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Abstract. Incorporating budget constraints into the analysis of auc-
tions has become increasingly important, as they model practical set-
tings more accurately. The social welfare function, which is the standard
measure of efficiency in auctions, is inadequate for settings with budgets,
since there may be a large disconnect between the value a bidder derives
from obtaining an item and what can be liquidated from her. The Liquid
Welfare objective function has been suggested as a natural alternative
for settings with budgets. Simple auctions, like simultaneous item auc-
tions, are evaluated by their performance at equilibrium using the Price
of Anarchy (PoA) measure – the ratio of the objective function value of
the optimal outcome to the worst equilibrium. Accordingly, we evaluate
the performance of simultaneous item auctions in budgeted settings by
the Liquid Price of Anarchy (LPoA) measure – the ratio of the optimal
Liquid Welfare to the Liquid Welfare obtained in the worst equilibrium.

For pure Nash equilibria of simultaneous first price auctions, we obtain
a bound of 2 on the LPoA for additive buyers. Our results easily extend
to the larger class of fractionally-subadditive valuations. Next we show
that the LPoA of mixed Nash equilibria for first price auctions with addi-
tive bidders is bounded by a constant. Our proofs are robust, and can
be extended to achieve similar bounds for Bayesian Nash equilibria. To
derive our results, we develop a new technique in which some bidders
deviate (surprisingly) toward a non-optimal solution. In particular, this
technique goes beyond the smoothness-based approach.
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1 Introduction

Budget constraints have become an important practical consideration in most
existing auctions, as reflected in recent literature (see, e.g., [4,6,20,37]), because
they model reality more accurately. The issue of limited liquidity of buyers arises
when transaction amounts are large and may exhaust bidders’ liquid assets, as is
the case for privatization auctions in Eastern Europe and FCC spectrum auctions
in the U.S. (see, e.g., [5]). As another example, advertisers in Google Adword
auctions are instructed to specify their budget even before specifying their bids
and keywords. Many other massive electronic marketplaces have a large number
of participants with limited liquidity, which impose budget constraints. Buyers
would not borrow money from a bank to partake in multiple auctions on eBay,
and even with available credit, they only have a limited amount of attention, so
that in aggregate they cannot spend too much money by participating in every
auction online. Finally, budget constraints also arise in small scale systems, such
as the reality TV show Storage Wars, where people participate in cash-only
auctions to win the content of an expired storage locker with an unknown asset.

Maximizing social welfare is a classic objective function that has been exten-
sively studied within the context of resource allocation problems, and auctions
in particular. The social welfare of an allocation is the sum of agents’ valuations
for their allocated bundles. Unfortunately, in settings where agents have limited
budgets (hereafter, budgeted settings), the social welfare objective fails to accu-
rately capture what happens in practice. Consider, for example, an auction in
which there are two bidders and one item to be allocated among the bidders.
One bidder has a high value but a very small budget, while the second bidder has
a medium value along with a medium budget. In this case, a high social welfare
is achieved by allocating the item to the bidder who values the item highly. In
contrast, most Internet advertising and electronic marketplaces (such as Google
and eBay) would allocate the item in the opposite way, namely to the bidder
with a medium value and budget. Indeed, it seems reasonable to favor partici-
pants with substantial investments and engagement in the economical system to
maintain a healthy economy regardless of the marketplace intermediary’s per-
sonal gains. Hence, the social welfare objective is a poor model for how auctions
are executed in reality.

