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Chapter 4
Modulating Endogenous Adult Neural Stem 
Cells to Improve Regeneration in Stroke Brain

Fucheng Luo and Yu Luo

Abstract  Stroke is a major cause of death and disability globally. Experimental 
and clinical stroke studies have demonstrated that endogenous brain repair pro-
cesses could be activated in the brain following stroke. However, the spontaneous 
brain repair process is constrained with limited improvement of neurological out-
come. Neurogenesis, oligodendrogenesis, angiogenesis, axonal outgrowth, and syn-
aptogenesis are major brain repair processes during stroke recovery. In adult rodents 
and human, there are endogenous neural stem cells that generate new neurons, 
astrocyte, oligodendrocyte, and NG2-glia under physiological or pathological con-
ditions. Much progress has been made in preclinical studies on the roles of endog-
enous neural stem cells in brain repair processes in response to stroke. In this review, 
we will summarize recent progress on the cellular and molecular mechanisms 
underlying how endogenous adult neural stem cells contribute to neurogenesis and 
oligodendrogenesis, and their modulatory effects on angiogenesis and inflamma-
tion, which may play critical roles in brain repair and leads to improvement of 
neurological function after stroke.
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CB2R		  Cannabinoid type-2 receptor
CCR2		  C-C chemokine receptor type 2
ChAT		  Choline acetyl-transferase
CNS		  Central nervous system
CNTF		  Ciliary neurotrophic factor
CSPGs		  Chondroitin sulfate proteoglycans
CX3CR1		  CX3C chemokine receptor 1
CXCL12		  C-X-C motif chemokine 12
CXCR4		  C-X-C chemokine receptor type 4
DARPP-32	 cAMP-regulated neuronal phosphoprotein
DCX		  Doublecortin
DG		  Dentate gyrus
ECM		  Extracellular matrix
EGF		  Epidermal growth factor
EGFR		  Epidermal growth factor receptor
FGF10		  Fibroblast growth factor 10
FGF2		  Fibroblast growth factor 2
GABA		  Gamma aminobutyric acid
GAD67		  Glutamic acid decarboxylase
GAP43		  Growth Associated Protein 43
GSK-3β		  Glycogen synthase kinase-3β
HDACs		  Histone deacetylases
IGF-1		  Insulin-like growth factor 1
MCAO		  Middle cerebral artery occlusion
MCP-1		  Monocyte chemoattractant protein 1
MMPs		  Matrix metalloproteases
mTORC1		 Mechanistic target of rapamycin complex 1
Nf1		  Neurofibromatosis type 1
NPCs		  Neural progenitor cells
NSCs		  Neural stem cells
OB		  Olfactory bulb
P57kip2		  Cyclin-dependent kinase inhibitor 1C
PDGF		  Platelet-derived growth factor
PDGFR		  Platelet-derived growth factor receptor α
Ptc-1		  Patched 1
PV		  Parvalbumin
RMS		  Rostral migratory stream
Robo		  Roundabout
ROCK		  Rho-associated kinase
SDF-1		  Stromal cell-derived factor 1
SGZ		  Subgranular zone
Shh		  Sonic hedgehog
siRNA		  Short interfering ribonucleic acid
Smo		  Smoothened
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SVZ		 Subventricular zone
TGF-α		 Transforming growth factor-alpha
TIA		 Transient ischemic attack
Tregs		 Regulatory T cells
Usp9x		 Ubiquitin-specific peptidase 9, X-linked
VEGF		 Vascular endothelial growth factor

1  �Introduction

Globally, stroke is the second leading cause of death and the third most common 
cause of disability [1]. There are three types of stroke: ischemic stroke, hemorrhagic 
stroke, and transient ischemic attack (TIA, also called a “mini-stroke”). Ischemic 
stroke is caused by obstruction within a blood vessel and accounts for 87% of all 
stroke cases, while hemorrhagic stroke occurs when blood vessel rupture. TIAs are 
caused by a transient clot or blockage in the brain. Although TIAs last only a few 
minutes and causes no permanent damage to the brain, they are indicative of the 
likelihood of a coming stroke and should be taken seriously. Only a small percent-
age of stroke patients benefit from thrombolysis and endovascular thrombectomy 
treatments due to the short window (4.5–6 h) of these treatments. As a result, a large 
population of stroke patients still suffer from permanent severe neurological deficits 
in stroke survivors. Thus, there is an urgent need to develop new therapies for stroke 
to enhance functional recovery.

Studies from experimental stroke and patients with stroke show that some 
degree of spontaneous neurological recovery occurs after stroke. However, this 
endogenous brain self-repair is not sufficient to restore neurological function after 
stroke [2, 3]. Endogenous brain repair involves a set of highly interactive processes 
during stroke recovery, such as neurogenesis and oligodendrogenesis, which is 
induced mostly by endogenous neural stem cells (NSCs). Coupling of neurogene-
sis and angiogenesis has been implicated in some recent stroke studies [2]. In addi-
tion, stroke-induced inflammation, which is characterized by the activation of 
resident microglia and infiltration of monocytes and lymphocytes, is a major caus-
ative factor for neurological deficits [4]. Recent studies also suggest that there is 
cross-talk between neural stem cells and immune cells in response to brain injury 
[5]. Therefore, a promising field of investigation is to focus on modulating endog-
enous adult neural stem cells and their interactions with other cellular processes 
such as angiogenesis and neuroinflammation to improve functional recovery fol-
lowing stroke. Understanding how endogenous stem cells are activated, differenti-
ate, migrate, integrate, and restore neuronal circuitry will help us develop less 
invasive therapeutic interventions. Elucidation of the interactions of neurogenesis 
with other cellular processes such as angiogenesis and inflammation after stroke 
will provide additional information needed to modulate this process to improve 
brain recovery after stroke. In this review, we will provide an update on the recent 
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findings on the mechanisms underlying endogenous NSC-mediated neurogenesis 
and oligodendrogenesis and their modulatory effects on angiogenesis and inflam-
mation after stroke.

