Implementation of a Gate Neural Network
Based on Combinatorial Logic Elements

Taras Mikhailyuk(g) and Sergey Zhernakov

Ufa State Aviation Technical University, Ufa, Russia
realotoim@mail. ru

Abstract. Generally, math models which use the “continuous mathematics” are
dominant in the construction of modern digital devices, while the discrete basis
remain without much attention. However, when solving the problem of con-
structing effective computing devices it is impossible to ignore the compatibility
level of the mathematical apparatus and the computer platform used for its
implementation. In the field of artificial intelligence, this problem becomes
urgent during the development of specialized computers based on the neural
network paradigm. In this paper, the disadvantages of the application of existing
approaches to the construction of a neural network basis are analyzed. A new
method for constructing a neural-like architecture based on discrete trainable
structures is proposed to improve the compatibility of artificial neural network
models in the digital basis of programmable logic chips and general-purpose
processors. A model of a gate neural network using a mathematical apparatus of
Boolean algebra is developed. Unlike formal models of neural networks, pro-
posed network operates with the concepts of discrete mathematics. Formal
representations of the gate network are derived. The learning algorithm is
offered.

Keywords: Boolean algebra - Boolean neural network + Combinatorial logic -
Delta rule + Gate neural network + Logical network - Widrow-Hoff rule

1 Introduction

Quite often in practice, there are problems associated with the compatibility of the
functional and hardware-software parts of the device. These problems are very complex
and require an integrated approach. Their solution leads to a change in qualitative and
quantitative characteristics according to specified requirements.

Artificial intelligence algorithms require complex use of hardware and software.
Due to specific nature of the research, such basic indicators as productivity, diminu-
tiveness and low economic costs associated with the production and maintenance of the
devices being developed remain unchanged. The approach based on modeling of
artificial neural networks is versatile and flexible, but has limitations related to the field
of their application. Among the disadvantages inherent to the computer of von Neu-
mann architecture, we can distinguish the following:

e virtualization of calculators, architecture, physical processes;
e the dependence of the processing time on the size of the program;

© Springer International Publishing AG 2018

B. Kryzhanovsky et al. (eds.), Advances in Neural Computation, Machine Learning,
and Cognitive Research, Studies in Computational Intelligence 736,

DOI 10.1007/978-3-319-66604-4_4

24 T. Mikhailyuk and S. Zhernakov

e unjustified growth of hardware costs when increasing productivity;
e low energy efficiency, etc.

At present, there is an increasing number of specialized intellectual architectures
aimed at overcoming the described drawbacks [1-8]. Such devices have wide appli-
cation range and are compatible with the environment of the computer system, but they
also have some disadvantages. Generally, math models which use the “continuous
mathematics” are dominant in the construction of modern digital devices, while the
discrete basis remain without much attention. However, solving the problem of con-
structing effective computing devices it is impossible to ignore the compatibility level
of the mathematical apparatus and the computer platform used for its implementation.
In the field of artificial intelligence, this problem becomes urgent during the devel-
opment of specialized computers based on the neural network paradigm.

Existing mathematical models of a neuron operate with continuous quantities, are
realized on the basis of an analog elements, which leads to their poor compatibility with
digital equipment. But at the same time, most neural networks use the principles of
digital logic [2—4, 6-8]. And as the result, in promising computing devices being
developed multi-level systems of models are implemented. These systems introduce
certain disadvantages in the final implementation of the solution [9, 10].

In this paper, a method for constructing a neural-like architecture based on discrete
trainable structures is proposed to improve the compatibility of artificial neural network
models in the digital basis of programmable logic chips and general-purpose
processors.

2 Model of the Gate Neural Network

The trainable gate network is representative of Boolean networks [5, 11-16] with the
ability to specify the type of mapping of the vector of input signals to the output vector,
using the learning algorithm. Such a network can be considered as an attempt to
combine certain features of neural network technology and combinational logic gates to
achieve a synergistic effect in the implementation of high-performance embedded
systems.

