
Springer Series in Biophysics 20

Amitabha Chattopadhyay    Editor 

Membrane 
Organization 
and 
Dynamics



Springer Series in Biophysics 20

Series editor

Boris Martinac



More information about this series at http://www.springer.com/series/835

http://www.springer.com/series/835


Amitabha Chattopadhyay

Editor

Membrane Organization
and Dynamics



Editor
Amitabha Chattopadhyay
Centre for Cellular & Molecular Biology
Hyderabad, India

Series editor
Boris Martinac
University of New South Wales
Victor Chang Cardiac Research Inst.
Darlinghurst, New South Wales
Australia

ISSN 0932-2353 ISSN 1868-2561 (electronic)
Springer Series in Biophysics
ISBN 978-3-319-66600-6 ISBN 978-3-319-66601-3 (eBook)
DOI 10.1007/978-3-319-66601-3

Library of Congress Control Number: 2017956743

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with
regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

Biological membranes are soft matter-like complex nanofluids that separate cells

from each other in living matter. Besides providing the much-needed identity to

cells, they facilitate cell–cell communication. A major role of cell membranes is to

provide an ideal environment to the constituent proteins for their function. This is

because membrane proteins are dynamic and they work best when the immediate

environment around them offers enough flexibility for conformational plasticity,

necessary for their function. Almost 50% of all proteins encoded by a eukaryotic

genome are membrane proteins. As a result, a majority of biological processes take

place on the cell membrane. In the last few years, crystal structures of an impressive

number of membrane proteins have been reported, thanks to tremendous advances

in membrane protein crystallization techniques. Some of these recently solved

structures belong to the G protein-coupled receptor (GPCR) family, which are

particularly difficult to crystallize due to their intrinsic flexibility. Nonetheless,

these static structures do not provide the necessary information to understand the

function of membrane proteins in the complex membrane milieu. This is due to two

reasons: (i) most of these structures are not in the natural membrane bilayer, thereby

raising the concern of physiological relevance; and (ii) more importantly, these

structures do not provide any dynamic information, crucial for understanding

membrane function.

It is against this general backdrop that this monograph onmembrane organization

and dynamics is being organized. This monograph brings together information on

membrane organization and dynamics from a variety of spectroscopic, microscopic,

and simulation approaches, spanning a broad range of timescales. The implications

of such dynamic information on membrane function in health and disease are a topic

of contemporary interest. The articles in this volume cover various aspects of

membrane lipid and protein dynamics, explored using a battery of experimental

and theoretical approaches. It is hoped that the synthesis of information and knowl-

edge gained by utilizing multiple approaches would provide a comprehensive

understanding of the underlying membrane organization, dynamics, and function.
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This would help to develop robust models for understanding membrane function in

healthy and diseased states.

I believe that this book will help the prospective reader to gain an overall

understanding of membrane organization and dynamics in terms of currently

emerging themes and approaches. I would like to make use of this opportunity to

thank all the contributors who are leaders in their respective areas of research.

Special thanks are due to Boris Martinac (Series Editor), Sabine Schwarz, Martina

Himberger, Madona Samuel, and Parijat Sarkar for their cooperation and support in

organizing this monograph.

Hyderabad, India Amitabha Chattopadhyay

vi Preface



Contents

1 What Is So Unique About Biomembrane Organization

and Dynamics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Sreetama Pal and Amitabha Chattopadhyay

2 Dynamics and Organization of Archaeal Tetraether Lipid

Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Parkson Lee-Gau Chong, Alexander Bonanno,

and Umme Ayesa

3 Effects of Oxidative Stress, Hyperglycemia,

and Hypercholesterolemia on Membrane Structural

Organization and the Interactions of Omega-3 Fatty Acids . . . . . . 31

R. Preston Mason and Robert F. Jacob

4 Interaction of Amphiphilic Molecules with Lipid Bilayers:

Kinetics of Insertion, Desorption and Translocation . . . . . . . . . . . . 49

Hugo A.L. Filipe, Renato M.S. Cardoso, Luı́s M.S. Loura,

and Maria Jo~ao Moreno

5 Multidimensional Microscopy: Application to Membrane

Protein Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Andrew H.A. Clayton

6 Investigating the Dynamics and Organization of Membrane

Proteins and Lipids by Imaging Fluorescence Correlation

Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Nirmalya Bag, Shuangru Huang, and Thorsten Wohland

7 Probing Membrane Heterogeneity with k-space Image

Correlation Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Elvis Pandzic and Paul W. Wiseman

vii



8 Determining Oligomerization of Membrane Proteins by Single

Molecule Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Andreas Anderluh, Anand Kant Das, and Gerhard J. Schütz

9 Spatiotemporal Dynamics of Nicotinic Acetylcholine Receptors

and Lipid Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Francisco J. Barrantes

10 Dynamics of Membrane Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Sahil Lall and M.K. Mathew

11 G-Protein-Coupled Receptors: Membrane Diffusion

and Organization Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Evert Haanappel and Laurence Salomé
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Chapter 1

What Is So Unique About Biomembrane

Organization and Dynamics?

Sreetama Pal and Amitabha Chattopadhyay

Abstract Biological membranes are complex quasi two-dimensional, supramo-

lecular assemblies of a diverse variety of lipids, proteins and carbohydrates, that

compartmentalize living matter into cells and subcellular structures. Membranes

are held together by the hydrophobic effect, which is an entropy-driven process

originating from strong attractive forces between water molecules. Membrane

organization and dynamics are characterized by the absence of intermolecular

connectivity among its constituent units, thermodynamically controlled (spontane-

ous) self assembly, and inherent dynamics characterized by a gradient. Membrane

phenomena display a wide range of spatiotemporal scales, thereby making it

challenging for experiments and simulations alike. We envision that unraveling

the spatiotemporal complexity of biological membranes would enable us to build a

more robust membrane model, which would help in addressing unresolved issues in

human health and disease.

1.1 Cellular Membranes as Identity Markers

A long time back, biochemists used to think that a living cell is a bag full of

enzymes. In reality, eukaryotic cells are characterized by a number of compart-

ments separated from each other and the cytoplasm by thin membranes (see

Fig. 1.1). The composition, organization and physical dimension of the intracellular

organelle membranes exhibit a lot of variation. The outermost membrane in

eukaryotic cells is termed the plasma membrane, which separates the interior of

the cell from the outer milieu and provides the cell its unique identity. Cellular

organization is therefore characterized by morphological compartmentalization
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offered by the membrane. Membranes compartmentalize living matter into cells

and subcellular structures. Cells require some mechanism to prevent dissipation

(diffusing away) of their genetic information (contained mainly in the nucleus) and

therefore “compartmentalization has long been recognized as a physical prerequi-
site for Darwinian evolution” [1]. Importantly, the membrane is the first organelle

in a cell to sense any stress or stimuli [2].

In physical terms, membranes can be described as a complex anisotropic fluid

that are deformable and can therefore be treated as soft matter [3, 4]. In molecular

terms, this means membranes are optimally fluid to be able to carry out their

function while maintaining their characteristic selective barrier properties. Mem-

branes present themselves to macromolecules as highly structured interfaces on

which important biochemical processes are carried out and catalyzed. For this

reason, the structure and molecular organization of membranes are crucial for

membrane function.

Biological membranes are complex quasi two-dimensional, supramolecular

assemblies of a diverse variety of lipids, proteins and carbohydrates (see

Fig. 1.2a). Membranes of eukaryotic cells contain thousands of diverse lipid

types [6, 7]. Membranes provide an identity to the cell and its organelles, and

represent an ideal milieu for the proper function of membrane proteins. Cells are

densely packed with membranes. In fact, �35% of the dry weight of a cell is that of

its membranes. The human body is composed of �1014 cells which correspond to a

total membrane surface area of �3 km2. Contrary to textbook descriptions [8],

cellular membranes are often crowded [9, 10] with a high protein density (typically

�25,000 proteins/μm2; [11]). Even a number of years back it was postulated that

there could be only a few lipid molecules separating two protein molecules in a

biological membrane [12]. Taken together, the model of biological membranes is

evolving into one where “the membrane resembles a cobble-stone pavement, with
the proteins organized in patches that are surrounded by lipidic rims, rather than
icebergs floating in a sea of lipids” [10].

The actin cytoskeletal network underlying the membrane was initially not

considered to be an active part of the membrane. However, this has changed in

recent years. A number of observations using sophisticated microscopic techniques

have established the notion of actin cytoskeleton dependent dynamics of molecules

Fig. 1.1 A schematic

representation of a

eukaryotic cell showing the

plasma membrane and

membrane bound organelles
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Fig. 1.2 (a) A schematic representation of a membrane bilayer showing the major components of

biological membranes: lipids, proteins and carbohydrates. The actin cytoskeleton is also shown

since emerging evidence suggests that it is coupled to the membrane (see Sect. 1.1). Eukaryotic

membranes consist of phospholipids, sterols and sphingolipids. The predominant phospholipids

are zwitterionic (shown in blue) phosphatidylcholine and phosphatidylethanolamine; and nega-

tively charged (shown in mustard) phosphatidylglycerol and phosphatidylserine. Negatively

charged lipids are key players in lipid-protein interactions and are known to modulate membrane

insertion, translocation and subsequent function of membrane proteins. Cholesterol, the predom-

inant sterol in eukaryotic membranes, is shown in maroon and sphingolipids in green. Cholesterol
is a functionally relevant lipid in terms of its role in the organization, dynamics and function of

biological membranes. Integral and peripheral membrane proteins are shown in purple. The
underlying actin cytoskeleton, depicted in gray, imparts structural integrity and induces dynamic

compartmentalization with its meshwork underneath the membrane, thereby leading to membrane

domains. (b) An enlarged representation of one-half of the bilayer (highlighted by a light blue box)
shows the intrinsically anisotropic nature of biological membranes. The dotted line at the bottom
indicates the center of the bilayer. The anisotropy along the membrane z-axis compartmentalizes

the membrane leaflet into two regions characterized by differential dynamics, as reported by

1 What Is So Unique About Biomembrane Organization and Dynamics? 3



in cell membranes [13–15], and have led to the ‘anchored protein picket model’ of
membranes [16]. In addition, a model involving cross-talk between membrane

cholesterol and actin cytoskeleton is emerging based on observations such as

destabilization of the cortical actin cytoskeleton due to depletion of plasma mem-

brane cholesterol ([17, 18]; Sarkar P, Kumar GA, Shrivastava S, Chattopadhyay A,

unpublished observations). This implies that the membrane components (lipids,

proteins, carbohydrates and the underlying cytoskeleton) must interact with each

other in order to provide much needed functionality to the membrane.

1.2 What Holds the Membrane Together?

The physical principle underlying the formation of membranes is the hydrophobic

effect [19–21]. The hydrophobic effect describes how an aqueous medium deals

with non-polar substances. The driving force behind the hydrophobic effect is

essentially entropic in nature and has its genesis in the strong attractive forces

between water molecules that must be disrupted to accommodate hydrophobic

moieties in it and the entropic cost of incorporating a non-polar molecule in

water. This effect should not be confused with the force of interaction among two

non-polar (hydrophobic) molecules which plays a very minor role in hydrophobic

effect. The hydrophobic effect serves as a common mechanism responsible for

formation of other organized membrane-mimetic molecular assemblies, such as

micelles and reverse micelles, and folding of globular proteins.

1.3 Unique Features of Biomembrane Organization

and Dynamics

A unique feature of membrane organization, different from other macromolecular
assemblies prevalent in biology, is that there is no intermolecular connectivity (and
the implied information content) among membrane constituents (lack of a
sequence). The fundamental paradigm in the protein world, a specific sequential

Fig. 1.2 (continued) spectroscopic techniques (such as ESR, NMR, fluorescence) and molecular

dynamics simulations. The anisotropic membrane interface (shown in blue) ensures a dynamic

segregation between the bulk aqueous phase and the isotropic hydrocarbon-like core of the

membrane (shown in gray). Both the bulk aqueous phase and the hydrocarbon-like core of the

membrane are characterized by fast and isotropic solvent relaxation. The membrane interface is

uniquely characterized by a functionally relevant chemically heterogeneous environment, slow

solvent relaxation, and limited water penetration (interfacial water). This inherent membrane

anisotropy is reflected in polarity and mobility gradients (shown as shaded gray arrows) along
the membrane normal (perpendicular to the plane of the membrane). See text for more details.

Adapted and modified with permission from [5]. Copyright (2011) American Chemical Society
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arrangement of the constituent units (amino acids), is therefore not a deciding factor

in self assembly of lipids in biological membranes. Instead, self assembly of lipids

into membranes is a consequence of the amphipathic nature of lipid molecules. The

prominent dogma of molecular biology, i.e., sequence dictating function, is there-

fore absent in biological membranes. Viewed from another perspective, the lack of

intermolecular connectivity (sequence) provides the membrane its inherent dynamic

nature. This makes the study of biological membranes unique and challenging.

The interfacial region (see Fig. 1.2b) is the most important part of the membrane,

in terms of physicochemical characteristics and function [5, 22]. The membrane

interface exhibits distinct motional and dielectric characteristics [23] different from

the bulk aqueous phase and the more isotropic hydrocarbon-like deeper regions of

the membrane. In a chemical sense, the membrane interface plays a crucial role in

substrate recognition and activity of membrane-active enzymes [24]. The reduced

probability (due to geometrical constraints) of energetically favorable hydrogen

bonding induces dynamic confinement of water molecules at the membrane inter-

face [25]. The membrane interface displays slow rates of solvent relaxation [5, 22,

26–29], participates in intermolecular charge interactions [30] and hydrogen bond-

ing mediated by the polar lipid headgroup [31, 32].

As mentioned above, a unique feature of membranes is their inherent dynamics,

characterized by a gradient along the bilayer normal (z-axis) (see Fig. 1.2b)

[5, 33]. While the center of the membrane bilayer is nearly isotropic, the upper

portion, only a few angstroms away toward the membrane surface, is highly ordered

[5, 22]. As a consequence of this organization, properties such as polarity, segmen-

tal mobility (collectively termed as membrane fluidity), ability to form hydrogen

bonds, and extent of solvent penetration vary in a depth-dependent manner in the

membrane [34]. In addition, biological membranes display a gradient of environ-

mental heterogeneity along the bilayer normal [33]. Taken together, absence of

intermolecular connectivity (sequence), thermodynamically controlled (spontane-

ous) self assembly, and inherent dynamics characterized by a gradient, represent the

essential aspects of membrane organization and dynamics.

1.4 Spatiotemporal Scales of Membrane Phenomena

Cellular events at the membrane span a wide range of spatiotemporal scales (see

Fig. 1.3) [35–37]. An important aspect of the cell membrane is its dynamics that

span a very large range of time scales, which supports a wide variety of biological

processes, necessary for cellular function. The corresponding length scales also

cover several orders of magnitude. Monitoring membrane dynamics with all its

complexities continues to be challenging in contemporary membrane biophysics.

Membrane probes offer the possibility of measuring membrane dynamics at various

spatiotemporal resolutions, depending on the experimental approach chosen

[38]. However, it is not possible to address problems in these spatiotemporal scales

using any single technique and phenomena-dependent approaches are necessary.

1 What Is So Unique About Biomembrane Organization and Dynamics? 5



Among various techniques used, fluorescence-based approaches offer certain

advantages due to their enhanced sensitivity, minimal perturbation, multiplicity

of measurable parameters, and suitable time scales that allow the analysis of several

Fig. 1.3 Range of spatiotemporal scales relevant in biological membrane phenomena. Predom-

inant membrane-associated processes are shown, with the corresponding time scales increasing

from left to right. As shown in the figure, the range of time scales for membrane phenomena could

span more than ten orders of magnitude, whereas the spatial scale ranges cover over three orders of

magnitude. It is not possible to resolve these spatiotemporal scales simultaneously using any single

technique. It is therefore crucial to select techniques with spatiotemporal scales comparable to that

of the specific phenomenon probed. In this respect, fluorescence-based approaches (shown at the

bottom of the figure) appear suitable since many membrane-associated processes can be addressed

by fluorescence spectroscopic and microscopic techniques. Adapted and modified from [35]

6 S. Pal and A. Chattopadhyay



membrane phenomena [39]. With the advent of confocal microscopy and organelle-

specific probes, it has now become possible to explore lateral [40] and rotational

[41] dynamics of specific organelle membranes such as Golgi membranes.

1.5 Future Perspectives: What Lies Ahead

Unraveling the spatiotemporal complexity of biological membranes appears to hold

the key to understanding the molecular basis of diseases that pose a threat to

mankind. This constitutes a major challenging area of research in the post-genomic

era, particularly keeping in mind the fact that more than 50% of current drug targets

in all clinical areas are membrane proteins [42]. In addition, the biological mem-

brane plays a crucial role in amyloidogenic diseases that are associated with protein

aggregation [43]. Membrane lipid mediated pathogen entry into host cells offers

another potential avenue for developing novel therapeutic strategies to effectively

tackle intracellular pathogenesis [44]. Tissue-specific and age-dependent drug

efficacy represents another promising development in human health [45]. The

articles that follow in this monograph will address several important topics in

membrane biology with focus on membrane lipids and proteins using experimental

and simulation approaches.
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Chapter 2

Dynamics and Organization of Archaeal

Tetraether Lipid Membranes

Parkson Lee-Gau Chong, Alexander Bonanno, and Umme Ayesa

Abstract Archaeal bipolar tetraether lipids (BTLs) have distinct structural differ-

ences from the lipids isolated from bacteria and eukaryotes. Because of the pres-

ence of the unusual structural features, such as macrocyclic structures,

cyclopentane rings, isoprenoid units, tetraether linkages, and a variety of polar

head groups, archaeal BTL membranes possess physical properties distinctly dif-

ferent from those found in conventional diester lipid membranes. This chapter

reviews the salient physical properties of archaeal BTL membranes as well as the

membranes formed by synthetic BTLs, with the emphasis focused on membrane

dynamics, stability, phase behaviors, and organization.

2.1 Chemical Structures of Bipolar Tetraether Lipids

2.1.1 Bipolar Tetraether Lipids Isolated from Archaea

Bipolar tetraether lipids (BTLs) are present in all three major archaeal kingdoms:

euryarchaeota, crenarchaeota and thaumarchaeota [1]. BTLs are the dominating

lipid species in crenarchaeota (~90–95% of the total lipid extract), which thrive

under high temperature and low pH conditions. Euryarchaeota include

methanogens and halophiles. BTLs are present in methanogens (0–50%), but

virtually absent in halophiles. BTLs are also abundant in thaumarchaeota, which

are mesophilic, found in ambient environments such as soil and lakes [1]. Archaeal

BTLs have distinct structural differences from the lipids isolated from bacteria and

eukaryotes [2]. The structures of archaeal BTLs are either macrocyclic or hemi-

macrocyclic (also called semi-macrocyclic) as illustrated below.
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Archaeal Macrocyclic BTLs In an archaeal macrocyclic BTL molecule, the

hydrophobic core contains two biphytanyl chains (i.e., one dibiphytanyl chain),

which consist of branched methyl groups and cyclopentane or cyclohexane rings.

BTLs containing cyclohexane rings occur only in thaumarchaeota [3]. The hydro-

phobic core is connected to either glycerol or calditol via ether linkages with a sn-
2,3 configuration, forming a macrocyclic structure. An ether linkage is more

resistant against acidic or alkaline hydrolysis than an ester linkage. Archaeal

BTLs have an L-glycerol backbone, in contrast to D-glycerol in eukaryotic and

bacterial phosphoacylglycerols. Various polar moieties, such as sugars and phos-

phate, are linked to the glycerol or calditol backbones. The number of cyclopentane

rings in biphytanyl chains increases with increasing growth temperature [4–6] and

decreases with decreasing growth pH [7].

The structural features of archaeal macrocyclic BTLs are illustrated in Fig. 2.1,

where the chemical structures of the polar lipid fraction E (PLFE) isolated from the

thermoacidophilic crenarchaeon Sulfolobus acidocaldarius (optimum growth con-

ditions: 75–80 �C and pH 2.5–3.0) [10] are presented. PLFE contains a mixture of

either a calditolglycerocaldarchaeol (also termed glycerol dialkylcalditol tetraether,

abbreviated as GDNT) or a caldarchaeol (also termed glycerol dialkylglycerol

tetraether, GDGT) skeleton [10–13] (Fig. 2.1A). The GDNT component of PLFE

(~90% of total PLFE) contains phospho-myo-inositol on the glycerol end and

β-glucose on the calditol end, whereas the GDGT component (~10% of total

PLFE) has phospho-myo-inositol attached to one glycerol and β-D-galactosyl-D-
glucose to the other glycerol skeleton. In PLFE, the non-polar regions of these

lipids consist of a pair of 40-carbon biphytanyl chains, each of which contains up to

four cyclopentane rings (Fig. 2.1A), dependent upon the growth temperature and

pH. The distribution of the number of cyclopentane rings for a given growth

temperature is broad, ranging from 0–8 rings per BTL molecule [14, 15]. The

maximum of the distribution curve shifts to a larger number of cyclopentane rings

at a higher cell growth temperature [14, 15].

Not all archaeal macrocyclic BTLs are of the same structure. Like PLFE, the

main phospholipid fraction (MPL) isolated from the crenarchaeota Thermoplasma
acidophilum (optimum growth: 55–59 �C and pH 1–2) contains biphytanyl chains

forming macrocyclic tetraether structures (Fig. 2.1B). However, MPL has up to

three cyclopentane rings in the dibiphytanyl area per molecule (Fig. 2.1B) while

PLFE contains up to eight cyclopentane rings per molecule [9, 15]. There are also

structural differences in the polar head group regions. As discussed earlier, PLFE

lipids contain phospho-myo-inositol, β-glucose, and β-D-galactosyl-D-glucose in the
polar head groups (Fig. 2.1A). In comparison, MPL lipids have β-L-gulose (Gul)

attached to one glycerol end and a phosphoglycerol moiety to another glycerol end

(Fig. 2.1B) [9].

Several rather unusual structural variations can occur in the hydrophobic core of

macrocyclic BTLs. One variation is the direct cross-linking between the two biphytanyl

chains, forming H-shaped BTLs (Fig. 2.2B). Furthermore, additional –CH3 (Fig. 2.2B)

or –OH groups may appear in the biphytanyl chains [3, 16].
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Archaeal Hemi-Macrocyclic BTLs Archaeal BTLs also exist in a hemi-

macrocyclic form containing one biphytanyl chain with both ends linking to a

different glycerol moiety (thus, having no mid-plane space) and two phytanyl

chains, each of which is ether-linked to a glycerol backbone [6]. Figure 2.2a

shows the structure of such a glycerol trialkyl glycerol tetraether (GTGT) isolated

from Sulfolobus solfataricus. However, hemi-macrocyclic BTLs are present only in

a small amount (~3.2 wt% in the case of S. solfataricus [6]) compared to the total

lipid extract from the archaea.

Fig. 2.1 Illustrations of the molecular structures of the macrocyclic bipolar tetraether lipids found

in crenarchaeota. (A) Molecular structures of PLFE isolated from S. acidocaldarius. PLFE
contains (a) GDGT (or caldarchaeol, ~10%) and (b) GDNT (or calditolglycerocaldarchaeol,

~90%). The number of cyclopentane rings in each biphytanyl chain can vary from 0 to 4. R1
myo-inositol, GDGT R2 β-D-galactosyl-D-glucose, and GDNT R2 β-D-glucose linked to calditol.

GDG(N)T-0 and GDG(N)T-4 contain 0 and 4 cyclopentane rings per molecule, respectively

(Reprinted from [8] with permission). (B) Illustrations of the molecular structures of the lipids

found in the main phospholipid fraction (MPL) isolated from Thermoplasma acidophilum HO-62

[9]: (a) with no cyclopentane rings; (b) with three cyclopentane rings per molecule, which is the

maximum in MPL
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2.1.2 Synthetic Bipolar Tetraether Lipid Analogues

Highly purified archaeal BTLs are hard to obtain in large quantities. To circumvent

this problem, chemical synthesis has been employed to generate BTLs with struc-

ture features similar to archaeal BTLs. Total synthesis of macrocyclic archaeal BTL

analogues involves many steps [17, 18]. Very few synthetic macrocyclic BTLs

include both rings and sugar moieties. Compared to the synthesis of macrocyclic

BTLs, hemi-macrocyclic structures are easier to make and thus more popular in the

field of synthetic archaeal lipid analogues [19], despite that hemi-macrocyclic

BTLs occur in a relatively small amount in archaea. Examples of different chem-

ically synthesized hemi-macrocyclic BTLs can be seen in Fig. 2.3. By adding

particular polar head groups to the macrocyclic or hemi-macrocyclic tetraether

core, one can synthesize BTL analogues for specific applications such as target

delivery of drugs and genes [22].

2.2 BTL Membranes

Both archaeal and synthetic BTLs can form vesicular and supported planar mem-

branes (e.g., [8, 10, 23, 24]). Archaeal BTLs have also been used to make free-

standing planar membranes (black lipid membranes) on micro pores in solid

support [25–27]. Because of the presence of the unusual structural features such

as macrocyclic structures, cyclopentane rings, isoprenoid units, tetraether linkages,

and a variety of polar head groups, BTL membranes possess physical properties

(e.g., stability, permeation, dynamics, phase behavior, and lateral organization)

distinctly different from those found in diester lipid membranes.

BTLs can adopt a U-shaped configuration or an upright configuration in the

membrane (reviewed in [14]). In most cases, BTLs in membranes span the entire

CH2OH
O

O
O

O

O

O

Glycerol trialkyl glycerol tetraether (GTGT)

Glycerol monoalkyl glycerol tetraether (GMGT)

H

CH2OH R3

R2 R1

R1, R2 = CH3

R3 = H

O

OH

b

a

H

OH

H

OH

Fig. 2.2 Illustrations of the hydrophobic core structures of (a) the hemi-macrocyclic bipolar

tetraether lipids (or called glycerol trialkyl glycerol tetraether, GTGT) and (b) the H-shaped and

dimethylated isoprenoid macrocyclic bipolar tetraether lipids (glycerol monoalkyl glycerol

tetraether, GMGT) found in archaea [3]
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lamellar structure, forming a monomolecular thick membrane [28], which contrasts to

the bilayer structure formed by diester (or diether) lipids. The lamellar repeat distance

(d-spacing) of PLFE liposomes has been measured over a wide range of temperatures

using small angle X-ray scattering (SAXS) [29]. The d-spacing values (e.g., 4.9–5.0 nm
at 5–50 �C, [29]; d-spacing¼ membrane thickness + thickness of water layer) indicate

that PLFE lipid molecules span the entire membrane and have an upright configuration.

Black lipid membrane studies determined the specific membrane capacitance of main

phospholipid fraction (MPL), one BTL component from the archaeon Th. acidophilum,
to be 0.744mF/cm2. This numberwas converted to amembrane thickness of 2.5–3.0 nm,

which suggests that MPL membranes are monolayers and that the tetraether lipids in

MPL membranes are also oriented vertically spanning the entire membrane [26].

2.3 Stability of BTL Membranes

Irrespective of the membrane types and lipid sources, BTL liposomal membranes

exhibit remarkable chemical, physical, and mechanical stability (reviewed in [14]).

For example, in the pH range 4–10, PLFE-based liposomes are able to retain vesicle

size andmorphology through at least six autoclaving cycles, whereas liposomes made

Fig. 2.3 Examples of synthetic macrocyclic (I [20]) and hemi-macrocyclic (II [20]; III [21]; and

IV [19]) BTLs
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of diester lipids cannot maintain their integrity with just one autoclaving cycle

[30]. Light scattering data showed that PLFE liposomes do not aggregate or fuse

spontaneously for at least 6months [31]. In the presence of fusogenic compounds such

as Ca2+, BTL vesicle aggregation may occur but with little membrane fusion [31–

33]. Zeta potential of PLFE liposomes is <�30 mV [34], indicating that those BTL

liposomes do not coalesce. PLFE liposomes are stable at shear stress rates 0–7600 s�1

[35]. BTL liposomes are also highly resistant to surfactants [36] and bile salts

[37]. Furthermore, addition of BTLs to liposomal drugs increases their stability,

even in the gastrointestinal tract [38, 39].Molecular dynamics (MD) studies suggested

that, compared to their diester and hemi-macrocyclic counterparts, macrocyclic BTL

membranes have highest stability against external mechanical forces [40].

Like BTL liposomes, BTL free-standing planar membranes (also called black

lipid membranes or suspended planar membranes) over micro pores in solid support

are also extraordinarily stable compared to their diester counterparts. Membrane

electrical resistance in traditional black lipid membranes made of diester lipids

drops abruptly in 2–4 h. In contrast, the dielectric properties of PLFE free-standing

planar membranes remain almost unchanged over a period of at least 50 h at

13–40 �C [41]. This remarkable stability of PLFE membranes, which is on the

order of days and achieved without having lipid polymerization nor using nano-

pores, makes BTLs particularly appealing for developing durable and efficient

planar membrane-based biotechnologies [41].

The great stability of BTL lipid membranes can be attributed to the strong

electrostatic, van der Waals, and hydrogen bonding interactions among BTL

molecules due to the presence of sugar/phosphate moieties in the polar head groups

and the macrocyclic and dibiphytanyl structures in the hydrophobic core

[42, 43]. Although PLFE liposomes are extraordinarily stable, they become

completely disintegrated in the presence of two archaeal proteins: ESCRT-III and

CdvA [44, 45]. The underlying mechanism is not known.

2.4 Phase Behaviors of BTL Membranes

PLFE liposomes are one of a handful of archaeal BTL membrane systems that have

been studied extensively for their phase behaviors. PLFE liposomes have been char-

acterized by SAXS, infrared and fluorescence spectroscopy, and differential scanning

calorimetry (DSC). PLFE liposomes exhibit two thermally-induced lamellar-to-lamel-

lar phase transitions at ~47–50 �C and ~60 �C [2, 23, 29, 46] and a lamellar-to-cubic

phase transition at ~74–78 �C [29, 46], all of which involve low enthalpy and volume

changes as revealed byDSCandpressure perturbation calorimetry (PPC) [46].Another

archaeal BTLmembrane that has been rigorously studied for phase behaviors is the P2

fraction of the polar lipid extract of Sulfolobus solfataricus [47, 48].
The number of cyclopentane rings in the biphytanyl chains is a major factor

governing the phase behaviors of BTL membranes. An increase in the number of

cyclopentane rings resulted in a higher thermal phase transition temperature in
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membranes made of GDGT derived from S. solfataricus [49, 50]. A study of BTL

liposomes derived from S. acidocaldarius showed that an increase of cell growth

temperature from 68 to 81 �C, which could lead to an increase of the number of

cyclopentane rings per tetraether molecule from 3.4 to 4.8 [51], increased the phase

transition temperature of PLFE liposomes from 39.1 to 56.5 �C [52].

The stereochemistry of the cyclopentane ring also plays an important role in

phase behaviors. The cyclopentane ring in native archaeal BTLs is in a trans-1,3-
dialkyl configuration. A SAXS study on a synthetic hemi-macrocyclic BTL with

one central cyclopentane ring in the membrane spanning chain reveals that a cis-
1,3-dialkyl cyclopentane ring led to the Lc�Lα�QII phase transitions whereas the

trans isomer retained an Lα phase from 20 to 100 �C [53]. (Note: Lc: lamellar

crystalline phase; Lα: lamellar liquid-crystalline phase; QII: a diamond-type

bi-continuous cubic phase with the symmetry Pn3m).

How the branched methyl groups contribute to the phase behaviors of BTL

membranes remains elusive. A recent MD simulation study showed that the

branched methyl groups increase the BTL inter-chain distance from ~0.6 to

~0.85 nm and reduces the hydrocarbon chain tilt angle from ~35� to ~10�

[54]. Without the branched methyl groups, BTLs form a gel-like rigid phase

(Fig. 2.4, top) [54]. This simulation study suggested that the branched methyl

groups play an important role in keeping BTL membranes densely packed and

stable, and, at the same time, maintaining the membrane in a “liquid-crystalline”

state with fast-fluctuating hydrocarbon chains (Fig. 2.4, bottom) [54]. However, the

polar head groups used in this simulation were exclusively phosphatidylcholine,

which has very limited hydrogen bonding capabilities. As mentioned earlier,

hydrogen bonding among sugar and phosphate moieties in the polar head group

regions is one of the major stabilizing forces of native archaeal BTL membranes. In

light of this, it is of interest to extend the MD study to interrogate if the branched

methyl groups still lead to fast fluctuations in hydrocarbon chains when the sugar

moieties are present. In addition, calorimetric and spectroscopic experiments on

membranes made by synthetic BTLs with systematic changes in hydrocarbon chain

branching are in demand in order to advance our understanding of the role of

branched methyl groups in BTL phase behaviors and membrane packing.

2.5 Membrane Lateral Diffusion

Lateral diffusion constant D in BTL liposomes made of total polar lipids from

Thermoplasma acidophilum was determined by 31P–NMR to be 2 � 10�8 cm2/s

near the cell growth temperature 55 �C. The D value dropped to 6–8 � 10�9 cm2/s

when the temperature was lowered to 30 �C [55]. MD calculations revealed nearly

one order of magnitude difference in D between a macrocyclic BTL membrane

(0.53 � 10�8 cm2/s) and the membrane made of diphytanyl phosphatidylcholine

(DPhPC) (4.82 � 10�8 cm2/s) [40].
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Using pyrene fluorescence excimer formation to reflect membrane lateral mobil-

ity, it was found that BTL membrane lateral mobility was more limited, especially

at low temperatures [56], compared to diester liposomes. Larudan fluorescence

intensity images showed that the lipid domains were virtually immobile in the

membrane surface when the temperature of giant unilamellar vesicles of PLFE

membranes was <26 �C [23]. The overall low lateral mobility in BTL membranes

can be understood in terms of the low membrane free volume in PLFE liposomes

[52, 57]. It has been suggested that membrane free volume is required for mem-

brane lateral diffusion [58].

Fig. 2.4 Effects of branched methyl groups on membrane packing as revealed by MD simulations

[54]. (top) Model membranes of the synthetic BTL with no branched methyl groups (chemical

structure shown above). This membrane is packed like a gel state, with the hydrocarbon chains

remained straight. (bottom) Model membranes of the synthetic BTL with branched methyl groups

(chemical structure shown above). In this case, the membrane is more fluid, resembling liquid-

crystalline state (modified from [54] and used with permission)
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To date, the studies of lateral diffusion in BTL membranes are still in the

primitive stage. More advanced techniques should be employed in order to gain a

better mechanistic understanding.

2.6 Probe Rotations and Insertion in BTL Membranes

Fluorescent probe studies on BTL membranes yielded a few surprising results,

which are the consequence of the unique structures of BTLs.

Laurdan It is well known that 6-lauroyl-2-(dimethylamino)naphthalene

(Laurdan) can insert into conventional diester liposomes with its chromophore

located near the polar head group regions and with its chromophore’s dipole

moment aligned in parallel with the membrane normal [59]. In addition, when the

membrane packing is tight, the generalized polarization (GP ¼ (Iblue � Ired)/

(Iblue + Ired)) value of Laurdan fluorescence is high, and vice versa [59]. However,

in a fluorescence microscopy study, it was found that the GP values of Laurdan

fluorescence in PLFE giant unilamellar vesicles (GUVs) were surprisingly low

(near zero) at all of the temperatures and pHs examined, despite that the overall

membrane packing is tight [23]. The second surprise is that, when excited with light

polarized in the y direction, Laurdan fluorescence in the center cross section of the

PLFE GUVs exhibited a photoselection effect showing much higher intensities in

the x direction of the vesicles, a result opposite to that observed on diester

liposomes (e.g., DPPC). This result indicates that the dipole moment of Laurdan’s
chromophore in PLFE GUVs is aligned parallel to the membrane surface, in sharp

contrast to the results obtained using diester liposomes. This photoselection effect

and the low GP values together suggest that the Laurdan’s chromophore resides in

the polar head group region of the PLFE liposomes but its long axis is aligned in

parallel with the membrane surface, while the lauroyl tail inserts into the hydro-

carbon core of the membrane. This unusual L-shape disposition is presumably

caused by the rigid/tight packing in PLFE liposomes and by the steric hindrance

of the branched methyl group.

It was found in a separate study that the values of red edge excitation shift (REES)

[60, 61] for Laurdan in PLFE liposomes are much greater than those in diester

liposomes [62]. For example, the REES value for PLFE liposomes is 22.8 nm at pH 3

and 37 �C whereas that for dilauroylphosphatidylcholine (DLPC) is 8.3 nm and for

distearoylphosphatidylglycerol (DSPG) is 4.7 nm under the same experimental

conditions [62]. These data indicate that Laurdan’s chromophore is localized in an

environment of highly restricted mobility and that the membrane regions near

Laurdan’s chromophore have extraordinary restriction to the reorientational motion

of water or lipid polar residues around Laurdan’s excited state. This interpretation is
consistent with the assertion that there is a strong hydrogen bond network in the

polar head group regions of PLFE lipid membranes [14, 63].
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Perylene Perylene is a flat and disk-like fluorescent probe. This probe appears to

be able to penetrate into BTL membranes with its molecular axis in parallel to the

membrane normal [64]. The average (R) and in-plane (Rip) rotational rate of

perylene in PLFE liposomes underwent an abrupt increase when the temperature

was raised to ~48 �C [64], which is near one of the phase transition temperatures of

PLFE (discussed earlier). A plausible explanation is that the cyclopentane rings and

the branched methyl groups of PLFE provide a steric hindrance for the in-plane

rotation of perylene at low temperatures. For some reason, this hindrance is reduced

at temperatures >48 �C. It was also observed that, at 20–35 �C, the Rip values of

perylene in PLFE liposomes are 0.06–0.12 ns�1 [64], which are significantly lower

than the Rip values of perylene 0.41 ns�1 found in 50 mol% cholesterol/POPC

liposomes [65] at 10 �C. These results suggested that PLFE liposomes are rigid and

tightly packed at low temperatures [64].

DPH Diphenyl-1,3,5-hexatriene (DPH) is a commonly used membrane probe,

with its long molecular axis preferentially aligned in parallel with the membrane

normal of diester liposomes [66]. In addition, the fluorescence lifetime of DPH is

known to increase when the probe is exposed to more hydrophobic environment

and decrease when the water content near the probe increases [66].

DPH fluorescence in PLFE liposomes generates interesting yet surprising

results. For example, as illustrated in Table 2.1, the average fluorescence lifetime

of DPH in PLFE remains low (~7.5–7.7 ns) over a wide range of temperatures

(20–50 �C) [67]. The lack of an abrupt change in DPH fluorescence lifetime with

temperature is consistent with the phase behavior of PLFE liposomes mentioned

earlier. More interestingly, this lifetime value (~7.5–7.7 ns) is even lower than the

DPH fluorescence lifetime in DPPC liquid-crystalline (fluid) state (e.g., at 46.1 �C,
Table 2.1 and [67]). According to the conventional interpretation of DPH fluores-

cence lifetime data, this would indicate that, at all the temperatures examined

(20–50 �C), PLFE liposomes would be even more loosely packed than DPPC

fluid state, which apparently is not true and would contradict the limiting anisotropy

data (Table 2.1 and [67]). One plausible explanation of the low lifetime is that DPH

in PLFE liposomes does not insert into the membrane as deep as that in diester

liposomes, due to the steric hindrance provided by the branched methyl groups and

the cyclopentane rings. Both Laurdan and DPH data indicate that probe location in

BTL membranes could be very different from that in diester membranes and that

the interpretation of the fluorescence data should take probe location into

consideration.

DPH fluorescence correlation times in PLFE liposomes are higher than those in

DPPC liposomes (Table 2.1 and [67]), which indicates that the average rotational

rate of DPH is slower in PLFE than in DPPC liposomes, probably due to tight

packing and steric hindrance in PLFE liposomes. In addition, the limiting anisot-

ropy of DPH fluorescence remains high over a wide range of temperatures

(Table 2.1 and [67]). This parameter clearly indicates that PLFE membranes

provide a restricted environment for the rotation of DPH.

20 P.L.-G. Chong et al.



Table 2.1 Comparison of membrane physical parameters between tetraether (BTL) and diester or

diether liposomes

Physical parameters Tetraether liposomes

Conventional diester or

diether liposomes References

DPH fluorescence average

lifetime

PLFE

7.57 ns (24.9 �C)
7.61 ns (35.4 �C)
7.67 ns (47.2 �C)

DPPC

9.91 ns (25.2 �C)
9.92 ns (35.0 �C)
8.17 ns (46.1 �C)

[67]

DPH apparent rotational

correlation time

2.73 ns (24.9 �C)
2.72 ns (35.4 �C)
2.89 ns (47.2 �C)

2.26 ns (25.2 �C)
2.17 ns (35.0 �C)
1.43 ns (46.1 �C)

[67]

DPH fluorescence limiting

anisotropy, r1
0.302 (24.9 �C)
0.279 (35.4 �C)
0.217 (47.2 �C)

0.340 (25.2 �C)
0.304 (35.0 �C)
0.072 (46.1 �C)

[67]

Perylene in-plane rotational

rate, Rip

PLFE

0.06–0.12 ns�1

(20–35 �C)

50 mol% Chol/POPC

0.41 ns�1

(10 �C)

[64, 65]

Laurdan GP PLFE below or near

zero (12–66 �C)
DPPC

~0.6 (<40 �C)
[23, 68]

Laurdan REES PLFE

22.8 nm (pH 3; 37 �C)
DSPG

4.7 nm (pH 3; 37 �C)
DLPC

8.3 nm (pH 3; 37 �C)

[62]

n-AS REES PLFE

7 nm (pH 5; 67 �C)
DHPC

3 nm (pH 5; 67 �C)
[69]

n-AS apparent rotational

correlation time

PLFE

4.0 ns (2-AS)

4.3 ns (12 AS)

DHPC

1.2 ns (2-AS)

0.6 ns (12 AS)

[69]

Zeta potential PLFE

�34.3 mV

Egg-PC

�7.5 mV

[34]

Lamellar repeat distance

(d-spacing)
PLFE

5 nm (50 �C)
DPPC

6.72 nm (50 �C)
[29, 70]

Lateral diffusion coefficient Synthetic macrocyclic

BTL membrane

0.53 x 10�8 cm2/s

DPhPC

4.82 x 10�8 cm2/s

[40]

Relative volume change

(ΔV/V) of the phase
transition

PLFE (Tgrowth ¼ 68 �C)
0.18%

(Ttransition ¼ 39 �C)

DPPC

3.1% (main transition)

[52]

Enthalpy change of the phase

transition

PLFE

3.5 kJ/mol

(Ttrans ¼ 46.7 �C)

DPPC

35 kJ/mol

(main transition)

[46]

Relative volume fluctuations PLFE

2.2% (40 �C)
2.3% (60 �C)

DPPC

4.0% (40 �C)
4.7% (60 �C)

[57]
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2.7 Gradient of Membrane Dynamics Along

the Membrane Normal

The biphytanyl chains in archaeal BTLs contain branched methyl groups and

cyclopentane rings. They are covalently linked to either glycerol or calditol back-

bone moieties located on the opposite side of the membrane. When such lipids form

membranes, the lipid hydrocarbon chains do not have the same type of gauche-to-
trans conformational transitions nor the mid-plane spacing that normally encoun-

tered in diester lipid membranes. How this structural difference affects membrane

dynamics and heterogeneity along the membrane normal has been investigated by

probe techniques.

Using a series of membrane depth-dependent fluorescent probes, namely, 2-, 6-,

9-, and 12-(9-anthroyloxy)stearic acid (2-AS, 6-AS, 9-AS, and 12-AS, respec-

tively), Chakraborty et al. found that the dynamic anisotropy gradient along the

membrane normal is greatly attenuated in PLFE liposomes, but clearly discernible

in diether liposomes made of 1,2-dihexadecyl-sn-glycerol-3-phosphocholine
(DHPC) [69]. For example, in PLFE liposomes, the rotational correlation time of

n-AS increases only slightly with increasing the membrane depth of probe’s
chromophore location. In comparison, the rotational correlation time of n-AS in

DHPC decreases dramatically with increasing the membrane depth of the probe’s
chromophore. The rotational correlation times are inversely proportional to the

rotational rates. Thus, these data indicate that, in diether (DHPC) liposomes, when

the chromophore of the probe is embedded more deeply into the center of the

membrane bilayer, the chromophore rotates faster, whereas, in PLFE liposomes,

when the probe’s chromophore penetrates deeper into the membrane core, the probe’s
rotational rate becomes slightly lower [69]. All these differences can be understood in

terms of the structural differences betweenBTL liposomes and conventional diester or

diether liposomes. In the diester liposomal bilayers, the existence of mid-plane space

and the great flexibility near the end of the acyl chain tail would allow for more probe

rotations when the probe’s chromophore reaches that area. Such a mid-plane advan-

tage for probe rotation is not existent in PLFE liposomes.

As another example, the wobbling-in-cone angle of n-AS probes in PLFE

liposomes decreases only slightly with the membrane depth of the chromophore

in n-AS probes [69]. In sharp contrast, in DHPC liposomes, the cone angle of n-AS

probes increases abruptly with increasing the probe depth due to the presence of the

mid-plane space and the increased chain flexibility near the end of DHPC fatty acyl

chains [69].

The n-AS fluorescence data obtained from PLFE liposomes are in good agree-

ment with the electron spin resonance (ESR) data obtained from liposomes made of

the P2 fraction of the total lipid extract from S. solfataricus [71]. The spectral

anisotropy and isotropic hyperfine couplings from ESR measurements indicated

that the chain flexibility and polarity gradients in P2 liposomes are more ordered

and less flexible than in diester liposomes [71].
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2.8 Solute Permeation in BTL Membranes

Linking Low Volume Fluctuations to Low BTL Solute Permeability Compared

to liposomes made of diester lipids, archaeal BTL liposomes exhibit unusually low

solute permeability [34, 72, 73], which can be attributed to tight and rigid membrane

packing as revealed by probe spectroscopy mentioned above and by the values of

relative volume fluctuations determined by the combination of calorimetry and

molecular acoustics [52, 57]. Volume fluctuations are required in order to have solute

permeation across lipid membranes [74]. The relative volume fluctuation values of

PLFE liposomes are substantially less than those detected from diester lipid mem-

branes (e.g., DPPC) [52, 57], due to the rigid and tightly packed membrane matrix.

Effect of Cyclopentane Rings on Solute Permeation The number of

cyclopentane rings in BTLs has a significant effect on BTL membrane properties

such as membrane packing, phase behavior, membrane permeation, and volume

fluctuations. An earlier molecular modeling study showed that an increase in the

number of cyclopentane rings from zero per GDNT molecule to eight rings per

molecule increases membrane packing tightness [42]. The effect of the number of

cyclopentane rings on solute permeability across archaeal BTL membranes has not

been investigated directly because naturally occurring BTLs with purity of a single

number of cyclopentane rings are hard to obtain. Nevertheless, membrane volume

fluctuation measurements using PLFE obtained from cells grown at different

temperatures have shed some light on this subject. Volume fluctuations of PLFE

liposomes exhibited small but significant differences with the growth temperature

of the cells [52]. Since the number of cyclopentane rings increases with cell growth

temperature and the volume fluctuation is related to solute permeation, the volume

fluctuation data suggested that membrane permeability in PLFE liposomes vary

with the number of cyclopentane rings in a non-linear manner, reaching a minimum

when using PLFE isolated from cells grown at optimal growth temperatures [52].

Using a series of synthetic hemi-macrocyclic BTLs containing varying numbers of

cyclopentane rings in the tethered hydrocarbon chain (for example, see the structure of

Compound IV in Fig. 2.3), Koyanagi et al. reported that the number of cyclopentane

rings had no effect on the rate of proton permeation [19]. However, all the

cyclopentane rings in the hemi-macrocyclic BTLs used in that study were placed

exclusively in the singly tethered chain, not in both the tethered and un-tethered. This

will lead to a biased conclusion because the regions with an un-tethered chain remain

flexible and leaky. This raises the concern that the permeability result obtained from

synthetic BTLs, many of which are singly tethered [75], may not be comparable with

that obtained from naturally occurring archaeal BTLs, where the cyclopentane rings

(and the branched methyl groups) are distributed into both biphytanyl chains.
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2.9 Role of Sugar Moieties in BTL Membrane Physical

Properties

Shimada et al. [7] reported that the archaeon T. acidophilum adapts to low pHs and

high temperatures by extending sugar chains on their cell surface BTLs. The proton

permeability of liposomes made of T. acidophilum BTLs that contained two or more

sugar units was lower than that of liposomes made of T. acidophilum BTLs that

contained one sugar unit [7]. Many studies on tetraether lipid membranes have used

lipidswith the polar head groups truncated to either glycerol or calditol (i.e., removing

the phosphate and sugar moieties). In membranes made of truncated tetraether lipids,

the end of the lipidmolecules canmove almost freelywithin and across themembrane

[76]. The liposomes made of truncated GDNT failed to sustain autoclaving, while

liposomes made of intact PLFE can tolerate at least six autoclaving cycles [30]. These

studies clearly suggest that the hydrogen bond network among the phosphate and

sugar moieties in the polar head group regions is critical for BTL membrane stability.

DSC on the hydrolytic fractions GDGT and GDNT indicates the presence of a gel-to-

liquid-crystalline transition that occurs at lower temperatures as the number of

cyclopentane rings decreases [49]. A systematic study of the role of sugar moiety in

BTL membrane dynamics and organization is in demand.

2.10 Lateral Organization in BTL Membranes

It is well known in modern membrane biophysics that membrane lateral organization

is a key issue in governingmembrane properties. Numerous studies have been devoted

to study how lipids and proteins are laterally organized in eukaryotic or bacterial cell

membranes or model membranes (see other chapters in this book volume). In com-

parison, little has been done to address this important membrane issue in archaea.

Most, if not all, crenarchaeota contain a small amount of diether lipids, in addition to

BTLs. The ratio of diethers to tetraethers in archaea varies with the temperature, pH

and pressure of the growth environment. For example, increasing pressure and

decreasing temperature led to an increase of the proportion of diethers in the piezo-

hyperthermic archaeon Thermococcus barophilus [77]. Thus, it is important to ask the

questions [77]: How are diethers and tetraethers distributed in the archaea plasma

membranes? Are diethers domain-segregated from tetraethers? How does the lipid

lateral organization change in response to environmental adaptation? It is conceivable

that these subjects will be rigorously studied in the near future.

PLFE membranes have been extensively studied. However, PLFE is not a single

lipid species; PLFE contains two components, GDGT (minor) and GDNT (major)

(Fig. 2.1). In PLFE liposomes, how these two components are laterally organized in the

plane of the membrane is little known. To our knowledge, the only information about

membrane lateral organization in BTL liposomes came from PLFE GUV studies

[23]. When the temperature was above 26 �C, the entire membrane surface of PLFE
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GUVs was covered by Laurdan fluorescence. When the temperature was lowered to

26 �C or below, the Laurdan intensity images on PLFEGUVs revealed snowflake-like

domains. In those domains, no Laurdan fluorescence was detected, which implies that

the snowflake domains were extremely tightly packed so Laurdan molecules were

excluded completely from those domains. In fact, those snowflake domains were

virtually immobile in the membrane during the experiment time employed (many

hours).When the temperature was raised to above 26 �C, the domains disappeared and

the entire membrane was uniformly covered by Laurdan fluorescence again.

2.11 Concluding Remarks

To date, there are many pieces of evidence (as illustrated in Table 2.1) showing that

the physical behaviors of archaeal or synthetic tetraether membranes are very

different from those seen in diester or diether liposomes. These differences are

important to know for two main reasons. First, BTL membranes are appealing

biomaterials that hold great promise for technological applications [78–81]. Second,

BTL membranes also serve as excellent model systems to promote our understand-

ing of archaeal membrane biology. Therefore, more rigorous biophysical studies of

BTL membranes using more advanced technologies and methodologies are needed.

In most, if not all, biophysical experimental works of archaeal BTL membranes,

crude lipid extracts or partially purified lipid fractions were used. Crude extracts

contain at least several polar lipid fractions. In each lipid fraction, there may exist

both GDNT and GDGT components. In each component, there is a wide distribu-

tion of the number of cyclopentane rings. It will be useful if, in the future studies,

archaeal BTL membranes are studied using highly purified intact (not hydrolyzed)

BTLs with single cyclopentane ring resolutions in the hydrophobic core and single

types of polar head groups, so that the physicochemical data can be interpreted in a

more straightforward manner. Synthetic BTLs are useful for systematic studies of

BTL membranes; however, synthesing the same stereochemistry as that found in

archaeal BTLs is a big challenge. Hydrolyzed BTLs (with the removal of the sugar

and phosphate moieties in the polar head group regions) have been separated by

HPLC to single cyclopentane ring resolutions. Worth noting is that the behaviors of

liposomal or planar membranes made of hydrolyzed BTLs are quite different from

those made of unhydrolyzed BTLs, as discussed earlier.

The biophysical studies of BTL membranes could also be extended to membrane

proteins. A number of proteins or peptides such as cytochrome-c oxidase, quinol

oxidase, primary proton pumps, a leucine transport system, and isoprenylcysteine

carboxyl methyltransferase that are known to be naturally membrane bound have

been shown to remain active in BTL membranes [25, 26, 28, 82–87]. Detailed

studies on the interactions of proteins/peptides and BTLs in well-defined BTL

model membranes would be very beneficial.
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Chapter 3

Effects of Oxidative Stress, Hyperglycemia,
and Hypercholesterolemia on Membrane
Structural Organization and the Interactions
of Omega-3 Fatty Acids

R. Preston Mason and Robert F. Jacob

Abstract Cellular membranes are dynamic structures that play a critical role in

facilitating and maintaining cell function. Membrane structure and fluidity are

dependent on relative lipid (including cholesterol) and protein levels, which are

known to change with aging and in different disease processes. The plasma

membrane is organized into microdomains that have distinct biophysical and

biochemical characteristics that mediate specific cellular activities. Lipid rafts, for

example, sequester a variety of important intracellular signaling proteins and

directly regulate their activity. In response to changes in membrane structure,

some proteins can migrate between lipid-disordered, cholesterol-poor membrane

regions and lipid-ordered, cholesterol-rich domains to differentially affect intracel-

lular signaling. Cholesterol crystalline domains have been observed to form in

vascular cells and in various membrane model systems when exposed to disease-

like perturbations, including oxidative stress, hyperglycemia, and hypercholester-

olemia. Membrane cholesterol enrichment and domain formation is believed to

precipitate extracellular changes, such as crystal deposition in the atheroma with

subsequent plaque destabilization and thrombus formation. Marine-derived long

chain polyunsaturated omega-3 fatty acids have been shown to affect membrane

lipid structure and fluidity. Both eicosapentaenoic acid (EPA) and docosahexaenoic

acid (DHA) have potent antioxidant effects in model membranes and human

lipoproteins, but the sustainability of these effects appear to vary under certain

conditions, and EPA and DHA seem to differentially affect membrane fluidity,

cholesterol domain formation, and membrane function. In this chapter, we will

discuss how disease-like conditions induce structural changes to the cell membrane
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that negatively affect cellular function and potentiate the atherogenic process, as

well as how lipid components within the membrane may alter these effects.