2  �NSCs Responses in Adult Brain Following Stroke

NSCs are multipotent stem cells that can self-renew, divide, and differentiate into 
new mature neurons, astrocytes, and oligodendrocytes. In the adult brain, there are 
three main neurogenic niches containing NSCs: the subventricular zone (SVZ) of 
the lateral ventricle, the subgranular zone (SGZ) in the dentate gyrus of the hippo-
campus, and the recently discovered hypothalamic stem cell niche [6] (Fig. 4.1). In 
these regions, there is a basal rate of neurogenesis in normal conditions. In response 
to stroke, endogenous NSCs are activated and participate in brain repair processes.

2.1  �Radial Glial Cells (Type B Cells) in SVZ

The NSCs in the SVZ are termed as Type B cells. They divide slowly to generate 
transit-amplifying type C cells, which proliferate actively and further differentiate 
into neuroblasts (also named type A cells). Finally, these neuroblasts form chains 
and migrate via the rostral migratory stream into the olfactory bulb (OB), where 
they differentiate into granule cells or periglomerular interneurons. Adult NSCs in 
the SVZ also generate NG2-glia that migrates toward the gray and white matter. 
Focal cerebral ischemia stimulates SVZ NSC proliferation and neurogenesis in 
adult rodent, monkeys, and even human  brains [7–10]. Augmented neuroblasts 
could migrate from the SVZ to ischemic sites and differentiate into neurons in 

Fig. 4.1  Sagittal and 
coronal view of the adult 
rodent brain, illustrating 
the three niches where 
adult NSCs reside: the 
subventricular zone (SVZ), 
the subgranular zone 
(SGZ), and the recently 
described hypothalamic 
NSCs niche around the 
third ventricle

F. Luo and Y. Luo



77

rodent middle cerebral artery occlusion (MCAO) models [11, 12]. In addition, 
stroke also induces oligodendrogenesis in the SVZ and the generated NG2-glia can 
migrate to the lesion site and differentiate into myelinating oligodendrocytes [13, 14]. 
Furthermore, activated SVZ NSCs give rise to a subpopulation of reactive astro-
cytes in the cortex that contribute to astrogliosis and scar formation [15]. Altogether, 
these data indicate that SVZ NSCs are a major therapeutic target for improving 
functional recovery after stroke.

2.2  �Radial Glia-Like Cells (Type-1 Cells) in SGZ

SGZ NSCs are also known as type-1 cells or radial glia-like cells. These cells divide 
slowly and give rise to type-2 cells or transit-amplifying progenitors that could dif-
ferentiate into neurons and astrocytes [16]. However, it is still a matter of debate 
whether these cells can spontaneously, that is without any exogenous manipulation, 
give rise to oligodendroglial cells. Indeed, either ectopical and elevated Ascl1 
expression or inactivation of p57kip2, Nf1, Drosha, or Usp9x induce oligodendro-
genesis in SGZ NSCs [17–21]. The function of neurogenesis derived from SGZ 
NSCs is associated with learning, memory, and cognition. Following a stroke, there 
is significantly enhanced proliferation of NSCs and neurogenesis in the SGZ of 
many species, such as rats, mice, monkeys, and humans [22]. Generally, the 
increased proliferation starts bilaterally at 3–4  days post-ischemia, peaks at 
7–10  days, and returns to control levels by 3–5  weeks after the ischemia [22]. 
Recent studies show that hippocampal neurogenesis is responsible for some aspects 
of recovery following brain ischemia, such as learning and memory [23]. These data 
suggest that target SGZ NSCs might help to improve functional recovery after 
stroke.

2.3  �Tanycytes

It has been recently demonstrated that NSCs also reside in the adult hypothalamus. 
The NSCs/NPCs of this region are termed as tanycytes, which express classical 
markers of neural precursor cells and multipotent cell markers, such as nestin, Sox2, 
UGS148, and FGF10 [6]. These tanycytes belong to ependymal glial cells and 
surround the lateral walls of the infundibular recess of the third ventricle. In response 
to peripheral signaling (i.e. CNTF, Leptin and high-fat diet), tanycytes are able to pro-
liferate, migrate, and differentiate into neurons, such as arcuate pro-opiomelanocortin 
neurons and  orexigenic and anorexigenic neurons [6, 24–27]. Importantly, tany-
cytes exhibited increased proliferation on the infarcted side on day 4 after ischemic 
stroke injury (MCAO model in rats) [28]. However, the functional role of tanycyte 
proliferation after stroke is still largely unknown.
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3  �Promoting Neurogenesis of Endogenous NSCs

Neurogenesis is a multistep process that includes proliferation, fate determination, 
migration, maturation, and survival of NSCs. Understanding the molecular mecha-
nisms regulating these processes is essential for developing therapies to improve 
neurological recovery (Fig. 4.2). Many factors are involved in the regulation of adult 
NSCs, including growth factors, neurotransmitters, and chemokines. We will briefly 
summarize them in this review.

