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Abstract. We consider Stable Marriage with Covering Con-
straints (SMC): in this variant of Stable Marriage, we distinguish
a subset of women as well as a subset of men, and we seek a matching
with fewest number of blocking pairs that matches all of the distin-
guished people. We investigate how a set of natural parameters, namely
the maximum length of preference lists for men and women, the num-
ber of distinguished men and women, and the number of blocking pairs
allowed determine the computational tractability of this problem.

Our main result is a complete complexity trichotomy that, for each
choice of the studied parameters, classifies SMC as polynomial-time solv-
able, NP-hard and fixed-parameter tractable, or NP-hard and W[1]-hard.
We also classify all cases of one-sided constraints where only women may
be distinguished.

1 Introduction

The Stable Marriage (SM) problem is a fundamental problem first studied
by Gale and Shapley [16] in 1962. An instance of SM consists of a set M of men,
a set W of women, and a preference list for each person ordering members of the
opposite sex. We aim to find a stable matching, i.e., a matching for which there
exists no pair of a man and a woman who prefer each other to their partners
given by the matching; such a pair is called a blocking pair.

We consider a problem that we call Stable Marriage with Covering
Constraints (SMC). Here, a set W� of women and a set M� of men are
distinguished, and a feasible matching is one where each person in W� ∪ M�

gets matched. By the Rural Hospitals Theorem [17] we know that the set of
unmatched men and women is the same in all stable matchings, so clearly, feasi-
ble stable matchings may not exist. Thus, we define the task in SMC as finding
a feasible matching with a minimum number of blocking pairs. Somewhat sur-
prisingly, this natural extension of SM has not been considered before.

M. Mnich—Supported by ERC Starting Grant 306465 (BeyondWorstCase).
I. Schlotter—Supported by the Hungarian National Research Fund (OTKA grants
no. K-108383 and no. K-108947).

c© Springer International Publishing AG 2017
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Motivation. Our main motivation for studying SMC—apart from its nat-
ural definition—is its close relationship with the Hospitals/Residents with
Lower Quota (HRLQ) problem, modelling a situation where medical residents
apply for jobs in hospitals: residents rank hospitals and vice versa, and hospitals
declare both lower and upper quotas which bound the number of residents they
can accept; the task is to find an assignment with a minimum number of blocking
pairs. By “cloning” hospitals, HRLQ reduces to the case where each hospital has
unit upper quota. In fact, this is equivalent to the special case of SMC where
only women (or, equivalently, men) are distinguished. We refer to this problem
with one-sided covering constraints, linking SMC and HRLQ, as SMC-1.

The HRLQ problem and its variants have recently gained quite some inter-
est from the algorithmic community [4,7,13,18,20,21,25,33,37]. In his book,
Manlove [29, Chap. 5.2] devotes an entire chapter to the algorithmics of HRLQ.

The reason for this interest in HRLQ is explained by its importance in several
real-world matching markets [14,15,35] such as school admission systems, cen-
tralized assignment of residents to hospitals, or of cadets to military branches.
Lower quotas are a common feature of such admission systems. Their purpose
is often to remedy the effects of understaffing that are explained by the well-
known Rural Hospitals Theorem [17]: as an example, governments usually want
to assign at least a small number of medical residents to each rural hospital to
guarantee a minimum service level. Minimum quotas also appear in controlled
school choice programs [11,28,36] where students belong to a small number of
types; schools set lower bounds for each type enact affirmative actions, such
as admitting a certain number of minority students [11]. Another example is
the German university admission system for admitting students to highly over-
subscribed subjects, where a certain percentage of study places are assigned
according to high school grades or waiting time [36]. But lower quotas may also
arise due to financial considerations: for instance, a business course with too few
(tuition-paying) attendees may not be profitable. Certain aspects of airline pref-
erences for seat upgrade allocations can be also modelled by lower quotas [28].