3.1 Cholesterol Is an Important Component of Cellular
Membranes

When placed into an aqueous environment, phospholipids spontaneously form

spherical micelles or bimolecular lipid sheets (bilayers) by orienting their polar

head groups outward, into the water space, and their hydrophobic fatty acid chain

segments inward, forming the hydrocarbon core region. The lipid bilayer is funda-

mental to the basic design of the cellular membrane, which provides both a

structural and functional barrier between the cell and its external environment as

well as between intracellular compartments or organelles. Early models of the cell

membrane suggested that it was highly fluid with component lipids distributed in

random fashion. However, we now understand that the plasma membrane is

inherently asymmetrical, where phospholipids rarely “flip-flop” from one side of

the membrane to the other and lipids aggregate in more- or less-fluid domains

within the same side of the membrane. Membrane lipid fluidity is largely dependent

on temperature as well as relative lipid and protein composition. For example,

decreasing temperature or increasing the saturated fatty acid content of the bilayer

leads to reductions in membrane fluidity. Similarly, the addition of free

(i.e. unesterified) cholesterol significantly orders the lipid bilayer and decreases

membrane fluidity.

The unique physicochemical properties of each membrane constituent are

thought to provide the basis for their separation into distinct membrane domains,

which play important roles in cellular activity. Membrane domains have been

increasingly studied through their roles in ligand-receptor interactions, such as

the lymphocyte T-cell receptor (TCR) with the major histocompatibility complex

(MHC) or cholera toxin with the ganglioside GM1 receptor [1]. In these models,

efficient signal transduction was dependent on the formation of membrane domains,

commonly referred to as “lipid rafts,” that are significantly more ordered than the

surrounding membrane and contain higher concentrations of cholesterol,

glycosphingolipids, and signaling proteins [2]. These cholesterol-rich domains act

as molecular scaffolds for the assembly and regulation of membrane-associated

signaling proteins, and cholesterol is required for efficient receptor activation and

downstream signaling. Lipid rafts are thought to “float” as a structural unit within

the lipid bilayer and can combine to form larger domains in response to increases in

cholesterol, lipid modification, or expression of lipid raft-associated protein.

Cholesterol-rich domains are important for a variety of cellular processes. For

example, T-cell activation and leukocyte adhesion are regulated by cholesterol

domains [1, 3]. Caveolae are a type of lipid raft that contain caveolin and a variety

of proteins that are important mediators of endothelial function and signal
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transduction [4, 5]. T-cell activation, leukocyte adhesion, and signal transduction

through caveolae are all dependent on the presence of membrane cholesterol. This

suggests that membrane cholesterol content is critical in maintaining normal cel-

lular function and any modification to normal membrane cholesterol homeostasis

may have significant effects on cellular function and signal transduction.

3.2 Effects of Oxidation, Hyperglycemia,
and Hypercholesterolemia on Cellular Membranes

While cholesterol-rich domains are vital to normal cell function, cellular function is

altered through changes to membrane signaling systems that rely on normal mem-

brane organization. Oxidative stress, in particular, modifies membrane lipids which

has a negative effect on membrane function. Atherosclerosis is characterized by

excessive accumulation of cholesterol and oxidative damage in endothelial cells,

smooth muscle cells, and eventually macrophages in the arterial cell wall. Oxida-

tive damage and excessive cholesterol accumulation induce the formation of

distinct immiscible cholesterol crystalline domains in cellular membranes

[6, 7]. Over time, these cholesterol domains can precipitate the formation of

insoluble, extracellular cholesterol crystals, a hallmark feature of the atheroscle-

rotic plaque [8]. Cholesterol crystals have been observed using scanning electron

microscopy and have been shown to have sharp, jagged edges [9] that can eventu-

ally expand to puncture the fibrous caps of atherogenic plaque [10] and activate

local inflammatory and thrombotic processes [11]. The association of cholesterol

crystals with vulnerable plaque features can be seen with advanced imaging in

patients who have had a myocardial infarction [12].

Under disease-like conditions, sources of oxidative damage to membrane lipids

include autoxidation of sugars (glucose) and membrane components, as well as

external factors, such as circulating oxidized low-density lipoprotein (oxLDL).

Phospholipids, glycolipids, and cholesterol are all targets of oxidative damage. In

aging and disease, oxidative stress at the membrane level is enhanced by free

radical propagation and increasingly dysfunctional cellular free-radical scavenging

mechanisms [13]. Glucose contributes to oxidative stress mechanisms and is itself

responsible for the non-enzymatic modification of phospholipids and membrane

proteins, resulting in the formation of advanced glycation end products, increased

lipid peroxidation, and cell injury [14]. In patients with type II diabetes mellitus,

oxidative stress to endothelial cell membranes is amplified under hyperglycemic

conditions, leading to increased propagation of free radicals [14, 15].

Oxidative stress and the resultant lipid and protein modifications can lead to

numerous downstream effects. For example, glucose-enhanced oxidative stress

initiates inflammatory processes including the activation of various transcription

factors, such as NF-kB, which results in the overproduction of NADPH, a
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significant source of superoxide. Oxidative stress also impairs insulin endocytosis,

potentially through impaired insulin receptor activation [15]. The insulin receptor is

located primarily in caveolae and sterol binding agents inhibit caveolae-mediated

insulin transport [15]. Oxidative stress also leads to a reduction of nitric oxide

(NO) bioavailability, which disrupts the balance between this potent vasodilator

and systemic vasoconstrictors such as angiotensin II and endothelin, resulting in

increased vascular resistance. Endothelial nitric oxide synthase (eNOS) produces

NO by converting L-arginine to L-citrulline, a process that involves multiple

cofactors. One oxidative mechanism associated with the loss of NO secretion is

the overproduction of superoxide (O2
–) by uncoupled eNOS and other oxidases. In

particular, NADPH oxidases represent major sources of O2
– in animal models of

hypertension and other models of cardiovascular risk [16].

One mechanism through which membrane peroxidation can induce cellular

dysfunction is by inducing cholesterol crystalline domain formation. Cholesterol

crystalline domain formation has been characterized in model lipid vesicles using

small-angle X-ray diffraction approaches, which yield diffraction patterns with a

characteristic repeat of 34 Å associated with membrane-restricted cholesterol

domains and consistent with the tail-to-tail orientation of two cholesterol mole-

cules, each with a long-axis length of 17 Å (Fig. 3.1) [4, 7]. In model membranes

prepared at cholesterol levels that mimic non-atherosclerotic conditions (choles-

terol-to-phospholipid ratio of 0.6:1, for example), treatment with glucose results in

a decrease in overall membrane width and a dose-dependent increase in the

formation of lipid hydroperoxide (LOOH), an intermediate product of oxidative

Fig. 3.1 Schematic illustration of a typical diffraction pattern collected from a biphasic mem-

brane sample, exhibiting sterol-poor, phospholipid bilayer domains (peaks 1, 2, and 4) and

cholesterol crystalline domains (peaks 10 and 20), and its relationship to the spatial arrangement

of these domains in a representative membrane bilayer. This research was originally published in

The Journal of Biological Chemistry. Mason RP, Walter MF, Day CA, Jacob RF. Active metab-

olite of atorvastatin inhibits membrane cholesterol domain formation by an antioxidant mecha-

nism. J Biol Chem. 2006;281(14):9337–45. © The American Society for Biochemistry and

Molecular Biology [6]
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damage (Fig. 3.2) [17]. In these membranes, the formation of LOOH was also

associated with increased formation of cholesterol crystalline domains (Fig. 3.3),

suggesting that lipid peroxidation induces the formation of these domains without

otherwise altering membrane cholesterol levels. These results are consistent with

experiments conducted under other conditions of oxidative stress, such as

autoxidative conditions, where distinct cholesterol crystalline domains are formed

even in membranes prepared at relatively low cholesterol levels (Fig. 3.4)

[18]. Treatment with free radical-scavenging agents has been shown to inhibit

both oxidative damage and structural changes to model membranes, confirming

the role of lipid peroxidation in changes to membrane structure. For example,

atorvastatin o-hydroxy metabolite (ATM), a potent antioxidant metabolite of ator-

vastatin, was able to inhibit lipid peroxidation in a dose-dependent manner [19, 20]

as well as cholesterol domain formation in model membranes. This suggests that

ATM inhibits peroxidation and cholesterol domain formation through a direct

antioxidant mechanism [6].

Hypercholesterolemic conditions are associated with an increase in membrane

cholesterol [7] and increased expression of caveolin, the main structural component

of caveolae [21]. Because caveolin is a potent inhibitor of eNOS, an increase in

cholesterol may contribute to endothelial dysfunction and atherogenesis. In model

membranes, the addition of cholesterol enhances membrane LOOH formation and

the formation of cholesterol crystalline domains (Fig. 3.4) [18]. As may be

expected, treatment of cells with 3-hydroxy-3-methylglutaryl coenzyme A

Fig. 3.2 Glucose promoted a dose-dependent increase in LOOH formation over mannitol in

membranes enriched in dilinoleoylphosphatidylcholine (DLPC). Membranes underwent autoxi-

dation while incubated for 48 h at 37 �C in a phosphate buffer solution containing glucose or

mannitol (each at 5, 10, or 50 mM). Total levels of LOOH were measured iodometrically and

expressed as percent increase normalized to vehicle-treated controls. Values are mean � SD

(N ¼ 5). *p < 0.01 versus vehicle-treated control (Dunnett multiple comparisons test; overall

ANOVA: p < 0.0001; F ¼ 183.86); {p < 0.0001 versus cognate mannitol treatment (unpaired,

two-tailed Student’s t-test). Reprinted with permission from Elsevier B.V. [17]
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(HMG-CoA) reductase inhibitors (statins) reduces caveolin expression, thereby

restoring active eNOS and the production of NO further supporting the

cardioprotective role statins play in cardiovascular disease [22]. Taken together,

these data suggest that lipid peroxidation and hypercholesterolemia negatively

Fig. 3.3 Membrane lipid peroxidation and cholesterol domain formation increased with glucose

treatment following exposure to oxidative conditions for 48 h. Small angle X-ray diffraction

patterns were obtained from oriented DLPC membranes (prepared at 0.6:1 C/P) in the absence or

presence of mannitol or glucose (each at 10.0 mM) before and after autoxidation for 48 h. At 0 h,

all three treatments resulted in a single lipid bilayer phase with a d-space value of 53 Å. After 48 h
exposure to lipid peroxidation, small cholesterol domain peaks (shown in red fill) were observed in
control and mannitol-treated samples. In contrast, large cholesterol domain peaks and a decrease in

bilayer d-space (49 Å) were observed for membrane samples treated with glucose and exposed to

oxidation for 48 h. Reprinted with permission from Elsevier B.V. [17]
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Fig. 3.4 Characterization of cholesterol domain formation in model membranes as a function of

increasing cholesterol content and lipid peroxidation state. Diffraction profiles were generated

from membrane prepared as binary mixtures of DLPC and cholesterol (over a range of C/P mole

ratios) and examined prior to (a) and after (b) exposure to oxidative conditions for 72 h.

Diffraction peaks corresponding to cholesterol domains were obtained only at a C/P mole ratio

of 1.0 in the absence of peroxidation (panel a). After extensive peroxidation, well defined

cholesterol domain peaks were observed at all C/P mole ratios greater than 0.4 (panel b). Bragg
peaks associated with cholesterol domains are marked by red arrows in each panel. This research
was originally published in The Journal of Biological Chemistry. Jacob RF, Mason RP. Lipid

peroxidation reduces cholesterol domain formation in model membranes. J Biol Chem. 2005;280

(47): 39380–7. © The American Society for Biochemistry and Molecular Biology [18]
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affect membrane structure and induce the formation of cholesterol crystalline

domains, all of which have detrimental downstream effects on vascular cell func-

tion (Fig. 3.5) [4].

3.3 Effects of Omega-3 Long Chain Polyunsaturated Acids
on Membranes

The marine-derived long chain polyunsaturated omega-3 fatty acids,

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are important

constituents of the plasma membrane and have been increasingly studied due to

their putative cardioprotective benefits (Fig. 3.6). Prescription forms of omega-3

fatty acids are indicated for use as adjuncts to diet to reduce very high triglyceride

levels (�500 mg/dL) in adult patients; however, other mechanisms by which EPA

Fig. 3.5 Schematic diagram of changes in lipid raft structure and cell function during cholesterol

enrichment and atherosclerosis. Subtypes of lipid rafts enriched with sphingolipid (blue) and

cholesterol (red) include caveolae (1) that contain caveolin protein (green) and detergent-resistant
membrane domains (2). With progressive cholesterol accumulation, separate cholesterol crystal-

line membrane domains (3) form and precede the development of extracellular cholesterol crystals

(4), which contribute to mechanisms of cell injury and death, including apoptosis. Cholesterol

enrichment also increases the number of membrane caveolae, leading to inhibition of endothelial

nitric oxide (eNOS) following by a reduction in nitric oxide (NO) production and associated

vascular benefits. Loss of normal membrane structure and function with cholesterol enrichment is

also associated with disruptions in calcium regulation and redox potential [4]
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and DHA may offer cardioprotection are derived from their ability to intercalate

directly into lipid bilayers. Accumulating evidence suggests that omega-3 fatty

acids provide both potent antioxidant and functional benefits to the endothelium

[23, 24]. For example, under oxidative conditions, treatment of apolipoprotein B

(ApoB)-containing small dense low-density lipoprotein (sdLDL), very-low-density

lipoprotein (VLDL), and oxidized low-density lipoprotein (oxLDL) with EPA or

DHA results in significant reductions in lipid peroxidation relative to untreated

controls (Fig. 3.7) [25].

The antioxidant effects of omega-3 fatty acids appear to be dose-dependent.

When model membranes are treated with various concentrations of EPA and

exposed to oxidative conditions, a dose-response curve is observed whereby

increasing concentrations of EPA result in decreasing lipid hydroperoxide genera-

tion (Fig. 3.8). Interestingly, the addition of ATM was shown to have a potentially

synergistic antioxidant effect on lipid peroxidation, but reductions in lipid oxidation

were not observed when membranes were treated with vitamin E [23]. Finally,

treatment of model membranes with EPA, but not vitamin E, at pharmacologic

levels significantly inhibited glucose-induced cholesterol crystalline domain for-

mation (Fig. 3.9) [23]. These data suggest that, like ATM, long chain omega-3 fatty

acids inhibit lipid oxidation and cholesterol crystalline domain formation through a

direct antioxidant effect within the lipid bilayer.

Omega-3 fatty acids may also affect normal cellular function through direct

structural effects on the plasma membrane and regulation of cholesterol domain

formation in the absence of lipid peroxidation. The unsaturated double bonds

contained within omega-3 fatty acids are highly flexible; thus incorporation of

omega-3 into resident phospholipids may change the overall structure and fluidity

of the membrane lipid bilayer [26]. For example, the increased flexibility of EPA

and DHA may “push” cholesterol away in lipid bilayers, causing EPA and DHA to

be separated from cholesterol (and cholesterol domains) in the plasma membrane,

and these effects can be further modulated by the head group to which the fatty

acids are attached [27].

Fig. 3.6 Chemical structures of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)
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Fig. 3.7 Comparative

effects of EPA and DHA on

human sdLDL (a) LDL (b)
and VLDL (c) oxidation.
EPA and DHA were tested

at 10 μM (sdLDL) and

2.5 μM (LDL and VLDL).

Data were collected at

various time points up to 4 h

following initial exposure to

oxidative conditions. Values

are mean � SD (N ¼ 3).

*p < 0.001 versus vehicle-

treated control; {p < 0.05

and {p < 0.001 versus DHA

(Student-Newman-Keuls

multiple comparisons test;

overall ANOVA—sdLDL

data: p < 0.0001,

F ¼ 391.88; LDL data:

p < 0.0001, F ¼ 1191.3;

VLDL data: p < 0.0001,

F ¼ 1074.8). Abbreviations

are: DHA docosahexaenoic

acid, EPA eicosapentaenoic

acid, LDL low-density

lipoprotein, MDA
malondialdehyde; sdLDL
small dense low-density

lipoprotein, VLDL very-

low-density lipoprotein.

Reprinted with permission

from Wolters Kluwer

Health, Inc. [25]
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3.4 Differential Effects of Fatty Acids: EPA and DHA

Although EPA and DHA are both long chain omega-3 fatty acids, increasing

evidence suggests that EPA and DHA may have different effects on biological

systems [28]. Differences in chain length and the number of double bonds between

EPA and DHA may differentially affect how these individual fatty acids intercalate

into and interact with lipid monolayers and bilayers, perhaps by altering their own

precise orientation and location in the outer lipid layer of lipoproteins and thereby

leading to differences in antioxidant properties. For example, the antioxidant effects

of DHA, as shown in Fig. 3.7, are time dependent, decreasing significantly within the

first 2 h, whereas EPA stably prevented lipoprotein oxidation through at least 4 h.

Additionally, EPA and DHA may incorporate into separate domains within the

lipid bilayer [29], with distinct effects on membrane stability or the formation of

cholesterol domains [30, 31]. In model membranes that contain normal levels of

cholesterol, treatment with DHA, but not EPA, had no effect on membrane width,

increased membrane fluidity, and simultaneously induced the formation of choles-

terol domains relative to untreated controls [32]. In atherosclerotic-like membranes

(model membranes enriched in cholesterol at levels that predispose to cholesterol

crystalline domain formation) that were formed in the absence of oxidative stress,

treatment with EPA resulted in a significant, dose-dependent reduction in choles-

terol domain formation relative to untreated controls, while DHA induced choles-

terol domain formation in cholesterol-enriched membranes. In addition, treatment

with EPA stabilized membrane width across increasing temperatures, while no

effect was observed with DHA, suggesting that EPA has a direct stabilizing effect

on lipid bilayers even in the absence of lipid peroxidation [32].

Fig. 3.8 Dose-dependent effects of EPA on glucose-induced membrane lipid peroxidation. Model

membrane samples were reconstituted fromDLPC and cholesterol at a C/Pmole ratio of 0.6:1, treated

with glucose (200 mg/dL), and tested for LOOH formation following exposure to oxidative condi-

tions for 48 h. Values are mean� SD (N¼ 6). **p< 0.001 versus vehicle-treated control; {p< 0.001

versus 1.0 μM EPA; §p < 0.001 versus 2.5 μM EPA; ¶p < 0.05 versus 5.0 μM EPA (Student-

Newman-Keuls multiple comparisons test; overall ANOVA: p< 0.0001, F¼ 561.62). Reprinted with

permission from Elsevier B.V. [23]
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Overall, it appears that EPA and DHA have complementary antioxidant charac-

teristics but that the antioxidant effects of DHA may be lost with time under certain

conditions. Furthermore, EPA and DHAmay have potentially differential structural

effects on the formation of cholesterol crystalline domains in lipid bilayers

(Fig. 3.10). Additionally, plasma EPA levels may have beneficial effects on plaque

characteristics and stabilization as compared with DHA levels [34]. Further

research is needed to elucidate the antioxidant, structural, and functional effects

of EPA versus DHA on endothelial membranes and plaque characteristics.

Interestingly, several [35–43], but not all [44–50], long-term cardiovascular

outcomes studies and related subgroup or meta-analyses have suggested a benefit

from omega-3 fatty acid supplementation. Potential confounders to providing

Fig. 3.9 Representative X-ray diffraction patterns collected from model membranes prepared in

the presence of glucose, treated with vehicle (control), vitamin E, or EPA and subjected to

oxidative conditions for 96 h. Membranes were reconstituted from DLPC and cholesterol at a

C/P mole ratio of 0.6:1 and treated with each of the various agents to achieve a total drug-to-

phospholipid mole ratio of 1:30. At 0 h, each sample exhibited a single lipid bilayer phase with an

average periodicity (d-space value) of 51.5 Å, represented by diffraction peaks 1 through 4. At

72 h, cholesterol crystalline domains, having a characteristic d-space value of 34 Å and

represented by a set of distinct diffraction peaks (shown in red fill),were also observed in

membrane samples treated with vehicle (control) and vitamin E. At 96 h, cholesterol domains

peaks were observed in all experimental samples; however, these peaks were disproportionately

greater in samples treated with vehicle (control) and vitamin E as compared to EPA. Reprinted

with permission from Elsevier B.V. [23]
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conclusive evidence as to whether omega-3 fatty acids are cardioprotective are the

heterogeneity of the omega-3 formulations and of the patient populations studied.

Studies have utilized various therapies ranging from dietary fish supplementation to

treatment with prescription strength purified marine-derived omega-3 fatty acids at

various doses and with various ratios of EPA and DHA (some with EPA only), and

Fig. 3.10 Schematic illustration of the proposed effects of EPA and DHA on membrane structural

and dynamic properties. EPA intercalates into the hydrocarbon core region of the membrane lipid

bilayer where it provides important antioxidant benefits, as previously reported, but without

inducing any significant changes in membrane lipid fluidity, bilayer width, and cholesterol

distribution. In contrast, DHA increases membrane lipid fluidity, promotes the formation of

discrete, cholesterol crystalline domains, and reduces the overall width of the membrane bilayer.

The distinct effects of DHA as measured in this study are attributed to its greater molecular length

and reduced saturation level, which alters membrane phospholipid packing constraints, effectively

increasing molecular space in the hydrocarbon core, with subsequent effects on cholesterol

redistribution and bilayer width. Reprinted from Elsevier B.V. [33]
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patient populations have varied across studies. Cardiovascular outcomes studies are

currently ongoing with high dose prescription omega-3 formulations as statin

adjuncts in patients with high triglyceride levels (median of 200–499 mg/dL) to

determine the CV benefit of adding 4 g/day of a highly purified EPA formulation

[51] as well as a 4 g/day EPAþDHA formulation [52].

3.5 Summary

Cellular membranes play an important role in the maintenance and regulation of

cellular function. Interactions between lipids and proteins induce the formation of

distinct cholesterol domains on the plasma membrane of cells that are important

regulators of cellular activity and signal transduction. Under conditions of oxidative

stress, such as hyperglycemia or hypercholesterolemia, membrane lipids undergo

extensive peroxidation which leads to cellular dysfunction and the formation of

cholesterol crystalline domains. In model membranes, treatment with ATM and

EPA inhibits membrane peroxidation and the formation of cholesterol crystalline

domains, providing additional insight into the mechanisms associated with the

known and proposed cardioprotective effects of statins and marine-derived

omega-3 fatty acids. While EPA and DHA both provide antioxidant benefits, the

sustainability of these effects appear to vary under certain conditions, and EPA and

DHA may differentially affect membrane fluidity, membrane width, and the for-

mation of cholesterol crystalline domains. There may also be a differential effect on

plaque characteristics between EPA and DHA plasma levels. Both in vitro and

clinical research is ongoing to further elucidate the potential cardioprotective

effects of EPA and DHA on endothelial cell membranes and plaque.
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Chapter 4

Interaction of Amphiphilic Molecules

with Lipid Bilayers: Kinetics of Insertion,

Desorption and Translocation

Hugo A.L. Filipe, Renato M.S. Cardoso, Luı́s M.S. Loura,

and Maria Jo~ao Moreno

Abstract Passive transport across lipid bilayers is a significant, if not dominant,

route for the permeation of biologically active amphiphiles through cell mem-

branes. Often, the quantitative description of the rate of permeation is based on a

single kinetic parameter, the permeability coefficient. However, the nature of the

interactions between amphiphilic molecules and lipid bilayers is complex and

involves different steps (insertion, translocation and desorption), which affect

both the extent of partition and the rate of permeation. Quantitative knowledge of

the rate constants associated with each individual step is required for proper

understanding of the whole process, and certainly useful in prediction of the ability

of new drug compounds to access the interior of their cell targets. This chapter

reviews the formalisms applicable to the kinetics of interaction of small solutes

with lipid bilayers. Several important limiting cases, corresponding to different
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ranges of aqueous solubility and membrane partition, are considered, and selected

examples of applications of fluorescence spectroscopy to quantitative description of

solute/bilayer interaction are presented. We also address the state of the art regard-

ing methods for calculation of rate constants of solute/lipid interaction and perme-

ability coefficients from molecular dynamics simulations. These methods rely on

accurate computation of free energy profiles of solutes across lipid bilayers, and

strategies to this purpose, namely employing enhanced sampling of improbable

states with the so-called umbrella sampling method, are discussed.

The interaction of small molecules with biological membranes is of fundamental

importance in organelle, cell and whole organism homeostasis. Most biologically

active small molecules such as metabolites and pharmaceuticals are amphiphilic

and as a consequence they interact to some extent with hydrophobic assemblies

such as lipid bilayers. This is actually a requirement for their efficient distribution

between the distinct aqueous compartments in the living being, all delimited by

biomembranes. Most biologically active amphiphiles are not recognized by trans-

porters in the biological membrane and they cross those barriers by passive

mechanisms. The rate of equilibration between the distinct compartments depends

on the permeability coefficient through the lipid bilayer of biomembranes, which in

turn is a function of the rate of translocation between the bilayer leaflets, as well as

on the rates of insertion and desorption into/from each leaflet. In addition, a large

fraction of cellular enzymes are associated with membranes (either permanently or

transiently due to electrostatic interactions and/or regulated acylation), and the

effective concentration of the bioactive compound depends on its partition between

the aqueous medium and the membrane as well as on the rates of interaction with

the membrane.

Given its importance, it is to some extent surprising that so little information is

available on the rates of interaction of small amphiphilic molecules with lipid

bilayers and biological membranes. This is justified by the extreme difficulty on

obtaining experimental data of high quality due to the limited availability of

techniques with the required sensitivity and time resolution. An example that

illustrates well this difficulty may be found in the effort dedicated by several

authors to characterize the rates of interaction of fatty acids with lipid bilayers.

The kinetics of the interaction is somewhat easier to characterize for the case of

fluorescent molecules, but nevertheless the available information is still quite

limited. Molecular Dynamics (MD) simulations is a well-established methodology

to obtain molecular details on the interaction between amphiphilic molecules and

lipid bilayers. More recently, this methodology has been applied to obtain infor-

mation regarding the kinetics of the interaction.

In this chapter we will review the methodologies available to characterize the

kinetics of interaction between small molecules and lipid bilayers. The distinct

methodologies commonly used, and the required mathematical formalisms, will be

presented with a critical evaluation of their strengths and limitations. The list of
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references given is by no mean extensive, the objective being simply to illustrate

the distinct methodologies available.

4.1 Experimental Approaches to Characterize

the Interaction Between Small Molecules and Lipid

Bilayers

To characterize quantitatively the kinetics of interaction between a solute and lipid

bilayers it is necessary to quantify the concentration of solute associated with the

bilayer. Fluorescence based methodologies are by far the most convenient because

the fluorescence properties of the solute (quantum yield, lifetime and/or anisotropy)

are strongly dependent on the environment. This permits following the transfer of a

fluorescent molecule between media with distinct properties without the need to

physically separate them. In addition, fluorimeters are inexpensive and easy to work

with, display a high sensitivity (allowing the use of small concentrations that do not

perturb the lipid bilayer), and little interference from other molecules present in the

system as most molecules do not fluoresce.

The kinetic models required to characterize the kinetics of interaction of small

molecules with liposomes will be presented and discussed in the first part of this

section. A focus on fluorescent molecules will be given, with the discussion of

common difficulties and possible artifacts. The models presented are also valid for

the case of non-fluorescent molecules, provided that their concentration in the

distinct compartments may be quantified. Some common methods to follow

non-fluorescent molecules, both directly and using fluorescent probes, will also

be described.

We have opted to present the kinetic models organized according to solute

solubility in the aqueous media, considering separately very high, moderate and

low aqueous solubility, because the experimental approaches and the mathematical

formalisms depend strongly on this solute property.

4.1.1 Solutes with High Solubility in the Aqueous Media
and Insoluble in the Lipid Bilayer

Usually, when the solubility of the molecule of interest in the aqueous media is very

high it does not associate significantly with the lipid bilayer. The solute molecules

in the vicinity of the lipid bilayer on one side, will permeate directly into the other

side of the bilayer with a given rate constant κ, scheme (4.1):
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So
w �

κ

κ
S i
w, ð4:1Þ

where So
W and S i

W represent the solute in the aqueous media outside and inside the

liposomes, respectively. It is assumed that the rate constant for crossing the bilayer

in both directions is the same, which should hold for symmetric bilayers.

The differential equations that relate the time dependence of the amount of

solute on both sides of the bilayer with the rate constants for crossing the bilayer

are given below.

dnSo
w

dt
¼ �κ ns ow � ns iw

� �
dnS i

w

dt
¼ �dnSo

w

dt

8><
>: ð4:2Þ

Note that the total amount of solute in a given aqueous compartment is

represented by an uppercase S, whereas a lowercase s represents the solute in the

immediate vicinity of the bilayer. The rate for crossing the bilayer is proportional to

the difference in the amount of solute in the immediate vicinity of the bilayer (and

not to the difference in the total amount of solute in the two aqueous compart-

ments), because only those solute molecules are able to cross the bilayer with the

rate constant κ. Solute molecules further away have first to diffuse into the region

near the bilayer, and after crossing the barrier the solutes will equilibrate with the

respective aqueous compartment by diffusion.

For small and polar molecules the diffusion in the aqueous media is much faster

than crossing the lipid bilayer barrier. Therefore, the solute molecules in the

immediate vicinity of the bilayer are in equilibrium with the solute in the bulk

aqueous phase. If the solute does not interact with the surface of the lipid bilayer,

the concentration in the volume of aqueous phase in the immediate vicinity of the

lipid bilayer is the same as the concentration in the respective bulk aqueous phase.

In this case, the fraction of solute in the immediate vicinity of the lipid bilayer is

equal to the ratio between the volume of the aqueous phase with a thickness that

depends on the solute dimensions, and the area of the bilayer in direct contact with

it, K ¼ 1 in Eq. (4.3). For the case of ions and charged membranes, the solute may

be enriched or depleted at the surface of the bilayer due to electrostatic attraction or

repulsion; in this case the distribution coefficient between the bulk aqueous phase

and the aqueous layer in the immediate vicinity of the bilayer (K ) will be larger or

smaller than 1, respectively. The product of the distribution coefficient (K ) and the

characteristic length (λ) converts the solute concentration in bulk aqueous phase

(in units of mol dm�3) into the surface concentration of solute near the permeation

barrier (in units of mol dm�2).
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See Fig. 4.1 for the definition of the distinct variables and parameters in

Eq. (4.3).

Using the relations given in Eq. (4.3), the differential equations for the total

amount of solute in each aqueous compartment as a function of the total amount of

solute in that compartment may be found, Eq. (4.4). Note that for large unilamelar

vesicles (LUVs) and giant unilamelar vesicles (GUVs), the area of the bilayer in

contact with the aqueous media outside and inside the liposomes is the same, that

means Ao¼Ai¼A.

dnSo
w

dt
¼ �κKAλ

nSo
w

V o
w

� nS i
w

V i
w

� �
dnS i

w

dt
¼ �dnSo

w

dt

8>><
>>: ð4:4Þ

When the concentration of solute in a given aqueous compartment with respect

to the volume of that aqueous compartment is the property being followed (as is the

case for permeation through cell monolayers), it is convenient to describe the time

evolution of the solute in terms of its concentration with respect to the volume of the

aqueous compartment where it is dissolved Sx
w

� �
V x
w
¼ nSx

w=V
x
w

� 	
, Eq. (4.5).

Fig. 4.1 Schematic drawing with the kinetic scheme considered for the transport of very polar

solutes across a lipid membrane. The lipid bilayer is represented by the medium intensity gray bar
( ), the aqueous layer in the immediate vicinity of the bilayer by the light gray bar ( ), and the

bulk aqueous phase by very light grey ( ). The volumes of the aqueous phases outside and inside

the liposomes are represented by V o
w and V i

w, respectively; the volumes of aqueous phase

immediately in the vicinity of the bilayer are represented by vow and v iw; and the total area of the

bilayer surface in direct contact with the aqueous media is represented by Ao and Ai ( ). The

solute in the bulk aqueous phase (So
w and S i

w) equilibrates rapidly with the solute in the immediate

vicinity of the lipid bilayer (sow and s iw) and slowly permeates the bilayer with the rate constant κ
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The differential equations that describe the time evolution of the concentration

of solute in the two aqueous compartments with respect to the volume of the

specific compartment are no longer symmetric. This is because the incremental

concentration in each aqueous compartment due to the transfer of a given amount of

solute depends on the volume of the respective compartment.

When using the fluorescence of the whole solution to follow the permeation of a

solute through the lipid bilayer, it is not usually possible to quantify the concen-

tration of solute in a given compartment with respect to the volume of that

compartment, but rather the corresponding concentration with regard to the total

volume of the solution, Sx
w

� �
VT

¼ nSx
w=VT. The differential equations obtained for

the time variation in the concentration of solute in each aqueous compartment, with

respect to the total volume of the system, are given by:
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¼ �κKAλ
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Using the molar conservation equation for the total amount of solute

nST ¼ nSo
w þ nS i

w

� �
, one can obtain the differential equation for each of the species

(namely So
w) where its own concentration is the only time dependent variable:

d So
w

� �
VT

dt
¼ �κKAλ So

w

� �
VT

V o
w þ V i
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Equation (4.7) has the form:

dx

dt
¼ �k xþ að Þ, ð4:8Þ

and its integration gives:

x ¼ x1 þ x0 � x1ð Þe�kt, ð4:9Þ
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where x0 is the value of variable x at time equal to zero and x1 is its value at the end

of the time window considered in the experiment.

The rate constant for transfer of solute from the aqueous media outside the

liposomes to the aqueous media inside the liposomes (k) is therefore given by:

k ¼ κKA λ
V i
w þ V o

w

V i
w V o

w

ð4:10Þ

The above expression may be simplified because several of the variables depend

on common parameters. The total area of lipid bilayer in contact with each aqueous

compartment is given by:

A ¼ NLV
4πr2, ð4:11Þ

where NLV
is the number of liposomes in the total volume of solution considered,

and r the radius of the liposomes. On the other hand, the total volume of aqueous

media inside the liposomes is given by:

V i
w ¼ NLV

4

3
πr3: ð4:12Þ

If the aqueous volume inside the liposomes is much smaller than the total

volume of the solution, and because the volume of the lipid bilayer is negligible,

the aqueous volume outside the liposomes may be considered equal to the total

volume of solution. In that case, the rate constant for transfer of solute through the

lipid bilayer of the liposomes depends on the size of the liposomes, being given by:

k ¼ κK
3λ

r
: ð4:13Þ

The rate constant of transfer of solute is therefore inversely proportional to the

size of the liposomes. Due to this dependence, the kinetic parameter that is usually

reported is the permeability coefficient (P). This parameter may be calculated from

the rate of accumulation of solute in the acceptor compartment, which is described

by Eq. (4.14) for the case where no significant back transfer of solute occurs:

P ¼
dnSA

w

dt V D
w

A nSD
w 0ð Þ

, ð4:14Þ

where the superscripts D and A denote the donor and acceptor compartments, and

nSD
w 0ð Þ is the amount of solute in the donor compartment at t ¼ 0. The differential

equation for the amount of S in the acceptor compartment is given by,
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dnSA
w

dt
¼ �k nSA

w � nST
V A
w

V A
w þ V D

w

� �
: ð4:15Þ

At the beginning of transfer from D to A, when nSA
w ¼ 0 and nSD

w ¼ nST, the
above equation simplifies to:

dnSA
w

dt
¼ k nST

VA
w

VA
w þ VD

w

¼ k nSA
w 1ð Þ:

ð4:16Þ

Substituting Eq. (4.16) in Eq. (4.14) leads to the relation between the perme-

ability coefficient and the transfer rate constant:

P ¼ k
1

A

VA
w VD

w

VA
w þ VD

w

: ð4:17Þ

If the donor compartment is the aqueous medium inside the liposomes,V A
w � V D

w

and the above equation simplifies to:

P ¼ k
V D
w

A
: ð4:18Þ

Substituting in the expression the Eqs. (4.11), (4.12) and (4.13), for A, VD
w and k,

respectively, one obtains the following equation:

P ¼ κKλ, ð4:19Þ

which relates the permeability coefficient with the parameters initially considered

in the kinetic model, κ and λ.
In this mechanism of permeation it is assumed that the solutes do not interact

with the bilayer (except for some eventual electrostatic interaction). Therefore, the

intrinsic rate constant for crossing the barrier (κ) is related with the formation of

transient hydrated defects due to thermal fluctuations, which depend on the bilayer

thickness and lipid-lipid interactions. The rate constant is also affected by the size

of the solute which will have to diffuse through the transient pores. For a given ion,

the rate of permeation is expected to decrease exponentially with the increase in the

thickness of the bilayer. This has been observed for the permeation of small ions

through thin lipid bilayers [1].

The mathematical formalism above has been used to characterize the rate of

permeation of the anion dithionite through LUVs of distinct lipid composition

[2]. Dithionite is not fluorescent but its concentration in the aqueous media inside

the LUVs was quantitatively followed via its reaction with the fluorescent group

nitrobenzoxadiazole (NBD) covalently linked to the head group of 1,2-dimiristoyl-

sn-glycero-3-phosphoethanolamine (DMPE). The same formalism has been used to

56 H.A.L. Filipe et al.



calculate the permeability coefficient of several non-fluorescent small molecules

(water, urea and glycerol) [1, 3] and ions (such as amino acids, peptides, thyroid

hormones, phosphate and H+/OH�) [1, 4–6]. The time evolution of the concentra-

tion of the relevant solute in the inner or outer aqueous media was followed by

changes in the liposome volume (therefore leading to the permeability coefficient

under an osmotic gradient) [1, 3, 4], using specific electrodes [1], through the

selective reaction of the solute in the inner or outer aqueous phase [4, 5], or by

solute quantification after physical separation of the two aqueous compartments [6].

To characterize the rate of permeation of fluorescent molecules through lipid

bilayers, the most common approach is to encapsulate the fluorescent molecule at

high concentrations (leading to efficient fluorescence quenching) inside liposomes.

The fluorescent molecules outside the liposomes are then removed (usually by size

exclusion chromatography), and the permeation through the lipid bilayer is followed

through the time dependent fluorescent increase due to dilution of the fluorophore

when going from the inner to the outer aqueousmedia [7]. This approach can only be

used for molecules with low and very low permeability, because it requires previous

removal of the probe located in the aqueous media outside the liposomes. Addition-

ally, the fluorescent molecules must have a very high solubility in the aqueous phase

to achieve self-quenching concentrations, and they cannot interact efficiently with

the membranes to ensure slow permeability. The method cannot therefore be used to

characterize amphiphilic molecules. It has been used mostly to characterize the

effect of several membrane perturbing molecules, such as peptides and surfactants,

on the barrier properties of liposomes [7–12]. The fluorescent probe used to report on

the bilayer properties is most commonly carboxyfluorescein (CBF), but calcein has

also been employed [8]. To follow quantitatively the permeation, attention should be

given to the fact that fluorescence intensity may have a non-linear relation with the

extent of transfer [7, 13].

4.1.2 Solutes with a Moderate Solubility in the Aqueous
Media and in the Lipid Bilayer

The overall permeation of solutes with moderate solubility in both the aqueous and

the lipidic phases is usually described by the partition-diffusion mechanism. Early

descriptions of permeation following this mechanism considered the presence of

several diffusion barriers in the system water/bilayer/water [14]. However, the

approximation of a single rate limiting step, the diffusion through the bilayer

non-polar core, became the prevailing model. According to this formalism, the

overall permeability coefficient (P) is related with the microscopic parameters:

partition coefficient between the water and the bilayer (KP), diffusion coefficient of

the solute through the bilayer (D), and thickness of the barrier (h), by:
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P ¼ KP

D

h
: ð4:20Þ

This model for permeation through membranes is based on the work done by

Overton more than a century ago [15], and Eq. (4.20) is commonly referred to as

Overton’s rule [16, 17].
Equation (4.20) is formally equivalent to the equation derived in the previous

section for solutes that do not partition into the lipid bilayer, Eq. (4.19), with the

equilibrium distribution between the bulk aqueous phase and the immediate vicinity

of the lipid bilayer (K ) replaced by the partition coefficient between the aqueous and

lipidic phases (KP). The first order rate constant associated with transport with the

diffusion coefficient D is D/‘2, where ‘ is the distance between the two equilibrium
positions that is being crossed by diffusion [14]. Therefore, Eq. (4.20) is equivalent

to Eq. (4.19) with the solute characteristic length (λ) equal to the thickness of the

diffusion barrier. The length parameter in Eq. (4.20), h, is usually considered as the
thickness of the bilayer, although it is in fact the distance between the equilibrium

positions of the solute center of mass on both sides of the bilayer. The assumptions in

the derivation of Eq. (4.20) are very similar to those considered in the previous

section: (1) negligible accumulation of solute in the bilayer; (2) rapid transport of

solute from the bulk aqueous media to the bilayer; and (3) transport through the lipid

bilayer as a single step.

The major difference between the partition/diffusion model and the model

presented in the last section is the nature of the intrinsic rate constant for transport

through the barrier; diffusion of solute dissolved in the nonpolar portion of the lipid

bilayer, and diffusion through transient hydrated defects, respectively. The distinc-

tion between the two permeation mechanisms may be done through the dependence

of the overall permeability coefficient on the thickness of the bilayer. Assuming an

invariant partition coefficient and diffusion coefficient; P is predicted to depend

inversely on the thickness of the bilayer for the partition/diffusion mechanism of

permeation, while an exponential dependence is predicted for the pore mechanism

[1]. The permeation of small neutral molecules such as water, urea and glycerol, has

been shown to follow the predictions from the partition/diffusion mechanism of

permeation through lipid bilayers. This same mechanism is observed for the

permeation of large ions, due to their significant solubility in the lipid bilayer, the

small probability of pore formation with the appropriate size and the slow diffusion

of the large ion through the transient pore.

There are several reports on the overall permeability coefficient of small mole-

cules through liposomes considering the partition/diffusion mechanism. The

methods used are essentially equal to those described in the previous section for

solutes very soluble in the aqueous phase, except that permeation may be too fast to

allow the physical separation of the inner and outer aqueous compartments. The

permeation of fluorescent amphiphiles into GUVs has also been followed directly

using fluorescence microscopy [18], and the permeation of weak acids and bases

has been characterized through the pH variation in the aqueous compartment inside
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the LUVs, as measured by the fluorescence probes carboxyfluorescein or

pyranin [19].

When comparing distinct solutes along a homologous series, Eq. (4.20) provides a

good description for the dependence of the rate of overall permeation coefficient with

the solute hydrophobicity. However, for structurally unrelated solutes the correlation

between P and KP is poor and no clear relation is obtained with the diffusion

coefficient as predicted by the size of the solutes. This is due to the assumptions

considered in the development of the partition/diffusion mechanism which are not

valid for the case of medium size and amphiphilic molecules.

In the partition/diffusion mechanism of permeation, the barrier region of the lipid

bilayer is treated as a homogeneous medium through which the solute diffuses due to

the concentration gradient on both sides of the barrier. There are several difficulties

associated with this assumption, namely the high transversal heterogeneity of the

lipid bilayer (with density, viscosity and polarity gradients), which is not compatible

with the assumption of a smooth continuous resistance offered by the media on the

diffusing molecules required to treat transport as diffusion [14]. It is therefore

challenging, if not impossible, to know what would be the diffusion coefficient to

use in Eq. (4.20) in order to predict the permeability coefficient from the structure of a

given molecule; the more general inhomogeneous solubility-diffusion model, which

can accommodate this heterogeneity, will be described below in the context of MD

simulations. Also, for amphiphilic molecules (with well-defined polar and non-polar

regions) the transport through the bilayer center cannot be considered as random

diffusion because the energy of the solute in the bilayer does not depend only on the

position of its center of mass, but also on the orientation of the polar and non-polar

regions. The high Gibbs energy state in the transport of amphiphilic molecules

through the bilayer usually corresponds to the solubilization of the polar region in

the non-polar center of the bilayer (transition state) and is more conveniently treated

as a single step corresponding to translocation from the equilibrium position in one

side of the bilayer to the other. The rate constant of translocation depends on the

activation energy barrier, which is a function of the interactions that the solute

establishes with the lipids and the hydration shell at the equilibrium positions and

with the non-polar portion of the lipids when in the transition state. The prediction of

this activation energy, and therefore the rate constant for translocation, from the

structure of the amphiphile and the properties of the bilayer is a feasible task,

allowing the prediction of the overall permeation from the structure of the permeating

solute.

Another important limitation of the partition/diffusion model is the assumption

that transport through the non-polar region of the bilayer is the rate limiting step. In

the overall process of entering an aqueous compartment delimited by a lipid

membrane (cell, organelle or liposome) the amphiphile first interacts with the

outer leaflet (rate of insertion), followed by equilibration with the inner leaflet

(rate of translocation, or diffusion, through the non-polar part of the bilayer), and

then it equilibrates with the inner aqueous compartment (rate of desorption). For

amphiphiles with a high Hydrophilic/Lipophilic Balance (HLB), the rate limiting

step in the overall process is usually translocation through the non-polar center of
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the bilayer. In this case, the permeability coefficient is directly proportional to the

rate of translocation and to the partition coefficient between the aqueous media and

the lipid bilayer as predicted by Eq. (4.20). However, in the last years several

exceptions to this behavior have been observed, and it is now well established that

for amphiphiles with intermediate and low HLB, Eq. (4.20) does not adequately

predict the rate of overall permeation through lipid bilayers [20–23], as the rate

limiting step is the desorption from the bilayer (and not translocation) [20].

The overall rate of permeation is the relevant parameter to evaluate how fast the

amphiphile crosses the biological membranes. However, a rational interpretation of

the dependence of this parameter on the structure and properties of the permeating

amphiphile is not straightforward, because it depends on several steps, each being

affected differently by the amphiphile properties [20]. To rationalize and gain

predictive value on the dependence of the overall permeation with the molecular

properties of the amphiphile, it is necessary to obtain all the relevant rate constants

(insertion, desorption and translocation) for a large set of structurally unrelated

molecules.

To obtain the rate constants of insertion and desorption from the lipid bilayer it is

necessary to consider those steps explicitly in the kinetic scheme. Therefore, the

association between the amphiphile and the lipid bilayer is not assumed to be in fast

equilibrium. The resulting kinetic scheme is given below.

So
W þ LV �

k
LV
þ

k�
So
L $

kf
S i
L ð4:21Þ

where SW
o represents the amphiphile (solute) in the aqueous media outside the

liposomes; LV the liposomes; SL
o and SL

i represent the amphiphile in the outer and

inner leaflet of the liposomes, respectively; kf is the rate constant for translocation
between the leaflets; kLVþ is the rate constant for insertion of the amphiphile in the

lipid bilayer of the liposomes; and k� is the rate constant for desorption from the

lipid bilayer into the aqueous media.

We call the reader’s attention to the fact that the notation used for the rate

constants of desorption and translocation does not include reference to the topology

of the lipid phase, while this is included in the notation used for the rate constant of

insertion. This is because the rate of insertion requires the encounter between the

amphiphile in the aqueous media and the lipid phase, which depends on the size of

the lipid assemblies for the case of processes near or at the diffusion limit. In

accordance, the lipid phase is represented with the topology present in the solution

(liposomes, LV). This allows the comparison between the obtained rate constant of

insertion and the diffusion limited rate constant. Additionally, this formalism

permits the comparison between the rates of insertion in lipid aggregates of distinct

sizes with the uncoupling between the contributions from size and other properties

[24]. It should however be noted that the usual equations to calculate the diffusion

limited rate constants are only valid in the absence of electrostatic interaction

between the reactants [25]. Also, the model considers that all the volume occupied

by the reactants is active, which is only an approximation for the case of liposomes
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and leads to significant deviations for the case of very large liposomes and

cells [26].

Although the interaction is considered to take place with the individual lipo-

somes, equilibration of the amphiphile between the aqueous phase and the lipid

leaflet in direct contact is considered to occur via partition and not binding to well

defined binding sites. In addition, the capacity of the liposomes to interact with the

amphiphile is considered as independent of the presence of amphiphile already

associated with the liposomes; this being valid only for small local concentrations

of solute. As a consequence, the concentration of liposomes (binding agent avail-

able for the interaction) remains constant throughout the equilibration process,

which significantly simplifies the mathematical description of the interaction

between small molecules and liposomes.

In kinetic scheme (4.21), the equilibration of the amphiphile with the aqueous

media inside the liposomes is not considered. Although this approximation is valid

for LUVs because the volume of the encapsulated aqueous media is negligible, it

does not hold for GUVs. Another simplification considered is that the rate constant

for translocation is the same in both directions. This is valid for liposomes with a

small curvature (diameter equal to or larger than 100 nm) with the same lipid

composition in both leaflets.

The rate constant for equilibration between the aqueous media and the liposome

leaflet in direct contact is given by,1

k ¼ k� þ kLVþ LV½ �: ð4:22Þ

If this process occurs at least one order of magnitude faster than translocation into

the inner leaflet, the two processes are uncoupled and the fluorescence variation that

follows the addition of liposomes to the fluorescent amphiphile is a single-

exponential function, fromwhich the rate constant k is directly obtained. Performing

the experiment at different liposome concentrations permits obtaining the rate

constant of insertion and the rate constant of desorption, [27] Eq. (4.22).

When the rate of translocation is much faster than the rate of equilibration

between the aqueous phase and the exposed liposome leaflet, the fluorescence

variation observed is also a single-exponential function but the relation between

the transfer rate constant with the intrinsic rate constants for insertion and desorp-

tion is given by,

k ¼ k�
2

þ kLVþ LV½ �: ð4:23Þ

1In this and in the next equations, the concentrations are calculated with respect to the total volume

of the solution except when explicitly indicated.

4 Interaction of Amphiphilic Molecules with Lipid Bilayers: Kinetics of. . . 61



The rate of desorption is proportional to half the value of the respective rate

constant because only the amphiphile in the outer leaflet of the bilayer (half of the

total amphiphile) is able to desorb into the aqueous phase outside the liposomes.

Both situations described above allow the characterization of the rate constants of

insertion and desorption, but not the rate constant of translocation. An important

difficulty is whether Eqs. (4.22) or (4.23) should be used if no independent informa-

tion is available regarding the relative rate of translocation.

For some amphiphiles, the two distinct processes occur on similar time scales

and the fluorescence variation observed does not follow a single-exponential

function. In this situation the time dependence of the fluorescence variation must

be described by the integration of the full set of differential equations obtained from

the kinetic scheme, Eq. (4.24), and all the rate constants may in principle be

obtained.

d So
W

� �
dt

¼ k� So
L

� �� kLVþ LV½ � So
W

� �
d So

L

� �
dt

¼ kLVþ LV½ � So
W

� �� k� So
L

� �� kf So
L

� �� S i
L

� �� �
d S i

L

� �
dt

¼ þkf So
L

� �� S i
L

� �� �

8>>>>>><
>>>>>>:

ð4:24Þ

The relative weights of the fast and slow steps reflect the equilibrium association

of the amphiphile with the lipid in the outer leaflet and with the total lipid (outer and

inner leaflet). For very small lipid concentrations, doubling the amount of lipid

leads to a proportional increase in the amount of amphiphile associated with the

membrane. In this case equal weight is expected for the fluorescence increase in the

fast and slow processes of interaction with the LUVs. On the other hand, for very

large concentrations of lipid all the amphiphile associates with the outer leaflet of

the liposomes and the equilibration with the inner leaflet does not lead to any further

fluorescence variation. The optimal range of lipid concentrations to characterize the

rate constants for interaction with the outer leaflet and the rate constant for

translocation, depends on the fraction of amphiphile associated with the lipid

bilayer at equilibrium, which in turn depends on the liposome concentration and

equilibrium constant for association with the liposome:

SL½ � fastð Þ ¼ ST½ � KLV
LV½ �

1þ KLV
LV½ � ; SL½ � 1ð Þ ¼ ST½ � 2KLV

LV½ �
1þ 2KLV

LV½ �
Δ slowð Þ ¼

SL½ � 1ð Þ � SL½ � fastð Þ
SL½ � 1ð Þ

¼ 1

2

1

1þ KLV
LV½ �,

ð4:25Þ

where [SL](fast) is the concentration of amphiphile associated with the outer leaflet

of the liposomes before equilibration with the inner leaflet, and [SL](1) is the

concentration of amphiphile associated with the liposomes after equilibration

with both the outer and inner leaflet; KLV
is the equilibrium association constant
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with the outer leaflet KLV
¼ kLVþ =k�

� �
, and Δ(slow) is the amplitude of the slow

process relative to the total fluorescence variation.

The effect of the rate of translocation and liposome concentration on the time

evolution of the concentration of solute associated with the liposome is shown in

Fig. 4.2. When the lipid concentration is high (panels A and B) all the solute

interacts with the liposomes, even when the inner leaflet is not accessible (slow

translocation, panel A). At long times, the solute in the outer leaflet equilibrates

with the inner leaflet but without any effect in the total amount of solute associated

with the liposome. The two situations (A and B) cannot be distinguished simply by

the analysis of the fluorescence variation (proportional to the total amount of solute

associated with the liposome, SL) because both the time dependence and the
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Fig. 4.2 Kinetics of equilibration of an amphiphile from the aqueous phase to liposomes. The rate

constants for insertion and desorption are the same in all panels

kLVþ ¼ 5� 108M�1s�1; k ¼ 10�1 s�1
� �

while translocation is slow in panels A/C (kf¼ 10�2 s�1)

and fast in panels B/D (kf¼ 10 s�1). The liposome concentration is 10�8 and 10�10 M

(corresponding to a lipid concentration of 1 mM and 10 μM for 100 nm LUVs) in panels A/B and

C/D, respectively. The concentration of solute in the distinct compartments (So
W ,So

L ,S i
L , and

the total amphiphile associated with the liposome SL ) have been calculated by numerical

integration of Eq. (4.24)
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amplitude of the variation are the same. On the other hand, for sufficiently small

liposome concentrations (panels C and D), the initial accumulation of solute in the

outer leaflet is smaller than the equilibrium value when both the outer and inner

leaflets are accessible. In this case, a slow process is observed in the case of slow

translocation (panel C), with a relative amplitude Δ(slow) equal to 0.33 for the

parameters considered in this simulation.

When both a fast and a slow process are identified in the fluorescence variation

associated with the equilibration of an amphiphile with liposomes, special attention

should be given to investigate the possibility of amphiphile aggregation in the

aqueous phase, as this may be the origin of the fluorescence variation not following

a single-exponential function. This may be done through the dependence of the

relative amplitude of the slow process with the liposome concentration, Eq. (4.25),

and also through its dependence on the total amphiphile concentration while

maintaining the liposome concentration (the rate and weight of the slow step are

expected to be independent on the total amphiphile concentration if it reflects

translocation). A small local concentration of amphiphile in the lipid bilayer should

be used when performing this evaluation because high local concentrations may

affect its rate of translocation [28, 29].

