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Abstract. Proportional allocation is an intuitive and widely applied
mechanism to allocate divisible resources. We study proportional allo-
cation for profit sharing in coalition formation games. Here each agent
has an impact or reputation value, and each coalition represents a joint
project that generates a total profit. This profit is divided among the
agents involved in the project based on their reputation. We study exis-
tence, computational complexity, and social welfare of core-stable states
with proportional sharing.

Core-stable states always exist and can be computed in time O(m log
m), where m is the total number of projects. Moreover, when profits have
a natural monotonicity property, there exists a reputation scheme such
that the price of anarchy is 1, i.e., every core-stable state is a social opti-
mum. However, these schemes exhibit a strong inequality in reputation
of agents and thus imply a lacking fairness condition. Our main results
show a tradeoff between reputation imbalance and the price of anarchy.
Moreover, we show lower bounds and computational hardness results on
the reputation imbalance when prices of anarchy and stability are small.

1 Introduction

Profit sharing is a central domain in game theory and has attracted a large
amount of interest, mostly as cooperative transferable-utility (TU) games. Usu-
ally, there are n agents, and a characteristic function specifies the profit for each
subset of agents. The goal is to divide the profit of the grand coalition in a fair
and stable way. There has been particular interest in TU games resulting from
combinatorial optimization problems. For example, in the matching game [20]
each agent is a node in an edge-weighted graph, and the profit of a subset of
agents is the max-weight matching in the induced subgraph. For these games,
there is a large variety of stability and fairness concepts, most prominently vari-
ants of the core. In fact, the core of a matching game might be empty, and the
(approximate) core enjoys a close connection to the natural integer program of
max-weight matching [9].

An underlying assumption is that (deviating) subsets of agents can freely
negotiate shares and distribute profit. In many application contexts, however,
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V. Bilò and M. Flammini (Eds.): SAGT 2017, LNCS 10504, pp. 307–319, 2017.
DOI: 10.1007/978-3-319-66700-3 24



308 M. Hoefer and W. Jiamjitrak

profit shares are less directly negotiable, e.g., when allocating credit for joint
work. For example, in scientific publishing, credit is assigned based on a variety
of aspects and rules, such as reputation, visibility, previous achievements, etc.
Moreover, collaborative online platforms (recommendation systems, Wikis, etc.)
can design and implement centralized rules for credit allocation among the users.

In this paper, we study natural and simple proportional allocation rules to
distribute profit or credit among agents that engage in joint projects. Propor-
tional allocation is a central approach in a variety of contexts and has been stud-
ied, e.g., for allocating divisible goods in mechanism design [6,8,15]. It can be
used to express consequences of rich-get-richer-phenomena (also termed Matthew
effect), was studied to distribute profits in stable matching [1], or appeared in
probabilistic models for allocating scientific credit [16]. Moreover, proportional
response dynamics are a successful method to compute market equilibria [4,22].

We study the properties of the proportional allocation mechanism in match-
ing and coalition formation games. In this scenario, coalitions represent joint
projects that agents can engage in. Each project yields a profit value, which is
shared among the involved agents in proportion to an agent-specific parameter
ru. Intuitively, this parameter specifies the influence of the agent. Depending on
the application context, it captures its, e.g., importance, visibility, or reputation.
It might result from previous achievements (e.g., by reputation in societies) or
be subject to design (e.g., by assignment in collaborative online systems).

Given such a profit sharing scheme, agents strategically choose the projects
to engage in. More formally, a given set projects, profit values, and agent reputa-
tions constitutes a hedonic coalition formation game [10], where the proportional
allocation mechanism yields the agent utilities. Our goal is to shed light on the
equilibria of such games, i.e., existence, structure and social welfare of core-stable
states. More precisely, we are interested in the structure of reputation values and
the resulting prices of anarchy and stability.

Contribution and Overview. In Sect. 2, we observe that in our games, a core-
stable state always exists. This is mostly a consequence of earlier work on stable
matching [1]. Let k and kmin be the size of the largest and smallest project with
non-zero profit in the game, respectively. For equal sharing (all influences the
same), prices of anarchy and stability are Θ(k). In fact, if profits and influences
are misaligned in a worst-case fashion, it is known that prices of anarchy and
stability can be unbounded, even for the special case of matching [1].

