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Abstract. Signal detection algorithm based on the linear minimum
mean square error (LMMSE) criteria can achieve quasi-optimal per-
formance in uplink of massive MIMO systems where the base stations
are equipped with hundreds of antennas. However, it introduces compli-
cated matrix inversion operations, thus making it prohibitively difficult
to implement rapidly and effectively. In this paper, we first propose a
low complexity signal detection approach by exploiting the weighting
symmetric successive over-relaxation (WSSOR) iterative method to cir-
cumvent the computations in the matrix inversion. We then present a
proper initial solution, relaxation parameter, and scope of the weighting
factor to accelerate the convergence speed. Simulation results prove that
the proposed simplified method can reach its performance quite close to
that of the LMMSE algorithm with no more than three iterations.
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1 Introduction

In traditional MIMO system, a base station is usually mounted with multi-
ple antennas and simultaneously serves multiple users. This kind of system has
been widely utilized in mobile communication to enhance data throughput and
link range without demanding additional bandwidth or transmit power [1,2].
Beneficial from this advantage, MIMO technology plays a significant role in
the majority of up-to-date wireless communication standards, such as 4G LTE
and LTE-Advanced [3]. However, due to the constantly increasing demands for
higher data rates, these systems are already approaching their throughout lim-
its. In order to utilize resources more efficiently, reduce interference, improve the
transmission rate and robustness, an emerging technique referred to as massive
MIMO which employs antenna arrays with a few hundred of antennas at base
station is proposed in recent years [4,5]. It has been regarded as an enabler for
the development of future broadband wireless networks and the next generation
mobile communication systems [6,7].

It is not trivial to establish a practical system to gain the extremely attractive
advantages of massive MIMO technology and low-complexity signal detection
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algorithms are of an actual interest in system uplink when the number of single-
antenna users is getting tremendously large [4]. Many signal detection algorithms
that work very efficiently in conventional MIMO systems fail in massive MIMO
systems because of computational complexity or performance. For examples, the
complexity of the maximum likelihood (ML) detector, which is optimal among
the hard decision methods, grows exponentially with the modulation order and
the number of transmit antennas. The fix-complexity sphere decoding (FSD)
[8] and tabu search(TS) [9] algorithms are put forward to obtain quasi-optimal
performance, but their complexity is not affordable when the configuration of
MIMO system is large or the modulation order is high [10]. One has no choice
but to turn to linear detection algorithms such as zero-forcing (ZF) and MMSE
due to their relatively low complexity and good bit error(BER) performance
for multiuser massive MIMO systems [4], but such algorithms still require com-
plexity of O(K?) for calculating a matrix inversion, where K is the number of
single antennas user. Therefore, many efforts have been dedicated to relieving
the burdensome high complexity problem for practical detector design.

In [11], Neumann series expansion was proposed to approximate the matrix
inversion in LMMSE detection, the performance and computational complexity
of which scaled with the number of selected terms of Neumann series. How-
ever, when the number of selected terms was larger than two, the complexity
of Neumann series expansion method was the same as that of the exact matrix
inversion based detection method. In [12], Richardson iteration was proposed to
avoid complicated matrix inversion, but the tradeoff between the signal detection
performance and computational complexity did not meet expectations. In this
paper, we first propose the WSSOR method to avoid direct matrix inversion on
the premise of LMMSE filtering matrix is symmetric positive definite in massive
MIMO systems and maintain good performance at same time. Then we present
a proper initial solution, relaxation parameter and scope of the weighting factor
to speed up the convergence rate.

The rest of paper is organized as follows: Sect. 2 introduces the general mas-
sive MIMO system model. Section 3 proposes the WSSOR-based signal detector.
Simulation results are given in Sect. 4. Section 5 provides a summary of our find-
ings and concludes the paper.

Notations: Lower-case and upper-case boldface symbols are used to repre-
sent column vectors and matrices, respectively. The superscripts 7', H and —1
respectively denote the transpose, conjugate-transpose and inverse of a matrix.
Tr(.) denotes the trace and I is the K x K identity matrix.

