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Abstract Plants cannot survive without glutathione, or a functionally  homologous 
thiol, as glutathione has diverse functions in plant growth and development, many 
of which cannot be performed by other thiols or antioxidants. The roles of glutathi-
one in plants include the regulation of redox homeostasis, cell signaling and gene 
expression, and essential roles in key physiological and metabolic processes such 
as photosynthesis and sulfur assimilation. The cellular pool of reduced glutathione 
(GSH) can be depleted by oxidation of GSH to glutathione disulfide (GSSG), by 
reactive oxygen species (ROS), or by reacting with methylglyoxal (MG). The gen-
eration of ROS and MG increases in plant cells under abiotic stress, e.g., in plants 
exposed to heavy metals, salinity, drought, high or low temperatures, herbicides, or 
air pollutants. There is considerable evidence to suggest that enhanced activities of 
GSH utilizing and regenerating enzymes are crucial for abiotic stress tolerance in 
both model and cultivated plant species. Recently, the use of transgenic plants has 
clearly demonstrated the importance of GSH for stress tolerance, with plants 
over- expressing GSH biosynthetic genes and genes associated with maintaining 
GSH levels having increased GSH levels and showing improved tolerance to indi-
vidual  stressors. In addition, modulating the activities of GSH-related enzymes 
has also been shown to be important for multiple stress tolerance; however, many 
of the details of the roles GSH plays in multiple stress tolerance are still unresolved. 
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The aim of this chapter is to provide a comprehensive overview of the diverse roles 
of GSH biosynthetic genes in improving abiotic stress tolerance by critically evalu-
ating the research conducted using transgenic plants, expressing GSH-associated 
genes, grown under abiotic stress.

Keywords Glutathione • Abiotic stress • Transgenic plants • Antioxidant • Glutathione 
biosynthetic genes
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1  Introduction

All aerobic organisms including plants require molecular oxygen for their survival. 
As a consequence of cellular respiration, molecular oxygen is reduced to H2O, and 
during this process, reactive oxygen species (ROS) including superoxide anion radi-
cal (O2•−), hydrogen peroxide (H2O2), and hydroxyl radical (•OH) are often pro-
duced (Asada 1999; Halliwell and Gutteridge 2007; Krumova and Cosa 2016; 
Sewelam et al. 2016). In addition, plants grown in the field are constantly exposed to 
a range of abiotic stresses including heavy metals, salinity, drought, high or low 
temperature, herbicides, and air pollutants, and the generation of ROS is a common 
consequence of such abiotic stresses (Shimazaki and Sugahara 1980; Foyer et al. 
1994; Prasad 1996; Gaber et al. 2012; Ahmad et al. 2016; Hussain et al. 2016; Akram 
et al. 2017). As ROS are extremely reactive at high concentration, they can cause 
severe damage to cell components, e.g., by oxidizing proteins and inactivating 
enzymes, oxidizing DNA, and initiating the peroxidation of unsaturated fatty acids 
in cell membranes (Foyer and Harbinson 1994). However, ROS at lower levels per-
form important roles in the activation of defense gene expression, as part of the 
protective mechanisms plants use to cope with biotic and abiotic stressors, and so 
careful regulation of cellular ROS levels is important for plant survival under field 
conditions (Karpinski et al. 1999; Grant and Loake 2000; Fryer et al. 2003; op den 
Camp et al. 2003; Cheng et al. 2015; Avery 2011; Krumova and Cosa 2016).

Plant cells have various mechanisms to regulate cellular ROS levels like 
 enzymatic defense systems, including superoxide dismutase (SOD), ascorbate 
 peroxidase (APX), catalase (CAT), glutathione reductase (GR), glutathione 
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S-transferases (GSTs), glutathione peroxidase (GPX), peroxiredoxins, and thiore-
doxins and nonenzymatic antioxidants including reduced glutathione (GSH), ascor-
bate (AsA), vitamin E, lipoic acid, beta-carotene, and flavonoids (Foyer et al. 1994; 
Gaber et al. 2004, 2006; Halliwell and Gutteridge 2007; Hossain et al. 2014, 2015; 
Mostofa et al. 2017). Noctor and Foyer (1998), when reviewing the roles of GSH 
and AsA in plants, concluded that one of the main functions of these molecules is to 
“keeping reactive oxygen under control.” However, more recently studies have 
shown that GSH and AsA also play very important roles in the regulation of the cel-
lular redox status and in mediating redox and ROS relating signaling in plant cells 
(Foyer and Noctor 2005a, b, 2009).