The independent evaluation of the rate of translocation would simplify signifi-

cantly the assignment of the kinetic steps to the distinct rates observed in the

fluorescence variation. This is the case for NBD-labelled amphiphiles due to their

fast and irreversible reaction with dithionite [2, 27, 30]. The comparison between

the rate of fluorescence decrease when dithionite is added to pre-equilibrated

liposomes containing the NBD-amphiphile and the fluorescence variation observed

when liposomes are added to the amphiphile in the aqueous media, allows the

unequivocal identification of the kinetic steps involved [2, 27]. For this goal it is

mandatory that dithionite can only react with the NBD-amphiphile located in the

outer leaflet. The amount of dithionite that has permeated to the aqueous media

inside the liposomes may be evaluated from its rate of permeation [2], leading to less

than 1% of the concentration outside the liposomes 1 h after addition to 100 nm

LUVs prepared from POPC, 2 h for membranes prepared from POPC/Chol 1:1, and

20 h for the case of liposomes prepared from SM/Chol 6:4, at 35 �C [2].Whether this

small dithionite concentration is negligible or not depends on the rate of its reaction

with the NBD amphiphile, because what is important is that the NBD amphiphile

does not react with dithionite while it is located in the inner leaflet of the liposomes.

This methodology has been followed to obtain all the rate constants for the

interaction of fluorescent amphiphiles with lipid bilayers; namely for NBD-labelled

fatty amines with a short alkyl chain [27], lyso-phospholipids [31], short acyl chain

phospholipids [32], and deuteroporphyrin [33]. The rate constants for insertion and

desorption have also been characterized for the interaction of a quaternary alkyl

amine (labelled with 7-hydroxycoumarin) with lipid bilayers with several lipid

compositions and in distinct phases [34, 35].

Some of the kinetic parameters for the interaction of non-fluorescent amphi-

philes have also been characterized. For this purpose, most approaches are still

based on fluorescence [21, 36], although other methodologies such as isothermal

titration calorimetry [28] and nuclear magnetic resonance [37] have also been used.
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4.1.3 Solutes with Very Low Solubility in the Aqueous Media
and a High Partition into the Lipid Bilayer

The section above describes methodologies to characterize the kinetics of associa-

tion of amphiphiles with liposomes where the amphiphile is initially in the aqueous

phase in the monomeric state. This requires that the solubility of the amphiphile in

the aqueous media is significant. Usually near 1 μM is required although concentra-

tions as small as a few nM have been used for amphiphiles with a high fluorescent

quantum yield when associated with the lipid bilayer and a low fluorescence in the

aqueous phase, as is the case for NBD-labelled amphiphiles [27]. The kinetic

parameters for the interaction of amphiphiles with very low solubility in the aqueous

phase must be characterized through their exchange between distinct binding agents.

The only requirement for the donor and acceptor binding agents is that at least one

fluorescence parameter of the amphiphile (fluorescence intensity, spectrum, lifetime

and/or anisotropy) changes when the latter is associated with one or the other

binding agents. Countless variations may be encountered on this approach.

The kinetic scheme that describes the equilibration of an amphiphile between

donor and acceptor LUVs is given below:

So
W þ LD

V �
k
L D
V

þ

k D
�

SDo
L $k

D
f
SDi
L

So
W þ LA

V �
k
L A
V

þ

k A
�

SAo
L $k

A
f
SAi
L ,

ð4:26Þ

where the superscript D/A represents the donor and acceptor vesicles, respectively.

The time variations in the concentration of amphiphile in the distinct compart-

ments may be obtained from the numerical integration of the differential equations

obtained from the above kinetic scheme, Eq. (4.27):
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In some situations approximationsmay be assumedwhich greatly simplify the set

of differential equations and may lead to a simple analytical solution. When the

solubility in the aqueous phase is very low, the steady-state approximation for the

amphiphile in this compartment may be assumed because it corresponds to a

negligible fraction of the total amphiphile.

d So
W

� �
dt

¼ 0; So
W

� � ¼ kD
� SDo

L

� �þ kA
� SAo

L

� �
k
LD
Vþ LD

V

� �þ k
LA
Vþ LA

V

� � ð4:28Þ

If the rate of solute translocation in both the donor and acceptor liposomes is

much smaller than the rate of exchange between the liposomes, only the solute in

the outer leaflet of the donor liposome is able to equilibrate with the outer leaflet of

the acceptor liposome. In this case, the exchange between the donor and acceptor

liposomes follows a single-exponential function and the rate constant for exchange

(k) is given by:

k ¼ k
LA
Vþ LA

V

� �
kD
� þ k

LD
Vþ LD

V

� �
kA
�

k
LA
Vþ LA

V

� �þ k
LD
Vþ LD

V

� � : ð4:29Þ

It should be recalled that the above derivation assumed a negligible amount of

solute in the aqueous phase at all times, that means K
LD
V

LV
LD
V

� �� 1 where K
LD
V

LV
is the

equilibrium constant for the solute between the aqueous phase and the outer leaflet

of the donor liposomes, K
LD
V

LV
¼ k

LD
Vþ =kD

� .
When the rate constants for interaction of the amphiphile with the donor and

acceptor liposomes are the same, Eq. (4.29) simplifies to k ¼ kD
� ¼ kA

� , that is the
rate constant for exchange becomes equal to the rate constant of desorption.

Therefore, when the lipid composition of the donor and acceptor liposomes is

very similar, it is not possible to obtain the rate constant for insertion. Additionally,

changing the concentration of acceptor liposomes does not affect the rate constant

of exchange. The case of exchange between liposomes with the same properties

will be further analyzed and discussed below in relation with Fig. 4.3.

If translocation through both the donor and acceptor liposomes is much faster

than the rate of exchange, the expression for the rate constant of exchange is half the

value obtained by Eq. (4.29) because only half of the total amphiphile exchanging

between the two liposome populations is directly accessible to the aqueous phase

that mediates the exchange process (the solute in the outer leaflet). Relevant

variations in those exchange experiments may involve lipoproteins or small

unilamelar vesicles (SUVs). In this case the fraction of solute directly accessible

to the aqueous phase may be different from one half, and the equations derived for

the rate constant of exchange will be different [26, 27].

The expression obtained for the rate constant of solute exchange between two

populations of LUVs, Eq. (4.29), depends on four unknown parameters: the rate

constants for insertion into the outer leaflet of the donor and acceptor liposomes
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k
LD
Vþ and k

LA
Vþ

� 	
, and the rate constants for desorption from the outer leaflet of the

liposomes kD
� and kA

�
� �

. By performing the exchange experiments at distinct

concentration ratios of donor and acceptor liposomes it is possible to obtain the

rate constants for desorption from the donor and acceptor liposomes (see Fig. 4.4

and discussion below). When the concentration of acceptor liposomes is much

larger than that of donors, the rate constant for exchange approaches the rate

constant for desorption from the donor liposomes; while at very small concentra-

tions of acceptor liposomes, the rate constant for exchange tends towards the rate

constant for desorption from the acceptor liposomes. The total concentration of

liposomes should be high enough to guarantee the validity of the steady-state

approximation, but at relatively low values to ensure that exchange occurs through

the aqueous compartment and not due to collisions between the liposomes
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Fig. 4.3 Effect of the rate of translocation and acceptor concentration on the kinetics of solute

exchange between LUVs with the same lipid composition. The rate constants of insertion and

desorption are the same in all panels, k
LD
Vþ ¼ k

LA
Vþ ¼ 5� 109 M�1 s�1; kD

� ¼ kA
� ¼ 0:1 s�1, as well

as the concentration of donor liposomes, 5 � 10�10 M (corresponding to 50 μM lipid for 100 nm

LUVs) and solute (10�6 M). The concentration of acceptor liposomes is the same as that of donor

liposomes in panels A, B and C, and is 10 times larger in panels D, E and F. The rate constant for

translocation is 10�3 s�1 (panel A and D), 10�2 s�1 (panel B and E) and 1 s�1 (panel C and F). The

concentrations of solute in the distinct compartments ( SXo
L , SXi

L , SX
L ; with the

concentrations in the donor compartment in thinner lines and those in the acceptor compartment

in thicker lines) were calculated through the numerical integration of Eq. (4.27)
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[38, 39]. Using this methodology, it is also possible to obtain the ratio between the

rate constants for insertion in the donor and acceptor liposomes. To characterize the

rate constants for insertion in each liposome, it is necessary to obtain independently

the equilibrium constant for association with at least one liposome population.

The above models predict a single-exponential function for the time variation of

the signal due to exchange between the donor and the acceptor binding agents, this

reflecting a very slow or very fast translocation. To characterize the rate of

translocation using exchange experiments, it is necessary to change the conditions

in order to alter the relative rates of translocation and insertion/desorption so as to
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Fig. 4.4 Effect of the concentration of acceptor liposomes in the rate and extent of exchange for donor

and acceptor liposomes with distinct properties. The rate constants of insertion and desorption are the

same in all panels: k
LD
Vþ ¼ 5� 109M�1s�1, k

LA
Vþ ¼ 5� 1010M�1 s�1, kD� ¼ 0:1s�1, kA

� ¼ 1 s�1, as

well as the concentration of donor liposomes, 1� 10�9 M (corresponding to 0.1 mM lipid for 100 nm

LUVs) and total solute (10�6 M). The top panels (A to C) illustrate the case of slow translocation

(kD
f ¼ kA

f ¼ 10�4 s�1) while in panels D to F the translocation is faster than exchange (kD
f ¼ kA

f

¼ 10 s�1). Note the different scales in the upper and lower panels. The concentration of acceptor

LUVs is equal to 1� 10�10 ( ), 2� 10�10 ( ), 5� 10�10 ( ), 1� 10�9 ( ), 3� 10�9 ( ) and

1 � 10�8 M ( ). The data in plots A, B, D and E was obtained through the numerical integration

of Eq. (4.27), in the central panels the concentration in the acceptor liposomes was normalized to

its value at 30 min to highlight the different kinetics. The rate constants of exchange shown in plots

C and F were obtained from the best fit of a single-exponential function to the time dependent

concentration of solute in the acceptor liposomes (SA
L ) shown in plots A and D respectively; the

lines in plots C and F are the best fit of Eq. (4.31) with the parameters: a0¼ 1.0, a1¼ 0.10 and

b¼ 9.9 for plot C and a0¼ 0.49, a1¼ 0.052 and b¼ 9.6 for plot F
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occur in similar time scales. This may be achieved through variations in the solution

pH and/or temperature. If the signal variation due to exchange does not follow a

single-exponential, there is no simple analytical expression to allow the calculation

of the intrinsic rate constants from the observed rate of exchange. In this case it is

advisable to perform the numerical integration of the differential equations,

although important information may be obtained from the best fit with a

two-exponential function. The case of exchange between liposomes with distinct

properties will be further analyzed and discussed below in relation with Fig. 4.4.

The simulation of the time variation in the solute concentration for donor and

acceptor liposomes with the same lipid composition is shown in Fig. 4.3 for

different rate constants and liposome concentrations. In panels A and D, translo-

cation is much slower than exchange between the liposomes and only the solute in

the outer leaflet of the donor liposomes equilibrates with the outer leaflet of the

acceptor liposomes. The amount of solute that is transferred to the acceptor

liposomes is dependent on the relative concentrations of donor and acceptor

liposomes, being larger for higher ratios of acceptor/donor liposomes (in panel A

the liposome concentration is 5 � 10�10 M for both donor and acceptor while in

panel D there is a tenfold excess of acceptor liposomes). However, the rate constant

for the exchange is the same in both situations, and equal to the rate of desorption

(which is the same for both donor and acceptor liposomes). The effect of the

concentration of acceptor liposomes for the case of fast translocation is shown in

panels C and F with a larger fraction of solute exchanged when the concentration of

acceptor liposomes is increased, while keeping the same time dependence. The

exchange rate constant obtained in panels C and F is half the value of the rate

constant for desorption (observed in panels A and D), due to the fact that all solute

is exchanging but only that in the outer leaflets is in contact with the aqueous phase

that mediates the exchange process. The case of translocation slower than exchange

between the outer leaflets, but occurring in similar time scales, is shown in panels B

and E. The total amount of solute transferring towards the acceptor vesicles is

affected by the relative concentration of donor and acceptor, but the relative

amplitudes of the fast and slow processes are unchanged. The correct description

of the concentrations time dependence (amplitude and rate constants) requires the

numerical integration of the differential equations. However, a good approximation

is obtained for the rate constants (desorption and translocation) through the best fit

of a bi-exponential equation such as Eq. (4.30) for the concentration of solute in the

acceptor liposomes.

SAo
L ffi a1 1� e�k1t

� �þ a2 1� e�k2t
� � ð4:30Þ

The main disadvantage of this approach is that the relative amplitudes of the fast

and slow steps are not simply the fractions of solute in the outer and inner leaflets,

precluding the validation of the slow step as being translocation (and not an artifact

such as amphiphile aggregation).
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Simulations of the time variation in the concentration of solute in the acceptor

liposomes for the case of donor and acceptor liposomes with distinct properties are

shown in Fig. 4.4. Transfer is considered at distinct relative concentrations of donor

and acceptor liposomes (RA/D), for the two limit situations of slow (panels A to C)

and fast translocation (panels D to F).

As the concentration of acceptor liposomes increases, the amount of solute that

exchanges from the donor to the acceptor liposomes increases (panels A and D).

The initial rate of transfer is independent on the concentration of acceptor. How-

ever, the rate constant for the exchange process becomes lower as the concentration

of acceptor liposomes is increased, because the solute transfer proceeds during a

longer time interval (panels B and E) [20]. Both sets of simulations lead to a single-

exponential function for the time dependence of the concentration of solute in the

acceptor liposomes. The rate constant of exchange may be obtained from the best fit

of a single-exponential function to the time variation in the property being observed

(fluorescence from the solute or any other property proportional to the concentra-

tion of the solute in the acceptor liposomes). The dependence of the exchange rate

constant on the ratio between the concentrations of donor and acceptor liposomes is

shown in plot C and F, together with the best fit of the general function shown in

Eq. (4.31) which has the same dependence on RA/D as Eq. (4.29) but is valid for any

fraction of exchangeable solute.

k ¼ b a1RA=D þ a0

1þ b RA=D
ð4:31Þ

For the case of exchange between LUVs, b gives the ratio between the rate constants

for insertion in the acceptor and donor liposomes (k
LA
Vþ =k

LD
Vþ ), whereas the parameters a0

and a1 are related with the rate constants of desorption from the acceptor and donor

binding agents, respectively. If the approximation of slow translocation is valid, a0

¼ kA
� and a1 ¼ kD

� ; while if translocation is fast a0 ¼ kA
�
2

and a1 ¼ kD
�
2
. The values

obtained for the kinetic parameters using this methodology are essentially equal to the

values considered in the simulations (see Fig. 4.4).

As was discussed, to characterize the kinetics of interaction of poorly water

soluble solutes with lipid membranes, an exchange protocol between two binding

agents must necessarily be used. However, the donor and acceptor binding agents

do not need to be both liposomes. An approach frequently used is to first equilibrate

the solute with an aqueous soluble protein (such as serum albumin) and follow the

kinetics of equilibration with the acceptor liposomes. In this case the interaction

between the solute and the protein is usually faster than transfer to the liposomes.

This situation greatly simplifies the equations that describe the exchange process

because the fast equilibration approximation may be used. Additionally, all solute

bound to the protein (binding agent, B) is accessible to the aqueous media, kinetic

scheme below.
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So
W þ B$KB

SB

So
W þ LA

V �
k
L A
V

þ

k A
�

SAo
L $k

A
f
SAi
L

ð4:32Þ

The fast equilibrium approximation for the intermediate (solute in the aqueous

phase) is given by:

So
W

� � ¼ ST½ � � SA
L

� �� � 1

1þ KB B½ � , ð4:33Þ

and the rate constant for exchange is given by one of the two Eqs. (4.34), depending

on whether translocation into the inner leaflet of the acceptor liposome is much

slower or much faster than interaction with the outer leaflet:

k ¼ kL
A
V� þ k

LA
Vþ LV½ �

1þ KB B½ �T
slow translocation

k ¼ kL
A
V�
2

þ k
LA
Vþ LV½ �

1þ KB B½ �T
fast translocation

ð4:34Þ

As a final remark on those exchange protocols one should note that to obtain the rate

constant of transfer the property being followed must be proportional to the concen-

tration of solute in the compartment of interest. Additionally, to avoid the physical

separation between the solute associated with the donor and acceptor compartments,

the relation between the property and solute concentration must be different for the

distinct compartments. Furthermore, the relations must be quantitatively known if the

equilibrium constants are to be obtained, and/or, if the identity of the slow step is to be

validated from the relative amplitude of signal variation due to this process.

There are several examples in the literature with the characterization of the

exchange rate for fluorescent amphiphiles. In some studies, a clear minority, it was

possible to obtain all the rate constants involved. It is worth mentioning the early

work by Nichols and co-workers with the characterization of the rate constants of

insertion and desorption of phospholipids with the fluorescent group NBD attached

to the acyl chain of phosphatidylcholines (NBD-PC) [32, 40]. The transfer of

NBD-PC was followed through quenching of its fluorescence in one of the com-

partments due to self-quenching or to fluorescence resonance energy transfer

(FRET) to rhodamine labelled phospholipid. All the parameters were characterized

for the transfer between bovine serum albumin (BSA) and LUVs, for alkyl amines

with different length (labeled with NBD in the amine group, NBD-Cn) [27],

phosphatidylethanolamine with NBD in the polar head group (NBD-DMPE)

[2, 41] and dehydroergosterol; [42] the exchange being followed via the different

fluorescence quantum yield of the fluorescent amphiphiles in the donor and accep-

tor binding agents. The rate of desorption from LUVs for several pyrene labelled

phospholipids has also been characterized [43, 44], as well as the rate of
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translocation; [45] transfer being followed via the decrease in the formation of

pyrene excimers. The rate constants for desorption and translocation of fatty acids

labelled with the fluorescent group 9-anthroyloxy has also been characterized

through the exchange between BSA and liposomes (based on the distinct quantum

yield of the fluorophore) [46], or exchange between liposomes (with the incorpo-

ration of a FRET acceptor in the donor or acceptor liposomes) [47].

Fluorescence based methods have also been used to characterize the exchange

of non-fluorescent amphiphiles, such as fluorescence quenching of the protein used

as donor or acceptor [48–50], pH and electrostatic potential variations at the

surface of the liposomes and/or in the bulk aqueous compartments for the case of

exchange of weak acids and bases or charged amphiphiles [49, 50].

4.2 Molecular Dynamics Simulations to Characterize

the Interaction and Permeation of Small Molecules

Through Lipid Bilayers

Molecular dynamics (MD) simulations are a powerful tool to study the interaction of

amphiphiles with lipid membranes, as they can give atomistic insight into processes

and phenomena that often cannot be considered experimentally in sufficient detail

[51, 52]. Additionally, the field of MD simulations in biological sciences has

developed to a level where predictions of new phenomena are frequently being

made, thereby generating quite important added value to complement experiments.

Indeed, currently there is a variety of software applications and methodologies that

makes the MD simulations easily accessed by the scientific community [53]. In the

context of the interaction of amphiphilic molecules with lipid membranes, one of the

central simulation techniques involves the calculation of free energies [54]. Most

commonly, sampling strategies are used, notably the use of biased simulations

through the Umbrella Sampling (US) [55, 56] method to calculate the Potential of

Mean Force (PMF) profiles for the amphiphiles interacting with a lipid bilayer.

Previous work has resulted in PMF profiles for the interaction of a variety of solutes

with different bilayer compositions [57–77]. In addition to disclosing mechanistic

details, these data are highly useful since they may depict the free energy barriers

associated with insertion, translocation and desorption, and hence allow the com-

putation of their rates as well as equilibrium constants [78, 79]. In this context, the

systematic comparison and validation between experimental and simulation data is

imperative. However, this may not be a straightforward challenge.
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4.2.1 General Description on the Generation of the PMF
Profile Through Lipid Bilayers

The concept of PMF was originally introduced by Kirkwood [80]. Regarding the

interaction of solutes with lipid bilayers, the energy profile across the bilayer normal

allows the calculation of the free energy barriers for the processes of insertion,

desorption and translocation, which are the individual microscopic steps for mem-

brane permeation. US [55, 56] is probably the most popular technique to compute the

PMF along a given reaction coordinate. This technique aims to overcome limited

sampling at energetically unfavorable configurations by restraining the simulation

system with an additional (typically harmonic) potential [55]. Conjugated with the

explicit umbrella potential, stratification strategies are used [81], whereby the reac-

tion pathway is divided into a large number of small overlapping windows.

Generally, to calculate the PMF of the interaction of amphiphiles with lipid

bilayers using US, a set of initial structures is first generated along the reaction

coordinate. Although the choice of the reaction coordinate is a highly non-trivial

matter, especially with complex molecules, the most immediate and simplest choice

is usually the distance from the molecule to the membrane’s center of mass (COM)

along the bilayer normal direction. Then, a set of production runs is carried out,

applying a biasing harmonic potential between the molecule and the bilayer, relative

to a reference position. From these simulations, distance distributions of the mole-

cule’s selected coordinate around the reference position are obtained. Finally, the

PMF is generated, correcting for the contribution of the biasing potential [81, 82].

Accordingly, a set of Nw separate umbrella simulations, corresponding to each

umbrella window, are carried out, with an umbrella potential,

wi ζð Þ ¼ Ki

2
ζ � ζ c

i

� �2
, ð4:35Þ

which restrains the system at the position ζ c
i i ¼ 1; . . . ;Nwð Þ with a force constant

Ki. From each of the Nw umbrella simulations an umbrella histogram hi(ζ) is

recorded, representing the probability distribution Pb
i ζð Þ along the reaction coordi-

nate biased by the umbrella potential wi(ζ).
After running the simulations, the data of each umbrella window are subse-

quently pasted together using histogram based algorithms. The most widely used

technique to compute the PMF from the umbrella histograms, that is, to unbias the

distributions Pb
i ζð Þ, is probably the weighted histogram analysis method (WHAM)

[83]. The purpose of WHAM is to estimate the smallest statistical uncertainty of the

unbiased probability distribution from the umbrella histograms, and compute the

PMF [81–83]. The unbiased probability distribution, P(ζ), is related to the PMF by

W ζð Þ ¼ �kBT ln
P ζð Þ
P ζ0ð Þ

 �

ð4:36Þ
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where, kB is the Boltzmann constant, T is the temperature and ζ0 is an arbitrary

reference point where the PMF W(ζ0) is defined to be zero. Following this proce-

dure, an energy profile over a reaction coordinate is obtained, e.g. the energy profile

of a molecule through the direction normal to a lipid bilayer.

4.2.2 The General Simulation Protocol

The number of umbrella sampling windows needed to generate a PMF profile

makes such kind of procedures computationally demanding. For symmetric lipid

bilayers the free energy profile is usually calculated for one leaflet, and the other

leaflet is represented symmetrically. For a complete definition of the PMF, adjacent

umbrella windows should span the space between the membrane center (z ¼ 0) and

the bulk water region (z� 4 nm), usually separated by 1–2 Å. Since the distribution
histograms should overlap properly, the harmonic umbrella potential used to

restrain the position of the amphiphile should be adapted to the umbrella spacing

[81, 82]. For an asymmetric bilayer, sampling of the reaction path must be done

through the entire membrane, at least doubling the computational cost. From the

performed simulations, the unbiased PMF is then obtained using WHAM [81, 82].

For a given molecule, different choices of variable complexity may be adopted

to define the reaction coordinate—the key parameter in free energy profile compu-

tations—of a PMF profile. Usually, the distance z of the molecule’s COM, or a

chemically significant atom/set of atoms (e.g. the most polar group for the case of

relatively large and amphiphilic molecules), in respect to the membrane COM

along the normal coordinate, is chosen as the reaction coordinate. With this

definition, the location z ¼ 0 nm represents thus the COM of the lipid molecules

[60, 61, 84]. This choice results in the so called 1D-PMF. In order to improve

sampling, the position and orientation of the molecules may be simultaneously

restrained, resulting in a 2D-PMF. This type of reaction coordinate has been

important to differentiate between distinct translocation mechanisms [85–87].

To obtain a PMF profile, the production simulations must start from several

system configurations with the molecule at different positions of the reaction

coordinate. Different procedures may be used to generate these initial structures

[53]. Generation of initial structures from unrestrained simulations would be the

most adequate procedure to minimize artifacts [68, 75]. However, this may be not

possible for the majority of the systems where an enhanced sampling technique is

used. Therefore, the most popular strategy to generate sets of initial structures for

US simulations is to artificially pull the amphiphile along the reaction coordinate. In

this process, slow pulling rates (e.g., 	0.005 nm/ps) and low force constants (e.g.,

	500 kJ/mol/nm2) are used in order to avoid artificial deformations of the lipid

bilayer. Even with such a careful procedure, different directions of pulling (either

starting at the water, WC, or at the bilayer center, CW) may not give the same

results [84], as shown in Fig. 4.5. Plotting the PMF profiles obtained from the CW

and WC initial pulling directions simultaneously and considering different
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reference positions (bilayer center used as reference in Fig. 4.5A and the water in

Fig. 4.5B) shows that this difference is caused by poor sampling at the lipid/water

interface, as highlighted by the dashed boxes in the Fig. 4.5.

4.2.3 Sampling Issues

While US is a seemingly simple technique, there are several potential problems that

may compromise the quality of the results. Sampling issues may be critical in the

determination of energy profiles from MD simulations. Sampling problems have

been addressed by some research groups, being actively discussed in the literature

[66–68, 84, 88]. If the sampling is not sufficiently extensive, then the condition of

ergodicity is broken and the free energy values found through the analysis are not

accurate enough. The sources of sampling problems are several, stemming from

solute size, bilayer size, bilayer defects, initial conformations or choice of the

reaction coordinate, usually being expressed as orthogonal degrees of freedom

separated by hidden energy barriers. Strategies to overcome these problems have

been reviewed [88].

Recently, the use of advanced simulation techniques has been proposed to

improve sampling in the study of solute permeation through lipid membranes,

focusing on the importance of orientation and conformational motions [67, 77,

85, 87, 89, 90]. A related problem regarding sampling issues concerns equilibration.

For each simulation window, the system should be properly equilibrated before

adequate sampling of the reaction coordinate (for WHAM analysis) can take place
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Fig. 4.5 PMF profiles of NBD-C16 in a POPC bilayer, calculated with the CW (black) and WC

(red) schemes. In CW, the data used for analysis covered a period from 20 to 110 ns, and in WC a

period from 120 ns until the end of the simulation. In (A) the PMF is defined to be zero in the center

of the bilayer, and in (B) the PMF is defined to be zero in the water region. Reprinted with

permission from reference [84]. Copyright 2014 American Chemical Society
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[66, 67]. If these issues are not taken care of, the simulation data may include

artifacts. For instance, as was shown in Fig. 4.5, when the amphiphile is pulled from

the water phase to the interior of the lipid bilayer (WC), different results may be

obtained compared to when the amphiphile is pulled in the opposite direction (CW).

This is induced by artifacts which were shown to arise from sampling problems at

the membrane-water interface, causing the simulation results to not converge

despite extensive simulation times [84], as shown in Fig. 4.6. Systematic variation

of PMF profiles and energy barriers, when considering different simulation times

for analysis, is indicative of non-converged data.

Additionally, an appropriate choice of the reaction coordinate is decisive for

finding physically correct results [84]. It has been shown that the definition of the
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Fig. 4.6 Convergence of the PMF calculated for NBD-C16 in a POPC bilayer, with WC: (A, B)

increasing the total simulation time by 5 ns intervals until the maximum simulation time of 130 ns;
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desorption (red) are shown as insets in panels (A, C). Reprinted with permission from reference

[84]. Copyright 2014 American Chemical Society
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reaction coordinate may influence the results through generation of membrane

deformations during the production runs [66]. Therefore, in each particular case,

one must understand how PMF calculations should be performed to avoid any

problems that would result in unphysical data. For example, the distance between

the solute and a locally defined center of the bilayer (only taking into account the

lipid within a cylinder centered at the solute and aligned along the z-axis) may be

advantageously employed to minimize membrane deformation artifacts [84]. Alter-

natively, as mentioned above, in some literature reports, free energy surfaces are

computed, characterized by two reaction coordinates. In these works, one of the

reaction coordinates is defined as the distance to the bilayer center, and the other is

an angular coordinate which accounts for solute orientation [85–87].

Despite the simulation being sampling the true energy minima, the convergence

of free energy profiles should be always carefully assessed. The total simulation

time for a given umbrella window includes an equilibration of the system, followed

by fluctuations around equilibrium. Preferably, the PMF should be computed using

only the simulation times after equilibration. The decision on whether or not the

system has reached equilibrium after a given simulation time is not trivial. The final

PMF (hopefully corresponding to an equilibrated system) may be evaluated in three

ways:

1. assume (perhaps incorrectly) that no equilibration is needed, and in each sam-

pling window use simulation data from increasingly long times to generate

consecutive PMFs.

2. systematically increase the slice of the simulation time used for equilibration in

each sampling window, and use the rest of the simulation data for analysis.

3. systematically increase the amount of data used for equilibration in each sam-

pling window, and analyze the PMF profiles carried out over a fixed time

interval (for instance tens of nanoseconds).

In all three analysis schemes, not only the values of the barriers but also the

shapes of the profiles should be compared to each other [84], as exemplified in

Fig. 4.7. The achievement of small and non-systematic variations of the PMF

profiles and energy barriers is indicative of good convergence.

4.2.4 The General Description of the PMF Profile

The PMF profile defines the variation in the Gibbs free energy of the system as a

function of the reaction coordinate, solute position relative to the center of the

bilayer for the case of permeation through lipid bilayers. The energy minimum

gives the equilibrium location of the solute in the hydrated bilayer, and the energy

maxima correspond to transition states in the reaction pathway. For amphiphilic

molecules, an energy maximum is commonly encountered at the bilayer center due

to the energetically unfavorable solvation of the polar portion of the molecule by

this nonpolar environment [91, 92]. An energy maximum is also frequently
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observed at the bilayer/water interface due to both the hydrophobic effect (as the

nonpolar portion of the molecule becomes in contact with water), and to the high

density of the system at this region [61, 63, 64, 84]. For amphiphiles with long

and/or bulky nonpolar groups, a decrease in the system Gibbs energy when the

amphiphile leaves the membrane would be expected. This is because when the

nonpolar portion of the amphiphile is partially in the aqueous media and partially

inserted in the bilayer, the energetic penalty arising from the hydrophobic effect is
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almost complete and an extra energetic penalty is observed due to the formation of a

cavity in the lipid bilayer beneath the amphiphile (with the consequent loss of lipid/

lipid interactions) [32, 41, 61, 64, 93, 94]. However, for most amphiphiles, the PMF

obtained does not show a decrease in energy as the amphiphile moves from its most

external position at the bilayer/water interface into the bulk water, see Figs. 4.5, 4.6

and 4.7 for the case of NBD-C16 in POPC bilayers. When the PMF profile is

analyzed from the amphiphile in bulk water towards its equilibrium position in

the bilayer, the absence of an energy barrier at the bilayer/water interface indicates

that insertion is a diffusion controlled process. This is in contradiction with the

experimental results obtained for this system [27] and may result from poor

sampling at this location in the reaction coordinate [66, 84, 88].

The energy barrier obtained from PMF profiles at the bilayer center may also not

correspond to the energy required to place the polar portion of the amphiphile in the

nonpolar environment of the bilayer center. This is because this configuration is not

necessarily involved in the most probable translocation pathway followed by the

amphiphile. However, there is not enough information available to evaluate

whether this corresponds or not to the pathway observed in the real system.

A review on computational studies of translocation (flip-flop) of phospholipids,

sterols and fatty acids has been recently published [95]. While in some systems the

results are compatible with the polar portion of the amphiphile in the center of the

lipid bilayer as the transition state [2, 84], more complex descriptions have been

raised, from different transition paths [85–87, 96–98], to the formation of large

pores in the lipid bilayer [61, 64, 99–103]. In the cases without pore formation,

three main translocation paths have been proposed [104]. In a “push-in flip-flop”, a

transverse motion occurs first, followed by the rotation of the molecule; in a

“sliding flip-flop”, the transverse and rotational motions occur simultaneously;

and in a “rotation flip-flop”, the rotation motion occurs first followed by the

transverse motion of the molecule. The most probable translocation pathway

certainly depends on the properties of the amphiphile and lipid bilayer, as well as

on the local concentration of amphiphile. The confirmation of several local minima

along the translocation path will represent a challenge to the development of new

mechanistically meaningful kinetic models for the analysis of experimental data.

The formation of large pores in the lipid bilayer has been implicated in the

translocation of phospholipids [61, 64, 99–102]. However, the pore mediated mech-

anism for the translocation of phospholipid should also not be taken for granted.

Lipid translocation has been observed by US simulations [61, 64] or in unrestrained

simulations where pores were induced [101, 102]. It should be noted that the

formation of a pore implies a considerable change in the structure of the membrane

that has not been considered in the kinetic models discussed above in this chapter. It

should be worthy to know whether the formation of pores is being induced by the

process of restraining the molecules in the membrane, without avoiding the defor-

mation of the latter. For the case of cholesterol (which is not reported to translocate

through membrane pores), once initiated, the translocation process occurs on aver-

age in 73 ns [97], a time comparable to the duration of each single restricted US

simulation in recent studies [63, 66, 84, 105]. Although it may be argued that the
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minimum free energy path implies the formation of a pore [100, 104], with too long

simulation times the membrane has the opportunity to “over-equilibrate” and

deform around the restrained molecule. For solutes with strong electrostatic inter-

actions this may result in the artificial formation of a pore. Spontaneous pore

formation in a lipid bilayer has only been observed in long MD simulations for the

short acyl chain phospholipid DLPC [100]. The most representative lipids of

biological membranes have a longer acyl chain and the spontaneous formation of

pores have a much higher energetic cost being an extremely rare event [1, 100].

For the case of the NBD-Cn series, as shown in Fig. 4.8, there is no clear

tendency regarding the dependence of the translocation energy barrier on the

number of carbons in the alkyl chain [27, 84]. The dependence of the desorption

and translocation energy barriers on the number of carbons of the amphiphile’s
alkyl chain is in qualitative agreement with experimental results for the interaction

of these amphiphiles with POPC bilayers [27], and for the transfer of labeled

phospholipids between vesicles [45].

4.2.5 How to Obtain Kinetics from the PMF

Clearly, the ultimate goal of calculation of PMF profiles is to be able to estimate rate

constants for the lipid/amphiphile interaction processes and permeability coeffi-

cients that can be used to calculate the rate of permeation through the bilayer. For

this purpose, the Transition State Theory (TST), also known as absolute-rate theory,

may be used [106–108]. This theory is usually applied to obtain all thermodynamic

parameters for the transition states of each process involved in amphiphile perme-

ation across bilayers from the experimental rate constants [27, 41, 109, 110].

The thermodynamic formulation of the transition state theory describes the rate

constant of reaction (k) as
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k ¼ κ
kBT

h
e�Δ{Go=RT , ð4:37Þ

where kBT/h is a frequency factor, associated to the conversion from the transition

state to the products, being kB, h and R the Boltzmann, Planck and gas constants,

respectively; T is the absolute temperature; Δ{Go is the Gibbs energy variation from

the reactants to the transition state; and κ, the so-called transmission coefficient, is

an efficiency parameter.

The value of Δ{Go may be directly obtained from the PMF profile. To calculate

the rate constant associated with crossing each energy barrier in the PMF, it is also

necessary to know the transmission coefficient. A value κ ¼ 1 is expected for

elementary chemical reactions in which every vibration of the mode responsible

for converting the activated complex (corresponding to the transition state of the

system) to the product is effective. However, in solution, solvent cage effects are

present, which delay conversion between the activated complex and the products.

Moreover, the processes involved in solute permeation across the membrane are of a

physical nature, and such a vibrational mode cannot be identified.

One possible strategy to overcome this problem involves additional (unre-

strained) MD simulations. Regarding the translocation step, one may carry out

several simulations where the amphiphile is allowed to relax from the transition

state (assumed as z ¼ 0) towards its equilibrium position. Typical relaxation curves

for the NBD-Cn amphiphiles are shown in Fig. 4.9. It should be noted that, in order to

achieve a statistically significant value using this strategy, an extreme large number

of simulations is implied. This is particularly problematic for highly ordered sys-

tems, namely in cholesterol-containing membranes [63]. In a simple analysis, the

resulting average of relaxation curves may be analyzed with a single-exponential

function. For amphiphilic molecules with the size of a lipid, the characteristic

relaxation time is on the order of a few to a few tens of nanoseconds [105]. Therefore,

this procedure allows the calculation of the pre-exponential factor, κ kBT
h

� �
, which is

half the value of the relaxation rate constant. This statistical factor stems from the

equal probability of going from the transition state back to the reactant (equilibrium

position in the initial leaflet) or towards the product (equilibrium position in opposite

leaflet) [108]. The pre-exponential factor obtained, in the order of 108 s�1, is

considerably lower than the value used when applying TST with κ ¼ 1 (1012 s�1).

This suggests that the experimentally derived values for the thermodynamic activa-

tion functions should be obtained with much lower pre-exponential factors, as

already used in several literature works [64, 105, 112]. For the case of the inser-

tion/desorption steps, a similar strategy can in principle be used. Simulations where

the amphiphiles are allowed to relax from the insertion/desorption transition state

until the equilibrium position may be performed. However, the complexity of this

membrane region may require a multi-exponential function fit to the relaxation data.

It is expected that these simulations show high variability, with the amphiphile

desorbing to water in some cases and inserting towards its membrane equilibrium

position in others. In general, the main disadvantages of this method are the large

number of unrestrained simulations required to obtain a statistically significant
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average relaxation curve; and the possibility of complex relaxation kinetics, of

unclear interpretation. In any case, transmission coefficients may be still estimated,

and used for improved calculation of the rate constants.

If translocation of the solute occurs through pores, the observed rate constant of

translocation depends on both the rate at which the solute translocates through the

pore, and on the density of pores in the bilayer. The mathematical formalism that

should be used in this situation has been developed by Tieleman and co-workers

and applied to predict the rate of translocation of phospholipids and the permeabil-

ity coefficient of very polar solutes [61].

The conversion between calculated free energy barriers and experimental rate

constants for the interaction of amphiphiles with lipid bilayers may also be conducted

following the Kramers theory of reaction rates [113], applied to the theoretical

description of amphiphile monomer-micelle dissociation developed by Aniansson

et al. [93]. Characteristic free energies for the desorption of amphiphiles from lipid

bilayers have been obtained from the experimentally observed rate constants follow-

ing this model [32, 94]. The relation between the rate constant of desorption and the

Gibbs energy variation between the equilibrium position in the bilayer and the

transition state (Δ{Go) is:

k� ¼ Dm

lb2
exp �Δ{Go

RT


 �
ð4:38Þ
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where Dm is the diffusion constant for the exiting amphiphile, lb is the width of the

barrier that is RT energy units below its maximum. This expression can be under-

stood intuitively, since lb
2/Dm is the time for diffusional motion over the distance lb

and exp[�Δ{Go/(RT)] is the relative probability that a monomer resides in the

region of length lb, or within RT energy units of Δ{Go. The value of lb considered
in the experimental reports was around 0.1 nm being independent on the length of

the alkyl chain in homologous series of amphiphiles [32, 94]. Also, in experiments

Dm is assumed to be close to the diffusion constant of the free amphiphile in

solution. Considering lb¼ 0.1 nm and Dm¼ 5� 10�6 cm2/s, a pre-exponential fac-

tor of 5 � 1010 s�1 is obtained.

The length parameter (lb) may be easily obtained from the PMF profile. Addi-

tionally, the diffusion coefficient at the reaction coordinates near the transition state

may be estimated using the force autocorrelation at each sampling window, as will be

further addressed in the next section. For example, regarding the above mentioned

NBD-Cn series, lb 	 0.2–0.3 nm and D 	 3–4 � 10�7cm2/s are obtained for the

translocation barrier, leading to pre-exponential factors of the order of	5� 108 s�1.

On the other hand, for the desorption barrier, typical values lb 	 0.2–0.4 nm and

D	 5� 10�6 cm2/s are found, leading to pre-exponential factors near	5� 109 s�1.

Regarding the example of the NBD labeled amphiphiles described above, the

simulated free energy barriers are clearly lower than the values estimated from the

experimental rate constants, assuming the absolute rate theory (i.e., a frequency of

conversion from the transition to the final states of kBT/h) [106], for both translo-

cation and desorption processes [27, 84]. In any case, a linear dependence of the

desorption free energy barrier on the number of carbons n is observed in both

approaches. The slope based on simulations is 4.4 kJ/CH2, compared to 3.5 kJ/CH2

based on experiments. The quantitative disagreement between experimental and

simulation results is in part a consequence of the direct application of this theory, as

the actual reaction frequency is likely much lower than this limiting value

[114]. However, the value of this reaction frequency is expected to depend more

on the dynamics of the bilayer than on the solute itself, therefore conserving the

linear dependence of the energy barriers, and giving good qualitative results.

4.2.6 Calculation of Permeability Coefficients from MD
Simulations

The overall permeation through the lipid bilayer and the permeability coefficient

P may be calculated from the rate constants of each step in the process [20]. MD

simulations also allow calculation of permeability coefficients, which are defined

according to Eq. (4.14). In silico estimation of P could provide a means to reduce

costs involved in drug design and development.

By keeping track of the motions of all individual molecules in the system, MD

simulations have the potential for calculation of solute permeation across membrane

systems. However, on the time scales available to atomistic MD, permeation events
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are exceedingly rare in unbiased simulations. This precludes direct calculation of

permeability coefficients from MD using Eq. (4.14). Despite this setback, there are

indirect methods that can be utilized to this purpose [92]. In this section, we focus on

the most used approach, the so-called inhomogeneous solubility-diffusion model

[115, 116], which leads to the following expression for P:

1

P
¼
Zz2
z1

exp ΔGo zð Þ=kBTð Þ
Dz zð Þ dz: ð4:39Þ

Here, ΔGo(z) is the Gibbs free energy across the bilayer (i.e., PMF profile, see

above subsections), and Dz is the solute diffusion coefficient along the z-direction.
z1 and z2 represent locations in the water phase on either side of the membrane, and

therefore the integration is carried out across the whole bilayer. Dz(z) may be

obtained using the Einstein relation in short time ranges, or, more commonly,

using the force autocorrelation method, described below in brief.

For a given z value, a constrained MD run is carried out, in which the solute

depth is fixed to the intended value. The local time dependent friction coefficient of

the diffusing molecule ξ(t) is related to the time autocorrelation function of the

fluctuations of the instantaneous force acting on the solute when located at z, F(z, t),
relative to its time average hF(z)it, by:

ξ tð Þ ¼ ΔF z; tð Þ 
 ΔF z; 0ð Þh i
RT

, ð4:40Þ

where,

ΔF z; tð Þ ¼ F z; tð Þ � F zð Þh it: ð4:41Þ

Assuming that ξ(t) is large and decays rapidly compared to other time scales in

the system, a satisfactory description of the full dynamics is provided by the static

friction coefficient ξ:

ξ ¼
Z 1

0

ξ tð Þdt ¼
Z 1

0

ΔF z; tð Þ 
 ΔF z; 0ð Þh i
RT

dt: ð4:42Þ

When studying diffusion across a free energy barrier, the above condition is met

if the slope of the free energy barrier over a distance covered by the particle during

the decay time of its friction coefficient is lower than the thermal fluctuation, RT. In
this case, ξ is related to the local diffusion coefficient Dz(z) of the permeating solute

at depth z by:

Dz zð Þ ¼ RT

ξ
¼ RTð Þ2R1

0
ΔF z; tð Þ 
 ΔF z; 0ð Þh idt : ð4:43Þ
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The inhomogeneous solubility-diffusion model has been applied to several small

hydrophilic and hydrophobic molecules calculating the local resistance of the

membrane to the permeation as the inverse of the local permeability coefficient.

It was found that for hydrophilic molecules the main barrier is represented by the

hydrocarbon core, while for the hydrophobic molecules the main barrier to perme-

ation is offered by the head group region [91]. More recent applications include a

number of studies on the permeation of larger compounds, such as drugs and

hormones [117, 118].

A simpler alternative to the integration procedure of Eq. (4.39) may be obtained in

the framework of Kramers reaction rate theory, assuming that ΔGo(z) is characterized
by a large barrier value at some value of z ¼ z*, and that Dz(z) is constant (ffi D) in
that region. Under these hypotheses, one may approximate the permeability coeffi-

cient in a transition-state-like approximation according to [119, 120]

P ¼
ffiffiffiffiffiffiffiffiffiffiffi
a

πkBT

r
Dexp

�ΔΔGo z∗ð Þ
kBT

� �
ð4:44Þ

where

a ¼ 1

2

∂2ΔΔGo z∗ð Þ
∂z2












 ð4:45Þ

and ΔΔGo refers to the difference between ΔGo(z) at the maximum and the bottom

of the energy barrier, that means, equal to Δ{Go.

Although this approach only considers a single energy barrier, an extension to a

multibarrier situation could be envisaged in the framework of the inhomogeneous

solubility-diffusion model as proposed originally by Diamond and Katz [119]. As

derived by these authors, the reciprocal of the permeability coefficient has the

significance of a resistance, which consists of three resistances in series, ri
(corresponding to insertion, translocation and desorption, respectively). Each of

these terms can be obtained by taking the reciprocal of a hypothetical single-barrier

Pi value, obtained from Eq. (4.44), using the pertaining ΔΔGo and D. Finally, they
are combined to obtain the global permeation coefficient through

1

P
¼ r1 þ r2 þ r3 ¼ 1

P1

þ 1

P2

þ 1

P3

: ð4:46Þ

Generally, the calculated permeability coefficients are qualitatively consistent

with experiments, in that ranking orders are well reproduced. However, P values

from simulations are typically several orders of magnitude larger than those from

experiments. While several reasons could be invoked to account for this disagree-

ment (including the diversity of experimental approaches and measured values, the

much simpler systems used in simulations, unsolved force field and/or sampling

issues), it is noteworthy that the ranking order among a set of compounds
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constitutes, by itself, valuable information for drug design [121]. Identically to the

calculation of rate constants for individual processes, consideration of enhanced

sampling strategies and/or multi-dimensional free energy surfaces (including ori-

entational degrees of freedom) to identify hidden energy barriers may lead to

improved quantitative accordance with experimental permeability coefficients,

especially for relatively large molecules (in which reorientations can take place

on the same time scale of displacements along the bilayer normal) [122].

4.3 Concluding Remarks

In this chapter, we address both experimental and simulation-based strategies to

obtain kinetic information regarding the processes of interaction (insertion, desorp-

tion, translocation) between an amphiphilic solute and lipid membranes. The

problem is formulated in general terms, from which limiting cases of practical

importance are derived. Different experimental approaches are described, with an

emphasis on fluorescence spectroscopy. On the other hand, MD simulations have

evolved to the point where, in addition to detailed mechanistic information, free

energy profiles and permeability coefficient values across the bilayer can be

obtained for small- and medium-sized solutes.

Clearly, there is still plenty of room for improvement regarding quantitative

agreement between calculated and experimental energy barriers and corresponding

equilibrium and rate constants, due to both MD (important sampling issues), theory

(uncertainty in frequency factor for TST) and experiment related (variety of

approaches leading to scattered reported values) issues. However, experiment and

simulation are most often in good qualitative accordance, and future advances in

sampling strategies and identification of hidden energy barriers [77], may lead to an

effective utility of MD simulations in prediction of permeation and in rational drug

design.
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Chapter 5

Multidimensional Microscopy: Application

to Membrane Protein Structure

Andrew H.A. Clayton

Abstract Fluorescence is exquisitely sensitive to environment and thus interac-

tions and dynamics. Fluorescence is also multidimensional in orientation (polari-

zation), energy (wavelength), time (ps-years) and space (nm-m). In the first part of

this Chapter we introduce the reader to multidimensional microscopy which we

define as the hybridization of fluorescence dimensions with the more orthodox

physical dimensions of space and time. In the second part of the Chapter we

illustrate how multidimensional microscopy has been employed to examine the

quaternary structure, organization and dynamics of an important biomedical cell-

surface receptor. We advocate multidimensional microscopy as a general strategy

for bridging structural biology with cell biology.

5.1 Introduction

The primary, secondary, tertiary and quaternary structures of biological macromol-

ecules are thought to be major factors that determine protein function in solution

[1]. At physiological temperatures (i.e. typically about 300 K above absolute zero)

transitions between conformational sub-states of proteins, driven largely by solvent

dynamics, provide the motions required for proteins to carry out their functions [2].

Proteins in the cell do not act alone. As enzymes, proteins catalyse reactions

involving proteins and other biomolecules. Proteins form transient, non-covalent

complexes with other proteins in cell signalling cascades (kiss and run complexes).

Proteins can also assemble to form large, stable nano-machines such as the ATPase

rotatory motor. A major goal is to image biochemistry in the cell and to map out the

biochemical pathways. Another major goal is to determine the stoichiometry of

protein complexes and relevance for function. In this regard membrane proteins are
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most challenging because they are usually not soluble in water and methods to

determine structure in situ (i.e. at the cell membrane) are therefore highly

desirable [3].

The purpose of this chapter is to introduce the reader to approaches to determine

the tertiary and quaternary structures of membrane proteins at the cell membrane

surface and their associated dynamics. The questions that motivate us are (1) What

is the quaternary structure of protein-monomer, dimer, or tetramer? (2) How is the

protein assembled on the cell surface- random or clustered? (3) What is the shape or

conformation of the protein on the cell surface? (4) How does the protein structure

(conformation or assembly) relate to biological function?

Fluorescence is exquisitely sensitive to protein structure and dynamics [4]. This

is mainly because of the time a fluorescence probe molecule spends in the excited-

state. Judicious choice and placement of a fluorescent molecule(s) within a protein

(s) enables the experimentalist to obtain information at a specific site(s) in the

protein (complex) of interest.

Fluorescence signals are inherently multidimensional and the information con-

tent of these signals is rich. Fluorescence intensity, fluorescence colour (wave-

length) [5], fluorescence polarization [6], fluorescence lifetime [7], fluorescence

fluctuations (in time) [8, 9] and fluorescence fluctuations (in space) [10] are

fluorescence signals that can be acquired. From these fluorescence signals the

experimentalist can measure fluorophore concentration, fluorophore rotational

and translational motion, interactions between fluorophores, interaction strength

and interaction stoichiometry. Fluorescence can be measured from a solution in a

cuvette, from the focus of a light microscope, or across an image from a wide-field

fluorescence microscope. Because we are dealing with fluorescence from mem-

branes and cells in this Chapter we will mainly focus the discussion to fluorescence

microscopy.

Fluorescence or more specifically fluorophores can be perturbed by processes

such as photobleaching [11] and quenching [12]. In photobleaching a light source is

focused (as in fluorescence microscopy) and either raster-scanned (confocal laser

scanning microscopy) or dispersed and imaged onto a 2D array detector such as a

CCD camera. Photobleaching by definition is a loss of fluorescence by shining light

onto a fluorophore, the loss of fluorescence is due to some photochemical reaction

(irreversible, partially reversible or reversible) which renders the fluorophore

unable to fluorescence at the excitation wavelength. Although photobleaching is

undesirable for normal fluorescence imaging (due to the loss of signal!) it has been

used previously to determine dynamics and interactions between molecules, and

recently we and others have exploited the phenomenon to determine the quaternary

states of proteins on cell surfaces. Quenching is defined as loss of fluorescence

intensity by a process normally involving the interaction between a fluorophore and

quencher. Quenching is best measured in the microscope by using lifetime mea-

surements. We will discuss quenching in more detail in the latter parts of this

chapter.
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5.2 Formalism

To provide a systematic view of multidimensional microscopy we have decided to

represent physical and fluorescence dimensions as a table or matrix. A selected list

of physical dimensions (space and time) and fluorescence dimensions are listed

along the first row and first column of Table 5.1. These represent parameters that

might be measured by a detector from a solution of fluorophores. For example,

intensity, wavelength, polarization, lifetime and fluctuations can be measured

alone.

Intensity is a parameter with arbitrary units and is affected by the concentration

of fluorophore, the quantum yield of the fluorophore (the quantum yield is defined

as the number of photons emitted per photon absorbed), the excitation irradiance,

the efficiency of collection and the detector sensitivity. Changes in any one of these

factors can affect the fluorescence intensity. If a wavelength sensitive device such

as a narrow band filter is used the intensity measured is also affected by shifts in

emission spectrum.

Polarization is defined as the normalized signal difference between parallel-

polarized and perpendicular-polarized components of the emission. For dilute

solutions, the polarization magnitude depends upon the rotational diffusion of a

fluorophore during the excited-state lifetime of the fluorophore. The polarization

can also be sensitive to interactions between fluorophores in concentration solutions

or in complexes [13]. The polarization is a ratio between a difference in intensities

to a sum of intensities so is a robust dimensionless parameter. Changes in polari-

zation can occur due to changes in rotation of fluorophores, changes in lifetime of

the fluorophore or changes in the interaction between fluorophores.

Lifetime is defined as the mean time a molecule spends in the excited state.

Lifetimes can change owing to changes in fluorophore environment (e.g. Polarity,

pH etc.) but are also sensitive to quenching caused by interactions between a

fluorophore and a quencher. Lifetime is a kinetic parameter so is independent

from concentration and signal intensity.

Fluctuations in intensity when not measured as a function of time or space could

be considered as a measurement of the standard deviation or variance of the

fluorescence intensity.

Intersections between different elements represent hybridization or multiplexing

between the different dimensions. In general, we refer to the hybridization of one

dimension with another dimension as multidimensional microscopy. These fluo-

rescence dimensions when hybridised with the spatial dimension represent standard

forms of fluorescence microscopy. For example, looking at the second column we

are essentially measuring fluorescence parameters as a function of space. Fluores-

cence intensity hybridized with space is simply called fluorescence microscopy.

Lifetime with space is called fluorescence lifetime imaging microscopy or FLIM.

Polarization with space is called polarization microscopy. Fluctuations with space
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is called image correlation microscopy and so on. The additional of the space

variable cannot be overstated. We will attempt to briefly state the advantages of

adding an imaging capability to the parameters discussed above.

Fluorescence microscopy [14]. In membrane biophysics and in cell biophysics

measurements of fluorescence from a collection of membranes or cells is an average

measurement. Fluorescence microscopy opens up the possibility of being able to

measure fluorescence from individual cells, individual structures (e.g. organelles,

biopolymers) within cells and even individual molecules inside cells.

Spectral imaging enables a fluorescence spectrum or spectral region to be

measured at every spatial location in a structure such as a cell [15]. This is useful

when multiple fluorophores with different spectra are used. One can then probe

multiple structures or molecules in the cell and resolve their spatial locations.

Lifetime imaging [16] measures lifetimes at several spatial locations within a

cell or collection of cells. Lifetime imaging enables sensitive measurements of

changes in local environment and interactions between molecules to be mapped to

spatial location.