We obtain a formalized representation of this type of network. It is known from
dicrete mathematics that the full disjunctive normal form (FDNF) can be represented as
follows:

Fxi,..xp) = Y XA, AR (1)
(o1,...,0p)
f(O'],...,Up) =1

while the disjunction of all sets has the form:

y=f(o1,...,0p) =1 (2)

Implementation of a Gate Neural Network 25

Rule (2) can be reformulated as a disjunction over all full product terms (FPT) of P
variables:

2]’
Y =1 ()
Then the minimal term can be written in the following way:

wn(x) — /Sl x;‘)”n(n—l) (4)

p

Next, we define the function Mp (o):

Mp(o) = { 1, otherwise. S

where the period T=27,i=0, 1, 2,.. .,% — 1.
The function (5) is square wave logical basis, similar to the Rademacher function
[17]. Figure 1 shows the form of this function for p < 3.

M|(G)
1 [O O O O
O O O o) »
0 1 2 3 4 5 6 7 8 o
My(a)
1 [B —) Y
O oO———— >
0 1 2 3 4 5 6 7 8 o

M;(a)

ﬁ o
0

1 2 3 4 5 6 7 8 0]

v

Fig. 1. View of the square wave function for p < 3

The square wave function masks each variable included in Eq. (4) with the goal of
specifying all FPTs. Next, we represent the FPT (3) in vector form:

V=[1(x), ¥a(x), ... Un(x)], (6)

26 T. Mikhailyuk and S. Zhernakov
where x—the column vector of input signals:

X =[x, X, ..oy XP]T- (7)

Next, we weigh functions of input signals in vector form, which is known from the
theory of neural networks [1, 18, 19]:

wiAY =y, (8)

where w—the column vector (9), and y—the column vector (10):
T
W = [Wl7 Wo, ..., WN} s (9)

Y= [yla Y2, - }’S]T- (10)

The matrix Eq. (8) has a similar form with the equation describing the formal
neuron, radial basis function network [18, 19] and also the sigma-pi network [20], but
in this case the multiplication operation is replaced by the conjunction operation, since
the matrices have a binary form.

For a network containing one element in the output layer, we get the following
expression:

N
wiAY = [wy, wa, oo wh] A T = Vowa Ay, (x). (11)

Next, we substitute (4) into (11), and obtain the following relation in the general
form:

W A A 20D (12)

The Eq. (12) is the model of a Boolean (gate) trainable network. It follows from
expression (12) that in such model there are no operators inherent to neural networks,
since they are bit-oriented. Weights are Boolean variables there, and not real numbers.
This model describes a two-layer network in which the first layer is represented by a set
of N constituent units (4), besides this layer does not require training. The output layer
is represented by one disjunctive element, which summarizes the minterms, enabled by
means of weight coefficients.

Implementation of a Gate Neural Network 27

A similar dependence can be obtained for a network with several elements in the
output layer:

N
\/l win A Y, (X)
e

Wit, W12, -+ -, WIN "‘ll(x) - yi
WT N l” = oty Waz e WON A lpz(X) = Yl Wap A]‘/n(x) = 2
L
Wst, Ws2, - .., WsN ¥ (x) Vo wg A, (X) s
n=1
(13)
Then the Eq. (6) for each output can be written in a general form:
N P
Vs =V W A A xg/["(nil) (14)
n=1 p=1

The analysis of dependences (13) and (14) shows that it is possible to synthesize on
their basis an arbitrary combination device with P inputs and S outputs, which has two
levels of gates and has an increased speed in hardware implementation. These formulas
represent a trainable logical basis. Figure 2 shows a graph of the network.

Fig. 2. Trainable gate neural network

28 T. Mikhailyuk and S. Zhernakov

It is known that the maximum number of combinations of P variables is equal to 27,

and the number of functions is 22". It follows that the number of neurons of the first
layer is not more than 2°:

N<2P, (15)
In turn, the number of neurons in the output layer is less than 22"
s<2?. (16)

Thus, the maximum sum from (15) and (16) describes the largest network without
repeating elements. However, duplication of elements can be aimed to increasing the
reliability of the network.