In Sect. 3, we consider games with a natural monotonicity condition (termed
inclusion-monotone), where we find an interesting trade-off between the required
difference in influence and price of anarchy. When the ratio of maximum and
minimum influence is bounded by α, there are reputations such that the price of
anarchy is bounded by max{1, k2/(k−1+αkmin/n)}, where kmin is the size of the
smallest project with non-zero profit in the game. When α = (k2 − k + 1)n/kmin ,
the price of anarchy drops to – with a suitable assignment of influence, we can
eliminate any inefficiency in the game. For environments, in which assigning
influence values is possible, we also provide an efficient algorithm that, given an
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optimum state S∗, computes influence values that achieve this bound on the price
of anarchy. While finding an optimum solution can be NP-hard, our algorithm
can also work with an arbitrary ρ-approximative state S, and the price of anarchy
bound increases by a factor ρ. Note that the natural representation of our games
is linear in the number of agents n and the number of projects/coalitions m,
since we must specify a possibly arbitrary positive profit value for each possible
project. Our algorithm runs in time polynomial in n and m. Consequently, it is
strongest if m = poly(n) (which is often the case, e.g., for matching games).

On the downside, when approaching a price of anarchy of 1, the society
becomes extremely hierarchical – the maximum difference in influences grow
exponentially large. In Sect. 4 we show that for inclusion-monotone games a
factor difference of n−1 in influences can be required to obtain a price of stability
of 1. If the profits of projects in a core-stable optimum should be shared equally,
we strengthen this to an exponential lower bound of (k + 1)n/kmin−1. Moreover,
for games that are not inclusion-monotone, inefficiency of all core-stable states
can be unavoidable.

Finally, in Sect. 5 we discuss computational hardness results. For a given
optimal state S∗ and a given upper bound α on the ratio of influences, it is
NP-hard to decide whether we can make S∗ stable, even if every project has
size k = 2. Note that this hardness does not stem from computing S∗, since S∗

is a max-weight matching when k = 2, which can be computed in polynomial
time. We also show lower bounds and hardness results for the case with influence
values in {1, x} with x > 1, where agents have either “low” or “high” influence.

Due to space constraints, further proofs can be found in the appendix of the
full version of this paper.

Further Related Work. Computing stability concepts in hedonic coalition
formation games is a recent line of research [7,12,17–19]. Many stability concepts
are NP- or PLS-hard to compute. This holds even in the case of additive-separable
coalition profits, which can be interpreted by an underlying graph structure with
weighted edges, and the profit of a coalition is measured by the total edge weights
covered by the coalition [3,11,21]. The price of anarchy was studied, e.g., in [5].

Our work is inspired by proportional allocation mechanisms. The model we
study was proposed for stable matching in [1] under the name Matthew-effect
sharing. We study general hedonic coalition formation games. While the results
in [1] bound prices of anarchy and stability for worst-case profit and influence
values, our approach here is to study the necessary inherent trade-offs in social
welfare in equilibrium and inequality of influence in the population. In this sense,
our paper is closely related to [14], who study the trade-offs between social
welfare and difference in profit shares. A drawback of [14] is that it allows to
design arbitrary profit shares for every coalition and every agent. Thus, it allows a
designer an unnatural amount of freedom when assigning credit to stabilize good
states. In contrast, our approach with proportional sharing based on influence
and reputation represents a more restricted, structured and arguably realistic
way of how credit from joint projects might be allocated to agents.
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2 Model and Preliminaries

A proportional coalition formation game is a hedonic coalition formation game
based on a weighted hypergraph G = (V,C,w). There is a set V of agents (or
vertices) and a set of weighted coalitions (or hyperedges) C ⊆ 2V , where |c| ≥ 2
for every c ∈ C. Let w : C → R

+ represent the positive weight or total profit
of each coalition c ∈ C. Unless stated otherwise, we use n = |V |, m = |C|,
k = maxc∈C |c| (the maximum size of any coalition in C), and kmin = minc∈C |c|
(the minimum size of any coalition in C).

Each agent v ∈ V has a reputation rv > 0, which we scale throughout to
satisfy minv∈V rv = 1. When a coalition c ∈ C is formed, the profit w(c) is
shared among the v ∈ c proportionally to rv. We define a reputation scheme as
a vector of reputations for the agents R = (rv)v∈V .

