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Chapter 10
The Combination of Stem Cell Factor (SCF) 
and Granulocyte-Colony Stimulating Factor 
(G-CSF) in Repairing the Brain Post-acute 
Stroke

Li-Ru Zhao, Suning Ping, and Fei Hao

Abstract Stroke represents the leading cause of long-term disability in adults 
worldwide. Most stroke survivors suffer from lifelong neurological deficits. 
Developing a pharmaceutical approach to enhance brain repair and improve func-
tional outcomes post-acute stroke is a very important but less investigated area in 
stroke research. Stem cell factor (SCF) and granulocyte-colony stimulating factor 
(G-CSF) are the well-characterized vital hematopoietic growth factors for regulat-
ing hematopoiesis. Increasing evidence supports that SCF and G-CSF also play 
roles in the nervous system. Over the past decade, preclinical studies have demon-
strated that SCF in combination with G-CSF synergistically enhances stroke recov-
ery in the subacute or chronic phase. In this chapter, we have reviewed the biological 
function of SCF and G-CSF in hematopoiesis, neural plasticity, and neurogenesis, 
and summarized the preclinical studies illustrating the neurorestorative effects of 
SCF and G-CSF post-acute stroke.
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BDNF Brain-derived neurotrophic factor
CADASIL Cerebral autosomal dominant arteriopathy with subcortical infarcts 

and leucoencephalopathy
CNS Central nervous system
CSF Colony stimulating factor
CXCR4 C-X-C chemokine receptor type 4
DRGs Dorsal root ganglia neurons
ECs Endothelial cells
G-CSF Granulocyte-colony stimulating factor
GCSFR G-CSF receptor
GM-CSF Granulocyte macrophage-colony stimulating factor
HPCs Hematopoietic progenitor cells
HSCs Hematopoietic stem cells
LTP Long-term potential
NSCs/NPCs Neural stem/progenitor cells
PPF Paired-pulse facilitation
SCF Stem cell factor
SDF-1 Stromal cell-derived factor 1
SGZ Subgranular zone
SHRs Spontaneous hypertensive rats
Sl Steel gene
SVZ Subventricular zone
tPA Tissue plasminogen activator
U-type spines Uncertain type spines
W White-spotting gene
YFP Yellow fluorescent protein

1  Introduction

Stroke remains the leading cause of long-term disability in adults worldwide [1, 2]. 
Stroke not only represents a serious medical condition but it also causes huge medical 
and financial burdens throughout the world [1–3].

A stroke has three clinical phases: the acute phase, subacute phase, and chronic 
phase. The exact time frame of these three phases varies among individuals as the 
duration of the three phases is dependent upon the size and location of the infarcts, 
the responsive capacity of cerebrovascular collateral circulation, the metabolic state 
of brain tissue, and patient’s age and medical comorbidities. In general, the acute 
phase is the first 48 h after stroke symptom onset, the subacute phase represents the 
period from 48 h up to 3 or 6 months post-stroke, whereas the chronic phase starts 
3 or 6 months after stroke [4–10].

Currently, there are only two therapeutic approaches available for stroke patients. 
The first one is the thrombolytic/thrombectomy treatment for ischemic stroke 
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patients in the acute phase. The therapeutic time windows for thrombolytic/throm-
bectomy approach are limited up to 4.5 h post-stroke for thrombolysis by tissue 
plasminogen activator (tPA) [11, 12] and within 6–8  h post-stroke onset for the 
thrombectomy [13–15]. The other treatment for stroke patients is physical therapy. 
The therapeutic window for physical therapy is restricted to the first 6 months post- 
stroke [16–18]. Due to the narrow time window and intracerebral hemorrhage risk 
of the thrombolytic/thrombectomy treatment [11, 13, 19], the majority of stroke 
patients are not able to receive this treatment in the acute phase [20]. In addition, 
many stroke survivors do not receive or complete the physical therapy post-acute 
stroke because of financial or family-related issues. Developing new therapeutic 
strategies, therefore, is highly important to reduce stroke-induced disability and 
enhance stroke recovery.

Over the past two decades, the vast majority of stroke research has targeted the 
neuroprotection in the acute phase, and little attention has been paid to enhancing 
stroke recovery in the subacute or chronic phase of stroke. In fact, the neuroprotec-
tive agents have all failed in clinical trials [21]. Searching for therapeutic approaches 
to improve stroke recovery post-acute phase becomes highly recognized in the 
stroke research field today.