Another motivation for studying SMC comes from the following scenario that
we dub Control for Stable Marriage. Consider a two-sided market where each
participant of the market expresses its preferences over members of the other
party, and some central agent (e.g., a government) performs the task of finding
a stable matching in the market. It might happen that this central agency wishes
to apply a certain control on the stable matching produced: it may favour some
participants by trying to assign them a partner in the resulting matching. Such a
behaviour might be either malicious (e.g., the central agency may accept bribes
and thus favour certain participants) or beneficial (e.g., it may favour those who
are at disadvantage, like handicapped or minority participants). However, there
might not be a stable matching that covers all participants the agency wants to
favour; thus arises the need to produce a matching that is as stable as possible
among those that fulfill our constraints—the most natural aim in such a case is
to minimize the number of blocking pairs in the produced matching, which yields
exactly the SMC problem. Similar control problems for voting systems have been
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extensively studied in social choice following the work initiated by Bartholdi
III. [3], but have not yet been considered in connection to stable matchings.

Our Results. We provide an extensive algorithmic analysis of the SMC prob-
lem, and its special case SMC-1. In our analysis, we examine the influence of
different aspects on the tractability of these problems. The aspects we consider
are

– the number b of blocking pairs allowed,
– the number |W�| of women with covering constraint,
– the number |M�| of men with covering constraint,
– the maximum length ΔW of women’s preference lists, and
– the maximum length ΔM of men’s preference lists.

To investigate how these aspects affect the complexity of SMC, we use the
framework of parameterized complexity, which deals with computationally hard
problems and focuses on how certain parameters of a problem instance influence
its tractability. We aim to design fixed-parameter algorithms, which perform well
in practice if the value of the parameter on hand is small1.

The choice of the above aspects (or parameters) is motivated by the afore-
mentioned applications. For instance, we seek matchings where ideally no block-
ing pairs at all or at least only few of them appear, to ensure stability of the
matching and happiness of those getting matched. The number of women/men
with covering constraints corresponds, for instance, to the number of rural hos-
pitals for which a minimum quota specifically must be enforced, which we can
expect to be small among the set of all hospitals accepting medical residents.
Finally, preference lists of hospitals and residents can be expected to be small,
as each hospital might not rank many more candidates than positions it has to
fill, whereas residents might rank only their top choices of hospitals. Hence, it is
reasonable to assume that these parameters take small values in certain appli-
cations, and thus suitable fixed-parameter algorithms may be highly efficient in
practice.

We draw a detailed landscape of the influence of each aspect, and all their
combinations, on the complexity of the SMC problem. To this end, we consider all
choices of aspects in A = {b, |W�|, |M�|,ΔM,ΔW} as either being restricted to
some constant integer, or regarded as a parameter, or left unbounded. Intuitively,
these different choices for elements of A correspond to their expected “range” in
applications, from very small to mid-range to large (compared to the size of the
entire system). By considering all combinations, we can model all applications.

Our main result classifies the SMC problem for all such combinations into
one of three cases, as being either “easy”, “moderate”, or “hard” to solve:

1 For background on parameterized complexity, we refer to the recent monograph [9].
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Theorem 1. For each choice of aspects in A = {b, |W�|, |M�|,ΔM,ΔW}, SMC
is in P, or NP-hard and fixed-parameter tractable, or NP-hard and W[1]-hard with
the given parameterization2, and is covered by one of the results in Table 1.

In particular, SMC is W[1]-hard parameterized by b + |W�|, even if there are
no distinguished men (i.e., |M�| = 0), ΔM = 3, ΔW = 3 and each distinguished
woman finds only a single man acceptable.

Table 1 summarizes our results on the complexity of SMC. Note that some results
are implied directly by the symmetrical roles of men and women in SMC, and
thus are not stated explicitly. Proofs marked by (�), as well as a decision diagram
showing that the presented results indeed cover all restrictions of SMC with
respect to {b, |W�|, |M�|,ΔM,ΔW}, can be found in the full version [32].

Table 1. Summary of our results for Stable Marriage with Covering Con-
straints. Here, Δ� denotes the maximum length of the preference list of any dis-
tinguished person.