A coalition structure or state S ⊆ C is a collection of pairwise disjoint coali-
tions c from C, i.e., for each v ∈ V we have |{c | c ∈ S, v ∈ c}| ≤ 1. For each
coalition c ∈ S, the profit of agent u ∈ c is a proportional share of weight w(c):

pu(S) = pu(c) =
ru∑
v∈c rv

· w(c) (1)

Note that pu(c) > 0 for all c ∈ C and u ∈ c by definition. For every agent u ∈ V
such that S contains no coalition that includes u, we assume pu(S) = 0.

For a coalition structure S, a blocking coalition c ∈ C \ S is a coalition
such that, for each v ∈ c, pv(c) > pv(S). Every agent in c gains strictly more
profit than he currently obtains in S if they deviate to c instead. In the case
of matching and k = 2, we speak of a blocking pair. A coalition structure S is
termed core-stable if there is no blocking coalition in1 C \ S.

To assess the quality of reputation schemes, we quantify the social welfare
of the resulting core-stable coalition structures. The social welfare of a coalition
structure S is w(S) :=

∑
c∈S w(c). We call the coalition structure S∗ with the

highest social welfare the optimal coalition structure. We measure the quality of
reputation schemes using the prices of anarchy (PoA) and stability (PoS) of core-
stable coalition structures. While the core-stable coalition structures depend on
reputations, the optimal coalition structures (and hence, optimal social welfare)
do not. Consequently, our goal is to measure the quality of reputation schemes
based on PoA and PoS. In particular, we strive to design reputations to maximize
social welfare of the resulting core-stable coalition structures.

It turns out that we can obtain very small PoA and PoS using a hierarchy
of reputations with extremely large differences, which is often undesirable due
to reasons of fairness and equality. As a consequence, we try to limit unequal
reputations and, in particular, strive to quantify the tension between efficiency
and equality. We measure the degree of equality using a parameter as follows. A
reputation scheme R is α-bounded if α ≥ maxv∈V rv

minv∈V rv
= maxv∈V rv. Intuitively, a

smaller α indicates that reputation is more uniform reputation.
1 Core-stability usually means that no subset of agents wants to deviate. We recover

this interpretation when we assume all coalitions c ∈ 2V \ C have profit w(c) = −1.
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A simple solution to achieve perfect equality is when every agent has the
same reputation. This results in equal sharing, and it results in PoA (and PoS)
of at most k, where k is the size of the largest coalition. The following result is
shown, e.g., in [2, Theorem 2.9, Corollary 8.2]. In the full version of this paper,
we include a proof for completeness and discuss an example game.

Proposition 1. The PoA and the PoS in hedonic coalition formation games
with equal sharing is exactly k.

Some of our results apply to instances with an additional property. A game
G = (V,C,w) is inclusion monotone if for any c, c′ ∈ C with c′

� c, we have
w(c)
|c| > w(c′)

|c′| . Note that, trivially, every instance of matching with k = 2 is
inclusion monotone.

3 Existence and Computation

Let us first discuss our existence and computational results. We define an
improvement step for a coalition structure S by adding a blocking coalition to S
while removing all coalitions that intersect with it from S. It can be seen rather
directly that every game has a (strong) lexicographical potential function. As a
consequence, a core-stable coalition structure exists in every game and for every
reputation scheme, and every sequence of improvement steps always converges.
By considering coalitions in non-increasing order of w(c)∑

u∈c ru
, it is possible to

arrive at a core-stable structure from any initial structure in at most n steps.
The proof is a rather direct extension of [1, Theorem 8], and we include it in the
full version of this paper for completeness.

Proposition 2. For any game G = (V,C,w) and proportional sharing based on
reputation scheme R, there always exists a core-stable coalition structure. Given
any initial coalition structure, we need at most O(n) improvement steps to reach
a core-stable coalition structure.

Hence, for any game and any reputation scheme we have both existence and
convergence, but it might be the case that every core-stable coalition structure
has small social welfare or reputations are extremely different. The subsequent
algorithm shows how reputation schemes can provide a trade-off between α-
boundedness and the PoA. For a given inclusion-monotone instance and a para-
meter α > 1, the algorithm provides a reputation scheme that is α-bounded and
guarantees a PoA of strictly better than k.

