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Abstract Condition monitoring of industrial processes can minimize downtime
and maintenance costs while enhancing the safety of operation of plants and
increasing the quality of products. Multivariate statistical methods are widely used
for condition monitoring in industrial plants due to the rapid growth and
advancement in data acquisition technology. However, the effectiveness of these
methodologies in real industrial processes has not been fully investigated. This
paper proposes a CVA-based approach for process fault identification, system
modeling and performance estimation. The effectiveness of the proposed method
was tested using data acquired from an operational industrial centrifugal com-
pressor. The results indicate that CVA can be effectively used to identify abnormal
operating conditions and predict performance degradation after the appearance of
faults.
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1 Introduction

Modern industrial facilities such as natural-gas processing plants are becoming
increasingly complex and large-scale due to the use of machines of different nature.
The complexity of large-scale industrial facilities makes it difficult to build
first-principle dynamic models for condition monitoring (Russell et al. 2000). Thus,
existing condition monitoring approaches for industrial processes are typically
derived from routinely monitored system operating data. Due to the advancement in
instrument and automation technology, long-term and high-frequency measure-
ments can be taken with the different sensors mounted on the machinery systems.
The monitored data are easily stored and explored to extract important process
condition information. Many methodologies have been developed to combine the
multivariate process data for analysis, such as state-space-based models (Negiz and
Çinar 1997a), time series analysis (Negiz and Çinar 1997b), and dimensionality
reduction techniques (Chiang et al. 2000; Yang et al. 2012; Komulainen et al. 2004;
Ku et al. 1995).

The main advantage of dimensionality reduction techniques over traditional
approaches is that they can take into consideration the possible correlation between
the different measured variables, hence facilitating fault detection and system
identification (Ruiz-Carcel et al. 2016). Two early examples of process monitoring
techniques are principal component analysis (PCA) (Ku et al. 1995) and partial
least-squares (PLS) analysis (Muradore and Fiorini 2012). Both PCA and PLS
assume that the monitored variables are time-independent (i.e., the observations at
one time instant are not correlated with those in the past time instants). This
assumption might not hold true for real industrial processes (especially chemical
and petrochemical processes) because measurements driven by noises and distur-
bances often show strong correlation between the past and future time instances
(Odiowei and Cao 2010). Dynamic extensions of PCA and PLS, so-called dynamic
PCA and dynamic PLS, have been proposed to solve this problem, making them
more suitable for dynamic processes monitoring. Although DPCA and DPLS have
been successfully applied to dynamic systems, they have been reported not to be
able to fully capture some important dynamic behaviors of the system working
under varying operating conditions (Jiang et al. 2015a; Ruiz-Carcel et al. 2016).

Aside from approaches derived from PCA and PLS, the canonical variable
analysis (CVA) is also a multivariate monitoring tool. CVA is a state-space-based
method which takes both serial correlations and relationship between correlated
variables into account, hence is more suitable for dynamic process modeling
(Odiowei and Cao 2010). The performance of CVA has been tested by several
researchers using computer-simulated data (Jiang et al. 2015b; Huang et al. 2015)
and data obtained from small-scale test rigs (Ruiz Cárcel and Mba 2014). However,
the effectiveness of CVA in real complex industrial processes has not been fully
studied. In this investigation, we propose a CVA-based method for abnormal
behavior detection, system identification, and performance estimation of petro-
chemical process. To prove the validity of the method, it was tested using process
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data acquired from an industrial centrifugal compressor operating in the real world.
The results indicate that it is possible to perform fault detection and prognosis using
real-life data.

2 Methodology

2.1 CVA for Fault Detection

CVA is a dimension reduction technique to monitor the process by converting the
multidimensional observed data into a health indicator. Process data acquired from
the system operating under normal operating conditions are used to determine the
threshold for normal operating limits. The process faults can be identified when the
value of the health indicator exceeds the threshold.

The objective of CVA is to maximize the correlation between two sets of
variables (Russel et al. 2000). For this purpose, the measurement vector yk ∈ ℜm

(measurement at each time point containing m variables) is expanded at each time
point k by considering p past measurements and f future measurements to give the
past and future vectors yp, k ∈ ℜmp and yf , k ∈ ℜmf .

yp, k = ½yTk − 1y
T
k− 2 . . . y

T
k− p�T ∈ ℜmp ð1Þ

yf , k = ½yTk yTk+1 . . . y
T
k + f − 1�T ∈ ℜmf ð2Þ

To avoid the domination of variables with larger absolute values, the past and
future vectors are normalized to zero means to get dyp, k and cyf , k. The vectors
calculated at different time points are arranged in columns to produce past and
future truncated Hankel matrices Yp and Yf :

