � �̂c) ⊆ Φ̂.
3. Conditional wiring

(a) Conditional Enter: Parameter Positive

If â1 = (x̂′ �̂c
= x̂1), ĉ = (x̂2 = x̂1 ~ p̂ ? f̂1 : f̂2), f̂1 = fun x̂′ -> ( ê ), and

x̂ ∈ {x̂′, x̂1}, then
{φ̂|φ̂ ∈ Ĝ(â1, x̂1) ∧ Match(�φ̂�, p̂)} ⊆ Φ̂.

(b) Conditional Enter: Parameter Negative

If â1 = (x̂′ �̂c
= x̂1), ĉ = (x̂2 = x̂1 ~ p̂ ? f̂1 : f̂2), f̂2 = fun x̂′ -> ( ê ), and

x̂ ∈ {x̂′, x̂1}, then
{φ̂|φ̂ ∈ Ĝ(â1, x̂1) ∧ ¬Match(�φ̂�, p̂)} ⊆ Φ̂.

(c) Conditional Enter: Non-Parameter Positive

If â1 = (x̂′ �̂c
= x̂1), ĉ = (x̂2 = x̂1 ~ p̂ ? f̂1 : f̂2), f̂1 = fun x̂′ -> ( ê ), x̂ /∈

{x̂′, x̂1}, 〈â′, σ̂〉 ∈ Ĝ(ĉ, x̂1), and Match(�σ̂�, p̂), then
(Ĝ(â1, x̂)⇔ σ̂) ⊆ Φ̂.

(d) Conditional Enter: Non-Parameter Negative

If â1 = (x̂′ �̂c
= x̂1), ĉ = (x̂2 = x̂1 ~ p̂ ? f̂1 : f̂2), f̂2 = fun x̂′ -> ( ê ), x̂ /∈

{x̂′, x̂1}, 〈â′, σ̂〉 ∈ Ĝ(ĉ, x̂1), and ¬Match(�σ̂�, p̂), then
(Ĝ(â1, x̂)⇔ σ̂) ⊆ Φ̂.

(e) Conditional Exit: Return Positive

If â1 = (x̂
�ĉ
= x̂′), ĉ = (x̂ = x̂1 ~ p̂ ? f̂1 : f̂2), f̂1 = fun x̂′′ -> ( ê ), RV(ê) =

x̂′, 〈â′, σ̂〉 ∈ Ĝ(ĉ, x̂1), and Match(�σ̂�, p̂), then
(Ĝ(â1, x̂

′)⇔ σ̂) ⊆ Φ̂.
(f) Conditional Exit: Return Negative

If â1 = (x̂
�ĉ
= x̂′), ĉ = (x̂ = x̂1 ~ p̂ ? f̂1 : f̂2), f̂2 = fun x̂′′ -> ( ê ), RV(ê)

x̂′, 〈â′, σ̂〉 ∈ Ĝ(ĉ, x̂1), and ¬Match(�σ̂�, p̂), then
(Ĝ(â1, x̂

′)⇔ σ̂) ⊆ Φ̂.
4. Record projection

(a) Record Projection

If â1 = (x̂ = x̂′.
), 〈â′, σ̂〉 ∈ Ĝ(â, x̂′
1), �σ̂� = r̂, and (
 = x̂′′) ∈ r̂, then

(Ĝ(â′, x̂′′)� σ̂) ⊆ Φ̂.

We will write v̂ ∈ Ĝ(ĉ, x̂) as an abbreviation for v̂ = �φ̂� for some φ̂ ∈ Ĝ(ĉ, x̂).
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Understanding Lookup. There is a lot going on in Definition 7. To better
understand the clauses, we will trace the lookup example of Sect. 2.2. Below is
that example translated to the formal A-normalized grammar we use in this
section, retaining integer and string data from the original example for clarity.
(Note that there is only one of each, so singleton properties hold.) The diagram
to the right is the final CFG produced by the wiring rules described in Sect. 3.3
below; here we illustrate variable lookup on this final CFG.

There are a few differences between this CFG and the informal presentation
of Sect. 2.2 – this CFG precisely matches the dependency graph notation of
Fig. 3. Each black or brown arrow-tipped edge in the CFG corresponds to a
dependency â << â ∈ Ĝ, for Ĝ being the whole CFG. The green half circles are
only block delimiters for readability and do not correspond to nodes – the brown
wiring edges go through them. The rectangular brown nodes are the wiring nodes

x̂
�̂c
= x̂′ and x̂

�ĉ
= x̂′ of the â grammar, and the whole CFG starts at node Start

and ends with End. The program is in ANF and all program points have names
(except for the dummy argument in the function call at t); the result of function
f, for instance, is named r.

Recall from the overview that we desire to look up the final value, ẑ, from the
end of the program: Ĝ(End, ẑ). (We coventionally begin the search not at the
indicated node, e.g. End here, but at any predecessors to this node). Looking
back from End, we see z defined as x; rule 1b of Definition 7 tells us to first
continue by looking up x̂ from ẑ: Ĝ(ẑ, x̂). (We will use the variable – ẑ here –
alone as shorthand for its clause). We proceed lookup with rule 1c, which allows
us to skip the clause y = c g as it does not affect x̂. Our lookup is then Ĝ(ŷ, x̂).

From ŷ, rule 2b applies, which first entails looking up both function ĉ and
argument f̂ from point x̂; these two lookups are both straightforward under the
variable search rules 1a and 1c. Each returns a store which then gets parallel-
merged to 〈ĉ@[] �→ ̂funh, {ĉ@[] �→ ̂funh, f̂@[] �→ ̂fun4}〉. Continuing, it remains
to look up t̂ from the wiring node, suffix the result with the trace [�x̂], and
merge that result with the aforementioned store. Note that this merge requires
all three to be in sync, a key to giving us path- and context-sensitivity.

The fact that we align the argument lookup in particular corresponds with
what CPA [Age95,Bes09,VS10] achieves. CPA separately analyzes function calls
with differing types of arguments. DRSF does so as well by creating for each
argument type a distinct relative store fragment (the result of the lookup of
Ĝ(ĉ, x̂′′

3) in rule 2b). This alignment requires only one operation and no special
machinery in DRSF, as relative store fragments are already used to model many
other kinds of inter-binding relationships as well.
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We now tackle the lookup of t̂. We begin by exploring call site t = h true:

again, rule 2b applies. Here, there are two candidate wiring nodes: t
�t
= r and

t
�t
= s; both are possible, as either ̂fun4 or ̂funs may reach this call site. By

rule 1a, looking back through node t
�t
= r yields ̂int while node t

�t
= s yields

ŝtring. Clearly only the ̂int is possible at run-time. What does DRSF do here?
Lookup in DRSF can in general produce multiple (singleton) stores repre-

senting multiple abstract values. The lookup Ĝ(t
�t
= r, r̂) produces the store

〈r̂@[] �→ ̂int, {r̂@[] �→ ̂int}〉, which is then suffixed with�t̂. The resulting store
〈r̂@[�t̂] �→ ̂int, {r̂@[�t̂] �→ ̂int}〉 is then merged with the store used to ver-
ify that ̂fun4 could be called at this site, yielding 〈r̂@[�t̂] �→ ̂int, {r̂@[�t̂] �→
̂int, f̂@[�̂x] �→ ̂fun4}〉. At this point, the lookup of t̂ is complete and trace [�x̂]
can finally be suffixed to this result, giving 〈r̂@[�t̂,�x̂] �→ ̂int, {r̂@[�t̂,�x̂] �→
̂int, f̂@[] �→ ̂fun4, ĉ@[] �→ ̂funh}〉 for x̂.

The lookup Ĝ(t
�t
= s, ŝ), demonstrates how store merging prunes impossible

paths. This lookup produces the store 〈ŝ@[] �→ ŝtring, {ŝ@[] �→ ŝtring}〉, which
we then suffix and merge as we did above to yield 〈ŝ@[�t̂] �→ ŝtring, {ŝ@[�t̂] �→
ŝtring, ĝ@[�̂y] �→ ̂funs}〉. Next, this store should be suffixed with�x̂ to adjust
the perspective to be back out of the x̂ call site, but this is undefined : the suffixing
ĝ@[�̂y] ��x̂, is undefined because reading in the forward-running direction it
indicates a call at site ŷ but which returns to site x̂, an impossibility at run-
time. So, this store is eliminated at the merge, and lookup of Ĝ(End, ẑ) yields
only the ̂int store described above.

Conditionals and records are variations on how functions are handled: the
CFG is traversed in reverse, and stores are merged and relativized along the way
as necessary. The parallel merges in conditional lookup give path-sensitivity on
the conditional value: only aligned stores can merge.

3.3 Abstract Evaluation

We now present the single-step abstract evaluation relation which incrementally
adds edges to build a full CFG. The above lookup function is the key subroutine.

Active nodes. To preserve standard evaluation order, we define the notion of an
Active node node: only nodes with all previous nodes already executed can fire.
This serves a purpose similar to an evaluation context in operational semantics.

Definition 8. Active(â′, Ĝ) iff path {Start << â1, . . . , âi << âi+1, . . . , ân <<

â′} ⊆ Ĝ such that no âi is of one of the forms x̂ = x̂′ x̂′′ or x̂ = x̂′
~ p̂ ? f̂ : f̂ ′.

Wiring. Function application requires the concrete function body to be “wired”
into the call site:

Definition 9. Let Wire(ĉ, fun x̂0 -> ê, x̂1, x̂2)

= {ĉ′ << (x̂0
�̂c
= x̂1) | ĉ′ Ĝ

<< ĉ} ∪ {(x̂0
�̂c
= x̂1) << ê << (x̂2

�ĉ
= RV(ê))} ∪ {(x̂2

�ĉ
=

RV(ê)) << ĉ′ | ĉ
Ĝ

<< ĉ′}.
ĉ′ here is the call site, and we are wiring in function body ê at this site.
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Fig. 4. Abstract Evaluation Rules

Next, we define the abstract small-step relation −→1 on graphs; see Fig. 4.
The evaluation rules end up being straightforward after the above preliminaries.
For application, if ĉ is an Active call site, lookup of the function variable x̂2

returns function body f̂ and some value v̂ can be looked up at the argument
position, we may wire in f̂ ’s body to this call site. Note that v̂ is only observed
here to constrain evaluation order to be call-by-value. The case clause rules are
similar. We define the small step relation −→1 to hold if a proof exists in the
system in Fig. 4. We write Ĝ0 −→∗ Ĝn to denote Ĝ0 −→1 Ĝ1 −→1 . . . −→∗ Ĝn.

Now we can finally put it all together to analyze a program. We define a typi-
cal program abstraction function Embed(e) to denote the lifting of an expression
e into a CFG Ĝ:

Definition 10. Embed([c1, . . . , cn]) is the graph Ĝ0 = {Start << ĉ1, . . . , ĉi <<
ĉi+1, . . . , ĉn << End}, where each ĉi = ci.

This initial graph is simply the linear sequence of clauses in the “main program”.
The DRSF Analysis for a program e is then graph Ĝ where Embed(e) −→∗ Ĝ
and Ĝ can only further step to itself.

3.4 DRSF Soundness

Soundness of DRSF is proven in two steps: we first demonstrate equivalence
between a standard small step operational semantics and a graph-based opera-
tional semantics [PS16]; we then show that DRSF conservatively approximates
the latter. We begin by overloading −→1 to a canonical small step evaluation
relation on expressions e (straightforward and elided for reasons of space). Next,
we define a graph-based operational semantics using ωDRSF: DRSF where trace
concatenation � never loses information (and so never produces partial traces).
We use unhatted analogues of the grammars in Figs. 2 and 3 for ωDRSF enti-
ties. We also overload the operators on traces and stores to work similarly on the
unhatted grammar, where trace concatenation has no maximum trace length.

We align these two operational semantics by defining a bisimulation e ∼= G
and showing that it holds throughout evaluation. Key to this bisimulation is an
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alignment between the freshenings of bound variables in e and the traces in the
mappings of concrete store fragments in G. We state the equivalence of these
operational semantics as follows:

Lemma 1 (Equivalence of Operational Semantics). For any e ∼= G:

if e −→1 e′ then G −→∗ G′ such that e′ ∼= G′; and
if G −→1 G′ then e −→∗ e′ such that e′ ∼= G′.

The discrepancy in the number of steps arises in how the operational seman-
tics process variable aliasing. The small step operational semantics processes
aliases eagerly while ωDRSF need not step for variable aliases (due to demand-
driven lookup).

Given the equivalence of these operational semantics, we now show kDRSF
simulates ωDRSF. We do this via a simulation relation � defined from each
non-hatted term to its hatted analogue. The only non-trivial case here is that of
traces, in which a full trace is simulated by the partial trace of any of its suffixes
(e.g. [�x1,�x2] � (�̂x2]).

Lemma 2 (Simulation). If G � Ĝ and G −→1 G′, then Ĝ −→∗ Ĝ′ such that
G′ � Ĝ′.

Lemma 2 is proven by establishing a Galois connection between ωDRSF and
kDRSF following standard techniques [CC77,NNH99,VHM10,Mig10a]. Sound-
ness of the overall analysis is an immediate corollary of the above two lemmas.

3.5 DRSF Complexity

DRSF as presented above has exponential worst-case complexity, but this can
be mitigated. We now outline a proof of this property to understand its singular
cause. Fortunately, our initial experiments suggest that this worst case is not
common in practice; see Sect. 4.

DRSF’s complexity is shown by bounding the size of Ĝ produced by the
abstract evaluation rules of Fig. 4. We begin by counting the forms of the gram-
mar in Fig. 2. Restricting that grammar to the program being analyzed and to
traces of length at most k, we observe there are a polynomial number of forms
of δ̂, Δ̂, ρ̂, and ψ̂.

The exponential growth of DRSF lies in the definition of Ψ̂ , which admits
any subset of the ψ̂ forms above. This leads us to the following key Lemma:

Lemma 3 (Exponential Raw Store Growth). Restrict the grammar of
Fig. 2 to contain only clauses, values, and variables appearing within ê and only
traces of length at most k. Let |LΨ̂ | be the number of values of form Ψ̂ and let
|Lσ̂| be the number of values of form σ̂. Then |LΨ̂ | and |Lσ̂| are O(2nk+2

).

The rest of the proof demonstrates that DRSF is polynomial in |Lσ̂|. Defin-
ition 7’s lookup operation is reduced to a reachability problem on a push-down
automaton [PS16] (which is polynomial in the size of the automaton [BEM97])
and the abstract evaluation relation Ĝ −→1 Ĝ′ is shown to be confluent, bound-
ing the number of lookups to a polynomial of |Lσ̂|. This leads us to:
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Theorem 1 (DRSF Analysis Complexity). The DRSF analysis of a pro-
gram e is computable in time polynomial in |Lσ̂|.

3.6 Weakening DRSF

While the exponential case of DRSF appears to be uncommon, it may ulti-
mately be necessary to apply weakenings to guarantee polynomial behavior. A
full exploration of such weakenings is beyond the scope of this paper, but we
outline one such weakening here.

Consider adding a “time-to-live” index to each mapping. Mappings with TTL
are written ρ̂

��→ v̂, where 
 ∈ N. Each singleton store creates its single mapping
with 
 equal to some fixed value d. Finally, the raw store merge operation ⊕
decreases the value of each mapping’s 
, and discards mappings with 
 = 0.
When merging two mappings with the same ρ̂ and v̂, the maximum 
 is retained.

With this TTL index, it is possible to prove no raw store can be created with
a number of mappings greater than 2d. Since d is a fixed constant, this bounds
the number of mappings per raw store to be fixed. With only polynomially many
stores, it follows from a lemma similar to Lemma 3 that |Lσ̂| is also polynomial,
and by Theorem 1, the analysis with TTL is polynomial.

4 Implementation

An implementation of DRSF is available on GitHub1 which additionally includes
binary operators, deep pattern matching, and state as well as integers and
strings for basic values. The abstraction function maps all integers and strings
to the same abstract integer and abstract string, so the singleton abstrac-
tions are lost for them. The implementation proceeds as described in Sect. 3.5:
lookups are performed by reduction to a reachability problem on a push-down
automaton just as in DDPA [PS16]. We improve on previous reachability algo-
rithms [BEM97,JSE+14,EMH10] by generalizing over patterns appearing in the
automaton which arise due to the form of DRSF’s lookup definition. We also
rely upon the confluence of abstract evaluation to reuse work performed during
lookup, even across lookup invocations.

4.1 Evaluation

To evaluate the performance of DRSF, we benchmarked it against an implemen-
tation of DDPA [PS16,PF16]. The analysis client in these experiments answers
the question “what are all possible values for all variables at the top level of the
program?” We used this client to compare both running times and precision.

1 https://github.com/JHU-PL-Lab/odefa/tree/sas2017-drsf.

https://github.com/JHU-PL-Lab/odefa/tree/sas2017-drsf
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The test cases were taken from other higher-order program analysis evalua-
tions [GLA+16,JLMVH13]. These Scheme programs were automatically trans-
lated to our core language. Many of these benchmarks are moderate sized pro-
grams which represent real-world uses.2 Others are micro-benchmarks designed
to stress particular aspects of the analysis.3

We conducted three experiments to measure the performance of the analy-
ses.4 For a monomorphic baseline we selected k = 0. For the second and third
experiments, we selected k = 2 and k = 4 somewhat arbitrarily: on several of
the benchmarks, k = 4 gave full precision, and k = 2 is a midpoint. The results
are shown in Fig. 5.

Fig. 5. The benchmark results. Numerical labels on bars are running times. Unlabeled
bars timed out after 30 min. Numbers in parentheses are program point counts. The
dotted lines separate the real-world programs from the micro-benchmarks.

DDPA is faster in all test cases, with a few exceptions, in which the difference
between DDPA and DRSF is negligible. This is an expected result when compar-
ing a polynomial analysis (DDPA) to an exponential one (DRSF). Both regex
and deriv involve recursive functions operating on symbols and lists of symbols,
which we encode as records in DRSF. We conjecture that DRSF’s performance
degenerates in these cases because they contain recursive functions, which is a
2 regex is a regular expression engine using derivatives; rsa performs the RSA encryp-

tion algorithm; primtest is the Fermat primality testing algorithms; and deriv per-
forms symbolic derivation of an equation.

3 sat is a SAT solver, which stresses path- and context-sensitivity; cpstak is the TAK
micro-benchmark in continuation-passing style, which stresses nested function calls
and non-local lookups; and church tests the distributive property of multiplication
over addition on Church numerals which includes polymorphic recursive functions
and a massive number of function calls, stressing the function-wiring part of the
analysis.

4 Intel(R) Xeon(R) CPU E31220 @ 3.10 GHz, 8 GB of RAM, Debian GNU/Linux 8.8.
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know weak spot in both analyses. The regex test case triggers this bad behavior
more intensively because it includes a set of mutually recursive functions, which
causes even DDPA to time out.

Besides the test cases we ran for performance measurement, we also tested
the implementation with micro-benchmarks which serve primarily to exercise
context-, path- and flow-sensitivity, as well as the capacity to precisely approx-
imate the heap state with must-alias analysis. For most test cases, DRSF loses
no precision other than value abstraction (e.g. 5 �→ ̂int) given a sufficient k. Our
implementation confirms the expressiveness improvements predicted in theory;
for example, DDPA loses precision in the program from Sect. 2.1, and DRSF
approximates it exactly, due to path-sensitivity. Further empirical expressive-
ness evaluations are left for future work due to the significant loss of precision
in recursive functions, mentioned above. This impedes the development of more
sophisticated clients because recursive programs, in particular those with poly-
morphic recursion, exhaust the abstract heap, regardless of our choice for k, caus-
ing the analyses to lose call-return alignment, and context- and path-sensitivity.
This problem regarding recursion is orthogonal to the advancements in DRSF
and we plan to address it in future work using a refined model of finitization for
the abstract traces, for example, one based on regular expressions [GLA+16].

The abstract stores produced by DRSF may suffice to solve the generalized
environment problem [Mig10b,Shi91,BFL+14,GM17]. Unfortunately, the most
relevant clients for this feature are difficult to test in isolation. For example,
Super-β inlining exercises the resolution of circular dependencies that occur in
recursive programs. As discussed above, DRSF loses precision in those cases, so
we plan to evaluate these clients after addressing this weakness.

Finally, we attempted to compare DRSF to state-of-the-art forward analyses
including P4F [GLA+16] and OAAM [JLMVH13]. Unfortunately, these analy-
ses are too different from DRSF to draw any significant conclusion. OAAM’s
reference implementation does not support k > 0 resulting in lower precision
but faster running times. DRSF runs faster than the P4F reference implemen-
tation, but the latter was designed for correctness and not performance so this
is arguably not a fair comparison.

5 Related Work

Anodization [Mig10b] aims for singleton abstraction by separating bindings so
that there is only one concrete binding per abstract binding, making a structure
similar to our relative store fragments. Anodization does not create local, rela-
tivized stores like we do here and is not a demand-driven analysis. It also has
not been implemented or analyzed for complexity. Other higher-order analyses
that incorporate a form of singleton abstraction include [JTWW98,SW97]; the
former is carefully engineered to achieve a quartic time bound but is focused on
must-alias analysis and lacks path- or general context-sensitivity.

CFA’s delta frame strings [MS06a,GM17] are very similar in structure to
our relative traces, but due to differences in forward- and reverse-analyses they
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are incorporated into the analysis quite differently. In DRSF they are placed on
variables on the store to singularize them; in CFA they are part of the state.
Moreover, CFA defines an abstraction for frame strings which loses more infor-
mation than DRSF; for example, it discards the order of invocations of different
procedures. A recent CFA extension [GM17] shows how the environment problem
can be solved, but there is no implementation or evaluation.

There are many different approaches to building path-sensitivity into pro-
gram analyses. Early work on path-sensitivity directly built the logic into an
analysis [BA98]; subsequently, path-sensitivity was was implemented using SMT
model-checkers over boolean-valued programs [DLS02,XCE03]. Some higher-
order type systems contain analogues of path-sensitive precision [THF10]. Recent
work shows how path sensitivity can be viewed as one of several orthogonal
dimensions of analysis expressiveness along with context- and flow-sensitivity
[SDM+13,DMH15]. In the first-order abstract interpretation literature, trace
partitioning techniques give an added expressiveness that is related to DRSF
traces [HT98,Bou92] – like DRSF these techniques add path information to the
analysis state and path-sensitivity becomes an emergent property.

DRSF’s store fragments are related to the heap fragments of separation logic
[Rey02]: there are many partial stores for different program contexts which are
merged. This analogy with separation logic is only high level since we are com-
paring first-order program logics to higher-order program analyses, but it points
to potential applicability of store fragments to higher-order program logics.

We build on the DDPA higher-order demand-driven analysis [PS16]. Other
demand-driven higher-order analyses include [RF01,FRD00,SDAB16], but these
are flow-insensitive; they as well as DDPA lack a singleton abstraction. In [PS16]
call-return alignment can fully replace the need for an explicit context-sensitivity
mechanism, but it requires an explicit call stack. This comes for free in DRSF
since it is embedded in the store variable traces.

The exponential problem we run into here is a fundamental issue in path-
sensitive analyses. DRSF attemps to infer when path sensitivity is needed, erring
on the side of precision rather than performance. SMT solvers are useful in
[DLS02,XCE03] in part for their ability to handle a large state-space search.

6 Conclusions

In this paper we develop a general notion of singleton abstraction, relative
store fragments, that cuts across many of the classic expressiveness dimensions
of higher-order program analysis: the resulting analysis, DRSF, exhibits flow-,
context-, path- and must-alias sensitivity solely through an accurate and com-
positional singleton abstraction. We give a formal definition of DRSF, sketch its
soundness and complexity, and report on initial results from an implementation.

Future Work. While DRSF is usually avoiding its exponential worst-case com-
plexity in practice, this issue will need to be addressed in a more realistic imple-
mentation. Also, like DDPA and other analyses such as kCFA, DRSF finitely



126 L. Facchinetti et al.

unrolls recursive cycles and this usually adds no expressiveness as the analysis
contour depth k gets larger, but can adversely affect running times; we plan to
study how to avoid k-unrolling of recursive cycles when it is not helpful.

Acknowledgments. The authors thank the anonymous reviewers for helpful sugges-
tions which improved the final version of the paper.

References

[Age95] Agesen, O.: The cartesian product algorithm. In: Tokoro, M., Pareschi,
R. (eds.) ECOOP 1995. LNCS, vol. 952, pp. 2–26. Springer, Heidelberg
(1995). doi:10.1007/3-540-49538-X 2

[BA98] Bod́ık, R., Anik, S.: Path-sensitive value-flow analysis. In: POPL (1998)
[BEM97] Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of push-

down automata: application to model-checking. In: Mazurkiewicz, A.,
Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150.
Springer, Heidelberg (1997). doi:10.1007/3-540-63141-0 10

[Bes09] Besson, F.: CPA beats ∞-CFA. In: Proceedings of the 11th International
Workshop on Formal Techniques for Java-like Programs (2009)

[BFL+14] Bergstrom, L., Fluet, M., Le, M., Reppy, J., Sandler, N.: Practical and
effective higher-order optimizations. In: ICFP (2014)

[Bou92] Bourdoncle, F.: Abstract interpretation by dynamic partitioning. J. Funct.
Program 2, 407–423 (1992)

[CC77] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In: POPL (1977)

[CWZ90] Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and struc-
tures. In: PLDI (1990)

[DGS97] Duesterwald, E., Gupta, R., Soffa, M.L.: A practical framework for
demand-driven interprocedural data flow analysis. ACM Trans. Program.
Lang. Syst. 19(6), 992–1030 (1997)

[DLS02] Das, M., Lerner, S., Mark Seigle, E.S.P.: Path-sensitive program verifica-
tion in polynomial time. In: PLDI (2002)

[DMH15] Darais, D., Might, M., Van Horn, D.: Galois transformers and modular
abstract interpreters. In: OOPSLA (2015)

[EMH10] Earl, C., Might, M., Van Horn, D.: Pushdown control-flow analysis of
higher-order programs. In: Workshop on Scheme and Functional Program-
ming (2010)

[FRD00] Fähndrich, M., Rehof, J., Das, M.: Scalable context-sensitive flow analysis
using instantiation constraints. In: PLDI (2000)

[FSDF93] Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of com-
piling with continuations. In: PLDI (1993)

[GLA+16] Gilray, T., Lyde, S., Adams, M.D., Might, M., Van Horn, D.: Pushdown
control-flow analysis for free. In: POPL (2016)

[GM17] Germane, K., Might, M.: A posteriori environment analysis with push-
down Delta CFA. In: POPL (2017)

[HT98] Handjieva, M., Tzolovski, S.: Refining static analyses by trace-based par-
titioning using control flow. In: Static Analysis Symposium (1998)

[HT01] Heintze, N., Tardieu, O.: Demand-driven pointer analysis. In: PLDI (2001)

http://dx.doi.org/10.1007/3-540-49538-X_2
http://dx.doi.org/10.1007/3-540-63141-0_10


Relative Store Fragments for Singleton Abstraction 127

[JLMVH13] Johnson, J.I., Labich, N., Might, M., Van Horn, D.: Optimizing abstract
abstract machines. In: ICFP (2013)

[JSE+14] Johnson, J.I., Sergey, I., Earl, C., Might, M., Van Horn, D.: Pushdown
flow analysis with abstract garbage collection. In: JFP (2014)

[JTWW98] Jagannathan, S., Thiemann, P., Weeks, S., Wright, A.K.: Single and loving
it: must-alias analysis for higher-order languages. In: POPL (1998)

[Mid12] Midtgaard, J.: Control-flow analysis of functional programs. ACM Com-
put. Surv. 44, 10:1–10:33 (2012)

[Mig07] Might, M.: Environment analysis of higher-order languages. PhD thesis,
Georgia Institute of Technology (2007)

[Mig10a] Might, M.: Abstract interpreters for free. In: Proceedings of the 17th Inter-
national Conference on Static Analysis (2010)

[Mig10b] Might, M.: Shape analysis in the absence of pointers and structure. In:
Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp.
263–278. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11319-2 20

[MS06a] Might, M., Shivers, O.: Environment analysis via ΔCFA. In: POPL (2006)
[MS06b] Might, M., Shivers, O.: Improving flow analyses via ΓCFA: abstract

garbage collection and counting. In: ICFP, Portland, Oregon (2006)
[NNH99] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis.

Springer, New York (1999)
[PF16] Palmer, Z., Facchinetti, L.: DDPA implementation. https://github.com/

JHU-PL-Lab/odefa/tree/sas2017-ddpa (2016)
[PS16] Palmer, Z., Smith, S.: Higher-order demand-driven program analysis. In:

ECOOP (2016)
[Rep94] Reps, T.: Demand interprocedural program analysis using logic databases.

In: Application of Logic Databases (1994)
[Rey02] Reynolds, J.: Separation logic: a logic for shared mutable data structures.

In: LICS (2002)
[RF01] Rehof, J., Fähndrich, M.: Type-base flow analysis: from polymorphic sub-

typing to CFL-reachability. In: POPL. Springer, New York (2001)
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Abstract. We propose a new approach to software model checking
where we integrate abstract interpretation and trace abstraction. We
use abstract interpretation to derive loop invariants for the path program
corresponding to a given spurious counterexample. A path program is the
smallest subprogram that still contains a given path in the control flow
graph. We use the principle of trace abstraction to construct an over-
all proof. The key observation of our approach is that proofs by abstract
interpretation on individual program fragments can be composed directly
if we use the framework of trace abstraction (in trace abstraction, com-
posing proofs amounts to a set-theoretic operation, i.e., set union). We
implemented our approach in the open-source software model checking
framework Ultimate. Our evaluation shows that we can solve up to 40%
more benchmarks.

1 Introduction

When trying to prove the correctness of a program, finding useful abstractions
in form of state assertions is the most important part of the process [15,20]. In
this context, usefulness is about being able to prove correctness as efficiently as
possible. Hence, in order to be able to analyze large programs, it is important to
find state assertions automatically. The class of methods based on abstract inter-
pretation [12] is well-known for being able to find state assertions automatically.
Abstract interpretation computes an over-approximation of a program’s states
by using an up-front and largely program-independent abstraction. Many such
abstractions exist [7,13,23,24] and all of them are useful, because they give rise
to different kinds of state assertions that can be used to prove the correctness of
different kinds of programs. It is the strength of abstract interpretation that it
always terminates and always computes a fixpoint in the selected abstraction. If
the program contains loops, the computed fixpoint also contains a loop invari-
ant which allows for an easy abstraction of loops. While abstract interpretation
scales favorably with the size of the program, the computed over-approximation
is often not precise enough to be useful to prove the correctness of a program.

Another way of proving program correctness is to use software model check-
ing tools like Blast [6], SLAM [3], and more recently, CPAchecker [9] and
Ultimate Automizer [17], that follow the counterexample-guided abstraction
refinement (CEGAR) approach [11]. In CEGAR, an abstraction is continuously
refined by synthesizing state assertions from paths through the control flow graph
c© Springer International Publishing AG 2017
F. Ranzato (Ed.): SAS 2017, LNCS 10422, pp. 128–147, 2017.
DOI: 10.1007/978-3-319-66706-5 7
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of the program that (1) are not contained in the current abstraction, (2) can
reach an error location, and (3) are not executable. By extracting state asser-
tions from those paths, the abstraction can be refined to fit the program at
hand, which allows the user a greater amount of flexibility because he does not
need to decide beforehand on a suitable abstraction. The path analysis has to
be precise, i.e., it has to ensure that paths that represent real errors can be iden-
tified. Unfortunately, this precision causes the analysis to often produce state
assertions that are not loop invariants, thus forcing the CEGAR algorithm to
unwind loops of the program. If this happens, the algorithm may not be able to
refine the abstraction at all, e.g., because the loop of the analyzed program can
be unwound infinitely often.

In this paper we propose a unification of both techniques, abstract interpre-
tation and CEGAR-based software model checking, such that both can benefit
from their strengths: we use abstract interpretation to find loop invariants, an
interpolating SMT solver to analyze single paths, and we combine both in a
CEGAR-based abstraction refinement loop. We implemented our approach in
the tool Ultimate Taipan which uses a CEGAR loop to iteratively refine an
abstraction of an input program in the form of a control flow graph with the
help of state assertions deduced from the analysis of path programs with abstract
interpretation.

1.1 Example

Consider the example program P1 in Fig. 1 and its corresponding control flow
graph. We are interested in proving that the error location of P1’s control flow
graph (see Fig. 1b), �7, is unreachable. A CEGAR-based approach to generate the
proof by iteratively refining an abstraction of the program begins with picking

Fig. 1. Example program P1 with its source code and its corresponding control flow
graph (CFG). The location �0 of the CFG is the initial location, �7 is the error location.
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a sequence of statements from the CFG, which starts in the initial location and
ends in an error location. Next, an analysis decides whether the selected sequence
of statements is executable or not, and if not, the abstraction is refined such that
this particular sequence is no longer contained.

Assume that in the first iteration, the shortest sequence of statements τ1
from the initial location �0 to the error location �7 is picked.

τ1 : x:=0;y:=1000 x==1000 y>0

This sequence of statements is not executable, because the first two statements
contradict each other. A possible proof for this contradiction consists of the
following sequence of state assertions.

true x:=0;y:=1000 x = 0 ∧ y = 1000 x==1000 false y>0 false

This sequence of state assertions allows the CEGAR tool to refine its abstraction
such that τ1 is removed from it. In the next iteration, we assume that τ2 is
selected.

τ2 : x:=0;y:=1000 x<100 x:=x+1 y:=y-1 x==1000 y>0

Again, this sequence of statements is not executable. For example, the state-
ments x:=0;y:=1000 , x:=x+1 , and x==1000 contradict each other for which
we can extract the following proof.

true x:=0;y:=1000 x = 0 ∧ y = 1000 x<100 x = 0 ∧ y = 1000 x:=x+1

x = 1 ∧ y = 1000 y:=y-1 x = 1 ∧ y = 999 x==1000 false y>0 false

We could continue in this fashion until we have constructed a proof for each
unwinding of the while loop of P1. However, we would prefer to obtain other
proofs that contain state assertions that allow us to find a more general refine-
ment of our abstraction, thus eliminating the need for multiple loop unwindings.

In our example, the state assertions are not general enough to efficiently
prove the program’s correctness, although they were obtained using a state-
of-the-art interpolating SMT solver. The reason we obtain such assertions is
that SMT solvers in general do not infer a relation between the variables x
and y for any number of loop unwindings from sequences of statements. If,
for example, we obtained the state assertion x ≥ 0 ∧ y ≤ 1000 ∧ x + y = 1000 ,
which is a relational constraint over variables x and y, in the second iteration,
the CEGAR tool would be able to refine its abstraction of the CFG in such a
way that no sequence of statements remains that leads to the error location.

x ≥ 0 ∧ y ≤ 1000 ∧ x + y = 1000 is very useful because it is a loop invariant at
location �1, and therefore is sufficient to prove the correctness of our example.

Approaches based on static program analysis, such as abstract interpretation,
can deduce loop invariants by computing a fixpoint for each program location.
In our example, an abstract interpreter that uses a relational abstract domain,
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Fig. 2. The two path programs computed for P1.

e.g. octagons [21], would suffice. However, such an analysis of the whole program
may not be able to find an invariant strong enough to prove the program to be
correct.

In this paper, we propose to improve the precision by not analyzing the
whole program, but just a fragment of it. We can compute such a fragment by
projecting the CFG of the program to the statements occurring in the selected
sequence of statements. The resulting CFG is called a path program [8]. Figure 2a
shows the path program computed from P1 and the sequence of statements τ2.
We can now calculate the fixpoint of, e.g., an octagon-based abstraction for this
path program, which then yields the state assertions shown in Fig. 3a. The state
assertion at �1 contains a loop invariant strong enough to prove correctness of
the path program in the second iteration of the CEGAR loop. The CEGAR tool
removes the program fragment covered by this path program from its abstrac-
tion of the program, such that the resulting abstraction only contains sequences
of statements that lead through the other branch of the if-statement inside the
loop. Thus, in iteration 3, we obtain the path program depicted in Fig. 2b from
one of those sequences. After computing the corresponding state assertions with
abstract interpretation (see Fig. 3b), the CEGAR tool will remove this path pro-
gram from the program abstraction, thus removing all sequences of statements
that lead to the error location. In general, the chosen abstraction may not be
precise enough to find a useful invariant. In this case, we fall back to a conven-
tional analysis of a single trace s.t. the CEGAR loop is guaranteed to remove at
least a single error trace.

In the following, we present our approach that combines the analysis
of single sequences of statements and the analysis of path programs in an
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Fig. 3. State assertions computed for both path programs of Fig. 2.

automata-theoretic setting. We focus on obtaining loop invariants with abstract
interpretation if possible, but can fall back on the analysis of single traces if the
computed abstraction is too weak to prove infeasibility of a trace.

2 Preliminaries

In this section, we present our understanding of programs and their semantics,
give a brief overview over abstract interpretation, and explain the trace abstrac-
tion algorithm which we use as basis of our approach.

Programs and Traces. We consider a simple programming language whose
statements are assignment, assume, and sequential composition. We use the syn-
tax that is defined by the grammar

s := assume bexpr | x:=expr | s;s

where Var is a finite set of program variables, x ∈ Var , expr is an expression
over Var and bexpr is a Boolean expression over Var . For brevity we use bexpr
to denote the assume statement assume bexpr.

We represent a program over a given set of statements Stmt as a labeled
graph P = (Loc, δ, �0) with a finite set of nodes Loc called locations, a set of
edges labeled with statements, i.e., δ ⊆ Loc × Stmt × Loc, and a distinguished
node �0 ∈ Loc which we call the initial location.

We call a sequence of statements τ = s0s1s2 . . . ∈ Stmt∗ a trace of the
program P if τ is the edge labeling of a path that starts at the initial location
�0. We define the set of all program traces formally as follows.

T (P) = {s0s1 . . . ∈ Stmt∗ | ∃�1, �2, . . . • (�i, si, �i+1) ∈ δ, for i ≥ 0}
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Note that each trace starts in the unique initial location �0, i.e., for the first
transition of a trace we only require that �1 of (�0, s0, �1) exists.

Let D be the set of values of the program’s variables. We denote a concrete
program state c as a function c : Var → D that maps program variables to
values. We use C to denote the set of all concrete program states. Each statement
s ∈ Stmt defines a binary relation ρs over concrete program states which we call
the successor relation. Let Expr be the set of all expressions over the program
variables Var . We assume a given interpretation function I : Expr × (Var →
D) → D and define the relation ρs ⊆ C × C inductively as follows:

ρs =

⎧
⎪⎨

⎪⎩

{(c, c′) | I(bexpr)(c) = true and c = c′} if s ≡ assume bexpr

{(c, c′) | c′ = c[x �→ I(expr)(c)]} if s ≡ x:=expr

{(c, c′) | ∃c′′ • (c, c′′) ∈ ρs1 and (c′′, c′) ∈ ρs2} if s ≡ s1; s2

Given a trace τ = s0s1s2 . . ., a sequence of concrete program states π =
c0c1c2 . . . is called a program execution of trace τ if each successive pair of con-
crete program states is contained in the successor relation of the corresponding
statement of the trace, i.e., (ci, ci+1) ∈ ρsi

for i ∈ {0, 1, . . .}. We call a trace τ
infeasible if it does not have any program execution, otherwise we call τ feasible.

Path Programs [8]. Given the program P = (Loc, δ, �0) over the set of
statements Stmt and the trace τ = s0s1 . . . of P, the path program Pτ =
(Locτ , δτ , �0τ

) is defined as follows.
– The set of program locations Locτ consists of the locations on the path of P

which is labeled by the trace τ , i.e.,
Locτ = {� | � ∈ Loc ∧ ∃si ∈ τ s.t. (�, si, �

′) ∈ δ ∨ (�′, si, �) ∈ δ)},
– the transition relation δτ consists of the transitions that lie on the path, i.e.,

δτ = {(�, si, �
′) | si ∈ τ ∧ (�, si, �

′) ∈ δ}, and
– the initial location �0τ

is the initial location of the path, i.e., �0τ
= �0.

Abstract Interpretation. Abstract interpretation [12] is a well-known static
analysis technique that computes a fixpoint of abstract values of an input pro-
gram’s variables for each program location. This fixpoint is an over-approximated
abstraction of the program’s concrete behavior. To this end, abstract interpreta-
tion uses an abstract domain defining allowed abstract values of the program’s
variables in the form of a complete lattice.

Formally, an abstract domain is defined as follows. Let L = (�,�,,⊥,�)
be a complete lattice, i.e. a partially ordered set with partial ordering relation
�, such that for all a, b ∈ L, a and b have a least upper bound a � b and a
greatest lower bound a  b, and every subset X ⊆ L has a least upper bound
�X and a greatest lower bound X. The least element of L is ⊥ = �∅, and
the greatest element of L is � = �L. For two lattices L1 = (�1,�1,1,⊥1,�1)
and L2 = (�2,�2,2,⊥2,�2), α : L1 → L2 is called an abstraction function
and γ : L2 → L1 is called a concretization function if and only if ∀x ∈ L1,∀y ∈
L2 � α(x) �2 y ⇐⇒ x �1 γ(y).
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An abstract domain is a tuple A# = (D#,∇, α, γ), where D# is a complete
lattice representing the domain of possible abstract values, ∇ : D# × D# → D#

is a widening operator, and α : D → D# and γ : D# → D are the abstraction
function and the concretization function, respectively, which map concrete values
of the complete lattice of values of a program’s variables D to abstract values
and vice versa. An abstract program state is a function σ : Var → D# which
assigns each variable occurring in the program an abstract value. We use S to
denote the set of all abstract program states of the program. Given a concrete
state c ∈ C, we use σ = α(c) to denote the application of α to every value of
every variable in c in order to obtain the corresponding abstract state σ ∈ S .

The fixpoint computation algorithm traverses the input program and assigns
to each location of the program an abstract state by iteratively applying an
abstract transformer, post# : S ×Stmt → S , starting at the initial location. This
abstract transformer computes an abstract post state for a given abstract state
and a statement, i.e., it computes the effect a statement has on a given abstract
state. In case of branching in the program, the fixpoint computation algorithm
may choose to either merge the states at the join point of the branches with the
join operator � defined by the complete lattice of abstract values in the abstract
domain, or to keep an arbitrary number of disjunctive abstract states. In the
latter case, precision is increased at the cost of additional computations due to
more abstract states in the abstraction.

The fixpoint computation algorithm is guaranteed to achieve progress and
to eventually terminate. Progress is achieved by the application of the widen-
ing operator ∇, defined by the abstract domain: when the fixpoint computation
algorithm traverses the statements of a loop, an infinite repetition of the appli-
cation of the abstract transformer to the loop’s statement is avoided by widening
the approximation of the loop’s body.

Upon termination, an over-approximated abstraction of the program is guar-
anteed to have been computed. The resulting abstraction is represented as a
mapping fp : Loc → 2S , which maps to each location a disjunctive set of abstract
states.

Trace Abstraction. The trace abstraction algorithm [18,19] is a CEGAR-
based software model checking approach that proves the correctness of a program
P by partitioning the set of possible error traces in feasible and infeasible traces.
In the following, we briefly explain this approach. Consider the trace abstraction
algorithm shown in Fig. 4. The input program P over the set of statements Stmt
is first translated into a program automaton AP , which encodes the correctness
property of P by marking some of its locations as error locations. Those error
locations serve as the accepting states of the program automaton AP , and the
set of statements Stmt as its alphabet. By construction, the language of the
program automaton represents all traces of P that reach an error location.

The goal of the algorithm is to iteratively construct a data automaton AD

whose language only consists of infeasible traces. If the language of the data
automaton contains the language of the program automaton, we know that all
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Fig. 4. The trace abstraction software model checking algorithm.

traces of the program that may reach an error location are infeasible, and thus
the program is correct. Whenever the language of the data automaton does not
contain the language of the program automaton, there exists a trace τ for which
we do not know if it is infeasible and which reaches an error location. If the trace
τ is feasible, it represents at least one valid program execution that can reach an
error location. Hence, τ is a valid counterexample. If the trace τ is infeasible, a
proof of infeasibility of τ in form of a set of Hoare triples H is constructed. The
algorithm then constructs from this set a new data automaton, whose language
contains the language of the old data automaton and at least τ as a new word.
Only adding one trace in a single iteration is in most cases not sufficient, because,
e.g., programs with loops contain infinitely many traces. Therefore, the trace
abstraction algorithm constructs a data automaton not only from the trace τ ,
but from a set of Hoare triples H. Additionally, before constructing the data
automaton, the algorithm tries to generalize the proof H by adding more valid
Hoare triples to it.

More formally, a data automaton is a Floyd-Hoare automaton [14,19]. A
Floyd-Hoare automaton A = (Q, δ, q0, F ) is an automaton over the alphabet of
the program’s statements Stmt together with a mapping that assigns to each
state q ∈ Q a state assertion ϕq such that the following holds:
– The initial state is annotated by the state assertion true,
– for each transition (q, s, q′) ∈ δ the triple {ϕq} s {ϕq′} is a valid Hoare triple,

and
– each accepting state q ∈ F is annotated by the state assertion false.

The generalization of a proof H is performed by a function generalize : H ×
htc → H for a program P over a set of statements Stmt , where
– {ϕq} s {ϕq′} ∈ H is a set of valid Hoare triples, and
– htc : H → {�,⊥, ?} is a function that determines whether a given Hoare

triple is valid, invalid, or unknown.
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The set of all predicates contained in a set of Hoare triples H is Pred(H) := {ϕ |
{ψ} s {ϕ} ∈ H or {ϕ} s {ψ} ∈ H}. The function generalize generalizes a proof H
as follows.

generalize(H, htc)

1 for s ∈ Stmt do
2 for ϕ,ϕ′ ∈ Pred(H) do
3 if htc({ϕ} s {ϕ′}) = � then
4 H := H ∪ {{ϕ} s {ϕ′}}
5 end
6 end

If the set of predicates Pred(H) of a proof H contains the predicates true
and false, we can construct a Floyd-Hoare automaton AH = (Q, δ, q0, F ) from
it as follows.
– The set of locations Q consists of one location for each predicate ϕ ∈ Pred(H),

i.e., Q = {q | ϕq ∈ Pred(H)},
– the set of transitions δ contains one transition for each Hoare triple in H, i.e.

δ = {(q, s, q′) | {ϕq} s {ϕq′}},
– the initial location q0 is the location labeled with true, and
– the set of accepting states F contains only the location labeled with false.

3 Algorithm

In this section, we present our software model checking algorithm and the
basic idea behind it. Our approach is centered around an automata-theoretic
counterexample-guided trace partitioning approach. Figure 5 shows a simplified

Fig. 5. The basic idea behind our software model checking approach.
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Fig. 6. Our complete software model checking algorithm. The differences to Fig. 4 are
highlighted in blue.

version of our algorithm that already integrates trace abstraction, abstract inter-
pretation and path programs. Similar to trace abstraction, we translate the input
program P into a program automaton AP and try to find a data automaton AD

that represents only infeasible traces. As long as we did not cover all traces rep-
resented by AP , we continue to update AD and pick a not yet covered trace τ
from the uncovered part of AP . But instead of directly analysing the trace τ , we
construct a path program Pτ . Next, we use abstract interpretation to compute a
fixpoint of Pτ and to determine whether Pτ is correct, i.e., if the error location of
Pτ is reachable. Using the path program of τ allows us to analyze multiple traces
of P at once. If abstract interpretation is able to show correctness of the path
program Pτ , we directly add the program (automaton) Pτ to the data automa-
ton AD, because we now know that all traces of Pτ are infeasible. In contrast
to trace abstraction, this step does not create a Floyd-Hoare automaton, since
Pτ is added to AD instead of first producing a proof an then constructing an
automaton from it.

Since abstract interpretation is used to determine correctness of the con-
structed path programs, the result may also be “unknown”. In this case, our
simple algorithm cannot deduce any information about the correctness of Pτ

and thus, also not about the correctness of P. To avoid this problem, we extend
our basic algorithm with the analysis of single traces as a fallback.

Figure 6 shows our full software model checking algorithm. Our algorithm
retains the precision of software model checking but also utilizes abstract inter-
pretations ability to find loop invariants to prevent divergence due to loop
unwinding. As it is based on trace abstraction, we extended Fig. 4 and high-
lighted all new parts in blue. As with our simplified algorithm and with trace
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abstraction, we try to construct a data automaton that represents all traces
of which we know that they are infeasible. We know that the program is safe
when all traces of the program automaton are contained in the data automaton.
Whenever we find a trace τ of P for which we not yet know whether it is feasible
or not, we construct a path program Pτ from it and analyse this instead. We first
try to find an abstraction of Pτ with abstract interpretation. If the abstraction
is not sufficiently coarse to prove the correctness of the path program, we use an
SMT solver to check the initial counterexample trace τ for infeasibility. If τ is
infeasible, we also obtain a sequence of state assertions – either by Craig inter-
polation or by using a combination of strongest post and unsatisfiable cores –
from the SMT solver. These can be directly used to construct the proof H and
continue the algorithm. If τ is feasible, we found a valid counterexample and the
original program P is unsafe.

In the case where the abstraction computed with abstract interpretation
is sufficient to show that Pτ is correct, we have to provide trace abstractions
generalize function with a proof H and a function htc that can be used to check
additional Hoare triples for validity. The next subsection describes how we ini-
tially obtain H from the abstraction and how our htc function works. Afterwards
we explain in Sect. 3.2 how we optimize the initial proof H with the function
weaken such that we get a more general proof that still contains all loop invari-
ants for the path program.

3.1 Proofs from Fixpoints

After abstract interpretation proves the path program Pτ safe, we need to con-
struct a proof of infeasibility H from the computed fixpoints. For this construc-
tion we depend on some function p that converts an abstract state to a predi-
cate without any loss of precision. Note that in general, it might not be possible
to express a particular abstract domain as a SMT-compatible predicate, e.g.,
because there might be no suitable theory available. Given a function p, we con-
struct the proof H for a path program Pτ = (Loc, δ, l0) and an abstraction fp as
follows.

First, we compute a state assertion ϕ� for each location � of Pτ by taking
the disjunction of all abstract states resulting from an application of fp on �:

ϕ� =
∨

σ�
i ∈fp(�)

p(σ�
i )

Then, we construct Hoare triples by collecting all ϕ� along the transition relation δ,
i.e., H = {{ϕ�} s {ϕ�′} | (�, s, �′) ∈ δ}.

In the original trace abstraction algorithm, the next step is the generalization
of the proof with generalize and htc. The function htc is implemented by letting
an SMT solver decide whether the Hoare triple is valid or not. Because the state
assertions computed by abstract interpretation usually contain many conjuncts,
SMT solver queries that involve them can be quite slow. Therefore, we use a
different htc function, namely htc#. As each state assertion ϕ� in Pred(H) is
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Table 1. Transition relation δ with labeling for the generalized data automaton of the
path program from Sect. 1.1.

δ Labeling

(�0, �0) Stmt
(�0, �1) x:=0;y:=1000

(�1, �0) Stmt
(�1, �1) Stmt \ {

x:=x+1 , x:=x+2 , y:=y-1 , y:=y-2
}

(�1, �2)
{

x:=0;y:=1000 , x<100 , x==1000
}

(�1, �3)
{

x==1000
}

(�1, �4)
{

x==1000
}

(�2, �0) Stmt
(�2, �1) Stmt \ {

x:=x+1 , x:=x+2 , y:=y-1 , y:=y-2
}

(�2, �2) Stmt \ {
x:=x+1 , x:=x+2 , y:=y-1 , y:=y-2

}

(�2, �3)
{

x>=100 , x==1000 , x:=x+1
}

(�2, �4)
{

x>=100 , x==1000
}

(�3, �0) Stmt
(�3, �1)

{
x:=0;y:=1000 , x==1000 , y:=y-1

}

(�3, �2)
{

x:=0;y:=1000 , x==1000
}

(�3, �3) Stmt \ {
x:=x+1 , x:=x+2 , y:=y-1 , y:=y-2

}

(�3, �4)
{

x:=0;y:=1000 , x==1000
}

(�4, �4) Stmt

constructed from a set of abstract states fp(�) at the location �, we can use the
abstract transformer post# instead of an SMT query. For each candidate Hoare
triple {ϕ�} s {ϕ�′} in H we check whether each abstract successor state of ϕ� is
contained by one of the abstract states in ϕ�′ . If the following formula is valid
for the given Hoare triple, the Hoare triple itself is valid.

∀σl
i ∈ fp(�) �

(
post#(σl

i, s) = σ�′′

i ∧ ∃σ�′

i ∈ fp(�′) �
(
σ�′′

i ⊆ σ�′

i

))

The construction of a data automaton from a proof of infeasibility H for
a path program is then conducted as described in Sect. 2. Note that by con-
struction, we retain the property of Floyd-Hoare automata, that for each transi-
tion (q, s, q′) ∈ δAI the triple {ϕq} s {ϕq′} is a valid Hoare triple. Therefore,
the automaton accepts at least all the traces represented by the path pro-
gram. Table 2 shows the locations and Table 1 the transition relation of the
data automaton constructed in this fashion for the example path program from
Sect. 1.1.

3.2 Weakening of State Assertions

A state assertion ϕ�, derived from a set of abstract states fp(�), might be very
large, depending on the precision of the abstract domain. For example, let fp(�) =
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Table 2. Locations of the generalized data automaton of the path program from
Sect. 1.1. �0 is the initial location, �4 is an accepting state.

Loc Labeling

�0 true

�1 x ≥ 0 ∧ x ≤ 100 ∧ y ≤ 1000 ∧ x + y = 1000

�2 x ≥ 0 ∧ x < 100 ∧ y ≤ 1000 ∧ x + y = 1000

�3 x ≥ 1 ∧ x < 101 ∧ y ≤ 1000 ∧ x + y = 1001

�4 false

{(x ∈ [0; 10], y ∈ [−100; 100])} be an abstract state that stores interval values of
variables. Then, the state assertion ϕ� = x ≥ 0 ∧ x ≤ 10 ∧ y ≥ −100 ∧ y ≤ 100
already contains four conjunctive terms for two variables that are present in q.
A more precise abstract domain, e.g., the relational domain based on octagons,
not only stores the bounds for each value interval per variable, but also the
relations between all pairs of variables. A corresponding state assertion thus
grows quadratically with the number of variables. The size of the state asser-
tions, i.e., the number of conjunctive terms, is crucial for the runtime of various
operations. We already mentioned that using an SMT solver to check whether a
Hoare triple is valid is too expensive because of the size of the state assertions.
But the application of post# also scales unfavorably with the number of variables
in an abstract state; for example, calculating the closure of an octagon matrix
requires cubic time relative to the number of variables.

The predicates (i.e., the pre- and postconditions of the Hoare triples) of the
proof H we obtained from abstract interpretation are still backed by abstract
states. Hence we are interested in reducing the number of variables in those
states and thus the number of conjuncts in the predicates as much as possible
while still retaining the proof of correctness for the path program.

Our approach contains a simple method to achieve such a reduction, namely
the function weaken that takes a set of Hoare triples and yields a set of Hoare
triples. weaken uses a simple data-flow based analysis to remove variables and
still retain the proof. It also exploits the fact that the proofs we obtain have a
certain form. Because they correspond to traces, they can be represented as a
joined sequence of Hoare triples

H = {ϕ0} s0 {ϕ1} s1 . . . {ϕn} sn {ϕn+1}

where ϕ0 = true and ϕn+1 = false. Note that the proofs for path programs also
have this form, because we can just use the trace from which the path program
was constructed. We only have to consider the case that at least one ϕi is equal
to ϕj . We preserve all loop invariants because any unrolling of the loop is enough
to reason about the inductivity of a loop invariant. Assuming this form for H,
the function weaken implements the following algorithm.
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weaken(H)

1 K := ∅, H′ := ∅, Ĥ := reverse sequence of Hoare triples in H
2 for {ϕ} s {ϕ′} ∈ Ĥ do
3 Ws := All variables only written in s, Rs := All variables read in s
4 K := K \ Ws

5 Ks := Rs ∪ K
6 ϕ̂ := ϕ without conjuncts that contain only variables not in Ks

7 K := K ∪ V ar(ϕ̂)
8 H′ := H′ ∪ {{ϕ̂} s {ϕ′}}
9 end

The algorithm first initializes a set K of variables that should not be removed
in line 1. Then, it iterates backwards over the set of Hoare triples H that is in
the form described above. The important aspects are the updates of the set of
variables that should not be removed, K, in line 4 and 7, and the computation of
a new Hoare-triple in line 6. In line 4, we remove all variables that are written in
the current statement from the set of variables that should not be removed. The
reasoning being that we do not need to keep information about variables that
will change as consequence of the execution of the current statement. In line
6 the algorithm transforms each Hoare triple by removing all conjuncts from
the precondition that contain only variables that are not read in the current
statement and are not in the set of variables that should not be removed. In
line 7, we add all variables now occurring in the new precondition to the set of
variables that should not be removed.

The resulting Hoare triple is still valid because the post-condition can only
contain information about variables that still have to be kept or were written in
the current statement.

4 Implementation and Evaluation

In this section, we present the implementation and evaluation of our approach.
We implemented our algorithm in Ultimate, an open-source program analy-

sis framework1. The resulting tool, Ultimate Taipan, is based on Ultimate
Automizer2, a state-of-the-art software model checker that implements trace
abstraction (see Sect. 2). Ultimate Taipan extends Ultimate Automizer and
Ultimate with an own fixpoint computation engine based on abstract interpre-
tation, various abstract domains and methods for the extraction and creation of
path programs. Our engine currently supports sets of octagons [21] as relational
abstraction, sets of intervals and sets of divisibility congruences [16] as non-
relational abstractions. It also allows for parameterized combinations of these
domains. We currently do not support arrays, bitvectors and floats.

1 https://ultimate.informatik.uni-freiburg.de.
2 https://ultimate.informatik.uni-freiburg.de/automizer.

https://ultimate.informatik.uni-freiburg.de
https://ultimate.informatik.uni-freiburg.de/automizer
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Our implementation of Ultimate Taipan also uses two small optimizations:
– We only compute a path program and use abstract interpretation when the

trace τ contains a loop. If the trace contains only straight-line code, the
analysis with SMT solvers is usually faster and provide more general state
assertions.

– We cache the path programs we already analyzed to prevent re-analyzing
path programs for which the used abstract domain was too weak to provide
a proof. This may happen if both, abstract interpretation and SMT-based
analysis, were unable to find a loop invariant for the path program and the
algorithm unrolls a loop. In this case, instead of re-analyzing an already ana-
lyzed path program, the abstract interpretation module reports unknown and
the algorithm continues.
In our evaluation we compare Ultimate Automizer (Automizer) with

two variants of Ultimate Taipan (Taipan and LazyTaipan). The three con-
figurations differ only in the way they obtain state assertions from traces. In
each iteration, they al try multiple methods to obtain state assertions that are
loop invariants for the path program induced by the trace. These methods are
applied one after another. If one method fails to provide loop invariants, the next
method is used. If all methods fail to provide loop invariants, but some of them
could show infeasibility, the abstraction is refined with all of the state assertions
obtained. If no method could show infeasibility (or feasibility), the tools abort
and return “Unknown” as the final result.

The first method is for all configurations an application of the SMT solver
SMTInterpol [10] using Craig interpolation. This SMT solver is tightly inte-
grated into Ultimate and can thus be called very efficiently.

Next, the three configurations use either the interpolation engine of the two
SMT solvers Z3 [22] and CVC4 [4] on the trace, or our abstract interpreta-
tion engine on the path program induced by the trace. Only the order of these
methods differs.
– Automizer tries Z3 followed by CVC4,
– Taipan tries abstract interpretation followed by Z3 and then CVC4, and
– LazyTaipan tries Z3 followed by CVC4 and lastly abstract interpretation.

For our evaluation we applied the three configurations to C programs taken
from the SV-COMP 2017 [5] repository3. Each of the verification tasks in
SV-COMP reachability category contains one error location, which is either
reachable or unreachable. We concentrated on two subcategories, namely
“ReachSafety-Loops” (Loops) and “ReachSafety-ECA” (ECA). We chose these
categories because they represent control-intensive programs that do not con-
tain arrays, floats or bitvectors. One main difference between the two sets is
in size. While Loops contains files with 8 to 1644 lines of code, ECA’s samples
range from 591 to 185053 lines of code. Loops also contains programs with more
intricate loop invariants requiring relations between variables, while ECA is very
control-intensive with many branches in a single loop. We used all 159 examples
from Loops and 200 random examples from ECA. All benchmarks were run on

3 https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp17.

https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp17
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Table 3. The evaluation results. The complete benchmark set contained 359 samples
(column “#”). Each cell in the column “Succ.” contains the number of samples this
particular setting could solve. Each cell in the column “Excl.” shows how many samples
were solved exclusively by this setting. The row “Portfolio” shows how many bench-
marks could be solved by any of the settings, and the row “Common” shows how many
benchmarks could be solved by all of them.

Total ECA Loops

# Succ. Excl. # Succ. Excl. # Succ. Excl.

LazyTaipan 359 145 0 200 47 0 159 98 0
Automizer 359 124 17 200 34 12 159 90 5
Taipan 359 176 30 200 77 30 159 99 0

Portfolio 359 193 - 200 89 - 159 104 -
Common 359 106 - 200 22 - 159 84 -

an Intel Core i7-2600 with 3.40 GHz using a timeout of 90 s and a memory limit
of 4 GB for the tool itself and 2 GB for the SMT solver.

Table 3 shows the results of the evaluation. Out of the 359 input programs,
the default trace abstraction variant Automizer was able to solve 124 pro-
grams compared to 145 solved by LazyTaipan and 176 solved by Taipan. The
clear advantage is visible in both benchmarks sets. Nevertheless, the Ultimate
Automizer setting can solve 17 settings exclusively, 12 of them in ECA. These
examples are due to cases where the fixpoint calculation lost precision because
of branching.

Figure 7 shows four metrics collected during the evaluation. The top left hand
chart shows the runtime in log(s) for all individual benchmark programs, ordered
by time. It shows that Taipan was not only able to solve the most samples, but
also took a comparable amount of time.

On the top right hand side in Fig. 7 the number of refinements in the CEGAR
loop is shown. This number indicates how often a new data automaton was
constructed during the refinement step. The graph shows that the number of
iterations are very similar for all three configurations. They only differ in their
offset. This corresponds to the importance of loop invariants: Each benchmark
requires a number of loop invariants that if found, solve the benchmark. If one
path program remains without loop invariant, all three approaches diverge.

The middle left hand chart of Fig. 7 shows the number of iterations in which
a path program was constructed and analyzed with abstract interpretation.
Depending on the setting, this was done early (Taipan) or late (LazyTaipan)
during an iteration. Approximately 40 (resp. 60) examples could be solved using
the interpolating SMT solvers alone, but for the remaining ones abstract inter-
pretation was required to infer suitable state assertions. In many cases, only a
single abstract interpretation iteration was necessary for solving the sample – all
other parts of the proof could be provided by the SMT solvers.
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Fig. 7. Statistics collected during the execution of the benchmarks. All plots show the
measured data on the y-axis and range over the samples on the x-axis. The order of the
samples is sorted by the measurement value for each plot. This allows us to show trends
but also prevents the comparison of single samples. The upper-left chart “Runtime”
compares the total runtime of the different settings. The upper-right chart “Overall
iterations” compares the number of iterations, the middle-left chart “Iterations using
abstract interpretation” compares the number of iterations were abstract interpretation
was applied to path programs with loops, and the middle-right chart “Useable abstract
interpretation iterations” shows the number of refinements were abstract interpreta-
tion computed a proof for the infeasibility of the path program. Finally, the lower-left
and lower-right charts “Abstract interpretation time” and “Relative time” show the
absolute amount of time and the time relative to the overall time that the fixpoint
computation took.
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The middle right hand chart shows the number of iterations in which abstract
interpretation could prove the infeasibility of the path program. Compared to
the total number of abstract interpretation refinements, this was in roughly 70%
of the benchmarks the case.

One observation from our experiments is that the analysis of a path program
with abstract interpretation takes significantly more time than the analysis of a
single trace with an SMT solver. In the current state, this may be an artifact of
the implementation and we believe this can be improved further.

The results of our evaluation show that Taipan outperforms in particular
the Automizer variant without abstract interpretation substantially. Trying to
delay the more expensive analysis of path programs as we have done with the
setting LazyTaipan is not helpful, as one may expect. One reason for this is
that for difficult traces, the solvers also may take a long time and then only
provide unsuitable state assertions.

5 Related Work

In their work on Craig Interpretation [1,2], Albarghouthi et al. use a CEGAR-
based approach with abstract interpretation to refine infeasible program traces.
In contrast to our work, they use abstract interpretation to compute an initial
abstraction of the whole program. Then, a trace to an error location is picked
from the abstraction, instead of the original program, and analyzed using a
bounded model checker. If the trace is infeasible, this results in a set of state
assertions, which may be too precise, i.e., non-inductive, to be used to refine the
initial abstraction. Abstract interpretation is used again, this time to weaken
the found state assertions in an attempt to achieve inductivity before refinement
of the last abstraction is done and the next iteration begins. Because the analy-
sis is done on an abstraction dependent on the fixpoint computed by abstract
interpretation, many iterations are needed in the worst case to identify infeasible
program traces. The fact that we are using abstract interpretation to compute
fixpoints of path programs which are a subset of the original program, instead
of an abstraction, allows us to circumvent the problem that an abstraction of
the whole program might be too weak to prove the program to be correct. Addi-
tionally, we often eliminate the need to use expensive model checking techniques
to refine the abstraction iteratively. Therefore, our generalization with abstract
interpretation is more localized and more precise than an abstraction obtained
by analyzing the whole program.

Beyer et al. use path programs in a CEGAR approach to compute invari-
ants of locations in a control flow graph of a program [8]. The refinement of
the abstraction is done by using a constrained-based invariant synthesis algo-
rithm which computes an invariant map, mapping predicates forming invariants
to locations of the path program. Those invariants are excluding already visited
parts from the original program. This is done until a counterexample for the
program’s correctness has been found or the program has been proven to be
correct. In contrast to our work, their approach uses an interpolant generator to
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generate the invariant mapping, whereas we use both, an interpolant generator
and a fixpoint computation engine to obtain suitable state assertions. In addi-
tion, their approach is only able to synthesize loop invariants by using invariant
templates which are parametric assertions over program variables, present in
each location of the program. Although they propose to use other approaches
to generate invariants, including abstract interpretation, they do not present a
combination of those methods.

6 Conclusion

In this paper, we presented a CEGAR approach that benefits from the precision
of trace abstraction and the scalability of abstract interpretation. We use an
automata theoretical approach to pick traces from a program automaton which
are checked for infeasibility. If the trace is infeasible, we construct a path pro-
gram and compute an abstraction of the path program by using abstract inter-
pretation. With the help of this abstraction, we are guaranteed to obtain state
assertions, in particular loop invariants, which help us to exclude a generalization
of the found infeasible trace from the program. Because abstract interpretation
may yield an abstraction which is not precise enough to synthesize usable loop
invariants, we use the default precise trace abstraction approach as a fallback.

Our experiments show that by using abstract interpretation to generate loop
invariants of path programs, we are able to prove a substantial larger set of
benchmark programs.
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Abstract. Verification of low-level C/C++ requires a precise memory
model that supports type unions, pointer arithmetic, and casts. We
present a new memory model that splits memory into a finite set of
disjoint regions based on a pointer analysis. The main contribution is a
field-, array- and context-sensitive pointer analysis tailored to verifica-
tion. We have implemented our memory model for the LLVM bitcode
and used it on a C++ case study and on SV-COMP benchmarks. Our
results suggests that our model can reduce verification time by produc-
ing a finer-grained partitioning in presence of function calls.

1 Introduction

Verification of low-level C and C++ programs (e.g., OS drivers, flight control
systems) often requires a low-level modeling of the heap that supports type-
unsafe features such as type unions, pointer arithmetic, and pointer casts. The
more detailed the memory model the more precise the analysis. However, extra
details often increase the computational cost of the analysis.

A memory model defines the semantics of pointers. The standard C/C++
memory model (also called block-level) interprets a pointer as a pair (id, o) where
id is an identifier that uniquely defines a memory region and o defines the byte
in the region being point to. The number of regions is unbounded. On the other
hand, in the flat or byte-level model used by most execution platforms there is
a single memory region (i.e., the memory) and every allocation returns a new
offset in that region. For verification purposes, we adopt a memory model similar
to that of C/C++ but ensuring a finite number of memory regions.

We say that a memory model is context-sensitive (context-insensitive) if
memory is divided into finitely many global regions and every pointer points

This material is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA) and Space and Naval Warfare Systems Center Pacific
(SSC Pacific) under Contract No. N66001-15-C-4061. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the DARPA or SSC Pacific. This work
has been also supported in part by NSF grant 1528153.

c© Springer International Publishing AG 2017
F. Ranzato (Ed.): SAS 2017, LNCS 10422, pp. 148–168, 2017.
DOI: 10.1007/978-3-319-66706-5 8



A Context-Sensitive Memory Model for Verification of C/C++ Programs 149

Fig. 1. Several translations to a side-effect free language if p and q may alias.

to a region that does (not) depend on the call paths leading to the allocation of
the region. A context-sensitive memory model might scale more than its context-
insensitive counterpart because it induces a finer-grained memory partitioning
so that verification conditions can be solved more efficiently.

This paper presents a new context-sensitive memory model for verification
of C/C++ programs. Like other memory models (e.g., [19,21]) our model divides
memory into disjoint regions based on the information computed by a pointer
analysis. Unlike these works, our memory model produces a finer-grained parti-
tioning in the presence of function calls.

Our main technical contribution is a context, field, and array-sensitive pointer
analysis for C/C++ which disambiguates the heap in a way that a side-effect
free version of the program can be obtained from which modular verification
conditions can be generated. A standard approach (e.g., Smack [18], SeaHorn
[11], cbmc [7], esbmc [10], and Cascade [22]) to transforming an imperative
program to a side-effect-free form is to map each pointer p to a symbolic memory
region Mp using a pointer analysis. Then, each Mp is replaced by a logical array
Ap and memory accesses are replaced by array stores and selects to Ap. Each
array store on Ap produces a new version of A′

p representing the array after
the execution of the memory write. This encoding is straightforward for intra-
procedural code. However, a precise modular encoding is more challenging.

Consider the snippet of C on Fig. 1(a) and three translations to a side-
effect free program1 on Fig. 1(b–d) using three flow-insensitive pointer analyses:

1 Logic-based verifiers require to generate verification conditions in a side-effect free
form so that they can be solved by SMT solvers. In this paper, we focus on how to
provide precise points-to information to produce a sound translation to such a form.
The syntax and semantics of the language and construction of VCs are beyond the
scope of this paper. We refer readers to e.g., [11,18] and their references for details.
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(b) a context-sensitive analysis, (c) context-insensitive, and (d) our technique.
Assume that at the entry of the procedure g variables p and q may alias.

Memory has been disambiguated such that each accessed memory region is
passed explicitly to each call. Each logical array AS denotes a memory region to
which all pointers in S point to. Non-primed and primed names denote input and
output versions, respectively. Intuitively, the larger the number of non-primed
array variables the more efficient the process of solving verification conditions
may be because more disjointness information between regions is available to
the solver. Let us focus on the procedure g. The first translation produces three
non-primed array variables: Apq, Ar, and As, the second translation one array:
Apqrs, and the third translation two arrays: Apq and Ars.

However, closer inspection to the first translation in Fig. 1(b) reveals that the
encoding is not sound. Since p and q may alias, the same array Apq is passed to
the 3rd and 4th arguments at the first callsite of f in g. The encoding is unsound
because at the callsite we obtain a similar effect to:

H ′
pq = Hpq[p ← 1] and H ′

pq = Hpq[q ← 2]

i.e., the update of p is lost, instead of the correct

H ′
pq = Hpq[p ← 1] and H ′′

pq = H ′
pq[q ← 2]

where both updates of p and q are preserved.
This example shows that an arbitrary context-sensitive pointer analysis can-

not be directly leveraged for modular verification without being unsound unless
the analysis ensures the following correctness condition CC: “no two disjoint
memory regions modified in a function can be aliased at any particular call site”.

A simple solution adopted by verifiers such as Smack and SeaHorn is to
give up the precision of a context-sensitive pointer analysis and use a context-
insensitive one. The resulting translation is shown in Fig. 1(c). A more precise
but incomplete approach adopted by Hubert and Marché [12] exploits context-
sensitivity if CC holds and returns inconclusive results otherwise. Moy [17]
refines Hubert and Marché’s approach by generating function contracts that
ensure that CC holds, rejecting programs for which it does not.

We argue that none of these solutions is fully satisfactory. Instead, our app-
roach consists of reusing existing pointer analysis technology and adapting it to
verification. Pointer analyses have been studied for decades and, thus, we want
to leverage existing advances as much as possible. For this reason, our pointer
analysis is inspired by Data Structure Analysis (DSA) [15]. DSA is a context,
field-sensitive pointer analysis that represents the heap explicitly. Moreover, DSA
supports type-unsafe C/C++ code and it scales to large code bases. However,
context-sensitivity cannot be directly exploited because DSA does not ensure
CC. We also observed that DSA is very imprecise when modeling consecutive
sequences of bytes (e.g., C arrays) which complicates the verification of some
programs such as our C++ case study. Last, but not less important, our experi-
ence with the public implementation of DSA [1] is that it is full of corner cases
and it is very hard to reason about its correctness. Our goal is to develop a new
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Fig. 2. A C++ fragment and its translation to a low-level IR form.

pointer analysis that enjoys the same benefits as DSA while producing a sound
and context-sensitive static partitioning of the heap required for verification.
Unlike [15], we provide a more rigorous formalization of the analysis from which
a proof of correctness can follow.

Coming back to our example, the side-effect free program obtained with our
analysis is shown on Fig. 1(d). The translation is sound yet more precise than
using a context-insensitive analysis since we do not merge the regions Apq and
Ars passed to each call to f, and, thus, it is still context-sensitive. It is worth
mentioning that the more different heap call patterns there are for a function,
the fewer opportunities to partition the heap into smaller regions. This problem
can be addressed by cloning functions with different call patterns. However, this
is orthogonal to our approach and was not necessary during our experimental
evaluation.

Although it is folklore that context-sensitivity is beneficial for analysis, it is
particularly important for verification of C++ programs. Consider the snippet
of C++ on the left in Fig. 2, where classes Y and Z are sub-classes of X. This
fragment allocates memory for two objects of class Y and Z. We omit all class
methods except the constructors. The constructors of Y and Z call the constructor
of the base class X. We show on the right in Fig. 2 a translation to a low-level
intermediate representation (IR) without C++ features that resembles LLVM [14]
IR. Each object allocation ( znwm is the C++ mangled name for the new operator)
is followed by a call to the corresponding constructor Y c and Z c which in turn
calls X c. As a result, X c is called twice: one from Y c and another from Z c.
The key observation is that a context-insensitive pointer analysis will merge y
and z into the same alias set, collapsing the whole hierarchy into a large alias
set. However, a context-sensitive pointer analysis will not merge them since it
can distinguish between different calls to the constructor X c.

In summary, the paper makes the following contributions: (1) It presents
a new context- and field-sensitive pointer analysis that (a) is based on a new
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concept of a simulation relation between graphs that allows to produce sound
modular verification conditions and, unlike DSA, reason formally about proof of
correctness, and (b) is array-sensitive; (2) The analysis is implemented2 oper-
ating on LLVM bitcode and integrated in SeaHorn; and (3) It has been eval-
uated on the flight control component of the Core Autonomous Safety Software
(CASS) of an Autonomous Flight Safety System written in C++ and on C bench-
marks from the Software Verification Competition (SV-COMP). We show that
it reduces verification times by producing a finer-grained memory partitioning.

2 Syntax and Concrete Memory Model

Consider a simple imperative language shown in Fig. 3. It captures the core
pointer arithmetic of C/C++ at the function level. The variables p, q ∈ VP denote
pointer variables, m ∈ VI denotes integer variables, the symbols c, d denote
integer constants, and x denotes either a pointer or integer variable. The set of
program variables is denoted by V. We restrict variables to pointer and integer
types V = VP ∪ VI and we assume that they are disjoint, VP ∩ VI = ∅. The set
of statements is denoted by S. Each statement is assigned a unique label � ∈ L.

Fig. 3. Syntax of pointer operations

A cell c is a pair (id, o) where id is a unique identifier of a memory object of
size sz and o is byte offset in id, 0 ≤ o < sz. The set of all concrete objects is
denoted by OC and we use CC to denote the set of all possible concrete cells. Note
that the cardinality of CC is unbounded since the number of concrete objects in
the heap is unbounded. Memory is represented by a concrete points-to graph. A
concrete points-to graph is a triple 〈V,E, σ〉, where:

– V ⊆ CC is a set of concrete cells;
– E ⊆ CC × CC is a set of edges denoting that a source cell points to target cell.
– The environment σ : VP �→ CC maps pointer variables to cells. We write

dom(σ) for the domain of σ, that is, the set of variables for which it is defined.

2 It is publicly available at https://github.com/seahorn/sea-dsa.

https://github.com/seahorn/sea-dsa
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Fig. 4. C snippet (left), concrete (center), and abstract points-to graphs (right).

The symbol GC denotes the set of all concrete points-to graphs. Concrete
graphs are functional in the sense that for each source cell there is at most one
target cell. For convenience, we will write c2 = E(c1) and E(c3) = c4 to refer to
c1 → c2 ∈ E and E \ {c3 → } ∪ {c3 → c4}, respectively.

Example 1 (Concrete points-to graph). The middle of Fig. 4 depicts the cells and
edges of a concrete points-to graph from a simplified fragment extracted from
the CASS code. The program initializes each array element of size four to a new
linked list of two memory objects which is dynamically allocated by the function
mkList. The array is represented by a concrete object Oa of size 16 (assuming
four bytes per pointer). The variable a points to the first cell (Oa, 0). For each
cell (Oa, i) (i ∈ {0, 4, 8, 12}) there is an edge to the first cell of each linked list:
(O0

l0
, 0), (O1

l0
, 0), (O2

l0
, 0), and (O3

l0
, 0). The size of each list object is 8 (assuming

integers occupy 4 bytes as well). Finally, each of the lists has an edge to a special
concrete object O

i∈{0,1,2,3}
null that represents a null terminator. �

A concrete state is a triple 〈g, π, l〉 where g ∈ GC is a concrete points-to graph,
π : VI �→ Z is an environment mapping integer variables to values, and l ∈ L is
the label of the next statement to be executed.

We do not give the concrete semantics of our language since it is standard.
We only point out that the semantics of a taken-address variable (i.e., p = &x)
creates a new memory object but always the same for the same variable, and
malloc returns non-deterministically a fresh memory object from the (infinite)
set of unallocated objects. Note that, re-incarnation of freed memory cannot be
modeled in our semantics. For instance, in the following sequence of statements:
p = malloc(...); q = p; free(p); r = malloc(...), the pointer variable
r cannot be aliased with q.
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3 Abstract Memory Model

In this section, we present our abstract memory model via abstract points-to
graphs. An abstract graph looks almost identical to a concrete graph with the
major difference that the set of abstract objects is finite. The symbol CA denotes
the set of abstract cells. An abstract cell is a pair of an identifier of an abstract
object and a byte offset. The set of all abstract objects is denoted by OA. An
abstract points-to graph is a triple 〈V �, E�, σ�〉 where:

– V � ⊆ CA is a finite set of abstract cells.
– E� ⊆ CA × CA is a set of edges denoting points-to relations.
– The environment σ� : VP �→ CA maps pointer variables to abstract cells.

An abstract state is represented by an abstract points-to graph. We will use
the symbol A to denote the set of all abstract states. Note that our abstract
semantics over-approximates the concrete semantics in three ways: (a) the set
of objects is finite, (b) the abstract semantics is flow insensitive, and (c) it does
not keep track of an environment for integer variables. To keep the number of
objects finite, each abstract object maintains the following information:

– whether the abstract object is collapsed meaning that all cells from this object
have been merged into a single one (i.e., field-sensitivity is lost). The function
isCollapsed : OA �→ B serves to denote such objects;

– whether an abstract object represents a sequence of an unknown number of
consecutive bytes (e.g., C arrays). The function isSeq : OA �→ B denotes such
objects;

– a size that over-approximates the size of every concrete object represented by
the abstract object. The function size : OA �→ N maps objects to their sizes:

• if isCollapsed(n) then size(n) = 1;
• if isSeq(n) then size(n) = k represents that the actual size is some value

in the set {k × N | N ∈ N, k > 0} (i.e., positive multiple of k);
• otherwise, it returns the value of the largest offset accessed so far plus

the size of the field indexed by that offset.
It is worth mentioning that the size of an abstract object is computed based
on its use and not based on the allocation. Therefore, the values returned by
size change during the analysis.

Example 2 (Abstract points-to graph). The right of Fig. 4 depicts the cells and
edges of an abstract points-to graph. The whole array is abstracted to an object
Na marked as a sequence of consecutive bytes whose unknown size is multiple of
4 (e.g., 4, 8, 12, 16, 20, . . .). The abstraction loses the fact that the original array
had exactly four elements of four bytes each. The linked lists are also abstracted.
Each list is abstracted by a single object Nl that has two fields at offsets 0 and 4.
There is a loop edge at (Nl, 0) that means we have lost track of the exact list size.
Moreover, the abstraction loses the fact that the linked lists are null-terminated.
Note that in spite of this loss of precision, this abstraction is able to preserve
the fact that the array and the linked lists point to two disjoint memory regions
which is a very valuable information while solving the verification conditions. �
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Simulation Relation Between Graphs. We now introduce the fundamental
concept of a simulation relation between points-to graphs. First, we define two
helper functions. Given an object n′ and a set of edges E, Links(n′, E) returns
a sequence of numerical offsets (on)n∈N such that (on) = o if (n′, o) → c ∈ E.
Function ⊕n : N × N �→ N adds numerical offsets and adjusts them depending
on object n flags as follows:

o1 ⊕n o2 =

⎧
⎪⎨

⎪⎩

0 if isCollapsed(n)
(o1 + o2) % size(n) if isSeq(n)
o1 + o2 otherwise

We say that there is a simulation relation between two abstract graphs
〈V �

1 , E�
1, σ

�
1〉 and 〈V �

2 , E�
2, σ

�
2〉 if ∃ρ ⊆ CA × CA. ∀p ∈ dom(σ�

1). (σ�
1(p), σ�

2(p)) ∈ ρ,
and for all ((n1, o1), (n2, o2)) ∈ ρ:

– if (o1 ≤ o2 ∧ o1 > 0) then ((n1, 0), (n2, o2 − o1)) ∈ ρ

– else
((o1 ≤ o2) ∧ o1 = 0) ∧
compatible(n1, n2, o2) ∧
∀o ∈ Links(n1, E

�
1).(E

�
1((n1, o)), E

�
2((n2, o2 ⊕n2 o))) ∈ ρ

where

compatible(n1, n2, o) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true if (isCollapsed(n2))
false if (isCollapsed(n1))
false if (isSeq(n1) ∧ ¬ isSeq(n2))
(o = 0 ∧ if (isSeq(n2))
size(n1) ≥ size(n2) ∧
size(n1) % size(n2) = 0)

n1 = n2 =⇒ o = 0 otherwise

We can adapt the definition of a simulation relation to a relation between
a concrete and abstract graph. For that, we only need to extend isCollapsed(n)
and isSeq(n) to return false for any concrete object n, and let size(n) denote
the allocated size of n3. Given a concrete graph gc ∈ GC and an abstract graph
ga ∈ GA, we use the notation gc � ga to say that there is a simulation relation
between gc and ga.

Concretization and Ordering of Abstract Graphs. The meaning of an
abstract graph is given by the function γ : GA �→ 2GC and it is defined as γ(ga) =

3 For simplicity, we choose not to modify the definition of a concrete object to include
its size.
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Fig. 5. Unification examples with all fields of size one.

{gc ∈ GC | gc � ga}. Moreover, a simulation relation defines an ordering between
abstract graphs such that g �GA

g′ if and only if there exists a simulation relation
between g and g′.

Remark. The concept of a simulation relation between abstract graphs also
plays an essential role for the analysis of procedures (see Sect. 4).

Example 3 (Simulation relation between a concrete and abstract graph). Coming
back to Fig. 4, let the environments {p �→ (Oa, 0)} and {p �→ (Na, 0)} together
with the cells and edges shown in Fig. 4 (center) and (right), form the concrete
gC and abstract gA graphs, respectively. There is a simulation relation ρ between
gC and gA, defined as follows:

ρ = { ((Oa, 0), (Na, 0)),
((Ol00

, 0), (Nl, 0)), . . . , ((Ol30
, 0), (Nl, 0)),

((Ol01
, 0), (Nl, 0)), . . . , ((Ol31

, 0), (Nl, 0)),
((O0

null, 0), (Nl, 0)), . . . , ((O3
null, 0), (Nl, 0)) }

To show that ρ is a simulation relation, it suffices to show that ((Oa, 0), (Na, 0))
∈ ρ. Since o1 = 0 and o2 = 0 the “else” branch is triggered. The first conjunct
holds trivially. Then, we need to check whether compatible(Oa, Na, 0) holds. Since
Oa is a concrete object, we have that isSeq(Oa) = false, but isSeq(Na) = true.
Thus, the forth “if” in the definition of compatible is applicable. Since size(Oa) =
16 and size(Na) = 4 the condition holds. Next, we check that ρ includes the pairs
of cells (E((n1, 0)), E((n2, 0 ⊕n2 0))),. . ., (E((n1, 12)), E((n2, 12 ⊕n2 0))), which,
after substitution, become ((Ol00

, 0), (Nl, 0)),. . ., ((Ol30
, 0), (Nl, 0)). We only show

that ((Ol00
, 0), (Nl, 0)) ∈ ρ since the other pairs are identical. Again, the “else”

branch is triggered together with the forth “if” from the compatible definition but
with isSeq(Ol00

) = false, size(Ol00
) = 8, isSeq(Nl) = true, and size(Nl) = 8. Thus,
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the conditions hold. Finally, we need to check that E((Ol00
, 0)) ≡ (Ol01

, 0) is simu-
lated by E((Nl, 0)) ≡ (Nl, 0). Hence, we can conclude that gC is a concretization
of gA. �

Another key concept in our memory model is an operation unifyCells that
given two cells (n1, o1) and (n2, o2) creates a new cell (and possibly a new
object) (n3, o3) that abstracts them both (i.e., (n3, o3) simulates both (n1, o1)
and (n2, o2)). Conceptually, the operation replaces the objects n1 and n2 by a
new object that is an abstraction of both of them. In practice, this is done by
destructively updating the objects in the points-to graph. The pseudo-code for
unifyCells is given in Fig. 6. We use unifyCells to combine cells in the graph and
to combine points-to graphs as needed by the abstract semantics.

The idea is to embed one cell into another, possibly modifying them and all
their reachable cells in the graph. If this is not possible then the cells are collapsed
and field-sensitivity is lost. Given two cells c1 = (n1, o1) and c2 = (n2, o2) let us
assume that o1 < o2 as shown in Fig. 5(a). The solution is to embed object n1

in n2 such that the memory location referred to by (n2, o2) is the same as that
referred to by (n1, o1). This is achieved by adjusting (n1, 0) to (n2, o2−o1). Then,
each (n1, oi) can be mapped to (n2, o2 − o1 + oi). In particular, (n1, o1) becomes
(n2, o2). The case where o2 < o1 is symmetric (Fig. 5(b)), otherwise, if o1 = o2
the we can choose arbitrarily to embed one into the other (Fig. 5(c)). unifyCells
at lines 1–6 decides which cell is embedded into and the offset adjustments.

unifyNodes unifies in place all cells of n1 starting at offset 0 with all cells of
n2 starting at offset o. If possible it will redirect all the incoming edges of n1

to n2 by shifting them by o and unify recursively all the outgoing edges (see
redirectEdges). After that, it destroys n1 (and all its cells) and keeps n2. The
pseudo-code is more involved because it also checks for conditions where the
objects must be collapsed:

1. If n1 is collapsed but n2 is not (Line 8): we need to collapse n2 and redirect
edges.

2. If n1 is a sequence but n2 is not (Line 11): check if we can embed the non-
sequence n2 into the sequence object n1, which is handled by the next case.

3. If n1 is a non-sequence and n2 is a sequence (Line 16): try to modify n1 into
a sequence object and continue with the unification. We will explain this case
through an example. Assume the size of n2 is 4, meaning that it represents a
memory region of size 4 ×C for some constant C. If the size of n1 is divisible
by 4, then we can convert n1 into a sequence. If the size of n1 is smaller than
4, we can embed it into n2 by redirecting all the edges. If neither of the two
conditions hold, we collapse n1 and n2.

4. if n1 and n2 are both sequences (Line 22): try to embed the larger one into the
smaller one. We might collapse if the sizes of the sequences are not compatible
or if we try to unify at non-zero offsets.

Assume a functional version of unifyCells denoted as unifyCellsF that copies the
input graph into g′, perform unifyCells on g′, and returns g′. The correctness of
our approach follows from the following result.
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Fig. 6. Unification of two cells

Lemma 1. For all abstract graphs g ≡ 〈V �, E�, σ�〉 ∈ GA and for all c, c′ ∈ V �.
Let g′ be the result of unifyCellsF(c, c′, g). Then, there always exists a simulation
relation between g and g′.

Proof. By structural induction over unifyCells and unifyNodes functions.

This lemma says that the result of unifying two cells produces always a new
abstract graph whose concretization is always a superset of the concretization
of the graphs before the unification took place. Moreover, note that once our
analysis decides to merge two cells they can never be split again. This is also
true during the analysis of function calls.
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Fig. 7. Abstract semantics of the atomic pointer operations.

We can now define the abstract semantics for our core pointer language in
Fig. 7 by means of the function [[·]]A : S �→ (A �→ A). We only show the abstract
semantics of the atomic pointer operations and postpone the analysis of function
calls to the next section.

The analysis creates a new object the first time a taken-address variable
(line 50) is accessed or when a new allocation occurs (line 54). In this case, a
fresh cell consisting of the new object and a zero-offset is unified with the cell
of the left-hand side (if any). The analysis of a memory load (line 73) or store
(line 74) is done in the same way: the dereference of a pointer p requires us to
find the target cell of the edge whose source is the cell of p and unify it with the
cell of the non-dereferenced pointer (line 75). The analysis of pointer casts and
pointer arithmetic at line 58 is more involved and consists of three main cases:

1. (collapse) if the object of the base pointer q is already collapsed then the
object of the left-hand side is also collapsed;
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2. (pointer casts, address of a struct field or a constant array index) if the object
of q is not a sequence and its offset can be statically determined (i.e., the
statement can be simplified to p = q + d) then the cell of p is unified to the
cell (n, o + d) where (n, o) is the cell of q. Moreover, the size of n might grow
if the accessed offset o+d plus the size of the indexed field is greater than its
current size.

3. (address of a symbolic array index) the cell of q is unified with the cell of p
after marking the object of q as a sequence. Again, we might need to update
the size of the object of q. Since the object is a sequence, the new size is the
greatest common divisor (gcd) of the old size and c.

Finally, we lift [[S]]A(g) to a function F , denoted by [[F ]]A(g), as the application
of [[S]]A to each statement S in F starting from the abstract graph g.

Example 4 (Comparing with DSA). Consider the program in Fig. 4. The DSA
algorithm described in [15] is array-insensitive. DSA creates an object Na after
the stack allocation ll * a[4] and since the allocation size is statically known
it decides that the size of Na is 16 (assuming 4 bytes per pointer). Then, during
the analysis of a[i] = mkList(...) it notices that there is a symbolic access
to object Na at some unknown offset. Although it knows that the size of the
accessed element is 4, it loses all field-sensitivity since 4 �= 16.

After the array allocation our analysis creates a cell (Na, 0) where
isSeq(Na) = isCollapsed(Na) = false and size(Na) = 16. Next, the analysis
a[i] = mkList(...) requires us to compute the address pa of the array index
which is translated to pa = a + (4 × i) + 0. Since the size of the array index
is c = 4 �= 0, the else branch at line 67 in Fig. 7 is applicable. As a result,
isSeq(Na) = true and size(Na) = gcd(16, 4) = 4. Thus, our analysis first assigns
a fixed size to Na after its allocation (similar to DSA) but then it decides by its
use that Na is a non-empty sequence of bytes whose size is divisible by 4.

The same result would be obtained if the loop was unrolled. However, if the
size of the array was not known then DSA would not have collapsed the abstract
object. However, the pattern exemplified by our snippet of having a small array
simulating a struct is actually common in our C++ case study and there the
impact of collapsing is much worse since this kind of arrays are embedded in
complex C++ objects. �

4 A Context-Sensitive Abstract Memory Model

In this section, we describe how we extend the intra-procedural pointer analysis
described in Sect. 3 to support more precisely function calls so that it can be
leveraged to produce a side-effect free form useful for verification.

We do not define the syntax and concrete semantics of function calls as they
are standard. We fix some notation and define some helper functions needed
by our analysis. For a given function call (or callsite) cs we refer to fcallee

and fcaller as the callee function and the function where cs is executed, respec-
tively. We assume functions callee(cs) and caller(cs) that return fcallee and fcaller,
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Fig. 8. Problematic aliasing patterns when f(p,q) calls to f(x,y)

respectively. We also assume functions formals(cs) and actuals(cs) that return the
formal parameters of fcallee and the actual parameters of the call, respectively.

Our algorithm works in three phases. We start by describing the first two
phases of the algorithm which are more straightforward and postpone the third
one to the end of the section. The procedure cloneSummaries on the bottom left
in Fig. 9 describes the first and second phase of our inter-procedural algorithm.
First, each function f is analyzed in isolation while its abstract graph (a.k.a
function summary) is computed. This phase is the only one that analyzes f ’s
statements. If there is a recursive call then all the functions in the same Strongly
Connected Component (SCC) will be analyzed in an intra-procedural manner.
This has not been a problem in practice since our benchmarks have few recursive
functions (e.g., our C++ case study has no recursive calls). Second, the call graph
is traversed in reverse topological order exploring all callees before their callers.
At each callsite the callee’s graph is cloned into the caller’s abstract graph while
the objects of the formal and actual parameters are unified. This is done by the
procedure cloneAndUnifyCells.

Therefore, heap cloning is how our analysis achieves context-sensitivity while
being fully modular. Coming back to Fig. 1(a). Although p and q are aliased,
they are disjoint from r and s. Thus, our analysis can distinguish each call to
f without merging the cells of the first call to f (p and q) with the cells of the
second call (r and s).

After completion of cloneSummaries, each cell pointed by the callee’s formal
parameters can be aliased with at most one cell from the caller’s actual parame-
ters and thus, scenarios such as the one illustrated on the left in Fig. 8 are not
possible4. The pattern on the right is still possible: a cell in the caller can be the
target of two different cells in the callee (i.e., CC does not hold). The example
in Fig. 1(b) illustrated how this situation precludes pointer analyses to be used
for obtaining sound side-effect-free programs.

The main purpose of the third phase of our algorithm is to ensure that the
two patterns depicted in Fig. 8 are not possible. This phase is done by the while
loop in procedure CSAnalysis on the left in Fig. 9.

