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Abstract. This paper studies constrained approximate Nash equilibria
in polymatrix games. We show that is NP-hard to decide if a polymatrix
game has a constrained approximate equilibrium for 9 natural constraints
and any non-trivial ε. We then provide a QPTAS for polymatrix games
with bounded treewidth and logarithmically many actions per player that
finds constrained approximate equilibria for a wide family of constraints.

1 Introduction

In this paper we study polymatrix games, which provide a succinct representation
of a many-player game. In these games, each player is a vertex in a graph, and
each edge of the graph is a bimatrix game. Every player chooses a single strategy
and plays it in all of the bimatrix games that he is involved in, and his payoff is
the sum of the payoffs that he obtains from each individual edge game.

A fundamental problem in algorithmic game theory is to design efficient
algorithms for computing Nash equilibria. Unfortunately, even in bimatrix games,
this is PPAD-complete [12,17], which probably rules out efficient algorithms. Thus,
attention has shifted to approximate equilibria. There are two natural notions
of an approximate equilibrium. An ε-Nash equilibrium (ε-NE) requires that each
player has an expected payoff that is within ε of their best response payoff. An
ε-well-supported Nash equilibrium (ε-WSNE) requires that all players only play
pure strategies whose payoff is within ε of the best response payoff.

Constrained Approximate Equilibria. Sometimes, it is not enough to find
an approximate NE, but instead we want to find one that satisfies certain con-
straints, such as having high social welfare. For bimatrix games, the algorithm
of Lipton, Markakis, and Mehta (henceforth LMM) can be adapted to provide
a quasi-polynomial time approximation scheme (QPTAS) for this task [31]: we
can find in mO( ln m

ε2
) time an ε-NE whose social welfare is at least as good as any

ε′-NE where ε′ < ε.
A sequence of papers [1,11,21,29] has shown that polynomial time algorithms

for finding ε-NEs with good social welfare are unlikely to exist, subject to various
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hardness assumptions such as ETH. These hardness results carry over to a range
of other properties, and apply for all ε < 1

8 [21].

Our Contribution. We show that deciding whether there is an ε-NE with
good social welfare in a polymatrix game is NP-complete for all ε ∈ [0, 1]. We
then study a variety of further constraints (Table 1). For each one, we show that
deciding whether there is an ε-WSNE that satisfies the constraint is NP-complete
for all ε ∈ (0, 1). Our results hold even when the game is a planar bipartite graph
with degree at most 3, and each player has at most 7 actions.

To put these results into context, let us contrast them with the known lower
bounds for bimatrix games, which also apply directly to polymatrix games. Those
results [1,11,21,29] imply that one cannot hope to find an algorithm that is
better than a QPTAS for polymatrix games when ε < 1

8 . In comparison, our
results show a stronger, NP-hardness, result, apply to all ε in the range (0, 1),
and hold even when the players have constantly many actions.

We then study the problem of computing constrained approximate equilibria
in polymatrix games with restricted graphs. Although our hardness results apply
to a broad class of graphs, bounded treewidth graphs do not fall within their
scope. A recent result of Ortiz and Irfan [33,34] provides a QPTAS for finding
ε-NEs in polymatrix games with bounded treewidth where every player has at
most logarithmically many actions. We devise a dynamic programming algorithm
for finding approximate equilibria in polymatrix games with bounded treewidth.
Much like the algorithm in [33], we discretize both the strategy and payoff spaces,
and obtain a complexity result that matches theirs. However, our algorithm
works directly on the game, avoiding the reduction to a CSP used in their result.

The main benefit is that this algorithm can be adapted to provide a QPTAS
for constrained approximate Nash equilibria. We introduce one variable decom-
posable (OVD) constraints, which are a broad class of optimization constraints,
covering many of the problems listed in Table 1. We show that our algorithm can
be adapted to find good approximate equilibria relative to an OVD constraint.
Initially, we do this for the restricted class of k-uniform strategies: we can find a
k-uniform 1.5ε-NE whose value is better than any k-uniform ε/4-NE. Note that
this is similar to the guarantee given by the LMM technique in bimatrix games.
We extend this beyond the class of k-uniform strategies for constraints that are
defined by a linear combination of the payoffs, such as social welfare. In this
case, we find a 1.5ε-NE whose value is within O(ε) of any ε/8-NE.