3.1  �Proliferation

The initial response of NSCs following stroke is to increase proliferation, a process 
that is regulated by various intrinsic and extrinsic factors. The mechanism underly-
ing stroke-induced proliferation of NSCs is unclear. Several hypotheses have been 
suggested as potential mechanisms to regulate proliferation of NSCs. Adult rodent 
stroke studies have shown that quiescent adult neural stem cells can be activated and 
recruited to an active pool to increase neurogenesis. As a response to stroke, an 
increased neurogenesis might result from transiently switching neural progenitors 
division from asymmetric to symmetric and from a reduction of the length of the 
cell cycle [29, 30]. Stroke can trigger the early expansion of the progenitor cell pool 
by shortening the cell-cycle length and retaining daughter cells within the cell cycle 
at an early stage after stroke. At a later stage, lengthening the cell cycle and the G1 
phase leads to the daughter cells exiting the cell cycle and differentiating into neu-
rons [31]. Several important pathways that may regulate the proliferation of NSCs 
and their early progeny have been identified.

Fig. 4.2  Cellular and molecular processes that are involved in the maintenance of adult NSCs, 
generation of different lineages of cells and their integration in the brain after stroke
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3.1.1  �Sonic Hedgehog (Shh)

Shh is a secreted glycoprotein. It binds to its receptor Patched (Ptc-1) to de-repress 
Smoothened (Smo) and activate transcription factors of the Gli family. Shh signal-
ing is required for SVZ NSC maintenance as conditional deletion of smoothened 
gene in adult SVZ NSC leads to decreased BrdU-positive cells and DCX+ neuro-
blasts in the SVZ [32]. Studies have found that stroke upregulates Shh signal in 
multiple cell types, such as neurons, reactive astrocyte, and SVZ neural progenitor 
cells [33, 34]. In vivo, blockage of the Shh signaling pathway with cyclopamine, a 
specific inhibitor of Smo, suppressed ischemia-induced proliferation of subgranular 
NPCs in the hippocampus [34]. Conditional deletion of shh genes in nestin-
expressing cells leads to significantly more severe behavioral deficits in a cortical 
ischemic model [33]. Administration of cyclopamine also abolished carbamylated 
erythropoietin-induced neurogenesis [35]. These data suggests that Shh signaling is 
a key factor for NSC self-renewal or proliferation. Interestingly, at a lower dosage, 
delayed post-stroke treatment of Shh agonist improves functional recovery by 
enhancing survival of newly born neurons and angiogenesis [36] but not by increas-
ing BrdU-positive cells at the NSC niche, suggesting that Shh signaling might play 
multiple roles in ischemia-induced neurogenesis and whether it enhances the prolif-
eration or survival of the newly generated NSC progeny is dose-dependent.

3.1.2  �Epidermal Growth Factor (EGF)/Fibroblast Growth  
Factors 2 (FGF2)

Studies have reported that FGF-2 and EGF expression in the brain increased signifi-
cantly after ischemic stroke [37, 38]. Importantly, cerebral ischemia resulted in an 
increase in the number of EGF receptor (EGFR)-positive transit-amplifying cells 
(type C cells) in the SVZ [39]. Overexpression of FGF-2 significantly increased the 
proliferation of progenitor cells after ischemic stroke in both FGF-2-deficient mice 
and wild-type mice [40]. Meanwhile, in vivo infusion of EGF into adult mouse 
forebrain for 6 consecutive days resulted in a dramatic increase in the proliferation 
and the total number of subependymal cells and induced their migration away from 
the lateral ventricle walls into adjacent parenchyma [41]. Furthermore, infusion of 
EGF together with FGF-2 into the brain of adult rats was found to promote dentate 
gyrus (DG) and SVZ NPC proliferation after focal ischemic stroke [42, 43].

3.1.3  �Insulin-Like Growth Factor 1 (IGF-1)

The progenitors in both the SVZ and DG show IGF-1 receptor expression [44]. 
In vitro studies demonstrate that IGF-1 stimulated the proliferation of cultured NPCs 
via activating the  PI-3-kinase/Akt signaling pathway [45]. Following ischemic 
stroke, IGF-1 expression is increased in the activated astrocytes in the ischemic 
penumbra [44]. Inhibiting IGF-1 activity by intracerebroventricular infusion of 
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IGF-1 antibody significantly blocked the ischemia-induced neural progenitor 
proliferation [44]. Exogenous IGF-1 injection after ischemic stroke promoted neu-
rogenesis [46]. Meanwhile, post-ischemic IGF-1 gene transfer in the peri-infarct 
region potently promoted neural and vascular regeneration in the chronic stage of 
cerebral infarction [47]. These results suggest that IGF-1 formed in the ischemic 
penumbra might be one of the endogenous diffusible factors that mediate post-isch-
emic neural progenitor proliferation.

3.1.4  �Notch Signaling Pathway

Notch signaling is an evolutionarily conserved pathway that regulates cell-fate 
determination during development and maintains adult tissue homeostasis. Recent 
studies have shown that stroke increases the expression of Notch1 and Hes1 in SVZ 
cells [48]. Transient administration of Notch ligands to the brain of adult rats 
increases the numbers of newly generated precursor cells and improves motor skills 
after ischemic injury [49], while the blockage of the Notch pathway by short inter-
fering ribonucleic acid (siRNA) against Notch or a gamma secretase inhibitor sig-
nificantly blocked ischemia-induced cell proliferation in the SVZ [50]. These data 
suggest that the Notch signaling pathway mediates adult SVZ neural progenitor cell 
proliferation after stroke. Interestingly, it has recently been shown that striatal astro-
cytes can turn on nestin expression and generate neurons in stroke model through 
downregulation of Notch signaling, suggesting that Notch signaling might also sup-
press “NSC status” in mature astrocytes [51].

