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Abstract. The paper deals with a model of pulse neural network that is
applicable for solving of various tasks of processing sensory information. These
tasks relate to dynamical variables processing. The distinctive feature of the
problem statement is that dynamical variables are represented by pulse (spike)
trains. We propose two supervised temporal learning rules for pulse neural
network executing the required linear dynamic transformations of variables
represented by pulse trains. To generate the required output of the network
model we used a reference system with desired properties. The rules minimize
the difference between the actual and required pulse train in a local window. The
first temporal learning rule was named WB-FILT as it uses the filtered values of
errors between binary vectors representing the desired and actual pulse
sequences. The second rule was named WB-INST as it uses instantaneous value
of the error, which is the difference of the desired and the actual elements of
binary vectors. We demonstrated rule’s properties by computer simulation of the
mappings of the regular and the dynamical pulse trains. It has been shown that
proposed rules are able to configure the simple network that implements a linear
dynamic system.
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1 Introduction

Now much attention is paid to the pulse neural networks (PNN) for processing of
dynamical variables [1, 2]. In PNN the dynamical variables are encoded by pulse
(spike) trains. Development of supervised learning rules for functional PNN which
implements the required processing of dynamical variables during the mapping process
of the input pulse trains to the desired output pulse trains is considered as an important
problem in neuroinformatics [3].

Various temporal supervised learning rules providing the desirable mappings of the
pulse trains and using precise time of pulses are proposed in [4–7]. However, in most
cases they are oriented on pattern classification problems and are not aimed to the direct
application in adaptive real-time systems where processing of the dynamical variables
represented by the multi-pulse trains is required.

The vector-matrix digital model of the pulse neuron (PN) and the supervised
learning rule for real-time adaptive signal processing were proposed in [8, 9].
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The purpose of this paper is the extension of the scope of the PN vector–matrix model
[8, 9] that provides direct realization of the required linear transformations of
dynamical variables based on the input and output pulse sequences of the PN.

2 Problem Formulation

We will consider the adaptive modeling scheme of the linear dynamic system
appearing as a reference system which performs the required linear transformation
(mapping) of the input dynamical variable u(t) to the output variable yd(t) represented
(encoded) by means of desired pulse sequence sd(t). We want to construct the PNN
model which reproduces the dynamics of the reference system based on the desired
(required) pulse train sd(t).

To solve the problem, we will use the multi-input PN model that was considered in
[8]. It is assumed that bipolar input pulse trains ui(t) generated by the encoding
presynaptic neurons arrive at inputs of the PN linear filters with pulse responses hi(t).
Filter reactions xi(t) are weighted with synaptic weights wi and summarised to form the
summary postsynaptic potential yo(t) of the PN. If the integral of the module of
yo(t) exceeds a threshold then an output pulse of the PN with the sign corresponding to
the sign of yo(t) is emitted and integrator state is nullified. The specified chain of the
conversions corresponds to the LIF-neuron.

If we calculate the values of yo(t) at discrete time tn = nDt, where Dt is a time
sampling step, then [8, 9]

yoðnÞ ¼ wTxðnÞ; xiðnÞ ¼ bTi ðnÞhi; ð1Þ

where wT ¼ w0;w1; . . .;wI�1ð Þ is synaptic weight vector, biT(n) is sliding binary vector
whose elements are equal to signs of the input pulses at time moments tn, hi denotes the
impulse response vector hi ¼ hi 0ð Þ; hi 1ð Þ; . . .; hi K � 1ð Þð ÞT. In this case, we can use
the supervised learning rule in the form of Widrow-Hoff [9]:

DwðnÞ ¼ lxðnÞeðnÞ; ð2Þ

Where l is a learning rate, e nð Þ ¼ yd nð Þ � y0 nð Þ is an error.
The rule (2) assumes that PN input signals are pulses and the output signal of the

PN is represented by sample values of the dynamical variable yo(t). Therefore, the rule
(2) cannot be used directly for training of a PNN where not only input signals, but also
output signals are represented by pulse sequences.

We will derive the supervised PN learning rules for a case when the required output
signal yd(t) of the reference dynamic system and the actual output signal yo(t) of the PN
model (1) are represented by the pulse trains. We will call such rules that are driven
directly by the time of pulses as temporal rules.
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3 Temporal Learning Rules of the Pulse Neuron

In order to calculate the error e(n) we will use the known similarity measures of the
pulse trains [10, 11]. The most often used measure convolves of the pulse trains with
some positive smooth localized kernel hr(t). In accordance with (1) the convolution of
an actual output pulse train so(t) and desired pulse trainsd(t) with a kernel hr(t) can be
written as follows

~yoðnÞ ¼ bTo ðnÞhr; ~ydðnÞ ¼ bTd ðnÞhr; ð3Þ

where hr is the vector of samples of a kernel hr(t), bo
T(n) and bd

T(n) are the binary sliding
vectors containing of M elements and corresponding to the pulse sequences so(t) and
sd(t). Length M is selected considering dynamics of the reference system and the
processed signals. In fact, binary vectors fix some temporal prehistory of pulses.

