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Abstract In this paper, a multi-objective, multi-period, multi-product stochastic
model for a multi-site supply chain planning problem under demand uncertainty is
proposed. The decisions to be made include the amounts of product to be produced,
the amounts of products to be transported between the different sites and customers
as well as the amounts of inventory of finished or semi-finished products. The
developed model aims simultaneously to minimize the expected total cost, to
maximize the customer demand satisfaction level and to minimize the downside
risk. The e-constraint method is applied to solve the considered model and to
generate the set of Pareto optimal solutions. This set of Pareto represents the
trade-off between the different objective functions. Then, an integrated approach of
the Analytic Hierarchy Process (AHP) and the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) methods is applied in order to select the best
compromise Pareto solution. A numerical example is presented to illustrate the
proposed approach.

Keywords Multi-supply chain planning ⋅ Multi-objective ⋅ Stochastic
programming ⋅ AHP ⋅ TOPSIS

1 Introduction

In the face of today’s highly competitive markets, manufacturing companies are
required to expand their production capacity by adding more sites or outsourcing.
Therefore, an integrated planning approach that coordinates the different entities of
the multi-site supply chain should be established.
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A lot of attention has been made in the literature to treat multi-site supply chain
planning problems. Many of these works are dealing with deterministic approaches
(Felfel et al. 2014, 2015c, Ayadi et al. 2016). However, real multi-site supply chain
planning problems are characterized by many sources of uncertainty such as cus-
tomer demand. Thus, the assumption that these parameters are deterministic will
lead to unrealistic results. So, it is crucial to develop an optimization planning
model that takes into account existing uncertainties. Two-stage stochastic pro-
gramming approach (Birge and Louveaux 1997) is widely used in the literature to
deal with optimization problem under uncertainty. In this approach, the first-stage
variables include the decisions to be made “here-and-now” before the revelation of
the random events. The second-stage variables represent the variables that should
be made in a “wait-and-see” mode after the revelation of uncertainty.

The minimization of the cost and the maximization of the profit are widely
treated in multi-site supply chain planning problem. One can refer to Moon et al.
(2002), Jackson et al. (2003), Lin and Chen (2006) and Felfel et al. (2015b).
Nevertheless, other important criteria such as the customer demand satisfaction and
the risk of having high total cost should be treated in multi-site supply chain
planning problems. It is worthwhile mentioning that the objective functions usually
conflict with each other in multi-objective optimization problem. Thus, the solution
of this problem consists on a front of Pareto optimal solutions which represents the
trade-off between the different objectives.

To solve the multi-objective optimization problem, the task of the decision
maker consists on obtaining the front of Pareto optimal solutions and finding the
most preferred compromise solution. The selection of a best solution from the front
of Pareto can be considered as multiple criteria decision-making (MCDM) problem.
A lot of methods have been developed in the literature for MCDM (Vincke 1992)
such as AHP, ANP, ELCTRE, PROMETHEE, VIKOR and TOPSIS, etc. The
technique for order performance by similarity to ideal solution (TOPSIS) and the
analytic hierarchy process (AHP) were successfully applied in different areas such
as supply chain management and logistics, manufacturing systems, design, engi-
neering, and other many topics (Behzadian et al. 2012). To gain the benefits of
these two methods, an integrated approach of the AHP and TOPSIS methods is
applied to rank and to select the best compromise Pareto solution in a
multi-objective supply chain planning problem.

The main objective of this paper is to develop a multi-objective, multi-product,
multi-period, multi-site supply chain production and transportation model under
demand uncertainty. The proposed model aims simultaneously to minimize the total
cost, to maximize the customer demand satisfaction and to minimize the downside
risk. In order to incorporate uncertainty in the considered model, a two-stage
stochastic programming approach is adopted. An integrated approach of AHP and
TOPSIS method is adopted to select the best Pareto optimal solution. Indeed, the
AHP method is applied to determine the weights of the objectives and the TOPSIS
method is used to rank the Pareto optimal solutions. A numerical example is
presented to illustrate the proposed approach.
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The remainder of the article is organized as follows. In Sect. 2, the problem
statement is introduced. Section 3 describes the developed stochastic
multi-objective planning model. In Sect. 4, the solution approach is presented.
Section 5 details the numerical example and the computational results. Finally,
Sect. 6 draws conclusions on this work and suggests future research.