3.1.5  �Other Regulators

Finally, other potential mediators of stroke-induced proliferation of NSCs in the neu-
rogenic niches have been described. These include vascular endothelial growth fac-
tor (VEGF) [52], glial cell-derived neurotrophic factor (GDNF) [53], brain-derived 
neurotrophic factor (BDNF) [54], Wnt signaling, retinoic acid [55], bone morphoge-
netic protein [56], and microRNA [57, 58]. In addition, the communication between 
NSCs and other cell types also affects NSC proliferation after stroke. It has been 
reported that M2 phenotype microglia-derived transforming growth factor-alpha 
(TGF-α) is one of the key factors to enhance proliferation and neural differentiation 
of NSPCs after ischemic stroke [59]. Activated regulatory T cells (Tregs) enhanced 
SVZ NSC proliferation in normal and ischemic mice; blockage of IL-10 abolished 
Tregs-mediated NSC proliferation in vivo and in vitro [60]. Furthermore, astrocytic 
calcium waves are long-range signals capable of transmitting the occurrence of a 
brain injury to the SVZ, where they stimulate NSC proliferation and self-renewal and 
increase the migratory potential of NSPCs. It is shown that the Notch signaling path-
way mediates effects of elevated calcium levels on NSPCs [61].
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3.2  �Migration

After stroke, following NSC proliferation, another critical biological process is the 
migration of these NSCs from neurogenic niches to the ischemic region. In the nor-
mal adult brain, SVZ neuroblasts migrate along the rostral migratory stream to the 
olfactory bulb. Lateral migration into the striatum and parenchyma is not observed 
in the  rodent brain under normal condition. However, in the ischemic damaged 
brain, neuroblasts will migrate laterally into the ischemic injury region [11]. 
Although little is known about the molecular mechanisms underlying stroke-
induced redirected migration, several potential mediators have been identified. 
These include stromal cell-derived factor 1 (SDF-1), monocyte chemoattractant 
protein 1 (MCP-1/CCL2), matrix metalloproteases (MMPs), cannabinoid type-2 
receptor (CB2R), and β1 integrin. Further, the neurovascular niche within the SVZ 
and SDG is also a key regulator of neuroblast migration following stroke.

3.2.1  �Stromal Cell-Derived Factor 1 (SDF-1)

SDF-1, also known as C-X-C motif chemokine 12 (CXCL12), is a chemokine pro-
tein that exerts biological functions by binding to its receptors CXCR4 and CXCR7. 
SDF-1 (CXCL12) is a member of the alpha (CXC) chemokine family which are 
involved in inflammatory responses [62]. SDF-1 and its receptor CXCR4 have been 
demonstrated to play an important role in the mobilization and homing of stem cells 
to bone marrow [63, 64]. Neuroblasts are reported to express CXCR4 [65]. During 
adult neurogenesis, SDF-1 is secreted by vascular endothelial cells and plays a role 
in the directional migration of neuroblasts in the CNS [65]. Following stroke, SDF-1 
is upregulated by activated astrocyte and endothelial cells, subsequently guiding 
neuroblast migration toward the injured tissue [66–68]. In contrast, CXCR4 block-
ade blocks this pathology-directed chain migration [69].

3.2.2  �Monocyte Chemoattractant Protein-1 (MCP-1)

MCP-1 is a member of the C-C chemokine family that regulates migration and 
infiltration of monocytes/macrophages [70]. Following cerebral ischemia, MCP-1 is 
induced in activated astrocytes and neurons within the injured tissue [71, 72]. The 
migrating neuroblasts in the ischemic brain express MCP-1 receptor CCR2. Infusion 
of MCP-1 into the normal striatum induced neuroblast migration to the infusion site 
[73]. In knockout mice that lacked either MCP-1 or its receptor CCR2, there was a 
significant decrease in the number of migrating neuroblasts from the SVZ to the 
ischemic striatum [73].
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3.2.3  �Matrix Metalloproteinases (MMPs)

Matrix metalloproteinases (MMPs) are members of the metzincin group of prote-
ases that participate in several physiological processes, such as bone remodeling, 
angiogenesis, immunity, and wound healing [74]. Recent studies suggest that MMPs 
are involved in guiding neuroblast migration from the neurogenic region to the isch-
emic boundary [75]. Neuroblasts express MMP-3 and MMP−9. Inhibition of MMPs 
diminishes neuroblast migration after stroke [76, 77]. Moreover, MMP2 and MMP9 
secreted by endothelial cells are also associated with neuroblast migration after 
stroke [78].

3.2.4  �CB2R

The endocannabinoids (eCBs) 2-arachidonoylglycerol and anandamide are lipid 
signaling messengers involved in the homeostatic control of a large variety of func-
tions of the nervous system through binding cannabinoid type-1 receptor (CB1R) 
and cannabinoid type-2 receptor (CB2R) [79]. CB2R is expressed in resident 
microglia, NG2-glia, and NSCs. CB2R is neuroprotective in acute experimental 
stroke by anti-inflammatory mechanisms [80]. In vitro studies show that CB2R pro-
motes NSC proliferation via mTORC1 signaling [81]. Furthermore, in stroke, 
CB2R is required for neurogenesis by promoting neuroblast migration toward the 
injured brain tissue [82].

3.2.5  �β1 Integrin

β1-class integrins are transmembrane receptors for several extracellular matrix 
(ECM) proteins such as laminin [83]. Under normal conditions, migrating neuro-
blasts generated in the adult SVZ express β1 integrin, which is required for their 
chain formation during RMS migration [84, 85]. Following stroke, laminin-β1 inte-
grin signaling enables neuroblasts to form chains and migrate efficiently along vas-
cular scaffolding in the post-stroke brain [86].