Polarization imaging [17] gives the experimentalist the power to measure and

spatially map rotational diffusion of molecules inside cells. For example, amongst

the first examples of this technique was the measurement of the viscosity of the

cytoplasm of cells [18]. Polarization imaging is also sensitive to the orientation of

fluorophores in ordered environments such as membranes [19].

Fluctuation imaging is called image correlation spectroscopy [20]. This method

utilises the thousands of fluctuations that are present in an image to determine

parameters such as fluorophore cluster density and cluster size. Image correlation

spectroscopy has grown into a series of methods which are very powerful (i.e. when

combined with the time dimension or other fluorescence dimensions).

Photobleaching in a defined subcellular region followed by imaging is called

FLIP [21] or fluorescence loss in photobleaching. This method can be used to

bleach a region and then watch the redistribution of fluorescence. If the fluores-

cence moves from unbleached area to bleached area after time then this implies that

there is connectivity between the two regions.

Moving to the third column, we can see that intensity, wavelength, lifetime,

polarization, fluctuation, polarization is multiplexed with the time dimension.

Intensity versus time is called intensity decay or time-resolved fluorescence. The

intensity decay measured using time resolved fluorescence provides information on

the excited state decay process leading to deactivation of the excited state

[22]. These measurements can determine whether the fluorophore is in a single

environment (single exponential decay) or multiple environments (multiple expo-

nential decays).

Time resolved measurements at different wavelengths [23] can be used to

determine lifetimes from more complex systems that involve fluorophores in

multiple environments or multiple fluorophores. Measurements of spectral shifts

as a function of time are used to determine monomer-excimer kinetics [24], energy

transfer kinetics [25] and solvent relaxation processes [26].

Time-lapse lifetime measurements can track changes in fluorophore environ-

ment or interactions as a function of acquisition time. This can be used to measure
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conformational motion, folding-unfolding processes [27], or interactions occurring

during a cell signalling event [28].

Time-resolved polarization provides a direct measurement of processes leading

to depolarization of the emission [29]. In rotational diffusion measurements time-

resolved polarization can resolve individual rotational correlation times leading to

an understanding of the amplitudes and time-scales for rotation. For a labelled

biomolecule the local motion of the label and the overall rotation of the protein

complex can be measured leading to estimates of the extent of internal and global

motions. Time-resolved polarization is also used to measure interactions between

labelled molecules undergoing homo energy transfer [30].

Fluctuations as a function of time are referred to as FCS or fluorescence

correlation spectroscopy [31]. In FCS, fluorescence fluctuations from a tight laser

focus are recorded. In general, these fluctuations contain information on the phys-

ical processes occurring in the fluorophore ensemble. Translational movement in

and outside the laser focus, a change in orientation, time-dependent fluorescence

quenching and changes in particle fluorescence due to association/dissociation can

all give rise to fluctuations. FCS has grown into a large family of methods. The

reader is referred to excellent recent reviews on this area [32, 33].

Photo-bleaching with time is called FRAP or fluorescence recovery after photo-

bleaching [34]. In the earlier embodiments of this method, a small region on a cell

membrane was photo-bleached with a very fast excitation pulse and then the

recovery of fluorescence from that same region was monitored over time (with a

less intense monitoring laser). The movement of labelled (i.e. unbleached) mole-

cules into this region is recorded as a recovery of fluorescence. The diffusion

coefficient is determined by the rate of recovery and photo-bleach size. The extent

of recovery is dictated by the fraction of molecules that are mobile. Continuous

measurements of fluorescence over time during constant photo-bleaching (contin-

uous micro-photolysis) can also provide information on translational diffusion of

membrane components [35].

So far we have covered the major imaging and time-resolved methods that are in

use today. These methods combine one fluorescence dimension with one physical

dimension (i.e. space or time). These methods provide insights into interactions and

dynamics that underpin tertiary and quaternary structural transitions of membrane

proteins. To resolve more states or to make connections between structure, dynam-

ics and function we need to consider combining fluorescence dimensions.

For example, turning to the fourth column of Table 5.1, by adding excitation

wavelength to emission spectroscopy or spectral imaging we have the ability to

excite fluorophores at the red-edge of their absorption and to measure shifts in

emission that result from this change in excitation wavelength. This technique,

called red-edge-excitation-shift, or REES, is a powerful tool to examine

fluorophore heterogeneity and environmental relaxation processes in membranes

[36]. By adding the wavelength dimension to FLIM we have spectral-FLIM

[37]. Spectral FLIM can resolve fluorophores based upon differences in lifetime

or spectrum or both. Spectral FLIM can improve the resolution of FRET measure-

ments providing robust determinations of fractions of donors and acceptors in

complex, and fractions of donors and acceptors that are free [38]. Spectral FLIM
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can also provide spectral relaxation information which in membranes occurs on

timescales in the nanosecond regime [39]. Combining wavelength and polarization

imaging also provides an increase in image contrast based upon differences in

spectral wavelength and/or differences in anisotropy [40]. Polarized FRET in an

imaging arrangement with spectral detection is also useful for determining fractions

of molecules free and in complex [41]. Photo-bleaching and wavelength represents

photo-conversion reactions where excitation with a suitable wavelength photo-

converts an emitter with a certain emission spectrum to another emitter with

another emission spectrum-this is useful in a range of applications [42]. Photo-

conversion can also shift the absorption spectrum. This is particularly useful in

photochromic acceptor FRET, where the spectral overlap and therefore FRET

efficiency can be switched between two states [43].

Adding the lifetime dimension with other fluorescence dimensions is also very

powerful and useful. Because lifetime is a robust measurement of interaction as

defined by FRET combining lifetime with an orthogonal fluorescence dimension

can increase in the information content further. Polarization with FLIM enables

spatial imaging of rotational dynamics (in the absence of homo-FRET) [44]. Adding

the FLIM element removes ambiguities associated with interpretation of polariza-

tion alone (which is affected by lifetime, correlation time and fluorophore orienta-

tion). Because anisotropy is also affected by homo-FRET, polarization with FLIM

or rFLIM can also be used to determine average cluster sizes of proteins that are

coupled at 1–10 nm separations (assuming rotational motion is known). Rotators

with different distinct lifetimes can also be resolved using rFLIM [45]. Combining

FLIM with ICS gives us the ability to determine cluster densities of fluorophores

with different lifetimes [46]. If a lifetime-based assay is used to establish protein

activation, then cluster densities and relative cluster sizes of functional versus

non-functional membrane proteins can be determined with this method. In pbFLIM,

lifetimes of molecules with different survival probabilities with photobleaching can

be determined. This is not yet an established method but we propose that this

technique has the potential to resolve more complex FRET situations involving

more than one FRET state. FRAP with FLIM has also been combined which

enables recovery times of different lifetime species to be determined [47].

Polarization with fluctuation is called polarization FCS and provides information

on rotational diffusion of fluorophores [48]. An important advantage of this method

is that it is independent of the excited-state lifetime of the fluorophore. Polarization

fluctuation with imaging has not yet been realized buy we propose it here to be

considered. Nanoscale clustered fluorophores will be brighter in intensity but

reduced in polarization compared with unclustered fluorophores which will have

a lower intensity but a higher polarization. Polarization with photobleaching is

useful for determining homo-FRET [49]. This is because a photobleached

fluorophore cannot participate in a FRET interaction with another fluorophore.

Estimates of cluster size distributions can be made with this approach [50]. Impor-

tantly photobleaching with polarization is more robust than simple polarization

imaging or time-resolved polarization for determination of homo-FRET because

changes in polarization with continuous bleaching cannot be influenced by rota-

tional diffusion.
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Fluctuation (column seven, Table 5.1) can be combined with intensity in the

form of intensity-subtraction ICS. In this ICS variant, bright and dim particle

fluctuations are isolated by applying a systematic subtraction of intensity from

the raw fluorescence image. Subtraction reduces the contribution from the dim

particles so that the relative brightness and concentration of the brighter particles

can be determined [51]. Complex brightness distributions can be handled using

higher-order FCS or ICS. This method uses higher-order moments of the fluctua-

tions present in images or time-series. [52, 53]. Fluctuation with photo-bleaching in

an imaging arrangement or pbICS was recently developed [54]. This method can, in

principle, determine the cluster size distributions of proteins on membrane surfaces

[55]. The method assumes no lateral motion of clusters and so in its present

implementation is for fixed cells. To our knowledge, this is the only method that

does not require a brightness standard to obtain quantitative estimates of both

cluster sizes and cluster densities.

5.3 An Archetypical Membrane Protein: The Epidermal

Growth Factor Receptor

Perhaps the best way to show the value of these techniques is to provide an example

of where they have been used. Receptors are molecules usually found on the surface

of cells that receive chemical signals from outside cells. When a specific extracel-

lular substance, called a ligand, binds to a specific receptor, it ultimately triggers the

cell to do something, such a divide, or die, or move. The classic model for receptor

activation is ligand-induced dimerisation, wherein single receptor monomers pair-

up to form a receptor dimer [56].

The Epidermal Growth Factor receptor (EGFR) is a type 1 membrane protein

receptor which is involved in a host of physiological processes and implicated in a

range of diseases including neurodegenerative diseases and cancer. Consequently,

understanding how the EGFR is activated in physiological and pathological settings

is a major goal for the field and has led to a 30 year race to solve the complete

structure of the molecule [57].

The receptor consists of extracellular binding domains, a trans-membrane

domain, a juxta-membrane domain, a kinase domain and cytoplasmic tail domain.

Atomic-resolution structures for all of the major parts of the receptor are now

known (since 2002) but at the time of writing (2016) there is no structure of the

complete molecule in a living cell membrane. Fortunately, with these partial

structures it is possible to design experiments to test how the full length molecule

might be assembled and activated on the cell surface.

To begin our journey it is important to understand that already before the first

high-resolution structures of the extracellular domain of the EGFR came out in

2002, a substantial body of biochemical and biophysical work from Schlessinger’s
laboratory established that some form of dimerization was required for EGFR
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activation and biological activity. Biochemical (cross-linking experiments) were

interpreted in terms of a ligand-induced monomer to dimer transition model with

activation occurring in the dimeric form of the receptor [57]. Cross-linking of

EGFR with immunoglobulins of different valence also established a correlation

between receptor dimerization and biological activity [58].

The structures of the extra-cellular domain and of the intracellular kinase

domain are shown schematically in Fig. 5.1. The structures of the extracellular

domain are suggestive of a model for a ligand-induced dimerization process

[59]. The extracellular domain consists of four sub-domains 1–4. In the

un-liganded compact monomer sub-domains 2 and 4 form a tether that keeps the

ligand binding domains 1 and 3 apart. In the structure of a ligand-bound monomer,

the tether between domains 2 and 4 is broken and there is a large conformational

transition leaving domains 1 and 3 in contact with the ligand. In the ligand-bound

extended monomer structure there is a dimerization arm in domain 2 which is left

exposed. This dimerization arm appears to facilitate dimerization between ligand-

bound EGFR monomers to form a back to back dimer. Thus the extracellular

domain structures provide a mechanism for dimerization through a ligand-induced

conformational transition leading to dimerization.

Likewise, for the kinase domain, the kinase domain structures [60] provide a

very elegant model of EGFR activation. In this model the kinase can exist in an

inactive dimer conformation and an active dimer conformation. The active confor-

mation consists of an asymmetric kinase dimer where one kinase acts as the donor

and the other kinase acts as the acceptor.

(a) Ectodomain Region

(b) Cytoplasmic Region
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Fig. 5.1 Partial structures of the epidermal growth factor receptor. (a) Conformations of the ecto-

domain region depicting tethered, untethered and dimerized receptor. Green and red rectangles
depict fluorescent label positions at the receptor or at the ligands. (b) Conformations of the kinase

and cytoplasmic tail of the receptor depicting symmetric inactive, and asymmetric active dimer

configurations. Green rectangle represents labelling position of green fluorescent protein tag at the
C-terminus of the receptor. Note: Transmembrane and juxtamembrane domains are omitted from

the figure
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The availability of the atomic resolution structures of the domains is important

because it allows the design of fluorescence tag positions that are going to be most

sensitive to the changes in structure or the activation being probed. (Figure 5.1

shows potential labelling positions for fluorescent tags). For example, FRET

between a donor fluorophore at the ectodomain N terminus and an acceptor

fluorophore label at the ectodomain C-terminus or cell surface is expected to be

sensitive to ectomain conformation. Likewise FRET between ligands in the back-

to-back dimer ectodomain is expected to be very small (less than 2%) but FRET

between dimers in a tetramer or higher-order oligomer could be significant. Tags

placed at the C-terminus of the full length receptor allow one to probe receptor

oligomerisation. In conjunction with probes for receptor activation or complex

formation, these receptor probes allow correlations between conformation,

oligomerisation and biological activity when appropriate multidimensional micros-

copy approaches are employed.

5.4 Multidimensional Microscopy of EGFR on Intact Cells

5.4.1 In-Cell Quaternary Structure of EGFR in the Absence
of EGF (ICS, Polarization, FCS)

A number of laboratories have used the green fluorescent protein (GFP) and

variants to study the assembly of the EGFR. GFP is usually positioned at the

C-terminus of the full length EGFR (i.e. after the cytoplasmic tail). We were the

first laboratory to measure the oligomerisation state of the EGFR on normal cells

expressing physiological levels of receptor and in the absence of secreted ligand or

other EGFR members [61]. Image correlation spectroscopy (ICS) on a biologically-

active GFP derivative of EGFR expressed at normal levels determined an average

oligomeric state of 2 in the absence of ligands or other erbB family members

[61]. We determined the cluster density of GFP-tagged EGFR by ICS (from

confocal images of the receptor on intact cells) and used estimates of receptor

number to extract the number of receptors per cluster.

Wohland’s laboratory, using fluorescence cross-correlation spectroscopy (a two

color variant of FCS), determined that the majority of EGFRs on CHO cells were in

preformed dimers (>50% dimers) by measuring the coincidence of green (GFP)

tagged and red (RFP) tagged EGFRs as they diffused through a laser beam focused

on the cell surface. Using careful negative and positive control samples, this group

determined that EGFRs were pre-dimerized to a large extent in equilibrium with

monomers. Interestingly, the degree of dimerisation was found to be independent of

receptor expression level over a physiological to pathological range

(20,000–260,000 receptors/cell) [62].

Lidke et al. used polarization measurements of EGFR-GFP in CHO cells

inferred some degree of predimerization in the absence of added ligand [63]. By
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combining photobleaching with anisotropy the authors revealed an enhancement of

anisotropy with increases in photobleaching. Since photobleaching is not expected

to influence rotation these observations were compatible with a homo-transfer of

energy between preassembled EGFR-GFP dimers or oligomers.

Yeow and Clayton developed a theoretical formalism to explain anisotropy as a

function of photobleaching for different cluster sizes of oligomers [50]. The Lidke

et al. data was interpreted in the context of dimers or oligomers of EGFR in the

CHO cells [50]. A dimers-only model was deemed inconsistent with the data and

the presence of higher-order oligomers was inferred from the analysis [50].

Saffarian et al. used a moments analysis of intensity fluctuation traces (using an

FCS set-up) to determine the fractions of monomer, dimer and oligomer of EGFR in

the absence of ligand. Although EGFR-GFP was mostly monomeric (70%) about

20% of EGFR-GFP was in dimers and 10% were in oligomers in the CHO

cells [64].

Time-gated polarization was used very successfully by Gerritsen’s laboratory to
determine cluster sizes of EGFR-GFP in CHO cells. The authors used constructs

with an oligomerization domain to create oligomers of defined size (monomers,

dimers and oligomers). In this way the authors were able to estimate the long-time

polarization of different oligomer sizes. This information was then used for EGFR-

GFP in CHO cells. These authors estimated about 40% dimerization of EGFR in the

absence of ligand [65].

Nagy et al. used a variant of moments analysis, called number and brightness to

determine the average degree of association of EGFR-GFP on CHO cells. In cells

expressing low levels of EGFR-GFP, the EGFR-GFP appeared to be 100% mono-

meric, while in cells expressing high levels, about 30% of EGFR-GFP appeared as

dimers. The authors used soluble GFP as a reference [66].

Kozer et al. used photobleaching and polarization to estimate cluster sizes of

EGFR-GFP in BaF/3 cells. Using the polarization values of Gerritsen and a

linearized version of the Yeow and Clayton model, the authors estimated the

proportions of monomer, dimer and oligomer. Photobleaching polarization

revealed that the EGFR-GFP was at least 90% dimer and 10% monomer on

BaF/3 cells [67].

More recently, Martin-Fernandez and co-workers used photobleaching with

super-resolution approaches to observe extended oligomers of EGFR on intact

cells [68]. Measurements of distances between immune-labels at the extracellular

domain revealed inter-label separations of 11, 22, 33, 44, 55, 66, 77 nm. These

separations are compatible with extended oligomers of the EGFR up to octamers.

This powerful approach bridges the gap between FRET and the resolution limit of

conventional optical microscopy.

To summarize, a number of complementary biophysical techniques have been

employed to address the state of association of EGFR in the absence of ligand.

Taken together, the studies indicate that EGFR is not 100% monomeric in the

absence of ligand but appears to exist in a complex equilibrium with monomeric,

dimeric and extended oligomeric forms.
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5.4.2 In-Cell Quaternary Structures of the EGF-EGFR
Complex (ICS, FRET-FLIM and Photobleaching,
SPIDA)

ICS measurements on a GFP-tagged receptor as a function of EGF concentration

showed that EGF induces a EGFR dimer-to-tetramer transition and kinase activa-

tion independently of internalisation [61]. Addition of EGF resulted in a decrease in

the density of EGFR by a factor of two consistent with an increased aggregation of

EGFR dimers [61]. Independent measurements of the distance between

fluorescently-tagged ligands using FLIM detected F€orster Resonance Energy

Transfer (FRET) [61] and polarization F€orster Resonance homotransfer [69] have

revealed an unexpectedly close separation between receptor-associated ligands of

approximately 5 nm, a distance that is too short to be consistent with the 11 nm

separation of ligands in the crystal structure of the ligated EGFR extracellular

domain dimer (c/f back to back dimer in Fig. 5.1). Combining the results from

the ICS and FRET/homo-FRET measurements the data was consistent with a

monomer-dimer-tetramer model, with a major, new species, the liganded EGFR

tetramer.

Wiseman’s laboratory used the EGFR-GFP CHO system and revealed EGF and

EGFR expression-dependent dimerization and clustering. By means of spatial

intensity distribution analysis or SpIDA the authors detected monomers and

EGF-induced dimers in confocal scanning images [70]. Moments analysis was

used to examine the higher-order clustering of EGFR-GFP following EGF

treatment [71].

Nagy et al. used number and brightness analysis to examine EGF-induced

EGFR-GFP oligomerisation in CHO cells. For cells expressing a physiological

level of EGFR-GFP, EGF treatment resulted in detection of mobile monomers,

dimers and pentamers [66].

More recently, Kuriyan’s laboratory utilised photobleaching and single mole-

cule observations on ooctes expressing an ultra-low density of EGFR-GFP. After

addition of EGF, monomers, dimers and tetramers of EGFR-GFP were observed

with >50% of EGFR-GFP in tetramers [72]. Using site-directed mutagenesis and

molecular modelling, Kuriyan’s team identified a tetramer interface.

5.4.3 Link Between EGFR Quaternary Structure and EGFR
Activation (FLIM-ICS)

While the coincidence of ligand binding, the formation of tetramers and increases in

phosphorylation was suggestive that tetramers might be an activated EGFR species,

proof that there was a correlation between tetramers and activation on single cells

requires an alternative strategy. We made use of an already-developed FLIM-FRET

assay for measuring EGFR phosphorylation (activation) and combined this assay

with ICS (i.e. FLIM-ICS) to determine the cluster densities and relative sizes of
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phosphorylated and unphosphorylated EGFR. From FLIM images containing a

GFP-tagged EGFR and an anti-phosphotyrosine conjugated to AlexaFluor555 we

were able deconvolute the fluorescence from the activated EGFR from the fluores-

cence from the inactive EGFR. This is because the lifetimes of the GFP tag are

different in the two states and the frequency responses are different. This concept is

sketched in Fig. 5.2. From the optically separated images of the active and inactive

EGFR we were able to determine the fraction of phosphorylation EGFRs, fraction

of unphosphorylated EGFRs, the density of phosphorylated EGFRs, the density of

Y YY YYPPY
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YPPY
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YPPY
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Y

Fig. 5.2 Optical deconvolution of active and inactive epidermal growth factor receptor using

frequency-domain FLIM. Activated receptors may be distinguished from un-activated receptors

by the different lifetimes and frequency-responses. Un-activated receptors have the characteristic

sine wave pattern for GFP while activated receptors have a shorter phase and longer modulation

amplitude due to FRET from the GFP to the acceptor-labelled antibody. Phase suppression allows

fluorescence from either the active or the inactive receptors to be displayed in an image. Use of

ICS methods then gives quantitative information about the cluster densities and relative brightness

of active versus inactive receptors
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unphosphorylated EGFRs, and importantly the relative brightness (or cluster size)

of the activated EGFR relative to the unactivated EGFR. These quantitative param-

eters were compared to different models for the EGFR activation process. For a

monomer to dimer transition model the relative brightness of activated EGFR to

un-activated EGFR can have a maximum value of 2. For a dimer conformational

change model the relative brightness of activated to unactivated EGFR would be

1. Our measurements revealed that the relative brightness was 4 and was more

consistent with a monomer-dimer-tetramer model, i.e. involving a pre-equilibrium

between monomer-dimer states in the absence of ligand and a ligand-induced dimer

to tetramer transition. An alternative model involving dimer-dimer polymerization

reaction was also considered and not incompatible with the available data. These

results showed that active dimers were not the only active EGFR species and that

EGFR tetramers were also phosphorylated as a major species [73] (Fig. 5.3).

5.4.4 EGF Dose and Time-Series ICS Experiments of EGFR
Clustering (TICS)

To examine the relationship between EGF binding, EGFR clustering and phosphor-

ylation we measured the clustering of EGFR as a function of EGF concentration

and as a function of time and measured EGFR phosphorylation in parallel. To

Fig. 5.3 Revised model of EGFR organization as gleaned from a multidimensional microscopy

perspective. View of receptor quaternary forms looking down at the membrane from above.

Monomer, back-to-back dimer and two tetramer forms are shown. Cis or head-to-head dimer-of-

dimers and Trans or side-by-side dimer-of-dimers configurations are shown
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interpret the data we made use of a rule-based model which included details of

ligand binding to receptor (including negative cooperativity), ectodomain dimer-

ization, kinase-mediated dimerization, and the formation of oligomers up to tetra-

mers. Importantly this structure-inspired model included parameters from

published biochemical and biophysical studies from other laboratories. This

model predicted that cluster size distribution of the EGFR as a function of EGF

and time. This model allowed for activation in dimeric EGFR but found that the

predominant activated species was the EGFR tetramer under the conditions of our

experiments. To the best of our knowledge, this was the first detailed experiment

and theory paper describing complex EGFR oligomerization and

phosphorylation [74].

5.4.5 Link Between EGFR Quaternary Structure
and the Formation of an EGFR-Adaptor Signalling
Complex (FLIM-ICS)

Growth factor receptor binding protein 2 or Grb2 is an adaptor that links phosphor-

ylated EGFR to downstream intracellular signalling cascades. FRET-FLIM mea-

surements between EGFR-GFP and a co-transfected Grb2-mRFP revealed no

interaction between EGFR-GFP and Grb2-mRFP in the absence of EGF. However,

EGF addition promoted an interaction between the EGFR-GFP and Grb2-mRFP.

Using the FLIM-ICS approach we examined the relative cluster sizes and cluster

densities of EGFR-GFP bound to Grb2-mRFP and free EGFR-GFP. The relative

brightness was from 4 to 5 indicating that the higher-order EGFR-GFP tetramer

bound the Grb2 and thus must be involved in coupling to down-stream signalling

cascades. Use of rule-based modelling enabled prediction of the EGFR oligomeric

distribution and fraction of Grb2 bound to each type of oligomer. The majority of

tetramers was bound to Grb2 with a smaller proportion of dimers bound to

Grb2 [75].

5.4.6 Conformation of the EGFR in Resting and Ligand
States (FRET, FLIM and Polarization)

High resolution structural studies revealed that the extracellular domain of the

EGFR was found in two forms-a compact, tethered conformation and an extended,

untethered conformation in the complex with EGF (Fig. 5.1). To determine the

conformation of the extracellular domain of the full length EGFR on intact cells,

two laboratories have placed a fluorescent probe at the N-terminus and used FRET

to measure the distance from the probe to the membrane [76, 77].
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In our study, distances from YFP probe in YFP-EGFR to rhodamine-labelled

lipids in the membranes of BaF/3 cells were determined by flow cytometric FRET.

Distances in the range 8–10 nm in the absence of presence of EGF were determined.

Homo-transfer between the YFP probes revealed the majority of YFP-EGFRs were

pre-dimerized. The results were interpreted in terms of an extended pre-formed

dimer which remained extended after ligand binding and activation and further

oligomerisation [76].

The Arndt-Jovin study used a different fluorescent reporter and CHO cells and

FLIM to measure FRET between the probe and a membrane acceptor. Changes in

FRET were observed and interpreted in terms of a tether to untether transition [77].

The discrepancy in the conclusions from the two studies can be understood if the

unliganded monomer is tethered (the unliganded EGFR monomer is the prevalent

form in CHO cells) and the unliganded dimer (EGFR dimer is prevalent form in

BaF/3 cells) is untethered.

5.4.7 EGFR Lateral Dynamics at Cell Surfaces (Image FCS,
STICS)

Fluctuations measured in space-time afford even greater information content than

either ICS or FCS. Wohland’s lab has impressively broken the record for the

number of FCS curves measured in parallel by using an image-based approach.

Because 2D detectors contain millions of pixels and fast detection allows temporal

information, it is now possible to collect many FCS curves using image FCS or

iFCS. Wohland utilized his iFCS approach to examine the organization and dynam-

ics of the EGFR-GFP on CHO cells [78].

5.4.8 EGFR Organization on Cancer Cells (ICS, FRET,
FLIM-ICS, Super-Resolution)

ICS studies by Peterson and co-workers determined the average cluster density and

average number of EGFR proteins per cluster on A431 cancer cells. These cancer

cells express the EGFR to a high level of 1–3 million EGFRs per cluster. Conse-

quently, the number of EGFRs per cluster was estimated to be between 10 and

30 receptors per cluster [79].

Gadella and Jovin measured FRET between EGFs on EGFRs on A431 cells. The

results were interpreted in terms of monomer-dimer model, with FRET occurring in

a dimer. Significantly, the authors revealed pre-dimers of the EGFR in the high

affinity ligand-binding population [80].

Clayton et al. [46] used FRET-FLIM-ICS in an attempt to correlate the nano-

scale organization of the EGFR revealed by FRET measurements with the

sub-micron scale clustering observed by ICS. Using a ligand-blocking antibody
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as a probe, FRET clusters containing 10–30 receptors were observed. FRET-FLIM

measurements as a function of donor:acceptor ratio were not consistent with FRET

between dimers but more consistent with FRET between an oligomer such as a

tetramer. The results suggested a nascent hierarchical organization of the EGFR

with oligomers assembled into larger clusters. It was proposed that this assembly

was responsible for basal activation on the EGFR in this cancer cell line.

Sako utilised a number of single molecule techniques to measure the relationship

between EGF binding and EGFR activation. Dynamic clustering was observed after

EGF addition in A431 cells and attributed to amplification of activation via

interaction of activated EGFR with un-activated EGFR [81].

The Wang group used super-resolution microscopy to directly observe clusters

of EGFR from a normal cell line and a cancer cell line. Larger clusters were

reported for the cancer cell line. The authors suggested that the EGFR clustering

was promoted by receptor-lipid interactions [82].

5.5 Summary and Future Perspectives

Membrane proteins in cells exhibit structural hierarchy over a range of length and

time-scales. Fluorescence signals from judiciously-placed probes on membrane

proteins are sensitive to interactions on the 5–1000 nm length scales and over the

time scales of picoseconds and greater. Using multiple dimensions of fluorescence

and combining them with spatial and/or temporal dimensions is an attractive

approach to link structure, dynamics and biological activity.

A theme explored in this chapter was how to link information from structural

biology with fluorescence experiments on the cell surface. We have explored this

theme using the epidermal growth factor receptor as an example. Taken as a whole,

the multidimensional microscopy measurements provide data that can be

confronted with models derived from structural biology. In the case of the EGFR,

it is the author’s opinion that the classical ligand-induced monomer-dimer kinase-

activation model requires significant revision. First, other oligomeric forms of the

receptor can exist in the absence of ligand (i.e. pre dimers and higher-order

oligomers). Second, while dimerization is acknowledged as a key initial kinase

activation event, higher-order oligomerisation appears to be required for full phos-

phorylation of the C-terminal tail. Furthermore, adaptor binding, which is important

for linking receptor activation to downstream enzyme activation, appears to be

enhanced in tetramers, relative to dimers. Membranes and cell-specific factors seem

to play some role in dictating EGFR organization as evidenced from experiments on

different cell types, and experiments where cell or cytoskeletal components are

depleted or denatured.

More work is required to develop new technologies to bridge the gap between

the high-resolution structural biology methods and fluorescence methods on the

membranes of living cells. Ideally these methods should have an excellent time

resolution, an excellent spatial resolution, and inform on the biologically relevant

structural dynamics in a living cells and ultimately a living human being.
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Chapter 6

Investigating the Dynamics and Organization

of Membrane Proteins and Lipids by Imaging

Fluorescence Correlation Spectroscopy

Nirmalya Bag, Shuangru Huang, and Thorsten Wohland

Abstract The dynamics and organization of lipid bilayers, whether they are

artificial supported lipid bilayers, lipid vesicles or cell membranes, still pose an

enigma. Especially bilayers with multiple lipid components, not to mention pep-

tides and proteins, are difficult to characterize as they often exhibit fast molecular

dynamics and structural organization that presumably are on the nanometer scale.

Therefore, biophysical techniques are required that measure sufficiently fast to

detect molecular movements and interactions but also provide information about

structures below the optical diffraction limit. Imaging Fluorescence Correlation

Spectroscopy (Imaging FCS) fulfils these conditions and can resolve membrane

dynamics with high temporal resolution and provide information even on

nanoscopic scales. Compared to conventional confocal FCS, this multiplexed

modality can record over hundreds of contiguous points simultaneously on the

membrane. In this chapter, we present briefly the theory of Imaging FCS and

provide general guidelines for its implementation. This is followed by a description

of multiple options to analyse the Imaging FCS data. We discuss the FCS diffusion

law to investigate the membrane organization below the optical diffraction limit,

the difference in cross-correlation function (ΔCCF) to investigate anisotropies in

diffusion, Imaging Fluorescence Cross-correlation (Imaging FCCS) to study inter-

actions, and the recovery of the Arrhenius activation energy of diffusion to deter-

mine lipid packing and phases. Lastly, we give a short overview of recent

applications of Imaging FCS.
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6.1 Introduction

The plasma membrane defines a semi-permeable barrier between a cell and its

exterior and is involved in many cell functions including cell adhesion, signalling

and the selective export and import of ions andmolecules. Despite the importance of

this organelle, we have still a limited understanding of its precise structure, organi-

zation and molecular dynamics, which all play important roles in its proper function.

This has several reasons originating in the complex spatial organization of the

membrane and its fast fluid dynamics. The plasma membrane consists of a complex

mixture of proteins inserted in or attached to a lipid bilayer which itself contains

hundreds of different lipid species. The different bilayer components interact by

homo- and hetero-association [1] and the inner and outer bilayer leaflets couple

through transmembrane proteins and specific long chain lipids [2]. This intricate

interplay between the membrane components, the transbilayer coupling, and the

interaction of the plasma membrane with intracellular and extracellular components

yields a complex membrane architecture. These thermodynamically, kinetically,

and affinity driven interactions [3–5] have variable strength due to their differential

origin and act over a broad range of length and time scales, leading to a unique

spatio-temporal organization of the membrane [4, 6]. The present understanding of

the membrane organization implies the co-existence of different ‘membrane orga-

nization principles’ that include chemically distinct protein clusters formed by

homo- and hetero-association, lipid domains and lipid-protein complexes

[1, 7]. The stability and function of these macromolecular entities on the membrane

are influenced by the actin cytoskeleton located underneath the plasma membrane at

the cytosolic face via passive and/or active (ATP-dependent) mechanisms

[3, 8]. The size of these membrane features ranges from a few nanometers to a few

micrometers and the time scale of the biochemical processes they are involved in

varies from milliseconds to minutes [4, 9]. For simplicity, we refer to a membrane

feature as nanoscopic or microscopic depending on whether its size is below or

above the optical resolution limit (~200 nm), respectively. A better understanding of

the function of the plasmamembrane therefore requires techniques that can measure

at high temporal resolution and can yield information at nanoscopic andmicroscopic

spatial scales.

A further complicating fact is that the spatial distribution of these nanoscopic

features is heterogeneous. For example, certain proteins form clusters along the

boundary of the cell [10] while some other proteins form clusters independent of the

precise location on the membrane [11]. Likewise, lipid domains create locally

ordered but moderately fluid regions on the membrane. This increases the local

concentration of the proteins that can facilitate signalling reactions on the cell

surface [12]. It is therefore necessary to measure spatially-resolved maps of diffu-

sion coefficients, concentrations and interactions for a better understanding of

membrane dynamics and organization and its influence on biological processes.

Ideally, a non-invasive orminimally invasive technique having nanometer spatial

resolution andmillisecond temporal resolution is necessary to investigate membrane
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diffusion and interaction patterns. Methods with single molecule sensitivity are

preferred since the interactions could be specific to a single molecule or only few

molecules. They should also be readily applicable to living cells or organisms.

Unfortunately, the majority of the current fluorescence spectroscopic and micro-

scopic techniques offer either good temporal or spatial resolution but not both

simultaneously [13]. Single particle tracking (SPT) fulfils both criteria since it

monitors movement of individual particles with a few nanometer precision and at

the millisecond time scale [14]. Fitting the time dependence of mean squared

displacement (MSD) with an appropriate theoretical model provides the diffusion

coefficient. However, SPT requires bright, photostable fluorescent reporters of

molecular size for good accuracy and precision of the localization and is constrained

to very low labelling densities since high density labelling does not allow the

reconstruction of individual trajectories. Both conditions are often not compatible

with biological measurements and thus limit the application of SPT [14–18].

Fluorescence correlation spectroscopy (FCS) can at least avoid some of these

issues while still preserving single molecule sensitivity and it is routinely used on

living systems [19]. Conventionally FCS is performed in a confocal mode. The

confocal observation volume is positioned within the sample and the fluorescence

intensity originating from this volume is measured over time to provide information

on the dynamics of the system. The autocorrelation analysis of the recorded fluo-

rescence time trace yields a characteristic decaying temporal autocorrelation func-

tion (ACF) (Fig. 6.1). The width and amplitude of the ACF provide the diffusion

coefficient and concentration at the observed point. However, the application of

confocal FCS on live cell plasma membranes has also constraints. First, it requires

calibration of the confocal volume for the measurement of accurate diffusion

coefficients and concentrations. Second, the measurements are conventionally car-

ried out on single diffraction-limited spots at a time, limiting spatial information.

Imaging FCS was developed as an advanced spatio-temporal modality to over-

come some of these issues [20]. It requires an illumination scheme that can excite a

sample plane instead of a single spot and an array detector to capture the image of

the illuminated plane at a fast frame rate. Currently, total internal reflection

fluorescence microscopy (TIRFM) and single plane illumination microscopy

(SPIM) are used to optically section a single plane of the sample and accordingly

the techniques are called Imaging TIR-FCS (ITIR-FCS) and SPIM-FCS. Electron

multiplying charge coupled device (EMCCD) and scientific complementary metal

oxide semiconductor (sCMOS) cameras are used as detectors. Each pixel on the

camera chip acts as an individual detection element. The dimension of the individ-

ual pixel in combination with the point spread function (PSF) of the optical system

limits the x-y extension, and the thickness of the illumination plane provides the

z-dimension of the observation volume. This combination creates an array of small

observation volumes. When a time series of images is captured, the autocorrelation

analysis of the fluorescence time traces obtained from individual pixels produces

images of the diffusion coefficient and concentration with a resolution above the

diffraction limit. Although the diffraction-limited quantitative maps of diffusion

and concentration significantly improve statistics and provide information about
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spatial connectivity, they are not sufficient to investigate nanoscale phenomena.

Hence several analytical tools were subsequently employed on the diffraction-

limited data to characterize the modulation of diffusion behaviour of a given

probe in the presence of nanoscale membrane patterns including nanoclusters,

nanodomains and the cytoskeleton.

6.2 Theory of Imaging FCS

6.2.1 Principle of FCS

In an FCS measurement, a fluorescence intensity trace, F(t), is acquired from a

small observation volume (Fig. 6.1A–C). F(t) contains fluctuations due to the

movement of particles through the observation volume. Characteristic parameters

of the particles and their movement can be obtained by statistical analysis of F(t) by
an autocorrelation function (ACF, Fig. 6.1D):

G τð Þ ¼ F tð ÞF tþ τð Þh i
F tð Þh i F tþ τð Þh i ð6:1Þ
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Fig. 6.1 Principles of FCS. (A) The blue ellipsoid represents the observation volume of the

microscope. A particle will not be detected outside the volume but when entering and traversing

the observation volume will be excited and emit fluorescence, leading to the fluorescence time

trace shown in blue. (B) A large particle will take longer time to traverse the observation volume

leading to fluorescence time trace shown in red, where single fluctuations will now be wider. (C) If

multiple independent particles move simultaneously through the observation volume, as happens

in concentrated samples, they will lead to a fluorescence trace that contains contribution from all

particles as shown in the trace in black. (D) This schematic shows how the ACFs for these cases

differ. The width of the ACF increases with diffusion time while the amplitude of the ACF

decreases with an increasing number of particles in the observation volume
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The ACF relates the fluorescence of the signal at different lag times τ. It is a unit-
less function which has its maximum at τ ¼ 0 and converges to 1 for τ!1. This can

be seen by the following arguments. For the case of for τ ! 0, the values of F(t) � F

(t þ τ), and these values are strongly dependent, thus ⟨F(t)F(t+ τ)⟩ is at a maximum.

For τ!1, i.e. in the case that the lag time is much larger than the characteristic time

of diffusion through the observation volume, F(t) and F(t þ τ) are no longer

correlated and ⟨F(t)F(t+ τ)⟩¼hF(t)ihF(t+ τ)i. Therefore, G(τ) converges to 1.

Note that the ACF can be written in terms of fluorescence fluctuations δF(t) ¼ F

(t) � <F(t)>, i.e.,

G0 τð Þ ¼ δF tð ÞδF tþ τð Þh i
F tð Þh i F tþ τð Þh i ð6:2Þ

Both definitions are equivalent and differ only in the convergence value. At τ !1,

since the particles move in and out, the fluctuations will have an equal probability of

being positive or negative, meaning<δF(t) δF(tþ τ)>¼ 0, and thus G(τ)¼G0(τ)þ 1.

Auto-correlation analysis is not limited to only diffusion dynamics. It can be used for

any dynamic process which causes fluctuations in the intensity trace [21]. The simul-

taneous occurrence of multiple dynamic processes gives rise to a correlation function

containing multiple decay components. However, in this chapter we will concentrate

solely on diffusive processes.

6.2.2 Theoretical Model of Imaging FCS

Here we sketch the derivation of a theoretical model for the autocorrelation

function. This model will later be fit to experiments to recover the characteristic

parameters of the measured processes. The derivation is based on the mathematical

expressions of the detected fluorescence signal and its fluctuations. The temporal

fluorescence F(t) and its fluctuation δF(t) collected from an observation volume

F tð Þ ¼ Q

Z1
�1

I
�
~r
�
S
�
~r
�
CEF

�
~r
�
C
�
~r; t
�
d~r ð6:3Þ

δF tð Þ ¼ Q

Z1
�1

I
�
~r
�
S
�
~r
�
CEF

�
~r
�
δC
�
~r; t
�
d~r ð6:4Þ

are given by the following equations: Q is the molecular brightness, which contains

the information about the absorption coefficient and quantum yield of the

fluorophore and the overall detection efficiency of the microscope. I
�
~r
�
is the

spatial distribution of the emitter in the image plane which is given by the point

spread function (PSF) of the microscope objective. S
�
~r
�
describes the extent of the
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sample volume. CEF
�
~r
�
is the collection efficiency function which describes the

collection efficiency of the detection element in dependence on the location of

the probe in the sample. Thus the product of I
�
~r
�
, S
�
~r
�
and CEF

�
~r
�
defines the

observation volume (W
�
~r
�
) which is also called the molecule detection efficiency

function. It determines the final amount of signal from position~r that is collected by
the detection element. C

�
~r; t
�
is the concentration of the fluorophore at position ~r

and time t.

W
�
~r
� ¼ I

�
~r
�
S
�
~r
�
CEF

�
~r
� ð6:5Þ

Now, S
�
~r
�
can in most cases be assumed to be 1 since the sample volume is

much larger than the observation volume and thus (6.5) reduces to:

W
�
~r
� ¼ I

�
~r
�
CEF

�
~r
� ð6:6Þ

When (6.3), (6.4), and (6.6) are plugged in (6.1), we obtain

G τð Þ ¼
RR1

�1W
�
~r
�
W
�
~r0
�
δC
�
~r; t
�
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�
~r0; tþ τ
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d~rd~r0

Ch i2 R1�1 W
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Here, δC
�
~r; t
�
δC
�
~r0; tþ τ

�� �
is the concentration correlation function. The

expression of this function at any lag time (τ) for a 2D diffusion process [19] is

given by:

δC
�
~r; t
�
δC
�
~r0; tþ τ

�� � ¼ 1

4πDτ
e�
�
~r�~r0
�2

4Dτ ð6:8Þ

For a rectangular detection element, both concentration correlation function and

CEF
�
~r
�
are separable in the x- and y- dimension. The distribution of the excitation

light along the orthogonal plane of the optical axis (I
�
~r
�
), i.e., along the sample

plane can be approximated by a two-dimensional Gaussian function which is also

separable in two dimensions. Therefore, W
�
~r
�
is separable in x-and y-dimensions

[6]. This allows us to rewrite Eq. (6.7) as:

G τð Þ ¼ Gx τð ÞGy τð Þ þ 1 ð6:9Þ

where,

Gx τð Þ ¼
RR1

�1W
�
~x
�
W
�
~x0
�
δC
�
~x; t
�
δC
�
~x0; tþ τ

�� �
d~xd~x0

Ch i2 R1�1 W
�
~x
�
d~x

� �2 þ 1 ð6:10Þ

Gy(τ) can be written in a corresponding form. We will only solve the integration for

Gx(τ) as the calculation of Gy(τ) is analogous. We next find the mathematical
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expression ofW
�
~x
�
using Eq. (6.6). TheCEF

�
~x
�
for a square pixel, with side length

a, is a rectangular function with a value of 1 everywhere inside the pixel and

0 outside the pixel.

CEF
�
~x
� ¼ 1;�a

2
< 0 <

a

2
0; otherwise

" #
ð6:11Þ

However, the image of a molecule is given by the PSF, I
�
~x
�
, which we

approximate by a Gaussian function:

I
�
~x
� ¼ I0e

�2x2

ω2
0 ð6:12Þ

The convolution between CEF
�
~x
�
and I

�
~x
�
can be solved analytically [22] and

yields:
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Incorporating Eqs. (6.13) and (6.8) (for the x-direction) into (6.10), we can solve

the intergral:

Gx τð Þ ¼ 1
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Using Eqs. (6.9, 6.10) (for x and y dimensions) and (6.14), we obtain:

G τð Þ ¼ 1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dτ þ ω2

0

p
a
ffiffiffi
π

p e
� a2

4Dτþω2
0 � 1

� � !2

þ 1 ð6:15Þ

Since N¼AeffhCi,

G τð Þ ¼ Aeff

a2N
erf

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dτ þ ω2

0

p
 !

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dτ þ ω2

0

p
a
ffiffiffi
π

p e
� a2

4Dτþω2
0 � 1

� � !2

þ 1 ð6:16Þ

At τ¼ 0,

G 0ð Þ ¼ Aeff

a2N
erf

a

ω0

� �
þ ω0

a
ffiffiffi
π

p e
�a2

ω2
0 � 1

� �� �2

þ 1 ð6:17Þ

For 2D diffusion, the observation area can be analytically calculated [22] or

simply be derived from the fact that
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G 0ð Þ ¼ 1

N
þ 1 ð6:18Þ

Comparing Eqs. (6.17) and (6.18), we obtain the functional form of the obser-

vation area as:

Aeff ¼ a2

erf a
ω0

	 

þ ω0

a
ffiffi
π

p e
�a2

ω2
0 � 1

� �� �2
ð6:19Þ

Note that Aeff depends on the pixel size and the dimensions of the PSF. The PSF

of a microscope system depends on the numerical aperture of the objective (NA)
and the emission wavelength of the light (λem) through the following:

ω0 ¼ ωλem
NA

ð6:20Þ

Theoretical studies showed that the best approximation of a Gaussian to the Airy

pattern of an immobile object imaged by a high NA fluorescence microscope is

provided by an 1/e2 radius of ω ¼ 0.42 [23]. In practice, however, ω of an

instrumental set up should be determined experimentally [24].

Figure 6.2A shows the dependence of Aeff when a is varied for a fixed size of the
PSF (ω0 ¼ 320 nm) (black curve). The influence of the PSF on the observation area

can be estimated from the ratio of Aeff to a
2 (Fig. 6.2A, red curve). Similarly, ω0 was

also varied while keeping a ¼ 240 nm constant (Fig. 6.2B). The observation area

increases with increasing pixel or PSF size. When a�ω0, i.e., the PSF is larger

than the pixel size, the latter does not influence the size of the observation area

significantly (Fig. 6.2C, left). The shape of the observation area is similar to that of

the PSF. In this case, the difference between Aeff and a2 is very large. The

Aeff increases with increasing a while the ratio of Aeff to a2 decreases rapidly. At
the other extreme, when a�ω0, the contribution of the PSF is not significant and

thus the observation area becomes closer to the spatial distribution of the pixel

which is square in shape in this example (Fig. 6.2C, middle). This is more evident

when the absolute size of the PSF is smaller than a pixel (ω0 ¼ 320 nm and

a ¼ 1200 nm) (Fig. 6.2C, right). For a�ω0, the typical case in most microscope

systems, both pixel and the PSF contribute significantly to the resultant observation

area.
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6.3 Experimental Realization of Imaging FCS

6.3.1 Set-Up Requirements of Imaging FCS

Imaging FCS requires simultaneous excitation of multiple membrane spots and

their recording by an array detector. This can be achieved by SPIM and TIRF

illumination schemes that have inherent optical sectioning capability along the

z-direction, and thus minimize cross-talk [25, 26]. In case of TIRF illumination

(Fig. 6.3A), the excitation beam is focused on the back focal plane of an

oil-immersion objective lens after being reflected by a dichroic mirror. The beam

is then total internally reflected at the glass-water interface by adjusting the incident

angle, which results in an evanescent field in the water medium with a penetration

depth of ~100 nm [27]. The fluorescence from the sample is collected by the same

objective. In SPIM (Fig. 6.3B), a cylindrical lens creates an excitation light sheet,

which is then focused into the sample by an excitation objective. A detection

objective placed orthogonally with respect to the illumination objective collects

the fluorescence emission. To date, mainly EMCCD and sCMOS cameras are used

to record the fluorescence emission due to their high acquisition speed (<2 ms per

frame), 100% fill factor and sensitivity (quantum efficiency (QE) > 80%). Imaging

FCS can be implemented in any commercial or home-built TIRF and SPIM systems

that are coupled with a fast camera [28]. Since the fluorophores diffuse within a

�2–3 nm thick membrane which is much smaller than the thickness of the
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Fig. 6.3 Schematics of (A) TIRF and (B) SPIM set-ups to illuminate and detect cell membranes.

In TIRF, the sample plane close to the cover slip is illuminated while any plane of the sample can

be illuminated by SPIM illumination
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illuminated plane (�100 nm for TIRF and �1.2 μm for SPIM), we neglect here the

contribution of the axial dimension to the observation volume and consider only a

2D effective observation area.

6.3.2 Conditions of Imaging FCS Experiments

The dynamic process under investigation dictates the minimum camera speed for

Imaging FCS. Typically, one has to record the data ten times faster than the fastest

process to be observed [22]. In the case of diffusion, for instance, the average time

for a particle to diffuse through the observation area defined by the pixel, will define

this time. On the other hand, a sufficient number of photons have to be captured to

achieve a high signal to noise ratio. This becomes especially important for live cell

samples expressing fluorescent protein tagged biomolecules due to their weak

fluorescence and photostability. These figures of merit of Imaging FCS in relation

to various experimental factors have been systematically addressed by simulations

and experiments [22, 24, 28–30] and we will summarize their results in the

following sections.

Camera Cooling Before experiments, the cameras are cooled to the minimum

possible temperature, which the cameras can support at high-speed read-out, to

reduce dark current. This is typically �70 to �80 �C for EMCCD cameras, but has

to be checked as varying camera temperatures can cause unwanted artefacts in the

ACF. In general, air-cooling by a camera-integrated fan is sufficient. Sometimes,

vibration due to the fan destabilizes the system leading to periodic oscillation in the

experimental ACF. This can be avoided by using external water-cooling. For sCMOS

cameras, water-cooling is recommended since it can achieve lower temperatures

(typically � �30 �C).

Mode of Acquisition Two modes, namely kinetic and fast kinetic, are available for

the acquisition of an image series using an EMCCD camera. Kinetic mode (also

known as frame transfer mode) is used for Imaging FCS experiments. The maximum

speed attainable for the full frame acquisition is 30–500 frames per second (fps)

depending on the camera model. However, one can increase the speed up to

1000–3000 fps by acquiring a sub-region of the chip, e.g., a 25 � 25 pixels region

of interest (ROI). Fast kinetic mode can be used for very high frame rates

(�25,000 fps) [31]. Here, only a few lines in the CCD chip are illuminated while

the rest of the lines are masked. In this mode, the lines are continuously shifted

vertically and read out. Therefore, the speed in this mode is only limited by the time it

requires to shift the illuminated lines. This mode sacrifices the imaging aspect to

increase the frame rate and thus time resolution. The limitation posed by the frame

transfer mode is absent for sCMOS sensor since the signal is read-out within the pixel

itself. This allows to image large number of pixels (2048 � 8) with �25,000 fps.
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Preamplifier Gain Preamplifier gain determines the conversion factor of the

electrons that are ejected from the CCD or sCMOS sensor after the incidence of a

signal photon to a digital value. It is performed before analog-to-digital converter

(ADC) digitization. The dynamic range (full well capacity) of a pixel is generally

higher than the ADC dynamic range. For example, the dynamic range of the

EMCCD camera used here is 1�160,000 electrons/pixel while that of ADC for a

16-bit image is 0�65,535 (65,536 grey levels or analog-to-digital units (ADU)).

Therefore, there will be multiple electrons which are assigned to a grey level (i.e.,

>1 electrons/ADU). This can pose a problem for low light imaging and FCS since

the photon counts are too low and thus the photoelectrons are distributed within

very few grey levels. An increase in pre-amplifier gain helps reducing the number

of electrons per grey level. This increases camera sensitivity. In our laboratory, the

highest pre-amplifier gain was used for each camera resulting in �20 electrons per

image count [32].

Electron Multiplication (EM) Gain for EMCCD Camera The EM gain deter-

mines the amplification of the signal before read-out and is a crucial parameter for

FCS measurements. An EMCCD camera operating without EM gain does not have

sufficient SNR to perform FCS. EM gain significantly improves both the quality of

ACFs and accuracy and precision of D and N. In general, a smaller EM gain (as low

as 2% of the maximum) is sufficient for bright organic dyes such as rhodamine

labelled phosphatidylethanolamine (RhoPE) and 1,10-dioctadecyl-3,3,30,3-
0-tetramethylindocarbocyanine (DiI-C18). For less bright dyes such as fluorescent

proteins, a higher EM gain is required. We use at least 50% of the maximum EM

gain setting provided by the manufacturer. In this context, the experimental proto-

col to determine real preamplifier gain and EM gain of an EMCCD camera can be

found here [33].

6.3.3 Data Acquisition

The performance of Imaging FCS data with an optimum fluorophore brightness

strongly depends on the acquisition time per frame ( Δτ), total acquisition time

(Tacq), and number of frames (n). Tacq is simply the product of Δτ and

n (Tacq ¼ Δτ � n). Δτ is the sum of the exposure/integration time and the read-

out time and constitutes the time resolution of Imaging FCS. The accuracy of the

extracted values of D and N depends on the time resolution while the number of

frames acquired during the measurements dictates their precision. In general, the

following rules of thumb represent minimum requirements for a successful Imaging

FCS experiment:

At least 10,000 frames (n ¼ 10,000) should be recorded while more number of

frames is recommended for precise D and N values.

The time resolution (Δτ) should be at least ten times smaller than the diffusion

time ( τD) of the sample (Δτ 	 0.1τD). The accuracy deteriorates if Δτ 	 0.001 τD
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for a 10,000 frames acquisition; the accuracy in this condition can be increased by

acquiring more frames for a prolonged acquisition time.

Δτ
τD

< 0:1 ð6:21Þ

The precision of the mobility depends on n and Tacq. A minimum of 10,000

frames should be recorded and the Tacq must be at least 100 times to that of the

diffusion time. Since n and Tacq are related, the following condition for the optimal

Tacq should be met:

Tacq 
 max 100τd; 10000Δτð Þ ð6:22Þ

In general, precision increases with increasing n or Tacq or both as long as one

obeys the first constraint (Eq. 6.21). So, there are at least two acquisition parameter

ranges in which accurate and precise measurements are possible:

Δτ
τD

	 0:01; Tacq � controlled

Δτ
τD

¼ 0:01� 0:1; n� controlled ð6:23Þ

Let us consider a fast diffusion process with τD¼ 20 ms which is recorded with a

Δτ ¼ 1 ms (Δτ/τD ¼ 0.05). The first point of G (Δτ/τD) falls in the ‘n-controlled’
region. This means one needs to collect more than 10,000 frames to get precise

D value although 10,000 frames are sufficient for the accuracy of D. Similarly for a

slow diffusion process (τD ¼ 200 ms) measured with same time resolution (Δτ/
τD¼ 0.005), the first point of G (Δτ/τD) is positioned in the ‘Tacq-controlled’ region.
Here, one can improve the precision by taking the measurement for longer time by

increasing Δτ but keeping n constant.

