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Abstract. The dynamics of data traffic intensity is examined using traffic
measurements at the interface switch input. The wish to prevent failures of trunk
line equipment and take the full advantage of network resources makes it
necessary to be able to predict the network usage. The research tackles the
problem of building a predicting neural-net model of the time sequence of
network traffic.
Topological data analysis methods are used for data preprocessing. Nonlinear

dynamics algorithms are used to choose the neural net architecture. Topological
data analysis methods allow the computation of time sequence invariants. The
probability function for random field maxima cannot be described analytically.
However, computational topology algorithms make it possible to approximate
this function using the expected value of Euler’s characteristic defined over a set
of peaks. The expected values of Euler’s characteristic are found by constructing
persistence diagrams and computing barcode lengths. A solution of the problem
with the help of R-based libraries is given. The computation of Euler’s char-
acteristics allows us to divide the whole data set into several uniform subsets.
Predicting neural-net models are built for each of such subsets. Whitney and
Takens theorems are used for determining the architecture of the sought-for
neural net model. According to these theorems, the associative properties of a
mathematical model depend on how accurate the dimensionality of the dynamic
system is defined. The sub-problem is solved using nonlinear dynamics algo-
rithms and calculating the correlation integral. The goal of the research is to
provide ways to secure the effective transmission of data packets.
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1 Introduction

The topicality of the study is determined by the following reasons. The continuing
development of telecommunication and Internet services sets new requirements for the
bandwidth of telecommunication channels. The presence of a great deal of various
services in a single physical transmission medium at pick hours can bring about the
overloading of switching and routing devices in trunk lines and, as result, a reduction of
many services. The wish to prevent failures of trunk line equipment and take the full
advantage of network resources makes the problem of effective use of the
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telecommunications channel bandwidth very important (the direct widening of the
bandwidth inevitably leads to an increase of service costs). It is necessary to have
effective traffic control methods that could use statistical data to predict the traffic
intensity. A lot of modern publications deal with mathematical models of different
types of network traffic [1–3]. The complexity and relevance of this problem urge
further research in the field.

2 The Topological Data Analysis

The topological data analysis is a new theoretical trend in the field of data analysis. The
approach allows the determination of topological data structures. Recent advancements
in the field of computational topology make it possible to find topological invariants in
data collections [2, 4, 5].

The point of the analysis is that stable properties are to be immune to noise,
distortions, errors, lack of data. The practice of using the analysis in different fields
shows that the supposition is true and stable topological properties can provide a lot of
information about data collections. Persistence diagrams are one of basic tools of
computational topology. They make it possible to get useful information about
excursion sets of a function. Below are the basic definitions (according to [4]).

Let X be a topological space being triangulated, f be a continuous tame function
defined over space X. Let us introduce the notation Ua ¼ f�1ð�1; a� for a 2 R. When
moving upwards, components Ua can merge or produce new components. It is possible
to trace how the sub-level topology changes with a by examining homologies of these
sets with, say, persistence homologies. Parameter a 2 R is called the homological
critical value if for certain k the homomorphism induced by nesting f� : HkðUa�eÞ !
HkðUaþ eÞ is not an isomorphism for any sufficiently small e > 0 (homology groups are
considered with coefficients in Z2). Continuous function f is called tame function if it
has a finite number of homological critical values. When b � a, then Ub � Ua. Let us
denote a set of connectivity components as C(a) = C(Ua). It is possible to define a
functional – Euler characteristic – over a set of sub-levels of Ua. Let X � R2. Then, in
the terms of algebraic topology, Euler’s number is vðUaÞ ¼ b0 � b1, where b0, b1 are
the ranks of the first two homology groups. Functional v(Ua) measures the field
topological complexity on the sub-level set. Note that for function f it is possible to deal
with a set of super-levels Ua ¼ f�1½a;1Þ instead of sub-levels.