3.2.6  �Neurovascular Niche

Stroke-induced directional migration of neuroblasts is closely associated with thin 
astrocytic processes and blood vessels, suggesting that blood vessels may act as a 
scaffold for neuroblast migration [87, 88]. Virally labeled SVZ NPCs were observed 
to migrate along both newly formed and pre-existing blood vessels toward the isch-
emic injured area. Live imaging showed that migrating SVZ NPCs have their lead-
ing process closely associated with blood vessels, suggesting that this interaction 
provides directional guidance for the NPCs [89]. In addition, vasculature promotes 
neuroblast migration via secreting various growth and chemotactic factors, includ-
ing BDNF, MMPs, angiopoietins, and SDF-1 [22].
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3.2.7  �Other Regulators

Wnt3a, Angiopoitin (ANg)-1 and its receptor Tie 2, and Slit and its receptor 
(ROBO) also promote post-stroke neuroblast migration and behavioral recovery 
[66, 90, 91]. It also should be noted that stroke also induces inhibitory mole-
cules to block the migration of neuroblasts. Glycogen synthase kinase-3β 
(GSK-3β) inhibition promoted proliferation of neural stem cells (NSCs) and 
migration of nascent doublecortin (DCX+) neuroblasts from the  SVZ to the 
lesioned cortex [92]. Inhibition of Na+-K+-Cl−-co-transporter can increase 
migration of neuroblasts in the SVZ towards the infarct areas and improve sen-
sorimotor recovery [93]. Stroke also induces chondroitin sulfate proteoglycans 
(CSPGs), which could block neuroblast migration through Rho-associated 
kinase (ROCK) activation [94, 95].

3.3  �Survival, Differentiation, and Integration of Newborn 
Neurons

The long-term survival and functional maturation of newborn neurons following 
stroke are also crucial for neurological recovery. However, there are fewer stud-
ies that have examined the survival, differentiation, and integration of newborn 
neurons in the ischemic brain. The migration of SVZ neuroblasts to the lesion 
sites may persist for up to 1 year after ischemia [96], thus offering a long-term 
window for therapeutic manipulations. Ischemia-induced newly generated cells 
in the damaged areas express medium-size spiny neuronal marker dopamine- 
and cAMP-regulated neuronal phosphoprotein (DARPP-32) or neurotransmitter 
synthesizing enzymes such as glutamic acid decarboxylase (GAD67) and cho-
line acetyl-transferase (ChAT) [11, 97, 98]. Moreover, ischemia-induced newly 
formed striatal GABAergic and cholinergic neurons could exhibit electrophysi-
ological activity and functional synapses [97]. These data indicate that prolifer-
ating neuroblasts that migrate into the damaged areas following stroke are able 
to differentiate into a variety of functional neuronal cells. Compared to our 
knowledge of factors that promote adult neural precursor cell proliferation or 
migration, there is comparatively little known about factors that promote new-
born neuron survival and integration in stroke. Intraventricular administration 
of EGF and albumin enhance the differentiation of newly born immature neu-
rons into mature PV-expressing neurons, replacing more than 20% of PV+ inter-
neurons lost after cerebral ischemia [99]. Complement-derived peptide C3a 
regulates neural progenitor cell migration and differentiation in vitro and C3a 
receptor signaling stimulates neurogenesis in unchallenged adult mice. Daily 
intranasal treatment of wild-type mice with C3a beginning 7 days after stroke 
induction robustly increased synaptic density and expression of Growth 
Associated Protein 43 (GAP43) in the peri-infarct cortex [100]. Post-stroke p53 
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inhibitor enhances the survival of  NSCs and their progeny by inhibition of 
apoptosis in these cells through PUMA gene regulation [101]. Similarly, Shh 
agonist, delivered after stroke at a lower dose that did not affect BrdU-positive 
cells in SVZ and SGZ improved the long-term survival of YFP-labeled NSCs 
and their progeny in stroke model [36]. Some knowledge has been gained 
regarding factors that enhance newborn neuron integration and survival under 
normal physiological conditions, including the RhoA family of small GTPases, 
suppressor of cytokine signaling-2, neurotrophins, neurotransmitters (GABA 
and glutamate), and semaphorins [102]. Logically, we might get some implica-
tion from those factors and explore their roles after ischemic injury. However, it 
should be noted that the stroke-affected CNS environment is quite an inhibitory 
environment for newborn cell survival. Experimental studies have shown that 
only a small proportion of cells survive long enough to integrate into the dam-
aged parenchyma after stroke [46, 68, 102, 103]. Thus, neuroprotective or anti-
inflammatory strategies might need to be included with therapy to improve 
newborn neuron maturation, integration, or plasticity in stroke treatment.

4  �Endogenous NSCs and Oligodendrogenesis

NG2-glia, also called oligodendrocyte precursor/progenitor cells and polyden-
drocytes, characterized by expression of chondroitin sulfate proteoglycan NG2 
and platelet-derived growth factor receptor α (PDGFR α). It is widely distrib-
uted in the brain and can continuously produce differentiating and mature oligo-
dendrocytes in the central neural system throughout the lifespan of the animals. 
Myelination of axons in the adult brain is critical for saltatory conduction, axo-
nal integrity, neural plasticity, and circuitry function, which are important for 
functional recovery after stroke [104]. Stroke acutely leads to mature oligoden-
drocyte damage, resulting in myelin loss, which is associated with a  loss of 
axons. Oligodendrogenesis is induced in the regions surrounding the lateral 
ventricles and peri-infarct areas during stroke recovery [105–107]. Studies dem-
onstrate that stroke not only activates resident NG2-glia in white and gray mat-
ter, but also increases NG2-glia generation in the SVZ and attracts them to the 
ischemic area [108–111]. The newly generated NG2-glia could differentiate 
into mature myelinating oligodendrocytes in the peri-infarct areas, which is 
involved in the brain repair process [106]. Therefore, these studies suggest that 
NG2-glia generated by adult NSCs contribute to oligodendrogenesis after 
stroke. The process of SVZ NSC-mediated oligodendrogenesis is regulated by 
many intrinsic and extrinsic factors, therefore offering many pathways for 
potential therapeutic interventions to promote functional recovery following 
stroke.
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4.1  �Extrinsic Factors for Oligodendrogenesis