Stem cell factor (SCF) and granulocyte-colony stimulating factor (G-CSF) are 
the essential hematopoietic growth factors that critically regulate hematopoiesis 
[22–24]. Beside their roles in the hematopoietic systems, a large body of evidence 
shows that SCF and G-CSF also play roles in the nervous system. SCF and G-CSF 
do not only promote neural plasticity [25–30] and neurogenesis [31–33], but they 
can also enhance brain repair in both the subacute [34] and chronic phases 
[35–41].

In this chapter, we have reviewed the discovery of SCF and G-CSF in the hemato-
poietic system and current knowledge concerning the biological function of SCF and 
G-CSF in hematopoiesis, highlighted the studies demonstrating the effects of SCF and 
G-CSF in promoting neural plasticity and neurogenesis, and summarized up-to-date 
research progress regarding the effective and mechanistic determinations of SCF and 
G-CSF on brain repair in the subacute and chronic phases of experimental stroke.

2  The Discovery and Essential Role of SCF and G-CSF 
in the Hematopoietic System

SCF and G-CSF are the hematopoietic growth factors that are critically involved in 
regulation of blood cell production and mobilization of bone marrow stem cells. 
Since the discovery of SCF and G-CSF, great effort has been made to elucidate their 
biological function. Over the past six decades, there have been many breakthroughs 
in understanding the mechanisms underlying SCF- and G-CSF-regulated hemato-
poiesis and in developing potential therapies for using SCF and G-CSF in clinical 
trials. In this section, we have summarized the current understanding of the essential 
role of SCF and G-CSF in the hematopoietic system.
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The discovery of SCF (also known as kit ligand, steel factors and mast cell 
growth factor) and its receptor c-kit took place in 1990s [42]. Observations of white 
spots on a few mice among thousands of laboratory mice lead to the identification 
for the loci of steel (Sl) and white-spotting (W), which encode SCF and c-kit receptor, 
respectively [43]. Mutations at either of these two loci result in similar phenotypes 
with coat color alterations, anemia, and lack of mast cells in the tissue and neonatal 
mortality [44]. These findings offer critical information concerning the in vivo 
function of SCF and c-kit, and highlighting its important roles in hematopoiesis, 
melanogenesis and fertility. In addition, it has been demonstrated that the W 
mutation-induced c-kit dysfunction affects hematopoietic stem cells and hemato-
poietic progenitor cells (HSCs/HPCs), while the Sl mutation impairs stromal cell 
function. These findings are in accordance with the in vitro study that was reported 
in 1977 [45]. In this in vitro study, Dexter and Moore demonstrated the stromal- 
dependent hematopoietic cells culture, and proposed that Sl and W encoded a 
ligand-receptor pair.

Many studies have revealed that there are two forms of natural SCF due to alter-
native splicing of the DNA transcripts. A shorter form consists of 220 amino acids 
and produces a membrane-bound form of SCF. The soluble SCF, which consists of 
165 amino acids, is derived from a full length 248 amino acids cleaved in the extra-
cellular domain [46]. Both the soluble and membrane-bound forms of SCF are bio-
logically active. However, the two forms of SCF have distinct but overlapping roles 
[47]. Membrane-bound SCF is expressed on stromal cells, endothelial cells (ECs) 
and fibroblasts in the bone marrow and induces more persistent tyrosine kinase 
activation than soluble SCF [48]. In 1991, Brannan and colleagues reported that 
Steel-Dickie mice exhibited anemia, pigmentation and germ cell defects as these 
mice only produced soluble SCF due to genome deletion affecting the transmem-
brane and cytoplasmic domain [49]. These research findings suggest that membrane- 
bound SCF plays a unique biological role in the stromal cells, ECs and fibroblasts 
in the bone marrow. C-kit is expressed on normal hematopoietic cells and several 
other cell types, including mast cells [50], melanocytes [51] and a wide range of 
non-hematopoietic cell types as ECs [52], interstitial cells [53] and astrocytes [43]. 
Interaction between SCF and c-kit is the initial and key step for triggering the down-
stream signaling. It has been shown that the SCF/c-kit system has an important 
function not only in mouse but also in humans and other primates due to its pleio-
tropic effects on hematopoietic cell survival, proliferation, differentiation and mobi-
lization [54]. SCF acts directly on HSCs/HPCs, promotes HSC/HPC entry to the 
cell cycle, and facilitates HSC/HPC proliferation [55]. SCF enhances the primitive 
HSC survival by suppression of apoptosis [56, 57]. In 1992, Valent and colleagues 
reported that SCF induced mast cell development from immature hematopoietic 
cells in human bone marrow [58], suggesting the effect of SCF on cell differentia-
tion. This study was also confirmed by Irani and colleagues, who observed similar 
results in human fetal liver [59]. In addition, SCF is also a potent agent for mobiliza-
tion of murine and human HSCs from bone marrow to peripheral blood [43], which 
shares a similar role as G-CSF.
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The discovery of G-CSF occurred much earlier than SCF. The identification of 
G-CSF happened in the 1960s by in vitro assays measuring the ability of the growth 
factors to stimulate colony formation of bone marrow cells (see review by [60]). 
During the 1970s, a detailed category of colony stimulating factor (CSF) had been 
published, and G-CSF had been defined as a stimulator specific for colonies con-
taining predominantly neutrophils [61]. G-CSF is produced by a variety of cells, of 
which, monocyte/macrophage lineage cells are the most prominent source [60]. 
G-CSF is also produced by normal mesothelial cells [62], fibroblasts [63] and ECs 
[64]. G-CSF, like other growth factors, exerts its biological functions by binding to 
the G-CSF specific receptor, G-CSFR. G-CSFR expression has been found on a 
variety of hematopoietic cells, including myeloid progenitors, mature neutrophils, 
monocytes, myeloid cells, lymphoid leukemia cells, and normal B and T cells [65].