When α = 1, we have equal sharing, the price of anarchy is at most k (due
to Proposition 1) and a greedy procedure computes the O(n) improvement steps
to reach a core-stable state (due to Proposition 2). Algorithm 1 generalizes this
approach to obtain improved bounds for α > 1. It uses a similar structure as a
corresponding algorithm in [14]. In each iteration, we choose one coalition to be
a part of our solution and assign the reputation to each agent in this coalition,
then remove the agents from consideration. Let c be a coalition with the largest
ratio of w(c)

|c|−1+x , where x = αkmin/n. There are three cases in the ith iteration:
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Algorithm 1. Computing a reputation scheme for given α

Input: Inclusion monotone G = (V, C, w), optimal structure S∗, bound α
Output: α-bounded reputation scheme R, core-stable coalition structure S

1 Initialize i ← 0, C0 ← C, S ← ∅, x ← αkmin/n and rv ← 0 for all v ∈ V
2 while Ci �= ∅ do

3 c ← arg maxc∈Ci(
w(c)

|c|−1+x
)

4 if c ∈ S∗ then s∗
i ← c

5 else if c /∈ S∗ and w(c)
|c|−1+x

< w(c′)
|c′| for some c′ ∈ S∗ that c′ ∩ c �= ∅ then

6 c′ ← arg maxc′∈S∗(w(c′)
|c′| )

7 s∗
i ← c′

8 else s∗
i ← c

9 for u ∈ s∗
i do ru ← xi

10 S ← S ∪ s∗
i

11 Ci+1 ← Ci

12 for c ∈ Ci with c ∩ s∗
i �= ∅ do Ci+1 ← Ci+1 \ {c}

13 i ← i + 1

14 for v ∈ V with rv = 0 do rv ← xi

1. If c is a part of the optimal coalition structure S∗, we call it s∗
i .

2. If c is not in S∗ and is overlapping with some coalitions in S∗, then we consider
c′ in S∗ such that c′ has the highest ratio of w(c′)

|c′| among all overlapping
coalitions. If c′ is large enough to stabilize, we will choose c′ instead of c in
order to make our solution closest to S∗ as much as possible. So we call c′

as s∗
i .

3. If c is not in S∗, but c has a high ratio of w(c)
|c|−1+x so that we should stabilize

c instead of stabilizing a coalition from the optimal coalition structure, then
we choose c to be s∗

i .

Then, we stabilize s∗
i by assigning the same reputation to each included agent.

This reputation increases by the factor of x in the next iteration. Then we
remove all the agents in s∗

i and their incident coalitions from consideration. The
algorithm terminates when there is no coalition left to consider.

Theorem 1. For a given inclusion-monotone instance, and given α > 1 and
any optimal coalition structure S∗, Algorithm1 computes in polynomial time an
α-bounded reputation scheme R with PoA at most max{1, k2/(k − 1 + αkmin/n)}
and a core-stable coalition structure S that achieves both bounds.

Proof. We first consider the running time. The algorithm sorts all coalitions by
the ratio of w(c)

|c|−1+x , which takes O(m log m) time. Then, in each iteration we
only consider one coalition and its overlapping coalitions, which can be done
in O(m) time. In total, the running time is bounded by O(m2). Recall from
the discussion in the introduction that the input size is Ω(n + m), hence the
algorithm runs in polynomial time.
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We now show core-stability of S. As the invariant of the algorithm we main-
tain that coalitions dropped from consideration will never form any blocking
coalition. This holds since we assign reputations that increase by a factor of x
in every iteration. Consider three cases as in the algorithm,

1. In the first case, since c is the coalition that has the maximum ratio of w(c)
|c|−1+x ,

we assign the same reputation to each agent in c, and each agent gets a profit
of w(c)

|c| . Consider an overlapping coalition c′, and let u ∈ c′ ∩ c. There are
two subcases: (1) c′ is a proper subset of c. Since the instance is inclusion
monotone and we share profit equally in the coalition, we have

pu(c′) =
w(c′)
|c′| <

w(c)
|c| = pu(c).