Reduced glutathione is the predominant low-molecular-weight thiol found in plant 
cells and plays an important role in the protection of cells against free radical- mediated 
damage (Chen et al. 2012, 2015; Noctor et al. 2012; Munné-Bosch et al. 2013). The 
majority of the cellular GSH is present in the cytosol, with the remaining found in 
mitochondria, chloroplasts, the nuclear matrix, and peroxisomes (Zechmann 2014). 
Due to the presence of the cysteine residue, GSH is readily oxidized nonenzymati-
cally to glutathione disulfide (GSSG) by electrophilic substances, e.g., free radicals 
and reactive oxygen/nitrogen species. Cellular GSH concentrations often decline in 
response to biotic or abiotic stressors as a result of increased oxidative and/or 
MG-induced stress (Lu 2000; Hossain et al. 2011; Hoque et al. 2016). The GSH/
GSSG ratio, which is frequently used as an indicator of the cellular redox state, is 
often >10 under normal physiological conditions but declines rapidly in plants under 
stress (Lu 2000). In both animals and plants, it is well-known that shifting the GSH/
GSSG ratio toward a more oxidizing state can activate several signaling pathways/
factors including protein kinase B, calcineurin (calcineurin B-like proteins in plants), 
nuclear factor-κB, c-Jun N-terminal kinase, apoptosis signal- regulated kinase 1, and 
mitogen-activated protein kinases, thereby reducing cell proliferation and increasing 
apoptosis (Jones 2000). Recent studies on plants have shown the importance of GSH 
for abiotic stress tolerance; therefore, the aim of this chapter is to provide an overview 
of the use GSH biosynthetic gene expression in transgenic plants as a means for 
improving plant abiotic stress tolerance and  possibly crop yields.