In this work, we study the efficiency of simultaneous first price auctions
in budgeted settings. Following Dobzinski and Leme [21] (see also [11,23,32,
38]), we measure the efficiency of outcomes in budgeted settings according to
their Liquid Welfare objective, motivated as follows. In the mechanism design
literature, a buyer i with additive values for items vij (where vij denotes buyer
i’s value for item j) and a budget cap Bi is usually modeled with budget additive
valuations vi(S) = min(Bi,

∑
j∈S vij), where S is the set of items that player

i receives (see, e.g., Lehmann et al. [31] and many follow-up works). Budget
additive valuations are convenient to work with (they form a simple subclass
of submodular valuations) and, from the designer’s perspective, are a natural
proxy for the contribution of each bidder to the economical system.
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However, in reality such valuations do not capture the real preferences of the
buyers, since each buyer usually prefers to get as many items of high value as
possible vi(S) =

∑
j∈S vij , with the only concern being that her total payments

for the received set of items S, denoted by pi(S), should not exceed her budget
constraint pi(S) ≤ Bi. To reconcile this discrepancy, Dobzinski and Leme [21]
proposed to evaluate the welfare of buyers in budgeted settings according to
their admissibility-to-pay; that is, the minimum between the buyer’s value for
the allocated bundle and the buyer’s budget. The aggregate welfare according
to this definition is termed the Liquid Welfare (LW). Hence, the Liquid Welfare
objective can be seen as a natural analogue to social welfare in budgeted set-
tings, as it simultaneously captures the health of an economic system while still
modeling buyers as preferring items of high value, despite budget constraints.

For simultaneous first price auctions, we use the following natural item-
clearing mechanism for each individual item. Each player submits a bid they
are willing to pay for the whole item, along with the maximal fraction of the
item they are willing to purchase. Then, in decreasing order of the bids and as
long as some fraction of the item remains to be allocated, each buyer receives
their requested fraction of the item (or whatever remains), and pays their bid
multiplied by the fraction they received. In the context of additive values, we
model players’ utilities for each item as their value for the item minus their sub-
mitted bid (both of which are scaled by the fraction of the item they receive).

Our model is closely related to a prominent simultaneous item auction format
with heterogeneous items, which has been extensively studied recently. In such
auctions, buyers submit bids simultaneously on all items, and the allocation and
prices are determined separately for each individual item, based only on the bids
submitted for that item. This format is similar to auctions used in practice (e.g.,
eBay auctions). The standard measure for quantifying efficiency in such settings
is the Price of Anarchy (PoA) [29,35,38], defined as the ratio of the optimal social
welfare to the social welfare of the worst equilibrium. In budgeted settings, it
is thus natural to quantify the efficiency of such auctions by the Liquid Price
of Anarchy (LPoA), defined as the ratio of the optimal Liquid Welfare to the
Liquid Welfare of the worst equilibrium.

New Techniques. The most common framework for analyzing the Price of Anar-
chy of games and auctions is the smoothness framework (see, e.g., [35,38]). Such
techniques usually involve a thought experiment in which each player deviates
toward some strategy related to the optimal solution, and hence the total util-
ity of all players can be bounded appropriately. One important and necessary
condition for applying the smoothness framework is that the objective function
must dominate the sum of utilities (which holds for social welfare). However, this
technique falls short in the case of Liquid Welfare, since a bidder’s utility can be
arbitrarily higher than their admissibility-to-pay, and in aggregate, bidders may
achieve a total utility that is much larger than the Liquid Welfare at equilib-
rium. To overcome this issue, we develop new techniques to bound the LPoA in
budgeted settings. Our techniques include a novel type of hypothetical deviation
that is used to upper bound the aggregate utility of bidders (in addition to the
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traditional deviation that is used to lower bound it), and the consideration of a
special set of carefully chosen bidders to engage in these hypothetical deviations
(see more details in the full version of our paper [3]). To the best of our knowl-
edge, most prior techniques, including those that depart from the smoothness
framework (e.g., [25]), examine the utility derived when every player deviates
toward the optimal solution.

With our new techniques at hand, we address the following question: What is
the Liquid Price of Anarchy of simultaneous first price item auctions in settings
with budgets?