It is not difficult to show that the obtained model can be realized in the form of a
full conjunctive normal form (FCNF). On the basis of de Morgan’s laws for several
variables [21], we can show:

V oa, = A ay. (17)

Applying the rule (17) to expression (12) we obtain:

N P i (ne
W= A (wmv le,Aff’(”). (18)
= p=

Next, replacing the variables, we get the FCNF:

n=1

N P
As= A (msn \/p\/lx[‘jvf’("_l)) (19)

Equations (12) and (19) are equivalent in essence like the FCNF and the FDNF are
equivalent. It is seen from (19) that the weighing is performed by the disjunction
operation, in contrast to (12).

3 Network Learning Algorithm

The learning algorithm of the perceptron according to the Widrow-Hoff rule is known
from the theory of neural networks, [18, 19]:

W.m(t + 1) = Wsn(t) + Awm(t)a (20)
AWM(Z‘) = xn(t) ’ (ds _ys(t))a (21)

On the basis of (20) and (21), it is easy to see the following:

Implementation of a Gate Neural Network 29

e weight w, can increase or decrease depending on the sign of the increment of
weight Awg,,;

e weight change occurs when the output signal y, deviates from the reference d; only
for the input x,, which causes this influence.

Using these statements, we can show the training algorithm for a binary network.
We convert these formulas into a system of residual classes. It is known that additive
operations and multiplication will look like the following [22]:

(a+b) mod ¢ = ((amod ¢) & (b mod ¢)) mod c, (22)
(a-b)mod ¢ = ((amod ¢) - (b mod ¢)) mod c. (23)

We describe (20) and (21), using (22) and (23). Then the Widrow-Hoff rules will
take the form which is typical for operations performed by digital devices:

Wsn(t + 1) mod g = (Wsn<t) + Awsn(t» mod ¢
= (W (1) mod g + Awg,(f) mod ¢) mod g,

Awsn(l) mod g = (xn(t) ’ (ds - ys(t))) mod ¢
= ((xu(r) mod g) - ((ds) mod g — ys(r) mod ¢)) mod ¢,

where ¢ is a positive integer.

It is required that all variables (24) and (25) could accept only two states, or that the
modulo is equal 2. Considering that additive operations can be replaced by the
exclusive-OR operation and multiplication—by conjunctions, the Widrow-Hoff rule
will be written in the following form:

W (t+ 1) = wg, (1) B x, (1) A (ds @ y5(2)). (26)

We apply rule (26) to the received network model (12). Taking into account the
influence of minterms (4) on the learning element, we obtain the learning rule for the
Boolean network:

Wn(t 4+ 1) = wen (1) © (ds @ ys(£)) A Xl (35, ()) 7. @)

4 Analysis of the Results

On the basis of the dependence (12), the following features of the model can be noted:

the model is a network;

first and second layer have specialization;

signals can be either excitatory or inhibitory;

the type of generalization is different for FDNF and FCNF networks;

30 T. Mikhailyuk and S. Zhernakov

o there is no influence of minterms (maxterms) on each other.

Unlike formal models of neural networks, the Boolean network operates with the
concepts of discrete mathematics. From the point of view of an intelligent approach,
only binary input signals processing may seem insufficient when working with
higher-order sets, but the feature of the obtained formulas (12), (19) is in the possibility
of applying them as a logical basis controlled by weight coefficients. It is known that on
the basis of a Boolean basis arbitrary combinational devices are constructed. Fur-
thermore, with the actual implementation of the trainable gate network, it is charac-
terized by greater performance and reliability associated with the fixed depth of the
gates and the simplicity of the individual handlers. For solving more complicated tasks
it is possible to use the series of gate networks. In this case, the topology of the device
is more homogeneous, which leads to the interchangeability of its individual elements.

The developed network can be considered as a basis for constructing feedforward
neural networks with a flexible topology that can be adapted to a specific task, up to the
level of logical elements.

The proposed approach has the following advantages:

1. Greater homogeneity of the topology of the device, in contrast to the formal neuron,
which contains adders, multipliers, activation functions.