At this point, the analysis has cloned all summaries by calling the procedure
cloneSummaries (line 1). As a result, each cell originated from the callee’s formal
parameters cannot be mapped to two distinct cells in the caller graph. The reason
is that cloneSummaries calls unifyCells for each pair of formal-actual parameters.
On the left in Fig. 8, the cell (n3, 0) is unified with (n1, 0) from the pair (x, p).

4 For simplicity, we assume in Fig. 8 all cells have zero offsets.
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Fig. 9. Our Context-Sensitive Pointer Analysis for Verification. cg is the program call
graph and G is a global variable that maps functions to abstract graphs.

Then, the cell (n3, 0) is unified with (n2, 0) from the other pair (y, q). After these
unifications, x, y, p, q point to the same cell.

Next, we scan all the function calls in the program and build a simulation
relation R between the fcallee’s graph and fcaller’s graph but only considering
cells5 that are reachable from fcallee’s actual parameters. A key insight is that we
can use R to find out whether two distinct cells in the callee can be mapped to the
same cell in the caller (R is not an injective function). This is the case depicted
on the right in Fig. 8. If this is not possible (i.e., R is an injective function) then
we are done with this callsite. Otherwise, we require a top-down propagation
by unifying cells from fcaller’s actual parameters with the ones from fcallee’s
formals parameters (line 9). For instance, in Fig. 1(a) the call f(p,q) forces our

5 In fact, we only need to consider cells that can be modified. Our implementation
considers this optimization.
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analysis to unify the cells of x and y with the cell of p and q resulting in a single
array variable Axy in the translation in Fig. 1(d). After a top-down propagation
occurs, it is possible that a cell in the callee is now mapped to more than one
cell in the caller. The simulation relation between callee and caller is then not
a function anymore. This can be fixed by performing a bottom-up propagation
that unifies the cells of fcallee’s formal parameters and fcaller’s actual parameters
(line 12). Either way, after unification occurs during the analysis of a callsite,
we must update our worklist by adding other callsites that might be affected.
If a top-down (bottom-up) propagation was performed then we need to revisit
all the function calls where fcallee (fcaller) is the callee (uses) and all callsites
defined in fcallee (fcaller) denoted by defs.

Finally, it is worth mentioning that this propagation phase does not affect
the modularity of our analysis since only cells from summary graphs and those
involved at the callsites are considered. Each function is still analyzed only once
by the cloneSummaries procedure.

Correctness and Termination. Upon completion for every callsite the simu-
lation relation between the callee and caller graph is an injective function. This
condition suffices to ensure that no two cells in a function can be equal for
any call. Termination is straightforward since in the worst case the algorithm
will merge all the cells between callee’s formal parameters and caller’s actual
parameters. Since the number of cells is finite, this process must terminate.

Limitations. We assume that programs are complete and thus, every callee
function is known (or resolved) at compile time. Although resolving callsites is
non-trivial, we consider it an orthogonal problem. We can apply the solution
adopted by DSA [15] based on a top-down traversal of the call graph after the
bottom-up one. A less precise but simpler solution is to replace each unresolved
call by a non-deterministic call to one of the possible functions whose type sig-
nature match. For our experiments, the latter solution was precise enough.

5 Experimental Evaluation

We have implemented our pointer analysis6 with full support for LLVM bit-
code and integrated it in SeaHorn [2]. For comparison, we have also inte-
grated in SeaHorn the public implementation of DSA [1]. We use the context-
insensitive version of DSA since we cannot use its context-sensitivity without
being unsound. Note that the precision of SeaHorn (i.e., number of false posi-
tives) does not depend on the underlying pointer analysis. However, its scalability
will be greatly affected as our results show. All experiments were carried out on
a 3.5 GHz Intel Xeon processor with 16 cores and 64 GB on a Linux machine.

Results on C SV-COMP Benchmarks. We ran SeaHorn on all 2,326 pro-
grams from the SV-COMP’17 sub-category DeviceDrivers647. This collection of
6 The pointer analysis is available from https://github.com/seahorn/sea-dsa.
7 Accessed https://github.com/sosy-lab/sv-benchmarks with sha 879e141f11348e49

591738d3e11793b36546a2d5.

https://github.com/seahorn/sea-dsa
https://github.com/sosy-lab/sv-benchmarks
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Fig. 10. CPU time spent by SeaHorn on DeviceDrivers64: (a) comparing DSA
(SeaHorn + DSA) and our analysis (SeaHorn + our CS analysis), and (b) com-
paring our analysis without (CI) context-sensitivity with (CS) context-sensitivity.

programs corresponds to Linux device drivers and its verification requires low-
level modeling of pointers.

Figure 10(a) compares the impact of using DSA (x-axis) and our analysis
(y-axis) on the CPU time spent by SeaHorn with a timeout of 5 min and 4 GB
memory limit. The scattered plot shows that in the majority of the cases, our
analysis speeds up verification. Moreover, using our analysis SeaHorn was able
to prove 81 more programs. Nevertheless, the plot indicates that our analysis
is not always more beneficial than DSA. We investigated whether this occa-
sional negative impact was due to timeouts in our pointer analysis. We com-
pared the analysis time of DSA and our pointer analysis and differences were
negligible. Both analyses were able to analyze each program in less than two sec-
onds. Another possible explanation is in the use of Spacer [13] as back end in
SeaHorn. Spacer is an SMT-based model checker and, thus, regardless of the
memory model it always depends on the unpredictable nature of SMT solvers.
We suspect that having more array variables (produced by our analysis) may
have a negative impact if they are irrelevant to the property.

Since DSA and our analysis are different implementations, we also com-
pare our analysis with and without context-sensitivity. Figure 10(b) shows the
results of this comparison. We observe again that context-sensitivity often boosts
SeaHorn during the verification process. Moreover, this comparison suggests
our implementation is robust since the results are consistent with the previous
experiment.

Case Study: Checking Buffer Overflow in C++ CASS Code. We have
evaluated our analysis to verify absence of buffer overflows on the flight control
system of the Core Autonomous Safety Software (CASS) of an Autonomous
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Table 1. Preliminary results on proving absence of buffer overflows in CASS.

Nodes Collapsed Max Node Density Safe Alloc. Sites Time (s)

SeaHorn + DSA 258 49% 0.8 49 33, 119

SeaHorn + our CS 12,789 4% 0.13 73 31, 102

Flight Safety System. CASS8 is written in C++ using standard C++ 2011 and
following MISRA C++ 2008. It follows an object-oriented style and makes heavy
use of dynamic arrays and singly-linked lists. CASS uses two custom libraries:
one to manipulate strings and another for using associative containers (map). We
did not consider these two libraries for our evaluation.

Instead of proving that all memory accesses are in-bounds by running Sea-
Horn once on an instrumented program9 with all the properties, we split the set
of accesses into multiple subsets so that we can run in parallel multiple instances
of SeaHorn on a smaller number of memory accesses. We first identify all heap
and stack allocation sites in the program. Each allocation site is a unique iden-
tifier of each LLVM instruction that allocates memory (e.g., alloca, malloc,
etc.). Let k be the (finite) number of allocation sites. We run k instances of
SeaHorn on an instrumented program that only checks for memory accesses
from regions that are allocated by the allocation site of interest. This information
is provided conservatively by the pointer analysis. The purpose of this method-
ology is twofold: (1) we can exploit parallelism, and (2) more importantly, we
group memory accesses by allocation sites hoping that they can share the same
proof.

Table 1 shows the results of running SeaHorn on CASS. Column Nodes is
the number of nodes in the graph. If the pointer analysis is context-insensitive
there is only one graph, otherwise it is the sum of all graphs. The larger is the
number of nodes the finer is the partitioning induced by the pointer analysis.
Column Collapsed is the percentage of the nodes for which the analysis lost all
the field-sensitivity. We define density of a node n as the number of memory
accesses from pointers that point to n divided by the total number of accesses.
Column Max Node Density is the maximum density value: the smaller, the bet-
ter. Column Safe Alloc. Sites is the number of allocation sites proven safe by
SeaHorn. An allocation site is considered proven if all its memory accesses
are proven safe. Finally, Time is the accumulated time in seconds of proving all
allocation sites. We set a timeout of 100 s per allocation site and 4 GB memory

8 CASS is owned NASA and is not publicly available. It is 13,460 LOC (excluding
blanks/comments).

9 How to instrument effectively a program for proving memory safety is beyond the
scope of this paper. SeaHorn provides several LLVM bitcode transformations that
insert assertions such that the transformed bitcode is free of buffer overflows if all
assertions hold. For our experiments, we used one that stores non-deterministically
the offset and size of a pointer. This instrumentation is simple and relies on the solver
to resolve the non-determinism to make sure all pointers are properly checked.
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limit. The total number of allocation sites is 357 and the number of memory
accesses is 3, 946.

The results show that context-sensitivity is extremely important for precise
memory analysis of C++ programs. In particular, the number of collapsed nodes
for which field sensitivity is lost has decreased significantly. The results also show
a positive impact on verification, both in number of memory accesses proven safe
and on the time. Yet, there is still a significant number of memory access that
remains unproved within our time limit.

6 Related Work

Rakamaric et al. [19] and Wang et al. [21] present memory models that resem-
ble ours. These models used in Smack and Cascade, respectively, are based
on a static partitioning of memory using an unification-based pointer analysis.
[19] rely on DSA and propose a variant of the Burstall model [5] by combining
unification with a static analysis that can infer types conservatively. [21] pro-
pose a cell-based model similar to [19] but unification and type inference are
performed simultaneously producing finer-grained partitions. Both [19] and [21]
identify arrays based on their allocations rather than their uses as our model
does. Therefore, at the function level these models and ours are incompara-
ble. More importantly, both [19] and [21] are context-insensitive. cbmc [7] and
esbmc [10] similarly split memory into a finite set of regions using a pointer
analysis. However, the model is field- and context-insensitive and it does not
support symbolic array accesses.

HAVOC [6,9] uses a byte-level memory model augmented with another map
that assigns types to memory offsets. This memory model is more precise than
ours but much less efficient. VCC [8] is based on a typed object memory model
that is sound and complete for type-unsafe C programs. However, the model
introduces quantified axioms that can be challenging for the verifier. Frama-
C10 provides the Jessie plugin11 that translates C programs into verification
conditions using a weakest precondition calculus. Jessie is based on a “byte-level
block” memory model [17] which can be seen as a hybrid between the byte-level
model and ours by replacing the pair (id, o) with (a, o) where a is an address. This
model relies on a pointer analysis to partition memory and it is context-sensitive,
but it requires to add extra axioms to ensure that the analysis of function calls
is sound. Unlike VCC and Jessie models our model does not add any extra
axioms. Ours is at much higher level of abstraction than these models. Abstract
graph objects become logical arrays only during the generation of verification
conditions and it is the underlying solver the one that will introduce select/store
axioms as needed during the solving of those verification conditions.

10 https://frama-c.com/.
11 Frama-C provides another plugin called VC for C programs, complementary to

Jessie, with three different memory models: Hoare (unsound with pointers), Typed
based on Burstall’s model that does not support casts, and Byte which is a byte-level
memory model.

https://frama-c.com/
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Venet [20] proposes a model by combining Andersen’s pointer analysis [3]
with a numerical abstraction of offsets. This model supports dynamic mem-
ory allocation by mapping allocations to timestamps. Miné [16] presents a pre-
cise cell-based memory model (limited to programs without dynamic alloca-
tion) which represents pointers flow-sensitively as well as precise numerical rela-
tionships between offsets. This model can also reason about memory contents.
Although more precise than ours, these two models rely on expensive numerical
abstractions. Moreover, their designs fulfill a different purpose. Our goal is to
produce a static memory partitioning from which we can generate verification
conditions that can be solved efficiently. Instead, they produce an accurate mod-
eling of memory from which they can prove directly properties without external
solvers. More recently, Balatsouras and Smaragdakis [4] propose a new structure-
sensitive pointer analysis for C/C++ programs based on LLVM. Similar to ours,
this analysis can be used to perform static memory partitioning. However, the
analysis is context-insensitive and its field and array-sensitivity is limited to
constant pointer offsets.

7 Conclusion

The paper presents a new context-sensitive memory model for verification of
C/C++. This model relies on a field-, array-, and context-sensitive pointer analy-
sis tailored for generating verification conditions. The notion of simulation rela-
tion between points-to graphs plays a major role during the analysis of function
calls. Our results suggest that our memory model can often produce a finer-
grained partition of memory for programs with procedures and that this results
in faster verification times.
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Abstract. We propose a novel guess-and-check principle to increase the
efficiency of thread-modular verification of lock-free data structures. We
build on a heuristic that guesses candidates for stateless effect summaries
of programs by searching the code for instances of a copy-and-check pro-
gramming idiom common in lock-free data structures. These candidate
summaries are used to compute the interference among threads in linear
time. Since a candidate summary need not be a sound effect summary,
we show how to fully automatically check whether the precision of can-
didate summaries is sufficient. We can thus perform sound verification
despite relying on an unsound heuristic. We have implemented our app-
roach and found it up to two orders of magnitude faster than existing
ones.

1 Introduction

Verification of concurrent, lock-free data structures has recently received consid-
erable attention [2,3,14,28,29]. Such structures are both of high practical rele-
vance and, at the same time, difficult to write. A common correctness notion in
this context is linearizability [15], which requires that every concurrent execution
can be linearized to an execution that could also occur sequentially. For many
data structures, linearizability reduces to checking control-flow reachability in a
variant of the data structure that is augmented with observer automata [2]. This
control-flow reachability problem, in turn, is often solved by means of thread-
modular analysis [4,19]. Our contribution is on improving thread-modular analy-
ses for verifying linearizability of lock-free data structures.

Thread-modular analyses compute the least solution to a recursive equation

X = X ∪ seq(X) ∪ interfere(X) .
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The domain of X are sets of views, partial configurations reflecting the perception
of a single thread about the shared heap. Crucially, thread-modular analyses
abstract away from the correlation among the views of different threads. Function
seq(X) computes a sequential step, the views obtained from X by letting each
thread execute a command on its own views. This function, however, does not
reflect the fact that a thread may change a part of the shared heap seen by
others. Such interference steps are computed by interfere(X). It is this function
that we improve on. Before turning to the contribution, we recall the existing
approaches and motivate the need for more work.

In the merge-and-project approach to interference (e.g., [4,11,19,22]), a
merge operation is applied on every two views in X to determine all merged
views consistent with the given ones. On each of the consistent views, one thread
performs a sequential step, and the result is projected to what is seen by the
other thread. The approach has problems with efficiency. The number of merge
operations is exactly the square of the number of views in the fixed point. In
addition, every merge of two views is expensive. It has to consider all consistent
views whose number can be exponential in the size of the views.

The learning approach to interference [24,34] derives, via symbolic execution,
a symbolic update pattern for the shared heap. The learning process is inte-
grated into the fixed-point computation, which incurs an overhead. Moreover,
the number of update patterns to be learned is bounded only by the number
of reachable views. An interference step applies the learned update patterns to
all views, which again is quadratic in the number of views. Moreover, although
update patterns abstract away from thread-local information, computing each
application still requires a potentially expensive matching. There are, however,
fragments of separation logic with efficient entailment [7].

What is missing is an efficient approach to computing interferences among
threads.

Main Ideas of the Contribution. We propose to compute interfere(X) by
means of so-called effect summaries. An effect summary for a method M is
a stateless program QM which over-approximates the effects that M has on
the shared heap. With such summaries at hand, the interference step can be
computed in linear time by executing the method summaries QM for all methods
M on the views in the current set X. This is a substantial improvement in
efficiency over merge-and-project and learning techniques, which require time
roughly quadratic in the size of the fixed-point approximant, X, and possibly
exponential in the size of views.

Technically, statelessness is defined as atomicity and absence of persis-
tent local state. We found both requirements typically satisfied by methods of
lock-free data structures. For our approach, this means stateless summaries are
likely to exist (which is confirmed by our experiments). The reason why the
atomicity requirement holds is that the methods have to preserve the integrity
of the data structure under interleavings. The absence of persistent state holds
since interference by other threads may invalidate local state at any time.
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We propose a heuristic to compute, from a method M , a stateless pro-
gram QM which is a candidate for being an effect summary of M . Whether
or not this candidate is indeed a summary of M is checked on top of the actual
analysis, as discussed below. Our heuristic is based on looking for occurrences of
a programming idiom common in lock-free data structures which we call copy-
and-check blocks. Such a block is a piece of code that, despite lock-free execution,
appears to be executed atomically. Roughly, we identify each such block and turn
it into an atomic program.

Programmers achieve the above mentioned atomicity of copy-and-check
blocks by first creating a local copy of a shared variable, performing some compu-
tation over it, checking whether the copy is still up-to-date and, if so, publishing
the results of the computation to the shared heap. A classic implementation of
such blocks is based on compare-and-swap (CAS) instructions. In this case, for
a local variable t and a shared variable T, the copy-and-check block typically
starts with an assignment t=T and finishes with executing CAS(T,t,x) which
atomically checks whether t==T holds and, if so, changes the value of T to x.
Hereafter, we will denote such blocks as CAS blocks, and we will concentrate on
them since they are rather common in practice [8,23,31]. However, we note that
the same principle can be used to handle other kinds of copy-and-check blocks,
e.g., those based on the load-link/store-conditional (LL/SC) mechanism.

The idea of program analyses to employ the intended behavior of CAS blocks
by treating them as atomic is quite natural. The reason why it is not common
practice is that this approach is not sound in general. The atomicity may be
introduced too coarsely, and, as a result, an interfere(X) implementation based
on the guessed candidate summaries may miss interleavings present in the actual
program. For our analysis, this means that its soundness is conditional upon the
fact that the candidate summaries used are indeed proper effect summaries. It
must be checked that they are stateless and that they cover all effects on the
shared heap. We propose a fully automatic and efficient way of performing those
checks. To the best of our knowledge, we are the first to propose such checks.

To check whether candidate summaries indeed cover the effects of the meth-
ods for which they were constructed, the idea is to let the methods execute under
any number of interferences with the candidate summaries and see if some effect
not covered by the candidate summaries can be obtained. Formally, we use the
program Q =

⊕
i QMi

, which executes a non-deterministically chosen candidate
summary QMi

of a method Mi, execute the Kleene iteration Q∗ in parallel with
each method M , and check whether the following inclusions holds:

Effects(M ‖ Q∗) ⊆ Effects(Q∗).

If this inclusion holds, Q∗ covers the actual interference all methods may cause.
Hence, our novel implementation of interfere(X) explores all possible interleav-
ings. The cost of the inclusion test is asymptotically covered by that of computing
the fixed point, and practically negligible. It can be checked in linear time (in
the size of the fixed point) by performing, for every view in X, a sequential step
and testing whether the effect of the step can be mimicked by the candidate
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summaries. It is worth pointing out the cyclic nature of our reasoning: we use
the candidate summaries to prove their own correctness.

Statelessness is an important aspect in the above process. It guarantees that
the sequential iteration of Q∗ explores the overall interference the methods of the
data structure cause. As we are interested in parametric verification, the overall
interference is, in fact, the one produced by an unbounded number of concur-
rent method invocations. Hence, computing this interference using candidate
summaries requires us to analyse the program

∏∞
Q, which is a parallel com-

position of arbitrarily many Q instances. However, statelessness guarantees that
each of these instances executes atomically without retaining any local state.
While the atomicity ensures that the concurrent Q instances cannot overlap,
the absence of local state ensures that Q instances cannot influence each other,
even if executed consecutively by the same thread. Hence, we can use a single
thread executing the iteration Q∗ in order to explore the interference caused by∏∞

Q. This justifies the usage of Q∗ for the effect coverage above. The check for
statelessness is similar to the one of effect coverage. If both tests succeed, the
analysis information is guaranteed to be sound.

Overview of the Approach, Its Advantages, and Experimental Evalu-
ation. Overall, our thread-modular analysis proceeds as follows. We employ the
CAS block heuristic to compute candidate summaries. We use these candidates
to determine the interferences in the fixed-point computation. Once the fixed
point has been obtained, we check whether the candidates are valid summaries.
If so, the fixed point contains sound information, and can be used for verification
(or, an on-the-fly computed verification result can be used). Otherwise, verifica-
tion fails. Currently, we do not have a refinement loop because it was not needed
in our experiments.

Our method overcomes the limitations of the previous approaches as follows.
The summary program, Q, is quadratic in the syntactic size of the program—not
in the size of the fixed point. The interference step executes the summary on all
views in the current set X, which means an effort linear rather than quadratic in
the fixed-point approximant. Moreover, Q is often acyclic and hence needs linear
time to execute, as opposed to the worst case exponential merge or match. In
our benchmarks, we needed at most 5 very short summaries, usually around 3–5
lines of code each. The computation of candidate summaries (based on cheap
and standard static analyses) and their check for validity are separated from the
fixed point, and the cost of both operations is negligible. We stress that our fixed
point as well as the validity check do not rely on the actual algorithm used to
compute the summary.

We implemented our thread-modular analysis with effect summaries on top
of our state-of-the-art tool [14] based on thread-modular reasoning with merge-
and-project. We applied the implementation to verify linearizability in a number
of concurrent list implementations. Compared to [14], we obtain a speed-up of
two orders of magnitude. Moreover, we managed to infer stateless effect sum-
maries for all our case studies except the DGLM queue [8] under explicit memory
management (where one needs to go beyond statelessness). However, we are not
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aware of any automatic approach that would be able to verify linearizability of
this algorithm.

2 Effect Summaries on an Example

The main complication for writing lock-free algorithms is to guarantee robustness
under interleavings. The key idea to tackle this issue is to use a specific update
pattern, namely the CAS-blocks discussed in Sect. 1. We now show how CAS
blocks are employed in Treiber’s lock-free stack implementation under garbage
collection, the code of which is given in Listing 1. The push method implements
a CAS block by: (1) copying the top of stack pointer, top=ToS, (2) linking
the node to be inserted to the current top of stack, node.next=top, and
(3) making node the new top of stack in case no other thread changed the
shared state, CAS(ToS,top,node). Similarly, pop proceeds by: (1) copying
the top of stack pointer, top=ToS, (2) querying its successor, next=top.next,
and (3) swinging ToS to that successor in case the stack did not change,
CAS(ToS,top,next).

struct Node { data_t data; Node next; }
shared Node ToS;

void push(data_t in) {
Node node = new Node(in);
while (true) {

Node top = ToS;
node.next = top;
if(CAS(ToS, top, node)){

return;
} } }

S1: atomic {
/* push */
Node node = new Node(*);
node.next = ToS;
ToS = node;

}

bool pop(data_t& out) {
while (true) {

Node top = ToS;
if(top == NULL){

return false;
}
Node next = top.next;
if(CAS(ToS, top, next)){

out = top.data;
return true;

} } }

S2: atomic {
/* pop */
assume(ToS != NULL);
ToS = ToS.next;

} S3: atomic { /* skip */ }

Listing 1. Pseudo code of the Treiber’s lock-free stack [31] and its effect summaries.

Following the CAS-block idiom, the only statements modifying the shared
heap in Treiber’s stack are the CAS operations. Hence, we identify three types of
effects on the shared heap. First, a successful CAS in push makes ToS point to a
newly allocated cell that, in turn, points to the previous value of ToS. Second, a
successful CAS in pop moves ToS to its successor ToS.next. Since we assume
garbage collection, the removed element is not freed but remains in the shared
heap until collected. Third, the effect of any other statement on the shared heap
is the identity.

With the effects of Treiber’s stack identified, we can turn towards finding
an approximation. For that, consider the program fragments from Listing 1: S1
covers the effects of the CAS in push, S2 covers the effects of the CAS in pop,
and, lastly, S3 produces the identity-effect covering all remaining statements.
Then, the summary program is Q = S1 ⊕ S2 ⊕ S3.
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To obtain the non-trivial summaries S1 and S2, it suffices to concentrate
on the block of code between the top=ToS assignment and the subsequent
CAS(ToS,top, ) statement. Without going into details (which will be provided
in Sect. 5), the summaries result from considering the code between the two
statements atomic, performing simplification of the code under this atomicity
assumption, and including some purely local initialization and finalization code
(such as the allocation in the push method).

3 Programming Model

A concurrent program P is a parallel composition of threads T . The threads are
while-programs formed using sequential composition, non-deterministic choice,
loops, atomic blocks, skip, and primitive commands. The syntax is as follows:

P :: = T
∣
∣ P ‖P T :: = T1;T2

∣
∣ T1 ⊕ T2

∣
∣ T ∗ ∣

∣ atomic T
∣
∣ skip

∣
∣ C .

We use Thrd for the set of all threads. We also write P ∗ to mean a program
P with the Kleene star applied to all threads. The syntax and semantics of
the commands in C are orthogonal to our development. We comment on the
assumptions we need in a moment.

We assume programs whose threads implement methods from the interface
of the lock-free data structure which is to be verified. The fact that, at runtime,
we may find an arbitrary (finite) number of instances of each of the threads
corresponds to an arbitrary number of concurrent method invocations. The veri-
fication task is then formulated as proving a designated shared heap unreachable
in all instantiations of the program. Since thread-modular analyses simultane-
ously reason over all instantiations of the program, we refrain from making this
parameterization more explicit. Instead, we consider program instances simply
as programs with more copies of the same threads.

We model heaps as partial and finite functions h :Var ∪ N � N. Hence, we
do not distinguish between the stack and the heap, and let the heap provide
valuations for both the program variables from V ar and the memory cells from
N. We use H for the set of all heaps. Initially, the heap is empty, denoted by
emp with dom(emp) = ∅. We write ⊥ if a partial function is undefined for an
argument: h(e) = ⊥ if e �∈ dom(h).

We assume each thread has an identifier from Tid ⊆ N. A program state is
a pair (s, cf ) where s ∈ H is the shared heap and cf :Tid → Thrd × H maps the
thread identifiers to thread configurations. A thread configuration is of the form
(T, o) with T ∈ Thrd and o ∈ H being a heap owned by T . If cf = {i → (T, o)}
contains a single mapping, we write simply (s, (T, o)).

Our development crucially relies on having a notion of separation between the
shared heap s and the owned heap o of a thread T . However, the actual definitions
of what is owned and what shared are a parameter to our development. We just
require the separation to respect disjointness of the shared and owned heaps and
to be defined such that it is preserved across execution of program statements.
The latter is formalized below in Assumption 1. To render disjointness formally,
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we say that a state (s, cf ) is separated, denoted by separate(s, cf ), if, for every
i1, i2 ∈ dom(cf ) with cf (ij) = (Tij , oij ) and i1 �= i2, we have dom(s)∩dom(oij )∩
N = ∅ and dom(oi1)∩dom(oi2)∩N = ∅. Note that, in order to allow for thread-
local variables, the heaps need to be disjoint only on memory cells (but not on
variables), thus the additional intersection with N.

We use → to denote program steps. The sequential semantics of threads is
as expected for sequential composition, choice, loops, and skip. An atomic block
atomic T summarizes a computation of the underlying thread T into a single
program step. The semantics of primitive commands depends on the actual set
C. We do not make it precise but require it to preserve separation in the following
sense.

Assumption 1. Foreverystep(s, (T, o)) →(s′, (T ′, o′))withseparate(s, (T, o)),
we have separate(s′, (T ′, o′)).

The semantics of a concurrent program incorporates the requirement for
separation into its transition rule. A thread may only update the shared heap
and those parts of the heap it owns. No other parts can be modified. Therefore,
we let threads execute in isolation and ensure that the combined resulting state
is separated:

(s, cf (i)) → (s′, cf ′′) cf ′ = cf [i → cf ′′] separate(s′, cf ′)
(par)

(s, cf ) → (s′, cf ′)

Although a precise notion of separation is not needed for the development of
our approach in Sect. 4, we give, for illustration, the notion we use in our imple-
mentation and experiments. In the case of garbage collection (like in Java), the
owned heap of a thread includes, as usual, its local variables and cells accessible
from these variables, which were allocated by the thread but never made acces-
sible through the shared variables. The shared heap then contains the shared
variables, all cells that were once made accessible from them, as well as cells
waiting for garbage collection. For the case of explicit memory management, we
need a more complicated mechanism of ownership transfer where a shared cell
can become owned again. We propose such a mechanism in Sect. 6.

We assume the computation of the program under scrutiny to start from an
initial state initP = (sinit, cf init,P ) where sinit is the result of an initialization
procedure. The initial thread configurations, denoted by cf init,T , are of the form
(T, emp). The initialization procedure is assumed to be part of the input pro-
gram. We are interested in the shared heaps reachable by program P from its
initial state:

SH(P ) := {s | ∃ cf . initP →∗ (s, cf )}.
In what follows, we assume that the correctness of a program P can be read

of its reachable shared heaps, SH(P ). For this, some instrumentation of P might
be needed. Such instrumentations are possible for a variety of properties. In
particular, the instrumentation with observer automata from Sect. 1 allows one
to check for linearizability.



176 L. Hoĺık et al.

4 Interference via Summaries

We now present our new approach to computing the effect of thread inter-
ference steps on the shared heap (corresponding to evaluating the expression
interfere(X) from Sect. 1 for a set of views X) in a way which is suitable for
concurrency libraries. In particular, we introduce a notion of a stateless effect
summary Q: a program whose repeated execution is able to produce all the
effects on the shared heap that the program under scrutiny, P , can produce.
With a stateless effect summary Q at hand, one can compute interfere(X) by
repeatedly applying Q on the views in X until a fixed point is reached. Here,
statelessness assures that Q is applicable repeatedly without any need to track
its local state.

Later, in Sect. 5, we provide a heuristic for deriving candidates for stateless
effect summaries. Though our experiments show that the heuristic we propose
is very effective in practice, the candidate summary that it produces is not
guaranteed to be an effect summary, i.e., it is not guaranteed to produce all the
effects on the shared heap that P can produce. A candidate summary which is not
an effect summary is called unsound. To guarantee soundness of our approach
even when the obtained candidate summary is unsound, we provide a test of
soundness of candidate summaries. Interestingly, as we prove, it is the case that
even (potentially) unsound candidate summaries can be used to check their own
soundness—although this step appears to be cyclic reasoning.

4.1 Stateless Effect Summaries

We start by formalizing the notion of statelessness. Intuitively, a thread is state-
less if it terminates after a single step and disposes its local heap. Formally, we
say that a thread T of a program Q is stateless if, for all reachable shared heaps
s ∈ SH(Q∗) and all transitions (s, cf init,T ) →(s′, cf ), we have cf = (skip, emp).
A program Q is stateless if so are all its threads. Note that statelessness should
hold from all reachable shared heaps rather than from just all heaps. While an
atomic execution to skip would be easy to achieve from all heaps, a clean-up
yielding emp can only be achieved if we have control over the thread-local heap.
Also note that statelessness basically requires a thread to consist of a top-level
atomic block to ensure termination in a single step.

For an example, consider the summary S1 of push in Treiber’s stack from
Listing 1. It is stateless because (1) the top-level atomic block ensures execution
in a single step, and (2) the allocated node is published, i.e., moved from the
owned heap to the shared heap.

Next, we define the effects of a program P , denoted by EF (P ) ⊆ H × H, to
be the set EF (P ) = {(s, s′) | initP →∗ (s, cf ) → (s′, cf ′)}. This set generalizes
the reachable shared heaps, SH(P ): it contains all atomic (single-step) updates
P performs on the heaps from SH(P ).

In Treiber’s stack, as discussed in Sect. 2, the updates performed by the CAS
statements are effects. The remaining statements also yield effects. However,
since they do not modify the shared heap, they produce the identity effect.
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Altogether, a program Q is a (stateless) effect summary of P if it is stateless
and EF (T ‖Q∗) ⊆ EF (Q∗) holds for all threads T ∈ P . We refer to this inclusion
as the effect inclusion. Intuitively, it states that Q∗ subsumes all the effects T
may have under interference with Q∗. The lemma below shows that the effect
inclusion can be used to check whether a candidate summary is indeed an effect
summary. Moreover, the check can deal with the different threads separately.

Lemma 1. If Q is stateless and EF (T ‖Q∗) ⊆ EF (Q∗) holds for all T ∈ P,
then we have EF (P ) ⊆ EF (P ‖Q∗) ⊆ EF (Q∗).

In what follows, we describe our novel thread-modular analysis based on effect
summaries. We assume that, in addition to the program P under scrutiny, we
have a program Q which is a candidate for being a summary of P (obtained, e.g.,
by the heuristic that we provide in Sect. 5). In Sect. 4.2, we first provide a fixed-
point computation where the interference step is implemented by a repeated
application of the candidate summary Q. We show that if the candidate summary
Q is an effect summary, then the fixed point we compute is a conservative over-
approximation of the reachable shared heaps of P . Next, in Sect. 4.3, we show
that the fact whether or not Q is indeed an effect summary of P can be checked
efficiently on top of the computed fixed point (even though the fixed point need
not over-approximate the reachable shared heaps of P ).

In the case that the test of Sect. 4.3 fails, Q is not an effect summary of P ,
and our verification fails with no definite answer. As future work, one could think
of proposing ways of patching the summaries based on feedback from the failed
test. Then, along the lines of [5,6], the previously computed, unsound state space
can be reused: one applies the newly added summaries to the already explored
states and continues with the analysis afterwards. However, in our experiments,
using the heuristic computation of candidate summaries proposed in Sect. 5, this
situation has not happened for any program where a stateless effect summary
exists. In the only experiment where our approach failed (the DGLM queue
under explicit memory management, which has not been verified by any other
fully automatic tool), the notion of stateless effect summaries itself is not strong
enough. Hence, a perhaps more interesting question for future work is how to
further generalize the notion of effect summaries.

4.2 Summaries in the Fixed-Point Computation

To explore the reachable shared heaps of a program P , we suggest a thread-
modular analysis which explores the reachable states of the threads T ∈ P in
isolation. To account for the possible thread interleavings of the original program,
we apply interference steps to the threads T by executing the provided summary
Q. Conceptually, this process corresponds to exploring the state space of the two-
thread programs T ‖Q∗ for all syntactically different threads T ∈ P . Technically,
we collect the reachable states of those programs in the following least fixed point:

X0 = {(sinit, (T, emp)) | T ∈ P}
Xi+1 = Xi ∪ seq(Xi) ∪ interfere(Xi) .
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Since Q∗ has no internal state, the analysis only keeps the thread-local config-
urations of the threads T . Functions seq(·) and interfere(·) compute sequential
steps (steps of T ) and interference steps (steps of Q∗), respectively, as follows:

seq(Xi) = {(s′, cf ′) | ∃ (s, cf ) ∈ Xi. (s, cf ) → (s′, cf ′)}
interfere(Xi) = {(s′, cf ) | separate(s′, cf ) ∧ ∃ s, cf ′.

(s, cf ) ∈ Xi ∧ (s, cf init,Q) → (s′, cf ′)} .

Function seq(Xi) is standard. For interfere(Xi) we apply Q to each configuration
(s, cf ) ∈ Xi by letting it start from the shared heap s and its initial thread-local
configuration cf init,Q. Then we extract the updated shared heap, s′, resulting in
the post configuration (s′, cf ). Altogether, this procedure applies to the views
in Xi the shared heap updates dictated by Q. The thread-local configurations,
cf , of threads T are not changed by interference. This locality follows from the
separation.

The following lemma states that the set of shared heaps collected from the
above fixed point is indeed the set of reachable shared heaps of all T ‖Q∗. Let
Xk be the fixed point and define R = {s | ∃cf . (s, cf ) ∈ Xk}.

Lemma 2. If Q is a summary of P , then R =
⋃

T∈P SH(T ‖Q∗).

With the state space exploration in place, we can turn towards a soundness
result of our method: given an appropriate summary Q, the fixed-point compu-
tation over-approximates the reachable shared heaps of P .

Theorem 1. If Q is a summary of P , then we have SH(P ) ⊆ SH(Q∗) = R.

The rationale behind the theorem is as follows. Relying on Q being a summary of
P provides the effect inclusion. So, Lemma 1 yields EF (P ‖Q∗) ⊆ EF (Q∗). From
the definition of effects we can then conclude SH(P ‖Q∗) ⊆ SH(Q∗). Thus, we
have SH(P ) ⊆ SH(Q∗) because SH(P ) ⊆ SH(P ‖Q∗) is always true. This shows
the first inclusion. Similarly, the effect inclusion gives SH(T ‖Q∗) ⊆ SH(Q∗) by
the definition of reachability. Hence, we conclude using Lemma 2.

4.3 Soundness of Summarization

Soundness of our method, as stated by Theorem 1 above, is conditioned by Q
being a summary of P . In our framework, Q is heuristically constructed and
there is no guarantee that it really summarizes P . Hence, for our analysis to
be sound, we have to check summarization; we have to establish (1) the effect
inclusion, and (2) statelessness of Q. To that end, we check that (1) every update
T performs on the shared heap in the system T ‖Q∗ can be mimicked by Q, and
that (2) every execution of Q terminates in a single step and does not retain
persistent local state. We implement those checks on top of the fixed point, Xk,
as follows:

∀ (s, cf ) ∈ Xk ∀ s′, cf ′, i ∃cf ′′.
(s, cf ) → (s′, cf ′) =⇒ (s, cf init,Q) → (s′, cf ′′) (chk-mimic)

∧(s, cf init,Q(i)) → (s′, cf ′) =⇒ cf ′ = (skip, emp) (chk-stateless)
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The above properties indeed capture our intuition. The former, (chk-mimic),
states that, for every explored T -step of the form (s, cf ) → (s′, cf ′), the effect
(s, s′) is also an effect of Q. That is, executing Q starting from s yields s′.
This establishes the effect inclusion as required by Lemma 1. The latter check,
(chk-stateless), states that every thread of Q must terminate in a single step
and dispose its owned heap. This constraint is relaxed to those shared heaps
which have been explored during the fixed-point computation. That is, it ensures
statelessness of Q on all heaps from R. The key aspect is to guarantee that R
includes SH(Q∗) as required by the definition. We show that this inclusion follows
from the check.

The above checks rely on the fixed point, which, in turn, is computed using
the candidate summary Q. That is, we use Q to prove its own correctness. Nev-
ertheless, our development results in a sound analysis as stated by the following
theorem.

Theorem 2. The fixed point Xk satisfies (chk-mimic) and (chk-stateless)
if and only if Q is a summary of P .

5 Computing Effect Summaries

We now provide our heuristic for computing effect summaries. It is based on CAS
blocks between an assignment t=T, denoted as checked assignment, and a CAS
statement CAS(T,t,x), denoted as checking CAS below. Since we compute a
summary for each such block, the number of summaries is at most quadratic in
the size of the input.

In what follows, consider some method M given by its control-flow
graph (CFG) G = (V,E, vinit , vfinal). The CFG has a unique initial and a unique
final state, which we will use in our construction. Return commands are assumed
to lead to the final state. As we are only interested in the effect on the shared
heap, we drop return values from return commands. Likewise, we skip assign-
ments to output parameters unless they are important for the flow of control in
M . We assume the summaries to execute with non-deterministic input values,
and so we replace every input parameter with a symbolic value ∗. Conditionals,
loops, and CAS commands are represented by two edges, for the successful and
failing execution, respectively. Let easgn := (vasgns , t=T, vasgnt) be the CFG edge
of the checked assignment, and let the successful branch of the checking CAS
be ecas := (vcas , CAS(T,t,x), vcassuc). Next, let easgn′ := (vasgns , t=T, vasgnt′) be
a copy of the checked assignment to be used as the beginning of the CAS block,
and let ecas′ := (vcas , CAS(T,t,x), vcassuc′) be a copy of the checking CAS to be
used as the end of the CAS block. Here, vasgnt′ and vcassuc′ are fresh nodes.

To give a concise description of effect summaries, the following shortcuts will
be helpful. We write rand(G) for the CFG obtained from G by replacing each
occurrence of a shared variable by a non-deterministic value ∗. By G − S, we
mean the CFG obtained from G by dropping all edges carrying commands from
the set S. Given nodes v1 and v2, we denote by G(v1, v2) the CFG obtained
from G by making v1/v2 the initial/final node, respectively. Given two CFGs G
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and G′, we define G;G′ as their disjoint union where the single final state of G is
merged with the single initial state of G′. Finally, we allow compositions e;G and
G; e of a CFG G with a single edge e, by viewing e as a CFG consisting of a single
edge with the initial/final nodes being the initial/final nodes of e, respectively.

The construction of the summary proceeds in two steps. First we identify the
CAS block and create the control-flow structure, then we clean it up using data
flow analysis and generate the final code of the summary. Note that the clean-up
step is optional but generates a concise form beneficial for verification.

Step 1: Control-flow structure. A summary consists of an initialization phase,
followed by the CAS block, and a finalization phase. The first step results in the
CFG

Ginit ;Gblock ;Gfinal .

The guiding theme of the construction is to preserve all sequences of commands
that may lead through the CAS block.

In the initialization phase, which is intended for purely local initialization, the
method is assumed to be interrupted by other threads in the sense that the values
of shared pointers may spontaneously change. Therefore, we replace all depen-
dencies on shared variables by non-deterministic assignments. Moreover, all
return commands are removed since we have not yet passed the CAS block. Even-
tually, when arriving at the vasgns location, the summary non-deterministically
guesses that the CAS block should begin, and so the control is transferred to it
via the easgn′ edge. Hence, the initialization is:

Ginit := (rand(G) − {return})(vinit , vasgns) .

The CAS block begins with the easgn′ edge, i.e., with the checked assignment,
and ends with the ecas′ edge, i.e., the checking CAS statement. From the CAS
block, we remove all control-flow edges with assignments t=T as we fixed the
checked assignment when entering the CAS block (other assignments of the form
t=T, if present, will give rise to other CAS blocks; and a repeated execution of
the same checked assignment then corresponds to a repeated execution of the
summary). We also remove the return commands as the finalization potentially
still has to free owned heap. Failing executions of the checking CAS do not leave
the CAS block (and typically get stuck due to the removed checked assignments).
Successful executions may leave the CAS block, but do not have to. Eventually,
the summary guesses the last successful execution of the checking CAS and
enters the finalization phase. Hence, we get the following code:

Gblock := easgn′ ; ((G − {return, t=T})(vasgnt , vcas)); ecas′ .

Sometimes, the checked assignment can use local variables assigned prior to
the checked assignment. In such a case, we add edges with these assignments before
the easgn′ edge. This happens, e.g., in the enqueue procedure of Michael&Scott’s
lock-free queue where the sequence tail=Tail;next=tail.next is used. If
the checked assignment is next=tail.next, we start Gblock with edges contain-
ing tail=Tail and next=tail.next.
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Fig. 1. Step 1 in the summary computation for the pop method in Treiber’s stack.

The finalization phase, again, cannot rely on shared variables. However, here,
we preserve the return statements to terminate the execution:

Gfinal := rand(G)(vcassuc , vfinal) .

Figure 1 illustrates the construction on the pop method in Treiber’s stack.
Instead of a CFG, we give the source code. STOP represents deleted edges and
the fact that we cannot move from one phase to another not using the new edges.

Step 2: Cleaning-up and summary generation. We perform copy propagation
using a must analysis that propagates an assignment y=x to subsequent assign-
ments z=y, resulting in z=x. That it is a must analysis means the propagation is
done only if z=y definitely has to use the value of y that stems from the assign-
ment y=x. Moreover, we perform the copy propagation assuming that the entire
summary executes atomically. For the initialization phase, the result is that the
non-deterministic values for shared variables propagate through the code. Simi-
larly, for the CAS block, the shared variables themselves propagate through the
code. For the finalization phase, non-deterministic values propagate only in the
case when a local variable does not receive its value from the CAS block. As a
result, after the copy propagation, the CAS and the finalization block may con-
tain conditionals that are constantly true or constantly false. We replace those
that evaluate to true by skip and remove the edges that evaluate to false. The
result of the copy propagation is illustrated in Fig. 2.

Subsequently, we perform a live variables analysis. A variable is live if it
may occur in a subsequent conditional or on the right-hand side of a subsequent
assignment. Otherwise, it is dead. We remove all assignments to dead variables
including output parameters. In our running example, all assignments to local
variables as well as to the output parameter can be removed.

Next, we remove code that is unreachable, dead, or useless. Unreachable code
can appear due to the modifications of the CFG. Dead code does not lead to
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Fig. 2. Copy propagation within the summary computation for pop in Treiber’s stack.

the final location. Useless code does not have any impact on the values of the
variables used, which can concern even (possibly infinite) useless loops.

Finally, the resulting code is wrapped into an atomic block, and conditionals
are replaced by assume statements. For the pop method in Treiber’s stack, we
get the summary S2 given in Listing 1.

6 Generalization to Explicit Memory Management

We now generalize our approach to explicit memory management. The problem
is that the separation between the shared and owned heap is difficult to define
and establish in this case. Ownership as understood in garbage collection, where
no other thread can access a cell that was allocated by a thread but not made
shared, does not exist any more. Memory can be freed and reallocated, with
other threads still holding (dangling) pointers to it. These threads can read and
modify that memory, hence the allocating thread does not have strong guarantees
of exclusivity. However, programmers usually try to prevent effects of accidental
reallocations: threads are designed to respect ownership. That is, a thread should
be allowed to execute as if it had exclusive access to the memory it owns.

Our development is parameterized by a notion of separation between the
shared and owned heap. To generalize the results, we provide a new notion of
ownership suitable for explicit memory management. However, the new notion
is not guaranteed to be preserved by the semantics. Instead, we include into our
fixed-point computation a check that the program respects this ownership, and
give up the analysis if the check fails.

To understand how the heap separation is influenced by basic pointer manip-
ulations, we consider the following set of commands C:

x = malloc, x = free, x = y, x = y.sel i, x.sel i = y .

Here, x, y are program variables and sel0, . . . , seln are selectors, from which the
first, say m, are pointer selectors and the rest are data selectors. Command
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x = malloc allocates a record, a free block of addresses a+0, . . . , a+n, and sets
h(x) to a. Command x = free frees the record h(x) + 0, . . . , h(x) + n. Selectors
correspond to field accesses: x.sel i refers to the content of a+ i if x points to a.
The remaining commands have the expected meaning.

6.1 Heap Separation

We work with a three-way partitioning of the heap into shared, owned, and free
addresses. Free are all addresses that are fresh or have been freed and not real-
located. Shared is every address that is reachable from the shared variables and
not free. The reachability predicate, however, requires care. First, we must obvi-
ously generalize reachability from the first memory cell of a record to the whole
record. Second, we must not use undefined pointers for reachability. A pointer
is undefined if it was propagated from uninitialized or uncontrolled memory.
Letting the shared heap propagate through such values would make it possible
for the entire allocated heap to be shared (since undefined pointers can have an
arbitrary value). Then, owned is the memory which is not shared nor free. The
owned memory is partitioned into disjoint blocks that are owned by individual
threads. A thread gains ownership by moving memory into the owned part, and
loses it when the memory is removed from the owned part. The actions by which
a thread can gain ownership are (1) allocation and (2) breaking reachability from
shared variables by an update of a pointer or a shared variable (ownership trans-
fer). An ownership violation is then a modification of a thread’s owned memory
by another thread. This can in particular be (1) freeing or publishing the owned
memory or (2) an update of a pointer therein. A program respects ownership if
it cannot reach an ownership violation.

Let us discuss these concepts formally. We use ⊥ to identify free cells. That
is, in a heap h address a is free if h(a) = ⊥ (also written a /∈ dom(h)). A
record is free if so are all its cells. Consequently, the free command sets all
cells of a record to ⊥. The shared heap is identified by reachability through
defined pointers starting from the shared variables. For undefined pointers we
use the symbolic value udef. Initially, all variables are undefined. Moreover, we
let allocations initialize the selectors of records to udef. We use a value distinct
from ⊥ to detect ownership violations by checking whether ⊥ is reachable from
the shared heap (see below). Value udef is explicitly allowed to be reachable (this
may be needed for list implementations where selectors of sentinel nodes are not
initialized). Let Ptrs be the shared pointer variables. Then, the addresses of the
shared records in a heap h, denoted by records(h) ⊆ N ∪{⊥}, are collected by
the following fixed point (where the address of a record is its lowest address):

S0 = {a | ∃x ∈ Ptrs . h(x) = a �= udef}
Si+1 = {b | ∃ a∈Si ∃ k. a �= ⊥ ∧ 0 ≤ k < m ∧ h(a + k) = b �= udef}

All addresses within the shared records are shared. The remaining cells, i.e.,
those that are neither free nor shared, are owned. This definition establishes a



184 L. Hoĺık et al.

sufficient separation for Assumption 1. It is automatically lifted to the concurrent
setting by Rule (par) following the intuition from above.

It remains to detect ownership violations, which occur whenever a thread
modifies cells owned by other threads. Due to the separation integrated into
Rule (par), threads execute with only the shared heap and their owned heap
being visible. The remainder of the heap is cut away. By choice of ⊥ to identify
free cells, the cut away part appears free to the acting thread. In particular, the
parts owned by other threads appear free. Hence, in order to avoid ownership
violations, a thread must not modify free cells. To that end, an ownership viola-
tion occurs if (A) a free cell is freed again, (B) a free cell is written to, or (C) a
free cell is published to the shared heap. For (A) and (B) we extend the seman-
tics of commands to raise an ownership violation if a free cell is manipulated.
For (C) we check for every program step whether it results in a shared heap
where ⊥ is made reachable.

Formally, we have the following rules.

∃ sel . (s � o)(x).sel /∈ dom(s � o)
(A)

(s, (x = free, o)) → violation

(s � o)(x).sel /∈ dom(s � o)
(B)

(s, (x.sel = y, o)) → violation

(s, cf ) → (s′, cf ′) ⊥ ∈ records(s′)
(C)

(s, cf ) → violation

Note that reading out free cells is allowed by the above rules. This is necessary
because lock-free algorithms typically perform speculating reads and check only
later whether the result of the read is safe to use. Moreover, note that our
detection of ownership violations can yield false-positives. A cell may not be
owned, yet an ownership violation is raised because it appears free to the thread.
We argue that such false-positives are desired as they access truly free memory.
Put differently: an ownership violation detected by the above rules is either
indeed an ownership violation or an unsafe access of free memory, that is, a bug.

6.2 Ownership Transfer

The above separation is different from the one used under garbage collection
in the earlier sections. When an address becomes unreachable from the shared
variables, it is transferred into the acting thread’s owned heap (although other
threads may still have pointers to it). We introduce this ownership transfer
to simplify the construction of summaries. The idea is best understood on an
example.

Under explicit memory management, threads free cells that they made
unreachable from the shared variables to avoid memory leaks. Consider, for
example, the method pop in Treiber’s stack (Listing 1). There, a thread updates
the ToS variable making the former top of stack, say a, unreachable from the
shared heap. In the version for explicit memory management, a is then freed
before returning. If ownership was not transferred and address a stayed shared,
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then two summaries would be needed: one for the update of ToS and one for free-
ing a. However, a stateless version of the latter summary could not learn which
address to free since it starts with the empty local heap and with a unreachable
from the shared heap. If, on the other hand, ownership of a is transferred to the
acting thread, then the former summary can include freeing a (which does not
change the shared heap). Moreover, it is even forced to free a in order to remain
stateless since a would otherwise persist in its owned heap.

We stress that our framework can be instantiated with other notions of sep-
aration, like an analogue of the one for garbage collection or the one of [14],
which both do not have ownership transfer. This would complicate the reason-
ing in Sect. 4, but could lead to a more robust analysis (ownership transfer is
prone to ownership violations).

6.3 ABA Prevention

Additionally, synchronization mechanisms can be incorporated into our app-
roach. For instance, lock-free data structures may use version counters to pre-
vent the ABA problem [23]: a variable leaves and returns to the same address,
and an observer incorrectly concludes that the variable has never changed. A
well-known scenario of this type causes stack corruption in a naive extension
of Treiber’s stack to explicit memory management [23]. To give the observer a
means of detecting that a variable has been changed, pointers are associated
with a counter that increases with every update.

In our analysis, such version counters must be persistent in the shared mem-
ory. Since this is an exception from the above definition of separation, a presence
of version counters must be indicated by the user (e.g., the user specifies that the
version counter of a pointer a is always stored at address a+1). The semantics is
then adapted in such a way that (1) version counters remain in the shared heap
upon freeing, (2) are retained in case of reallocations, and (3) are never trans-
ferred to a thread’s owned heap. The modifications can be easily implemented,
and are detailed in [16]. Last, the thread-modular abstraction has to be adjusted
since keeping all counters ever allocated in every thread view is not feasible. One
solution is to remember only the values of those counters that are attached to
the allocated shared and the thread’s own heap.

7 Experiments and Discussion

To substantiate our claim for practical benefits of the proposed method, we
implemented the techniques from Sects. 4 and 6.1 Therefore, we modified our pre-
vious linearizability checker [14] to perform our novel fixed-point computation.
The modifications were straightforward leveraging the existing infrastructure.

Our findings are listed in Table 1. Experiments were conducted on an Intel
Xeon E5-2670 running at 2.60 GHz. The table includes the running times (aver-
aged over ten runs) and the number of explored views (the size of set X from
1 Available at: https://github.com/Wolff09/TMRexp/releases/SAS17/.

https://github.com/Wolff09/TMRexp/releases/SAS17/


186 L. Hoĺık et al.

Table 1. Experimental results: a speed-up of up to two orders of magnitude.

Program Thread-modular [14] Thread summaries

Coarse stack GC 0.29s/343 0.03s/256

MM 1.89s/1287 0.19s/1470

Coarse queue GC 0.49/343 0.05s/256

MM 2.34s/1059 0.98s/2843

Treiber’s stack [31] GC 1.99s/651 0.06s/458

MM 25.5s/3175 1.64s/2926

Michael & Scott’s queue [23] GC 11.0s/1530 0.39s/1552

MM 11700s/19742 102s/27087

DGLM queue [8] GC 9.56s/1537 0.37s/1559

MM Unsafe (spurious) Violation

Sect. 1). Our benchmarks include well-known data structures such as Treiber’s
lock-free stack [31], Michael&Scott’s lock-free queue [23], and the lock-free
DGLM queue [8]. We do not include lock-free set implementations due to lim-
itations of the tool in handling data—not due to limitations of our approach.
We ran each benchmark under garbage collection (GC), and explicit memory
management (MM) with version counters. Additionally, we include for each
benchmark a comparison between our novel fixed point using summaries and
the optimized version of the classical thread-modular fixed point from [14].

Our experiments show that summaries provide a significant performance
boost compared to classical interference. This holds true for both garbage col-
lection and explicit memory management. For garbage collection, we experience
a speed-up of one order of magnitude throughout the entire test suite. Although
comparisons among different implementations are inherently unfair, we note that
our tool compares favorably to competitors [2,3,33,34]. Under explicit memory
management, the same speed-up is present for simple algorithms, like Treiber’s
stack. For slightly more complex implementations, like Michael&Scott’s queue,
we observe a more eminent speed-up of over two orders of magnitude. This speed-
up is present even though the analysis explores a way larger search space than
its classical counterpart. This confirms that our approach of reducing the com-
plexity of interference steps rather than reducing the search space is beneficial
for verification.

Unfortunately, we could not establish correctness of the DGLM queue under
explicit memory management with neither of the fixed points. For the classical
one, the reason was imprecision in the underlying shape analysis which resulted
in spurious unsafe memory accesses. For our novel fixed point, the tool detected
an ownership violation according to Sect. 6. While being correct, the DGLM
queue indeed features such a violation. The update pattern in the deque method
can result in freeing nodes that were made unreachable by other threads. The
problematic scenario only occurs when the head of the queue overtakes the tail.
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Despite the similarity, this behavior is not present in Michael&Scott’s queue
which is why it does not suffer from such a violation.

As hinted in Sect. 6, one could generalize our theory in such a way that
no ownership transfer is required. Without ownership transfer, however, freeing
cells becomes an effect of the shared heap which cannot be mimicked: a stateless
summary cannot acquire a pointer to an unreachable cell and thus not mimic
the free. Consequently, one has to relax the assumption of statelessness. This
inflicts major changes on the fixed point from Sect. 4. Besides program threads,
it would need to include threads executing stateful summaries. Moreover, one
would need to reintroduce interference steps. However, only such interference
steps are required where stateful summaries appear as the interfering thread.
Hence, the number of interference steps is expected to be significantly lower
than for ordinary interference. We consider a proper investigation of these issues
an interesting subject for future work.

8 Related Work

We already commented on the two approaches of computing interference steps.
The merge-and-project approach [4,11,19,22] suffers form low scalability and
precision due to computing too many merge-compatible heaps. To improve pre-
cision of interference, works like [12,30,34] track additional thread correlations;
ownership, for instance. However, keeping more information within thread states
usually has a negative impact on scalability. Moreover, for the programs of our
interest, those techniques were not applicable in the case of explicitly managed
memory which does not provide exclusivity guarantees. Instead, [2,4] proposed
to maintain views of two threads, allowing one to infer the context in which
a views occurs. Since this again jeopardizes scalability, [14] tailored ownership
towards explicit memory management. Still, computing interference remained
quadratic in the size of the fixed point. Our approach improves dramatically on
the efficiency of [14] while keeping its precision.

The learning approach in [32,34,35] and [24–26] performs a variant of
rely/guarantee reasoning [18] paired with symbolic execution and abstract inter-
pretation, respectively. In a fixed point, the interference produced by a thread is
recorded and applied to other threads in consecutive iterations. This computes
a symbolic representation of the inteference which is as precise as the underlying
abstract domain (although the precision may be relaxed by further abstraction
and hand-crafted joins). Our method improves on this in various aspects. First,
we never compute the most precise interference information. Our summaries can
be understood as a form of interpolant between the most precise approxima-
tion and the complement of the bad states. Second, our summaries are syntactic
objects (program code) which are independent of the actual verification proce-
dure and thus reusable. The learned interference may be reused only in the same
abstract domain it was computed in. Third, we show how to lift our approach to
explicit memory management what has not been done before. Fourth, our results
are independent of the actual program semantics relying only on a small core
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language. Our development required to formulate the principles that libraries
rely on (statelessness) which have not been made explicit elsewhere.

Another approach to make the verification of low-level implementations
tractable is atomicity abstraction [1,9,10,20,27,28]. The core idea is to trans-
late a given program into its specification by introducing and enlarging atomic
blocks. The code transformations must be provably sound, with the soundness
arguments oftentimes crafted for a particular semantics only. While generating
summaries is closely related to making the program under scrutiny more atomic,
we pursue a different approach. Our rewriting rules (i.e. the computation of sum-
maries) do not need to be, and indeed are not, provably sound, which allows for
much more freedom. Nevertheless, we guarantee a sound analysis. Our sanity
checks can be understood as an efficient, fully automatic procedure to check
whether or not the applied atomicity abstraction was sound. Additionally, we
do not rely on a particular memory semantics.

Simulation relations are widely used for linearizability proofs [8,9,29,36] and
verified compilation [17,21]. There, one establishes a simulation relation between
a low-level program and a high-level program stating that the latter preserves
the behaviors of the former. Verifying properties of the low-level program then
reduces to verifying the same property for the high-level program. Establishing
simulation relations, however, suffers from the same shortcomings as atomic-
ity abstraction.

Finally, [13] introduces grace periods, an idiom similar to CAS blocks. It
reflects the protocol used by a program to prohibit data corruption. During a
grace period, it is guaranteed that a thread’s memory is not freed. However, no
method for checking conformance to such periods is given. That is, soundness
of the analysis results cannot be checked when relying on grace periods whereas
our sanity checks can efficiently detect unsound verification results.

9 Conclusion

We proposed a new approach for verifying lock-free data structures. The app-
roach builds on the so-called CAS blocks (or, more generally, copy-and-check
code blocks) which are commonly used when implementing lock-free data struc-
tures. We proposed a heuristic that builds stateless program summaries from
such blocks. By avoiding many expensive merge-and-project operations, the app-
roach can greatly increase the efficiency of thread-modular verification. This was
confirmed by our experimental results showing that the implementation of our
approach compares favorably with other competing tools. Moreover, our app-
roach naturally combines with recently proposed reasoning about ownership to
improve the precision of thread-modular reasoning, which allowed us to handle
complex lock-free code efficiently even under explicit memory management. Of
course, our heuristically computed stateless summaries can miss some reach-
able shared heaps, but, as a major part of our contribution, we proved that one
can check whether this is the case on the generated state space. Hence, we can
perform sound verification using a potentially unsound abstraction.
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In the future, we would like to investigate CEGAR to include missing effects
into our summaries. The main question here is how to refine the program code
of a summary using an abstract representation of the missing effects. Further,
it may be necessary to introduce stateful summaries in order to include certain
effects, as revealed by the DGLM queue under explicit memory management.
Moreover, in theory, our approach could increase not only efficiency but also pre-
cision compared with other approaches. This is due to the atomicity of the CAS
blocks that could rule out interleavings that other approaches would explore. We
have not found this confirmed in our experiments. Nevertheless, we find it worth
investigating the theoretical and practical aspects of this matter in the future.
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Abstract. In a POPL 2014 paper, Jeannet et al. showed that abstract
acceleration is a relevant approach for general linear loops thanks to the
Jordan decomposition of the linear transformer. Bounding the number
of loop iterations involves interval-linear constraints. After identifying
sources of over-approximation, we present some improvements over their
method. First, we improve precision by using interval hulls in the Jor-
dan parameters space instead of the state space, avoiding further interval
arithmetic. Then, we show how to use conic hulls instead of interval hulls
to further improve precision.

Furthermore, we extend their work to handle linear loops with
bounded nondeterministic input. This was already attempted by
Cattaruzza et al. in a SAS 2015 paper, unfortunately their method is
unsound. After explaining why, we propose a sound approach to guarded
LTI loops with bounded nondeterministic inputs by reduction to the
autonomous case.

1 Introduction

Finding bounds on the values taken by variables is an essential step in program,
and model, verification. Difficulties arise in the presence of loops. We are here
specifically interested in loops whose body consists of a linear transformation on
the program variables, with a linear exit condition. Such loops are pervasive in
cyber-physical models as well as embedded codes.

If the number of steps is bounded, linear loops can be analyzed with iterative
methods [12,15] or bounded model checking [4]. When no bound is known or
small enough, invariants may be derived through abstract interpretation [7], with
abstract domains tailored to some of the emergent nonlinear relations [8,18], or
barrier certificates [17].

An alternative approach, abstract acceleration [9,10], aims at replacing the
loop by a single abstract transformer. Jeannet et al. [11] proved the approach
tractable for general linear loops. Cattaruzza et al. [5,6] tried to extend their
result to general linear loops with bounded inputs, unfortunately their analysis
is not clearly stated and based on unsound assumptions.

We describe our problem in more details and introduce some notations in
Sect. 2. We then express, in Sect. 3, Jeannet et al.’s approach [11] in our setting.
c© Springer International Publishing AG 2017
F. Ranzato (Ed.): SAS 2017, LNCS 10422, pp. 192–211, 2017.
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This is more than just a reminder, in particular we clearly identify sources of
over-approximation, and is necessary for the clarity of the rest of the paper. Our
contributions to the abstract acceleration of loops without inputs are presented
in Sect. 4 and experimentally evaluated in Sect. 5. Inputs are considered in Sect. 6
in which we first demonstrate the unsoundness of Cattaruzza et al. [5] approach
before presenting our solution. Finally we discuss the impact of floating point
computations in Sect. 7.

2 Preliminaries

We are interested in the approximation of invariants for linear time-invariant
(LTI) loops over IR of the form:

assume(x ∈ X0)
while(Gx ≤ h) x := Ax + B · Get(U) + c

where G, A, and B are matrices, c and h constant vectors, X0 the initial set,
and Get(U) nondeterministically returns a fresh vector from the set U at each
loop iteration.

Without loss of generality we can restrict ourselves to (see [13], Appendix 1):

while(Gx ≤ 0) x := Ax + Get(U) with 0 ∈ U. (1)

Noting τ the effect of one loop iteration, abstract acceleration aims at finding
a sound approximation of τ∗: X0 �→ ⋃∞

i=0 τ i(X0).
We call Eq. (1) the loop representation of the problem. It can also be stated

with a sequential representation:

Xn+1 = A(Xn ∩ G) ⊕ U (2)

where G is the set {x | Gx ≤ 0}, and ⊕ is the Minkowski sum: the sum of two
sets is the set of the sums of elements of each set. Given an initial set X0, we
want to over-approximate X =

⋃∞
i=0 Xi. Throughout this paper we will mainly

use this last representation.
For the reader’s sake, we now list the notations used throughout this paper:

– A is the matrix of the linear transformation performed in the loop body;
– A is the set {Ak | k ∈ IN}, and An = {Ak | k ∈ IN, k < n};
– B denotes a box, or a product of intervals;
– d is the dimension of the system, x ∈ IRd;
– d′ ≤ d is the degree of the minimal polynomial of A;
– Vect (A) is the vector space generated by A;
– for a given basis (M0, . . . ,Md′−1) of Vect (A), m(n) is the vector describing

An in that basis, M is the set
{

m | ∃k ∈ IN,
∑d′−1

i=0 miMi = Ak
}

, and Mn is
{

m | ∃k ∈ IN, k < n,
∑d′−1

i=0 miMi = Ak
}

;
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– X =
⋃∞

k=0 Xk and Xn =
⋃n−1

k=0 Xk;
– N is the smallest index, if it exists, such that XN = X ;
– Πi and Πi,j are orthogonal projections over the line generated by component

i and the plane generated by components i and j respectively.
– for a given matrix A, |A| is the matrix obtained by taking the absolute value

of each component of A.
– for a given set S, S is an over-approximation of S, � (S) is its interval hull,

� (S) = � (S ∪ −S) is its centrally symmetric interval hull, and �T (S) is the
over-approximation of S by a polyhedron with template T .

3 Abstract Acceleration of LTI Systems Without Inputs

In this section we are interested in loops of the form:

while(Gx ≤ 0) x := Ax.

The next two subsections summarize the results of Jeannet et al. [11] using
the sequential representation of the problem. For the sake of clarity we will not
systematically cite their paper. In Sect. 3.3 we identify independent sources of
over-approximations inherent to the method.

3.1 Linear Systems Without Guards

Without guards, the program becomes while(true)x := Ax, and generates the
sequence Xn+1 = AXn. Then: X =

⋃∞
i=0 AiX0.

Considering A =
{
Ai | i ∈ [0...∞]

}
, one can compute X by applying A on

X0 element-wise: X = AX0 = {Mx | M ∈ A, x ∈ X0}.
In order to render this representation effectively useful, Jeannet et al. [11]

proceeds in three steps: express An as a nonlinear function of n; use this symbolic
expression to tightly over-approximate A with a logahedron (a certain type of
polyhedron) A; tightly over-approximate AX0 with a polyhedron.

Symbolic Expression for A. First let us remark that, following Cayley-
Hamilton theorem, A lies in a subspace of IRd×d of dimension d′ ≤ d. Thus,
for a given basis M0, . . . ,Md′−1 of this subspace, and for any n ∈ IN, there exists
a unique vector m(n) such that:

An =
d′−1∑

i=0

mi(n)Mi, and A =

⎧
⎨

⎩

d′−1∑

i=0

miMi | m ∈ M
⎫
⎬

⎭

where M = {m(n) | n ∈ IN}.
In order to find a suitable basis, with an easy to represent and approximate

M, Jeannet et al. [11] suggest to use the Jordan decomposition of A: PJP−1

(see [13], Appendix 2, to get the intuition on a simple case or [11] for the full
expression).
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Tight Over-Approximation of M. Since A is the image of M by a linear
transformation, one can obtain a polyhedral over-approximation A of A from a
polyhedral over-approximation M of M:

A =

⎧
⎨

⎩

d′−1∑

i=0

miMi | m ∈ M
⎫
⎬

⎭
.

Since each of the components of m are nonlinear, computing precisely sup-
porting hyperplanes in arbitrary directions is hard. Jeannet et al. [11] restricts
constraints to linear combinations of (almost) any two components and pro-
vides a way to compute the corresponding supporting hyperplane, leading to a
logahedral approximation of M.

Applying a Set of Linear Transformations. Jeannet et al. [11] suggest two
approaches, but the one they recommend involves expressing M and X0 with
vertices (and rays) and multiplying them pairwise, leading to the best convex
approximation of the result. They acknowledge that the exponential complexity
in the dimension starts to show at dimension 8.

3.2 Linear Systems with Guards

We are now interested in the sequence: Xn+1 = A(Xn ∩ G). Using the closed
form of Xn we can deduce that:

X =
∞⋃

n=0

An

(

X0 ∩
n−1⋂

i=0

{
x | GAix ≤ 0

}
)

.

Reduction to the Unguarded Case. In order to avoid this alternation of
unions and intersections Jeannet et al. [11] over-approximate X with:

X0 ∪ A (A (X0 ∩ G) ∩ G)

which is equivalent to applying the unguarded acceleration to X0 ∩ G before
applying the loop transformer, τ , once. In order to improve over this approxima-
tion Jeannet et al. [11] proposes to search for the first N such that XN ∩ G = ∅.
Then:

X ⊆ X0 ∪ A (AN (X0 ∩ G) ∩ G) .

Bounding the Number of Steps. We want to find the smallest n such that
Xn ∩ G is empty, which is equivalent fo finding the smallest n such that:

∅ = X0 ∩
n⋂

i=0

{
x | GAix ≤ 0

}
.

Again, this might be hard to compute directly, instead Jeannet et al. [11]
look for the smallest n such that An(X0 ∩ G) ∩ G is empty.
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Moving to Vect(A). In order to do so, they express the problem in the vector
space generated by A:

⎛

⎝
d′−1∑

i=0

mi(n)Mi

⎞

⎠ (X0 ∩ G) ∩ G = ∅ ⇐⇒ m(n) �∈ K

where K is the set of m ∈ M such that the intersection is not empty:

K = M ∩
⎧
⎨

⎩
m | ∃x ∈ X0 ∩ G,

d′−1∑

i=0

miGMix ≤ 0

⎫
⎬

⎭
.

The intersection with M is not necessary here but will be useful to con-
strain the over-approximations of K. The other part of the definition of K is
simply the set of parameters m such that the image by the corresponding linear
transformation,

∑d′−1
i=0 miMi, of at least one point of X0 ∩ G lies in G.

We are now looking for the smallest n such that m(n) �∈ K. First they
over-approximate K with a simpler convex set, then they look for a separating
hyperplane.

Approximating K. The first step consists in replacing the bilinear constraints
with interval-linear constraints by substituting X0 ∩ G with its interval hull
� (X0 ∩ G)1:

K ⊆ M ∩
⎧
⎨

⎩
m |

d′−1∑

i=0

miGMi� (X0 ∩ G) ≤ 0

⎫
⎬

⎭
.

Then, linearization techniques exploiting the template approximation of M
are applied to obtain a convex polyhedron:

K = �T (M) ∩
{

m |
d′−1∑

i=0

miGMi� (X0 ∩ G) ≤ 0

}

.

Approxmating N . Since K is convex, m(n) leaves K as soon as one of its con-
straints is violated. Thus for each constraint gx ≤ h of K, we are looking for the
smallest positive integer n such that g · m(n) > h. Unfortunately this expres-
sion is nonlinear, and finding the smallest n for arbitrary g might be costly.
Instead, Jeannet et al. [11] restricts the set of constraints to linear combinations
of two components as in Sect. 3.1 by over-approximating K with its template
polyhedron �T

(K). See [11] for technical details on how each minimization is
performed.
1 To be more precise, Jeannet et al. [11] substitute P−1(X0 ∩ G) by its interval hull

in PJiP
−1(X0 ∩ G), where P is the invertible matrix leading to the Jordan form

of A = PJP−1. Use of this transformation is not justified and its advantage is not
clear.
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3.3 Recap: Sources of Over-Approximation

We are interested in a conservative approximation of
⋃∞

i=0 Xi. This is done in two
steps: first a bound N on the smallest n such that Xn+1 is empty is computed,
then

⋃N
i=0 Xi is over-approximated. None of these steps can be done exactly

in a reasonable time, thus several approximations are performed to render the
problem practical.

Bounding the number of steps:

Ignoring the guard: Instead of looking for the smallest n such that X0 and⋂n
i=0

{
x | GAix ≤ 0

}
have an empty intersection, we look for the smallest

n such that X0 ∩ G ∩ {x | GAnx ≤ 0} is empty, ignoring the influence of
⋂n−1

i=1

{
x | GAix ≤ 0

}
.

Bounding X0 ∩ G: The problem is then further simplified to transform bilinear
constraints in K into interval-linear constraints. We look for the smallest n
such that � (X0 ∩ G) ∩ {x | GAnx ≤ 0} is empty. This approximation is
propagated and amplified by the use of interval arithmetic to approximate K
with a set of interval-linear constraints.

Linearization: K is then further approximated to replace interval-linear con-
straints with linear constraints.

Bounding K: Finally, K is tightly over-approximated with a template poly-
hedron (logahedron) so that minimizing n such that any of its constraint is
violated becomes tractable.

We do not consider the over-approximation of M in the computation of K to
be a source of error. Indeed, M here is only used to limit the error produced by
the last two steps. If they did not produce errors, the quality of the approximation
of M would have no incidence on the computed bound on the number of steps.

At last the minimization procedure itself may produce an over-
approximation: for each constraint of �T

(K) it is not guaranteed to return
a finite value, but if it does it is the minimum integer n such that m(n) violate
that constraint.

Approximating
⋃N

n=0Xn:

Ignoring the guard: Again, the first step is to ignore some of the influence
of the guard:

⋃N
n=0 Xn =

⋃N
n=0 An

(
X0 ∩⋂n−1

i=0

{
x | GAix ≤ 0

})
is over-

approximated with X0∪⋃N
n=1 An

(
X0 ∩ G ∩ {x | GAn−1x ≤ 0

})
expressed as

X0 ∪ A (AN (X0 ∩ G) ∩ G).
Bounding AN : AN is over-approximated with a logahedron: a template poly-

hedron whose constraints only involve two components at most. This over-
approximation is tight, meaning that each face of �T (AN ) touches AN . The
only room for improvement here lies in the choice of the directions of approx-
imation and the ability to find tight bounds in arbitrary directions.

Bounding �T (AN ) (X0 ∩ G) ∩ G: This operation is already quite precise,
indeed �T (AN ) (X0 ∩ G) is over-approximated by its convex hull. Yet, the
quality of the approximation with respect to AN (X0 ∩ G) ∩ G is hard to
evaluate.
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Concerning complexity, the most costly operations are:

– The symbolic computation of the Jordan form of A.
– The product �T (AN ) (X0 ∩ G) done by computing the pairwise products of

the vertices and rays generating �T (AN ) and (X0 ∩ G).

4 Contributions to Abstract Acceleration of Linear
Systems Without Inputs

The previous section offered an original presentation of the results of Jeannet
et al. [11]. Moreover, we highlighted the different sources of over-approximation.
In the current section we present our own contributions, focusing on the approx-
imation of K, the set used to bound the maximum number of iterations.

When the number of steps is finite, correctly bounding it can provide a great
improvement on precision. This bound is computed by finding the smallest n
such that m(n) �∈ K. Let us recall the expression for K:

K = M ∩
⎧
⎨

⎩
m | ∃x ∈ X0 ∩ G,

d′−1∑

i=0

miGMix ≤ 0

⎫
⎬

⎭
.

For the sake of presentation we will consider here that G is composed of
only one constraint g. When G has multiple rows, each row can be treated
independently, similarly to what is implicitly2 done by Jeannet et al. [11].

Remark 1. Independent treatment of each constraint leads to a first approxi-
mation, indeed the set {m | ∃x ∈ X, f(g0,m, x) ≤ 0 ∧ f(g1,m, x) ≤ 0} may be
smaller than the intersection:

{m | ∃x ∈ X, f(g0,m, x) ≤ 0} ∩ {m | ∃x ∈ X, f(g1,m, x) ≤ 0} .

In the first case, both constraints must be verified for the same x, in the second
case, one can choose two different x. It can be partially overcome by considering
linear combinations of constraints.

By noting L the matrix whose rows are the gMi we can express K as:

K = M ∩ {m | ∃x ∈ X ∩ G, m · Lx ≤ 0} .

In the following subsections, we make the assumption that there is no x in
X0 ∩ G such that Lx = 0, if there was, K would be equal to M, and the number
of steps would be unbounded.

2 When approximating K with interval linear constraints the relation between the
constraints parameters are lost.



Toward a Sound Analysis of Guarded LTI Loops 199

4.1 Avoiding Interval Arithmetic

As presented earlier, the first step of the approximation of K is to replace bilinear
with interval-linear constraints by first over-approximating X∩G with its interval
hull and then propagate those intervals by interval arithmetic:

K ⊆ M ∩ {m | ∃x ∈ � (X ∩ G) , m · Lx ≤ 0}
⊆ M ∩ {m | m · L� (X ∩ G) ≤ 0}

leading to a superset3 of:

M ∩ {m | m · � (L� (X ∩ G)) ≤ 0} .

Expressing
∑d′−1

i=0 miGMix as m · Lx makes it clear that interval arithmetic
can be avoided. Thus we suggest to use the interval hull of L(X ∩ G) directly:

K ⊆ M ∩ {m | ∃� ∈ � (L(X ∩ G)) , m · � ≤ 0}

leading to a more precise approximation. L(X∩G) does not need to be computed
explicitly, � (L(X ∩ G)) can be computed directly by optimizing linear functions
on X ∩ G in the directions given by L�. The procedure is efficient even if L is
not invertible.

Example 1. Starting from any point in the convex hull of {(1, 0); (0, 1)}, consider
the loop: while(x + y ≤ 10){x := 2x; y := 2y}. Jeannet et al. [11] can not find
any bound on the number of steps while our approach finds the correct one (see
[13], Appendix 3.1, for details).

The improvement is not always that dramatic but the resulting bound is
always at least as good as the one given by Jeannet et al. [11]. Indeed, their
interval linear constraints are based on a superset of � (L� (X ∩ G)) while ours
is based on � (L(X ∩ G)) directly.

Furthermore, our method does not introduce any overhead in terms of time
complexity. Indeed computing the interval hull of L(X∩G) or X∩G both involve
maximizing 2d′ or 2d respectively linear functions over X∩G as discussed earlier.

4.2 Avoiding Interval Hull

We are here again interested in the first step of the approximation of K, replacing
bilinear with interval-linear constraints.

In the previous section we were interested in what to get a product of intervals
from, we got:

K ⊆ M ∩ {m | ∃� ∈ � (L(X ∩ G)) , m · � ≤ 0} .

3 Both sets would be equal if interval arithmetic did not amplify and propagate any
approximation.
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In this section we are interested in how to get a suitable product of intervals
B such that:

K ⊆ M ∩ {m | ∃� ∈ B, m · � ≤ 0} .

Intuitively the best way to get such a product of intervals is to take the
interval hull: B = � (L(X ∩ G)). We will show that it is possible to use another
box leading to a better approximation of K. Let us first remark that:

m · � ≤ 0 ⇐⇒ ∃α ∈ IR+, α �= 0 ∧ m · (α�) ≤ 0.

Thus, if 0 �∈ L(X0 ∩ G):

K = M ∩ {m | ∃� ∈ ∠ (L(X0 ∩ G)) , � �= 0 ∧ m · � ≤ 0}

where ∠ (X) = {α� | α ∈ IR+, � ∈ X} is the conic hull of X.
We will not use this conic representation directly, instead we will look for a

product of intervals that generates a cone containing ∠ (X0 ∩ G), but not bigger
(and hopefully smaller) than the cone generated by � (X0 ∩ G), leading to a
better approximation of K. Ideally, we would like to find a product of intervals
generating the smallest possible cone. Unfortunately such a box does not neces-
sarily exist. Instead, we will show how to compute a suitable subset of � (X0 ∩ G)
and optimal degenerate boxes. First, let us characterize conic hulls of products
of closed intervals.

Theorem 1. For any product of closed intervals, its conic hull ∠ (B) is entirely
determined by its projection on canonical planes.

Proof. See [13], Appendix 4.

Algorithm 1. Interval hull subset.
Input: A nonempty set X in dimension d such that 0 �∈ � (X).
Output: A box B such that ∠ (X) ⊆ ∠ (B) and B ⊆ � (X).
1: S ← ∅d

2: for i = 0 to d − 2 do
3: for j = i + 1 to d − 1 do
4: (x, y) ← Get Pair(X, i, j)
5: Si ← � (Si ∪ {x0} ∪ {y0})
6: Sj ← � (Sj ∪ {x1} ∪ {y1})
7: end for
8: end for
9: return S

Algorithm 1 exploits this characterization to compute a box B included in
� (L(X0 ∩ G)) such that ∠ (L(X0 ∩ G)) is included in ∠ (B). The problem is
projected on each of the d(d − 1)/2 canonical planes, then solved by Get Pair
which returns two points with minimal coordinates along the two half-lines (that
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may be colinear) delimiting the cone and on the frontier of the interval hull. The
coordinates of those points are then used to update the full dimensional solution.

There are some subtleties in Get Pair. Applied on Fig. 1b it returns the
coordinates of the bottom left and top left vertices of the box. But in situations
similar to Fig. 1a, there are no half-lines delimiting the cone. Any pair of point
whose interval hull is [−ε; ε] × [−ε; ε] for ε sufficiently small is suitable, but
[0; 0] × [0; 0] does not span the whole plane. Still, Get Pair can safely return a
pair of points generating [0; 0]×[0; 0]. It will conflict with the output requirement
of Algorithm 1, but not with the underlying goal of over-approximating K. If we
denote by Bε the box returned using a conservative Get Pair, and Kε the set:
M ∩ {m | ∃� ∈ Bε, m · � ≤ 0}, then: K ⊆ ⋂

ε>0 Kε ⊆ K0. Indeed, since B0 is
closed, for any m not in K, there exists μ > 0 such that for all � ∈ B0, m · � ≥ μ.
Thus there exists ε > 0 such that m does not belong to Kε, which implies that⋂

ε>0 Kε ⊆ K0. Similar arguments allow to return the same value when the origin
is on the frontier of the interval hull.

Moreover, if a delimiting half-line does not intersect the interval hull, then
Get Pair can safely return a point with one infinite coordinate.

O

(a) No faces.

O

(b) Two faces.

O

(c) Iterative refinement.

Fig. 1. Projection of a product of intervals and its conic hull on a plane.

Another subtlety, concerns the projection of X on canonical planes. It can
be costly and unnecessary. Instead, Get Pair takes as arguments X and the
indices of the canonical vectors to project on. Starting from the conic hull of the
interval hull of X, an approximation of the exact two-dimensional conic hull is
iteratively refined by optimizing linear functions on the full dimensional X as
illustrated in Fig. 1c.

Example 2. Starting from any point in the convex hull of {(2, 1); (6, 3)}, consider
the loop: while(−2x + y ≤ 0){x := 0.9x; y := y}. Using the interval hull leads
to a bound of 23 steps, while Algorithm1 improves this bound to 13 (see [13],
Appendix 3.2, for details).
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Unfortunately, Algorithm1 needs � (L(X0 ∩ G)) to be full dimensional in
order to lead to any improvement and this is not always the case, especially for
affine systems. Instead of finding a box included in � (L(X0 ∩ G)), Algorithm 2
computes an optimal flat box whose conic hull contains L(X0 ∩ G).

Algorithm 2. Optimal flat box.
Input: A nonempty set X in dimension d and an index i such that 0 �∈ Πi� (X).
Output: The smallest box B such that ∠ (X) ⊆ ∠ (B) and, B ⊆ {x | xi = 1} or

B ⊆ {x | xi = −1}.
1: S ← ∅d

2: Si ← Sign(Πi� (X))
3: for all j �= i do
4: (x, y) ← Get Pair(X, i, j)
5: Sj ← � (Sj ∪ {x1/|x0|, y1/|y0|})
6: end for
7: return � (S)

Similarly to Algorithm 1, Algorithm 2 makes use of Get Pair, and then
scales the returned points to belong to the hyperplane {x | xi = 1}, or
{x | xi = −1} depending on the orientation of the cone. Of course this is only
applicable if for all points in X, the sign of xi is the same. This also implies that
x0 and y0 can not be 0 on line 5 of Algorithm 2. Moreover, if the components of
the points returned by Get Pair can be infinite, then the other component is
necessarily finite and different from 0. Thus standard arithmetic on IR ∪ {±∞}
can be applied.

Example 3. Starting from any point in the convex hull of {(2, 1); (6, 3)}, consider
the loop: while(−2x+y−0.1 ≤ 0){x := 0.9x; y := y+1}. Using the interval hull
leads to a bound of 5 steps, Algorithm 1 cannot help us because � (L(X0 ∩ G))
is flat. Using Algorithm 2 optimizing the first component bounds the number of
steps by 4. (see [13], Appendix 3.3, for details).

One might want to apply Algorithm2 even if zero belongs to Πi� (L(X0 ∩ G),
as long as this set does not contain points of opposing signs. But then, the
resulting K is not guaranteed to be an over-approximation, and the resulting
bound n has to be checked by optimizing the linear function x �→ −L�m(n) · x
on X0∩G in order to verify that there is no � in L(X0∩G) such that m(n) ·� ≤ 0.

As an example, consider the convex hull of (0, 1) and (2,−2). Its interval hull
is [0; 2] × [−2; 1] and Algorithm 1 would return [0; 0] × [0; 0], then K = M and
no bound on the number of iterations can be found. If instead one applies an
adapted version of Algorithm2 on the first component, the resulting box would
be [1; 1] × [−1;∞], only the half-line [0; 0]×]0;∞] is missing from the resulting
conic hull.

Algorithms 1 and 2 can be factorized to share the calls to Get Pair, result-
ing in a set of interval linear constraints. If one wants to perform only d′ − 1
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calls to Get Pair instead of d′(d′ − 1)/2, then we propose the following heuris-
tic to choose the dimension i on which to apply Algorithm2: first we filter out
all indices such that 0 belongs to Πi� (X), then we only keep all indices corre-
sponding to parameters associated with the eigenvalue λ of maximal norm, then
choose one on the highest diagonal. The rational behind this heuristic is that
at some point the associated parameter will grow faster than any other suitable
one.4

Remark 2. Unless the system has been augmented with one nonnull dimension,
it may happen that 0 ∈ � (L(X0 ∩ G)) even if 0 �∈ L(X0 ∩ G). Then the only
suitable cone generated by a product of interval spans the whole state space and
a change of variable is necessary. Since 0 �∈ L(X0 ∩ G), there exist a separating
hyperplane between 0 and L(X0 ∩ G), and a change of variable R such that
0 �∈ � (RL(X0 ∩ G)) and we can use:

K ⊆ M ∩ R� {m | ∃� ∈ � (RL(X ∩ G)) , m · � ≤ 0} .

Such a change of variable might also be useful to improve precision, in par-
ticular if RL(X ∩ G) is already a product of intervals.

4.3 Avoiding Interval-Linear Constraints

These last two improvements, avoiding interval arithmetic and avoiding inter-
val hull, tackle the approximation errors introduced in the step designated as
Bounding X0 ∩ G in Sect. 3.3 leading to interval linear constraints. The only
requirement is that one can optimize linear functions over X0 ∩ G.

If X0 is convex and X0 ∩ G can be expressed as the Minkowski sum of a
compact convex set V and the conic hull of a compact convex set R, then it is
relatively easy to show that for any α > 0:

∠ (X0 ∩ G) = ∠ (ConvexHull(V ∪ αR)) .

This can be used before applying Algorithms 1 or 2. If additionally, V and R
are, or can be over-approximated by, compact polyhedra with a low number
of vertices, then one can avoid interval linear constraints altogether. In fact
∠ (L(X0 ∩ G)) can be directly represented as a sum of rays:

∠ (L(X0 ∩ G)) =

{
∑

i

αiri|∀i, αi ≥ 0

}

.

Then for any � =
∑

i αiri in ∠ (L(X0 ∩ G)):

m · � ≤ 0 ⇔
∑

i

αim · ri ≤ 0 =⇒ ∃i, m · ri ≤ 0.

4 We use a similar heuristic in the experimental section to decide if an interval linear
constraints can lead to a bound.
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Indeed, if all elements in the sum were positive, the sum would be positive. This
only works because we are considering one constraint at a time, if the comparison
were multidimensional component-wise comparison, not being smaller than 0
would not imply being bigger than 0.

Thus:

K ⊆
⋃

i

M ∩ {m | m · ri ≤ 0}.

The other direction is trivial since all ri belong to ∠ (L(X0 ∩ G)).
K can be exactly5 expressed as a union of half-spaces (intersected with M).

In other words, K is the complement in M of a polyhedron6.

4.4 Iterative Improvement

As explained before, the number of iterations of the loop under consideration is
the smallest n such that m(n) does not belong to K. Since m(n) belongs to M
by definition, the presence of M in the expression of K is superfluous. Neverthe-
less it helps bound the successive approximations needed to get a manageable
expression for K. Once a bound N is found, one can restart the process (or
continue with another constraints) expressing K as:

K ⊆ MN ∩ {m | ∃� ∈ L(X ∩ G), m · � ≤ 0} .

Taking MN instead of M will improve subsequent approximations, and may
lead to a smaller bound on the number of iterations.

5 Experimental Evaluation

Before considering loops with bounded inputs, let us evaluate the improvements
presented so far. We only here focus on the techniques introduced in Sects. 4.1
and 4.2 because they have minimal requirements on X0 and focus on one specific
step that can be easily compared with Jeannet et al. [11] approach: deriving an
interval linear constraint in order to bound the number of loop iterations.

We randomly generated 100 linear loops in several dimensions (2, 5, 10, 15,
20). To avoid diagonal systems we generated directly the Jordan form from a
random partition of d. Then the guard and four different initial sets (balls for
the 1, 2, and ∞ norms as well as a half-line, leading to an unbounded input set)
were chosen such that all trajectories leave the guard after at most 32 steps,
resulting in a total of 2000 instances.

We compared the performances of our own implementation of Jeannet
et al. [11] algorithm with the improvement introduced in Sect. 4.1, a version
of Algorithm 1 that returns a subset of the interval hull of L(X0 ∩ G) and all
5 If there are several constraints, treating each constraint independently leads to an

over-approximation.
6 Almost the dual cone of L(X0 ∩ G).
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Fig. 2. Cumulative frequency of instances
bounded by interval linear constraint(s)
generated by: (×) Jeannet et al. [11],
(�) Sect. 4.1, (◦) Algorithm 2, and (�)
Algorithm 1.
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Fig. 3. Median execution time to gen-
erate an interval linear constraint using:
(×) Jeannet et al. [11], (�) Sect. 4.1, (◦)
Algorithm 2, and (�) Algorithm 1.

possible flat boxes by factorizing calls to Get Pair at no visible additional cost
as suggested at the end of Sect. 4.2, and a version of Algorithm2 that returns
the interval hull of L(X0 ∩G) and a box flat in the direction associated with the
asymptotically bigger component as described at the end of Sect. 4.2.

The quality of the computed interval linear constraint is assessed by comput-
ing the first n such that m(n) violates it, iteratively using exact arithmetic7, and
taking the difference with the exact bound. At some point, some components of
m(n) grows faster than all others and one may prove that the constraint will
never be violated.

Results are shown in Fig. 2: Algorithms 1 and 2 can bound exactly more than
one fifth of our instances, twice as many as Jeannet et al., and one third with
an error smaller than 8 steps. Moreover, for instances that are bounded but not
exactly, the error is a few orders of magnitude smaller, notice the log-scale for
the x-coordinates. We also found bounds for instances that Jeannet et al. was
unable to bound, representing almost 10% of our instances.

Computations were performed with a 2.5 GHz CPU and 6 Gb of memory
using Python 3.5. As expected, Fig. 3 shows that Algorithm 2 has a complexity
similar to Jeannet et al. but with a much higher constant, while Algorithm1
suffers from an additional factor d.

Figure 4 illustrates the effect of dimension on precision. Note that Algorithm 2
in dimension 15 has a precision similar to Jeannet et al. approach in dimension 5.

7 This is not how a bound N should be computed, and is only useful to asses the
quality of the interval linear constraint.
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Fig. 4. Cumulative frequency of instances bounded by interval linear constraint(s)
generated by: Jeannet et al. [11] (dashed), and Algorithm 2 (solid), in dimension 2, 5
(+), 10, 15 (×), and 20 (top to bottom).

6 Abstract Acceleration of LTI Systems with Inputs

In the previous section we introduced a few improvements over Jeannet et al. [11]
techniques for the analysis of LTI loops with no inputs. We are now interested
in loops of the form:

while(Gx ≤ 0) x := Ax + Get(U)

with Get(U) nondeterministically returning a fresh point in U at each loop
iteration, and, without loss of generality, 0 ∈ U .

Extending the work of Jeannet et al. [11] to systems with inputs has already
been attempted in Cattaruzza et al. [5]. Unfortunately the method described is
unsound. We will explain why in the next subsection before presenting a sound
extension to systems with inputs, by reducing the problem to systems without
inputs.

6.1 Unsoundness of Cattaruzza et al. SAS Paper

There are several issues with Cattaruzza et al. [5] paper and its extended ver-
sion [6]. Among them, two clearly make the method unsound and another one
exhibits this unsoundness.

The first one concerns the use of numerical algorithms to compute the Jordan
form and is discussed in more details in Sect. 7.1. The second one is central to
the method and can not be corrected easily. Almost all approximations are based
on the following (wrong) assumption [5, p. 322]:

Let gi =
∑p

j=1 aijvj , where vj are generalised eigenvectors of A. [. . .]

Then Angi =
∑p

j=1 λn
j aijvj where λj is the corresponding eigenvalue of vj .
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Which amounts to forgetting about the upper-diagonal in the Jordan decom-
position. It would only be true if the vj were eigenvectors instead of general-
ized eigenvectors, but then gi would not necessarily admit a decomposition over
them.8

Last, the experimental results section presents a comparison between their
method and LGG algorithm [16] on an example with no guards. In this con-
text, LGG algorithm is known to perform a tight over-approximation [14]: the
exact set touches all the faces of the computed approximation. Since they used
octahedral abstractions, the projections of the sets computed by LGG on state
variables coincide with the projection of the exact reachable set. Yet, their algo-
rithm computes a set with a smaller range in one dimension, effectively missing
some reachable states and exhibiting the unsoundness of the method.

6.2 Reduction to Systems Without Inputs

In order to tackle LTI loops with inputs, we will reduce the problem to LTI
loops without inputs. Some over-approximations are necessary, and we try to
limit them to over-approximation that are already present in the analysis of
systems without inputs, starting with the influence of the guard, which is only
considered at the first and last step. For the transient behavior, we ignore the
guards, then:

Xn = AXn−1 ⊕ U = AnX0 ⊕
n−1⊕

i=0

AiU.

Lemma 1. For any real matrix A and any set U , if we denote by � (.) the
interval hull, � (.) the centrally symmetric interval hull, and |A| the matrix whose
entries are the absolute value of the corresponding entries of A, we have:

n−1⊕

i=0

AiU ⊆ �
((

n−1∑

i=0

|A|i
)

� (U)

)

.

Proof. For any point u ∈ U and any vector �, it is relatively easy to show that:
Aiu · � ≤ |A|i|u| · |�|. By denoting umax the supremum, component-wise, of all
|u| for u ∈ U , we can further deduce that:

∀�, ∀v ∈
n−1⊕

i=0

AiU, v · � ≤
(

n−1∑

i=0

|A|i
)

umax · |�|.

This set of constraints uniquely defines the set

�
((

n−1∑

i=0

|A|i
)

� (U)

)

.