(2) There is an agent v ∈ c′ \ c who has a reputation rv ≥ xru. Then the
profit u ∈ c ∩ c′ gains from c′ is

pu(c′) ≤ w(c′)
|c′| − 1 + x

≤ w(c)
|c| − 1 + x

<
w(c)
|c| = pu(c).

This shows that every u ∈ c ∩ c′ gains more profit by staying with c.
2. In the second case, we choose c′ that is in S∗ instead of c, each agent in c′

gains a profit of w(c′)
|c′| . Consider an overlapping coalition c′′, and let u ∈ c′′∩c′.

There are two subcases: (1) c′′ is a proper subset of c′. We apply the same
argument as in the first subcase of the first case. (2) There is an agent in
v ∈ c′′ \ c′ who has a reputation rv ≥ xru. Then, the profit u ∈ c′ ∩ c′′ gains
from c′′ is

pu(c′′) ≤ w(c′′)
|c′′| − 1 + x

≤ w(c)
|c| − 1 + x

<
w(c′)
|c′| = pu(c′).

This shows that every u ∈ c′ ∩ c′′ gains more profit by staying with c.
3. In the third case, we can use the same analysis as in the first case because we

choose the coalition that has the maximum ratio of w(c)
|c|−1+x .

This concludes that the resulting state S is core-stable.
Now consider any arbitrary core-stable state S′ and coalition c added to S

in the first round of the algorithm. Then agents u with ru = 1 are exactly the
ones in c, so every overlapping c′ ∈ S′ is either a subset of c or has at least one
v ∈ c′ \ c with rv ≥ xru and no agent with reputation less than 1. Hence, the
strict inequalities above apply to all agents in c and imply that c is blocking.

Now suppose all coalitions added to S by our algorithm up to round i are in
S′, but c added in round i+1 is not. Then the agents with smaller reputation are
exactly the ones in the coalitions added in the first i rounds. As such, they are
part of S and do not overlap with c. Hence, every overlapping coalition c′ ∈ S′

is either a subset of c or has only agents with same or higher reputation and at
least one agent with rv ≥ xru. Therefore, the strict inequalities above apply to
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all agents in c and imply that c is blocking. By induction, every core-stable state
must contain all coalitions of S, and S is the unique core-stable state.

For α-boundedness, observe that the minimum reputation in R is always 1.
In each iteration, we add one coalition to S with size at least kmin, so there are
at most n/kmin iterations. As a consequence, the maximum reputation is at most
xn/kmin = α, i.e., R is α-bounded.

Finally, for the PoA, we see that the solution S of Algorithm 1 deviates from
S∗ only in iterations that apply the third case, when c /∈ S∗ and w(c)

|c|−1+x ≥ w(c′)
|c′|

for all c′ ∈ S∗. c can intersect at most |c| other coalitions c′ ∈ S∗, hence

PoA ≤ |c| · w(c′)
w(c)

≤ |c| · w(c′)

(|c| − 1 + x) · w(c′)
|c′|

=
|c| · |c′|

|c| − 1 + x
≤ k2

k − 1 + αkmin/n
.

This proves the theorem. �	
The algorithm reveals a trade-off between α and PoA. By increasing α, the

guaranteed PoA decreases and vice-versa. While the algorithm itself runs in
polynomial time, it uses S∗ as input, which is NP-hard to compute (finding S∗

trivially generalizes, e.g., the standard Set-Packing problem). Hence, the above
trade-off mostly applies in terms of existence.

Interestingly, the algorithm also yields a trade-off in terms of (overall) efficient
computation. Our analysis of the social welfare of the output structure applies
w.r.t. to the social welfare of the input structure. Consequently, if Algorithm1
is given any input structure S′, it will output a core-stable coalition structure S
with social welfare at least w(S) ≥ w(S′) · (k − 1 + αkmin/n)/k2.

Corollary 1. If Algorithm1 is applied using any coalition structure S′ that rep-
resents a ρ-approximation to the optimal social welfare, it computes an α-bounded
reputation scheme with PoA at most ρ · max{1, k2/(k − 1 + αkmin/n)}.

4 Lower Bounds

In this subsection, we will show a number of lower bounds. Algorithm1 applies
to games that are inclusion monotone, and it shows that we can always reduce
PoA to 1 if α is chosen large enough. Next, we will show that there are instances
that are not inclusion monotone, where for arbitrarily large α we cannot stabilize
an optimal coalition structure.