2 Problem Statement

The supply network considered in this paper consists of a manufacturing system
including many production sites that cooperate together in order to expand their
capacities and competences. The end product is produced through different pro-
cesses defined as multi-stage. Each production stage may involve more than one
site, creating a multi-site supply chain structure. The considered supply chain is
managed in a centralized way. The planning horizon contains several time period.
Furthermore, finished products are characterized by unstable and uncertain demand.
This uncertain demand could lead whether to excessive production and inventory
costs or unsatisfied customer.

The objective of the considered multi-site supply chain planning problem is to
minimize the total expected costs, to maximize the customer demand satisfaction
level, and to minimize the downside risk (DRisk). The total costs include pro-
duction costs, inventory costs, penalty costs of lost demand, and transportation
costs. Model decision variables comprise the amount of product to be produced at
each site in each period, the amount of inventory of each finished or semi-finished
product that should be maintained on each site in each period, the amount of lost
demand as well as the quantity of products to be transported between upstream and
downstream sites and customers considering demand uncertainty.

3 Proposed Stochastic Mathematical Model

A multi-objective two-stage stochastic programming model is proposed in this
section to deal the considered problem. The first-stage decisions include the
quantity of products to be produced at each plant as well as the transportation
quantity of products between the different plants. Decisions such as the quantity of
products to be delivered to the customer, the inventory level and the lost demand
quantity are considered as second-stage decisions. To formulate the mathematical
model, we introduce the following indices parameters and decision variables:

Integrated AHP-TOPSIS Approach for Pareto Optimal Solution … 305



Indices

Li Set of direct successor plant of site i

STj Set of stages (j = 1, 2, …, N)

i, i′ Production plant index (i, i′ = 1, 2, …, I) where i belongs to stage n and i′
belongs to stage n + 1

s Scenario index (s = 1, 2, …, S)
k Product index (k = 1, 2, …, K)
t Period index (t = 1, 2, …, T)
Decision variables

Pikt Production amounts of product k at plant i in period t

Ssikt Quantity of end of period inventory of product k for scenario s at plant i in
period t

JSsikt Quantity of end of period inventory of semi-finished product k for
scenario s at plant i in period t

TRi− > i0 , kt Quantity of product k transported from plant i to i’ in period t

TRs
i− >CUS, kt Quantity of product k transported from the last plant i to customer for

scenario s in period t

Dlostskt Lost demand amounts of finished product k for scenario s in period t

Qi, k Amounts of product k received by plant i for scenario s in period t

Parameters

cpik Production unit cost for product k in at plant i
cti− > i0 , k Transportation unit cost of between plant i and i’ for product k
cti− >CUS, k Transportation unit cost between the last plants i and the customer
csik Inventory unit cost of finished or semi-finished product k at plant i
Ds

kt Demand of finished product k for scenario s in period t

DL Distribution time of the finished products
pek Penalty cost of product k
cappit Production capacity at plant i in period t