Let us define the persistence diagram according to [5]. Let f: X ! R be a tame
function. Let a1 < a2 < … < an be critical homological values. Let us consider inter-
jacent values b0; b1; . . .; bn : bi�1\ai\bi. Let us supplement the chosen points in the
following way: b�1 ¼ a0 ¼ �1; bnþ 1 ¼ anþ 1 ¼ þ1. Let us define the multiplicity
of point (ai < aj) for each couple of indices 0 � i < j < n + 1 by setting

l j
i ¼ bbjbi�1

� bbjbi þ bbj�1

bi � bbj�1

bi�1
, where byx ¼ dimðImðf yx ÞÞ;f yx : HkðUxÞ ! HkðUyÞ. Per-

sistence diagram D(f) � R2 of function f stands for a set of points (ai, aj) (i, j = 0, 1, …,
n + 1) adjusted for multiplicity l j

i in combination with a set of diagonal points D ¼
ðx; xÞ x 2 Rjf g adjusted for infinite multiplicity.
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The immunity of a persistence diagram to perturbations of function f is its
remarkable feature. Persistence diagrams can be used to calculate the lengths of the
barcodes of connectivity components. Here the term barcode stands for the component
lifetime. Let us denote the summarized lengths of barcodes of two homology groups H0

and H1 as L0 and L1 correspondingly. Then the mean of the Euler characteristic can be
determined [2] as

v ¼ L0 � L1: ð1Þ

3 Setting the Problem

A second-level interfacial switch of a backbone line provider is taken as a test object in
the paper. The traffic coming to each port of the switch is integrated traffic from user
groups belonging to a particular region. The explanatory drawing is given in Fig. 1.
The Cacti software (SNMP interface protocol) was used to gather statistic data. The
information about the degree of network usage is more useful in practice. The
knowledge of the number of packets in unit time can be misleading. For this reason the
aggregate quantity x(t) – traffic intensity (in bits) at moment t – is taken as an
observable variable. The extension of data is 10080 points or 7 days. The plot of traffic
intensity measured at port GE 0 is shown in Fig. 2. Each point in this plot represents a
number of bits going through the trunk in one minute’s time.

So the goal is to construct a mathematical model for the m-step prediction of traffic
intensity using observations {x(t), t = 1, 2, …, N}, where N is the number of points.
The estimates of Euler’s characteristics are used here as indication of network usage.
The following algorithm is proposed. The whole data collection is to be divided in
clusters with different Euler’s characteristics. A neural-net prediction model is to be
built for each cluster using nonlinear dynamics methods. Below is the result of the
experimentation.

Fig. 1. The measurement arrangement.
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4 Topological Invariants Calculated for a Traffic Intensity
Sequence

Packet TDA from a public repository of R packets was used as a library for finding
stable homologies. The packet has a broad toolkit for topological data analysis by
topological methods.

Before finding topological characteristics, the whole data collection was divided in
some portions. Each portion held data acquired in two hours’ time. For each portion
persistence diagrams, barcodes were determined and Euler’s characteristic estimates
were calculated by formula (1).

The following algorithm was used to find estimates of Euler’s characteristic in the
TDA packet. A triangulation grid was first built using function Grid(). Then function
gridDiag was used to produce matrix Diag. Function gridDiag evaluates the actual
value of the function by the triangulation grid, generates simplex filtration using these
values, and calculates constant homologies from the filtration. Figure 3 shows the
persistence diagrams for one portion of data. The birth time of a component is plotted

Fig. 2. The traffic intensity plot at port GE 0.

Fig. 3. The plot on the right shows the persistence diagram of the superlevel sets of the KDE.
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as abscissas; the death time is plotted as ordinates. The dots correspond to
zero-dimensional simplexes, the triangles mark single-dimensional simplexes. Figure 4
presents the barcode chart of zero-dimensional simplexes. Table 1 gives the estimates
computed for different (n = 15) portions of the object. The following notation is used in
the table: n is the number of a portion (interval), L0 and L1 are the summarized barcode
lengths of zero- and single-dimensional simplexes, v is the estimate of Euler’s char-
acteristic (1). The plot in Fig. 5 shows Euler’s characteristic as function of n. The
horizontal axis represents the number of an interval and Euler’s characteristic is
measured on the vertical axis.