Clarifying Remarks and Examples

Settings where agents have additive valuations and are constrained by budgets
(as in our setting) should not be confused with settings with budget additive
valuations. The latter assumes quasilinear utilities, while the former does not1.
The class of budget additive valuations is a proper subclass of submodular val-
uations, a setting for which the Price of Anarchy of simultaneous combinatorial
auctions is well understood, and known to be bounded by a constant2. However,
these results do not apply to the budgeted setting, since a bidder’s perspective
and consequently their behavior at equilibrium is very different from the budget
additive setting (see the full version of our paper [3] for an example and a more
detailed discussion).

The budgeted simultaneous item bidding setting has also been studied by [38],
where a different approach was taken. They measured the social welfare at
equilibrium against the optimal Liquid Welfare. Note that according to their
measure, the benchmark (i.e., optimal Liquid Welfare) may be lower than the
measured welfare. Please see the full version of our paper [3] for an example
illustrating the difference between their measure and our LPoA measure.

Our Contributions

We show that simultaneous first price item auctions achieve nearly optimal per-
formance, i.e., a constant Liquid Price of Anarchy. Our main result concerns the
case in which agent valuations are additive (i.e., agent i’s value for item j is vij

and the value for a set of items is the sum of the individual valuations, each of
which is scaled by the corresponding fraction received).

Main Theorem: For simultaneous first price auctions with additive bidders and
divisible items, the LPoA with respect to mixed Nash equilibria and Bayesian
Nash equilibria is constant.

We also show that for pure Nash equilibria in simultaneous first price auctions,
our results hold for more general settings.
1 The difference is also pointed out in the literature on the design of truthful combi-

natorial auctions [20,21].
2 In particular, there are tight PoA bounds of e

e−1
for submodular bidders, and 2 for

subadditive bidders.
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Theorem: For fractionally-subadditive bidders, the LPoA of pure Nash equilib-
ria in simultaneous first price auctions is 2. Moreover, this bound is tight.

The following remarks are in order:

1. In settings without budgets, simultaneous first price item auctions for addi-
tive bidders reduce to m independent auctions (where m is the number of
items). In contrast, when agents have budget constraints, the separate auc-
tions exhibit non-trivial dependencies even under additive valuations.

2. Since fractionally-subadditive valuations are not typically defined over divisi-
ble items, we discretize the bidding space so that requested fractions of items
can only be multiples of a fixed small size in our fractionally-subadditive
results. This essentially induces an indivisible setting with discrete items,
and hence fractionally-subadditive valuations are well-defined.

Related Work

There is a vast literature in algorithmic game theory that incorporates budgets
into the design of incentive compatible mechanisms. The paper of [6] showed that,
in the case of one divisible good, the adaptive clinching auction is incentive com-
patible under some assumptions. Moreover, the work of [37] initiated the design
of incentive compatible mechanisms in the context of reverse auctions, where the
payments of the auctioneer cannot exceed a hard budget constraint (follow-up
works include [1,4,12,15,22]). A great deal of work focused on designing incentive
compatible mechanisms that approximately maximize the auctioneer’s revenue
in various settings with budget-constrained bidders [9,13,30,33,34]. Some works
analyzed how budgets affect markets and non-truthful mechanisms [5,14].

Earlier work on multi-unit auctions with budgets deals with designing incen-
tive compatible mechanisms that always produce Pareto-optimal allocations [20].
The results in this line of work are mostly negative with a notable exception of
mechanisms based on Ausubel’s adaptive clinching auction framework [2].

Some recent results concern the design of incentive compatible mechanisms
with respect to the Liquid Welfare objective, introduced by [21]. They gave a
constant approximation for the auction that sells a single divisible good to addi-
tive buyers with budgets. In a follow-up work, [32] gave an O(1)-approximation
for bidders with general valuations in the single-item setting. The work of [23]
extended the notion of a combinatorial Walrasian equilibrium (see [26]) to set-
tings with budgets. They showed that their generalization, termed a lottery
pricing equilibrium, achieves high Liquid Welfare. They also argued how to effi-
ciently compute randomized allocations that have near-optimal Liquid Welfare
for large classes of valuation functions (including subadditive valuations).