Related Work. Barman et al. [4] have provided a randomised QPTAS for poly-
matrix games played on trees. Their algorithm is also a dynamic programming
algorithm that discretizes the strategy space using the notion of a k-uniform
strategy. Their algorithm is a QPTAS for general polymatrix games on trees
and when the number of pure strategies for every player is bounded by a con-
stant they get an expected polynomial-time algorithm (EPTAS).

The work of Ortiz and Irfan [33] applies to a much wider class of games that
they call graphical multi-hypermatrix games. They provide a QPTAS for the
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case where the interaction hypergraph has bounded hypertreewidth. This class
includes polymatrix games that have bounded treewdith and logarithmically
many actions per player. For the special cases of tree polymatrix games and
tree graphical games they go further and provide explicit dynamic programming
algorithms that work directly on the game, and avoid the need to solve a CSP.

Gilboa and Zemel [27] showed that it is NP-complete to decide whether there
exist Nash equilibria in bimatrix games with certain properties, such as high
social welfare. Conitzer and Sandholm [13] extended the list of NP-complete prob-
lems of [27]. Bilò and Mavronicolas [5] extended these results to win-lose bima-
trix games. Bonifaci et al. [9] showed that it is NP-complete to decide whether a
win-lose bimatrix game possesses a Nash equilibrium where every player plays
a uniform strategy over their support. Recently, Garg et al. [26] and Bilò and
Mavronicolas [6,7] extended these results to many-player games and provided
analogous ETR-completeness results.

Elkind et al. have given a polynomial time algorithm for finding exact Nash
equilibria in two-action path graphical games [23]. They have also extended this
to find good constrained exact equilibria in certain two-action tree graphical
games [24]. Greco and Scarcello provide further hardness results for constrained
equilibria in graphical games [28].

Computing approximate equilibria in bimatrix games has been well stud-
ied [10,14,18,19,25,30,36], but there has been less work for polymatrix games [3,
20,22]. Rubinstein [35] has shown that there is a small constant ε such that find-
ing an ε-NE of a polymatrix game is PPAD-complete. For constrained ε-NE, the
only positive results were for bimatrix games and gave algorithms for finding
ε-NE with constraints on payoffs [15,16].

2 Preliminaries

We start by fixing some notation. We use [k] to denote the set of integers
{1, 2, . . . , k}, and when a universe [k] is clear, we will use S̄ = {i ∈ [k] : i /∈ S}
to denote the complement of S ⊆ [k]. For a k-dimensional vector x, we use x−S

to denote the elements of x with indices S̄, and in the case where S = {i} has
only one element, we simply write x−i for x−S .

An n-player polymatrix game is defined by an undirected graph G = (V,E)
with n vertices, where each vertex is a player. The edges of the graph specify
which players interact with each other. For each i ∈ [n], we use N(i) = {j :
(i, j) ∈ E} to denote the neighbors of player i. Each edge (i, j) ∈ E specifies a
bimatrix game to be played between players i and j. Each player i ∈ [n] has a
fixed number of pure strategies m, so the bimatrix game on edge (i, j) ∈ E is
specified by an m × m matrix Aij , which gives the payoffs for player i, and an
m × m matrix Aji, which gives the payoffs for player j. We allow the individual
payoffs in each matrix to be an arbitrary rational number. We make the standard
normalisation assumption that the maximum payoff each player can obtain under
any strategy profile is 1 and the minimum is zero, unless specified otherwise. This
can be achieved for example by using the procedure described in [22]. A subgame
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of a polymatrix game is obtained by ignoring edges that are not contained within
a given subgraph of the game’s interaction graph G.