��
8 The authors attempted a correction [6], unfortunately Eq. (16) is only true if all the

kij are positive and the method is still unsound.
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Let us know consider the following LTI system with no inputs:

Yk+1 =

⎛

⎜
⎜
⎝

0 I I 0
0 A 0 0
0 0 I I
0 0 0 |A|

⎞

⎟
⎟
⎠Yk, and Y0 =

⎛

⎜
⎜
⎝

X0

AX0

� (U)
A � (U)

⎞

⎟
⎟
⎠ .

Then for any k, Xk ⊆ �
((

I 0 0 0
)
Yk

)
, as a direct consequence of Lemma 1.

The maximum number of iterations remains to be bounded. We can not
directly use G, because it will only guarantee that YN is fully outside the guards
while we are interested in � (YN ). If one of the components of X is bounded and
always has the same sign (which will necessarily be the case if the linear system
was obtained from an affine system by adding one dimension) we denote by B
the resulting band, then we define a new set of guards G′ as the smallest cone
containing the interval hull of the intersection between G and B. This is still not
enough, but if we consider each of the guards defined by G′ independently, we
can guarantee that if YN is outside of those guards, then � (YN ) is outside of
G. Indeed, consider Fig. 1b, if the projection of G on the corresponding plane is
delimited by the doted lines, and the bounds on the first component defined by
the width of the rectangle, then for any set within the bounds and outside of
the solid lines, its interval hull is outside of the dotted lines.

Thus a bound on the number of iteration before Yn leaves G′ also bounds
the number of iteration before Xn leaves G and we can now use the method
described in the first section for systems without inputs to analyse systems with
inputs.

In order to limit the over-approximation, one should first perform a change
of variables that isolate contracting stable subspaces of A, using a real jordan
form, and/or limit the over-approximation induced by G′.

It is to be noted that the resulting system’s dimension is four times the initial
system’s. Nevertheless the high sparsity and redundancy of the resulting system,
if correctly exploited, should lead to a moderate increase in computation time.

7 About Floating Point Numbers

Floating point numbers are an approximation of real numbers with a compact
computer representation. When doing verification, one must take into account
the errors introduced by their use in the verification process but also in the
process to verify.

7.1 Mixing Floats and Symbolic Relations

One important relation for the method to work is that for any n, An = PJnP−1.
Jeannet et al. [11] ensure soundness by computing the Jordan decomposition
symbolically, then enclosing P , J , and P−1 with interval matrices. Thus PJnP−1

represents a set of matrices containing the exact An.
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Cattaruzza et al. [5] use a numerical algorithm to compute the Jordan form,
which is much faster. Note that the Jordan decomposition is known to be numer-
ically unstable. The authors still claim soundness by bloating the diagonal ele-
ment of J with some constant δmax = |A−PJP−1|; it is not clear from the paper
which norm is considered and the proof is left to the reader. Unfortunately, this
bloating is not sufficient. Consider floating point numbers with a mantissa of
size 2m such that 22m − 1 and 22m + 2 can be represented exactly but 22m + 1
cannot. Then consider:

(
1 + 21−2m 1

−2−4m 1

)

=
(

1 1
−2−2m 1

)(
1 1
0 1

)(
1 −1

2−2m 1

)

All of these matrices can be represented exactly. With the notation A = PJP ′

and interval arithmetic over floating point numbers one can verify that A −
(PJ)P ′ = 0, thus no bloating is necessary according to Cattaruzza et al. [5]. Yet,
for any n > 1, An �= PJnP ′. The reason why is that PP ′ = P ′P = (1 + 2−2m)I
(which might be rounded to I using floating point numbers). The bloating they
introduce is unsound, in particular because the authors do not seem to consider
approximations in the matrices P and P−1.

7.2 Loops with Floating Point Arithmetic

The use of floating point arithmetic in the process to verify is not an issue
for Jeannet et al. [11], Cattaruzza et al. [5,6], or us, since we all consider loops
involving real arithmetic only. A more realistic scenario in the context of program
verification would be to consider floating point arithmetic which can have a
dramatic effect especially when the floating point errors make the system stay
longer in the body of the loop.

Again consider floating point numbers with a mantissa of size 2m such that
22m−1 and 22m+2 can be represented exactly but 22m+1 cannot. Then consider:

while(x − 2my ≤ 0)
(

x
y

)

:=
(

2m 1
0 2m

)(
x
y

)

with x0 = 2m and y0 = 1. Depending on the rounding mode, this might loop
until x = +∞. Yet, Jeannet et al. [11] method returns

(
[2m; 22m + 2], [1; 2m]

)
,

which is correct with respect to an implementation of the considered loop using
real numbers.

8 Conclusion

We proposed a novel sound approach to the unbounded reachability analysis of
guarded LTI systems with inputs. A solution has already been presented [5,6],
unfortunately several major issues makes it unsound as we have demonstrated
in this paper.
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Our approach is based on a reduction from the system with inputs to a sys-
tem without inputs. This reduction is independent from the method used to solve
the reduced system but we suggest to use abstract acceleration as described by
Jeannet et al. [11] for which we have introduced several improvements, mainly
involving the avoidance of interval arithmetic. Our improvements strictly
increase the precision, potentially dramatically as illustrated by a few sim-
ple examples and an extensive experimentation. Moreover, our description of
the work of Jeannet et al. [11] highlights various independent sources of over-
approximation and paves the way for further improvements.

Nevertheless our reduction is accompanied by a fourfold increase of dimension
and can not be efficiently exploited yet. One solution would be to take advantage
of the sparsity of the resulting system. There are also opportunities to increase
the efficiency of abstract acceleration in particular concerning the application
of the set of linear transformations A to X0, one could start with techniques
developed for parametrized systems [2,3] and implemented in CORA [1], the
cost in terms of precision remains to be evaluated.

If the approach is sound for machine integers, as long as no overflow occurs9,
future work should also focus on the use of floating point arithmetic in the loop
body, considering only diagonalizable systems might be enough since the set of
real matrices diagonalizable in Mn(C) is dense in Mn(IR).
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Abstract. Convex polyhedra capture linear relations between variables.
They are used in static analysis and optimizing compilation. Their high
expressiveness is however barely used in verification because of their cost,
often prohibitive as the number of variables involved increases. Our goal
in this article is to lower this cost.

Whatever the chosen representation of polyhedra – as constraints,
as generators or as both – expensive operations are unavoidable. That
cost is mostly due to four operations: conversion between representa-
tions, based on Chernikova’s algorithm, for libraries in double descrip-
tion; convex hull, projection and minimization, in the constraints-only
representation of polyhedra.

Libraries operating over generators incur exponential costs on cases
common in program analysis. In the Verimag Polyhedra Library this cost
was avoided by a constraints-only representation and reducing all oper-
ations to variable projection, classically done by Fourier-Motzkin elim-
ination. Since Fourier-Motzkin generates many redundant constraints,
minimization was however very expensive.

In this article, we avoid this pitfall by expressing projection as a
parametric linear programming problem. This dramatically improves effi-
ciency, mainly because it avoids the post-processing minimization.

We show how our new approach can be up to orders of magnitude
faster than the previous approach implemented in the Verimag Polyhe-
dra Library that uses only constraints and Fourier-Motzkin elimination,
and on par with the conventional double description approach, as imple-
mented in well-known libraries.

Keywords: Polyhedra · Parametric linear programming · Projection

1 The Challenge of Verification Using Polyhedra

Static analyzers establish the validity of assertions in programs by discovering
inductive invariants that entail them. Analyzers based on abstract interpretation
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consider invariants within an abstract domain [5]. Invariants on numeric variables
are of particular interest. They may entail that software produce no arithmetic
overflow, no array index out of bounds—the user may be directly interested in
such properties, or an optimizing compiler may discard runtime checks for viola-
tions that cannot occur. Furthermore, proofs of more complicated properties may
use numerical invariants internally—for instance proofs of sorting algorithms need
invariants on indices.

An example of abstract domain suitable for program states given by vectors
of n numerical variables is the domain of products of n intervals; but such a
domain cannot express relationships between variables. This hinders verification
even if the final goal is to prove that a given variable lies within certain bounds,
for instance to prove that a string length is less than a fixed buffer size: one may
need to prove that the sum of the length of two strings is less than this size, thus
a relation between these lengths.

The domain of convex polyhedra comprises sets of states defined by conjunc-
tions of linear (in)equalities over the variables [6]. The analyzer needs to perform
a variety of operations on these sets—least upper bound (convex hull, in the case
of polyhedra), inclusion tests, projections, image and reverse image by program
operations; also, in some cases, intersections and Minkowski sums. In addition to
static analyzers, convex polyhedra are used inside highly optimizing compilers
to reorganize loop nests [1].

Despite their expressiveness and 40 years of research, polyhedra are little
used in verification because operations on polyhedra are still costly and do not
scale to large programs [13]. Usually, they are restricted to a small subset of
program variables such as loop indices [14]—including more variables would
mean skyrocketing costs.

Most libraries for computing over convex polyhedra maintain a double
description, both as generators (vertices, in the case of bounded polyhedra)
or constraints (faces). A common case in program analysis is upper and lower
bounds are known on all N variables—that is, the vector of variables lies within
a distorted N -dimensional hypercube, which has 2N vertices. This explains the
reputation of polyhedra as unwieldy except in very low dimension, and motivated
the design of the Verimag Verified Polyhedra Library (Vpl) that operates on
constraints-only representations [8,10]. An advantage of that approach is that it
is easy to log enough information to independently check that the computed poly-
hedron includes the exact polyhedron that should be computed, which suffices
for proving that static analysis is sound [9,10]; the certificate checker was imple-
mented and proved correct in Coq.1 The consequence is that many operations
of the Vpl, such as assignment, convex hull or Minkowski sum, were encoded
as projection, finally performed by Fourier-Motzkin elimination [2]. Unfortu-
nately, Fourier-Motzkin elimination generates numerous redundant constraints;

1 Certifying a library in double description would have likely entailed implementing
and proving in Coq the correctness of Chernikova’s conversion algorithm from one
representation to the other.
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and even by incrementally removing them after each elimination of a variable,
intermediate steps may create large lists of constraints.

In 2013, the overall performance of Vpl [10] on typical verification bench-
marks was on a par with that of double description libraries, though the tim-
ings on individual operations differed: some operations are faster than in double
description, some are slower—all those involving projection, including convex
hull. Projection by Fourier-Motzkin was the bottleneck.

Contribution. In this article we report on an algorithmic breakthrough that
speeds up typical computations on polyhedra in constraints-only representation
by several orders of magnitude when polyhedra becomes large (in number of
relations) or dense (in number of variables involved in each relations). Scalability
results from the inseparable combination of (i) the formulation of the projection
via Parametric Linear Programming (PLP) (Sect. 3); (ii) the implementation of a
PLP-solver over rationals, to get exact results (Sect. 5); (iii) a new normalization
criterion, which ensures the absence of redundant constraints and saves the post-
processing elimination of redundancy (Sect. 6). This normalization, its proof and
a certifying implementation are the main contributions of this paper.2

We demonstrate the scalability by comparing timings of projections between
the PLP-based algorithm, Fourier-Motzkin elimination and an existing library
based on double description (Sect. 7).

Related work. The high cost of general convex polyhedra was long deplored.
It motivated studying restricted classes of polyhedra, with simpler and faster
algorithms, such as octagons [26]; and even these were found to be too slow,
motivating recent algorithmic improvements [32]. We instead sought to conserve
the domain of polyhedra as originally described [6,12], but with very different
algorithms.

Our work was inspired by Howe et al.’s attempt to replace the Fourier-
Motzkin elimination by a formulation as a Parametric Linear Optimization Prob-
lem (PLOP) [15], which they solved by an ad hoc algorithm. Unfortunately, their
implementation is not available. We took a step further and developed a generic
PLP-solver exploiting insights by [17,18]. Our solver, implemented in Ocaml,
works over rationals and generates Coq-certificates of correctness of its compu-
tations, similar to those in Vpl [8–10].

Most libraries for computing over convex polyhedra for static analysis or
compilation, including PolyLib,3 Komei Fukuda’s CDD,4 the Parma Polyhedra
Library,5 the NewPolka library included in Apron,6 operate over the double
description; see e.g. [28] for an introduction. The costliest and most compli-
cated operation is the conversion from one representation to the other, using

2 The Vpl 0.2 is available at https://github.com/VERIMAG-Polyhedra/VPL.
3 https://icps.u-strasbg.fr/polylib/.
4 https://www.inf.ethz.ch/personal/fukudak/cdd home/.
5 http://bugseng.com/products/ppl/ [28].
6 http://apron.cri.ensmp.fr/library/ [16].

https://github.com/VERIMAG-Polyhedra/VPL
https://icps.u-strasbg.fr/polylib/
https://www.inf.ethz.ch/personal/fukudak/cdd_home/
http://bugseng.com/products/ppl/
http://apron.cri.ensmp.fr/library/
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Chernikova’s algorithm [3,20]. It is rather easy to prune redundant items from
one representation if one has the other, which explains the attractiveness of that
approach. Its only drawback is that, as explained above, the generator represen-
tation is exponential in the dimension on very common and simple cases.

The explosive nature of the generator representation motivated approaches
that detect when a polyhedron is a Cartesian product of polyhedra and compute
generator representations separately for each element of the product, thereby
avoiding exponential blowup in the case of the hypercube [13,31].

General texts on polyhedra and linear programming include [4,7,29].

2 Basics

Throughout the article, vectors are written in boldface lowercase, and matrices in
boldface uppercase. An affine form over x is a linear combination plus constant
of x1, ..., xn. For two vectors a� and x of the same length, the dot product
〈a�,x〉 =

∑
i a�i xi is a linear function of x. Thus, we often use the notation

a�(x) instead of 〈a�,x〉.
A convex polyhedron7 is the set of points x = (x1, . . . , xn) ∈ Q

n that satisfy
a conjunction (or a set) of linear constraints of the form C� :

∑n
i=1 a�i xi ��

b� where xi are program variables, a�i and b� are constants in Q, and �� ∈
{ ≤,=,≥ }. All constraints can be assumed to use only ≥.8 Such a constraint
is the �th row of a vector inequality Ax ≥ b. We use [[P]] to specifically refer to
the set of points defined by the set of constraints P. Given a polyhedron [[P]] =
{ x | Ax ≥ b }, the same system with strict inequalities defines P̊, the interior of
P, and x̊ denotes a point of [[P̊]] def= { x | Ax > b }. In all the paper and without
loss of generality, we focus on polyhedra with non-empty interior, meaning that
equalities (explicit or implicit) are extracted and treated separately, as in most
polyhedra libraries.

Before presenting our encoding of the projection opera-
tor as a PLOP, we start by recalling the fundamental Farkas’
Lemma and Fourier-Motzkin’s Algorithm for variable elimi-
nation.

Example 1.1. The right-hand side figure shows the geomet-
rical space defined by the polyhedron P = {C1 : − x1 −
2x2 + 2x3 ≥ −7,C2 : − x1 + 2x2 ≥ 1,C3 : 3x1 − x2 ≥ 0,
C4 : − x3 ≥ −10,C5 : x1 + x2 + x3 ≥ 5} and its projec-
tion on dimensions (x1, x2) resulting from the elimination of variable x3. Pro-
jecting variable x3 from P – noted P\{ x3 } – by Fourier-Motzkin elimination
consists in eliminating x3 by combining constraints with opposite signs for x3.
Constraints that do not involve x3 remain unchanged. This retains constraints

7 We only deal with convex polyhedra. For readability, we will omit the adjective
convex in the following.

8 An equality a = b corresponds to the conjunction of inequalities a ≥ b ∧ a ≤ b and
a ≤ b is equivalent to −a ≥ −b.



216 A. Maréchal et al.

C2,C3 and produces two new constraints: C1 + 2C4 : − x1 − 2x2 ≥ −27 and
C4 +C5 : x1 +x2 ≥ −5. By Farkas’ Lemma, the latter is redundant with respect
to C2 and C3 as it can be expressed as a nonnegative combination of C2, C3.

Lemma 1 (Farkas’ lemma [29, 7.1h, p. 93]). A constraint C′ is a logical
consequence of a non-contradictory set of constraints P = {C1, . . . ,Cp} iff there
exists λ0, ..., λp ≥ 0 such that C′ = λ0 +

∑p
i=1 λiCi, called a Farkas decomposi-

tion of C ′ on P.

Example 1.2. The combination 4
5 C2 + 3

5 C3 : x1 + x2 ≥ 4
5 is a logical conse-

quence of C2 and C3 and it is a stronger condition than C4 +C5 : x1 +x2 ≥ −5
since 4

5 > −5. Thus, the constraint C4 + C5 is redundant with respect to C2

and C3. Therefore the polyhedron P\{ x3 } is only formed of three constraints
{C2,C3,C1 + 2C4}.

3 Projection via Parametric Linear Programming

Naive Fourier-Motzkin elimination produces O
(
( |P|

2 )2
k)

constraints when elim-
inating k variables of a polyhedron with |P| constraints [30]. Most of them are
redundant: indeed, the number of faces of the projected polyhedron is O(|P|k)
[27, Sect. 4.1].9 Removing the redundant constraints is costly, even though there
exists improved algorithms [21].

Jones et al. [17] then Howe et al. [15] noticed that the projection of a poly-
hedron can be expressed as a Parametric Linear Programming problem. In fact,
PLP naturally arises when trying to generalize Fourier-Motzkin method to elimi-
nate several variables simultaneously. In this article we achieve the work initiated
by [15], whose goal was to compute the projected polyhedron without generating
redundant constraints. Let us first explain their approach.

Example 1.3. As a consequence of Farkas lemma, any constraint implied by
{C1, ...,C5} is a nonnegative combination of them, written λ0 +

∑5
i=1 λiCi with

λi ≥ 0, i.e.

λ0 + λ1(−x1 − 2x2 + 2x3) + λ2(−x1 + 2x2) + λ3(3x1 − x2)
+ λ4(−x3) + λ5(x1 + x2 + x3) ≥ − 7λ1 + λ2 − 10λ4 + 5λ5

The left-hand side of the inequality can be rearranged to reveal the coefficient
of each variable xi and we can bring the right-hand side term of ≥ to the left.

λ0 + (−λ1 − λ2 + 3λ3 + λ5)x1 + (−2λ1 + 2λ2 − λ3 + λ5)x2

+ (2λ1 − λ4 + λ5)x3 − (−7λ1 + λ2 − 10λ4 + 5λ5) ≥ 0 (1)

Then, any instantiation of that inequality with λi canceling the coefficient of x3,
i.e. that satisfies (α) 2λ1 − λ4 + λ5 = 0, is an over-approximation of P\{ x3 }.

9 This follows from McMullen’s bound on the number of n − k − 1-faces of the poly-
hedron [24,25].
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Indeed, it does not involve x3 and, as a Farkas combination, it is by construction
a logical consequence of P. Constraints found by the FM elimination of x3 corre-
spond to the solutions (λ0, . . . , λ5) ∈ {(0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 1, 0, 0, 2, 0),
(0, 0, 0, 0, 1, 1)} of Equation (α). Note that it is possible to eliminate several vari-
ables simultaneously by setting an elimination equation for each variable that
must be discarded.

Here is a first formulation of a projection as a PLOP. We will refine it later, as
it is not sufficient to avoid redundancies in the result. Given a polyhedron P =
{ C1 : a1(x) ≥ b1, . . . ,Cp : ap(x) ≥ bp } on variables x1, . . . , xn, the projection of
P by elimination of k variables xe1 , . . . , xek

can be obtained as the solution of
the optimization problem:

minimize the objective function z(x) = λ0 +
∑p

i=1 λi × (ai(x) − bi)

under the constraints (F ) λ0 ≥ 0, ..., λp ≥ 0
(†) ∑p

i=0 λi = 1
(α) αe1(λ) = 0, ..., αek(λ) = 0

⎫
⎪⎪⎬

⎪⎪⎭
(2)

where αi(λ) denotes the coefficient of xi in the reformulation of the objective
as α1(λ)×x1 + . . .+αn(λ)×xn +α0(λ). The unknowns λi are called the deci-
sion variables: the solver must find a solution for them. Note the inequalities (F )
from Farkas’ Lemma in addition to the (α) equations defining a projection. This
problem has a parametric objective: the objective function depends on parame-
ters x1, . . . , xn due to the terms ai(x) in the coefficients of the decision variables.
But once x1, . . . , xn are fixed, both the objective function and the constraints
become linear in the decision variables, thus this problem belongs to parametric
linear programming.

An additional constraint, here
∑

i λi = 1, is needed to prevent the solver
from obtaining the optimal solution λ = 0 which is always valid in a projection
problem, whatever the parameter values. The (†) condition only excludes this
useless null solution because any other solution can be scaled so that

∑
i λi = 1.

The presence of λ0 in the objective can seem useless and strange to readers who
are familiar with linear programming: the solution λ0 = 1 and λ1 = ... = λp = 0
becomes feasible and generates a trivially redundant constraint Ctriv : 1 ≥ 0.
The role of λ0 will become clear in Sects. 4 and 6.

Example 1.4. The elimination of x3 via PLP is defined by two matrices: O is built
from [−b|A]ᵀ and encodes the objective. The other one captures the requirement
(α) and (†). As usual in solvers, Farkas constraints (F ) are left implicit.
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minimize the objective function

(1, x1, x2, x3)ᵀ

O
︷ ︸︸ ︷⎛

⎜
⎜
⎝

0 1 7 −1 0 10 −5

0 0 −1 −1 3 0 1

0 0 −2 2 −1 0 1

0 0 2 0 0 −1 1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

1
λ0

...
λ5

⎞

⎟
⎟
⎟
⎠

= z(x)

︸ ︷︷ ︸
[−b|A]ᵀ

under the constraints

(†)
︷ ︸︸ ︷(

−1 1 1 1 1 1 1

0 0 2 0 0 −1 1

)

︸ ︷︷ ︸
α

⎛

⎜
⎜
⎜
⎝

1
λ0

...
λ5

⎞

⎟
⎟
⎟
⎠

= 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

This formulation of the projection is correct. Unfortunately, it may still generate
redundant constraints: the solutions (λ0, . . . , λ5) ∈ {(1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0),
(0, 0, 0, 1, 0, 0), (0, 1

3
, 0, 0, 2

3
, 0), (0, 0, 0, 0, 1

2
, 1

2
)} include the trivial constraint 1 ≥ 0

and 1
2C4 + 1

2C5 which is equivalent to the redundant constraint C4 + C5 found
by Fourier-Motzkin elimination. We shall address this point in Sect. 6.

4 Polyhedra as Solutions of Parametric Linear
Optimization Problems

In the previous section we encoded the projection of a polyhedron as a PLOP.
For interpreting the result of a PLP-solver as a polyhedron we need to go one
step further into the field of PLP and look at the solutions of a PLOP.

To summarize, Parametric Linear Programming is an extension of Linear
Programming where the constants in the constraints or the coefficients in the
objective function may be replaced by affine combinations of parameters [11]. In
this article, we only deal with the case where parameters appear in the objective
function. The general form of a PLOP that stems from projection is

minimize the objective function z(x)
def
= λ0 +

∑p
i=1 λi × (ai(x) − bi)

under the constraints λ0, ..., λp ≥ 0, (†) ∑p
i=0 λi = 1, αλ = 0

}

(4)

where x is the vector of parameters (x1, ..., xn); (ai(x) − bi) are affine forms
on the parameters; and α is a matrix. In a projection problem the system of
equations αλ = 0 constrains the decision variables λ1, ..., λp but not λ0.

The solution is a concave, piecewise affine function z�, mapping the parame-
ters to the optimal solution:

z� def= x �→

⎧
⎪⎨

⎪⎩

z�
1(x) if x ∈ R1

...
z�

r(x) if x ∈ Rr

(5)
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Each piece is an affine form over x, obtained by instantiating the objective
function z with a solution λ; a piece can also be denoted by z�

λ. Each z�
i is

associated to a region of optimality Ri that designates the set of x for which
the minimum of z�(x) is z�

i (x). Regions of optimality are polyhedra; that will
be clear in Sect. 5 when we will explain how they are computed by our solver
(see Example 1.6). They form a quasi-partition of the space of parameters: their
union covers Q

n and the intersection of the interior of two distinct regions is
empty. They however do not form a partition because two regions Ri,Rj may
overlap on their frontiers; then, their solutions z�

i ,z�
j coincide on the intersection.

From optimal function to polyhedron. A PLOP can be thought of as a declarative
description of the projection operator. The solution z� can be interpreted as a
polyhedron P� that is the projection of an input polyhedron P. This requires
some explanations:

– Due to the Farkas conditions λ0, ..., λp ≥ 0 which preserve the direction of
inequalities, the objective function of PLOP (4), i.e. λ0+

∑p
i=1 λi×(ai(x)−bi)

can be interpreted as a constraint implied by the input polyhedron P =
{C1 : a1(x)≥ b1, ...,Cp : ap(x)≥ bp}. Actually, for a given λ, the statement
z�

λ(x)≥ 0 is equivalent to the constraint

λ0 +
p∑

i=1

λi × ai(x)≥
p∑

i=1

λi × bi (6)

– Minimizing the objective ensures that the λ0-shift of the constraint will be
minimal, meaning that the constraint z�

λ(x)≥ 0 will be tightly adjusted.
– The requirement αλ = 0 captures the expected effect of the projection.

Thus, any solution λ defines a constraint zλ(x) ≥ 0 of the polyhedron P�.

Now recall that a polyhedron is a set of points that satisfy linear inequalities.
Therefore, it is natural to define [[P�]] as { x | z�(x) ≥ 0 }. The following lemma
proves that this set of points is a polyhedron.

Lemma 2. { x | z�(x) ≥ 0 } =
r⋂

k=1

{ x | z�
k(x) ≥ 0 }

Proof. Let us prove the mutual inclusion.

(⊆) Pick up a point x′ ∈ { x | z�(x) ≥ 0 }. By definition of z� as a piecewise
function defined on the whole space of parameters, then there exists i such
that x′ ∈ Ri and z�(x′) = z�

i (x
′). It follows that z�

i (x
′) ≥ 0 since x′

belongs to the set of points where z� is nonnegative. Moreover, the fact
that x′ belongs to Ri – the region of optimality of z�

i in a minimization
problem – ensures that z�

k(x′) ≥ z�
i (x

′) for all k and therefore, z�
k(x′) ≥

0 for all k. Thus, x′ ∈ { x | z�
k(x) ≥ 0 } for all k = 1...r. Finally, x′ ∈⋂

k=1..r

{ x | z�
k(x) ≥ 0 }.
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(⊇) Pick up a point x′ ∈ ⋂r
k=1 { x | z�

k(x) ≥ 0 }. Then, x′ belongs to a least
one Ri because the regions form a (pseudo) partition of the whole space of
parameters Q

n, thus
⋃r

k=1 Rk = Q
n. Yet, the affine piece that defines z�

on x′ is z�
i and z�(x′) = z�

i (x
′). Moreover, all the affine pieces of z� are

nonnegative on x′ since x′ ∈ ⋂r
k=1 { x | z�

k(x) ≥ 0 }. Then, in particular
z�

i (x
′) ≥ 0 and the same goes for z�(x′). Finally, x′ ∈ { x | z�(x) ≥ 0 }.

Constructing the vector inequality Z� x ≥ b� that defines the polyhe-
dron P� is straightforward from the solution z�. If suffices to get rid of the
regions of optimality and to interpret each affine piece of z� as an inequality:
{ x | z�(x)≥ 0 } = (by Lemma 2)

⋂r
k=1 {x | z�

k(x)≥ 0 } = {x | ∧r
k=1z�

k(x)≥ 0}
= {x | ∧r

k=1〈z�
k,x〉 − b�

k ≥ 0} = { x | Z�x ≥ b� } . Let us detail this construction.
Each piece z�

k of the solution is an affine form over x and z�
k(x) ≥ 0 defines a

constraint in the form (6) which can be written
∑n

i=1 z�
ki xi ≥ b�

k i.e. 〈z�
k,x〉 ≥ b�

k

for some vector z�
k = (z�

k1, ..., z�
kn) and some constant b�

k. It follows from Lemma 2
that the set of points x where z�(x) is nonnegative is a polyhedron defined by
the vector inequality Z�x ≥ b� where the rows of Z� are the vectors z�

1 , . . . ,z�
r

and b� is the column vector (b�
1, . . . , b

�
r)

ᵀ.

Example 1.5. On our running projection problem, the PLP-solver returns the
following optimal function, and the instantiation of the decision variables λi

that defines each affine piece:

z� def= (x1, x2) �→

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z�
2 : −x1 + 2x2 − 1 on R2 (for λ2 = 1)

z�
3 : 3x1 − x2 on R3 (for λ3 = 1)

z�
4 : − 1

3x1 − 2
3x2 + 9 on R4 (for λ1 = 1

3 , λ4 = 2
3 )

z�
5 : 1

2x1 + 1
2x2 + 5

2 on R5 (for λ4 = 1
2 , λ5 = 1

2 )

z�
1 : 1 on R1 (for λ0 = 1)

from which we construct the polyhedron

P� =

Z�

︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 2 0

3 −1 0

− 1
3 − 2

3 0

1
2

1
2 0

0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

x
︷ ︸︸ ︷⎛

⎝
x1

x2

x3

⎞

⎠ ≥

b�

︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
0

−9

− 5
2

−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C2 : −x1 + 2x2 ≥ 1

C3 : 3x1 − x2 ≥ 0
1
3C1 + 2

3C4 : − 1
3x1 − 2

3x2 ≥ −9
1
2C4 + 1

2C5 : 1
2x1 + 1

2x2 ≥ − 5
2

Ctriv : 0 ≥ −1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Variable x3 does not appear anymore in the constraints of P� because its col-
umn in Z� is made of 0. The regions of optimality, shown on Fig. 1(a) form a
pseudo-partition of the whole space of parameters (x1, x2): regions R2, . . . ,R5

are unbounded; the central triangle is the region R1 associated to the constant
affine form z�

1 = 1 which produces the trivial constraint Ctriv : 1 ≥ 0. Each
boundary of P� (shown as bold lines in the figure) is the intersection of a region
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of optimality Ri with the space where the associated affine form z�
i evaluates

to zero. We retrieve constraints equivalent to those of Example 1.1, except that
the redundant constraint 1

2C4 + 1
5C5 generated by z�

5 is still present. The draw-
ing of the regions reveals that z�

5 does not vanish on its region of optimality,
i.e. [[z�

5 = 0]] ∩ [[R̊5]] = ∅. Actually, this is true for any redundant constraint.
Indeed, we will prove in Sect. 6 (Lemma 5) that [[z�

i = 0]] ∩ [[R̊i]] = ∅ ensures the
irredundancy of the constraint z�

i ≥ 0 in P�.

Fig. 1. The regions of optimality of the solution z� of Example 1.5 obtained by solving
PLOP (3). The bold lines are the boundaries of the projected polyhedron P�. Figure
(a) shows regions obtained when the PLOP contains the constraint

∑
i λi = 1. Figure

(b) shows regions obtained when constraints are normalized on point x̊ (see Sect. 6).

5 Principle of a PLP-Solver

Due to space limitations we shall only sketch how our parametric linear pro-
gramming solver works. It is based on a recent algorithm by Jones et al. [18]
with some improvements: it uses a fast simplification of regions [23] and performs
exact computations in rationals so as to avoid rounding errors.

This algorithm for solving a PLOP is a generalization of the simplex algorithm
which can itself be seen as an extension of Gaussian elimination for solving a
system of linear equations.
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Gaussian elimination proceeds by rewriting: each equation defines a variable
in terms of the other ones. This equation can be used to eliminate the vari-
able from the other equations by substitution. This operation is called a pivot.
Gauss pivoting strategy leads to an equivalent system in echelon form where
un/satisfiability becomes trivial.

The simplex algorithm follows the same principle but differs in the selection of
the variable to eliminate. First, each inequality C� :

∑n
i=1 a�i xi ≤ b� is changed

into an equality
∑n

i=1 a�i xi + xn+� = b� by introducing a variable xn+� ≥ 0
called a slack variable. Second, the objective function is added to the system
as an extra equation defining the variable z as a linear form z =

∑n+r
i=1 oixi.

Then, the simplex performs pivots as in Gaussian elimination until reaching an
equivalent system of equations where the optimality of z becomes syntactically
obvious. Let us take an example.

Example 1.6. To illustrate the behavior of a LP-solver, such as the simplex, let
us instantiate the objective of PLOP (3), e.g. with x1 = 5, x2 = 11, x3 = 1,
to obtain a non-parametric version: z = λ0 − 18λ1 + 16λ2 + 4λ3 + 9λ4 +
12λ5. The simplex strategy chooses to define λ1 and λ4 in terms of the other
decision variables. It exploits the equations (†) and (α) of PLOP (3) and gets
(i) λ1 = − 1

3 λ0 − 1
3 λ2 − 1

3 λ3 − 2
3 λ5 + 1

3 using (α) to eliminate λ4 in (†),
and (ii) λ4 = − 2

3 λ0 − 2
3 λ2 − 2

3 λ3 − 1
3 λ5 + 2

3 using (†) to eliminate λ1 in
(α). Then, it performs two rewritings using equations (i, ii) and returns an
equivalent version of the objective z = λ0 + 16λ2 + 4λ3 + 21λ5 on which it is
clear that choosing λ0, λ2, λ3, λ5 greater than 0 would increase the value of z
because their coefficients are positive. Thus, the minimum value of z is reached
for λ0 = λ2 = λ3 = λ5 = 0 which entails λ1 = 1

3 and λ4 = 2
3 using equations

(i) and (ii). This example summarizes the principle of linear programming.
Now consider our minimization problem (3) with its parametric objective

z(x1, x2, x3) = λ1(−x1 − 2x2 + 2x3 + 7)+λ2(−x1 + 2x2 − 1)+λ3(3x1 − x2)+
λ4(−x3 + 10) + λ5(x1 + x2 + x3 − 5) + λ0. Our PLP-solver uses the previous
instantiated problem to discover the useful pivots (i, ii). Then, it replays the
same rewritings on the parametric version. Those operations are efficiently imple-
mented using the matrix representation of (3): they boils down to the addition of
combinations of rows of (†) and α to those of O. We end up with the following
objective:

−1
3

x1 − 2
3

x2 + 9
︸ ︷︷ ︸

z�
4

+ λ0
1
3

(x1 + 2x2 − 24)
︸ ︷︷ ︸

≥ 0 : C4.1

+ λ2
2
3

(−x1 + 4x2 − 15)
︸ ︷︷ ︸

≥ 0 : C4.2

+ λ3
1
3

(10x1 − x2 − 27)
︸ ︷︷ ︸

≥ 0 : C4.3

+ λ5
1
3

(5x1 + 7x2 − 39)
︸ ︷︷ ︸

≥ 0 : C4.4

We recognize the 4th piece of z�. The argument for optimality used in the non-
parametric version can be generalized: The minimality of z�

4 holds if the para-
metric coefficients of the remaining variables are nonnegative, since increasing
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the values of λ0, λ2, λ3, λ5 (which must be nonnegative) would make the objec-
tive value grow. This condition defines the region of optimality R4 of z�

4 as the
polyhedron { C4.1,C4.2,C4.3 }, see Fig. 1(a). C4.4 is actually redundant with
respect to C4.1, C4.2 and C4.3. It is thus eliminated from the representation of
R4, and therefore does not appear on Fig. 1(a).

The PLP-solver then chooses an opposite sign condition of a parametric coef-
ficient C4.i – that means exploring an adjacent region by crossing a frontier –
and selects a new instantiation point on this side of the constraint. The objec-
tive is then instantiated accordingly and submitted to the simplex which provides
the meaningful pivots leading to another optimal affine form and its region of
optimality. The benefit of PLP is that the exploration of one instance with the
simplex is generalized into a whole region of optimality. The exploration goes on
until the whole space of parameters has been covered by the union of regions:
any new instantiation point falls in an already explored region.

6 Polyhedra in Minimal Form for Free

The previous sections showed how to compute the optimal solution of a PLOP

and how to interpret the solution z� as a polyhedron P� =
∧r

k=1 z�
k(x) ≥ 0.

Still, the representation of P� may not be minimal: some constraints z�
k(x) ≥ 0

may be redundant in P�. We could remove those redundancies afterwards but,
as noticed by Howe et al. [15], it is highly preferable to prevent their generation
by adding a normalization constraint to the PLOP. We adapt their intuition
to our formulation of the problem and we bring the proof that it indeed avoids
redundancies. This requires to make a detour via normalized solutions to explain
the expected effect of a normalization constraint.

6.1 Normalizing the Projection PLOP

Let us normalize the function z� so that it evaluates to 1 on a given point x̊ in the
interior of P�. Formally, we consider a solution z̃�

(x) def= z�
(x)

z�
(x̊)

or equivalently

∀k, z̃�

k(x) def= z�
k(x)

z�
k(x̊)

. The key point of this transformation is that the space
[[z� ≥ 0]], which is the polyhedron P� of interest, is unchanged. The normalized
solution z̃�

will differ from the original one but must fulfills [[z̃� ≥ 0]] = [[z� ≥
0]] which is true on the main functions if it holds on each of their pieces, i.e.
∀k, [[z̃�

k ≥ 0]] = [[z�
k ≥ 0]]. The normalization preserves the nonnegativity space

of each z�
k because 1

z�
k(x̊)

is a positive scalar: Indeed, x̊ belongs to the interior of
P�, i.e. [[

∧
k z�

k > 0]] by Lemma 2. The proof of this remark is given in Lemma
7, available in the appendix of the extended version of this paper [22].

Example 2. The transformation of the solution only changes the inclination of
z�

k, not the space where they cross 0. This can easily be illustrated on one-
variable constraints. Consider three constraints C1 : 2x ≥ 5, C2 : x ≤ 12 and a
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redundant one C3 : x ≥ 2, corresponding to three affine forms z�
1(x) = 2x − 5,

z�
2(x) = 12−x and z�

3(x) = x−2. On the left-hand side we plotted the functions
z = z�

i (x) for i ∈ { 1, 2, 3 } and, on the right-hand side, their normalizations with
respect to the point x̊ = 3.

The most interesting consequence of the normalization is that a constraint is
redundant iff its normalized affine form is nowhere minimal. This property does
not hold on the non-normalized forms: although C3 is redundant w.r.t. C1 and
C2, z�

3 is minimal w.r.t. z�
1 and z�

2 on x ∈ [3, 7]. On the contrary, considering
the normalized forms, z̃�

3 is no longer minimal, thus it will be absent from the
piecewise solution of a minimization problem. One of our contribution is the
proof of this result (Sect. 6.2).

Last, but not least, the normalized pieces are not computed a posteriori from
the original solutions. They are obtained directly by enforcing the normalization
of the objective through an additional constraint z(x̊) = 1. Recall from (4) that
the objective of the PLOP is z(x) def= λ0 +

∑p
i=1 λi × (ai(x) − bi). Then, the

normalization constraint becomes (‡) λ0 +
∑p

i=1 λi × (ai(̊x)− bi) = 1 where the
ai(̊x) are coefficients in Q, obtained by evaluating the constraints of the input
polyhedron at x̊. The normalization constraint replaces the previous requirement
(†) ∑

i λi = 1 in the PLOP: like (†) it excludes the solution λ0 = ... = λp = 0.
Back to Example 1.5, our PLP-solver running on the normalized PLOP only
builds the irredundant constraints z�

2 ≥ 0, z�
3 ≥ 0 and z�

4 ≥ 0 associated to the
regions of Fig. 1(b).

Note that we must be able to provide a point x̊ in the interior of P� while
P� is not already known. Finding such a point is obvious for projection, convex-
hull and Minkowski sum. It is feasible because the operators based on PLP are
applied on polyhedra with non-empty interior; the treatment of polyhedra with
equalities is explained in Example 3 below. For projection, x̊ is obtained from a
point x in the interior of the input polyhedron P. Removing the coordinates of
variables marked for elimination provides a point x̊ that will be in the interior
of the projected polyhedron P�.

Example 3. Consider the case of a polyhedron over variables x, x′, x′′ made of
inequalities P and an equality E : x′′ = f(x, x′). The computation of the projec-
tion (P ∧E)/{ x′,x′′ } is done in two steps: we use equation x′′ = f(x, x′) to elim-
inate x′′ from P by substitution. If implicit equalities show up we exploit them
in the same way, otherwise we apply the projection via PLP on P[x′′/f(x, x′)]
to eliminate the remaining variable x′.
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6.2 A Normalized PLOP Is Free of Redundancy

The advantage of PLP over Fourier-Motzkin comes from the following theorem:

Theorem 1. Let z̃� def= min{z̃�

1, . . . , z̃
�

r} be the optimal solution of a normalized
parametric minimization problem. Then each solution z̃�

k that is not the constant
function x �→ 1 is irredundant with respect to polyhedron [[z̃� ≥ 0]].

Proof. Theorem 1 is a direct consequence of three intermediates results: (i) each
region of optimality in a normalized PLOP is a cone pointed in x̊ (Lemma 3);
(ii) each piece z�

k which is not constant, is decreasing on its region of optimality
along lines starting at x̊ (Lemma 4); (iii) each piece that crosses 0 on its region
produces an irredundant constraint (Lemma5).

Let us summarize the key facts that are needed for exposing the proof of the
lemmata: Projection via PLP leads to a parametric linear minimization problem
whose solution is a function z̃�

defined by pieces {z̃�

1 on R1, . . . , z̃
�

r on Rr}; each
Rk is the region of optimality of z̃�

k, meaning that among all the pieces z̃�

k is
the minimal one on Rk, i.e. Rk = {x | z̃�

(x) = z̃�

k(x)}. By construction, z̃�
(x)

is the minimum of {z̃�

1(x), . . . , z̃�

r(x)} and z̃�
(x̊) = z̃�

1(x̊) = . . . = z̃�

r(x̊) = 1 is
enforced by the (‡)-normalization constraint.

This is where λ0 comes into play: the fact that
λ = (1, 0, ..., 0) fulfills (‡) and (α), hence leading to
the constant function z�

λ = 1, sets an upper-bound
on z�. Therefore, any minimal piece z̃�

k, which eval-
uates to 1 on x̊, can not grow on its region of opti-
mality otherwise it would not be minimal compared
to z�

λ = 1. Thus, z̃�

k is either constant and equal to
1 or it satisfies ∀x ∈ R̊k, 1 > z�

k(x) which entails
its decline on the infinite region Rk as meant by
Lemma 4, causing its nullification in Rk, hence its
irredundancy (Lemma 5). The constant piece z�

λ = 1
arises among the solutions of a normalized PLOP

when the resulting polyhedron P� is unbounded as
illustrated alongside.

We focus on the proof of Lemma 5 which gives a criterion of irredundancy
illustrated on Fig. 1. The proofs of the other lemmata are just computational
arguments; they are provided in the appendix of the extended version of this
paper [22].

Lemma 3. ∀x ∈ Q
n, x ∈ R̊k ⇒ x̊ + μ(x − x̊) ∈ R̊k, ∀μ > 0.

Lemma 4. Either z̃�

k is the constant function x �→ 1, or it decreases on lines
of Rk starting at x̊, i.e. ∀x ∈ R̊k, ∀μ > 1, z̃�

k(x) > z̃�

k(x̊ + μ(x − x̊)).

Lemma 5.
(
[[z̃�

k = 0]] ∩ [[R̊k]]
)

= ∅ ⇒ z̃�

k ≥ 0 is irredundant w.r.t. z̃� ≥ 0.
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Proof by contradiction. Consider z̃�

k, a piece of z̃�
such that [[z̃�

k = 0]]∩ [[R̊k]] = ∅.
Let us assume that z̃�

k is redundant. Then, by Farkas Lemma1, ∃ (λj)j �=k ≥
0, ∀x ∈ Q

n,
∑

j �=k λj z̃
�

j (x) ≤ z̃�

k(x).

Let x be a point of the nonempty set [[z̃�

k = 0]] ∩ [[R̊k]]. Then z̃�

k(x) = 0, as
x ∈ [[z̃�

k = 0]], and the previous Farkas inequality becomes

∑

j �=k

λj z̃
�

j (x) ≤ 0 (7)

Since x ∈ R̊k, then, z̃�

k(x) < z̃�

j (x) for j = k by definition of Rk as the region
of optimality of z̃�

k. More precisely, 0 < z̃�

j (x) since x ∈ [[z̃�

k = 0]]. Therefore,
0 < λj z̃

�

j (x) for j = k as λj ≥ 0. Then, summing up this inequation for all
j = k, we obtain

0 <
∑

j �=k

λj z̃
�

j (x) (8)

(7) and (8) are contradictory, proving thereby that z̃�

k is irredundant. ��

6.3 Minimizing Operators Based on Projection via PLP

As mentioned in introduction, several polyhedral operators, e.g. Minkowski sum,
convex hull, assignment and linearization, are encoded using extra variables
which are then eliminated by projection. If the projection is done by PLP, all
these operators produce polyhedra free of redundancy if we can provide a nor-
malization point in the interior of the expected polyhedron. Let us give insights
of the encodings.

The Minkowski sum of two polyhedra P ′ and P ′′ is the set of points x =
x′ + x′′ with x′ ∈ [[P ′]] and x′′ ∈ [[P ′′]]. It is computed by eliminating the
variables of x′ and x′′ from the polyhedron P ′(x′) ∧ P ′′(x′′) ∧ { x = x′ + x′′ },
where P ′(x′) (resp. P ′′(x′′)) denotes the set of constraints of P ′ (resp. P ′′) over
variables x′ (resp. x′′). We use x̊

def= x̊′ + x̊′′ as normalization point where x̊′

(resp. x̊′′) is a point lying within the interior of P ′ (resp. P ′′).
The convex-hull of P ′ and P ′′ is the smallest convex polyhedron that includes

P ′ and P ′′. It is the set of barycentres of x′ ∈ [[P ′]] and x′′ ∈ [[P ′′]] which can be
formally defined as P ′(x′) ∧ P ′′(x′′) ∧ {x = β1 × x′ + β2 × x′′, β1 + β2 = 1, β1 ≥
0, β2 ≥ 0}. The equation defining x is non-linear but it can be linearized using
a simple change of variable [2]. Then, the convex-hull is obtained by elimination
of β1, β2 and the variables of x′ and x′′ to get a polyhedron over x. We can use
x̊′ or x̊′′ as normalization point.

Assignment and more generally, image by an affine map represented by a
matrix M can be encoded as intersection with equalities x′ = Mx, projection of
the unprimed variables, and then renaming of the prime variables into unprimed
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ones; the reverse image is just substitution. We use the image by M of a point
x̊ in the interior of the input polyhedron for normalization.

Our linearization operator for computing a polyhedral over-approximation of
a conjunctions of linear and polynomial constraints

∧
i gi(x) ≥ 0 is also imple-

mented in the Vpl via PLP [21]. However, it does not prevent redundancies as
we do not know how to provide a normalization point satisfying

∧
i gi(x̊) ≥ 0.

7 Experiments

Benchmarks. We reused the benchmark suite of [23]. It con-
tains polyhedra generated randomly from several characteris-
tics: number of constraints, number of variables and density
(ratio of the number of zero coefficients by the number of vari-
ables). Constraints are created by picking up a random integer
between −100 and 100 as coefficient of each variable. All con-
straints are attached the same constant bound ≤ 20. These
polyhedra have a potatoid shape, as shown on the right-hand side figure.

We compare three libraries on projection/minimization problems: New-
Polka [16] as representative of the double description framework, Vpl [10]
based on Fourier-Motzkin elimination, and our implementation based on PLP.
As we produce polyhedra in minimized form, we asked NewPolka and Vpl to
perform a minimization afterwards.

On each problem we measure the execution time, with a timeout fixed at
300 s. In addition to the number of constraints C, the density D and the number
of variables V , we consider the effect of the projection ratio P (number of pro-
jected variable over dimension). Figure 2 shows the effect of these characteristics
on execution time (in seconds). The vertical axis is always displayed in log scale,
for readability. Each point is the average execution time for the projection and
minimization of 10 polyhedra sharing the same characteristics.

Fourier-Motzkin Elimination in the Vpl. As mentioned earlier, Fourier-Motzkin
elimination generates many redundant constraints and the challenge of a good
implementation is their fast removal. The Fourier-Motzkin elimination imple-
mented in the Vpl uses well-known tricks for dynamically removing constraints
that can be shown redundant by syntactic arguments [23]. However, as shown
by [8, 3.2.3, p. 76], this forbids the use of Kohler’s redundancy criterion: when
eliminating k variables, a constraint resulting from the combination of k + 1
constraints is redundant. When syntactic criteria fail to decide the redundancy
of a constraint, the Vpl calls a LP solver. Hence, polyhedra are minimized after
each single-variable elimination.

Projection Ratio. Figure 2(a) gives the time measurements when projecting poly-
hedra of 15 constraints, 10 variables and a density of 50%, with a projection ratio
varying from 10 to 90%. Fourier-Motzkin is very efficient when projecting a small
number of variables. Its exponential behavior mainly occurs for high projection
ratio, as it eliminates variables one after the other and the number of faces tends



228 A. Maréchal et al.

to grow at each projection. PLP is not suitable when there is only few variables
to project, e.g. in the case of a single assignment. On the contrary, it becomes
interesting compared to Fourier-Motzkin elimination when the projection ratio
exceeds 50%, i.e. when projecting more than half of the variables. This ratio is
always reached when computing Minkowski sums or convex hulls by projection
(Sect. 6.3). It can also be the case on exits of program blocks where a whole
set of local variables must be forgotten. As PLP usefulness grows with a high
projection ratio we will focus on the case P = 75%, studying the effect of other
characteristics.

(a) : C = 15, V = 10, D = 50%, P = [10%, 90%] (b) : C = [8, 60], V = 8, D = 50%, P = 75%

(c) : C = 20, V = [4, 19], D = 50%, P = 75% (d) : C = 10, V = 8, D = [30%, 90%], P = 75%

Fig. 2. Execution time in seconds of NewPolka (blue), Fourier-Motzkin (red) and
PLP (green) depending on respectively (a) projection ratio, (b) number of constraints,
(c) number of variables and (d) density. (Color figure online)

Number of Constraints. Fig. 2(b) shows the time measurements when projecting
polyhedra with 8 variables, a density of 50% and a projection ratio of 75% (i.e.
elimination of 6 variables). The number of constraints varies in [8, 60]. While
Fourier-Motzkin blows up when reaching 15 constraints, PLP and NewPolka
scale better and the curves shows that PLP wins when the number of constraints
exceeds 35.

Dimension. The evolution of execution time in terms of dimension is given in
Fig. 2(c). With 20 constraints, the exponential behavior of Fourier-Motzkin elim-
ination emerges. PLP and NewPolka show a similar curves with an overhead
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for PLP on a log scale, i.e. a proportionality factor on execution time. It would
be interesting to see the effect of dimension beyond 20 variables, which takes
considerable time since it requires increasing the number of constraints. Indeed,
when the dimension is greater than the number of constraints, polyhedra have
a really special shape with very few generators and the comparison would be
distorted.

Density. The effect of density on execution time is shown on Fig. 2(d). New-
Polka and PLP are little sensitive to density. The case of Fourier-Motzkin can
be explained: Elimination of a variable x with FM consists in combining every
pair of constraints having an opposite sign for x. The more non-zero coefficients
within the constraints, the greater the number of possible combinations.

What can we conclude from these experiments? On small problems our projec-
tion is less efficient than that of a double description (DD) library but the shape
of the curves of NewPolka and PLP is similar on a logarithmic scale, meaning
that there is a proportionality factor between the two algorithms. This is an
encouraging result as projection – and the operators encoded as projection –
are the Achilles heel of constraints-only representation whereas it is straightfor-
ward in DD: the complexity is exponential with FM elimination but linear in
the number of generators. On the other hand, the conjunction operator, which,
in constraints-only representation, consists in the union of two sets followed by
a fast minimization [23], is less efficient in DD because it triggers one step of
Chernikova’s algorithm per constraint.

8 Conclusion and Future Work

We have shown how usual operations over convex polyhedra (projection, convex
hull, Minkowski sums, image by an affine map, linearization) can be formulated
as PLOP instances. In short, all costly operations on polyhedra in constraints-
only representation can be implemented using PLOP.

This approach was made practical by the combination of an efficient PLP-
solver and a normalization constraint ensuring that the solutions of the PLOP

are free of redundancies, which avoids costly post-processing minimization. This
makes the Vpl, a polyhedra library in constraints-only representation, competi-
tive with other libraries in double description, and much faster on problems that
have exponential generator representations.

Experiments on Minkowski sum met our expectations but raised an issue
for convex-hull: On large problems with the same characteristics, we beat other
libraries, but we suffer from an exponential blow-up of region subdivisions when
the two polyhedra have many faces in common, which induces a high degree of
degeneracy. Our PLP-solver does not have special counter-measures to deal with
degeneracy. Proposals exist for tackling primal and dual degeneracies but they
come with an extra-cost [18]. Thus, dealing with degeneracy is a trade-off and
we need a deeper understanding of the phenomenon before addressing it in our
PLP-solver or by a pre-processing for convex-hull.
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As future work, our approach can be combined with Cartesian product fac-
torization [13,31]. While the main advantage of factorization is to avoid expo-
nential generator representations, which we also do because we never compute
generators, using low dimension factors is likely to speed up parametric linear
programming.

Other avenues of research include experiments in the large on static analysis
of actual programs, the parallelization of the algorithms (we already use a parallel
minimization algorithm) and the increased use of floating-point computations
instead of exact rational arithmetic without destroying soundness.

Acknowledgments. The authors would like to thank Alexis Fouilhé, Andy King,
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8. Fouilhé, A.: Revisiting the abstract domain of polyhedra: constraints-only repre-
sentation and formal proof. Ph.D. thesis, Université de Grenoble (2015)
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Abstract. Hyperproperties are becoming the, de facto, standard for
reasoning about systems executions. They differ from classical trace
properties since they are represented by sets of sets of executions instead
of sets of executions. In this paper, we extend and lift the hierarchy of
semantics developed in 2002 by P. Cousot in order to cope with verifica-
tion of hyperproperties. In the standard hierarchy, semantics at different
levels of abstraction are related with each other by abstract interpre-
tation. In the same spirit, we propose an hyperhierarchy of semantics
adding a new, more concrete, hyper level. The semantics defined at this
hyper level are suitable for hyperproperties verification. Furthermore, all
the semantics in the hyperhierarchy (the standard and the hyper ones)
are still related by abstract interpretation.

1 Introduction

Since its origin in 1977, abstract interpretation [8] has been widely used, implic-
itly or explicitly, to describe and formalize approximate computations in many
different areas of computer science, from its very beginning use in formaliz-
ing (compile-time) program analysis frameworks to more recent applications in
model checking, program verification, comparative semantics, data and SW secu-
rity, malware detection, code obfuscation, etc. When reasoning about systems
executions a key point is the degree of approximation given by the choice of the
semantics used to represent computations. In this direction, comparative seman-
tics consists in comparing semantics at different levels of abstraction, always by
abstract interpretation [7,18]. The choice of the semantics is a key point, not
only for finding the desirable trade-off between precision and decidability of pro-
gram analysis in terms, for instance, of property verification, but also because
not all the semantics are suitable for proving any possible property of interest.
This means that the property to verify necessarily affect the semantics we have
to choose for modeling the system to analyze. For instance, if we are interested
in a property which is not a safety property [2], then we have necessarily to
consider a semantics able to approximate the whole computation (not only the
past of a computation), as static analysis does. While, when we are interested
in safety property then we have to consider a safety abstraction of the semantics
[13,19]. Analogously, if we have to characterize slices (extraction of executable
c© Springer International Publishing AG 2017
F. Ranzato (Ed.): SAS 2017, LNCS 10422, pp. 232–252, 2017.
DOI: 10.1007/978-3-319-66706-5 12
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code sub-fragments of a program [21]) of potentially non-terminating programs
then we need a semantics able to characterize also what happens after loops [17].

These were only examples, but in general new (classes of) properties of inter-
est may induce the necessity of defining new semantics, i.e., new semantic mod-
els for computational systems. In particular, we observed that hyperproperties,
namely sets of properties, recently gained more and more interest due to their
capability to capture program features that cannot be caught by classical prop-
erties, namely features that cannot be characterized by a predicate defined on
single computations. For instance, information flow properties can be verified
only by comparing sets of computations, hence they are hyperproperties, and
not properties in the standard sense. Hence, what we propose here is a general
formal framework for comparing semantics including the so-called hyperseman-
tics, modeling programs as sets of sets of computations, since we need such a
more concrete observation of systems computations in order to verify, poten-
tially by using approximation, hyperproperties. The framework we propose is
indeed an extension of the Cousot hierarchy of semantics [7] enriched with an
hyper level, where still all the semantics are compared by abstract interpretation.
Moreover, we show that at least two existing program analysis approaches (one
recent approach for information flow analysis [3] and standard program static
analysis [9]) can be included or compared in our framework.

2 Transition Systems, Semantics and Approximations

In this section, we introduce the hierarchy of semantics (both definition and con-
struction of semantics) proposed by Cousot [7], from which we move towards the
hyperlevel. In this way, while providing a formal framework for hypersemantics
we can formally prove its relation with the standard semantics framework.

2.1 Trace Semantics of Systems

We reason about semantics of systems independently from systems themselves.
Let S be the set of possible denotations of states of (computational) systems. The
concrete semantics of a system P is given by the transition system 〈Σ,Υ,Ω, τ〉,
where Σ ⊆ S is the set of possible states of P , Υ ⊆ Σ is the set of all initial
states of P , τ ⊆ Σ × Σ is the transition relation between states of P , and
Ω ⊆ Σ is the set of blocking/final states of P , i.e., those states σ such that
∀σ′ ∈ Σ . 〈σ, σ′〉 /∈ τ . For instance, a system could be any program written
in a programming language, the state denotations could be any possible map-
pings from program variables to values and the transition system is given by the
operational semantics of the language.

The executions of a system are modeled by sequences of transitions [7]. The
set S�n def= [0, n) �→ S, n ∈ N, is the set of finite sequences s = s0s1 . . . sn−1 of
length |s| = n over S. The set of finite non-empty sequences is S�+ def=

⋃
0<n<ω S�n.

The set S�ω def= N �→ S contains infinite sequences s = s0s1 . . . of length |s| = ω
over S. The set of non-empty sequences is S �∞ def= S�+ ∪ S�ω. The empty sequence
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is ε. Given s, s′ ∈ S �∞, s′ can be appended to s iff s|s|−1 = s′
0 and their append

is s 	 s′ def= s0s1 . . . s|s|−1s
′
1s

′
2 . . . s′

|s′|−1 [7]. Given a system P , Σ �∞ ⊆ S �∞ is the
set of all sequences on the states Σ of P , analogous for Σ�+ ⊆ S�+ and Σ�ω ⊆ S�ω.

An execution (trace) of a system P is a sequence of states in Σ where adja-
cent elements are in τ . τ �̇n def= {σ ∈ Σ�n | ∀i ∈ [0, n − 1) . 〈σi, σi+1〉 ∈ τ} are the
finite traces of length n, while the set of finite blocking traces of length n is
τ�n def= {σ ∈ Σ�n | σn−1 ∈ Ω ∧ ∀i ∈ [0, n − 1) . 〈σi, σi+1〉 ∈ τ}.

The maximal finite trace semantics (set of blocking/terminating executions)
is τ �+ def=

⋃
0<n<ω τ�n. The infinite trace semantics (set of non-blocking/non-

terminating executions) is τ�ω def= {σ ∈ Σ�ω | ∀i ∈ N . 〈σi, σi+1〉 ∈ τ}. The maximal
trace semantics is τ �∞ def= τ �+∪τ�ω [7]. In the following, in order to avoid ambiguity,
we can make explicit the system, e.g., we can write τ �∞

[P ] instead of just τ �∞ in
order to denote the maximal trace semantics of P .

2.2 Fixpoint Semantics Approximation

A semantics T is said to be constructive, i.e., expressible in fixpoint form, if
there exists a fixpoint semantic specification 〈F,D,� 〉, where 〈D,�,∨,⊥〉 is a
partially ordered set with (partially defined) least upper bound ∨ and minimum
⊥ (usually at least a DCPO1), F : D −→ D is �-monotone and iteratable2 and
T = lfp�

⊥F = F δ, where δ is the least ordinal such that F δ = F (F δ) and F δ is
equal to

∨
n≤δ Fn(⊥) [14].

Consider now the semantic specifications 〈F,D,� 〉, 〈F̄ , D̄, �̄〉, and suppose
that 〈D,� 〉, 〈D̄, �̄〉 form a Galois connection3, by means of the functions
α : D

m−→ D̄ (abstraction) and γ : D̄
m−→ D (concretization), namely α and

γ are adjoint functions. When the semantics is expressed in fixpoint form, we
can derive an abstract fixpoint semantics by abstraction of a concrete one, or
vice versa. The Kleenian fixpoint approximation theorem [7], requires abstrac-
tion soundness, i.e., α ◦ F �̄ F̄ ◦ α, guaranteeing fixpoint approximation, i.e.,
α(lfp�

⊥F ) �̄ lfp�̄
⊥̄F̄ . The (in the following called backward) Kleenian fixpoint

transfer theorem [7] requires completeness, i.e., α ◦ F = F̄ ◦ α, guaranteeing
the fixpoint transfer from concrete to abstract domain, i.e., α(lfp�

⊥F ) = lfp�̄
⊥̄F̄ .

Suppose now we are interested in transferring the fixpoint from an abstract
domain to the concrete one4. Unfortunately, the completeness requirement
observed in the abstract domain (called backward), i.e., α ◦ F = F̄ ◦ α, is not

1 A DCPO is a poset where it exists the least upper bound of every directed subset.
2 A function F over D is said iteratable if the transfinite iterates of F from ⊥ are well

defined. The transfinite iterates of F from ⊥ are F 0 = ⊥ and F δ+1 = F (F δ) for
successor ordinals δ + 1 and F ζ =

∨
δ<ζ F δ for limit ordinals ζ.

3 α, γ form a Galois connection between concrete 〈D, � 〉 and abstract 〈D̄, �̄〉 domains,
denoted 〈D, � 〉 −−−→←−−−

α

γ 〈D̄, �̄〉, if ∀c ∈ D, a ∈ D̄ . α(c) �̄ a ⇔ c � γ(a). If α ◦ γ = idD̄

then they form a Galois insertion, denoted 〈D, � 〉 −−−→−→←−−−−
α

γ 〈D̄, �̄〉.
4 This direction does not change anything in the approximation case, since the sound-

ness requirement is equivalent also when we check it on the concrete, i.e., α◦F �̄ F̄ ◦α
iff F ◦ γ � γ ◦ F̄ .
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the same as checking completeness on the concrete domain (called forward), i.e.,
F ◦ γ = γ ◦ F̄ . In order to transfer fixpoints from abstract to concrete we need
precisely the latter direction. In this case, we provide the forward version of the
Kleenian fixpoint transfer theorem.

Theorem 1 (Forward Kleenian fixpoint transfer). Suppose that 〈F,D,� 〉
and 〈F̄ , D̄, �̄〉 are concrete and abstract fixpoint semantics specifications. Let
γ : D̄ −→ D be a strict Scott-continuous5 concretization function. If γ ◦ F̄ = F ◦γ
(forward completeness) then γ(lfp�̄

⊥̄F̄ ) = lfp�
⊥F .

In the abstract interpretation framework, it is well known that the Kleenian
fixpoint approximation trivially hold when F̄ is the best correct approximation
(bca) of F , i.e., F̄ = α ◦ F ◦ γ. Hence, we look for a similar characterization in
the dual case. In particular, we look for a systematic way to retrieve a concrete
semantics which best represents a given abstract function. Exploiting the “dual-
ity principle” of abstract interpretation [10] we can obtain the best correct con-
cretization as F

def= γ ◦ F̄ ◦ α. Then we still trivially have that γ(lfp�̄
⊥̄F̄ ) � lfp�

⊥F
and lfp�̄

⊥̄F̄ �̄ α(lfp�
⊥F ). Moreover, in a Galois insertion settings, it is always

possible to derive a complete (backward and forward) concretisation, called best
complete concretisation, of a given abstract semantics:

Theorem 2 (Best Complete Concretization). Let 〈D,� 〉 and 〈D̄, �̄〉 be
partially ordered sets such that 〈D,� 〉 −−−→−→←−−−−

α

γ
〈D̄, �̄〉. Let F̄ : D̄

m−→ D̄ and
F bcc = γ ◦ F̄ ◦ α. Then D̄ is both backward and forward complete for F bcc.

Note that F̄ is exactly the bca of F bcc in D̄, indeed F bccbca = α ◦ F bcc ◦
γ = α ◦ γ ◦ F̄ ◦ α ◦ γ = F̄ . Hence, given an abstract function F̄ it is possible
to derive a concrete function F , for which F̄ is an approximation, such that
α(lfp�

⊥F ) = lfp�̄
⊥̄F � and lfp�

⊥F = γ(lfp�̄
⊥̄F̄ ).

2.3 Standard Hierarchy of Semantics

In [7] the author showed that many well-known semantics can be computed
as abstract interpretations of the maximal trace semantics, and they can be
organized in a hierarchy. For instance, the relational semantics τ∞ associates
an input/output relation with system traces by using the ⊥ symbol to denote
non-termination, while denotational semantics τ � gives semantics by considering
input/output functions. Each semantics (said to be in natural style) have three
different abstractions, for instance the angelic abstraction, which observes only
finite computations, e.g., the angelic trace semantics τ �+ observes only finite
traces, while the angelic relational semantics τ+ and the angelic denotational
semantics τ 	 the corresponding relations and functions. In [7] the author consider
also several other semantics but, in sake of simplicity, we focus only in the subset
of the hierarchy depicted in Fig. 1, on the left. Another useful semantics is partial
trace semantics (finite prefixes of computations, starting from initial states):
τ �∝ =

⋃
0<n<ω{σ ∈ τ �̇n | σ0 ∈ Υ} [12].

5 A function f is said Scott-continuous if preserves the least upper bound of directed
subsets of X and it is said strict if f(⊥) = ⊥.
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Fig. 1. A part of the standard hierarchy of semantics with its hyper counterparts

Furthermore, these semantics can all be computed by fixpoint of a monotone
operator over an ordered domain [7,12]. In this case, it is not always possi-
ble to obtain semantics by fixpoint w.r.t. the standard inclusion order (⊆),
also called the approximation order. In fact, in some cases the fixpoint oper-
ator is not monotone on the approximation order, and therefore we have to
define a computational order forcing monotonicity, and therefore convergence
of the fixpoint operator. For instance, the maximal trace semantics of P can
be computed as: τ �∞ = lfp� �∞

⊥ �∞F �∞, where F �∞ : ℘(Σ �∞) −→ ℘(Σ �∞) is defined
as F �∞ def= λX . τ

�1 ∪ (τ�̇2 	 X), which is monotone on the computational order
X � �∞ Y

def= ((X ∩Σ�+) ⊆ (Y ∩Σ�+))∧ (X ∩Σ�ω) ⊇ (Y ∩Σ�ω)) (the corresponding
lub is

⊔ �∞
Xi

def=
⋃

(Xi ∩ Σ�+) ∪
⋂

(Xi ∩ Σ�ω) and ⊥ �∞ def= Σ�ω). As far as the partial
semantics is concerned, the semantics operator is computed as: τ �∝ = lfp⊆

∅
F �∝,

where F �∝ : ℘(Σ�+) −→ ℘(Σ�+) is defined as F �∝ def= λX . Υ ∪ (X 	 τ
�̇2), which is

monotone on the standard approximation order (⊆) [12].

Example 1. Let P
def= l := 4; if (h = 1) then l := 2h else while (true)do {l := 6},

and let us denote states as maps between variables to values ([n,m] means l �→ n,
h �→ m). Maximal trace semantics τ �∞

[P ] and relational semantics τ∞
[P ] are:

τ �∞[P ] = { [n, 1][4, 1][2, 1], [4, 1][2, 1], [2, 1], [n, m][4, m][6, m]ω | n ∈ N, m ∈ N \ {1}}
τ∞[P ] = { 〈[n, 1], [2, 1]〉, 〈[4, 1][2, 1]〉, 〈[2, 1][2, 1]〉, 〈[n, m], ⊥〉 | n ∈ N, m ∈ N \ {1}}

3 Hyperproperties

In the security context, there are policies that can be expressed as trace prop-
erties, like access control, and others which cannot, like non-interference. In this
latter case, it is necessary to specify it as an hyperproperty. Intuitively, a prop-
erty is defined exclusively in terms of individual executions and, in general, do
not specify a relation between different executions of the system. Instead, an
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hyperproperty specifies the set of sets of system executions allowed by the secu-
rity policy, therefore expressing relations between executions. In [5] it is stated
that in order to formalize security policies, it is sufficient to consider hyperprop-
erties. This means that hyperproperties are able to define every possible security
policy (this is true for systems modeled as set of states traces).

In this section, we introduce the notion of hyperproperty [5], i.e., a set of sets
of executions. In the original formulation, systems are modeled by non-empty
sets of infinite traces, where terminating executions are modeled by repeating
the final state of the trace an infinite number of times [5]. In our work, we will
reason about hyperproperties keeping generality, so we are not restricted to only
infinite sequences.

Safety Hyperproperties [5]. In the context of trace properties, a particular
kind of properties are safety ones [2], expressing the fact that “nothing bad
happens”. These properties are interesting because they depend only on the
history/past of single executions, meaning that safety properties are dynamically
monitorable [2]. Similarly, safety hyperproperties (or hypersafety) are the lift to
sets of safety properties. This means that, for each set of executions that is not
in a safety hyperproperty, there exists a finite prefix set of finite executions (the
“bad thing”) which cannot be extended for satisfying the property.

Another particular class of hyperproperties are the k-safety hyperproperties
(or k-hypersafety). They are safety hyperproperties in which the “bad thing”
never involves more than k executions [5]. This means that it is possible to check
the violation of a k-hypersafety just observing a set of k executions (note that
1-hypersafeties are exactly safety properties). This is important for verification,
in fact, it is possible to reduce the verification of a k-hypersafety on system P to
the verification of a safety on the self-composed systems P k [5]. Furthermore, lots
of interesting security policies can be formalized as k-hypersafety; for instance,
some definitions of non-interference are 2-hypersafety.

The topic of hyperproperties verification is quite new. Besides the reduction
to safety, in [1] the authors introduce a runtime refutation methods for k-safety,
based on a three-valued logic. Similarly, [4,15] define hyperlogics, i.e., extensions
of temporal logic able to quantify over multiple traces. The use of abstract
interpretation in hyperproperties verification is limited to [3], analyzed in Sect. 7.

4 Verifying Hyperproperties

In this section, we deal with hyperproperties verification. Here, by verification
we mean both validation, i.e., checking whether a system fulfills the property,
and confutation, i.e., checking whether a system does not fulfill the property. It
is well known that we cannot always answer to both these problems precisely.

Consider the set of state denotations S and a set D of all possible executions
of any system P on states S. The execution of a system could be a sequence (finite
or infinite), a pair, etc., of elements in S, depending on how we mean to repre-
sent computations. In the following, given a system P , we denote by [[P ]] ⊆ D a
generic semantics of P , parametric on the executions domain D. For instance, if
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D = S �∞ then we consider the maximal trace semantics of P , i.e., [[P ]] = τ �∞, while
ifD = S ×S then we consider the angelic relational semantics of P , i.e., [[P ]] = τ+.
Usually, a trace property is modeled as the set of all executions satisfying it. Hence,
let P ⊆ D be such a property, then it is well known that a system P satisfies P,
denoted as P |= P, iff [[P ]] ⊆ P. Hence, by definition, P is fulfilled for a system
P iff P is fulfilled for each one of its executions, i.e., P |= P iff ∀s ∈ [[P ]] . s ∈ P
(validation). This is quite useful because in order to disprove that a system fulfills
a trace property we just need one counterexample, i.e., P �|= P iff ∃s ∈ [[P ]] . s �∈ P
(confutation). We denote by TRCPD the set of all trace properties, i.e., ℘(D). For
instance, trace properties in ℘(D), for D = S �∞, are termination Term

def= S�+ and
Evenl def= {s ∈ S �∞ | ∀i > 0 . si(l) even} (saying that variable l is always even after
initialization). Note that, the program in Example 1 satisfies Evenl but not Term,
since τ �∞

[P ] ⊆ Evenl, while τ �∞
[P ] �⊆ Term.

For hyperproperties, the satisfiability relation changes from set-inclusion to
set-membership [5], namely P |= Hp iff [[P ]] ∈ Hp.

4.1 Hyperproperties Verification

As introduced in Sect. 2, hyperproperties are sets of sets of executions, hence the
domain of hyperproperties is ℘(℘(D)). We denote by GENHD the set of all (generic)
hyperproperties, i.e., ℘(℘(D)). Similarly to what happens for trace properties,
we characterize hyperproperty validation as:

P |= Hp ∈ GENHD ⇔ [[P ]] ∈ Hp ⇔ {[[P ]]} ⊆ Hp

This means that the strongest hyperproperty of a system P is [[P ]]♦
def= {[[P ]]}

[6], since every hyperproperty of P is implied by, i.e., include, [[P ]]♦. An example
of a generic hyperproperty for D = S �∞ is generalized non-interference GNI

def=
{X ⊆ ℘(D) | ∀s, s′ ∈ X ∃s̄ ∈ X . (s̄ =H s ∧ s̄ ≈L s′)} [5], stating that, for
each pair s, s′ of executions there exists an interleaving one s̄ which agrees with
s on private variables (H) in input (�) and with s′ on public variables (L)6. The
program in Example 1 do not satisfy GNI, since τ �∞

[P ] /∈ GNI.
At this point, we wonder whether we can use standard semantics for verifying,

at least, a subset of hyperproperties. Let us consider the following restriction.

Definition 1 (Trace hyperproperty). tHp ∈ GENHD is called trace hyperprop-
erty if tHp = ℘(

⋃
tHp), i.e., if 〈tHp,⊆,∪,∩, ∅,

⋃
tHp〉 is a boolean algebra7.

We denote with TRCHD the set of all trace hyperproperties, i.e., TRCHD is the
set {tHp ∈ GENHD | ℘(

⋃
tHp) = tHp}. Hence, we have validation as

P |= tHp ∈ TRCHD ⇔ {{s} | s ∈ [[P ]]} ⊆ tHp ⇔ ∀s ∈ [[P ]] . {s} ∈ tHp

6 Note that =H is an equivalence on states while ≈L is on traces.
7 A boolean algebra is a complemented (each x ∈ X has complement y ∈ X: x∧y = ⊥,

x ∨ y = �) and distributive (∀x, y, z ∈ X . x ∧ (y ∨ y) = (x ∨ y) ∧ (x ∨ z)) lattice.
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This means that, exactly as it happens for properties, we can check this kind
of hyperproperties on single executions: if we find at least one execution not sat-
isfying the hyperproperty, then the whole system does not satisfy it. For example,
Evenl

H
def= ℘(Evenl) is the trace hyperproperty equivalent to trace property Evenl.

The hyperproperties which we can verify with standard trace semantics are
all and only the trace hyperproperties, as stated by the following theorem.

Theorem 3. For every hyperproperty Hp:

Hp ∈ TRCHD ⇔ ∃P ∈ TRCPD ∀P ∈ systems . (P |= P ⇔ P |= Hp)

Direction (⇒) holds since, by definition, Hp ∈ TRCHD implies Hp = ℘(
⋃
Hp), and

setting P =
⋃
Hp we have [[P ]] ⊆

⋃
Hp ⇔ ℘([[P ]]) ⊆ ℘(

⋃
Hp) ⇔ [[P ]] ∈ Hp. For

the converse (⇐) we give only an intuition. Take, for instance, Hp = {{a}, {b}} /∈
TRCHD, so ∀P ∈ TRCPD ∃P ∈ systems such that P |= P ⇔ P |= Hp do not hold.
Indeed, if P ∩

⋃
Hp ⊇ {a, b} consider [[P ]] = {a, b}, then we have [[P ]] ⊆ P

but [[P ]] �∈ Hp. Otherwise, if P ∩
⋃
Hp ⊇ {a} take [[P ]] = {b}, otherwise take

[[P ]] = {a}, in any case we can show that [[P ]] ∈ Hp but [[P ]] �⊆ P.
We can further generalize this restriction, allowing us to preserve the possi-

bility of verifying hyperproperty on trace semantics at least for confutation. It
should be clear that, in the general case, we have to compute the whole seman-
tics [[P ]] in order to verify (both validate and confute) the hyperproperty Hp.
However, it is worth noting that there is a particular kind of hyperproperties
that generalizes hypersafety and whose verification test can be simplified.

Definition 2 (Subset-closed hyperproperty). cHp ∈ GENHD is called a
subset-closed hyperproperty if cHp is such that X ∈ cHp ⇒ (∀Y ⊆ X .Y ∈ cHp).

We denote with SSCHD the set of all subset-closed hyperproperties, i.e., SSCHD
is the set {cHp ∈ GENHD | X ∈ cHp ⇒ (∀Y ⊆ X .Y ∈ cHp)}. Note that all trace
hyperproperties are subset-closed but not vice-versa (one example is observa-
tional determinism [22]). In particular, a subset-closed hyperproperty cHp is
also a trace hyperproperty if, in addition, it holds: X,Y ∈ cHp ⇒ X ∪ Y ∈ cHp.
It turns out that lots of interesting hyperproperties are subset-closed, e.g., all
hypersafety and some hyperliveness [5]. In this case, validation becomes

P |= cHp ∈ SSCHD ⇔ ℘([[P ]]) ⊆ cHp ⇔ ∀X ⊆ [[P ]] . X ∈ cHp

where [[P ]]�
def= ℘([[P ]]) is the strongest subset-closed hyperproperty of P . It is clear

that this does not change the validation of cHp, but it may in general simplify the
confutation, since we do not need the whole semantics [[P ]]: it is sufficient to find
a X ⊆ [[P ]] such that X �∈ cHp in order to imply {[[P ]]} �⊆ cHp. A subset-closed
hyperproperty for D = S × S⊥ which is not a trace hyperproperty is termination
insensitive non-interference TINI

def= {X ⊆ ℘(D) | ∀s, s′ ∈ X . s =L s′
 ⇒ (s� =

⊥ ∨ s′
� = ⊥ ∨ s� =L s′

�)} [5], stating that, each pair of executions agreeing on
public variables (L) in input (�), must terminate agreeing on public variables in
output (�). The program in Example 1, with typing Γ (l) = L, Γ (h) = H, satisfies
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TINI since all terminating traces provides the same value for l, i.e., τ∞
[P ] ∈ TINI.

In [5], the authors proved that TINI is 2-hypersafety, hence it is subset-closed, and,
conversely, they proved that GNI is not subset-closed.

Finally, we can provide a further characterization of subset-closed hyperprop-
erties as union of trace hyperproperties.

Proposition 1. Every subset-closed hyperproperty cHp can be decomposed in a
conjunction of trace hyperproperties, namely:

cHp =
⋃

Y ∈ max⊆(cHp)

℘(Y ) with max⊆(X )
def
=

{

X ∈ X
∣
∣
∣
∣

∀X ′ ∈ X .
X ⊆ X ′ ⇒ X = X ′

}

where max⊆(X ) is the set of maximals of ⊆-chains in X .

Clearly, for all Y in max⊆(cHp), it holds ℘(
⋃

℘(Y )) = ℘(Y ) so ℘(Y ) is a trace
hyperproperty. Hence any subset-closed hyperproperty can be characterized as
cHp =

⋃
i∈Δ tHpi (for a set Δ ⊆ N). This implies that, in order to validate cHp

on standard trace semantics it is sufficient to validate just one of these tHpi. In
fact, if P |= tHpi, i.e., [[P ]] ∈ tHpi, then [[P ]] ∈ cHp and hence P |= cHp.

4.2 Hyperproperties Relations and Algebraic Structures

In this section, we show the relations existing among the notions of hyperprop-
erties we have introduced. Moreover, we describe the algebraic structures of
hyperproperties domains. In the following, we omit the subscript of proper-
ties/hyperproperties domain when it is clear from the context or not relevant.

It is straightforward to note that TRCH � SSCH � GENH and that SSCH (and
therefore TRCH) do not contain ∅. Indeed the empty set has no members, so it
cannot be subset-closed. In addition, the unique singleton subset-closed is {∅}.

Now let ρ� be the function λX . γ� ◦ α�(X ), where α�
def= λX .

⋃
X and γ�

def=
λX .℘(X), and let ρ� be the function λX . {X | ∃Y ∈ X .X ⊆ Y }. It is easy to
note that they are both upper closure operators of GENH (i.e., monotone operators
in ℘(℘(D)) −→ ℘(℘(D)) which are extensive and idempotent)8.

Proposition 2. SSCH = ρ�(GENH) and TRCH = ρ�(GENH) = ρ�(SSCH).

Note that 〈SSCH,⊆,∪,∩, {∅}, ℘(D)〉 is a complete lattice, where the bottom
is {∅} because ∅ is contained in every subset-closed set and the top is ℘(D)
because it is the top of GENH and it is subset-closed. For the same reasons they are
the bottom and the top of the complete lattice 〈TRCH,⊆,∪,∩, {∅}, ℘(D)〉, which
is the sublattice of SSCH (and GENH) comprising its boolean algebras. Finally, it
is straightforward to note that TRCH is isomorphic, through 〈α�, γ�〉, to TRCP.
The big picture is depicted by the commutative diagram in Fig. 2. Recall that
the approximation order plays the role of implication. So the strongest hyper-
property, i.e., the one which implies any other hyperproperty, is ∅ for GENH and
8 The adjunction 〈α�, γ�〉 and its link with systems properties were already introduced

in [3] (their 〈αhpp, γhpp〉) and even before in [13] (their 〈αΘ, γΘ〉).
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{∅} for SSCH, TRCH. Conversely, the weakest hyperproperty, i.e., the one which is
implied by any other one, is ℘(D) for GENH, SSCH, TRCH. For what concerns TRCP,
it is isomorphic to TRCH hence the strongest trace property is α�({∅}) = ∅ and
the weakest is α�(℘(D)) = D, as expected.

〈GENH, ⊆, ∪, ∩, ∅, ℘(D)〉 →−→−−−←−−−−
ρ�
id 〈SSCH, ⊆, ∪, ∩, {∅}, ℘(D)〉 →−→−−−←−−−−

ρ�

id 〈TRCH, ⊆, ∪, ∩, {∅}, ℘(D)〉

〈TRCP, ⊆, ∪, ∩, ∅,D〉

−
→−→−←−

−−− α�γ�

−

→−→−−−−−−←−−−
−−−

−−
α�

γ�

−

→−→−−−
−−−

−−−
−−−

−−←←
γ
�

α
�

Fig. 2. Relations between hyperproperties

5 Approximating Hyperproperties Verification

In this section, we investigate how we can approximate hyperproperty verifica-
tion. Let us briefly recall how we can approximate standard property verification.
In order to cope with the potential non decidability of trace properties verifica-
tion, approximation of systems semantics is necessary. In the standard framework
of abstract interpretation [8,9] we can compute a sound over-approximation
O ⊇ [[P ]] of a system semantics allowing sound validation of trace properties
(Fig. 3, part [a]). This is obtained by means of an abstraction of the concrete
domain, where the abstract semantics plays the role of the over-approximation.
Let P be a system, Â ⊆ TRCP an abstract domain, P ∈ TRCP a trace property
and [[P ]]� an abstract interpretation of [[P ]] in Â, i.e., [[P ]] ⊆ γ̂([[P ]]�), then:

〈TRCP,⊆ 〉 −−−→←−−−
α̂

γ̂
〈Â,� 〉 and γ̂([[P ]]�) ⊆ P implies P |= P

Recall that, by under-approximation we can improve decidability of the confu-
tation of a property, since if U ⊆ [[P ]] and U �⊆ P then we have that [[P ]] �|= P.
At this point, we can show that trace hyperproperties can be verified in the
standard analysis framework based on abstract interpretation.

Proposition 3. Let P be a system, Â ⊆ TRCP be an abstract domain, tHp ∈ TRCH

be a trace hyperproperty and [[P ]]� be an abstraction of [[P ]] in Â, i.e., [[P ]] ⊆
γ̂([[P ]]�), then 〈TRCP,⊆ 〉 −−−→←−−−

α̂

γ̂
〈Â,� 〉 and γ̂([[P ]]�) ⊆

⋃
tHp implies P |= tHp.

Hence, we can still use standard analysis based on over-approximation for ver-
ifying trace hyperproperties. Moreover, when dealing with confutation of prop-
erties, also in this case we can use under-approximation in the standard way,
since if we have U ⊆ [[P ]] and U �⊆

⋃
tHp then still we can derive that P �|= tHp.

Unfortunately, when we do not have restrictions on hyperproperties, standard
trace semantics, in general, does not provide enough information for approximating



242 I. Mastroeni and M. Pasqua

Fig. 3. Over-approximation of trace properties [a] and hyperproperties [b]

verification, since O ⊇ [[P ]] ∧ O ∈ Hp �⇒ [[P ]] ∈ Hp (Fig. 3, part [b] on the left).
Over-approximations do not work properly because we are approximating on the
wrong domain. Indeed, if we move towards GENH (or SSCH), then O ⊇ {[[P ]]} ∧ O ⊆
Hp ⇒ {[[P ]]} ⊆ Hp, i.e., [[P ]] ∈ Hp (Fig. 3, part [b] on the right). The problem is
due to the fact that the property is defined on the domain GENH, different from the
domain TRCP, where the system semantics is computed.

The idea we propose in the following sections, consists in moving the systems
semantics on a more concrete domain, i.e., we build the semantics at the same
level of the properties, namely at the hyper level. In this way, we can exploit
the abstract interpretation framework even for approximating hyperproperties
verification. Our goal is to define the system P semantics on the hyper level, i.e.,
we define the hyper semantics [[P ]]H such that {[[P ]]} ⊆ [[P ]]H.

An over-approximation of [[P ]]H clearly leads to a sound verification mecha-
nism for hyperproperties. In fact, let P be a system, Ã ⊆ GENH be an abstract
domain, Hp ∈ GENH be an hyperproperty, [[P ]]H be a semantics on GENH and [[P ]]�H
be an abstract interpretation of [[P ]]H in Ã, i.e., [[P ]]H ⊆ γ̃([[P ]]�H), then:

〈GENH,⊆ 〉 −−−→←−−−
α̃

γ̃
〈Ã,� 〉 and γ̃([[P ]]�H) ⊆ Hp imply P |= Hp

Hence, we build an hyper semantics of the system, and then we can over-
approximate it in some abstraction of the hyper domain. This is depicted in
Fig. 4, where in [a] we have the standard case and in [b] the hyper case.

a

abstraction verification of
P ∈ TRCP

〈TRCP, ⊆〉

−−−→
←−−−α̂ γ̂

〈Â, �〉

b

concretization

abstraction

verification of
Hp ∈ GENH

〈TRCP, ⊆〉

−
→−→−−−←−−−−
−

α�

γ�

〈GENH, ⊆〉
−−−−−→
←−−−−−α̃

γ̃

〈Ã, �〉

Fig. 4. Verification (abstract interpretation) of properties [a] and hyperproperties [b]
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6 Hyperhierarchy of Semantics

In Sect. 2.3 we introduced the hierarchy of semantics proposed in [7], where most
well known semantics have been related by Galois insertions. In this section, we
aim at extending this hierarchy in order to include an hyper level of semantics
suitable for hyperproperties verification. The intuition of lifting the classical
hierarchy of semantics to sets of sets was already present in [3], where it was
just sketched. Here we analyze the problem in a deeper and comprehensive way.
Note that, as observed in Sect. 4.2, we have different notions of hyperproperties,
implying different possible approaches for verification. We do not have precisely
the same distinction when dealing with systems semantics.

6.1 Defining Hypersemantics

In the following, we indicate with [[P ]] a generic standard semantics of the system
P , namely an element of the standard hierarchy, as we have done in Sect. 4. So,
for instance, [[P ]] can stand for τ �∞

[P ], or it can stand for τ+
[P ], etc.

Subset-Closed and Generic Hypersemantics. The first level comprises subset-
closed systems semantics. This means that every element of this hierarchy, which
is parametric by systems denotations (D) as in the standard case, is in the set
SSCH. It turns out that, given a system P , its subset-closed hypersemantics is
[[P ]]� = ℘([[P ]]), which is indeed its strongest subset-closed hyperproperty. This
happens because any semantics have a maximal set of computations, therefore
an SSCH semantics is in particular a boolean algebra.

The second level comprises generic systems hypersemantics. This means that
every element of this hierarchy, which is again parametric on systems denotations
(D), is in GENH. It turns out that, given a system P , its generic hypersemantics
is [[P ]]♦ = {[[P ]]}, which is indeed its strongest generic hyperproperty.

It is worth nothing that, [[P ]]� ∈ SSCH and [[P ]]♦ ∈ GENH do not give us more
information on the executions of P than [[P ]], being isomorphic to [[P ]]. Namely
these parallel hierarchies does not provide different observables, but only new
verification methods for hyperproperties. In particular, over-approximations of
hypersemantics on these more expressive semantic levels, provide verification
methods for subset-closed and generic hyperproperties. We cannot verify these
hyperproperties within the standard hierarchy of semantics.

Post/Pre Hypersemantics. In the previous sections, we considered only hyper-
semantics isomorphic to standard ones. It is clear, that the hyper level is indeed
strictly more concrete than the standard level, hence we aim at defining hyper
semantics strictly more expressive than standard ones. In particular, we can
extends to the hyper levels both the maximal trace semantics and the partial
trace semantics and we observe how we can exploit the expressiveness of these
semantics when dealing with hyperproperties verification.
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The Post hypersemantics τ �∞
post is defined as:

τ �∞
post

def
=
{{⋃

n>0 τ�n
X ∪ τ�ω

} ∣∣
∣ X ⊆ Ω

}
where τ�n

X
def
= {σ ∈ τ�n | σn−1 ∈ X}

The Pre hypersemantics τ �∝
pre is defined as:

τ �∝
pre

def
=
{{⋃

n>0 τ �̇n
X

} ∣∣
∣ X ⊆ Υ ∧ X �= ∅

}
where τ �̇n

X
def
= {σ ∈ τ �̇n | σ0 ∈ X}

The first collects the sets of maximals (terminating) computations partitioned
by all the possible sets of final states, plus the infinite computations of course.
This is a backward semantics and intuitively says which initial states we need
to take in order to reach some given final states. The second do the opposite,
namely it collects the sets of partial (finite) computations partitioned by all the
possible sets of initial states. This is a forward semantics and intuitively says
which partial computations we obtain starting from some given initial states.

Example 2. As example, consider the transition system with Σ = {a, b, c, d, e},
τ = {〈a, b〉, 〈a, c〉, 〈b, d〉, 〈c, c〉, 〈e, b〉, 〈e, e〉}, Υ = {a, e} and Ω = {d}. Then

τ �∞ = {d, bd, abd} ∪ {enbd}n≥1 ∪ {cω, acω, eω}
τ �∝ = {a, ab, abd} ∪ {acn}n≥1 ∪ {en}n≥1 ∪ {enb}n≥1 ∪ {enbd}n≥1

The hyper versions are

τ �∞
post =

{
τ �∞, {cω, acω, eω}

}

τ �∝
pre =

{
τ �∝, {a, ab, abd} ∪ {acn}n≥1, {en}n≥1 ∪ {enb}n≥1 ∪ {enbd}n≥1

}

being ℘(Ω) =
{
{d}, ∅

}
and ℘(Υ ) \ {∅} =

{
{a, e}, {a}, {e}

}
.

These hypersemantics can be used for partially verifying hyperproperties, since
they provide the semantics parametrically on the subsets of blocking/initial
states. Suppose that, instead of checking whether a system fulfills an hyper-
property Hp, we want to check when a system fulfills it. The problem boils down
to analyze the intersection τ �∞

post ∩Hp [or τ �∝
pre ∩Hp]. If the intersection is ∅ then

the answer is “never”, if the answer is τ �∞
post [or τ �∝

pre] then P |= Hp, otherwise
we have that for particular final states [initial states] the system satisfies the
hyperproperty. Hence we have a form of partial satisfiability. This is in practice
useful, for example when we want to know under what conditions we can still
use an unsafe system.

The Hyperhierarchy. Up to now, we simply reasoned on single semantics. Finally,
we can show that the whole hierarchy of standard semantics can be lifted on
the hyper levels, preserving all the abstraction relations between semantics. In
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the standard hierarchy, τ �∞ and τ �+ (and hence all their relational/denotational
abstractions) are backward semantics in the sense they are suffix-closed [11].
This means that they represents systems executions with complete traces and
all their suffixes. Instead, the semantics τ �∝ is forward in the sense it is prefix-
closed [13]. This means that it represents systems executions with all the partial
computations starting from initial states (i.e., trace prefixes).

Note that all the semantics in the standard hierarchy are abstractions of τ �∞

and, analogously, every hypersemantics is an abstraction of τ �∞
post.

Proposition 4. Let y ∈ { �∞, �+, �∝,∞,+, �, �}, let α be such that τy = α(τ �∞) in
the standard hierarchy of semantics, and let α� def= λX . {α(X) | X ∈ X}, then:

τy
post = α�(τ �∞

post) and α ◦ α� = α� ◦ α�

The subset-closed (�) and generic (�) hypersemantics are isomorphic to the
standard ones, trough 〈α�, γ�〉 and 〈α�, λX . {X}〉 respectively. This means that
for these hypersemantics the commutativity trivially holds. So, lifting to sets
the abstraction function used to go from a semantics to another semantics, in
the standard hierarchy, results in an abstraction between the respective hyperse-
mantics at the hyper level. Proposition 4 justifies Fig. 1, where an arrow between
semantics means that there is an abstraction relation, while a double arrow
means that the semantics are isomorphic. On the left we have the standard
hierarchy and on the right the hyper levels. The central level represents subset-
closed (�) and generic (�) hypersemantics, which are isomorphic to standard
semantics. This allows us, with the same information, to gain expressiveness in
verification. On the right, we have the level of post/pre hypersemantics, namely
semantics which contains strictly more information w.r.t. the standard ones and
which can be used for partial verification. From these hypersemantics we obtain
the standard ones through the abstraction 〈α�, γ�〉 and hence, by composition
with the isomorphism, also subset-closed (�) and generic (�) hypersemantics are
abstractions of them.

6.2 Computing Hypersemantics

In this section, we show how we can compute the semantics at the hyper levels,
similarly to what happens in the standard hierarchy of semantics [7], where each
semantics is obtained as fixpoint of a monotone operator.

Computing Hypersemantics by Using bcc and Additive Lift. Suppose we are
interested in computing the standard semantics at the hyper level. In this case,
our aim is simply to emulate the standard semantics computation on the hyper
level. This may be considered useful for approximating computation when deal-
ing with hyperproperty verification, as explained in Sect. 5. In this case we have
to transfer the fixpoint computation from the abstract domain of standard
semantics, to the concrete domain of hypersemantics, and we can follow two
possible ways: we can use the best complete concretization (bcc) of the standard
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semantic operator, or we can lift the operator to sets. Basically, we aim at com-
puting by fixpoint a semantics [[P ]]H (one of the semantics in Fig. 1, on the central
level), namely we want to find a monotone operator FH : ℘(℘(D)) −→ ℘(℘(D)),
such that [[P ]]H = lfp FH, built on top of the standard semantics operator F .