Constants Parameters Complexity

|M�| = 0, |W�| = 0 P (Gale-Shapley alg.)

|M�| = 0, |W�|, ΔM P (Theorem 8)

|M�|, |W�|, ΔM, ΔW P (Theorem 8)

|M�| = 0, ΔM ≤ 2 P (Theorem 9)

ΔW ≤ 2, ΔM ≤ 2 P (Observation 11)

b P (Observation 5)

|M�| = 0, ΔW ≤ 2, ΔM ≥ 3 NP-hard (Theorem 10)

|W�| = 1, ΔW ≤ 2, ΔM ≥ 3 NP-hard (Theorem 12)

|M�| = 0, ΔW ≥ 3, ΔM ≥ 3, Δ� = 1 b + |W�| W[1]-hard (Theorem 2)

|M�| = 0, |W�| ≥ 1, ΔW ≥ 3, Δ� = 1 b + ΔM W[1]-hard (Theorem 6)

ΔW ≤ 2 |W�| + |M�| FPT (Theorem 13)

ΔW ≤ 2 b FPT (Corollary 2)

As a special case, we answer a question by Hamada et al. [20] who gave an
exponential-time algorithm that in time O(|I|b+1) decides for a given instance I
of HRLQ whether it admits a feasible matching with at most b blocking pairs3;
the authors asked whether HRLQ is fixed-parameter tractable parameterized
by b. As shown by Theorem 1, SMC-1 and therefore also HRLQ is W[1]-hard
when parameterized by b, already in a very restricted setting. Thus, the answer
to the question by Hamada et al. [20] is negative: SMC-1, and hence HRLQ,
admits no fixed-parameter algorithm with parameter b unless FPT = W[1].
2 Restrictions without parameters are classified as polynomial-time solvable or NP-

hard.
3 Hamada et al. claim only a run time O((|W||M|)b+1), but their algorithm can easily

be implemented to run in time O(|I|b+1).
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Related Work. There is a fast-growing body of literature on matching mar-
kets with lower quotas [4,7,13–15,18,20,21,25,33,37]. These papers study sev-
eral variants of HRLQ, adapting the general model to the various specialties
of practical problems. However, there are only a few papers which consider the
problem of minimizing the number of blocking pairs [14,20]. The most closely
related work to ours is that of Hamada et al. [20]: they prove that the HRLQ
problem is NP-hard and give strong inapproximability results; they also consider
the SMC-1 problem directly and propose an O(|I|b+1) time algorithm for it.

A different line of research connected to SMC is the problem of arranged
marriages, an early extension of SM suggested by Knuth [26] in 1976. Here,
a set Q� of man-woman pairs is distinguished, and we seek a stable matching
that contains Q� as a subset. Thus, as opposed to SMC, we not only require
that each distinguished person is assigned some partner, but instead prescribe
its partner exactly. Initial work on arranged marriages [19,26] was extended by
Dias et al. [10] to consider also forbidden marriages, and was further generalized
by Fleiner et al. [12] and Cseh and Manlove [8]. Despite the similar flavour, none
of these papers have a direct consequence on the complexity of SMC.

Our work also fits the research line that addresses computationally hard
stable matching problems by focusing on instances with bounded preference
lists [6,22,24,27,34] or by studying their parameterized complexity [1,2,5,30,31].

2 Preliminaries

An instance I of the Stable Marriage (SM) problem consists of a set M
of men and a set W of women. Each person x ∈ M ∪ W has a preference
list L(x) that strictly orders the members of the other party acceptable for x.
We thus write L(x) as a vector L(x) = (y1, . . . , yt), denoting that yi is (strictly)
preferred by x over yj for each i and j with 1 ≤ i < j ≤ t. A matching M
for I is a set of man-woman pairs appearing in each other’s preference lists
such that each person is contained in at most one pair of M ; some persons may
be left unmatched by M . For each person x we denote by M(x) the person
assigned by M to x. For a matching M , a man m and a woman w included in
each other’s preference lists form a blocking pair if (i) m is either unmatched or
prefers w to M(m), and (ii) w is either unmatched or prefers m to M(w). In the
Stable Marriage with Covering Constraints (SMC) problem, we are
given additional subsets W� ⊆ W and M� ⊆ M of distinguished people that
must be matched; a matching M is feasible if it matches everybody in W� ∪ M�.
The objective of SMC is to find a feasible matching for I with minimum number
of blocking pairs. If only people from one gender are distinguished, then w.l.o.g.,
we assume these to be women; this special case will be denoted by SMC-1.