A large body of literature is concerned with simultaneous item bidding auc-
tions. These simple auctions have been studied from a computational perspec-
tive [10,19]. There is also extensive work addressing the Price of Anarchy of
such simple auctions (see [36] for more general Price of Anarchy results). The
work of [16] initiated the study of simultaneous item auctions within the Price
of Anarchy framework. The authors showed that, for second price auctions, the
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social welfare of every Bayesian Nash equilibrium is a 2-approximation to the
optimal social welfare, even for players with fractionally-subadditive valuation
functions. A large amount of follow-up work [7,8,17,24,25,28,38] made signifi-
cant progress in understanding simultaneous item auctions, but all of these works
measure inefficiency only with respect to the social welfare objective.

Much less is known about the Price of Anarchy in auctions for objectives
other than social welfare. In fact, we are aware of only one such work [27],
which studies the revenue of simultaneous auctions with reserve prices for single-
parameter bidders with regular distributions. This work essentially reduces the
revenue maximization problem to the welfare maximization problem for virtual
values in single-parameter settings and then employs smoothness analysis to
bound virtual value welfare. We note that this approach fails for multi-parameter
settings such as simultaneous multi-item auctions with additive valuations.

The work of [38] considered Liquid Welfare when measuring the inefficiency
of equilibria. They gave various Price of Anarchy results, developed a smooth-
ness framework for broad solution concepts such as correlated and Bayesian
Nash equilibria, and explored composition properties of various mechanisms.
They extended their results to the setting where players are budget-constrained,
achieving similar approximation guarantees when comparing the social welfare
achieved at equilibrium to the optimal Liquid Welfare. In particular, their results
imply an e

e−1 -approximation for simultaneous first price auctions, and a 2-
approximation for all-pay auctions and simultaneous second price auctions under
the no-overbidding assumption. While [38] show that the social welfare at equi-
librium cannot be much worse than the optimal Liquid Welfare, one should note
that the social welfare at equilibrium can be arbitrarily better than the opti-
mal Liquid Welfare (e.g., if all budgets are small, the optimal Liquid Welfare is
small). It is useful to note that, in general, the ratio between the Liquid Welfare
at equilibrium and the social welfare at equilibrium can be arbitrarily bad (if
all budgets are small, then the Liquid Welfare of any allocation is small, while
players’ values for received goods can be arbitrarily large).

The works of [11,18] also considered the setting where players have budgets
and studied the same ratio we consider, namely the Liquid Welfare at equilib-
rium to the optimal Liquid Welfare. In [11], they studied the proportional alloca-
tion mechanism, which concerns auctioning off one divisible item proportionally
according to the bids that players submit. They showed that, assuming players
have concave non-decreasing valuation functions, the Liquid Welfare at coarse-
correlated equilibria and Bayesian Nash equilibria achieve at least a constant
fraction of the optimal Liquid Welfare. It should be noted that, for random allo-
cations, they measure the benchmark at equilibrium ex-ante over the randomness
of the allocation, i.e.,

∑n
i=1 min{Ev-i,B-i [vi(xi)], Bi}, where vi is player i’s val-

uation, Bi is player i’s budget, and xi denotes the allocation player i receives.
In contrast, for random allocations, we use the stronger ex-post measure of the
expected Liquid Welfare at equilibrium given by

∑n
i=1 E[min{vi(xi), Bi}]. The

work of [18] studied a similar setting, except that multiple divisible items were
considered. They gave improved bounds for coarse-correlated equilibria even with
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multiple items and also an improved bound for Bayesian Nash equilibria with one
item. In addition, they studied the polyhedral environment and showed an exact
bound of 2 for pure Nash equilibria when agents have subadditive valuations.