2 Massive MIMO System Model

Suppose an uplink multiuser massive MIMO system is composed of N receive
antennas at the base station and K single-antenna user equipments (K < N).
Let x. = [21, 22, ... ,xK]T stand for the vector containing the symbols simulta-
neously transmitted by all the users, where z; € B is the symbol transmitted
from the k-th user and B is the modulation alphabet. Let H, € CN*X represent



Low-Complexity MMSE Signal Detection Based on WSSOR Method 195

the channel coefficient matrix, whose entries are assumed to be independently
and identically distributed. Therefore, the received signal vector y. at the base
station can be denoted as

yve = Hex, + 2. (1)

where z. is the additive white Gaussian noise vector with its entries follow the
Gaussian distribution CN(0, 02).

Focusing on the uplink signal detection, when the subscript is dropped for
convenience, the complex-valued system model (1) can be written in the real
domain as

y = Hx + z, (2)

where H € R?2V*2K 'y ¢ R2N and z € R?V,

The task of massive MIMO signal detection at the base station is to detect
the transmitted signal vector x on the basis of the received signal vector y. It
is worth mentioning that the channel coefficient matrix H can be obtained by
time or frequency domain training pilots without loss of generality [13,14]. It has
been testified that LMMSE detection algorithm is quasi-optimal for recovering
the transmitted signal vector X from all the K single-antenna users

%= (HH + ¢’ Lig) 'Hly = Wy . (3)

where y,,, = Hy is regarded as the matched-filter output of y, and LMMSE
filtering matrix W is described as

W = G + ¢%Ik. (4)

where G = H”H stands for the Gram matrix. It is worth noting that the exact
computation of matrix inversion W~! needs unbearable complexity of O(K?3).

3 Near-Optimal Massive MIMO Signal Detector with
Low Complexity

In this section, first of all, we propose a low complexity signal detection algorithm
employing WSSOR without exact matrix inversion. Then we present the proper
initial solution, relaxation parameter, and scope of the weighting factor for the
WSSOR method, which are able to enhance the convergence rate in the case of
high-order modulation. In addition, we analyze the computational complexity of
the proposed algorithm in detail.

3.1 Signal Detection Based on WSSOR Method

Inspired by the special characteristics that the LMMSE filtering matrix W has
the property of being symmetric positive definite in massive MIMO systems
uplink [15], we can utilize the WSSOR method to efficiently solve Eq. (3) with low
complexity. Unlike that the LMMSE signal detector straightforwardly computes
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Wly, ., the WSSOR method converts the matrix inversion problem into the
one of solving linear equation
As=b, (5)

where A denotes the symmetric positive definite matrix, s the N x 1 solution
vector, and b the N x 1 measurement vector. The successive over-relaxation
(SOR) method [15] can solve the linear equation efficiently in an iterative way.
It greatly helps one avoid the complicated matrix inversion calculation and it is
entirely different from the conventional method that directly computes A~'b to
estimate s. Due to the fact that matrix A is symmetric positive definite, we can
decompose it into a diagonal matrix Da, a strictly lower triangular matrix La,
and a strictly upper triangular matrix L. Hence, the iterations of SOR can be
represented as

1 1
S = (Aa+ - Da) (S - DDA ~L{)sO b, (6)

where the superscript ¢ represents the number of iterations, and w indicates the
relaxation parameter, which imposes an strong impact on the convergence rate.
Observing that LMMSE filtering matrix W has the property of being sym-
metric positive definite in massive MIMO systems uplink, we may decompose

W in another manner as
W=D+L+L", (7)

where D, L and L¥ represent the diagonal matrix, the strictly lower triangular
matrix, and the strictly upper triangular matrix of the LMMSE filtering matrix
W, respectively. By using the SOR method, the transmitted signal vector x can
be expressed as

1 1
xH) = (L+ —D)~' [(= =)D —LT)x® +y |, (8)
w w

where x(©) is the initial solution of SOR and it is set as a 2K x 1 zero vector in
general [16]. Consequently, the signal detection problem in Eq. (3) can be solved
by SOR method in accordance with

(D + wL)x®) = (1 — w)Dx® — WLAx® 4wy, .. (9)

As D +wL is a lower triangular matrix, we can solve Eq. (9) to obtain s+
with low complexity and set relaxation parameter w within value scope 0 <w < 2.