Generally, G-CSF is known to have multiple functions in regulation of HSC/
HPC proliferation, differentiation and mobilization, neutrophil production and 
mobilization from the bone marrow, neutrophil progenitor cell proliferation and dif-
ferentiation, and the state of functional activation of neutrophils. In 1987, Tamura 
and colleagues reported that G-CSF mobilized large numbers of hematopoietic cells 
from the bone marrow into the circulation [66]. In addition, increased progenitor 
cells of all lineages were detected in the spleen of G-CSF-treated mice. These results 
were further confirmed by Duhrsen and colleagues in cancer patients with G-CSF 
treatment [67]. The administration of G-CSF to the patients showed significant 
increases of circulating HSCs, followed by a slight reduction in the frequency of 
bone marrow progenitor cells. However, the absolute number of the progenitor cells 
in the bone marrow was still increased. Together, all these data support the efficacy 
of G-CSF on HSC/HPC mobilization and proliferation. As peripheral blood is one 
of the important sources for stem cell transplantation, the biological effects of 
G-CSF in HSC/HPC mobilization and proliferation therefore allow autologous and 
allogeneic HSC transplantation in the clinical setting [68]. G-CSF is also a strong 
stimulator for neutrophil activation. Masja and colleagues reported that G-CSF 
increased the release of inflammatory granules [69]. In addition, G-CSF stimulates 
the survival and primitive proliferation of progenitor cells in vitro by combination 
with other factors. McNiece and colleagues observed more numerous and larger 
colonies of progenitor cells after combination treatment of G-CSF and GM-CSF as 
compared to either single factor [70].

G-CSF also shows a synergistic effect with SCF in regulating many important 
biological responses. As stated earlier, both SCF and G-CSF have effects on regulat-
ing survival, proliferation, differentiation, and mobilization of HSCs/HPCs and 
hematopoietic lineage; the combination of SCF and G-CSF shows an enhanced 
effect. SCF in combination with G-CSF increases more progenitor cell mobilization 
in peripheral blood than SCF or G-CSF alone [71]. Many clinical trials have further 
confirmed this finding. Combined treatment of SCF and G-CSF show beneficial 
effects on peripheral blood progenitor cell mobilization with an increased number 
of CD34+ cells/kg in circulating system in patients who have received high dose 
chemotherapy for lymphoma [72, 73], breast cancer [74] and multiple myeloma 
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[75]. The synergistic effect of SCF + G-CSF on HSC/HPC proliferation has also 
been illustrated. The synergistic effect of combined treatment of SCF and G-CSF in 
HSC/HPC proliferation is not only because of the enhanced ligand/receptor interac-
tion [76], but it also due to the marked shortening of the duration of G0/G1 phase 
[76]. A direct effect of SCF and G-CSF on cell cycle distribution has been identi-
fied, and this effect is mainly induced by the regulation of cyclin-dependent kinase 
inhibitor p27kip1 [77]. Besides, the combination of SCF and G-CSF also shows a 
synergistic enhancement of STAT3 and MAPK signaling [76], which is involved in 
promoting the cell proliferation.