4.1.1  �Shh

In addition to neurogenesis, Shh signaling regulates oligodendrogenesis by inducing 
transcription factor olig2 expression [112]. In the SVZ, there is a dorsal Shh-
dependent domain producing many oligodendroglial lineage cells [113]. The block-
age of Shh signal with cyclopamine could abolish cerebrolysin-enhanced 
oligodendrogenesis in stroke [114]. Bone marrow stromal cell transplantation stim-
ulates oligodendrogenesis by activation of Shh/Gli1 pathway, which mediates sub-
sequent functional recovery after stroke [115]. Thus, these data suggest that Shh 
signaling in SVZ plays an important role in mediating oligodendrogenesis in 
the ischemic brain.

4.1.2  �Stromal-Derived Factor 1 (SDF-1)

SDF-1, has been shown to be able to promote neurogenesis and angiogenesis, lead-
ing to functional recovery in ischemic mice [116, 117]. Through binding with 
CXCR4 in NG2-glia, SDF-1 activates their proliferation, migration, and differentia-
tion [118–120]. SDF-1 gene therapy at 1 week after ischemia promotes NG2-glia 
proliferation in the SVZ and further enhances their migration to the ischemic lesion 
area [121]. These data support that in addition to enhancing neurogenesis, SDF-1 
promotes oligodendrogenesis as well after stroke.

4.1.3  �Vascular Endothelial Growth Factor (VEGF)

VEGF is a signaling protein that is important for vasculogenesis and angiogenesis. 
The administration of VEGF improves neurological performance through mediat-
ing angiogenesis and survival of newborn neurons in the rat MCAO model [122]. 
Studies have shown that VEGF-C stimulates NG2-glia proliferation [123] while 
VEGF-A can induce NG2-glia migration via ROS and FAK-dependent mecha-
nisms, but did not affect their proliferation and differentiation [124]. In the neonatal 
hypoxia-ischemia rat model, VEGF-A and VEGF-C are induced in the 
SVZ. Moreover, VEGF-C promotes the proliferation of both early and late oligo-
dendrocyte progenitors through VEGFR-3 receptor [108]. These data suggest that 
besides promoting angiogenesis and neurogenesis, VEGF signaling is also involved 
in oligodendrogenesis after stroke.
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4.1.4  �Brain-Derived Neurotrophic Factor (BDNF)

BDNF is a well-known member of a neurotrophin family that regulates neuronal 
survival, synaptic plasticity, learning, and memory. Recent studies show that BDNF 
could promote the proliferation and differentiation of NG2-glia and is required for 
normal CNS myelination [125–127]. Astrocyte-derived BDNF supports oligoden-
drogenesis and regeneration after white matter ischemic injury or cuprizone-induced 
demyelination [128, 129]. BDNF administration improves functional recovery and 
promoting oligodendrogenesis and remyelination in rats subjected to ischemic 
stroke [130]. These data suggest that in addition to neuroprotective effects, BDNF 
plays important roles in white matter protection and remyelination after stroke.

4.1.5  �Other Factors

There are many other factors regulating oligodendrogenesis under normal and path-
ological conditions [131]. For example, neuregulin-1 promotes NG2-glia survival 
and maintains NG2-glia in an immature state [132]. Platelet-derived growth factor 
(PDGF) is an important factor for maintaining NG2-glia proliferation and stimulat-
ing their differentiation into mature oligodendrocytes [133]. PDGF signaling in the 
SVZ promotes oligodendrocyte generation [134]. Insulin-like growth factor (IGF)-1 
could promote the differentiation of adult NSCs into oligodendrocyte lineage cells 
through inhibiting BMP signaling [135]. Epidermal growth factor (EGF) induces 
the progeny of SVZ NSCs to migrate and differentiate into oligodendrocytes [136]. 
It has been reported that these above growth factors play positive roles in functional 
recovery after stroke [137]. However, the contribution of ischemia-induced oligo-
dendrogenesis to functional recovery in stroke by these growth factors remains to be 
established.

4.2  �Epigenetic Modulators and Stroke-Induced 
Oligodendrogenesis

Epigenetics is defined as the heritable changes in gene expression without a change 
in the DNA sequence [138]. Recent studies have shown that the multiple steps of 
oligodendrocyte generation (i.e., specific cell fates, proliferation, differentiation, 
and myelination) can be regulated through epigenetic mechanisms [139–141]. The 
epigenetic modulators of gene expression include post-translational modulations of 
nucleosomal histones, histone modification, chromatin remodeling enzymes, DNA 
methylation, and microRNAs [142]. Among them, we will mainly focus on miRNA 
and histone deacetylases (HDACs) in this review.
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4.2.1  �microRNAs