Proposition 3. There are classes of non-inclusion monotone instances such
that (1) every reputation scheme yields a PoS of at least 2 − 4

n+2 ; (2) every
α-bounded reputation scheme yields a PoS of at least (n − 1 + α)/(1 + α).

The previous proposition shows that the trade-off shown in Theorem 1 does not
apply in instances that are not inclusion monotone. The next result complements
the bound on α in Theorem 1 when PoS is 1.
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1

1
2

+
ε

Fig. 1. An instance that requires α ≥ n − 1 whenever PoS is 1 (in this case, n = 12)

Proposition 4. There is a class of inclusion-monotone instances where every
reputation scheme with PoS of 1 has α ≥ n − 1.

Proof. Consider an instance of the type depicted in Fig. 1. The instance G =
(V,C,w) consists of a clique of size n

2 (denoted by Kn/2). Every coalition/edge c
in Kn/2 has w(c) = 1. For each agent, we create an additional agent (called “leaf
agent”) and include a coalition with a clique agent of weight 1

2 + ε. The optimal
social welfare is n

2 ( 12 + ε), and S∗ is composed of exactly the n/2 coalitions with
leaf agents. For PoS 1, we need to maximize the profit of clique agents in S∗,
since they are the only ones with deviations. Hence, we can w.l.o.g. assign the
minimum reputation of ru = 1 to all leaf agents.

Let r1, r2, . . . , rn/2 be the reputations of clique agents. Consider ri and rj ;
in order to avoid a blocking coalition with agents i and j, at least one of them
must gain at least as much profit as in S∗. Assume i is such an agent, then
(12 + ε) · ri

ri+1 ≥ 1 · ri

ri+rj
. For ε → 0, this implies rj ≥ ri + 2. Since an inequality

of this form must hold for every pair {i, j} of clique agents, we have

max
i,j∈[n2 ]

{ri − rj} ≥ 2(n/2 − 1) = n − 2.

Since ri ≥ 1 for all i = 1, . . . , n, this implies α = maxi ri ≥ n − 1. �	
This lower bound for α is linear in n, but if we apply Algorithm1 with k = kmin =
2 and postulate a PoA of 1, then we can only guarantee α ≤ 3n/2. Hence, in
general, our results leave significant room for improvement. Note that the output
of Algorithm 1 has the property that in some (in fact, the unique) core-stable
coalition structure the profits in each coalition are shared equally. For schemes
with this property we can show a drastically improved lower bound, which is
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asymptotically tight for constant k. Hence, to show existence and computation
of schemes with smaller inequality, we need substantially different techniques.

A scheme R has equal sharing in stability if there is a core-stable coalition
structure S such that for every c ∈ S we have ri = rj , for every i, j ∈ c.

Proposition 5. There is a class of inclusion-monotone instances where every
scheme R with equal sharing in stability and PoS of 1 requires α ≥ (k+1)

n
kmin

−1.

5 Hardness Results

In this section, we consider computational hardness results that complement
our upper bounds in Sect. 3. Even in games with k = 2, in which an optimum
coalition structure S∗ is a maximum-weight matching that can be computed in
polynomial time, there is no efficient algorithm for computing R that makes S∗

core-stable and minimizes the inequality α.

Theorem 2. Given an optimal coalition structure S∗ and given α ≥ 1, it is
NP-hard to decide whether there is an α-bounded reputation scheme such that
S∗ is core-stable. It remains NP-hard even if every coalition has size exactly k,
for any k ≥ 2.

Proof. We will show a reduction from the Graph Coloring problem. First
consider the case when k = 2. For an instance of Graph Coloring given by an
unweighted graph G = (V,E) with V = {v1, . . . , vn}, we construct a game G′ =
(V ′, E′, w) as follows. Let V ′ = V1 ∪ V2 with V1 = V and V2 = {vn+1, . . . , v2n},
and E′ = E1 ∪ E2 with E1 = E and E2 = {{vi, vn+i} | i = 1, . . . , n}. We set
w(e) = 1 if e ∈ E1 and w(e) = 1

2 + ε if e ∈ E2, for an arbitrarily small constant
ε > 0. Hence, G′ is similar in spirit to Fig. 1 except we replace the clique by the
coloring instance G. The optimal coalition structure S∗ = E2.