However, when we encounter the more complex problems, very complicated
eigenvalue needs to be analyzed. Thus, [17] proposed Chebyshev acceleration and
symmetric successive over-relaxation (SSOR). SSOR is the improved method of
symmetry of the SOR, whose basic idea is to combine SOR iterative method and
backward SOR. The iterations of SSOR can be carried out in the following two
steps:

Step 1: Compute the previous half iteration which is identical with the SOR
iteration [16] by

(D + wL)x2 = (1 — w)DE® — WL + wy,,., (10)
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Step 2: Compute the latter half iteration which is the SOR method with the
equations taken in reverse order by

(D + wLMxHD = (1 — w)DXTY2) — QL2 4y (11)

where X represents the vector that needs to be estimated in SSOR for the
propose of weighting the solution of SOR and SSOR, and X(©) indicates the
initial solution of SSOR, which is chosen as a 2K x 1 zero vector in particular.

Compared with the SOR method, the SSOR method has two advantages.
Firstly, the structure of SSOR method is symmetric, which implies that the
convergence rate of SSOR can be improved by using Chebyshev acceleration.
Secondly, a simple and quantified relaxation parameter can be employed to
approximate a precise relaxation parameter with negligible performance loss,
considering the convergence rate of SSOR method is not very sensitive to the
relaxation parameter w. A detailed description of the relaxation parameters is
given in the next subsection.

Based on the basic idea of the SOR and the SSOR iterative method, we
employ the averaging weight to deal with the vector derived by the iteration of
Eq. (9) and the vector derived by iteration of Eq. (11). The WSSOR method can

be described as
% = oxtY 4 (1 — g)xHD, (12)

where superscript ¢ represents the number of iterations, and 6 indicates the
weighting factor, 6 € [0,1]. When 6 = 0, the WSSOR iteration will degenerate
into SSOR iteration; as for § = 1, it just boils down to the SOR iteration.
Applying the WSSOR method mentioned above to solve the equation. In
consequence, we obtain the estimated signal vector in the tth iteration is

D = Bx® 4 C, (13)

where B = 0(1 — w)((D + wL)™! — (D + wL7)"1)D + w((D + wL)'LH —
(D +wLH)1L)+(1-w)(D+wL?) ' D+w(D+wL?) L. C = w(D+wL)y,,.,
the weighting factor 6 € [0, 1]. Proper relaxation parameter and initial solution
will be given in subsection B.

3.2 Proper Relaxation and Parameter and Initial Solution

From Egs. (9), (11), and (13), it is clear that the setting of relaxation parameter
may result in some effects on the convergence rate of the WSSOR method. In
[18], the optimal relaxation parameter w°P! has been proposed as

opt

w (14)

2
C1+.2(1-p(B)))’

where p(B) denotes the spectral radius of Jacobi iteration matrix B, which

can be represented by
B;=D'W — Ig. (15)
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Each element of the diagonal matrix D will tend towards a fixed value IV in
massive MIMO systems [4], which indicates that we have

1
D!~ —Ix. 16
S (16)
Furthermore, as W is a central Wishart matrix, when N and K are large enough
and the system configuration ratio 8 = K /N remains fixed, the largest eigenvalue
Amaz 0f W can be well approached by [4]

Amaz = N(1 4+ 3)2. (17)

Therefore, we can exploit a simple proper relaxation parameter @ to replace w°P!
(14) with insignificant error as

_ 2 2

w VT c=(1+p)"-1 (18)
which signifies that the relaxation parameter w only depends on the system
configuration ratio 5. The relaxation parameter w will be a constant in case
that the configuration of massive MIMO system is kept as a fixed value.

For convenience, the initial vectors of tradition iterative algorithms are often
selected as zero vectors. However, better performance can be achieved by choos-
ing a proper initial solution than zero vectors under the same number of itera-
tions. As D! is a very good approximation for W~! when K/N is large enough,
and G =~ NIyk according to the channel hardening phenomenon, we can obtain
Wl ~ D! x~ (N +0%/E,)I;i ~ N~ 'Lk, where E, represents the trans-
mission power. Then, the proper initial solution of (12), (13) and (14) can be
selected as [19]

1
x(0) — NIQKyMF' (19)

3.3 Computational Complexity Analysis

Owing to that fact that number of multiplication is dominant in computational
complexity, in this subsection, we evaluate the complexity with respect to the
required number of multiplications in each iteration. The whole complexity is
mainly composed of two parts. The first part originates from the calculation of
Eq. (9), for which the solution can be expressed by

=(t+1/2) _ 1 — —(t) w rrL W t+1/2) %74 ()
L ( W)l'm + an,m Z Z m;kxk )7

k<m k>m

(20)
where Ty, ,and g indicate the m-th element of %2 x® and y, .
in Eq. (13), respectlvely The entry W, i indicates the mth row and kth column
of the matrix W. It is easy to know that the required number of multiplications
in the computation of each element of s(*+1/2) is K + 1. Due to the K elements
in s**+1/2) the overall number of multiplications needed for this part is K2 + K.