The many-to-one extension of SMC-1 is the Hospitals/Residents with
Lower Quotas (HRLQ) problem whose input consists of a set R of residents
and a set H of hospitals that have ordered preferences over the acceptable mem-
bers of the other party. Each hospital h ∈ H has a quota lower bound q(h)
and a quota upper bound q(h). One seeks an assignment M that maps a subset
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of the residents to hospitals that respects acceptability and is feasible, that is,
q(h) ≤ |M(h)| ≤ q(h) for each hospital h. Here, M(h) is the set of residents
assigned to some h ∈ H by M . We say that a hospital h is under-subscribed if
|M(h)| < q(h). For an assignment M of an instance of HRLQ, a pair {r, h} of a
resident r and a hospital h is blocking if (i) r is unassigned or prefers h to the
hospital assigned to r by M , and (ii) h is under-subscribed or prefers r to one of
the residents in M(h). The task in HRLQ is to find a feasible assignment with
minimum number of blocking pairs.

Some instances of SMC may admit a master list over women, which is a
total ordering LW of all women, such that for each man m ∈ M, the preference
list L(m) is the restriction of LW to those women that m finds acceptable.
Similarly, we consider master lists over men.

With each instance I of SMC (or HRLQ) we can naturally associate a bipar-
tite graph GI whose vertex partitions correspond to M and W (or R and H,
respectively), and there is an edge between a man m ∈ M and a woman w ∈ W
(or between a resident r ∈ R and a hospital h ∈ H, respectively) if they appear
in each other’s preference lists. We may refer to entities of I as vertices, or a
pair of entities as edges, without mentioning GI explicitly.

3 Strong Parameterized Intractability of SMC

This section shows parameterized intractability and inapproximability results
for finding feasible matchings with minimum number of blocking pairs. A funda-
mental hypothesis about the complexity of NP-hard problems is the Exponential
Time Hypothesis (ETH), which stipulates that algorithms solving all Satisfia-
bility instances in subexponential time cannot exist [23].

Theorem 2 (�). SMC-1 is W[1]-hard parameterized by b + |W�|, and cannot
be solved in time f ′(b) · no(

√
b) for any computable function f ′ unless ETH fails,

even if there is a master list over men as well as one over women, all preference
lists are of length at most 3, and |L(w)| = 1 for each woman w ∈ W�.

4 Polynomial-Time Approximation

Theorem 3 (�). Let I be an instance I of HRLQ, q
Σ

the sum of lower quota
bounds taken over all hospitals in I, and ΔR the maximum length of residents’
preference lists. There is an algorithm that in polynomial time either outputs a
feasible assignment for I with at most (ΔR − 1)q

Σ
blocking pairs, involving only

q
Σ

residents, or concludes that no feasible assignment exists.

If both ΔR and q
Σ

are constant, then Theorem 3 implies that HRLQ
becomes polynomial-time solvable: if b ≥ (ΔR − 1)q

Σ
, then we apply Theorem3

directly; if b < (ΔR − 1)q
Σ

, then we use the algorithm by Hamada et al. [20]
running in time O(|I|b+1) which is polynomial, since b is upper-bounded by a
constant.
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Corollary 1. HRLQ with both the maximum length ΔR of residents’ prefer-
ence lists and the total sum q

Σ
of all lower quotas constant, is polynomial-time

solvable.

Another application of Theorem3 is an approximation algorithm that works
regardless of whether ΔR or q

Σ
is a constant. In fact, the algorithm of Theorem 3

can be turned into a (ΔR−1)q
Σ

-factor approximation algorithm as follows. First,
find a stable assignment Ms for I in polynomial time using the extension of the
Gale-Shapley algorithm for the Hospitals/Residents problem. If Ms is not
feasible, then by the Rural Hospitals Theorem [17], any feasible assignment for I
must admit at least one blocking pair; hence, the algorithm of Theorem3 yields
an approximation with (multiplicative and also additive) factor (ΔR − 1)q

Σ
.

We also state an analogue of Theorem 3 that deals with SMC: it handles
covering constraints on both sides, but assumes that all quota upper bounds
are 1:

Theorem 4 (�). There is an algorithm that in polynomial time either outputs a
feasible matching for an instance I of SMC with at most (ΔW −1)|M�|+(ΔM −
1)|W�| blocking pairs, or concludes that no feasible matching exists for I.