A mixed strategy for player i is a probability distribution over player i’s pure
strategies. A strategy profile specifies a mixed strategy for every player. Given a
strategy profile s = (s1, . . . , sn), the pure strategy payoffs, or the payoff vector,
of player i under s, where only s−i is relevant, is the sum of the pure strategy
payoffs that he obtains in each of the bimatrix games that he plays. Formally,
we define: pi(s) :=

∑
j∈N(i) Aijsj . The expected payoff of player i under the

strategy profile s is defined as si · pi(s). The regret of player i under s the is
difference between i’s best response payoff against s−i and between i’s payoff
under s. If a strategy has regret ε, we say that the strategy is an ε-best response.
A strategy profile s is an ε-Nash equilibrium, or ε-NE, if no player can increase
his utility more than ε by unilaterally switching from s, i.e., if the regret of
every player is at most ε. Formally, s is an ε-NE if for every player i ∈ [n] it
holds that si · pi(s) ≥ maxpi(s) − ε. A strategy profile s is an ε-well-supported
Nash equilibrium, or ε-WSNE, if if the regret of every pure strategy played
with positive probability is at most ε. Formally, s is an ε-WSNE if for every
player i ∈ [n] it holds that for all j ∈ supp(si) = {k ∈ [m] | (si)k > 0} we have
(pi(s))j ≥ maxpi(s) − ε.

3 Decision Problems for Approximate Equilibria

In this section, we show NP-completeness for nine decision problems related to
constrained approximate Nash equilibria in polymatrix games. Table 1 contains
the list of the problems that we study1. For Problem 1, we show hardness for
all ε ∈ [0, 1]. For the remaining problems, we show hardness for all ε ∈ (0, 1),
i.e., for all approximate equilibria except exact equilibria (ε = 0), and trivial
approximations (ε = 1). All of these problems are contained in NP because a
“Yes” instance can be witnessed by a suitable approximate equilibrium (or two
in the case of Problem 5). The starting point for all of our hardness results is
the NP-complete problem Monotone 1-in-3 SAT.

Definition 1 (Monotone 1-in-3 SAT). Given a monotone boolean CNF for-
mula φ with exactly 3 distinct variables per clause, decide if there exists a sat-
isfying assignment in which exactly one variable in each clause is true. We call
such an assignment a 1-in-3 satisfying assignment.

Every formula φ, with variables V = {x1, . . . , xn} and clauses C = {y1, . . . , ym},
can be represented as a bipartite graph between V and C, with an edge between
xi and yj if and only if xi appears in clause yj . We assume, without loss of gener-
ality, that this graph is connected. We say that φ is planar if the corresponding
graph is planar. Recall that a graph is called cubic if the degree of every vertex
is exactly three. We use the following result of Moore and Robson [32].
1 Given probability distributions x and x′, the TV distance between them is

maxi{|xi − x′
i|}. The TV distance between strategy profiles s = (s1, . . . , sn) and

s′ = (s′
1, . . . , s

′
n) is the maximum TV distance of si and s′

i over all i.
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Table 1. The decision problems that we consider. All problems take as input an n-
player polymatrix game with m actions for each player and an ε ∈ [0, 1].

Problem description Problem definition

Problem 1: Large total payoff
u ∈ (0, n]

Is there an ε-NE s such that∑
i∈[n] pi(s) ≥ u?

Problem 2: Small total payoff
u ∈ [0, n)

Is there an ε-WSNE s such that∑
i∈[n] pi(s) ≤ u?

Problem 3: Small payoff u ∈ [0, 1) Is there an ε-WSNE s such that
mini pi(s) ≤ u?

Problem 4: Restricted support S ⊂ [n] Is there an ε-WSNE s with supp(s1) ⊆ S?

Problem 5: Two ε-WSNE d ∈ (0, 1]
apart in Total Variation (TV) distance

Are there two ε-WSNE with TV distance
≥ d?

Problem 6: Small largest probability
p ∈ (0, 1)

Is there an ε-WSNE s with
maxj s1(j) ≤ p?

Problem 7: Large total support size
k ∈ [n · m]

Is there an ε-WSNE s such that∑
i∈[n] |supp(si)| ≥ k?

Problem 8: Large smallest support
size k ∈ [n]

Is there an ε-WSNE s such that
mini |supp(si)| ≥ k?

Problem 9: Large support size k ∈ [n] Is there an ε-WSNE s such that
|supp(s1)| ≥ k?

Theorem 2 (Sect. 3.1 [32]). Monotone 1-in-3 SAT is NP-complete even when
the formula corresponds to a planar cubic graph.