A number of miRNAs have been found to play a critical role in the proliferation or 
differentiation of OPCs into mature oligodendrocytes as well as myelination [143, 
144]. miR-219 and miR-338 could promote NG2-glia differentiation into mature 
oligodendrocytes through suppressing the expression of PDGFRa, Sox6, Zfp238, 
FoxJ3, and NeuroD1 [145]. Stroke considerably increased miR-146a density in the 
corpus callosum and SVZ of the lateral ventricle of the ischemic hemisphere. In 
vitro, overexpression of miR-146a in neural progenitor cells (NPCs) significantly 
increased their differentiation into O4+ NG2-glia [146]. During development, 
miR17-92 cluster can regulate proliferation and survival of NG2-glia in the brain. In 
stroke, the miR17-92 cluster was significantly up-regulated in SVZ neural progeni-
tor cells [147]. It could mediate the proliferation and survival of SVZ NPCs in the 
ischemic brain [148]. miR17-92 cluster-enriched exosomes could increase neural 
plasticity and functional recovery after stroke [149]. In addition, miR-23a, miR-9, 
and miR-200b are also likely involved in stroke-induced oligodendrogenesis by 
regulating serum response factor [150, 151]. Collectively, these findings suggest 
that miRNAs play an important role in stroke-induced oligodendrogenesis.

4.2.2  �Histone Deacetylases (HDACs)

The administration of HDACs inhibitor suberoylanilide hydroxamic acid or TSA 
can confer protection against ischemia-induced brain injury [152, 153]. HDAC1 
and HDAC2 are associated with oligodendrocyte differentiation and remyelination 
during brain development and disease [154–157]. In ischemic brains, there is 
increased expression of HDAC1 and HDAC2 proteins in NG2-glia [158]. In addi-
tion, blockage of HDACs with valproic acid considerably increased OPCs and new 
oligodendrocytes after stroke [159]. HDACs clearly play important roles in stroke-
induced oligodendrogenesis.

5  �The Implicating Effects of NSC-Mediated Neurogenesis 
and Oligodendrogenesis on Angiogenesis 
and Inflammation

Stroke continuously induces neuroblasts, which migrate to peri-infarct regions for 
at least 1 year [160]. The ablation of neuroblasts after stroke reduces ischemic brain 
repair and exacerbates functional recovery [161]. Experimental studies show that 
only a small fraction of neuroblasts derived from endogenous NSCs in the peri-
infarct regions differentiate into mature neurons and survive [162–164]. Meanwhile, 
there is increased production of NG2-glia and some of them in the peri-infarct 
regions generate into mature myelinating oligodendrocytes after stroke [165–167]. 
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These data suggest that stroke-induced neurogenesis and oligodendrogenesis might 
provide additional beneficial effects that are independent of cellular replacement of 
dead neurons and myelinating oligodendrocyte production to re-wire neuronal 
circuitry.

5.1  �Angiogenesis

Angiogenesis is characterized by the formation of new vessels from existing blood 
vessels. Coupling and bi-directional regulation of neurogenesis and angiogenesis 
have been implicated both under normal and pathological conditions [2]. Both SVZ 
and SGZ niches have unique vasculature characteristics compared to non-neurogenic 
regions and adult NSCs extend their long processes to directly contact blood ves-
sels, which enables the easy access of NSCs to molecules and factors in the blood 
[168]. Under the ischemic condition, it has been shown that angiogenic genes are 
upregulated rapidly after the onset of cerebral ischemia and the increased expres-
sion of angiogenic proteins can be sustained in the ischemic area for a prolonged 
period of time after stroke [169]. Both neurogenesis and angiogenesis have been 
suggested to contribute to the functional recovery after stroke [170] and the two 
critical biological processes might have synergistic effects and influence each other. 
Co-culture of ischemic neural progenitor cells with non-ischemic endothelial cells 
increases angiogenesis in vitro [171, 172] and co-culture of ischemic endothelial 
cells with non-ischemic NSCs increases progenitor cell proliferation and neuronal 
differentiation. On one hand, neuroblasts induced by stroke in the SVZ migrate 
along cerebral blood vessels to peri-infarct regions where angiogenesis occurs [96]. 
On the other hand, it is possible that NSC-derived progeny cells (neuroblasts and 
astrocytes) can regulate angiogenesis and help maintain the function and integrity of 
the newly generated blood vessels. Importantly, NG2-glia are also in close proxim-
ity to astrocyte, pericytes, or endothelial cells [173, 174]. It is an important compo-
nent of the neurovascular unit in cerebral white matter [174]. NG2-glia and 
oligodendrocytes can act as a critical source of trophic factors [175, 176]. In addi-
tion, NG2-glia can support blood-brain barrier integrity by upregulating tight junc-
tion proteins via TGF-β1 signaling [177]. NG2-glia-specific TGF-β1-deficient mice 
exhibited cerebral hemorrhage and loss of BBB function [177]. It has been shown 
that signaling from NG2-glia to ECs plays an important role in angiogenesis during 
development. Wnt7a and Wnt7b secreted by hypoxic NG2-glia could increase the 
proliferation of endothelial cells and angiogenesis [178]. These data suggest close 
interaction and potentially synergistic effects of endogenous neurogenesis, oligo-
dendrogenesis, and angiogenesis in stroke recovery.
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5.2  �Inflammation Modulation