First, consider FH
def= F� = γ� ◦ F ◦ α� (namely we apply Theorem 2

considering F� as the best complete concretization of F ). Since γ� is a strict
Scott-continuous concretization map between 〈TRCP,⊆,∪,∩, ∅,D〉 and 〈SSCH,⊆
,∪,∩, {∅}, ℘(D)〉 and the forward completeness holds by definition, we can
apply Theorem 1 and hence γ�(lfp

⊆
∅

F ) = lfp⊆
{∅}F�, i.e., γ�([[P ]]) = ℘([[P ]]) =

[[P ]]� = lfp⊆
{∅}F�. Indeed F� is ⊆-monotone and F 0

�({∅}) = {∅} ⊆ F 1
�({∅}) =

℘(F (∅)) ⊆ F 2
�({∅}) = ℘(F 2(∅)) ⊆ . . . Fn

� ({∅}) = ℘(Fn(∅)) since, for every n,
Fn(∅) ⊆ Fn+1(∅). It should be clear that, with this operator, we move inside
elements of TRCH, which is a strict subset of SSCH.

The second choice consists in defining FH as the additive lift of F , i.e.,
FH

def= F♦ = λX . {F (X) | X ∈ X}. Unfortunately, the lift does not guaran-
tee monotonicity. Indeed the iterates of F♦ from the bottom are: F 0

♦(∅) = ∅,
F 1

♦(∅) = {∅}, F 2
♦(∅) = {F (∅)}, . . .Fn

♦ (∅) = {Fn−1(∅)}. Clearly the iterates
do not form an increasing ⊆-chain and so 〈F♦, GENH,⊆ 〉 is not a fixpoint seman-
tics specification. In this case we need to change the computational domain. Let
us consider the following computational order ⊆�:

X ⊆� Y def=
(X = ∅ ∨ (∀X ∈ X ∃Y ∈ Y .X ⊆ Y )) ∧

(Y = ∅ ∨ ((∀Y ∈ Y ∃X ∈ X . Y ⊆ X) ⇒ X = Y)) (1)

Namely, for each element X ∈ X there exists an element of Y in the ⊆
relation with X (the second conjunction just forces antisymmetry). Furthermore,
the equalities with the empty-set add the axiom ∅ ⊆� ∅ ⊆� X , for any X . The
bottom is ∅ and the (partial) least upper bound is ∪� defined as:

X ∪� Y def=
{X ∪ Y | X ∈ X ∧ Y ∈ Y ∧ (X ⊆ Y ∨ Y ⊆ X)} ∪
{X | X ∈ X ∧ (Y = ∅ ∨ ∀Y ∈ Y . (X �⊆ Y ∧ Y �⊆ X))} ∪
{Y | Y ∈ Y ∧ (X = ∅ ∨ ∀X ∈ X . (Y �⊆ X ∧ X �⊆ Y ))}

(2)

The lub makes the union of the elements of X and Y which are in relation ⊆,
and adds all the other elements of both sets, as they are. The domain 〈GENH,⊆�

,∪� , ∅〉 is a pointed DCPO with (partial) lub and bottom, indeed we have ∅ ⊆� X
for every X ∈ GENH and X ⊆� Y implies X ∪� Y = Y. Then we have that
〈F♦, GENH,⊆� 〉 is a fixpoint semantic specification, since F♦ is ⊆�-monotone.

Proposition 5. If 〈F, TRCP,⊆ 〉 and [[P ]] = lfp⊆
∅

F =
⋃

n>0 Fn(∅) then we have:
〈F♦, GENH,⊆� 〉 and [[P ]]♦ = lfp⊆�

∅
F♦ =

⋃
� n>0F

n
♦ (∅) = {[[P ]]}.

Also in this case we simply compute standard semantics on the hyperlevel,
but we do not really exploit the more concrete level at which we are computing
the semantics. In other words, as before, we are emulating the standard com-
putation on the generic hypersemantics domain. Indeed, the semantics [[P ]]♦ is
isomorphic to the standard semantics [[P ]].
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Computing Post/Pre Hypersemantics. Here, we aim at exploiting the concrete
domain on which we are computing by defining new operators moving freely
among elements of GENH and not only on elements of TRCH. We consider only
one case for the backward hypersemantics, the most concrete, but the others are
similar. We take D = S �∞, so let

F �∞
post

def= λX .
{
X ∪ Σ�ω

∣
∣ X ⊆ τ

�1
}

�� �∞ {
X � �∞ τ

�̇2 	 X
∣
∣ X ∈ X

}

Then we have that τ �∞
post = lfp

� �∞
�

{Σ�ω}F
�∞
post =

⊔
�

�∞
n>0F

�∞
post

n
({Σ�ω}). Where � �∞

� is
defined as in Eq. 1, substituting ⊆ with � �∞ in the definition, the lub �� �∞ is
defined as in Eq. 2, substituting ∪ with � �∞ in the definition and the bottom is
{Σ�ω}. Analogously, we can do the same for the forward case. Here we have only
one case, hence we take D = S �∝ and we have τ �∝

pre = lfp⊆�

∅
F �∝
pre =

⋃
� n>0F

�∝
pre

n
(∅),

where
F �∝
pre

def= λX . (℘(Υ ) \ {∅}) ∪�
{
X ∪ X 	 τ

�̇2
∣
∣ X ∈ X

}

We can show that the standard operator F �∞ is the fixpoint transfer (on
the abstract domain of standard semantics), by means of the Galois insertion
〈α�, γ�〉, of the concrete semantic operator F �∞

post. Analogously, transferring the
operator F �∝

pre on the standard semantic domain, we fall back on F �∝.

Theorem 4. The following hold:

1. lfp� �∞

Σ�ω F �∞ = α�(lfp
� �∞

�

{Σ�ω}F
�∞
post) = α�(τ �∞

post) and F �∞ ◦ α� = α� ◦ F �∞
post.

2. lfp⊆
∅

F �∝ = α�(lfp⊆�
∅

F �∝
pre) = α�(τ �∝

pre) and F �∝ ◦ α� = α� ◦ F �∝
pre.

7 Concluding: Hypersemantics Around Us

In this work, we have introduced a formal framework for modeling system seman-
tics at the same level of hyperproperties. These more expressive semantics not
only allow us to provide weaker forms of satisfiability, as shown in Sect. 6, but
provide a promising methodology allowing us to lift static analysis (for hyper-
properties) directly at the hyper level. We believe that this approach could pro-
vide a deep insight and useful formal tools also for tackling the problem of
analyzing analyzers, aiming at systematically analyzing static analyses [16].

Finally, we present two verification methods that, explicitly or implicitly, can
be generalized in our work. The first is an ad-hoc hypersemantics of programs [3],
made for the verification of information flow policies. The second is the classical
framework of static analysis for program properties verification [9].

7.1 Hypercollecting Semantics

As observed in the previous sections, there is an hyper hierarchies of semantics
that mimic the standard one in more expressive domains. This gain of expres-
siveness allows us to verify (by over-approximation) hyperproperties.
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To the best of our knowledge, the only work that perform verification by
mean of abstract interpretation exploiting the full expressiveness of hyperprop-
erties is [3]. They deal with information flow policies that are k-hypersafety and
they focus on the definition of the abstract domains over sets of sets needed for
the analysis. They proposed an ad-hoc hypersemantics (termed hypercollecting
semantics) to show how to apply the abstract interpretation framework. This
semantics is computed denotationally starting from the code of the program to
analyze (their systems are programs of a toy programming language) and it is
used to verify some information flow policies, such as some formulations of non-
interference. In order to perform information flow verification, they consider the
domain of finite relational traces, namely ℘(S × S) (their ℘(Trc)), or better its
hyper version, namely ℘(℘(S×S)) (their ℘(℘(Trc))). States are maps from vari-
ables to values, i.e., S = Var −→ Val (their States). Their semantics computes,
denotationally, the angelic relational semantics τ+

[P ], in the Cousot hierarchy.
More formally, for every program P , the collecting semantics {|P |}IniTrc of [3],
where IniTrc is the set of all possible inputs9, is τ+

[P ] in the standard hierarchy
of semantics ([3], Sect. 2). Then they propose the hypercollecting semantics � · �
such that {|P |}X ∈ �P �{X} (this implies {τ+

[P ]} ⊆ �P �{IniTrc}).

Proposition 6. �P �℘(IniTrc) = τ+
� [P ].

Hence, the hypercollecting semantics proposed in [3], starting from
℘(IniTrc)10, is exactly the hyper angelic relational semantics τ+

� [P ] in our hyper
hierarchy.

Let us consider, now, the computation of the semantics for a program P for
the verification of a given property. We can observe that Proposition 6 guarantees
the equivalence of these two semantics for property verification only for subset-
closed hyper property, while for general hyperproperty the two semantics are not
comparable. In particular, let cHp ∈ SSCH, we can observe that

P |= cHp ⇔ τ+
� [P ] ⊆ cHp ⇔ �P �℘(IniTrc) ⊆ cHp ⇔ �P �{IniTrc} ⊆ cHp

where the first implication holds for our definition of verification, the second
holds by Proposition 6 and the third one holds since the hyperproperty is subset-
closed. On the other hand, if we consider a generic hyper property Hp ∈ GENH

the last implication does not hold in general. In particular, the hypercollecting
semantics is the additive lift of the standard semantics for all commands except
the while. Indeed, as also the authors underline, when the program contains a
loop their semantics adds the sets of traces that exit the loop at each iteration
([3], Sect. 4). For this reason, the hypercollecting semantics is not complete for
generic hyperproperties verification.

9 Precisely is the set of all pairs 〈σ, σ〉 where σ is an initial state.
10 ℘(IniTrc) is the concretization of IniTrc to set of sets, i.e., ℘(IniTrc) = γ�(IniTrc).
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Example 3. Let P
def= while (x < 2)do {x := x + 1 }, with the unique variable

x ranging over the values {0, 1, 2}. Then IniTrc = {〈0, 0〉, 〈1, 1〉, 〈2, 2〉}, where
〈v, v′〉 is a concise representation of the couple of mapping (i.e., States) 〈x �→
v, x �→ v′〉. The angelic relational semantics of c is τ+

[P ] = {〈0, 2〉, 〈1, 2〉, 〈2, 2〉},
which is exactly {|P |}IniTrc. The hypercollecting semantics �P �℘(IniTrc) is
computed as follow. The least fixpoint of the while is the set of sets of traces:

℘(IniTrc) ∪
{ {〈0, 1〉}, {〈1, 2〉}, {〈0, 1〉, 〈1, 2〉}, {〈0, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 2〉}, {〈0, 2〉},

{〈0, 1〉, 〈1, 2〉, 〈2, 2〉}, {〈0, 2〉, 〈2, 2〉}, {〈0, 2〉, 〈1, 2〉}, {〈0, 2〉, 〈1, 2〉, 〈2, 2〉}
}

At the while exit we have to keep only the traces making false the guard [3], i.e.,

�P �℘(IniTrc) =

{
∅, {〈2, 2〉}, {〈1, 2〉}, {〈1, 2〉, 〈2, 2〉}, {〈0, 2〉}, {〈0, 2〉, 〈2, 2〉},

{〈0, 2〉, 〈1, 2〉}, {〈0, 2〉, 〈1, 2〉, 〈2, 2〉}
}

which is exactly ℘({|P |}IniTrc) = ℘(τ+
[P ]) = τ+

� [P ].

7.2 Standard Static Program Analysis

In the literature, standard static program analysis has been modeled as reacha-
bility analysis, since the collected values are all the reachable values for a variable.
Assume that 〈Σ,Υ,Ω, τ〉 is the transition system associated to the program P ,
and Ψ ⊆ Υ is a subset of initial states. Static analysis can be seen as the charac-
terization, potentially approximated, of the set of reachable states from initial Ψ ,
i.e., τ r(Ψ) = {ς | ∃σ ∈ τ �∞, i ∈ N . σ0 ∈ Ψ ∧σi = ς}, which provides a, potentially
approximated, invariant of the program [9]. In order to properly model flow-
sensitive static analysis, where we look for invariants for each program point,
we can simply consider a more concrete definition of state, which is not simply
a memory, i.e., an element of M = Var −→ Val, but it is a pair associating with
each program point a memory [9]. Formally, given a program P , its possible
states are ΣP

def= LP × M, where LP is the set of program points in P . When
we move towards approximation, instead of manipulating states we manipulate
sets of states, i.e., elements of ℘(ΣP ), for which holds the following

℘(LP × M) ∼= LP → ℘(M) = LP → ℘(Var −→ Val)

Let ι : ℘(ΣP ) → (LP → ℘(Var −→ Val)) be such an isomorphism, then ι(τ r(Ψ))
is a map associating each program point with the set of all “reached” mem-
ories, in the computations starting from Ψ . In [20] the author shows that
this semantics corresponds to the solution of a system of equations gener-
ated from the program syntax. Static analysis abstracts this semantics con-
sidering the map associating with each variable all the values “reached”, for
each program point, in the computations starting in Ψ . This abstraction is
αc = λf . (λl .

∨̇
f(l)), where

∨̇
{gi} def= λx .

⋃
i gi(x). So the composition αc ◦ ι

is a function in ℘(ΣP ) → (LP → (Var −→ ℘(Val)). We denote with αι,c this
composition.

Example 4. Consider a program with two variables, x and y, the memory is the
association of a natural value to these variables, i.e., [x �→ v1, y �→ v2], that we
denote concisely with (v1; v2). A state is an association between a program point
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and a memory, i.e., imi meaning that with the i-th program point is associated
the memory mi. Hence, consider the following transition system: (suppose we
have only three program points)

Σ =

⎧⎪⎪⎨
⎪⎪⎩

a

〈 1
(1; 2),

2
(1; 3),

3
(2; 3)〉,

b

〈 1
(1; 2),

2
(1; 4),

3
(2; 3)〉,

c

〈 1
(1; 2),

2
(1; 4),

3
(3; 4)〉

〈 1
(2; 2),

2
(2; 3),

3
(3; 3)〉

d

, 〈 1
(2; 2),

2
(2; 4),

3
(3; 3)〉

e

, 〈 1
(2; 2),

2
(2; 4),

3
(4; 4)〉

f

⎫⎪⎪⎬
⎪⎪⎭

Υ = {a, d} Ω = {c, f} τ = {〈a, b〉, 〈b, c〉, 〈d, e〉, 〈e, f〉}

Hence, αι,c(Σ) = 〈 1({1, 2}; {2}), 2({1, 2}; {3, 4}), 3({2, 3, 4}; {3, 4})〉.

At this point, we can observe that the semantics of an (abstract) interpreter of
a program P is an abstraction of the hypersemantics of P . First of all, note that
τ r(Ψ) is an abstraction of τ �∝, through the function λX .αr({σ ∈ X | σ0 ∈ Ψ}),
where αr

def= λX . {ς | ∃σ ∈ X, i ∈ N . σi = ς} [13]. Analogously, we show that the
semantics of an abstract interpreter, associating with each possible subset of ini-
tial states, the corresponding reachable states, is an abstraction of τ �∝

pre ⊆ ℘(Σ�+
P ).

As usual, we obtain abstract invariants in the abstract domain A exploiting a
Galois insertion 〈℘(Val),⊆ 〉 −−−→−→←−−−−

α

γ
〈A,� 〉.

Proposition 7. The semantics of the abstract interpreter w.r.t. abstract domain
A is αA

ι,c� ◦ αr�(τ �∝
pre)

11, i.e., it is an abstraction of the hypersemantics τ �∝
pre.

Example 5. Consider Example 4. Then τ �∝ = {a, ab, abc, d, de, def} and τ �∝
pre =

{{a, ab, abc}, {d, de, def}, τ �∝}. We do not consider any abstraction A, then:

αι,c ◦ αr(τ
�∝

) = αι,c({a, b, c, d, e, f}) = 〈 1
({1, 2}; {2}),

2
({1, 2}; {3, 4}),

3
({2, 3, 4}; {3, 4})〉

αι,c ◦ αr({a, ab, abc}) = αι,c({a, b, c}) = 〈 1
({1}; {2}),

2
({1}; {3, 4}),

3
({2, 3}; {3, 4})〉

αι,c ◦ αr({d, de, def}) = αι,c({d, e, f}) = 〈 1
({2}; {2}),

2
({2}; {3, 4}),

3
({3, 4}; {3, 4})〉

Hence, the set of invariants, depending on the set of initial states, is:

αι,c� ◦ αr�(τ �∝
pre) =

⎧⎨
⎩

〈 1({1, 2}; {2}), 2({1, 2}; {3, 4}), 3({2, 3, 4}; {3, 4})〉,
〈 1({1}; {2}), 2({1}; {3, 4}), 3({2, 3}; {3, 4})〉,
〈 1({2}; {2}), 2({2}; {3, 4}), 3({3, 4}; {3, 4})〉,

⎫⎬
⎭
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Abstract. Data race free (DRF) programs constitute an important class
of concurrent programs. In this paper we provide a framework for design-
ing and proving the correctness of data flow analyses that target this class
of programs, and which are in the same spirit as the “sync-CFG” analysis
originally proposed in [9]. To achieve this, we first propose a novel con-
crete semantics for DRF programs called L-DRF that is thread-local in
nature with each thread operating on its own copy of the data state. We
show that abstractions of our semantics allow us to reduce the analysis of
DRF programs to a sequential analysis. This aids in rapidly porting exist-
ing sequential analyses to scalable analyses for DRF programs. Next, we
parameterize the semantics with a partitioning of the program variables
into “regions” which are accessed atomically. Abstractions of the region-
parameterized semantics yield more precise analyses for region-race free
concurrent programs. We instantiate these abstractions to devise efficient
relational analyses for race free programs, which we have implemented
in a prototype tool called RATCOP. On the benchmarks, RATCOP was
able to prove upto 65% of the assertions, in comparison to 25% proved
by a version of the analysis from [9].

1 Introduction

Our aim in this paper is to provide a framework for developing data-flow analyses
which specifically target the class of data race free (DRF) concurrent programs.
The starting point of this work is the so-called “sync-CFG” style of analysis pro-
posed in [9] for race-free programs. The analysis here essentially runs a sequential
analysis on each thread, communicating data-flow facts between threads only
via “synchronization edges” that go from a release statement in one thread to
a corresponding acquire statement in another thread. The analysis thus runs on
the control-flow graphs (CFGs) of the threads augmented with synchronization
edges, as shown in the center of Fig. 1, which explains the name for this style
of analysis. The analysis computes data flow facts about the value of a variable
that are sound only at points where that variable is relevant, in that it is read or
written to at that point. The analysis thus trades unsoundness of facts at irrele-
vant points for the efficiency gained by restricting interference between threads
to points of synchronization alone.
c© Springer International Publishing AG 2017
F. Ranzato (Ed.): SAS 2017, LNCS 10422, pp. 253–276, 2017.
DOI: 10.1007/978-3-319-66706-5 13
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However, the analysis proposed in [9] suffers from some drawbacks. Firstly,
the analysis is intrinsically a “value-set” analysis, which can only keep track of
the set of values each variable can assume, and not the relationships between
variables. Any naive attempt to extend the analysis to a more precise relational
one quickly leads to unsoundness. The second issue is to do with the technique
for establishing soundness. A convenient way to prove soundness of an analysis
is to show that it is a consistent abstraction [7] of a canonical analysis, like the
collecting semantics for sequential programs or the interleaving semantics for
concurrent programs. However, a sync-CFG style analysis cannot be shown to
be a consistent abstraction of the standard interleaving semantics, due largely
to the unsoundness at irrelevant points. Instead, one needs to use an intricate
argument, as done in [9], which essentially shows that in the least fixed point
of the analysis, every write to a variable will flow to a read of that variable
via a happens-before path (that is guaranteed to exist by the property of race-
freedom). Thus, while one can argue soundness of an analysis that abstracts the
value-set analysis by showing it to be a consistent abstraction of the value set
analysis, to argue soundness of any other proposed sync-CFG style analysis (in
particular one that is more precise than the value-set analysis), one would have
to resort to a similar involved proof as in [9].

Towards addressing these issues, we propose a framework that facilitates
the design of different sync-CFG analyses with varying degrees of precision and
efficiency. The foundation of this framework is a thread-local semantics for DRF
programs, which can play the role of a “most precise” analysis which other sync-
CFG analyses can be shown to be consistent abstractions of. This semantics,
which we call L-DRF, is similar to the interleaving semantics of concurrent
programs [20], but keeps thread-local (or per-thread) copies of the shared state.
Intuitively, our semantics works as follows. Apart from its local copy of the shared
data state, each thread t also maintains a per-variable version count, which
is incremented whenever t updates the variable. The exchange of information
between threads is via buffers, associated with release points in the program.
When a thread releases a lock, it stores its data state to the corresponding
buffer, along with the version counts of the variables. As a result, the buffer of a
release point records both the local data state and the variable versions as they
were when the release was last executed. When some thread t acquires a lock m,
it compares its per-variable version count with those in the buffers pertaining
to release points associated with m, and copies over the valuation of a variable
to its local state, if it is newer in some buffer (as indicated by a higher version
count). Similar to a sync-CFG analysis, the value of a shared variable in the
local state of a thread may be stale. L-DRF leverages the race freedom property
to ensure that the value of a variable is correct in a local state at program points
where it is read. It thus captures the essence of a sync-CFG analysis. The L-DRF
semantics is also of independent interest, since it can be viewed as an alternative
characterization of the behavior of data race free programs.
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The analysis induced by the L-DRF semantics is shown to be sound for
DRF programs. In addition, the analysis is in a sense the most precise sync-
CFG analysis one can hope for, since at every point in a thread, the relevant
part of the thread-local copy of the shared state is guaranteed to arise in some
execution of the program.

Using the L-DRF semantics as a basis, we now propose several precise and
efficient relational sync-CFG analyses. The soundness of these analyses all follow
immediately, since they can easily be shown to be consistent abstractions of the
L-DRF analysis. The key idea behind obtaining a sound relational analysis is
suggested by the L-DRF analysis: at each acquire point we apply a mix operator
on the abstract values, which essentially amounts to forgetting all correlations
between the variables.

While these analyses allow maintaining fully-relational properties within
thread-local states, communicating information over cross-thread edges loses all
correlations due to the mix operation. To improve precision further, we refine
the L-DRF semantics to take into account data regions. Technically, we intro-
duce the notion of region race freedom and develop the R-DRF semantics: the
programmer can partition the program variables into “regions” that should be
accessed atomically. A program is region race free if it does not contain conflict-
ing accesses to variables in the same region, that are unordered by the happens-
before relation. The classical notion of data race freedom is a special case of
region race freedom where each region consists of a single variable, and tech-
niques to determine that a program is race free can be naturally extended to
determine region race freedom (see Sect. 6). For region race free programs, R-
DRF, which refines L-DRF by taking into account the atomic nature of accesses
that the program makes to variables in the same region, produces executions
which are indistinguishable, with respect to reads of the regions, from the ones
produced by L-DRF. By leveraging the R-DRF semantics as a starting point, we
obtain more precise sequential analyses that track relational properties within
regions across threads. This is obtained by refining the granularity of the mix
operator from single variables to regions.

We have implemented our analyses in a prototype analyzer called RATCOP,
and provide a thorough empirical evaluation in Sect. 7. We show that RATCOP
attains a precision of up to 65% on a subset of race-free programs from the
SV-COMP15 suite. In contrast, an interval based value-set analysis derived from
[9] was able to prove only 25% of the assertions. On a separate set of experiments,
RATCOP turns out to be nearly 5 orders of magnitude faster than an existing
state-of-the-art abstract interpretation based tool [25].

2 Overview

We illustrate the L-DRF semantics, and its sequential abstractions, on the simple
program in Fig. 1. We assume that all variables are shared and are initialized to
0. The threads access x and y only after acquiring lock m. The program is free
from data races.
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Fig. 1. A simple race free program with two threads t1 and t2, with all variables
being shared and initialized to 0. The columns L-DRF and R-DRF show the facts
computed by polyhedral abstractions of our thread-local semantics and its region-
parameterized version, respectively. The Value-Set column shows the facts computed
by interval abstractions of the Value-Set analysis of [9]. R-DRF is able to prove all 3
assertions, while L-DRF fails to prove the assertion at line 11. Value-Set only manages
to prove the simple assertion at line 9.

A state in the L-DRF semantics keeps track of the following components:
a location map pc mapping each thread to the location of the next command
to be executed, a lock map μ which maps each lock to the thread holding it,
a local environment (variable to value map) Θ for each thread, and a function
Λ which maps each buffer (associated with each location following a release
command) to an environment. Every release point of each lock m has an asso-
ciated buffer, where a thread stores a copy of its local environment when it
executes the corresponding release instruction. In the environments, each vari-
able x has a version count associated with it which, along any execution π,
essentially associates this valuation of x with a unique prior write to it in π. As
an example, the “versioned” environment 〈x �→ 11, y �→ 11, z �→ 00〉 says that x
and y have the value 1 by the 1st writes to x and y, and z has not been writ-
ten to. An execution is an interleaving of commands from the different threads.
Consider an execution where, after a certain number of steps, we have the state
pc(t1 �→ 6, t2 �→ 10), Θ(t1) = 〈x �→ 11, y �→ 11, z �→ 00〉, Θ(t2) = 〈x �→ 00, y �→
00, z �→ 11〉, μ(m) = t1, Λ = ⊥. The buffers are all empty as no thread has exe-
cuted a release yet. Note that the values (and versions) of x and y in Θ(t2) are
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stale, since it was t1 which last modified them (similarly for z in Θ(t1)). Next,
t1 can execute the release at line 6, thereby setting μ(m) = and storing its
current local state to Λ(7). Now t2 can execute the acquire at line 10. The state
now becomes pc(t1 �→ 7, t2 �→ 11), μ(m) = t2, and t2 now “imports” the most
up-to-date values (and versions) of the x and y from Λ(7). This results in its
local state becoming 〈x �→ 11, y �→ 11, z �→ 11〉 (the valuations of x and y are
pulled in from the buffer, while the valuation of z in t2’s local state persists). The
value of x and y in Θ(t2) is no longer stale: L-DRF leveraged the race freedom
to ensure that the values of x and y are correct when they are read at line 11.

Roughly, we obtain sequential abstractions of L-DRF via the following steps:
(i.) Provide a data abstraction of sets of environments (ii.) Define the state to be
a map from locations to these abstract data values (iii.) Draw inter-thread edges
by connecting releases and acquires of the same lock (as shown in Fig. 1) (iv.)
Define an abstract mix operation which soundly approximates the “import” step
outlined earlier (v.) Analyze the program as if it was a sequential program, with
inter -thread join points (the acquire’s) using the mix operator.

The analysis in [9] is precisely such a sequential abstraction, where the
abstract data values are abstractions of value-sets (variables mapped to sets
of values). Value sets do not track correlations between variables, and only allow
coarse abstractions like Intervals [6]. The mix operator, in this case, turns out
to be the standard join. For Fig. 1, the interval analysis only manages to prove
the assertion at line 9.

A more precise relational abstraction of L-DRF can be obtained by abstract-
ing the environments as, say, convex polyhedra [8]. As shown in Fig. 1, the result-
ing analysis is more precise than the interval analysis, being able to prove the
assertions at lines 5 and 9. However, in this case, the mix must forget the corre-
lations among variables in the incoming states: it essentially treats them as value
sets. This is essential for soundness. Thus, even though the acquire at line 10
obtains the fact that x = y from the buffer at 7, and the incoming fact from 9
also has x = y, it fails to maintain this correlation after the mix. Consequently,
it fails to prove the assertion at line 11.

Finally, one can exploit the fact that x and y form a data region, that is always
accessed atomically by the two threads. The program is thus region race free,
for this particular region definition. One can parameterize the L-DRF semantics
with this region definition, to yield the R-DRF semantics. The resulting sequen-
tial abstraction maintains relational information as in polyhedra based analysis
derived from L-DRF, but has a more precise mix operator which preserves rela-
tional facts which hold within a region. Since both the incoming facts at line 10
satisfy x = y, the mix preserves this fact, and the analysis is able to prove the
assertion at 11.

Note that in all the three analyses, we are guaranteed to compute sound
facts for variables only at points where they are accessed. For example, all three
analyses claim that x and y are both 0 at line 9, which is clearly wrong. However,
x and y are not accessed at this point. We make this trade-off for the sound-
ness guarantee in order to achieve a more efficient analysis. Also note that in
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Fig. 1, the inter-thread edges add a spurious loop in the program graph (and,
therefore, in the analysis of the program), which prevents us from computing an
upper bound for the values of x and y. We show in a later section how we can
appropriately abstract the versions to avoid some of these spurious loops.

3 Preliminaries

Mathematical Notations. We use → and ⇀ to denote total and partial functions,
respectively, and ⊥ to denote a function which is not defined anywhere. We use

to denote an irrelevant value which is implicitly existentially quantified. We
write S̄ to denote a (possibly empty) finite sequence of elements coming from a
set S. We denote the length of a sequence π by |π|, and the i-th element of π,
for 0 ≤ i < |π|, by πi. We denote the domain of a function φ by dom(φ) and
write φ[x �→ v] to denote the function λy.if y = x then v elseφ(y). Given a pair
of function υ = 〈φ, ν〉, we write υφ and υν to denote φ and ν, respectively.

Table 1. Program commands

Type Syntax Description

Assignment x := e Assigns the value of expression e to variable x ∈ V
Assume assume(b) Blocks the computation if boolean condition b does not hold

Acquire acquire(m) Acquires lock m, provided it is not held by any thread

Release release(m) Releases lock m, provided the executing thread holds it

3.1 Programming Language and Programs

A multi-threaded program P consists of four finite sets: threads T , control loca-
tions L, program variables V and locks (mutexes) M. We denote by V the set of
values the program variables can assume. Without loss of generality, we assume
in this work that V is simply the set of integers. Figure 2 lists the semantic
domains we use in this paper and the metavariables ranging over them.

Every thread t ∈ T has an entry location ent t and a set of instructions inst t ⊆
L× cmd ×L, which defines the control flow graph of t. An instruction 〈ns, c,nt〉
comprises a source location ns, a command c ∈ cmd , and a target location nt.
The set of program commands, denoted by cmd , is defined in Table 1 (Commands
like fork and join of a bounded number of threads can be simulated using
locks.). For generality, we refrain from defining the syntax of the expressions e
and boolean conditions b.

We denote the set of commands appearing in program P by cmd(P ). We
refer to an assignment x := e as a write-access to x, and as a read-access to
every variable that appears in e. Without loss of generality, we assume variables
appearing in conditions of assume() commands in instructions of some thread t
do not appear in any instruction of any other thread t′ 
= t.
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We denote by Lt the set of locations in instructions of thread t, and require
that the sets be disjoint for different threads. For a location n ∈ L

(
=

⋃
t∈T Lt

)
,

we denote by tid(n) the thread t which contains location n, i.e., n ∈ Lt. We forbid
different instructions from having the same source and target locations, and
further expect instructions pertaining to assignments, acquire() and release()
commands to have unique source and target locations. Let Lrel

t be the set of
program locations in the body of thread t following a release() command. We
refer to Lrel

t as t’s post-release points and denote the set of release points in a
program by Lrel =

⋃
t∈T Lrel

t . Similarly, we define t’s pre-acquire points, denoted
by Lacq

t , and denote a program’s acquire points by Lacq =
⋃

t∈T Lacq
t . We denote

the sets of post-release and pre-acquire points pertaining to operations on lock
m by Lrel

m and Lacq
m , respectively.

3.2 Standard Interleaving Semantics

Let us fix a program P = (T ,L,V,M) for the rest of this paper. We define the
standard interleaving semantics of a program using a labeled transition system
〈S, sent ,TRs〉, where S is the set of states, sent ∈ S is the initial state, and
TRs ⊆ S × T × S is a transition relation, as defined below.

Fig. 2. Semantic domains.

States. A state s ∈ S is a tuple 〈pc, μ, φ〉, where pc ∈ PC def= T → L records the
program counter (or location) of every thread, μ ∈ LM def= M ⇀ T is a lock map
which associates every lock to the thread that holds it (if such a thread exists),
and φ ∈ Env def= V → V is an environment, mapping variables to their values.

Initial State. We refer to the state sent = 〈λt. ent t,⊥, λx. 0〉 where every thread
is at its entry program location, no thread holds a lock, and all the variables are
initialized to zero as the initial state.

Transition Relation. The transition relation TRs
P ⊆ S × T × S captures the

interleaving semantics of a program P . A transition τ = 〈s, t, s′〉, also denoted
by τ = s →t s′, says that thread t can execute a command which transforms (the
source) state s to (the target) state s′. As such, the transition relation is the set of
all possible transitions generated by its commands, i.e. TRs

P =
⋃

c∈cmd(P ) TRs
c.
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In these transitions, one thread executes a command, and changes its program
counter accordingly, while all other threads remain stationary. Due to space
constraints, we omit the formal definitions of TRs

c, which is standard, and only
provide a brief informal description. An assignment x := e command updates
the value of the variables according to the expression e. An assume(b) command
generates transitions only from states in which the boolean interpretation of
the condition b is True. An acquire(m) command executed by thread t sets
μ(m) = t, provided the lock m is not held by any other thread, A release(m)
command executed by thread t sets μ(m) = , provided t holds m. A thread
attempting to release a lock that it does not own gets stuck.1

Notations. For a transition τ = 〈pc, μ, φ〉 →t 〈pc′, μ′, φ′〉 ∈ TRs
P , we denote

by t(τ) = t the thread that executes the transition, and by c(τ) the (unique)
command c ∈ cmd(P ), such that 〈pc(t), c, pc′(t)〉 ∈ inst t, which it executes. We
denote by n(τ) = pc(t) and n ′(τ) = pc′(t), the source and target locations of
the executed instruction respectively.

Executions. An execution π of a concurrent program P is a finite sequence of
transitions coming from its transition relation, such that sent is the source of
transition π0 and the source state of every transition πi, for 0 < i < |π|, is the
target state of transition πi−1.

By abuse of notation, we also write executions as sequences of states inter-
leaved with thread identifiers: π = s0

t1−→ s1
t2−→ . . .

tn−→ sn .

Collecting Semantics. The collecting semantics of a program P according to
the standard semantics is the set of reachable states starting from the initial
state sent :

[[P ]]s = LFP λX. {sent} ∪ {s′ | s →t s′ ∧ s ∈ X ∧ t ∈ T }

3.3 Data Races and the Happens-Before Relation

We say that two commands conflict on a variable x, if they both access x,
and at least one access is a write. A program contains a data race when two
concurrent threads may execute conflicting commands, and the threads use no
explicit mechanism to prevent their accesses from being simultaneous [29]. A
program which has no data races is said to be data race free. A standard way to
formalize the notion of data race freedom (DRF), is to use the happens before [19]
relation induced by executions. An execution is racy if it contains a pair of
transitions executing conflicting commands which are not ordered according to
the happens-before relation. A program which has no racy execution is said to
be data race free.

For a given execution, the happens-before relation is defined as the reflex-
ive and transitive closure of the program-order and synchronizes-with relations,
formalized below.
1 The decision to block a thread releasing a lock it does not own was made to simplify

the semantics. Our results hold even if this action aborts the program.
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Definition 1 (Program order). Let π be an execution of P . Transition πi is
related to the transition πj according to the program-order relation in π, denoted
by πi

po−→π πj, if j = min {k | i < k < |π| ∧ t(πk) = t(πi)}, i.e., πi and πj are
successive executions of commands by the same thread.2

Definition 2 (Synchronize-with). Let π be an execution of P . Transition
πi is related to the transition πj according to synchronizes-with relation in π,
denoted by πi

sw−−→π πj, if c(πi) = release(m) for some lock m, and j = min{k |
i < k < |π| ∧ c(πk) = acquire(m) }, i.e., πi and πj are successive release and
acquire commands of the same lock in the execution.

Definition 3 (Happens before). The happens-before relation pertaining to
an execution π of P , denoted by · hb−→π ·, is the reflexive and transitive closure
of the union of the program-order and synchronizes-with relations induced by the
execution π.

Note that transitions executed by the same thread are always related according
to the happens-before relation.

Definition 4 (Data Race). Let π be an execution of P . Transitions πi and πj

constitute a racing pair, or a data-race, if the following conditions are satisfied:
(i) c(πi) and c(πj) both access the variable x, with at least one of the accesses

being a write to x, and (ii)neither πi
hb−→π πj nor πj

hb−→π πi holds.

4 Thread-Local Semantics for Data-Race Free Programs
(L-DRF)

In this section, we define a new thread-local semantics for datarace free concur-
rent programs, which we refer to as L-DRF semantics. The new semantics, like
the standard one defined in Sect. 3, is based on the interleaving of transitions
made by different threads, and the use of a lock map to coordinate the use of
locks. However, unlike the standard semantics, where the threads share access to
a single global environment, in the L-DRF semantics, every thread has its own
local environment which it uses to evaluate conditions and perform assignments.

Threads exchange information through release buffers: every post-release
point n ∈ Lrel

t of a thread t is associated with a buffer, Λ(n), which records
a snapshot of t’s local environment the last time t ended up at the pro-
gram point n. Recall that this happens right after t executes the instruction
〈ns, release(m), n〉 ∈ inst t. When a thread t acquires a lock m, it updates its
local environment using the snapshots stored in the buffers pertaining to the
release of m. To ensure that t updates its environment such that the value of every
variable is up-to-date, every thread maintains its own version map ν : V → N,
2 Strictly speaking, the various relations we define are between indices {0, . . . , |π|−1}

of an execution, and not transitions, so we should have written, e.g., i
po−→π j instead

of πi
po−→π πj . We use the rather informal latter notation, for readability.
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which associates a counter to each variable. A thread increments ν(x) whenever
it writes to x. Along any execution, the version ν(x), for x ∈ V, in the version
map ν of thread t, associates a unique prior write with this particular valuation
of x. It also reflects the total number of write accesses made (by any thread) to x
to obtain the value of x stored in the map. A thread stores both its local environ-
ment and ν in the buffer after releasing a lock m. When a thread subsequently
acquires lock m, it copies from the release buffers at Lrel

m the most up-to-date
(according to the version numbers) value of every variable. We prove that for
data race free programs, there can be only one such value. As in Sect. 3.2, we
define L-DRF in terms of a labeled transition system (Σ, σent ,TRP ).

States. A state σ ∈ Σ of the L-DRF semantics is a tuple 〈pc, μ,Θ,Λ〉. Here,
pc and μ have the same role as in the standard semantics, i.e., they record the
program counter of every thread and the ownership of locks, respectively. A
versioned environment υ = 〈φ, ν〉 ∈ VE = Env × (V → N) is a pair comprising
an environment φ and a version map ν. The local environment map Θ : T → VE
maps every thread to its versioned environment and Λ : Lrel → VE records the
snapshots of versioned environments stored in buffers.

Initial State. The initial state is σent = 〈λt. ent t,⊥, λt. υent ,⊥〉, where υent =
〈λx.0, λx.0〉 is the initial versioned environment. In σent , every thread is at its
entry program location, no thread holds a lock, in all the versioned environments
all the variables and variable versions are initialized to zero, and all the release
buffers are empty.

Transition Relation. The transition relation TRP ⊆ Σ × T × Σ captures the
interleaving nature of the L-DRF semantics of P . A transition τ = 〈σ, t, σ′〉,
also denoted by τ = σ ⇒t σ′, says that thread t can execute a command which
transforms state σ ∈ Σ to state σ′ ∈ Σ. We define the transition system which
captures the L-DRF semantics of a program P by defining the transitions gen-
erated by every command in P .

Assignments and Assume Commands. We define the meaning of assignments and
assume() commands (as functions from versioned environments to sets of ver-
sioned environments) by executing the standard interpretation over the environ-
ment component of a versioned environment. In addition, assignments increment
the version of a variable being assigned to. Formally,

[[x := e]] : VE → ℘(VE ) = λ 〈φ, ν〉 . {〈φ[x �→ v], ν[x �→ ν(x) + 1]〉 | v ∈ [[e]]φ}
[[assume(b)]] : VE → ℘(VE ) = λ 〈φ, ν〉 . {〈φ, ν〉 | [[b]]φ}

where [[e]]φ, [[b]]φ denote the value of the (possibly non-deterministic) expression
e and the Boolean expression b, respectively, in φ. The set of transitions TRc

generated by an assume() or an assignment command c is given by:

TRc = {〈pc, μ, Θ, Λ〉 ⇒t 〈pc[t �→ n ′], μ, Θ[t �→ υ′], Λ〉 | 〈pc(t), c,n ′〉 ∈ instt ∧ υ′ ∈ [[c]](Θ(t))}
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Note that each thread t only accesses and modifies its own local versioned envi-
ronment.

Acquire commands. An acquire(m) command executed by a thread t has the
same effect on the lock map component in L-DRF as in the standard semantics.
(See Sect. 3.2.) In addition, it updates Θ(t) based on the contents of the relevant
release buffers. The release buffers relevant to a thread when it acquires m are
the ones at Lrel

m . We write G(n̄) as a synonym for Lacq
m , for any post-release point

n̄ ∈ Lrel
m . The auxiliary function updEnv is used to update the value of each x ∈ V

(along with its version) in Θ(t), by taking its value from a snapshot stored at a
relevant buffer which has the highest version of x, if the latter version is higher
than Θ(t)ν(x). If the version of x is highest in Θ(t)ν(x), then t simply retains this
value. Finding the most up-to-date snapshot for x (or determining that Θ(t)ν(x)
is the highest) is the role of the auxiliary function takex. It takes as input Θ(t),
as well as the versioned environments of the relevant release buffers, and returns
the versioned environments for which the version associated with x is the highest.
We separately prove that, along any execution, if there is a state in the L-DRF
semantics σ with two component versioned environments (in thread local states
or buffers) υ1 and υ2 such that υ1ν(x) = υ2ν(x), then υ1φ(x) = υ2φ(x). The set
of transitions pertaining to an acquire command c = acquire(m) is

TRc = {〈pc, μ, Θ, Λ〉 ⇒t 〈pc[t �→ n ′′], μ[m �→ t], Θ[t �→ υ], Λ〉 |
〈pc(t), c,n ′′〉 ∈ instt ∧ μ(m) = ∧ υ ∈ updEnv(Θ(t), Λ)}

where updEnv : (VE × (Lrel → VE)) → ℘(VE) given by
updEnv(υ, Λ) = {υ′′ | ∧x∈V ∃υx ∈ takex(Y ) : υ′′φ(x) = υxφ(x) ∧ υ′′ν(x) = υxν(x)}
with

Y = {υ} ∪ {Λ(n̄) | n̄ ∈ Lrel
m

∧
pc(t) ∈ G(n̄)}

and

takex
def
= λY ∈ ℘(VE). {〈φ, ν〉 ∈ Y | ν(x) = max{ν′′(x) | 〈φ′′, ν′′〉 ∈ Y }} .

For example, in Fig. 1, when the program counters are pc(t1 �→ 7, t2 �→ 10),
and t2 executes the acquire(), takex (Θ(t2) ∪ Λ(7) ∪ Λ(13)) = Λ(7). Similarly,
takey also returns Λ(7). However, takez returns Θ(t2), since this contains the
highest version of z. Thus, updEnv (Θ(t2), Λ(7), Λ(12)) returns the versioned
environment 〈x �→ 11, y �→ 11, z �→ 11〉.
Release commands A release(m) command executed by a thread t has the
same effect on the lock map component of the state in the L-DRF semantics
that it has in the standard semantics. (See Sect. 3.2.) In addition, it stores Θ(t)
in the buffer associated with the post-release point pertaining to the executed
release(m) instruction. The set of transitions pertaining to a release command
c = release(m) is

TRc = {〈pc, μ,Θ,Λ〉 ⇒t 〈pc[t �→ n ′], μ[m �→ ], Θ, Λ[n ′ �→ Θ(t)]〉 |
〈pc(t), c,n ′〉 ∈ inst t ∧ μ(m) = t}
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Program transition relation. The transition relation TRP of a program P accord-
ing to the L-DRF semantics, is the set of all possible transitions generated by
its commands, and is defined as TRP =

⋃
c∈cmd(P ) TRc.

Collecting Semantics. The collecting semantics of a program P according to
the L-DRF semantics is the set of reachable states starting from the initial state
σent :

[[P ]] = LFP λX. {σent} ∪ {σ′ | σ ⇒t σ′ ∈ TRP ∧ σ ∈ X ∧ t ∈ T }

4.1 Soundness and Completeness of L-DRF Semantics

For the class of data race free programs, the thread local semantics L-DRF is
sound and complete with respect to the standard interleaving semantics (Sect. 3).
To formalize the above claim, we define a function which extracts a state in the
interleaving semantics from a state in the L-DRF semantics.

Definition 5 (Extraction Function χ).

χ : Σ → S = λ 〈pc, μ,Θ,Λ〉 .

〈
pc, μ, λx.Θ

(
argmax

t∈T
Θ (t) ν(x)

)
φ(x)

〉

The function χ preserves the values of the program counters and the lock
map, while it takes the value of every variable x from the thread which has
the maximal version count for x in its local environment. χ is well-defined for
admissible states where, if Θ(t)ν(x) = Θ(t′)ν(x), then Θ(t)φ(x) = Θ(t′)φ(x). We
denote the set of admissible states by Σ̃. The L-DRF semantics only produces
admissible states, as formalized by the following lemma:

Lemma 6. Let σent →t1 . . . →tN σN be an execution of P in the L-DRF
semantics. Then, for any σi, with two component versioned environments (in
thread local states or buffers) υ1 and υ2 such that υ1ν(x) = υ2ν(x), we have
υ1φ(x) = υ2φ(x).

The function χ can be extended to executions in the L-DRF semantics by
applying it to each state in the execution. The following theorems state our
soundness and completeness results:

Theorem 7. Soundness. For any trace π = s0 →t1 . . . →tn sn of P in the
standard interleaving semantics, there exists a trace π̂ = σ0 →t1 . . . →tn σn in
the L-DRF semantics such that χ (π̂) = π. Moreover, for any transition πi, if
c(πi) involves a read of variable x ∈ V, then si−1φ(x) = σi−1Θ(ti)φ(x). In other
words, in π̂, the valuation of a variable x in the local environment of a thread
t coincides with the corresponding valuation in the standard semantics only at
points where t reads x.

Theorem 8. Completeness. For any trace π̂ of P in the L-DRF semantics,
χ (π̂) is a trace of the standard interleaving semantics.
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The proofs of all the claims are available in [26].

Remark 9. Till now we assumed that buffers associated with every post-release
point in Lrel

m are relevant to each pre-acquire point in Lacq
m , i.e., ∀n̄ ∈ Lrel

m :
G(n̄) = Lacq

m . However, if no (standard) execution of a program contains a tran-
sition τi (with the target location being n̄) which synchronizes-with a transition
τj (with source location n), then Theorem 7 (as well as Theorem 8) holds even
if we remove n from G(n̄). This is true because in race-free programs, conflicting
accesses are ordered by the happens-before relation. Thus, if the most up-to-
date value of a variable accessed by t was written by another thread t′, then in
between these accesses there must be a (sequence of) synchronization operations
starting at a lock released by t′ and ending at a lock acquired by t. This refine-
ment of the set G based on the above observation can be used to improve the
precision of the analyses derived from L-DRF, as it reduces the set of possible
release points an acquire can observe.

5 Sequential Abstractions for Data-Race Free Programs

In this section, we show how to employ standard sequential analyses to compute
over-approximations of the L-DRF semantics. Thanks to Theorems 7 and 8,
the obtained results can be used to derive sound facts about the (concurrent)
behavior of data race free programs in the standard semantics. In particular,
this also allows us to establish the soundness of the sync-CFG analysis [9] by
casting it as an abstract interpretation of the L-DRF semantics.

Technically, the analyses are derived by two (successive) abstraction steps:
First, we abstract the L-DRF semantics using a thread-local cartesian abstrac-
tion which ignores version numbers and forgets the correlation between the local
states of the different threads. This results in cartesian states where every pro-
gram point is associated with a set of (thread-local) environments. Note that
the form of these cartesian states is precisely the one obtained when comput-
ing the collecting semantics of sequential programs. Thus, they can be further
abstracted using any sequential abstraction, in particular relational ones. This
allows maintaining correlations between variables at all points except synchro-
nization points (acquires and releases of locks). Note that we make the initial
decision to abstract away the versions for simplicity, and we refine this abstrac-
tion later in Remark 11.

Thread-Local Cartesian Abstract Domain. The abstract domain is a com-
plete lattice over cartesian states, functions mapping program locations to sets
of environments, ordered by pointwise inclusions. We denote the set of carte-
sian states by A× and range over it using a×, and define the least upper bound
operator �× in the standard way.

D× ≡ 〈A×, �×〉 where A× ≡ L → ℘(Env) and a× �× a′
× ⇐⇒ ∀n ∈ L. a×(n) ⊆ a′

×(n)
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The abstraction function α× maps a set of L-DRF states C ⊆ Σ to a carte-
sian state a× ∈ A×. The abstract value α×(C)(n) contains the collection of t’s
environments (where t = tid(n))) coming from any state σ ∈ C where t is at
location n. In addition, if n is a post-release point, α×(C)(n) also contains the
contents of the buffer Λ(n) for each state σ ∈ C. As a first cut, we abstract away
the versions entirely. The concretization function γ× maps a cartesian state a×
to a set of (admissible) L-DRF states C in which the local state of a thread t, at
program point n ∈ Lt, comes from a×(n), and the contents of the release buffer
pertaining to the post-release location n ∈ Lrel also comes from a×(n).

α× : ℘(Σ) → A×,
where α×(C) = λn ∈ L. {φ | 〈pc, μ, Θ, Λ〉 ∈ C ∧ pc(t) = n ∧ 〈φ, ν〉 = Θ(tid(n))} ∪

{φ | 〈pc, μ, Θ, Λ〉 ∈ C ∧ n ∈ Lrel ∧ 〈φ, ν〉 = Λ(n)}
γ× : A× → ℘(Σ),

where γ×(a×) =

⎧
⎨

⎩
〈pc, μ, Θ, Λ〉 ∈ Σ̃

∣
∣
∣
∣
∣
∣

pc ∈ PC ∧ μ ∈ LM ∧
∀t ∈ T . Θ(t) = 〈φ, λx. 〉 ∧ φ ∈ a×(pc(t)) ∧
∀n ∈ Lrel . Λ(n) = 〈φ, λx. 〉 ∧ φ ∈ a×(n)}

⎫
⎬

⎭

Abstract Transitions. The abstract cartesian semantics is defined using a
transition relation, TR× ⊆ A× × T × A×.
Assignments and assume commands. As we have already abstracted away the
version numbers, we define the meaning of assignments and assume() commands
c using their interpretation according to the standard semantics, denoted by
[[c]]s. Hence, the set of transitions coming from an assume() or an assignment
command c is:

TR×
c =

⎧
⎨

⎩
a× ⇒×

t a×

⎡

⎣n ′ �→ a×(n ′) ∪
⋃

φ∈a×(n)

[[c]]s(φ)

⎤

⎦

∣
∣
∣
∣
∣
〈n, c,n ′〉 ∈ inst t

⎫
⎬

⎭

Acquire Commands. With the omission of any information pertaining to
ownership of locks, an acquire command executed at program location n is
only required to over-approximate the effect of updating the environment of a
thread based on the contents of relevant buffers. To do so, we define an abstract
mix operation which mixes together different environments at the granularity
of single variables. The set of transitions pertaining to an acquire command
c = acquire(m) is

TR×
c = {a× ⇒×

t a×[n ′′ �→ Emix ] | 〈n, c,n ′′〉 ∈ inst t} , where
Emix = mix (a×(n ′′) ∪

⋃
{a×(n̄) | n̄ ∈ Lrel

m ∧ n ∈ G(n̄)}) , and
mix : ℘(Env) → ℘(Env) ≡ λB×.{φ′′ | ∀x ∈ V,∃φ ∈ B× : φ′′(x) = φ(x)}

In other words, the mix takes a cartesian product of the input states. Note that as
a result of abstracting away the version numbers, a thread cannot determine the
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most up-to-date value of a variable, and thus conservatively picks any possible
value found either in its own local environment or in a relevant release buffer.

Release Commands. Interestingly, the effect of release commands in the carte-
sian semantics is the same as skip: This is because the abstraction neither tracks
ownership of locks nor explicitly manipulates the contents of buffers. Hence, the
set of transitions pertaining to a release command c = release(m) is

TR×
c = {a× ⇒×

t a×[n ′ �→ a×(n ′) ∪ a×(n)] | 〈n, c,n ′〉〉 ∈ inst t}

Collecting semantics. The collecting semantics of a program P , according to the
thread-local cartesian semantics, is the cartesian state obtained as the least fix-
point of the abstract transformer obtained from TR× =

⋃
c∈cmd(P ) TR×

c starting
from aent

× = α×({σent}), the cartesian state corresponding to the initial state of
the semantics:

[[P ]]× = LFP λa×. aent
×

⊔
×

(⊔
×{a′

× | a× ⇒×
t a′

× ∈ TR× ∧ t ∈ T }
)

, where
aent

× = α×({σent})

Theorem 10 (Soundness of Sequential Abstractions). γ×([[P ]]×) ⊇ [[P ]].

Sequential Analyses. Note that the collecting semantics of P , according to the
thread-local cartesian abstraction, can be viewed as the collecting semantics of
a sequential program P ′ obtained by adding to P ’s CFG edges from post-release
points n̄ to pre-acquire points n in n ∈ G(n̄), and where a special mix operator is
used to combine information at the acquire points. Further, note that we abstract
the environment of buffers and their corresponding release location into a single
entity, which is the standard over-approximation of the set of environments at
a given program location. Hence, the concurrent analysis of P can be reduced
to a sequential analysis of P ′, provided a sound over-approximation of the mix
operator is given.

Soundness of the Value-Set analysis. The analysis in [9] is obtained by abstract-
ing the thread-local cartesian states using the value set abstraction on the envi-
ronments domain. Note that in the value set domain, where every variable is
associated with (an over approximation of) the set of its possible values, the mix
operator reduces to a join operator.

Remark 11. We can improve upon the sequential abstraction presented earlier
by not forgetting the versions entirely. We augment A× with a set S of “recency”
information based on the versions as follows:

S = λC.{t̄ | ∃σ ∈ C, x ∈ V :
(

argmax
t∈T

σΘ(t)ν(x)
)

= t̄}

In other words, S soundly approximates the set of threads which contain the
most up-to-date value of some variable x ∈ V. This additional information can
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now be used to improve the precision of mix . We show in the experiments that
the abstract domain, when equipped with this set of thread-identifiers, results
in a significant gain in precision (primarily because it helps avoid spurious read-
write loops between post-release and pre-acquire points, like the one in Fig. 1).

6 Improved Analysis for Region Race Free Programs

In this section we introduce a refined notion of data race freedom, based on data
regions, and derive from it a more precise abstract analysis capable of transferring
some relational information between threads at synchronization points.

Essentially, regions are a user defined partitioning of the set of shared vari-
ables. We call each partition a region r, and denote the set of regions as R
and the region of a variable x by r(x). The semantics precisely tracks correla-
tions between variables within regions across inter-thread communication, while
abstracting away the correlations between variables across regions. With suitable
abstractions, the tracked correlations can improve the precision of the analysis
for programs which conform to the notion of race freedom defined below. We
note that [9,22] do not permit relational analyses.

Region Race Freedom. We define a new notion of race freedom, parameterized
on the set of regions R, which we call region race freedom (abbreviated as R-DRF ).
R-DRF refines the standard notion of data race freedom by ensuring that variables
residing in the same region are manipulated atomically across threads.

A region-level data race occurs when two concurrent threads access variables
from the same region r (not necessarily the same variable), with at least one
access being a write, and the accesses are devoid of any ordering constraints.

Definition 12 (Region-level races). Let P be a program and let R be a region
partitioning of P . An execution π of P , in the standard interleaving semantics,
has a region-level race if there exists 0 ≤ i < j < |π|, such that c(πi) and c(πj)
both access variables in region r ∈ R, at least one access is a write, and it is not
the case that πi

hb−→π πj.

Remark 13. The problem of checking for region races can be reduced to the
problem of checking for dataraces as follows. We introduce a fresh variable Xr

for each region r ∈ R. We now transform the input program P to a program
P ′ with the following addition: We precede every assignment statement x := e,
where rw is the region which is written to, and r1, . . . , rn are the regions read,
with a sequence of instructions Xrw

:= Xr1 ; . . . Xrw
:= Xrn

;. Statements of the
form assume(b) do not need to be changed because b may refer only to thread-
private variables. Note that these modifications do not alter the semantics of the
original program (for each trace of P there is a corresponding trace in P ′, and
vice versa). We now check for data races on the variables Xr’s.
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The R-DRF Semantics. The R-DRF semantics is obtained via a simple
change to the L-DRF semantics, a write-access to a variable x leads to incre-
menting the version of every variable that resides in x’s region:

[[x := e]] : VE → ℘(VE) = λ 〈φ, ν〉 . {〈φ[x �→ v], ν[y �→ ν(y) + 1 | r(x) = r(y)]〉 | v ∈ [[e]]φ}

It is easy to see that Theorems 7 and 8 hold if we consider the R-DRF
semantics instead of the L-DRF semantics, provided the program is region race
free with respect to the given region specification. Hence, we can analyze such
programs using abstractions of R-DRF and obtain sound results with respect to
the standard interleaving semantics (Sect. 3).

Thread-Local Abstractions of the R-DRF Semantics. The cartesian
abstractions defined in Sect. 5 can be extended to accommodate regions in a
natural way. The only difference lies in the definition of the mix operation,
which now operates over regions, rather than variables:

mix : ℘(Env) → ℘(Env) def= λB×.{φ′ | ∀r ∈ R,∃φ ∈ B× : ∀x ∈ V. r(x) = r
=⇒ φ′(x) = φ(x)}

where the function rg maps a variable to its region. Mixing environments at
the granularity of regions is permitted because the R-DRF semantics ensures
that all the variables in the same region have the same version. Thus, their
most up-to-date values reside in either the thread’s local environment or in one
of the release buffers. As before, we can obtain an effective analysis using any
sequential abstraction, provided that the abstract domain supports the (more
precise) region based mix operator.

7 Implementation and Evaluation

RATCOP: Relational Analysis Tool for COncurrent Programs. In this section, we
perform a thorough empirical evaluation of our analyses using a prototype ana-
lyzer which we have developed, called RATCOP3, for the analysis of race-free
concurrent Java programs. RATCOP comprises around 4000 lines of Java code,
and implements a variety of relational analyses based on the theoretical under-
pinnings described in earlier sections of this paper. Through command line argu-
ments, each analysis can be made to use any one of the following three numerical
abstract domains provided by the Apron library [17]: Convex Polyhedra (with sup-
port for strict inequalities),Octagons and Intervals.RATCOPalsomakes use of the
Soot [30] analysis framework. The tool reuses the code for fixed point computation
and the graph data structures in the implementation of [9].

The tool takes as input a Java program with assertions marked at appro-
priate program points. We first checked all the programs in our benchmarks for
dataraces and region races using Chord [27]. For detecting region races, we have
implemented the translation scheme outlined in Remark 11 in Sect. 6. RATCOP
3 The project artifacts are available at https://bitbucket.org/suvam/ratcop.

https://bitbucket.org/suvam/ratcop
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then performs the necessary static analysis on the program until a fixpoint is
reached. Subsequently, the tool automatically tries to prove the assertions using
the inferred facts (which translates to checking whether the inferred fact at a
program point implies the assertion condition): if it fails to prove an assertion,
it dumps the corresponding inferred fact in a log file for manual inspection.

As benchmarks, we use a subset of concurrent programs from the SV-COMP
2015 suite [2]. We ported the programs to Java and introduced locks appropri-
ately to remove races. We also use a program from [23]. While these programs are
not too large, they have challenging invariants to prove, and provide a good test
for the precision of the various analyses. We ran the tool in a virtual machine with
16GB RAM and 4 cores. The virtual machine, in turn, ran on a machine with
32GB RAM and a quad-core Intel i7 processor. We evaluate 5 analyses on the
benchmarks, with the following abstract domains: (i) A1: Without regions and
thread identifiers4. (ii) A2: With regions, but with no thread identifiers. (iii) A3:
Without regions, but with thread identifiers. (iv) A4: With regions and thread
identifiers. The analyses A1: - A4: all employ the Octagon numerical abstract
domain. And finally, (v) A5: The value-set analysis of [9], which uses the Inter-
val domain. In terms of the precision of the abstract domains, the analyses form
the following partial order: A5 ≺ A1 ≺ A3 ≺ A4 and A5 ≺ A1 ≺ A2 ≺ A4.
We use A5 as the baseline.

Porting Sequential Analyses to Concurrent Analyses. For the sequential com-
mands, we perform a lightweight parsing of statements and simply re-use the
built-in transformers of Apron. The only operator we need to define afresh is the
abstract mix. Since Apron exposes functions to perform each of the constituent
steps, implementing the abstract mix is straight forward as well.

Precision and Efficiency. Figure 2 summarizes the results of the experiments
(Table 2). While all the analyses failed to prove the assertions in reorder 2, A2
and A4 were able to prove them when they used convex polyhedra instead of
octagons. Since none of the analyses track arrays precisely, all of them failed to
prove the original assertion in sigma (which involves checking a property involv-
ing the sum of the array elements). However, A3 and A4 correctly detect a
potential array out-of-bounds violation in the program. The improved precision
is due to the fact that A3 and A4 track thread identifiers in the abstract state,
which avoids spurious read-write cycles in the analysis of sigma. The program
twostage 3 has an actual bug, and the assertions are expected to fail. This
program provides a “sanity check” of the soundness of the analyses. Programs
marked with * contain assertions which we have altered completely and/or weak-
ened. In these cases, the original assertion was either expected to fail or was too
precise (possibly requiring a disjunctive domain in order to prove it). In qw2004,
for example, we prove assertions of the form x = y. A2 and A4 perform well
in this case, since we can specify a region containing x and y, which precisely

4 By thread-identifiers we are referring to the abstraction of the versions outlined in
Remark 11.
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Table 2. Summary of the experiments. Superscript B indicates that the program has
an actual bug. (C) indicates the use of Convex Polyhedra as abstract data domain.
* indicates a program where we have altered/weakened the original assertion.

Program LOC Threads Asserts A1 A2 A3 A4 A5

Time

(ms)

Time

(ms)

Time

(ms)

Time

(ms)

Time

(ms)

reorder 2 106 5 2 0(C) 77 2(C) 43 0(C) 71 2(C) 37 0 25

sigmaB∗ 118 5 5 0 132 0 138 4 48 4 50 0 506

sssc12 98 3 4 4 6 4 90 4 82 4 86 2 28

unverif 82 3 2 0 115 0 121 0 84 0 86 0 46

spin2003 65 3 2 2 6 2 9 2 10 2 10 2 8

simpleLoop 74 3 2 2 56 2 61 2 57 2 64 0 27

simpleLoop5 84 4 1 0 40 0 50 0 31 0 37 0 20

doubleLock p3 64 3 1 1 11 1 24 1 16 1 19 1 9

fib Bench 82 3 2 0 138 0 118 0 129 0 102 0 56

fib Bench Longer 82 3 2 0 95 0 103 0 123 0 91 0 35

indexer 119 2 2 2 1522 2 1637 2 1750 2 1733 2 719

twostage 3B 93 2 2 0 61 0 48 0 57 0 28 0 59

singleton with uninit 59 2 1 1 31 1 29 1 14 1 10 1 28

stack 85 2 2 0 151 0 175 0 127 0 129 0 71

stack longer 85 1 2 0 1163 0 669 0 1082 0 1186 0 597

stack longest 85 2 2 0 1732 0 1679 0 1873 0 2068 0 920

sync01 * 65 2 2 2 7 2 25 2 37 2 33 2 10

qw2004 * 90 2 4 0 1401 4 1890 0 1478 4 1913 0 698

[23] Fig. 3.11 89 2 2 0 49 2 46 0 54 2 36 0 19

Total 1625 3 (Avg) 42 14 361

(Avg)

22 366

(Avg)

18 374

(Avg)

26 406

(Avg)

10 204

(Avg)

track their correlation across threads. The imprecision in the remaining cases are
mostly due to the program requiring disjunctive domains to discharge the asser-
tions, or the presence of spurious write-write cycles which weakens the inferred
facts.

Of the total 40 “valid” assertions (excluding the two in twostage 3), A4 is
the most precise, being able to prove 65% of them. It is followed by A2 (55%),
A3 (45%), A1 (35%) and, lastly, A5 (25%). Thus, the new analyses derived from
L-DRF and R-DRF perform significantly better than the value-set analysis of
[9]. Moreover, this total order respects the partial ordering between the analyses
defined earlier.

With respect to the running times, the maximum time taken, across all the
programs, is around 2 s, by A4. A5 turns out to be the fastest in general, due
to its lightweight abstract domain. A2 and A4 are typically slower that A1 and
A3 respectively. The slowdown can be attributed to the additional tracking of
regions by the former analyses.

Comparing with a current abstract interpretation based tool. We also compared
the efficiency of RATCOP with that of Batman, a tool implementing the previ-
ous state-of-the-art analyses based on abstract interpretation [24,25] (a discus-
sion on the precision of our analyses against those in [24] is presented in Sect. 8).
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The basic structure of the benchmark programs for this experiment is as follows:
each program defines a set of shared variables. A main thread then partitions the
set of shared variables, and creates threads which access and modify variables in a
unique partition. Thus, the set of memory locations accessed by any two threads is
disjoint. In our experiments, each thread simply performed a sequence of writes to
a specific set of shared variables. In some sense, these programs represent a “best-
case” scenario because there are no interferences between threads. Unlike RAT-
COP, the Batman tool, in its current form, only supports a small toy language and
does not provide the means to automatically check assertions. Thus, for the pur-
poses of this experiment, we only compare the time required to reach a fixpoint in
the two tools. We compare A3 against Batman running with the Octagon domain
and the BddApron library [16] (Bm-oct).

#Threads A3 Time (ms) Bm-oct Time (ms)
2 61 7706
3 86 82545
4 138 507663
5 194 2906585
6 261 13095977
7 368 53239574

Fig. 3. Running times of RATCOP (A3) and Batman (Bm-oct) on loosely coupled
threads. The number of shared variables is fixed at 6. The graph on the right shows
the running times on a log scale.

The running times of the two analyses are given in Fig. 3. In the benchmarks,
with increasing number of threads, RATCOP was upto 5 orders of magnitude
faster than Bm-oct. The rate of increase in running time was almost linear for
RATCOP, while it was almost exponential for Bm-oct. Unlike RATCOP, the
analyses in [24,25] compute sound facts at every program point, which con-
tributes to the slowdown.

8 Related Work and Discussion

In this paper, we presented a framework for developing data-flow analyses for
data race free shared-memory concurrent programs, with a statically fixed num-
ber of threads, and with variables having primitive data types. There is a rich
literature on concurrent dataflow analyses and [28] provides a detailed survey
of some of them. We compare some of the relevant ones in this section. [5]
automatically lifts a given sequential analysis to a sound analysis for concurrent
programs, using a datarace detector. Here, data-flow facts are not communicated



Thread-Local Semantics and Its Efficient Sequential Abstractions 273

across threads, and this can lose a lot of precision. The work in [4,22] allows a
greater degree of inter-thread communication. However, unlike our semantics,
they are unable to infer relational properties between variables. The methods
described in [9,10,15] present concurrent dataflow algorithms by building spe-
cialized concurrent flow graphs. However, the class of analyses they address are
restricted – [10] handles properties expressible as Quantified Regular Expres-
sions, [15] handles reaching definitions, while [9] only handles value-set analyses.

In [24], an abstract interpretation formulation of the rely-guarantee proof
technique [18,31] is presented in the form of a precise semantics. The semantics
in [24] involves a nested fixed-point computation, compared to our single fixed-
point formulation. The analysis aims to be sound at all program points (e.g., in
Fig. 1 the value of y at line 9 in t2), due to which many more interferences will
have to be propagated than we do, leading to a less efficient analysis. Moreover,
for certain programs, our abstract analyses are more precise. Figure 4 shows a
program which is race free, even though the conflicting accesses to x in lines 2
and 12 are not protected by a common lock. The “lock invariants” in [24] would
consider these accesses as potentially racy, and would allow the read at line 12 to
observe the write at line 2, thereby being unable to prove the assertion. However,
our analyses would ensure that the read only observes the write at line 11, and is
able to prove the assertion. [13] presents an operational semantics for concurrent
programs, parameterized by a relation. It makes additional assumptions about
code regions which are unsynchronized (allowing only read-only shared variables
and local variables in such regions). Moreover, it too computes sound facts at
every point, resulting in less efficient abstractions.

A traditional approach to analyzing concurrent programs involves resource
invariants associated with every lock (e.g. [14]). This approach depends on a
locking policy where a thread only accesses global data if it holds a protecting
lock. In contrast, our approach does not require a particular locking policy (e.g.,
see Fig. 4), and is based on a parameterized notion of data-race-freedom, which
allows to encode locking policies as a particular case. Thus, our new semantics
provides greater flexibility to analysis writers, at the cost of assuming data-race-
freedom.

Our notion of region races is inspired by the notion of high-level data races [1].
The concept of splitting the state space into regions was earlier used in [21], which

1 a c q u i r e (m)
2 x := 1
3 y := 1
4 r e l e a s e (m)

(a) Thread 1

6 wh i l e p ≠ 1 do {
7 a c q u i r e (m)
8 p := y
9 r e l e a s e (m)
10 }
11 x := 2
12 p := x
13 a s s e r t ( p ≠ 1)

(b) Thread 2

Fig. 4. Example demonstrating that a program can be DRF, even when a read from a
global variable is not directly guarded by any lock.
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used these regions to perform shape analysis for concurrent programs. However,
that algorithm still performs a full interleaving analysis which results in poor scal-
ability. The notion of variable packing [3] is similar to our notion of data regions.
However, variable packs constitute a purely syntactic grouping of variables, while
regions are semantic in nature. A syntactic block may not access all variables in
a semantic region, which would result in a region partitioning more refined than
what the programmer has in mind, which would result in decreased precision. In
contrast to our approach, the techniques in [11,12] provide an approach to veri-
fying properties of concurrent programs using data flow graphs, rather than use
control flow graphs like we do.

As future work, we would like to evaluate the performance of our tool when
equipped with disjunctive relational domains. In this paper, we do not consider
dynamically allocated memory, and extending the L-DRF semantics to account
for the heap memory is interesting future work. Abstractions of such a semantics
could potentially yield efficient shape analyses for race free concurrent programs.
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Abstract. In this paper we present a static analysis of communication
protocols for inferring parametric bounds of performance metrics. Our
analysis is formalized within the theory of abstract interpretation and
soundly takes all possible executions into account. We model the concrete
executions as Markov chains and we introduce a novel notion of Abstract
Markov Chains that provides a finite and symbolic representation to
over-approximate the (possibly unbounded) set of concrete behaviors.
Our analysis operates in two steps. The first step is a classic abstract
interpretation of the source code, using stock numerical abstract domains
and a specific automata domain, in order to extract the abstract Markov
chain of the program. The second step extracts from this chain particular
invariants about the stationary distribution and computes its symbolic
bounds using a parametric Fourier-Motzkin elimination algorithm. We
present a prototype implementation of the analysis and we discuss some
preliminary experiments on a number of communication protocols.

1 Introduction

The analysis of probabilistic programs represents a challenging problem. The
difficulty comes from the fact that execution traces are characterized by prob-
ability distributions that are affected by the behavior of the program, resulting
in very complex forms of stochastic processes. In addition, in such particular
context, programmers are interested in quantitative properties not supported
by conventional semantics analysis, such as the inference of expected values of
performance metrics or the probability of reaching bug states. In this work, we
focus on the analysis of communication protocols and we aim at assessing their
performance formally.

Stationary Distribution. Generally, the quantification of performance metrics
for such systems is based on computing the stationary distribution of the asso-
ciated random process. It gives the proportion of time spent in every reachable
state of the system by considering all possible executions. This information is
fundamental to compute the expected value of most common performance met-
rics. For instance, the throughput represents the average number of transmitted
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Fig. 1. (a) Backoff-based transmission. (b) Associated discrete time Markov chain.

packets per time unit. By identifying the program locations where packets are
transmitted and by computing the value of the stationary distribution at these
locations, we obtain therefore the proportion of packets sent in one time unit.
Similarly, many other metrics are based on this distribution, such as the duty
cycle (proportion of time where the transceiver is activated) or the goodput (the
proportion of successfully transmitted data).

To our knowledge, no existing approach can obtain such information (i) auto-
matically by analyzing the source code, (ii) soundly by considering all executions
in possibly infinite systems and (iii) symbolically by expressing the distribution
in terms of the protocol parameters. Indeed, while most proposed solutions focus
on computing probabilities of program assertions [4,26] or expectation invariants
[1,5], only Prism [16], thanks to its extension Param [14], can compute station-
ary distributions of parametric Markov chains, but is limited to finite state sys-
tems with parametric transition probabilities only, while we also support systems
where the number of states is a (possibly unbounded) parameter.

Example 1. We illustrate our motivation with a simple wireless protocol shown
in Fig. 1(a). This example illustrates a basic embedded application in which a
set of sensing devices transmit periodically their readings to a remote central
station. To derive the goodput Γ of a sensor, we model the protocol as a discrete
time Markov chain as shown in Fig. 1(b). The program begins by acquiring the
sensor measurements by calling the function sense. This operation corresponds
to the state ss in which the chain remains one time tick. To avoid collisions when
sending the data, a random backoff is performed using a uniform distribution on
the range [1, B], where B is a parameter of the protocol. This is modeled as a
fork from state ss to B backoff levels. Each transition is labeled with probability
1
B and the chain remains i ticks at level i. An important random aspect of the
system is the lossy nature of the wireless links, which is modeled as a Bernoulli
distribution with parameter p. This means that at each call of the function
unicast at state tx, the packet is transmitted and acknowledged with probabil-
ity p, or lost with probability 1−p. Finally, before transmitting the next reading,
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the program executes the sleep statement to save energy for a duration deter-
mined by parameter S, which is modeled with the transitions sl1

1→ . . .
1→ slS .

The goodput Γ of the protocol is the proportion of time spent in state ack,
which can be obtained by computing the stationary distribution π of the chain.
To do so, we first construct the stochastic matrix P where its entries correspond
to the probabilities of the chain’s transitions. After that, we compute the vector
π as the eigenvector of the stochastic matrix P associated to the eigenvalue 1.
Since the structure and the size of the matrix depend on the parameters B and
S, existing solutions can not derive automatically the stationary distribution
symbolically in terms of B, S and p. ��

Contributions. We propose a solution for this problem based on two main con-
tributions:

1. First, we introduce a novel notion of Abstract Markov Chains that approx-
imates a family of discrete time Markov chains. These abstract chains are
inferred automatically by analyzing the source code of the program. Thanks
to a novel widening algorithm, these chains are guaranteed to have a finite
size while covering all possible probabilistic traces of the program.

2. Our second contribution is a result for extracting distribution invariants from
an abstract Markov chain in the form of a system of parametric linear inequal-
ities for bounding the concrete stationary distribution. Using a parametric-
version of the Fourier-Motzkin elimination algorithm, we can infer symbolic
and guaranteed bounds of the property of interest.

Example 2. By applying our analysis on the previous example, we can infer that:

B2(p − 1) − B(p − 3) + 2(p − 1)
3B2 + 2BS + B + 4

≤ Γ ≤
(
B2 − B + 2

)
p

3B2 + 2BS + B + 4
(1)

System designers can use this invariant to find appropriate parameter values that
ensure certain performance constraints. For instance, assume that we know that
the deployment zone is characterized by a link quality varying in [0.7, 0.9] and
we want to figure out which parameter configuration guarantees that Γ always
fit within [1, 5] packets/s (with the assumption that a time tick is 1ms). Using
(1), we can show that the instance 〈B �→ 4, S �→ 308〉 produces a chain that
always verifies these constraints. ��

Limitations. Our approach is still in a preliminary development phase and
presents some limitations. The analysis supports only discrete probability dis-
tributions, such as Bernoulli and discrete uniform distributions. Secondly, we
limit the description herein to a simple C-like language and we do not support
yet the analysis of real-world implementations. Finally, we do not consider pure
non-deterministic statements.
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Outline. The remaining of the paper is organized as follows. We present in
Sect. 2 the concrete semantics of the analysis. Section 3 introduces the domain
of Abstract Markov Chains and we detail in Sect. 4 the method to extract the
stationary distribution invariants from an abstract chain and how we can infer
symbolic bounds of the property of interest. The results of the preliminary exper-
iments are presented in Sect. 5. We discuss the related work in Sect. 6 and we
conclude the paper in Sect. 7.

2 Concrete Semantics

We consider communication protocols that can be represented as (possibly infi-
nite) discrete time Markov chains, since it is one of the most widespread sto-
chastic models for performance evaluation used by the networking community.
For describing these protocols, we use a simplified probabilistic language having
the following C-like syntax:

Stmt ::= x = e; �x ∈ V, e ∈ Exp�
| if(e �� 0){s1}{s2} �s1, s2 ∈ Stmt, ��∈ {=, 
=,≤, <,≥, >}�
| while(e �� 0){s}
| x = uniforml(e1, e2) �e1, e2 ∈ Exp, l ∈ L�
| x = bernoullil()
| ticksl(e)

where V is the set of program variables, L is the set of program locations and
Exp is the set of (non-probabilistic) numeric expressions the syntax of which
is classic and omitted here. In addition to the common statements of assign-
ments, if conditionals and while loops, we consider the following additional
markovian statements. The function uniforml(e1, e2) draws a random integer
value from a discrete uniform distribution over the interval [e1, e2], while the
function bernoullil() returns a boolean value according to a Bernoulli distri-
bution with parameter pl. Finally, the function ticksl(e) models the fact that
the program will spend e ticks in the current control location, which results in
triggering a transition in the Markov chain of the program. Each of these func-
tions is annotated with the call site location l. Using these primitive functions,
we can define any markovian behavior. Since we are interested in communication
protocols, we defined a number of auxiliary functions based on these primitives,
such as the functions unicast() and sleep() presented previously.

2.1 Markovian Traces

We develop a particular stochastic semantics that is isomorphic to a discrete
time Markov chain. At the bottom level of this semantics, we have the notion
of random events Ξ representing the outcomes of the probability distributions
generated during program execution. We can distinguish between two types of
random events. The events bl and bl denote the two outcomes of a statement
bernoullil(). Also, the outcomes of the statement uniforml(e1, e2) are given
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by the set {ui,a,b
l | i ∈ [a, b]}, where a and b are the evaluation in the current

execution environment of e1 and e2 respectively.
Naively, we can consider a Markov chain as a classic automaton over the

alphabet Ξ recognizing the probabilistic traces of the program as sequences
of random events. However, Markov chains are not just a set of probabilistic
traces, but embed a notion of time that is fundamental. Indeed, transitions in
a Markov chain occur solely when at least one time tick has elapsed, since a
state of the chain can not have a null sojourn time. As we consider that only
the ticks(e) statement advances time, some of the program transitions become
non-observable at the time scale of the chain. This leads to a two-level trace
semantics making the distinction between observable and non-observable tran-
sitions, which has been introduced by Radhia Cousot in her thesis [9, Sect. 2.5.4].
We give here a definition of these two types of traces adapted to our settings:

Definition 1 (Scenarios). A sequence of non-observable transitions is called
a scenario and is defined as ω ∈ Ω � Ξ∗ expressing sequences of random events
that occur between two observable states. In the sequel, we denote by ε the empty
scenario word.

Definition 2 (Markovian traces). The observable markovian traces are the
set T Ω

Σ � {σ0
ω1→ σ1

ω2→ · · · | σi ∈ Σ ∧ ωi ∈ Ω} of transitions among observable
states labeled with scenarios. An observable state is a tuple (l, ρ, ν) ∈ Σ � L ×
E × N where (i) l ∈ L is a program location, (ii) ρ ∈ E � V → Z is a program
environment and (iii) ν ∈ N is a sojourn time representing the number of ticks
spent in that state.

This notion of markovian traces is a set-based representation of Markov
chains that fits well within the framework of abstract interpretation. It allows
a fluent extension of the classical trace semantics for supporting the particular
stochastic and temporal features of discrete time Markov chains. In the following
paragraph, we define this semantics domain and we present the most important
transfer functions.

2.2 Semantics Domain

The concrete semantics domain of our analysis is defined as D � ℘(T Ω
Σ ×E ×Ω).

An element (τ, ρ, ω) ∈ T Ω
Σ × E × Ω encodes the set of traces reaching a given

program location and is composed of three parts: (i) the observable trace τ ∈ T Ω
Σ

containing the past markovian transitions before the current time tick, (ii) the
current memory environment ρ ∈ E , and (iii) the partial scenario ω ∈ Ω of non-
observable random events that occurred between the last tick and the current
execution moment.

To obtain the set of all traces of a program P , we proceed by induction on
its abstract syntax tree using a set of concrete transfer functions S�.� ∈ D → D.
We give in Fig. 2 a summary of these functions. We assume given (in a standard
way) the function E�e� ∈ ℘(E) → ℘(E) that provides the possible evaluations
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Fig. 2. Concrete transfer functions.

of an expression in a set of environments. Non-probabilistic statements have
a standard definition. The assignment statement updates the current memory
environment by mapping the left-hand variable to the evaluation of the expres-
sion. For the if assignment, we filter the current environments depending on the
evaluation of the condition, and we analyze each branch independently before
merging the results. Also, a loop statement is formalized as a fixpoint on the
sequences of body evaluation with a filter to extract the iterations violating the
loop condition.

The semantics of the statement x = bernoullil() is to fork the current
partial scenarios ω depending on the result of the function. We append the event
bl in the true case, or the event bl in the false case and we update the variable x
with the returned value in the current memory environment. For the statement
x = uniforml(e1, e2), we also fork the partial scenarios and update the variable
x accordingly, but the difference is that the number of branches depends on the
evaluations of e1 and e2 in the current memory environment. More precisely, the
number of forks corresponds to the number of integer points between the values
of e1 and e2. Note that, for these two statements, the markovian traces part
is not modified since they are tick-less. This is not the case for the ticksl(e)
statement that appends the markovian traces with a new transition to a state
where the sojourn time is equal to the evaluation of the expression e. The label
of this new transition is simply the computed partial scenario, which is reset to
the empty word ε since we keep track of events traces only between two ticks
statements.

2.3 Stationary Distribution

After collecting the set T ⊆ T Ω
Σ of all possible markovian traces, we want to com-

pute the stationary distribution of the associated Markov chain, which reflects
the proportion of time spent in every observable state. To do that, we have first
to construct a particular transition matrix P, that differs slightly from the clas-
sic stochastic matrix of discrete time Markov chains since states in our model
embed different values of sojourn time:

P(l,ρ,ν),(l′,ρ′,ν′) � ν′

ν

∑

(l,ρ,ν)
ω→(l′,ρ′,ν′)∈T

Pr(ω) (2)
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where (l, ρ, ν) and (l′, ρ′, ν′) are two reachable states in the traces T . The function
Pr ∈ Ω → [0, 1] gives the probability of the scenarios and is computed as follows:

{
Pr(ε) � 1,Pr(bl) � pl,Pr(bl) � 1 − pl,Pr(ui,a,b

l ) � 1
b−a+1

Pr(ωξ) � Pr(ω)Pr(ξ)
(3)

Finally, as for the classic matrix, the stationary distribution of the chain rep-
resents the eigenvector π of P associated to the eigenvalue 1, which is obtained
by solving the system π = πP with the additional normalization constraint∑

(l,ρ,ν) π(l,ρ,ν) = 1. Since the size of P depends on the size of the reachable
states space, π can not be computed automatically in general. In the following,
we propose a computable abstraction of Markov chains to over-approximate the
traces T . Afterwards, we show how we can infer guaranteed bounds of π using
information provided by our abstract chain.

3 Abstract Semantics

In order to analyze a program statically, we need a computable abstraction of
the concrete semantics domain D. The basic idea is to first partition the set
of observable program states L × E × N with respect to the program locations,
resulting into the intermediate abstraction L × ℘(E × N). For each location,
the set of associated environments is then abstracted with a stock numerical
domain E�, by considering the sojourn time as a program variable ν. We obtain
the abstract states domain Σ� � L × E�. As a consequence of this partitioning,
observable states at the same program location will be merged. Therefore, we
obtain a special structure in which observable abstract states are connected
through possibly multiple scenarios coming from the merged concrete states.

Example 3. We illustrate this fact in Fig. 3(a) depicting a more complex prob-
abilistic modeling of the previous sense() function using a bounded geometric

Fig. 3. (a) A simple probabilistic model for the sense() function. (b) An abstraction
of observable traces represented as a hierarchical automaton.
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distribution that works as follows. We start by warming up the sensing device
during one tick. After that, we check whether the sensor detects some exter-
nal activity (high temperature, sound noise, etc.) and we perform this check for
at most 10 times. We assume that these external activities follow a Bernoulli
distribution. At the end, we perform some processing during 4 ticks in case of
detection and 2 ticks in case of non-detection.

We can see in Fig. 3(b) that between the observable program locations 2 and
11 many scenarios are possible, which are abstracted with the regular expression
b
∗
5 b5 that encodes the pattern of having a number of Bernoulli failure outcomes

at line 5 before a successful one. However, between lines 2 and 13, we can have
only a sequence of failures, which is expressed as b

+

5 . ��

The presence of these multi-words transitions leads to a hierarchical automata
structure organized in two levels. On the one hand, one automata structure is
used to encode the transitions between observable abstract states. On the other
hand, and for each observable transition, another automata structure is used
to encode the regular expressions of scenarios connecting the endpoints of the
transition. In other words, we abstract markovian traces with an automaton,
the transitions of which have also an automata structure representing a set of
scenarios. For modularity reasons, we present however a single generic automata
domain to represent regular languages over any abstract alphabet. Afterwards,
we instantiate two automata-based domains for abstracting events words and
markovian traces.

3.1 Abstract Automata

Le Gall et al. proposed a lattice automata domain [17] to represent words over an
abstract alphabet having a lattice structure. We extend this domain to support
also abstraction at the state level by merging states into abstract states, which
is important to approximate markovian traces. To do so, we define a functor
domain A (A�,S�) parameterized by an abstract alphabet domain A� and an
abstract state domain S�:

Definition 3 (Abstract automata). An abstract automaton A ∈ A (A�,S�)
is a tuple A = (S, s�

0, F,Δ), where S ⊆ S� is the set of states, s�
0 ∈ S is the

initial state, F ⊆ S is the set of final states and Δ ⊆ S ×A� ×S is the transition
relation.

We assume that the parameter domain A� is an abstraction of some concrete
alphabet symbols A, having a concretization function γA ∈ A� → ℘(A), a partial
order �A, a join operator �A, a meet operator �A, a least element ⊥A and a
widening operator �A. The second parameter domain S� is assumed to be an
abstraction of some concrete states S equipped with a concretization function
γS ∈ S� → ℘(S), a partial order �S, a join operator �S, a least element ⊥S

and a widening operator �S.
Let us define some important operators for the A functor domain. In

the following, we denote by A = (S, s�
0, F,Δ), A1 = (S1, s

�
01

, F1,Δ1) and
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A2 = (S2, s
�
02

, F2,Δ2) three instances of A
(
A�,S�

)
. We also define the aux-

iliary functions L ∈ A
(
A�,S�

)
→ ℘

(
A��

)
and T ∈ A (A�,S�) → ℘

(
T A�

S�

)

giving respectively the set of accepted abstract words and abstract traces.

Definition 4 (Concretization). The sets of concrete words and traces
abstracted by an abstract automaton A are given by:

{
γL
A (A) = {a1a2 · · · | ∃a�

1a
�
2 · · · ∈ L(A),∀i : ai ∈ γA(a�

i)}

γT
A (A) = {s1

a1→ · · · | ∃s�
1

a�
1→ · · · ∈ T(A),∀i : si ∈ γS(s�

i) ∧ ai ∈ γA(a�
i)}

(4)

Order. To compare two abstract automata, we define the following simulation
relation that extends the classical simulation concept found in transition systems
by considering the abstraction in the alphabet and states:

Definition 5 (Simulation relation). A binary relation R ⊆ S� × S� is a
simulation between A1 and A2 iff ∀(s�

1, s
�
2) ∈ R we have s�

1 �S s�
2 and:

∀s�
1

a�
1→ q�

1 ∈ Δ1,∃s�
2

a�
2→ q�

2 ∈ Δ2 : a�
1 �A a�

2 ∧ q�
1Rq�

2 (5)

We denote � the smallest simulation relation between A1 and A2 verifying
s�
01

� s�
02

.

Using this notion we define the partial order relation �A as:

A1 �A A2 ⇔ ∀(s�
1, s

�
2) ∈�: s�

1 ∈ F1 ⇒ s�
2 ∈ F2 (6)

which means that A2 should simulate and accept every accepted trace in A1.

Join. To compute the union of two abstract automata A1 and A2, we need to
extend the simulation-based traversal in a way to include traces contained in
one automaton only, which is formalized with the following concept of product
relation. The intuition behind it is depicted in Fig. 4 in which we consider tran-
sitions decorated with an illustrative regular language over an alphabet {b, b}.

In Fig. 4(a), the input transitions s�
1

b�b→ q�
1 and s�

2
bb�

→ q�
2 are combined into a

single product transition that accepts the merged alphabet symbol b�b + bb�.
While proceeding similarly for all cases preserves the soundness of the operator,
we can gain in precision by separating singular transitions as shown in Fig. 4(b).

s�
1 q�

1

s�
2 q�

2

→ (s�
1, s

�
2) (q�

1, q
�
2)

b�b

bb�

b�b+bb�

(a)

s�
1 q�

1

s�
2 q�

2

→ (s�
1, s

�
2)

(q�
1,⊥S)

(⊥S, q
�
2)

b

b

b

b

(b)

Fig. 4. Cases of construction of a product transition.
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In this case, no intersection exists between the transitions s�
1

b→ q�
1 and s�

2
b→ q�

2.
This means that the automata A1 and A2 can not perform a simultaneous tran-
sition at s�

1 and s�
2, which is expressed as two singular transitions to (q�

1,⊥S)
and (⊥S, q�

2).
Note that comparing alphabet symbols is not the only means to detect sin-

gular transitions. Indeed, in some situations, destination states q�
1 and q�

2 should
be kept separated in order for the analysis to preserve some of its precision. To
illustrate this point, let us consider the computation of the goodput of a pro-
tocol. In order to obtain a precise quantification of this metric, it is necessary
to avoid merging states encapsulating different situations of packet transmission
status (reception, loss). To do so, we assume that the abstract states domain A�

is provided with some equivalence relation ≡S that partitions the states into a
finite set of equivalence classes depending on the property of interest. Using this
information, we define our product relation as follows:

Definition 6 (Product relation). A binary relation R ⊆ S×S is a product
of A1 and A2 iff ∀(s�

1, s
�
2) ∈ R we have s�

1 ≡S s�
2 and:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q�
1Rq�

2 if ∃s�
1

a�
1→ q�

1 ∈ Δ1,∃s�
2

a�
2→ q�

2 ∈ Δ2 : a�
1 �A a�

2 
= ⊥A ∧ q�
1 ≡S q2

q�
1R⊥S if ∃s�

1

a�
1→ q�

1 ∈ Δ1,∀s�
2

a�
2→ q�

2 ∈ Δ2 : q�
1 
 ≡Sq�

2 ∨ a�
1 �A a�

2 = ⊥A

⊥SRq�
2 if ∃s�

2

a�
2→ q�

2 ∈ Δ2,∀s�
1

a�
2→ q�

1 ∈ Δ1 : q�
1 
 ≡Sq�

2 ∨ a�
1 �A a�

2 = ⊥A

(7)

with the convention that s� ≡S ⊥S,∀s� ∈ S�. The smallest product relation
containing (s�

01
, s�

02
) is denoted .

Consequently, to derive the join automaton A, we simply map product state

to s�
1 �S s�

2. The final states are the subset of these images where at least
s�
1 or s�

2 is final.

Append. We introduce also the append operator �φ ∈ A (A�,S�) × A� →
A (A�,S�) that extends an abstract automaton with a set of new leave tran-
sitions labeled with a given abstract alphabet symbol. From every final state
s�

i ∈ F , a new edge is created to a new final state, computed as the image of
s�

i through the transfer function φ ∈ S� → S� that annotates the operator �φ.
This operator can be formulated as follows:

A�φ a� � letF ′ = {φ(s�) | s� ∈ F} in (S ∪F ′, s�
0, F

′,Δ∪{s� a�

→ φ(s�) | s� ∈ F})
(8)

Widening. Finally, we present a widening operator to avoid growing an automa-
ton indefinitely during loop iterations. The original lattice automata domain
[17] proposed a widening operator, inspired from [11,29], that employs a
bisimulation-based minimization to merge similar states by comparing their
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Fig. 5. (a) Structural widening algorithm. (b) Result of (b5 + b5)�A (b5 + b5(b5 + b5)
?).

transitions at some given depth. However, it assumes that the abstract alpha-
bet domain is provided with an equivalence relation that partitions the symbols
into a finite set of equivalence classes. We believe that it is more meaningful
to perform this partitioning on the abstract states as explained earlier for the
computation of the product relation. Therefore, we employ a different approach
inspired from graph widening [18,28,30]. Basically, we compare the result of suc-
cessive loop iterations and we try to detect the increment transitions to extrap-
olate them by creating cycles. However, existing graph widening is limited to
finite alphabets and may not ensure the convergence on ascending chains, so we
propose an extension to alleviate these shortcomings.

The proposed algorithm is executed in two phases. Firstly, we perform
a structural widening to extrapolate the language recognized by the input
automata and we ignore for the moment the abstract states. We show in Fig. 5(a)
the main steps of this widening. Assume that A1 and A2 are the results of two
successive iterations. Without loss of generality, we assume that A1 �A A2.
First, we compare A1 and A2 in order to extract the increment transitions using
the following function:

Basically, an increment (s�
1, s

�
2

a�

→ q�
2) means that A1 at state s�

1 can not
recognize the symbol a� while A2 recognizes it through a move from s�

2 to q�
2.

Now, we need to extrapolate A1 in order to recover this difference, which is
done by adding the missing word suffix a�

2 while trying not to grow A1 in size.
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The basic idea is to sort states in A1 depending on how they compare to the
missing state q�

2. The comparison is performed with the following similarity index
expressing the proportion of common partial traces that a state shares with q�

2:

IA1,A2

q�
2

(q�
1) =

∣
∣
∣{a�

1 . . . a�
n ∈

↔
LA2,k (q�

2) | ∃a�′
1 . . . a�′

n ∈
↔
LA1,k (q�

1),∀i : a�
i �A a�′

i}
∣
∣
∣

where
↔
LA,k (s�) is the set of words, of length less than k, starting from s�

(reachable words) or ending at s� (co-reachable words), where k is a parameter
of the analysis. After selecting the state q�

≡ with the highest similarity index, we
add the missing transitions after widening the alphabet symbol if a transition
already exists in A. By iterating over all increment transitions, we obtain an
automata structure that does not grow indefinitely since we add new states only
if no existing one is equivalent. By assuming that the number of equivalence
classes of ≡S is finite, the widening ensures termination.

After the structural widening, we inspect the states of the resulting automa-
ton to extrapolate them if necessary. We simply compute the simulation relation
� between A2 and the widened automaton A, and we replace every state s� ∈ S
with s��S(s�

1 �S s�
2 �S . . . ) where s�

i � s�,∀i.