5 SMC with Bounded Number of Distinguished Persons
or Blocking Pairs

In Theorem 2 we proved W[1]-hardness of SMC-1 for the case where ΔM =
ΔW = 3, with parameter b + |W�|. Here we investigate those instances of SMC
and SMC-1 where the length of preference lists may be unbounded, but either b,
or the number of distinguished persons is constant.

First, if the number b of blocking pairs allowed is constant, then SMC can
be solved by simply running the extended Gale-Shapley algorithm after guess-
ing and deleting all blocking pairs. This complements the result by Hamada
et al. [20].

Observation 5. SMC can be solved in time O(|I|b+1), where b denotes the num-
ber of blocking pairs allowed in the input instance I.

In Theorem 6 we prove hardness of SMC-1 even if only one woman must be
covered. If we require preferences to follow master lists, then a slightly weaker
version of Theorem 6, where |W�| = 2, still holds.

Theorem 6 (�). SMC-1 is W[1]-hard parameterized by b+ΔM, even if W� =
{s}, ΔW = 3, and |L(s)| = 1.

Theorem 7 (�). SMC-1 is W[1]-hard parameterized by b + ΔM, even if there
is a master list over men as well as one over women, |W�| = 2, ΔW ≤ 3, and
|L(w)| = 1 for each w ∈ W�.
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To contrast our intractability results, we show next that if each of |W�|,
|M�|, ΔW , and ΔM is constant, then SMC becomes polynomial-time solvable.
Our algorithm relies on the observation that in this case, the number of blocking
pairs in an optimal solution is at most (ΔM − 1)|W�| + (ΔW − 1)|M�| by
Theorem 4. Note that for instances of SMC-1, Theorem 8 yields a polynomial-
time algorithm already if both |W�| and ΔM are constant.

Theorem 8 (�). SMC can be solved in time O(|I|(ΔM−1)|W�|+(ΔW−1)|M�|+1).

Importantly, restricting only three of the values |W�|, |M�|, ΔW , and ΔM to
be constant does not yield tractability for SMC, showing that Theorem8 is tight.
Indeed, Theorem 6 implies that restricting the maximum length of the preference
lists on only one side still results in a hard problem: SMC remains W[1]-hard
with parameter b + ΔM, even if ΔW = 3, |W�| = 1, and |M�| = 0. Similarly,
Theorem 2 shows that the problem remains hard even if ΔW = ΔM = 3 and
|M�| = 0.

6 SMC with Preference Lists of Length at Most Two

We show that the restriction of SMC where the maximum length of preference
lists is bounded by 2 on one side leads to polynomial-time algorithms and fixed-
parameter algorithms for various parameterizations.

Let I be an instance of SMC with underlying graph G. Let Ms be a stable
matching in I, and let M�

0 and W�
0 denote the set of distinguished men and

women, respectively, unmatched by Ms. Furthermore, let M0 and W0 denote
the set of all men and women, respectively, unmatched by Ms. A path P in G
is called an augmenting path, if MsΔP is a matching, and either both endpoints
of P are in M�

0 ∪ W�
0 , or one endpoint of P is in M�

0 ∪ W�
0 , and its other

endpoint is not distinguished. We will call an augmenting path P masculine or
feminine if it contains a man in M�

0 or a woman in W�
0 , respectively; if P is

both masculine and feminine, then we call it neutral. If P is not neutral, we say
that it starts at the (unique) person from M�

0 ∪ W�
0 it contains, and ends at its

other endpoint.

Covering Constraints on One Side. We give a polynomial-time algorithm
for SMC-1 when each man finds at most two women acceptable, and show NP-
hardness of SMC-1 even if each woman finds at most two men acceptable.

Theorem 9. There is a polynomial-time algorithm for the special case of SMC-1
where each man finds at most two women acceptable.

The main observation behind Theorem9 is that if ΔM ≤ 2, then any two
augmenting paths starting from different women in W�

0 can only intersect at their
endpoints. Thus, we can modify the stable matching Ms by selecting augmenting
paths starting from each woman in W�

0 in an almost independent fashion: intu-
itively, we simply need to take care not to choose paths sharing an endpoint—a
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task which can be managed by finding a bipartite matching in certain auxiliary
graph G′. To ensure that the number of blocking pairs in the output is mini-
mized, we will assign costs to the augmenting paths. The cost of an augmenting
path P roughly determines the number of blocking pairs introduced when mod-
ifying Ms along P (though certain special edges need not be counted); hence,
our problem reduces to finding a min-weight bipartite matching in G′.