3  The Role of SCF and G-CSF in the Central Nervous 
System: Neural Plasticity and Neurogenesis

In addition to the effects of SCF and G-CSF in the hematopoietic system, increasing 
evidence shows that SCF and G-CSF also play a role in the central nervous system 
(CNS). Receptors for SCF and G-CSF have been found to express in the brain [78, 
79], particularly in the neural stem cells/neural progenitor cells (NSCs/NPCs) [31–
33, 80], and in cerebral neurons [32, 80] of adult mice and rats. It has been demon-
strated that both SCF and G-CSF can pass through the blood-brain barrier [32, 81]. 
These findings suggest that hematopoietic growth factors, SCF and G-CSF, may 
have biological function in the CNS.

Numerous in vitro and in vivo studies have examined the contribution of SCF and 
G-CSF in the neuronal plasticity. SCF and G-CSF have been shown to play a key role 
in regulation of the neural plasticity in both the developing and adult brains. In vitro 
studies have shown that SCF supports the survival of c-kit-positive dorsal root gan-
glia neurons (DRGs) and promotes the neurite outgrowth of mouse embryonic DRGs 
through the c-kit receptor tyrosine kinase activity [25]. In addition, SCF has also 
shown to increase the neurite outgrowth of cultured cortical neurons [30]. In cultured 
brain slices, SCF selectively promotes outgrowth of commissural axons, which 
highly express SCF receptor [82]. In vivo studies, commissural axons fail to exit the 
floor plate in SCF and c-kit mutant mice [82]. In addition, c-kit conditional knockout 
mice show delayed extension of callosal fibers within the contralateral cortex and fail 
to innervate their target area [83]. At the functional level, SCF mutant mice exhibit a 
reduction of baseline synaptic transmission between dentate gyrus and hippocampal 
CA3 pathway and show deficits in spatial learning and memory [27]. C-kit mutant 
rats and mice both display impairments of paired-pulse facilitation (PPF) and long-
term potential (LTP) in the hippocampal mossy fiber-CA3 pathway and a deficit in 
performance in Morris water maze task [28, 84]. In mouse brain slices, SCF binding 
to c-kit receptor activates PI3K/PLA2 intracellular pathway, modulates PPF and LTP, 
and regulates synaptic transmission in the hippocampus [84]. These studies suggest 
that SCF/c-kit signaling is involved in the structural and functional regulation of 
synaptic plasticity. In addition to SCF, G-CSF also participates in neural plasticity. 
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G-CSF knockout mice show impaired LTP, reduced densities of NMDA receptors 
and dendritic complexity of hippocampal neurons in the dentate gyrus and the CA1 
region, and deficiency in spatial learning and memory [29]. G-CSF treatment restores 
impaired long-term depression (LTD) in a mouse model of Alzheimer’s disease (AD) 
[85]. In addition, subcutaneous injection of G-CSF increases the dendritic length and 
complexity of pyramidal neurons in the peri-infarct cortex in the cerebral ischemia 
rats [86]. Furthermore, it has been demonstrated that G-CSF in combination with 
SCF synergistically promotes neurite outgrowth and network formation of cultured 
cortical neurons through the PI3K/AKT/NF-kB/BDNF pathway [30]. Collectively, 
these research data suggest that SCF and G-CSF, the two hematopoietic growth fac-
tors, act as neurotrophic factors to regulate the neural plasticity during development 
and maturity.