2 Model and Preliminaries

We consider simultaneous first price item auctions, in which m heterogeneous
items are sold to n bidders (or players) in m independent auctions. We first
describe our notation in the context of indivisible items, and then describe
the divisible model. A bidder’s strategy is a bid vector bi ∈ R

m
≥0, where

bij represents player i’s bid for item j. We use b to denote the bid profile
b = (b1, . . . , bn), and we will often use the notation b = (bi,b-i) to denote the
strategy profile where player i bids bi and the remaining players bid according
to b-i = (b1, . . . , bi−1, bi+1, . . . , bn).

The outcome of an auction consists of an allocation rule x and payment
rule p. The allocation rule x maps bid profiles to an allocation vector for each
bidder i, where xi(b) = (xi1, . . . , xim) denotes the set of items won by player i
(xij = 1 ⇔ player i wins item j). In a simultaneous first price auction, each item
is allocated to the highest bidder (breaking ties according to some rule) and the
winner pays their bid. The total payment of bidder i is pi(b) =

∑
j∈xi(b)

bij .
Each player i has a valuation function vi, which maps sets of items to R≥0

(vi captures how much player i values item bundles), and a budget Bi. We
assume that all valuations are normalized and monotone, i.e., vi(∅) = 0 and
vi(S) ≤ vi(T ) for any i ∈ [n] and S ⊆ T ⊆ [m]. We mostly consider bidders
with additive valuations, i.e., vi(S) =

∑
j∈S vij (where vij denotes agent i’s

value for item j). The utility ui(xi(b)) of each player i is vi(xi(b)) − pi(b) =∑
j vij · xij − pi(b) if pi(b) ≤ Bi; and ui(xi(b)) = −∞ if pi(b) > Bi. Buyers

select their bids strategically in order to maximize utility.
For divisible items, agent’s i bid bij consists of two parameters for each item

j: a price bij and a desired fraction δij . For each item j, in decreasing order
of bij , and as long as some fraction of item j remains, each buyer i receives a
fraction of item j given by xij = δij (or whatever remains). If the agent receives
an xij-fraction of item j, then their value is given by vi(xij) = vij · xij and they
pay bij · xij . We write all individual bids bij on item j as a vector b·j and bids
for all items as b.

Definition 1 (Pure Nash Equilibrium). A bid profile b is a Pure Nash Equi-
librium if, for any player i and any deviating bid b′

i: ui(bi,b-i) ≥ ui(b′
i,b-i).

A mixed Nash equilibrium is defined similarly, except that bidding strategies
can be randomized bi ∼ si and utility is measured in expectation over the joint
bid distribution s = s1 × · · · × sn.

Definition 2 (Mixed Nash Equilibrium). A bid profile s is a mixed Nash
equilibrium if, for any player i and any deviating bid b′

i: Eb∼s[ui(bi,b-i)] ≥
Eb-i∼s-i [ui(b′

i,b-i)].
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Note that, in general, we assume the bidding space is discretized (i.e., each player
can only bid in multiples of a sufficiently small value ε). This is done to ensure
that there always exists a mixed Nash equilibrium, as otherwise we do not have
a finite game.

Definition 3 (Liquid Welfare). The Liquid Welfare, denoted by LW, of an
allocation x is given by LW(x) =

∑
i∈[n] min{vi(xi), Bi}. For random alloca-

tions, we use the measure given by LW(x) =
∑

i∈[n] E[min{vi(xi), Bi}].

For a given vector of valuations v = (v1, . . . , vn), we use OPT(v) to denote
the Liquid Welfare of an optimal outcome given by the expression OPT(v) =
maxx1,...,xn

∑
i min{vi(xi), Bi}, where the bundles xi form a fractional partition

of [m] (i.e.,
∑

i xij = 1 for any j). We often use OPT instead of OPT(v) when
the context is clear.

Definition 4 (Liquid Price of Anarchy). Given a fixed valuation profile v,
the Liquid Price of Anarchy (LPoA) is the worst-case ratio between the optimal
Liquid Welfare and the expected Liquid Welfare at an equilibrium (pure, mixed,
or Bayesian Nash) and is given by LPoA(v) = sups

{
OPT(v)
LW(s(v))

∣
∣
∣ s ∈ Equilibria

}
.