First assume G is �-colorable. We show that there is an (2� − 1)-bounded
reputation scheme that can stabilize S∗ in G′. By Proposition 4, any two adjacent
vertices in V1 must have a difference in reputations of at least 2, otherwise the
edge will be a blocking pair. So, if a vertex has ith color class in G, then assign
the corresponding agent a reputation of 2i−1 in G′. Finally, assign reputation 1
to all agents in V2. This reputation scheme makes S∗ core-stable, and the proof
is identical to the one in Proposition 4.

Now assume there is a α∗-bounded reputation scheme R that makes S∗ core-
stable. We show that G is α∗+1

2 -colorable. First, we convert R as follows:

1. Normalize all the reputations to satisfy mini ri = 1.
2. Change the reputations of all the leaf nodes to be 1.
3. For every normalized reputation value, if it is not an odd integer, decrease it

down to next lower odd integer.

It is obvious that after these three conversions, the scheme is still α∗-bounded.
Let us argue that the conversion also keeps S∗ core-stable. Step 1 does not change
anything because scaling all reputations does not change any profit shares. After
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step 2, agents in V1 receive more profit in S∗, so S∗ remains core-stable. In step
3, any two agents that have a difference in their reputations of at least two, the
difference still remains at least two. Thus, S∗ remains core-stable.

After the conversion, every agent in V1 has an odd integer as reputation.
Now, we just identify each odd integer with a color class. Since S∗ is core-stable,
adjacent vertices in G must differ in reputation by at least 2, i.e., belong to
different color classes. Hence, G is α∗+1

2 -colorable. The result follows for k = 2.
To show that it remains NP-hard even if every coalition in the instance has

size exactly k, we reduce the coloring problem on graph G to hypergraph G′ as in
the previous reduction. Here, however, for each coalition in G′ we add k−2 more
agents that only belong to that coalition. Every coalition has the same weight
as in previous case. To stabilize S∗, we need ( 12 + ε) · ri

ri+k−1 ≥ 1 · ri

ri+rj+k−2 for
every vi, vj ∈ V1. This leads to rj ≥ ri + k for any j > i. So, any two adjacent
vertices in V must have the difference in reputations of at least k (instead of 2
as above). Applying the reduction as above, we can stabilize S∗ in G′ with an
α∗-bounded reputation scheme if and only if G is (α∗+k−1

k )-colorable. �	
It shows that even approximating α∗ is extremely hard, since the reduction
preserves the well-known approximation hardness of Graph Coloring [13].

Corollary 2. For any constant ε > 0, α∗ cannot be efficiently approximated
within n1−ε unless NP=ZPP.

Let us also examine an interesting special case reputation scheme where we
are allowed only to assign “high” and “low” reputations. More formally, let
R ∈ {1, x}n for some x > 1, where we call such schemes “restricted reputations”.
Unfortunately, the next theorem shows that finding a scheme with optimal α
remains NP-hard when we are given a bound W on social welfare of a core-stable
coalition structure (but not the exact optimum S∗). This is a weaker assumption
than providing an optimal coalition structure directly as in the previous theorem.
However, the result applies even for matching with k = 2, where existence of a
solution with welfare at least W can be decided in polynomial time. Hence, the
difficulty does not lie in finding a good coalition structure but it is again inherent
to the correct assignment of reputations.

Theorem 3. Given a positive rational number x > 1 and a bound on social
welfare W > 0, it is NP-hard to decide whether there exist restricted reputations
that results in a core-stable coalition structure S with w(S) ≥ W . This holds
even for instances with k = 2.

Corollary 3. For both restricted and general reputations, the following problems
are NP-hard: (1) Given W > 0, find the α-bounded core-stable coalition structure
S with minimum α such that w(S) ≥ W ; and (2) given α > 0, find the α-bounded
core-stable coalition structure with maximum social welfare.

For restricted reputations, we might not be able to stabilize the optimal coalition
structure. The final result lower bounds the PoS in terms of parameter x.
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Proposition 6. For x > 1, there are classes of instances such that for every
restricted reputation scheme R ∈ {1, x}n (1) the PoS is at least 4

x+1 ; and (2)
the PoS is at least 2 − 4

x+3 .
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