2  The Biosynthesis of Glutathione and Relationship 
of Glutathione to Plant Stress Tolerance

Glutathione is synthesized in two ATP-dependent steps catalyzed by two enzymes, 
a plastidial γ-glutamylcysteine synthetase (γ-ECS, GSH1; EC 6.3.2.2) and a cyto-
solic glutathione synthetase (GS, GSH2; EC 6.3.2.3) (May and Leaver 1993; 
Rawlins et al. 1995; Cobbett et al. 1998; Noctor et al. 2002; Galant et al. 2011). 
γ-ECS catalyzes the rate-limiting step in GSH biosynthesis in mammals, in yeasts 
and in plants, and levels of this enzyme can be regulated at the transcriptional and/
or translational levels (Xiang and Oliver 1998; Noctor et  al. 1996, 2002, 2012; 
Liedschulte et al. 2010). Studies have shown that increases in GSH levels observed 
in response to stress are correlated with increased γ-ECS activity (Chen and 
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Goldsborough 1994; Kocsy et al. 2001). In addition, the over-expression or inhibi-
tion of GSH1 and GSH2 causes increased or decreased levels of GSH, respectively, 
in plants and was found to modulate or inhibit stress-responsive pathways required 
for plant growth, development, and stress tolerance (Cobbett et al. 1998; Xiang and 
Oliver 1998; Szalai et  al. 2009; Ghanta and Chattopadhyay 2011; Noctor et  al. 
2011, 2012; Cheng et al. 2015; Liu et al. 2015). Increased expression of γ-ECS in 
transgenic plants and enzymes associated with sulfur assimilation pathway or GR 
has been shown to cause substantial increases in leaf GSH levels (Harms et al. 2000; 
Foyer et al. 1995; Noctor et al. 1996). Also, it has been reported that an increased 
capacity to maintain GSH levels or an increase in the cellular pool of GSH can lead 
to modified amino acid metabolism and enhanced stress tolerance (Noctor et  al. 
1998a, b). In addition to the transgenic approach, analysis of mutants deficient in 
GSH and the treatment of plants with GSH, combined with transcript profiling, has 
provided valuable information on how GSH and GSSG regulate cell signaling and 
plant development and ability to tolerate stress. For example, transcript profiling 
studies have identified the relationships that exist between the regulation of stress- 
related defensive networks and antioxidant metabolism in plants (Willekens et al. 
1997; Rossel et al. 2002; Pneuli et al. 2003). Studies have also shown that GSH can 
influence cellular levels of the regulatory proteins NPR1 and protein phosphatase 
2C (ABI2), which are important in salicylic acid (SA) and abscisic acid (ABA) 
signaling, respectively (Meinhard et al. 2002; Mou et al. 2003). In a more recent 
study, using transcriptomic analyses of steady-state and polysome-bound mRNAs 
in GSH-treated plants, Cheng et al. (2015) reported that GSH had an even greater 
potential impact on plant growth, development, and stress tolerance than what was 
apparent from previous total mRNA profiling studies. They demonstrated that the 
translational changes induced by GSH treatment were associated with changes in 
numerous hormone and stress signaling pathways and suggested that these changes 
might contribute to enhance stress tolerance in GSH-treated plants (Cheng et  al. 
2015). Recently, studies on a range of plant species that used a priming approach, 
thermal (heat or cold treatments) or chemical (proline, betaine, nitric oxide, sele-
nium, salicylic acid, polyamines, etc.), have shown that priming can increase GSH 
biosynthesis, elevate cellular GSH pools, and increase the activities of glutathione- 
utilizing and glutathione-regenerating enzymes, with the end result being plants that 
have improved abiotic stress tolerance (Hossain et al. 2010, 2011, 2012, 2013a, b 
and references therein).

3  Transgenic Plants Over-expressing GSH Biosynthetic 
Genes: Heavy Metal Tolerance

Several studies have shown that cellular GSH levels can regulate the expression of 
a range of defense genes that confer stress tolerance to plants (Wingsle and Karpinski 
1996; Karpinski et al. 1997; Wingate et al. 1988; Loyall et al. 2000; Cheng et al. 
2015). A significant role for GSH was found in plants responding to excessive levels 
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of cadmium (Cd) and other heavy metals, as GSH is the precursor of phytochelatins 
(PCs) ([γ-Glu-Cys]n-Gly) that are synthesized by the enzyme phytochelatin syn-
thase (PCS) (Grill et al. 1987,1989; Cobbett and Goldsbrough 2002; Rea et al. 2004; 
Hossain et al. 2012). Phytochelatins form complexes with potentially toxic metals, 
which are then sequestered into the vacuole, reducing their cytotoxicity (Grill et al. 
1987, 1989; Cobbett and Goldsbrough 2002; Rea et al. 2004). Transgenic plants 
over-expressing GSH biosynthetic genes have been generated for various plants 
species and all showed improved tolerance to metal toxicity as compared to wild- 
type (WT) plants (Table 18.1).

The above studies clearly indicate that the up-regulation of GSH biosynthesis 
can improve the tolerance of plants to heavy metals and can, in some cases, enhance 
metal uptake, utilization, and detoxification. Hence, the development of transgenic 
plants over-expressing GSH biosynthetic genes and displaying increased heavy 
metal tolerance could not only be used to allow crop plants to be grown in soils high 
in heavy metals but could also be used for phytoremediation purposes.