Yp = ½ dyp, p+1, dyp, p+2, . . . , dyp, p+M � ∈ ℜmp×M ð3Þ

Yf = ½ dyf , p+1, dyf , p+2, . . . , dyf , p+M �∈ℜmf ×M ð4Þ

where M = n− f − p+1, n represents the total number of observations for yk.
To find the linear combinations that maximize the correlation between the two

sets of variables, the Hankel matrix H can be decomposed using Singular Value
Decomposition (SVD):

H = ∑
− 1 ̸2

ff
∑
pf

∑
− 1 ̸2

pp
= ∪ ∑VT ð5Þ
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where Σpp, Σff and Σpf represent the sample-based covariance and cross-covariance
matrix of matrices Yp and Yf . The mp-dimensional past vector Yp can be converted
into the r-dimensional canonical variates z by:

z= J ⋅ Yp ð6Þ

where J represents the transformation matrix, and J =VT
r ∑− 1 ̸2

pp . The truncated

matrix Vr ∈ ℜr ×M can be obtained by selecting the first r columns of V having the
highest pairwise correlation with those of ∪ (Samuel and Cao 2015). Then, the
Hotelling health indicator can be calculated as:

T2
k = ∑

r

i=1
z2k, i ð7Þ

Since the Gaussian distribution does not hold true for nonlinear processes, the
normal operating limits are derived from the actual probability density function of
the indicator using Kernel Density Estimation (KDE) (Odiowei and Cao 2010).
Faults will be considered every time the health indicator exceeds the threshold.

2.2 CVA for System Identification and Performance
Estimation

CVA can be used to build a state-space model which describes the dynamic
behavior of the system using process data. Given the past of the measured system
inputs uk and measured outputs yk, the following state-space model can be built:

xk+1 =Axk +Buk +wk ð8Þ

yk =Cxk +Duk +Ewk + vk ð9Þ

where xk is a r-order state vector, wk and vk are independent white noise, and
A,B,C,D and E are coefficient matrices. According to (Larimore 1990), when the
order of the system r is equal or greater than the actual order of the system, the state
estimate z = J ⋅ Yp can be used to replace xk. The unknown coefficient matrices
A,B,C and D can then be estimated via multivariate regression (Larimore 1990):

bA bBbC bD
� �

=Cov
zk+1

yk

� �
,

zk
uk

� �� �
⋅Cov− 1 zk

uk

� �
,

zk
uk

� �� �
ð10Þ

The procedure of system identification and performance estimation using the
model described above can be summarized as follows:
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1. Determine the input (manipulated) and output (measured performance variables)
variables;

2. Collect data for past system input up, k and output yp, k;
3. Estimate future system input uf , k by looking at production plan or estimating

from the past input values;
4. Determine the number of states and number of past and future lags for the

collected data;
5. Estimate the parameters in the state-space model using Eq. (10);
6. Predict future output yf , k as per Eqs. (8) and (9);
7. Validate the proposed model by looking at the average prediction error for each

one of the measured variables.

This procedure will allow operators to access how the system will behave for the
specified system inputs.

3 Application to Centrifugal Compressor Data

CVA has been successfully used to perform condition monitoring using
computer-simulated data (Lee and Lee 2008; Juricek et al. 2001) and data acquired
from small test rigs (Ruiz-carcel et al. 2016). In this investigation, the capabilities of
CVA for fault detection and system identification were tested using data captured
from an operational industrial centrifugal compressor.

Centrifugal compressors are widely used in oil and gas industry for gas transport,
gas lift, and gas injection. They are typically operating under high pressure and high
load conditions, and are therefore subject to performance degradation. The com-
pressor used in this study is automated using a condition monitoring system, where
the signals from different sensors can be visualized. A total of 50 variables
including three process inputs (i.e., rotational speed, inlet temperature, and inlet
pressure) and 47 performance variables were recorded, sampling at a 1-hour
interval. The recorded data consist of 25,900 observations (i.e., the total monitoring
time is more than 3 years in length).

In order to fully capture the dynamic characteristics of the compressor under
various operating conditions, nine periods of data were used to train the CVA
algorithm to obtain the normal operating limits of T2

k , and the training data sets were
intentionally chosen to cover various operating speeds and ambient temperatures.
The number of time lags (p and f) is determined by computing the autocorrelation
function of the summed squares of all measurements (Odiowei and Cao 2010). The
autocorrelation function indicates how long the signal is correlated with itself, and
thus can be used to determine the maximum number of significant lags. In this
investigation, the number of p and f was set to 15. The optimal number of
dimensions retained r is determined by considering the dominant singular values in
the matrix D (Negiz and Çinar 1998). After several tests, r = 25 was finally adopted
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to represent the order of the system for the purpose of fault detection. The 99%
confidence interval was employed in this study to minimize the false alarm rate.