Variables ~yoðnÞ and ~ydðnÞ can be interpreted as the result of conversions of
dynamical variables yo(n) and yd(n) to the pulse trains so and sd, and then back to the
origin form for the purpose of restoration of these variables from the pulse sequences. If
we perform replacement of yo(n) and yd(n) by variables ~yoðnÞ and ~ydðnÞ in the learning
rule (2) we will derive the temporal learning rule

DwðnÞ ¼ lxðnÞ bTd ðnÞ � bTo ðnÞ
� �

hr
� �

: ð4Þ

Having compared (2) and (4), we conclude that the error e(n) in the rule (4)
corresponds to the difference of binary vectors representing the desired and actual pulse
sequences. At the same time this error is smoothed by a window (by a filter) with
weights hr. We will name this temporal rule WB-FILT, as it compares filtered binary
vectors (by analogy with [7]).

The window hr is often selected so that the pulses (elements of binary vectors)
which were formed later will have the greater weight. If the length of the window is
restricted to a single sample then from (4) we derive the simple learning rule

DwðnÞ ¼ lxðnÞ bd nð Þ � b0 nð Þð Þ; ð5Þ

where bd(n) and bo(n) are the elements of binary vectors. This temporal rule uses the
instantaneous value of the error, which is equal to the difference of binary vectors
elements. Therefore, we will name it WB-INST (by analogy with [7]).

4 Computer Simulation

During the simulation, the simple model of bipolar IF-neuron with single input was
used as the model of an encoding neuron. The encoding neuron converts an input
signal u(t) to a pulse train. This pulse train simultaneously arrives to all inputs of the
PN. Pulse responses of the PN filters were identical in the form, but shifted in time for
the sampling step, i.e. hi tð Þ ¼ exp � t � iDtð Þ=ssð Þ; where ss is the time constant.
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To keep the shape of signals the finite symmetric exponent was used as a kernel
function. The kernel function was shifted for the half of its length to provide the linear
phase characteristic. Such kernel function creates the time delay equal to (M−1)/2 (if
M is odd) that requires the correction of the rule (4):

DwðnÞ ¼ lx n� ðM � 1Þ=2ð Þ bTd ðnÞ � bTo ðnÞhr
� �� �

: ð6Þ

In the first computational experiment (I = 401, K = 64, M = 129, Dt = 0.5 ms), we
run the training process to map the regular input pulse train with the period of 12.5 ms
to the desired pulse train with the period of 20.5 ms. The specified pulse sequences
were created by the encoding neurons when their inputs are constant signals with
amplitude u(t) = 0.08 and yd(t) = 0.05. It provided one pulse within the significant
duration of the pulse response hi(t). In this case, the filter reactions to pulses in the
separate channels of PN are not accumulated. It allows tracing the learning dynamics of
PN visually.

The actual output pulse train in the form of a raster and the diagram of themean-square
error after training of the PN with the help of WB-INST rule (5) are illustrated in Fig. 1.
The raster was created from the actual pulse train by cutting it into segments.

Similar results also turn out using the WB-FILT rule (6). However, in case of a
mapping of the regular pulse trains the WB-FILT rule provides faster convergence in
comparison with the WB-INST rule due to averaging of the error e(n) by hr.

In the second experiment (I = 2001, K = 10,M = 65, Dt = 10 ms), the training of a
mapping of the dynamical pulse sequences was carried out. We want to build a PNN
with the dynamics defined by the dynamics of the reference system which implements
double integration of the dynamical input variable u(t). The similar problem arises in
the case of signal processing of accelerometers [12].

Fig. 1. Results of the mapping of the regular pulse sequences
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During the training, the input signal u(t) equal to the sum of sine signals with the
multiple frequencies was applied to the input of the encoding neuron, and the corre-
sponding desired (reference) signaly d(t) arrived at the input of other encoding neuron.
The desired output signal yd(t) is calculated with the help of normalized values of
frequency response of the reference double integrator [12].

The distributions of the weight vector elements after training of PN are shown in
Fig. 2. Interpreting w as a pulse response, it is possible to obtain the frequency
response of the PNN model which corresponds to the double integrator in the bandpass
range (curves 2 and 3). The frequency response of the reference double integrator
(curve 1) was set in 30 uniformly distributed frequency points. Figure 2 shows that the
mean square of the error e(n) is decreasing with growth of n and the frequency response
of the synthesized PNN model approximates the frequency response of the reference
double integrator well. Pulse periodic behavior of the error is explained by periodicity
of used signals.

It is interesting to note that despite the differences in the nature of elements dis-
tribution of the vector w for two rules (5) and (6) the frequency responses obtained with
their help are the very close (curves 2 and 3).

5 Conclusions

The presented temporal supervised learning rules WB-INST and WB-FILT are appli-
cable for using in digital adaptive systems with the reference PNN that performs the
required linear transformations of the dynamical variables represented by pulse
sequences.

The quantitative changes of synaptic weights are proportional to an error and
reactions of the PN synaptic connections to input pulses. In such common formulation,
the proposed temporal learning rules are similar to the known rules: ReSuMe [4],
SPAN [5], PSD [6], INST and FILT [7].

However, an important distinction of the proposed temporal learning rules is that
they are formulated in the discrete time in a general view. It allows deriving further
variations of these rules oriented on specifics of processing tasks of dynamical

Fig. 2. Results of the mapping of the dynamical pulse sequences
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variables. In addition, the offered PN model and rules due to the sparsity of binary
vectors are quite effective from computational point of view.
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