Example 4. We show in Fig. 5(a) the result of applying this structural widening
on the do-while loop of the previous sense() function of Fig. 3(a). The first two
iterations of the loop produce the regular expressions b5 + b5 and b5 + b5(b5 + b5)
respectively. The widening algorithm starts by detecting the leaf increment tran-
sition b5 and computes the different distances to select an adequate equivalent
state. By adding the new transition, we obtain the regular expression b5 + b5b5.
The next increment transition is labeled with the event b5 and its addition
to the widened automaton produces a loop which results in the final regular
expression b

∗
5b5. ��

3.2 Abstract Scenarios

Using the functor domain A , we instantiate an abstract scenario domain for
approximating words of random events. Two considerations are important to
take into account. First, the length of the these words may depend on some
variables of the program. It is clear that ignoring these relations may lead to
imprecise computations of the stationary distribution. Consequently, we enrich
the domain with an abstract Parikh vector [25] to count the number of occur-
rences of random event within accepted words. By using a relational numerical
domain, such as octagons [21] or polyhedra [7], we preserve some relationships
between the number of events and program variables.

The second consideration is related to the uniform distribution. As shown
previously in the concrete transfer function in Fig. 2, the number of outcomes
depends on the bounds provided as argument to the function uniform. Since
these arguments are evaluated in the running environment, we can have an
infinite number of outcomes at a given control location when considering all
possible executions.
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We perform a simplifying abstraction of the random events Ξ in order to
obtain a finite size alphabet and avoid the explosion of the uniform distribution
outcomes. Assume that we are analyzing the statement x = uniforml(e1, e2)
in abstract environment ρ�. Several abstractions are possible. In this work, we
choose to partition the outcomes into a fixed number U of abstract outcomes,
where U is a parameter of the analysis. The first U − 1 partitions represent the
individual outcomes {min(e1 + i − 1, e2) | i ∈ [1, U − 1]}, to which we associate
the abstract events {ui

l | i ∈ [1, U − 1]}. For the remaining outcomes, we merge
them into a single abstract event u✩

l .
Formally, we obtain a simple finite set of abstract events Ξ� defined as Ξ� �

{bl,bl | bl ∈ Ξ} ∪ {ui
l,u

✩
l | u−

l ∈ Ξ ∧ 1 ≤ i ≤ U − 1}. For the Parikh vector, we
associate to every abstract event ξ� ∈ Ξ� a counter variable κξ� ∈ N that will be
incremented whenever the event ξ� occurs.

Therefore, we define the domain of abstract scenarios as Ω� � A (℘(Ξ�),Σ�)
where Σ� is our previous mapping L → E� from program locations to the stock
numeric abstract domain. Let us now describe how probabilistic statements affect
an abstract scenario. For the bernoullil() statement, we create two new transi-
tions labeled with the abstract events bl and bl respectively and we update the
Parikh vector accordingly:

S�x = bernoullil()�
�
Ωω� �

letφ0(−, ρ�) = (l,S�κbl
++��

E ◦ S�x = 0��
Eρ�)

andφ1(−, ρ�) = (l,S�κbl
++��

E ◦ S�x = 1��
Eρ�)

in
(
ω� �φ0 {bl}

)
�A

(
ω� �φ1 {bl}

)

Similarly, we give the following abstract transfer function for the
uniforml(e1, e2) statement that generates U new transitions with appropriate
state updates:

S�x = uniforml(e1, e2)�
�
Ωω� �

letφ(i) = λ (−, ρ�). (l,S�κui
l
++��

E ◦ S�(x ≤ e2)�
�
E ◦ S�x = e1 + i − 1��

Eρ�)
andφ✩ = λ (−, ρ�). (l,S�κu✩

l
++��

E ◦ S�(e1 + U ≤ x ≤ e2)�
�
E ◦ S�x = ���

Eρ�)
in (

⊔

1≤i≤U−1

ω� �φ(i) {ui
l}) �A (ω� �φ✩ {u✩

l })

3.3 Abstract Markov Chains

The product D� � T � × Ω� defines the domain of Abstract Markov Chains.
It is composed of two parts. The first one is an abstraction of the markovian
traces and is defined as the instance T � � A (Ω�,Σ�). This automaton is used to
approximate the set of past observable traces reaching a given program location.
The second part is an abstraction of the current partial scenarios starting from
the last ticks statement. Since the states of an abstract scenario automaton
already embed an abstraction of the program environments, we also employ this
part to encode the current environments.
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Fig. 6. Abstract Markov chain of the motivating example.

The concretization function gives the set of concrete markovian traces and
partial scenarios encoded by an abstract Markov chain, and employs the previous
trace and word concretizations (see Definition 4) as follows:

γ(τ �, ω�) = {(τ, ρ, ω) | τ ∈ γT
A (τ �) ∧ ∃(l1, ρ

�
1)

ξ�
1→ . . .

ξ�
n−1→ (ln, ρ�

n) ∈ T(ω�) :
ρ ∈ γE(ρ�

n) ∧ ω ∈ γL
A (ξ�

1 . . . ξ�
n−1)}

Let us define now the abstract transfer function for the ticksl(e) statement
since it is the only one that modifies the structure of the abstract Markov chain.
It indicates that a new observable state has been encountered and that the
pending scenarios are no longer partial and should be used to label the new
transition, as shown by the following:

S�x = ticksl(e)��(τ �, ω�) � letφ(−, ρ�) = (l,S�ν = e��
Eρ�) in (τ � �φ ω�, ε�)

where ε� is the empty scenario word where all Parikh counters are reset to 0.
The remaining statements are passed to the underlying Ω� and E� domains and
affect only the partial scenarios part. We can show that the following soundness
condition is preserved:

(S�s� ◦ γ) (τ �, ω�) ⊆
(
γ ◦ S�s��

)
(τ �, ω�),∀s ∈ Stmt,∀(τ �, ω�) ∈ D� (9)

Example 5. The abstract markovian traces of our motivating example are
depicted in Fig. 6 as an abstract automaton corresponding to the result of the
analysis with U = 2. For the sake of clarity, we give to each abstract state a
unique identifier and we show the inferred invariants about the sojourn time
variable ν. The program locations and the remaining environment invariants are
not represented. ��

4 Stationary Distribution

In this section, we present a method for extracting safe bounds of the stationary
distribution using information embedded in an abstract Markov chain. We do
so by deriving a distribution invariant that establishes a set of parametric lin-
ear inequalities over the abstract states. Using the Fourier-Motzkin elimination
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algorithm, we can find guaranteed bounds of time proportion spent in a given
abstract state.

We begin with some preliminary definitions. Let T � = (S, s�
0, F,Δ) be

the markovian traces part of the program’s abstract Markov chain over-
approximating a set T ⊆ T Ω

Σ of concrete markovian traces. For each statement
uniforml(e1, e2), we denote by

←
uel= e1 and

→
uel= e2 the bounds expressions of the

distribution. Also, we define the functions m̂ax�e�, m̂in�e� ∈ Σ� → Exp ∪ {∞}
giving respectively the evaluation of the maximal and minimal values of an
expression e in a given abstract state, which is generally provided for free by the
underlying numerical domain. In the case of relational domains, the returned
bounds can be symbolic. For the sake of simplicity, we write m̂in��e� and
m̂ax��e� to denote respectively the minimal and maximal evaluations over the
set of all reachable abstract states. The following definition gives a means to
compute the probability of given abstract scenario.

Definition 7. Let ω� ∈ Ω� be an abstract scenario. Its probability is given by:
⎧
⎪⎨

⎪⎩

P̂r(ε�) = 1, P̂r(bl) = pl, P̂r(bl) = 1 − pl,

P̂r(ui
l) = 1

m̂in��
→
uel�−m̂ax��

←
uel�+1

, P̂r(u✩
l ) = m̂ax��

→
uel�−m̂in��

←
uel�+2−U

m̂in��
→
uel�−m̂ax��

←
uel�+1

P̂r(ω�ξ�) = P̂r(ω�)P̂r(ξ�), P̂r(ω�
1 + ω�

2) = P̂r(ω�
1) + P̂r(ω�

2)

(10)

By combining the sojourn and probability invariants embedded in the
abstract chain, we construct an abstract transition matrix that characterizes
completely the stochastic properties of the program inside one finite data struc-
ture:

Definition 8 (Abstract transition matrix). The abstract transition matrix
P̂ is a square matrix of size |S| where the entry for every abstract states σ�

i , σ
�
j ∈

S is defined as:

P̂σ�
i ,σ�

j
�

m̂ax�ν�(σ�
j)

m̂in�ν�(σ�
i )

∑

σ�
i

ω�→σ�
j∈Δ

P̂r(ω�) (11)

Example 6. Consider our previous motivating example and its abstract chain rep-
resented in Fig. 6. Let S = 〈ss, bk1, bk✩, tx, ack, ack, sl〉 be the vector of abstract
states. To obtain the matrix P̂, we iterate over all the transitions of the abstract

chain. Consider for example the case of the transition ss
u✩

5→ bk✩. First, we
apply (10) to compute the transitions probabilities P̂r(u✩

5 ) = B−1
B . Afterwards,

we extract the sojourn time bounds m̂ax�ν�(bk✩) = B and m̂in�ν�(ss) = 1 from
the embedded numeric environments. Finally, we apply (11) to obtain the matrix
cell P̂ss,bk✩

= B(B−1)
B = B − 1. By iterating the same process for all transitions we

obtain:



292 A. Ouadjaout and A. Miné

P̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 1
S

1
B 0 0 0 0 0 0

B − 1 0 0 0 0 0 0
0 1 1

2 0 0 0 0
0 0 0 1 − p 0 0 0
0 0 0 p 0 0 0
0 0 0 0 S S 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

��

The vector π̂ containing the proportion of time spent in every abstract state
is called the abstract stationary distribution. It is defined as:

π̂σ� �
∑

σ∈γΣ(σ�)

πσ,∀σ� ∈ S (12)

where π is the concrete stationary distribution described in Sect. 2.3. It is impor-
tant to note that since spurious concrete states σ ∈ γΣ(σ�) have a null concrete
stationary probability πσ, the abstract stationary probability π̂σ� represents the
exact sum of the stationary probabilities of the real concrete states abstracted
by σ�. Therefore, any lower and/or upper bounds that can be found about π̂σ�

are also valid for the concrete states abstracted by σ�. To compute such bounds,
we use P̂ with the following result:

Theorem 1 (Distribution invariant). π̂ ≤ π̂P̂.

This theorem allows us to establish a system of parametric linear inequalities
where the unknowns are the entries of the vector π̂. By adding the normalization
condition

∑
σ�∈S π̂σ� = 1, we can use this system to find safe bounds of the

property of interest. Without loss of generality, assume that the time proportion
of this property is associated to the stationary probability of some state s�. To
compute a safe range of π̂s� , we just have to perform a projection of the linear
system π̂ ≤ π̂P̂ that keeps only π̂s� and removes the other unknowns while
preserving all constraints.

To do so, we have implemented a parametric Fourier-Motzkin projection algo-
rithm [13,27] that returns parametric solutions to such problems. It eliminates
the unnecessary unknowns sequentially and builds a decision tree that gives the
system solutions depending on adequate parameters conditions. The general idea
of the algorithm is the following. Assume that we are at the step of eliminating
the unknown π̂s�

i
. We iterate over all leaves of the current decision tree {〈C, I〉},

where I is a set of linear inequalities on the remaining unknowns and C is the
condition on the parameters for obtaining the solution I. We examine the coef-
ficients {ai,j} of π̂s�

i
in I and we partition the inequalities depending on the

sign of these coefficients. When the sign can not be determined, we create new
branches within the decision tree to eliminate this ambiguity and we append
the appropriate sign condition (ai,j > 0, ai,j < 0 and ai,j = 0) to the branch
condition C. At the end, we obtain a set of new leaves where all coefficients of
π̂s�

i
have known signs. At this point, we can transform I into a new system of
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inequalities by combining every couple of inequalities having opposite coefficient
signs in a way to eliminate π̂s�

i
, and we keep the inequalities where the coefficient

is null. After eliminating all untargeted unknowns, we obtain a set of bounding
inequalities of π̂s� annotated by some parameters conditions.

Two important points should be noted. Firstly, this algorithm may not scale
well for complex problems because the size of the decision tree can grow con-
siderably in the presence of too many parametric coefficients.1 To improve the
efficiency of the algorithm, we can reduce the precision of these linear parametric
inequalities by using more abstract representations such as the domain of inter-
val linear inequalities [6]. The second point is related to the soundness of the
result. In our current implementation, we rely on an underlying symbolic envi-
ronment to determine the sign of coefficients, which prevents us from ensuring
the soundness of floating points operations during these computations. Never-
theless, we believe that we can inspire from guaranteed linear programming [24]
to strengthen the resolution process and overcome this problem.

5 Experiments

The proposed approach has been implemented in a prototype analyzer called
Marchal (MARkov CHains AnaLyzer) using the OCaml language, the CIL
frontend [23] and the Apron library [15]. Also, we implemented the parametric
Fourier-Motzkin elimination algorithm in Mathematica. For our benchmarks,
we compare Marchal to Prism on three commonly used backoff mechanisms
and we compute for each case the expected value of the throughput. The first
backoff mechanism is the motivating example shown in Fig. 1 in which a single
backoff is performed before transmitting every packet. In the second backoff
mechanism, the sender tries to enhance the transmission reliability by performing
an unbounded number of backoffs until receiving an acknowledgment from the
destination. Finally, the third case study employs a bounded number of backoffs
in which the number of successive attempts is limited by a parameter N . For
all these cases, the backoff window is chosen uniformly from [1, B] and the sleep
period after the transmission transaction is determined by a parameter S.

The benchmarks consist in two categories of experiments in order to highlight
the differences between Marchal and Prism. For the first category, we fix
the parameters to some small values and we configure Marchal to perform
a complete partitioning of the uniform distribution. In this case, both tools
are able to obtain the exact stationary distributions within a small delay, as
summarized in Table 1(a), with an advantage of Prism in many cases. In the
second category, we extend the parameters space by considering three sub-cases:
(i) the parameters have fixed large value, (ii) the parameters are not fixed but are
bounded in some intervals, and finally (iii) the parameters are unbounded. To
cover these cases in finite time, Marchal applies an approximate partitioning
1 That being said, this algorithm has shown to be more effective than built-in functions

of many off-the-shelf symbolic environments, such as Sage and Mathematica, that
did not return solutions for most benchmarks.
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Table 1. Analysis time in seconds with (a) complete and (b) approximate partitioning.

(into U = 2 and U = 4 partitions) and therefore can infer approximate and safe
bounds of the throughput. However, Prism can obtain only precise results and
therefore can not provide an answer in most cases within a timeout of 30mn.
The analysis times of this category of experiments are summarized in Table 1(b).

Let us now discuss the precision of the proposed approach. To evaluate it,
we first compute the distance between the maximal and minimal bounds of the
throughput over a large sample of parameters values, which results in a discrete
set of observations of the maximal error of the analysis. From the resulting set
of values, we compute the empirical distribution that gives the fraction of obser-
vations having a given maximal error. After that, we compute the cumulative
distribution function for a better visualization of the variation of the error for
the parameters sample.

We depict in Figs. 7, 8 and 9 the obtained results when setting U = 4. We
can notice that the analysis with the octagon and polyhedra domains returned
always the same precision level. Also, all domains give the same precision for
the case of fixed parameters values. This is justified by the fact that the choice
of the numerical domain affects the form of the sojourn time invariants used to
compute the abstract transition matrix. In the studied programs, all invariants
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Fig. 7. Error distribution for the case B = 20, S = 103 with U = 4.

Fig. 8. Error distribution for the case B ∈ [2, 20], S ∈ [102, 103] with U = 4.

Fig. 9. Error distribution for the case B ≥ 2, S ≥ 102 with U = 4.

have an octagonal form, so there is no need to infer more precise invariants. For
the particular case of fixed parameters values, these invariants are just numeric
intervals, which justifies that all domains offered the same precision level.

Additionally, we notice that the precision of the analysis for the unbounded
and bounded backoff mechanisms is lower than the single backoff case, which is
principally due to the partitioning of the uniform distribution that was too coarse
in these cases. In practice, we were able to improve the precision of the inferred
bounds by increasing the partition parameter U , but at the cost of analysis
time. It is clear that more adequate partitioning techniques are necessary to
obtain more precise results. Another source of precision loss is related to the
current construction of the abstract transition matrix. We can see in (11) that
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the entries of the matrix reflect numeric constraints of the sojourn time over
individual states only. However, some programs may constrain also the sojourn
time over a sequence of abstract states, which is the case for example of the
bounded backoff protocol that imposes a limit on the number of retransmissions.
Since a retransmission involves a succession of many states, some invarants are
ignored in the construction of P̂ which affects the precision of the analysis.

6 Related Work

The analysis of probabilistic programs has gained great interest over the last
years. Many techniques have been proposed for extracting automatically quan-
tiative properties from programs with varying precision/scalability tradeoffs.

Prism [16] is a famous model checker that has been successfully applied for
analyzing many probabilistic systems. It supports several interesting stochastic
models, but is limited to finite state systems. Probabilistic symbolic execution
[12,26] is another approach that annotates classical symbolic execution states
with information about the past random events to be used in recovering the
path probability. However, in most solutions, volume counting techniques are
required, which limit their scalability.

Monniaux [22] and Di Pierro et al. [10] were the first propositions to extend
abstract interpretation to probabilistic programs. Later, several works were pro-
posed in the same direction [2,3,19], but they lack the ability to analyze some
classical program constructs such as loops. In [8], Cousot et al. proposed a more
general framework for probabilistic abstract interpretation that introduces the
concept of law abstraction as a means to approximate probability distributions
on program states. This formalism provides general theoretic guidelines to build
sound probabilistic abstract interpretations, but does not provide practical solu-
tions for widening loop iterations.

Another family of approaches is based on a weakest pre-expectation calculus
introduced by McIver et al. [20] in order to infer quantitative invariants expressed
as expectations of some program expressions. Chakarov et al. [4] extended this
work in order to infer bounds of the probability of program assertions using the
theory of Martingales. In [5], Chakarov et al. proposed another pre-expectation
based analysis using abstract interpretation for discovering expectation invari-
ants through the abstract domain of polyhedra with an appropriate widening
operator. More recently, Barthe et al. [1] described a symbolic execution method
that uses Doob’s decomposition in order to infer Martingale expressions that
help in deriving post-loop expectation of program variables.

7 Conclusion

We have presented a novel approach for obtaining guaranteed bounds of per-
formance metrics of communication protocols. The method is based on the
framework of abstract interpretation and proposes an Abstract Markov Chains
domain for approximating the probabilistic semantics of programs. We have also
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explained how to exploit the information encapsulated within this domain in
order to infer a sound approximation of the stationary distribution of the pro-
tocol, which is the key ingredient for computing a large range of performance
metrics such as the throughput and the energy consumption. A prototype of the
analysis have been presented along with some preliminary results. Many prob-
lems are still open to enhance the proposed approach. To enhance precision, we
believe that is important to consider (i) developing more adequate partitioning
of the uniform distribution and (ii) inferring multi-state sojourn time invariants.
Finally, we have presented the analysis of a single process and we are interested
in extending it to networked concurrent programs.
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Abstract. We present porthos, the first tool that discovers porting
bugs in performance-critical code. porthos takes as input a program
and the memory models of the source architecture for which the program
has been developed and the target model to which it is ported. If the
code is not portable, porthos finds a bug in the form of an unexpected
execution — an execution that is consistent with the target but inconsis-
tent with the source memory model. Technically, porthos implements
a bounded model checking method that reduces the portability analysis
problem to satisfiability modulo theories (SMT). There are two main
problems in the reduction that we present novel and efficient solutions
for. First, the formulation of the portability problem contains a quanti-
fier alternation (consistent + inconsistent). We introduce a formula that
encodes both in a single existential query. Second, the supported mem-
ory models (e.g., Power) contain recursive definitions. We compute the
required least fixed point semantics for recursion (a problem that was left
open in [48]) efficiently in SMT. Finally we present the first experimental
analysis of portability from TSO to Power.

1 Introduction

Porting code from one architecture to another is a routine task in system devel-
opment. Given that no functionality has to be added, porting is rarely consid-
ered interesting from a programming point of view. At the same time, porting
is non-trivial as the hardware influences both the semantics and the compila-
tion of the code in subtle ways. The unfortunate combination of being routine
and yet subtle makes porting prone to mistakes. This is particularly true for
performance-critical code that interacts closely with the execution environment.

This work was carried out when Hernán Ponce-de-León and Roland Meyer were at
Aalto University.
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Such code often has data races and thus exposes the programmer to the details
of the underlying hardware. When the architecture is changed, the code may
have to be adapted to the primitives of the target hardware.

We tackle the problem of porting performance-critical code among hardware
architectures. Our contribution is the new (and to the best of our knowledge
first) tool porthos to fight porting bugs. The tool takes as input a piece of
code, a model of the source architecture for which the code has been devel-
oped, and a model of the target architecture to which the code is to be ported.
porthos automatically checks whether every behaviour of the code on the tar-
get architecture is also allowed on the source platform. This guarantees that
correctness of the program in terms of safety properties (in particular properties
like mutual exclusion) carries over to the targeted hardware, and the program
remains correct after porting.

Portability requires an analysis method that is hardware-architecture-aware
in the sense that a description of the memory models of source and target plat-
forms has to be part of the input. A language for memory models, called CAT [4],
has been developed only recently. In CAT, memory models are defined in terms
of relations between memory operations of a program. There are some base
relations (program order, reads from, coherence) that are common to all mem-
ory models. A memory model may define further so-called derived relations by
restricting and composing base relations. The memory model specifies axioms in
the form of acyclicity and irreflexivity constraints over relations. An execution
is consistent if it satisfies all axioms. Our work builds on the CAT language.

There are three problems that make portability different from most common
verification tasks.

(i) We have to deal with user-defined memory models. These models may define
derived relations as least fixed points.

(ii) The formulation of portability involves an alternation (consistent + incon-
sistent) of quantifiers.

(iii) High-level code may be compiled into different low-level code depending on
the architecture (see, e.g., Fig. 1).

Concerning the first problem, we implement in SMT the operations that CAT
defines on relations. Notably, we propose an encoding for derived relations that
are defined as least fixed points. Such least fixed points are prominently used
in the Power memory model [8] and their computation was identified as a key
problem in [48]. To quote the authors [...] the proper fixpoint construction [...] is
much more expensive than a fixed unrolling. We show that, with our encoding,
this is not the case. A naive approach would implement the Kleene iteration in
SAT by introducing copies of the variables for each iteration step, resulting in a
very large encoding. We show how to employ SAT + integer difference logic [19]
to compactly encode the Kleene iteration process. Notably, every bounded model
checking technique reasoning about complex memory models defined in CAT
(e.g., Power) will face the problem of dealing with recursive definitions and can
make use of our technique to solve it efficiently.
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The second problem is to encode the quantifier alternation underlying the
definition of portability. A porting bug is an execution that is consistent with the
target but inconsistent with the source memory model. We capture this alterna-
tion with a single existential query. Consistency is specified in terms of acyclicity
(and irreflexivity) of relations. Hence, an execution is inconsistent if a derived
relation of the (source) memory model contains a cycle (or is not irreflexive).
The naive idea would be to model cyclicity by unsatisfiability. Instead, we reduce
cyclicity to satisfiability by introducing auxiliary variables that guess the cycle.

The reader may criticise our definition of portability: one could claim that all
that matters is whether safety is preserved, even if the executions differ. To be
precise, a state-based notion of portability requires that every state computable
under the target architecture is already computable on the source platform. We
study state portability and come up with two results.

(a) Algorithmically, state portability is beyond SAT.
(b) Empirically, there is little difference between state portability and our notion.

The third problem is that the same high-level program is compiled to dif-
ferent assembly programs depending on the source and the target architec-
tures. Even the number of registers and the semantics of the synchronisation
primitives provided by those architectures usually differ. Consider the program
from Fig. 1, written in C++11 and compiled to x86 and Power. The observa-
tion is this. Even if the assembly programs differ, one can map every assem-
bly memory access to the corresponding read or write operation in the high-
level code. In the example, clearly “MOV [y],$1” and “stw r1,y” correspond to
“y.store(memory order relaxed, 1)”. This allows us to relate low-level and
high-level executions and to compare executions of both assembly programs by
checking if they map to the same high-level execution. With this observation, our
analysis can be extended by translating an input program into two correspond-
ing assembly programs and making explicit the relation among the low-level and
high-level executions. While this relation among executions is not studied in the
present paper, details of how to construct it and how to incorporate it into our
approach can be found in [38].

In summary, we make the following contributions.

1. We present the first SMT-based implementation of a core subset of CAT
which can handle recursive definitions efficiently.

2. We formulate the portability problem based on the CAT language.
3. We develop a bounded analysis for portability. Despite the apparent alterna-

tion of quantifiers, our SMT encoding is a satisfiability query of polynomial
size and optimal in the complexity sense.

4. We compare our notion of portability to a state-based notion and show that
the latter does not afford a polynomial SAT encoding.

5. We present experiments showing that (i) in a large majority of cases both
notions of portability coincide, and (ii) mutual exclusion algorithms are often
not portable, particularly we perform the first analysis from TSO to Power.
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2 Portability Analysis on an Example

Consider program IRIW in Fig. 1, written in C++11 and using the atomic
operator memory order relaxed which provides no guarantees on how memory
accesses are ordered. When porting, the program is compiled to two different
architectures. The corresponding low-level programs behave differently on x86
and on IBM’s Power. On TSO, the memory model implemented by x86, each
thread has a store buffer of pending writes. A thread can see its own writes before
they become visible to other threads (by reading them from its buffer), but once
a write hits the memory it becomes visible to all other threads simultaneously:
TSO is a multi-copy-atomic model [18]. Power on the other hand does not guar-
antee that writes become visible to all threads at the same point in time. Think
of each thread as having its own copy of the memory. With these two architec-
tures in mind, consider the execution in Fig. 1. Thread t2 reads x = 1, y = 0 and
thread t3 reads x = 0, y = 1, indicated by the solid edges rfe and rf . Since under
TSO every execution has a unique global view of all operations, no interleaving
allows both threads to read the above values of the variables. Under Power, this
is possible. Our goal is to automatically detect such differences when porting a
program from one architecture to another, here from TSO to Power.

Our tool porthos applies to various architectures, and we not only have a
language for programs but also a language for memory models. The semantics of a
program on a memory model is defined axiomatically, following two steps [8,48].

x86 Assembly

thread t0 thread t1 thread t2 thread t3
MOV [y],$1 MOV [x],$1 MOV EAX,[x] MOV EAX,[y]

MOV EAX,[y] MOV EAX,[x]

Power Assembly

thread t0 thread t1 thread t2 thread t3
li r1,1 li r1,1 lwz r1,x lwz r1,y

stw r1,y stw r1,x lwz r3,y lwz r3,x

Rx1

Ry0

Ry1

Rx0

Wx1 Ix0Wy1Iy0

po

fr

co

po
fr

co

rf rf

rferfe

thread t0 thread t1
y.store(memory order relaxed, 1) x.store(memory order relaxed, 1)

thread t2 thread t3
r1 = x.load(memory order relaxed); r1 = y.load(memory order relaxed);
r2 = y.load(memory order relaxed) r2 = x.load(memory order relaxed)

Fig. 1. Portability of program IRIW from TSO to Power.
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ConsistentTSO

1 acyclic((po ∩ sloc) ∪ rf ∪ fr ∪ co)
2 acyclic(rfe ∪ co ∪ fr ∪ (po \ (W × R)) ∪ mfence)

fr := rf −1; co
rfe := rf \ sthd

Fig. 2. TSO.

We first associate with the program (and independent of the memory model)
a set of executions which are candidates for the semantics. An execution is a
graph (Fig. 1) whose nodes (events) are program instructions and whose edges
are basic dependencies: the program order po, the reads-from relation rf (giving
the write that a load reads from), and the coherence order co (stating the order
in which writes take effect). The memory model then defines which executions
are consistent and thus form the semantics of the program on that model.

We describe memory models in the recently proposed language CAT [4].
Besides the base relations, a model may define so-called derived relations. The
consistency requirements are stated in terms of acyclicity and irreflexivity axioms
over these (base and derived) relations. The CAT formalisation of TSO is given
in Fig. 2. It forbids executions forming a cycle over rfe ∪ fr ∪ (po \ (W × R)).
The red edges in Fig. 1 yield such a cycle; the execution is not consistent with
TSO. Power further relaxes the program order (Fig. 6), the relations denoted
by the dotted lines are no longer considered for cycles and thus the execution
is consistent. Hence, IRIW has executions consistent with Power but not with
TSO and is therefore not portable.

Our contribution is a bounded analysis for portability implemented in the
porthos tool (http://github.com/hernanponcedeleon/PORTHOS). First, the
program is unrolled up to a user-specified bound. Within this bound, porthos
is guaranteed to find all portability bugs. It will neither see bugs beyond the
bound nor will it be able to prove a cyclic program portable. The unrolled
program, together with the CAT models, is transformed into an SMT formula
where satisfying assignments correspond to bugs.

A bug is an execution consistent with the target memory model MT but
inconsistent with the source MS . We express this combination of consistency
and inconsistency with only one existential quantification. The key observa-
tion is that the derived relations, which may differ in MT and MS , are fully
defined by the execution. Hence, by guessing an execution we also obtain the
derived relations (there is nothing more to guess). Checking consistency for MT

is then an acyclicity (or irreflexivity) constraint on the derived relations that
immediately yields an SMT query. Inconsistency for MS requires cyclicity. The
trick is to explicitly guess the cycle. We introduce Boolean variables for every
event and every edge that could be part of the cycle. In Fig. 1, if Rx1 is on
the cycle, indicated by the variable C(Rx1) being set, then there should be one
incoming and one outgoing edge also in the cycle. Besides the incoming edge
shown in the graph, Rx1 could read from the initial value Ix0. Since there are

http://github.com/hernanponcedeleon/PORTHOS
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two possible incoming edges but only one outgoing edge, we obtain C(Rx1) ⇒
((Crfe(Wx1, Rx1) ∨ Crf (Ix0, Rx1))∧Cpo(Rx1, Ry0)). If a relation is on the cycle,
then also both end-points should be part of the cycle and the relation should
belong to the execution: Cpo(Rx1, Ry0) ⇒ (C(Rx1) ∧ C(Ry0) ∧ po(Rx1, Ry0)).
Finally, at least one event has to be part of the cycle: C(Ix0)∨C(Wx1)∨C(Rx1)∨
C(Rx0) ∨ C(Iy0) ∨ C(Wy1) ∨ C(Ry1) ∨ C(Ry0). The execution in Fig. 1 contains
the relations marked in red and forms a cycle which violates Axiom 2 in TSO.
The execution respects the axioms of Power (Fig. 6), showing the existence of a
portability bug in IRIW from TSO to Power.

The other challenge is to capture relations that are defined recursively. The
Kleene iteration process [43] starts with the empty relation and repeatedly
adds pairs of events according to the recursive definitions. We encode this into
(quantifier-free) integer difference logic [19]. For every recursive relation r and
every pair of events (e1, e2), we introduce an integer variable Φr

e1,e2
representing

the iteration step in which the pair entered the value of r. A Kleene iteration
then corresponds to a total ordering on these integer variables. Crucially, we only
have one Boolean variable r(e1, e2) per pair rather than one per iteration step.
We illustrate the encoding on a simplified version of the preserved program order
for Power defined as ppo := ii ∪ ic (cf. Fig. 6 for the full definition). The relation
is derived from the mutually recursive relations ii := dd ∪ ic and ic := cd ∪ ii ,
where dd and cd represent data and control dependencies. Call Rx1 and Ry0
respectively e1 and e2. The encoding is

ii(e1, e2) ⇔ (dd(e1, e2) ∧ (Φii
e1,e2

> Φdd
e1,e2

)) ∨ (ic(e1, e2) ∧ (Φii
e1,e2

> Φic
e1,e2

))

ic(e1, e2) ⇔ (cd(e1, e2) ∧ (Φic
e1,e2

> Φcd
e1,e2

)) ∨ (ii(e1, e2) ∧ (Φic
e1,e2

> Φii
e1,e2

)).

The pair (e1, e2) that belongs to relation dd in step Φdd
e1,e2

of the Kleene itera-
tion can be added to relation ii at a later step Φii

e1,e2
> Φdd

e1,e2
. As ii := dd ∪ ic,

the disjunction allows us to also add the elements of ic to ii . Since dd and
cd are empty for IRIW, the relations ii and ic have to be identical. Identical
non-empty relations will not yield a solution: the integer variables cannot satisfy
(Φii

e1,e2
> Φic

e1,e2
) and (Φic

e1,e2
> Φii

e1,e2
) at the same time. Hence, the only satis-

fying assignment is the one where both ii and ic are the empty relation, which
implies that ppo is empty. This is consistent with the preserved program order
of Power for IRIW.

3 Programs and Memory Models

We introduce our language for programs and the core of the language CAT. The
presentation follows [4,48] and we refer the reader to those works for details.

Programs. Our language for shared memory concurrent programs is given
in Fig. 3. Programs consist of a finite number of threads from a while-language.
The threads operate on assembly level, which means they explicitly read from
the shared memory into registers, write from registers into memory, and support
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local computations on the registers. The language has various fence instructions
(sync, lwsync, and isync on Power and mfence on x86) that enforce ordering
and visibility constraints among instructions. We refrain from explicitly defining
the expressions and predicates used in assignments and conditionals. They will
depend on the data domain. For our analysis, we only require the domain to
admit an SMT encoding in a logic which has its satisfiability problem in NP.
For the rest of the paper we will assume that programs are acyclic: any while
statement is removed by unrolling the program to a depth specified by the user.
Since verification is generally undecidable for while-programs [39], this under-
approximation is necessary for cyclic programs.

〈prog〉 ::= program 〈thrd〉∗

〈thrd〉 ::= thread 〈tid〉 〈inst〉
〈inst〉 ::= 〈atom〉 | 〈inst〉; 〈inst〉

| while 〈pred〉 〈inst〉
| if 〈pred〉 then 〈inst〉

else 〈inst〉
〈atom〉 ::= 〈reg〉 ← 〈exp〉 | 〈reg〉 ← 〈loc〉

| 〈loc〉 := 〈reg〉 | 〈mfence〉
| 〈sync〉 | 〈lwsync〉 | 〈isync〉

Fig. 3. Programming language.

〈MCM 〉 ::= 〈assert〉 | 〈rel〉 | 〈MCM 〉 ∧ 〈MCM 〉
〈assert〉 ::= acyclic(〈r〉) | irreflexive(〈r〉)

〈r〉 ::= 〈b〉 | 〈r〉 ∪ 〈r〉 | 〈r〉 ∩ 〈r〉 | 〈r〉 \ 〈r〉
| 〈r〉−1 | 〈r〉+ | 〈r〉∗ | 〈r〉; 〈r〉

〈b〉 ::= po | rf | co | ad | dd | cd | sthd | sloc
| mfence | sync | lwsync | isync
| id(〈set〉) | 〈set〉 × 〈set〉 | 〈name〉

〈set〉 ::= E | W | R
〈rel〉 ::= 〈name〉 := 〈r〉

Fig. 4. Core of CAT [4].

Executions. The semantics of a program is given in terms of executions, partial
orders where the events represent occurrences of the instructions and the order-
ing edges represent dependencies. The definition is given in Fig. 5. An execution
consists of a set X of executed events and so-called base and induced relations
satisfying the Axioms 3 - 18 . Base relations rf and co and the set X define an
execution (they are the ones to be guessed). Induced relations can be extracted
directly from the source code of the program. The axioms in Fig. 5 are common
to all memory models and natively implemented by our tool. To state them,
let E represents memory events coming from program instructions accessing the
memory. Memory accesses are either reads or writes E := R ∪ W. By Rl and Wl

we refer respectively to the reads and writes that access location l. The events
of thread t form the set Et. Relations sthd and sloc are equivalences relating
events belonging to the same thread 3 and accessing the same location 4 . Rela-
tions po, ad , dd and cd represent program order and address/data/control depen-
dencies. Axiom 5 states that the program order po is an intra-thread relation
which 6 forms a total order when projected to events in the same thread (predi-
cate total(r,A) holds if r is a total order on the set A). Address dependencies are
either read-to-read or read-to-write 7 , data dependencies are read-to-write 8 ,
and control dependencies originate from reads 9 . Fence relations are architec-
ture specific and relate only events in program order 10 - 13 . Axiom 14 , which
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sloc, sthd ⊆ E × E same location, same thread
po, ad , dd , cd ⊆ E × E program order, address/data/control dependency
mfence ⊆ E × E fences in x86
sync, lwsync, isync ⊆ E × E fences in Power

3 equiv(sthd ,E) 4 equiv(sloc,M) 5 po ⊆ sthd 6 total(po,Et)

7 ad ⊆ (R × M) ∩ po 8 dd ⊆ (R × W) ∩ po 9 cd ⊆ (R × E) ∩ po

10 sync ⊆ po 11 lwsync ⊆ po 12 isync ⊆ po 13 mfence ⊆ po

X ⊆ E executed events rf , co ⊆ E × E reads-from, coherence order

14 path 15 rf ⊆ (W × R) ∩ sloc 16 rf ; rf −1 = id(E)

17 co ⊆ ((W × W) ∩ sloc) \ id(E) 18 total(co,Wl)

Fig. 5. Executions; adapted from [48].

we do not make explicit, requires the executed events X to form a path in the
threads’ control flow. By Axioms 15 and 16 , the reads-from relation rf gives for
each read a unique write to the same location from which the read obtains its
value. Here, r1; r2 := {(x, y) | ∃z : (x, z) ∈ r1 and (z, y) ∈ r2} is the composition
of the relations r1 and r2. We write r−1 := {(y, x) | (x, y) ∈ r} for the inverse
of relation r. Finally, id(A) is the identity relation on A. By Axioms 17 and 18 ,
the coherence relation co relates writes to the same location, and it forms a total
order for each location. We will assume the existence of an initial write event
for each location which assigns value 0 to the location. This event is first in the
coherence order.

Memory Consistency Models. We give in Fig. 4 a core subset of the CAT
language for memory consistency models (MCMs). A memory model is a con-
straint system over so-called derived relations. Derived relations are built from
the base and induced relations in an execution, hand-defined relations that refer
to the different sets of events, and named relations that we will explain in a
moment. The assertions are acyclicity and irreflexivity constraints over derived
relations. CAT also supports recursive definitions of relations. We assume a set
〈name〉 of relation names (different from the predefined relations) and require
that each name used in the memory model has associated a defining equation
〈name〉 := 〈r〉. Notably, 〈r〉 may again contain relation names, making the sys-
tem of defining equations recursive. The actual relations that are denoted by the
names are defined to be the least solution to this system of equations. We can
compute the least solution with a standard Kleene iteration [43] starting from
the empty relations and iterating until the least fixed point is reached.

In Sect. 6 we study portability to Power; we use its formalization [8] in the core
of CAT as given in Fig. 6. Power is a highly relaxed memory model that supports
program-order relaxations depending on address and data dependencies, that is
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ConsistentPower

1 acyclic((po ∩ sloc) ∪ rf ∪ fr ∪ co) 19 acyclic(hb)
20 irreflexive(fre; prop; hb∗) 21 acyclic(co ∪ prop)

dp := ad ∪ dd rdw := (po ∩ sloc) ∩ (fre; rfe) detour := (po ∩ sloc) ∩ (coe; rfe)
ii0 := dp ∪ rdw ∪ rfi ci0 := cd-isync ∪ detour
ic0 := ∅ cc0 := dp ∪ (po ∩ sloc) ∪ cd ∪ (ad; po)

ii := ii0 ∪ ci ∪ (ic; ci) ∪ (ii ; ii) ci := ci0 ∪ (ci ; ii) ∪ (cc; ci)
ic := ic0 ∪ ii ∪ cc ∪ (ic; cc) ∪ (ii ; ic) cc := cc0 ∪ ci ∪ (ci ; ic) ∪ (cc; cc)

ppo := ((R × R) ∩ ii) ∪ ((R × W) ∩ ic)

Preserved Program Order

fence := sync ∪ (lwsync \ (W × R))
Fences

hb := ppo ∪ fence ∪ rfe
Thin Air

prop-base := (fence ∪ (rfe; fence)); hb∗

prop := ((W × W) ∩ prop-base) ∪ (com∗; prop-base∗; sync; hb∗)

Propagation

Fig. 6. Power [8].

notmulti-copy atomic, and that has a complex set of fence instructions.The axioms
defining Power are uniproc 1 and the constraints 19 to 21 . The model relies on the
recursively defined relations ii , ci , ic, and cc.

4 Portability Analysis

Let consM(P ) be the set of executions of program P consistent with M. Given
a program P and two MCMs MS and MT , our goal is to find an execution X
which is consistent with the target (X ∈ consMT

(P )) but not with the source
(X �∈ consMS

(P )). In such a case P is not portable from MS to MT .

Definition 1 (Portability). Let MS, MT be two MCMs. A program P is
portable from MS to MT if consMT

(P ) ⊆ consMS
(P ).

Our method finds non-portable executions as satisfying assignments to an
SMT formula. Recall that an execution is uniquely represented by the set X

and the relations rf and co, which need to be guessed by the solver. All other
relations are derived from these guesses, the source code of the program, and the
MCMs in question. Therefore, we also have to encode the derived relations of
the two MCMs defined in the language of Fig. 4. As the last part, we encode the
assertions expressed in the language of Fig. 4 on these relations in such a way that
the guessed execution is allowed by MT (all the assertions stated for MT hold)
while the same execution is not allowed by MS (at least one of the axioms of MS

is violated). The full SMT formula is of the form φCF ∧ φDF ∧ φMT
∧ φ¬MS

.
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Here, φCF and φDF encode the control flow and data flow of the executions,
φMT

encodes the derived relations and all assertions of MT , and φ¬MS
encodes

the derived relations of MS and a violation of at least one of the assertions of the
source memory model. The control-flow and data-flow encodings are standard for
bounded model checking [17]. The rest of the section focuses on how to encode the
derived relations needed for representing both MCMs, how to encode assertions
for the target memory model and how to encode an assertion violation in the
source memory model. The encoding for assertions in the target memory model
and the encoding for most of the relations is similar to [6], the most notable
difference being that they do not discuss how to handle mutually recursively
defined relations while we do so in an efficient way.

Encoding Derived Relations. For any pair of events e1, e2 ∈ E and relation
r ⊆ E×E we use a Boolean variable r(e1, e2) representing the fact that e1

r→ e2
holds. We similarly use fresh Boolean variables to represent the derived relations,
using the encoding to force their values as follows. For the union (resp. intersec-
tion) of two relations, at least one of them (resp. both of them) should hold; set
difference requires that the first relation holds and the second one does not; for
the composition of relations we iterate over a third event and check if it belongs
to the range of the first relation and the domain of the second. Computing a
reverse relation requires reversing the events. We define the transitive closure of
r recursively where the base case tc0 holds if events are related according to r
and the recursive case uses a relation composition. This is computed with the
iterative squaring technique using the relation composition. Finally reflexive and
transitive closure checks if the events are the same or are related by r+. The
encodings are summarized below.

r1∪r2(e1, e2) ⇔ r1(e1, e2) ∨ r2(e1, e2) r1∩r2(e1, e2) ⇔ r1(e1, e2) ∧ r2(e1, e2)
r1\r2(e1, e2) ⇔ r1(e1, e2) ∧ ¬r2(e1, e2) r−1(e1, e2) ⇔ r(e2, e1)
r1;r2(e1, e2) ⇔ ∨

e3∈E

r1(e1, e3) ∧ r2(e3, e2) r∗(e1, e2) ⇔ r+(e1, e2) ∨ (e1 = e2)

r+(e1, e2) ⇔ tc�log |E|�(e1, e2),where
tc0(e1, e2) ⇔ r(e1, e2), and

tci+1(e1, e2) ⇔ r(e1, e2) ∨ tci; tci(e1, e2).

Recall that some of the relations (e.g., ii and ic of Power) can be defined
mutually recursively, and that we are using the least fixed point (smallest solu-
tion) semantics for cyclic definitions. A classical algorithm for solving such equa-
tions is the Kleene fixpoint iteration. The iteration starts from the empty rela-
tions as initial approximation and on each round computes a new approximation
until the (least) fixed point is reached. Such an iterative algorithm can be easily
encoded into SAT. The problem of such an encoding is the potentially large
number of iterations needed, and thus the resulting formula size can grow to
be very large. A more clever way to encode this is an approach that has been
already used in earlier work on encoding mutually recursive monotone equation
systems with nested least and greatest fixpoints [30]. The encoding of this paper
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uses an extension of SAT with integer difference logic (IDL), a logic that is still
NP complete. A SAT encoding is also possible but incurs an overhead in the
encoding size: if the SMT encoding is of size O(n), the SAT encoding is of size
O(n log n) [30]. We chose IDL since our experiments showed the encoding to be
the most time consuming of the tasks.

Here, the basic idea is to guess a certificate that contains the iteration number
in which a pair would be added to the relation in the Kleene iteration. For
this we use additional integer variables and enforce that they locally follow the
propagations made by the fixed point iteration algorithm. Thus, for any pair
of events e1, e2 ∈ E and relation r ⊆ E × E we introduce an integer variable
Φr

e1,e2
representing the round in which r(e1, e2) would be set by the Kleene

iteration algorithm. Using these new variables we guess the execution of the
Kleene fixed point iteration algorithm, and then locally check that every guess
that was made is also a valid propagation of the fixed point iteration algorithm.
To give an example, consider a definition where r1 := r2 ∪ r3 and r2 := r1 ∪ r4.
The encoding is as follows

r1(e1, e2) ⇔ (r2(e1, e2) ∧ (Φr1
e1,e2

> Φr2
e1,e2

)) ∨ (r3(e1, e2) ∧ (Φr1
e1,e2

> Φr3
e1,e2

))
r2(e1, e2) ⇔ (r1(e1, e2) ∧ (Φr2

e1,e2
> Φr1

e1,e2
)) ∨ (r4(e1, e2) ∧ (Φr2

e1,e2
> Φr4

e1,e2
)).

A pair (e1, e2) is added to r1 by the Kleene iteration in step Φr1
e1,e2

. It comes
from either r2 or r3. If it came from r2 then it is of course also in r2 and it was
added to r2 in an earlier iteration Φr2

e1,e2
and thus (Φr1

e1,e2
> Φr2

e1,e2
). It is similar

if it came from r3. The only satisfying assignment for the encoding is one where
both r1 and r2 are the union of r3 and r4.

Encoding Target MCM Assertions. For the target architecture we need to
encode all acyclicity and irreflexivity assertions of the memory model. For han-
dling acyclicity we again use non-Boolean variables in our SMT encoding for com-
pactness reasons. One can encode that a relation is acyclic by adding a numeri-
cal variable Ψe ∈ N for each event e in the relation we want to be acyclic. Then
acyclicity of relation r is encoded as acyclic(r) ⇔ ∧

e1,e2∈E

(r(e1, e2) ⇒ (Ψe1 < Ψe2)).

Notice that we can impose a total order with all Ψe1 < Ψe2 constraints iff there is
no cycle. Our encoding is the same as the SAT + IDL encoding in [28] where more
discussion of SAT modulo acyclicity can be found. The irreflexive constraint is
simply encoded as: irreflexive(r) ⇔ ∧

e∈E

¬r(e, e).

Encoding Source MCM Assertions. For the source architecture we have to
encode that one of the derived relations does not fulfill its assertions. On the
top level this can be encoded as a simple disjunction over all the assertions of
the source memory model, forcing at least one of the irreflexivity or acyclicity
constraints to be violated.

For the irreflexivity violation, we can reuse the same encoding as for the
target memory model simply as ¬irreflexive(r). What remains to be encoded is
cyclic(r), which requires the relation r to be cyclic. Here, we give an encoding
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that uses only Boolean variables. We add Boolean variables C(e) and Cr(e1, e2),
which guess the edges and nodes constituting the cycle. We ensure that for every
event in the cycle, there should be at least one incoming edge and at least one
outgoing edge that are also in the cycle:

cn =
∧

e1∈E

(C(e1) ⇒ (
∨

e2
r→e1

Cr(e2, e1) ∧
∨

e1
r→e2)

Cr(e1, e2))).

If an edge is guessed to be in a cycle, the edge must belong to relation r, and
both events must also be guessed to be on the cycle:

ce =
∧

e1,e2∈E

(Cr(e1, e2) ⇒ (r(e1, e2) ∧ C(e1) ∧ C(e2))).

A cycle exists, if these formulas hold and there is an event in the cycle:

cyclic(r) ⇔ (ce ∧ cn ∧
∨

e∈E

C(e)).

5 State Portability

Portability from MS to MT requires that there are no new executions in MT

that did not occur in MS . One motivation to check portability is to make sure
that safety properties of MS carry over to MT . Safety properties only depend
on the values that can be computed, not on the actual executions. Therefore, we
now study a more liberal notion of so-called state portability : MT may admit
new executions as long as they do not compute new states. Admitting more
executions means we require less synchronization (fences) to consider a ported
program correct, and thus state portability promises more efficient code. This
notion has been used in [31].

The main finding in this section is negative: a polynomial encoding of state
portability to SAT does not exist (unless the polynomial hierarchy collapses).
Phrased differently, state portability does not admit an efficient bounded analysis
(like our method for portability). Fortunately, our experiments indicate that
new executions often compute new states. This means portability is not only a
sufficient condition for state portability but, in practice, the two are equivalent.
Combined with the better algorithmics of portability, we do not see a good
motivation to move to state portability. Proofs of all stated results can be found
in [38]. We remind the reader that we restrict our input to acyclic programs
(that can be obtained from while-programs with bounded unrolling); for while-
programs, verification tasks are generally undecidable [39].

A state is a function that assigns a value to each location and register. An
execution X computes the state state(X) defined as follows: a location receives
the value of the last write event (according to co) accessing it; for a register, its
value depends on the last event in po that writes to it. The relationship between
the notions is as in Lemma 1.
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Definition 2 (State Portability). Let MS, MT be MCMs. Program P is
state portable from MS to MT if state(consMT

(P )) ⊆ state(consMS
(P )).

Lemma 1. (1) Portability implies state portability. (2) State portability does
not imply portability.

For Lemma 1.(2), consider a variant of IRIW (Fig. 1) where all written values
are 0. The program is trivially state portable from Power to TSO, but like IRIW,
not portable.

We turn to the hardness argumentation. To check state portability, every
MT -computable state seems to need a formula checking whether some
MS-consistent execution computes it. The result would be an exponential blow-up
or a quantified Boolean formula, which is not practical. But can this exponential
blow-up or quantification be avoided by some clever encoding trick? The answer is
no! Theorem 1 shows that state portability is in a higher class of the polynomial
hierarchy than portability. It is indeed harder to check than portability.

The polynomial hierarchy [42] contains complexity classes between NP and
PSPACE. Each class is represented by the problem of checking validity of a
Boolean formula with a fixed number of quantifier alternations. We need here
the classes co-NP = ΠP

1 ⊆ ΠP
2 . The tautology problem (validity of a closed

Boolean formula with a universal quantifier ∀x1 . . . xn : ψ) is a ΠP
1 -complete

problem. The higher class ΠP
2 allows for a second quantifier: validity of a formula

(∀x1 . . . xn∃y1 . . . yn : ψ) is a ΠP
2 -complete problem. Theorem 1 refers to a class

of common memory models that we define in a moment. Moreover, we assume
that the given pair of memory models MS and MT is non-trivial in the sense
that consMT

(P ) ⊆ consMS
(P ) fails for some program, and similar for state

portability.

Theorem 1. Let MS ,MT be a non-trivial pair of common MCMs. (1) Porta-
bility from MS to MT is ΠP

1 -complete. (2) State portability is ΠP
2 -complete.

By Theorem 1.(2), state portability cannot be solved efficiently. The first
part says that our portability analysis is optimal. We focus on this lower bound
to give a taste of the argumentation: given a non-trivial pair of memory models,
we know there is a program that is not portable. Crucially, we do not know
the program but give a construction that works for any program. The proof of
Theorem 1.(2) is along similar lines but more involved.

Definition 3. We call an MCM common1 if

(i) the inverse operator is only used in the definition of fr ,
(ii) the constructs sthd, sloc, and 〈set〉 × 〈set〉 are only used to restrict (in a

conjunction) other relations,
(iii) it satisfies uniproc (Axiom 1 ), and
(iv) every program is portable from this MCM to SC.

1 Notice that all memory models considered in [8] and in this paper are common ones.
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We explain the definition. When formulating an MCM, one typically for-
bids well-chosen cycles of base relations (and fr). To this end, derived relations
are introduced that capture the paths of interest, and acyclicity constraints are
imposed on the derived relations. The operators inverse and 〈set〉×〈set〉 may do
the opposite, they add relations that do not correspond to paths of base relations
(and fr). Besides stating what is common in MCMs, Properties (i) and (ii) help
us compose programs (cf. next paragraph). Uniproc is a fundamental property
without which an MCM is hard to program. Since the purpose of an MCM is to
capture SC relaxations, we can assume MCMs to be weaker than SC. Proper-
ties (iii) and (iv) guarantee that the program Pψ given below is portable between
any common MCMs.

The crucial property of common MCMs is the following. For every pair of
events e1, e2 in a derived relation, (1) there are (potentially several) sequences of
base relations (and fr) that connect e1 and e2, and (2) the derived relation only
depends on these sequences. The property ensures that if we append a program
P ′ to a location-disjoint program P , any executions composed from consistent
executions of P and P ′ is also consistent.

It remains to prove ΠP
1 -hardness of portability by constructing a program

that is portable iff a formula ψ is a tautology. We first introduce the program
Pψ that generates some assignment and checks if it satisfies the Boolean formula
ψ(x1 . . . xm) (over the variables x1 . . . xm). The program Pψ := t1 ‖ t2 consists
of the two threads t1 and t2 defined below. Note that we cannot directly write
a constant i to a location, so we first assign i to register rc,i.

thread t1 thread t2
rc,0 ← 0; rc,1 ← 1; rc,2 ← 2 rc,1 ← 1;
x1 := rc,0 . . . xm := rc,0; x1 := rc,1 . . . xm := rc,1;
r1 ← x1 . . . rm ← xm;
if ψ(r1 . . . rm) then

y := rc,2;
else y := rc,1;

We reduce checking whether ∀x1 . . . xm : ψ(x1 . . . xm) holds to portability of a
program P∀ψ. The idea for P∀ψ is this. First Pψ is run, it guesses and evaluates an
assignment for ψ. If ψ is not satisfied (y = 1), then some non-portable program
Pnp is executed. The program P∀ψ is portable iff the non-portable part is never
executed. This is the case iff ψ is satisfied by all assignments.

Let MS , MT be common and non-trivial. By non-triviality, there is a pro-
gram Pnp = t′1 ‖ · · · ‖ t′k that is not portable from MS to MT . We can assume
Pnp has no registers or locations in common with Pψ. Program P∀ψ prepends
Pψ to the first two threads of Pnp . Once y = 1, Pnp starts running. Formally,
let t1 and t2 be the threads in Pψ and let ti := skip for 3 ≤ i ≤ k. We define
P∀ψ := t′′1 ‖ · · · ‖ t′′k with t′′i := ti; r ← y; if(r = 1) then t′i.
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We show that P∀ψ is portable iff ψ is satisfied for every assignment.

6 Experiments

The encoding from Sect. 4 has been implemented in a tool called porthos.
We evaluate porthos on benchmark programs and a wide range of well-known
MCMs. For SC, TSO, PSO, RMO and Alpha (henceforth called traditional archi-
tectures) we use the formalizations from [3]; for Power the one in Fig. 6. We
divide our results into three categories: portability of mutual exclusion algo-
rithms, empirical comparison between portability and state portability, and per-
formance of the tool.

Portability of Mutual Exclusion Algorithms. Most of the tools that are
MCM-aware [8,35,45,48,49] accept only litmus tests as inputs. porthos, how-
ever, can analyze cyclic programs with control flow branching and merging by
unrolling them into acyclic form. In order to show the broad applicability of our
method, we tested portability of several mutual exclusion algorithms: Lamport’s
bakery [32], Burns’ protocol [15], Dekker’s [23], Lamport’s fast mutex [33], Peter-
son’s [37] and Szymanski’s [44]. The benchmarks also include previously known
fenced versions for TSO taken from [12] (marked as x86) and new versions we
introduced using Power fences (marked as Power). The loops were unrolled
once in all the experiments to obtain an acyclic program, and the discussion in
what follows is for the portability analysis of this acyclic program.

While these algorithms have been proven correct for SC, it is well known that
they do not guarantee mutual exclusion when ported to weaker architectures.
The effects of relaxing the program order have been widely studied; there are
techniques that even place fences automatically to guarantee portability, but

Table 1. (Left) Bounded portability analysis of mutual exclusion algorithms: portable
(✔), non-portable (✗). (Right) Portability vs. State Portability on litmus tests.
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they assume SC as the source architecture [5,12]. In Table 1 (left) we do not
only confirm that fenceless versions of the benchmarks are not portable from
SC to TSO and fenced versions of them are, we also show that those fences are
not enough to guarantee mutual exclusion when porting from TSO to Power.
We have used porthos to find portability bugs when porting from TSO to
Power and manually added fences to forbid such executions (see benchmarks
marked as Power). To the best of our knowledge these are the first results
about portability of mutual exclusion algorithms from memory models weaker
than SC to the Power architecture.

Portability vs. State Portability. We empirically compare both notions of
portability by using porthos (which implements portability) and the Herd7
tool (http://diy.inria.fr/herd) which reasons about state reachability. Herd7
systematically constructs all consistent executions of the program and exhaus-
tively enumerates all possible computable states. Such enumeration can be very
expensive for programs with lots of computable states, e.g., for programs with
a very large level of concurrency. Since Herd7 only allows to reason about one
memory model at a time, for each test we run the tool twice (once for each MCM)
and compare the set of computable states. The program is not state portable if
the target MCM generates computable states that are not computable states of
the source MCM.

Our experiments contain two test suites: TS1 contains 1000 randomly gen-
erated litmus tests in x86 assembly (to test traditional architectures) and TS2

contains 2427 litmus tests in Power assembly taken from [36]. Each test con-
tains between 2 and 4 threads and between 4 and 20 instructions. Table 1 (right)
reports the number of non-portable (w.r.t. both definitions) litmus tests (✗✗),
the number of portable and state portable litmus tests (✔✔) and the number of
litmus tests that are not portable but are still state portable (✗✔). In the last
case the new executions allowed by the target memory model do not result in
new computable states of the program. We show that in many cases both notions
of portability coincide. On traditional architectures, TS 1 contains very few non
state portable tests (0.98%). Here, a non portable program is state portable in
only 13.73% of the cases. For TS2 from traditional architectures to Power, the
number of non state portable litmus tests rises to 24.20%, while only in 5.24% of
the cases the two notions of portability do not match because the new executions
do not result in a new computable state for the program.

In order to remove some executions that do not lead to new computable
states, porthos optionally supports the use of syntactic deadness which has

22 domain(cd) ⊆ range(rf )

23 imm(co); imm(co); imm(co−1) ⊆ rf ?; (po; (rf −1)?)? imm(r) := r\(r; r+)

Fig. 7. Syntactic deadness [48].

http://diy.inria.fr/herd
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been recently proposed in [48]. Dead executions are either consistent or lead
to not computable states. Formally an execution X is dead if X �∈ consM(P )
implies that state(X) �= state(Y ) for all Y ∈ consM(P ). Instead of looking for
any execution which is not consistent for the source architecture, we want to
restrict the search to non-consistent and dead executions of MS . This is equiv-
alent to checking state portability. As shown by Wickerson et al. [48], dead exe-
cutions can be approximated with constraints 22 and 23 given in Fig. 7 where
r? is the reflexive closure of r . These constraints can be easily encoded into
SAT. Our tool has an implementation which rules out quite a few executions
not computing new states. The last two columns of Table 1 (right) show that
by restricting the search to (syntactic) dead executions, the ratio of litmus tests
the tool reports as non portable, but are actually state portable (due to syn-
tactic dead executions that are not semantically dead) is reduced to 10.73% for
traditional architectures and to 4.44% for Power.

The experiments above show that in most of the cases both notions of porta-
bility coincide, especially when using dead executions or porting to Power. To
test state portability, our method can be complemented with an extra query to
check if the final state of the counter-example execution is also reachable in the
source model by another execution. As shown in Sect. 5, the price to obtain such
a result is to go one level higher in the polynomial hierarchy which affects the
performance. However, once an execution is found that disproves portability, one
could check if the execution implies non state portability with a single existential
query.
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Fig. 8. Solving times (in secs.) for portability of mutual exclusion algorithms.

Performance. We evaluate the solving times of our tool on the mutual exclusion
benchmarks as shown in Fig. 8. Our prototype encoding implementation is done
in Python; the encoding times have a minimum of 13 seconds and a maximum of
3030 seconds. The encodings involving Power are usually more time consuming



316 H. Ponce-de-León et al.

than traditional models since Power has both transitive closures and least fixed
points in its encoding. For the mutual exclusion algorithms, the solving times are
actually much lower than the encoding times of our prototype implementation.
We expect that the encoding times could be vastly improved by a careful C/C++
implementation of the encoding.

We acknowledge that for small litmus test, the running times of Herd7
outperform our prototype implementation. However, as soon as the programs
become bigger, Herd7 does not perform as well as porthos. We believe this is
due to the use of efficient search techniques in the SMT solver. In contrast, the
number of executions Herd7 has to enumerate explicitly grows exponentially
with the test size.

7 Related Work

Semantics and verification under weak memory models have been the subject of
study at least since 2007. Initially, the behavior of x86 and TSO has been clari-
fied [13,41], then the Power architecture has been addressed [36,40], now ARM is
being tackled [26]. The study also looks beyond hardware, in particular C++11
received considerable attention [10,11]. Research in semantics goes hand in hand
with the development of verification methods. They come in two flavors: program
logics [46,47] and algorithmic approaches [1,2,6,8,9,12,14,20,21]. Notably, each
of these methods and tools is designed for a specific memory model and hence
is not directly able to handle porting tasks.

The problem of verifying consistency under weak memory models has been
extensively studied. Multiple formalisations and variations of the problem and
their complexity have been analyzed [16,24,25]. A prominent approach is testing
where an execution is (partially) given and consistency is tested for a specified
model [27,29]. In this line we showed that state portability (formulated as a
bounded analysis for cyclic programs) is Πp

2 -complete. This means there is no
hope for a polynomial encoding into SAT (unless the polynomial hierarchy col-
lapses). In contrast, our execution-based notion of portability is co-NP complete
(we look for a violation to portability), which in particular means that our porta-
bility analysis is optimal in the complexity sense. Our experiments show that in
most of the cases both notions of portability coincide.

A problem less general than portability is solved in [12] where non-portable
traces from SC to TSO are characterized. The problem is reduced to state reacha-
bility under the SC semantics in an instrumented program and a minimal num-
ber of fences is synthesized to enforce portability. One step further, one can
enforce portability not only to TSO, but also to weaker memory models [22].
The offence tool [7] does this, but can only analyze litmus test and is limited
to restoring SC. Checking the existence of critical cycles (i.e. portability bugs) on
complex programs has been tackled in [5], where such cycles are broken by auto-
matically introducing fences. The cost of different types of fences is considered
and the task is encoded as an optimization problem. The musketeer tool ana-
lyzes C programs and has shown to scale up to programs with thousands of lines
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of code, but the implementation is also restricted to the case were the source
model is SC. Fence insertion can also be used to guarantee safety properties
(rather than restoring SC behaviors). The Fender and DFence tools [31,34]
can verify real-world C code, but they are restricted to TSO, PSO, and RMO.

8 Conclusion and Outlook

We introduce the first method that tests portability between any two axiomatic
memory models defined in the CAT language. The method reduces portability
analysis to satisfiability of an SMT formula in SAT + integer difference logic.
We propose efficient solutions for two crucial tasks: reasoning about two user-
defined MCMs at the same time and encoding mutually recursively defined rela-
tions (needed for Power) into SMT. The latter technique can be re-used by any
bounded model checking technique reasoning about complex memory models
such as Power.

Our complexity analysis and experimental results both suggest that our def-
inition of portability is preferable over the state-based notion of portability. The
complexity results show that checking for state-based portability cannot be done
with a single SMT solver query, unlike the approach to portability analysis sug-
gested in this paper. We also show that our method is not restricted to litmus
tests and present an automated tool-based portability analysis of mutual exclu-
sions algorithms from several axiomatic memory models to Power.
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Abstract. In this paper, we draw upon connections between bilin-
ear programming and the process of computing (post) fixed points in
abstract interpretation. It is well-known that the data flow constraints
for numerical domains are expressed in terms of bilinear constraints.
Algorithms such as policy and strategy iteration have been proposed for
the special case of bilinear constraints that arise from template numeri-
cal domains. In particular, policy iteration improves upon a known post-
fixed point by alternating between solving for an improved post-fixed
point against finding certificates that are used to prove the new fixed
point.

In this paper, we draw upon these connections to formulate a policy
iteration scheme that changes the template on the fly in order to prove a
target reachability property of interest. We show how the change to the
template naturally fits inside a policy iteration scheme, and thus propose
a policy iteration scheme that updates the template matrices associated
with each program location. We demonstrate that the approach is effec-
tive over a set of benchmark instances, wherein starting from a simple
predefined choice of templates, the approach is able to infer appropri-
ate template directions to prove a property of interest. We also note
some key theoretical questions regarding the convergence of the policy
iteration scheme with template updates, that remain open at this time.

1 Introduction

In this paper, we study policy iterations for computing inductive invariants
of programs using template abstract domains, and present an approach that
modifies templates on the fly. In a template abstract domain, we fix the left-
hand side expressions of the invariant properties of interest and use abstract
interpretation to compute valid right-hand side constants so that the resulting
inequalities form an inductive invariant. As such, template domains such as inter-
vals [15], octagons [30,31], octahedra [11], pentagons [28], linear templates [36],
and quadratic templates [2] have been well studied as effective numerical domains
for proving safety of runtime assertions in software [5,6,18,24,29,39]. Template
domains have given rise to specialized approaches such as policy iteration [13,20]
for improving post-fixed points, and strategy iteration for computing the least
fixed point [21,22].
c© Springer International Publishing AG 2017
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Policy iteration starts from a known post-fixed point, and alternates between
finding a “policy” that certifies the current solution versus finding the best
solution under the current “policy”. This approach was originally proposed by
Costan et al. for the interval domain [13] and generalized to arbitrary templates
subsequently [20]. Extensions have been proposed for quadratic templates [2].
On the other hand, strategy iteration approach works in a bottom up fashion
starting from the bottom of the lattice and exploiting the “monotonicity” prop-
erty in the dataflow equations for the template domain [21]. Specifically, the
system of data flow equations are linearized around the current solution, and a
fixed point of the linearized system is obtained as the next solution.

Our approach here exploits a connection between policy iteration approach
and classic bilinear optimization problems. In fact, policy iteration is a variant
of the popular alternating coordinate descent that has been used widely in the
control systems and optimization communities [23]. Using this connection, we
notice that the alternation between solutions and multipliers can be extended
to update the templates on the fly, as the iteration proceeds. Significantly, the
update to the templates can be made property-directed in a simple manner. By
combining these observations, we arrive at a policy iteration approach that can
start from initial, user-defined templates and update them on the fly. However
policy iteration is not guaranteed to converge to a globally optimal solution,
which would correspond to the least fixed point solution in the abstract domain.
In practice, the technique gets stuck in a local minimum, yielding a suboptimal
solution. A result by Helton and Merino on more general biconvex programs
suggests that the alternating minimization almost never converges to a local
minimum (technically a solution satisfying the KKT conditions) [27]. Adjé et al.
demonstrate an approach that computes an optimal solution for systems which
are nonexpansive [3]. However, the general applicability of this result is unclear.
To circumvent this issue, we work in a property directed fashion, wherein the
goal of the approach is to find a suitably strong invariant that is sufficient to
prove a property of interest. Such a property can be established with a solution
that is not necessarily a least fixed point.

An implementation of the approach and evaluation over a set of small bench-
marks shows that the approach of updating the policies on the fly is an effective
solution to inferring appropriate templates in a property directed manner.

1.1 Related Work

Colón et al. were the first to discover the connection between linear invariant syn-
thesis problems and bilinear constraints through the use of Farkas lemma in lin-
ear programming [12]. These constraints were solved using specialized quantifier
elimination techniques, but restricted to small problems [40]. Sankaranarayanan
et al. explored the use of heuristic approaches to solve bilinear constraints [35].
These approaches were generalized by Cousot, as instances of Lagrangian relax-
ations [14]. Additionally, Cousot’s work uses numerical optimization tools to
prove total correctness properties of programs. His approach relies on formu-
lating the constraints as Linear or Bilinear Matrix inequalities (LMI/BMI).
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However, the use of numerical solvers requires rigorous symbolic verification
of the results. Recent experiences reveal surprising pitfalls, including erroneous
invariants obtained, even when the error tolerances are quite low [33,38]. In fact,
one of the advantages of policy iterations lies in the use of exact arithmetic LP
solvers to avoid floating point errors. Other approaches to solving the resulting
constraints have restricted the multiplier variables to finite domains, enabling
linear arithmetic solvers [26].

Template polyhedra and their generalization to support functions have
proven useful for constructing reachable sets of linear and nonlinear hybrid sys-
tems [8,19,25,34]. The problem of inferring template directions has also been
studied in this context. Many heuristics were proposed by Sankaranarayanan
et al. in their paper on linear templates, including the use of expressions found
in programs, “increasing”/“decreasing” expressions, and preconditions of already
added template expressions [36]. However, none of these are guaranteed to be
relevant to the property. Adjé et al. use the idea of Lyapunov-like functions to
effectively infer templates that are shown to be effective in proving bounds on
variables [1].

The idea of updating templates on the fly was previously proposed by Ben
Sassi et al. for analyzing the largest invariant region of a dynamical system [37].
The approach searches for a polytope whose facets are transverse to the flow,
failing which, the facet directions are adjusted and tested again. The approach
to adjusting facets is based on a local sensitivity analysis to obtain the invariant
region around an equilibrium (which facilitates basin of attraction analysis for
dynamical systems). Compared to the present work, the differences include the
treatment of multiple program locations and transitions, the use of policy iter-
ation, and a property-directed approach that seeks to prove a property rather
than find a largest invariant region.

Abraham et al. propose effective heuristics to guide the choice of directions
for constructing reachable sets of linear hybrid systems [9]. Recently, Bogomolov
et al. propose a counter-example guided approach for inferring facets of tem-
plate polyhedra for hybrid systems reachability analysis [7]. The key differences
include: (a) we are interested in computing a single polyhedron per location
whereas flowpipe construction approaches use a disjunction of polytopes, and
(b) we seek to compute time-unbounded invariants, whereas flowpipes are typi-
cally time bounded. Another interesting approach by Amato et al. uses principal
component analysis (PCA) over concrete states reached by execution traces to
design templates [4].

2 Motivating Example

Consider a simple system over two real-valued variables (x1, x2) ∈ R
2, initialized

to (x1, x2) ∈ [−1, 1] × [−1, 1]. The system executes the following action

if (x1, x2) ∈ [−8, 8]2 then
[(

x1

x2

)
:= M

(
x1

x2

)]
else

[(
x1

x2

)
:=

(
x1

x2

)]
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wherein M =
(

0.92 0.18
0.18 0.92

)
. Our goal is to prove that the set U : {(x1, x2) | x2−

x1 ≥ 2.1} is never reached by any execution of the system. In order to prove the
property using a template domain, the user specifies a template matrix [20,36]:

T :

⎛
⎜⎜⎝

1 0
−1 0
0 1
0 −1

⎞
⎟⎟⎠ ,

(∗ 1x1 + 0x2 ∗)
(∗ − 1x1 + 0x2 ∗)
(∗ 0x1 + 1x2 ∗)
(∗ 0x1 − 1x2 ∗)

wherein the rows represent the expressions x1,−x1, x2,−x2, respectively. The
template domain analysis seeks to find an invariant of the form Tx ≤ c by
discovering the unknown constants c that represent the RHS of the template.
For the example shown above, the best possible invariant is obtained as c :(
8.8 8.8 8.8 8.8

)T , yielding the range [−8.8, 8.8]× [−8.8, 8.8] for (x1, x2). In fact,
given our instance on using the template T , this is the best invariant possible
(see Fig. 1(a) to verify this).

(a) (b) (c)

Fig. 1. Invariants synthesized for the three steps of the policy iteration with property
directed template modification. The simulation traces are shown in red. Note: each
figure is drawn to a different scale. (Color figure online)

For this example, the policy iterative scheme presented in this paper is suc-
cessful in choosing a new template:

T̂ :

⎛
⎜⎜⎝

−1 1
1 −0.1957

0.1957 −1
−1 1

⎞
⎟⎟⎠ ,

(∗ − x1 + x2 ∗)
(∗ x1 − 0.1957x2 ∗)
(∗ 0.1957x1 − x2 ∗)
(∗ − x1 + x2 ∗)

Along with this policy, we compute a tighter invariant shown in Fig. 1(c),
that establishes the invariant x2 − x1 ≤ 2, and thus proving U unreachable.
We note that (a) the choice of templates is directed by the property, and
(b) unlike the original policy iteration approach proposed by Gaubert et al. [20],
this approach does not guarantee that the iterates are strictly descending. In
fact, the iterates obtained are often incomparable.
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3 Preliminaries

Let R denote the set of real numbers and R+ : R∪ ± ∞ denote the extended reals
with infinity. We first define the transition system model used throughout this
paper. Let X be a set of real-valued variables and Π[X] represent a language of
assertions over these variables, drawn from a suitable fragment of the first order
logic over the reals. For any assertion ϕ ∈ Π[X], we denote its corresponding
set of models by [[ϕ]]. For convenience, the set of variables X are arranged as a
column vector, written as x.

Definition 1 (Transition System). A (numerical) transition system is a
tuple 〈X,L, T , I, �0, Θ〉, wherein

1. X : {x1, . . . , xn} represents a set of real-valued program variables,
2. L : {�1, . . . , �m} represents a set of program locations,
3. T : {τ1, . . . , τk} represents a set of transitions, wherein each transition τi is

a tuple 〈�i,mi, ψi, gi〉, wherein
(a) �i,mi ∈ L are the pre and the post locations, respectively.
(b) ψi ∈ Π[X], an assertion over X, represents the guard of the transition.
(c) gi : Rn → R

n, an update function, represents the (simultaneous) assign-
ment: (x1, . . . , xn) := gi(x1, . . . , xn).

4. �0 is the initial location, and Θ ∈ Π[X] is an assertion over X representing
the initial valuations of the program variables.

A state of the transition system is a tuple 〈�,x〉 wherein � ∈ L is the control
location and x ∈ R

n represents a set of valuations for the program variable.
Given a transition system, its executions are a finite/infinite sequence of states:

(�0,x0)
τ1−→ (�1,x1)

τ2−→ · · · τi−→ (�i,xi) · · · ,

such that: (a) �0 is the initial location and x0 ∈ [[Θ]]; (b) �i−1, �i are the pre/post
locations (respectively) of the transition τi for all i ≥ 1; (c) xi−1 ∈ [[ψi]]
for all i ≥ 1 wherein ψi is the guard corresponding to the transition τi; and
(d) xi = gi(xi−1) for all i ≥ 1, wherein gi is the update function for τi.

Fig. 2. Example of a transition system with two variables x1, x2, two locations �1, �2
and four transitions shown as arrows.
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Example 1. Figure 2 shows an example of a transition system with X : {x1, x2},
L : {�1, �2} and T : {τ1, τ2, τ3, τ4}. The guards and updates of the transitions
are as shown in Fig. 2. The identity update x := x is not shown, however. The
initial location is �1 and the initial condition on x is (x1, x2) ∈ [0.5, 1.5]× [0.5, 1].

A state (�,x) is reachable if there is an execution that reaches the state.
For this paper, we study linear transition systems. A linear expression is

of the form e : aT x for vector a ∈ R
n. A linear inequality is of the form

aT x ≤ b and a linear assertion is a finite conjunction of linear inequalities
(aT

1 x ≤ b1 ∧ · · · ∧ aT
k x ≤ bk) conveniently written in matrix form as Ax ≤ b.

Definition 2 (Linear Transition Systems). A linear transition system
(LTS) is a transition system with the following restrictions:

1. The initial conditions and transition guards are all linear assertions over X
2. The update function for each transition is an affine function: gi(x) : Uix+vi.

Throughout this paper, we will tackle linear transition systems. An error
specification is written as 〈�, ψ〉 for a location � and a linear assertion ψ. The
goal is to prove that no reachable state for location � satisfies ψ. I.e, all reachable
states x at location � satisfy x �∈ [[ψ]]. To prove a given specification, we use an
inductive invariant.

Definition 3 (Inductive Invariant Map). An inductive invariant map η :
L → Π[X] maps each location � ∈ L to an assertion η(�) such that the following
conditions hold:

– Initial Condition: At the initial location �0, the entailment Θ |= η(�0) holds.
– Consecution Condition: For each transition τ : 〈�1, �2, ψi, gi〉, the following

consecution condition holds:

η(�1) ∧ ψi ∧ x′ = gi(x) |= η(�2)[x′] .

The condition states that starting from any state x ∈ [[η(�1)]], a single step of
the transition τ , if enabled, yields a state x′ ∈ [[η(�2)]].

Let η be an inductive assertion map and 〈�, ψ〉 be an error specification.

Theorem 1. If the conjunction η(�) ∧ ψ is unsatisfiable, then for every reach-
able state (�,x), it follows that x �∈ [[ψ]].

The problem therefore consists of finding inductive assertion maps that can
prove a given error specification.

Abstract interpretation provides a framework for systematically computing
inductive assertions using a pre-specified lattice of assertions called an abstract
domain [16,17]. The key insight lies in characterizing inductive assertion maps
as post-fixed points of a monotone operator over sets of states.

An abstract domain is defined by a lattice A : 〈A,,�,�,⊥,�〉 with inclusion
, join operator �, meet operator �, a bottom element ⊥ and top element �.
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Each element a ∈ A represents a corresponding set of states (technically, an
element of the concrete domain) through the concretization function γ(a), and
likewise, for every set of states S (element of the concrete domain), we define a
corresponding abstraction α(S).

The theory of abstract interpretation defines a set of operations including the
abstract post condition b : p̂ost(a, τ), that given a ∈ A and transition τ results
in an abstract element b ∈ A such that γ(b) over approximates the reachable
states obtained by starting from some state in γ(a) and applying the transition
τ . Other useful abstract domain operations include � for merging sets of states,
� for handling conditional branches, ⊥ for the empty set of states, � for the
universal set of states,  to test containment between abstract elements and a
special operation called widening ∇ that enforces termination. We will omit a
detailed presentation of abstract interpretation from this paper. The interested
reader may obtain these from standard references [16,17,32].

3.1 Template Domains

The rest of this paper will focus on the abstract domain of template polyhe-
dra [36]. Let S : 〈L,X, T , �0, Θ〉 be a linear transition system. Let x represent
the system variables in X as a vector and n = |X|.

A template associates each location � ∈ L with a m� × n matrix T�. We
drop the subscript � from the template matrix if the location � is clear from the
context. A m × n template T defines a lattice A(T ):

A(T ) : {c ∈ R
m
+}, wherein, γ(c) : Tx ≤ c .

In other words, each element of the template abstract domain is a possible valu-
ation c to the RHS of inequalities Tx ≤ c. Note that the entries in c can include
±∞. Naturally, we define the linear inequality e ≤ ∞ to be synonymous with
true and e ≤ −∞ is synonymous with false.

Given an assertion ϕ over x, its abstraction c : α(ϕ) is computed as a vector
whose ith entry ci is the solution to the optimization problem:

ci : max Tix s.t. ϕ(x) .

Since the abstraction is often computed for linear assertions ϕ, this is a linear
programming (LP) problem.

For each template element, its canonical representative can(c) is defined as
the instantiation d, whose ith entry di is the solution to the following LP:

di : max Tix s.t. Tx ≤ c .

Note that the solution to an unbounded problem is taken to be +∞ and an
infeasible problem to be −∞. Note that the template polyhedron defined by
Tx ≤ c is identical to the polyhedron Tx ≤ can(c). A template element c is
canonical in A(T ) if and only c = can(c).
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The inclusion operator  in A(T ) is defined as

c1  c2 iff can(c1) ≤ can(c2) ,

wherein ≤ operation over vectors compares elements entrywise. The join operator
c1�c2 is simply the entrywise maximum max(c1, c2). Likewise, the meet operator
is the canonical entry wise minimum.

Let T� be the template associated with location � and Tm with location m.
The abstract post with respect to a transition 〈�,m, ϕ : Ax ≤ b, g : Ux + v〉 is an
operator p̂ost : A(T�) × T → A(Tm). Given c ∈ A(T�), the result d : p̂ost(c, τ)
is a vector wherein di is given as the solution to the following LP:

di :

⎛
⎜⎜⎝

max Tm,ix
s.t. T�y ≤ c

Ay ≤ b
x = Uy + v

⎞
⎟⎟⎠

Widening and narrowing operators for the template domain are defined by
extensions of the standard interval widening operator [36].

The template domain is a convenient numerical abstract domain that uses
linear programming solvers as a primitive for implementing the domain opera-
tions. However, a common critique of the template approach is that it requires
users to specify the template T . In practice, users default to popular choices such
as intervals, octagons and pentagons which avoid repeated calls to LP solvers
by using special properties of the constraints in these templates. We proceed by
assuming that an initial template has been specified for each location using one
of the schemes outlined above. Our approach can change this template as part
of the solution scheme.

4 Bilinear Constraints and Policy Iteration

In this section, we consider the data flow equations for template abstract domain,
connecting them to a class of nonconvex optimization problems called bilinear
optimization problem (BOP). We present the policy iteration approach, proposed
by Gaubert et al. as a technique for solving such bilinear inequalities that alter-
nates between solving linear programs [20]. Once again we fix a linear transition
system S and assume for simplicity that each location � is labeled with the same
m × n matrix T . The approach can be easily extended to the case where the
template matrices differ between locations.

We will make use of Farkas’ lemma, a standard result in linear programming.
Let ϕ : Ax ≤ b be a linear assertion with m × n matrix A and m × 1 vector b,
ψ : cT x ≤ d be a given linear inequality.

Theorem 2 (Farkas Lemma). If ϕ is satisfiable, then ϕ |= ψ iff there exists
nonnegative multipliers λ ∈ R

m such that

AT λ = c ∧ bT λ ≤ d ∧ λ ≥ 0 .
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Furthermore, ϕ is unsatisfiable if and only if there exists multipliers λ ∈ R
m

such that
AT λ = 0 ∧ bT λ ≤ −1 ∧ λ ≥ 0 .

The constraints can be seen as encoding the entailment ϕ |= 0T x ≤ −1.

Note that Farkas lemma handles the entailment of a single linear inequality.
However, for a polyhedron Cx ≤ d, we may encode the entailment Ax ≤ b |=
Cx ≤ d as a series of single inequality entailments: Ax ≤ b |= Cjx ≤ dj for
each row j of C,d. The resulting constraints can be collectively written as:

AT Λ = C, ΛT b ≤ d, Λ ≥ 0 .

All equalities and inequalities between matrices are interpreted entrywise. Here
Λ is a matrix with as many rows as A and as many columns as the number
of rows in C. The jth column of Λ contains the multipliers corresponding to
the inequality Cjx ≤ dj . This notation will be used throughout the rest of the
paper.

Using Farkas’ lemma, we may now derive a system of constraints correspond-
ing to the data flow equations for the template domain. Let T be a m×n template
matrix. We associate each location � with an unknown vector c(�) ∈ A(T ) such
that the assertion map η(�) : Tx ≤ c(�) is inductive.

We wish to encode the constraints for initiation:

Θ |= Tx ≤ c(�0) , (1)

and for each transition τ : 〈�,m, ϕ, g〉, we wish to model consecution:

Tx ≤ c(�) ∧ ϕ ∧ x′ = g(x) |= Tx′ ≤ c(m) . (2)

Initiation: Let Θ : A0x ≤ b0 be the assertion for the initial condition. Using
Farkas’ lemma for the entailment in Eq. (1), we obtain the condition:

AT
0 Λ0 = T ∧ ΛT

0 b0 ≤ c(�0) ∧ Λ0 ≥ 0 . (3)

Here Λ0 is a k × m matrix wherein k is the number of rows in A0 and m is the
number of rows in T . We write Λ0 ≥ 0 to indicate that all entries in Λ0 are
non-negative.
Consecution: Let τ be a transition with guard Aτx ≤ bτ and update g(x) :
Uτx + vτ . The consecution condition in Eq. (2) can be rewritten through sub-
stitution of x′ and arranged as follows:

Λτ → Tx ≤ c(�)
Γτ → Aτx ≤ bτ

|= TUτx ≤ c(m) − Tvτ
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TemplateVars : c(�), � ∈ L
BilinearMults : Λτ , τ ∈ T
LinearMults : Λ0, Γτ , τ ∈ T

Constraints : AT
0 Λ0 = T�0 (* Initiation *)

ΛT
0 b0 ≤ c(�0)

T T
l Λτ + AT

τ Γτ = TmUτ (* Consecution τ : 〈l, m, ϕ, g〉 *)
ΛT

τ c(�) + Γ T
τ bτ ≤ c(m) − Tmvτ

Λ0, Λτ , Γτ ≥ 0 (* Nonnegative multipliers *)

Fig. 3. Bilinear system of constraints at a glance. The constraints are generalized to
allow for possibly different templates T� at each location.

The notation above shows the constraints and the associated dual multipliers
with each block of constraints. Furthermore, we have substituted x′ = Uτx+vτ .
This is dualized using Farkas’ lemma to yield the following constraints:

TT Λτ + AT
τ Γτ = TUτ

ΛT
τ c(�) + ΓT

τ bτ ≤ c(m) − Tvτ

Λτ , Γτ ≥ 0
(4)

Note that Eq. (3) for the initiation yields a system of linear constraints involv-
ing c(�0) and unknown multipliers in Λ0. However, the consecution constraints
in Eq. (4) for each transition τ involve the product ΛT

τ c(�) both of which are
unknown. This makes the constraints for consecution fall into a special class
called bilinear constraints. I.e., for a fixed Λτ these constraints are linear in the
remaining variables c(�), Γτ . Similarly, for fixed values of c(�), these constraints
are linear in the variables Λτ , Γτ . Figure 3 summarizes the constraints obtained
at a glance.
Connection with Min-policies: The original “min-policy” approach of Costan
et al. [13] considers data flow equations of the form:

c ≥ min(aT
i,1c, . . . ,aT

i,kc) , i = 1, . . . ,M, k = 1, . . . , N . (5)

We will demonstrate that the equations shown in Fig. 3 can be equivalently
expressed in this form. For simplicity, we consider the case for a single location
� with template T and unknown template RHS variables c. All transitions are
assumed to be self-loops around this location. From Eq. (4), a given solution c
satisfies the consecution for transition τ iff there exist Λτ , Γτ such that

c ≥ ΛT
τ c + ΓT

τ bτ + Tvτ (6)
TT Λτ + AT

τ Γτ = TUτ (7)
Λτ , Γτ ≥ 0 (8)

Let us define a polyhedron P (Λτ , Γτ ) defined by collecting the constraints in
lines (7) and (8) above. We may rewrite the constraints equivalently as:

c ≥ min
(Λτ ,Γτ )∈P

(
ΛT

τ c + ΓT
τ bτ + Tvτ

)
(9)
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Note that P is a polyhedron. Let us assume that it is defined by N vertices:

(Λ1, Γ1) , . . . , (ΛN , ΓN ) .

The min in Eq. (9) can be equivalently written as a minimization over the finite
set of vertices of P :

c ≥
N

min
j=1

(
ΛT

j c + ΓT
j bτ + Tvτ

)
(10)

We note that this form arises from the specific structure of the data flow equa-
tions for the template abstract domain. In particular, not all bilinear constraints
satisfy this property.

4.1 Policy Iteration

We now describe policy iteration as an alternation between solving for unknown
c(�) for each � ∈ L and solving for the unknown bilinear multipliers Λτ . Policy
iteration starts from a known sound solution c0(�) and successively improves
the solution to obtain better solutions (smaller in the lattice) until no further
improvements can be obtained. The initial solution may be obtained by using
Kleene iteration with widening. For simplicity, we will assume that c0(�) �= ⊥,
for each � ∈ L. If this were the case, then the location � is unreachable, and can
be removed from the system.

The overall scheme alternates between (I) solving for the unknown multipliers
Λτ , Γτ , Λ0 given a fixed value of c, and (II) solving for the unknown template
RHS c(�) given Λτ , Γτ and Λ0. Since Γτ and Λ0 are not involved in any bilinear
term, we do not fix them to specific values when solving for c(�).
Solving for Multipliers: Given the values for the current solution c(i)(�) at
each location, we simply plug in these values and solve the system in Fig. 3.

Lemma 1. The constraints shown in Fig. 3 become linear if we replace c(�) at
each location by fixed (constant) values.

The remaining constraints are linear over Λ0, Λτ and Γτ for each transition τ ,
and can be thus solved using a LP solver. The following lemma guarantees that
the constraints will always yield a feasible solution provided the values c(i) are
a valid post-fixed point.

Lemma 2. If the solution c(i)(�) for each � ∈ L is a post-fixed point, the con-
straints in the Fig. 3 are feasible for the remaining multipliers, when c(�) is
replaced by c(i)(�).

Let Λ
(i)
τ be the resulting values of the bilinear multipliers returned by the LP

solver when we replace c : c(i). These are also called policies [20].
Solving for Template RHS: Next, let us assume that the variables Λτ for
each transition are set to constants Λ

(i)
τ .
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Lemma 3. If we set Λτ for each τ to constants Λ
(i)
τ for the constraints in Fig. 3,

the resulting problem is linear over c(�) for each � ∈ L and the linear multipliers
Γτ , Λ0.

Once we set Λτ to specific values, the resulting system is once again a linear
program. Let us call this problem Ci.

Lemma 4. The LP Ci is always feasible.

To see this, we note that c(�) = c(i) is already a solution to this LP due to how
the values of Λ

(i)
τ were obtained in the first place. We call the resulting values

c(i+1)(�).
The overall policy iteration scheme alternates between solving for c(�) and

solving for Λτ variables. Gaubert et al. show that the number of policies needed
is finite (but large), and thus the process is guaranteed to yield a stable solution
such that c(i+1)(�) = c(i)(�).

5 Policies with Template Update

In this section, we extend policy iteration process to achieve two goals simul-
taneously: (a) be goal-directed towards a specific property and (b) allow the
template T at each location to be updated.

Let (�, ψ) be a error specification at location � that we wish to prove unreach-
able. Our goal is to compute an inductive assertion map η such that at location �,
the conjunction η(�) ∧ψ is unsatisfiable. Once again, we will first assume for the
sake of exposition that the same template matrix T is used at each location.

Using Farkas’ lemma, the invariant Tx ≤ c(�) proves the unreachability of
the error specification ψ : Px ≤ q iff there exist multipliers λs,γs ≥ 0 s.t.

T ᵀλs + PT γs = 0, c(�)T λs + qT γs ≤ −1︸ ︷︷ ︸
I

, λs,γs ≥ 0 . (11)

However, if the invariant fails to prove the property, we will be unable to
find suitable multipliers λs,γs ≥ 0. Since, our procedure will involve interme-
diate solutions that do not satisfy the property, we will consider the following
optimization-based formulation by moving the inequality labeled “I” in (11) to
the objective, as follows:

min c(�)T λs + qT γs

s.t. TT λs + PT γs = 0
1T λs = 1 (* normalization constraint *)
λs,γs ≥ 0

(12)

Note that we have added a normalization constraint requiring that the sum of
the multipliers λs equal 1. Without such a constraint, the problem always has a
trivial solution 0 by setting all the multipliers (λs,γs) to 0, which is undesirable
for the policy iteration scheme to be discussed subsequently.
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Lemma 5. Suppose Ti = −Pj for row i of matrix T , row j of matrix P , and
c(�)i < ∞ then the optimization problem in Eq. (12) is feasible.

Furthermore, its objective value is strictly negative iff Tx ≤ c(�) proves the
specification (�, ψ : Px ≤ q).

Proof. Given that Ti = −Pj , we then choose λs(i) = 1 and the rest of entries
to zero. Likewise, γs(j) = 1 and the remaining entries of γs are set to 0. We
can now verify that this will satisfy the constraints, thus providing a feasible
solution.

Note that if we find a solution (λs,γs) such that the objective value is ε < 0,
then (λs

|ε| ,
γs

|ε| ) satisfy the constraints in Eq. (11). The rest follows from Farkas’
lemma.

Thus, we will use the optimization formulation as an objective function that
measures how “far away” the current solution at � is from proving the property
of interest.

5.1 Updating Templates

Next, we allow the template T to change at each step to a new template T + Δ,
wherein Δ is the unknown change in the template. In doing so, we update the
constraints to introduce an unknown change Δ. However, allowing arbitrary
changes to the template will not work since choosing Δ = −T immediately makes
the template trivial, and not useful for our purposes. Therefore, we specify upper
and lower limits to the change in the template. These limits can be set using
different strategies that we will explore in the experimental evaluation section.
Let L be the lower limit and U be the upper limit so that L ≤ Δ ≤ U . As a
technical condition, we require 0 ∈ [L,U ], i.e., the option to keep T unchanged
is allowed.

Vars : c(�), � ∈ L (* Template RHS *)
Δ�, � ∈ L (* Template update *)
Λτ , τ ∈ T (* Bilinear mult.*)
λs (* Error Spec.*)
Λ0, Γτ , τ ∈ T (* Linear Mults. *)
γs (* Error Spec.*)

min : λs
T c(�) + γT

s q
s.t. AT

0 Λ0 = T�0 + Δ�0 (* Initiation *)
ΛT

0 b0 ≤ c(�0)
(Tl + Δl)

T Λτ + AT
τ Γτ = (Tm + Δm)Uτ (* Consecution τ : 〈l, m, ϕ, g〉 *)

Λτ
T c(�) + Γ T

τ bτ ≤ c(m) − (Tm + Δm)vτ

(T� + Δ�)
T λs + P T γs = 0 (* Error spec. ψ : Px ≤ q *)

Λ0, Λτ , λs, Γτ , γs ≥ 0 (* Nonnegative multipliers *)
Ll ≤ Δl ≤ Ul (* Limits on template change *)

Fig. 4. Bilinear system of constraints with objective function and template update
variables Δl.
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Figure 4 shows the bilinear optimization problem

B ((c(�),Δ�), (Λτ ,λs)) ,

obtained when the change in the template variables is also considered. We note
that the variables involved in the bilinear terms are once again separated into
two sets, represented in different colors for convenience.

5.2 Template Updates and Policy Iteration

We now update the policy iteration process to consider the change in templates,
as shown in Fig. 4. Let c(0) be an initial value such that Tx ≤ c(0)(�) is inductive.
The initial update Δ

(0)
� = 0 for each location �.