4  Transgenic Plants Over-expressing GSH Biosynthetic 
Genes: Salt and Osmotic Stress Tolerance

The role of GSH and GSH metabolism in tolerance to salt stress has been studied 
using salt-tolerant and salt-susceptible genotypes in several plant species (Mittova 
et  al. 2003a, b; El-Shabrawi et  al. 2010). In general, salt-tolerant species show 
greater GSH biosynthesis and cellular GSH levels; higher GSH/GSSG ratio; higher 
GPX, GST, GR, Gly I, and Gly II activities; and lower levels of oxidative damage 
when exposed to salt stress (Mittova et  al. 2003a, b; El-Shabrawi et  al. 2010). 
Application of GSH to plants has also been shown to improve salt tolerance and 
yields in crop plants (Hussain et al. 2016; Akram et al. 2017). Several studies using 
transgenic plants have shown that over-expression of GSH biosynthetic genes 
improves salt tolerance in a wide range of plant species (Bae et al. 2013; Choe et al. 
2013; Li et al. 2015; Park et al. 2017). For example, Choe et al. (2013) showed that 
transgenic rice (Oryza sativa) plants over-expressing OsECS had improved salinity 
stress tolerance, as indicated by a bright green phenotype, and maintained a higher 
GSH/GSSG ratio as compared to WT plants. These transgenic plants also showed 
lower ion leakage and higher chlorophyll fluorescence when exposed to MV-induced 
oxidative stress, and the seeds of these plants showed higher germination rates 
under saline conditions. In addition, OsECS over-expressing rice plants accumulated 
more biomass and had higher yields when grown in paddy fields in the absence of 
any stress. Other studies on rice plants in which GSH levels have also been manipu-
lated have also shown improved tolerance to salinity. Bae et al. (2013) reported that 
transgenic rice plants over-expressing a Brassica juncea L. ECS (BrECS) gene 
showed improved salt tolerance and higher yields and biomass when grown in the 
paddy fields. Li et al. (2015) showed that transgenic plants over- expressing a Pyrus 
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calleryana γ-ECS (PcγECS) gene showed higher GSH biosynthesis and salt toler-
ance. Recently, Park et al. (2017) reported that transgenic rice plants over-express-
ing a GS gene (OsGS) showed improved growth and oxidative stress tolerance when 
planted in paddy fields. The transgenic plants showed improved oxidative stress 
(induced by MV) tolerance as indicated by lower MDA and H2O2 accumulation. 
Importantly, the transgenic plants showed improved grain yields and increased 
biomass under variable climatic conditions. The above evidence demonstrates that 
genetically engineered plants over-expressing γ-ECS or GS genes show improved 
salt tolerance as well as increased biomass and yields under salt stress and in the 
absence of stress.

5  Transgenic Plants Over-expressing GSH Biosynthetic: 
Drought Stress Tolerance

Drought is one of the most important stressors that impacts crop productivity 
 worldwide (George and Parida 2010; Prabu et al. 2011; Su et al. 2011). It is well 
known that roots are the first plant organs to respond to drought (Davies and Zhang 
1991; Sengupta and Reddy 2011; Sengupta et al. 2011). Drought stress is associ-
ated with reduced CO2 fixation and higher ROS accumulation that can cause oxida-
tive damage (Baena-Gonzalez et  al. 2007; Cruz de Carvalho 2008; Miller et  al. 
2010; Gechev et  al. 2012). Therefore, for the survival of plants under drought 
stress, fully functional ROS-detoxifying systems are essential for normal plant 
growth and development (Kranner et al., 2002; Hossain et al. 2013a, b). Ahmed 
et al. (2013) showed that drought-tolerant wild barley showed greater GSH biosyn-
thesis under drought or salt stress alone or in combination and higher levels of 
antioxidant enzymes. Greater synthesis of GSH under drought stress was also 
found in drought-tolerant wheat genotypes, as compared to susceptible cultivars 
(Islam et al. 2015). Exogenous application of GSH improved drought stress toler-
ance through the up-regulation of ROS and MG detoxification pathways (Nahar 
et al. 2015). Compartment specific studies of ROS and antioxidant metabolism in 
GSH-deficient pad2-1 mutants demonstrated diverse roles for GSH in regulating 
drought tolerance. Koffler et al. (2014) showed that GSH-deficient pad2-1 mutant 
plants exposed to drought stress had significantly lower GSH levels in most cell 
compartments (51% in mitochondria, 31% in chloroplasts, 34% in nuclei, and 28% 
in the cytosol), whereas increased GSH levels were found in WT plants under 
drought. The levels of GSH and AsA decreased significantly in chloroplasts and 
peroxisomes with a large increase in cellular H2O2 levels. Sengupta et al. (2012) 
investigated the importance of Vigna radiata (L.) γ-ECS (VrγECS) under progres-
sive drought stress. Analysis of H2O2 levels, lipid peroxidation and VrγECS enzyme 
activity was linked during drought stress and recovery. Additionally, the delicate 
inter-relationships, putative regulatory mechanism and functioning in the root sys-
tem under adverse drought conditions, was associated with these factors (Sengupta 
et  al. 2012). In another study, transgenic tobacco plants over-expressing γ-ECS 
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showed greater drought stress tolerance as indicated by higher germination rate, 
water retention, water recovery, chlorophyll, and proline content as compared with 
WT plants. The transgenic tobacco plants also showed higher levels of expression 
of stress-related genes including heat shock protein 70(HSP70), GPX, thioredoxin 
peroxidase, chalcone synthase, 1-aminocyclopropane-1-carboxylic acid (ACC) 
oxidase, and heme oxygenase I (Kumar et al. 2014).