ZUH1/D) (0
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The second part is from the computation of (11). Same as (20), the solution
o (11) can be written as

FH) = (1 — )zt 4 Y W g = S Woa YD - ST W, alt),
(21)

where Ty, indicates the mth element of X**') in (11). According to (11), we
can conclude that this part also requires K2 + K times of multiplications.

In a word, the entire complexity of the proposed WSSOR based signal detec-
tor is t(2K? + 2K). Compared with MMSE algorithm, the complexity has been
reduced from O(K?) to O(K?). A comparison between Neumann series expan-
sion and WSSOR about computational complexity is shown in Fig. 1. It is clear
that the complexity of proposed WSSOR method is significantly lower than that
of the Neumann series expansion after two iterations. When the number of iter-
ation is larger than two, Neumann series expansion based signal detector loses
the advantage in computational complexity.

k<m k>m

—(t+1)

251 unfie Neumann,t=3|
sseshees Neumann,t=4
= & = Diagnal
WSSOR t=2
WSSOR t=3
WSSOR t=4 f‘;
&
48

Number of complex multiplication
- 5

057

20 30 40 50 60
Number of users(K)

Fig. 1. Complexity comparison against the number of users K

4 Simulation Result

To verify the performance of the proposed WSSOR signal detection algorithm
compared with the Neumann series expansion one, we provide the BER simula-
tion results in this section. The BER performance of the MMSE algorithm with
exact matrix inversion and just inversion of its diagonal elements are included
as the benchmark for comparison. We consider massive MIMO systems with
N x K =128 x 16. The modulation scheme of 16QAM is adopted and weighting
factor 6 is chosen as 0.75. In the following simulation diagrams, ¢t will denote the
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Fig. 2. BER performance comparison between Neumann and WSSOR without proper
relaxation parameter and initial solution
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Fig. 3. BER performance comparison between Neumann and WSSOR with proper
relaxation parameter and initial solution

number of iterations for the algorithm based on WSSOR method, but the first
terms of the algorithm based on Neumann series expansion.

Figure 2 shows the BER performance comparison between Neumann-based
signal detector and WSSOR-based signal detector without proper relaxation
parameter and initial solution. We can observed from Fig.2, the BER per-
formance of both Neumann-based signal detector and WSSOR-based signal
detector improves when increasing of the number of iterations. However, the
proposed algorithm outperforms the Neumann-based one with the same number
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of iterations t. For example, when ¢ = 4, to achieve the BER performance of
104, the required SNR by WSSOR-based signal detector just requires 10 dB,
while the Neumann-based one is about 14dB. Furthermore, we can conclude
that WSSOR-based signal detector obtains quasi-optimal BER performance of
LMMSE signal detector though fewer iterations.

Instead of choosing zero vector as the initial solution and 0 < w < 2, we
find a proper initial solution and relaxation parameter in Fig. 3. When the BER
performances in Figs. 2 and 3 are compared, it is clear that proper initial solu-
tion and relaxation parameter are helpful for accelerating the convergence rate
evidently. For instance, the algorithm with proper initial solution and relaxation
parameter outperforms the conventional one, especially in cases where the num-
ber of iteration t is small. When ¢t = 2, the BER performance of the WSSOR
method with proper initial solution and relaxation parameter is nearly similar to
the one without them when ¢ = 4, which implies we can be close to the optimal
BER performance of LMMSE signal detector through only a smaller number of
iterations.

5 Conclusion

In this paper, in accordance with the special characteristics of massive MIMO
systems, we propose a low complexity detection method based on the WSSOR
method, which exploits an iterative strategy to detect the transmitted signal vec-
tors without demanding complicated matrix inversion. The complexity has been
reduced from O(K?) to O(K?). Meanwhile, we present proper initial solution and
relaxation parameter, which improve the detection performance and convergence
rate. Simulation results illustrate that the proposed algorithm outperforms the
Neumann expansion-based signal detector, and achieves near-optimal detection
performance via only a small number of iterations.
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