capsit Inventory capacity at plant i in period t

capti− > i0 , t Transportation capacity at plant i in period t

bk Time needed for the production of a product k [min]
πs

The occurrence probability of scenario s where ∑
S

s=1
πs =1

Problem formulation

minE ½Cost�= ∑
S

s=1
πs ∑

T

t=1
∑
K

k=1
∑
I

i=1
csikðSsikt + JSsiktÞ+ pekDlostsk, t

+ cti− >CUS, kTRs
i− >CUS, kt + ∑

T

t=1
∑
K

k=1
∑
I

i=1
cpikPikt + cti− > i0 , kTRi− > i0, kt

ð1Þ
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maxE ½DS�= ∑
S

s=1
πsDSs = ∑

S

s=1
πs

∑T
t=1 ∑

K
k=1 D

s
kt −Dlostskt

∑T
t=1 ∑

K
k=1 D

s
kt

ð2Þ

DSs ≥MDS ð3Þ

minDRiskΩ = ∑
s
πsψ s ð4Þ

ψ s ≥Costs −Ω , ψ s ≥ 0, ∀s ð5Þ

Ssik, t = Ssik, t− 1 +Pikt − ∑
i0 ∈ Li

TRi− > i0 , kt , ∀i∈ STj<N , ∀k, t, s ð6Þ

∑
I

i=1
Ssik, t = ∑

I

i=1
Ssik, t− 1 +Pikt − TRs

i− >CUS, kt, ∀i∈ STj=N , k, t, s ð7Þ

JSsik, t = JSsik, t− 1 +Q
ikt
−Pikt, ∀i, k, t, s ð8Þ

Dlostskt =Ds
kt −TRs

i− >CUS, kt, ∀k, t, s ð9Þ

Qi0k, t+DL = ∑
i0 ∈ Li

TRi− > i0 , kt, ∀i, k, t, s ð10Þ

∑
K

k =1
bkPikt ≤ cappit , ∀i, t ð11Þ

∑
K

k=1
Ssikt + JSsikt ≤ capsit , ∀i, t, s ð12Þ

∑
K

k=1
TRi− > i0 , kt ≤ captrit , ∀i, t, s ð13Þ

Pikt , Ssikt, JS
s
ikt,TRi− > i0 , kt,TR

s
i− >CUS, kt,Qi, k ,Dlost

s
kt ≥ 0, ∀i, k, t, s ð14Þ

The first objective function (1) aims to minimize the expected total cost (E
[Cost]). The occurrence probability πs of each scenario is considered in order to
calculate the expected total cost. Equations (2) and (3) attempt to maximize the
customer demand satisfaction level (MDS). The third objective function (4) aims to
minimize the downside risk (DRisk) where ψ s is a positive variable that measures
deviation between the scenario cost value and a target Ω as shown in Eq. (8).

Constraints (6) and (7) provide the balance for the inventory level of products.
Constraint (8) represents the inventory balance for the semi-finished products.
Constraint (9) provides the balance equation for lost products demand. Constraint
(10) gives the balance equations for the transportation between the different pro-
duction stages. The set of constraints (11)–(13) denote the capacity constraints.
Constraint (14) is the nonnegativity restriction on the decision variables.
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4 Solution Approaches

4.1 Generation of the Front of Pareto Optimal Solutions

The obtained mathematical formulation can be finally expressed as follows:

minfE ½Cost�, −MDS,DRisk g
s.t. Eqs. ð1Þ− ð14Þ ð15Þ

The solution of the above problem consists of a set of Pareto optimal solutions.
This set of Pareto represents the trade-offs that exist between the considered
objective functions. In order generate this set of Pareto, we have applied the
e-constraint method proposed by Haimes et al. (1971). This approach was widely
used to solve multi-objective supply chain planning problems (Guillén et al. 2005;
Franca et al. 2010; Felfel et al. 2015a). The main principle of this technique is to
select one of the objective functions to be optimized whereas the other objectives
are transformed into constraints with allowable bounds εi. In order to generate the
entire set of Pareto optimal solutions, the level of ε1 and ε2 are changed as follows:

min E ½Cost�f g
s.t. Eqs. ð1Þ− ð14Þ

DRisk ≤ ε1

MDS ≥ ε2

ð16Þ

4.2 Selection of the Best Pareto Optimal Solution

The selection of the most preferred Pareto optimal is based on a combination of the
AHP method with the TOPSIS method. The analytic hierarchy process method
(AHP) is a tool to evaluate and analyze multi-criteria decision-making problem first
developed by Saaty (1980). In this paper, this method is used to determine the
relative importance of each objective function. In order to obtain these weights, a
pairwise comparison matrix is should be developed using Saaty preference scale
detailed in Table 1.

Table 1 Preference scale
(Saaty 1980)

Value (bij) Description (i over j)

1 Equal importance
3 Weak importance
5 Strong importance
7 Very strong importance
9 Absolute importance
2, 4, 6, 8 Intermediate values
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Then, the Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS), developed by Hwang and Yoon (1981), is conducted to achieve the final
ranking of the Pareto optimal solutions based on the weights obtained by the AHP
method. In the TOPSIS approach, we calculate the best Pareto optimal solution that
has simultaneously the farthest distance from the negative ideal solution and the
shortest distance from the ideal solution. The positive ideal solution is a solution
that attempts to minimize the expected total cost, to minimize the downside risk and
to maximize the customer demand satisfaction level, whereas the negative ideal
solution is the opposite of the previous one. For more details concerning each
method, one can refer to Ayadi et al. (2016) and Felfel et al. (2017).