3 Simultaneous First Price Auctions

In this section, we prove our main theorem that, for mixed Nash equilibria, the
Liquid Price of Anarchy of simultaneous first price auctions is constant. In what
follows we build up notation and intuition toward the proof. Recall that agents
have additive valuations and submit separate bids on each item. We assume that
the buyers bid according to a mixed Nash equilibrium b ∼ s. For all items we
can define an “expected price per item” at equilibrium or just a “price per item”
as p = (p1, . . . , pm), where pj =

∑n
i=1 Eb∼s[bij · xij(b·j)].

Each bidder i has a good chance of winning a particular item if they bid
above the expected price of this item. To this end we define boosted prices
p = (p1, . . . , pm), where pj = αpj for some α > 1 (α = 2 will be sufficient for
us). One simple observation about p is the following:

Observation 1. Revenue is related to prices, namely: REV(s) = 1
α

∑m
j=1 pj,

where REV(s) denotes the expected revenue at the equilibrium profile s.

We next show that if players bid on a fraction of an item j according to pj , then
they win a large fraction of j in expectation. The proof is in the full version of
our paper [3].

Proposition 1. For any item j, if a player bids on a δ-fraction of item j at
price pj, then the player receives in expectation at least a δ · (1 − 1

α

)
-fraction of

item j.

When relating prices to Liquid Welfare we notice that
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Observation 2. Revenue is bounded by the Liquid Welfare: REV(s) ≤ LW(s),
where LW(s) denotes the expected Liquid Welfare at the equilibrium profile s.

We consider the following Linear Program for the allocation problem with
the goal of optimizing Liquid Welfare.

Maximize
n∑

i=1

m∑

j=1

vij · zij Liquid linear program (LLP)

Subject to
∑

j

vij · zij ≤ Bi ∀i;
∑

i

zij ≤ 1 ∀j; zij ≥ 0 ∀i, j.

We denote by y = (yij) the optimal solution to LLP. Notice that the solution
for the Liquid Welfare never benefits from allocating a set of items to a player
such that their value for the set exceeds their budget. Thus

Observation 3. The solution to LLP is equal to the optimal allocation, namely:
n∑

i=1

m∑

j=1

vij · yij = OPT.

We now define some notation that will be useful in order to obtain our
result. We let qij

def= Eb∼s[xij(b·j)] be the expected fraction of item j that
player i receives at an equilibrium strategy s. In addition, for each agent i,
we consider a set of high value items Ji

def=
{
j | vij ≥ pj

}
. In particular, in

our deviations, we ensure that each player i only bids on items in Ji, since this
guarantees that they attain nonnegative utility if they win such items. We further
define Qi

def= Prb∼s[vi(xi(b)) ≥ Bi] to be the probability that vi(xi) ≥ Bi at
equilibrium (recall that xi denotes the random set that player i receives in the
mixed Nash equilibrium). We also define two sets of bidders, the first one is
for budget feasibility reasons and the second is for bidders that often fall under
their budget in equilibrium (these sets need not be disjoint). In particular, for a
fixed parameter γ > 1 (γ = 4 will be sufficient for us), we define sets I1 and I2:
I1

def=
{

i
∣
∣
∣ γ

∑
j∈Ji

pj · qij ≤ Bi

}
and I2

def=
{

i
∣
∣
∣ Qi ≤ 1

2γ

}
.