To present the algorithm of Theorem 9 in detail, we start with the following
properties of augmenting paths which are easy to prove assuming that ΔM ≤ 2:

Proposition 1. Let P1 and P2 be augmenting paths starting at w1 and w2, resp.
If w1 �= w2, then P1 and P2 are either vertex-disjoint, or they both end at some
m ∈ M0, with V (P1) ∩ V (P2) = {m}. If there is an edge {m,w} of G (with
m ∈ M and w ∈ W) connecting P1 and P2, then m ∈ M0 and P1 or P2 must
end at m. If w1 = w2 and P is the maximal common subpath of P1 and P2

starting at w1, then either V (P1) ∩ V (P2) = V (P ), or P1 and P2 both end at
some m ∈ M0 and V (P1) ∩ V (P2) = V (P ) ∪ {m}.
With a set P of edges (typically a set of augmenting paths) where Ms 	P is a
matching, we associate a cost, which is the number of blocking pairs that Ms 	P
admits. A pair {m,w} for some m ∈ M and w ∈ W is special, if m ∈ M0 and w
is the second (less preferred) woman in L(m). As it turns out, such edges can be
ignored during certain steps of the algorithm; thus, we let the special cost of P
be the number of non-special blocking pairs in Ms 	P .

Lemma 1 (�). For vertex-disjoint augmenting paths P1 and P2 with costs c1
and c2, resp., the cost of P1∪P2 is at most c1+c2. Further, if the cost of P1∪P2

is less than c1+c2, then the following holds for {i1, i2} = {1, 2}: there is a special
edge {m,w} with Pi1 ending at m and w appearing on Pi2 ; moreover, {m,w} is
blocking in Ms 	Pi2 , but not in Ms 	 (P1 ∪ P2).

We are ready to provide the algorithm, in a sequence of four steps.

• Step 1: Computing all augmenting paths. By Proposition 1, if we delete
M0 from the union of all augmenting paths starting at some w ∈ W�

0 , then we
obtain a tree. Furthermore, these trees are mutually vertex-disjoint for differ-
ent starting vertices of W�

0 . This allows us to compute all augmenting paths in
linear time, e.g., by an appropriately modified version of the DFS algorithm
(so that only augmenting paths are considered). During this process, we can
also compute the special cost of each augmenting path in a straightforward
way.

• Step 2: Constructing an auxiliary graph. Using the results of the compu-
tation of Step 1, we construct an edge-weighted single bipartite graph Gpath as
follows. The vertex set of Gpath is the union of W�

0 and M0 ∪ {w′ | w ∈ W�
0},

so for each woman w ∈ W�
0 we create a corresponding new vertex w′. We

add an edge between w ∈ W�
0 and m ∈ M0 with weight c if there exists an

augmenting path with endpoints w and m having special cost c (and no such
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path with lower special cost exists). Further, for each w ∈ W�
0 we compute

the minimum special cost cmin
w of any augmenting path starting at w and not

ending in M0, and add an edge between w and w′ with weight cmin
w in Gpath.

• Step 3: Computing a minimum weight matching. We compute a match-
ing MP in Gpath covering W�

0 and having minimum weight. Observe that such
a matching corresponds to a set of augmenting paths P = {Pw | w ∈ W�

0}
that are mutually vertex-disjoint by Proposition 1. Recall that the special cost
of Pw is the weight of the edge in MP incident to w.

• Step 4: Eliminating blocking special edges. In this step, we modify P
iteratively. We start by setting Pact = P. At each iteration we modify Pact as
follows. We check whether there exists a special edge {m∗, w∗} that is block-
ing in Ms 	 Pact. If yes, then notice that m∗ is not matched in Ms 	 Pact,
because {m∗, w∗} is special and thus m∗ ∈ M0. Let P be the path of Pact

containing w∗. We modify Pact by truncating P to its subpath between its
starting vertex and w∗, and appending to it the edge {m∗, w∗}. This way,
{m∗, w∗} becomes an edge of the matching Ms 	 Pact. The iteration stops
when there is no special edge blocking Ms 	 Pact. Note that once a special
edge ceases to be blocking in Ms 	 Pact, it cannot become blocking again dur-
ing this process, so the algorithm performs at most |M0| iterations. For each
w ∈ W�

0 , let P ∗
w denote the augmenting path in Pact covering w at the end of

Step 4; we define P∗ = {P ∗
w | w ∈ W�

0} and output the matching Ms 	 P∗.