From now on, we assume that φ is a monotone planar cubic formula. We say
that φ is a “Yes” instance if φ admits a 1-in-3 satisfying assignment.

Large Total Payoff for ε-NEs. We show that Problem 1 is NP-complete for
every ε ∈ [0, 1], even when the interaction graph for the polymatrix game is
planar, bipartite, cubic, and each player has at most three pure strategies.

Construction. Given a formula φ, we construct a polymatrix game G with
m + n players as follows. For each variable xi we create a player vi and for each
clause yj we create a player cj . We now use V to denote the set of variable players
and C to denote the clause players. The interaction graph is the bipartite graph
between V and C described above. Each edge game has the same structure.
Every player in V has two pure strategies called True and False, while every
player in C has three pure strategies that depend on the three variables in the
clause. If clause yj contains variables xi, xk, xl, then player cj has pure strategies
i, k and l. The game played between vi and cj is shown on the left in Fig. 1. The
bimatrix games for vk and vl are defined analogously.
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Fig. 1. Left: the game between clause player cj and variable player vi for Problem 1.
Right: the game between cj and vi for Problems 2–9.

Correctness. The constructed game is not normalised. We prove our result for
all ε, and thus in the normalised game the result will hold for all ε ∈ [0, 1]. We
show that for every ε, there is an ε-NE with social welfare m if and only if φ
is a “Yes” instance. We begin by showing that if there is a solution for φ, then
there is an exact NE for G with social welfare m, and therefore there is also an
ε-NE for all ε with social welfare m. We start with a simple observation about
the maximum and minimum payoffs that players can obtain in G.

Lemma 3. In G, the total payoff for every variable player is at most 0, and the
total payoff for every clause player cj is at most 1. Moreover, if cj gets payoff 1,
then cj and the variable players connected to cj play pure strategies.

Lemma 4. If φ is a “Yes” instance, there is an NE for G with social welfare m.

Lemma 5. If there is a strategy profile for G with social welfare m, then φ is a
“Yes” instance.

Together, Lemmas 4 and 5 show that for all possible values of ε, it is NP-
complete to decide whether there exists an ε-NE for G with social welfare m.
When we normalise the payoffs in [0, 1], this holds for all ε ∈ [0, 1].

Theorem 6. Problem 1 is NP-complete for all ε ∈ [0, 1], even for degree-3 bipar-
tite planar polymatrix games in which each player has at most 3 pure strategies.

Hardness of Problems 2–9. To show the hardness Problems 2–9, we modify
the game constructed in the previous section. We use G′ to denote the new
polymatrix game. The interaction graph for G′ is exactly the same as for the
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game G. The bimatrix games are extended by an extra pure strategy for each
player, the strategy Out, and the payoffs are adapted. If variable xi is in clause
yj , then the bimatrix game between clause player cj and vi is shown on the right
in Fig. 1. To fix the constants, given ε ∈ (0, 1), we choose c to be in the range
(max(1 − 3ε

2 , 0), 1), and we set κ = 1−ε
1+2c . Observe that 0 < c < 1, and that

κ + 2c · κ = 1 − ε. Furthermore, since c > 1 − 3ε
2 we have 0 < κ < 1

3 .

Lemma 7. If φ is a “Yes” instance, then G′ possesses an ε-WSNE such that
no player uses strategy Out.

Lemma 8. If φ is a “No” instance, then G′ possesses a unique ε-WSNE where
every player plays Out.

The combination of these two properties allows us to show that Problems 2–5
are NP-complete. For example, for Problem 4, we can ask whether there is an
ε-WSNE of the game in which player one does not player Out.

Theorem 9. Problems 2–5 are NP-complete for all ε ∈ (0, 1), even on degree-3
planar bipartite polymatrix games where each player has at most 4 pure strategies.

Duplicating Strategies. To show hardness for Problems 6–9, we slightly mod-
ify the game G′ by duplicating every pure strategy except Out for all of the
players. Since each player cj ∈ C has the pure strategies i, k, l and Out, we
give player cj pure strategies i′, k′ and l′, which each have identical payoffs as
the original strategies. Similarly for each player vi ∈ V we add the pure strate-
gies True′ and False′. Let us denote the game with the duplicated strategies by
G̃. Then, if φ is a “Yes” instance, we can construct an ε-WSNE in which no
player plays Out, where each player places at most 0.5 probability on each pure
strategy, and where each player uses a support of size 2. These properties are
sufficient to show that Problems 6–9 are NP-complete.