5 Illustrative Example

The considered example consists of a multi-site manufacturing network which
contains five production stages with eight plants and two finished products. The
planning horizon includes eight time periods where the length of each period is one
week. It is assumed that the uncertain demand is considered as a set of discrete
scenarios generated randomly and associated with known probability. The
numerical example is solved using LINGO 14.0 and MS-Excel 2010 on a 32-bit
with an INTEL(R) Core (TM) 2Duo CPU, T5670@1.8 GHZ, 1.8 GHZ, 2 GB
RAM.

In this paragraph, the e-constraint method is used to solve the multi-objective
stochastic supply chain planning problem and to generate the set of Pareto optimal
solutions. The obtained set of Pareto drawn in Fig. 1 contains 30 points. It should
be noted that every point of the set of Pareto shown in Fig. 1 represents a particular
set of supply chain planning decisions.

In order to apply the AHP method, each pair of objective functions is compared
pairwise to determine their relative importance using the ratio scale shown in

Fig. 1 Set of Pareto optimal
solutions
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Table 1. It is worth mentioning that expected the total cost is considered more
important for the decision maker than the other objective functions. The least
important objective is considered to be the DRisk. The relative weights of the
different objectives are detailed in the last column of Table 2.

Table 2 Pairwise
comparison of the objective
functions and obtained
weights

E [Cost] MDS DRisk Weight

E [Cost] 1 3 6 0.655
MDS 0.33 1 3 0.250
DRisk 0.17 0.33 1 0.095

Table 3 Separation measure
from the ideal solution and
negative ideal solution and
relative closeness coefficient

Solution D+
j D−

j CC*
j Rank

S1 0.019 0.0318 0.3739 30
S2 0.0242 0.0244 0.4975 28
S3 0.0264 0.0237 0.5266 24
S4 0.0284 0.0234 0.5482 22
S5 0.0302 0.0233 0.5641 19
S6 0.0309 0.0234 0.5691 17
S7 0.0283 0.0178 0.614 11
S8 0.0291 0.0176 0.6231 8
S9 0.0298 0.0176 0.6291 7
S10 0.0296 0.0203 0.5935 15
S11 0.0297 0.0233 0.5605 20
S12 0.029 0.0142 0.6714 2
S13 0.0296 0.0144 0.6726 1
S14 0.0292 0.0163 0.6418 6
S15 0.0288 0.0197 0.5938 14
S16 0.0288 0.024 0.5462 23
S17 0.028 0.0152 0.6481 5
S18 0.0283 0.0148 0.6562 3
S19 0.0288 0.0155 0.6496 4
S20 0.0284 0.0189 0.6001 12
S21 0.0284 0.0264 0.5183 25
S22 0.0266 0.0218 0.5498 21
S23 0.0272 0.0189 0.59 16
S24 0.0278 0.0168 0.6231 9
S25 0.0284 0.0174 0.6205 10
S26 0.028 0.0275 0.5043 27
S27 0.0272 0.0316 0.4628 29
S28 0.0265 0.0259 0.5062 26
S29 0.027 0.0209 0.5643 18
S30 0.0278 0.0189 0.5954 13
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Subsequently, the TOPSIS method is applied to evaluate and select the com-
promise solution based on the weights obtained by AHP method. The separation
distances of each Pareto solution from the positive and negative ideal solution D+

j

and D−
j respectively, the relative closeness measure CC*

j to the ideal solution, as
well as the rank of each Pareto solution are reported in Table 3. According to
Table 3, the most preferred Pareto optimal solution is S13 since it has highest CC*

j

value of 0.6726.

6 Conclusion

In this paper, a two-stage stochastic, multi-objective, multi-site, multi-period,
supply chain production and transportation model is developed. Three objective
functions are considered which are the minimization of the expected total cost, the
minimization of the DRisk, and the maximization of the customer demand satis-
faction level. A front of Pareto optimal solutions is generated for the proposed
model by means of the e-constraint method. Subsequently, an integrated approach
of AHP and TOPSIS methods is applied in order to select the best Pareto solution.
In the first step, the weights of each objective are calculated using the AHP
approach. Then, in the second step, the Pareto optimal solutions are ranked by using
TOPSIS to find the most preferred solution. As future work, other multi-criteria
decision-making approach could be evaluated in order to compare their perfor-
mance with the proposed integrated approach.
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