The role of SCF and G-CSF in promoting neurogenesis and directing NSCs/
NPCs to give rise to neurons has been illustrated in both in vitro and in vivo studies. 
There are two neurogenic regions in the adult mammalian brain, including the sub-
ventricular zone (SVZ) surrounding the anterior part of lateral ventricles and sub-
granular zone (SGZ) of the hippocampal dentate gyrus. NSCs/NPCs in these regions 
have regenerative potential, which has been postulated as a likely source for neural 
repair. Infusing SCF into the cerebrolateral ventricle has been shown to increase the 
number of newborn neurons in the SVZ [31]. Injection of anti-c-kit antibody into 
the cisterna magnum increases the number of cell death and results in thinning of 
the cerebral cortex, suggesting essential role of SCF/c-kit for cortical progenitor cell 
survival [87]. In cultured NSCs/NPCs, G-CSF is shown to promote the differentia-
tion of NSCs/NPCs into neurons in a dose dependent manner [32, 88]. In G-CSF 
knockout mice, hippocampal neurogenesis is strongly diminished, and the mice 
show deficits in behavioral plasticity [29]. Peripheral or intraventricular administra-
tion of G-CSF has been demonstrated to increase the neurogenesis and promote the 
proliferation and differentiation of NSCs/NPCs, not only in the intact mice and rats 
[32, 88], but also in the animal models of neurological disorders, including the cere-
bral ischemia, perinatal hypoxia, irradiation-induced brain injury, traumatic brain 
injury, AD, cerebral autosomal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy (CADASIL) and bacterial meningitis [32, 34, 89–98]. G-CSF- 
induced neurogenesis is probably associated with G-CSF receptor-mediated phos-
phorylation of transcription factor STAT3/5 [88]. Besides, combination of SCF and 
G-CSF has been reported to have a synergistic effect in facilitating the proliferation 
of intrinsic NSCs/NPCs in a mouse model of cerebral ischemia [34]. When adding 
SCF and G-CSF into the culture medium during the proliferating stage of NSCs/
NPCs, SCF in combination with G-CSF (SCF + G-CSF) shows a dual function in 
directing cell cycle arrest and promoting neuronal fate commitment through the 
regulation of neurogenin 1 [33]. Together, these studies reveal that SCF and G-CSF 
are involved in the regulation of NSC/NPC proliferation and neurogenesis.

In addition to promoting the proliferation and differentiation of intrinsic NSCs/
NPCs, the combination of SCF and G-CSF also mobilizes bone marrow-derived 
cells, causing them to migrate into the brain and differentiate into various types of 
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cells, including neurogenesis. The fate of bone marrow-derived cells in the brain is 
dependent upon the microenvironment of the brain. In the subacute and chronic 
stroke brain, SCF + G-CSF treatment augments bone marrow-derived endothelial 
cells and neurons [34, 36]. In the brains of CADASIL mice, SCF + G-CSF selec-
tively directs bone marrow-derived cells toward neuronal fate commitment [99]. In 
the APP/PS1 transgenic mice, bone marrow-derived microglial cells are signifi-
cantly increased in the brain following SCF + G-CSF treatment, suggesting that 
SCF + G-CSF treatment leads to an enhancement in microglial fate commitment of 
bone marrow-derived cells in the brain with β-amyloid deposits [92, 100, 101]. 
G-CSF treatment has also been shown to mobilize bone marrow-derived mesenchy-
mal stem cells, promote the migration and differentiation of mesenchymal stem 
cells into the neurons, and contribute to neurogenesis in the brains of AD mice 
[102]. The C-X-C chemokine receptor type 4 (CXCR4)/stromal cell-derived factor 
1 (SDF-1) has been shown to be a key mediator in G-CSF-based recruitment of 
bone marrow-derived cells [102]. Together, these studies suggest that although bone 
marrow-derived cells possess different phenotypes in various brain conditions, 
these cells may participate in the neurogenesis and brain repair.

4  SCF and G-CSF Combination in Brain Repair Post-acute 
Stroke: Effective and Mechanistic Determinations

As stated in the previous section, substantial evidence has revealed the capacity of 
SCF and G-CSF in promoting neural plasticity and neurogenesis, and the permea-
bility of the BBB to SCF and G-CSF. These discoveries provide a scientific base for 
seeking to determine the therapeutic effectiveness of SCF and G-CSF in enhancing 
brain repair and stroke recovery in the subacute phase and/or the chronic phase of 
stroke.

Here we highlight the preclinical studies demonstrating the efficacy and possible 
mechanisms of SCF and G-CSF in brain repair during subacute or chronic phases of 
experimental stroke.

4.1  The Effects of SCF and G-CSF on Brain Repair 
in the Subacute Phase of Stroke

There are a few preclinical studies demonstrating the therapeutic efficacy of SCF 
and G-CSF in the subacute phase of stroke. Using a transient focal ischemia model 
in Sprague-Dawley rats, Lee and co-workers [103] reported that intraperitoneal 
injections of G-CSF for 3 days beginning at 4 or 7 days post-ischemia led to motor 
function improvement, infarction size reduction, and increased angiogenesis. 
Kawada and colleagues [34] injected SCF and G-CSF subcutaneously during the 
period of 11–20 days after induction of focal cerebral ischemia in C57BL mice, and 
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observed that the SCF and G-CSF treatment increased the number of bone marrow- 
derived neuronal cells in the ipsilesional hemisphere and promoted the proliferation 
of intrinsic NSCs/NPCs in the SVZ.  In addition, they also found that the 
SCF + G-CSF synergistically enhanced NSC/NPC proliferation in the SVZ when 
compared with treatment of SCF or G-CSF alone [34]. How SCF + G-CSF opti-
mally repairs the brain in the subacute phase of stroke has not been clarified. Using 
the same treatment paradigm as reported by Kawada and colleagues [34], 
SCF + G-CSF treatment was found to upregulate IL-10, an anti-inflammatory cyto-
kine, and to reduce infiltration of microglial/macrophages in the infarcted brain 
[104]. Although inhibiting inflammation by SCF + G-CSF may provide a favorable 
microenvironment for neurogenesis in the subacute phase of stroke, the causal link 
among the SCF  +  G-CSF-induced neurogenesis, anti-inflammation, and motor 
function improvement remains to be elucidated.