Multiplier Update: At each iteration i, the multiplier update uses c(i),Δ(i)

to obtain values of Λ
(i)
τ ,λ

(i)
s . Formally, we consider the problem

Mi : B
(
(c(i)(�),Δ(i)

� ), (Λτ ,λs)
)

Lemma 6. 1. Mi is a linear program over unknown multipliers Λτ ,λs, Γτ ,
γs, Λ0.

2. It is feasible iff the map η(i) formed by the assertions (T� + Δ
(i)
� )x ≤ c(i)(�)

for � ∈ L, is an inductive assertion map.
3. The value of the objective function cannot increase, i.e., for i > 1,

c(i)(�)T λ(i)
s + qT γ(i)

s ≤ c(i)(�)T λ(i−1)
s + qT γ(i−1)

s .

4. The value of the objective is negative iff η(i) proves the specification (�, ψ).

The result of multiplier update yields values for the variables (Λτ ,λs) :
(Λ(i)

τ ,λ
(i)
s ).

Template Update: Given the current values (Λ(i)
τ ,λ

(i)
s ) for the multipliers,

we derive new values c(i+1)(�),Δ(i+1)
� for the template variables by solving the

problem
Ci+1 : B

(
(c(�),Δ�), (Λ(i)

τ ,λ(i)
s )

)
.

Lemma 7. 1. Ci+1 is a linear program over the unknown template variables
c(�),Δ� and unknown linear multipliers Γτ ,γs, Λ0.

2. It is always feasible provided 0 ∈ [L�, U�] at each location.
3. The assertion map η(i+1) formed by the solution

(T� + Δ
(i+1)
� )x ≤ c(i+1)(�) for � ∈ L ,

is inductive.
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4. The value of the objective function cannot increase, i.e., for i ≥ 0,

c(i+1)(�)T λ(i)
s + qT γ(i+1)

s ≤ c(i)(�)T λ(i)
s + qT γ(i)

s .

5. The value of the objective function c(i+1)(�)T λ
(i)
s + qT γ

(i+1)
s is negative iff

the η(i+1) proves the property.

The overall scheme alternates between updating the multipliers and the tem-
plate variables, until no more changes can occur. We also observe that starting
from a valid inductive invariant, the solutions obtained during the policy itera-
tion continue to remain inductive or post-fixed points. However, they are post-
fixed points over the lattice A(T� + Δ

(i)
� , � ∈ L), which is different from the

original lattice. As observed already in the motivating example (Sect. 2), these
invariants can be mutually incomparable. However, we show that at each step,
the value of the objective function measuring progress towards proving the spec-
ification cannot increase.

5.3 Discussion

We now focus on issues such as convergence and the complexity of each step.
Convergence: In general, the known results about the convergence of alternat-
ing minimization schemes for bilinear optimization problems indicate that the
process seldom converges to a global optimal value [27]. Often, these iterations
get “stuck” in a local saddle point, from which no further progress is possible.
Nevertheless, our goal here is not to converge to a global optimum but to a good
enough solution whose objective function value is strictly negative, thus proving
the property of interest.

By allowing template updates to the process, it is no longer clear that the
process will necessarily converge (even if it converges to a saddle point) in finitely
many steps. It is entirely possible that the value of the objective function remains
unchanged but the process produces a new template T� + Δ

(i)
� at each step.

Depending on how the limits to the template change L�, U� are specified, this
process may produce a fresh new template at each step.

Nevertheless, we note that the lack of convergence does not pose a serious
hurdle to an application of template update to policy iteration. It is possible
to iterate while each step provides at least ε > 0 decrease in the value of the
objective function, and stop otherwise.
Complexity: At each step, we solve a linear programming problem. For a tran-
sition system with n variables, |L| locations, |T | transitions, k template rows at
each step, the size of each LP in terms of number of variables + constraints is
O

(
|L|kn + |T |k2

)
. Although this is polynomial, the process can be prohibitively

expensive for large programs. In our future work, we wish to exploit the block
structure of these constraints in order to allow us to solve the LPs using standard
approaches such as Benders or Danzig-Wolfe decomposition techniques [10].
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Collecting Invariants: Finally, we note that each step yields an invariant map
η(i) that is not necessarily comparable to the invariant obtained in the next step
η(i+1). However, we note that the finite conjunction

η(0) ∧ · · · ∧ η(N) ,

over all the iterations of this process can be a stronger invariant than each of
them. This is already demonstrated by the motivating example in Sect. 2.

6 Experimental Evaluation

We present a preliminary experimental evaluation of the ideas presented thus
far using a prototype implementation.
Prototype Implementation: A prototype implementation was developed in
Python, using the exact arithmetic LP solver QSOptEx. The QSOptEx solver
provides a fast and convenient interface to an optimized Simplex implementation
in exact arithmetic. Our implementation allows the specification of a transition
system and supports a few additional features on top of those presented in
the paper including location invariants. We also support the option to specify
different templates at various program locations. During the template update,
our approach considers independent updates to the template at each location.
Specifying Template Changes: We consider a simple approach to specifying
the limits L�, U� to the change in template at each location �. First, the option
for Δ� = 0 must be allowed, secondly, Δ� = −T must be disallowed. For each
T�(i, j) = 0, we specify corresponding limits L�(i, j) = −z and U�(i, j) = z for
a fixed constant z > 0 (taken as 1000 in our experiments). For T�(i, j) �= 0, we
allow Δ to range between 1

2T�(i, j) and 2T�(i, j) in our experiments.
Benchmark Examples: We consider a small set of benchmark examples that
are illustrative of applications that we encounter in the verification of discrete-
time affine hybrid systems. Table 1 briefly describes each benchmark example.
Experimental Comparison: Table 2 shows the comparison between abstract
interpretation using Kleene iteration, policy iteration without template update

Table 1. Description of the benchmarks used and the sizes in terms of (# variables,
# locations, # transitions)

ID Size Remark

1 (4, 2, 2) Switched linear system with 4 state variables

2 (2, 2, 4) Example in Fig. 2

3 (2, 1, 1) Linear System with 1 location and transition

4 (2, 1, 1) Motivating example from Sect. 2

5 (3, 1, 4) Adjé et al. [1]

6 (2, 35, 169) Grid-based piecewise linearization of Van Der Pol oscillator
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Table 2. Experimental results including a comparison between policy iteration without
template update and with template updated (shaded rows). All experiments were run
on a Macbook Air laptop with 1.8 GHz Intel processor, 8 GB RAM running OSX10.12.
All timings are in seconds. Legend: T. Upd: Template updated at each iteration?
Proved?: whether the property was proved, if not, the objective value is reported,
|BOP|: size of the bilinear problem (# bilinear template variables, # bilinear mult.
variables, # linear mult. variables), # Iter: # policy iterations - A (*) next to this
number indicates that the iteration was stopped due to 5 consecutive steps with same
objective value.

id Initial template Kleene Policy iteration

Type, |T | Time Proved? T. Upd. |BOP| Time # Iter Proved

1 Pentagon, 26 0.37 N (0.2) N (52, 1176, 1249) 0.5 2 N(0.2)

Y (240, 1176, 1249) 18.2 5(*) N(0.2)

2 Octagon, 8 0.15 N(0.2) N (16, 264, 353) 0.1 2 N(0.2)

Y (48, 264, 353) 0.4 6 Y

3 Octagon, 8 0.04 N(0.5) N (8, 72, 161) 0.02 1 N(0.5)

Y (24, 72, 161) 0.05 2 Y

4 Interval, 4 0.02 N(15.5) N (4, 20, 33) 0.01 1 N(15.5)

Y (12, 20, 33) 0.02 2 Y

5 Pentagon, 10 1.5 N(2.83) N (10, 410, 681) 0.3 2 Y

Y (40, 410, 681) 0.3 2 Y

6 Interval, 4 2.5 N(0.75) N (140, 836, 2033) 1.5 5(*) N(0.75)

Y (168, 836, 2033) 2.9 5(*) N(0.75)

and with template update for the 6 benchmarks. The table reports the objective
value of the initial solution obtained after the Kleene iteration using widen-
ing/narrowing terminates. A non-negative value of the objective function indi-
cates the failure to prove the property. Overall, we see that policy iteration with
template update is effective in these benchmarks in proving properties in 4 out
of the 6 cases, whereas without template update we prove the property in just
1 out of 6. It is interesting that whenever the approaches manage to reduce the
objective value of the initial solution, they end up proving the property. Fur-
ther experiments are needed to clarify whether this represents an artifact of the
benchmarks chosen.

Figure 5 shows the sequence of iterates at the two locations for the transition
system shown in Fig. 2 corresponding to benchmark number 2. The goal is to
establish the unreachability of x2 ≥ 0.8 at location �2. The final invariant for �2
is shown in green, proving the specification.

Thus, we provide preliminary evidence that the bilinear approach is effective in
cases where Kleene or policy iteration fail. At the same time, we notice that the size
of the bilinear problem, though polynomial in the original transition system and
template size, is often large with thousands of variables. However, the problems
are sparse with each constraint involving just a tiny fraction of these variables.
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Fig. 5. Sequence of iterates for benchmark id 2 culminating in the final invariants
shown shaded in blue and green. The property x2 ≥ 0.8 is shown unreachable at the
green location by the final iterate. (Color figure online)

This points out the need for simplification techniques and approaches to solving
bilinear problems that exploit this sparsity to make the approach more efficient.

7 Conclusions

To conclude, we exploit the connection between template domains and bilinear
constraints. In doing so, we show that policy iteration allows the template direc-
tions to be updated on the fly in a property directed fashion. We present prelim-
inary evidence that such an approach can be effective, though many challenges
remain. Our future work will focus on techniques to make progress when the
policy iteration is stuck in a local saddle point, without sacrificing the sound-
ness of the approach. In this context, we are investigating strategy iteration
approaches that can incorporate the template update process [22]. Our previous
work on invariant set computation for polynomial differential equations men-
tioned earlier, already contains clues to such an approach [37]. As mentioned
earlier, exploiting the sparsity of constraints to provide a more scalable solver is
also another fruitful future direction.
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D., Rival, X.: A static analyzer for large safety-critical software. In: Programming
Language Design and Implementation, pp. 196–207. ACM Press (2003)

6. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
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Abstract. This paper addresses the problem of abstracting a set of

affine transformers −→v ′ = −→v ·C +
−→
d , where −→v and −→v ′ represent the pre-

state and post-state, respectively. We introduce a framework to harness
any base abstract domain B in an abstract domain of affine transfor-
mations. Abstract domains are usually used to define constraints on the
variables of a program. In this paper, however, abstract domain B is re-

purposed to constrain the elements of C and
−→
d —thereby defining a set of

affine transformers on program states. This framework facilitates intra-
and interprocedural analyses to obtain function and loop summaries, as
well as to prove program assertions.

1 Introduction

Most critical applications, such as airplane and rocket controllers, need cor-
rectness guarantees. Usually these correctness guarantees can be described as
safety properties in the form of assertions. Verifying an assertion amounts to
showing that the assertion holds true for all possible runs of an application.
Proving an assertion is, in general, an undecidable problem. Nevertheless, there
exist static-analysis techniques that are able to verify automatically some kinds
of program assertions. One such technique is abstract interpretation [3], which
soundly abstracts the concrete executions of the program to elements in an
abstract domain, and checks the correctness guarantees using the abstraction.

In this paper, we provide analysis techniques to abstract the behavior of the
program as a set of affine transformations over bit-vectors. An affine transformer
is a relation on states, defined by −→v ′ = −→v · C +

−→
d , where −→v ′ and −→v are row

vectors that represent the post-transformation state and the pre-transformation
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state, respectively. C is the linear component of the transformation and
−→
d is

a constant vector. For example, [ x′ y′ ] = [ x y ]
[
1 0
2 0

]
+ [ 10 0 ] denotes the affine

transformation (x′ = x + 2y + 10 ∧ y′ = 0) over variables {x, y}. We denote an
affine transformation by C :

−→
d . The paper is based on the following observation:

Observation 1. Abstract domains are usually used to define constraints on the
variables of a program. However, they can be re-purposed to constrain the ele-
ments of C :

−→
d —thereby defining a set of affine transformers on program states.

The Need for Abstraction over Affine Transformers. Abstractions of
affine transformers can be used to obtain affine-relation invariants at each pro-
gram point in the program [12]. An affine relation is a linear-equality constraint

between numeric-valued variables of the form
n∑

i=1

aivi + b = 0. For a given set of

variables {vi}, affine-relation analysis (ARA) identifies affine relations that are
invariants of a program. The results of ARA can be used to determine a more
precise abstract value for a variable via semantic reduction [4], or detect the
relationship between program variables and loop-counter variables.

Furthermore, when the abstract-domain elements are abstractions of affine
transformers, abstract interpretation can be used to provide useful function sum-
maries or loop summaries [2,18]. In principle, summaries can be computed offline
for large libraries of code so that client static analyses can use them to provide
verification results more efficiently.

Previous work [6] compared two abstract domains for affine-relation analysis
over bitvectors: (i) an affine-closed abstraction of relations over program vari-
ables (AG), and (ii) an affine-closed abstraction of affine transformers over pro-
gram variables (MOS). Müller-Olm and Seidl [13] introduced the MOS domain,
whose elements are the affine-closed sets of affine transformers. An MOS ele-
ment can be represented by a set of square matrices. Each matrix T is an affine
transformer of the form T =

[
1

−→
d

0 C

]
, which represents the state transformation

−→v ′ := −→v · C +
−→
d , or, equivalently, [1|−→v ′] := [1|−→v ] T . In [6], the authors observe

that the MOS domain can encode two-vocabulary relations that are not affine-
closed even though the affine transformers themselves are affine closed. (See
Sect. 2.5 for an example.) Thus, moving the abstraction from affine relations
over program variables to affine relations over affine transformations possibly
offers some advantages because it allows some non-affine-closed sets to be rep-
resentable.

While the MOS domain is useful for finding affine-relation invariants in a
program, the join operation used at confluence points can lose precision in many
cases, leading to imprecise function summaries. Furthermore, the analysis does
not scale well as the number of variables in the vocabulary increases. In other
words, it has one baked-in performance-versus-precision aspect.
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Problem Statement. Our goal is to generalize the ideas used in the MOS
domain—in particular, to have an abstraction of sets of affine transformers—but
to provide a way for a client of the abstract domain to have some control over
the performance/precision trade-off. Toward this end, we define a new family
of numerical abstract domains, denoted by ATA[B]. (ATA stands for Affine-
Transformers Abstraction.) Following Observation 1, ATA[B] is parameterized
by a base numerical abstract domain B, and allows one to represent a set of affine
transformers (or, alternatively, certain disjunctions of transition formulas).

Summary of the Approach. Let the (k+k2)-tuple (d1, d2, . . ., dk, c11, c12, . . .,

c1k, c21, c22, ..., ckk) denote the affine transformation
k∧

j=1

(
v′

j =
k∑

i=1

(cijvi) + dj

)
,

also written as “C :
−→
d .” The key idea is that we will use (k + k2) symbolic

constants to represent the (k+k2) coefficients in a transformation of the form C :−→
d , and use a base abstract domain B—provided by a client of the framework—to
represent sets of possible values for these symbolic constants. In particular, B is
an abstract domain for which, for all b ∈ B, γ(b) is a set of (k+k2)-tuples—each
tuple of which provides values for {di} ∪ {cij}, and can thus be interpreted as
an affine transformation C :

−→
d .

With this approach, a given b ∈ B represents the disjunction
∨{(C :−→

d ) ∈ γ(b)}. When B is a non-relational domain, each b ∈ B constrains
the values of {di} ∪ {cij} independently. When B is a relational domain,
each b ∈ B can impose intra-component constraints on the allowed tuples
(d1, d2, . . . , dk, c11, c12, . . . , c1k, c21, c22, . . . , ckk).

ATA[B] generalizes the MOS domain, in the sense that the MOS domain is
exactly ATA[AG], where AG is a relational abstract domain that captures affine
equalities of the form

∑
i aiki = b, where ai, b ∈ Z2w and Z2w is the set of w-bit

bitvectors [6,9] (see Sect. 2.4). For instance, an element in ATA[AG] can capture
the set of affine transformers “x′ = k1∗x+k1∗y+k2, where k1 is odd, k2 is even,
and k1 is the coefficient of both x and y.” On the other hand, an element in the
abstract domain ATA[I(k+k2)

Z2w
], where I(k+k2)

Z2w
is the abstract domain of (k+k2)-

tuples of intervals over bitvectors, can capture a set of affine transformers such
as x′ = k3 ∗ x + k4 ∗ y + k5, where k3 ∈ [0, 1], k4 ∈ [2, 2], and k5 ∈ [0, 10].

This paper addresses a wide variety of issues that arise in defining the ATA[B]
framework, including describing the abstract-domain operations of ATA[B] in
terms of the abstract-domain operations available in the base domain B.

Contributions. The overall contribution of our work is the framework ATA[B],
for which we present
– methods to perform basic abstract-domain operations, such as equality and

join.
– a method to perform abstract composition, which is needed to perform

abstract interpretation.
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– a faster method to perform abstract composition when the base domain is
non-relational.
Section 2 introduces the terminology used in the paper; and presents some

needed background material. Section 3 demonstrates the framework with the
help of an example. Section 4 formally introduces the parameterized abstract
domain ATA[B]. Section 5 provides discussion and related work. Proofs are given
in Appendices A and B of [19].

2 Preliminaries

All numeric values in this paper are integers in Z2w for some bit width w. That
is, values are w-bit machine integers with the standard operations for machine
addition and multiplication. Addition and multiplication in Z2w form a ring, not
a field, so some facets of standard linear algebra do not apply.

Throughout the paper, k is the size of the vocabulary V = {v1, v2, .., vk}—
i.e., the variable-set under analysis. We use −→v to denote the vector [v1v2..vk]
of variables in vocabulary V . A two-vocabulary relation R[V ;V ′] is a transition
relation between values of variables in the pre-state vocabulary V and values
of variables in the post-state vocabulary V ′. For instance, a transition relation
R[V ;V ′] in the concrete collecting semantics is a subset of Z

k
2w × Z

k
2w (which is

isomorphic to Z
2k
2w).

Matrix addition and multiplication are defined as usual, forming a matrix
ring. We denote the transpose of a matrix M by M t. A one-vocabulary matrix
is a matrix with k +1 columns. A two-vocabulary matrix is a matrix with 2k +1
columns. In each case, the “+1” is related to the fact that we capture affine rather
than linear relations. In denotes the n × n identity matrix. Given a matrix C,
we use C[i, j] to refer to the entry at the i-th column and j-th row of C. Given
a vector

−→
d , we use

−→
d [j] to refer to the j-th entry in

−→
d .

2.1 Affine Programs

〈Block〉 :: l : (〈Stmt〉 ;)∗ 〈Next〉
〈Next〉 :: jump l;

| jump 〈Cond〉 ? l1 : l2
〈Cond〉 :: ? | 〈Expr〉 Op 〈Expr〉

〈Op〉 :: = | 	= | � | �

〈Expr〉 :: c0 +
k∑

i=1

ci ∗ vi

〈Stmt〉 :: vj := 〈Expr〉
| vj := ?

We borrow the notion of affine programs
from [13]. We restrict our affine programs
to consist of a single procedure. The state-
ments are restricted to either affine assign-
ments or non-deterministic assignments.
The control-flow instruction consists of
either an unconditional jump statement, or
a conditional jump with an affine equality,
an affine disequality, an affine inequality,
or unknown guard condition.
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2.2 Abstract-Domain Operations

The two important steps in abstract interpretation (AI) are:
1. Abstraction: The abstraction of the program is constructed using the abstract

domain and abstract semantics.
2. Fixpoint analysis: Fixpoint iteration is performed on the abstraction of the

program to identify invariants.
For the purpose of our analysis, the program is abstracted to a control-flow

graph, where each edge in the graph is labeled with an abstract transformer. An
abstract transformer is a two-vocabulary transition relation R[V ;V ′]. Concrete
states described by an abstract transformer are represented by row vectors of
length 2k. A (two-vocabulary) concrete state is sometimes called an assignment
to the variables of the pre-state and the post-state vocabulary.

Table 1. Abstract-domain operations.

Type Operation Description Type Operation Description

A ⊥ Bottom element A α(vj :=?) Abstraction for
nondeterministic
assignments

bool (a1 == a2) Equality

A (a1 � a2) Join A α(vj := c0 +
k∑

i=1
cij ∗ vi) Abstraction for

affine assignments

A (a1∇a2) Widen

A Id Identity element A (a1 ◦ a2) Composition

Table 1 lists the abstract-domain operations needed to generate the pro-
gram abstraction and perform fixpoint analysis on it. Bottom, equality, and
join are standard abstract-domain operations. The widen operation is needed
for domains with infinite ascending chains to ensure termination. The two opera-
tions of the form α(Stmt) perform abstraction on an assignment statement Stmt
to generate an abstract transformer. Id is the identity element; which represents
the identity transformation (

∧k
i=1 v′

i = vi). Finally, the abstract-composition
operation a1 ◦ a2 returns a sound overapproximation of the composition of the
abstract transformation a1 with the abstract transformation a2.

2.3 The Müller-Olm/Seidl Domain

An element in the Müller-Olm/Seidl domain (MOS) is an affine-closed set of
affine transformers, as detailed in [13]. An MOS element is represented by a set
of (k +1)-by-(k +1) matrices. Each matrix T is a one-vocabulary transformer of
the form T =

[
1 b
0 M

]
, which represents the state transformation −→v ′ := −→v ·M +b,

or, equivalently, [1|−→v ′] := [1|−→v ] T .
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An MOS element M, consisting of a set of matrices, represents the
affine span of the set, denoted by 〈M〉. 〈M〉 is defined as follows: 〈M〉 def={

T
∣∣∣ ∃−→u ∈ Z

|M|
2w : T =

∑
M∈M uMM ∧ T1,1 = 1

}
. The meaning of M is the

union of the graphs of the affine transformers in 〈M〉. Thus, γMOS (M) def={
(−→v ,−→v ′)

∣∣∣ −→v ,−→v ′ ∈ Z
k
2w ∧ ∃T ∈ 〈M〉 : [1|v] T = [1|v′]

}
.

Example 1. If w = 4, the MOS element M =
{[

1 0 0
0 1 0
0 0 0

]
,

[
1 0 2
0 1 0
0 0 0

]}
represents the

affine span 〈M〉 =
{[

1 0 0
0 1 0
0 0 0

]
,

[
1 0 2
0 1 0
0 0 0

]
,

[
1 0 4
0 1 0
0 0 0

]
, . . . ,

[
1 0 12
0 1 0
0 0 0

]
,

[
1 0 14
0 1 0
0 0 0

]}
, which

corresponds to the transition relation in which v′
1 = v1, v2 can have any value,

and v′
2 can have any even value. �

Table 2 gives the abstract-domain operations for the MOS domain. The bot-
tom element of the MOS domain is the empty set ∅, and the MOS element that
represents the identity relation is the singleton set {I}. The equality check can be
done by checking if the span of the matrices in the two values is equal. [6] provides
an normal form for the MOS domain, which can be used to reduce the equality
check to syntactic equality checks on the matrices in M1 and M2. The widening
operation is not needed for MOS because it is a finite-height lattice. The abstrac-

tion operation for the affine-assignment statement α(vj := d0 +
k∑

i=1

cij ∗ vi) gives

back an MOS-element with a single matrix where every variable v ∈ V − {vj}

Table 2. Abstract-domain operations for the MOS-domain.

Type Operation Description

A ⊥MOS ∅

bool (M1 == M2) 〈M1〉 == 〈M2〉
A (M1  M2) M1 ∪ M2

A (a1∇a2) Not applicable

A α(vj := d0 +
k∑

i=1

cij ∗ vi)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 d0 0

0 Ij−1 [c1j , c2j , ...c(j−1)j ]
t 0

0 0 cjj 0

0 0 [c(j+1)j , c(j+2)j , ...ckj ]
t Ik−j

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

A α(vj := ?)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0

0 Ij−1 0 0

0 0 0 0

0 0 0 Ik−j

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0

0 Ij−1 0 0

0 0 0 0

0 0 0 Ik−j

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

A Id {Ik+1}
A (M1 ◦ M2) {A2A1|Ai ∈ Mi}
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is left unchanged, and the variable vj is transformed to reflect the assignment
by updating the corresponding column in the matrix with the assignment coeffi-
cients. The abstraction operation for the non-deterministic assignment statement
α(vj := ?) gives back an MOS-element containing two matrices. Similar to the
abstraction for affine assignment operation, every variable v ∈ V − vj is left
unchanged in both the matrices. vj is set to 0 in the first and 1 in the second
matrix. The affine-closed set of these two matrices ensures that vj is assigned to
non-deterministically. The abstract-composition operation performs multiplica-
tion for each pair of the matrices in M1 and M2.

2.4 The Affine-Generator Domain

An element in the Affine Generator domain (AG[−→v ;−→v ′]) is a two-vocabulary
matrix whose rows are the affine generators of a two-vocabulary relation over
variables −→v . An AG[−→v ;−→v ′] element is an r-by-(2k + 1) matrix G, with 0 < r ≤
2k + 1. The concretization of an AG[−→v ;−→v ′] element is

γAG (G) def=
{
(−→v ,−→v ′) | −→v ,−→v ′ ∈ Z

k
2w ∧ [1|v v′] ∈ row G

}
.

The row space of a matrix G is defined by row G
def=

{
r
∣∣∣ ∃−→u : −→u G = r

}
.

The AG[−→v ;−→v ′] domain captures all two-vocabulary affine spaces, and treats
them as relations between pre-states and post-states.

The bottom element of the AG domain is the empty matrix, and the

AG[−→v ;−→v ′] element that represents the identity relation is the matrix
[

1 −→v −→v ′

1 0 0
1 I I

]

.

The AG[{v1, v2}; {v′
1, v

′
2}] element

⎡

⎢
⎢
⎣

1 v1 v2 v′
1 v′

2
1 0 0 0 0
1 1 0 1 0
1 0 1 0 0
1 0 0 0 2

⎤

⎥
⎥
⎦ represents the transition rela-

tion in which v′
1 = v1, v2 can have any value, and v′

2 can have any even value.
To compute the join of two AG elements, stack the two matrices vertically

and get the canonical form of the result [6, Sect. 2.1].

2.5 Relating MOS and AG

There are two ways to relate the MOS and AG domains. One way is to use them
as abstractions of two-vocabulary relations and provide (approximate) inter-
conversion methods. The other is to use a variant of the AG domain to represent
the elements of the MOS domain exactly.

Comparison of MOS and AG Elements as Abstraction of Two-
Vocabulary Relations. As shown in [6, Sect. 4.1], the MOS and AG domains
are incomparable: some relations are expressible in each domain that are not
expressible in the other. Intuitively, the central difference is that MOS is a
domain of sets of functions, while AG is a domain of relations.
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AG can capture 1-vocabulary guards on both the pre-state and post-state
vocabularies, while MOS can capture 1-vocabulary guards only on its post-state
vocabulary.

Example 2. For example, when k = 1, the AG element for “assume x = 2”

is [
1 x x′

1 2 2
], i.e., “x = 2 ∧ x′ = 2”. In contrast, there is no MOS element that

represents x = 2 ∧ x′ = 2. The smallest MOS element that over-approximates
“assume x = 2” is the identity transformer

{[
1 0
0 1

]}
. �

On the other hand, the MOS-domain can encode two-vocabulary relations
that are not affine-closed.

Example 3. One example is the matrix basis M =
{[

1 0 0
0 1 1
0 0 0

]
,

[
1 0 0
0 0 0
0 1 1

]}
. The set

that M encodes is

γMOS (M) =

⎧
⎪⎪⎨

⎪⎪⎩

[
x y x′ y′]

∣
∣
∣

∃u0, u1 :
[
1 x y

]

⎡

⎣
1 0 0
0 u0 u0
0 u1 u1

⎤

⎦ =
[
1 x′ y′ ]

∧ u0 + u1 = 1

⎫
⎪⎪⎬

⎪⎪⎭

=
{[

x y x′ y′]
∣
∣
∣ ∃u0 : x

′
= y

′
= u0x + (1 − u0)y

}

=
{[

x y x′ y′]
∣
∣
∣ ∃u0 : x

′
= y

′
= x + (1 − u0)(y − x)

}

=
{[

x y x′ y′]
∣
∣
∣ ∃p : x

′
= y

′
= x + p(y − x)

}

(1)

Affine spaces are closed under affine combinations of their elements. Thus,
γMOS (M) is not an affine space because some affine combinations of its ele-
ments are not in γMOS (M). For instance, let a =

[
1 −1 1 1

]
, b =

[
2 −2 6 6

]
,

and c =
[
0 0 −4 −4

]
. By Eq. (1), we have a ∈ γMOS (M) when p = 0 in Eq. (1),

b ∈ γMOS (M) when p = −1, and c 	∈ γMOS (M) (the equation “−4 = 0+p(0−0)”
has no solution for p). Moreover, 2a − b = c, so c is an affine combination of a
and b. Thus, γMOS (M) is not closed under affine combinations of its elements,
and so γMOS (M) is not an affine space. �

Soundly converting an MOS element M to an overapproximating AG ele-
ment is equivalent to stating two-vocabulary affine constraints satisfied by M
[6, Sect. 4.2]).

Reformulation of MOS Elements as AG Elements. An MOS element
M = {M1,M2, ...,Mn} represents the set of (k + 1) × (k + 1) matrices in the
affine closure of the matrices in M . Each matrix can be thought of as a (k +
1) × (k + 1) vector, and hence M can be represented by an AG element of size
n × ((k + 1) × (k + 1)).

Example 4. Table 3 shows the two ways MOS and AG elements can be related.
Column 1 shows the MOS element M from Example 3, which represents the
set of matrices in the affine closure of the two (k + 1) × (k + 1) matrices, with
k = 2. The second column gives the AG element A1 (a matrix with 2k + 1
columns) representing the affine-closed space over {x, y, x′, y′} satisfied by M .
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Consequently, γAG(A1) ⊇ γMOS(M). Column 3 shows the two matrices of M as
the 2 × ((k + 1) × (k + 1)) AG element A2. Because A2 is just a reformulation
of M , γAG(A2) = γMOS(M). �

3 Overview

In this section, we motivate and illustrate the ATA[B] framework, with the help
of several examples. The first two examples illustrate the following principle,
which restates Observation 1 more formally:

Observation 2. Each affine transformation C :
−→
d in a set of affine transfor-

mations involves (k + 1)2 coefficients ∈ Z2w : (1, d1, d2, . . . , dk, 0, c11, c12, . . . ,
0, c21, ...ckk).1 Thus, we may use any abstract domain whose elements con-
cretize to subsets of Z

(k+1)2

2w as a method for representing a set of affine
transformers. �
Example 5. The AG element A2 in column 3 of Table 3 illustrates how an AG
element with (k + 1)2 columns represents the same set of affine transformers
as the MOS element M shown in column 1. For instance, the first row of A2

represents the first matrix in M . �
Example 6. Consider the element E = ([1, 1], [0, 10], [0, 0], [0, 0], [1, 1], [2, 3], [0, 0], [0, 0],

[1, 1]) of I9
Z2w

. E can be depicted more mnemonically as the following matrix:
⎡

⎣

1 x y

[1, 1] [0, 10] [0, 0]
[0, 0] [1, 1] [2, 3]
[0, 0] [0, 0] [1, 1]

⎤

⎦, where every element in E is an interval (IZ2w ). E represents

the point set {(x′, y′, x, y) : ∃i1, i2 ∈ Z2w : x′ = x + i1 ∧ y′ = i2x + y ∧ 0 � i1 �
10 ∧ 2 � i2 � 3}. �

Examples 5 and 6 both exploit Observation 2, but use different abstract
domains. Example 5 uses the AG domain with (k + 1)2 columns, whereas

Table 3. Example demonstrating two ways of relating MOS and AG.

MOS element (M) Overapproximating AG
element (A1)

Reformulation as abstraction
over affine transformers (A2)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡

⎢
⎣

1 x y

1 0 0

0 1 1

0 0 0

⎤

⎥
⎦,

⎡

⎢
⎣

1 x y

1 0 0

0 0 0

0 1 1

⎤

⎥
⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

[
1 x y x′ y′

1 0 0 0 0

1 0 0 1 1

] [
1 a01 a02 a10 a11 a12 a20 a21 a22

1 0 0 0 1 1 0 0 0

1 0 0 0 0 0 0 1 1

]

1 k of the coefficients are always 0, and one coefficient is always 1 (i.e., the first column
is always (1| 0 0 ... 0)t). For this reason, we really need only k + k2 elements, but we
will sometimes refer to (k + 1)2 elements for brevity.
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Example 6 uses the domain I(k+1)2

Z2w
. In particular, an abstract-domain element in

our framework ATA[B] is a set of affine transformations −→v ′ = −→v · C +
−→
d , such

that the allowed coefficients in the matrix C and the vector
−→
d are abstracted by a

base abstract domain B.
The remainder of this section shows how different instantiations of Observa-

tion 2 allow different properties of a program to be recovered.

Example 7. In this example, the variable r of function f is initialized to 0 and
conditionally incremented by 2x inside a loop with 10 iterations.

s

ENT: int f(int x) {
L0: int i = 0, r = 0;
L1: while(i <= 10) {
L2: if(*)
L3: r = r + 2*x;
L4: i = i + 1;

}
L5: return r;

}

The exact function summary for function f ,
denoted by Sf , is (∃k.r′ = 2kx ∧ 0 � k � 10).
Note that Sf expresses two important proper-
ties of the function: (i) the return value r′ is an
even multiple of x, and (ii) the multiplicative
factor is contained in an interval. �

B = AG with (k + 1)2 columns: Fig. 1(a) shows the abstract transformers

generated with the MOS domain.2 Each matrix of the form

[
1 d1 d2 d3
0 c11 c12 c13
0 c21 c22 c23
0 c31 c32 c33

]
rep-

resents the state transformation (x′ = d1 + c11x + c21i + c31r) ∧ (i′ = d2 + c12x +

c22i + c32r) ∧ (r′ = d3 + c13x + c23i + c33r).

For instance, the abstract transformer for L3 → L4 is an MOS-domain
element with a single matrix that represents the affine transformation: (x′ =
x) ∧ (i′ = i) ∧ (r′ = 2x + r). The edges absent from Fig. 1(a), e.g., L1 → L2,
have the identity MOS-domain element.

Fig. 1. Abstract transformers and snapshots in the fixpoint analysis with the MOS
domain for Example 7.

2 We will continue to refer to the MOS domain directly, rather than “the instantiation
of Observation 2 with an AG element containing (k+1)2 columns” (à la Example 5).
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To obtain function summaries, an iterative fixed-point computation needs
to be performed. An abstract-domain element a is a summary at some pro-
gram point L, if it describes a two-vocabulary transition relation that over-
approximates the (compound) transition relation from the beginning of the
function to program point L. Figure 1(b) provides the iteration results for the
summary at the program point L1. After iteration (i), the result represents
(x′ = x) ∧ (i′ = 0) ∧ (r′ = 0). After iteration (ii), it adds the affine transformer
(x′ = x) ∧ (i′ = 1) ∧ (r′ = 2x) to the summary. Quiescence is discovered on the
third iteration because the affine-closure of the three matrices is the same as
the affine-closure of the two matrices after the second iteration. As a result, the
function summary that MOS learns, denoted by SMOS, is ∃k.r′ = 2kx, which
is an overapproximation of the exact function summary Sf . Imprecision occurs
because the MOS-domain is not able to represent inequality guards. Hence, the
summary captures the evenness property, but not the bounds property.

B = I(k+1)2

Z2w
: By using different Bs, an analyzer will be able to recover dif-

ferent properties of a program. Now consider what happens when the pro-
gram above is analyzed with ATA[B] instantiated with the non-relational
base domain of environments of intervals (I(k+1)2

Z2w
). The identity transforma-

tion for the abstract domain ATA[I(k+1)2

Z2w
] is

⎡

⎢
⎣

1 [0, 0] [0, 0] [0, 0]
0 [1, 1] [0, 0] [0, 0]
0 [0, 0] [1, 1] [0, 0]
0 [0, 0] [0, 0] [1, 1]

⎤

⎥
⎦. The bottom

element for the abstract domain ATA[I(k+1)2

Z2w
], denoted by ⊥

ATA[I(k+1)2
Z2w

]
is

⎡

⎢
⎢
⎢
⎣

1 ⊥IZ2w
⊥IZ2w

⊥IZ2w
0 ⊥IZ2w

⊥IZ2w
⊥IZ2w

0 ⊥IZ2w
⊥IZ2w

⊥IZ2w
0 ⊥IZ2w

⊥IZ2w
⊥IZ2w

⎤

⎥
⎥
⎥
⎦
.3

Figure 2 shows the abstract transformers and the fixpoint analysis for the
node L1 with the ATA[I(k+1)2

Z2w
] domain. One advantage of using intervals as

the base domain is that they can express inequalities. For instance, the abstract
transformer for the edge L1 → L2 specifies the transformation (x′ = x) ∧ (0 �
i′ � 10)∧(r′ = r). Consequently, the function summary that ATA[I(k+1)2

Z2w
] learns,

denoted by S
ATA[I(k+1)2

Z2w
]
, is r′ = [0, 20]x. This summary captures the bounds

property, but not the evenness property. Notice that, Sf = S
ATA[I(k+1)2

Z2w
]
∧SMOS.

Consider the instantiation of the ATA framework with strided-intervals over
bitvectors [14], denoted by SI(k+1)2

Z2w
. A strided interval represents a set of the

form {l, l + s, l + 2s, ..., l + (n − 1)s}. Here, l is the beginning of the interval, s

3 The abstract domain I(k+1)2

Z2w
is the product domain of (k + 1)2 interval domains,

that is, I(k+1)2

Z2w
= IZ2w × IZ2w × . . . × IZ2w . I(k+1)2

Z2w
uses smash product to main-

tain a canonical representation for ⊥
ATA[I(k+1)2

Z2w
]
. Thus, if any of the coefficients

in an abstract-domain element b ∈ ATA[I(k+1)2

Z2w
] is ⊥IZ2w

, then b is smashed to
⊥

ATA[I(k+1)2
Z2w

]
.
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Edge Transformer

L0 L1
1 0, 0 0, 0 0, 0
0 1, 1 0, 0 0, 0
0 0, 0 0, 0 0, 0
0 0, 0 0, 0 0, 0

L1 L2
1 0, 0 0, 10 0, 0
0 1, 1 0, 0 0, 0
0 0, 0 0, 0 0, 0
0 0, 0 0, 0 1, 1

L3 L4
1 0, 0 0, 0 0, 0
0 1, 1 0, 0 2, 2
0 0, 0 1, 1 0, 0
0 0, 0 0, 0 1, 1

L4 L1
1 0, 0 1, 1 0, 0
0 1, 1 0, 0 0, 0
0 0, 0 1, 1 0, 0
0 0, 0 0, 0 1, 1

Iteration Node L1

(i)
1 0, 0 0, 0 0, 0
0 1, 1 0, 0 0, 0
0 0, 0 0, 0 0, 0
0 0, 0 0, 0 0, 0

(ii)
1 0, 0 0, 1 0, 0
0 1, 1 0, 0 0, 2
0 0, 0 0, 0 0, 0
0 0, 0 0, 0 0, 0

... ...

(xi)
1 0, 0 0, 10 0, 0
0 1, 1 0, 0 0, 20
0 0, 0 0, 0 0, 0
0 0, 0 0, 0 0, 0

)b()a(

Fig. 2. Abstract transformers and fixpoint analysis with the ATA[I(k+1)2

Z2w
] domain for

Example 7.

is the stride, and n is the interval size. Consequently, ATA[SI(k+1)2

Z2w
] learns the

function summary ∃k.r′ = kx ∧ k = 2[0, 10], which captures both the evenness
property and the bounds property. Note that a traditional (non-ATA-framework)
analysis based on the strided-interval domain alone would not be able to capture
the desired summary because the strided-interval domain is non-relational.

Widening Concerns. In principle, abstract domains I(k+1)2

Z2w
and SI(k+1)2

Z2w
do not

need widening operations because the lattice height is finite. However, the height
is exponential in the bitwidth w of the program variables, and thus in practice
we need widening operations to speed-up the fixpoint iteration. In the presence
of widening, neither ATA[I(k+1)2

Z2w
] nor ATA[SI(k+1)2

Z2w
] will be able to capture the

bounds property for Example 7, because they are missing relational informa-
tion between the loop counter i and the variable r. However, the reduced prod-
uct of ATA[I(k+1)2

Z2w
] (or ATA[SI(k+1)2

Z2w
]) and MOS can learn the exact function

summary.

4 Affine-Transformer-Abstraction Framework

In this section, we formally introduce the Affine-Transformer-Abstraction frame-
work (ATA) and describe abstract-domain operations for the framework. We also
discuss some specific instantiations.
ATA[B] Definition. Let C be a k-by-k matrix: [cij ], where each cij is a symbolic
constant for the entry at i-th row and j-th column. Let

−→
d be a k-vector, [di],

where each di is a symbolic constant for the i-th entry in the vector. As mentioned
in Sect. 1, an affine transformer, denoted by C :

−→
d , describes the relation −→v ′ =
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−→v · C +
−→
d , where −→v ′ and −→v are row vectors of size k that represent the post-

transformation state and the pre-transformation state, respectively, on program
variables.

Given a base abstract domain B, the ATA framework generates a corre-
sponding abstract domain ATA[B] whose elements represent a transition rela-
tion between the pre-state and the post-state program vocabulary. Each element
a ∈ ATA[B] is represented using an element base(a) ∈ B, such that:

γ(a) = {(−→v ,−→v ′)| ∃(C :
−→
d ) ∈ γ(base(a)) : −→v ′ = −→v · C +

−→
d }.

4.1 Abstract-Domain Operations for ATA[B]

In this subsection, we provide all the abstract-domain operations for ATA[B],
with the exception of abstract composition, which is discussed in Sect. 4.2.

In the ATA[B] framework, the symbolic constants in the base domain B are
denoted by symbols(C:

−→
d ), where symbols(C:

−→
d ) = (d1, d2, . . . , dn, c11, c12, . . . ,

c1k, c21, c22, . . . , c2k, . . . , ckk) is the tuple of k+k2 symbolic constants in the affine
transformation. Table 4 lists the abstract-domain interface for the base abstract
domain B needed to implement these operations for ATA[B]. The first five oper-
ations in the interface are standard abstract-domain operations. havoc(b1, S)
takes an element b1 and a subset S ⊆ symbols(C:

−→
d ) of symbolic constants, and

returns an element without any constraints on the symbolic constants in S. The
last operation in Table 4 defines an abstraction for a concrete affine transformer
ct. A concrete affine transformer is a mapping from the symbolic constants in
the affine transformer to bitvectors of size w. We represent concrete state ct with

the (k + 1) × (k + 1) matrix:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ct(d1) ct(d2) ... ct(dk)

0 ct(c11) ct(c12) ... ct(c1k)
0 ct(c21) ct(c22) ... ct(c2k)
... ... ... ... ...
0 ct(ck1) ct(ck2) ... ct(ckk)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where ct(s) denotes the

concrete value in Z2w of symbol s in the concrete state ct.

Table 4. Base abstract-domain operations.

Type Operation Description

B ⊥ Bottom element
B � Top element
bool (b1 == b2) Equality
B (b1  b2) Join
B (b1∇b2) Widen
B havoc(b1, S) Remove all constraints on symbolic constants in S

B α(ct) Abstraction for the concrete affine transformer ct, Where
ct ∈ symbols(C :

−→
d ) → Z2w
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Table 5 gives the abstract-domain operations for ATA[B] in terms of the base
abstract-domain operations in B. The first operation is the ⊥ element, which is
simply defined as ⊥B, the bottom element in the base domain. Similarly, equality,
join, and widen operations are defined as the equality, join, and widen operations
in the base domain. The equality operation is not the exact equality operation;
that is, (a1=̃=a2) can return false, even if γ(a1) = γ(a2). However, the equality
operation is sound; that is, when (a1=̃=a2) returns true, then γ(a1) = γ(a2). The
̃ operation for the ATA[B] is a quasi-join operation [7]. In other words, the least
upper bound does not necessarily exist for ATA[B], but a sound upper-bound
operation ̃ is available.

The abstraction operation for the affine-assignment statement α(vj := d0 +
k∑

i=1

cij ∗ vi) gives back an ATA[B]-element with a single transformer where every

variable v ∈ V − {vj} is left unchanged and the variable vj is transformed
to reflect the assignment by updating the coefficients of the corresponding col-
umn. The abstraction operation for the non-deterministic assignment statement
α(vj := ?) gives back an ATA[B]-element, such that every variable v ∈ V − {vj}
is left unchanged but the symbolic constant corresponding to the coefficients in
the column j of the affine transformation can be any value. This operation is
carried out by performing havoc on the identity transformation with respect to
the set {dj , c1j , c2j , ..., ckj} of symbolic constants. The identity transformation Id
is obtained by abstracting the concrete affine transformer ct that represents the
identity transformer. We provide proofs of soundness for these abstract-domain
operations in [19, Appendix A].

4.2 Abstract Composition

We have shown that all the abstract-domain operations for ATA[B] can be imple-
mented in terms of abstract-domain operations in B, with the exception of

Table 5. Abstract-domain operations for the ATA[B]-domain.

Type Operation Description

A ⊥ ⊥B
bool (a1=̃=a2) (base(a1) == base(a2))
A (a1̃a2) (base(a1)  base(a2))
A (a1∇a2) (base(a1)∇base(a2))

A α(vj := dj +
k∑

i=1

cij ∗ vi) α

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 dj 0

0 Ij−1 [c1j , c2j , ...c(j−1)j ]
t 0

0 0 cjj 0

0 0 [c(j+1)j , c(j+2)j , ...ckj ]
t Ik−j

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎠

A α(vj := ?) havoc(α(Ik+1), {dj , c1j , c2j , ..., ckj})
A Id α(Ik+1)
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abstract composition. Let us consider the composition of two abstract values
a, a′ ∈ ATA[B], representing the two-vocabulary relations R[−→v ;−→v ′] = γ(a) and
R′[−→v ′;−→v ′′] = γ(a′). An abstract operation ◦� is a sound abstract-composition
operation if, for all a′′ = a′◦�a, γ(a′′) ⊇ { (−→v ;−→v ′′)| ∃−→v ′.R[−→v ;−→v ′]∧R′[−→v ′;−→v ′′] }.
This condition translates to:

γ(base(a′′)) ⊇{(−→v ,−→v ′′) | ∃(C :
−→
d ) ∈ γ(base(a)), (C ′ :

−→
d ′) ∈ γ(base(a′)), (2)

(C ′′ :
−→
d ′′) : (−→v ′′ = −→v · C ′′ +

−→
d ′′) ∧ (C ′′ = C · C ′)

∧ (
−→
d ′′ =

−→
d · C ′ +

−→
d ′)}

The presence of the quadratic components C · C ′ and
−→
d · C ′ makes the

implementation of abstract composition non-trivial. One extremely expensive
method to implement abstract composition is to enumerate the set of all con-
crete transformers (C :

−→
d ) ∈ γ(base(a)) and (C ′ :

−→
d ′) ∈ γ(base(a′)), perform

matrix multiplication for each pair of concrete transformers, and perform join
over all pairs of them. This approach is impractical because the set of all concrete
transformers in an abstract value can be very large.

First, we provide a general method to implement abstract composition. Then,
we provide methods for abstract composition when the base domain B has certain
properties, like non-relationality and weak convexity. The latter methods are
faster, but are only applicable to certain classes of base abstract domains.

General Case. We present a general method to perform abstract composition
by reducing it to the symbolic-abstraction problem. The symbolic abstraction
of a formula ϕ in logic L, denoted by α̂(ϕ), is the best value in B that over-
approximates the set of all concrete affine transformers (C :

−→
d ) that satisfy

ϕ [15,22]. For all b ∈ B, the symbolic concretization of B, denoted by γ̂(b), maps
b to a formula γ̂(b) ∈ L such that b and γ̂(b) represent the same set of concrete
affine transformers (i.e., γ(b) = [[γ̂(b)]]). We expect the base domain B to provide
the γ̂ operation. In our framework, there are slightly different variants of α̂ and γ̂
according to which vocabulary of symbolic constants are involved. For instance,
we use γ̂′ to denote symbolic concretization in terms of the primed symbolic
constants symbols(C ′ :

−→
d ′). Similarly, α̂′′ denotes symbolic abstraction in terms

of the double-primed symbolic constants symbols(C ′′ :
−→
d ′′). The function drop-

Primes shifts the vocabulary of symbolic constants by removing the primes from
the symbolic constants that an abstract value represents.

We use L = QF BV , i.e., quantifier-free bit-vector logic, to express abstract
composition symbolically as follows:

base(a′′) = dropPrimes
(
α̂′′(ϕ)

)
, where (3)

ϕ = (C ′′ = C · C ′) ∧ (
−→
d ′′ =

−→
d · C ′ +

−→
d ′)

∧ γ̂(base(a)) ∧ γ̂′(base(a′)).
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(Note that γ̂(base(a)) and γ̂′(base(a′)) are formulas over symbols(C :
−→
d ) and

symbols(C ′ :
−→
d ′) respectively). Past literature [6,15,22] provides various algo-

rithms to implement symbolic abstraction. Symbolic-abstraction methods are
usually slow because they make repeated calls to an SMT solver. Specifically, the
symbolic-abstraction algorithms in [15,22] require O(h′′) calls to SMT , where
h′′ is the height of the abstract-domain element—i.e., base(a′′) in the lattice B.

Algorithm 1 is a variant of the symbolic-abstraction algorithm from [15].
Algorithm 1 needs a method to enumerate a generator set gs for each b ∈ B.
Such a set can easily be obtained from the generator representation of B. For
instance, each row in an AG element is an affine transformer, and a generator set
for the AG element is the set of all rows in the AG matrix: the affine combination
of the rows generate the concrete affine transformers that the AG element (see
Sect. 2.4) represents. Note that the generator set for an abstract value b is usually
much smaller than the set of all affine transformers in b. For the AG domain,
the generating set is worst-case polynomial size, whereas the set of all affine
transformers is worst-case exponential in the number of variables k.

In Algorithm 1, line 3 initializes the value lower to the product of each pair
of abstract transformers. The product t × t′, where t =

[
1

−→
d

0 C

]

and t′ =
[
1

−→
d ′

0 C′

]

is
[
1

−→
d · C′ +

−→
d ′

0 C · C′

]

. Because lower is initialized to {t × t′ | t ∈ gs1, t
′ ∈ gs2} rather

than ⊥, the number of SMT calls in the symbolic abstraction is significantly
reduced, compared to the algorithm from [15]. The function GetModel, used at
line 5, returns the model M ∈ symbols(C ′′ :

−→
d ′′) → Z2w satisfying the for-

mula (ϕ ∧ ¬γ̂(lower)) given to the SMT solver at line 4. Thus, the model M
is a concrete affine transformer in a′′. The representation function β, used at
line 6, maps a singleton model M to the least value in B that overapproximates
{M} [15]. While the SMT call at line 4 is satisfiable, the loop keeps improving
the value of lower by adding the satisfying model M to lower via the represen-
tation function β and the join operation. When line 4 is unsatisfiable, the loop
terminates and returns lower. This method is sound because the unsatisfiable
call proves that ϕ ⇒ γ̂(lower). The loop terminates when the height of the base
domain B is finite.

Algorithm 1. Abstract Composition via Symbolic Abstraction
1: gs1 ← {t1, t2, ..., tl1} � where base(a) =

⊔l1
i=0 ti

2: gs2 ← {t′
1, t

′
2, ..., t

′
l2

}
� where base(a′) =

⊔l2
i=0 t′

i

3: lower ← {t × t′ | t ∈ gs1, t
′ ∈ gs2}

4: while r ← SMTCall(ϕ ∧ ¬γ̂(lower)) is Sat do
5: M ← GetModel(r)
6: lower ← lower � β(M)
7: return lower
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Non-relational Base Domains. In this section, we present a method to imple-
ment abstract composition for ATA[B], when B is non-relational. We focus on
the non-relational case separately because it allows us to implement a sound
abstract-composition operation efficiently.

Foundation Domain. Each element in the non-relational domain B is a mapping
from symbols S to a subset of Z2w . We introduce the concept of a foundation
domain, denoted by FB, to represent the abstractions of subsets of Z2w in the
base abstract-domain elements. We can define a non-relational base domain in
terms of the foundation domain as follows: B def

= S → FB. For instance, the non-
relational domain of intervals I(k+1)2

Z2w
can be represented by S → IZ2w , where

IZ2w represents the interval lattice over Z2w , and S is a set of (k + 1)2 symbolic
constants that represent the coefficients of an affine transformer.

A foundation domain F is a lattice whose elements concretize to subsets of
Z2w . Table 6 present the foundation-domain operations for F . Bottom, equality,
join, widen, and α(bv) are standard abstract-domain operations. The abstract
addition and multiplication operations provide a sound reinterpretation of the
collecting semantics of concrete addition and multiplication. For instance, with
the interval foundation domain, [0, 7]+� [−3, 17] = [−3, 24] and [0, 6]×� [−3, 3] =
[−18, 18].

Table 6. Foundation-domain operations.

Type Operation Description Type Operation Description

F ⊥ Empty set F α(bv) Abstraction for the bitvector
value bv ∈ Z2w

bool (f1 == f2) Equality
F (f1  f2) Join F (f1 +� f2) Abstract addition
F (f1∇f2) Widen F (f1 ×� f2) Abstract multiplication

Abstract composition for a non-relational domain is defined as follows:

a′ ◦NR a =
{

(−→v , −→v ′)|∃(C :
−→
d ) : (−→v ′ = −→v · C +

−→
d ) ∧ b ∈ (symbols(C :

−→
d ) → F) (4)

∧
( ∧

1�i,j�k

( b[cij ] = Σ�

1�l�k
(base(a)[cil] ×� base(a′)[clj ])

)

∧
( ∧

1�j�k

b[dj ] = Σ�

1�l�k
(base(a)[dl] ×� base(a′)[clj ]) +� base(a′)[dj ]

)}
.

The term b[s], where b ∈ B and s ∈ symbols(C :
−→
d ), refers to the element in

the foundation domain f ∈ FB, that corresponds to the symbol s. Σ�
1�l�k is

calculated by abstractly adding the k terms indexed by l. Abstract composition
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for a non-relational domain uses abstract addition and abstract multiplication
to soundly overapproximate the quadratic terms occurring in Eq. (2). We pro-
vide a proof of the soundness for a′ ◦NR a in [19, Appendix B.1]. The abstract-
composition operation requires O(k3) abstract-addition operations and O(k3)
abstract-multiplication operations.

Examples of foundation domains. We now present a few foundation domains
that allow to construct the non-relational small-set, interval [2], and strided-
interval [14] base domains.

Small sets. FSSn

def
= {�} ∪ {S|S ⊆ Z2w ∧ |S| � n}. The join operation is

defined by: (f1�f2) =

{
f1 ∪ f2 if |f1 ∪ fs| � n

� otherwise
n denotes the maximum cardinal-

ity allowed in the non-top elements of FSSn
. Other abstract operators, including

abstract addition and multiplication, are implemented in a similar manner.

Intervals. FIZ2w

def
= {⊥} ∪ {[a, b]| a, b ∈ Z2w , a � b}. Most abstract operations

are straightforward (See [2] for details). The abstract-addition and abstract-
multiplication operations need to be careful about overflows to preserve sound-
ness. For instance,

[a1, b1] +� [a2, b2] =

⎧
⎪⎨

⎪⎩

[a1 + a2, b1 + b2] if neither a1 + a2 nor b1 + b2

overflows

[min, max] otherwise

Strided Interval. FSIZ2w

def
= {⊥} ∪ {s[a, b] | a, b, s ∈ Z2w , a � b}, where

γ(s[a, b]) = {i | a � i � b, i ≡ a(mod s)}. (See [14,17] for the details of the
abstract-domain operations.)

Affine-Closed Base Domain. We discuss the special case when the base
domain B is affine-closed, i.e., B = AG. The abstract composition is defined as:

a′ ◦AG a = a′′, where base(a′′) = 〈{ti × t′j | 1 � i � l, 1 � j � l′
}〉∧ (5)

base(a) = 〈{t1, t2, ...tl}〉 ∧ base(a′) = 〈{t′1, t
′
2, ...t

′
l′}〉

Lemma 5.1 in [13] asserts that the above abstract composition method is
sound by linearity of affine-closed abstractions. The abstract composition has
time complexity O(hh′k3), h (respectively h′) is the height of the abstract-
domain element base(a) (or base(a′)) in the AG lattice. Because the height of the
AG lattice with (k + 1)2 columns is O(k2), the time complexity for the abstract
composition operation translates to O(k7). Algorithm 1 essentially implements
Eq. (5), but makes an extra SMT call to ensure that the result is sound. Because
Eq. (5) is sound by linearity for the AG domain, the very first SMT call in the
while-loop condition at line 4 in Algorithm 1 will be unsatisfiable.
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Weakly-Convex Base Domain. We present methods to perform abstract
composition when the base domain B satisfies a property we call weak convexity.
Base domain B is weakly convex iff
– The abstraction of a single concrete affine transformer is exact: γ(α(ti)) =

{ti}.
– All abstract-domain elements b ∈ B are contained in a convex space over

rationals: For any set of concrete affine transformers {t0, t1, ..., tl}, such that
b =

⊔l
i=0 ti, and any t ∈ γ(b):

∃λ1, λ2, . . . , λl ∈ Q.(0 � λ1, λ2, ..., λl � 1) ∧
l

Σ
i=0

λi = 1∧ castQ(t) =
l

Σ
i=0

λi castQ(ti).

The castQ function is used to specify the convexity property by moving
the point space from bitvectors to rationals. For instance, the expression
Σl

i=0λi.castQ(ti) specifies the convex combination of the concrete affine trans-
formers mi in the rational space cast

(k+k2)
Q

.
Any convex abstract domain over rationals, such as polyhedra [5] or

octagons [10], can be used to create a weakly-convex domain over bitvec-
tors [20,21]. Abstract composition for weakly-convex base domains is defined
as follows:

a′ ◦WC a = a′′, where base(a′′) = (6)⎧
⎪⎨
⎪⎩

{
ti × t′j | 1 � i � l, 1 � j � l′

}
if there are no overflows in any
matrix multiplication ti × t′j

�B otherwise

where base(a) = {t1, t2, ..., tl} and base(a′) = {t′1, t
′
2, ..., t

′
l′} .

The intuition is that the weak-convexity properties are preserved under
matrix multiplication in the absence of overflows. This principle is similar to
the linearity argument used to show that abstract composition is sound when
the base domain is affine-closed. (See above for more details.) We provide a proof
of the soundness for a′ ◦WC a in [19, Appendix B.2]. Similar to the affine-closed
case, abstract composition has time complexity O(H2k3), where H is the height
of the B lattice.

5 Discussion and Related Work

The abstract-domain elements in our framework abstract two-vocabulary rela-
tionships arising between the pre-transformation state and post-transformation
state. For the sake of simplicity, we assumed that the variable sets in the pre-
transformation and post-transformation state are the same, and an affine trans-
former is represented by a (k + 1) × (k + 1) matrix, where k is the number
of variables in the pre-transformation state. However, this requirement is not
mandatory. We can easily adapt our abstract-domain operations to work on
(k + 1) × (k′ + 1) matrices where k′ is the number of variables in the post-
transformation state.
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The abstract-domain elements in our framework are not necessarily closed
under intersection. Consider the two abstract values a1 and a2 for the vocabulary
V = {v1}. Let a1 represent the affine transformation v′

1 = 0 and a2 represent
the identity affine transformation v′

1 = v1. Thus, a1 = α(
[

1 0
0 0

]
), and a2 =

α(
[

1 0
0 1

]
). The intersection of γ(a1) and γ(a2) is the point p = (v′

1 = 0, v1 = 0).
There does not exist an abstract value in ATA[B], that can exactly represent
the point p, because any abstract value containing p must contain at least one
affine transformer of the form v′

1 = v1 · c, and thus must contain all points of
the form (v′

1 = t · c, v1 = t), where t ∈ Z2w . As a consequence, there does not
exist a Galois connection between ATA[B] and the concrete domain C of all two-
vocabulary relations R[V ;V ′], which implies that there does not exist a best
abstraction for a set of concrete points. For instance, consider the abstraction of
the guard statement SG = {v1 � 10}, with the ATA[I(k+1)2

Z2w
] domain. Consider

a3 =
[
1 [0, 10]
0 [0, 0]

]

and a4 =
[
1 [0, 0]
0 [1, 1]

]

. a3 specifies the guard constraint 0 � v′
1 � 10,

while a4 is the identity transformation v′
1 = v1. Note that these abstract values

are incomparable and can be used to represent the abstract transformer for SG.
Furthermore, a3 � a4 does not exist. Thus, an analysis has to settle for either a3

or a4. (In Sect. 3, we used an abstract transformer similar to a3 for the guard
in the while statement in Example 7. Using an identity transfer for the guard
statement would not have been useful to capture the desired bounds constraint.)

The ATA constructor preserves finiteness; that is, if the base domain B is
finite, then the domain ATA[B] is finite as well.

It is also possible to use the ATA constructor to infer affine transformations
over rationals or reals. In these cases, the symbolic-composition methods for
weakly-convex base domains (see Sect. 4.2) will carry over to affine transforma-
tions over rationals or reals for convex base domains (e.g., polyhedra) with only
slight modifications. For instance. abstract composition for convex base domains
over rationals or reals is defined as follows:

a′ ◦ a = a′′, where base(a′′) =
{
ti × t′j | 1 � i � l, 1 � j � l′

}

where base(a) = {t1, t2, ..., tl} and base(a′) = {t′1, t
′
2, ..., t

′
l′} .

Chen et al. [1] devised the interval-polyhedra domain which can express con-
straints of the form Σk[ak, bk]xk � c over rationals. Interval polyhedra are more
expressive than classic convex polyhedra, and thus can express certain non-
convex properties. Abstract-domain operations for interval polyhedra are con-
structed by linear programming and interval Fourier-Motzkin elimination. The
domain has similarities to the ATA[I(k+1)2

Z2w
] domain because the coefficients in

the abstract values are intervals.
Miné [11] introduced weakly relational domains, which are a parameterized

family of relational domains, parameterized by a non-relational base abstract
domain. They can express constraints of the form (vj − vi) ∈ F , where F is an
abstraction over P(Z). Similar to ATA[B], Miné’s framework requires the base
non-relational domain to provide abstract-addition and abstract-unary-minus
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operations. These operations are used to propagate information between con-
straints via a closure operation that is similar to finding shortest paths.

Sankaranarayanan et al. [16] introduced a domain based on template con-
straint matrices (TCMs) that is less powerful than polyhedra, but more general
than intervals and octagons. Their analysis discovers linear-inequality invariants
using polyhedra with a predefined fixed shape. The predefined shape is given
by the client in the form of a template matrix. Our approach is similar because
an affine transformer with symbolic constants can be seen as a template. How-
ever, the approaches differ because Sankaranarayanan et al. use an LP solver to
find values for template parameters, whereas we use operations and values from
an abstract domain to find and represent a set of allowed values for template
parameters.

An abstract-domain element in ATA[B] can be seen as an abstraction over
sets of functions: Z

k
2w → Z

k
2w . Jeannet et al. [8] provide a theoretical treatment of

the relational abstraction of functions. They describing existing and new meth-
ods of abstracting functions of signature: D1 → D2, resulting in a family of
relational abstract domains. ATA[B] is not captured by their framework of func-
tional abstractions.
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Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 121–136. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-74061-2 8

22. Thakur, A., Elder, M., Reps, T.: Bilateral algorithms for symbolic abstraction. In:
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Abstract. We present a novel algorithm for efficiently synthesizing
imperative programs from examples. Given a set of input-output exam-
ples and a partial program, our algorithm generates a complete program
that is consistent with every example. Our algorithm is based on enu-
merative synthesis, which explores all candidate programs in increasing
size until it finds a solution. This algorithm, however, is too slow to be
used in practice. Our key idea to accelerate the speed is to perform static
analysis alongside the enumerative search, in order to “statically” iden-
tify and safely prune out partial programs that eventually fail to be a
solution. We have implemented our algorithm in a tool, Simpl, and eval-
uated it on 30 introductory programming problems gathered from online
forums. The results show that our static analysis approach improves the
speed of enumerative synthesis by 25x on average.

1 Introduction

In this paper, we show that semantic-based static analysis (à la abstract inter-
pretation) can be effectively used to speed up enumerative program synthesis.
While static analysis has played key roles in program bug-finding, verification,
and optimization, its application to program synthesis remains to be seen. Static
type systems have been used for synthesizing functional programs [8,9,24,26],
but type-directed synthesis is not generally applicable to languages with, for
instance, dynamic or unsafe type systems. This paper explores an alternative,
static-analysis-guided program synthesis.

We focus on the problem of synthesizing imperative programs, where type-
based techniques are not useful. The inputs of our algorithm are a partial pro-
gram with constraints on variables and constants, and input-output examples
that specify a resulting program’s behavior. The output is a complete program
whose behavior matches all of the given input-output examples.

The key novelty of our algorithm is to combine enumerative program synthe-
sis and static analysis. It basically enumerates every possible candidate program
in increasing size until it finds a solution. This algorithm, however, is too slow
to be used due to the huge search space of programs. Our key idea to acceler-
ate the speed is to perform static analysis, in order to “statically” identify and
safely prune out partial programs that eventually fail to be a solution. More
specifically, we prune partial programs whose over-approximated results do not
c© Springer International Publishing AG 2017
F. Ranzato (Ed.): SAS 2017, LNCS 10422, pp. 364–381, 2017.
DOI: 10.1007/978-3-319-66706-5 18



Synthesizing Imperative Programs Guided by Static Analysis 365

satisfy expected behaviors defined by input-output examples. We formalize our
pruning technique and its safety property.

The experimental results show that our static-analysis-guided algorithm is
remarkably effective to synthesize imperative programs. We have implemented
the algorithm in a tool, Simpl, and evaluated its performance on 30 introductory
programming tasks manipulating integers and arrays of integers. The bench-
marks are gathered from online forums and include problems non-trivial for
beginner-level programmers. With our pruning technique, Simpl is fast enough
to solve each problem in 6.6 s on average. Without it, however, the baseline algo-
rithm, which already adopts well-known optimization techniques, takes 165.5 s
(25x slowdown) on average.

Contributions. We summarize our contributions below:

– We present a new algorithm for synthesizing imperative programs from exam-
ples. The key idea is to combine enumerative program synthesis with static
analysis, which greatly accelerates the speed while guaranteeing to find a
solution.

– We prove the effectiveness of our algorithm on 30 introductory program-
ming problems gathered from online forums, including non-trivial ones for
beginner-level students. The results show that our algorithm quickly solves
the problems, in 6.6 s on average.

– We make our tool, Simpl, and benchmark problems publicly available, so
that readers can use our tool and reproduce the experimental results:

http://prl.korea.ac.kr/simpl

2 Motivating Examples

In this section, we showcase Simpl with four programming problems. To use
Simpl, users need to provide (1) a set of input-output examples, (2) a partial
program, and (3) resources that Simpl can use. The resources consist of a set of
integers, a set of integer-type variables, and a set of array-type variables. The job
of Simpl is to complete the partial program w.r.t. the input-output examples,
using only the given resources.

Problem 1 (Reversing integer). Consider the problem of writing the function
reverse that reverses a given natural number. For example, given 12, the
function should return 21. Suppose a partial program is given as

reverse (n) { r := 0; while (?) { ? }; return r; }

where ? denotes holes that need to be completed. Suppose further Simpl is
provided with input-output examples {1 �→ 1, 12 �→ 21, 123 �→ 321}, integers
{0, 1, 10}, and integer variables {n,r,x}, where a �→ b indicates a single example
with input a and output b.

http://prl.korea.ac.kr/simpl
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Fig. 1. Synthesized results by Simpl (in the boxes). #n denotes the number in Table 1.

Given these components, Simpl produces the solution in Fig. 1(a) in 2.5 s.
Note that Simpl finds out the integer ‘1’ is unnecessary and the final program
does not contain it.

Problem 2 (Counting). The next problem is to write a function that counts
the number of each digit in an integer. The program takes an integer and an array
as inputs, where each element of the array is initially 0. As output, the program
returns that array but now each array element at index i stores the number of
is that occur in the given integer. For example, when a tuple (220, 〈0, 0, 0〉) is
given, the function should output 〈1, 0, 2〉; 0 occurs once, 1 does not occur, and
2 occurs twice in ‘220’. Suppose the partial program is given as

count (n,a) { while(?){?}; return a;}

with examples {(11, 〈0, 0〉) �→ 〈0, 2〉, (220, 〈0, 0, 0〉) �→ 〈1, 0, 2〉}, integers
{0, 1, 10}, integer variables {i,n,t}, and an array variable {a}.

For this problem, Simpl produces the program in Fig. 1(b) in 0.2 s. Note that
i is not used though it is given as a usable resource.
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Problem 3 (Sum of sum). The third problem is to compute 1+(1+2)+ ...+
(1 + 2 + ... + n) for a given integer n. Suppose the partial program

sum(n){ r := 0; while(?){?}; return r;}

is given with examples {1 �→ 1, 2 �→ 4, 3 �→ 10, 4 �→ 20}, integers {0, 1}, and
integer-type variables {n,t,r}.

Then, Simpl produces the program in Fig. 1(c) in 37.6 s. Note that Simpl
newly introduced the inner loop, which is absent in the partial program.

Problem 4 (Absolute sum). The last problem is to sum the absolute values
of all the elements in a given array. We provide the partial program:

abssum(a, len){ r := 0; i := 0;
while(i < len){ if(?){?} else{?}; i:=i+1;};

return r;}

where the goal is to complete the condition and bodies of the if-then-else
statement. Additionally, given a set of input-output examples {(〈−1,−2〉, 2) �→ 3,
(〈2, 3,−4〉, 3) �→ 9}, an integer {0}, integer variables {r,i}, and an array variable
{a}, Simpl produces the program in Fig. 1(d) in 12.1 s.

Finally, we emphasize the following points regarding usage scenarios of
Simpl:

– Simpl requires only a few input-output examples. In experiments (Table 1),
it was enough to provide 2–4 input-output examples for each programming
task. These examples are simple enough to conceive.

– Resources can be over-estimated if uncertain (Problem 1, Problem 2). The
unnecessary resources will be ignored by Simpl.

3 Problem Definition

Language. We designed an imperative language that is small yet expressive
enough to deal with various introductory programming problems. The syntax of
the language is defined by the grammar in Fig. 2.

A l-value (l) is a variable (x) or an array reference (x[y]). An arithmetic expres-
sion (a) is an integer constant (n), an l-value (l), or a binary operation (⊕).
A boolean expression (b) is a boolean constant (true, false), a binary relation
(≺), a negation (¬), or a logical conjunction (∧) and disjunction (∨). Commands

Fig. 2. Language
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Fig. 3. Semantics of the language

include assignment (l := a), skip (skip), sequence (c1; c2), conditional statement
(if b c1 c2), and while-loop (while b c).

A program P = (x, c, y) is a command with input and output variables,
where x is the input variable, c is the command, and y is the output variable.
The input and output variables x and y can be either of integer or array types.
For presentation brevity, we assume that the program takes a single input, but
our implementation supports multiple input variables as well.

An unusual feature of the language is that it allows to write incomplete
programs. Whenever uncertain, any arithmetic expressions, boolean expressions,
and commands can be left out with holes (♦,
,�). The goal of our synthesis
algorithm is to automatically complete such partial programs.

The semantics of the language is defined for programs without holes. Let
X be the set of program variables, which is partitioned into integer and array
types, i.e., X = Xi � Xa . A memory state

m ∈ M = X → V, v ∈ V = Z + Z
∗

is a partial function from variables to values (V). A value is either an integer or
an array of integers. An array a ∈ Z

∗ is a sequence of integers. For instance, we
write 〈1, 2, 3〉 for the array of integers 1, 2, and 3. We write |a|, ai, and ak

i for
the length of a, the element at index i, and the array a0 . . . ai−1kai+1 . . . a|a|−1,
respectively.

The semantics of the language is defined by the functions:

A[[a]] : M → V, B[[b]] : M → B, C[[c]] : M → M

where A[[a]], B[[b]], and C[[c]] denote the semantics of arithmetic expressions,
boolean expressions, and commands, respectively. Figure 3 presents the deno-
tational semantics, where fix is a fixed point operator. Note that the semantics
for holes is undefined.

Synthesis Problem. A synthesis task is defined by the five components:

((x, c0, y), E , Γ, Xi , Xa)
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where (x, c0, y) is an initial incomplete program with holes, and E ⊆ V × V is a
set of input-output examples. The resource components to be used are given as
a triplet, where Γ is a set of integers, Xi is a set of integer-type variables, and
Xa is a set of array-type variables.1 The goal of our synthesis algorithm is to
produce a complete command c without holes such that

– c uses constants and variables in Γ and Xi ∪ Xa , and
– c is consistent with every input-output example:

∀(vi, vo) ∈ E .
(C[[c]]([x �→ vi])

)
(y) = vo.

4 Synthesis Algorithm

In this section, we present our synthesis algorithm that combines enumerative
search with static analysis. We formalize the synthesis problem as a state search
problem (Sect. 4.1) and presents a basic enumerative search algorithm (Sect. 4.2).
Section 4.3 presents our pruning with static analysis.

4.1 Synthesis as State-Search

We first reduce the synthesis task to a state-search problem. Consider a synthesis
task ((x, c0, y), E , Γ, Xi , Xa). The corresponding search problem is defined by the
transition system

(S,�, s0, F )

where S is a set of states, (�) ⊆ S × S is a transition relation, s0 ∈ S is an
initial state, and F ⊆ S is a set of solution states.

– States: A state s ∈ S is a command possibly with holes, which is defined by
the grammar in Sect. 3.

– Initial state: An initial state s0 is an initial partial command c0.
– Transition relation:Transition relation (�) ⊆ S×S determines a next state

that is immediately reachable from a current state. The relation is defined as a
set of inference rules in Fig. 4. Intuitively, a hole can be replaced by an arbitrary
expression (or command) of the same type. Given a state s, we write next(s) for
the set of all immediate next states from s, i.e., next(s) = {s′ | s � s′}.

Example 1. Given Γ = {1}, Xi = {x} and Xa = ∅, consider a state s =
(�; r := 1; r := ♦). Then, next(s) = {(x := ♦; r := 1; r := ♦), (skip; r := 1; r :=
♦), (�;�; r := 1; r := ♦), (if 
 � �; r := 1; r := ♦), (while 
 �; r := 1; r :=
♦), (�; r := 1; r := 1; ), (�; r := 1; r := x), (�; r := 1; r := x + x), (�; r := 1; r :=
x−x), (�; r := 1; r := x∗x), (�; r := 1; r := x/x), (�; r := 1; r := x%x), (�; r :=
1; r := x + 1), (�; r := 1; r := x − 1), (�; r := 1; r := x ∗ 1), (�; r := 1; r :=
x/1), (�; r := 1; r := x%1)}.

1 Resource variables may not exactly coincide with program variables (e.g., Problem 2
in Sect. 2). However, for legibility, we abuse the notation between them.
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Fig. 4. Transition relation (n ∈ Γ , l ∈ Xi ∪ {x[y] | x ∈ Xa ∧ y ∈ Xi})

We write s �� for terminal states, i.e., states with no holes.

– Solution states: A state s is a solution iff s is a terminal state and it is
consistent with all input-output examples:

solution(s) ⇐⇒ s �� ∧ ∀(vi, vo) ∈ E .
(C[[s]]([x �→ vi])

)
(y) = vo.

4.2 Baseline Search Algorithm

Algorithm 1 shows the basic architecture of our enumerative search algorithm.
The algorithm initializes the workset W with s0 (line 1). Then, it picks a state
s with the smallest size and removes the state from the workset (line 3). We
compute a size of a state using a heuristic cost model Mc : c → Z which is
inductively defined as follows:

Mc(l := a) = cost1 + Ma(a)
Mc(skip) = cost2

Mc(c1; c2) = cost3 + Mc(c1) + Mc(c2)
Mc(while b c) = cost4 + Mb(b) + Mc(c)
Mc(if b c1 c2) = cost5 + Mb(b) + Mc(c1) + Mc(c2)

Mc(�) = cost6

where integer constants from cost1 to cost6 represent costs related to each com-
mand. After computing the sizes of all the states in the workset W , we pick
the smallest state since the smaller ones are likely to generalize behavior better
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Algorithm 1. Synthesis Algorithm
Input: A synthesis problem ((x, c0, y), E , Γ, Xi , Xa)
Output: A complete program consistent with E
1: W ← {s0} where s0 = c0
2: repeat
3: Pick the smallest state s from W
4: if s is a terminal state then
5: if solution(s) then return (x, s, y)
6: else
7: if ¬prune(s) then W ← W ∪ next(s)
8: until W = ∅

while avoiding overfitting for the given examples. Therefore, our current imple-
mentation prefers programs without holes to programs with holes (i.e., cost6 >
cost1, ..., cost5). Likewise, the costmodels for arithmetic expressions (Ma : a → Z)
and boolean expressions (Mb : b → Z) are also defined to prefer expressions with-
out holes to expressions with holes.

If s is a solution state, the algorithm terminates and s is returned (line 5).
For a non-terminal state, the algorithm attempts to prune the state by invoking
the function prune (line 7). If pruning fails, the next states of s are added into the
workset and the loop repeats. The details of our pruning technique is described
in Sect. 4.3. At the moment, assume prune always fails.

The baseline algorithm implicitly performs well-known optimization tech-
niques; it normalizes states in order to avoid exploring syntactically different
but semantically the same ones. For instance, suppose we are exploring the state
(r := 0; r := x ∗ 0;�). We normalize it to (r := 0;�) and add it to the work-
set only when the resulting state has not been processed before. To do so, we
first maintain previously explored states and never reconsider them. Secondly,
we use four code optimization techniques: constant propagation, copy propa-
gation, dead code elimination, and expression simplification [1]. For example,
starting from (r := 0; r := x ∗ 0;�), we simplify the expression (x ∗ 0) and
obtain (r := 0; r := 0;�). Then, we apply dead code elimination to remove the
first assignment (r := 0;�). Lastly, we also reorder variables in a fixed order.
For example, when we assume alphabetical order, (x := b + a) is rewritten as
(x := a + b). These normalization techniques significantly improve the speed of
enumerative search.

In addition, the algorithm considers terminating programs only. Our language
has unrestricted loops, so the basic algorithm may synthesize non-terminating
programs. To exclude them from the search space, we use syntactic heuristics to
detect potentially non-terminating loops. The heuristics are: (1) we only allow
boolean expressions of the form x < y (or x > n) in loop conditions, (2) the
last statement of the loop body must increase (or decrease) the induction vari-
able x, and (3) x and y are not defined elsewhere in the loop. If the states belong
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Fig. 5. States that are pruned away

to one of the three cases, we prune the states. For example, we prune the state
(r := 0;while (x > 0){x := ♦;�;x := x − 1}) since the induction variable x
will be defined at the beginning of the loop body (i.e., the state violated the third
rule).

4.3 Pruning with Static Analysis

Now we present the main contribution of this paper, pruning with static analysis.
Static analysis allows to safely identify states that eventually fail to be a solution.
We first define the notion of failure states.

Definition 1. A state s is a failure state, denoted fail(s), iff every terminal state
s′ reachable from s is not a solution, i.e.,

fail(s) ⇐⇒ ((s �∗ s′) ∧ s′ �� =⇒ ¬solution(s′)).

Our goal is to detect as many failure states as possible. We observed two typical
cases of failure states that often show up during the baseline search algorithm.

Example 2. Consider the program in Fig. 5(a) and input-output example (1, 1).
When the program is executed with n = 1, no matter how the hole (♦) gets
instantiated, the output value r is no less than 2 at the return statement. There-
fore, the program cannot but fail to satisfy the example (1, 1).

Example 3. Consider the program in Fig. 5(b) and input-output example (1, 1).
Here, we do not know the exact values of x and r, but we know that 10 ∗ x = 1
must hold at the end of the program. However, there exists no such integer x,
and we conclude the partial program is a failure state.

Static Analysis. We designed a static analysis that aims to effectively identify
these two types of failure states. To do so, our analysis combines numeric and
symbolic analyses; the numeric analysis is designed to detect the cases of Exam-
ple 2 and the symbolic analysis for the cases of Example 3. The abstract domain
of the analysis is defined as follows:

m̂ ∈ M̂ = X → V̂, v̂ ∈ V̂ = I × S
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Fig. 6. Abstract semantics

An abstract memory state m̂ maps variables to abstract values (V̂). An abstract
value is a pair of intervals (I) and symbolic values (S). The domain of intervals
is standard [6]:

I = ({⊥} ∪ {[l, u] | l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u},�I).

For symbolic analysis, we define the following flat domain:

S = (SE�
⊥,�S) where SE : := n | βx (x ∈ Xi) | SE ⊕ SE

A symbolic expression se ∈ SE is an integer (n), a symbol (βx), or a binary
operation with symbolic expressions. We introduce symbols one for each integer-
type variable in the program. The symbolic domain is flat and has the partial
order: s1 �S s2 ⇐⇒ (s1 = ⊥) ∨ (s1 = s2) ∨ (s2 = �). We define the abstraction
function α : V → V̂ that transforms concrete values to abstract values:

α(n) = ([n, n], n)
α(n1 . . . nk) = ([min{n1, . . . , nk},max{n1, . . . , nk}],�).

The abstract semantics is defined in Fig. 6 by the functions:

Â[[a]] : M̂ → V̂, B̂[[b]] : M̂ → B̂, Ĉ[[c]] : M̂ → M̂

where B̂ = {t̂rue, f̂alse}�
⊥ is the abstract boolean lattice.

Intuitively, the abstract semantics over-approximates the concrete semantics
of all terminal states that are reachable from the current state. This is done
by defining the sound semantics for holes: Â[[♦]](m̂), B̂[[
]](m̂), and Ĉ[[�]](m̂).
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An exception is that integer variables get assigned symbols, rather than �, in
order to generate symbolic constraints on integer variables.

In our analysis, array elements are abstracted into a single element. Hence,
the definitions of Â[[x[y]]] and Ĉ[[x[y] := a]] do not involve y. Because an abstract
array cell may represent multiple concrete cells, arrays are weakly updated by
joining (�) old and new values. For example, given a memory state m̂ = [x �→
([5, 5],�), ...], Ĉ[[x[y] := 1]](m̂) evaluates to [x �→ ([1, 5],�), ...].

For while-loops, the analysis performs a sound fixed point computation. If the
computation does not reach a fixed point after a fixed number of iterations, we
apply widening for infinite interval domain, in order to guarantee the termination
of the analysis. We use the standard widening operator in [6]. The function fîx

and ĉond in Fig. 6 denote a post-fixed point operator and a sound abstraction of
cond, respectively.

Pruning. Next we describe how we do pruning with the static analysis. Suppose
we are given examples E ⊆ V × V and a state s with input (x) and output (y)
variables. For each example (vi, vo) ∈ E , we first run the static analysis with the
input α(vi) and obtain the analysis result (itvs, ses) :

(itvs, ses) =
(Ĉ[[s]]([x �→ α(vi)])

)
(y).

We only consider the case when itvs = [ls, us] (when itvs = ⊥, the program
is semantically ill-formed and therefore we just prune out the state). Then, we
obtain the interval abstraction [lo, uo] of the output vo, i.e., ([lo, uo],−) = α(vo),
and generate the constraints Cs

(vi,vo)
:

Cs
(vi,vo)

= (ls ≤ lo ∧ uo ≤ us) ∧ (ses ∈ SE =⇒ lo ≤ ses ≤ uo).

The first (resp., second) conjunct means that the interval (resp., symbolic) analy-
sis result must over-approximate the output example. We prune out a state s iff
Cs

(vi,vo)
is unsatisfiable for some example (vi, vo) ∈ E :

Definition 2. The predicate prune is defined as follows:

prune(s) ⇐⇒ Cs
(vi,vo)

is unsatisfiable for some (vi, vo) ∈ E .

The unsatisfiability can be easily checked, for instance, with an off-the-shelf SMT
solver. Examples 4 and 5 show how the above pruning works.

Example 4. Consider the Example 2 again, where (1, 1) ∈ E . Let s be the state
in Fig. 5(a). If we run the analysis with the input α(1), we get

([2,+∞],�) =
(Ĉ[[s]]([n �→ α(1)])

)
(r).
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To see why, each time the loop-body is executed, the interval value of n becomes
[−∞,+∞], and the interval value of r is stabilized at [2,+∞] after the third
execution of the loop-body. Also, the resulting symbolic value of r is �, because if
we join the first loop-body execution result 2 and the second loop-body execution
result βn + 1, the resulting value becomes � and stabilized as � thereafter. As
a result, we get the constraint

Cs
(vi,vo)

= (2 ≤ 1 ∧ 1 ≤ +∞)

since (itvs, ses) = ([2,+∞],�), [lo, uo] = [1, 1], and � �∈ SE. The constraint is
unsatisfiable since 2 ≤ 1 is never true. Hence, we prune out the state s.

Example 5. Consider the Example 3 again, where (1, 1) ∈ E . Let s be the state
in Fig. 5(b). If we run the analysis with the input α(1), we get

([−∞,+∞], βx ∗ 10) =
(Ĉ[[s]]([n �→ α(1)])

)
(r)

since, by the semantic computations of the command hole (�), interval values
of the variables become [−∞,+∞] and symbolic value of r is fixed at βx ∗ 10.
As a result, we get the constraint

Cs
(vi,vo)

= (−∞ ≤ 1 ∧ 1 ≤ +∞) ∧ (βx ∗ 10 ∈ SE =⇒ 1 ≤ βx ∗ 10 ≤ 1)

where (itvs, ses) = ([−∞,+∞], βx ∗ 10) and [lo, uo] = [1, 1]. This constraint is
unsatisfiable since βx ∗ 10 is in SE (i.e., βx ∗ 10 ∈ SE), but no βx exists such that
1 ≤ βx ∗ 10 ≤ 1 holds. Therefore, we prune out the state s.

The following theorem states that our pruning is safe:

Theorem 1 (Safety). ∀s ∈ S. prune(s) =⇒ fail(s).

That is, we prune out a state only when it is a failure state, which formally
guarantees that the search algorithm with our pruning finds a solution if and
only if the baseline algorithm (Sect. 4.2) does so.

5 Evaluation

To evaluate our synthesis algorithm, we gathered 30 introductory level problems
from several online forums2 (Table 1). All of the benchmark problems we used are
publicly available with our tool Simpl3. The problems consist of various tasks
of manipulating integers and arrays of integers. Some problems are non-trivial
for novice programmers to solve; the problems require the novices to come up
with various control structures such as nested loops and combinations of loops
and conditional statements.

2 E.g., http://www.codeforwin.in.
3 http://prl.korea.ac.kr/simpl.

http://www.codeforwin.in
http://prl.korea.ac.kr/simpl
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For all but three problems (#23, #24, #29), we used partial programs similar
to those in Fig. 1(a)–(c), which consist of initialization statements followed by a
single loop with empty condition and body: e.g.,

problem (n) { r := 0; while (?) { ? }; return r; }

That is, in most cases, the synthesis goal is to complete the loop condition and
body. For the other problems (#23, #24, #29), we used partial programs similar
to the one in Fig. 1(d), where the job is to complete the condition and body of
conditional statements. For instance, for problem #23, we used the following
template on the left-hand side. The synthesized program is given on the right-
hand side.

problem23 (arr, len) {
i := 0;
m := arr[i];
while (i < len) {
if (?) { ? };
i=i+1;

};
return m;

}

problem23 (arr, len) {
i := 0;
m := arr[i];
while (i < len) {
if ( arr[i]>m ) { m:=arr[i]};
i=i+1;

};
return m;

}

For each benchmark, we report the number of integer-type variables (the
column ‘IVars’), array-type variables (the column ‘AVars’), integer constants
(the column ‘Ints’), and input-output examples (the column ‘Exs’) provided,
respectively. To show practicality of Simpl, we gave over-estimated resources
(‘IVars’, ‘AVars’, ‘Ints’) for some benchmarks, provided small number (2–4) of
input-output examples, and configured the examples to be easy even for the
beginners to come up with, as shown in Sect. 2. All of the experiments were
conducted on MacBook Pro with Intel Core i7 and 16 GB of memory.

Table 1 shows the performance of our algorithm. The column ‘Enum’ shows
the running time of enumerative search without state normalization. In that
case, the average runtime was longer than 616 s, and three of the benchmarks
timed out (>1 h). The column ‘Base’ reports the performance of our baseline
algorithm with normalization. It shows that normalizing states succeeds to solve
all benchmark problems and improves the speed by more than 3.7 times on
average, although it degrades the speed for some cases due to normalization
runtime overhead.

On top of ‘Base’, we applied our static-analysis-guided pruning technique
(the column ‘Ours’). The results show that our pruning technique is remarkably
effective. It reduces the average time to 6.6 s, improving the speed of ‘Base’ by 25
times and the speed of ‘Enum’ by more than 93 times. We manually checked that
all of the synthesized solutions are correct. We also found that all the solutions
are quite intuitive and instructive as demonstrated in Sect. 2.
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Table 1. Performance of Simpl. ⊥ denotes timeout (>1 h). Assume ⊥ as 3,600 s for
the average of ‘Enum’.

6 Related Work

In this section, we broadly survey recent approaches in program synthesis. Most
importantly, our work is different from existing program synthesis techniques
in that we combine enumerative program synthesis with semantic-based static
analysis.



378 S. So and H. Oh

Program Synthesis Techniques. We compare our algorithm with three most
prevalent synthesis approaches: enumerative synthesis, version space algebra
(VSA), and solver-aided method.

Enumerative synthesis has been widely used to synthesize recursive func-
tional programs [2,8,9,24,26], API-completion [7,12,13,22,25], tree-structured
data transformation [33], and regular expressions [21]. Escher [2] uses a heuris-
tic goal-directed search to synthesize functional programs. Unlike ours, their algo-
rithm finds smaller programs that partially satisfy given examples, and combines
partial solutions with if-then-else statements. Although effective for recursive pro-
grams, it may cause overfitting in our case. In [7–9,12,13,22,24–26], type systems
are used to exclude ill-typed programs from search space (i.e., type-directed syn-
thesis). However, type-based pruning is not applicable to ours because enumer-
ated terms are all well-typed. This is also the case for regular expression synthe-
sis [21]. In λ2 [8], deduction is also used in order to reject partial programs that
are logically inconsistent with input-output examples. Feser et al. [8] designed a
set of deduction rules for higher-order components such as map and fold. How-
ever, the deduction approach is not applicable to ours; it is completely nontrivial
to design useful deduction rules for programming constructs such as while-loop
and conditional. AlphaRegex [21] performs over- and under approximations on
partial regular expressions to prune them when further search cannot produce any
solutions. But those pruning techniques are specialized for regular expression syn-
thesis. Hades [33] uses SMT solvers and decision tree learning to perform path
transformations, but again it is not appropriate for imperative program synthesis.
To sum up, we cannot use existing pruning techniques and in this paper we show
that using static value analysis is a promising alternative for synthesizing imper-
ative programs.

Many program synthesis approaches using version space algebra (VSA) have
been proposed for string manipulation [10,17,23,27,32], number transforma-
tion [28], extracting data [4,20], and data filtering [31]. VSA is a kind of divide-
and-conquer search strategy where a solution program is constructed by com-
bining the solutions to sub-problems (e.g., some portions of the examples) in a
top-down way. In contrast, we do not look for a sub-solution for each of the sub-
problems, but instead in a bottom-up way, we find a total solution that satisfies
all the examples at once.

Solver-aided methods have also been used many times to synthesize recur-
sive functions [18], dynamic programming implementations [15], loop-free pro-
grams for bit-vector applications [11], and low-level missing details for program-
mers [29]. They use counter-example guided inductive synthesis (CEGIS) which
iteratively refines the target concept from the counter-examples provided by
SMT/SAT solver until the solution is verified by the solver. We use solvers to
check the satisfiability of the symbolic constraints generated by the static analy-
sis, not to refine the search space based on the counter-examples.

Additionally, DeepCoder [3] uses deep learning to guide search in program
synthesis. In DeepCoder, a probabilistic distribution is learned to predict the
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presence or absence of each function in domain-specific languages. For exam-
ple, given an input-output list [−17,−3, 4, 11] �→ [−12,−68], DeepCoder learns
that a list-filtering function is likely to be involved in the resulting program,
since the number of elements in the input list is reduced. This idea of learn-
ing to rank programs is orthogonal to our approach. In [16], model checking
was applied to guide genetic algorithm. Katz and Peled used model checking
in computing fitness function, which computes fitness score of each candidate.
Essentially, however, the genetic algorithm does not guarantee finding a solution
unlike enumerative synthesis approach.

Imperative Program Synthesis. There has been little work on imperative
program synthesis. In 2003, Lau et al. [19] proposed an approach to learning
programs in a subset of imperative Python using version space algebra. How-
ever, the system requires a value trace for each program point as input (i.e., pro-
gramming by demonstration), which is unrealistic to be used. In 2005, Colón [5]
presented a schema-guided synthesis of imperative programs from pre- and post
condition that compute polynomial functions where the programs can only be
generated from a collection of available schemas, which has an inherent disad-
vantage of incompleteness. In 2006, Ireland et al. [14] proposed an approach
to constructing imperative programs from logical assertions by leveraging the-
orem proving technique. We believe that it is a good direction to use theorem
proving techniques with lightweight logical specifications as inputs for future
work in order to synthesize more complicated programs. In 2010, Srivastava
et al. [30], the most recent work on imperative program synthesis to the best of
our knowledge, presented a view that treats a synthesis problem as verification
problem. The researchers showed that they can synthesize complex tasks such
as sorting and dynamic programming. Although inspiring, their system’s ability
is limited to underlying program verifiers that solve given synthesis conditions,
thus more efficient verifiers need to be developed first in order to deal with more
complicated synthesis tasks.

7 Conclusion

In this paper, we have shown that combining enumerative synthesis with static
analysis is a promising way of synthesizing imperative programs. The enumer-
ative search allows us to find the smallest possible, therefore general, program
while the semantic-based static analysis dramatically accelerates the search in
a safe way. We demonstrated the effectiveness on 30 introductory programming
problems gathered from online forums.
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Abstract. Union types allow to capture the possibility of a term to be of
several possibly unrelated types. Traditional static approaches to union
types are untagged and tagged unions, which present dual advantages
in their use. Inspired by recent work on using abstract interpretation to
understand gradual typing, we present a novel design for union types,
called gradual union types. Gradual union types combine the advan-
tages of tagged and untagged union types, backed by dynamic checks.
Seen as a gradual typing discipline, gradual union types are restricted
imprecise types that denote a finite number of static types. We apply
the Abstracting Gradual Typing (AGT) methodology of Garcia et al. to
derive the static and dynamic semantics of a language that supports both
gradual unions and the traditional, totally-unknown type. We uncover
that gradual unions interact with the unknown type in a way that man-
dates a stratified approach to AGT, relying on a composition of two
distinct abstract interpretations in order to retain optimality. Thanks to
the abstract interpretation framework, the resulting language is type safe
and satisfies the refined criteria for gradual languages. We also show how
to compile such a language to a threesome cast calculus, and prove that
the compilation preserves the semantics and properties of the language.