Fig. 4. Barcode

Table 1. The estimates of Euler’s characteristic

n 1 2 3 4 5 6 7 8 9 10 11 12

L0 3.7 4.1 3.6 3.7 2.2 1.7 2.0 2.0 1.8 2.4 3.4 3.6
L1 2.3 1.6 1.7 1.8 2.5 1.7 2.0 2.0 1.5 3.3 1.8 2.3
v 1.5 2.6 1.9 1.8 −0.3 −0.1 0.03 0.04 0.3 −0.8 1.5 1.4

Fig. 5. Euler’s characteristic as function of n.

Constructing a Neural-Net Model of Network Traffic 95



The results prove that Euler’s numbers are a stable characteristic of traffic intensity.
At the next stage the portions with the same [v] (where [.] is the integer of a number)
are united in a single cluster. A neural-net prediction model is built for each cluster.

5 Building the Neural-Net Model of the Data

Methods of nonlinear dynamics are used to construct a neural-net model for a selected
cluster. The subproblem is set as follows. Let xðtÞf gNt¼1 be measurements of a particular
observable scalar component of a d1-dimensional dynamic system �y. On the whole, the
dimensionality and behavior of the dynamic system are not known. For a given time
sequence it is necessary to build a model that would incorporate the dynamics
responsible for the generation of observations x(t). According to Takens’ theorem, the
geometrical structure of the dynamics of a multivariable system can be restored using
observations xðtÞf gNt¼1 in a D-dimensional space built around new vector �zðtÞ ¼
xðtÞ; xðt � 1Þ; . . .; xðt � ðD� 1ÞÞf gT (where D 	 2d1 + 1). The evolution of points

�zðtÞ ! �zðtþ 1Þ in the restored space corresponds to the evolution of points �yðtÞ !
�yðtþ 1Þ in the initial space. The procedure of searching for a suitable D is called
nesting. The least value of D at which the dynamic restoration is achieved is called the
dimension of the nesting. The algorithm offered by P. Grassberger and I. Proccaccia in
1983 makes it possible to evaluate D using a time sequence.

After D is estimated, the problem at hand can be formulated in the following way.
There is time series xðtÞf gNt¼1 and restoration parameters (D = 11 in our case) are set.
For N1 vectors �zðtÞ ¼ xðtÞ; xðt � 1Þ; . . .; xðt � ðD� 1ÞÞf gT the values of the sought-for
function FðtÞ ¼ Fð�zðtÞÞ are known (because the terms of the time series following �zðtÞ
are known). It is necessary to find the value of the sought-for function at new point �zðtÞ,
x̂ ¼ Fð�zÞ.

Neural nets of the multiple-layer perceptron type [6] are used to tackle the problem.
Only the key results are given below. Figure 6 shows the graph of traffic intensity on a
set of test points. The horizontal axis represents time, the vertical axis shows the
normalized traffic intensity; the solid line corresponds to experimental data x, the
dashed line represents theoretical results x̂.
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Fig. 6. Traffic intensity on a set of test points

96 N. Gabdrakhmanova



6 Conclusions

The goal of the paper was to test the hypothesis that the use of the topological data
analysis would make it possible to build traffic intensity prediction models due to
finding additional characteristics that cannot be discovered by conventional data
analysis. The data of network traffic intensity in a week’s time were examined. The
computations showed that the traffic intensity dynamics can be described by Betti
numbers and Euler’s characteristics. The algorithm using Euler’s characteristics was
used in the paper to build a model makes it possible to increase the prediction accuracy
by an order of magnitude (as compared with methods not using Betti numbers). The
paper gives the results of first steps towards the application of topological data analysis
for predicting the network traffic intensity. The results proved the prospectiveness of
further research in the field.
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