4.2  The Effects of SCF and G-CSF on Brain Repair 
in the Chronic Phase of Stroke

Most stroke patients still carry different degrees of disability when they enter into 
the chronic phase of stroke although many of them have received thrombolytic ther-
apy in the acute phase [19] and physical therapy during the subacute phase [16]. 
However, in the chronic phase, there has been no therapy available for enhancing 
stroke recovery as it has been believed that the opportunity for obtaining recovery is 
largely ended by the time stroke patients enter the chronic phase [17, 105].

Brain plasticity is an intrinsic ability of the brain to reorganize its function and 
modify its structure in response to stimuli and injuries from both internal and exter-
nal sources. Accumulating evidence supports that brain plasticity exists throughout a 
person’s lifespan [106–111]. Accordingly, there is a possibility that a stroke- damaged 
brain may still be reparable during the chronic phase.

Over the past decade, our research team has demonstrated the safety, efficacy and 
possible mechanisms of SCF and G-CSF on stroke recovery in the chronic phase of 
stroke using rat and mouse models of cerebral cortical ischemia.

4.2.1  The Efficacy, Safety and Effective Dosage of SCF and G-CSF 
on Stroke Recovery in the Chronic Phase of Stroke

Systemic administration of SCF and G-CSF during the period of 3.5–6 months after 
cerebral cortical ischemia has been demonstrated and validated to be effective for 
brain repair in spontaneously hypertensive rats (SHRs), C57BL mice, or transgenic 
mice with C57BL genetic background [35–39, 41]. SHRs are used for making a 
stroke model because hypertension is the most important risk factor for stroke in 
humans [112]. Chronic hypertension leads to extensive pathological changes in the 
cerebrovasculature [113, 114]. Numerous studies have illustrated that the cerebral 
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cortical ischemia model in SHRs shows a more consistent and larger infarction in 
the cortex than in normotensive rats due to poor collateral circulation [35, 80, 114–
121]. This model also causes permanent deficits in somatosensorimotor function 
that last up to the chronic phase of stroke [35, 80, 118–122]. In addition to the corti-
cal infarct model in SHRs, we also use C57BL mice or transgenic mice with C57BL 
genetic background to make the cerebral cortical infarct model for exploring the 
mechanisms behind the SCF and G-CSF-enhanced brain repair in chronic stroke.

First of all, the therapeutic efficacy of SCF and G-CSF on stroke recovery in the 
chronic phase has been examined using the cerebral cortical ischemia model in 
SHRs. SCF (200 μg/kg), G-CSF (50 μg/kg), or SCF + G-CSF was subcutaneously 
injected daily for 7 days beginning at 3.5 months post-ischemic stroke. Among the 
treatment groups, only the SCF + G-CSF treatment led to a stable and long-term 
(17 weeks) improvement in somatosensory motor function. SCF alone treatment 
improved functional outcomes but the improvement did not present as stable as the 
SCF  +  G-CSF combination treatment. G-CSF alone treatment, however, did not 
result in functional benefits. The research data of field-evoked potentials lent further 
support to the neurobehavioral findings and revealed a reestablished normal pattern 
of somatosensory pathways by SCF + G-CSF treatment [35]. These findings pro-
vide first evidence that SCF + G-CSF combination treatment in the chronic phase of 
stroke can enhance stroke recovery.