Theorem 10. Problems 6–9 are NP-complete for all ε ∈ (0, 1), even on degree-3
planar bipartite polymatrix games where each player has at most 7 pure strategies.

4 Constrained Equilibria in Bounded Treewidth Games

In this section, we show that some constrained equilibrium problems can be
solved in quasi-polynomial time if the input game has bounded treewidth and
at most logarithmically many actions per player. We first present a dynamic
programming algorithm for finding approximate Nash equilibria in these games,
and then show that it can be modified to find constrained equilibria.

Tree Decompositions. A tree decomposition of a graph G = (V,E) is a pair
(X , T ), where T = (I, F ) is a tree and X = {Xi|i ∈ I} is a family of subsets
of V such that (1)

⋃
i∈I Xi = V (2) for every edge (u, v) ∈ E there exists an

i ∈ I such that {u, v} ∈ Xi, and (3) for all i, j, k ∈ I if j is on the path from
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i to k in T , then Xi ∩ Xk ⊆ Xj . The width of a tree decomposition (X , T ) is
maxi |Xi| − 1. The treewidth of a graph is the minimum width over all possible
tree decompositions of the graph. In general, computing the treewidth of a graph
is NP-hard, but there are fixed parameter tractable algorithms for the problem.
In particular Bodlaender [8] has given an algorithm that runs in O(f(w) · n)
time, where w is the treewidth of the graph, and n is the number of nodes.

4.1 An Algorithm to Find Approximate Nash Equilibria

Let G be a polymatrix game and let (X , T ) be a tree decomposition of G’s
interaction graph. We assume that an arbitrary node of T has been chosen as
the root. Then, given some node v in T , we define G(Xv) to be the subgame
that is obtained when we only consider the players in the subtree of v. More
formally, this means that we only include players i that are contained in some
set Xu where u is in the subtree of v in the tree decomposition. Furthermore,
we will use G̃(Xv) to denote the players in G(Xv) \Xv. For every player i ∈ Xv,
we will use Ni(Xv) to denote the neighbours of i in G̃(Xv).

k-Uniform Strategies. A strategy s is said to be k-uniform if there exists a
multi-set S of k pure strategies such that s plays uniformly over the pure strate-
gies in S. These strategies naturally arise when we sample, with replacement, k
pure strategies from a distribution, and play the sampled strategies uniformly.
The following is a theorem of [2].

Theorem 11. Every n-player m-action game has a k-uniform ε-NE whenever
k ≥ 8 · lnm+lnn−ln ε+ln 8

ε2 .

Candidates and Witnesses. For each node v in the tree decomposition, we
compute a set of witnesses, where each witness corresponds to an ε-NE in G(Xv).
Our witnesses have two components: s provides a k-uniform strategy profile for
the players in Xv, while p contains information about the payoff that the players
in Xv obtain from the players in G̃(Xv). By summarising the information about
the players in G̃(Xv), we are able to keep the number of witnesses small.

There is one extra complication, however, which is that the number of pos-
sible payoff vectors that can be stored in p depends on the number of different
strategies for the players in G̃(Xv), which is exponential, and will cause our
dynamic programming table to be too large. To resolve this, we round the entries
of p to a suitably small set of rounded payoffs.

Formally, we first define P = {x ∈ [0, 1] : x = ε
2n · k for some k ∈ N}, to be

the set of rounded payoffs. Then, given a node v in the tree decomposition, we
say that a tuple (s,p) is a k-candidate if:

– s is a set of strategies of size |Xv|, with one strategy for each player in Xv.
– Every strategy in s is k-uniform.
– p is a set of payoff vectors of size |Xv|. Each element pi ∈ p is of the form

Pm, and assigns a rounded payoff to each pure strategy of player i.