6  Transgenic Plants Over-expressing GSH Biosynthetic 
Genes: Herbicide Tolerance

In modern agriculture, herbicides are frequently applied to eradicate weeds as they are 
more labor- and energy-effective than manual or mechanical weed control (De Block 
et al. 1987). Recent studies have investigated the role of GSH and its related enzymes 
and herbicide tolerance (Katerova and Miteva 2010; Burns et  al. 2017). GSH can 
directly detoxify herbicides by forming conjugates, a process that can also be cata-
lyzed by the enzyme GST. Once formed, conjugates can be metabolized and excreted 
or can be stored in vacuoles or dead cells (Katerova and Miteva 2010). Proteomic and 
genomic studies of GSH-related proteins in Avena fatua L. have shown higher DHAR 
activity in herbicide-resistant genotypes as compared to susceptible genotypes (Burns 
et  al. 2017). Tseng et  al. (2013) also showed that a paraquat- tolerant rice mutant 
showed higher GSH biosynthesis (3.5-fold) as compared to susceptible one. Transgenic 
poplar hybrids (Populus tremula × Populus alba) over-expressing a bacterial γ-ECS 
gene in the cytosol or in chloroplasts displayed increased resistance to chloroacetani-
lide herbicides and had higher cellular levels of γ-ECS and GSH as well as higher 
GST activity as compared to WT plants (Gullner et al. 2001). In Brassica juncea, 
over-expressing γ-ECS or GS gene showed a twofold increase in nonprotein thiol 
levels and enhanced plant resistance to herbicide atrazine (Flocco et al. 2004). These 
studies demonstrate the potential for that over-expressing genes associated with GSH 
metabolism has for the production of transgenic herbicide-tolerant crops plants.

7  Conclusions and Future Perspectives

Glutathione has a broad range of functions in plant growth, development, and 
stress tolerance, and glutathione metabolism is now considered as a prime candidate 
for the deliberate manipulation of plants to enhance stress tolerance and to improve 
yields and quality and also for phytoremediation purposes. Transgenic plants over- 
expressing GSH biosynthetic genes have showed higher stress tolerance, due to 
greater GSH accumulation, modulation of redox homeostasis, and increased 
expression of genes associated with stress tolerance in plants. However, there are 
still numerous questions to be answered with respect to the roles glutathione plays 
in plant stress tolerance. For instance, the regulation of GSH biosynthesis and its 
mechanistic interaction with other redox active molecules and the interconnections 
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between GSH and various biochemical pathways concern with abiotic stress toler-
ance. A complete understanding of the regulatory factors associated with GSH 
biosynthesis in plants and how this important molecule interacts with other plant 
metabolic processes will open up a new horizon for stress tolerance and crop 
improvement through the genetic engineering of GSH biosynthetic genes into 
plant cells.
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