1 Introduction

Gradual typing originated as an approach to smoothly combine static and
dynamic type checking within the same programming language [29]. Over the
years, gradual typing has been applied to languages with more advanced fea-
tures, such as objects [26], polymorphism [2], and type inference [13] among
others. Gradual typing has also been developed beyond the original static/dy-
namic typing dualistic view to accommodate the integration of static typing
disciplines of different strengths, such as information-flow typing [10], effects [3],
and logical refinements [21].

Recently, Garcia et al. [14] identified that the general framework of Abstract
Interpretation (AI) [9] can be applied, at the type level, to lay down solid foun-
dations of gradual typing in its various forms, thereby justifying several design
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decisions and criteria that were originally discovered and refined by trial-and-
error. In essence, the Abstracting Gradual Typing approach (AGT for short)
conceives of gradual types as abstracting (in the AI sense) a set of possible sta-
tic types. Exploiting an underlying Galois connection, one can systematically
derive a gradually-typed language that is crisply connected to the original static
discipline, and satisfies a number of essential criteria for such languages [30].

Stepping back, AGT reinforces an even broader interpretation of gradual
typing: that of soundly dealing with imprecision at the type level. Indeed, one can
see dynamically-typed languages as languages with highly-imprecise static type
information, and the original gradually-typed languages as allowing to reason
about partial type information. For instance, consider a function f of gradual
type Int → ?; this type is imprecise in that it does not provide any information
about the values returned by f , but it does specify precisely that f is a function,
which furthermore expects an integer argument. Therefore, the gradual language
can statically reject f + 1 or f(true), accept f(1), and optimistically accept
f(1) + 2 subject to a dynamic check that the value of f(1) is indeed an integer.
Similarly, integrating a simply-typed language with gradual support for effects [3]
can be viewed as dealing with imprecision of effect information.

Inspired by this focus on imprecision, we observe that standard static type
systems have long been proposed to deal with a basic form of imprecision: the
possibility for a value to be of several, possibly-unrelated types. In the literature,
two approaches have been developed to safely, and fully statically, deal with the
possibility of an expression to have possibly different types: disjoint (or tagged)
union types, such as sum types T1 + T2 and variant types, and untagged union
types, usually noted T1 ∨T2 [23]. Both forms of union types have complementary
pros and cons when viewed from a pragmatic angle.

The understanding of both gradual types and union types as different ways
to deal with imprecision at the type level suggests a novel, gradual interpretation
of union types. Following the abstract interpretation of gradual types put forth
in AGT, a gradual union T1 ⊕ T2 is a gradual type that abstracts both T1 and
T2. Seen in this light, a gradual union is a gradual type that is more precise than
the prototypical, fully-unknown, gradual type ?, which abstracts any possible
type. Starting from this insight, systematically applying the AGT methodology
yields a novel point in the design space of both union types and gradual types.

Adding gradual unions to a simply-typed language relaxes the typing disci-
pline, but does not allow full dynamic type checking. To achieve this, one needs
to include both the unknown type ? and gradual unions. A second contribution
of this paper is to uncover that combining these two gradual type construc-
tors in the same language demands a stratified approach to AGT, in which the
semantics of gradual types comes from the composition of two distinct abstract
interpretations.

Contributions. This article makes the following specific contributions:
– A novel design of union types that combines benefits of both tagged and

untagged unions, with added static flexibility backed by runtime checks. Com-
pared to a standard gradually-typed language with only the totally-unknown
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type ?, the resulting design is stricter, allowing more blatantly wrong pro-
grams to be statically rejected.

– A first example of a stratified approach to AGT. To derive the static
semantics of a gradual language, AGT requires a Galois connection between
gradual types and sets of static types, which then guides the lifting of func-
tions and predicates on static types to their gradual counterparts [14]. We
observe that applying AGT directly to introduce both the unknown type and
gradual unions breaks optimality of the abstraction, thereby weakening the
meaning of type information, both statically and dynamically. To address
this, we develop a stratified approach that allows us to recover optimality.
More specifically, we first apply AGT to support only the unknown type, and
lift this Galois connection and derived liftings to their powerset counterpart.
We then apply AGT once more with another Galois connection to introduce
support for gradual unions, which allows us to define liftings based on the
previously-defined powerset liftings. We prove that the composed abstraction
is optimal. We conjecture that this technique might prove helpful in integrat-
ing other gradualization efforts.

– The formalization and meta-theory of the proposed language, includ-
ing type safety and the gradual guarantees of Siek et al. [30]; these results
follow directly, by construction, from relying on the AGT methodology.

– A compilation scheme to an internal language with threesomes, a
space-efficient representation for casts [28]. We prove the correctness of the
compilation with respect to the reference semantics derived by AGT using
logical relations; this is the first case of formally relating the reference dynamic
semantics obtained by AGT with a cast insertion translation.

Structure. Section 2 briefly reviews tagged and untagged unions, highlighting
their pros and cons, and then informally introduces gradual unions, comparing
them with standard gradual types and with the other kinds of unions, includ-
ing those supported by several recent languages such as Flow and TypeScript,
among others. Section 3 describes the static semantics of GTFL⊕, a language
with both gradual unions and the unknown type, using the Abstracting Gradual
Typing methodology. Section 4 describes the runtime semantics of the language
by translation to a threesome cast calculus, and gives the formal properties of
the language. Section 5 discusses related work and Sect. 6 concludes.

Complete definitions, as well as the proofs of all the results stated in the
paper, can be found in the companion technical report [33]. A prototype imple-
mentation is available online, showing interactive typing and reduction deriva-
tions for arbitrary source programs: http://pleiad.cl/gradual-unions/.

2 Background and Motivation

We first briefly review standard tagged and untagged union types [23], high-
lighting the tradeoffs associated with each approach, and then introduce gradual
union types as a novel point in the design space. We compare gradual unions

http://pleiad.cl/gradual-unions/
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to other approaches to union types, including practical languages with unions
supported by runtime type tests. Finally, we compare gradual unions with the
standard gradual types introduced by Siek and Taha [29].

2.1 Tagged Unions

Tagged unions, also called disjoint union types, denote values of possibly different
types. The “disjointness” of the union comes from the fact that elements must
be explicitly tagged so that it is clear to which type an element belongs. Tagging
allows type-safe disambiguation through a case analysis construct.

The simplest form of tagged unions are binary sum types, noted T1+T2, with
injection forms inl and inr, and a disambiguation case expression. For instance,
inl 10 :: Int + Bool injects the integer 10 into the sum type Int + Bool. The tag
inl denotes the left part of the sum. Similarly, inr true :: Int + Bool injects true
to the right of the sum. Note that the ascription :: is necessary to maintain a
simple syntax-directed type system; different techniques can be used to alleviate
notation for programmers [23].

Given a value of type Int + Bool, one cannot use it directly. For instance,
λx : Int + Bool.x + 1 is not well typed. To use a tagged value, one must first
disambiguate through an explicit case analysis, considering each tag explicitly,
e.g. λx : Int + Bool.case x of inl x ⇒ x + 1 | inr x ⇒ if x then 1 else 0.

Note that Int + Bool is different from Bool + Int because the injection tag is
relative to the position in the sum type. Sums can be generalized to variants,
which are n-ary sums with custom labels instead of the positional inl and inr tags.
In the case of variants, a type-case construct similar to case forces programmers
to consider all possible alternatives, thereby statically ensuring the absence of
runtime type errors.

To deal with with values of statically-unknown types, several proposals add
a type Dynamic whose values are pairs of a plain value and a type tag [1,16].
The type Dynamic is therefore akin to an infinite tagged union, where tags are
types. Disambiguation through case analysis therefore requires a default branch
to handle unconsidered alternatives generally.

This general approach also explains how several languages support union
types without needing any explicit tagging operation. For instance, in safe
dynamic languages, all values are readily tagged with their class (either in the
sense of Harper [15], e.g. Int, Bool, Function, or, for class-based object-oriented
languages, their actual class). This allows disambiguation of unions through run-
time type testing (either via a type-case analysis or casts that can fail). This
approach is exploited in several retrofitted type systems such as TypeScript [8],
Flow [11] and Typed Racket [31,32]. Explicit disambiguation of unions can also
be supported through pattern matching, as in CDuce [5] and Dotty [25].

2.2 Untagged Unions

An untagged union, noted T1∨T2, denotes the union of the values of type T1 and
of type T2, without any tagging mechanism to support disambiguation. In this
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set-theoretic interpretation [4,12,22], Int ∨ Int is the same type as Int; and a
value of type T1 is a value of type T1 ∨ T2, without any injection construct.

Untagged unions can be used to allow the branches of conditionals to have
unrelated types: for instance, the function λx : Bool.if x then 1 else false can be
considered well-typed at Bool → Int∨Bool. This is the approach followed by the
CDuce programming language [5], for instance.

Automatically introducing imprecision through untagged unions can however
lead to unwanted programs being accepted. An alternative approach is for the
typing rule for conditional expressions to require both branches to be of the same
type, and to expect the programmer to use an explicit type ascription to specify
that imprecision is desired; e.g. λx : Bool.if x then (1 :: Int∨Bool) else false. Note
that the ascription does not imply any runtime tagging; it is a purely static
artifact. Also, because of the set-theoretic interpretation of types, it is sufficient
to ascribe imprecision in one of the two branches.

Untagged unions have no projection construct either; the only safe operations
on a value of type T1 ∨ T2 are those that are supported by both T1 and T2. Note
that this makes untagged union restrictive to use; for instance, nothing useful
can be done with a value of type Int∨Bool. For instance, λx : Int∨Bool.x+1 is not
well-typed, because x could be a boolean value; and there is no disambiguation
expression like case to handle each alternative separately.

This does not mean that untagged unions are useless; for instance, if the lan-
guage has records, then it is safe to access fields that are common to both types.
As noted by Pierce [23], untagged unions have traditionally been much more
frequent in program analysis than in programming languages, where they were
mostly used in type systems for semi-structured data [6,18], before being gen-
eralized in CDuce. Finally, note that the C language supports unsafe untagged
unions, allowing programmers to use operations that are supported by either T1

or T2, at their own risk!

2.3 Gradual Unions

Tagged and untagged unions are the only safe approaches to statically deal with
imprecision: either explicitly tag the imprecision so as to be able to safely dis-
criminate later on, or assume the loss of precision and restrict what can be
done with imprecisely-typed values. Tagged unions have the benefit of allowing
programmers to fully use values, but only after explicit case-based disambigua-
tions. Untagged unions have the benefit of requiring neither explicit injection
nor projection, but only allow restricted usage of values.

If we are willing to accept some form of dynamic checking errors, however,
we can combine the benefits of both tagged and untagged unions by viewing a
union type as a kind of gradual type: T1 ⊕ T2 is a gradual type that represents
both T1 and T2. A gradual union supports the same kind of optimistic static
checking that standard gradual typing provides.

For instance, f � λx : Int⊕Bool.x + 1 is (optimistically) well typed, because
x might possibly be an Int, without any explicit projection or case analysis. The
expressions f 1 and f true are also well-typed because injection to a gradual
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union is implicit. The expression f 1 evaluates to 2, as expected. But because x
might in fact be a Bool, a runtime check is implicitly introduced before applying
the + operator: hence the expression f true produces a runtime cast error.

As a gradual type, a gradual union allows clearly incorrect programs to be
rejected statically. For instance, changing the body of f to x 1 is statically
rejected, because x cannot possibly be a function. Similarly, f “hola′′ is statically
rejected, because f only tolerates integer or boolean arguments.

Note that compared to untagged unions, the use of a value with a gradual
union type T1 ⊕ T2 is accepted if the operations make sense for either T1 or T2

(and not both). This is just like untagged unions in C, but backed by runtime
checks to ensure type safety. Injecting values into a gradual union type can be
done implicitly as when applying g in the example above, or using an ascription,
e.g. g � λx : Bool.if x then (1::Int⊕Bool) else (false::Int⊕Bool) has type Bool →
Int ⊕ Bool.1

2.4 Comparing Unions

We summarize the characteristics of each form of union types as follows:

injection projection use

Tagged unions
sums explicit explicit full
type tests/casts implicit explicit full

Untagged unions none none restricted
Gradual unions implicit implicit full

To illustrate the convenience of gradual unions compared to alternative
approaches, consider the following simple program:

let x: Bool ⊕ Int ⊕ String = 10

(λx: Int ⊕ Bool. x+1) x

The program introduces a variable x that can be one of three types, and initializes
it to the number 10. It then passes it as argument to a lambda that expects either
an Int or a Bool, and adds 1 to it. This program is well-typed, and returns 11. If
x is initialized with a string, the program fails at runtime before the application
of the function; if it is initialized with a boolean, the runtime error occurs before
the addition.

This example would not be well-typed with untagged unions. This is because
the intersection of Int and Bool and String is empty. If all three types have a
common method, say toString, then the body of the lambda can only safely
invoke x.toString().

Turning to tagged unions, using standard sum types, the equivalent program
would be fairly cumbersome to write because all injections and projections have
to be manually introduced by the programmer, and deal with exact positions:
1 Similarly to untagged unions, one could design a language whose conditional expres-

sion implicitly introduces imprecision, without the need for any ascription (Sect. 2.2);
we do not further consider this possible design and use ascriptions explicitly.
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1 let x: Bool + (Int + String) = inr inl 10

2 let x2: Int + Bool = case x of

3 | inl y => inr y

4 | inr y => case y of

5 | inl z => inl z

6 | inr z => throw new Error("not�an�Int�or�Bool")

7 (λx: Int + Bool. case x of

8 | inl y => y + 1

9 | inr y => throw new Error("not�an�Int")) x2

Note the need for an explicit intermediate step (x2) to safely go from the ternary
union to the binary union.

The same program can also be written using implicitly-tagged unions with
type-test disambiguation. As expected, the code is more lightweight than with
sums thanks to implicit injection. For instance, in Flow:

1 const x: boolean | number | string = 10

2 const foo = (x: number | boolean ): number => {

3 if(typeof x =="number") return x + 1

4 else throw new Error("not�a�number")

5 }

6 if(typeof x =="boolean"|| typeof x =="number") foo(x)

7 else throw new Error("not�a�boolean�or�number")

Note that projections must be realized manually via typeof (lines 3, 4, 6 and 7).

Evolving precision. The advantage of gradual unions does not only lie in the
simplicity and compactness of the program definition. It also lies in its robustness
in the face of precision-related changes. For instance, suppose that as the software
matures, the programmer is now convinced that x will always be initialized with
a number and that the function can simply only accept numbers. With sums,
the program is so fragile that it would need to be modified at every injection
and projection point to account for this change in precision. The Flow version
would still run as is, but would feature a lot of dead code. Further decreasing
precision would require adding checks at various projection points. With gradual
unions, it is enough to adjust the type annotations—the rest of the program is
unchanged!

The fact that the static-to-dynamic spectrum is navigated solely through
the precision of type annotations, without requiring further modification of the
program, is a key asset of gradual typing in general. The gradual guarantee of
Siek et al. [30] further characterizes the relation between the static and dynamic
semantics of programs that only differ in the precision of their type annotations,
and will be discussed further when addressing the meta-theory of GTFL⊕.

Higher-order types. Finally, a major limitation of projections from unions using
explicit type tests is that they do not support higher-order types. For instance,
because one cannot decide whether an arbitrary function (e.g. of tag/class Func-
tion) always behave as a function of a particular type, programmers have to
manually wrap functions with pre-post type checks.
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Consider, in Flow or TypeScript, two functions of the following types:

f: (number | boolean) => (number | boolean)

g: (( number | string) => (boolean | string )) => string

To safely support the application g(f), one needs to explicitly wrap f as follows:

1 const wrapper = (x: number | string ): string | boolean =>{

2 if (typeof x ==="number") {

3 const result = f(x)

4 if (typeof result ==="boolean") return result

5 else throw new Error("not�a�boolean")

6 } else throw new Error("not�a�number")

7 }

and then pass the wrapped function as argument: g(wrapper).
Conversely, with gradual unions, one can simply write:

let f: (Int ⊕ Bool) -> (Int ⊕ Bool) = ...

let g: ((Int ⊕ String) -> (Bool ⊕ String)) -> String = ...

g(f)

for the exact same behavior; all the necessary checks and wrappers are han-
dled under the hood.

2.5 Gradual Unions vs. Standard Gradual Types

Gradual typing has always been formulated in terms of an unknown type, fre-
quently written ?, which denotes any possible type [29]. Furthermore, when
structural types are supported, gradual types can be more precise than the
fully-unknown type: for instance Int → ? denotes all function types from Int to
possibly any type.

To illustrate the key difference between gradual unions and standard gradual
types, consider a function h that always returns either an Int or a Bool. Starting
from a simple typing discipline, with standard gradual types, the most precise
type one can give to h is Bool → ?. However, this type allows for too much
flexibility that was not intended: because h true has type ?, it can subsequently
be used in any context, even (h true) 1, which is clearly always going to fail since
h never returns a function. The problem comes form the fact that the gradual
type used for the codomain of h, ?, is too imprecise—yet it is the only available
type to denote both Int and Bool. Hence, the programmer cannot express a more
restricted form of flexibility. Gradual unions address this need. For instance,
recalling function g from Sect. 2.3 above, (g true) 1 is statically rejected.

Gradual union types are a novel way to relax a static typing discipline in
a restricted manner. While the discussion above insists on the advantages of
this restricted flexibility, it necessarily presents drawbacks as well. In particular,
a language with only gradual unions cannot fully embed the untyped lambda
calculus. In order to get the best of both worlds, one needs a language that
supports both the fully-unknown gradual type ? in addition to gradual unions.
This way, programmers can navigate the full static-to-dynamic spectrum, with
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more interesting intermediate points offered by gradual unions. In the rest of
this paper, we design and formalize such a language.

3 GTFL⊕: Static Semantics

We now formalize GTFL⊕, a gradual language with both gradual unions and the
unknown type. As hinted previously, we follow the Abstracting Gradual Typing
(AGT) methodology [14] to derive the static semantics of GTFL⊕:

1. We start from a language with a fully static typing discipline, STFL.
2. We define the syntax of gradual types, and give them meaning via a con-

cretization function and its corresponding most precise abstraction, forming
a Galois connection. Crucially, in this step we realize that the two forms
of gradual types must be handled in a stratified manner in order to ensure
optimality.

3. We derive the static semantics of the gradual language by lifting type pred-
icates and type functions used in the static type system through the Galois
connection.

The most novel part of our development are steps 2 and 3, which showcase how
to compose Galois connections related to different gradual type constructors. We
address the dynamic semantics of GTFL⊕ to Sect. 4.

3.1 The Static Language: STFL

Our starting point is a simply-typed functional language with booleans and
integers, called STFL [14]. A term can be a lambda abstraction, a boolean, a
number, a variable, an application, an addition, a conditional, or an ascription.
The typing rules are standard—omitted for space reasons, available in [33]—
save for the fact that their presentation follows some simple conventions, helpful
for gradualization [14]: the type of each sub-expression is kept opaque, the type
relations (=) are made explicit as side conditions, and partial type functions
(dom, cod , equate) are used explicitly instead of relying on matching metavari-
ables. The dynamic semantics and type safety of STFL are completely standard.

3.2 Defining Gradual Types Separately

GTFL⊕ supports both the unknown type ? and gradual unions with ⊕. In this
section, we look at both gradual type constructors separately in order to precisely
define their meaning. Recall that following AGT, the meaning of a gradual type
is the set of static types that it possibly represents, defined by a concretization
function γ. Given such a meaning, the AGT methodology directs us to define
a sound and optimal abstraction function α, hence forming a Galois connec-
tion [14], which is then used to lift static type predicates and type functions to
operate on gradual types. We study both gradual type constructors in turn.



A Gradual Interpretation of Union Types 391

Let us first recall from [14] the Galois connection for gradual types made up
with the (nullary constructor) ?, here denoted GType.

G ∈ GType

G :: = ? | Bool | Int | G → G

The meaning of these gradual types is standard, and defined through con-
cretization by Garcia et al. [14] as follows:

Definition 1 (GType Concretization). γ? : GType → P(Type)

γ?(Int) = { Int } γ?(Bool) = {Bool } γ?(?) = Type

γ?(G1 → G2) = {T1 → T2 | T1 ∈ γ?(G1) ∧ T2 ∈ γ?(G2) }

Note in particular that the meaning of the fully unknown type ? is the set of
all types. Similarly, the meaning of the imprecise type Int → ? is the set of all
function types Int → T , for any T ∈ Type.

Concretization naturally induces the notion of precision among gradual types,
which reflects the amount of static information of a gradual type [14].

Definition 2 (GType Precision). G1 is less imprecise than G2, notation
G1 � G2, if and only if γ?(G1) ⊆ γ?(G2).

The following abstraction α? naturally forms a Galois connection with γ?:2

Definition 3 (GType Abstraction). α? : P(Type) ⇀ GType

α?({T }) = T α?(T1 → T2) = α?(T1) → α?(T2) α?(∅) = undefined

α?(T ) = ? otherwise

The abstraction retains as much precision as possible (e.g. singletons, function
type constructor) and degrades to the unknown type otherwise. Note that α? is
undefined for the empty set [14].

Importantly, γ? and α? form a Galois connection:

Proposition 1 (α? is Sound and Optimal). If T is not empty, then

(a) T ⊆ γ?(α?(T )). (b) T ⊆ γ?(G) ⇒ α?(T ) � G.

Soundness (a) means that α always produces a gradual type whose con-
cretization overapproximates the information in the original set. Optimality (b)
means that α is the best sound approximation function: it produces the most
precise gradual type that abstracts a given set.

2 We use the hat notation X to refer to a set of elements X (e.g. T is a set of static

types, and T is a set of sets of static types).
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Let us now consider a Galois connection for the novel gradual type construc-
tor introduced in this work, gradual unions. We use SType to denote gradual
types made up only of gradual unions, i.e. without ?.

S ∈ SType

S ::= S ⊕ S | Bool | Int | S → S

Note that this syntax admits n-ary unions recursively through S ⊕ S. We
consider gradual unions to be syntactically equivalent up to associativity of ⊕,
i.e. S1 ⊕ (S2 ⊕ S3) ≡ (S1 ⊕ S2) ⊕ S3. Gradual unions represent the finite set of
types represented (recursively) by each constituent:

Definition 4 (SType Concretization). γ⊕ : SType → Pfin(Type)

γ⊕(Int) = { Int } γ⊕(Bool) = {Bool } γ⊕(S1 ⊕ S2) = γ⊕(S1) ∪ γ⊕(S2)

γ⊕(S1 → S2) = {T1 → T2 | T1 ∈ γ⊕(S1) ∧ T2 ∈ γ⊕(S2) }

For instance γ⊕(Int⊕Bool⊕(Int → Bool)) = { Int,Bool, Int → Bool }. Because
gradual unions only produce finite sets of static types, the corresponding abstrac-
tion also only needs to be defined on finite sets, and therefore can produce the
gradual union with all the elements, noted ⊕T :

Definition 5 (SType Abstraction). α⊕ : Pfin(Type) ⇀ SType

α⊕(T ) = ⊕T if T = ∅

Here again, 〈γ⊕, α⊕〉 forms a Galois connection.

3.3 Combining Gradual Types: Take 1

Now that we have defined the meaning of gradual types formed with the unknown
type ?, as well as the meaning of gradual types formed with gradual unions ⊕,
we turn to defining the meaning of gradual types in GTFL⊕, which combine
both constructors, denoted UType:

U ∈ UType

U ::= ? | U ⊕ U | Bool | Int | U → U (gradual types)

A first seemingly natural approach is to define the concretization function
for UType by combining both concretization functions for GType and SType:

Definition 6 (UType Concretization, Take 1). γ : UType → P(Type)

γ(Int) = { Int } γ(Bool) = {Bool } γ(U1 ⊕ U2) = γ(U1) ∪ γ(U2)

γ(?) = Type γ(U1 → U2) = {T1 → T2 | T1 ∈ γ(U1) ∧ T2 ∈ γ(U2) }
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While this definition seems sensible, it does not accommodate a corre-
sponding optimal abstraction. Indeed, the abstraction functions for GType and
SType conflict with each other: how should we abstract a set of different types?

For a set of base types, say { Int,Bool }, we can either abstract to ? or to
Int⊕ Bool; the latter being optimal, while the former is not. In fact, to preserve
optimality, we ought to defer to the unknown type only for heterogeneous infinite
sets. Even if we would adjust the definition of the combined abstraction to make
such a distinction, it would not be optimal. To see why, consider the type (? →
Int) ⊕ (Int → ?), whose concretization is:

γ((? → Int) ⊕ (Int → ?)) = γ(? → Int) ∪ γ(Int → ?)

= { T → Int | T ∈ Type } ∪ { Int → T | T ∈ Type }
= { Int → Int,Bool → Int, Int → Bool, . . . }
� T

By taking the union of both sets, we “forget” a specificity of the original
gradual type—namely that it only represents functions that necessarily have Int
either as domain or as codomain. For instance, Bool → Bool is not present in
the resulting set T . However, the abstraction function that we obtain by directly
combining the two abstractions we have seen above is unable to recover an
optimal gradual type: because T is infinite and only contains arrow types, the
best the abstraction can do is to keep the arrow constructor, and then separately
abstracts the domain and codomain types (just like α?). As a result:

α(T ) = ? → ?

While this abstraction is sound, it is not optimal: there exists a more precise
gradual type that represents T , the type (? → Int) ⊕ (Int → ?) we started with.

Losing optimality directly affects the programmer’s experience. For instance,
in the type system, this means that the gain of precision that gradual unions are
supposed to provide (recall Sect. 2.5) is lost; similarly, type annotations would
not be strictly enforced at runtime.

3.4 Combining Gradual Types: Take Two

In order to define a proper Galois connection to give meaning to the gradual
types of GTFL⊕, we introduce a stratified, sketched in Fig. 1:

– Step 1. We start from the Galois connection between GType and P(Type),
named classic interpretation hereafter, which interprets the unknown type.
We already described this Galois connection in Sect. 3.2.

– Step 2. We lift this connection to operate on finite sets of gradual types, with
the standard collecting semantics, forming a new Galois connection between
Pfin(GType) and Pfin(P(Type)), named the classic set interpretation.
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Fig. 1. Stratified interpretation of UType.

– Step 3. We introduce a Galois connection between UType and Pfin(GType),
namedunion interpretation,whichadds support for gradualunionsamonggrad-
ual types that include the unknown type.

– Step 4. We combine the classic set interpretation and the union interpre-
tation. This combination gives a stratified interpretation of GTFL⊕ gradual
types, UType, in terms of finite sets of (possibly-infinite) sets of static types.

As we show, the stratified interpretation is itself a proper Galois connection, and
we can subsequently use it to lift the static (and dynamic) semantics of STFL
in order to define the semantics of GTFL⊕.

Step 2. Lifting the Classic Interpretation. Recall that 〈γ?, α?〉 from Def-
initions 1 and 3 form a Galois connection between GType and P(Type) [14].
Our first step is to lift this connection to operate on sets of gradual types with
the unknown type, i.e. to relate Pfin(GType) and Pfin(P(Type)). The powerset
lifting of γ?, denoted γ?, is simply the piecewise application of γ?:

Definition 7 (Pfin(GType) Concretization). γ? : Pfin(GType) → Pfin(P
(Type))

γ?(G) = { γ?(G) | G ∈ G }
Similarly, the powerset lifting of the abstraction function α?, denoted α?, is

the union of the piecewise application of α?:

Definition 8 (Pfin(GType) Abstraction). α? : Pfin(P(Type)) ⇀ Pfin

(GType)

α?(∅) = undefined α?(T ) =
⋃

T∈T

α?(T )

As expected, 〈γ?, α?〉 is a proper Galois connection.

Proposition 2 (α? is Sound and Optimal). If T is not empty, then

(a) T ⊆ γ?(α?(T )). (b) T ⊆ γ?(G) ⇒ α?(T ) � G.
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Step 3. Introducing the union interpretation. We define a Galois connec-
tion between UType and Pfin(GType) by naturally extending the definition
of the connection between SType and Pfin(Type) from Definitions 4 and 5, so
that it now operates over types in UType instead of only types in SType.

Definition 9 (UType Concretization). γ⊕ : UType → Pfin(GType)

γ⊕(Int) = { Int } γ⊕(Bool) = {Bool } γ⊕(?) = { ? }

γ⊕(U1 → U2) = {T1 → T2 | T1 ∈ γ⊕(U1) ∧ T2 ∈ γ⊕(U2) }

γ⊕(U1 ⊕ U2) = γ⊕(U1) ∪ γ⊕(U2)

Compared to Definition 4, the only additional case to consider is that the
unknown type ? can now occur: it is handled like other nullary type constructors,
by concretizing to a singleton.

The abstraction is direct from Definition 5.

Definition 10 (UType Abstraction). α⊕ : Pfin(GType) ⇀ UType

α⊕(G) = ⊕G if G = ∅

where ⊕G denotes the gradual union of all the types in the set T .
Again, 〈γ⊕, α⊕〉 is a Galois connection.

Proposition 3 (α⊕ is Sound and Optimal). If G is not empty, then

(a) G ⊆ γ⊕(α⊕(G)). (b) G ⊆ γ⊕(U) ⇒ α⊕(G) � U.

Step 4. Composing the Connections. We can now compose the two Galois
connections in order to define a stratified interpretation for UType in terms of
sets of sets of static types.

Definition 11 (Concretization). γ : UType → Pfin(P(Type)), γ = γ? ◦ γ⊕

Definition 12 (Abstraction). α : Pfin(P(Type)) ⇀ UType, α = α⊕ ◦ α?

Because the composition of two Galois connection is a Galois connection, the
stratified interpretation 〈γ, α〉 is a Galois connection.

Proposition 4 (α is Sound and Optimal). If T is not empty, then

(a) T ⊆ γ(α(T )). (b) T ⊆ γ(U) ⇒ α(T ) � U.

The notion of precision for gradual types used above is similarly induced by
concretization, i.e. U1 � U2 ⇐⇒ γ(U1) ⊆ γ(U2). Note that these definitions use

containment over sets of sets, defined as T1 ⊆ T2 ⇐⇒ ∀T1 ∈ T1,∃T2 ∈ T2, T1 ⊆
T2. Precision can equivalently be defined in terms of the lifted classic abstraction,
i.e. U1 � U2 ⇐⇒ γ⊕(U1) �? γ⊕(U2), where G1 �? G2 ⇐⇒ γ?(G1) ⊆ γ?(G2).
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Fig. 2. GTFL⊕: selected typing rules

Illustration. Let us come back to the example of Sect. 3.3 that motivated the
need for a stratified interpretation of UType.

γ((? → Int) ⊕ (Int → ?)) = {γ?(? → Int), γ?(Int → ?)}
= {{ T → Int | T ∈ Type } , { Int → T | T ∈ Type }}

we can now recover exactly the same gradual type

α({{ T → Int | T ∈ Type } , { Int → T | T ∈ Type }})

= α⊕(α?({ T → Int | T ∈ Type }) ∪ α?({ Int → T | T ∈ Type }))

= α⊕(? → Int, Int → ?) = (? → Int) ⊕ (Int → ?)

3.5 Static Semantics of GTFL⊕

The syntax of GTFL⊕ is the same as that of STFL, save for the introduction of
gradual types U . Consequently, terms t are lifted to gradual terms t̃ ∈ UTerm,
i.e. terms with gradual type annotations.

The type system of GTFL⊕ is presented in Fig. 2. The typing rules present
no surprise with respect to the gradual language with ? presented by Garcia
et al. [14]. This is because the novelty of gradual unions is encapsulated in
gradual type predicates and functions, such as ∼, �, d̃om, etc.

The essential idea of using abstract interpretation to define a gradual lan-
guage is that the Galois connection that defines gradual types specifies how to
lift both type predicates and functions to obtain their consistent counterpart.3

For instance, the consistent lifting of a predicate over static types is the existen-
tial lifting of the predicate through the Galois connection. In other words, for a
given binary predicate P ∈ Type2, its consistent lifting P̃ ∈ GType2 is defined
as: P̃ (U1, U2) ⇐⇒ ∃T1 ∈ γ(U1),∃T2 ∈ γ(U2), P (T1, T2). Similarly for functions:
a lifted function is the abstraction of the application of the static function to
all the possible static types denoted by the involved gradual types. Formally,
f̃ = α ◦ f ◦ γ, where f is the pointwise application of f to all elements.

3 The AI framework provides us with definitions for consistent predicates and func-
tions; we will provide some equivalent algorithmic characterizations.
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Lifting for Stratified Interpretation. We need to adapt these definitions
from AGT to our stratified setting; indeed, our Galois connection relates gradual
types with sets of sets of static types, rather than just sets of static types.

We can base our liftings of predicates and types on inclusion and pointwise
application that are extended to sets of sets.

Definition 13 (Predicate Lifting). P̃ (U1, U2) ⇐⇒ ∃T1 ∈ γ(U1), T2 ∈
γ(U2), P (T1, T2) where ∈ is the existential lifting of ∈ to powersets: T ∈ T ⇐⇒
∃T ∈ T, T ∈ T

Equivalently: ˜P (U1, U2) ⇐⇒ ∃T1 ∈ γ(U1), ∃T2 ∈ γ(U2), ∃T1 ∈ T1, ∃T2 ∈ T2, P (T1, T2)

The lifting of a predicate can also be defined in terms of each of the composed
interpretations:

Proposition 5. P̃ (U1, U2) ⇐⇒ ∃G1 ∈ γ⊕(U1),∃G2 ∈ γ⊕(U2), P̃?(G1, G2)
where P̃? is the predicate P lifted with γ?.

The lifting of a type function f uses the pointwise application of f to all

elements of each subset of a powerset, which we note f .

Definition 14 (Function Lifting). f̃ = α ◦ f ◦ γ

Again, we can define the lifting using the separate abstractions: ˜f = α⊕ ◦ ˜f ? ◦ γ⊕

Example Liftings. Let us look at the lifting of a type predicate and a type
function. We start with consistency, ∼, which corresponds to the lifting of type
equality: two gradual types are consistent if some static types in their concretiza-
tion are equal.

Definition 15 (Consistency). U1 ∼ U2 if and only if ∃T1 ∈ γ(U1),∃T1 ∈
T1,∃T2 ∈ γ(U2),∃T2 ∈ T2, T1 = T2.

This definition is equivalent to the following inductive definition:

Proposition 6.

U ∼ U1

U ∼ U1 ⊕ U2

U ∼ U2

U ∼ U1 ⊕ U2

U1 ∼ U

U1 ⊕ U2 ∼ U

U2 ∼ U

U1 ⊕ U2 ∼ U

U ∼ U ? ∼ U U ∼ ?

U21 ∼ U11 U12 ∼ U22

U11 → U12 ∼ U21 → U22

Let us now consider the (precision) meet of gradual types, which corresponds
to the lifting of the equate function used in the typing rule for conditionals. Its
algorithmic definition is:
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Definition 16 (Gradual Meet). Let � : UType ⇀ UType be defined as:

1. U � U = U
2. ? � U = U � ? = U

3. U 
 (U1 ⊕ U2) = (U1 ⊕ U2) 
 U =

⎧

⎪

⎨

⎪

⎩

U 
 U1 if U 
 U2 is undefined

U 
 U2 if U 
 U1 is undefined

(U 
 U1) ⊕ (U 
 U2) otherwise

.

4. (U11 → U12) � (U21 → U22) = (U11 � U21) → (U12 � U22)
5. U1 � U2 is undefined otherwise.

This algorithmic definition coincides with the lifting of equate:

Proposition 7. � = α ◦ equate ◦ γ

4 GTFL⊕: Dynamic Semantics and Properties

Following the tradition [29], we now give the dynamic semantics of GTFL⊕

programs by a cast insertion translation to an internal language with explicit
casts. We first describe the internal language GTFL⊕

⇒, which is adapted from
the (blameless) threesome calculus of Siek et al. [28], and then present a cast
insertion translation from GTFL⊕ to GTFL⊕

⇒.

Intermediate Language. GTFL⊕
⇒ is an adaptation of the original threesome

calculus without blame [28]. A threesome 〈T2
T3⇐= T1〉 is a cast composed of

three types: the source type T1, the target type T2, and the middle type T3.
Initially, the middle type of a threesome is the greatest lower bound (in terms of
precision), or meet, of the source and target types. The key benefit of threesomes
is that two threesomes can be merged into a single threesome by taking the meet
of their middle types, hence avoiding space issues [17].

The syntax ofGTFL⊕
⇒ is a simple extension of that ofGTFL⊕, with cast expres-

sions 〈U2
U3⇐= U1〉t and casted values 〈U2

U3⇐= U1〉u, where u denotes the simple
values of GTFL⊕. For space reasons we only present a representative selection of
typing rules in Fig. 3. In the typing rule for cast expressions (IT〈〉), the consistency
premises are required for a threesome to be well-formed (this is always the case by
construction). The other typing rules are basically those of GTFL⊕, except that
type consistency is replaced with type equality; this is because uses of consistency
will be guarded by the insertion of casts. For instance, Fig. 3 shows rule (ITapp):
while the GTFL⊕ typing rule (Uapp, Fig. 2) uses the premise U2 ∼ d̃om(U1), the
new rule requires the type of t2 to exactly be d̃om(U1).

Figure 4 presents the dynamic semantics of GTFL⊕
⇒, which are similar to [28].

Two threesomes that coincide on their source/target types are combined by
meeting their middle types. If the meet is undefined then the term steps to
error. Otherwise both casts are merged to a new cast where the middle type is
now the meet between the middle types. Note that casts are introduced using
the following metafunction, which avoids producing useless threesomes:

〈〈U2
U3⇐= U1〉〉t = t if U1 = U2 = U3 ; and 〈U2

U3⇐= U1〉t otherwise
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Fig. 3. GTFL⊕
⇒: selected typing rules

Fig. 4. GTFL⊕
⇒: dynamic semantics of GTFL⊕

⇒

Cast Insertion. A GTFL⊕ program is elaborated through a type-driven cast
insertion translation. The key idea of the transformation is to insert casts in
places where consistency is used to justify the typing derivation. For instance, if
t̃ : Int ⊕ Bool is used where Int is required, the translation inserts a cast 〈Int ⇐
Int ⊕ Bool〉t, where t is the recursive translation of t̃. This cast plays the role of
the implicit projection from the gradual union type. Dually, when a term of type
Int is used where a gradual union is expected, the translation adds a cast that
performs the implicit injection to the gradual union, e.g. 〈Int ⊕ Bool ⇐ Int〉10.
Note that a value with a cast that loses precision is like a tagged value in tagged
union type systems; the difference again is that the “tag” is inserted implicitly.

The translation judgment has the form Γ � t̃ ⇒ t : U : under type envi-
ronment Γ , GTFL⊕ term t̃ of type U , is translated to GTFL⊕

⇒ term t. The
translation rules given in Fig. 5 are standard. Cast insertion rules use twosomes
to ease readability; a twosome 〈U2 ⇐ U1〉t is equal to 〈〈U2

U1�U2⇐==== U1〉〉t: the
initial middle type is the meet of both ends [28].
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Fig. 5. Cast insertion: from GTFL⊕ to GTFL⊕
⇒ (selected rules)

Properties of GTFL⊕. GTFL⊕ satisfies a number of properties. First GTFL⊕

satisfies a standard type safety property:

Proposition 8 (Type safety). Suppose that · � t̃ ⇒ t : U , then either: t is a
value v; t �−→ error; or t �−→ t′ for some t′ such that · �i t′ : U

Second, the gradual type system is a conservative extension of the static type
system; i.e. both systems coincide on fully-annotated terms.

Proposition 9 (Equivalence for fully-annotated terms). For any t ∈
Term, . �S t : T if and only if . � t : T

Precision on terms, noted t̃1 � t̃2, is the natural lifting of type precision to
terms. The gradual type system satisfies the static gradual guarantee of Siek
et al. [30], i.e. losing precision preserves typeability: if a program is well-typed,
then a less precise version of it also type checks, at a less precise type.

Proposition 10 (Static gradual guarantee). If . � t̃1 : U1 and t̃1 � t̃2, then
. � t̃2 : U2, for some U2 such that U1 � U2.

Similarly, losing precision preserves reduceability: a program that runs without
error continues to do so if it is annotated with less precise types.

Proposition 11 (Dynamic gradual guarantee). Suppose · � t̃1 ⇒ t1 : U1,
· � t̃2 ⇒ t2 : U2, and t1 � t′1. If t1 �−→ t2 then t′1 �−→ t′2 where t2 � t′2.

A technical novelty of our work is that we establish all the above properties
following a route that differs from prior work. Usually, one establishes type safety
of the gradual language by first proving type safety of the internal language and
then proving that the cast insertion translation preserves typing [29]. With this
approach, the gradual guarantees must then be established separately [30].
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Our approach exploits the AGT methodology: we first systematically derive
the direct runtime semantics of GTFL⊕ (i.e. which do not rely on a cast insertion
translation). We then prove safety and the gradual guarantees, which in fact
directly follow from the abstract interpretation framework [14]. Then, we prove
that the compilation to threesome combined with the semantics of the internal
language together are equivalent to the dynamic semantics derived with AGT.
This correctness argument proceeds using logical relations.

5 Related Work

In Sect. 2, we have compared gradual unions to both tagged and untagged unions
from the standard type system literature [23], highlighting their key character-
istics and differences. Gradual unions are unique in admitting runtime errors,
with the benefits of more flexible programming patterns. We have also compared
gradual unions to retrofitted type systems for dynamic languages with support
for unions. Note that in Flow, Typescript, CDuce and Typed Racket, a function
that expects an argument of type A + B can accept arguments of type A, B,
or A + B, but neither of type A + B + C nor A + D. In contrast, in GTFL⊕,
as long as two gradual union types have at least one compatible type in their
denotation, then they are compatible. So, a function that expects an argument
of type A ⊕ B accepts arguments of types such as A ⊕ B ⊕ C and A ⊕ D.

Flow-sensitive typing approaches such as occurrence typing [20] support more
precise type assignments based on the result of some (type) predicate check. Such
techniques can avoid the insertion of unnecessary casts [24]. However, in general,
the combination of gradual types with type tests raises questions regarding the
dynamic gradual guarantee [30], which have not yet been answered.

Interestingly, languages with set-theoretic (untagged) unions usually also con-
sider intersection types, with distributivity relations such as (T1 ∨ T2) → T3 ≡
(T1 → T3) ∧ (T2 → T3). This law states that if a function accepts a value
that is either of type T1 or of type T2, then it behaves as both a function of
type T1 → T3 and a function of type T2 → T3. Gradual unions encompass
both interpretations, without having to resort to a notion of intersection types:
(T1 ⊕ T2) → T3 ≡ (T1 → T3) ⊕ (T2 → T3), because both types have the same
interpretation, i.e. they represent the same concrete set of static types. This
simplicity is a consequence of the optimistic interpretation with dynamic checks
that is characteristic of gradual typing. (Note that it resonates with the fact that
type precision is covariant in both positive and negative positions.)

Siek and Tobin-Hochstadt studied the interaction between gradual typing
and union types [27]. While seemingly related, the focus of their work is very
different: the addition of the unknown type to a language with static union
types. Additionally, they only support the union of types with different type
constructors, so for instance the union of two function types is not supported.
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Similarly, in parallel with this work, Castagna and Lanvin developed a theory
for gradual set-theoretic types, supporting union, intersection and the unknown
type [7]. Their system can express constructs similar to gradual unions by using
a combination of unions and intersection with the unknown type, e.g. Int⊕Bool
is equivalent to (Int | Bool)&?. They also exploit AGT to derive the static seman-
tics, although the more expressive setting with static unions and intersections
makes the design of the Galois connection much more challenging. Our design is
minimalist, providing a novel form of union types to languages that do not ini-
tially support such set-theoretic types. They mention compilation to threesomes
and proving the gradual guarantees as future work.

Jafery and Dunfield [19] present a gradual language that features two types
of (datasort) refinement sums, for either exhaustive or non-exhaustive matches.
Non-exhaustive matches are backed by dynamic checks in case of an unsuc-
cessful match. Elements with a sum type must be explicitly injected; the sum
constructors are neither commutative nor associative. Also, they do not discuss
the interaction with the fully-unknown type.

6 Conclusion

Inspired by the interpretation of gradual types as a general approach to deal
with imprecision at the type level, and recognizing that unions types are a form
of imprecision, we proposed the novel notion of gradual union types. Gradual
unions are a new design for dealing with the possibility for expressions to have
different, unrelated types. Accepting the possibility of runtime cast errors, grad-
ual unions combine and extend the convenience of both tagged and untagged
union types. We have presented the meta-theory of gradual union types and
their interaction with the traditional unknown type, using the AGT methodol-
ogy. We have described a compilation semantics to a threesome calculus, and
established its desired properties through logical relations. The combination of
both gradual type constructors forced us to explore a stratified approach to
AGT, whereby each gradual type constructor is interpreted separately and then
carefully composed in order to ensure optimality of the resulting abstraction.
This compositional approach to designing a gradual language is novel. We hope
that it helps understanding how to combine different gradualization efforts that
have been developed independently, and may not be fully orthogonal.

Acknowledgments. We thank Gabriel Scherer, Ronald Garcia and the anonymous
reviewers for their detailed comments and suggestions.
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Abstract. In this work we present a modular and demand-driven analy-
sis of the semantic difference between program versions. Our analysis
characterizes initial states for which final states in the program versions
differ. It also characterizes states for which the final states are identical.
Such characterizations are useful for regression verification, for reveal-
ing security vulnerabilities and for identifying changes in the program’s
functionality.

Syntactic changes in program versions are often small and local and
may apply to procedures that are deep in the call graph. Our app-
roach analyses only those parts of the programs that are affected by the
changes. Moreover, the analysis is modular, processing a single pair of
procedures at a time. Called procedures are not inlined. Rather, their pre-
viously computed summaries and difference summaries are used. For effi-
ciency, procedure summaries and difference summaries can be abstracted
and may be refined on demand.

We have compared our method to well established tools and observed
speedups of one order of magnitude and more. Furthermore, in many
cases our tool proves equivalence or finds differences while the others fail
to do so.

1 Introduction

In this work we present a modular and demand-driven algorithm for computing
the semantic difference between two closely-related, syntactically similar imper-
ative programs. The need to identify semantic difference often arises when a new
(patched) program version is built on top of an old one. The difference between
the versions can be used for:

– Regression testing, which checks whether the new version introduces security
bugs or errors. The old version is considered to be a correct, “golden model”
for the new, less-tested version [30].

– Revealing security vulnerabilities that were eliminated by the new version [11].
This information can be used to produce attacks against the old version.
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– More generally, identifying and characterizing changes in the program’s func-
tionality [24].

Semantic difference has been widely studied, and a wide range of techniques have
been suggested [11,14–16,20,23–26]. We aim at enhancing the scalability and
precision of existing techniques by exploiting the modular structure of programs
and avoiding unnecessary analysis.

We consider two program versions, consisting of (matched) procedure calls,
arranged in call graphs. Some of the matched procedures are known to be syn-
tactically different while the others are identical. Often, the changes between
versions are small and limited to procedures deep inside the call graph (Fig. 1).
In such cases, it would be helpful to know how these changes affect the program
as a whole, without analysing the full program. To achieve this, we first compute
a difference summary between syntactically different procedures p1, p2 (modified
procedures). Next, we analyse the procedures that call them, using the difference
summary for p1, p2 computed before. No inlining of called procedures is applied.
We also avoid analysing procedures that are not affected by the modified proce-
dures. As a result, the required work may be significantly smaller than analysing
the full program.

P1 P2

q1

p1

q2

p2

Fig. 1. Call graphs of two program versions P1, P2, where their syntactic differences
are local to the procedures p1, p2, and the bodies of procedures q1, q2 are identical

Our work is therefore particularly beneficial when applied to programs that
are syntactically similar. While applicable to programs that are very different
from each other, our technique would yield less savings in those cases.

Our approach is guided by the following ideas. First, the analysis is modular.
That is, it is applied to one pair of procedures at a time, thus it is confined
to small parts of the program. Called procedures are not inlined. Rather, their
previously computed summaries and difference summary are used. We note that
any block of code can be treated as a procedure, not only those defined as
procedures by the programmer. It is beneficial to choose the smallest possible
blocks that were modified between versions, and identify them as “procedures”.

Second, the analysis is restricted to only those pairs of procedures whose
difference affects the behavior of the full programs.

Third, we provide both under- and over-approximations of the input-output
differences between procedures, which can be strengthened on demand.
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Finally, procedures need not be fully analysed. Unanalysed parts are
abstracted and replaced with uninterpreted functions. The abstracted parts are
refined upon demand if calling procedures need a more precise summary of the
called procedures for their own summary.

Our analysis is not guaranteed to terminate. Yet it is an anytime analysis.
That is, its partial results are meaningful. Furthermore, the longer it runs, the
more precise its results are.

In our analysis we do not assume that loops are bounded. We are able to
prove equivalence or provide an under- and over-approximation of the difference
for unbounded behaviors of the programs. We are also able to handle recursive
procedures.

We implemented our method and applied it to computing the semantic dif-
ference between program versions. We compared it to well established tools and
observed speedups of one order of magnitude and more. Furthermore, in many
cases our tool proves equivalence or finds differences while the others failed to
do so.

Our Approach in Detail

We now describe our method in more detail. Our analysis starts by choosing a
pair of matched procedures p1 in program P1 and p2 in program P2 that are
syntactically different.

The basic block of our analysis is a (partial) procedure summary sumpi
with

i ∈ {1, 2} for each procedure pi. The summary is obtained using symbolic execu-
tion. It includes path summarizations (Rπ, Tπ) for a subset of the finite paths π
of pi, where Rπ is the reachability condition for π to be traversed and Tπ is the
state transformation mapping initial states to final states when π is executed.

Next, we compute a (partial) difference summary (C(p1, p2), U(p1, p2)) for
p1, p2, where C(p1, p2) is a set of initial states for which p1 and p2 terminate
with different final states. U(p1, p2) is a set of initial states for which p1 and
p2 terminate with identical final states. Both sets are under-approximations.
However, the complement of U(p1, p2), denoted ¬U(p1, p2), also provides an over-
approximation of the set of initial states for which the procedures are different.

Note that procedure summaries and difference summaries are both partial.
This is because their computation in full is usually infeasible. More importantly,
their full summaries are often unnecessary for computing the difference summary
between programs P1, P2.

If U(p1, p2) ≡ true we can conclude that no differences are propagated from
p1, p2 to their callers. Their callers will not be further analysed then. Otherwise,
we can proceed to analysing pairs of procedures q1, q2 that include calls to p1,
p2, respectively. As mentioned before, for building their procedure summaries
and difference summary, we use the already computed summaries of p1, p2. For
the sake of modularity, we develop a new notion of modular symbolic execu-
tion. We formalize the definitions of symbolic execution and modular symbolic
execution, and show the connections between the two.
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The analysis terminates when we can fully identify the initial states of P1,
P2 for which the programs agree/disagree on their final states. Alternatively, we
can stop when a predefined threshold is reached. In this case the sets C(p1, p2)
and U(p1, p2) of initial states are guaranteed to represent disagreement and
agreement, respectively.

Side results of our analysis are the difference summaries computed for
matched procedures in P1, P2, that can be reused if the procedures are called
by other programs.

The main contributions of this work are:

– We present a modular and demand-driven algorithm for computing semantic
difference between closely related programs.

– Our algorithm is unique in that it provides both under- and over-
approximations of the differences between program versions.

– We introduce abstraction-refinement into the analysis process so that a trade-
off between the amount of computation and the obtained precision will be
manageable.

– We develop a new notion of modular symbolic execution.

2 Preliminaries

We start by defining some basic notions of programs and procedures.

Definition 1. Let P be a program, containing the set of procedures Π = {p1, . . . ,
pn}. The call graph for P is a directed graph with Π as nodes, and there exists an
edge from pi to pj if and only if procedure pi calls procedure pj.

The procedure p1 is a special procedure in the program’s call graph that acts
as an entry point of the program; it is also referred to as the main procedure in
the program P , denoted mainP .

Next we formalize the notions of variables and states of procedures.

– The visible variables of a procedure p are the variables that represent the
arguments to the procedure and its return values, denoted V v

p .
– The hidden variables of a procedure p are the local variables used by the

procedure, denoted V h
p .

– The variables of a procedure p are both its visible and hidden variables,
denoted Vp (Vp = V v

p ∪ V h
p ).

– A state σp is a valuation of the procedure’s variables, σp = {v �→ c|v ∈
Vp, c ∈ Dv}, where Dv is the (possibly infinite) domain of variable v.

– A visible state is the projection of a state to the visible variables.

Without loss of generality we assume that programs have no global variables,
since those could be passed as arguments and return values along the entire
program. We also assume, without loss of generality, that all program inputs
are given to the main procedure at the beginning. The programs we analyze
are deterministic, meaning that given a visible state of the main procedure at
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the beginning of an execution (an initial state), the execution of the program
(finite or infinite) is fixed, and for a finite execution the visible state at the end
of the execution is fixed (called final state). The same applies to individual
procedures as well.

In our work, a program is represented by its call graph, and each procedure
p is represented by its control flow graph CFGp (also known as a flow program
in [10]), defined below.

Definition 2. Let p be a procedure with variables Vp. The Control Flow
Graph (CFG) for p is a directed graph CFGp, in which the nodes represent
instructions in p and the edges represent possible flow of control from one instruc-
tion to its successor(s) in the procedure code. Instructions include:

– Assignment: x = e, where x is a variable in Vp and e is an expression over Vp.
An assignment node has one outgoing edge.

– Procedure call: g(Y ), where Y ⊆ Vp and the values of variables in Y are
assigned to the visible variables of procedure g.1 The variables in Y are
assigned with the values of the visible variables of g at the end of the execution
of g. A call node has one outgoing edge, to the instruction in p following the
return of procedure g.

– Test: B(Vp), where B(Vp) is a Boolean expression over Vp; a test node has
two outgoing edges, one marked with T, and the other with F.

A CFG contains one node with no incoming edges, called the entry node, and
one node with no outgoing edges, called the exit node.

Definition 3. Given CFGp of procedure p, a path π = l1, l2, . . . is a sequence
of nodes (finite or infinite) in the graph CFGp, such that:

1. For all i there exists an edge from li to li+1 in CFGp.
2. l1 is the entry node of p.

The path π is maximal if it is either infinite or it is finite and ends in the exit
node of p.

We assume that each procedure performs a transformation on the values of
the visible variables, and has no additional side-effects. Procedure p terminates
on a visible state σv

p if the path traversed in p from σv
p is finite and maximal.

A program terminates on a visible state σv
main if its main procedure terminates.

The following semantic characteristics are associated with finite paths, sim-
ilarly to the definitions for flow programs in [10]. The characteristics are given
(for a path in a procedure p) in terms of quantifier-free First-Order Logic (FOL),
defined over the set V v

p of visible variables.

Definition 4. Let π be a finite path in procedure p.

1 We assume that Y = {y1, . . . , yn} and V v
g = {v1, . . . , vn}, yi is assigned to vi at the

entry node, and vi is assigned to yi at the exit node.
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– The Reachability Condition of π, denoted Rπ(V v
p ), is a condition on the

visible states at the beginning of π, which guarantees that the control will
traverse π.

– The State Transformation of π, denoted Tπ(V v
p ), describes the final state

of π, obtained if control traverses π starting with some valuation σv
p of V v

p .

Tπ(V v
p ) is given by |V v

p | expressions over V v
p , one for each variable x in

V v
p . The expression for x describes the effect of the path on x in terms of the

values of V v
p at the beginning of π. Let Tπ(V v

p ) = (f1, . . . , f|V v
p |) and Tπ′(V v

p ) =
(f ′

1, . . . , f
′
|V v

p |) be two state transformations. Then, Tπ(V v
p ) = Tπ′(V v

p ) if and only
if, for every 1 ≤ i ≤ |V v

p |, fi = f ′
i .

1 void p1 ( int& x) {
2 i f ( x < 0) {
3 x = −1;
4 return ;
5 }
6 i f ( x >= 2)
7 return ;
8 while ( x == 2)
9 x = 2 ;

10 x = 3 ;
11 }

1 void p2 ( int& x) {
2 i f ( x < 0) {
3 x = −1;
4 return ;
5 }
6 i f ( x > 4)
7 return ;
8 while ( x == 2)
9 x = 2 ;

10 x = 3 ;
11 }

Fig. 2. Examples of procedure versions

Example 1. Consider procedure p1 in Fig. 2. Its only visible variable is x, used
as both input and output. Consider the paths that correspond to the following
line numbers: α = (2, 3, 4) and β = (2, 6, 7). Then,

Rα(x) = x < 0 Rβ(x) = ((¬(x < 0)) ∧ x ≥ 2) ≡ x ≥ 2
Tα(x) = (−1) Tβ(x) = (x)

A path π is called feasible if Rπ is satisfiable, meaning that there exists an
input that traverses the path π. Note that, in p1 from Fig. 2, the path (2, 6, 8, 9)
is not feasible.

2.1 Symbolic Execution

Symbolic execution [7,17] (path-based) is an alternative representation of a pro-
cedure execution that aims at systematically traversing the entire path space
of a given procedure. All visible variables are assigned with symbolic values
in place of concrete ones. Then every path is explored individually (in some
heuristic order), checking for its feasibility using a constraint solver. During the
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execution, a symbolic state T and symbolic path constraint R are maintained.
The symbolic state maps procedure variables to symbolic expressions (and is
naturally extended to map expressions over procedure variables), and the path
constraint is a quantifier-free FOL formula over symbolic values.

Given a finite path π = l1, . . . , ln, we use symbolic execution to compute the
reachability condition Rπ(V v

p ) and state transformation Tπ(V v
p ). The computa-

tion is performed in stages, where for every 1 ≤ i ≤ n+1, Ri
π(Vp) and T i

π(Vp) are
the path condition and state transformation for path l1, . . . , li−1, respectively.
Initialization:

– For every x ∈ Vp, T 1
π (Vp)[x] = x.

– R1
π(Vp) = true.

Assume Ri
π(Vp) and T i

π(Vp) are already defined. Ri+1
π (Vp) and T i+1

π (Vp) are then
defined according to the instruction at node i:

– Assignment x = e: Ri+1
π (Vp) := Ri

π(Vp), T i+1
π (Vp)[x] := e[Vp ← T i

π(Vp)] and
∀y = x, T i+1

π (Vp)[y] := T i
π(Vp)[y]

– Procedure call g(Y ): The procedure g is in-lined with the necessary renaming
and symbolic execution continues along a path in g, returning to p when (if)
g terminates.2

– Test B(Vp): T i+1
π (Vp) := T i

π(Vp), and

Ri+1
π (Vp) :=

{
Ri

π(Vp) ∧ B[Vp ← T i
π(Vp)] if the edge li → li+1 is marked T

Ri
π(Vp) ∧ ¬B[Vp ← T i

π(Vp)] otherwise

As a result, when we reach the last node ln of a finite path π we get3:

Rπ(V v
p ) = Rn+1

π (Vp)

Tπ(V v
p ) = Tn+1

π (Vp) ↓V v
p

As symbolic execution explores the program one path at a time, we start by
summarizing single paths, and then extend to procedures.

Definition 5. Given a finite maximal path π in p, a Path Summary (also
known as a partition-effect pair in [25]) is the pair (Rπ(V v

p ), Tπ(V v
p )).

Definition 6. A Procedure Summary (also known as a symbolic summary
in [25]), for a procedure p, is a set of path summaries

sump ⊆ {(Rπ(V v
p ), Tπ(V v

p ))|π is a finite maximal path in CFGp}.

2 Current values of Y are assigned to the visible variables of g, and assigned back at
termination of g.

3 Since we assume that all inputs are given through visible variables, and therefore no
hidden variable is used before it is initialized, V h

p will not appear in Rn+1
π (Vp) and

Tn+1
π (Vp) ↓V v

p
.
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Note that for a given CFG the reachability conditions of any pair of dif-
ferent maximal paths are disjoint, meaning that for every initial state at most
one finite maximal path is traversed in the CFG. Thus, a procedure summary
partitions the set of initial states into disjoint finite paths, and describes the
effect of the procedure p on each path separately. This observation will be useful
when procedure summaries are used to compute difference summaries between
procedures.

Unfortunately, it is not always possible to cover all paths in symbolic exe-
cution due to the path explosion problem (even if all feasible paths are finite,
their number may be very large or even infinite). Therefore we allow for a given
summary sump not to cover all possible paths, meaning

∨
(r,t)∈sump

r may not
be valid (

∨
(r,t)∈sump

r ≡ true).

Definition 7. Given a procedure summary sump, the Uncovered Part of sump

is ¬∨
(r,t)∈sump

r.

For all inputs that satisfy the uncovered part of the summary nothing is
promised: the procedure p might not terminate on such inputs, or terminate
with unknown outputs. A summary for which the uncovered part is unsatisfiable
(
∨

(r,t)∈sump
r ≡ true) is called a full summary. Note that a full summary only

exists for procedures that halt on every input.

Example 2. We return to p1 from Fig. 2. Any subset of the set {(x < 0,−1),
(x ≥ 0 ∧ x ≥ 2, x), (x ≥ 0 ∧ x < 2, 3)} is a summary for p1. For the summary

sump1 = {(x < 0,−1), (x ≥ 0 ∧ x ≥ 2, x)},

the uncovered part is characterized by x ≥ 0 ∧ x < 2.

2.2 Equivalence

We modify the notions of equivalence from [13] to characterize the set of visible
states under which procedures are equivalent, even if they might not be equiva-
lent for every initial state. Let p1 and p2 be two procedures with visible variables
V v

p1
and V v

p2
, respectively. Since their sets of visible variables might be different,

we take the union V v
p1

∪ V v
p2

as their set of visible variables V v
p . Any valuation of

this set can be viewed as a visible state of both procedures.

Definition 8. State-Equivalences
Let σv

p be a visible state for p1 and p2.

– p1 and p2 are partially equivalent for σv
p if and only if the following holds:

If p1 and p2 both terminate on σv
p , then they terminate with the same final

state.
– p1 and p2 mutually terminate for σv

p if and only if the following holds: p1

terminates on σv
p if and only if p2 terminates on σv

p .
– p1 and p2 are fully equivalent for σv

p if and only if p1 and p2 are partially
equivalent for σv

p and mutually terminate for σv
p .
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3 Modular Symbolic Execution

A major component of our analysis is the modular symbolic execution, which
analyses one procedure at a time while avoiding inlining of called procedures.
This prevents unnecessary execution of previously explored paths in called pro-
cedures. Assume procedure p calls procedure g. Also assume that a procedure
summary for g is given by: sumg = {(r1, t1), . . . , (rn, tn)}.

Modular symbolic execution is defined as symbolic execution for assignment
and test instructions (see Sect. 2.1). For procedure call instruction g(Y ) (where
Y ⊆ Vp) it is defined as follows. For given Ri

π(Vp) and T i
π(Vp)4:

Ri+1
π = Ri

π ∧ (
∨

(r,t)∈sumg

r(T i
π[Y ])) (1)

∀x ∈ Y. T i+1
π [x] = T i

π[x] (2)

∀yj ∈ Y. T i+1
π [yj ] = ITE (r1(T i

π[Y ]), t1j (T
i
π[Y ]), ITE (r2(T i

π[Y ]), t2j (T
i
π[Y ]),

ITE (. . . , ITE (rn(T i
π[Y ]), tnj (T i

π[Y ]),UK ) . . . ))),

where:

– ITE (b, e1, e2) is an expression that returns e1 if the condition b holds and
returns e2, otherwise. It is similar to the conditional operator (?:) in some
programming languages.

– tkj refers to the jth element (for yj) of the path transformation tk.
– UK represents the value that is given if no path condition from sumg is

satisfied. That it, UK is returned when an unexplored path is traversed. Note,
however, that since we added (

∨
(r,t)∈sumg

r(T i
π[Y ]) to the path condition Ri

π,
a path that satisfies Ri+1

π will never return UK . Thus, UK is just a place
holder.

Modular symbolic execution, as defined here, restricts the analysis of proce-
dure p to paths along which g is called with inputs traversing paths in g that
have already been analyzed. For other paths, the reachability condition will be
unsatisfiable. In Sect. 6.1 we define an abstraction, which replaces unexplored
paths by uninterpreted functions. Thus, the analysis of p may include unex-
plored (abstracted) paths of g. If the analysis reveals that the unexplored paths
are essential in order to determine difference or similarity on the level of p, then
refinement is applied by symbolically analysing more of g’s paths.

We prove in [29] the connection between modular symbolic execution and
regular symbolic execution on the in-lined version of the program. Intuitively,
as long as the paths taken in called procedures are covered by the summaries of
the called procedures, the following holds: Assume that a path π in p includes a
call to procedure g. Then π corresponds to a set of paths in the in-lined version,
each of which executing a different path in g, more formally:

4 We use r(T i
π[Y ]) to indicate that every vk ∈ V v

g is replaced by the expression T i
π[yk].



414 A. Trostanetski et al.

– For every path πin in the in-lined version of p there is a corresponding path
π in p such that:

• Rπin → Rπ

• Rπin → Tπin = Tπ

– For every path π in p, there are paths πin
1 , . . . , πin

n in the in-lined version of
p such that:

• Rπ ↔ ∨n
i=1 Rπin

i• ∀i ∈ [n]. Rπin
i

→ Tπin
i

= Tπ

4 Difference Summary

Throughout the rest of the paper, we refer to a syntactically different pair of pro-
cedures as modified , and to a semantically different pair of procedures (not fully
equivalent for every state) as affected . Note that a modified procedure is not
necessarily affected. Further, an affected procedure is not necessarily modified,
but must call (transitively) a modified and affected procedure.

Our main goal is, given two program versions, to evaluate the difference and
similarity between them. For that purpose we define the notion of difference sum-
mary, in an attempt to capture the semantic difference and similarity between
the programs. A difference summary is defined for procedures and extends to
programs, by computing the difference summary for the main procedures in the
programs.

We start by defining the notion of full difference summary, which precisely
captures the difference and similarity between the behaviors of two given proce-
dures. In this section we give all definitions in terms of sets of states that might
be infinite.

Definition 9. A Full Difference Summary for two procedures p1 and p2 is
a triplet

ΔFullp1,p2 = (chp1,p2 , unchp1,p2 , termin chp1,p2)

where,

– chp1,p2 is the set of visible states for which both procedures terminate with
different final states.

– unchp1,p2 is the set of visible states for which both procedures either terminate
with the same final states, or both do not terminate.

– termin chp1,p2 is the set of visible states for which exactly one procedure ter-
minates.

Note that chp1,p2 ∪ unchp1,p2 ∪ termin chp1,p2 covers the entire visible state
space. The three sets are related to the state equivalence notions of Definition 8
as follows.

– chp1,p2 is the set of the visible states that violate partial equivalence. It only
captures differences between terminating paths.

– termin chp1,p2 is the set of visible states that violate mutual termination.
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– unchp1,p2 is the set of visible states for which the procedures are fully equiv-
alent.

Example 3. Consider the procedures in Fig. 2. The full difference summary for
this pair of procedures is:

chp1,p2 = {{x �→ 4}}
unchp1,p2 = {{x �→ c} | c = 2 ∧ c = 4}

termin chp1,p2 = {{x �→ 2}}

For input 2 the old version p1 does not change x, while the new version p2 reaches
an infinite loop, and therefore 2 is in termin chp1,p2 . For input 3, although the
paths taken in the two versions are different, the final value of x is the same (3),
and therefore 3 is in unchp1,p2 . For input 4, p1 does not change x, while p2
changes x to 3, and therefore 4 is in chp1,p2 .

The full difference summary and any of its three components are generally
incomputable, since they require halting information. We therefore suggest to
under-approximate the desired sets. In the next section we present an algo-
rithm that computes under-approximated sets and can also strengthen them.
The strengthening extends the sets with additional states, thus bringing the
computed summary “closer” to the full difference summary.

Definition 10. Given two procedures p1, p2, their Difference Summary

Δp1,p2 = (C(p1, p2), U(p1, p2))

consists of two sets of states where

– C(p1, p2) ⊆ chp1,p2 .
– U(p1, p2) ⊆ unchp1,p2 .

A difference summary gives us both an under-approximation and an over-
approximation of the difference between procedures, given by C(p1, p2) and
¬U(p1, p2)5, respectively.

The algorithm presented in the next section is based on the notion of path
difference, presented below. Recall that for a given path π, its path summary is
the pair (Rπ, Tπ) (see Definition 5).

Definition 11. Let p1 and p2 be two procedures with the same visible variables
V v

p1
= V v

p2
= V v

p , and let π1 and π2 be finite paths in CFGp1 and CFGp2 ,
respectively. Then the Path Difference of π1 and π2 is a triplet (d, Tπ1 , Tπ2),
where d is defined as follows:

d(V v
p ) ↔ (Rπ1(V

v
p ) ∧ Rπ2(V

v
p ) ∧ ¬(Tπ1(V

v
p ) = Tπ2(V

v
p ))).

5 We use ¬ for set complement with respect to the state space.
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We call d the condition of the path difference. Note that d implies the reachability
conditions of both paths, meaning that for any visible state σ that satisfies d,
path π1 is traversed from σ in CFGp1 and path π2 is traversed from σ in CFGp2 .
Moreover, when starting from σ, the final state of π1 will be different from the
final state of π2 (at least for one of the variables in V v

p ). If d is satisfiable we say
that π1 and π2 show difference .

5 Computing Difference Summaries

5.1 Call Graph Traversal

Assume we are given two program versions, each consisting of one main pro-
cedure and many other procedures that call each other. Assume also a match-
ing function, which associates procedures in one program with procedures in
the other, based on names (added and removed procedures are matched to the
empty procedure). Our objective is to efficiently compute difference summaries
for matching procedures in the programs. We are particularly interested in the
difference of their main procedures. This goal will be achieved gradually, where
precision of the resulting summaries increases, as computation proceeds. In this
section we replace the sets of states describing difference summaries by their
characteristic functions, in the form of FOL formulas.

As mentioned before, any block of code can be treated as a procedure, not
only those defined as procedures by the programmer.

Our main algorithm DiffSummarize, presented in Algorithm 1, provides an
overview of our method. The algorithm does not assume that the call graph is
cycle-free, and therefore is suitable for recursive programs as well.

For each pair of matched procedures, the algorithm computes a Difference
summary Diff[(p1, p2)], which is a pair of C(p1, p2) and U(p1, p2). Sum is a map-
ping from all procedures to their current summary.

The algorithm computes a set workSet, which includes all pairs of procedures
for which Diff should be computed. The set workSet is initialized with all modi-
fied procedures, and all their callers (lines 3–8), as those are the only procedures
suspected to be affected. We initially trivially under-approximate Diff for the
procedures in workSet by (false, false) (line10). We can also safely conclude that
all other procedures are not affected (line 14).

Next we analyse all pairs of procedures in workSet (lines 17–31), where the
order is chosen heuristically. Given procedures p1 and p2, if they are syntactically
identical, and all called procedures have already been proven to be unaffected
(line19) – we can conclude that p1, p2 are also unaffected. Otherwise, we compute
sump1 and sump2 by running ModularSymbolicExecution (presented in
Sect. 3) on the code of each procedure separately, up to a certain bound (chosen
heuristically).

Since it is possible to visit a pair of procedures p1, p2 multiple times we keep
the computed summaries in Sum[p1] and Sum[p2], and re-use them when re-
analyzing the procedures to avoid recomputing path summaries of paths that



Modular Demand-Driven Analysis of Semantic Difference 417

have already been visited. We then call algorithm ConstructProcDiffSum
(explained in Sect. 5.2) for computing a difference summary for p1 and p2.

Each time a difference summary changes (line 27), we need to re-analyse all
its callers to check how this newly learned information propagates (line 29).

Algorithm DiffSummarize is modular. It handles each pair of procedures
separately, without ever considering the full program and without inlining called
procedures.

As mentioned before, Algorithm DiffSummarize is not guaranteed to ter-
minate. Yet it is an anytime algorithm. That is, its partial results are meaningful.
Furthermore, the longer it runs, the more precise its results are.

Algorithm 1. DiffSummarize(P1, P2)

Input: Two program versions P1, P2
Output: Difference Summary and a set of Path Difference Summaries for each pair of matching

procedures, including mainP1 , mainP2
1: match = ComputeProcedureMatching(P1, P2)
2: FoundDiff[(p1, p2)] = ∅, for each (p1, p2) ∈ match
3: workSet := ∅
4: newWorkSet:= {(p1, p2) ∈ match : p1 different syntactically from p2}
5: while newWorkSet �= workSet do
6: workSet := newWorkSet
7: newWorkSet := workSet ∪ {(q1, q2) ∈ match : ∃(p1, p2) ∈ workSet s.t. q1 calls p1 or q2

calls p2}
8: end while
9: for each (p1, p2) ∈workSet do
10: Diff[(p1, p2)] := (false, false)
11: Sum[p1]:=∅, Sum[p2]:=∅
12: end for
13: for each (p1, p2) ∈ match\workSet do
14: Diff[(p1, p2)] := (false, true)
15: Sum[p1]:=∅, Sum[p2]:=∅
16: end for
17: while workSet�= ∅ do
18: (p1, p2) := chooseNext(workSet) � heuristic order
19: if p1, p2 are syntactically identical and for all (g1, g2) ∈ match s.t. p1 calls g1 or p2 calls

g2, Diff[(g1, g2)]=(*,true) then
20: newDiff := (false,true)
21: else
22: Sum[p1] := ModularSymbolicExecution(p1,Sum)
23: Sum[p2] := ModularSymbolicExecution(p2,Sum)
24: (newDiff,newFoundDiff) :=ConstProcDiffSum(Sum[p1],Sum[p2],Diff[(p1, p2)])
25: FoundDiff[(p1, p2)]:=FoundDiff[(p1, p2)] ∪ newFoundDiff
26: end if
27: if Diff[(p1, p2)] �= newDiff then
28: Diff[(p1, p2)] := newDiff
29: workSet := workSet ∪ {(q1, q2) ∈ match: q1 calls p1 or q2 calls p2}
30: end if
31: end while
32: return (Diff, FoundDiff)

5.2 Computing the Difference Summaries for a Pair of Procedures

Algorithm ConstProcDiffSum (presented in Algorithm 2) accepts as input
procedure summaries sump1 , sump2 and also the current difference summary of
p1, p2. It returns an updated difference summary Δp1,p2 . In addition, it returns
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Algorithm 2. ConstProcDiffSum(sump1 , sump2 ,oldDiff)

Input: Procedure summaries sump1 , sump2 of procedures p1, p2, respectively, and oldDiff, previ-
ously computed Δp1,p2

Output: updated Δp1,p2 , found diff p1,p2
1: (C(p1, p2), U(p1, p2)) := oldDiff
2: found diff p1,p2

= ∅
3: for each (r1, t1) in sump1 do

4: for each (r2, t2) in sump2 do

5: diffCond:= r1 ∧ r2 ∧ t1 �= t2
6: if diffCond is SAT then
7: C(p1, p2):=C(p1, p2)∨ diffCond
8: found diff p1,p2

:= found diff p1,p2
∪{(diffCond, t1, t2)}

9: end if
10: eqCond := r1 ∧ r2 ∧ t1 = t2
11: if eqCond is SAT then
12: U(p1, p2):= U(p1, p2)∨ eqCond
13: end if
14: end for
15: end for
16: return ((C(p1, p2), U(p1, p2)), found diff p1,p2

)

the set found diff p1,p2
of path differences, for every pair of paths in the two

procedure summaries, which shows difference.
The construction of diffCond in line 5 ensures that (diffCond , t1, t2) is a

valid path difference. We add diffCond to C(p1, p2) (line 7), and (diffCond ,
t1, t2) to found diff p1,p2

(line 8). Thus, we not only know under which conditions
the procedures show difference, but also maintain the difference itself (by means
of t1 and t2).

The construction of eqCond in line 10 ensures that for all states that satisfy
it the final states of both procedures are identical, as required by the definition of
U(p1, p2). The satisfiability checks in lines 6, 11 are an optimization that ensures
we do not complicate the computed formulas unnecessarily with unsatisfiable
formulas.

We avoid recomputing previously computed path differences. For simplicity,
we do not show it in the algorithm.

6 Abstraction and Refinement

6.1 Abstraction

In Sect. 3 we show how to define symbolic execution modularly. There, we restrict
ourselves to procedure calls with previously analyzed inputs. However, full analy-
sis of each procedure is usually not feasible and often not needed for difference
analysis at the program level. In this section we show how partial analysis can
be used better.

We abstract the unexplored behaviors of the called procedures by means
of uninterpreted functions [18]. A demand-driven refinement is applied to the
abstraction when greater precision is needed.

We modify the definition of Modular symbolic execution for procedure call
instruction g(Y ) in the following manner:
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– First, we now allow the symbolic execution of p to consider paths along which
p calls g with inputs for which g traverses an unexplored path. To do so, we
change the definition from Eq. (1) to Ri+1

π = Ri
π.

– Second, to deal with the lack of knowledge of the output of g, we introduce
a set of uninterpreted functions UF g = {UF j

g|1 ≤ j ≤ |V v
g |}6. The uninter-

preted function UF j
g(T

i
π[Y ]) replaces UK in T i+1

π [yj ] (Eq. (2)), where yj ∈ Y
is the j-th parameter to g.

We can now improve the precision of Si+1[yj ] if we exploit not only the
summaries of g1 and g2 but also their difference summaries. In particular,
we can use the fact that U(g1, g2) characterizes the inputs for which g1 and
g2 behave the same. We thus introduce three sets of uninterpreted functions:
UF g1 ,UF g2 ,UF g1,g2 .

We now revisit Eq. (2) of the modular symbolic execution for procedure call
g1(Y ), where we replace UK in T i+1

π [yj ] with

ITE (U(g1, g2)(T i
π[Y ]),UF j

g1,g2
(T i

π[Y ]),UF j
g1

(T i
π[Y ])).

Similarly, for a procedure call g2(Y ) we replace UK with

ITE (U(g1, g2)(T i
π[Y ]),UF j

g1,g2
(T i

π[Y ]),UF j
g2

(T i
π[Y ])).

The set UF g1,g2 includes common uninterpreted functions, representing our
knowledge of equivalence between g1 and g2 when called with inputs T i

π[Y ],
even though their behavior in this case is unknown. In some cases this could
be enough to prove the equivalence of the calling procedures p1, p2. The sets
UF g1 and UF g2 are separate uninterpreted functions, which give us no addi-
tional information on the differences or similarities of g1, g2.

Example 4. Consider again procedures p1, p2 in Fig. 2. Let their procedure sum-
maries be

sump1(x) = {(x < 0,−1), (x ≥ 2, x)}
sump2(x) = {(x < 0,−1), (x > 4, x)}

and their difference summary be Δp1,p2 = (false, x < 2∨x > 4). When symbolic
execution of a procedure g reaches a procedure call p1(a), where a is a variable
of the calling procedure g, we will perform:

Ri+1
π = Ri

π

∀yj = a. T i+1
π [yj ] = T i

π[yj ]

T i+1
π [a] = ITE (T i

π[a] < 0,−1, ITE (T i
π[a] ≥ 2, T i

π[a],

ITE (T i
π[a] < 2 ∨ T i

π[a] > 4,UFx
p1,p2(T

i
π[a]),UFx

p1(T
i
π[a])))).

6 An obvious optimization is to use the previous symbolic state for visible variables of
p that are only used by g as inputs but are not changed in g. However, for simplicity
of discussion we will not go into those details.
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6.2 Refinement

Using the described abstraction, the computed Rπ, Tπ may contain symbols of
uninterpreted functions, and therefore so could diffCond= r1 ∧ r2 ∧ t1 = t2 and
eqCond = r1∧r2∧t1 = t2 (lines 5, 10 in Algorithm ConstProcDiffSum). As a
result, C(p1, p2) and U(p1, p2) may include constraints that are spurious, that
is, constraints that do not represent real differences or similarities between p1

and p2. This could occur due to the abstraction introduced by the uninterpreted
functions. Thus, before adding diffCond to C(p1, p2) or eqCond to U(p1, p2), we
need to check whether it is spurious. To address spuriousness, we may then need
to apply refinement by further analysing unexplored parts of the procedures.
This includes procedures that are known to be identical in both versions, since
their behavior may affect the reachability or the final states, as demonstrated
by the example below.

1 void f 1 ( int& x) {
2 i f ( x == 5) {
3 abs (x ) ;
4 i f ( x == 0) {
5 x = 0 ;
6 return ;
7 }
8 }
9 }

1 void f 2 ( int& x) {
2 i f ( x == 5) {
3 abs (x ) ;
4 i f ( x == 0) {
5 x = 1 ;
6 return ;
7 }
8 }
9 }

1 void abs ( int& x) {
2 i f ( x >= 1)
3 return ;
4 else
5 x = −x ;
6 }

Fig. 3. Procedure versions in need of refinement

Example 5. To conclude that the procedures in Fig. 3 are equivalent, we need to
know that abs(5) cannot be zero. Therefore, we need to analyse abs, even though
it was not changed or affected.

We use the technique introduced in [4]: Let ϕ be a formula we wish to add
to either C(p1, p2) or U(p1, p2) (ϕ ∈ {diffCond , eqCond}) such that ϕ includes
symbols of uninterpreted functions. Before being added, it should be checked for
spuriousness.

For every k ∈ {1, 2}, assume procedure pk calls procedure gk(Yk) at location
lik on the single path π′ from pk, described by ϕ. For every k ∈ {1, 2} apply
symbolic execution up to a certain limit on gk with the pre-condition

ϕ ∧ ¬
⎛
⎝ ∨

(r,t)∈sumgk

r
(
T ik−1

π′ [Yk]
)⎞
⎠ ∧ V v

g = T ik−1
π′ [Yk].

When the reachability checks are performed with this precondition, only new
paths reachable from this call in pk are explored. For every such new path π,
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add (Rπ, Tπ) to sumgk
, replace the old sumgk

with the new sumgk
in ϕ and check

for satisfiability again. As a result, we either find a real difference or similarity, or
eliminate all the spurious path differences that involve the explored path π in gk.
The refinement suggested above can be extended in a straightforward manner
to any number of function calls along a path.

Example 6. Consider again the procedures in Fig. 3. Assume that the current
summaries of abs1 = abs2 = abs are empty, but it is known that both versions
are identical (unmodified syntactically). We get (using symbolic execution and
Algorithm 2) the diffCond for p1 and p2:

diffCond =

[
x = 5 ∧

(
ITE (true,UFabs1,abs2(x),UFabs1(x)) = 0

)

∧ x = 5 ∧
(
ITE (true,UFabs1,abs2(x),UFabs2(x)) = 0

)
∧ 0 �= 1

]

≡
[
x = 5 ∧ UFabs1,abs2(x) = 0

]

Next we use x = 5 as a pre-condition, and perform symbolic execution, updating
the summary for abs: (x ≥ 1, x). Now diffCond is:
[
x = 5 ∧

(
ITE
(
x ≥ 1, x, ITE(true,UFabs1,abs2(x),UFabs1(x))

)
= 0

)

∧ x = 5 ∧
(

ITE
(
x ≥ 1, x, ITE (true,UFabs1,abs2(x),UFabs2(x))

)
= 0

)
∧ 0 �= 1

]

≡
[
x = 5 ∧

(
ITE
(
x ≥ 1, x,UFabs1,abs2(x)

)
= 0

)]
≡ x = 5 ∧ x = 0

which is now unsatisfiable. We thus managed to eliminate a spurious difference
without computing the full summary of abs.

Once a difference summary is computed, we can choose whether to refine the
difference by exploring more paths in the individual procedures; or, if diffCond
or eqCond contains uninterpreted functions, to explore in a demand driven man-
ner the procedures summarized by the uninterpreted functions; or continue the
analysis in a calling procedure, where possibly the unknown parts of the cur-
rent procedures will not be reachable. In Sect. 8 we describe the results on our
benchmarks in two extreme modes: running refinement always immediately when
needed (ModDiffRef), and always delaying the refinement (ModDiff).

7 Related Work

A formal definition of equivalence between programs is given in [13]. We extend
these definitions to obtain a finer-grained characterization of the differences.

We extend the path-wise symbolic summaries and deltas given in [25],
and show how to use them in modular symbolic execution, while abstracting
unknown parts.
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The SymDiff [20] tool and the Regression Verification Tool (RVT) [14] both
check for partial equivalence between pairs of procedures in a program, while
abstracting procedure calls (after transforming loops into recursive calls). Unlike
our tool, both SymDiff and RVT are only capable of proving equivalences,
not disproving them. In [16], a work that has similar ideas to ours, conditional
equivalence is used to characterize differences with SymDiff. The algorithm
presented in [16] is able to deal with loops and recursion; however, the algorithm
is not fully implemented in SymDiff. Our tool is capable of dealing soundly
with loops, and as our experiments show, is often able to produce full difference
summaries for programs with unbounded loops. We also provide a finer-grained
result, by characterizing the inputs for which there are (no) semantic differences.

Both SymDiff and RVT lack refinement, which often causes them to fail
at proving equivalence, as shown by our experiments in Sect. 8. Both tools are,
however, capable of proving equivalence between programs (using, among others,
invariants and proof rules) that cannot be handled by our method. Our tech-
niques can be seen as an orthogonal improvement. SymDiff also has a mode that
infers common invariants, as descried in [21], but it failed to infer the required
invariants for our examples.

Under-constrained symbolic execution, meaning symbolic execution of a pro-
cedure that is not the entry point of the program is presented in [27,28], where it
is used to improve scalability while using the old version as a golden model. The
algorithm presented in [27,28] does not provide any guarantees on its result, and
it does not attempt to propagate found differences to inputs of the programs.
By contrast, our algorithm does not stop after analysing only the syntactically
modified procedures, but continues to their calling procedures. On the other
hand, procedures that do not call modified procedures (transitively) are imme-
diately marked as equivalent. Thus, we avoid unnecessary work. In [27], the new
program version is checked, while assuming that the old version is correct. We
do not use such assumptions, as we are interested in all differences: new bugs,
bug fixes, and functional differences such as new features.

In [5,26] summaries and symbolic execution are also used to compute differ-
ences. The technique there leverages a light-weight static analysis to help guide
symbolic execution only to potentially differing paths. In [6], symbolic execution
is applied simultaneously on both versions, with the purpose of guiding sym-
bolic execution to changed paths. Both techniques, however, lack modularity
and abstractions. A possible direction for new research would be to integrate
our approach with one of the two.

Our approach is similar to the compositional symbolic execution presented
in [4,12], that is applied to single programs. However, the analysis in [4,12]
is top-down while ours works bottom-up, starting from syntactically different
procedures, proceeding to calling procedures only as long as they are affected by
the difference of previously analyzed procedures. The analysis stops as soon as
unaffected procedures are reached.
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Our algorithm is unique in that it provides both an under- and over-
approximations of the differences, while all the described methods have no guar-
antees or only provide one of the two.

8 Experimental Results

We implemented the algorithm presented in Sect. 5 with the abstractions from
Sect. 6 on top of the CProver framework (version 787889a), which also forms
the foundation of the verification tools CBMC [8], SatAbs [9], Impact [22] and
Wolverine [19]. The implementation is available online [2]. Since we analyse
programs at the level of an intermediate language (goto-language, the intermedi-
ate language used in the CProver framework), we can support any language that
can be translated to this language (currently Java and C). We report results for
two variants of our tool – without refinement (ModDiff for Modular Demand-
driven Difference), and with refinement (ModDiffRef). The unwinding limit
is set to 5 in both variants.

SYMDIFF and RVT: We compared our results to two well established tools,
SymDiff and RVT. For SymDiff, we used the smack [3] tool to translate the C
programs into the Boogie language, and then passed the generated Boogie files
to the latest available online version of SymDiff.

8.1 Benchmarks and Results

We analysed 28 C benchmarks, where each benchmark includes a pair of syntac-
tically similar versions. Our benchmarks are available online [1]. Our benchmarks
were chosen to demonstrate some of the benefits of our technique, as explained
below. A total of 16 benchmarks are semantically equivalent (Table 1), while
some benchmarks contain semantically different procedures. When using refine-
ment, our algorithm was able to prove all equivalences between programs but not
between all procedures (although some were actually equivalent). RVT’s refine-
ment is limited to loop unrolling, and its summaries are limited as well. Thus, it
cannot prove equivalence of ancestors of recursive procedures or loops that are
semantically different. Also, if it fails to prove equivalence of semantically equiv-
alent recursive procedures or loops, it cannot succeed in proving equivalence of
their ancestors. As previously mentioned, RVT can sometimes prove equivalence
when our tool cannot. The latest available version of SymDiff failed to prove
most examples, possibly also for lack of refinement.

8.2 Analysis

We now explain in detail the benefit of our method on specific benchmarks. The
LoopUnrch benchmarks illustrate the advantages of summaries. Our tool analy-
ses foo1 and foo2 from Fig. 4c, finds a condition under which those procedures
are different (for example inputs −1, 1), and a condition under which they are
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Table 1. Experimental results. Numbers are time in seconds, F indicates a failure to
prove equivalence in (a), and that the difference summary of main was not full (some
differences were not found) in (b).

Benchmark ModDiff ModDiffRef RVT SymDiff

Const 0.545s 0.541s 4.06s 14.562s

Add 0.213s 0.2s 3.85s 14.549s

Sub 0.258s 0.308s 5.01s F

Comp 0.841s 0.539s 5.19s F

LoopSub 0.847s 1.179s F F

UnchLoop F 2.838s F F

LoopMult2 1.666s 1.689s F F

LoopMult5 F 3.88s F F

LoopMult10 F 9.543s F F

LoopMult15 F 21.55s F F

LoopMult20 F 49.031s F F

LoopUnrch2 0.9s 0.941s F F

LoopUnrch5 1.131s 1.126s F F

LoopUnrch10 1.147s 1.168s F F

LoopUnrch15 1.132s 1.191s F F

LoopUnrch20 1.157s 1.215s F F

(a) Semantically equivalent

Benchmark ModDiff MDDiffRef

LoopSub 1.187s 2.426s

UnchLoop F 8.053s

LoopMult2 3.01s 3.451s

LoopMult5 F 5.914s

LoopMult10 F 10.614s

LoopMult15 F 14.024s

LoopMult20 F 25.795s

LoopUnrch2 2.157s 2.338s

LoopUnrch5 2.609s 3.216s

LoopUnrch10 2.658s 3.481s

LoopUnrch15 2.835s 3.446s

LoopUnrch20 3.185s 3.342s

(b) Semantically different

equivalent (a ≥ 0). In all versions of this benchmark, foo1 and foo2 are called
with positive (increasing) values of a (and b), and hence the loop is never per-
formed. We are able to prove equivalence efficiently in all versions, both with
and without refinement.

The LoopMult benchmarks illustrate the advantages of refinement. Our tool
analyses foo1 and foo2 from Fig. 4a, finds a condition under which those proce-
dures are different (for example inputs 1,−1), and a condition under which they
are equivalent. We also summarise all behaviors that correspond to unwinding of
the loop 5 times. This unwinding is sufficient when the procedures are calls with
inputs 2, 2 (benchmark LoopMult2, the first main from Fig. 4b), and therefore
both MD-Diff and MD-DiffRef are able to prove equivalence quickly. This
unwinding is, however, not sufficient for benchmark LoopMult5 (the second main
from Fig. 4b). Thus, MD-Diff is not able to prove equivalence (the summary
of foo1/2 does not cover the necessary paths), while MD-DiffRef analyses the
missing paths (where 5 ≤ a < 7∧b = 5), and is able to prove equivalence. As the
index of the LoopMult benchmark increases, the length of the required paths
and their number increases, and the analysis takes more time, accordingly, but
only necessary paths are explored.

The remaining 12 benchmarks are not equivalent, and our algorithm is able
to find inputs for which they differ (presented in Table 1). Since both SymDiff
and RVT are only capable of proving equivalences, not disproving them, we did
not compare to those tools.
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int foo1 ( int a , int b) {
int c=0;
for ( int i =1; i<=b ; ++i )

c+=a ;
return c ;

}

int foo2 ( int a , int b) {
int c=0;
for ( int i =1; i<=a ; ++i )

c+=b ;
return c ;

}
(a) procedures foo1 and foo2 in
LoopMult benchmarks

int main ( int x ,
char∗argv [ ] ) {

//LoopMult2
return f oo (2 , 2 ) ;

}

int main ( int x ,
char∗argv [ ] ) {

//LoopMult5
i f (x>=5 && x<7)

return f oo (x , 5 ) ;
return 0 ;

}
(b) main functions of
LoopMult2 and Loop-
Mult5

int foo1 ( int a , int b) {
int c=0;
i f ( a<0) {

for ( int i =1;
i<=b;++ i )

c+=a ;
}
return c ;

}

int foo2 ( int a , int b) {
int c=0;
i f ( a<0) {

for ( int i =1;
i<=a;++ i )

c+=b ;
}
return c ;

}
(c) procedures foo1 and foo2
in LoopUnrch benchmarks

Fig. 4. LoopMult and LoopUnrch benchmarks

9 Conclusion

We developed a modular and demand-driven method for finding semantic dif-
ferences and similarities between program versions. It is able to soundly analyse
programs with loops and guide the analysis towards “interesting” paths. Our
method is based on (partially abstracted) procedure summarizations, which can
be refined on demand. Our experimental results demonstrate the advantage of
our approach due to these features.
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Abstract. Formally verifying properties of programs that manipulate
arrays in loops is computationally challenging. In this paper, we focus
on a useful class of such programs, and present a novel property-driven
verification method that first infers array access patterns in loops using
simple heuristics, and then uses this information to compositionally prove
universally quantified assertions about arrays. Specifically, we identify
tiles of array access patterns in a loop, and use the tiling information
to reduce the problem of checking a quantified assertion at the end of a
loop to an inductive argument that checks only a slice of the assertion
for a single iteration of the loop body. We show that this method can
be extended to programs with sequentially composed loops and nested
loops as well. We have implemented our method in a tool called Tiler.
Initial experiments show that Tiler outperforms several state-of-the-art
tools on a suite of interesting benchmarks.

1 Introduction

Arrays are widely used in programs written in imperative languages. They are
typically used to store large amounts of data in a region of memory that the pro-
grammer views as contiguous, and which she can access randomly by specifying
an index (or offset). Sequential programs that process data stored in arrays
commonly use looping constructs to iterate over the range of array indices of
interest and access the corresponding array elements. The ease with which data
can be accessed by specifying an index is often exploited by programmers to
access or modify array elements at indices that change in complex ways within a
loop. While this renders programming easier, it also makes automatic reasoning
about such array manipulating programs significantly harder. Specifically, the
pattern of array accesses within loops can vary widely from program to pro-
gram, and may not be easy to predict. Furthermore, since the access patterns
often span large regions of the array that depend on program parameters, the
array indices of interest cannot be bounded by statically estimated small con-
stants. Hence, reasoning about arrays by treating each array element as a scalar
c© Springer International Publishing AG 2017
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is not a practical option for analyzing such programs. This motivates us to ask if
we can automatically infer program-dependent patterns of array accesses within
loops, and use these patterns to simplify automatic verification of programs that
manipulate arrays in loops.

A commonly used approach for proving properties of sequential programs
with loops is to construct an inductive argument with an appropriate loop invari-
ant. This involves three key steps: (i) showing that the invariant holds before
entering the loop for the first time, (ii) establishing that if the invariant holds
before entering the loop at any time, then it continues to hold after one more
iteration of the loop, and (iii) proving that the invariant implies the desired prop-
erty when the loop terminates. Steps (i) and (ii) allow us to inductively infer
that the invariant holds before every iteration of the loop; the addition of step
(iii) suffices to show that the desired property holds after the loop terminates.
A significant body of research in automated program verification is concerned
with finding invariants that allow the above inductive argument to be applied
efficiently for various classes of programs.