2. Increase of the applied component on the hardware level to solve specific problems.

3. Reduction of the occupied area of the crystal, which is required for the hardware
implementation of the network.

4. Parallelizing of the processing and learning of the network at the level of logical
elements.

5. Flexible learning architecture of a formal neuron.

5 Conclusion

The work in the field of creating discrete learning networks is aimed to solve the
problems of optimizing hardware and software costs in the construction of neural
networks and digital equipment in general. The trainable gate network is not intended
to replace a feedforward neural network, but it can be considered as a basis for con-
structing any digital network. The possibilities of gate networks are quite various. They
can find the application for the creation of associative memory devices, cryptography,
high performance combinational devices, solvers of Boolean functions and in other
applications.

Implementation of a Gate Neural Network 31

References

10.

11.

12.

13.

14.

15.

16.

17.

. Aljautdinov, M.A., Galushkin, A.L,, Kazancev, P.A., Ostapenko, G.P.: Neurocomputers:

from software to hardware implementation, p. 152. Gorjachaja linija - Telekom, Moscow
(2008). (in Russian)

Mezenceva, O.S., Mezencev, D.V., Lagunov, N.A., Savchenko, N.S.: Implementations of
non-standard models of neuron using Neuromatrix. Izvestija JuFU. Tehnicheskie nauki 131
(6), 178-182 (2012). (in Russian)

Adetiba, E., Ibikunle, F.A., Daramola, S.A., Olajide, A.T.: Implementation of efficient
multilayer perceptron ANN neurons on field programmable gate array chip. Int. J. Eng.
Technol. 14(1), 151-159 (2014)

Manchev, O., Donchev, B., Pavlitov, K.: FPGA implementation of artificial neurons.
Electronics: An Open Access Journal, Sozopol, Bulgaria, 22-24 September (2004). https://
www.researchgate.net/publication/251757109_FPGA_IMPLEMENTATION_OF_
ARTIFICIAL_NEURONS. Accessed 28 Jan 2017

Kohut R., Steinbach B.: The Structure of Boolean Neuron for the Optimal Mapping to
FPGAs. http://www.informatik.tu-freiberg.de/prof2/publikationen/CADSM2005_BN_
FPGA.pdf. Accessed 1 Feb 2017

Korani, R., Hajera, H., Imthiazunnisa, B., Chandra Sekhar, R.: FPGA modelling of neuron
for future artificial intelligence applications. Int. J. Adv. Res. Comput. Commun. Eng. 2(12),
4763-4768 (2013)

Omondi, A. R., Rajapakse, J. C.: FPGA Implementations of Neural Networks. Springer
(2006). http://lab.fs.uni-lj.si/lasin/wp/IMIT _files/neural/doc/Omondi2006.pdf. Accessed 28
Jan 2017

Gribachev, V.: Element base of hardware implementations of neural networks (in Russian).
http:/kit-e.ru/articles/elcomp/2006_8_100.php. Accessed 30 June 2016

Mikhailyuk, T. E., Zhernakov, S. V.: Increasing efficiency of using FPGA resources for
implementation neural networks. In: Nejrokomp’jutery: razrabotka, primenenie, vol. 11,
pp- 30-39 (2016). (in Russian)

Mikhailyuk, T.E., Zhernakov, S.V.: On an approach to the selection of the optimal FPGA
architecture in neural network logical basis. Informacionnye tehnologii 23(3), 233-240
(2017). (in Russian)

Kohut, R., Steinbach, B.: Decomposition of Boolean Function Sets for Boolean
Neural Networks. https://www.researchgate.net/publication/228865096_Decomposition_
of Boolean_Function_Sets_for_Boolean_Neural Networks. Accessed 1 Feb 2017
Anthony, M.: Boolean Functions and Artificial Neural Networks. http://www.cdam.lse.ac.
uk/Reports/Files/cdam-2003-01.pdf. Accessed 29 Jan 2017

Kohut, R., Steinbach, B.: Boolean neural networks. WSEAS Trans. Syst. 3(2), 420-425
(2004)