3.1 Results Obtained for Fault Detection

As mentioned previously, nine data sets were used to train the CVA algorithm for
fault detection. In addition to the training data sets, a period of data (hereafter
referred to as data set C1) was obtained from the machine operating under faulty
conditions for testing the trained algorithm. The fault evolution of the testing data
can be seen in Fig. 1. According to the event logs provided by the machine
operator, the monitoring system gave in total five warnings (as shown in Fig. 1)
during this period of time. The first warning happened in the 78th sample, and the
machine continued to operate until the 215th sample and was then forced to
completely shut down at the 217th sample. Figure 2 demonstrates the results in

Fig. 1 Actual flow for data set C1

Fig. 2 T2 for data set C1
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terms of fault detection. The fault was detected by the T2 indicator at sample 140
after several short alarms.

3.2 Results Obtained for System Identification
and Performance Estimation

In addition to fault detection, plant operators may be more interested in how the
system will behave given the future system input conditions and how the estimated
behavior will affect the plant operation. The future system inputs can be obtained by
looking at the production schedule or estimating from the past inputs. The processes
described below are for prediction of future system behavior for the specified
inputs.

In order to build a dynamic model as described in Eqs. (8) and (9), it is necessary
to first determine the canonical variates z. Similar to the procedure described in
Sect. 3, nine training data sets were used to train the CVA model to obtain
z. Second, the past system inputs xk and outputs yk were obtained from the first 145
samples of the data set C2 (hereafter referred to as C2-1), as shown in Fig. 3. They
were then used to construct a dynamic state-space model using the procedures
described in Sect. 2.2.

In order to maximize the accuracy of the built model, the past inputs xk obtained
from C2-1 was first used to predict the response of the system and the results were
compared with the past outputs yk to determine the prediction error. After several
analyses testing, different values for r, r=32 was finally adopted to give the
minimum prediction error. The validated model was then used to make estimations
of the process variables yk of C2-2. Figure 4 shows the prediction results of the
most significant variables of C2-2. The results show that the model causes large

Fig. 3 All measured variables in data set C2
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oscillations at the very beginning, but the oscillations dissipated quickly and the
steady-state estimations are close to the actual measurements. Figure 5 shows all
the measured variables in dataset C3.

Similar to the procedure described above, the methodology was applied to
predict the system outputs of another data set C3. Figure 6 shows the prediction
results of the most significant variables of C3-2. The estimation is able to accurately
represent the system behavior. Table 1 shows the average prediction error for the
most significant variables of data set C2-2 and C3-2. The prediction error for each
one of the significant variables was calculated by computing the mean of the
difference between the predicted and measured signal:

ei =
1
T
∑
T

t=1

yt, i − cyt, i
yt, i

����
����

where yt, i denotes the measured value of the ith variable at time t, and cyt, i represents
the estimated value of yi and time t, and T denotes the total number of observations
of the testing data set.

Fig. 4 Prediction results of the selected most significant variables of C2-2
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Fig. 5 All measured variables in data set C3

Fig. 6 Prediction results of the selected most significant variables of C3-2
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4 Conclusion

Process data acquired from an operational industrial centrifugal compressor have
been used to test the capabilities of CVA for fault detection, system identification,
and performance estimation. The faults in data set C1 were successfully detected by
T2 health indicator within a short detection time. CVA was also employed to build a
state-space model for system identification. In order to fully capture the dynamics
of the compressor, nine training data sets were selected from different operating
conditions to train the CVA algorithm. The trained CVA model was then used to
predict the future system outputs for the specified system inputs. Although very fast
and large oscillations were observed in the initial estimations, the average predic-
tion error was low, proving that the model is able to represent the system dynamics
under different operating conditions.

Although the results of this study clearly show the superior performance of the
CVA algorithm for dynamic process monitoring, some things require further
investigation. First, if CVA is employed to detect faults for a system operating
under variable working conditions, it may produce high false alarm rates because
the sudden changes in working conditions can be mistaken for performance
degradations. Second, CVA-based performance estimation is based on the premise
that the future system inputs are obtained from the production plan or from fore-
casts based on historic inputs, but the actual future inputs may be different from the
forecasts due to process uncertainties, leading to inaccurate performance estima-
tions. In addition, the proposed method is unable to predict the system behavior
without knowing the future information. Therefore, more work should be conducted
to apply the CVA for prognosis without future inputs.
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