For programs with loops manipulating arrays, the property of interest at the
end of a loop is often a universally quantified statement over array elements.
Examples of such properties include ∀i

(
(0 ≤ i < N) → (A[i] ≥ minV al)∧

(A[i] ≤ A[i + 1])
)
, ∀i ((0 ≤ i < N) ∧ (imod 2 = 0) → (A[i] = i)) and the like. In

such cases, a single iteration of the loop typically only ensures that the desired
property holds over a small part of the array. Effectively, each loop iteration
incrementally contributes to the overall property, and the contributions of suc-
cessive loop iterations compose to establish the universally quantified property.
This suggests the following approach for proving universally quantified assertions
about arrays.

– We first identify the region of the array where the contribution of a generic
loop iteration is localized. Informally, we call such a region a tile of the array.
Note that depending on the program, the set of array indices representing a
tile may not include all indices updated in the corresponding loop iteration.
Identifying the right tile for a given loop can be challenging in general; we
discuss more about this later.

– Next, we carve out a “slice” of the quantified property that is relevant to the
tile identified above. Informally, we want this slice to represent the contribu-
tion of a generic loop iteration to the overall property. The inductive step of
our approach checks if a generic iteration of the loop indeed ensures this slice
of the property.

– Finally, we check that the tiles cover the entire range of array indices of
interest, and successive loop iterations do not interfere with each other’s con-
tributions. In other words, once a loop iteration ensures that the slice of the
property corresponding to its tile holds, subsequent loop iterations must not
nullify this slice of the property. Formalizing these “range covering” and “non-
interference” properties allows us to show that the contributions of different
loop iterations compose to yield the overall quantified property at the end of
the loop.
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The remainder of the paper describes a technique and a tool that uses the
above ideas to prove quantified assertions in a useful class of array manipulating
programs. We focus on assertions expressed as universally quantified formulas
on arrays, where the quantification is over array indices. Specifically, suppose
I denotes a sequence of integer-valued array index, A denotes an array and V
denotes a sequence of scalar variables used in the program. We consider assertions
of the form ∀I (Φ(I) =⇒ Ψ(A,V, I)), where Φ(I) is a quantifier-free formula
in the theory of arithmetic over integers, and Ψ(A,V, I) is a quantifier-free for-
mula in the combined theory of arrays and arithmetic over integers. Informally,
such an assertion states that for array indices satisfying condition Φ(I) (viz.
even indices or indices greater than a parameter N), the corresponding array
elements satisfy the property Ψ(A,V, I). The formal syntax of our assertions is
explained in Sect. 3. In our experience, assertions of this form suffice to express
a large class of interesting properties of array manipulating programs.

Although the general problem of identifying tiles in programs with array
manipulating loops is hard, we have developed some heuristics to automate tile
identification in a useful class of programs. To understand the generic idea behind
our tiling heuristic, suppose the program under consideration has a single loop,
and suppose the quantified property is asserted at the end of the loop. We
introduce a fresh counter variable that is incremented in each loop iteration.
We then use existing arithmetic invariant generation techniques, viz. [1,2], to
identify a relation between the indices of array elements that are accessed and/or
updated in a loop iteration, and the corresponding value of the loop counter.
This information is eventually used to define a tile of the array for the loop under
consideration.

In a more general scenario, the program under verification may have a
sequence of loops, and the quantified property may be asserted at the end of
the last loop. In such cases, we introduce a fresh counter variable for each loop,
and repeat the above process to identify a tile corresponding to each loop. For
our tiling-based technique to work, we also need invariants, or mid-conditions,
between successive loops in the program. Since identifying precise invariants is
uncomputable in general, we work with candidate invariants reported by exist-
ing off-the-shelf annotation/candidate-invariant generators. Specifically, in our
implementation, we use the dynamic analysis tool Daikon [2] that informs us
of candidate invariants that are likely (but not proven) to hold between loops.
Our algorithm then checks to see if the candidate invariants reported after every
loop can indeed be proved using the tiling-based technique. Only those can-
didates that can be proved in this way are subsequently used to compose the
tiling-based reasoning across consecutive loops. Finally, tiling can be applied to
programs with nested loops as well. While the basic heuristic for identifying
tiles remains the same in this case, the inductive argument needs to be carefully
constructed when reasoning about nested loops. We discuss this in detail later
in the paper.

We have implemented the above technique in a tool called Tiler. Our tool
takes as input a C function with one or more loops manipulating arrays. It
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also accepts a universally quantified assertion about arrays at the end of the
function. Tiler automatically generates a tiling of the arrays for each loop in the
C function and tries to prove the assertion, as described above. We have applied
Tiler to a suite of 60 benchmarks comprised of programs that manipulate
arrays in different ways. For most benchmarks where the specified assertion
holds, Tiler was able to prove the assertion reasonably quickly. In contrast, two
state-of-the-art tools for reasoning about arrays faced difficulties and timed out
on most of these benchmarks. For benchmarks where the specified assertion does
not hold, Tiler relies on bounded model checking to determine if an assertion
violation can be detected within a few unwindings of the loops. There are of
course corner cases where Tiler remains inconclusive about the satisfaction of
the assertion. Overall, our initial experiments suggest tiling-based compositional
reasoning can be very effective for proving assertions in a useful class of array
manipulating programs.

The primary contributions of the paper can be summarized as follows.

– We introduce the concept of tiling for reasoning about quantified assertions
in programs manipulating arrays in loops.

– We present a tiling-based practical algorithm for verifying a class of array
manipulating programs.

– We describe a tool that outperforms several state-of-the-art tools for reason-
ing about arrays on a suite of benchmarks. Our tool performs particularly
well on benchmarks where the quantified assertion holds.

2 Motivating Example

Figure 1(a) shows a C function snippet adapted from an industrial battery con-
troller. This example came to our attention after a proprietary industry-strength
static analysis tool failed to prove the quantified assertion at the end of the func-
tion. Note that the function updates an array volArray whose size is given by
COUNT. In general, COUNT can be large, viz. 100000. The universally quantified
assertion at the end of the “for” loop requires that every element of volArray be
either zero or at least as large as MIN. It is not hard to convince oneself through
informal reasoning that the assertion indeed holds. The difficulty lies in proving
it automatically. Indeed, neither Booster [3] nor Vaphor [4], which can reason
about arrays with parameterized bounds, are able to prove this assertion within
15 min on a desktop machine. Bounded model checking tools like CBMC [5]
and SMACK+Corral [6] are able to prove this assertion for arrays with small
values of COUNT. For large arrays, viz. COUNT = 100000, these tools cannot prove
the assertion within 15 min on a desktop machine. This is not surprising since a
bounded model checker must unwind the loop in the function a large number of
times if COUNT is large.

Let us now illustrate how tiling-based reasoning works in this example.
We introduce a fresh auxiliary variable (say j) to denote the index used to
update an element of volArray. Using arithmetic invariant generation tech-
niques, viz. InvGen [1], we can now learn that for all array accesses in the ith
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Fig. 1. Motivating example period-4

loop iteration, the value of the index lies between 4 ∗ i − 4 and 4 ∗ i. Therefore,
we choose [4 ∗ i − 4, 4 ∗ i) as the tile corresponding to the ith iteration of the
loop.

In order to successfully apply the tiling-based reasoning, we must ensure that
our tiles satisfy certain properties.

– Covers range: This ensures that every tile contains only valid array indices,
and that no array index of interest in the quantified assertion is left unac-
counted for in the tiles. In our example, array indices range from 0 to
COUNT−1, while the loop (and hence, tile) counter i ranges from 1 to COUNT/4.
Since the ith tile comprises of the array indices 4i−4, 4i−3, 4i−2 and 4i−1,
both the above requirements are met.

– Sliced property holds for tile: The sliced property in this case says that the
elements of volArray corresponding to indices within a tile have values that
are either 0 or at least MIN. To prove that this holds after an iteration of the
loop, we first obtain a loop-free program containing a single generic iteration
of the loop, and check that the elements of volArray corresponding to the
ith tile satisfy the sliced property after the execution of the ith loop iteration.
The transformed program is shown in Fig. 1(b). Note that this program has
a fresh variable j. The assume statements at lines 7–8 say that i is within the
expected range and that j is an index in the ith tile. Since this program is
loop-free, we can use a bounded model checker like CBMC [5] to prove the
assertion in the transformed program.
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– Non-interference across tiles: To show this, we assume that the sliced property
holds for the i′-th tile, where 0 ≤ i′ < i, before the ith loop iteration starts. This
can be done by adding the following three extra assumptions after lines 7 and
8 in Fig. 1(b): (i) assume(1 <= i′ < i), (ii) assume(4 ∗ i′ − 4 <= j′ < 4 ∗ i′),
and (iii) assume(volArray[j′] >= MIN | | volArray[j′] == 0). We then assert
at the end of the loop body that the sliced property for the i′-th tile continues to
hold even after the ith iteration. This can be done by replacing the assertion in
line 26 of Fig. 1(b) by assert(volArray[j′] >= MIN | | volArray[j′] == 0). As
before, since the program in Fig. 1(b) is loop-free, this assertion can be easily
checked using a bounded model checker like CBMC.

Once all the above checks have succeeded, we can conclude that the quantified
assertion holds in the original program after the loop terminates. Note the care-
ful orchestration of inductive reasoning to prove the sliced property, and com-
positional reasoning to aggregate the slices of the property to give the original
quantified assertion. Our tiling-based tool proves the assertion in this example
in less than a second.

3 Preliminaries

For purposes of this paper, an array-manipulating program P is a tuple
(V,L,A,PB), where V is a set of scalar variables, L ⊆ V is a set of scalar
loop counter variables, A is a set of array variables, and PB is the program body
generated by the following grammar.

PB ::= St
St ::= v := E | A[E] := E | assume(BoolE) | if(BoolE) then St else St |

for (� := 0; � < E; � := �+1) {St} | St ; St
E ::= E op E | A[E] | v | � | c

BoolE ::= E relop E | BoolE AND BoolE | NOT BoolE | BoolE OR BoolE

Here, we assume that A ∈ A, v ∈ V\L, � ∈ L and c ∈ Z. We also assume that
“op” (resp. “relop”) is one of a set of arithmetic (resp. relational) operators. We
wish to highlight the following features of programs generated by this grammar:

– There are no unstructured jumps, like those effected by goto or break state-
ments in C-like languages. The effect of a break statement inside a loop in a
C-like language can always be modeled by setting a flag, and by conditioning
the execution of subsequent statements in the loop body on this flag being not
set, and by using this flag to determine whether to exit the loop. The effect
of a break statement in a conditional branch can also be similarly modeled.
Therefore, we can mimic the behaviour of break statements in our programs.

– We can have sequences of possibly nested loops, with non-looping program
fragments between loops. Furthermore, the body of a loop and the corre-
sponding loop head, i.e. control location where the loop is entered, are easily
identifiable.
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– Every loop is associated with a scalar loop counter variable that is set to 0
when the loop is entered, and incremented after every iteration of the loop.
We assume that each loop has a unique counter variable.

– The only assignments to loop counter variables happen when a loop is entered
for the first time and at the end of an iteration of the corresponding loop body.
Other assignment statements in the program cannot assign to loop counter
variables. Loop counter variables can however be freely used in expressions
throughout the program.

– The restriction on the usage of loop counter variables simplifies the analy-
sis and presentation, while still allowing a large class of programs to be
effectively analyzed. Specifically, whenever the count of iterations of a
loop can be expressed in a closed form in terms of constants and vari-
ables not updated in the loop, we can mimic its behaviour using our
restricted loops. As a generic example, suppose we are told that the loop
for(i := exp1; Cond; i := exp2){LoopBody} iterates exp3 times, where exp3
is an arithmetic expression in terms of constants and variables not updated
in the loop. The behaviour of this loop can be mimicked using the following
restricted loop, where l and flag are fresh variables not present in the original
program: for(l := 0; l < exp3; l := l + 1){if(l = 0){i := exp1}; if(Cond)
{LoopBody; i := exp2}}.

To see a specific example of this transformation, suppose the program under
verification has the loop: for(i := 2 ∗ M; i >= 0; i := i − 2){LoopBody},
where M and i are variables not updated in LoopBody. Clearly, this loop iter-
ates (M +1) times. Therefore, it can be modeled in our restricted language as:
for(l := 0; l < M + 1; l := l + 1){if(l = 0){i := 2 ∗ M}; if(i >= 0){Loop
Body; i := i − 2}}.

For clarity of exposition, we abuse notation and use V and A to also
denote a sequence of scalar and array variables, when there is no confusion.
A verification problem for an array manipulating program is a Hoare triple
{PreCond} P {PostCond}, where each of PreCond and PostCond are quantified for-
mulae of the form ∀I (Φ(I) =⇒ Ψ(A,V, I)). Here, I is assumed to be a sequence
of array index variables, Φ is a quantifier-free formula in the theory of arithmetic
over integers, and Ψ is a quantifier-free formula in the combined theory of arrays
and arithmetic over integers. The formula Φ(I) identifies the relevant indices of
the array where the property Ψ(A,V, I) must hold. This allows us to express a
large class of useful pre- and post-conditions, including sortedness, which can be
expressed as ∀j (0 ≤ j < N) → (A[j] ≤ A[j + 1]).

Let AtomSt denote the set of atomic statements in a program generated by
the above grammar. These are statements of the form v := E, A[E] := E or
assume(E). It is common to represent such a program by a control flow graph
G = (N,E, μ), where N denotes the set of control locations of the program, E ⊆
N × N × {tt,ff ,U} represents the flow of control, and μ : N → AtomSt ∪ BoolE
annotates every node in N with either an assignment statement, an assume
statement or a Boolean condition.
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Fig. 2. A CFG

We assume there are two distinguished vertices
called Start and End in N , that represent the entry
and exit points of control flow for the program. An
edge (n1, n2, L) represents flow of control from n1

to n2 without any other intervening node. The edge
is labeled tt or ff if μ(n1) is a Boolean condition,
and it is labeled U otherwise. If μ(n1) is a Boolean
condition, there are two outgoing edges labeled tt
and ff respectively, from n1. Control flows from n1

to n2 along (n1, n2, L) only if μ(n1) evaluates to L.
If μ(n1) is an assume or assignment statement, there
is a single outgoing edge from n1, and it is labeled
U. Henceforth, we use CFG to refer to a control flow
graph.

A CFG may have cycles in general. A back-edge
in a CFG is an edge from a node (control location)
within the body of a loop to the node representing
the corresponding loop head. Clearly, removing all
back-edges from a CFG renders it acyclic. The target nodes of back-edges, i.e.
nodes corresponding to loop heads, are also called cut-points of the CFG. Every
acyclic sub-graph of a CFG that starts from a cut-point or Start and ends at
another cut-point or End, and that does not pass through any other cut-points
in between and also does not include any back-edge, is called a segment. For
example, consider the CFG shown in Fig. 2. For clarity, edges labeled U are
shown unlabeled in the figure. The cut-points in this CFG are nodes 1, 2 and 3,
the back-edges are e1, e2 and e3, and the segments are S → 1, 1 → 2, 2 → 3,
3 → {4, 6} → 5, 2 → 7 and 1 → E. Note that every segment is an acyclic
sub-graph of the CFG with a unique source node and a unique sink node.

4 A Theory of Tiles

In this section, we present a theory of tiles for proving universally quantified
properties of arrays in programs that manipulate arrays within loops.

4.1 Tiling in a Simple Setting

Consider a program P as defined in the previous section that accesses elements
of an array A in a loop L. Suppose P has a single non-nested loop L with loop
counter � and loop exit condition (� < E�), where E� is an arithmetic expression
involving only constants and variables not updated in L. Thus, the loop iterates
E� times, with the value of � initialized to 0 at the beginning of the first iteration,
and incremented at the end of each iteration. Each access of an element of A in
the loop is either a read access or a write access. For example, in the program
shown in Fig. 3, the loop L (lines 2–11) has three read accesses of A (at lines 5,
6, 7), and three write accesses of A (at lines 3, 6, 7). In order to check an assertion



436 S. Chakraborty et al.

about the array at the end of the loop (see, for example, line 12 of Fig. 3), we wish
to tile the array based on how its elements are updated in different iterations of
the loop, reason about the effect of each loop iteration on the corresponding tile,
and then compose the tile-wise reasoning to prove/disprove the overall assertion.
Note that the idea of tiling an array based on access patterns in a loop is not
new, and has been used earlier in the context of parallelizing and optimizing
compilers [7,8]. However, its use in the context of verification has been limited [9].
To explore the idea better, we need to formalize the notion of tiles.

Fig. 3. Program with interesting tiling

Let IndicesA denote the range
of indices of the array A. We
assume that this is available
to us; in practice, this can be
obtained from the declaration of
A if it is statically declared, or
from the statement that dynam-
ically allocates the array A. Let
Pre and Post denote the pre-
and post-conditions, respectively,
for the loop L under consid-
eration. Recall from Sect. 3 that both Pre and Post have the form
∀j (Φ(j) =⇒ Ψ(A,V, j)), where V denotes the set of scalar variables in the pro-
gram. To keep the discussion simple, we consider Post to be of this specific form
for the time being, while ignoring the form of Pre. We show later how the specific
form of Pre can be used to simplify the analysis further. For purposes of sim-
plicity, we also assume that the array A is one-dimensional; our ideas generalize
easily to multi-dimensional arrays, as shown later. Let Inv be a (possibly weak)
loop invariant for loop L. Clearly, if Pre =⇒ Inv and Inv∧ ¬(� < EL) =⇒ Post,
then we are already done, and no tiling is necessary. The situation becomes inter-
esting when Inv is not strong enough to ensure that Inv ∧ ¬(� < EL) =⇒ Post.
We encounter several such cases in our benchmark suite, and it is here that our
method adds value to existing verification flows.

A tiling of A with respect to L, Inv and Post is a binary predicate TileL,Inv,Post :
N × IndicesA → {tt,ff} such that conditions T1 through T3 listed below hold.
Note that these conditions were discussed informally in Sect. 2 in the context of
our motivating example. For ease of notation, we use Tile instead of TileL,Inv,Post

below, when L, Inv and Post are clear from the context. We also use “�th tile” to
refer to all array indices in the set {j | (j ∈ IndicesA) ∧ Tile(�, j)}.

(T1) Covers range: Every array index of interest must be present in some tile, and
every tile contains array indices in IndicesA. Thus, the formula η1 ∧ η2 must
be valid, where η1 ≡ ∀j

(
(j ∈ IndicesA) ∧ Φ(j) =⇒ ∃�

(
(0 ≤ � < E�) ∧

Tile(�, j)
))

, and η2 ≡ ∀� ((0 ≤ � < E�) ∧ Tile(�, j) =⇒ (j ∈ IndicesA)).
(T2) Sliced post-condition holds inductively: We define the sliced post-condition

for the �th tile as PostTile(�,·) � ∀j (Tile(�, j) ∧ Φ(j) =⇒ Ψ(A,V, j)). Thus,
PostTile(�,·) asserts that Ψ(A,V, j) holds for all relevant j in the �th tile. We
now require that if the (possibly weak) loop invariant Inv and the sliced
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post-condition for the �′-th tile for all �′ ∈ {0, . . . � − 1} hold prior to
executing the �th loop iteration, then the sliced post condition for the �-th
tile and Inv must also hold after executing the �th loop iteration.

Formally, if Lbody denotes the body of the loop L, the Hoare triple given
by {Inv∧∧

�′:0≤�′<� PostTile(�′,·)} Lbody {Inv∧PostTile(�,·)} must be valid for
all � ∈ {0, . . . E� − 1}.

(T3) Non-interference across tiles: For every pair of iterations �, �′ of the loop
L such that �′ < �, the later iteration (�) must not falsify the sliced post
condition PostTile(�′,·) rendered true by the earlier iteration (�′).

Formally, the Hoare triple {Inv ∧ (0 ≤ �′ < �) ∧ PostTile(�′,·)}Lbody

{PostTile(�′,·)} must be valid for all � ∈ {0, . . . E� − 1}.

Note that while tiling depends on L, Inv and Post in general, the pattern of array
accesses in a loop often suggests a natural tiling of array indices that suffices to
prove multiple assertions Post using reasonably weak loop invariants Inv. The
motivating example in Sect. 2 illustrated this simplification. The example in
Fig. 3 admits the tiling predicate Tile(�, j) ≡ (j = �) based on inspection of
array access patterns in the loop. Note that in this example, the �th iteration
of the loop can update both A[�] and A[� + 1]. However, as we show later, a
simple reasoning reveals that the right tiling choice here is (j = �), and not
(� ≤ j ≤ � + 1).

Theorem 1. Suppose TileL,Inv,Post : N × IndicesA → {tt,ff} satisfies conditions
T1 through T3. If Pre =⇒ Inv also holds and the loop L iterates at least once,
then the Hoare triple {Pre} L {Post} holds.

Proof sketch: The proof proceeds by induction on the values of the loop counter �.
The inductive claim is that at the end of the �th iteration of the loop, the post-
condition

∧
�′:0≤�′≤� PostTile(�′,·) holds. The base case is easily seen to be true

from condition T2 and from the fact that Pre =⇒ Inv. Condition T3 and the
fact that � is incremented at the end of each loop iteration ensure that once we
have proved PostTile(�,·) at the end of the �th iteration, it cannot be falsified in
any subsequent iteration of the loop. Condition T2 now ensures that the sliced
post-condition can be inductively proven for the �th tile. By condition T1, we
also have

∧
0≤�<E�

PostTile(�,·) ≡ Post. Since the loop L iterates with � increasing
from 0 to E� − 1, it follows that Post indeed holds if Inv holds before the start
of the first iteration. This is the compositional step in our approach. Putting all
the parts together, we obtain a proof of {Pre} L {Post}. ��

A few observations about the conditions are worth noting. First, note that
there is an alternation of quantifiers in the check for T1. Fortunately, state-of-
the-art SMT solvers like Z3 [10] are powerful enough to check this condition
efficiently for tiles expressed as Boolean combinations of linear inequalities on �
and V, as is the case for the examples in our benchmark suite. We anticipate that
with further advances in reasoning about quantifiers, the check for condition T1
will not be a performance-limiting step.

The checks for T2 and T3 require proving Hoare triples with post-conditions
that have a conjunct of the form PostTile(�,·). From the definition of a sliced



438 S. Chakraborty et al.

post-condition, we know that PostTile(�,·) is a universally quantified for-
mula. Additionally, the pre-condition for T2 has a conjunct of the form∧

�′:0≤�′<� PostTile(�′,·), which is akin to a universally quantified formula. There-
fore T2 and T3 can be checked using Hoare logic-based reasoning tools that per-
mit quantified pre- and post-conditions, viz. [11,12]. Unfortunately, the degree of
automation and scalability available with such tools is limited today. To circum-
vent this problem, we propose to use stronger Hoare triple checks that logically
imply T2 and T3, but do not have quantified formulas in their pre- and post-
conditions. Since the program, and hence Lbody, is assumed not to have nested
loops, state-of-the-art bounded model checking tools that work with quantifier-
free pre- and post-conditions, viz. CBMC, can be used to check these stronger
conditions. Specifically, we propose the following pragmatic replacements of T2
and T3.

(T2*) Let RdAccL(�) denote the set of array index expressions corresponding
to read accesses of A in the �th iteration of the loop L. For example, in
Fig. 3, RdAccL(�) = {�, � − 1}. Clearly, if Lbody is loop-free, RdAccL(�) is
a finite set of expressions. Suppose |RdAccL(�)| = k and let e1, . . . ek

denote the expressions in RdAccL(�). Define ζ(�) to be the formula∧
ek∈RdAccL(�)

(
((0 ≤ �k < � < E�) ∧ Tile(�k, ek) ∧ Φ(ek)) ⇒ Ψ(A,V, ek)

)
,

where �k are fresh variables not used in the program. Informally, ζ(�)
states that if A[ek] is read in the �th iteration of L and if ek belongs to
the �k-th (�k < �) tile, then Φ(ek) =⇒ Ψ(A,V, ek) holds.

We now require the following Hoare triple to be valid, where j is a
fresh free variable not used in the program.
{Inv ∧ (0 ≤ � < E�) ∧ ζ(�) ∧ Tile(�, j) ∧ Φ(j)} Lbody{Inv ∧ Ψ(A,V, j)}.

(T3*) Let j′ and �′ be fresh free variables that are not used in the program. We
require the following Hoare triple to be valid:
{Inv∧(0 ≤ �′ < � < E�)∧Tile(�′, j′)∧Φ(j′)∧Ψ(A,V, j′)} Lbody {Ψ(A,V, j′)}

Lemma 1. The Hoare triple in T2* implies that in T2. Similarly, the Hoare
triple in T3* implies that in T3.

The proof follows from the observation that a counterexample for validity of the
Hoare triple in T2 or T3 can be used to construct a counterexample for validity
of the triple in T2* or T3* respectively.

Observe that T2* and T3* require checking Hoare triples with quantifier-
free formulas in the pre- and post-conditions. This makes it possible to use
assertion checking tools that work with quantifier-free formulas in pre- and post-
conditions. Furthermore, since Lbody is assumed to be loop-free, these checks can
also be discharged using state-of-the-art bounded model checkers, viz. CBMC.
The scalability and high degree of automation provided by tools like CBMC
make conditions T1, T2* and T3* more attractive to use.
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4.2 Tiling in More General Settings

The above discussion was restricted to a single uni-dimensional array accessed
within a single non-nested loop in a program P. We now relax these restrictions
and show that the same technique continues to work with some adaptations.

We consider the case where P is a sequential composition of possibly nested
loops. To analyze such programs, we identify all segments in the CFG of P. Let
CutPts be the set of cut-points of the CFG. Recall from Sect. 3 that a segment
is a sub-DAG of the CFG between a source node in CutPts ∪ {Start} and a sink
node in CutPts ∪ {End}. Thus, a segment s corresponds to a loop-free fragment
of P. Let �s denote the loop counter variable corresponding to the innermost
loop in which s appears. We assign ⊥ to �s if s lies outside all loops in P.
Let OuterLoopCtrss denote the set of loop counter variables of all outer loops
(excluding the innermost one) that enclose (or nest) s. The syntactic restrictions
of programs described in Sect. 3 ensure that �s and OuterLoopCtrss are uniquely
defined for every segment s.

Suppose we are given (possibly weak) invariants at every cut-point in P,
where Invc denotes the invariant at cut-point c. We assume the invariants are
of the usual form ∀I (Φ(I) =⇒ Ψ(A,V, I)), where I is a sequence of quantified
array index variables, and A and V are sequences of array and scalar variables
respectively. Let As be a sequence of arrays that are updated in the segment s
between cut-points c1 and c2, and for which �s �= ⊥. We define a tiling predi-
cate Tiles,Invc1 ,Invc2

: N × IndicesAs
→ {tt,ff}, where IndicesAs

=
∏

A′∈As
IndicesA′

plays a role similar to that of IndicesA in Sect. 4.1 (where a single array A was
considered). The predicate Tiles,Invc1 ,Invc2

relates values of the loop counter �s of
the innermost loop containing s to the index expressions that define the updates
of arrays in As in the program segment s. The entire analysis done in Sect. 4.1
for a simple loop L can now be re-played for segment s, with Invc1 playing the
role of Inv, Invc2 playing the role of Post, V ∪OuterLoopCtrss playing the role of
V, and �s playing the role of �. If the segment s is not enclosed in any loop, i.e.
�s = ⊥, we need not define any tiling predicate for this segment. This obviates
the need for conditions T1 and T3, and checking T2 simplifies to checking the
validity of the Hoare triple {Invc1} s {Invc2}. In general, Invc1 and Invc2 may
be universally quantified formulas. In such cases, the technique used to simplify
condition T2 to T2* in Sect. 4.1 can be applied to obtain a stronger condition,
say T2**, that does not involve any tile, and requires checking a Hoare triple
with quantifier-free pre- and post-conditions. If the condition checks for all seg-
ments as described above succeed, it follows from Theorem 1 and Lemma 1 that
we have a proof of {Pre} P {Post}.

Recall that in Sect. 4.1, we ignored the specific form of the pre-condition Pre.
As defined in Sect. 3, Pre has the same form as that of the post-condition and
invariants at cut-points considered above. Therefore, the above technique works
if we treat Pre as InvStart and Post as InvEnd.

The extension to multi-dimensional arrays is straightforward. Instead of using
one index variable j for accessing arrays, we now allow a tuple of index variables
(j1, j2, . . . jr) for accessing arrays. Each such variable jl takes values from its
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own domain, say IndicesAl
. The entire discussion about tiles above continues to

hold, including the validity of Theorem 1, if we replace every occurrence of an
array index variable j by a sequence of variables j1, . . . jr and every occurrence
of IndicesA by IndicesA1 × IndicesA2 . . . × IndicesAr

.

5 Verification by Tiling

The discussion in the previous section suggests a three-phase algorithm, pre-
sented as Algorithm 1, for verifying quantified properties of arrays in programs
with sequences of possibly nested loops manipulating arrays. In the first phase of
the algorithm, we use bounded model checking with small pre-determined loop
unrollings to check for assertion violations. If this fails, we construct the CFG
of the input program P, topologically sort its cut-points and initialize the sets
of candidate invariants at each cut-point to ∅.

Algorithm 1. TiledVerify(P : program, Pre: pre-condn, Post: post-condn)
1: Let G be the CFG for program P = (A, V, L,PB), as defined in Section 3.

� Check for shallow counterexample and initialization

2: Do bounded model checking with pre-determined small loop unrollings;
3: if counterexample found then return “Post condition violated!”;

4: CutPts := set of cut-points in G;
5: Remove all back-edges from G and topologically sort CutPts; � Let � be the sorted order
6: for each c in CutPts do
7: CandInv[c] := ∅; � Set of candidate invariants at c

8: CandInv[Start] := Pre; CandInv[End] := Post; � Fixed invariants at Start and End

� Candidate invariant generation

9: for each segment s from c1 to c2, where c1, c2 ∈ CutPts ∪ {Start, End} and c1 � c2 do
10: if (s lies within a loop) then
11: �[s] := loop counter of innermost nested loop containing s;
12: OuterLoopCtrs[s] := loop counters of all other outer loops containing s;
13: else � s not in any loop
14: �[s] := ⊥; OuterLoopCtrs[s] := ∅;

15: ScalarVars[s] := V ∪ OuterLoopCtr[s];
16: CandInv[c2] := CandInv[c2] ∪ findHeuristicCandidateInvariants(s, c2, �[s], ScalarVars[s], A);

� Tiling and verification

17: for each segment s from c1 to c2 do
18: if (s lies within a loop) then
19: CandTile[s] := findHeuristicTile(s, �[s], ScalarVars[s], A); � Candidate tile for s
20: Check conditions T1, T2* and T3* for CandTile[s], as described in Section 4.1;
21: if (not timed out) AND (T1 or T3* fail) then
22: Re-calculate CandTile[s] using different heuristics; goto 20;

23: if (not timed out) AND (T2* or T3* fail) AND (c2 	= End) then
24: Re-calculate CandInv[c2] using different heuristics; goto 20;

25: else � s not in any loop
26: Check condition T2**, as described in Section 4.2;
27: if (not timed out) AND (T2** fails) AND (c2 	= End) then
28: Re-calculate CandInv[c2] using different heuristics; goto 26;

29: if timed out then return “Time out! Inconclusive answer!”
30: return “Post-condition verified!”
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In the second phase, we generate candidate invariants at each cut-point c by
considering every segment s that ends at c. For each such segment s, we identify
the loop counter �[s] corresponding to the innermost loop in which s appears, and
the set of loop counters OuterLoopCtrs[s] corresponding to other loops that con-
tain (or nest) s. Note that when the program fragment in the segment s executes,
the active loop counter that increments from one execution of s to the next is
�[s]. The loop counters in OuterLoopCtrs[s] can be treated similar to other scalar
variables in V when analyzing segment s. We would like the candidate invari-
ants identified at different cut-points to be of the form ∀I (Φ(I) =⇒ Ψ(A,V, I)),
whenever possible. We assume access to a routine findHeuristicCandidateInvariants
for this purpose. Note that the candidate invariants obtained from this routine
may not actually hold at c2. In the next phase, we check using tiling whether a
candidate invariant indeed holds at a cut-point, and use only those candidates
that we are able to prove.

Algorithm 2. findHeuristicTile(s : segment, �: loop counter, ScalarVars: set
of scalars, A: set of arrays)
1: Let c1 be the starting cut-point (or Start node) of s;
2: for each array A updated in s do
3: UpdIndexExprsA[s] := ∅;
4: for each update of the form A[e] := e′ at location c in s do � e and e′ are arith expns
5: ê := e in terms of �, ScalarVars, A at c1 � Obtained by backward traversal from c to c1
6: UpdIndexExprsA[s] := UpdIndexExprsA[s] ∪ {ê}
7: InitTileA(�, j) := Simplify

(∨

e∈UpdIndexExprsA[s](j = e)
)

; � Initial estimate of tile

8: for each e ∈ UpdIndexExprsA[s] do

9: if
(

InitTileA(�, e) ∧ InitTileA(� + k, e) ∧ (0 ≤ � < � + k < E�)
)

is satisfiable then

10: Remove e from UpdIndexExprsA[s];

11: TileA(�, j) := Simplify
(∨

e∈UpdIndexExprsA[s](j = e)
)

; � Refined tile

12: return
∧

A∈A TileA(�, ·);

In the third phase, we iterate over every segment s between cut-point c1

and c2 again, and use heuristics to identify tiles. This is done by a routine
findHeuristicTile. The working of our current tiling heuristic is shown in Algo-
rithm 2. For every array update A[e] := e′ in segment s, the heuristic tra-
verses the control flow graph of s backward until it reaches the entry point
of s, i.e. c1, to determine the expression e in terms of values of �[s], V,
OuterLoopCtrs[s] and A at c1. Let UpdIndexExprsA[s] denote the set of such
expressions for updates to A within s. We identify an initial tile for A in s
as InitTileA(�[s], j) ≡ ∨

e∈UpdIndexExprsA[s](j = e). It may turn out that the same
array index expression appears in two or more initial tiles after this step. For
example, in Fig. 3, we obtain InitTileA(�, j) ≡ (� ≤ j ≤ � + 1), and hence
InitTileA(�, �+1)∧ InitTileA(�+1, �+1) is satisfiable. While the conditions T1, T2
and T3 do not forbid overlapping tiles in general (non-interference is different
from non-overlapping tiles), our current tiling heuristic avoids them by refining
the initial tile estimates. For each expression e in UpdIndexExprsA[s], we check
if InitTileA(�[s], e) ∧ InitTileA(�[s] + k, e) ∧ (0 ≤ �[s] < �[s] + k < E�[s]) is satisfi-
able. If so, we drop e from the refined tiling predicate, denoted TileA(�[s], ·) in
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Algorithm 2. This ensures that an array index expression e belongs to the tile
corresponding to the largest value of the loop counter �[s] when it is updated.
The procedure Simplify invoked in lines 7 and 11 of Algorithm 2 tries to obtain
a closed form linear expression (or Boolean combination of a few linear expres-
sions) for

∨
e∈UpdIndexExprsA[s](j = e), if possible. In the case of Fig. 3, this gives the

tile (j = �), which suffices for proving the quantified assertion in this example.
Sometimes, the heuristic choice of tiling or the choice of candidate invariants

may not be good enough for the requisite checks (T1, T2*, T2**, T3) to go
through. In such cases, Algorithm 1 allows different heuristics to be used to
update the tiles and invariants. In our current implementation, we do not update
the tiles, but update the set of candidate invariants by discarding candidates
that cannot be proven using our tiling-based checks. It is possible that the tiles
and candidate invariants obtained in this manner do not suffice to prove the
assertion within a pre-defined time limit. In such cases, we time out and report
an inconclusive answer.

6 Implementation and Experiments

Implementation: We have implemented the above technique in a tool called
Tiler. The tool is built on top of the LLVM/CLANG [13] compiler infrastruc-
ture. We ensure that input C programs are adapted, if needed, to satisfy the
syntactic restrictions in Sect. 3. The current implementation is fully automated
for programs with non-nested loops, and can handle programs with nested loops
semi-automatically.

Generating candidate invariants: We use a template-based dynamic analysis
tool, Daikon [2], for generating candidate invariants. Daikon supports linear
invariant discovery among program variables and arrays, and reports invariants
at the entry and exit points of functions. In order to learn candidate quantified
invariants, we transform the input program as follows. The sizes of all arrays
in the program are changed to a fixed small constant, and all arrays and pro-
gram variables which are live are initialized with random values. We then insert
a dummy function call at each cut-point. Our transformation collects all array
indices that are accessed in various segments of the program and expresses them
in terms of the corresponding loop counter(s). Finally, it passes the values of
accessed array elements, the corresponding array index expressions and the loop
counter(s) as arguments to the dummy call, to enable Daikon to infer candidate
invariants among them. The transformed program is executed multiple times to
generate traces. Daikon learns candidate linear invariants over the parameters
passed to the dummy calls from these traces. Finally, we lift the candidate invari-
ants thus identified to quantified invariants in the natural way.

As an example, consider the input program shown in Fig. 4(a). The trans-
formed program is shown in Fig. 4(b). In the transformed program, arrays a and b
are initialized to random values. The dummy function call in loop L1 has four
arguments a[i], b[i], acopy[i] and i. Based on concrete traces, Daikon initially
detects the candidate invariants (a i = acopy i) and (a i �= b i) on the parameters
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Fig. 4. (a) Input program (b) Transformed program

of the dummy function. We lift these to obtain the candidate quantified invari-
ants ∀i.(a[i] = acopy[i]) and ∀i.(a[i] �= b[i]). In the subsequent analysis, we detect
that ∀i, (a[i] �= b[i]) cannot be proven. This is therefore dropped from the candi-
date invariants (line 24 of Algorithm 1), and we proceed with ∀i, (a[i] = acopy[i]),
which suffices to prove the post-condition.

Tile generation and checking: Tiles are generated as in Algorithm 2. Condition
T1 is checked using Z3 [10], which has good support for quantifiers. We employ
CBMC [5] for implementing the checks T2*, T2** and T3*.

Benchmarks. We evaluated our tool on 60 benchmarks from the test-suites of
Booster [3] and Vaphor [4], as well as on programs from an industrial code
base. The benchmarks from Booster and Vaphor test-suites (Table 1(a)) per-
form common array operations such as array initialization, reverse order initial-
ization, incrementing array contents, finding largest and smallest elements, odd
and even elements, array comparison, array copying, swapping arrays, swapping
a reversed array, multiple swaps, and the like. Of the 135 benchmarks in this
test suite, 66 benchmarks are minor variants of the benchmarks we report. For
example, there are multiple versions of programs such as copy, init, copyninit,
with different counts of sequentially composed loops. In such cases, the bench-
mark variant with the largest count is reported in the table. Besides these, there
are 22 cases containing nested loops which can currently be handled only semi-
automatically by our implementation, and 25 cases with post-conditions in a
form that is different from what our tool accepts. Hence, these results are not
reported here.

Benchmarks were also taken from the industrial code of a battery controller
in a car (Table 1(b)). These benchmarks set a repetitive contiguous bunch of
cells in a battery with different values based on the guard condition that gets
satisfied. The size of such a contiguous bunch of cells varies in different models.
The assertion checks if the cell values are consistent with the given specification.

All our benchmarks are within 100 lines of uncommented code. The programs
have a variety of tiles such as 4i − 4 ≤ j < 4i, 2i − 2 ≤ j < 2i, j = size − i − 1,
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Table 1. Results on selected benchmarks from (a) Booster & Vaphor test-suite and
(b) industrial code. #L is the number loops (and sub-loops, if any) in the bench-
mark, T is Tiler, S+C is SMACK+Corral, B is Booster, and V is Vaphor.
✓ indicates assertion safety, ✗ indicates assertion violation, ? indicates unknown result,
and � indicates unsupported construct. All the times are in seconds. TO is time-out.
* indicates semi-automated experiments and the corresponding execution times are of
the automated part. See text for explanation.

j = i etc., with the last one being the most common tile, where i denotes the
loop counter and j denotes the array index accessed.

Experiments. The experiments reported here were conducted on an Intel
Core i5-3320M processor with 4 cores running at 2.6 GHz, with 4 GB of
memory running Ubuntu 14.04 LTS. A time-out of 900 s was set for Tiler,
SMACK+Corral [14], Booster [3] and Vaphor [4]. The memory limit was
set to 1GB for all the tools. Spacer [15] was used as the SMT solver for the
Horn formulas generated by Vaphor since this has been reported to perform
well with Vaphor. In addition, C programs were manually converted to mini-
Java, as required by Vaphor. Since SMACK+Corral is a bounded model
checker, a meaningful comparison with Tiler can be made only in cases where
the benchmark violates a quantified assertion. In such cases, the verifier option
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svcomp was used for Corral. In all other cases, we have shown a † in the column
for SMACK+Corral in Table 1 to indicate that comparison is not meaningful.

Tiler takes about two seconds for verifying all single loop programs that sat-
isfy their assertions. For programs containing multiple loops, 10 random runs of
the program were used to generate candidate invariants using Daikon. The weak
loop invariant Inv, mentioned in Sect. 4, was assumed to be true. Tiler took
a maximum of 35 s to output the correct result for each such benchmark. The
execution time of Tiler includes instrumentation for Daikon, trace generation,
execution of Daikon on the traces for extracting candidate invariants, translat-
ing these to assume statements for use in CBMC, proving the reported candidate
invariants and proving the final assertion. The execution of Daikon and proving
candidate invariants took about 95% of the total execution time.

To demonstrate the application of our technique on programs with nested
loops, we applied it to the last four benchmarks in Table 1(b), each of which has
a loop nested inside another. We used Tiler to automatically generate tiles for
these programs. We manually encoded the sliced post-condition queries and ran
CBMC. We did not have time to automate trace generation for Daikon and
for making the above CBMC calls automatically for this class of programs. We
are currently implementing this automation.

Analysis. Booster and Vaphor performed well on benchmarks from their
respective repositories. Although Vaphor could analyze the benchmark for
reversing an array, as well as one for copying and swapping arrays, it could
not analyze the benchmark for reverse copying and swapping. Since the arrays
are reversed and then swapped, all array indices need to be tracked in this case,
causing Vaphor to fail. Vaphor also could not verify most of the industrial
benchmarks due to two key reasons that are not handled well by Vaphor: (i) at
least two distinguished array cells need to be tracked in these benchmarks, and
(ii) updates to the arrays are made using non-sequential index values.

Booster could analyze all the examples in which the assertion gets violated,
except for a benchmark containing an unsupported construct (shift operator)
indicated by �. This is not surprising since finding a violating run is sometimes
easier than proving an assertion. Booster however could not prove several other
industrial benchmarks because it could not accelerate the expressions for indices
at which the array was being accessed. Tiler, on the other hand, was able to
generate interesting tiles for almost all these benchmarks.

In our experiments, SMACK+Corral successfully generated counter-
examples for all benchmarks in which the assertion was violated. As expected,
it was unable to produce any conclusive results for benchmarks with parametric
array sizes where the quantified assertions were satisfied.

Limitations. There are several scenarios under which Tiler may fail to produce
a conclusive result. Tiler uses CBMC with small loop unwinding bounds to
find violating runs in programs with shallow counter-examples. Consequently,
when there are no short counter-examples (e.g. in mclceu.c), Tiler reports an
inconclusive answer. Tiler is also unable to report conclusively in cases where
the tile generation heuristic is unable to generate the right tile (e.g. in tcpy.c),
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when Daikon generates weak mid-conditions (e.g. in poly2.c) or when CBMC
takes too long to prove conditions T2* or T3* (e.g. in poly1.c).

Our work is motivated by the need to prove quantified assertions in pro-
grams from industrial code bases, where we observed interesting patterns of
array accesses. Our tile generation heuristic is strongly motivated by these pat-
terns. There is clearly a need to develop more generic tile generation heuristics
for larger classes of programs.

7 Related Work

The Vaphortool [4] uses an abstraction to transform array manipulating pro-
grams to array-free Horn formulas, parameterized by the number of array cells
that are to be tracked. The technique relies on Horn clause solvers such as Z3 [10],
Spacer [15] and Eldarica [16] to check the satisfiability of the generated array-
free Horn formulas. Vaphor does not automatically infer the number of array
cells to be tracked to prove the assertion. It also fails if the updates to the array
happen at non-sequential indices, as is the case in array reverse and swap, for
example. In comparison, Tiler requires no input on the number of cells to be
tracked and is not limited by sequential accesses. The experiments in [4] show
that Horn clause solvers are not always efficient on problems arising from pro-
gram verification. To be efficient on a wide range of verification problems, the
solvers need to have a mix of heuristics. Our work brings a novel heuristic in the
mix, which may be adopted in these solvers.

Booster [3] combines acceleration [17,18] and lazy abstraction with inter-
polants for arrays [19] for proving quantified assertions on arrays for a class of
programs. Interpolation for universally quantified array properties is known to
be hard [20,21]. Hence, Booster fails for programs where simple interpolants
are not easily computable. Fluid updates [22] uses bracketing constraints, which
are over- and under-approximations of indices, to specify the concrete elements
being updated in an array without explicit partitioning. This approach is not
property-directed and their generalization assumes that a single index expression
updates the array.

The analysis proposed in [23,24] partitions the array into symbolic slices
and abstracts each slice with a numeric scalar variable. These techniques cannot
easily analyze arrays with overlapping slices, and they do not handle updates to
multiple indices in the array or to non-contiguous array partitions. In compari-
son, Tiler uses state-of-the-art SMT solver Z3 [10] with quantifier support [25]
for checking interference among tiles and can handle updates to multiple non-
contiguous indices.

Abstract interpretation based techniques [9,26] propose an abstract domain
which utilizes cell contents to split array cells into groups. In particular, the
technique in [26] is useful when array cells with similar properties are non-
contiguously present in the array. All the industrial benchmarks in our test-
suite are such that this property holds. Template-based techniques [27] have
been used to generate expressive invariants. However, this requires the user to
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supply the right templates, which may not be easy in general. In [28], a technique
to scale bounded model-checking by transforming a program with arrays and
possibly unbounded loops to an array-free and loop-free program is presented.
This technique is not compositional, and is precise only for a restricted class of
programs.

There are some close connections between the notion of tiles as used in this
paper and similar ideas used in compilers. For example, tiling/patterns have
been widely used in compilers for translating loops into SIMD instructions [8,29].
Similarly, the induction variable pass in LLVM can generate all accessed index
expressions for an array in terms of the loop counters. Note, however, that not
all such expressions may be part of a tile (recall the tiles in Fig. 3). Hence,
automatically generating the right tile remains a challenging problem in general.

8 Conclusion

Programs manipulating arrays are known to be hard to reason about. The prob-
lem is further exacerbated when the programmer uses different patterns of array
accesses in different loops. In this paper, we provided a theory of tiling that helps
us decompose the reasoning about an array into reasoning about automatically
identified tiles in the array, and then compose the results for each tile back to
obtain the overall result. While generation of tiles is difficult in general, we have
shown that simple heuristics are often quite effective in automatically generating
tiles that work well in practice. Surprisingly, these simple heuristics allow us to
analyze programs that several state-of-the-art tools choke on. Further work is
needed to identify better and varied tiles for programs automatically.
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11. Hähnle, R., Bubel, R.: A hoare-style calculus with explicit state updates. In: Formal
Methods in Computer Science Education, pp. 49–60 (2008)

12. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20398-5 4

13. Lattner, C.: LLVM and Clang: next generation compiler technology. In: The BSD
Conference, pp. 1–2 (2008)

14. Haran, A., Carter, M., Emmi, M., Lal, A., Qadeer, S., Rakamarić, Z.:
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Abstract. This paper presents Icpp, a newdata-flow-based InCremental
analysis for Probabilistic Programs, to infer their posterior probability
distributions in response to small yet frequent changes to probabilistic
knowledge, i.e., prior probability distributions and observations. Unlike
incremental analyses for usual programs, which emphasize code changes,
such as statement additions and deletions, Icpp focuses on changes made
to probabilistic knowledge, the key feature in probabilistic programming.
The novelty of Icpp lies in capturing the correlation between prior and pos-
terior probability distributions by reasoning about the probabilistic depen-
dence of each data-flow fact, so that any posterior probability affected by
newly changed probabilistic knowledge can be incrementally updated in a
sparse manner without recomputing it from scratch, thereby allowing the
previously computed results to be reused. We have evaluated Icpp with
a set of probabilistic programs. Our results show that Icpp is an order
of magnitude faster than the state-of-the-art data-flow-based inference in
analyzing probabilistic programs under small yet frequent changes to prob-
abilistic knowledge, with an average analysis overhead of around 0.1 s in
response to a single change.

1 Introduction

Uncertainty is a common feature in many modern software systems, especially
statistical applications (e.g., climate change prediction, spam email filtering and
ranking the skills of game players). Probabilistic programming provides a power-
ful approach to quantifying and characterizing the effects of these uncertainties.
A Probabilistic Programming Language (PPL) usually extends an imperative
language (e.g., C and Java) by adding two types of language constructs, i.e.,
probabilistic assignments for generating random values based on prior probabil-
ity distributions and observe statements for conditioning values of variables.

Unlike an imperative program, which is mainly written for the purposes of
being executed, a probabilistic program is a specification that specifies implic-
itly posterior probability distributions to model uncertainty of the program.
Probabilistic inference is the key to reasoning about a probabilistic program by
extracting explicit distributions that are implicitly specified in the program.

Generally, there are two approaches to probabilistic inference: (1) dynamic
inference, which runs a probabilistic program a finite number of times through
sampling-based Monte Carlo methods [4,7,19,25,28] and then performs inference
c© Springer International Publishing AG 2017
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to calculate the statistics based on the execution traces, and (2) static inference,
which statically computes the probability distributions without repeatedly exe-
cuting the program. A typical static method [2] is to abstract a loop-free program
as a probabilistic model (e.g., a Bayesian network) and then resorts to existing
inference algorithms, e.g., belief propagation [24] and variational inference [35].
A recent work, DFI [8], provides more precise inference results than sampling
algorithms and Bayesian modeling methods by applying data-flow analysis to
analyze probabilistic programs with and without loops.

Unlike the case for imperative programs, applying data-flow analysis to
infinite-state probabilistic programs is generally more expensive. Data-flow facts
of probabilistic programs are probability distributions, including the values of
program variables and their corresponding probabilities. Given a probabilistic
program, the number of its data-flow facts depends not only on its size para-
meters but also the prior distributions at its probabilistic assignments and the
conditions at its observe statements. As a common practice in probabilistic pro-
gramming, probabilistic knowledge, which is represented by prior probability
distributions and observations, is often updated under different scenarios or set-
tings [3,6,37]. To achieve precise modeling, probabilistic assignments and observe
statements are often changed in order to obtain various posterior probability dis-
tributions when writing a probabilistic program [36]. However, such small yet
frequent changes affect the performance of static inference as the previous infer-
ence results become invalid once the program has been modified. Repeatedly
reanalyzing a probabilistic program that undergoes small changes makes static
inference costly.

Incremental analysis aims to efficiently update existing analysis results with-
out recomputing them from scratch, allowing the previously computed infor-
mation to be reused. There are a few existing works that support incremental
analysis, such as pointer analysis [18,31], IDE/IFDS analysis [1], data race detec-
tion [38], symbolic execution [26], and fixed-point analysis for logic programs [14].
However, these existing techniques cannot be directly applied to analyze prob-
abilistic programs. For probabilistic programs, frequent changes in probabilistic
knowledge pose a new challenge to incremental analysis. It is still an open ques-
tion as to whether we can replicate the success of previous incremental analysis
for usual programs in analyzing probabilistic programs.

In this paper, we present Icpp, a new InCremental analysis for analyz-
ing Probabilistic Programs, to infer its posterior probability distributions in
response to small yet frequent changes to probabilistic knowledge, i.e., prior
probability distributions and observations. Unlike previous incremental analyses
for usual programs, which emphasize code changes, such as statement additions
and deletions, Icpp focuses on changes made to probabilistic knowledge, which
is the key feature in probabilistic programming.

As illustrated in Fig. 1, Icpp first performs data-flow-based pre-inference.
Unlike DFI [8], which explicitly computes and maintains the probability of every
program state, our pre-inference generates data-flow facts with each consist-
ing of a program state and its corresponding probabilistic dependence, which is
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Fig. 1. Workflow of Icpp.

used to maintain the correlation between the posterior and prior probability
distributions at probabilistic assignments. This probabilistic dependence is later
retrieved to facilitate incremental inference once a change is made to a probabilis-
tic assignment or an observe statement. Based on the dependence information,
the data-flow facts are updated incrementally and propagated sparsely along
the control flow to adapt to program changes, making Icpp an instantaneous
incremental analysis for users to query posterior probability distributions, while
achieving the same precision achieved when the program is re-analyzed entirely.

In summary, the contributions of this paper are as follows:

– We present Icpp, a new InCremental analysis for Probabilistic Programs, in
response to small yet frequent changes to probabilistic knowledge.

– We propose a new probabilistic dependence analysis to analyze the two dis-
tinct language constructs in probabilistic programs, probabilistic assignments
and observe statements.

– We evaluate Icpp using a set of probabilistic programs from R2 [25] and
DFI [8]. Our results show that Icpp is an order of magnitude faster than
the state-of-the-art data-flow-based inference [8] in analyzing these programs
under small yet frequent changes to probabilistic knowledge, with an average
analysis overhead of around 0.1 s in response to a single change.

2 Background

In this section, we describe the preliminaries for our analysis, by focusing on the
representation and inference of a probabilistic program.

2.1 Probabilistic Programs

Following [8,12], we represent a probabilistic program using a tiny language
defined in Fig. 2. This is a single-function imperative language with two added
constructs: (1) a probabilistic assignment, x = Dist(θ), that assigns random val-
ues to variable x based on a probability distribution Dist(θ), such as Bernoulli,
UniformInt and Gauss, where θ is a list of parameters according to a distribution
model (with a continuous distribution being approximated by a discrete distribu-
tion over a finite set, following [8,21]), and (2) an observe statement, observe(E),
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Fig. 2. Syntax of a probabilistic program.

that conditions the expression E to be true. The effect of the observe statement
is to block all program executions violating condition E .

Figure 3 gives examples to illustrate the differences between an imperative
program in Fig. 3(a) and its probabilistic counterparts in Figs. 3(b) and (c).
Figure 3(b) replaces the deterministic assignment at line 2 in Fig. 3(a) with a
probabilistic assignment, so that the variable b is assigned a random value based
on the discrete uniform distribution UniformInt(0, 1), which returns one of
two integers 0 and 1 with equal probability, 1/2. Figure 3(c) gives another proba-
bilistic program by adding further observe(b==1) after statement �4 in Fig. 3(b)
to block any execution such that b is not equal to 1 at �5.

As shown in Fig. 3(d), executing the imperative program in Fig. 3(a) always
produces the deterministic result (a = 0, b = 1). However, probabilistic programs
are nondeterministic. Executing the one in Fig. 3(b) may produce one of the two
different results: (a = 1, b = 0) and (a = 0, b = 1). Figure 3(e) shows a posterior
distribution with equal probability 1/2 for each result. The imperative program
in Fig. 3(a) can be seen as a special case of the probabilistic program in Fig. 3(b)
with the probability of its unique deterministic result being 1.

Figure 3(f) demonstrates that the result (a = 1, b = 0) becomes infeasible
with its possibility being 0 due to the condition at the observe statement. After
normalization, the probability for the other result (a = 0, b = 1) becomes 1.

2.2 Probabilistic Inference

The key mechanism for reasoning about a probabilistic program is probabilis-
tic inference, which explicitly calculates the posterior probability distributions
implicitly specified in the program. There are two approaches: (1) dynamic
inference, which executes programs a finite number of times through sampling-
based methods [19], such as importance sampling [11], Gibbs sampling [28] and
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Fig. 3. Imperative vs. probabilistic programs.

Metropolis-Hastings sampling [7], and (2) static inference, which computes the
probability distributions statically without running the program.

A recent data-flow-based inference, DFI [8], applies the data-flow theory for
probabilistic inference by treating probability distributions as data-flow facts.
DFI is path-sensitive by analyzing control-flow branch conditions. The resulting
inference provides better precision than many existing methods, e.g., Expecta-
tion Propagation [22], message passing algorithm [16] and MCMC sampling [13].

In DFI, the static inference is formulated as a forward data-flow problem
(D,�, F ). Here, D represents all data-flow facts with each 〈σ, ρ〉 ∈ D consisting
of a program state σ (a set of values) and its corresponding probability ρ when σ
holds. � is the meet operator. F : D → D represents the set of transfer functions
with f� being associated with node (statement) at � in the CFG of the program.

A path-sensitive analysis computes the data-flow facts (probability distri-
butions) by considering every executable path. We write π to denote a path
[�1, �2 . . . �n] consisting of a sequence of n statements in a CFG. The transfer
function for π is fπ ∈ F , which is the composition of transfer functions of the
first n − 1 statements on π, i.e., fπ = f�1 ◦ f�2 . . . f�n−1 . Note that we speak of
the path π by excluding the last statement at �n. Finally, the set of data-flow
facts, D�n, that reach the beginning of a statement �n is computed as follows:

D�n = ⊔

π∈paths(�n)

fπ(�) (1)

where paths(�n) denotes the set of paths from the program entry to statement
�n and � ∈ D is the standard top element in the lattice used.

When analyzing a statement � in DFI [8], its transfer function f�, which is
defined based on the standard Gen/Kill sets, is distributive, so that f�(d1) ∪
f�(d2) = f�(d1 ∪ d2) holds, where d1, d2 ∈ D. Therefore, the meet operator � is
the set union (∪), causing the data-flow facts at a joint point to be merged, in
order to reduce the number of facts propagated without affecting the precision of
the posterior probability distribution results. In particular, two data-flow facts
〈σ1, ρ1〉 and 〈σ2, ρ2〉 at a joint point are merged into 〈σ1, ρ1 + ρ2〉 if σ1 == σ2.



Incremental Analysis for Probabilistic Programs 455

Fig. 4. Data-flow-based probabilistic inference.

Let us take a look at the data-flow-based inference in Fig. 4 by revisiting the
example in Fig. 3(c). After analyzing the deterministic assignment �1, D�2 at
the beginning of �2 is 〈(a = 1), 1〉. After analyzing the probabilistic assignment
�2, we obtain two data-flow facts representing the probability distributions for
two possible states, (a = 1, b = 0) and (a = 1, b = 1), with their corresponding
probabilities being ρ(a=1,b=0) = Pr(�1 :a=1) ∗ Pr(�2 :b=0) = 1 ∗ 1/2 = 1/2 and
ρ(a=1,b=1) = Pr(�1 :a=1) ∗ Pr(�2 :b=1) = 1 ∗ 1/2 = 1/2, respectively.

D�5 contains the two data-flow facts reaching the beginning of �5, 〈(a =
0, b = 1), 1/2〉 and 〈(a = 1, b = 0), 1/2〉, which are computed and propagated
from the if and else branches, respectively. Finally, after analyzing the observe
statement �5, D�6 (without normalization) is the same as D�5 except that the
probability of (a=0, b=1) has been updated to from 1/2 to 0.

3 A Motivating Example

Figure 5 gives an example to illustrate the basic idea behind Icpp when
the prior probability distribution at �2 is changed from UniformInt(0, 1) to
UniformInt(−1, 1). This change affects the probabilities of b’s existing values
and introduces a new value −1 to b. Note that observe statements are handled
as a special case of probabilistic statements and will be discussed in Sect. 4.2.2.

Unlike DFI [8], which explicitly computes and maintains the probability ρ
of every state σ reaching statement � in terms of a data-flow fact 〈σ, ρ〉 ∈ D�,
Icpp represents a data-flow fact in the form of 〈σ, γσ〉 ∈ D�, where γσ is σ’s
all-path probabilistic dependence (Definition 3), which implicitly represents σ’s
probability ρσ. We obtain γσ by merging σ’s single-path dependences γπ,σ for all
the paths π reaching � (Definition 2), where γπ,σ collects the probability seeds
generated from the relevant probabilistic assignments on π (Definition 1). When
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Fig. 5. A motivating example illustrating how Icpp works in response to the change at
�2 from UniformInt(0, 1) to UniformInt(−1, 1) (as highlighted in red). (Color figure
online)

building a particular single-path dependence γπ,σ, only one single seed is selected
for a probabilistic assignment every time when it is analyzed. Therefore, a seed
may appear multiple times in γπ,σ when π contains a loop, which is handled by
approximating a KL-divergence [22] between two consecutive loop iterations.

Definition 1 (Probability Seed). For a probabilistic assignment � : x =
Dist(θ), we define a probability seed s at � as � : x = a, where a is one of all
the possible values returned by the prior distribution Dist(θ). One probabilistic
assignment � may induce multiple seeds s ∈ Seeds(�) from the distribution.

Definition 2 (Single-Path Probabilistic Dependence). For a data-flow
fact 〈σ, γπ,σ〉∈fπ(�) associated with path π = [�1, . . . , �n], its single-path proba-
bilistic dependence is γπ,σ = [s1, . . . , sm], which consists of a sequence of probabil-
ity seeds (Definition 1) based on all the probabilistic assignments on π (m < n).
The probability of σ for π is ρπ,σ = Pr(γπ,σ) = Pr(s1) ∗ Pr(s2) ∗ · · · ∗ Pr(sm).

Definition 3 (All-Path Probabilistic Dependence). For a data-flow fact
〈σ, γσ〉 ∈ D� at the beginning of �, its all-path probabilistic dependence γσ =
{γπ,σ | π ∈ paths(�)} consists of the dependence information for every single
path π reaching �, with σ’s probability being ρσ = Pr(γσ) = Σπ∈paths(�) ρπ,σ.
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Let us look at the example in Fig. 5 to illustrate how Icpp incrementally
computes the posterior probability distributions at �6 once the prior probabil-
ity distribution at a probabilistic assignment is changed. Pre-inference is first
performed to generate the probabilistic dependences for all the data-flow facts
during the on-the-fly data-flow analysis. Based on the dependence information,
sparse incremental update is performed to recalculate the posterior probability
distributions of the existing data-flow facts at �6 affected by the change made.
Finally, we propagate the new data-flow facts introduced by the change across
the entire program in a sparse manner via sparse incremental propagation.

Pre-inference. For the program given in Fig. 5(a), the data-flow facts obtained
by pre-inference are listed in Fig. 5(b).

To start with, the probabilistic assignment �1 based on the Bernoulli distri-
bution assigns a random value 0 or 1 to variable a with each value’s probability
being 1/2. As shown, D�2 therefore contains the two data-flow facts, where the
probabilistic dependence of each state is its corresponding probability seed gen-
erated from �1 (e.g., (a = 0) is annotated with its seed [�1 :a = 0]).

The probabilistic assignment at �2 gives variable b a random value, 0 or 1, based
on a discrete uniform distribution. By combining with the two values of variable a,
we obtain the four data-flow facts in D�3 to represent the four possible states for a
and b with the probability of each state being 1/4. The corresponding probabilistic
dependence of each state (e.g., (a = 0, b = 0)) is a sequence of probability seeds
(e.g., [�1 :a = 0, �2 :b = 0]), which are used to compute its corresponding probabil-
ity (e.g., ρ(a=0,b=0) = Pr(�1 :a = 0) ∗ Pr(�2 :b = 0) = 1/4).

There are two branches at �3 when propagating D�3 forward. Only two data-
flow facts whose states satisfy condition b > 0 are propagated to the if branch as
illustrated in D�4 while the other two are propagated to the else branch. After
analyzing �4, a’s value in each data-flow fact of D�4 is flipped, while b’s value
stays the same. Note that the probabilistic dependence recorded in each data-
flow fact remains unchanged, as indicated in D�5 , because �4 is a deterministic
statement, which does not affect any probabilistic dependence in any way.

After analyzing �5, D�6 contains six data-flow facts at the join point before
�6 (the end of the program). The four data-flow facts highlighted in green are
generated after analyzing �5 in the if branch and the two data-flow facts in
orange are propagated from the else branch. Let πif = [�1, �2, �3, �4, �5, �6] and
πelse = [�1, �2, �3, �6] as shown in Fig. 5(b). The data-flow facts whose states
are the same are merged by computing their all-path probabilistic dependence
(Definition 3). Therefore, 〈(a = 0, b = 0), γπif ,(a=0,b=0)〉 from the if branch and
〈(a = 0, b = 0), γπelse,(a=0,b=0)〉 from the else branch are merged into 〈(a =
0, b = 0), {γπif ,(a=0,b=0), γπelse,(a=0,b=0)}〉, where

γπif ,(a=0,b=0) = [�1 :a = 1, �2 :b = 1, �5 :b = 0]
γπelse,(a=0,b=0) = [�1 :a = 0, �2 :b = 0] (2)

Likewise, the two data-flow facts with the same state (a = 1, b = 0) are also
merged. Finally, we calculate the joint posterior probability ρσ for each data-flow
fact reaching �6 based on its probabilistic dependence as shown in Fig. 5(b).



458 J. Zhang et al.

Sparse Incremental Update. Here, our incremental analysis is concerned with
updating the posterior probabilities of the existing data-flow facts in D�6 , which
are affected by the changes made to the prior probability distributions discovered
by the computed probabilistic dependences. Icpp does not reanalyze the program
to recompute any of the existing data-flow facts 〈σ, γσ〉 ∈ D�6 . Instead, it just
recalculates its posterior probability ρσ. For example, the probabilistic assign-
ment �2, changed from b = UniformInt(0, 1) to b = UniformInt(−1, 1), causes
the prior probabilities of the two probability seeds to change from Prold(�2 :b =
0) = Prold(�2 : b = 1) = 1/2 to Prnew(�2 : b = 0) = Prnew(�2 : b = 1) = 1/3. In
this motivating example, we are interested in the effects of the change on the pos-
terior probabilities at �6. As shown in Fig. 5(b), D�6 contains four data-flow facts
that are computed before the change is made. Therefore, their probabilities need
to be updated. Consider first 〈(a = 0, b = 0), {γπif ,(a=0,b=0), γπelse,(a=0,b=0)}〉,
where γπif ,(a=0,b=0) and γπelse,(a=0,b=0) are given in (2). The following equation
recalculates the posterior probability of its corresponding state (a = 0, b = 0),
whose probabilistic dependence contains the two probability seeds, �2 : b = 0
and �2 : b = 1:

ρnew
(a=0,b=0) =

Prold(γπif ,(a=0,b=0) ∗ Prnew(�2 :b = 1)
Prold(�2 :b = 1)

+
Prold(γπelse,(a=0,b=0) ∗ Prnew(�2 :b = 0)

Prold(�2 :b = 0)

=
1/8 ∗ 1/3

1/2
+

1/4 ∗ 1/3
1/2

= 1/4

Likewise, the probabilities of the other three data-flow facts in D�6 are updated
as ρnew

(a=1,b=0) = 1/4, ρnew
(a=1,b=1) = 1/12 and ρnew

(a=0,b=1) = 1/12. These updated
posterior probabilities are reflected in the bottom of Fig. 5(c).

Updating existing data-flow facts incrementally this way is lightweight. As
we are interested in the effects of a change on �6 in our motivating example, the
posterior probabilities for the data-flow facts in D�6 are recalculated directly. All
the other data-flow facts from D�1 to D�5 remain untouched, without requiring
any expensive data-flow analysis that computes and propagates data-flow facts
(probabilistic dependences) along the program’s control-flow.

Sparse Incremental Propagation. The change made to the prior probability
distribution at �2 also introduces a new probability seed [�2 : b = −1] with its
probability Pr(�2 : b = −1) = 1/3, as illustrated in Fig. 5(c). During the sparse
incremental propagation, the two new data-flow facts, 〈(a = 0, b = −1), {[�1 :
a = 0, �2 :b = −1]}〉 and 〈(a = 1, b = −1), {[�1 :a = 1, �2 :b = −1]}〉, are generated
and appended to D�3 . In general, the new data-flow facts generated this way are
propagated sparsely along the control flow in the program, without causing the
existing data-flow facts to be modified. Finally, we obtain the updated posterior
joint distributions at �6 by combining the results of both existing and new data-
flow facts incrementally computed for �6, as shown in Fig. 5(c).
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4 ICPP: Incremental Analysis for Probabilistic Programs

In this section, we describe our pre-inference and incremental inference, which
are conducted in response to changes made to probabilistic knowledge at prob-
abilistic assignments and/or observe statements.

4.1 Pre-inference

The probabilistic dependence analysis during pre-inference forms the basis for
Icpp. It takes a probabilistic program as input and produces as output the data-
flow facts with a probabilistic dependence γσ over each state σ of the program.
Figure 6 gives our algorithm, which introduces the transfer functions for ana-
lyzing each type of statements in Fig. 2 by computing the data-flow facts in a
forward traversal of the CFG of the program being analyzed.

4.1.1 Notations. We adopt some notations from [8]. For a state σ, σ(x)
denotes the value of variable x in σ. Likewise, the notation σ(E) evaluates the
value of expression E in σ. σ[x ← σ(x)] represents the state obtained by updating
the value of x in σ, with the values of all the other variables in σ remaining
unchanged. The function ite(b, x, y) evaluates to x if b = true and y if b = false.

Given a statement �, Ω� is used to denote all the states recorded in the
data-flow facts of D�. For the purposes of explaining our algorithm cleanly, D� is
represented by a lambda function λσ.expr, where each state σ ∈ Ω� is bounded in
expression expr, which represents the all-path probabilistic dependence of σ. By
default, we define � = λσ.∅. For (σ, γσ) ∈ D�, we write γσ ⊕ s for seed collection
by adding a probability seed s into every single-path dependence γπ,σ ∈ γσ

(where π ∈ paths(�) ranges from all the paths reaching � by Definition 3).

4.1.2 Probabilistic Dependence Analysis. Given a program � ∈ Prog, we
call PreIn(�, �) (Fig. 6) recursively to compute its data-flow facts.

Lines 2–3 handle a deterministic assignment � : x := E , where multiple states
σ ∈ Ω� of the data-flow facts in D� may become (i.e., be merged into) the same
new state σ′ after the value of x is updated with a new value σ(E). Consequently,
the corresponding probabilistic dependences of these states σ ∈ Ω� are merged
together to obtain the all-path probabilistic dependence of σ′.

For each probability seed [� : x = a] generated at a probabilistic assignment
�, lines 4–5 compute new data-flow facts for all states σ ∈ Ω� similarly as the case
when a deterministic statement is handled, except that the all-path dependence
γσ of σ is updated by adding the new probability seed [� : x = a] into γσ. The
set of data-flow facts obtained at a probabilistic statement � is the union of the
sets of data-flow facts computed for all its probability seeds s ∈ Seeds(�) at �.

Lines 6–7 handle an observe statement observe(E) by simply removing the
dependence information γσ of any state σ ∈ Ω� if σ(E) evaluates to false. Lines
9–10 handle a sequence of two statements �1; �2 by first computing the data-flow
facts for �1 and using the resulting facts as the input to analyze �2.
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Fig. 6. An algorithm for pre-inference.

Lines 13–16 handle an if statement. Our path-sensitive analysis first splits
the set of data-flow facts reaching � into two subsets, D�1 and D�2 , based on the
Boolean predicate E . Then the bodies of the if and else branches are recursively
computed by applying PreIn. Finally, we return the results by merging the
data-flow facts obtained from both the if and else branches.

Lines 17–24 handle a while loop by computing the results until a fixed-point
is reached. We define Dpre and Dcur to represent the sets of previous and cur-
rent data-flow facts across two consecutive iterations of the while loop. Initially,
Dpre is set as ⊥ and Dcur as D� obtained just before the while loop. PreIn
is repeatedly applied to the data-flow facts in Dpre with the statement “if E
then �1 else skip” until a fixed-point based on KL-divergence [17]. Due to the
non-determinism of probabilistic programs [8,10,12] (e.g., a probabilistic assign-
ment generates a probability seed randomly during each loop iteration), finding
a loop iteration under which Dcur = Dpre is potentially nonterminating. Thus,
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we use KL-divergence to enforce the termination of a while loop. In line 19,
KL-divergence(Dcur,Dpre) is true if the following condition holds:

|
∑

σ∈Ωcur

ρσ ∗ ln(
ρσ

ρ′
σ

) | < threshold (3)

where ρσ is the probability of σ ∈ Ωcur calculated based on 〈σ, γσ〉 ∈ Dcur, ρ′
σ

is the probability calculated based on 〈σ, γ′
σ〉 ∈ Dpre, and threshold is a user-

determined parameter (set to 0.01 in our experiments). Note that a probability
seed s may appear multiple times in a single-path dependence when a fixed-point
is reached. For example, γπ,σ = [s, s, . . . , s] if the path π contains some loops.

Fig. 7. An OneCoin example.

Example 1. Let us use a simple OneCoin program in Fig. 7 to explain
KL-divergence in a while loop. At the k-th iteration, there are two states,
(b = 0) and (b = 1), with their all-path probabilistic dependences being
γ(b=0) = {[�3 : b = 0, �3 : b = 0; · · · ]} and γ(b=1) = {[�3 : b = 1], [�3 : b =
0, �3 : b = 1], [�3 : b = 0, �3 : b = 0, �3 : b = 1], · · · } immediately after �3. Their
corresponding probabilities are ρ(b=0) = (0.5)k and ρ(b=1) = 0.5 + ... + (0.5)k.
Thus, the KL-divergence between iterations k and k − 1 is computed as follows:

(0.5)k × ln(
(0.5)k

(0.5)k−1
) + (0.5 + ... + (0.5)k) × ln(

0.5 + ... + (0.5)k

0.5 + ... + (0.5)k−1
)

�

Let us revisit the example in Fig. 5 to go through our pre-inference algo-
rithm in Fig. 6. Given the program �1; �2; �3; �6 in Fig. 5(a), we see how calling
PreIn(�, �1; �2; �3; �6) yields the data-flow facts obtained in Fig. 5(b).

Example 2. The sequence �1; �2; �3; �6 is analyzed in order, starting from �1 :a =
Bernoulli(0.5) (lines 10–12). �1 generates two probability seeds, �1 :a = 0 and
�1 : a = 1 (lines 4–5). Thus, we obtain two states, (a = 0) and (a = 1), which
are recorded in Ω�2 . Their probability seeds are added to their probabilistic
dependences, resulting in γ(a=0) = {[�1 :a = 0]} and γ(a=1) = {[�1 :a = 1]}. As a
result, D�2 contains the two data-flow facts, as shown in Fig. 5(b).

When analyzing �2 : b = UniformInt(0, 1) (lines 4–5), we obtain also two
probability seeds, �2 : b = 0 and �2 : b = 1. By combining each seed with each of
the two states in Ω�2 = {(a = 0), (a = 1)}, we obtain the four states in D�3 , as
shown in Fig. 5(b), with the probabilistic dependence γσ of each state σ ∈ Ω�3
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containing an additional probability seed of either �2 : b = 0 or �2 : b = 1. As a
result, D�3 contains the four data-flow facts, as shown in Fig. 5(b).

When analyzing �3 : if (b > 0) then �4; �5 else skip (lines 13–16), we split
D�3 into D�4;�5 and Dskip according to the condition b > 0, where D�4;�5 is
propagated into the if branch and Dskip into the else branch. Then we continue
to apply PreIn to compute the data-flow facts for �4; �5 (lines 10–12) and skip
(lines 8–9). Finally, we merge the data-flow facts flowing out of the two branches
at the beginning of �6 to obtain D�6 (line 16). �

4.2 Incremental Inference

Based on the computed probabilistic dependence information, our incremental
analysis handles two type of changes made to a probabilistic program, i.e., prior
distribution changes at a probabilistic assignment (Sect. 4.2.1) and condition
changes at an observe statement (Sect. 4.2.2). Icpp aims to recalculate the pos-
terior probability ρσ for each data-flow fact 〈σ, γσ〉 ∈ D�end

at �end (the end of
a program) according to the computed probabilistic dependence γσ, in response
to the changes made to probabilistic knowledge in the program.

Without loss of generality, we restrict ourselves to a change made to one single
statement at a time. Our incremental inference generalizes straightforwardly to
the changes made simultaneously to multiple statements.

4.2.1 Handling Changes Made at Probabilistic Assignments. For a
probabilistic assignment x = Dist(θ), Icpp focuses on a change made to the
prior distribution Dist(θ), which is defined over a measurable sample space
with a probability measure. Thus, a change can be a modification of the sample
space or the probability measure. For example, if x=Bernoulli(0.5) is modified
to x = Bernoulli(0.6), the sample space, {0, 1}, remains the same, but the
probability measure is adjusted, with the probability of x=1 changed from 0.5
to 0.6. However, modifying x = UniformInt(0, 1) into x = UniformInt(−1, 1)
will change both its sample space and probability measure. Similarly, modifying
a distribution model from Dist to Dist′ also affects both.

Modifying a probability measure changes the posterior probabilities of exist-
ing data-flow facts computed by pre-inference. Modifying a sample space gener-
ates new probability seeds, and consequently, introduces new data-flow facts.

For a change made at a probabilistic assignment, the algorithm in Fig. 8
updates the posterior probabilities of the existing data-flow facts affected via
IncUpdate and propagates the newly introduced data-flow facts via IncProp.

Sparse Incremental Update. According to our algorithm in Fig. 8, Scom =
Seeds(�old) ∩ Seeds(�new) is the set of probability seeds that exist in both the
original and modified programs. D�end

is the set of data-flow facts that reach �end

computed before the change. IncUpdate(D�end
, Scom) can instantly recalculate

the posterior probability distributions for the states in D�end
based on the all-

path probabilistic dependence γσ computed by pre-inference for each data-flow
fact in D�end

, without a need for performing any data-flow analysis.



Incremental Analysis for Probabilistic Programs 463

Fig. 8. An algorithm for performing incremental analysis due to a change made from
�old :x=Dist(θ) to �new :x=Dist′(θ

′
) at a probabilistic assignment. Ψ1 and Ψ2 are the

posterior distributions obtained in analyzing the existing and new data-flow facts.

The new posterior probability distributions for D�end
are obtained directly:

IncUpdate(D�end
, Scom) = {〈σ, ρnew

σ 〉 | 〈σ, γσ〉 ∈ D�end
} (4)

with the new posterior probability ρnew
σ = Cal(γσ, Scom) being obtained as:

Cal(γσ, Scom)=
∑

(γπ,σ,S)∈Affectedσ

Prold(γπ,σ) ×
∏

s∈S

Prnew(s)

Prold(s)
+

∑

γπ,σ∈NotAffectedσ

Prold(γπ,σ) (5)

where Affectedσ = {(γπ,σ, S) | γπ,σ ∈ γσ, S = {s | s ∈ γπ,σ ∧ s ∈ Scom}}, which
consists of a set of pairs with each (γπ,σ, S) representing the fact that the single-
path dependence γπ,σ ∈ γσ is affected by some seeds in S whose probabilities
are changed, on the path π containing �old. Note that S is a multiset as it may
contain multiple instances of a seed s from γπ,σ due to loops on π.

We also define NotAffectedσ = {γπ,σ ∈ γσ | ∀ s ∈ γπ,σ : s �∈ Seeds(�old)}.
This contains the single-path dependences such that each γπ,σ is not affected by
any seed in Seeds(�old) generated by the old statement �old, i.e., �old is not on π.

The probability of γπ,σ is set to 0 if γπ,σ contains any seed s ∈
(Seeds(�old)\Seedscom

� ), which will be removed from the modified program.
Finally, Prold(s) and Prnew(s) represent the probabilities of seed s in the

original and modified programs, respectively.

Example 3. Let us revisit the example in Fig. 5(c) to explain our incremen-
tal update for an existing data-flow fact 〈(a = 0, b = 0), γ(a=0,b=0)〉 ∈ D�6 .
Recall that γ(a=0,b=0) = {γπif ,(a=0,b=0), γπelse,(a=0,b=0)}, where γπif ,(a=0,b=0) and
γπelse,(a=0,b=0) are from (2). Given the change from �old :b=UniformInt(0, 1) to
�new : b = UniformInt(−1, 1), we have Scom = Seeds(�old) = {�2 : b = 0, �2 : b =
1}. Thus, Affected(a=0,b=0) = {(γπif ,(a=0,b=0), {�2 : b = 1}), (γπelse,(a=0,b=0), {�2 :
b=0})} and NotAffected(a=0,b=0) = ∅. Based on (5), we obtain:

Cal(γ(a=0,b=0), Scom) =
Prold(γπif ,(a=0,b=0)) ∗ Prnew(�2 :b=1)

Prold(�2 :b=1)
+

Prold(γπelse,(a=0,b=0)) ∗ Prnew(�2 :b=0)

Prold(�2 :b=0)

=
1/8 ∗ 1/3

1/2
+

1/4 ∗ 1/3

1/2
= 1/4

�
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Sparse Incremental Propagation. According to Fig. 8, we first collect DΔ,
the set of new data-flow facts introduced by comparing the data-flow facts
obtained after analyzing �new and �old. Then we make use of IncProp(DΔ) to
perform incremental propagation by calling PreIn(DΔ, L), where L is the set
of statements L reachable from �old on the CFG of the program being analyzed:

IncProp(DΔ)={〈σ, Pr(γσ)〉 | 〈σ, γσ〉 ∈ DΔ
�end

=PreIn(DΔ, L)} (6)

Example 4. Let us still consider the example in Fig. 5(c). For the change made
from b = UniformInt(0, 1) to b = UniformInt(−1, 1) at �2, we first collect the
two new data-flow facts introduced by the change at �2: DΔ = {〈(a = 0, b =
−1), {[�1 : a = 0, �2 : b = −1]}〉, 〈(a = 1, b = −1), {[�1 : a = 1, �2 : b = −1]}〉}. In
this case, L = {�3, �6}. Following (6), we then call PreIn(DΔ, {�3, �6}) to obtain
the two new data-flow facts in DΔ

�6
highlighted in red at the end of the program

by incrementally propagating the two new data-flow facts in DΔ across the CFG
of the program without affecting any of the existing data-flow facts. �

4.2.2 Handling Changes Made at Observe Statements. In our data-
flow analysis, an observe statement � : observe(E) filters out any data-flow fact
〈σ, γσ〉, whose state σ violates the condition E by blocking the propagation of
〈σ, γσ〉 after analyzing �. All the others satisfying E remain unchanged.

For a modification of a probabilistic assignment �, we find any existing data-
flow fact 〈σ, γσ〉∈D�end

affected by the change and update its probability based
on the new seeds generated at �. However, for a modification of an observe
statement, we will need to find any 〈σ, γσ〉∈D�end

affected by the change based
on the dependence information from one or more probabilistic assignments. This
is because the value E in observe(E) may be affected by multiple probabilistic
assignments. For example, observe(a||b) contains a||b, where a and b may be
defined by two different Bernoulli assignments in the program.

Our algorithm given in Fig. 9 for handling an observe statement is the same
as the one for handling a probabilistic assignment given in Fig. 8, except that
IncUpdate in Fig. 8 is replaced by IncUpdate� in order to deal with existing

Fig. 9. An algorithm for performing incremental analysis due to a change made from
observe(E) to observe(E ′). Ψ1 and Ψ2 are the posterior distributions obtained in ana-
lyzing the existing and new data-flow facts.
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data-flow facts in D�end
. Unlike IncUpdate, which uses the seeds in Scom col-

lected from only one probabilistic assignment � (modified), IncUpdate� uses
Γ diff , which contains a set of single-path dependences possibly from multiple
probabilistic assignments based on the data-flow facts in Ddiff that exist in the
original program but not the modified program (lines 1–2).

At line 6, IncProp is reused based on (6) to propagate the new data-flow
facts that were filtered out by the original observe statement but become valid
after the change. At line 7, we obtain the new posterior probability distributions
at �end by combining the results from incremental update and propagation.

To update the posterior probability distributions of the states in D�end
, we

first find a set of affected single-path probabilistic dependences: Affectedσ =
{γπ,σ ∈ γσ | ∃ γ ∈ Γ diff : γ ⊆ γπ,σ} for each fact 〈σ, γσ〉 ∈ D�end

. These
affected dependences are no longer existent in the modified program according
to Γ diff due to the change made at �, Thus, they are excluded with their old
probabilities set to 0. We only recalculate the posterior probabilities based on
NotAffectedσ = {γπ,σ | γπ,σ ∈ (γσ\Affectedσ)}, which contains the single-path
dependences that are not affected by the change. Therefore, the new posterior
distributions for the states in D�end

are computed as:

IncUpdate�(D�end
, Γ diff ) = {〈σ, ρnew

σ 〉|〈σ, γσ〉 ∈ D�end
} (7)

with the new posterior probability ρnew
σ = Cal�(γσ, Γ diff ) being obtained by:

Cal�(γσ, Γ diff ) =
∑

γπ,σ∈Affectedσ

Prold(γπ,σ)× 0+
∑

γπ,σ∈NotAffectedσ

Prold(γπ,σ) (8)

Example 5. Figure 10 illustrates our incremental analysis for handing a change
at an observe statement. In Fig. 10(a), its top part shows a small program con-
taining an observe statement, observe(a||b), at �3. In Fig. 10(b), its top part
shows the same program with the observe statement changed to observe(a||!b).
Figure 10(c) gives the data-flow facts in D�3 obtained just before either observe
statement. In Figs. 10(a) and (b), their bottom parts give the data-flow facts
after analyzing their observe statements in terms of the data-flow facts in D�3 .

Fig. 10. An example for incremental analysis of an observe statement. (Color figure
online)
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We then obtain the single data-flow fact in Ddiff blocked by the new observe
statement as highlighted in green (Fig. 10(a)). Thus, we have Γ diff = {[�1 : a =
0, �2 : b=1]}, Affectedσ={[�1 :a=0, �2 : b=1]}, and NotAffectedσ={[�1 :a=1, �2 :
b=0], [�1 :a=1, �2 :b=1]}. Based on (8), we recalculate the posterior probability
of each state as ρnew

(a=0,b=1) = Pr([�1 :a=0, �2 :b=1])×0 = 0, ρnew
(a=1,b=0) = Pr([�1 :

a=1, �2 :b=0]) = 1/5, and ρnew
(a=1,b=1) = Pr([�1 :a=1, �2 :b=1]) = 3/10.

The data-flow fact in DΔ as highlighted in red in Fig. 10(b) is a new one
introduced by the change. Finally, we combine the computed probabilities of the
existing and new data-flow facts to obtain the posterior probability distributions
given in Fig. 10(d). Note that 1/5+3/10+1/5 �= 1 due to the observe statement.
Thus, after having computed the posterior probabilities as desired, we normalize
these probabilities as 2/7, 3/7 and 2/7, respectively. �

4.3 Precision

Theorem 1. Icpp achieves the same precision as DFI [8] (which analyzes a
program from scratch) in terms of answering posterior probability distributions
under the changes made to the probabilistic knowledge of a probabilistic program.

Proof. The pre-inference of Icpp (Fig. 6) captures the all-path dependence (Def-
inition 3) of each data-flow fact in order to allow the posterior probability distri-
butions to be updated during the incremental analysis. Every loop in the program
is handled by approximating a KL-divergence between its two consecutive loop
iterations. A continuous prior distribution is approximated by a discrete distri-
bution over a finite set, following [8,21].

Based on the dependence information, our incremental sparse update recal-
culates the posterior probability of any existing data-flow fact affected by any
change to a probabilistic assignment based on (4) or an observe statement based
on (7) while keeping the probabilities of unaffected dependences unchanged. Our
incremental sparse propagation computes and propagates any new data-flow fact
introduced by the changes along the CFG based on (6). Following the algorithms
in Figs. 8 and 9, we can obtain the same posterior probability distributions as
the program is reanalyzed entirely by DFI (or our pre-inference). �

5 Evaluation

Our objective is to demonstrate that Icpp is effective in inferring the posterior
distributions incrementally in response to small yet frequent changes made to a
probabilistic program. Icpp is an order of magnitude faster than DFI [8], a state-
of-the-art data-flow-based inference. Our experiment is conducted on a 2.70 GHz
Intel Core i5 processor system with 8 GB RAM running macOS.10.12.4.

We have implemented Icpp in Soot [34], a Java analysis framework. We
choose Figaro [27] as our probabilistic language, which is based on Scala and can
be translated into the .class format for our analysis in Soot. Following DFI [8],
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we use the ADD library [30] to store our data-flow facts, i.e., probabilistic depen-
dences over states, with each single-path dependence naturally represented by an
ADD. Updating data-flow facts affected by changes to probabilistic assignments
and observe statements is done by the graph operations in ADD.

To cover different change scenarios, we have selected a set of 6 probabilis-
tic programs, with 3 using the Bernoulli distribution (Grass, BurglarAlarm,
and NoisyOR) from the existing inference engine R2 [25], 1 using a UniformInt
(MotWhile) distribution by replacing if with while statement in our motivat-
ing example (Fig. 5), and 2 using the Bernoulli distribution (Grade and Loopy)
from [15]. Grass, BurglarAlarm, TwoCoins and NoisyOR are loop-free, Grade
contains an observe statement in its middle, and Loopy and MotWhile contain
unbounded loops (similar to Fig. 5 with its if replaced by a while statement).

For each program, ten small changes are made to simulate the process of
developing a probabilistic program with different versions and tuning new pos-
terior probability distributions through each change. Note that we choose ten
changes (a relatively small number) to demonstrate Icpp’s effectiveness. Our
incremental analysis becomes more effective than DFI [8] if more changes are
added. These changes are selected to exercise as many scenarios as possible.
For example, one worst-case scenario happens if a sample space is completely
changed, e.g., from UniformInt(-10,-1) to UniformInt (0,9), which requires
computing all new data-flow facts without reusing any old ones. Our small mod-
ifications are made so that the probabilistic model underlying each program is
not changed.

Table 1 compares Icpp with DFI [8] (which can be regarded as a special case
of PreIn without recording probabilistic dependences but computing explicitly
the probabilities for all the states). In Column 2, we compare the analysis times
of DFI and Icpp’s pre-inference in analyzing a program. Our pre-inference is
slightly more costly as it must collect probabilistic dependences for all the states.
In Columns 3 and 4, we compare DFI and Icpp in terms of the total analysis
time spent for the 10 changes made in a program. Icpp is an order of magnitude
faster than DFI. For each program, DFI must reanalyze it from scratch after
each change. In contrast, Icpp performs incremental analysis for the program
based on the probabilistic dependences computed during its pre-inference.

For the 5 programs with the Bernoulli distribution, which does not intro-
duce new data-flow facts when prior probabilities are changed, their posterior
distributions can be directly recomputed by IncUpdate and IncUpdate�, with-
out using IncProp. Icpp updates existing results instantaneously with negligi-
ble overheads. For MotWhile with a uniform distribution, Icpp also achieves a
significant performance improvement over DFI by 13x.

Figure 11 shows that Icpp is much faster than DFI for three representative
programs, Grass, Loopy and MotWhile. For Grass with the Bernoulli distri-
bution, Icpp has negligible overheads for all the 10 changes made (Fig. 11(a)).
For Loopy with a Bernoulli distribution containing an unbounded loop, Icpp
spends relatively more time for the fourth and sixth changes (Fig. 11(b)) due
to the modifications of a probabilistic assignment in its unbounded loop,
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Table 1. Analysis times of DFI and Icpp (seconds).

Program
Analyzing original program Analyzing 10 changes

Speedup
DFI/PreInIcpp DFI Icpp

BurglarAlarm 1.27/1.38 12.60 0.65 19

NoisyOr 1.85/2.22 19.01 1.70 11

Grass 1.91/2.31 21.85 1.71 13

Grade 1.31/1.57 12.78 0.93 13

Loopy 1.53/1.72 15.15 1.47 10

MotWhile 1.46/1.68 15.51 1.34 13

affecting the probability of a single-path dependence when the loop is analyzed
until KL-divergence. For MotWhile with a UniformInt distribution, Icpp takes
relatively more time in handling the fourth change (Fig. 11(c)), because the
change is made to a probabilistic assignment with a Uniform distribution, caus-
ing new data-flow facts to be propagated repeatedly inside a loop.

Fig. 11. Analysis times of Icpp and DFI over ten changes made in a program.

6 Related Work

In addition to the work already discussed in Sect. 1, we focus on the most relevant
work on probabilistic inference and incremental static analysis.

Probabilistic inference for probabilistic programs. The existing
approaches on probabilistic inference can be classified into static and dynamic
ones. Dynamic inference methods usually execute a probabilistic program a finite
number of times through sampling-based Monte Carlo methods [4,7,19,25,28]
and then perform inference based on the execution traces. Static meth-
ods [5,8,20,23,29] statically infer the posterior probability distributions without
running the program. Sankaranarayanan et al. [29] propose a static analysis to
reason about infinite-state probabilistic programs by quantifying the solution
space of linear constraints over bounded floating-point domains. DFI [8] per-
forms data-flow-based static inference that explicitly computes and maintains
distributions as data-flow facts at each program point following the program’s
control-flow on a CFG. DFI focuses on discrete distributions and makes approxi-
mations when computing data-flow facts over continuous distributions. Recently,
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PSI [10] represents an exact symbolic inference for analyzing both discrete and
continuous distributions for probabilistic programs with bounded loops. Based
on DFI, our work enables (for the first time) efficient incremental Bayesian infer-
ence over discrete distributions with finite concrete states, in response to small
yet frequent changes to probabilistic knowledge in a probabilistic program.

Incremental static analysis for usual programs. The goal of incremental
static analysis is to efficiently update existing analysis results without recom-
puting them from scratch, allowing the previously computed information to be
reused. Emu [18,31] represents an incremental analysis for performing demand-
driven context-sensitive pointer analysis based on Context-Free Language (CFL)
reachability, which precisely recomputes points-to sets affected by the program
changes. Reviser [1] is an incremental analysis technique developed as an exten-
sion to the IDE-/IFDS- based framework for efficiently updating inter-procedural
data-flow analysis results. Echo [38] is an incremental analysis for data-race
detection based on program dependences computed by static happens-before
analysis. DiSE [26] is an incremental symbolic execution technique that uses
pre-computed results from a static analysis to direct symbolic execution for
exploring only the parts of a program affected by the changes. Unlike previous
incremental analysis techniques for imperative programs emphasizing on code
changes, i.e., statement addition and deletion, Icpp focuses on changes made to
probabilistic knowledge, the key feature in probabilistic programming.

7 Conclusion and Future Work

In this paper, we present Icpp, a new data-flow based incremental analysis for
analyzing probabilistic programs. Icpp captures the correlation relation between
prior and posterior probability distributions through a probabilistic dependence
analysis. The resulting analysis significantly improves the efficiency of data-flow
based inference by incrementally updating the posterior distributions with previ-
ous computed information being reused in response to small yet frequent changes
made to probabilistic knowledge, i.e., prior distributions and observations.

This work has opened up some new research opportunities. We can extend
our incremental analysis for probabilistic programs by combining it with tradi-
tional incremental analyses for usual programs via demand-driven [31,32] and/or
partial program analysis [9,33] in order to also handle the changes made to usual
statements. In addition, we can combine our incremental inference with symbolic
analysis [10,29] to support incremental symbolic inference with hybrid discrete
and continuous distributions being supported.
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