Given the fact that stroke has the highest incidence in the elderly [2], the safety, 
efficacy, and optimal dosage of SCF + G-CSF combination treatment on chronic 
stroke recovery have been assessed in experimental stroke using aged SHRs and 
C57BL mice [37]. Six dosages of SCF + G-CSF ranging from 5 μg/kg (SCF) and 
2.5 μg/kg (G-CSF) to 200 μg/kg (SCF) and 50 μg/kg (G-CSF) have been examined 
[37]. The treatment was initiated at 3–4 months post-experimental stroke. All the 
tested dosages did not show either acute or chronic toxicity to the livers and kid-
neys, demonstrating the safety of SCF + G-CSF treatment for chronic stroke in the 
aged population. The higher dosages (SCF/G-CSF: 200/50,100/25, and 50/25 μg/
kg) showed the most effective outcomes in mobilizing circulating stem cells and in 
stably improving functional recovery. The intermediate dose of SCF  +  G-CSF 
(20/10 μg/kg) displayed a short-term improvement, whereas the dosages less than 
20/10 μg/kg did not lead to functional improvement in chronic stroke in aged SHRs. 
These findings demonstrate that SCF + G-CSF treatment for chronic stroke recov-
ery is a safe and effective therapeutic approach for the aged population and acts in a 
dose dependent manner.

4.2.2  The Possible Mechanisms Underlying the SCF + G-CSF-Enhanced 
Recovery in the Chronic Phase of Stroke

We have employed the approaches of bone marrow-derived cell tracking, molecular 
manipulation, live brain imaging, whole brain imaging, axon tracking, immunohis-
tochemistry, confocal imaging, and neurobehavioral testing to determine how 
SCF + G-CSF repairs a stroke-damaged brain in the chronic phase.
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By tracking bone marrow-derived cells through bone marrow transplantation, 
our study has revealed that increased bone marrow-derived endothelial cells and 
bone marrow-derived neurons are involved in SCF + G-CSF-enhanced angiogenesis 
and neurogenesis in the brain of chronic stroke [36].

Previous studies have shown that the receptors for SCF and G-CSF are expressed 
in cerebral neurons [32, 80] and cerebral endothelial cells [81] of adult mice and 
rats, and that both the SCF and G-CSF can pass through the blood-brain barrier of 
the adult rodent brain [32, 81]. Can SCF  +  G-CSF treatment in chronic stroke 
remodel the neural networks in an aged brain? To address this question, we used 
2-photon microscopy to scan the brain area adjacent to the infarct cavity before and 
after SCF + G-CSF treatment in aged Thy-1-YFPH mice (C57BL background) [38]. 
In the brains of Thy-1-YFPH mice, the yellow fluorescent protein (YFP) is exclu-
sively expressed in the layer V pyramidal neurons [123]. The mushroom spines with 
large heads on the dendrites are unique spines forming functioning synapses [124, 
125]. Before SCF + G-CSF treatment, the mushroom spines of layer V pyramidal 
neurons were decreased, and the uncertain type (U-type) spines, which cannot build 
synapses with other neurons, were increased in the chronic stroke brain. This obser-
vation indicates that reduced synaptic circuits occur in the peri-infarct cavity cortex 
in the chronic stroke brain. However, 6 weeks after treatment, increased mushroom 
spines with decreased U-type spines were found in the brains of SCF + G-CSF- 
treated stroke mice. In addition, the densities of dendrites and PSD-95 were also 
increased in the ipsilesional cortex by SCF + G-CSF treatment. These findings dem-
onstrate that SCF + G-CSF intervention in the chronic phase of stroke enhances 
synaptic network regeneration in the ipsilesional cortex of aged brains.

To distinguish whether SCF + G-CSF can directly modulate neural network for-
mation, we carried out an in vitro study by determining neurite outgrowth of pri-
mary cortical neurons [30]. We found the expression of SCF and G-CSF receptors 
on the neurite growth cones. SCF + G-CSF showed synergistic effects in promoting 
neurite extension, activating NF-kB, and upregulating brain-derived neurotrophic 
factor (BDNF). Blockage of NF-kB activation eliminated the SCF  +  G-CSF- 
increased neurite outgrowth and BDNF production [30]. These data demonstrate the 
direct and synergistic efficacy of SCF + G-CSF in promoting neurite outgrowth, 
which is the initial step for generating neural networks. SCF + G-CSF enhances 
neurite extension through the NF-kB signaling.