Inflammation plays an important role in the pathogenesis of stroke, which contributes 
to neuronal death and impairs functional recovery. In the ischemic brain, there is 
activation of microglia, production of pro-inflammatory factors, and immune cell 
infiltration (i.e. neutrophils, monocyte/macrophages, T cells and B cells). Recent 
studies have shed new light on the interaction between endogenous NSCs and 
immune cells, such as microglia, T cells, and natural killer cells [179–182]. Both in 
vitro and after transplantation in vivo, NSCs can directly change inflammatory 
responses through releasing immunomodulatory factors [183–185]. However, it is 
still unknown whether endogenous NSCs in their native location have similar 
capacities under stroke conditions. Endocannabinoids are reported to play an impor-
tant role in maintaining immune homeostatic balance within the host [186]. 
Anandamide, an endogenous cannabinoid, contributes to immune tolerance in the 
gut by promoting the presence of CX3C chemokine receptor 1 (CX3CR1hi) macro-
phages, which are immunosuppressive [187]. In response to the excitotoxic damage 
occurring in stroke and epilepsy, SVZ NSCs can release endogenous endocannabi-
noids to exert a protective role for striatal neurons [188]. In the EAE model of mul-
tiple sclerosis, SVZ NSCs produce interleukin-15 and sustain functionally competent 
natural killer cells [180]. Studies have shown that there is an accumulation of natu-
ral killer cells in ischemic brain tissues [189–191]. These data suggest that endog-
enous NSCs maybe regulate stroke-induced inflammation through releasing 
immunomodulatory factors. In addition, NG2-glia and oligodendrocytes express a 
wide range of immunomodulatory molecules [192, 193], suggesting that endoge-
nous NSCs might indirectly affect immune cell function and inflammation through 
regulating oligodendrogenesis. Further studies are needed to understand whether, 
when, and how endogenous NSCs can take over and locally manifest an immuno-
modulatory effect. It will help to develop novel therapies to promote functional 
recovery in stroke through modifying the immunomodulatory effects of endogenous 
NSCs.

6  �Conclusion and Discussion

Brain repair processes after stroke are regulated by multiple cellular pathways, 
which include neurogenesis, oligodendrogenesis, angiogenesis, axonal sprouting, 
and synaptogenesis. The presence of endogenous NSCs in the adult brain and their 
capacity to generate new neurons, oligodendrocytes, and astrocytes raises hope that 
new therapeutic strategies can be designed based on appropriate modulation of 
endogenous NSCs in stroke. Over the past five decades, since its discovery, adult 
neurogenesis and NSCs have evolved into an established research field that has 
made substantial and promising progress as regenerative medicine for neurological 
disease. However, there are still many critical questions that need to be addressed.
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The defining characteristics of stem cells are their ability to self-renew and to 
differentiate into various cell types. We have just started to appreciate the complex-
ity and heterogeneity of adult NSCs. Balance and integration are important themes 
to consider when trying to modulate this process to improve brain recovery after 
injury. For example, adult NSCs have quiescent and activated states. Adult NSCs 
are largely quiescent in vivo, a state that recently has been recognized as not a pas-
sive state but rather maintained by active transcriptional regulation [194]. The 
mechanisms that trigger the activation of NSCs by entering multiple rounds of pro-
liferation followed by potential terminal differentiation after brain injury are still 
unknown. Since the quiescent state is actively maintained by NSCs and might serve 
important roles to preserve these cells from metabolic stress and maintain genome 
integrity over a long lifetime, strategies that only target to enhance the activation 
and proliferation of NSCs might need to take cautions as these might have the risk 
of depleting quiescent NSCs over a prolonged period of time. In this regard, it is 
possible that treatment strategies that target the enhanced survival of NSCs and their 
progeny might be a better strategy as the majority of the newly born cells derived 
from NSCs fail to survive at weeks to months after stroke.

Similarly, the precise mechanisms that trigger differentiation of NSCs to differ-
ent types of cells in vivo after brain injury are largely unknown. When cultured in 
vitro, adult NSCs are able to self-renew and differentiate into all three neuronal 
lineages [195]. However, under normal conditions, SVZ and SGZ cells generate 
different types of neurons and non-neuronal cells, suggesting that the microenviron-
ment of the NSC niche might limit their differentiation potential. Adult NSCs are 
also capable of responding to a variety of brain injury by altered differentiation 
phenotypes as well as migration into the injured area instead of their “original path”. 
What are the precise molecules and signals that direct the differentiation of these 
cells under the pathological condition? Knowledge in these areas will help us modu-
late the fate of these cells and help guide them to targeted areas to repair the brain. 
Substantial interests in the field have been focused on the neuronal differentiation of 
NSCs after injury; however, neuroblasts have been shown to play important roles 
through non-neuronal replacement mechanisms [2]. SVZ NSCs have also been 
reported to generate astrocytes that migrate to the injured cortex. Defects in this 
astrogenic process, which resulted in a shift in SVZ NSCs fate from glial cells to 
neuroblasts, resulted in abnormal glial scar formation and increased microvascular 
hemorrhage in stroke animals. In addition, although glial scar formation was previ-
ously considered as an inhibitory factor for axonal outgrowth, there is evidence 
indicating that the  glial scar aids axonal outgrowth in spinal cord injury [196]. 
Therefore, strategies that aim to guide NSC differentiation towards a single cell type 
(neurons) might not provide desired effects in brain recovery. Considering the het-
erogeneity of astrocytes and their role in synapse formation and glial scar forma-
tion, whether reactive astrocyte derived from NSCs in stroke could affect axonal 
outgrowth and synaptogenesis also needs to be investigated. In addition, besides the 
role of producing new neurons and myelinating oligodendrocytes, it remains to be 
defined whether and how NSCs, NSC-derived neuroblasts, and NG2-glia contribute 
to angiogenesis and immunomodulation after stroke. Overall, understanding the 
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fundamental mechanisms underlying the endogenous NSC-mediated brain repair 
process will provide the basis for future endogenous NSC therapy for stroke. By 
elucidating the relationship and interactions of neurogenesis with other cellular and 
molecular processes such as angiogenesis, glial scar formation, and inflammation 
responses, it is possible that more effective therapies could be developed in the 
future to improve regeneration and functional recovery of the ischemic brain.
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