Computing Constrained Approximate Equilibria in Polymatrix Games 101

The set of candidates gives the set of possible entries that can appear in our
dynamic programming table. Every witness is a candidate, but not every candi-
date is a witness. The total number of k-candidates for each tree decomposition
node v can be derived as follows. Each player has mk possible k-uniform strate-
gies, and so there are mkw possibilities for s. We have that |P | = 2n

ε , and that
p contains m · w elements of P , so the total number of possibilities for p is
(2 · n

ε )mw. Hence, the total number of candidates for v is mkw · (2 · n
ε )mw.

Next, we define what it means for a candidate to be a witness. We say that
a k-candidate is an ε, k, r-witness if there exists a profile s′ for G(Xv) where

– s′ agrees with s for the players in Xv.
– Every player in G̃(Xv) is ε-happy, which means that no player in G̃(Xv) can

increase their payoff by more than ε by unilaterally deviating from s′. Note
that this does not apply to the players in Xv.

– Each payoff vector p ∈ p is within r of the payoff that player i obtains from
the players in G̃(Xv). More accurately, for every pure strategy l of player i
we have that: |pl − ∑

j∈ ˜G(Xv)
(Aij · s′

j)l| ≤ r. Note that p does not capture
the payoff obtained from players in Xv, only those in the subtree of v.

The Algorithm. Our algorithm computes a set of witnesses for each tree
decomposition node by dynamic programming. At every leaf, the algorithm
checks every possible candidate to check whether it is a witness. At internal
nodes in the tree decomposition, if a vertex is forgotten, that is, if it appears in
a child of a node, but not in the node itself, then we use the set of witnesses
computed for the child to check whether the forgotten node is ε-happy. If this
is the case, then we create a corresponding witness for the parent node. The
complication here is that, since we use rounded payoff vectors, this check may
declare that a player is ε-happy erroneously due to rounding errors. So, during
the analysis we must be careful to track the total amount of rounding error that
can be introduced.

Once a set of witnesses has been computed for every tree decomposition node,
a second phase is then used to find an ε-NE of the game. This phase picks an
arbitrary witness in the root node, and then unrolls it by walking down the tree
decomposition and finding the witnesses that were used to generate it. These
witnesses collectively assign a k-uniform strategy profile to each player, and this
strategy profile will be the ε-NE that we are looking for.

Lemma 12. There is a dynamic programming algorithm that runs in time
O(n · m2kw · (n

ε )2mw) that, for each tree decomposition node v, computes a set
of candidates C(v) such that: (1) Every candidate (s,p) ∈ C(v) is an εv, k, rv-
witness for v for some εv ≤ 1.5ε and rv ≤ ε

4 . (2) If s is a k-uniform ε/4-NE
then C(v) will contain a witness (s′,p) such that s′ agrees with s for all players
in Xv.

The running time bound arises from the total number of possible candidates
for each tree decomposition node. The first property ensures that the algorithm
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always produces a 1.5ε-NE of the game, provided that the root node contains a
witness. The second property ensures that the root node will contain a witness
provided that game has a k-uniform ε/4-NE. Theorem 11 tells us how large k
needs to be for this to be the case. These facts yields the following theorem.

Theorem 13. Let ε > 0, G be a polymatrix game with treewidth w, and k =
128 · lnm+lnn−ln ε+ln 8

ε2 . There is an algorithm that finds a 1.5ε-NE of G in in
O(n · m2kw + (n

ε )2mw) time.

Note that if m ≤ ln n (and in particular if m is constant), this is a QPTAS.

Corollary 14. Let ε > 0, and G be a polymatrix game with treewidth w, and
m ≤ ln n. There is an algorithm that finds a 1.5ε-NE of G in (n

ε )O(w·ln n
ε2

) time.

4.2 Constrained Approximate Nash Equilibria

One Variable Decomposable Constraints. We now adapt the algorithm to
find a certain class of constrained approximate Nash equilibria. As a motivating
example, consider Problem 1, which asks us to find an approximate NE with high
social welfare. Formally, this constraint assigns a single rational number (the
social welfare) to each strategy profile, and asks us to maximize this number.
This constraint also satisfies a decomposability property: if a game G consists of
two subgames G1 and G2, and if there are no edges between these two subgames,
then we can maximize social welfare in G by maximizing social welfare in G1 and
G2 independently. We formalise this by defining a constraint to be one variable
decomposable (OVD) if the following conditions hold.