It is also noteworthy that one may not need to choose the highest possible frame

rate of the camera since a higher frame rate is achieved in expense of a shorter

exposure time, which decreases sample counts per frame. Secondly, the number of

frames, total acquisition time and laser power should be optimized based on the

photostability of the sample for optimal data acquisition while considering the

above rules of thumb (Eqs. 6.26–6.28) as reference. In our experiments, typically,

50,000 images of an ROI consisting of at least 21 � 21 pixels are captured with

1–4 ms time resolution for lipid bilayer and live cell membrane measurements

using an EMCCD camera. We recently published a detailed protocol of Imaging

FCS measurement elsewhere [28].
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6.4 Data Treatment

The raw ACFs obtained from individual pixels are fitted with a modified Eq. (6.16)

in which we keep the convergence value of G(τ) at very large lag time (G1) as

fitting parameter. In practice, the convergence value is influenced by non-ideal

experimental conditions owing to the presence of immobile particles, sample

bleaching, finite measurement time and instrumental instability [19].

G τð Þ ¼ 1

N

erf p τð Þð Þ þ e� p τð Þð Þ2�1
� �ffiffi

π
p

p τð Þ

erf a
ω0

	 

þ ω0

a
ffiffi
π

p
e
�a2

ω2
0 � 1

� �0
B@

1
CA

2

þ G1; p τð Þ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dτ þ ω2

0

p
ð6:24Þ

The unknown parameters here are D, N, ω0 and G1. ω0 is given by Eq. (6.20)

using the current λem and NA. The numerical value of ω is 0.61 according to the

Rayleigh criteria, although it can take different values for different illumination

schemes [34]. It was shown by ITIR-FCS simulation that the ACF cannot be fitted

to obtain D, N and ω0 simultaneously [22]. An iterative method based on the

analysis of ACFs at various observation areas was developed to determineω0 exper-

imentally [24]. The principle behind the calibration is that for a freely diffusing

sample, the diffusion coefficient is a constant that does not change with the area of

observation, Aeff. Therefore, one can iteratively use different values for ω0 untilD is

constant, independent of Aeff. The approximate value for the expected D can be

deduced from the D recovered from large Aeff as in this case the PSF has little

influence on the measurement (Fig. 6.2). The calibration of ω0, and thus the PSF,

has to be conducted once for a given experimental set-up. In our experience, it

remains the same over the span of the microscope objective lifetime [28]. With the

knowledge of ω0, one can obtain D and N maps after analyzing the ACFs at each

pixel (Fig. 6.4A).

6.4.1 Correction of the Intensity Trace

Imaging FCS uses comparatively low excitation intensities. Despite this fact

photobleaching can still occur, in particular for fluorescent proteins on the plasma

membranes of live cells and organisms. There are two different effects of

photobleaching. If the time required to bleach a molecule is faster than it takes a

molecule to diffuse through the observation area, then the apparent residence time

of the molecule in the observation area decreases and the measured diffusion

coefficient is biased to larger values. However, as constantly new fluorophores

enter the observation volume from the surrounding, this might not lead to a

significant decrease of the overall intensity. This effect has been called ‘cryptic
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photobleaching’ [35]. There is no obvious drop in the average fluorescence over

time or distortion of the ACF. This makes it difficult to correct. However, it is easily

detected as an increase in laser power will lead to an increase in D. The influence of
cryptic bleaching can be avoided by using lower laser power. A more commonly

encountered scenario is the steady decrease of fluorescence over the time of the

measurement. Here fluorophores are depleted from the observation volume contin-

uously and are not sufficiently replenished with new fluorophores from the sur-

rounding areas. This causes a slow decay in the ACF that does not converge at very

long lag times. Other artefacts are transient fluorescent signals, e.g. from cell and

membrane movement, or from the entry of bright cytosolic components into the

observation volume. These transient but often large signals will distort the ACF.

Therefore, a proper correction of the intensity trace which corrects for long term

bleaching or slow transients, but not for short term fluctuations, needs to be

performed before any ACF evaluation. We discuss a variety of correction routines

for Imaging FCS data in the following sections.

6.4.1.1 Sliding Window Correction

In this procedure, a raw fluorescence time trace is split into multiple small parts

(windows) such that the individual segments show no or very little trends in the

intensity trace and ACFs are calculated for each subset. These ACFs are averaged to

synthesize the correct ACF. This method does not correct the raw fluorescence trace

but divides the trace into parts to minimize the influence of long-term trends on the

ACF. While this works well when only bleaching is present, there are some

disadvantages. Transient signals are often hard to correct. The length of the sliding

window will limit the longest lag time that can be calculated and might lead to

problems in data fitting when measuring slow or multiple components. It has to be

kept in mind that the limited number of frames used to compute ACFs at each

segment increases the variance of the correlation function especially at the longer

lag times. Therefore, the length of the segment should be chosen carefully.

Fig. 6.4 (continued) observation area sizes can be created by pixel binning (shown as dotted
squares of different color in the green image stack) and the respective ACFs which are right shifted

with increasing observation area sizes. This dependence, as depicted in the FCS diffusion law plot,

provides insights about sub-resolution organization. (C) The difference between forward and

backward CCFs between a pair of pixels (purple and orange), ΔCCF, is non-zero (given by the

green area) if there is a directional movement (in this example, the movement is along the forward

direction) while for diffusion processes there is no such direction-dependence. The ΔCCF distri-

bution is centred on zero for diffusion and non-zero for directional movement. This analysis gives

the directional information for particle movement. (D) Temporal ACFs and CCFs at each pixel (for

example, the blue solid square in both red and green image stacks) are obtained from a two-colour

image stack. From the amplitudes of the ACFs and CCFs one can deduce the amount of interaction

between two differently labelled molecules at each pixel
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6.4.1.2 Other Intensity Trace Correction Routines

The experimental fluorescence intensity trace (F(t)) can be corrected by introducing
a scaling function ( f(t)) to modify the bleached intensity trace to yield a new

corrected trace (Fc(t)) which retains the variance of the original signal [36].

Fc tð Þ ¼ F tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f tð Þ=f 0ð Þp þ f 0ð Þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f tð Þ=f 0ð Þ

p	 

ð6:25Þ

In general, a double exponential as the functional form of f(t) is sufficient to

correct a fluorescence trace with bleaching. It fails to account for any secondary

artefacts that cause unusual distortion in the temporal fluorescence pattern. The

correction of these artefacts can be accomplished using a polynomial function. The

order of the polynomial function depends on the exact nature of the artefacts in a

given experiment. The lowest order of the polynomial function, which successfully

eliminates the influence of the artefacts on the ACF without overcorrecting, should

be chosen. One can judge a successful correction by looking at the G1 value of the

corrected ACF, which should be distributed around the convergence value (1 or

0 for Eqs. (6.1) and (6.2), respectively). Commonly a sixth order polynomial

function is sufficient for most intensity traces recorded from bilayers or fluorescent

proteins on live cell membranes [37].

In general, the sliding window correction should only be used on large data sets

(at least 50,000 frames) with weak trends in the intensity trace caused by bleaching

or other artefacts. If only photobleaching is present, then the exponential correction

yields satisfactory results. Polynomial corrections are better suited for all cases

where bleaching and strong transient artefacts distort the intensity trace.

6.4.2 Fitting Models

In general, all dynamic processes that result in fluorescence fluctuations can be

incorporated in the theoretical model of the ACF in Imaging FCS. These processes

include diffusion and flow of multiple dynamic species (typically 1–3 components)

through the observation area [29]. At the moment, Imaging FCS fitting models do

not include contributions from fast processes in the microsecond time scale such as

triplet kinetics since the time resolution of currently available cameras is too slow to

capture these processes.

The data analysis in FCS is traditionally performed by fitting the experimental

ACF (or, bleach corrected ACF where necessary) with a pre-determined model of a

dynamical process using a local non-linear minimization algorithms, for instance,

the Levenberg-Marquardt algorithm. However, the selection of the model is some-

times equivocal. For example, one-particle and two-particle fitting models are often

difficult to distinguish and supporting experiments are needed to confirm the
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existence of the second particle. Therefore, the robust evaluation of fitting param-

eters is very important to reach an unambiguous interpretation of FCS data. In

practice, more complex models are tested and accepted if they significantly

improve the fit compared to the simpler models as determined by hypothesis

tests, e.g. the F-test, or by judging the residuals [38]. However, a proper hypothesis

test for FCS data has to rely also on the precise knowledge of the noise at each point

of the ACF. A number of methods were developed to characterize the standard

deviation in improving FCS data fitting and avoiding over-interpretation of results

[39, 40]. Moreover, the fitting of raw ACFs without accounting for the noise

characteristics leads to biased fit parameters [41].

A number of fitting routines to choose the correct theoretical model for a given

experimental data set are available for single spot FCS to reach unambiguous

outcomes. For example, the maximum entropy method (MEM) considers that an

experimental physical process arises from a heterogeneous mixture of indepen-

dently diffusing species with an unknown population distribution. The maximiza-

tion of the posterior probability of the population distribution given an experimental

data constitutes the basis of data analysis by MEM-FCS [42, 43]. Recently, the

Bathe group introduced model selection for a given experimental FCS data by

Bayesian inference testing. In this approach, the posterior probability of a particular

fitting model given the raw data is calculated from the prior probability of that

model function and the conditional probability of observing the raw data (likeli-

hood) given the fitting model [44]. The likelihood is obtained from the noise

distribution of each point in the raw data. For this purpose, it was necessary to

improve the estimation of the noise of the ACF. While in the past it was assumed

that the noise of the points in the ACF are independent from each other, the

Bayesian approach took into account the correlations in the noise to arrive at better

fitting outcomes [45].

6.5 Spatio-Temporal Analytical Tools Using Imaging FCS

The wealth of information embedded in the image stacks recorded is not limited to

diffusion and concentration at each pixel of the image (Figs. 6.4A, 6.5B, C, and

6.6B, C). The data contains spatio-temporal information that permits the analysis of

a variety of spatiotemporal correlation functions on the same data set. Here we

describe some of their principles and how they can be integrated into the Imaging

FCS format.

6.5.1 FCS Diffusion Law

The diffusion time (τD) of a probe undergoing free diffusion (i.e., Brownian diffu-

sion) increases linearly with the observation area (Aeff). The plot of diffusion time
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against observation area, i.e., the so-called FCS diffusion law plot [46], will therefore

have zero intercept and a slope that is inversely proportional to the effective diffusion

coefficient (Deff) (Fig. 6.4B). A deviation from linearity signifies the existence of

obstructed diffusion. In the context of plasma membranes, such hindered diffusion
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could originate mainly from two sources: (a) lateral compartmentalization of the

membrane by a meshwork, e.g. the cytoskeleton, and (b) transient trapping of

molecules in domains. In the first scenario, molecules move freely inside one mesh

but are not allowed to freely cross the mesh boundary to the neighbouring compart-

ment. Inter-mesh communication is only possible via hop diffusion over the mesh

boundary. The meshwork therefore behaves like a diffusion barrier. The FCS diffu-

sion law plot will be linear as long as Aeff is smaller than the mesh-size and the slope

will correspond to the inverse of the diffusion coefficient inside a mesh (short-range

diffusion, Dshort). If Aeff is increased further, i.e., it contains one or more meshes, the

diffusion coefficient (long-range diffusion, Dlong) will be smaller than Dshort due to

the presence of the diffusion barriers leading to a larger slope of the τD versus Aeff

plot. Therefore, corralled diffusion leads to non-linear FCS diffusion law plot in

which the inflection point indicates the spatial scale of switching of diffusion modes

(short-range to long-range), i.e., the average mesh size. The mechanism is complex in

the second type of hindered diffusion. Molecules diffuse inside domains and remain

trapped for a finite amount of time before diffusing again out of the domains into the

more fluid membrane matrix. The domains, by definition, are more ordered and

viscous. They are isolated from each other unlike the meshwork where the meshes

are spatially connected. This transient trapping is perceived as an increased diffusion

time of the probe molecules and thus an otherwise smooth and linear FCS diffusion

law plot takes a sudden jump along the diffusion time axis at an Aeff size that contains

a domain. Diffraction-limited observation areas created in conventional experimental

set-ups are usually much larger than domain or mesh size and only the linear regimes

above the characteristic spatial scales of meshwork and domains can be measured.

However, extrapolation of the experimentally obtained FCS diffusion law plot to zero

area give strictly negative and positive intercepts for corralled diffusion in a mesh-

work and hindered diffusion due to transient trapping, respectively. The diffusion law

plot for Aeff above the characteristic mesh size or the size where it contains domains

can be written as [24, 46, 47]:

τD Aeff

� � ¼ τ0 þ Aeff

Deff
ð6:26Þ

In the above equation, τ0 is zero, positive and negative for free diffusion,

transient trapping and meshwork diffusion, respectively. It is worth noting that

any process that transiently arrests diffusion of a probe results in a positive τ0 value,
for example, trapping of proteins in lipid rafts and dynamic formation/deformation

of protein clusters. The magnitude of τ0 depends on the partition efficiency/binding
affinity of the molecules and domain/meshwork density. The slope of the FCS

diffusion law plot is inversely proportional to the effective diffusion coefficient

(Deff). The Deff describes the length-scale dependence of the diffusion coefficient.

In the case of free diffusion, Deff is equal to D obtained by fitting the ACFs of

individual pixels (DACF). For non-Brownian diffusion, DACF deviates from Deff.

Therefore, a ratio of Deff to DACF provides a good way to distinguish Brownian and

non-Brownian diffusion processes [48].
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Implementation of the FCS diffusion law in Imaging FCS is straightforward

since a stack of a large membrane area is measured in a single experiment. This can

be utilized to create various observation areas by pixel-binning to compute the FCS

diffusion law plot for the whole image or even for small regions within the image,

thus providing a spatially resolved diffusion law map (Figs. 6.5D, E, 6.6D, E). The

minimum size of a ROI to calculate a diffusion law plot spans typically 6 � 6

pixels, which corresponds to an area of about 1–2 μm, depending on the particular

camera pixel size and the magnification used [48]. This is comparable to imaging

Mean Squared Displacement (iMSD) analysis in which the temporal evolution of

spatial correlation functions is determined [49, 50]. Recently, Moens et al. applied

iMSD to characterize the spatial dependence of diffusion modes of cholera toxin B

(CTxB) on live cell membranes with 6 μm spatial resolution [51].

Importantly, Imaging FCS requires only a single measurement to compute the

FCS diffusion law plot and thus avoids potential sample damage due to prolonged

illumination, which is required for the multiple measurements when using confocal

FCS modalities. This increases the time resolution and allows the measurement of

time dependent processes on a minute scale or faster [52–54].

6.5.2 Difference in Cross Correlation Function (ΔCCF)

The second analysis tool in this category investigates any dynamic exchange

between two regions of an image. In principle, spatiotemporal cross-correlations

between pairs of pixels at any distance and direction can be computed to establish

the spatial connectivity across different membrane regions along with vectorial

mobility information. A particular realization is the concept of differences in spatial

cross-correlation functions (ΔCCF) [29]. It is calculated by subtracting the forward
and backward CCFs between two adjacent pixels A and B followed by integration

over the entire measurement time.

ΔCCF ¼
Zτmax
0

CCFAB τð Þ � CCFBA τð Þð Þdτ ð6:27Þ

In the above, CCFAB(τ) is the forward spatio-temporal correlation function

between pixels A and B while CCFBA(τ) is the backward spatio-temporal correla-

tion function in the reverse direction, i.e., between pixels B and A. The ΔCCF
function is the difference between these two functions. The magnitude of ΔCCF
between the pixels A and B is given be the area under the ΔCCF function, which is

calculated by integrating the function from zero to the maximum lag time (τmax).
This is demonstrated in Fig. 6.4C. The green area corresponds to the area under the

curve of the ΔCCF function. Repetition of the process of all possible pairs of

neighbouring pixels generates a distribution of ΔCCF values. This distribution is
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centred at zero for free diffusion since the particles have, on an average, an equal

probability of movement in all directions, meaning that the forward and backward

CCFs will be similar (Fig. 6.4C, inset, white). The centre of the ΔCCF distribution

shifts to a non-zero value in case of directed motion, e.g. flow, or anisotropic

diffusion (Fig. 6.4C, inset, green). Any broadening of this distribution indicates

spatial inhomogeneities such as transient trapping. In this case, the mismatch

between forward and backward CCFs between a pair of pixels becomes more

probable resulting in a larger fraction of non-zero ΔCCF values. Since there is no

net direction of the molecular movements in transient trapping the ΔCCF distribu-

tion is still centred at zero. The position and width of the ΔCCF distribution

provides a means of studying modes of membrane dynamics and heterogeneity.

6.5.3 Imaging FCCS

In Imaging FCCS, the sample contains two spectrally distinct fluorophores which are

excited with two laser beams. The sample fluorescence is first spectrally separated by

a dichroic mirror into two channels followed by imaging on two separate cameras or

onto one camera using an image splitter. The spectrally separated pixels belonging to

the same spatial position are then cross-correlated [28]. For example, the blue pixels

on the red and green channels in Fig. 6.4D correspond to the same position of the

sample but are spectrally and/or temporally separated. ACFs obtained from the

fluctuations of this pair of pixels gives diffusion coefficients of spectrally different

fluorohores (Dgreen and Dred). The amplitude of the green (or red) ACF (Ggreen(0) or

Gred(0)) is inversely proportional to the total number of green (or red) particles within

the observation area, i.e., the sum of unbound green (or red) particles and bound

particles that have at least one green (or red) label (Fig. 6.4D, red and green and

(6.28) and (6.29) assuming equal brightness of both particles). The amplitude of the

cross-correlation function (CCF), Grg(0), between the fluorescence traces reflects the

number of molecules that contain both colors (Nrg) revealing the extent of association

and co-diffusion of the molecules under investigation (Fig. 6.4D, blue) and is given

by Eq. (6.30).

Ggreen 0ð Þ ¼ 1

Ngreen þ Nrg
ð6:28Þ

Gred 0ð Þ ¼ 1

Nred þ Nrg
ð6:29Þ

Grg 0ð Þ ¼ Nrg

Ngreen þ Nrg

� �
Nred þ Nrg

� � ð6:30Þ

Using the above three equations, the number of bound particles (Nrg) can be

obtained:
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Nrg ¼ Grg 0ð Þ
Ggreen 0ð ÞGred 0ð Þ ð6:31Þ

However, the amplitude of green and red ACFs depends on the maturation,

brightness and concentration of the fluorophores, which vary across samples. A

more general procedure to estimate the bound fraction is to calculate the relative

cross-correlation value (q) which is defined as the ratio of the CCF amplitude to the

ACF amplitude of the less abundant particles (Eq. 6.32) [55]. This q value can be

used to represent interaction maps in Imaging FCCS:

q ¼ Grg 0ð Þ
max Ggreen 0ð Þ;Gred 0ð Þ� � ð6:32Þ

6.5.4 Temperature Dependence of Membrane Diffusion

The existence of nanodomains on the plasma membrane gives rise to membrane

regions of distinct physical properties. The ordered domains are characterized by

strong molecular packing that leads to a reduction of the free area for diffusion and

also poses a stronger barrier for the hopping of the diffusants to an available free

space. Thus the membrane molecules residing in the ordered domains require a

higher activation energy for diffusion compared to those diffusing in the disordered

region of the bilayer. An increase in temperature results in a larger fraction of

molecules having sufficient energy to overcome the activation energy barrier. In

other words, a larger fraction of membrane molecules in the less viscous region at a

given temperature will be able to cross the activation energy barrier in comparison

to those located in the high viscous region. Therefore, the temperature dependence

of probe diffusion, which is shown to follow the Arrhenius equation [33], can be

used to investigate sub-resolution domains.

D ¼ D0e
�EArr

RT ð6:33Þ

lnD ¼ lnD0 � EArr

RT

In the above equation, D is the diffusion coefficient at a given temperature, D0 is

the pre-exponential factor and EArr is the activation energy of diffusion. The EArr

value for a given system compliments the outcomes of the FCS diffusion law and

ΔCCF analyses since they provide information about sub-resolution spatial variation

of membrane heterogeneity independently. Examples for the use of the Arrhenius

plot are discussed in the applications.
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6.6 Current Limitations of Imaging FCS and Possible

Solutions

The main limitation of Imaging FCS is the time resolution of the cameras. Currently,

EMCCD cameras deliver a maximum of 3000 frames per second for a 128 � 2 ROI

acquisition. However, imaging of two horizontal lines is not sufficient for most

practical purposes. A slower speed of 1800 frames per second, which is sufficient

to measure membrane diffusion, is achieved for a 21� 21 ROI. Additional processes

that have a cytosolic component, where the dynamics is faster, can often not be

accessed by EMCCD based detection. A few solutions were proposed to address the

limitation of time resolution. First, the current generation sCMOS cameras offer

frame rates as high as 25,000 frames per second. The small pixel size of sCMOS

camera along with short exposure time when run at high frame rates compromises the

SNR, which, however, can be improved by pixel binning. Recently introduced

organic labelling methods such as SNAP-tag, CLIP-tag and ACP-tag allow labelling

with more photostable probes. Their higher brightness and better photostability

improve data quality in Imaging FCS and can provide sufficient counts even at

short exposure times. A second replacement of the EMCCD camera are single

molecule sensitive APD (SPAD) arrays, which have microsecond time resolution

[30]. However, because of their structure they have relatively low fill factors, which

can be partly improved by microlens arrays. But most importantly at the time of

writing they were not yet commercially available. However, in the future they could

serve as very good detectors for Imaging FCS.

Another limitation is that Imaging FCS does not provide absolute numbers of

particles [30]. However, relative changes are correct; so when changing a concen-

tration by a factor 2, Nwill change accordingly. This is due to the complicated noise

of EMCCD cameras since they are not true photon detectors [56]. Singh et al.

suggested to create a calibration plot by measuring samples of known concentration

[30]. However, one needs to have a good calibration standard for an experimental

sample.

6.7 Applications of Imaging FCS

Since its inception [20] and subsequent development [29], Imaging FCS was

applied to various biological systems in vitro and in vivo elucidating a range of

physico-chemical and biophysical questions. Examples include, but are not limited

to, the interaction mode of membrane-active peptides and the influence of mem-

brane domains and cytoskeleton on the dynamics and interactions of signalling

proteins. In this section, we summarize a collection of applications on model

membranes, cultured cell membranes and live cell membranes of organisms to

highlight the capabilities of Imaging FCS.
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6.7.1 Diffusion Properties of Model Membranes

Supported or free-standing lipid bilayers are ideal systems for the measurements of

lipid dynamics and the testing of Imaging FCS as they are simple in their composi-

tion, have known diffusion coefficients and are easy to prepare. Therefore, the first

measurements of Imaging FCS were performed on supported lipid bilayers (SLBs)

containing a single component. Guo et al. comparedD of RhoPE labeled zwitterionic

POPC SLBs on glass between various methods, including confocal FCS, z-scan FCS,

SPT and ITIR-FCS [57]. A fair agreement of the D values obtained from these

methods demonstrated that ITIR-FCS provides an absolute measure of diffusion

coefficients without the requirement of constant calibrations. It was recently demon-

strated that Imaging FCS provides comparable results to Fluorescence Recovery

After Photobleaching (FRAP) on SLBs and live cells [37]. Interestingly, despite the

strong time-dependent changes in the intensity trace during FRAP acquisition, the

data could easily be corrected and Imaging FCS demonstrated that the diffusion

coefficients before bleaching, during and after recovery are the same. This, therefore,

demonstrated that the bleaching during FRAP does not change the diffusion coeffi-

cient (although this does not exclude other long term changes and phototoxic effects)

but that FRAP had a much higher volatility in data fitting leading to a larger

uncertainty in FRAP compared to Imaging FCS.

We assessed the influence of intermolecular interaction on membrane diffusion.

The degree of hydrogen bonding among the lipid head groups in a mixed lipid

bilayer regulates the lateral diffusion [24]. The D of POPC:POPG lipid bilayer

decreases with increasing mole fraction of POPG, a negatively charged lipid. The

FCS diffusion law and ΔCCF analyses on these systems confirm the absence of any

phase separation. Therefore, the reduction of membrane diffusivity with increasing

POPG content is due to the presence of a PG-PG hydrogen bonding network which

results in stronger molecular packing.

6.7.2 Fluorescent Probe Partitioning on Phase-Separated
Model Membranes

DLPC:DSPC SLBs on glass exhibit microscopic phase separation into co-existing solid

ordered or gel (So) and liquid disordered or fluid (Ld) phases at room temperature which

can be readily identified by ITIR-FCS. The fluorescent probe, RhoPE, partitions into

the So phase of DLPC:DSPC bilayers since a slower D and higher N were associated

with the brighter regions of the bilayers [24, 28]. Domain partitioning of RhoPE was

also confirmed by the FCS diffusion law and ΔCCF analyses [24, 53]. In contrast,

SPIM-FCS experiments showed that RhoPE diffuses at a rate of �2.3 times slower in

the dark region of microscopically phase-separated giant plasma membrane vesicles

(GUVs) containing DOPC:DPPC:Cholesterol [58]. This suggests that the dark region is

the liquid ordered phase (Lo) and the bright region is Ld phase into which RhoPE
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partitions preferentially. Note that the Lo phase does not exist in the phase diagram of a

single component lipid. It only appears when cholesterol is mixed with a gel lipid or a

gel-fluid lipid mixture as was shown by the temperature dependence of lipid diffusion

on model membranes by ITIR-FCS [59]. These results demonstrate the capability of

Imaging FCS to measure diffusion coefficients in low intensity regions and the

importance of diffusion measurements in addition to fluorescence imaging to charac-

terize partitioning behaviour of a probe in different membrane phases.

Bayesian analysis of the ITIR-FCS data on the phase separated DLPC:DSPC SLB

identified the existence of a single diffusing species outside domains and a major

fraction of the pixels inside domains but two particles at the domain borders [32]. The

pixels that can be fitted with a single component model exhibit fast (D�1.2 μm2/s) or

slow (D�0.3 μm2/s) diffusion depending on their location in the fluid or gel phase,

respectively. The pixels along borders between these phases shows two-component

diffusion since a pixel on which the border falls contain both phases. Interestingly,

some of the pixels (�5%) inside the domains are also best fitted with a two-particle

model. The resolvedD values of these two species correspond well with theD of fluid

and gel phase. This suggests that the microdomains observed by TIRF imaging are

comprised of small nanodomains. This supports the recent inference made from the

ratio of Deff to DACF obtained from the FCS diffusion law analysis on the same

bilayer [48] and heterogeneous ΔCCF distribution inside the domains [24].

The FCS diffusion law analysis shows that the diffusion of DOPC:DPPC and

DOPC:DPPC:Cholesterol SLBs deviates from free diffusion at 25 �C [59]. The

dynamics becomes closer to free diffusion when temperature is raised to 40 �C.
This is attributed to the disappearance of the So or Lo phase nanodomains at higher

temperature. Moreover, our results point towards a cholesterol-dependent change of

line tension at the domain boundary, which plays a significant role in determining

domain size and stability. However, stronger and more direct evidence is needed to

establish the link between line tension and domain morphology.

6.7.3 Arrhenius Activation Energy of Diffusion in Model
and Live Cell Membranes

The EArr was determined for model membranes of a range of chemical composition

[59]. Membranes that are more compact show stronger temperature dependence and

thus are associated with higherEArr. The EArr for the So-Ld co-existing phase (�50 kJ/

mol) was �2.5 times larger than that of the Ld phase (�20 kJ/mol). A representative

example is shown in Fig. 6.5F. It was shown that cholesterol plays a crucial role in

membrane organization. It progressively reduces the membrane diffusivity but does

not induce a new phase when it is incorporated in the Ld phase as the EArr did not

change. In contrast, addition of 17 mol% of cholesterol in a So-Ld SLB results in the

formation of an Lo-Ld phase as shown by a reduced EArr value (�30 kJ/mol) which is

still �1.5 times larger than that of the Ld phase. Removal of cholesterol from the
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Lo-Ld SLB spontaneously changes the bilayer into an So-Ld phase. Overall, distinct

ranges of EArr are associated with commonly observed phase-separated lipid bilayers

enabling the investigation of sub-resolution phase separation with diffraction-limited

measurements.

It should be noted that EArr distinguishes membrane systems based on their

molecular packing. Therefore, stronger molecular packing other than the one

caused by rigid lipid domains also increases the EArr value. This could complicate

the temperature-dependence diffusion behaviour in live cell membranes [59]. For

example, the EArr values of DiI-C18 diffusion were shown to vary across cell lines

although the FCS diffusion law analyses revealed that the probe exhibits free

diffusion at all temperatures. However, the EArr values were significantly smaller

than that of GFP-GPI which is shown to undergo confined diffusion. This suggests

that change in membrane composition does not change the partitioning behaviour

of DiI-C18 but influences the diffusion properties. Representative Arrhenius plots

for DiI-C18 and GFP-GPI on HeLa cells are shown in Fig. 6.6F.

6.7.4 Interactions of Membrane-Active Peptides with Cell
Membranes

The interactions of peptides with lipid membranes can often be detected by the

change of the membrane physical properties. ITIR-FCS was applied to establish the

mechanism of the interaction between SLBs and monomeric human islet amyloid

polypeptide (hIAPP) [52]. At lower concentration, the peptide forms a ‘dynamic

carpet’ on top of the membrane. At high concentration, hIAPP instantaneously

extracts lipids from the membrane leading to an increase of membrane diffusion.

The extent of change of membrane diffusion is also dependent on the membrane

composition; in general, the change was more noticeable for more ordered mem-

branes. Taken together, monomeric hIAPP was shown to interact with model

membranes in a two-step concentration-dependent manner: (i) formation of

‘dynamic carpet’ at low concentration and (ii) extraction of lipids resulting in an

elevation of membrane diffusion at high concentration.

The scenario becomes more complex on live cell membranes in which monomeric

hIAPP increases membrane diffusion up to 10 min after addition [52]. This is

followed by the formation of diffusion-restricted microdomains around 15 min,

which encompasses the entire membrane with time. The D inside these domains

was �5 times slower than outside, leading to a time-dependent decrease of average

membrane diffusion. This temporal change of heterogeneous diffusion because of

domain nucleation and growth was presented as an ‘FCS video’, which allows

directly visualizing concerted changes of DiI-C18 diffusion over large membrane

areas. Bayesian analysis on this data set revealed an interesting pattern that is in sharp

contrast with the commonly observed domains on model membranes arising from

phase separation of lipid mixture [32]. Whereas the pixels at the domain boundary

majorly showed two-component diffusion in phase-separated lipid bilayers, almost
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all pixels containing hIAPP-induced domains are best described with a two-particle

model having two diffusion coefficients with a ratio of �50–100. The fraction of the

slow component increases with time resulting in a decrease of average membrane

diffusion. Based on these results, the temporal behaviour of hIAPP-induced domain

formation can be segregated into three phases- (i) Pre-nucleation phase (1–10 min)

where single component diffusion was observed in almost all pixels with increasing

Dwith time. (ii) Propagation phase (15–40 min) where the two-component model fits

better for the pixels within the domains while the fraction of the slow diffusing

species increases with time. The D of the fast diffusing species decreases to a value

similar to the untreated cell membrane while that of the slow particles remains

constant. (iii) Saturation phase (40–60 min) where pixels within the domain fit better

with a single-component model. In essence, Bayesian analysis uncovered the time-

dependent phases of hIAPP-membrane interactions.

6.7.5 Diffusion and Organization of Proteins and Lipids
on Live Cell Membranes

In the first demonstration of ITIR-FCS, Kannan et al. produced diffraction-limited

images of D and N of epidermal growth factor receptor labelled with monomeric red

fluorescence protein (EGFR-mRFP) on live CHO-K1 cells and compared this with

the lipid probe, R18 [20]. Their results demonstrated a very heterogeneous distribu-

tion of EGFR-mRFP diffusion compared to that of R18 indicting distinct spatial

organization of these two probes. Next, ITIR-FCS investigated the diffusion and

heterogeneity of sphingolipid binding domain (SBD), a 25 amino acid fragment of

amyloid beta (Aβ) peptide, in relation to cholesterol and the actin cytoskeleton on live
SH-SY5Y cells [60]. Over the next years, with better camera technology and

improved understanding of Imaging FCS theory, the technique was applied to

illuminate the physico-chemical origin of unique organization of plasma membrane

and how these organizational features influence the behaviour of signalling proteins.

6.7.5.1 Glycosylphosphatidylinositol Anchored Proteins (GPI-APs)

In a recent study, Huang et al. investigated the localization of GPI-APs on live PtK2

cells using a slightly modified FCS diffusion law analysis [54]. They used a single,

averaged ACF for each of the observation areas to compute the dependence of τD on

Aeff and named the method binned Imaging FCS (bimFCS). The authors observed

that Glycosylphosphatidylinositol-anchored monomeric green fluorescence protein

(mGFP-GPI), a model GPI-AP, is transiently trapped in cholesterol-sensitive

domains. Such domain trapping increases with the dimerization of the protein.

Interestingly, they found that the dimerization of mGFP-GPI does not induce dimer-

ization of other GPI-anchored proteins but increases their domain trapping. These

observations led to the conclusion that dimerization of GPI-AP not only facilitates its
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domain confinement but also modifies the physical properties of the domains, which

allow other GPI-APs to spend longer time inside the domains. They also found weak

effects of the cortical actin cytoskeleton on mGFP-GPI domain trapping and

suggested that the cytoskeleton pinning might play a secondary role in the domain

localization of the proteins.

6.7.5.2 Epidermal Growth Factor Receptor (EGFR)

EGFR is an extensively studied membrane signalling protein due to its important

role in aberrant cancer cell signalling [61]. The dynamics and organization of

EGFR on live CHO-K1 cell membrane were investigated with Imaging FCS both

at its resting and ligand-bound states in a recent study [53]. This study revealed that

EGFR is partly trapped in cholesterol-dependent domains and at the same time

hindered by the actin cytoskeleton in its resting state. Furthermore, a significant

fraction of EGFR showed cholesterol-independent confinement which could be due

to formation of receptor nanocluster or localization in cholesterol-insensitive

domains. With stimulation by its cognate ligand epidermal growth factor (EGF),

EGFR diffused faster and endocytosed in a dose-dependent manner. At low dose

stimulation, presumably EGFR internalization relied on clathrin mediated endocy-

tosis [62] and the receptor recycled back to the plasma membrane. At high dose,

EGFR formed clusters on the membrane which were subsequently internalized. The

faster diffusion of EGFR after stimulation is a direct consequence of endocytosis

which removes the more viscous cholesterol-dependent domains from the mem-

brane. However, the remaining EGFR on the membrane had an overall unchanged

confinement strength. Both, cholesterol removal or cytoskeleton disruption

inhibited receptor endocytosis. Ligand stimulation after cholesterol depletion or

cytoskeleton disruption induced microscopic receptor clusters on the membrane.

These results indicate that a dynamic equilibrium is established between receptor

clustering and endocytosis after ligand stimulation. Upon inhibition of endocytosis,

receptor clusters, which are presumably present in a variety of sizes, are no longer

internalized and can grow to larger sizes. Therefore, impairment of one process

(endocytosis) allowed the other process (clustering) to be more prevalent.

6.7.6 Protein Organization in the Cell Membranes of Live
Organisms

The applications of SPIM-FCS were recently extended to study the dynamics of

membrane proteins in living organisms. Struntz and Weiss used SPIM-FCS to

investigate the dynamical properties of peripheral membrane protein PLC1δ1 in

the cytosol and on the plasma membrane of early C. elegans embryos [63]. PLC1δ1
diffuses on average �10 times faster in the cytosol (�10 μm2/s) compared to the

plasma membrane (�1 μm2/s). The diffusion map of the membrane bound pool of
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PLC1δ1 showed a slightly broader distribution than that of the cytosol, possibly due
to a more heterogeneous membrane environment.

The capability of SPIM illumination to penetrate deep inside tissue and the

power of the FCS diffusion law was utilized to investigate the sub-resolution spatial

organization of Wnt3, a secreted morphogen, in live zebrafish embryos [58]. It was

shown that Wnt3 is transiently trapped in cholesterol-dependent domains in the

plasma membrane. This trapping was dependent on the state of palmitoylation of

Wnt3. This is, to the best of our knowledge, the first implementation of FCS

diffusion law in a live organism.

6.8 Summary

Imaging FCS couples advanced microscopic illumination schemes with fast

camera-based fluorescence detection to provide spatiotemporal information about

the sample with high temporal resolution at the optical diffraction limit. The

dynamic information collected in Imaging FCS can be further used to gain insights

into sample properties even beyond the diffraction limit by the so-called FCS

diffusion law. It provides contiguous maps of diffusion coefficients, concentrations,

and if used in a multi-colour mode also interactions, significantly improving

statistics. An especially attractive feature of the technique is that it can be easily

incorporated into existing TIRF or Light Sheet microscopes without any modifica-

tions, it is essentially calibration free and provides absolute diffusion coefficients,

and can be easily combined with various techniques as it can often work with

exactly the same data acquired by the cameras. At the time of writing, Imaging FCS

was applied to 2D and 3D systems in vitro and in vivo. It was used to characterize

supported lipid bilayers of different composition, to investigate the interaction of

membrane active peptides with these bilayers, and to observe lipid and protein

organization in the plasma membrane of live cells. Recently, SPIM-FCS was

applied in live zebrafish embryos to determine the membrane partitioning of a

secreted morphogen [58]. Overall, easy implementation along with an arsenal of

analytical tools makes Imaging FCS an excellent quantitative bio-imaging platform

in which image contrast is given by quantitative measurement parameters, includ-

ing diffusion coefficient, concentration or any other measurable parameter within

this framework, instead of simple fluorescence intensity. In the future, Imaging FCS

could play important roles in further characterizing membrane dynamics and

organization, especially the presence, size and density of domains or trapping

sites in membranes, and if combined with super-resolution techniques [64, 65]

could establish new imaging capabilities that provide not only excellent spatial

resolution but give simultaneously access to very fast dynamical processes.
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Chapter 7

Probing Membrane Heterogeneity

with k-space Image Correlation Spectroscopy

Elvis Pandzic and Paul W. Wiseman

Absract Understanding and quantifying the plasma membrane complexity, with

its myriad of structures and intricate interactions within and with components inside

and outside of the cell boundary is one of paramount importance in the field of

medical sciences. Indeed, when it comes to design and development of novel drug

therapies targeting of G-protein coupled receptors (GPCR) and similar protein

complexes, seeing the interaction of these proteins in situ with major players

involved in drug uptake requires novel tools that can follow these process in live

cells by fluorescence microscopy. In past 10 years, k-space Image Correlation

Spectroscopy (kICS) was demonstrated to be a simple to implement and reliable

approach for such studies. In this chapter we introduce the kICS methodology,

followed by series of examples of its adaptations used in different case studies of

membrane protein dynamics and kinetics in live cell membrane environment.

7.1 Introduction

Several different variants of image correlation spectroscopy have been applied to

study the transport and aggregation of membrane protein complexes before the

development of k-space image correlation spectroscopy (kICS). For example, ICS

was used to study aggregation of PDGF-β receptors on the plasma membrane of

human skin fibroblasts [1, 2], and ICS analysis of photo-bleached image series was

used for quantification of the aggregation state of Aβ on nerve cells [3]. Another

related imaging based fluorescence fluctuation analysis technique called spatial

intensity distribution analysis (spIDA) was used to measure epidermal growth

factor receptor (EGFR) dimerization and its trans-activation by stimulation of

GPCRs [4, 5]. Time domain measurements in two detection channels with single
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wavelength excitation fluorescence cross-correlation spectroscopy (sw-FCCS)

allowed for quantification of fractions of hetero-dimers of EGFR and the ErbB2

receptor family [6]. Temperature dependent dynamics of EGFR clusters were

assessed with a temporal pixel fluctuation correlation analysis [7] and an adaptation

of ICS exploiting the hidden time structure of laser scanning confocal microscopes

(raster-scan-ICS) was used to measure the phospholipase Cγ, protein kinase C, and
protein kinase D (PKD) dependent oscillations between the monomer-dimer states

of EGFR in living CHO cells [8]. The kICS implementation for imaging based

fluorescence fluctuation analysis was introduced to tackle measurements in systems

with complex probe photophysics.

In the original development [9], kICS was used to separate, in Fourier space, the

time dependent photo-physics of fluorophores (blinking, photo-bleaching) from the

space-time dependent transport dynamics (diffusion, flow) of molecular species. Data

treatment in Fourier space provided more accurate measurement of molecular

dynamics for blinking fluorophore labels, such as quantum dots (QD) [10]. Later it

was discovered that the photo-physics correlation function obtained by kICS proved

to be useful in assessing the nano-scale aggregation of T-cell receptors in naive or

active T-cells [11, 12]. Subsequent extensions of kICS allowed for quantification of

ligand-receptor binding kinetics as well as in membrane receptor docking to an

immobile receptor complex [13]. This extension was also used to quantify membrane

domain confinement and cholesterol modulation of Cystic Fibrosis Transmembrane

Conductance Regulator (CFTR) where the kICS correlation function was quantified

by fitting for two different CFTR dynamic populations [14]. Finally, a recent

adaptation [15] of kICS develops a model for intermittent dynamics of gold nanostars

between diffusive and active transport states inside live cells. This flexibility of

adaptability and simplicity of kICS is what makes it one of the ideal approaches to

study complex transport and kinetics processes of molecules inside and across plasma

membrane of live cells.

7.2 kICS Theory and Development

Here we derive the basic theory of kICS for the case of single population of

molecules freely diffusing in a 2D environment (membrane like) with a simple

photophysics model blinking and/or bleaching. For a more in depth treatment of

kICS theory for cases of multiple populations and dynamics please consult refer-

ences [9, 16].

We start our derivation considering the expression for intensity in a pixel from

an image time series, i
�
~r; t

�
which we model as a convolution of the microscope

point spread function (PSF), I
�
~r
�
, and the molecules concentration at their space-

time dependent locations, ϱ
�
~r; t

�
:
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i
�
~r; t

� ¼ qI
�
~r
�� ϱ

�
~r; t

� ð7:1Þ

where q is a constant incorporating the quantum yield of the fluorophore, the

collection efficiency and the detector gain. Writing the number density of mole-

cules as:

ϱ
�
~r; t

� ¼ XN
i¼1

θi tð Þδ ~r �~ri tð Þð Þ ð7:2Þ

where the sum is over all N molecules and δ is again the Dirac δ-function. The
molecules’ bleaching and blinking are described by the time dependent function:

θi ¼ 1 if i is fluorescing at time t;
0 otherwise:

�
ð7:3Þ

while the PSF of the fluorescence microscope is approximated by a 2D Gaussian:

I
�
~r
� ¼ I0exp �2

x2 þ y2

ω2
0

� �� �
, ð7:4Þ

where I0 denotes the laser intensity at the center of the focal spot, and ω0 is the e
�2

beam radius of the laser beam in the lateral direction. For the theory development

accounting for motion in 2D (flat cellular membrane), and considering that data are

collected in an image on an area sensor or sequential point detection (CCD camera

or raster scanned confocal point detection), we will ignore the third dimension.

Other theoretical developments presented in further sections of this chapter, might

not explicitly ignore the third dimension.

Considering that the convolution becomes a product in Fourier space, and

expressions (7.2)–(7.4), Eq. (7.1) transforms to k-space after spatial Fourier trans-

form as:

~i
�
~k; t

� ¼ qI0ω2
0π

2

XN
i¼1

θiexp i~k �~ri tð Þ �
ω2
0
~k
			 			2
8

2
64

3
75: ð7:5Þ

Using Eq. (7.5) we define the intensity-intensity fluctuation time correlation

function in k-space:

G
�
~k; τ

� ¼ ~i
�
~k; t

�
~i*
�
~k; tþ τ

�D E
ð7:6Þ

Inserting Eq. (7.5) into (7.6) gives:
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G
�
~k; τ

� ¼ q2I20ω4
0π2

4
�

XN
i¼1

θi tð Þei~k�~ri tð Þ�
ω2
0

~kj j2
8

XN
j¼1

θj tþ τð Þei~k�~rj tþτð Þ�ω2
0

~kj j2
8

* +
ð7:7Þ

For the purpose of demonstration, we assume that the system is sufficiently

dilute the cross-product terms will be vanishing and since the θ(t) is only function of
time, we can pull it out of the spatial integral. Moreover, assuming only single

population of molecules diffusing in 2D with diffusion coefficient D Eq. (7.7)

reduces to:

G
�
~k; τ

� ¼ N
q2I20ω4

0π2

4
� θ tð Þθ tþ τð Þh i � e

� ~kj j2ω2
0

4 � e� ~kj j2Dτ ð7:8Þ

Equation (7.8) has four multiplicative parts. The first part groups all the con-

stants in the imaging system, the second factor is the time varying photophysics

correlation function, the third is time independent PSF function and the fourth

models the space-time dependent molecular dynamics in the correlation function.

Since first and third terms are time independent, it is practical to normalize them out

using the τ ¼ 0 function as previously demonstrated [9, 10]:

G
�
~k; τ

�
G
�
~k; 0

� ¼ θ tð Þθ tþ τð Þh i � e� ~kj j2Dτ ð7:9Þ

This implies that kICS analysis does not depend on the shape and size of

microscope’s PSF (assuming that it does not change in time), which makes it

very practical as measurements of PSF is not required to apply the analysis.

In practice, the kICS correlation functions are obtained by first calculating 2D

fast Fourier transforms for each image in time series set (Fig. 7.1a, b). Then the

frequency space images are correlated temporally (Fig. 7.1c) producing for a freely

diffusing molecules in 2D a series of Gaussian functions collapsing in k-space with

increasing temporal lag τ (as described by Eq. 7.9).

These correlation functions could be fit by symmetric 2D Gaussians, but con-

sidering the isotropic diffusion in 2D, a reduction in number of fitting parameters

can be made by azimuthal (circular) averaging of correlation function at a given τ
(Fig. 7.1d). This operation produces a carpet like correlation function (Fig. 7.1e)

which is a function of temporal lag between images τ and spatial frequencies k2

which are linked to spatial distance through reciprocal relationship, k2 ¼ 2π
r2 .

Figure 7.1f shows the correlation function plotted in symbols blue to red for

increasing temporal lag τ, as a function of k2. Dashed black lines are fits to single

exponential equation f k2
� � ¼ Ae�k2B, where A incorporates the photophysics

correlation function while B is a parameter that has units of μm2 and is extracted

for every temporal lag τ. Plotting B vs temporal lag τ gives a linear trend for

diffusion transport (blue symbols in Fig. 7.1g) which can be fit by linearly regres-

sion (red line in Fig. 7.1g) and its slope equal to the diffusion coefficient D of
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labelled molecules in the system. The original kICS development calculated the

logarithm of Eq. (7.9), which transform the expression into a sum of two compo-

nents: logA and �k2B which can be fit with a linear function instead of exponential

decay. This is only practical for the system of single component freely diffusing

molecules, while more complicated dynamic and kinetic scenarios, as shown in

next sections, will lead more complex forms of the correlation functions.

Importantly, we note that if the probe photophysics dynamics are only time

dependent, the dynamical part of correlation function, e�k2Dτ, will not be affected

and hence the recovered parameters. This is true provided that rates of

photobleaching are not extremely high or blinking rates are not on the same

temporal scale as imaging. In those cases, molecules would disappear at rate faster

than any spatio-temporal fluctuations, from same particles, and would impact the

kICS correlation function.

Fig. 7.1 Principles of kICS correlation function (CF) calculation and characterization. (a, b)

Images in time series from fluorescence microscope are fast Fourier transformed in 2D then

temporally correlated (c) giving the spatio-temporally varying CF. Simulated case of 2D freely

diffusing molecules with D¼ 0.002 μm2s�1. (d) Circular averaging of CF at a given time lag τ,
leads to CF represented in 2D (e) which is function of spatial frequency, k2 and temporal lag τ.
Blue to red dashed line (e) and symbols (f) are representing CF contribution for increasing

temporal lag. Fitting the correlation with an exponential, at every τ, (f) gives the trend of Dτ
vs. τ (blue symbols in g) that by linear fit recovers the diffusion coefficient D (red line)
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7.2.1 Photo-Physics of QDs Change with Nearest Neighbour
Distance

The photophysics component of the Eq. (7.9) can often be perceived as a problem-

atic bias, that is undesirable when measuring the molecular dynamics. Neverthe-

less, it was shown to indirectly provide insight in nano-scale organization of T-cell

receptors (TCR) labeled with quantum dots (QDs) [11, 12]. In fact, the QDs

blinking statistics depend on the nearest neighbour distance in a way similar to

the Forster resonance energy transfer. It was found that calculating the ratio of

hθ(t)θ(t þ τ)i at later temporal lags vs the value at τ ¼ 1, permitted a qualitative

assessment, that was useful to provide comparison in clustering of TCR in naive

and time evolution of activated T-cells. For more info on basic kICS developments

we suggest further reading following references [9, 10, 16]. Detailed information

about the sampling requirements, accuracy, precision, signal-to-noise effects and

limitations can be found in following manuscripts [17, 18]. The standard method-

ology and protocol for measurement of diffusion coefficient of membrane proteins

using kICS can be found in [19].

7.3 kICS Applied to Study of Reactions Kinetics

Most membrane proteins have complex transport properties that are not simply

represented by a single dynamical component, but rather they partition into several

dynamical states in a steady state equilibrium. Moreover, it is unlikely that any

model can fully account for all of those states. Nevertheless, for typical measure-

ment sampling timescales, e.g. for image times series measurement, some models

approximate well the states of membrane receptors in steady state equilibrium. Two

models that were explored using kICS analysis [13]. First, deals with ligand-

receptor binding kinetics (Lower diagram in Fig. 7.2a) where a ligand can rapidly

diffuse in extracellular 3D environment and bind to the membrane embedded

receptor. The second model explored kinetics of membrane receptor diffusing

and intermittently converting between two diffusive states, one with a higher

diffusion coefficient D1 and one with a lower coefficient D2 (Upper diagram in

Fig. 7.2a). This latter model describes situations when receptors form higher order

oligomers or interact with another macromolecular complex.

7.3.1 Ligand-Receptor Kinetics by kICS

When the ligand is fluorescently tagged but the receptor is not, the latter can be

represented in a two state model: unoccupied invisible (dark) state or occupied

fluorescently labelled state depending on ligand binding/unbinding the receptor. At
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the imaging frame rate typically employed, we do not resolve the fluctuations of the

unbound 3D diffusing ligand and hence it is only resolved in the image when bound

to slowly diffusing or immobile membrane embedded receptor. With these assump-

tions and that of equilibrium for short time periods, [13] explored the solution to the

two state model, time-dependent partial differential equation for following

reaction:

½L�f reef luo þ ½R�f reedark Ðkbind
kunbind

½C�boundf luo ð7:10Þ

One of the assumption made in [13] is that receptor is very slow diffusing or

immobile on the time scale of the imaging frame rate, such that temporal intensity

Fig. 7.2 Figure adapted with permission from the [13]. (a) Schematics representation of two

kinetic models explored by kICS. Upper diagram depicts in plane intermittent dynamics of

membrane embedded protein, while lower depicts the ligand-receptor binding kinetics. (b)

Characterization of temporally varying amplitude of the circularly averaged k-space correlation

function leads to the quantification of ligand-receptor binding kinetics. (c) Logged circularly

average k-space correlation function exhibits two linear regimes as function of spatial frequency,

k2. Lower k2 range linear fit (left column sub-figures) extracts the effective diffusion coefficient,

Deff, that receptor explores as it diffuses through 2D environment and intermittently switches

between two dynamics states. From the higher k2 regime linear fit (right column sub-figures)
molecular movement in the slow molecular regime, D2 and conversion from slow to fast regime, k2
are extracted from the measurement and fits

7 Probing Membrane Heterogeneity with k-space Image Correlation Spectroscopy 153



fluctuation correlation, in any of the pixels of the image series, is purely due to

either ligand-receptor binding kinetics or some other photophysics effect. In that

scenario, the reaction system described by Eq. (7.10) is described by a set of purely

temporal coupled differential equations which can be solved to get expressions for

time dependent concentrations of ligand, receptor and ligand-receptor complexes.

Since the ligand-receptor complexes, C, are the visible objects, on the frame rate

time scale, we expect that kICS temporal correlation function will reflect this.

Indeed, the theta function of the Eq. (7.9) can be expressed as product of two terms:

⟨θð0ÞθðτÞ⟩ ¼ ⟨ψbindð0ÞψbindðτÞ⟩⟨φphotoð0ÞφphotoðτÞ⟩ ð7:11Þ

The second term on the right hand side of Eq. (7.11), hφphoto(0)φphoto(τ)i
incorporates the photo-physics events, such as photo-bleaching or blinking, which

can be determined by proper control experiment and corrected from the total

temporal correlation function. The first term on the right hand side of Eq. (7.11)

represents the binding kinetics correlation function and is proportional to the

ligand-receptor complexes density-density correlation function:

ψbind 0ð Þψbind τð Þh i / C 0ð ÞC τð Þh i ð7:12Þ

Therefore, with the derived expression for the time varying ligand-receptor

complexes and with the measured temporal correlation function from kICS, the

equilibrium binding and unbinding rates of ligand can be extracted.

7.3.2 In Plane Receptor Intermittent Dynamics by kICS

Another scenario explored in [13] is that of diffusing membrane receptor and

randomly converting between a fast and slow diffusion states. The model assumed

stochastic conversion between the fast and slow diffusion regimes with average

rates k1 and k2, respectively. The system of equations involved is similar to the one

from previous example, except that here the spatial part of the partial differential

equations, namely D∇2ρ(x, t), cannot be ignored as receptors are allowed to diffuse
with finite diffusion coefficients, D1 and D2. Even if analytical solutions to this

coupled system of partial differential equations exist as concentrations of receptors

in either fast or slow diffusion states, they are too complex to be used trivially to

express the density-density correlation functions and link them to the kICS corre-

lation functions. Fortunately, there are two limiting scenarios in which the expres-

sions for the fitting correlation functions can be simplified. First is the scenario, also

known as fast-exchange regime, which holds for very small values of spatial

frequencies k2 and small temporal lag τ. In this regime (k1 + k2)�D1k
2 and zeroth

time-lag normalized kICS correlation function has simple form:
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Gfast k
2; τ

� � ¼ C1G τð Þe�k2Deff τ ð7:13Þ

where,

Deff ¼ k2D1 þ k1D2

k1 þ k2
ð7:14Þ

where C1 is a constant, G(τ) is a temporal photophysics function. The emerging

effective diffusion coefficient, Deff is a value between D1 and D2 if the conversion

rate k1 is higher than rate k2. Practically, Deff τ vs. τ trend (Fig. 7.2c left column,

second sub-figure) is recovered from the fit of the semi-logged correlation function

at every temporal lag τ for small range of spatial frequencies k2 (Fig. 7.2c left

column, first sub-figure). The extra information that is extracted from this regime is

the photophysics function, G(τ), (Fig. 7.2c left column, third sub-figure) which can

be used in the slow-exchange regime (below) to accurately correct the correlation

function at high k2 and τ and hence better estimate the rate constant k2.
In the second regime considered for the simplification of the solution to the

partial differential equations, we look at the case when (k1 + k2)�D1k
2 and at very

large temporal lags τ. This slow-exchange regime, approximates the correlation

function fitted at large spatial frequencies and temporal lags:

Gslow k2; τ
� � ¼ C2G τð Þe�k2D2τ�k2τ ð7:15Þ

where C2 is a constant. In this case, the fitting recovers the diffusion coefficient in

slow regime and rate constant for the conversion from slow to fast diffusing regime,

k2. An example of practical implementation is shown in the example shown in the

right sub-figures in Fig. 7.2c.