Throughout our proof, we focus on bidders in the set I def= I1 ∩ I2. As men-
tioned, the way we achieve our main result is to consider two types of deviations
for all players in I, the first of which is a deviation towards an optimal solution,
and the second of which is a γ-boosting deviation (where players essentially bid
on a larger fraction of items by a factor γ relative to what they receive at equi-
librium, namely γ · qij). We only consider deviations for players in set I for the
following reasons. Players in I1 are guaranteed to respect their budgetary con-
straints in our γ-boosting deviation. Players that do not belong to I2 have the
property that the value they receive at equilibrium often exceeds their budgets,
and hence such players already contribute a lot to the Liquid Welfare at equilib-
rium. In particular, whenever a player receives a value that exceeds their budget,
their contribution to the Liquid Welfare at equilibrium is at least as much as
their contribution in the optimal Liquid Welfare, which is always bounded above
by their budget. Hence, we need only consider players in I2 as far as deviations
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are concerned. We define sets I1
def= [n] \ I1, I2

def= [n] \ I2, and I def= [n] \ I. To
this end, we relate the total budget of bidders outside of the set I to the revenue
at equilibrium s. The proof is in the full version of our paper [3].

Proposition 2. The total budget of players in I is small:
∑

i∈I Bi < α · γ ·
REV(s) +

∑
i∈I2

Bi.

To achieve our result, we essentially consider two main ideas for player devi-
ations in set I. The first idea is to use the solution to LLP as guidance to claim
that players can extract a large amount of value relative to the optimal solution.
Define the first LLP deviation to be b1 = (b′

i,b-i), where in b′
i buyer i bids on a

yij-fraction of each item j ∈ Ji with price pj . We note that the LLP deviation
b1 is feasible, since vij ≥ pj for every j ∈ Ji, and

∑
j vij · yij ≤ Bi as y is a

solution to LLP.

Lemma 1 (LLP deviations). Buyers in I at equilibrium s derive large value:

∑

i∈I

∑

j

vij · qij ≥
(

1 − 1
α

)
⎛

⎝OPT − α (1 + γ) REV(s) −
∑

i∈I2

Bi

⎞

⎠ .

We defer the proof of Lemma1 to the full version of our paper [3]. We now
turn to our second type of deviation, but we need to further restrict the set of
items that players bid on. In particular, we let Γi =

{
j

∣
∣
∣ qij ≤ 1

γ

}
, and define

Gi = Ji∩Γi. The set Γi is defined to ensure that each player i that deviates never
bids on a fraction of an item j that exceeds 1. We now define the γ-boosting
deviation as b2 = (b′

i,b-i), where in b′
i buyer i bids on a γ · qij-fraction of each

item j ∈ Gi with price pj , where γ > 1 is a constant. Note that each b2 deviation
for every i ∈ I is feasible since I ⊆ I1.

Lemma 2 (γ-boosting deviation). The value derived by buyers in I is com-
parable to the Liquid Welfare obtained at equilibrium:

(

1 − α

γ(α − 1)

) ∑

i∈I

∑

j

vij · qij ≤ α · REV(s) + 2 · LW(s) − 1
γ

∑

i∈I2

Bi.

We defer the proof of Lemma 2 to the full version of our paper [3]. Now we have
all necessary components to conclude the proof of our main theorem and show
that the Liquid Price of Anarchy of any mixed Nash equilibrium is bounded.
The proof is given in the full version of our paper [3].

Theorem 1. For mixed Nash equilibria, the Liquid Price of Anarchy of simul-
taneous first price auctions is constant (at most 26).

The above reasoning also extends to Bayesian Nash equilibria with the same
LPoA bound.

Theorem 2. For Bayesian Nash equilibria, the Liquid Price of Anarchy of
simultaneous first price auctions is constant (at most 26).
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We omit the proof as it is very similar to the proof of Theorem1. We also study
pure Nash equilibria of simultaneous first price auctions. The proof of the next
theorem is given in the full version of our paper [3].

Theorem 3. Consider a simultaneous first price auction where budgeted bidders
have fractionally-subadditive valuations3. If b is a pure Nash equilibrium, then
LW(b) ≥ OPT

2 .

A complementary tightness result for Theorem 3 is given in the full version of our
paper [3]. Unfortunately, this result is not quite satisfying compared to mixed
Nash equilibria, as pure Nash equilibria might not even exist (see the full version
of our paper [3]).
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