Steinbach, B., Kohut, R.: Neural Networks — A Model of Boolean Functions. https://www.
researchgate.net/publication/246931125_Neural_Networks_-_A_Model_of_Boolean_
Functions. Accessed 1 Feb 2017

Vinay, D.: Mapping boolean functions with neural networks having binary weights and zero
thresholds. IEEE Trans. Neural Netw. 12(3), 639-642 (2001)

Zhang, C., Yang, J., Wu, W.: Binary higher order neural networks for realizing boolean
functions. IEEE Trans. Neural Netw. 22(5), 701-713 (2011)

Rademacher, H.: Einige Sétze iiber Reihen von allgemeinen Orthogonalfunktionen. Math.
Ann. 87(1-2), 112-138 (1922)

https://www.researchgate.net/publication/251757109_FPGA_IMPLEMENTATION_OF_ARTIFICIAL_NEURONS
https://www.researchgate.net/publication/251757109_FPGA_IMPLEMENTATION_OF_ARTIFICIAL_NEURONS
https://www.researchgate.net/publication/251757109_FPGA_IMPLEMENTATION_OF_ARTIFICIAL_NEURONS
http://www.informatik.tu-freiberg.de/prof2/publikationen/CADSM2005_BN_FPGA.pdf
http://www.informatik.tu-freiberg.de/prof2/publikationen/CADSM2005_BN_FPGA.pdf
http://lab.fs.uni-lj.si/lasin/wp/IMIT_files/neural/doc/Omondi2006.pdf
http://kit-e.ru/articles/elcomp/2006_8_100.php
https://www.researchgate.net/publication/228865096_Decomposition_of_Boolean_Function_Sets_for_Boolean_Neural_Networks
https://www.researchgate.net/publication/228865096_Decomposition_of_Boolean_Function_Sets_for_Boolean_Neural_Networks
http://www.cdam.lse.ac.uk/Reports/Files/cdam-2003%e2%80%9301.pdf
http://www.cdam.lse.ac.uk/Reports/Files/cdam-2003%e2%80%9301.pdf
https://www.researchgate.net/publication/246931125_Neural_Networks_-_A_Model_of_Boolean_Functions
https://www.researchgate.net/publication/246931125_Neural_Networks_-_A_Model_of_Boolean_Functions
https://www.researchgate.net/publication/246931125_Neural_Networks_-_A_Model_of_Boolean_Functions

32

18.

19.

20.

21.

22.

T. Mikhailyuk and S. Zhernakov

Hajkin, S.: Neural networks: a comprehensive foundation. Vil’jams, Moscow (2008). (in
Russian)

Osovskij, S.: Neural networks for information processing, p. 344. Finansy i statistika,
Moskow (2002). (in Russian)

Shin, Y., Ghosh, J.: Efficient higher-order neural networks for classification and function
approximation. The University of Texas at Austin (1995). https://www.researchgate.net/
publication/2793545_Efficient_Higher-order_Neural_Networks_for_Classification_and_
Function_Approximation. Accessed 28 Jan 2017

Shevelev Ju, P.: Discrete mathematics. Part 1: The theory of sets. Boolean algebra
(Automated learning technology “Symbol”), p. 118. TUSUR University, Tomsk (2003). (in
Russian)

Omondi, A., Premkumar, B.: Residue number systems: theory and implementation, p. 312.
Imperial College Press, London (2007)

https://www.researchgate.net/publication/2793545_Efficient_Higher-order_Neural_Networks_for_Classification_and_Function_Approximation
https://www.researchgate.net/publication/2793545_Efficient_Higher-order_Neural_Networks_for_Classification_and_Function_Approximation
https://www.researchgate.net/publication/2793545_Efficient_Higher-order_Neural_Networks_for_Classification_and_Function_Approximation

	Implementation of a Gate Neural Network Based on Combinatorial Logic Elements
	Abstract
	1 Introduction
	2 Model of the Gate Neural Network
	3 Network Learning Algorithm
	4 Analysis of the Results
	5 Conclusion
	References