Based on the in vitro findings, we then sought to use NF-kB inhibitor for block-
ing SCF + G-CSF-promoted neural network regeneration and to elucidate whether 
there is a dependent link between the SCF  +  G-CSF-enhanced neural network 
remodeling in the ipsilesional cortex and the SCF  +  G-CSF-improved motor 
 function in chronic stroke. In an in vivo study [39], the NF-kB inhibitor was infused 
into the lateral ventricle through an osmotic pump for 7 days beginning at 1 h before 
a 7 day treatment (s.c.) of SCF + G-CSF, which was initiated 4 months after cortical 
ischemia. To track axons projecting from the contralesional hemisphere, an antero-
grade neuronal tracer, biotinylated dextran amine (BDA), was injected into the 
somatosensorimotor cortex in the contralesional hemisphere. After motor function 
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testing 2 and 6  weeks after treatment, mice were sacrificed at 10  weeks post- 
treatment. Our findings have revealed that SCF + G-CSF-increased BDA-labeled 
axons, PSD-95 accumulation, and blood vessel density in the peri-infarct cavity is 
eliminated by NF-kB inhibitor. In addition, the SCF + G-CSF-induced motor func-
tional improvement is also prevented by NF-kB inhibitor. These data suggest that 
the SCF + G-CSF-improved functional outcome in chronic stroke may depend on 
the regeneration of neural networks and vasculature in the peri-infarct cavity cortex. 
However, this terminal determination study is limited to clarify the dynamically 
causal link between the SCF + G-CSF-promoted neural network rewiring and func-
tional improvement in chronic stroke.

To over come this limitation, we conducted a unique study combining live brain 
imaging and motor function evaluation to simultaneously examine the dependent 
relationship between the SCF + G-CSF-enhanced synaptic network remodeling and 
motor function improvement in the chronic phase of experimental stroke [40]. 
To prevent the influence of behavioral testing-induced neural network remodeling, 
the following two sets of experiments were carried out simultaneously: (1) Thy1-
YFPH mice with cortical infarction for live brain imaging at 2 and 6 weeks post- 
SCF + G-CSF treatment, and (2) Thy1-YFPH mice with cortical infarction for motor 
function assessment at 2 and 6 weeks post-SCF + G-CSF treatment. The SCF + G-CSF 
treatment was initiated at 6 months post-experimental stroke. We observed that once 
the SCF + G-CSF-increased mushroom spines in the ipsilesional motor cortex were 
eliminated by NF-kB inhibitor, the SCF  +  G-CSF-improved motor function was 
simultaneously prevented. This observation provides solid evidence validating a 
clear causal link between SCF + G-CSF-promoted neural network remodeling and 
motor functional improvement and strongly supporting that the SCF  +  G-CSF-
enhanced neural network rewiring in the ipsilesional motor cortex is required for 
SCF + G-CSF-improved motor function in the chronic stroke.

It is worth noting that the SCF + G-CSF-increased dendritic spine head size, 
PSD-95 accumulation, and blood vessel density in the peri-infarct cortex are much 
greater than in the contralesional hemisphere of chronic stroke brain and in the 
intact control mouse brain [39, 40]. Blocking the SCF  +  G-CSF-induced “over 
growth” of synaptic networks and vasculature in the peri-infarct cortex by NF-kB 
inhibitor leads to abolition of the SCF + G-CSF-improved motor function in chronic 
stroke [39, 40]. These findings reveal that SCF  +  G-CSF-strengthened synaptic 
function in the peri-infarct motor cortex plays a vital role in motor functional 
improvement in chronic stroke.

5  Concluding Remarks

SCF and G-CSF were initially discovered as critical hematopoietic growth factors 
to regulate hematopoiesis. SCF in combination with G-CSF has been demonstrated 
to have synergistic effects in promoting the proliferation, differentiation and sur-
vival of HSCs/HPCs, and in mobilization of HSCs/HPCs into the blood.
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Numerous studies have demonstrated that both SCF and G-CSF are crucially 
involved in neural plasticity and neurogenesis. These findings significantly advance 
our knowledge of these two hematopoietic growth factors: the biological function of 
SCF and G-CSF is not only limited in the hematopoietic system but it also acts in 
the CNS. In addition to the synergistic effects of SCF + G-CSF in the hematopoietic 
system, our research team has, for the first time, illustrated that the combination of 
SCF and G-CSF also synergistically promote neurite outgrowth of primary cortical 
neurons.

Over the past decade, the contribution of SCF and G-CSF in brain repair post- 
acute stroke has been determined. Importantly, it has been demonstrated that SCF in 
combination with G-CSF synergistically enhances brain repair in the subacute 
phase (by Kawada’s group) and chronic phase (by our research team) of experimen-
tal stroke. These findings extend current understanding concerning the neurorestor-
ative efficacy of SCF + G-CSF in brain repair post-acute stroke and provide a new 
approach for enhancing stroke recovery.
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