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Abstract. The article is devoted to the analysis of neural networks from the
positions of the neuromorphic approach. The analysis allows to conclude that
modern artificial neural networks can effectively solve particular problems, for
which it is permissible to fix the topology of the network or its small changes. In
the nervous system, as a prototype, the functional element - the neuron - is a
fundamentally complex object, which allows implementing a change in topology
through the structural adaptation of the dendritic tree of a single neuron. Prom‐
ising direction of development of neuromorphic systems based on deep spike
neural networks in which structural adaptation can be realized is determined.
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1 Introduction

Currently, there are many poorly formalized problems that are badly solved by existing
methods (detection and recognition of objects in conditions of significant data shortage,
control of unstable systems, control of the behavior of mobile agents in a volatile envi‐
ronment, etc.).

One of the most promising common approaches to solving such problems is artificial
neural networks (ANN), in particular, deep neural networks (DLN), which are now
actively developing. This is due, in particular, with the advent of new hardware (NVIDIA
graphics accelerators [1], specialized processors (BrainScaleS [2, 3], SpiNNaker [4],
NIDA [5], DANNA [6], Neurogrid [7], IBM TrueNorth [8]), which allow efficient
numerical calculations on the basis of the mathematical apparatus of the DLN, and the
direction of neuromorphic systems, whose architecture and design are based on the
principles of the work of the biological neural structures of the nervous system. This is
a fairly broad interpretation, in which the deep learning fit well. Possible successes of
neuromorphic systems are associated, first of all, with the biological plausibility of their
basic neuron component and its hardware implementation. In this sense, some special‐
ized processors (in particular, IBM TrueNorth) refer specifically to processors of the
neuromorphic type.
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2 Overview of Deep Neural Network Architectures

Today, the practical application of neural networks is most intensively developed in the
trend of deep learning.

There is a large number of networks within this trend [9]. The basic architectures,
from which all the main implementations are obtained:

– Feed forward (FF) (Perceptron, Autoencoders [10]);
– Fully connected networks (FCN) (Markov Chain [11], Hopefield network [12],

Boltzmann Machine [13];
– Convolutional neural networks (CNN) (LeNet [14], VGG-19 [15], Google Inception

[16]);
– Recurrent neural networks (RCN) (LSTM [17], Deep Residual Network (ResNet)

[18–20]);

There are separately presented architectures such as growing neural networks, in
which the following widespread types can be distinguished:

– Networks based on Kohonen maps (SOM [21], ESOM [22], GHSOM [23], SOS
[24]);

– SOINN, ESOINN [25];
– Neural Gas Network [26] and its derivatives GNG [27], IGNG [28], GCS [29],

TreeGCS [30], PGCS [31] and others.

Relatively new works are devoted to the implementation of spiking neural networks,
based on the above architectures [32–34]. The advantages of deep spiking neural
networks are firstly declared in the significant energy savings in the case of hardware
implementation.

If we consider the achievements of neural networks from the point of view of solving
particular problems, great progress has been made in this direction. So, according to the
results of the competition in recent years, DLN have been won in most computer vision
tasks (pattern recognition, object detection, segmentation, etc.). It is important to note
that such networks are effective in problems in which there are high local correlations
in the input data.

Also, there is the big problem of combining a set of private solutions, formed by
neural networks to solve common problems of controlling agent behavior in a complex
environment. In other words, the solution, for example, of object detection problem,
converts the space of high-dimensional input data into a space of low dimensionality of
the classes of objects to be detected. If it is necessary to create a flexible control system
for the behavior of the agent (robot) in a volatile environment, we are forced to operate
with a number of such particular solutions. This naturally limits the agent in adaptability
to changes in the environment. Part of this problem is solved in growing networks.

Despite the fact that ANN were originally based on the analogy with the nervous
system, the majority of neural networks in their topology, training rules and principles
of functioning as a whole is very different, and the trend away from biological likelihood
is growing. In particular, the development of networks follows the path of increasing
the number of layers, but not the complexity of the functional element of neural networks

48 A. Bakhshiev and L. Stankevich



- the neuron; and growing neural networks are based on the addition of neurons and
layers, in contrast to change in the structure of a neuron dendritic tree in a biological
system, where each dendrite provides complex information processing.

If we compare the known features of the nervous system and ANN (assuming that
the advantages of the still disjointed architectures of ANN will be unified), then
following table can be made (Table 1).

Table 1. Comparison of the features of artificial neural networks and the nervous system

System property Artificial neural network Nervous system
The complexity of the
functional element

Low High

The possibilities of structural
adaptation of the network

The network topology is
rigidly defined within the
architecture. Topology can be
changed block-wise using
global optimization
algorithms

Topology is partially defined
by DNA, but low-level parts
can change their function
(solved tasks), at the initial
stage of growth, and high-level
parts always

The principle of remembering
information in the network
structure

Generalization of input data
and reduction of the dimension
of the problem.
Formation of one (or a limited
number) of output vectors

Generalization of input data
and reduction of the dimension
of the problem.
Formation of a set of vectors of
output data (work
simultaneously in a set of
contexts)

Method of network
restructuration

Change the number of neurons
in the layer, the number of
layers, the number of neurons
in the ensemble

Change in the structure of the
neuron membrane (number
and length of dendrites—
generalizing elements, the
number of synapses, the size of
the neuron).
Change in the number of
neurons in the “layer”/
ensemble, the number of
“layers”

Methods for parametrizing the
network

Change in the weight of the
neuron input

Change the size of the synapse

It seems promising to consider the possibility of complicating the model of the neural
networks functional element with an emphasis on the possibilities of network structural
adaptation, in the trend of the neuromorphic approach.

3 Neuron Models

There are many widespread models of neurons. By the level of abstraction, models can
be divided into:
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– Biological (biophysical)-models based on the modeling of biochemical and physio‐
logical processes, which, as a consequence, lead to a certain behavior of the neuron
in certain modes of operation (the Hodgkin–Huxley model [35]).

– Phenomenological-models describing certain phenomena of the behavior of a neuron
in certain modes of operation as a “black box” (the Izhikevich model [36]).

– Formal-models with the highest level of abstraction, describing only the basic prop‐
erties of the neuron (formal neuron [37]).

Each model can correspond to several features from this classification. In the frame‐
work of ANN in general, and DLN, in particular, modifications of formal neuron models,
with different activation functions (Sigmoid, hyperbolic tangent, ReLU and its deriva‐
tives [38]) are used. Spiking variations of deep networks basically contain such models
of neurons as variations of the threshold integrator model [39], the Izhikevich model
mentioned above.

One of the promising options for implementing the model of an element of neuro‐
morphic systems is the phenomenological model of a dynamic spike neuron with the
ability to describe the spatial structure of the dendritic apparatus [40]. This model allows
us to describe the variable topology of a neural network, based on the principles of neural
structure formation known from neurophysiology [41].

4 Discussion

The main feature of the nervous system, which is still not considered in the ANN
archives, is a great potential in structural (topological) restructuring. Structural adapta‐
tion in the nervous system is largely based on the high complexity of a single element
of the network - the neuron.

The analysis allows to identify the following areas of development of ANN in the
framework of the neuromorphic approach:

– Complicating the neuron model, adding the possibility of describing the structure of
the membrane (as generalizing and binding elements) of the neuron.

– Development of learning algorithms, taking into account the modification of the
structure of the generalizing and binding elements of the neuron.

– Development of ANN architectures that allow training and data output simultane‐
ously in multiple contexts.
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