– There is a polynomial-time computable function g such that maps every strat-
egy profile in G to a rational number.

– Let s be a strategy for game G, and suppose that we want to add vertex v
to G. Let s be a strategy choice for v, and s′ be an extension of s that
assigns s to v. There is a polynomial-time computable function add such that
g(s′) = add(G, v, s, g(s)).

– Let G1 and G2 be two subgames that partition G, and suppose that there
are no edges between G1 and G2. Let s1 be a strategy profile in G1 and s2
be a strategy profile in G2. If s is the strategy profile for G that corresponds
to merging s1 and s2, then there is a polynomial-time computable function
merge such that g(s) = merge(G1, G2, g(s1), g(s2)).

Intuitively, the second condition allows us to add a new vertex to a subgame, and
the third condition allows us to merge two disconnected subgames. Moreover,
observe that the functions add and merge depend only on the value that g assigns
to strategies, and not the strategies themselves. This allows our algorithm to only
store the value assigned by g, and forget the strategies themselves.
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Examples of OVD Constraints. Many of the problems in Table 1 are OVD
constraints. Problems 1 and 2 refer to the total payoff of the strategy profile, and
so g is defined to be the total payoff of all players, while the functions add and
merge simply add the total payoff of the two strategy profiles. Problems 3 and 6
both deal with minimizing a quantity associated with a strategy profile, so for
these problems the functions add and merge use the min function to minimize the
relevant quantities. Likewise, Problems 7, 8, and 9 seek to maximize a quantity,
and so the functions add and merge use the max function. In all cases, proving
the required properties for the functions is straightforward.

Finding OVD k-Uniform Constrained Equilibria. We now show that, for
every OVD constraint, the algorithm presented in Sect. 4.1 can be modified to
find a k-uniform 1.5ε-NE that also has a high value with respect to the constraint.
More formally, we show that the value assigned by g to the 1.5ε-NE is greater
than the value assigned to g to all k-uniform ε/4-NE in the game.

Given an OVD constraint defined by g, add, and merge, we add an extra ele-
ment to each candidate to track the variable from the constraint: each candidate
has the form (s,p, x), where s and p are as before, and x is a rational number.
The definition of an ε, k, r, g-witness is extended by adding the condition:

– Recall that s′ is a strategy profile for G(Xv) whose existence is asserted by
the witness. Let s′′ be the restriction of s′ to G̃(Xv). We have x = g(s′′).

We then modify the algorithm to account for this new element in the witness. At
each stage we track the correct value for x. At the leaves, we use g to compute the
correct value. At internal nodes, we use add and merge to compute the correct
value using the values stored in the witnesses of the children.

If at any point two witnesses are created that agree on s and p, but disagree
on x, then we only keep the witness whose x value is higher. This ensures that
we only keep witnesses corresponding to strategy profiles that maximize the
constraint. When we reach the root, we choose the strategy profile with maximal
value for x to be unrolled in phase 2. The fact that we only keep one witness for
each pair s and p means that the running time of the algorithm is unchanged.

Theorem 15. For every ε > 0 let k = 128 · lnm+lnn−ln ε+ln 8
ε2 . If G is a poly-

matrix game with treewidth w, then there is an algorithm that runs in O(n ·
m2kw + (n

ε )2mw) time and finds a k-uniform 1.5ε-NE s such that g(s) ≥ g(s′)
for every strategy profile s′ that is an ε/4-NE.

Results for Non-k-Uniform Strategies. The guarantee given by Theorem15
is given relative to the best value achievable by a k-uniform ε/4-NE. It is also
interesting to ask whether we can drop the k-uniform constraint. In the following
theorem, we show that if g is defined to be a linear function of the payoffs in
the game, then a guarantee can be given relative to every ε/8-NE of the game.
Note that this covers Problems 1, 2, and 3.

Theorem 16. Suppose that, for a given a OVD constraint, the function g is a
linear function of the payoffs. Let s be the 1.5ε-NE found by our algorithm when
For every ε/8-NE s′ we have that g(s) ≥ g(s′) − O(ε).
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