This completes the description of the algorithm; we now provide its analysis.

Lemma 2 (�). Msol := Ms 	 P∗ is a feasible matching for I, and the number
of blocking pairs for Msol is at most the weight of MP .

To show that our algorithm is correct and Msol is optimal, by Lemma 2 it
suffices to prove that the weight of MP is at most the number of blocking pairs
in Mopt, an optimal solution in I. To this end, we define a matching covering W�

0

in Gpath whose weight is at most the number of blocking pairs in Mopt.
Clearly, Ms 	Mopt contains an augmenting path Qw covering w for each

w ∈ W�
0 . If some Qw ends at a man m ∈ M0, then clearly no other path

in Ms 	Mopt can end at m. Take the matching MQ in Gpath that includes all
pairs {m,w} where Qw ends at m ∈ M0 for some w ∈ W�

0 . Also, we put {w,w′}
into MQ if Qw does not end at a man of M0. Note that MQ is indeed a matching.

It remains to show that the weight of MQ is at most the number of blocking
pairs in Mopt. By definition, the weight of MQ is at most the sum of the special
costs of the paths Qw for every w ∈ W�

0 . By Lemma 1, any non-special blocking
pair in Ms 	Qw remains a blocking pair in Ms 	(

⋃
w∈W�

0
Qw), and hence in

Mopt as well. Hence, there is a matching in Gpath with weight at most the
number of blocking pairs in an optimal solution, implying the correctness of our
algorithm. As the algorithm runs in polynomial time, Theorem9 follows.

Contrasting Theorem9, if men may have preference lists of length 3, SMC-1
(and hence SMC) is NP-hard even if each woman finds at most two men
acceptable.
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Theorem 10 (�). SMC-1 is NP-hard even if ΔW = 2 and ΔM = 3.

Covering Constraints on Both Sides. If max(ΔW ,ΔM) ≤ 2, the graph
underlying the instance is a collection of paths and cycles, and therefore:

Observation 11. SMC with max(ΔW ,ΔM) ≤ 2 is polynomial-time solvable.

Recall that the case where ΔW = 2 and ΔM = 3 is NP-hard by Theorem 10,
even if there are no distinguished men to be covered. However, switching the role
of men and women, Theorem 9 shows that if there are no women to be covered,
then ΔW ≤ 2 guarantees polynomial-time solvability for SMC. This raises the
natural question whether SMC with ΔW ≤ 2 can be solved efficiently if the
number of distinguished women is bounded. Next we show that this is unlikely,
as the problem turns out to be NP-hard for |W�| = 1.

Theorem 12 (�). SMC is NP-hard, even if ΔW = 2, ΔM = 3 and |W�| = 1.

Contrasting Theorem12, we establish fixed-parameter tractability of the case
ΔW ≤ 2. The relevant cases (whose tractability or intractability does not follow
from our results obtained so far) are as follows (assuming ΔW ≤ 2 throughout).
First, we can take the number of distinguished persons as parameter (note that
we know NP-hardness of the cases where |W�| = 1 or |M�| = 0). Second, we can
consider the number of blocking pairs as the parameter. We show the following:

Theorem 13 (�). There is a fixed-parameter algorithm for the special case
of SMC where each woman finds at most two men acceptable (i.e., ΔW ≤ 2),
with parameter the number |W�

0 | + |M�
0| of distinguished men and women left

unmatched by some stable matching (and hence by any stable matching).

As each augmenting path contains at least one edge that blocks Mopt, the
number of blocking pairs admitted by Mopt is at least (|W�

0 | + |M�
0|)/2. Thus:

Corollary 2 (�). There is a fixed-parameter algorithm with parameter b for
the special case of SMC where each woman finds at most two men acceptable.
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