So far, all the solutions to the differential equations were kept in Fourier space as

it is convenient to solve differential equations in Fourier space, but also because

convolutions, such as the one of PSF or temporal correlation functions, becomes

multiplications in Fourier space which can be simply normalized out as seen in

Eq. (7.9). Inverse Fourier transforming would make the already complex expres-

sions for the solution of differential equations, even more prohibitively complicated

by introducing extra spatial convolutions. This will be seen in the next sections.

7.4 Membrane Receptor Confinement Analysis by kICS

In this section, we will explore the model by which membrane embedded proteins

can get trapped inside small sub diffraction limit size membrane domains. It is

similar to the previous described model of the membrane receptor intermittent

dynamics, except that the receptor not only diffuses at a lower diffusion coefficient

but also does not wander outside of the physical boundary of confining domains,
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except if it exceed the probability threshold for escape. Therefore, the domains size,

viscosity, composition and nature of its physical barrier will all influence the

receptors escape probability and indirectly the rate at which it leaves or enters the

small domain. Moreover, in the previous intermittent dynamics model, kinetics

rates did not influence the diffusion rates and or vice verse. In the current model, the

diffusion coefficient inside the domain, influences how often receptor encounters

the domain boundary, and effectively the rate at which it exits the region. Similarly,

besides the actual domain surface density, the rate of diffusion outside the domains,

determines how often the receptor collides with a domain, and by the same token

what is the likelihood of it entering it. Therefore, this model is more complex as

several physical parameters can influence the observable receptor dynamical

behaviour. A thorough study on the effects of domain sizes, diffusion coefficients

inside and outside of domain, probability of entering and exiting domains and

domains surface coverage density, on the kICS correlation function, have been

subject of a previous thesis [20].

In order to provide you an example of the effect receptor confinement in 2D has

on the kICS correlation function, let us consider for the moment a simple case of

receptor diffusing freely in 2D at a rate of 0.01 μm2s�1 (Fig. 7.3a). Then the kICS

correlation function will collapse with temporal lag, τ until it completely vanishes

(de-correlates) at large temporal lags (Fig. 7.3b). On the other hand, if we introduce

randomly distributed domains having a radius of 0.2 μm, at 5% surface density

coverage, the receptor will have periods of free diffusion (Fig. 7.3c magenta parts of

trajectory) and of confinement (Fig. 7.3c blue parts of trajectory). This results in the

kICS correlation function collapsing with effectively two decay components

(Fig. 7.3d), one fast decay component that we label Macro as it reflects receptors’
exploring large spatial scales, and the second component labelled Micro which

collapses at later temporal lags, τ and at large spatial frequencies, k2. The Micro

component reflects the events happening at the interface of domains and receptors

mobility in and around domains. Figure 7.3e–h shows how changes in ratio of

receptors’ probability of entering to the probability of exiting domains, Pin

Pout
, dra-

matically affects the amplitude of the PSF-normalized and circularly averaged kICS

correlation function. This simulated dynamics of confinement shows that as we

increase the ratio, the receptors practically populate more and more domains, as

shown by the non-zero amplitudes of correlation function at large k2 at late

temporal lags τ.
From the examples given by the simulated cases shown in Fig. 7.3, it becomes

clear that presence of membrane domains leads to more complex pattern in kICS

correlation functions. Several parameters describing the physical property of con-

fining domains can be varied to produce similar kICS CF, and hence make this a

degenerate problem. Nevertheless, in order to phenomenologically describe the

experimentally obtained kICS CF, a strategy of effectively fitting two dynamical

components can be employed while some physical parameters of the domains such

as lipidic composition and viscosity are changed by employing the drugs and
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enzymes, and effectively shifting the system’s equilibrium to systematically study

the effects.

This is equivalent to the work done by single spot beam size varying FCS

[21, 22], where by simultaneous variation of several domain physical parameters

authors were obtaining indistinguishable diffusion laws. This in turn made it

Fig. 7.3 Receptor confinement by membrane domains detected by kICS analysis. (a) Simulated

case of freely diffusing receptor in 2D environment at D¼ 0.01 μm2s�1. (b) kICS correlation

function at temporal lags τ¼ 2, 10 and 20 s for image series shown in (a). The cyan circle denotes
boundary of e�2 simulated PSF radius, which was set to 0.28 μm. The yellow circle denotes the

boundary of the de-correlation that particle would have explored if they purely diffused, k2 ¼ 1
Dfreeτ,

at a given τ. (c and d) same as (a and b) but for the case of receptor diffusion in presence of

randomly distributed circular domains. Note: radius of the domain (0.2 μm) was set to be smaller

than PSF radius. At τ ¼ 20 s, blue semi-transparent disk denotes the k2 value regime over which

the receptors explore the domains and their surrounding. Magenta disk outlines the Macro

dynamical component, which receptors contribute to when diffusing outside of domains. (d-h)

display the circularly averaged PSF-normalized kICS correlation function for simulated cases

where receptors were encountering domains of 0.2 μm radius, dispersed uniformly at 5% surface

area density and diffusing at rates of 0.01 and 0.005 μm2s�1 outside and inside domains, respec-

tively. The only factor changing was the ratio of probabilities for receptors entering to that of

exiting surface domains
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impossible to determine which of the parameters (domain size, probabilities of

receptor partitioning, density of domains and diffusion coefficients) were respon-

sible for the change in the characteristic decay time of FCS autocorrelation function

and effectively the observed diffusion law. The best that authors were able to

determine from such studies [21, 22] were the effective diffusion coefficient

receptors explore as they diffuse through 2D environment populated with domains,

the confinement strength (which depended on simulated domains physical param-

eters) and by the trend in the diffusion law were able to define the nature of

confinement (i.e. isolated membrane domains vs. an underlying cytoskeleton mesh-

work). In our work [20] with kICS employed to study receptor confinement in

heterogeneous membranes, we employ the fitting kICS’ CF with 2 components that

phenomenologically account for the two emerging dynamic populations, micro and

macro respectively (Fig. 7.3d):

G
�
~k; τ

�
G
�
~k; 0

� ¼ Aμe
� ~kj j2Dμτ þ AMe

� ~kj j2DMτ ð7:16Þ

From bi-exponential fit of kICS CF at every temporal lag τ we obtain the

temporally varying amplitudes, Aμ(τ) and AM(τ), and decay rates Dμ(τ) and

DM(τ), for micro and macro dynamic components, respectively. Fitting the decay

rates at early temporal lags, give the diffusion coefficients for receptors at small and

large spatial scales. The saturation value of Dμτ is directly proportional to the

squared radius of domains, but also shifts to the lower values as the ratio Pin

Pout

increases. This is a result of some receptors wandering shorter distances aways

from a domain before getting trapped again within the same domain. Other instruc-

tive phenomenological parameters are the saturating values of Aμ(τ) and AM(τ) at
later τ values. These saturating values are directly proportional to the number

density of receptors inside and outside of domains, respectively. This methodology

was already applied in the study of cholesterol dependent confinement of CFTR in

the plasma membrane of primary epithelial cells, as detailed in [14], which provides

the basic principles behind methodology. More detailed publications about the

methodology, interpretations and limitations will be subject in a manuscript in

preparation [23].

7.5 Intermittent Dynamics of Gold Nano-Stars

Another system to which kICS was applied [15] was transport of gold nanoparticles

in cells, imaged by their scattering signal, as they convert from purely diffusive to a

biased diffusion dynamic state:
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DÐk1
k2
Dþ~v ð7:17Þ

where D represents diffusive state and Dþ~v represents particles undergoing

combined diffusion and flow (biased diffusion). The constants k1 and k2 represent
rates at which particle convert back and forth between the two states. This again

leads to a system of coupled partial differential equations similar to the ones

described in Sect. 7.3.1 and 7.3.2.

Such transport dynamics can occur for vesicles in cells as they diffuse, get

tethered to a molecular motor and get transported actively across cell before

being released again and resuming diffusive transport. Similarly for cases where

membrane bound receptors, mostly existing in diffusive state, occasionally get

bound by cytoskeletal elements which can polymerize and depolymerize and

hence actively pull the receptor cluster. A specific example is for T-cell receptor

clusters during the T-cell activation, as they get intermittently actively pulled

toward the central portion of the cell [24]. Therefore, even though authors solved

this model for gold nano-stars motion, it is readily applicable to fluorescently

labelled membrane receptors with similar dynamic behaviours. Although the

authors applied the standard STICS and TICS approaches, they concluded that

the system of two partial differential equations cannot lead to an analytically

solvable equation for fitting in real space, hence making kICS the analysis tool of

choice to yield a tractable analytical solution for this problem.

7.6 Velocity Landscape by k-space Normalization

So far we have demonstrated how kICS is applied to analyze cases of either single

species of diffusing membrane receptors, chemical equilibrium of ligand-receptor,

confinement of receptor by heterogeneities in membrane and intermittent dynamics

of gold nano-particles in cells. In previous sections we described several advantages

of analysis in k-space, including separating the time dependent photophysics of

fluorophore tags from molecular transport dynamics, normalizing the PSF contri-

bution from the rest of correlation function and solving complex systems of coupled

equations describing combined transport scenarios. Another advantage in k-space is

that when several dynamic populations of same biological molecule are present, we

can normalize out a single dynamical component from the total correlation func-

tion. This application is currently being prepared for a publication [25], and applied

so far to determine all the flowing populations in an image series.

In order to describe the idea behind the methodology, termed velocity landscape,

we start with the equivalent of Eq. (7.9), but consider the case of a biological

molecule existing in a one of p molecular flow states, each with Np molecules and

flowing with velocity ~vp, and molecular brightness qp (monomer will have q ¼ 1

and oligomer will be integer multiple):
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G
�
~k; τ

�
G
�
~k; 0

� ¼ Ωp τð ÞPNpq
2
pe

i~k�~vpτ

Ωp 0ð ÞPNpq2p
ð7:18Þ

where Ωp(τ)¼hθp(t)θp(tþ τ)i is temporal correlation function of the photophysics

fluctuations of the fluorophores (on or off emission states) in flow state p. Without

the loss of generality, in order to obtain Eq. (7.18), we considered that molecules are

only flowing in p different flows in absence of diffusive or reactive components.

Also, we assume that photophysics will be the same independent of the dynamical

transport state of any molecule.

Applying the inverse Fourier transform to this spatio-temporal spectrum func-

tion leads to an expression of spatio-temporal image correlation functions as

defined previously [26]:

G
�
~r; τ

� ¼
P

Npq
2
pδ
�
~r �~vpτ

�
Δ τð ÞPNpq2p

ð7:19Þ

where Δ τð Þ ¼ Ωp 0ð Þ
Ωp τð Þ is written for compactness.

The expression in Eq. (7.19) implies that different dynamical populations pre-

sent flowing each contribute to the spatio-temporal correlation function,G
�
~r; τ

�
, as

a translating delta function with velocity ~vp as a function of temporal lags τ.
Now, assuming that one of the existing flow with velocity~vo is to be normalized

from Eq. (7.19). Then Eq. (7.18) becomes:

G
�
~k; τ

�
j G�~k; 0� j �ei~k�~voτ

¼
Noq

2
o þ

P
p 6¼o

Npq
2
pe

i~k�
�
~vp�~vo

�
τ

Δ τð ÞPNpq2p
ð7:20Þ

which when Fourier inverted leads to:

Go�norm r; τð Þ ¼
Noq

2
oδ
�
~r
�þ P

p6¼o

Npq
2
pδ ~r � �

~vp �~vo
�
τ

� �
Δ τð ÞPNpq2p

ð7:21Þ

When visualized in space and over time lags τ, the function in Eq. (7.21) will

show p-1 flowing peaks at velocities ~vp �~vo and one stationary Delta peak at the

origin, due to the normalization of the single dynamic population of velocity ~vo.
If we were to normalize a random velocity, ~vrand, that does not sample the

observation volume within the sampling time, then we would get an expression

similar to the Eq. (7.19) but where ~vp is replaced by ~vp �~vrand
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Grand�norm r; τð Þ ¼

P
p
Npq

2
pδ ~r � �

~vp �~vrand
�
τ

� �
Δ τð ÞPNpq2p

ð7:22Þ

In other words, normalizing a random velocity (i.e. likely not present) from the

correlation function in k-space, still produces p dynamic components. On the other

hand, normalizing an existing dynamic component, produces the spatio-temporal

correlation function with one stationary delta peak at the origin and p-1 flowing

peaks as shown in Eq. (7.21).

Figure 7.4a shows three snapshots (at 1, 10 and 20 s) of simulated image times

series containing three dynamic flowing populations, at (vx1, vy1)¼ (0.013,�0.015),

(vx2, vy2)¼ (�0.025,�0.03) and (vx3, vy3)¼ (0.055,�0.06) μms�1. Regular STICS

approach will produce three peaks, one for each dynamical translational population,

that will flow at same rate as existing flows of molecules and change position with

the temporal lag τ as shown in Fig. 7.4b. It is standard procedure in STICS to fit a

2D Gaussian to such a data at each τ and extracting the position of the peak in order
to obtain the velocity of the underlying flow. Due to peak overlap as a short time

lags, this will result in biased and incomplete information about the mixture of

dynamic populations. Next, if we apply Eq. (7.22) and normalize out a random flow

velocity that does not exist in the data, (vx� rand, vy� rand)¼ (�0.077,�0.0377) it

results in correlation function with three correlation peaks that flow in other

directions than the flows present in the data (Fig. 7.4c). Note that for both cases

in Fig.7.4b and 7.4c, show the correlation peaks that move off the origin, r¼ 0, as τ
increases. On the other hand, if an existing flow, such as flow (vx2, vy2), is normal-

ized out as in Eq. (7.21), then we will be left with two flowing peaks and one

immobile delta peak at the origin of the correlation field (Fig. 7.4d). Plotting the

amplitude of the correlation functions at the origin (black, red and blue dashed

circles in b, c and d, respectively) vs temporal lag shows that in the case of

normalization of an existing flowing component, the amplitude never decays to

zero (Fig. 7.4e). For every incrementally normalized velocity, one can extract the

value of the amplitude at the late temporal lags and build the velocity landscape as

shown in Fig. 7.4f. The resulting velocity landscape is characterized by peaks in the

velocity coordinate space, which correspond to the existing flows sampled in the

original image time series data.

7.7 Conclusion

In this chapter we outlined the early developments and application of k-space

Image Correlation Spectroscopy (kICS) for the study of membrane receptors

dynamics in situ. Its original implementation [9, 10] was intended to separate the

purely temporal bias of fluorophore photophysics from the spatio-temporal part of

correlation function, and effectively obtain an accurate measurement of transport
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Fig. 7.4 Principle of velocity landscape. (a) Simulated images series of 3 flowing particle species

(t ¼ 1, 10 and 20 s). Arrows indicate the direction of 3 flows and arrow lengths show the relative
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properties of molecules. The kICS derived photophysics correlation function was

also used in the context of quantum dot labelled T-cell receptors, in order to

determine nano-scale clustering properties in naive and activated T-cells

[11, 12]. Furthermore, more complex behaviours of membrane receptors, such as

ligand binding and intermittent conversion between two different diffusive states,

led to extensions in kICS fitting approaches [13]. Similarly, the confinement of

membrane receptor in isolated membrane domains was studied by kICS on simu-

lated data and verified experimentally on GPI-anchored receptor in COS-7 cell

membrane [20], CFTR in primary epithelial cell membranes [14] and recently on

Lck kinase in T-cell membranes [23]. One of advantages of kICS is that spatial

convolution of two functions in real space becomes a product in k-space which

made it possible to remove the contribution of PSF by normalization of time zero

component [9]. Another advantage is that most of the complex systems of coupled

equations representing the spatio-temporal evolution of molecular densities, as

shown in Sects. 7.3, 7.4 and 7.5, lead to a complex analytical expressions for a

spatio-temporal correlation function. Inverting this expression to real space in order

to use STICS correlation function for analysis, makes analytical solution intractable

for most practical models. Finally, normalization of correlation functions in k-space

was demonstrated to be useful to separate contributions from populations with

different molecular flows [25].

With the growing number of extensions designed to handle different mecha-

nisms of molecular dynamics, kICS is proving to be a powerful tool to study

receptor dynamics in heterogeneous membranes of living cells.
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Chapter 8

Determining Oligomerization of Membrane

Proteins by Single Molecule Methods

Andreas Anderluh, Anand Kant Das, and Gerhard J. Sch€utz

Abstract The assembly of proteins to larger oligomeric complexes confers distinct

structural, functional, and dynamic properties on the newly formed entity. It is not

trivial, however, to experimentally quantify oligomerization of molecules, particu-

larly when different oligomeric states coexist. For this, our group developed a single

molecule technique called ThinningOutClustersWhile Conserving Stoichiometry

of Labelling (TOCCSL) (Moertelmaier et al., Appl Phys Lett 87:263903, 2005;

Brameshuber and Schutz, Methods Enzymol 505:159–186, 2012). The technique

allows for the determination of the oligomeric states of fluorescently labeled mem-

brane proteins even at high expression levels. TOCCSL can also be used to deter-

mine the kinetics of oligomerization.

Our chapter is divided into two main sections. “Membrane protein oligomeriza-

tion” presents a brief summary of the concepts of protein oligomerization and

kinetics of oligomerization. As a case study, the potential physiological role of

Neurotransmitter: Sodium Symporter (NSS) oligomerization is discussed. This is

followed by a description of methods to evaluate protein oligomerization, including

a detailed description of TOCCSL and the case study of a NSS family member, the

Serotonin Transporter (SERT).

8.1 Membrane Protein Oligomerization

It is believed that a large fraction of cellular proteins, between one half and two

third, are oligomeric in nature [1]. In contrast to the fluid mosaic model of Singer

and Nicolson [2] wherein proteins in the membrane were depicted as sparsely

distributed and independent monomeric entities diffusing through a matrix of

lipids, most researchers currently understand oligomerization as a more generic

phenomenon for many membrane associated proteins [3]. Analysis of the Protein

Data Bank of Transmembrane Proteins (PDBTM) suggests that a significant num-

ber of membrane proteins (around 65%) form oligomers [4]. Oligomerization is
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very common among ion channels, fusion proteins and membrane-disruptive pro-

teins [5]. Oligomers may be homo-oligomeric or hetero-oligomeric.

A plethora of mechanisms has been proposed to explain what mediates the

oligomerization of proteins, e.g. domain swapping, ligand induced dimerization,

posttranslational modifications including phosphorylation on dimer interfaces and

disulfide bond formation between two subunits [6]. It has been shown that β-barrel
membrane proteins can oligomerize through the weakly stable interfacial beta-

strands [7], while in case of certain p53 proteins the C-terminal helix might play

a crucial role in stabilization of the oligomers [8]. Additionally, for a large number

of proteins there exist regions—enabling and disabling loops—that play key roles

in enabling or disabling the oligomeric interfaces. These loops mediate interactions

or prevent unwanted interactions and are highly conserved in evolution [9]. Lipids

have also been found to be important in membrane protein oligomerization [10–12],

e.g. phosphatidylglycerol (PG) significantly enhances oligomerization of the

voltage-dependent anion channel (VDAC) while cardiolipins have been shown to

disrupt VDAC supermolecular assemblies [13].

Oligomerization of proteins may be advantageous as it offers stability, higher

order complexity and also leads to compartmentalization of reactions [14]. The

reduced surface area of the subunits of the complex further offers protection against

denaturation [15]. Next, oligomers may alter the morphological characteristics of

the cell, as in case of formation of rings and filaments [3], or may result in allosteric

regulation of activity and affinity, both for substrates and interaction partners within

the cell. Finally, (hetero-)oligomerization enables proteins to form novel functional

entities without changing the genome size by integrating new functions into a

complex [14]. G protein-coupled receptors (GPCRs) for example exhibit oligomer-

ization behavior which was first suggested from ligand binding and radiation

inactivation studies in the 1970s [16]. It has now been established that GPCRs

oligomerize in living cells, that various types of GPCRs can hetero-oligomerize,

and that such oligomer formation is crucial for receptor biogenesis and function

[17–19].

As a case study, we describe here the oligomerization behavior of Neurotrans-

mitter: Sodium Symporter (NSS) family of membrane proteins.

8.1.1 Oligomerization of Neurotransmitter: Sodium
Symporter (NSS)

Transport proteins in the plasma membrane of presynaptic nerve terminals and glial

cells aid in removal of specific neurotransmitters from the extracellular space of the

synapse, thereby terminating their actions. One major homology class of such trans-

porters, termed Neurotransmitter: Sodium Symporter (NSS) family, derives energy

from the co-transport of Na+ and Cl�, in order to transport neurotransmitter
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molecules into the cell against their concentration gradient. The family has a common

structure of 12 presumed transmembrane helices and transports gamma-aminobutyric

acid (GABA), serotonin, dopamine, noradrenaline/adrenaline, proline, glycine, beta-

ine, choline or taurine.

It has been suggested that the functional units of NSS are monomers [20]. How-

ever, there is increasing evidence that they also form higher oligomeric structures in

the cell membrane [21]. The classical biochemical approaches such as

co-immunoprecipitation of differently epitope-tagged serotonin transporter

(SERT) and dopamine transporter (DAT) constructs [22], oxidative crosslinking

of SERT [23] and DAT [24] and optical measurements like F€orster resonance

energy transfer (FRET) [25] for DAT [26], GABA transporter (GAT) and SERT

[27–29] show oligomerization behavior. More recent evidences from our lab using

a single molecule approach show co-existence of stable SERT monomers and

oligomers in the plasma membrane [30]. What could be the potential physiological

role of these oligomers?

8.1.2 Physiological Role of NSS Oligomerization

Based on the available experimental data, two main potential functions of NSS

oligomerization can be defined, both of which may contribute to its overall task of

controlling the extracellular neurotransmitter concentration.

1. Trafficking. Post translationally, a protein has to pass the rigid quality control

mechanisms at the level of the endoplasmic reticulum (ER) before being traf-

ficked to the plasma membrane. It has been shown that an oligomerization-

deficient version of the gamma-aminobutyric acid (GABA) transporter (GAT) is

retained in the ER but is still capable of GABA transport when integrated into

artificial vesicles [20]. This suggests that the oligomerization of correctly folded

proteins is necessary to pass the control system for trafficking from the ER [21],

which in case of SERT is facilitated by specific interactions with Sec24C-family

members [31, 32]. Thus, oligomerization deficiency leads to decreased densities

of SERT at the plasma membrane and therefore decreased net uptake rates.

2. Reverse transport.One of the suggested roles of oligomerization of NSSs relates

to the substrate-induced reverse transport of substrate. In this proposed

oligomer-based counter-transport model [33], one of the subunits in an oligomer

binds the so called releaser (a substrate of the transporter) and induces an

electrical current independent from substrate transport, mainly carried out by

sodium ions [34, 35]. The energy generated by this current is then used by the

neighboring transporter subunit in an unknown way to release the neurotrans-

mitter into the synaptic cleft [33, 36, 37]. Therefore, only NSSs present in an

oligomer consisting of at least two transporters would be susceptible for the

effect of releasers. The degree of oligomerization could influence the net uptake

rate of neurotransmitters.
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8.1.3 Kinetics of Protein Oligomerization

Dimerization is well known e.g. for some GPCR family members [38], which show

behavior in accordance with a dynamic equilibrium model [39, 40] with continuous

formation and dissociation of dimers. The model can be characterized by the rate

constant for monomer association ka, which scales with the surface density of

monomers, and the rate constant for dimer dissociation kd. Hence, the ratio of

dimers to monomers depends on the density of GPCRs at the plasma membrane. It

appears that the stoichiometry of proteins greatly influence the selectivity for

specific ligands which then enables fine tuning of the signaling pathways.

In contrast to the dynamic equilibrium model, a more stable oligomerization

behavior occurs when energy barriers make the addition or dissociation of a subunit

less favorable. Thus, the monomers/oligomers are kinetically trapped and putative

equilibration of the oligomeric distribution is significantly slowed down. For

example, corticotropin-releasing factor receptor type 1 (CRF1R), a member of

the GPCR family, shows a distinct monomer/dimer ratio; this equilibrium is already

established in the ER [41]. It remains constant throughout the life cycle of the

receptor regardless of the location at the ER or the plasma membrane and even after

ligand binding. These findings strongly indicate kinetic trapping of GPCRs at the

plasma membrane.

8.2 Experimental Methods to Evaluate Protein

Oligomerization

The biological relevance of protein oligomerization has stimulated the development

of a variety of experimental approaches. In the following chapter we will first give

the reader an overview about the most common in vitro and in vivo bulk-based

methods to decipher the oligomerization state of membrane-bound proteins, and

compare their advantages and disadvantages. In the last part we will give a short

introduction into single molecule microscopy and its application for in vivo deter-

mination of protein oligomerization.

8.2.1 Bulk Measurements: In Vitro Non-fluorescence
Methods

8.2.1.1 Chemical Crosslinking

Principle Classical approaches to determine the oligomeric size of proteins are based

on chemical crosslinking of the subunits within a complex, followed by isolating the

proteins from the membrane [42]. This approach, that has already emerged in the late
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1970s [43], makes use of the stable linking of amines or sulfides between different

protomers within an oligomer (Fig. 8.1a). To achieve this, cells are treated with

chemical crosslinkers, e.g. formaldehyde or bis-(2-methanethiosulfonatoethyl)amine

hydrochloride (bis-EA) [24, 44]. Only proteins that are in close proximity (e.g. within

an oligomer) are crosslinked during the reaction. Subsequently, plasma membrane

bound proteins are extracted from the membrane and the proteins of interest are

separated from the mixture by immunoprecipitation or other affinity methods. The

size of the isolated oligomers is then evaluated via SDS-PAGE/Western blotting.

Pros Chemical crosslinking is a fast and rather easy method to evaluate the

oligomerization behavior of proteins. No sophisticated technical or chemical equip-

ment is needed and the method is well established. Transient interactions of pro-

teins might be captured due to their stabilization during the crosslinking reaction.

Moreover, the technique is applicable to both hetero- and homo-oligomerization.

Cons A possible artefact of the technique is the generation of artificial clusters that

would not be stable in their native membrane environment. On the other hand, too

large distances between reactive sites preclude efficient crosslinking. Furthermore,

interpretation of the mixed populations of oligomers from gels is not very sensitive

and minority populations might be lost. These factors make it rather difficult to

conclude from crosslinking experiments on the actual situation in the living cell.

Chemical 
crosslinking

Isolation

Gel 
electrophoresis

Isolation and

X-ray scattering

Crystallization

A B

Fig. 8.1 In vitro methods to evaluate protein oligomerization. (a) Chemical crosslinking. Living
cells are first treated with crosslinking reagents e.g. formaldehyde or bis-EA. Proteins within an

oligomer are stably linked during the reaction and subsequently extracted from the membrane. The

size of the isolated protein complexes is then evaluated via gel electrophoresis. (b) Crystallization
studies. Membrane bound proteins are isolated from the membrane and the protein of interest is

purified to obtain a highly concentrated protein solution for crystallization. The crystal structure is

evaluated using e.g. X-ray scattering
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8.2.1.2 Crystallization-Based Approaches

Principle Crystallization studies are not only used to unravel the 3-dimensional

structure of a protein, but also to conclude on the oligomeric size. This requires a

highly purified protein solution as a starting point in order to crystallize the protein

of interest. The analysis is then carried out using X-ray scattering (Fig. 8.1b).

Pros A high-resolution picture of the respective oligomer and its conformation can

be obtained with crystallization-based assays. The additional structural information

can also yield information about the active state or the protein conformation in

conjunction with a bound substrate [45, 46]; in some cases, even stable interactions

with lipids were achieved [47, 48].

Cons Highly purified protein solutions are necessary for the approach; the lack of

the plasma membrane as a determining factor for oligomerization is prone to

produce artefacts in protein crystallization studies. Therefore, the data have to be

interpreted with care and are not likely to represent the situation in vivo. Particu-
larly, free energy profiles for pure protein crystals may be substantially different

from the local minima describing the situation at cell membranes. Finally, the harsh

conditions used for isolation of the protein and its crystallization may have a

significant impact on the degree of oligomerization and on the protein’s conforma-

tion; the crystallized protein might not represent the biochemically active

conformation.

8.2.2 Bulk Measurements: Live Cell Fluorescence-Based
Methods

The above presented in vitro approaches have provided important insights into the

general concept of protein oligomerization, however, they do not account for the

influence of the plasmamembrane environment. To assess the situation in the natural

environment more directly, several live cell methods based on fluorescence micros-

copy have been developed in the past years. As we will present in the following

section, also with these techniques unambiguous evaluation of the oligomeric state

of a given protein remains far from being trivial. A putative pitfall common for all

fluorescence basedmethods is the labelling efficiency: underlabelling of the proteins

of interest (e.g. if fluorescent antibodies are used) or incomplete maturation of

fluorescent proteins [49, 50] leads to an underestimation of the degree of

oligomerization.
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8.2.2.1 F€orster Resonance Energy Transfer (FRET)

Principle To date, the most common method to show direct interaction of two

fluorescently labelled biomolecules is the measurement of FRET between two

partner molecules [51, 52] (Fig. 8.2a). This allows for visualizing oligomerization

of proteins directly in living cells. The proteins of interest are labelled with two dye

molecules, one acting as donor (excitable at a lower wavelength) and the other one

as acceptor (excitable at a higher wavelength). After excitation of the donor,

non-radiative energy transfer to the acceptor may occur via dipole-dipole coupling.

The result is fluorescence emission specific for the acceptor. The efficiency of

energy transfer is inversely proportional to the sixth power of the distance, with

the F€orster radius denoting the donor-acceptor separation at half-maximal transfer

efficiency. This depends mainly on the used donor-acceptor pair and lies between

1 nm and 10 nm, a distance that captures many protein oligomers.

Pros The interaction of two players in the plasma membrane can directly be shown

with FRET. The strong dependence of the energy transfer on the distance between

the two dyes yields a relatively robust readout. At the bulk level, well established
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Fig. 8.2 Bulk-based live cell methods. (a) FRET: Upon excitation of the donor dye molecule,

nonradiative energy transfer to the (red-shifted) acceptor dye molecule occurs only if the two dyes

are in close proximity, e.g. within an oligomer (ii). The rate of the energy transfer depends strongly

on the distance between the two dye molecules. (b) FCCS: also in FCCS, the molecules of interest

are labeled with two spectrally different dyes. The recorded fluorescent signal exhibits fluctuations

due to particles diffusing through the excitation beam. Whereas independent diffusion of two dye

molecules results in independent fluctuations (i), the fluctuations are correlated in co-diffusing

(interacting) molecules (ii). The cross-correlation function of the two different dyes increases with

the number of molecules within an oligomer
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fluorescent proteins can be used for genetic fusion to the protein of interest,

e.g. yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP). Further-

more, FRET enables the identification of transient interactions.

Cons Using bulk FRET, it is not possible to decipher the exact number of subunits

in the oligomer. A putative drawback of FRET results from the strong correlation of

the energy transfer with the distance of the dye molecules; if the separation between

the two dye molecules within an oligomer is too large, no FRET will be observable.

In addition, if the protein surface density is too high, stochastic proximity of dyes

may result in a detectable FRET signal, although no oligomers are actually present.

8.2.2.2 Fluorescence (Cross) Correlation Spectroscopy (FC(C)S)

Principle In FC(C)S the excitation light is focused onto the sample, thereby

restricting excitation to a diffraction-limited volume (Fig. 8.2b). The resulting

fluorescence signal exhibits fluctuations due to particles diffusing through the

excitation volume. The autocorrelation function of these fluctuations can be used

as an indicator of particle diffusion. However, the difference in the diffusion

coefficient of a monomer and e.g. a dimer is rather small and hence, it is challenging

to use FCS for determining oligomeric states. FCCS extends the principle of FCS

by using two different fluorescent labels [53]; when the two differently labelled

molecules diffuse through the excitation volume, their cross correlation increases

with the number of interacting molecules and directly shows oligomerization.

Pros The advantage over e.g. FRET is that FCS/FCCS does not exhibit a distance

limit for interacting proteins. Hence, also the detection of larger complexes is

possible. In addition, if the interaction time of the subunits in the oligomer is

shorter than the time needed to diffuse through the excitation volume, also infor-

mation about the interaction kinetics of the subunits is encoded in the correlation

functions.

Cons Different degrees of oligomerization average out in the analysis and sub-

populations might therefore remain hidden. Interaction times cannot be quantified,

if complexes remain associated longer than their transit time through the excitation

volume.

8.2.2.3 Number and Brightness Analysis

Number and brightness (N&B) analysis is a method that makes use of fluctuations

of the fluorescence signals due to varying numbers of particles within single pixels

[54–57]. Analysis of the mean and the variance of the fluorescence intensity

distributions allow evaluation of the average number of molecules and their bright-

ness at each pixel in a stack of images. In a nutshell, the larger the variance of the

fluorescent signal, the fewer molecules contribute to the signal; the ratio of the

174 A. Anderluh et al.



square of the average intensity to the variance is proportional to the average number

of particles. Also the distribution of oligomers can be obtained: when the brightness

of a monomer is known it can be used for a fit to the brightness distribution of the

oligomeric mixture.

Pros Being a computational method, no sophisticated technical equipment is

necessary. The distribution of oligomeric states of proteins diffusing in the plasma

membrane can be calculated if the brightness of a monomer is known.

Cons The determination of the oligomeric distribution using a fit based on the

monomeric brightness is rather inexact and gives only approximate values. Hence,

usually the average oligomeric size is stated [58].

8.2.3 Methods Based on Single Molecule Fluorescence
Microscopy

The described bulk-based live cell methods are well suited to measure substantial

fractions of oligomers, however, trace amounts are difficult to detect. Bulk methods

yield average oligomeric states and hence, variances in the oligomerization average

out and subpopulations might remain hidden. Moreover, hardly any further infor-

mation on the distribution of the oligomeric states and the interaction kinetics can

be obtained with these techniques. As a consequence, in the past two decades

researchers have looked for ways to measure protein interactions directly at the

level of individual molecules.

8.2.3.1 An Introduction into Single Molecule Microscopy

Due to the wave-nature of light, fluorescence microscopy reaches a natural limit in

resolution set by the diffraction limit. This means that every point emitter is ideally

imaged as an Airy disk. The radius of the Airy disk is given by

d ¼ 0:61
λ

NA

with λ being the emission wavelength and NA the numerical aperture of the

objective. In practice, however, aberrations further affect the imaging behavior of

the microscope, so that the fluorophore will be imaged according to the empirical

point spread function (PSF). The size of the PSF determines the achievable reso-

lution; objects that are closer than d cannot be resolved because their PSFs overlap

to an extent that they cannot be distinguished as isolated peaks. In practice, this

limit is approximately half the wavelength of the detected light (around

200–300 nm), a distance far above the length scales of a few nm where most

oligomerization processes in the cell take place.
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In the past years a variety of experimental approaches was introduced to

circumvent the diffraction limit [59], with many of them being based on the

analysis of single dye molecule positions [60]. The PSF of a fluorescent emitter

in a biological sample can be well approximated by a Gaussian intensity distribu-

tion [61, 62]. From the fits, the center of the Gaussian function can be determined

with an accuracy of a few nm [63] or even below [64]. The localization precision of

the emitter depends mainly on the number of photons that can be collected during

image acquisition [62, 65, 66] and is approximately given by:

Δx ¼ sffiffiffiffi
N

p

with Δx being the localization error, s the standard deviation of the PSF and N the

number of photons collected.

Hence, with this approach, the resolution can potentially be arbitrarily low if the

number of photons collected from an emitter is high enough. In addition, the fit also

yields the brightness of the molecules, which can be used to determine the oligo-

meric size of the fluorescent aggregate, as we will show later in this section.

Taken together, the emergence of single molecule microscopy has equipped

researchers with a versatile toolbox to overcome the problems of bulk-based

methods described above. In this section, we will guide the reader through some

strategies to determine the oligomeric state of a protein using single molecule

fluorescence microscopy. We will highlight the basic principles, advantages and

problems of the respective method.

8.2.3.2 Single Molecule FRET (smFRET)

Principle smFRET has first been shown by Ha and colleagues 20 years ago [67]

and is nowadays commonly used to identify conformational changes of biomole-

cules by attaching the dye pair to different sites of the target molecule. Additionally,

the method allows for evaluating molecular oligomerization. The theoretical back-

ground for smFRET is the same as for bulk FRET (Fig. 8.2a): a non-radiative

energy transfer from a donor molecule to a dye molecule indicates close interaction

of the two. However, special precautions are necessary to extend FRET to the single

molecule level: the used dye pairs have to be particularly bright and photostable to

enable a good signal-to-noise ratio. Hence, instead of using fluorescent proteins,

usually organic dyes are used.

Pros Oligomerization and dissociation/association kinetics can be directly visual-

ized. Extension of FRET to the single molecule level thereby also enables the

identification and quantification of minor subpopulations in a heterogeneous

sample.

Cons The method faces similar problems as bulk FRET: if the dye molecules are

much further apart than the F€orster radius, the method is not applicable. A missing
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smFRET signal can therefore not be interpreted as a missing interaction of the

respective biomolecules. In the case of homo-dimerization at least half of the

signals are lost because of two proteins carrying the same type of dye molecule.

Although smFRET gives reliable qualitative information on oligomerization, deter-

mination of the exact complex size is difficult and the outcome depends on the

model that is used to interpret the data.

8.2.3.3 Stepwise Photobleaching

Principle The digital decrease of the fluorescence intensity of a protein oligomer is

used for determining its stoichiometry [50]. During imaging of a fluorescently

labelled sample, the fluorophores get irreversibly photobleached after a number

of excitation-emission cycles. This behavior can be used to determine the number

of fluorophores present in a diffraction limited spot, e.g. a protein oligomer. Due to

its quantal nature photobleaching of a fluorophore occurs in a stepwise manner;

each bleaching event of a single dye molecule can be identified by a distinct step in

the fluorescence intensity time trace of a complex (Fig. 8.3a). Given that each

protomer in a complex carries exactly one dye molecule (e.g. fusion constructs of

the protein of interest with green fluorescent protein (GFP)), the number of subunits

initially present in the complex is directly encoded by the number of bleaching

steps. The method is usually combined with total internal fluorescence reflection

(TIRF) microscopy in order to reduce intracellular background.

Pros Stepwise photobleaching represents a powerful and accurate method with an

easy and direct readout to determine oligomerization of membrane bound proteins.

Since the method works on a single molecule level, rather sensitive and elaborate

cameras are used. The analysis of the data, however, is very straightforward, and

does not depend on assumed models.

Cons Only immobile complexes can be analyzed. Movement of the fluorescence

signal during image acquisition can result in significant brightness fluctuations that

might blur the bleaching steps. Mainly, these fluctuations are caused by diffusion

along the z-axis in the TIRF field due to partial cell detachment from the glass slide

or formation of invaginations and ruffles. Two general strategies are common to

prevent this effect: either fixed samples are used, or the protein of interest is

expressed in Xenopus laevis oocytes. Fixation, however, kills the cell, impeding

measurements in the native cellular environment. When expressed in Xenopus
laevis oocytes, most proteins are immobile after insertion into the plasma mem-

brane, a state that is usually not very abundant for membrane associated proteins

[68]. Both strategies thereby prevent dynamic interaction of biomolecules.

Moreover, the requirement of well distinguishable PSFs results in an upper limit

of the expression level and high densities of protein at the plasma membrane are

thereby not accessible.
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8.2.3.4 Single Molecule Co-tracking

Principle Using single molecule fluorescence microscopy, the diffusional path of a

protein can be tracked with a localization precision down to the nanometer scale. In

each frame recorded, the position of the fluorophores is determined using a local-

ization algorithm. Subsequently, the positions of these localizations are linked

between the frames using a tracking algorithm [69–71] (Fig. 8.3b). If two molecules

of interest are labelled with spectrally different fluorophores, this strategy can be

used to directly visualize co-diffusion and potentially also association and dissoci-

ation of the two molecules [72, 73]. The two molecules are characterized as

interacting if they move together for several consecutive frames.

Pros The method directly shows interaction of proteins. Besides oligomerization

itself, the method can reveal dimerization kinetics if the interaction is shorter than
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Fig. 8.3 Single molecule methods. (a) Stepwise photobleaching. From left top to right bottom:
monomeric, dimeric, trimeric and tetrameric fluorescent intensity traces. Each stepwise decrease

in the fluorescence intensity vs. time plot represents one photobleached fluorophore. (b) Single
molecule co-tracking. The proteins of interest are labelled with spectrally different fluorophores

and their diffusional path in the membrane is tracked using localization algorithms. Association

(i) (or dissociation) and co-diffusion (ii and iii) of molecules can be directly visualized. (c) Single
molecule brightness analysis. Fluorescent molecules are imaged according to their PSF. Larger

protein complexes do not yield a broader PSF than monomeric proteins, but its amplitude is larger.

Hence, evaluation of the brightness of diffraction limited spots enables deciphering the underlying

oligomeric state
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the time before the complex diffuses out of the field of view or before the

fluorophores photobleach.

Cons It is sometimes difficult to distinguish between real oligomers and proteins

present in plasma membrane-proximal vesicles. Furthermore, the surface density of

the respective protein has to be low enough so that their PSFs do not overlap. Many

researchers have overcome this problem by stochastic photobleaching of the cell

[74], using sub-saturation labelling conditions [75], or photoactivate only a

subfraction of the fluorescent proteins [76]. In all of these strategies, however, the

probability of observing interactions gets extremely low [77]. Finally, care has to be

taken to rule out stochastic co-diffusion of non-interacting molecules [72].

8.2.3.5 Single Molecule Brightness Analysis

Principle The analytical strategy of fitting a Gaussian intensity distribution to the

recorded PSF offers not only information on the position, but also on the brightness

of a signal. This information can be used for single molecule brightness analysis

(Fig. 8.3c): by counting the number of dyes per fluorescently labelled complex, its

oligomeric state can be determined [40, 49, 78]. The brightness distribution of a

given fluorophore is characterized by its probability density function (pdf) ρ(B). For
larger complexes the resulting pdf exhibits a rather long tail towards higher photon

counts in comparison to a monomeric fluorophore. ρ1(B)dB describes the probabil-

ity that the number of photons detected from a single dye molecule lies in the

interval (B, Bþ dB). The brightness distribution ρN(B) resulting from N colocalized

dye molecules is then described by a series of convolution integrals:

ρN Bð Þ ¼
Z

ρ1 B
0

� �
ρN�1 B� B

0
� �

dB
0 ð8:1Þ

Hence, a mixed population of monomers, dimers, trimers etc. yields a brightness

distribution that is based on a linear combination of the individual distributions:

ρðBÞ ¼
XNmax

N¼1

αNρNðBÞ ð8:2Þ

The weights αN yield the fractions of the different complex sizes, with

XNmax

N¼1

αN ¼ 1

If the brightness distribution of a single dye molecule is known, the weights αN
of the different oligomers can be calculated by fitting the recorded oligomeric

brightness distribution with Eq. 8.2.
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Pros Single molecule brightness analysis can be used in combination with well-

established fluorescent proteins, e.g. GFP. In contrast to single molecule

co-tracking or smFRET, virtually all protein aggregates are encoded by their

increased brightness since only one fluorescent dye species is used for labelling.

Furthermore, the method is applicable to both immobile and mobile complexes in

the native cell membrane. Single molecule brightness analysis can therefore be

combined with tracking approaches to gain information on the diffusional behavior

of different oligomeric sizes.

Cons There is a limit to the oligomeric size that is accessible with single molecule

brightness analysis; the brightness distributions broaden with increasing number of

colocalized fluorophores, so the distributions will overlap to an extent that makes an

accurate fit difficult. Hence, the obtained distributions may well indicate the

presence of large oligomeric structures, but the discrimination between oligomers

differing by only one subunit may be no longer possible.

8.3 Thinning Out Clusters While Conserving

Stoichiometry of Labelling (TOCCSL)

As described above, single molecule fluorescence microscopy provides researchers

with several approaches to decipher the oligomeric state of membrane associated

proteins. Despite these technical advances, however, there is a surprisingly low

number of reports on direct observations of two interacting biomolecules

(e.g. [73, 79, 80]). A general difficulty of current approaches is that they are limited

by the density of the fluorescent probes in the sample; if two emitters are closer than

the diffraction limit, their PSFs will overlap and their centroids cannot be localized

accurately. Hence, an experimental approach is needed to virtually dilute the

fluorescent signals while leaving their labelling stoichiometry untouched. In this

chapter we demonstrate how to efficiently tackle this issue by using a

photobleaching approach termed thinning out clusters while conserving stoichiom-

etry of labelling (TOCCSL).

Considering the normal situation in the cell membrane regarding protein density,

it becomes obvious that fluorescence microscopy generally does not allow for

imaging individual molecules as separated spots. In a single square micrometer

ten thousands of protein molecules are present. Using specific labelling approaches,

one can single out individual protein species, but nevertheless they most likely will

be expressed at densities that render direct single molecule imaging impossible.

This is especially the case when the protein of interest is heterologously

overexpressed. A potential strategy might be extreme underlabelling. However,

this is not advisable when studying protein oligomerization, since the information

on the oligomeric state gets lost. Let us assume as an example a homotretramer, that

is fluorescently labeled on every subunit with a labelling probability p ¼ 0.01.

Assuming binomial labelling conditions, the amount of visible protein oligomers
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would be reduced to 4%, which is likely sufficient to resolve single copies.

However, at the same time only one in four million spots would contain the full

load of four active fluorophores.

In order to tackle this problem, we have developed the TOCCSL method to

virtually dilute the protein density in a restricted region of the cell membrane while

leaving the labelling stoichiometry intact [81]. TOCCSL is based on fluorescence

recovery after photobleaching (FRAP), but extends the principle to the level of

single molecule fluorescence microscopy. The method is shown in Fig. 8.4 and can

be divided into two main parts:

1. Creating an analysis region: Fig. 8.4a (i) shows the initial situation at the plasma

membrane: fluorescently labelled protein complexes are present at high surface

density, so that single molecule signals cannot be separated. After recording a

pre-bleach image for control, a distinct small area of the cell membrane is

irreversibly photobleached (ii). The photobleached region is confined by imag-

ing an aperture onto the sample. Ideally, the protein complexes are either entirely

photobleached (inside the analysis region) or remain entirely fluorescent (out-

side the analysis region), which can be assessed by a control image recorded

right after the bleaching pulse (iii). In practice, this will not be perfectly

achievable; especially, complexes that are present at the border of the analysis

region will show incomplete bleaching. In addition the bleaching pulse should

be as short as possible to minimize movement of proteins during the bleaching

pulse.
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Fig. 8.4 TOCCSL. (a) Using a field stop in the laser beam pathway, a small area of the cell

membrane (i) is irreversibly photobleached (ii, iii). During a recovery phase (iv) single, well

distinguishable fluorescently labelled complexes diffuse back into the bleached area and can be

monitored (iv). (b) Timing of laser pulses used for imaging and photobleaching
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2. Recovery of the fluorescent signal and acquisition of the analysis image: due to
Brownian motion unbleached molecules diffuse into the previously bleached

analysis region (iv). TOCCSL makes use of the very onset of the recovery

process: individual molecules diffuse back into the bleached area and can now

be resolved as single, clearly distinguishable fluorescent spots (v). The duration

of the recovery phase used for TOCCSL should be adjusted for appropriate

surface density of fluorescent spots; typically, it is in the range of 1–20 s.

The recorded image can now be used for single molecule brightness analysis to

determine the stoichiometry of the recovering complexes. For membrane-bound

proteins, it is advantageous to combine TOCCSL with total internal reflection (TIR)

microscopy to restrict the excitation to regions close to the glass coverslip. This

(i) improves the signal-to-noise ratio by reducing fluorescent background from the

cytosol and (ii) restricts the analysis to proteins that are integrated in the plasma

membrane. The recovery pattern of the fluorescent signals indicates if signals

originate from plasma membrane bound proteins; for membrane constituents, the

surface density of the recovering signals decreases from the edges of the analysis

region towards its center. In contrast, signals recovering from the cytosol would

homogeneously cover the whole photobleached area. For an extensive manual on

the application of TOCCSL, we refer the reader to [77].

Besides for determining the oligomeric state of protein aggregates, the recorded

data can further be used for single molecule tracking if several images are recorded

after the recovery phase. TOCCSL can also be extended to multiple colors using

different fluorophores and hence might be used in combination with single mole-

cule co-tracking. E.g. we have used this approach to detect rare interactions of

fluorescent Cholera-Toxin B (CTX-B-Alexa647) to its ligand Bodipy-GM1 in a

supported lipid bilayer [72].

A drawback of the method, however, is that immobile complexes are not

accessible with TOCCSL. It has been shown that the majority of membrane pro-

teins and protein oligomers are mobile [82–84], but nevertheless, the mobility of the

protein of interest should always be evaluated first to determine the compatibility

with TOCCSL. In analogy, also different mobility of the respective oligomeric

sizes would bias the observed oligomeric distribution in a TOCCSL experiment;

e.g. for EGFRs it is known that upon activation and dimerization the diffusion

coefficient significantly decreases [85]. Supposedly, this will give a bias towards a

monomeric conformation in the analysis region that does not reflect the situation in

the remaining part of the plasma membrane. In addition, very short-lived interac-

tions of molecules may be missed with the method; if the interaction time of two

molecules is shorter than the duration of the recovery phase, complexes will

dissociate on their way into the region of interest and will be ascribed to a smaller

oligomeric conformation.
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8.3.1 Examples

In the following section, we give the reader a few examples, in which we have used

TOCCSL in conjunction with single molecule brightness analysis in order to

evaluate the oligomeric state of a membrane bound biomolecule.

8.3.1.1 TOCCSL: Proof of Principle

When introducing the method, we first wanted to demonstrate that TOCCSL indeed

correctly assesses the labelling stoichiometry [81]. We used an artificial bilayer

consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholin (POPC) and

1,2-dipalmitoyl-snglycero-3-phosphoethanolamine-N-(2,4-dinitrophenyl) (DPPE)

carrying the hapten DNP (DNP-DPPE); as a fluorescent probe we added antibodies

against DNP carrying in average of 4.5 fluorescein molecules per antibody. In this

experimental setting, we could adjust the density of the fluorescent label by titrating

DNP-DPPE. At low concentrations of DNP-DPPE (0.15 molecules per μm2) indi-

vidual antibody molecules were clearly distinguishable and the recorded images

could directly be used for brightness analysis (Fig. 8.5). The resulting pdf therefore

represents a fluorescent fingerprint of a dye-cluster diffusing in the membrane.

Next, the DNP-DPPE density was increased to ~15 molecules per μm2. At this

density the fluorescent signals significantly overlapped, precluding direct analysis.

In this case we used the TOCCSL method and determined again the brightness

distributions of the observed fluorescence spots. With TOCCSL, the obtained pdf

was virtually identical to the pdf obtained at low DNP-DPPE density, demonstrat-

ing that TOCCSL reported the correct brightness distribution. By using the

non-linear least squares fitting described in the subsection “Single molecule bright-

ness analysis” we also evaluated the average number of dye molecules attached to

the antibody. We found an average of N ¼ 3.5 fluorescein molecules per antibody,

which is in good agreement with the results from the spectroscopic evaluation.

8.3.1.2 Imaging of Mobile Long-Lived Nanoplatforms in the Live Cell

Plasma Membrane

There has been a lively discussion in the past two decades whether proteins and

lipids assemble into stable aggregates that travel together in the plasma membrane.

The idea is known as the membrane raft or lipid raft hypothesis [86] and was mainly

suggested based on the observation of detergent insoluble membrane fractions in

biochemical experiments. Rafts are described to recruit proteins such as

glycosylphosphatidylinositol (GPI)-anchored proteins. Using TOCCSL, we have

evaluated whether and to what extend GPI-anchored mGFP molecules form

8 Determining Oligomerization of Membrane Proteins by Single Molecule Methods 183



co-diffusing clusters in the live cell plasma membrane [87] (Fig. 8.6). We found

that in the native membrane environment GPI-anchored mGFP diffuses both as

monomers (~68%) and dimers (~32%). No higher structures were found in this

study. In addition, the formation of dimers was shown to strongly depend on the

presence of cholesterol. Upon depletion of cholesterol the vast majority of the

proteins were found to be monomeric (~98%). This effect was subsequently shown

to be reversible by addition of cholesterol. Furthermore, a correlation of monomer/

dimer ratio with the surface density was observed: increasing expression levels of

mGFP-GPI coincided with increasing fractions of dimeric entities.
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Fig. 8.5 Proof-of-principle experiment on a supported bilayer. To mimic stable fluorescent

protein clusters, anti-DNP antibodies labeled with multiple fluorescein molecules were added to

a supported lipid bilayer containing different concentrations of DNP-labeled lipid. (a) shows the

brightness distribution plotted as a probability density function (pdf) at low surface densities

(~0.15 molecules per μm2). In this case, well-separated fluorescent spots could directly be imaged.

(b) After significantly increasing the surface densities (~15 molecules per μm2) we applied the

TOCCSL protocol. Virtually no difference was found between the two distributions, showing that

TOCCSL indeed conserves the stoichiometry of the fluorescent labelling. (c) A fit of the pdf

obtained from (b) ( full line) using a linear combination of the brightness distributions of

fluorescein monomers, dimers, trimers, etc. (dotted lines) yielded the distribution of fluorescein

load on the antibodies. The inset shows the obtained weights representing the fraction of antibodies
carrying 1, 2, . . . N fluorescein molecules. Figure adapted with permission from [81]. Copyright

2005, American Institute of Physics

184 A. Anderluh et al.



8.3.1.3 Resting State Orai1 Diffuses as Homotetramer in the Plasma

Membrane of Live Mammalian Cells

Store-operated calcium entry (SOCE) is a pivotal process for many cellular signal-

ing events involved in proliferation, apoptosis, secretion, and gene expression. In

conjunction with STIM1, Orai1 is the key protein in SOCE, as it represents the

essential pore-forming unit of SOCE channels. The calcium concentration in the

endoplasmic reticulum (ER) is sensed by STIM1 and the information is transmitted

to Orai1. Although it was shown before that Orai1 forms tetramers in the function-

ing channel [88], it was not clear if the channels only form after signaling via

STIM1 or if the channels are already pre-assembled in the inactive state. We stably

transfected a T24 cell line with Orai1-mGFP and determined the oligomeric state of
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Fig. 8.6 Imaging of long lived mobile nanoplatforms. (a) Overlay of a white light image and a

fluorescence image of a cell expressing mGFP-GPI. The analysis region for the TOCCSL

experiment is indicated by the black square. (b) From left to right: pre-bleach image, post-

bleach image and the TOCCSL image used for brightness analysis of the recovered proteins. (c)

shows the brightness distribution of single mGFP-GPI spots of the TOCCSL image plotted as a pdf

(black full line). The data were fitted with a linear combination of monomeric (dotted blue line)
and dimeric (blue solid line) contributions, yielding a distribution of ~68% monomers and ~32%

dimers. (d) A strong dependence of the dimer fraction on the surface density of mGFP-GPI was

observed (black dots). Furthermore, cholesterol depletion led to monomerization of the complexes

(red squares and red triangles). This effect could be reversed by the replenishment of cholesterol

(black triangles). Figure adapted from [87]
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Orai1 with single molecule brightness analysis [49]. For our experiments high

expression levels of Orai1-mGFP in the cells was crucial to avoid underestimation

of the stoichiometry, since endogenous subunits were still present in the cell and

thereby mix with Orai1-mGFP. Using our TOCCSL method, we recorded bright-

ness distributions of single recovering signals, which could be fitted with a linear

combination of GFP oligomers. The fits clearly indicated that Orai1 moves as

tetramers in the resting state of HEK cells.

8.3.1.4 The Serotonin Transporter (SERT) Forms Monomers

and Oligomers in the Plasma Membrane

The serotonin transporter (SERT) is an integral membrane protein belonging to the

closely related family of neurotransmitter: sodium symporters (NSS). SERT is

endogenously expressed in serotonergic neurons of the raphe nuclei of the human

brain. Here it is responsible for the reuptake of the monoamine neurotransmitter

serotonin from the synaptic cleft and it thereby terminates the chemical signaling

process between two neighboring neurons. It was known from biochemical as well

as FRET experiments that SERT forms at least dimers in the plasma membrane of

living cells [22, 23, 28, 29]. The actual size, stability and composition, however,

were not known. Although the functional unit in terms of serotonin uptake activity

seemed to be a monomer for NSSs [20], there were several indications that

oligomerization plays a role in membrane trafficking [20] and reversal transport

of serotonin after amphetamine application [33]. We used TOCCSL and single

molecule brightness analysis to evaluate the stoichiometry of SERT in the plasma

membrane of living cells [30]. In this study, we found that SERT indeed forms

higher oligomeric structures in the plasma membrane. The data shows a variety of

different configurations ranging from monomers to at least pentamers that coexist

in the same cell, in agreement with a linear aggregation model. Interestingly, we

found that the oligomeric distribution is independent from SERT density at the

plasma membrane (Fig. 8.7).
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Fig. 8.7 Oligomeric state of SERT at different surface densities. Comparison of different

expression levels: high (black) and low surface density (grey), shows no difference in SERT

oligomerization. The mean densities of SERT were ~29 mGFP-SERT/μm2 (low surface density)

and ~840 mGFP-SERT/μm2 (high surface density). Figure from [30]
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8.4 Using TOCCSL to Evaluate Interaction Kinetics

In addition to oligomeric sizes of a specific protein, also interaction kinetics are of

importance to describe protein aggregates. It may well be that oligomers only form

after activation or inactivation of the protein, but also constitutive oligomers could

be present. Hence, knowing the interaction kinetics between protomers may yield

indications for the function of oligomerization. In this chapter, we would like to

demonstrate how TOCCSL could be used to evaluate both short-term (in the range

of the recovery time) as well as long-term (on a minutes time scale) interactions of

subunits in a complex.

8.4.1 Short-Term Interactions

After complete photobleaching of the analysis region in the first phase of a

TOCCSL experiment, fluorescently labelled protein oligomers diffuse as clusters

into the bleached region. On their way, they will collide with bleached protein

clusters and (if the clusters are not stable) likely exchange subunits, so that the two

populations will mix in the analysis region. This will reduce the brightness of the

individual clusters, since oligomers now contain both fluorescent and bleached

subunits. If the subunit exchange takes place on a short time-scale (in the range

of the recovery time necessary for the experiment), the recovery time can be

deliberately varied to obtain information on the stability of the oligomer: extension

of the recovery time would in this case increase the fraction of lower oligomeric

states, whereas reduction of the recovery time would increase the fraction of higher

oligomers.

Another possibility to directly show rearrangement of protomers is the applica-

tion of 2-color-TOCCSL and single molecule co-tracking; during recovery, disso-

ciation processes may be directly observable if they take place on time scales

shorter than the time necessary for full fluorescence recovery of the analysis region.

Analysis of the association of proteins, however, is not straightforward, since the

vast majority of putative interaction partners in the analysis region are

photobleached and hence not visible.

8.4.2 Long-Term Interactions

If the interaction kinetics within an oligomer is rather long, it will be highly unlikely

to observe a dissociation process during diffusion into the bleached analysis region.

In order to evaluate the stability of protein oligomers that exhibit rather stable

interactions between the subunits, we recently designed a TOCCSL protocol based

on repetitive TOCCSL runs on the same cell [30]. The principle of the method is

depicted in Fig. 8.8: One TOCCSL run per minute is performed over e.g. 10 min on
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the same cell. After each TOCCSL run, the oligomeric distribution is monitored on

the recovery image using single molecule brightness analysis. Pooling the data

obtained from multiple cells then provides brightness distributions as a function of

time. Two scenarios can be discriminated: If the interaction of subunits within a

given complex was stable, repetitive TOCCSL runs would reduce the total number

of observed fluorescent spots on the plasma membrane, but would not alter the

brightness distribution (Fig. 8.8, scenario i). In contrast, if the exchange rate of

subunits between oligomers was high, bleached subunits from the previous

TOCCSL experiments would rearrange with unbleached subunits. Over time, this

mixing would increase the number of complexes comprised of both dark and

fluorescent subunits, thereby shifting the observable oligomeric distribution

towards smaller structures (Fig. 8.8, scenario ii).

8.4.2.1 An Example: SERT Forms Stable Oligomers at Plasma

Membrane

We applied the method of repetitive TOCCSL to evaluate the oligomer stability of

the human serotonin transporter (SERT) at the plasma membrane of chinese

hamster ovary (CHO) cells [30]. In order to be able to detect mixing of subunits,

bleaching of a sufficient fraction of complexes has to be ensured. To evaluate this,

we determined the overall fluorescence intensity of the plasma membrane over

time, showing that ~50% of the complexes were bleached at the end of the

experiment. We observed no change in the oligomeric state at the plasma mem-

brane with increasing number of TOCCSL runs (Fig. 8.9). This indicates stable

association of SERT oligomers at the plasma membrane. We concluded that SERT

oligomers are pre-formed at an unknown organelle in the cell before they reach the

plasma membrane.

Photobleaching

rapid exchangeno exchange

i ii

Fig. 8.8 Possible behavior of proteins after stoichiometric photobleaching. Transient interaction

of subunits in a complex would lead to rearrangement and hence would result in a mixed

population of bleached (grey) and unbleached (green) molecules. In this case, the number of

unbleached dyes per oligomer would be reduced (right). In contrast, stable interaction produces

either completely bleached or unbleached oligomers, without effecting the distribution of oligo-

meric states (left)
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Chapter 9

Spatiotemporal Dynamics of Nicotinic

Acetylcholine Receptors and Lipid Platforms

Francisco J. Barrantes

Abstract The relationships between neurotransmitter receptors and their mem-

brane environment are complex, mutual (bidirectional) and physiologically impor-

tant. Some of these relationships are established with subsets of the membrane lipid

population, in the form of lipid platforms, lateral heterogeneities of the bilayer lipid

having a dynamic chemical composition distinct from that of the bulk membrane. In

addition to the equilibrium between the biosynthetic production, exocytic delivery

and recycling of receptors on the one hand, and the endocytic internalization on the

other, lateral diffusion, clustering and anchorage of receptors at the lipid platforms

play key roles in determining the amount of active receptors at the synapse. Mobile

receptors traffic between reservoir non-synaptic membranes and the synapse pre-

dominantly by thermally driven Brownian motion, and become immobilized at the

perisynaptic region or the synapse proper by various mechanisms. These comprise:

(a) clustering mediated by homotropic inter-molecular receptor-receptor associa-

tions; (b) heterotropic associations with non-receptor scaffolding proteins or the

subjacent cytoskeletal meshwork, leading to diffusional “trapping”, and (c) protein-

lipid interactions, particularly with the neutral lipid cholesterol. Preceded by a brief

introduction on the currently used methods to study protein lateral mobility in

membranes, this review assesses the contribution of some of these mechanisms to

the supramolecular organization and dynamics of the paradigm neurotransmitter

receptor of muscle and neuronal cells—the nicotinic acetylcholine receptor

(nAChR). The translational mobility of nAChRs at these two cell surfaces differs

in terms of diffusion coefficients and residence intervals at the synapse, which

cover an ample range of time regimes. Neuronal α7 nAChRs exhibit diffusion

coefficients similar to those of other neurotransmitter receptors and spend part of

their lifetime confined to the perisynaptic region of glutamatergic (excitatory) and

GABAergic (inhibitory) synapses; they may also be involved in the regulation of

the dynamic equilibrium between excitation and inhibition in brain.
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Abbreviations

αBTX α-Bungarotoxin
FCS Fluorescence correlation spectroscopy

FRAP Fluorescence recovery after photobleaching

MSD Mean-square displacement

nAChR Nicotinic acetylcholine receptor

SPT Single particle tracking

TIRF Total internal reflection fluorescence

9.1 Introduction

The motion of proteins in cell-surface membranes plays a fundamental role in the

communication dynamics of the cell with its external and internal milieux. This is

dramatically magnified in the synapse, the subcellular structure specialized in

(mostly) chemical and electrical communications between cells. Protein motions

depend on a multiplicity of factors: the physicochemical properties of the host lipid

bilayer, protein-protein homotropic intermolecular associations, heterotropic asso-

ciation with other proteins (e.g. scaffolding, cell-adhesion, cytoskeletal, or motor

proteins) and lipid-protein interactions. Physicochemical properties of the lipid

bilayer vary from cell to cell and between different membrane compartments and

contribute to the heterogeneity of motional regimes experienced by the same protein

in different regions of the cell. By far the most important element that influences

diffusional motion in the 2-D plane of the membrane is the degree of association

with partner molecules (obviously linked with the dynamic phenomena of crowding

and clustering), scaffolding proteins or cytoskeletal barriers (e.g. submembrane

actin corrals), or tethering to the cytoskeleton [1–5] or lipid platforms [6–8].

In response to acute, mid- (e.g. circadian) and long-term (e.g. denervation

supersensitivity) signaling stimuli, and probably in combination with self-

regulatory mechanisms, the number and disposition of cell-surface neurotransmitter

receptors at the plasma membrane play key roles in determining the functional

activity of the synapse, and in particular its strength. This should be envisaged first

and foremost in a dynamic perspective: the adaptive changes in the synapse are

constantly operative, synaptic receptors being incorporated through active trans-

port, recycling mechanisms, or lateral diffusion, or excluded from the synapse by

the latter phenomenon or by various endocytic processes. In the central nervous

system (CNS), some of these structural changes may serve for long-term storage of

memory. In this review I discuss the idea that the dynamic cross-talk between

neurotransmitter receptor molecules and the lipid platforms which serve as their

habitats at the cell surface (see recent review in [9]) plays a role in the function of

these transient protein-lipid complexes. One can envisage these reciprocal interac-

tions as an orchestrated dialogue with mutual modulatory effects: lipids being

selected and sorted in from the bulk bilayer by the receptors’ structural features
and, reciprocally, lipids tuning and optimizing receptor function, in a process which
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probably evolved over the course of millions of years [10, 11]. The nicotinic

acetylcholine receptor (nAChR) protein will be used as the paradigm to analyze

these phenomena, and the translational dynamics of this receptor protein compared

to those of other neurotransmitter receptor proteins in the CNS.

9.2 Experimental Approaches to Investigate the Motion

of Proteins and Lipid in Membranes

Various biophysical techniques have been used to address the subject, but three

complementary methods have predominated: fluorescence recovery after

photobleaching (FRAP) [12, 13], fluorescence correlation spectroscopy (FCS)

[14–20], and single-particle (molecule) tracking (SPT) [4, 21–27]. FRAP consists

of bleaching an area of the membrane containing the intrinsically (e.g. an incorpo-

rated fluorescent protein) or extrinsically labeled proteins or lipids in question with

a rapid and relatively intense pulse of light, and then following the time-dependent

recovery of the fluorescence signal with a much lower illumination power. The

replenishment of the fluorescence signal arises from the diffusion into the

photobleached area of fluorescence molecules originally located outside this area.

The fluorescence recovery curves are typically characterized by two parameters, a

diffusion coefficient (D) and a mobile fraction (Mf). FCS is also an ensemble

method enabling one to study the dynamics (diffusion coefficient), concentrations

and molecular interactions (molecular aggregation, binding-unbinding,

co-diffusion of two molecular entities, etc.) with high temporal and spatial resolu-

tion by following the passage of fluorescently-labeled molecules through very small

volumes of the cell and analyzing the statistics of fluorescence intensity fluctuations

as a function of time (see review in [28]). Recently, the combined application of

FCS and superresolution optical microscopy (see section below) has enabled the

observation of some of the above phenomena down to the nanometer scale (see

recent review in [29]).

SPT can interrogate the motion of membrane proteins in the native membrane

milieu of a living cell by following multiple trajectories of a sufficiently large

number of single (e.g. fluorescently-labeled) molecules and extracting the apparent

average diffusion coefficient from the mean-square displacement (MSD) of the

molecules. Some shortcomings of these techniques have been pointed out, such as

the invasive nature of FRAP, the essentially “local” interrogation of FCS, and the

need to observe isolated particles for relatively long periods of time of SPT

[30]. The limited spatial and/or temporal resolution of these techniques is still

subject to criticism, since they provide a “global” or “macroscopic” diffusion

coefficient which reflects the overall mobility over areas of several square microns

[31]. In spite of these criticisms, SPT [1, 24–26, 32] still remains the most common

approach for analyzing molecular diffusion in membranes, followed by the FRAP

technique (see. e.g. [33–36]). New analytical tools have appeared in recent years to

extend the applicability of SPT analysis to more “real life” (e.g. crowding,
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anomalous diffusion), complicated membrane environments. One such approach is

based on Bayesian and Akaike information criteria in information theory for

classifying molecular trajectories [37–40]. The Bayesian method has also been

combined with superresolution microscopy techniques such as STED to improve

the determination of still positions in sub-diffraction images of GPI-anchored

membrane proteins [41]. A recent work [42] reviews the “score” resulting from a

competition in which 14 available SPT analytical methods were analyzed on the

same, complex data set, offering comparisons among SPT methods to address a

given biological question.

9.3 The Nicotinic Acetylcholine Receptor (nAChR) and Its

Equilibria at the Synapse

The nAChR is the prototype of the superfamily of pentameric ligand-gated ion

channels, a collection of transmembrane receptor proteins with intrinsic anion-

selective channels (the γ-amino butyric acid type A (GABAA), γ-amino butyric

acid type C (GABAC) and the glycine receptor) and cation-selective channels as is

the case with the 5-HT3 (serotonin) receptor and the nAChR [43, 44]. These

transmembrane proteins are composed of five polypeptide subunits organized

pseudo-symmetrically around a central pore. Each subunit contains an extracellular

domain, four hydrophobic transmembrane segments arranged in the form of three

concentric rings around the pore [45] and a short extracellular carboxy-terminal

domain [46].

In the peripheral nervous system, at the neuromuscular junction in adult

myotubes, the nAChR macromolecule is highly concentrated in a relatively

small area of the cell, packed at the remarkably high density of 10,000–20,000

particles μm�2. Receptor density drops abruptly in the rest of the plasma mem-

brane (<100 particles μm�2 [47, 48]). Despite this abrupt difference in the density

of nAChRs, it has been calculated that the pool of extrasynaptic receptors repre-

sents ~99% of the total amount of receptors present at the cell surface of muscle

fibers [49]. As indicated previously, the functional efficacy of the synapse heavily

depends on its strength. This in turn is directly related to the number of receptors

present at the synapse, which depends on the equilibrium between two sets of

factors: (i) lateral diffusion into and out of the synaptic region from non-synaptic

(“extrasynaptic”) areas, and (ii) the trafficking and turnover of receptors at the cell

surface, determined by the rate and extent of biosynthesis and exocytic delivery to

the plasmalemma, plus the contribution of receptor recycling back to the surface,

on the one hand, and removal of synaptic receptors by internalization (endocytosis)

or two-dimensional diffusion driving them away from the synaptic region, on the

other. The first of these two phenomena is usually viewed as the equilibrium

between a diffuse pool of extrasynaptic receptors and the clustered receptor pool

in the synapse. Recent work in C. elegans neuromuscular synapses has shed light
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on mechanisms modulating this equilibrium: the leucine-rich repeat protein RSU-1

(Ras suppressor-1) is required for the proper distribution of nAChRs on the muscle

surface. RSU-1 mutants form ectopic, “illegitimate” extrasynaptic nAChR clusters

at the expense of synaptic clusters [50]. The density of nAChRs is also regulated

by a complex cascade involving nerve-secreted agrin, activating the muscle-

specific kinase MuSK through the protein Lrp4, in association with binding

partners dok-7 and Tid1, various kinases and phosphatases and Rho-family small

GTPases (reviewed in [51]). Diffusion into the endplate region is also rare except

for accidental or man-tailored conditions such as in denervation hypersensitivity,

in which migration of extrasynaptic receptors to the motor endplate occurs in a

transient fashion. Several pathological conditions of the neuromuscular junction

are associated with an insufficient number of receptor molecules, the disease

myasthenia gravis probably being the most prominent example.

In the brain, ACh mediates distant signaling through projection neurons and

local signaling via interneurons; the type of message conveyed by ACh depends on

a variety of factors, including site of release, the localization of the target neurons,

the target receptor subtypes [52] and the status of the target cells at the time of

release. Moreover, central cholinergic signaling may be confined to the synapse or

involve the de-localized diffusion of the neurotransmitter in the extracellular milieu

and binding to non-synaptic sites [53, 54].

In the CNS the dynamics of neurotransmitter receptors at the synapse have been

associated with a key physiological phenomenon: synaptic plasticity. Indeed, the

rapid lateral exchange of receptors at the synapse with those in non-synaptic areas is

thought to underlie the plastic behavior of excitatory glutamatergic synapses

(i.e. those operating through AMPA and NMDA receptors, as described below)

[55–58]. It has been surmised and supported by a variety of solid experimental

approaches that receptors’ effective residence time at excitatory synapses directly

affects synaptic efficacy and plasticity, that is, long-term potentiation (LTP), long-

term depression (LTD) and other biologically important processes which are

believed to lie at the root of key cognitive functions such as learning and memory.

Furthermore, GABAergic and glycinergic receptors at inhibitory synapses appear

to be dynamically regulated through similar processes. Important cognitive func-

tions like learning and memory [59–61] may bear relationship with the ability of α7
nAChRs to reside intermittently in the neighborhood of glutamatergic and

GABAergic synapses, and due to their high Ca2+ permeability, differentially

regulate the excitatory/inhibitory balance and LTP in discrete neuronal locations

[62–65].

9.4 Ontogenetic Changes in nAChR Mobility

The pioneer study of Axelrod et al. [66] using the fluorescence recovery after

photobleaching (FRAP) technique demonstrated that in developing muscle cells the

highly clustered nAChRs present in large (20–60 μm) patches are practically immobile,
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with an apparent lateral diffusion coefficient (D) of <10�4μm2 s�1 (<10�12 cm2 s�1).

The translational mobility of diffusely distributed nAChRs in other regions of the same

plasma membrane is only slightly faster (D~0.5� 10�2μm2 s�1). The relative immo-

bility of synaptic nAChRs at the neuromuscular junction is probably due to a multi-

plicity of factors. The muscle endplate and the electromotor synapse of electric fish are

compact “islands” with a huge absolute number of receptor macromolecules densely

packed at an extraordinarily high density. It is thus not surprising that receptors hardly

diffuse in the plane of the membrane. . . In order to dissect the contribution of intrinsic
(e.g. receptor-receptor interactions, clearly apparent e.g. in early electron micrographs

of the Torpedo electroplax postsynaptic membrane [67]) and extrinsic (e.g. corralling

by the submembrane cytoskeletal meshwork) protein clustering factors it is useful to

resort to simpler model systems. Heterologous constitutive expression of receptors in

cells is a compromise system offering the possibility to conduct a variety of studies

under physiological conditions. The clonal cell line CHO-K1/A5 [68] robustly

expresses adult muscle-type nAChR at densities lower than those of the endplate in

an adult muscle cell or the motor plate in the electric fish synapses. Recycling of

nAChRs is too slow to contribute to the cell-surface pool within the experimentally

observed period [69]. Furthermore, since one has the possibility to increase the

complexity of the model system one building block at a time, the lack of

non-receptor scaffolding proteins like rapsyn or the clustering factor agrin make the

CHO-K1/A5 a useful mammalian expression system to explore “intrinsic” factors

involved in clustering and 2-D diffusion of the nAChR protein and to interrogate in a

systematic manner for possible involvement of additional components.

The 2-D mobility of the adult muscle-type nAChR at the plasma membrane of

CHO-K1/A5 cells and its dependence on membrane cholesterol levels were mea-

sured using the FRAP technique in the confocal mode (as in [70, 71]). A defined

2-D region was selected from the confocal section of the cell membrane, thus

restricting the analysis to a few thousand fluorescent-tagged nAChRs. The region

was photobleached by transiently increasing the laser power of the confocal

microscope, and the diffusive exchange of bleached proteins with nearby

unbleached molecules was then followed using low-intensity laser excitation.

Recovery into the bleached region can be described by two parameters, an apparent

lateral diffusion coefficient, D, and a mobile fraction, Mf [1, 72, 73]. D provides a

measure of the kinetics of translational mobility, whereas Mf reports on the pro-

portion of fluorescent molecules that are able to diffuse back into the bleached area

over the time course of the assay [74]. αBTX-labeled nAChRs exhibited a value of

0.46� 10�2 μm2 s�1 [75], a value similar to that of the mobile nAChR fraction in

developing rat myotubes (0.5� 10�2 μm2 s�1) [66] and that of diffusely distributed

nAChR in adult rat muscle fibers in cell culture (0.25� 10�2 μm2 s�1)

[76, 77]. Methyl-β-cyclodextrin-mediated depletion of cholesterol produces a

reduction in the fraction of mobile nAChRs from 55 to 20% [75]. Concomitantly,

the apparent diffusion coefficient dropped to half the control value. Cholesterol

enrichment had the opposite effect.

We subsequently employed the SPT technique in the TIRF model to study

nAChR translational diffusion in the same cell model system. Fluorescent-labeled
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(AlexaFluor488 α-BTX) nAChR particles imaged with TIRF are diffraction-limited,

and puncta of about 0.2 μm in diameter could be imaged in wide-field microscopy

[78, 79]. The density of these puncta is high, yet there is enough contrast and their

separation suffices to track the trajectories with a good signal-to-noise ratio.

CHO-K1/A5 cells were labeled with a monovalent ligand (AlexaFluor488α-BTX)
or a multivalent ligand (anti-nAChR mAb210 monoclonal antibody followed by

AlexaFluor488-conjugated IgG secondary antibody) at 4 �C [80]. The microscopic

apparent diffusion coefficient D2–4 [4] of the receptor labeled with α-BTX shifted

from a wide distribution spanning from ~6.7� 10�4 – 1 μm2 s�1 (~6.7� 10�12

� 1� 10�8 cm2 s�1) to a much narrower distribution with an upper limit close to

5.0� 10�4 μm2 s�1 upon cholesterol depletion [80]. In the case of antibody-labeled

samples, the proportion of slow-moving particles was significantly higher, with a

net displacement of particle motion towards the immobile confined regime. D2–4

values as low as ~3.3� 10�5 μm2 s�1 (lower limit) to ~6.7 � 10�2 μm2 s�1 (upper

limit) were observed. Control samples labeled with mAb210 already exhibited a

substantial proportion (19.4%) of immobilized particles. This proportion markedly

increased upon cholesterol depletion of the cells, especially during the initial

10 min (83.3%). Simonson and coworkers [81] reported a 2-D diffusion coefficient

of 0.1 μm�2 s�1 for α7-5HT3 chimeric nAChRs heterologously expressed in HEK

cells. The quantitative local point-pattern analysis indicated that nAChR particles

were not randomly distributed but organized in clusters, which differed in size,

brightness and density between BTX and antibody-treated samples. Interestingly,

the density of the nAChR clusters also varied as a function of time of exposure to

methyl-β-cyclodextrin, reaching a maximum at ~10 min treatment for BTX- and

~20 min for mAb-labeled samples [80].

The scaffolding protein rapsyn affects nAChR distribution at the cell surface

[82–84]. The myristoylated N-terminus of rapsyn molecules anchors nAChRs to the

plasma membrane in a 1:1 stoichiometry, playing a major role during myoblast

differentiation and neuromuscular junction development. In myoblasts the majority

of the receptors were found to be immobile, with 20% of the receptors exhibiting

restricted diffusion in small domains of about 50 nm [85]. Before differentiation,

only 2% of the nAChRs showed Brownian diffusion, 24% diffused in confined

regions, and 74% were immobile. Upon differentiation into multinucleated myo-

blasts, a strong diminution of the immobile fraction was observed, in conjunction

with an increase in the proportion of confined diffusing receptors from 20 to 34%,

and Brownian-diffusing receptors from 2 to 10%. In a myoblast cell line devoid of

rapsyn, the fraction of mobile nAChRs was higher, and was accompanied by a

3-fold decrease in the immobile population in comparison to rapsyn-expressing

cells. About 50% of the mobile receptors were confined to domains of about

120 nm. Irrespective of the presence of the nAChR-anchoring protein rapsyn,

nAChR was confined to domains: when rapsyn was present, the size of the domains

diminished [85]. This study is in agreement with our findings using direct imaging

of nAChR nanoclusters by superresolution microscopy in cells devoid of

rapsyn [79].
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9.5 Effect of Cholesterol on nAChR Translational Mobility

Several FRAP studies have shown that cholesterol depletion affects the mobility of

various proteins at the plasma membrane although the nature, extent and sign of the

changes remain a contentious subject. In FRAP experiments performed on cells

treated with Mevinolin, a statin that inhibits cholesterol biosynthesis, we found that

nAChR mobility was affected in a manner similar to that reported using

methyl-β-cyclodextrin mediated acute cholesterol depletion [75]. FCS in the con-

focal microscopy modality corroborated the results of FRAP microscopy. Whereas

values of D of 5.3� 0.4� 10�2 μm2 s�1 were observed in control cells, D was

reduced to 3.7� 0.3� 10�2 μm2 s�1 upon cholesterol depletion [75].

Some authors reported that the mobility of raft- and non-raft resident proteins

decreases when cholesterol is removed from the plasma membrane

[74, 86]. Restricted diffusion of membrane proteins upon cholesterol depletion is

believed to result from the formation of solid-like clusters in the membrane

[87, 88]. Sun et al. [89] postulate that cholesterol affects the mechanical properties

of plasma membrane through the underlying cytoskeleton. Using SPT methods,

another group [90] found that cholesterol depletion produces confinement of the

epidermal growth factor receptor and human epidermal growth factor receptor

2 mobility, whereas cholesterol enrichment extended the boundaries of the

mobility-restricted areas. In contrast, other authors observed an increase in the

lateral mobility of the raft-resident proteins CD44 and wild-type GFP-H-Ras after

cholesterol depletion [35, 91]. Removal of cholesterol, particularly with

methyl-β-cyclodextrin, not only alters membrane viscosity but can also hinder

membrane protein diffusion [92].

9.6 Cholesterol and Scaffolding Proteins Differentially

Affect Neuronal α3 and α7 nAChR Mobility

Ciliary ganglion neurons were the first test preparation where α7 nAChRs were

reported to occur in liquid-ordered lipid domains (“rafts”) in somatic spines

[93]. In their quantum dot SPT study of chick ciliary ganglion neurons, Berg and

coworkers [94] found that α7 and α3 nAChRs had similar mobility, but differed in

the nature of their synaptic restraints. Furthermore, cholesterol depletion by treat-

ment with cholesterol oxidase increased the mobility of extrasynaptic α3 nAChRs

from 0.188 to 0.208 μm2 s�1 without affecting the proportion of immobile α7
nAChRs.

In contrast, cholesterol depletion affected both synaptic and extrasynaptic α7
nAChRs, and the proportion of receptors visiting synaptic territory increased.

Cholesterol depletion also raised the proportion of mobile α3 nAChRs from 34 to

54%, without affecting that of α7 nAChRs. Disruption of PDZ-containing scaffolds
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or of actin filaments in chick ciliary ganglion neurons increased the mobility of α7
nAChRs but not that of α3, as expected from the wealth of evidence on the role of

the actin and PDZ-scaffolds in maintaining synapse, and in particular dendritic

spine, architecture [95]. It has been previously reported that in one cell, a single

species of protein can have one subset undergoing Brownian diffusion and other

subsets undergoing confined or anomalous diffusion [96]. Muscle-type nAChR

mobility also displays a strong dependence on cytoskeletal integrity [97–99] in

developing myotubes and in the adult neuromuscular junction.

9.7 Diffusional Modulation and Confinement of nAChR

Assemblies by Cytoskeletal Components

and Scaffolding Proteins

There is evidence of interactions between lipids, lipid domains and the cytoskeleton

[100–102]. According to Kwik et al. [103] cholesterol depletion produces general

effects on the architecture and function of the membrane, making the

sub-membrane cytoskeleton and in particular the cortical actin network more

stable. Such a reorganization of the actin meshwork would be associated with

reduced receptor mobility. Using FCS and STED it was recently shown that

membrane-bound actin networks influence lipid phase separation; a model com-

bining the coupling of membrane composition, membrane curvature, and the actin

pinning sites was postulated from this study [100]. More recently, confocal FRAP

distinguished two protein populations of membrane proteins, including some clas-

sical “synaptic” proteins in PC12 cells, having diffusion coefficients D of 0.22 and

0.01 μm2 s�1, respectively [104]. When FCS in the superresolution mode (STED-

FCS) was applied, the spatio-temporal resolution afforded the determination of

D on fast diffusing molecules (slowly diffusing or immobile molecules do not

traverse the observation spot and do not cause intensity fluctuations, thus preclud-

ing their detection). D was found to be 0.1–0.6 μm2 s�1 for the highly mobile

protein fractions, which varied inversely proportional to their density. Interestingly,

cholesterol level was found to be the most important factor in determining protein

mobility and stabilizing protein assemblies (clusters) [104].

Cytoskeletal interactions have been shown to modulate the diffusion and con-

finement of membrane proteins [3, 5, 105, 106]. Proteins tethered to highly dynamic

actin strands may undergo clustering in response to actin aster formation. Another

process involving the actin meshwork and affecting receptor mobility is the forma-

tion of fences or pickets, as originally postulated by Kusumi and coworkers [3, 5,

105, 107, 108]. The “picket fence” or “hop diffusion” model postulated that the

cortical actin cytoskeletal meshwork underneath the plasma membrane hinders the

diffusion of membrane proteins (and lipids) in the plane of the membrane and

confines their movement within those boundaries. Occasionally, proteins or lipids

confined within these “transient confinement zones” hop these barriers, jumping to
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a new confined compartment or diffusing more freely in unconfined areas. In the

case of the muscle-type nAChR, cholesterol depletion affected the long-range

relationship of nAChR nano-clusters of ~55 nm diameter, changing from a random

to a non-random distribution (within a radius of 0.5–1.5 μm) upon depletion

[79]. Interactions of these nano-clusters with the cytoskeleton were invoked as a

possible explanation for these changes since nAChR mobility at the plasma mem-

brane appears to be sensitive to the integrity of the cytoskeleton [76, 97–99]. Fur-

thermore, interaction between nAChR molecules and the cytoskeleton is of

physiological and developmental importance: it is a requisite step in the formation

and stability of the neuromuscular junction [109]. In subsequent work from our

laboratory the effects of cytoskeleton disruption on nAChR dynamics [75] were

experimentally explored. Even though cholesterol depletion-induced loss of

nAChR mobility was partially restored in cells incubated with Latrunculin A

[75], the percentage of mobile nAChRs in these cells did not reach control levels.

From this we concluded that although the cortical actin meshwork is likely involved

in receptor mobility at the cell surface in cholesterol-depleted cells, it is not

necessarily the only factor influencing nAChR translational diffusion. Other corti-

cal cytoskeletal proteins and/or actin-binding proteins may be involved, and direct

interactions of cholesterol with the nAChR may also be implicated. Furthermore,

inhibition of actin polymerization by cytochalasin D, which binds to the barbed end

of the actin filament and blocks monomer addition, resulted in inhibition of nAChR

internalization [69]. However, direct effects of cholesterol on the nAChR cannot be

discarded when considering the profound influence of this lipid on the macromol-

ecule’s cell surface mobility.

Disruption of the cytoskeleton or the microtubule networks with Latrunculin A

or nocodazole, respectively, affected the mobility of the neuronal α7 nAChR but

not its ability to form clusters, as we have observed in muscle-type nAChRs using

superresolution microscopy [110]. The exact mechanisms of nAChR immobiliza-

tion in CNS synapses and in particular the role of the cytoskeleton or other

diffusional traps merit further investigation.

Which other factors might contribute to nAChR mobility, trafficking and clus-

tering? Various post-translational modifications are known to occur in nAChRs: the

macromolecule is the target of disulphide bond formation, glycosylation, phosphor-

ylation, palmitoylation and other modifications which might affect nAChR dynam-

ics. Palmitoylation of assembling α7 subunits in the endoplasmic reticulum has

been shown to play a role in the formation of functional α-bungarotoxin sites [111,

112]. A linear relationship has been found between average nAChR half-life and

the percentage of nAChRs with phosphorylated β subunit in cultured muscle cells.

Phosphorylation occurs specifically at tyrosine residue 390 of the β subunit, and is

induced by agrin. This unexpected role of agrin in downregulating nAChR turnover

most likely stabilizes receptors at developing synapses and contributes to their

extended half-life at adult NMJs [113]. Phosphorylation-induced global conforma-

tional changes have been recently proposed to be a universal phenomenon among
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ligand-gated ion channels, and also to play a role in pathophysiological phenomena

such as nicotine addiction in the specific case of the nAChR [114].

In addition to the above post-translational modifications, antibody crosslinking

plays an important role in confining and immobilizing receptors under pathological

conditions. Antibody-induced crosslinking results in a strong diminution of recep-

tor mobility in developing rat myotubes in primary culture [115]. Neuromuscular

dysfunction in the autoimmune disease myasthenia gravis is caused primarily by

the crosslinking of autoantibodies to the muscle endplate nAChR, although other

antigens such as muscle-specific tyrosine kinase and low-density lipoprotein

receptor-related protein 4 are currently recognized as molecular targets in muscle

[116]. Antibody binding results in impaired receptor function, diminished neuro-

muscular transmission and the characteristic weakness and rapid-onset fatigue

clinical symptoms. The antibody binding also triggers the endocytic internalization

of nAChRs in C2C12 muscle cells and in CHO-K1/A5 cells [69]. This is also

observed using the SPT technique in adult-type nAChR expressed in CHO-K1/A5

cells. Instead of the long particle walks observed with the monovalent ligand

α-BTX, the motion of antibody-crosslinked nAChR particles was restricted to

much shorter trajectories confined within relatively small areas [80].

9.8 Residence Time, Mobility and Function

of Neurotransmitter Receptors and Lipid Platforms

in the Central Nervous System

In brain, neuronal excitability depends on the homeostatic equilibrium between

inhibitory and excitatory neurotransmission, which is mainly mediated by GABA

and glutamic acid, respectively, with additional contributions from other neurotrans-

mitters. The principal excitatory neurotransmitter in brain is glutamic acid. There are

various forms of glutamatergic ion channels. They include AMPA (α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid), kainic acid and N-methyl-D-aspartic

acid (NMDA) receptors. These macromolecules having both neurotransmitter recep-

tor and ion channel properties fulfill quite different functions. AMPARs generate fast

excitatory postsynaptic potentials by activating non-selective cationic channels per-

meable to Na+ and K+ with an equilibrium potential near 0 mV. AMPAR channels are

responsible for most of the fast excitatory synaptic transmission in the central nervous

system. They are heterotetramers composed of four subunits termed GluR1- GluR4

and contain PDZ-domains: GluR1 binds to SAP1 and GluR2 binds to PICK1 or

GRIP/ABP. SAP97 has been postulated to intervene in the trafficking of AMPARs

from peri-synaptic to the post-synaptic region and influence glutamatergic transmis-

sion. AMPARs do not bind to the ubiquitous PSD-95 scaffolding protein. Clathrin-

dependent AMPAR endocytosis in the dendritic spines has been associated with the

phenomenon of long-term depression [117].
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NMDARs are also heterotetramers formed by two GluN1 and two GluN2 sub-

units surrounding a cation channel permeable to calcium [118–120]. NMDARs play

a key role in synaptic plasticity and are associated with various forms of learning

and memory. NMDARs have been reported to be associated with cholesterol-rich

domains in the excitatory synapse [121], which might regulate NMDAR composi-

tion, trafficking and ion-channel permeability. Changes in cholesterol content were

shown to inhibit NMDA-stimulated Ca2+ influx in hippocampal cells in culture

[122]. Cholesterol diminution redistributed the NMDAR GluN2B subunit, from Lo

to Ld membrane fractions [122].

The two most abundant forms of nAChR in brain are the heteropentameric

oligomer formed by α4 and β2 subunits and the homopentameric receptor formed

exclusively by α7 subunits [123]. The α7 nAChR is found in the neuronal soma and

also in the pre-, post-and peri-synaptic regions. Presynaptic α7 nAChRs modulate

the release of various neurotransmitters, and postsynaptic α7 nAChRs are involved

in the generation of postsynaptic currents [124]. Postsynaptic α7 nAChRs can be

associated with dendritic spines, in a peri-synaptic annulus [125]. Perisynaptic α7
nAChRs are found in the vicinity of GABAergic and glutamatergic synapses (see

below and e.g. [126]). The α7 nAChR exhibits unique functional properties that

distinguish it from other nicotinic receptors: (a) fast desensitizing kinetics,

(b) unusually high Ca2+ permeability and (c) high affinity for binding

α-bungarotoxin [127, 128]. The α7 nAChR is highly expressed in the hippocampus

and in GABAergic interneurons in particular. The hippocampus is one of the brain

regions mostly affected in Alzheimer’s disease, where it regulates inhibition of

hippocampal networks: activation of α7 nAChR blocks the induction of short-term

potentiation as well as LTP. It is involved in cognition and has been associated with

pathological states other than Alzheimer’s disease, such as some forms of schizo-

phrenia and Parkinson’s disease [129].
The residence lifetime of neurotransmitter receptors in the synapse plays an

important role in maintaining the inhibitory-excitatory balance. Most neurotrans-

mitter receptors are not permanently anchored to diffusional traps or scaffolding

domains at the synapse but appear to freely diffuse in the plane of the membrane at

rates between 0.1 and 0.5 μm2 s�1 [55, 57, 106, 130–133]. Glycine receptors [134]

and α7 nAChR [126] display similar motional behavior: both exhibit high mobility

in extrasynaptic areas and confined, low motion in perisynaptic and synaptic

domains. Confinement is inversely correlated to mobility [126, 132, 133].

In brain, glycine receptors are stabilized by microtubules in extrasynaptic

regions, and by gephyrin and actin filaments in synaptic regions [130]; AMPA

receptors become stable upon interaction with the protein GRIP1, which binds in

turn to microfilaments [135]. In addition to these anchoring heterotropic interac-

tions with non-receptor proteins, excitatory GluR1 AMPA receptors are also

immobilized transiently at individual synapses by activity, which is input-specific

[132]. This relative “trapping” results from the reduction of the diffusional

exchange between synaptic and extrasynaptic domains. In other words, AMPA

receptors transiently accumulate at distinct sub-regions of the postsynaptic mem-

brane, probably contained within distinct lipid platforms in which receptors
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experience restricted mobility (median D 0.023 μm2 s�1). In contrast, AMPA recep-

tors at neighboring inactive synapses are highly mobile (median D 0.138 μm2 s�1).

However, these differences in diffusion coefficients do not account for the net

difference in the number of receptors between active and inactive (“silent”)

synapses: AMPA receptors often escape from silent synapses, whereas they

remain trapped in active synapses, which actually capture receptors by diffusional

exchange.

In a recent study of inhibitory glycinergic receptors and their scaffolding

anchorage protein at the postsynaptic density, gephyrin, PALM time-resolved

superresolution microscopy showed that gephyrin clusters are comprised of several

sub-clusters, and that these undergo dynamic changes in the time-course of minutes

[136]. According to these authors, the morphological changes may correspond to

the splitting and merging of gephyrin clusters in the postsynaptic density, whose

size determines the number of receptors it can accommodate. Furthermore, the

number of the two key inhibitory neurotransmitters—glycine and GABAA—

increased with the number of gephyrin clusters at spinal cord synapses. This is

another reflection of gephyrin’s ubiquity in inhibitory synapses: gephyrin is

involved in the clustering of both glycine receptors and a major subset of

GABAA receptors; both compete for the same sites on the gephyrin molecule.

Palmitoylation of Cys212 and Cys284 in gephyrin has recently been reported to

be critical for the association of this protein with the postsynaptic membrane and

also essential for its clustering (trimers, hexamers and nonamers) [137]. Lack of

palmitoylation leads to mislocalization of gephyrin in non-synaptic regions. Con-

versely, increased palmitoylation is associated with gain-of-function,

i.e. augmented inhibitory GABAergic transmission.

In a study of α7 nAChR mobility in cultured hippocampal neurons, SPT was

carried out on a small fraction of receptors labeled with quantum dot-coupled

α-BTX [126]. It should be mentioned that in hippocampal neuronal cultures the

GABAergic interneurons are not expected to receive cholinergic innervation, since

they are deprived of inputs from distal anatomical brain regions such as the septum.

In spite of the absence of synaptic input, α7 nAChRs clusters are present on the

neuronal surface. Less than 20% of the receptors were found in clusters, categorized

as “synaptic”, as opposed to those labeled with the presynaptic marker synapsin

1, which were assigned to dendritic, postsynaptic, nicotinic sites. The majority

(78%) of the receptors were found in the form of aggregates in extrasynaptic areas

and were either classified as “axonal” (20%, highly mobile, D> 0.1 μm2 s�1,

Brownian motion with mostly linear trajectories) or perisynaptic, i.e. in the vicinity

of, but not co-localized with, excitatory glutamatergic (identified by mCherry-

Homer 1c staining) and inhibitory GABAergic (labeled with EGFP-gephyrin)

postsynaptic densities. The α7 nAChRs in perisynaptic locations differed in their

mobility, too, with lowest receptor mobility (>66% of the “peri-GABAergic” with

D~ 0.018� 0.03 μm2 s�1 and >70% of the “peri-glutamatergic” with

D~ 0.028� 0.04 μm2 s�1), reflecting local confinement domains, these differences

suggesting in turn that the tethering mechanisms holding these nicotinic receptors

in the vicinity of excitatory and inhibitory synapses differed as well [126]. What are
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the possible physiological implications of these findings? Stimulation of α7
nAChRs in hippocampal interneurons modulates GABAergic inhibitory postsyn-

aptic potentials, depressing them in some cases [138] or exciting them in other

instances [139]. In the latter case, the ACh-induced excitation of the bicuculline-

sensitive GABAergic interneurons could in turn excite or inhibit pyramidal neurons

in the CA1 region. Methyllycaconitine-sensitive α7 nAChRs also appear to affect

glutamatergic synapses, modulating back-propagating dendritic action potentials

and, hence, LTP [140]. Activation of α7 nAChRs influences postsynaptic NMDA

receptors, relieving the Mg2+ block and thus enhancing the probability of LTP

induction [141]. From this type of evidence, the conclusion was reached that their

perisynaptic localization and their high Ca2+ permeability endows α7 nAChRs with
the ability to regulate both excitatory and inhibitory CNS synapses independently

of their endogenous transmitter [126].

In the synapses between pre- and post-ganglionic neurons in the mouse subman-

dibular ganglion [142], the density of synaptic receptors is normally maintained by

the combination of exchange of receptors with non-synaptic regions, a diffusional

phenomenon occurring in the time course of minutes, and the turnover of cell

surface receptors, taking place in the course of hours. To measure the kinetics of

α7 nAChR, McCann et al. [142] resorted to various techniques. First, using

fluorescent α-BTX they identified postsynaptic and non-synaptic populations of

nAChRs. Postsynaptic nAChRs remained stable for days; non-synaptic nAChRs

were more dynamic, being replaced in the course of days. Secondly, using the

FRAP technique the authors studied nAChR lateral diffusion in the ganglionic

neurons, measuring a t1/2 of recovery of 47� 7 min and 11� 4 min for synaptic

and non-synaptic α7 nAChR clusters, respectively. Thirdly, to measure the turnover

rate of nAChRs in vivo, McCann et al. [142] resorted to a fluorescence and pulse-

chase technique [143] which enabled them to follow the fate of the nAChRs in the

living animal for several days. The rate of loss of cell-surface neuronal α7 nAChRs
(350 � 47 min) was found to be 60-fold faster than that of muscle-type nAChRs at

the neuromuscular junction [143, 144]. If living ganglion cell axons were severed,

synaptic receptors showed enhanced lateral mobility and insertion of new receptors

dramatically decreased, leading to near-complete loss of synaptic receptors and to

acute synaptic depression. Disappearance of postsynaptic spines and presynaptic

terminals ensued [142]. The authors concluded that rapid changes in synaptic

efficacy precede long-lasting structural changes in synaptic connectivity. FRAP

continues to be applied to the study of neuronal nAChRs. In a recent study, FRAP

revealed that the agonist nicotine, acting on α7 nAChRs in hippocampal postsyn-

aptic neurons, induces the stabilization and accumulation of GluA1-type AMPA

receptors [145].

Chick ciliary ganglion neurons in culture express homomeric α7 and

heteromeric α3 nAChR at their surface. nAChR lateral mobility was measured

using biotinylated α-BTX and biotinylated monoclonal antibody against α3
nAChRs, respectively, followed by streptavidin-coated quantum dots with an

emission wavelength of 605 nm [146]. In the case of α3 nAChRs, only 34% were

mobile. The resulting diffusion coefficient, D, was reported to be 0.070 μm2 s�1 and
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0.188 μm2 s�1 in synaptic (roughly 50%) and extrasynaptic regions, respectively. In

the case of α7 nAChRs the mobile fraction was much higher (61%) and the

measured D was 0.067 and 0.188 μm2 s�1 for synaptic and extrasynaptic locations,

respectively [146]. The dwell time at the synaptic region was about 0.5 ms for the

two types of neuronal nAChRs. Analysis of the MSD indicated that synaptic

receptors exhibited constrained motion, and extrasynaptic receptors displayed

Brownian motion. That is, when either type of receptors is able to diffuse freely,

they do so at similar rates, but when their motion is restricted, their constraints

differ. In adult ciliary ganglia in vivo α7 nAChRs are localized in the peri-synaptic

region; in cultured neurons, wide-field microscopy immunocytochemistry showed

puncta in close proximity to synaptophysin labeling [146].

9.9 Biomedical Implications

Keeping synaptic strength at an adequate level is a functional requisite of both

peripheral and central nervous system synapses, and it is the combination and

homeostasis of the +/� mechanisms outlined above that concertedly operate to

maintain the functionally adequate density of neurotransmitter receptors. The

mechanisms utilized by cells to achieve this equilibrium are complex, and vary

between peripheral and CNS. A common feature is the transient immobilization of

receptors in nanoscale compartments of the synapse as opposed to extrasynaptic

regions, commonly achieved by clustering or by interaction with scaffolding

non-receptor proteins and lipid platforms. Our ability to interrogate the dynamics

of receptors is currently limited to brief glimpses of the molecules’ entire lifetime,

from synthesis to degradation, but nonetheless these snapshots provide useful hints

about the organization and the functionally relevant spatiotemporal behavior of

these important molecules in the synapse.

Several neurological and neuropsychiatric disorders have been associated with

dysfunction of receptors and ion channels at the synapse, whose alterations can be

encompassed under the term “synaptopathies”. Diseases like depression, anxiety

disorders, various forms of dementia, epilepsy, Parkinson’s disease, autism spec-

trum disorder, migraine, fragile X syndrome, and schizophrenia are among these

disorders, which cover a wide spectrum of pathological synaptic phenotypes,

ranging from alterations in the number, size or morphology of dendritic spines,

disposition of spines along the dendritic arborizations, etc. The related physiolog-

ical alterations in these synaptopathies (either hypo- or hyper-function of the

synapse) are assumed to depend in turn on the underlying dysfunction of the

receptors and channels, the so-called channelopathies [147], which should now be

extended to encompass scaffolding and other non-receptor proteins e.g. those

misfolded and aggregated at the synapse, like in Alzheimer’s, Huntington’s or

Parkinson’s diseases (for recent reviews see e.g. [148, 149]).
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42. Chenouard N, Smal I, de Chaumont F, MaškaM, Sbalzarini IF, Gong Y, Cardinale J, Carthel C,

Coraluppi S, Winter M, Cohen AR, Godinez WJ, Rohr K, Kalaidzidis Y, Liang L, Duncan J,

Shen H, Xu Y, Magnusson KE, Jaldén J, Blau HM, Paul-Gilloteaux P, Roudot P, Kervrann C,

Waharte F, Tinevez JY, Shorte SL, Willemse J, Celler K, van Wezel GP, Dan HW, Tsai YS,

Ortiz de Solórzano C, Olivo-Marin JC, Meijering E. Objective comparison of particle tracking

methods. Nat Methods. 2014;11:281–9.

43. Cecchini M, Changeux JP. The nicotinic acetylcholine receptor and its prokaryotic homo-

logues: structure, conformational transitions & allosteric modulation. Neuropharmacology.

2015;96(Pt B):137–49.

44. Nys M, Kesters D, Ulens C. Structural insights into Cys-loop receptor function and ligand

recognition. Biochem Pharmacol. 2013;86:1042–53.

45. Barrantes FJ. Modulation of nicotinic acetylcholine receptor function through the outer and

middle rings of transmembrane domains. Curr Opin Drug Discov Devel. 2003;6(5):620–32.

46. Karlin A. Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci.

2002;3:102–14.

47. Barrantes FJ. Endogenous chemical receptors: some physical aspects. Annu Rev Biophys

Bioeng. 1979;8:287–321.

48. Sanes JR, Lichtman JW. Induction, assembly, maturation and maintenance of a postsynaptic

apparatus. Nat Rev Neurosci. 2001;2(11):791–805.

49. Salpeter MM, Loring RH. Nicotinic acetylcholine receptors in vertebrate muscle: properties,

distribution and neural control. Prog Neurobiol. 1985;25(4):297–325.

50. Pierron M, Pinan-Lucarre B, Bessereau JL. Preventing illegitimate extrasynaptic acetylcho-

line receptor clustering requires the RSU-1 protein. J Neurosci. 2016;36(24):6525–37.

51. Burden SJ, Yumoto N, Zhang W. The role of MuSK in synapse formation and neuromuscular

disease. Cold Spring Harb Perspect Biol. 2013;5(5):a009167.

52. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic

signaling shapes nervous system function and behavior. Neuron. 2012;76(1):116–29.

53. Descarries L, Gisiger V, Steriade M. Diffuse transmission by acetylcholine in the CNS. Prog

Neurobiol. 1997;53(5):603–25.

54. Descarries L, Parent M. Chapter 14 – Asynaptic and synaptic innervation by acetylcholine

neurons of the central nervous system. In: Pickel V, Segal M, editors. The synapse. Boston:

Academic Press; 2014. p. 447–66.

55. Choquet D, Triller A. The role of receptor diffusion in the organization of the postsynaptic

membrane. Nat Rev Neurosci. 2003;4(4):251–65.

56. Choquet D, Triller A. The dynamic synapse. Neuron. 2013;80:691–703.

57. Holcman D, Triller A. Modeling synaptic dynamics driven by receptor lateral diffusion.

Biophys J. 2006;91(7):2405–15.

58. Triller A, Choquet D. New concepts in synaptic biology derived from single-molecule

imaging. Neuron. 2008;59(3):359–74.

59. Bear MF, Malenka RC. Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol. 1994;4

(3):389–99.

60. Kroker KS, Rast G, Rosenbrock H. Differential effects of subtype-specific nicotinic acetyl-

choline receptor agonists on early and late hippocampal LTP. Eur J Pharmacol. 2011;671

(1–3):26–32.

61. Stevens C. A millon dollar question: does LTP ¼ memory? Neuron. 1998;20:1–2.

62. Chen L, Yamada K, Nabeshima T, Sokabe M. α7 nicotinic acetylcholine receptor as a target

to rescue deficit in hippocampal LTP induction in β-amyloid infused rats. Neuropharmacol-

ogy. 2006;50(2):254–68.

212 F.J. Barrantes



63. Ma L, Turner D, Zhang J, Wang Q, Wang M, Shen J, Zhang S, Wu J. Deficits of synaptic

functions in hippocampal slices prepared from aged mice null α7 nicotinic acetylcholine

receptors. Neurosci Lett. 2014;570:97–101.

64. Ondrejcak T, Wang Q, Kew JNC, Virley DJ, Upton N, Anwyl R, RowanMJ. Activation of α7
nicotinic acetylcholine receptors persistently enhances hippocampal synaptic transmission

and prevents Aß-mediated inhibition of LTP in the rat hippocampus. Eur J Pharmacol.

2012;677(1–3):63–70.

65. Broide RS, Leslie FM. The alpha7 nicotinic acetylcholine receptor in neuronal plasticity. Mol

Neurobiol. 1999;20(1):1–16.

66. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW. Mobility measurement by

analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976;16(9):1055–69.

67. Heuser JE, Salpeter SR. Organization of acetylcholine receptors in quick-frozen, deep-

etched, and rotary-replicated Torpedo postsynaptic membrane. J Cell Biol. 1979;82:150–73.

68. Roccamo AM, Pediconi MF, Aztiria E, Zanello L, Wolstenholme A, Barrantes FJ. Cells

defective in sphingolipids biosynthesis express low amounts of muscle nicotinic acetylcho-

line receptor. Eur J Neurosci. 1999;11(5):1615–23.

69. Kumari S, Borroni V, Chaudhry A, Chanda B, Massol R, Mayor S, Barrantes FJ. Nicotinic

acetylcholine receptor is internalized via a Rac-dependent, dynamin-independent endocytic

pathway. J Cell Biol. 2008;181(7):1179–93.

70. Nehls S, Snapp EL, Cole NB, Zaal KJ, Kenworthy AK, Roberts TH, Ellenberg J, Presley JF,

Siggia E, Lippincott-Schwartz J. Dynamics and retention of misfolded proteins in native ER

membranes. Nat Cell Biol. 2000;2(5):288–95.

71. Zaal KJ, Smith CL, Polishchuk RS, Altan N, Cole NB, Ellenberg J, Hirschberg K, Presley JF,

Roberts TH, Siggia E, Phair RD, Lippincott-Schwartz J. Golgi membranes are absorbed into

and reemerge from the ER during mitosis. Cell. 1999;99(6):589–601.

72. Edidin M. Fluorescence photobleaching and recovery, FPR, in the analysis of membrane

structure and dynamics. In: Damjanocich S, Edidin M, Szollosi J, editors. Mobility and

proximity in biological membranes. Boca Raton, FL: CRC Press; 1994. p. 109–35.

73. Guo L, Har JY, Sankaran J, Hong Y, Kannan B, Wohland T. Molecular diffusion measure-

ment in lipid bilayers over wide concentration ranges: a comparative study. ChemPhysChem.

2008;9(5):721–8.

74. Kenworthy AK, Nichols BJ, Remmert CL, Hendrix GM, Kumar M, Zimmerberg J, Lippincott-

Schwartz J. Dynamics of putative raft-associated proteins at the cell surface. J Cell Biol.

2004;165(5):735–46.

75. Baier CJ, Gallegos CE, Levi V, Barrantes FJ. Cholesterol modulation of nicotinic acetylcho-

line receptor surface mobility. Eur Biophys J. 2010;39(2):213–27.

76. Stya M, Axelrod D. Mobility and detergent extractability of acetylcholine receptors on

cultured rat myotubes: a correlation. J Cell Biol. 1983;97:48–51.

77. Stya M, Axelrod D. Mobility of extrajunctional acetylcholine receptors on denervated adult

muscle fibers. J Neurosci. 1984;4:70–4.

78. Borroni V, Baier CJ, Lang T, Bonini I, White MM, Garbus I, Barrantes FJ. Cholesterol

depletion activates rapid internalization of submicron-sized acetylcholine receptor domains

at the cell membrane. Mol Membr Biol. 2007;24(1):1–15.

79. Kellner RR, Baier CJ, Willig KI, Hell SW, Barrantes FJ. Nanoscale organization of nicotinic

acetylcholine receptors revealed by stimulated emission depletion microscopy. Neurosci-

ence. 2007;144(1):135–43.

80. Almarza G, Sanchez F, Barrantes FJ. Transient cholesterol effects on nicotinic acetylcholine

receptor cell-surface mobility. PLoS One. 2014;9(6):e100346.

81. Simonson PD, DeBerg HA, Ge P, Alexander JK, Jeyifous O, GreenWN, Selvin PR. Counting

bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high

signal/noise ratios. Biophys J. 2010;99(10):L81–3.

9 Spatiotemporal Dynamics of Nicotinic Acetylcholine Receptors and Lipid Platforms 213



82. Barrantes FJ, Neugebauer DC, Zingsheim HP. Peptide extraction by alkaline treatment is

accompanied by rearrangement of the membrane-bound acetylcholine receptor from Torpedo

marmorata. FEBS Lett. 1980;112(1):73–8.

83. Burden SJ, Depalma RL, Gottesman GS. Crosslinking of proteins in acetylcholine receptor-

rich membranes: association between the β-subunit and the 43 kd subsynaptic protein. Cell.

1983;35:687–92.

84. Ramarao MK, Cohen JB. Mechanism of nicotinic acetylcholine receptor cluster formation by

rapsyn. Proc Natl Acad Sci U S A. 1998;95:4007–12.

85. Piguet J, Schreiter C, Segura J, Voguel H, Hovius R. Acetylcholine receptor organization in

membrane domains in muscle cells: evidence for rapsyn-independent and rapsyn-dependent

mechanisms. Int J Biol Chem. 2011:363–9.

86. O’Connell KM, Tamkun MM. Targeting of voltage-gated potassium channel isoforms to

distinct cell surface microdomains. J Cell Sci. 2005;118(Pt 10):2155–66.

87. Nishimura SY, Vrljic M, Klein LO, McConnell HM, Moerner WE. Cholesterol depletion

induces solid-like regions in the plasma membrane. Biophys J. 2006;90(3):927–38.

88. Vrljic M, Nishimura SY, Moerner WE, McConnell HM. Cholesterol depletion suppresses the

translational diffusion of class II major histocompatibility complex proteins in the plasma

membrane. Biophys J. 2005;88(1):334–47.

89. Sun M, Northup N, Marga F, Huber T, Byfield FJ, Levitan I, et al. The effect of cellular

cholesterol on membrane-cytoskeleton adhesion. J. Cell Sci. 2007;120(Pt 13):2223–31.

doi:10.1242/jcs.001370.

90. Orr G, Hu D, Ozcelik S, Opresko LK,Wiley HS, Colson SD. Cholesterol dictates the freedom

of EGF receptors and HER2 in the plane of the membrane. Biophys J. 2005;89(2):1362–73.

91. Oliferenko S, Paiha K, Harder T, Gerke V, Schwarzler C, Schwarz H, Beug H, Gunthert U,

Huber LA. Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabiliza-

tion by the actin cytoskeleton. J Cell Biol. 1999;146(4):843–54.

92. Shvartsman DE, Gutman O, Tietz A, Henis YI. Cyclodextrins but not compactin inhibit the

lateral diffusion of membrane proteins independent of cholesterol. Traffic. 2006;7(7):917–26.

93. Bruses J, Chauvet N, Rutishauser U. Membrane lipid rafts are necessary for the maintenance

of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons.

J Neurosci. 2001;21(2):504–12.

94. Gomez-Varela D, Kohl T, Schmidt M, Rubio ME, Kawabe H, Nehring RB, Schafer S,

Stuhmer W, Pardo LA. Characterization of Eag1 channel lateral mobility in rat hippocampal

cultures by single-particle-tracking with quantum dots. PLoS One. 2010;5(1):e8858.

95. Hotulainen P, Hoogenraad CC. Actin in dendritic spines: connecting dynamics to function.

J Cell Biol. 2010;189(4):619–29.

96. Feder TJ, Brust-Mascher I, Slattery JP, Baird B, Webb WW. Constrained diffusion or

immobile fraction on cell surfaces: a new interpretation. Biophys J. 1996;70(6):2767–73.

97. Bloch RJ, Velez M, Krikorian JG, Axelrod D. Microfilaments and actin-associated proteins at

sites of membrane-substrate attachment within acetylcholine receptor clusters. Exp Cell Res.

1989;182:583–96.

98. Dai Z, Luo X, Xie H, Peng HB. The actin-driven movement and formation of acetylcholine

receptor clusters. J Cell Biol. 2000;150(6):1321–34.

99. Pumplin DW, Strong JC. Acetylcholine receptor clusters of rat myotubes have at least three

domains with distinctive cytoskeletal and membranous components. J Cell Biol.

1989;109:739–53.

100. Honigmann A, Sadeghi S, Keller J, Hell SW, Eggeling C, Vink R. A lipid bound actin

meshwork organizes liquid phase separation in model membranes. Elife. 2014;3:e01671.

101. Lenne P-F, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo X-J, et al. Dynamic

molecular confinement in the plasma membrane by microdomains and the cytoskeleton

meshwork. EMBO J. 2006;25:3245–56. doi:10.1038/sj.emboj.7601214.

102. Maxfield FR. Plasma membrane microdomains. Curr. Opin. Cell Biol. 2002;14:483–7.

doi:10.1016/S0955-0674(02)00351-4.

214 F.J. Barrantes

https://doi.org/10.1242/jcs.001370
https://doi.org/10.1038/sj.emboj.7601214
https://doi.org/10.1016/S0955-0674(02)00351-4


103. Kwik J, Boyle S, Fooksman D, Margolis L, Sheetz MP, Edidin M. Membrane cholesterol,

lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of

cell actin. Proc. Natl. Acad. Sci. U.S.A. 2003;100:13964–9. doi:10.1073/pnas.2336102100.

104. Saka SK, Honigmann A, Eggeling C, Hell SW, Lang T, Rizzoli SO. Multi-protein assemblies

underlie the mesoscale organization of the plasma membrane. Nat Commun. 2014;5:1–14.

105. Kusumi A, Ike H, Nakada C, Murase K, Fujiwara T. Single-molecule tracking of membrane

molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic

signaling molecules. Semin Immunol. 2005;17(1):3–21.

106. Triller A, Choquet D. Synaptic structure and diffusion dynamics of synaptic receptors. Biol

Cell. 2003;95(7):465–76.

107. Kusumi A, Suzuki K. Toward understanding the dynamics of membrane-raft-based molec-

ular interactions. Biochim Biophys Acta. 2005;1746(3):234–51.

108. Ritchie K, Shan XY, Kondo J, Iwasawa K, Fujiwara T, Kusumi A. Detection of

non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys

J. 2005;88(3):2266–77.

109. Hoch W. Formation of the neuromuscular junction. Agrin and its unusual receptors. Eur.

J. Biochem. 1999;265:1–10. doi:10.1046/j.1432-1327.1999.00765.x.

110. Wenz JJ, Borroni V, Barrantes FJ. Statistical analysis of high-resolution light microscope

images reveals effects of cytoskeleton-disrupting drugs on the membrane organization of the

nicotinic acetylcholine receptor. J Membr Biol. 2010;235(3):163–75.

111. Alexander JK, Govind AP, Drisdel RC, Blanton MP, Vallejo Y, Lam TT, Green

WN. Palmitoylation of nicotinic acetylcholine receptors. J Mol Neurosci. 2010;40:12–20.

112. Drisdel RC, Manzana E, Green WN. The role of palmitoylation in functional expression of

nicotinic alpha7 receptors. J Neurosci. 2004;24:10502–10.

113. Rudell JB, Ferns MJ. Regulation of muscle acetylcholine receptor turnover by β subunit

tyrosine phosphorylation. Dev Neurobiol. 2013;73:399–410.

114. Talwar S, Lynch JW. Phosphorylation mediated structural and functional changes in

pentameric ligand-gated ion channels: implications for drug discovery. Int J Biochem Cell

Biol. 2014;53:218–23.

115. Axelrod D. Crosslinkage and visualization of acetylcholine receptors on myotubes with

biotinylated alpha-bungarotoxin and fluorescent avidin. Proc Natl Acad Sci U S A. 1980;77

(8):4823–7.

116. Sieb JP. Myasthenia gravis: an update for the clinician. Clin Exp Immunol. 2014;175

(3):408–18.

117. Huganir RL, Nicoll RA. AMPARs and synaptic plasticity: the last 25 years. Neuron. 2013;80

(3):704–17.

118. Bashir ZI, Alford S, Davies SN, Randall AD, Collingridge GL. Long-term potentiation of

NMDA receptor-mediated synaptic transmission in the hippocampus. Nature. 1991;349

(6305):156–8.

119. Cui Z, Wang H, Tan Y, Zaia KA, Zhang S, Tsien JZ. Inducible and reversible NR1 knockout

reveals crucial role of the NMDA receptor in preserving remote memories in the brain.

Neuron. 2004;41(5):781–93.

120. Li F, Tsien JZ. Memory and the NMDA receptors. N Engl J Med. 2009;361(3):302–3.

121. Besshoh S, Bawa D, Teves L, Wallace MC, Gurd JW. Increased phosphorylation and

redistribution of NMDA receptors between synaptic lipid rafts and post-synaptic densities

following transient global ischemia in the rat brain. J Neurochem. 2005;93(1):186–94.

122. Frank C, Giammarioli AM, Pepponi R, Fiorentini C, Rufini S. Cholesterol perturbing agents

inhibit NMDA-dependent calcium influx in rat hippocampal primary culture. FEBS Lett.

2004;566(1–3):25–9.

123. Gotti C, Clementi F, Fornari A, Gaimarri A, Guiducci S, Manfredi I, Moretti M, Pedrazzi P,

Pucci L, Zoli M. Structural and functional diversity of native brain neuronal nicotinic

receptors. Biochem Pharmacol. 2009;78:703–11.

9 Spatiotemporal Dynamics of Nicotinic Acetylcholine Receptors and Lipid Platforms 215

https://doi.org/10.1073/pnas.2336102100
https://doi.org/10.1046/j.1432-1327.1999.00765.x


124. Cuevas J, Berg DK. Mammalian nicotinic receptors with alpha7 subunits that slowly desen-

sitize and rapidly recover from alpha-bungarotoxin blockade. J Neurosci. 1998;18:10335–44.

125. Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, Stewart MG, Fine

A. Ultrastructural distribution of the 7 nicotinic acetylcholine receptor subunit in rat hippo-

campus. J Neurosci. 2001;21:7993–8003.

126. Buerli T, Baer K, Ewers H, Sidler C, Fuhrer C, Fritschy JM. Single particle tracking of alpha7

nicotinic AChR in hippocampal neurons reveals regulated confinement at glutamatergic and

GABAergic perisynaptic sites. PLoS One. 2010;5(7):e11507.

127. Alkondon M, Pereira EF, Barbosa CT, Albuquerque EX. Neuronal nicotinic acetylcholine

receptor activation modulates gamma-aminobutyric acid release from CA1 neurons of rat

hippocampal slices. Pharmacol Exp Ther. 1997;283:1396–411.

128. Alkondon MA, E.X. The nicotinic acetylcholine receptor subtypes and their function in the

hippocampus and cerebral cortex. Prog Brain Res. 2004;145:109–20.

129. Banerjee C, Nyengaard JR, Wevers A, de Vos RA, Jansen Steur EN, Lindstrom J, Pilz K,

Nowacki S, Bloch W, Schroder H. Cellular expression of alpha7 nicotinic acetylcholine

receptor protein in the temporal cortex in Alzheimer’s and Parkinson’s disease—a stereolog-

ical approach. Neurobiol Dis. 2000;7:666–72.

130. Charrier C, Ehrensperger MV, Dahan M, Levy S, Triller A. Cytoskeleton regulation of

glycine receptor number at synapses and diffusion in the plasma membrane. J Neurosci.

2006;26:8502–11.

131. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A. Diffusion dynamics of

glycine receptors revealed by single-quantum dot tracking. Science. 2003;302(5644):442–5.

132. Ehlers MD, Heine M, Groc L, Lee MC, Choquet D. Diffusional trapping of GluR1 AMPA

receptors by input-specific synaptic activity. Neuron. 2007;54(3):447–60.

133. Meier J, Vannier C, Serge A, Triller A, Choquet D. Fast and reversible trapping of surface

glycine receptors by gephyrin. Nat Neurosci. 2001;4(3):253–60.

134. Ehrensperger MV, Hanus C, Vannier C, Triller A, Dahan M. Multiple associations states

between glycine receptors and gephyrin identified by SPT analysis. Biophys J. 2007;92:442–5.

135. Allison DW, Gelfand VI, Spector I, Craig AM. Role of actin in anchoring postsynaptic

receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA

receptors. J Neurosci. 1998;18:2423–36.

136. Specht C, Izeddin I, Rodriguez PC, El Beheiry M, Rostaing P, Darzacq X, Dahan M,

Triller A. Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and

receptor binding sites. Neuron. 2013;79:308–21.

137. Dejanovic B, Semtner M, Ebert S, Lamkemeyer T, Neuser F, Lüscher B, Meier JC, Schwarz

G. Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic

synapses. PLoS Biol. 2014;12:e1001908.

138. Wanaverbecq N, Semyanov A, Pavlov I, Walker MC, Kullmann DM. Cholinergic axons

modulate GABAergic signaling among hippocampal interneurons via postsynaptic alpha

7 nicotinic receptors. J Neurosci. 2007;27:5683–93.

139. Ji D, Dani JA. Inhibition and disinhibition of pyramidal neurons by activation of nicotinic

receptors on hippocampal interneurons. J Neurophysiol. 2000;83:2682–90.

140. Rosza B, Katona G, Kaszas A, Szipocs R, Vizi ES. Dendritic nicotinic receptors modulated

backpropagating action potentials and long-term plasticity of interneurons. Eur J Neurosci.

2008;27:364–77.

141. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic choliergic mechanisms

of the central nervous system. Annu Rev Pharmacol Toxicol. 2007;47:699–729.

142. McCann CM, Tapia JC, Kim H, Coggan JS, Lichtman JW. Rapid and modifiable neurotrans-

mitter receptor dynamics at a neuronal synapse in vivo. Nat Neurosci. 2008;11(7):807–15.

143. Akaaboune M, Cullican SM, Turney SG, Lichtman JW. Rapid and reversible effect of

activity on acetylcholine receptor density at the neuromuscular junction in vivo. Science.

1999;286:503–7.

216 F.J. Barrantes



144. Bruneau EG, Akaaboune M. The dynamics of recycled acetylcholine receptors at the

neuromuscular junction in vivo. Development. 2006;133(22):4485–93.

145. Halff AW, Gómez-Varela D, John D, Berg DK. A novel mechanism for nicotinic potentiation

of glutamatergic synapses. J Neurosci. 2014;34(6):2051–64.

146. Fernandes CC, Berg DK, Gomez-Varela D. Lateral mobility of nicotinic acetylcholine

receptors on neurons is determined by receptor composition, local domain, and cell type.

J Neurosci. 2010;30(26):8841–51.

147. Kass RS. The channelopathies: novel insights into molecular and genetic mechanisms of

human disease. J Clin Invest. 2005;115:1986–9.

148. Perez-Lloret S, Barrantes FJ. Deficits in cholinergic neurotransmission and their clinical

correlates in Parkinson’s disease. NPJ Parkinsons Dis. 2016;2:16001.
149. Remmers C, Sweet RA, Penzes P. Abnormal kalirin signaling in neuropsychiatric disorders.

Brain Res Bull. 2014;103:29–38.

9 Spatiotemporal Dynamics of Nicotinic Acetylcholine Receptors and Lipid Platforms 217



Chapter 10

Dynamics of Membrane Proteins

Sahil Lall and M.K. Mathew

Abstract Transmembrane proteins inhabit a highly asymmetric environment that

is, to a first approximation, two-dimensional. Many of them serve to transmit

information between aqueous compartments, while others serve as conduits for

the transport of material between compartments. In serving these functions they

have to adopt at least two stable structures and rapidly interconvert between them.

The paucity of atomic resolution structures has been limiting in elucidating the

mechanisms by which these proteins carry out their functions. However, this

century has seen the determination of the three-dimensional structures of a number

of membrane proteins, leading to the start of an understanding of the dynamics

displayed by them within the bilayer. Without attempting to be exhaustive, we

provide illustrative examples of dynamics in membrane proteins and review their

underlying mechanisms as they insert, fold and function in biological membranes.

10.1 Introduction

Proteins can be broadly classified by the milieu they reside in. Those embedded in

the non-polar environment of membranes and which have portions that traverse the

membrane, are called integral membrane proteins. These proteins carry out a

variety of functions ranging from providing a local structural framework at the

membrane to the transmission of physiologically critical material and information

across membranes. Inasmuch as they form the interface between the cell and its

environment, plasma membrane resident proteins have been the subject of intense

study. However, the detailed characterisation of these proteins and their mechanis-

tic understanding has been impeded because of the challenge of obtaining purified

protein in sufficient quantities. Nevertheless, there has been progress made into

structure determination of membrane proteins over the past two decades. While

only 1% or so of protein structures deposited in the Protein Data Bank (PDB) over

this period are of membrane proteins, the number of membrane protein structures

determined in the twenty-first century greatly exceed the total number determined
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prior to this period. Armed with these static pictures, it is now becoming possible to

understand the functional dynamics of membrane proteins.

The α-helix, first recognized by Linus Pauling 65 years ago [1] and the β-sheet,
Pauling’s “other” secondary structure [2], provided the only solutions to the

problem of satisfying the hydrogen bonding requirements of the peptide bond

within the bilayer (Fig. 10.1). The edges of a β-sheet would be unstable in a bilayer,
hence it folds on itself to close and form a barrel in the membrane. β-barrels are seen
primarily in proteins of the outer membranes of bacteria, mitochondria and plastids.

While structures are available for a few β-barrel proteins (such as in Fig. 10.1),

Fig. 10.1 Two major categories of membrane proteins. Integral Membrane Proteins are either

all-helical as in (a) or β-barrel as in (b). (a) KcsA—the first ion channel to be crystallised is an all

helix protein; shown here embedded in the lipid bilayer. It is representative of the closed state of

almost all potassium channels. The pore has a selectivity filter at the level of lipid head-groups in

the upper leaflet visible in the cut-away model in the left panel. The C-terminus of the helices

obstruct the channel. The right panel highlights the constricted channel aperture. On the other

hand, there is Voltage Dependent Anion Channel (VDAC) (b). It is an interesting β-barrel protein
found on the outer membrane of mitochondria. It posesses an atypical odd number of β-strands
unlike other β-barrels which have an even number. The right panel shows the barrel from the top

highlighting the lone helix that is hypothesised to alter the conductivity of the protein. Both (a) and

(b) are drawn surrounded by a homogenous dipalmitoylphosphatidylcholine (DPPC) lipid bilayer

modelled around the crystal structures available in PDB; [PDB id: 1BL8, 2JK4]

220 S. Lall and M.K. Mathew



considerably more structural and biochemical literature is available for proteins

composed of transmembrane helices (TMHs). There is also a substantial bias

towards information about plasma membrane proteins compared to those residing

on endomembranes.

Proteins that mediate transduction of information and exchange matter across

the membrane have to adopt at least two forms: one that facilitates transmission and

another that does not. The interconversion between these forms is controlled by an

external signal such as a ligand, voltage, pressure, temperature, etc. However, the

proteins first have to be made on ribosomes as linear polypeptides, folded into their

final three-dimensional (3D) structure and then be transported to their location of

action where they function. Hence, the dynamics of such membrane proteins can be

studied broadly at three stages: (i) insertion into the membrane and folding therein,

(ii) transport to the appropriate organelle and (iii) interconversion between a

transmission competent state and the ground state.

10.2 Membrane Protein Translocation/Insertional

Dynamics

Protein dynamics initiate right when a polypeptide starts emerging from the ribo-

somal exit tunnel. The highly hydrophobic nascent polypeptides have to be folded

and transported to their site of function. While there has been considerable progress

studying the folding of soluble proteins, membrane proteins pose major difficulties.

Unfolding membrane proteins to structure-less entities generally results in irrevers-

ible denaturation, while refolding from partially folded states fails to capture the

entire process (reviewed by Stanley and Fleming [3]). A further complication

occurs due to the fact that the membrane ambient into which the protein has to

fold is not homogenous, being polar at the head-groups and very non-polar at the

mid-plane [4].

Khorana’s group showed that individual helices of bacteriorhodopsin (bR) can

insert and fold independently, then assemble into a functional entity capable of

binding retinal and pumping protons on absorbing light [5]. This led to the postu-

lation of a two-stage folding process with independent insertion of individual

helices, followed by their assembly into a higher order structure within the mem-

brane [6]. Kaback’s group expressed lactose permease as contiguous polypeptides

and if the breaks between fragments are introduced in loop regions, the peptides

could associate to mediate active lactose transport [7]. Thus, the case for two-stage

folding is strong, but the data is limited to very few membrane proteins.

Recent experiments have used cell free translation systems to extend this

knowledge to insertion of freshly synthesised bacteriorhodopsin into nanodiscs.

These data indicate that, in this system, retinal is required for formation of the fully

folded and functional form of the protein [8]. However, for most membrane pro-

teins, we are limited to the knowledge of the machinery that promotes insertion into

the membrane.
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10.2.1 Prokaryotic Translocation Machinery

10.2.1.1 α-Helical Proteins

SecYEG Translocase

α-helical proteins are predominantly found in the inner membrane of Gram nega-

tive bacteria. The growing hydrophobic chain emerging from the ribosome exit

tunnel is identified by a Signal Recognition Particle (SRP) [9]. A groove within the

SRP recognises the non-polar signal peptide that might be the first TM segment or a

region distal to it [10, 11]. The signal peptide loaded SRP is then transferred to the

SecYEG translocon by the SRP-FtsY composite. FtsY is a receptor for SRP and

utilises energy from GTP hydrolysis to load the nascent polypeptide on the SecYEG

complex. SecY is a 10 transmembrane helix protein that appears to have two exit

points [12]. One is a channel with a 3–5 Å hydrophobic constriction and the other

permits lateral entry to the membrane [13, 14].

An α-helix blocks the channel in SecY and the lateral entry port between

TM2-TM7 is also gated. The former is opened by signal peptide binding and the

latter by protein translocation through the channel [14]. This process is initiated

when the nascent polypeptide inserts into the channel as a loop. Signal peptide gets

intercalated into the walls of SecY while the distal region gets close to the pore

[15]. This binding moves the pore blocking helix by about 20 Å [16]. Subsequently,

the lateral entry gate opens into the membrane on protein translocation into the

channel, enabling insertion into the membrane. The signal sequence remains bound

till the entire protein has passed through [17].

Peptide propulsion through SecY requires the force generated either by the

ribosome itself [18] or by an ATPase-SecA [19] and a proton motif force

[20]. SecA has a two helix finger domain which is found near the entrance of the

SecYEG channel [21]. It is believed that this two helix finger pushes substrates in to

the channel [22]. Moreover, binding of SecA to SecY creates a 5Å gap in the lateral

gate manned by TM2 and TM7 [21]. Hence, SecY in conjunction with SecA or the

ribosome can mediate co- or post-translational insertion, respectively, in the inner

membrane of Gram negative bacteria.

YidC Insertase

The YidC Insertase enables integration of membrane proteins in a SecYEG-

independent manner [23]. In contrast to SecYEG translocon that can mediate

both co- and post-translational translocation, YidC facilitates only post-

translational translocation [24]. How a substrate protein chooses between alternate

pathways to integrate into the membrane is not currently known. But, it is worth

noting that YidC can associate with SecYEG to form a supercomplex [25].

The YidC structure reveals a novel fold. It has a cytoplasmic helical hairpin and

a central membrane embedded groove that opens towards the cytoplasm and the
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membrane. It is proposed that the cytoplasmic hairpin facilitates the entry of the

substrate protein into the groove. The groove being blocked on the extracellular

side, guides the processing TMH to slide into the bilayer core [26].

10.2.1.2 β-Barrel Proteins

β-barrel proteins are found in the outer membrane of Gram negative bacteria. The

insertion of these outer-membrane proteins (OMPs) is mediated by a complex

machinery composed of a Bam supercomplex and a few chaperones [27]. Upon

synthesis in the cytoplasm, the polypeptide is carried across the inner membrane by

the Sec translocon (Sect. 10.2.1.1). Once in the periplasmic space, it is bound by

chaperones SurA and Skp which protect and escort the nascent OMP to the outer

membrane [27]. A number of weak contacts mediate the transfer of the protein to

the Bam complex where it is folded and passed into the membrane.

Multiple crystal structures are available for the 5 Bam(A–E) individual proteins

that make up the supercomplex (reviewed by O’Neil et al. [28]). Moreover earlier

this year, multiple groups solved the structure of the complete complex [29–

31]. This has brought substantial advance into understanding the molecular archi-

tecture that inserts and aids the formation of tertiary structure of an OMP.

10.2.2 Eukaryotic Translocation Machinery

10.2.2.1 α-Helical Proteins

Despite the large number of membrane bound organelles, eukaryotes have only

three sites of TMH insertion. Co-translational insertion occurs at the endoplasmic

reticulum (ER), inner mitochondrial and the thylakoid membrane. Sec61 which is

present on the ER membrane is a homologue of SecY [32]. Though absent in the

ER, Oxa1 in the inner mitochondrial membrane and Alb3/Alb4 in chloroplasts

appear to be YidC homologues in eukaryotes [24]. Post-translational translocation

has also been observed at the ER mediated by Sec62 and Sec63. There are other

proteins in the ER that aid the translocation in specific ways (reviewed in Denks

et al. [33]) and include TRAM, TRAP, oligosaccharyl transferase, BiP, etc. The

process of targeting proteins to different membranes is beyond the scope of this

article but the reader is referred to an excellent review [34].

10.2.2.2 β-Barrel Proteins

In Eukaryotes, β-barrel proteins are found predominantly on the outer membrane of

mitochondria and plastids. Homologues of the Prokaryotic OMP insertion and

translocation machinery are found in the Eukaryotic organelles [35]. In the mito-

chondrion, polypeptides are imported from the cytoplasm through the TOM
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(Translocase of Outer Membrane) complex where TOM40, itself a β-barrel, forms

the protein conduction channel. The imported protein is stabilised by small TIM

(Translocase of Inner Membrane) chaperones—Tim9 & Tim10 and MIA (Mito-

chondrial Inner membrane Assembly) chaperones. The SAM (Sorting and Assem-

bly Machinery) complex finishes the insertion of β-barrel precursors into the outer

membrane. In the SAM complex, SAM50 is thought to perform the same role as the

Prokaryotic protein—BamA [36]. The chloroplast membrane protein insertion

pathway remains relatively obscure with only a few implicated proteins (Tic-Toc

complex) that have been characterised [37].

10.3 Energetics Underlying Protein Dynamics in Lipid

Bilayers

Integral membrane proteins, especially TM helices, upon reaching their destination

are met with similar and dissimilar hydrophobic molecules. In other words, they

reside in a complex milieu where lateral interactions between adjacent helices

occur in competition with interactions with surrounding lipids and also with the

encapsulating water. Furthermore, there are global bilayer effects which arise due

to the electric field across the membrane and phase separation amongst lipids.

Several studies have been undertaken to elucidate the forces stabilising the final

3D structures adopted by TMHs. Some understanding of the energetics of transi-

tions between stable states has also been obtained in a few cases.

10.3.1 Van der Waal’s Interactions

Van der Waals (VdW) packing interactions contribute significantly to the integrity

of the core of membrane proteins. This is in contrast to soluble proteins where the

core is stabilised by hydrophobic interactions [38]. However, membrane proteins

cannot utilise the entropic gain of partitioning away from water if their interactions

occur in the interior of the bilayer. The first example that emphasized the impor-

tance of VdW interactions in membrane protein dynamics came from studying the

transmembrane helix (TMH) of Glycophorin A (GpA) [39]. Interhelical packing in

GpATM was more stabilising compared to helix-lipid interactions, thereby pro-

moting its homo-dimerization. The dimer interface in GpA is formed by a GxxxG

motif where the Glycines occur on the same side of the lone TMH of GpA

[40]. GxxxG has become probably the most studied dimerization motif in mem-

branes and we take it up in more detail in Sect. 10.4.1. In addition, the VdW packing

in membrane proteins is optimized for function. For instance, bR has only a fourth

of void space in the interior of the protein when compared to mechanosensitive

channels like MscL (Mechanosensitive Channel of Large conductance) which are
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loosely packed [41]. The empty pockets in receptors and channels allows for

conformational flexibility required to undergo gating transitions [41].

10.3.2 Hydrogen Bonding

Hydrogen bonding is widespread in membrane proteins. Apart from participating in

secondary structure formation, hydrogen bonding is also critical for tertiary struc-

ture formation. However, experimental determinations of the contribution of hydro-

gen bonds to stability fall short by 3.5–4.5 kcal mol�1 of the expected value in

several cases [42]. Nevertheless, a single polar residue has been shown sufficient to

drive homo-dimerization of an otherwise hydrophobic model TMH [43, 44]. The

contribution of Glycines is also particularly well studied in the context of hydrogen

bonding in membranes. Especially, the GASRight/GxxxG/GG4 motif has been

shown to be partly stabilised by hydrogen-bonding [45].

10.3.3 Salt Bridges

Salt bridge interactions are thought to contribute over long range [46]. Debye

lengths in the interior of membranes can be very long compared to those in the

aqueous phase. Further, the energy of all electrostatic interactions is enhanced in

the low dielectric of the bilayer. Making a salt-bridge in a hydrophobic membrane

is also energetically favoured when the contributing charged residues are in close

proximity as seen in bacteriorhodopsin [47, 48]. Since burying a charged residue in

the bilayer core is energetically costly, salt-bridges often contribute to function.

There is experimental evidence supporting the role of specific salt bridges in

altering the functional state of α-helical membrane proteins such as CFTR (Cystic

Fibrosis Transmembrane conductance Regulator), Kcv (Potassium channel chlo-

rella virus) [49], rhodopsin and TCR (T-cell receptor). In CFTR, a change from

such coulombic interactions between R347-D924-D993 to R352-D993 can change

its conductance [50]. Notably, rhodopsin becomes constitutively active upon

removal of one salt-bridge [51] and salt bridge formation can promote homo/

hetero-dimerization of TMH in TCR α, β and ζζ [52]. Interestingly, the dimeriza-

tion in TCR occur through Aspartate and Threonine residues in preference to

Glycines of GxxxG which are also present in the latter protein.

10.3.4 Aromatic–Aromatic Interactions

The WxxW, WxxY, YxxY motifs have also been shown to drive dimerization of

TMHs through aromatic-aromatic interactions between Tryptophan and Tyrosine
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residues [53]. These are long range (approx. 7Å) interactions, usually considered in
the context of strengthening the tertiary folded structure of integral membrane

proteins [54], e.g. there are seven aromatic pairs that form in KcsA. Also, a ZAX

motif, where Z¼Alanine, Tryptophan, Phenylalanine, or Tyrosine andX¼Alanine,

Histidine, Lysine, Arginine show very high dimerization affinity in TMHs. This

motif is stabilised by cation-π interactions [55]. It is the same cation-π interactions

between protein and lipids that preferentially stabilise Tryptophan and Tyrosine

residues at the membrane-water interface [56] and sometimes promote tilts in TM

helices [57].

It should be noted that lipids in the bilayer have also been implicated in enabling

interaction of TMHs and affecting function (reviewed in [58]). These interactions

may be specific or non-specific and manifest themselves as change in helical tilts,

perpendicular shifts of helices with respect to the membrane normal (reviewed by

Lee [59]) or even inversion of helical topology post-insertion [60]. Lipids can also

modulate the strength of existing dimers, shifting their dynamic equilibrium, like it

is shown for the Glycophorin A TM dimer [61].

10.4 Dynamics of Helix Dimerization

The binding of ligands to signal transducing receptors on one side of the membrane,

results in conformational rearrangements leading to changes in accessibility of

critical residues on the other side. This alters protein-protein interactions with

downstream binding partners that translates to a signal being transduced in the far

compartment. Transmission of binding information across the membrane may be

expected to implicate conformational rearrangements of transmembrane helices.

The simplest case would involve proteins with a single transmembrane helix. We

review instances of protein-protein interactions mediated by a single transmem-

brane helix (TMH) in different contexts focussing on well-characterised instances

of bitopic proteins.

10.4.1 GxxxG Motif

The GxxxG/GG4 or the GASRight motif is a bona-fide motif that induces dimeriza-

tion of α-helices both in bilayers and micelles. This motif was first observed in

Glycophorin A (GpA) [39, 62] which itself was one of the first membrane proteins

to be sequenced [63]. Shortly after the protein was sequenced, it was observed that

the TM region of GpA (GpATM) is responsible for dimerization of the protein

[64]. This was inferred from Dodecyl Polyacrylamide gels (SDS-PAGE) of eryth-

rocyte ghosts and it wasn’t until a decade after, that dimerization in gels could be

reproduced synthetically in liposomes [65]. On mapping the dimerization interface

of GpATM, it was found that a minimal sequence of GxxxG, where the ‘x’
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represent dimerization insensitive amino-acids, could cause dimerization of

unrelated transmembrane helices [66]. This discovery marked GxxxG as a common

dimerization motif. Subsequent work which produced a NMR (Nuclear Magnetic

Resonance) structure of the GpATM validated the biochemically identified inter-

face (Fig. 10.2) [40]. Also, a search through the sequences of transmembrane

helices available at the time revealed an enrichment of the said motif pointing to

its physiological importance [67].

Proteins apart from GpA, like EGFR [68], ErbB4 [69], BNIP3 [70], etc. carrying

a GxxxGmotif form similar right handed helical TM dimers with a crossing angle of

–40�. Of all the 3D structures of TM helices—bitopic and polytopic—in membrane

proteins, when clustered pairwise, 12.8% had similar parallel, right-handed geom-

etry as dimeric GpATM [71]. Proteins like RTKs (Receptor Tyrosine Kinases—

ErbBs), neuropilins [72], immunologically important receptors like TLRs (Toll-like

Receptors) [73], MHC (Major Histocompatibility Complex) [74] and Integrins

[75, 76] have all been shown to use the GxxxG motif to dimerise. This geometry

is stabilised by Van der Waals packing and hydrogen bonding (Sect. 10.3) [45].

10.4.1.1 GxxxG Is Not Sufficient for Dimerization

The experimental tools developed during discovery of GxxxG as a dimerization

motif spawned a great deal of research on finding other such motifs. These

validation tools utilise a similar concept of expressing TMH of interest fused with

a protein that is active only as a dimer. First of these was ToxR, where the TMH

dimerization induces ToxR dimerization leading to controlled expression of

β-galactosidase enzyme which can be monitored [77]. Variations of this method

include TOXCAT [78], POSSYCCAT [79], GALLEX [80], BACTH [81], AraTM

[82] andMaMTH [83]. As a result, polar motifs (SxxxSSxxT and SxxxSSxxT) [84],

Fig. 10.2 Dimerization of Glycophorin A TM (GpATM) helix. GpATM is one of the most

studied examples in the context of helical dimerization in membranes (see Sect. 10.4.1 in the main

text for more details). The GxxxG motif (shown in pink) utilises hydrogen bonding and Van der

Waals interactions to stabilise an SDS resistant helical dimer
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glycine zipper (GxxxGxxxG) and its variants with SAT substitutions [85], WxxW,

WxxY and YxxY [53] have been shown to cause association of monomeric TMHs.

Still, these dimer interfaces have limited associated literature which has been

mentioned at the appropriate places.

These observations lead to the idea that any small-xxx-small motif could cause

dimerization. However, this assumption was proved incorrect and believably so, as

more than 55% of all predicted TM helices have a small-xxx-small motif [86]. On

similar lines, it was also found that GxxxG in GpATM is also sensitive to the

sequence context in which it occurs [87, 88]. Neither artificially enriching trans-

membrane sequences from a randomised pool nor searching the entire sequence

space of naturally occurring sequences carrying the dimerization motif, reveals any

common contextual scaffolding pattern for GxxxG [86].

Studying GxxxG on more proteins revealed that the presence of GxxxG by itself

does not cause dimerization. When recording dimerization status of peptides in

denaturing polyacrylamide gels, unlike GpATM, a vast majority do not show

association [89]. Even a high sequence conservation does not ensure that the

GASRight motif will convey association of the TMHs [90, 91]. In the same vein,

its corollary is also true; not every TM helical interaction relies on GxxxG or small-

xxx-small motif. For instance, Dap12 which is an immunologically important,

signalling competent receptor that associates with other proteins such as the

T-cell receptor was shown to use a polar residue to dimerise in spite of the presence

of a GxxxG motif [92] (See also Sect. 10.3.3). Another example illustrating the

same is discussed in Sect. 10.4.2.1.

10.4.1.2 Ab Initio Prediction of Dimerization

Despite the advancement of technology, most simulations of transbilayer segments

are computationally limiting. The application of force-field based modelling has

remained the only option for membrane biologists trying to study helical interac-

tions until recently. Nevertheless, simplified approaches are being developed to

circumvent the issue. PREDDIMER is one such algorithm that is available through

a web server [93]. Another method—CATM, is available as an open-source

compilable C++ library on the internet [45]. CATM screens the helical interface

with respective to a set of 463 geometries that any GxxxG motif can afford and then

optimises the resulting structure using Monte Carlo simulations. While CATM

presently only computes homo-dimeric interactions, PREDDIMER can be used

for both homo- and hetero-dimeric structures. Both these solutions have stood

validation against the experimentally solved available 3D structures for interacting

TM helices.

In summary, we can explain some of the available structures containing the

GASRight motif invoking hydrogen bonding and Van der Waals forces which has

enabled respectable prediction of helical dimerization in membranes. However,

more work is needed to have a unifying model to understand and predict the

mechanism of GxxxG driven dynamics in natural membranes.

228 S. Lall and M.K. Mathew



10.4.2 Beyond a Passive GxxxG Motif

A high resolution 3D structure alone isn’t enough to furnish mechanistic informa-

tion about a protein. Nevertheless, it allows for more guided experiments to be

performed. More importantly, it provides researchers with a starting point for

simulating the molecules. Once, arguably the largest barrier for computational

biologists—de novo tertiary structure prediction is surpassed, molecular dynamics

(MD) simulations can help in understanding their dynamics in nature [94]. This

approach has helped gain deeper insights into GxxxG driven dimerization and glean

more general principles which can be applied to complex polytopic transmembrane

proteins such as ion channels (KcsA, MscL; Sect. 10.6.1) that have a glycine zipper

motif.

10.4.2.1 GxxxG Motif as a TM Switch

The signalling proteins mentioned in Sect. 10.4.1 use as diverse a range of domains

on extracellular and intracellular side of the plasma membrane as the number of

signals themselves. Despite the multitude of folds and structures on either side of

the membrane, all these proteins traverse the plasma membrane using a single TM

helix. The GxxxG motif has been implicated in stabilising the dimerization of such

TMHs. But there are instances, where using two GxxxG motifs, a TMH could go

from one dimeric conformation to another. If two GxxxG motifs occur at the N- and

C-termini of the same helix, then it becomes straightforward to imagine how two

motifs can enable two structurally distinct forms to exist (Fig. 10.3). Also, one

could hypothesize the introduction of an energy barrier between the two, such that

interconversion between these two forms can be coupled to another process. Thus,

hinting at the potential of GxxxG as a naturally occurring intramembranous molec-

ular switch.

It was in 2002 that the role of GxxxG as a switch was first formally hypothesised

[95]. However, it was not until 11 years later that experimental evidence supporting

the hypothesis was obtained in a plasma membrane bitopic receptor protein—EGFR

(Epidermal Growth Factor Receptor) [68, 94]. EGFR or ErbB1 is one of the four Erb

receptors of the Receptor Tyrosine Kinase family and being the cell surface receptor

of the EGF peptide ligand, it has a crucial signalling role in cellular proliferation,

migration and differentiation. But, its ligand-mediated activation was not clear until

the TMHwas studied. EGFR/ErbB1 was found to go from an active to inactive state

utilising the two small-xxx-small motifs in its TMH (Fig. 10.3). Performing MD

simulations on the structures of transmembrane and juxtamembrane segment

obtained by NMR spectroscopy, it was demonstrated that the TMH of ErbB1/

EGFR can indeed stabilise in either of the N- or C-terminal dimers. This change in

the mode of dimerization controlled by EGF binding/unbinding modulates the

activity of cytosolic kinase domains of EGFR [68] that has been implicated in

certain cancers for over 30 years.
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Another notable example that demands a mention here is that of ErbB2 or HER2

(Human EGF Receptor 2). ErbB2, like EGFR, has two small-xxx-small motifs in its

TMH [96]. It was shown that mutating the C-terminal GxxxG motif did not affect

the dimerization potential to any significant degree [96]. Moreover, from the NMR

structure it was found that ErbB2 used the N-terminal motif for homo-dimerization

[97] This observation would appear confounding to the argument to have two

dimerization motifs on a transmembrane helix for switching between active and

inactive states. However, earlier this year another NMR structure of ErbB2 was

solved [98]. Surprisingly, it was found that the TM helix of ErbB2 can indeed form

a C-terminal right-handed dimer but without using the GxxxGmotif. Instead, it uses

an unusual (Sect. 10.4.1.1), highly hydrophobic stretch of residues

IxxxVxxLLxxVLxxVFxxL. Thus, even ErbB2 can form both N- and C-terminal

dimers with their potential use as a switch. Also, the C-terminal GxxxG motif of

ErbB2 is suggested to be involved in hetero-dimerization [99].

10.5 TM Helices in Endomembranes

There is some evidence that STIM1 (Stromal Interaction Molecule 1) on the meta-

zoan endoplasmic reticulum (ER) membranes can also form dimers with the small-

xxx-small motif in its single transmembrane helix [100]. This dimerization has

implications for the conversion of STIM1 from inactive to active state. The inactive

to active state conversion is initiated by depletion of Ca2+ in the lumen of the

ER. This signal is translocated across the ER membrane to activate Orai1, a highly

selective, STIM1 gated Ca2+ channel. STIM together with Orai orchestrates the

process of Store Operated Calcium Entry (SOCE) which is crucial for immunolog-

ical signalling and cellular Ca2+ homeostasis; reviewed by Prakriya and

Lewis [101].

Fig. 10.3 Small-xxx-small motif in intra-membrane dynamics. A cartoon depiction of EGFR

TM helices. The helices are proposed to switch from one conformation to another to shuttle

between a signalling “On” state and an “Off” state. With both these interfaces stabilised by the

small-xxx-small motif, the helices can lock-in either of them, affecting the interaction of the

juxtamembrane region. This transduces the activation caused by extracellular ligand binding to

kinase activity in the cytoplasm
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ADCK3 (AarF Domain Containing Kinase 3) is a mitochondrial inner mem-

brane protein which has been categorically studied in the context of helical dimer-

ization. It also utilises a Glycine zipper motif (Sect. 10.4.1.1) to form homodimers

[102]. ADCK3 protein has a role in Coenzyme Q (Ubiquinone) biosynthesis and a

naturally occurring mutation in ADCK3 has been correlated to respiratory pheno-

types and cerebellar ataxia [103]. However, the physiological relevance of homo-

dimerization of ADCK3 TMH remains a speculation. Thus, despite the unarguable

biological importance of integral proteins on endomembrane organelles, the trans-

membrane region of these protein remain understudied. This is exemplified by

almost no literature highlighting more than a passive role for the TM region of such

proteins.

10.6 Dynamics of Ion Channels

The extension of dimerization studies to multi-pass membrane proteins has been

limited, due in part to the relatively small number of well characterized instances

where a reversible equilibrium association can be observed and manipulated in

native membranes. One system that has been studied, is the homo-dimeric ClC-ec1

Cl�/H+ antiporter of Escherichia coli. This 50-kDa membrane protein dimerizes

via a membrane embedded, non-polar interface lined mainly by Isoleucines and

Leucines. Chadda et al. [104] have diluted this protein into liposomes to the point

where monomers and dimers can both be observed by single molecule fluorescence.

Such an approach has allowed the extraction of thermodynamic parameters, includ-

ing the free energy of dimerization, but fails to provide atomic level information of

the dimerization process [104].

There are relatively few multi-pass membrane proteins for which a mechanism

of transition between stable states has been worked out at atomic resolution. Of

these, ion transporters are probably the best understood and have been extensively

studied for four decades. The first structure of a membrane protein [105] was of

bacteriorhodopsin (bR)—a light-driven H+ pump—which is also the first mem-

brane protein to have essentially all its characterised intermediates crystallised.

These structures and a vast body of biophysical and mutagenesis studies have

revealed individual steps of proton translocation through the protein coupled to

movements of transmembrane helices. These include long range proton migration

using a hydrogen-bonded chain, proton transfer between protonable groups within

the membrane and also proton transfer utilising water molecules present between

protein residues [106]. Consequently, it is the best understood membrane protein

today. After bR, the protein that attracted concerted attention was the voltage gated

potassium channel that is involved in the generation of action potentials in excitable

tissues. Ion channels constitute a class of transporters that stabilize an aqueous pore

across the membrane through which ions can diffuse down their electro-chemical

gradient. These pores are responsible for electrical signalling in the nervous system,

volume regulation and other critical physiological processes. The appearance of a
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series of high resolution structures of ion channels makes it possible to infer the

stimulus-driven conformational changes underlying the transition from conducting

to non-conducting states and vice-versa.
Ion channels stabilise columns of water that traverse the membrane and hence

the functional channel has multiple pore-lining helices. For a given stoichiometry

of ideal helices lining the conducting pore, the enclosed pore radius depends on the

tilt of the helices with respect to the membrane normal. Conversely, for a given

helical tilt, the pore radius increases with the number of constituent helices. Thus,

gating transitions from conducting to non-conducting states can be achieved by

altering helical tilt or by changing the number of constituent helices. The disposi-

tion of side chains that project into the pore lumen is another critical feature

determining effective pore radius.

10.6.1 Voltage Gated K+ Channels

Voltage gated ion channels are tetrameric proteins contributing one helix per

subunit to the aqueous pore. These channels are strongly ion-selective. Selectivity

is conferred by a selectivity filter which is non-helical and tightly packed against the

pore helix. This ensures that interatomic distances within the filter remain constant

so as to achieve selectivity between ions as similar as Na+ and K+ (Fig. 10.4). Much

of our knowledge of ion channel structure starts with a series of crystal structures of

prokaryotic channels solved by RodMacKinnon. The first such structure was that of

the KcsA, a homo-tetrameric K+ channel that crystallised in the Closed State [107]

(Figs. 10.1 and 10.4). The protein has two transmembrane helices, one of which

contributes to the lining of the aqueous pore. The re-entrant loop connecting these

helices contains the selectivity filter. The pore-lining helices are at an angle to the

membrane normal, and the point of closest approach or the “bundle crossing” point

between them leaves insufficient room for a hydrated K+ ion to pass. The

MacKinnon group subsequently solved the structure of the MthK channel, which

is also K+ conducting, but crystallised in the Open State [108]. A comparison of

these structures revealed that channel opening and closing probably proceeds

through an iris-type opening, involving bending of the four pore-lining helices so

that the diameter at the narrowest point is about 12 Å (Fig. 10.4).

Voltage gated ion channels undergo a transition between the Open

(or conducting) and Closed (or non-conducting) States in response to changes in

transmembrane electric field. These two stable states differ by about 10 Kcal mol�1

in energy at resting membrane potentials. For simplicity, we will not consider other

states such as an activated state or any of the inactivated states, all of which are

non-conducting. Each subunit of voltage gated K+ channels (Kv channels) has six

transmembrane helices with a re-entrant loop, containing the selectivity filter,

connecting the last two helices. These last two helices and included loop are

analogous to the KcsA and MthK channels. The last helix, S6, lines the pore

while the positively charged fourth helix, S4, constitutes the voltage sensor. This
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basic architecture of the channel is shared by all voltage gated channels whose

structure has been solved to date.

The determination of crystal structures of rat Kv1.2 in the Open State [109]

provided a starting point to understand the dynamics of the voltage driven Open to

Closed transition of the channel. Deducing a model for the Closed State starting

from an open structure requires integrating the vast body of biochemical and

electrophysiological work, coupled with data on the mutagenesis of a significant

fraction of the residues to elucidate conformational switching in these proteins. This

challenge has been approached by several groups [110–112]. Unfortunately, in the

absence of an experimentally determined structure for the Closed State, there is no

final answer at this time. Upadhyay et al. [111] started with the crystal structure of

Kv1.2, which has a bent S6 as in MthK (Fig. 10.4) and modelled the Closed State of

the pore based on the structure of KcsA [107]. The pore lining S6 helix had to be

remodelled by the action of the electric field so as to achieve the narrow “bundle

crossing” seen in the KcsA structure. This involves straightening of the S6 helix,

resulting in closure of the channel inasmuch as the C-γ of V408 in diagonally

opposite subunits are positioned around 5.3 Å apart. This spacing generates a

constriction too small to be negotiated by a hydrated K+ ion (which is over 8 Å in

diameter).

Fig. 10.4 The Open $ Closed transition in ion channels. The bacterial potassium channels

KcsA and MthK crystallised in the Closed and Open States respectively. (a) Views of the two

tetrameric structures without lipid and with two chains omitted for clarity. Top: MthK which

crystallised in the Open State. Highlighted in green is the conserved Glycine residue that allows a

kink in the pore lining helix. Bottom: KcsA which crystallised in the Closed State. Note the bundle

crossing of the helices highlighted by a rectangle in the view at left. The non-helical, tightly-

packed selectivity filter is shown in magenta. The orange spheres represent the space between the
helix backbones towards the cytosolic end of the pore as viewed from a cytosolic vantage point.

The bend in the helix in MthK that occurs around the highlighted Glycine is responsible for

opening of the pore by about 12 Å to allow for a hydrated K+ to pass. The pore lining helices splay

about 30� to open the channel as represented in (b); [PDB id: 1BL8, 3LDC]
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Like the potassium channels (Kv), voltage gated Na
+ channel and Ca2+ channels,

are Closed at the resting potentials of neuronal cells, around�60 mV. They open on

depolarising the cells—i.e. going to less negative potentials. The early view of

channel gating was that electric field actively forced the channels into opening from

a “ground” Closed State. On the other hand, Upadhyay et al argued that since the

crystals were formed in the absence of a bilayer, they are perforce zero-field

structures. Which is to say that the Open State of the channel is the “ground

state” of the channel. This is supported by the observation that all available

structures of voltage gated channels are of the Open State. The application of an

inside-negative electric field applies force on the voltage sensing helix, S4, moving

it towards the cytoplasmic side of the plasma membrane. S4, in turn, tugs on the S4–

S5 linker so that S5 prods S6, resulting in its “unkinking” and straightening, which

constricts the spacing at the bundle crossing point. The Closed State is thus a

“cocked gun” kept closed by action of the electric field. Once this is relieved by

depolarising the membrane, S5 (by the action of S4) moves away from S6 allowing

it to swing open rapidly resulting in channel opening. Since the electric field is used

to constrain S6 into the Closed State, an S4 with significantly lower charge would

require a greater electric field to apply the same pressure on S6 to keep it closed.

The most dramatic instance of such a shift in the voltage of channel opening is

probably that reported by Miller and Aldrich [113] for the double mutant R365N:

R371I of the Shaker channel which has a mid-point of activation at �180 mV as

compared to the wild type channel which opens at �20 mV.

10.6.2 Ligand Gated Ion Channels

Ligand gated channels can be broadly classified, for the purposes of this review,

into two classes—those with four subunits and those with five. Glutamate receptor

channels are the prototypic tetrameric neurotransmitter receptors while serotonin,

GABA, glycine, and acetylcholine gate pentameric receptors. Though structures of

ligand binding domains have been available for some time in both liganded and free

states, an understanding of how ligand binding leads to channel opening requires

the structure of the full length channel. These have been elucidated over the past

few years allowing the examination of plausible pathways to ligand driven transi-

tions in these proteins.

Glutamate receptors come in several flavours, named after ligands that can activate

the channel (apart from glutamate, which opens all GluRs). Structures of full length

AMPA channels have been solved with either an antagonist bound [114] or with an

auxiliary subunit called TARP bound to it [115]. In both cases, the channel is in a

closed state. Here the narrowest point of the channel is the bundle crossing point of the

M2 helices from each of the subunits, which is structurally similar to the bundle

crossing seen in the S6 helices of voltage gated K+ channels. Thus, channel opening

is presumed to follow an iris opening transition as inferred for the K+ channels. The

conformational changes in the ligand binding domain effected by binding of ligand
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have been observed in crystal structures of the isolated domain and the manner in

which this is likely to affect the transmembrane helices is apparent [116].

The pentameric ligand gated receptor family includes receptors for nicotinic

acetylcholine (nAChRs), serotonin (5-HT3Rs), glycine (GlyRs) and GABA

(GABAARs). X-ray structures of the ancestral prokaryotic receptor channels

were solved almost a decade ago [117–119]. These channels are symmetric

homo-pentamers, whereas eukaryotic channels are often hetero-multimeric. None-

theless, the prokaryotic channels probably represent a common minimal core.

Indeed, more recent structures of a mouse serotonin receptor [120], a human

GABA receptor [121] and glycine receptors from humans [122] and zebrafish

[123] confirm this conservation.

The transition between Open and Closed States can be clearly seen in comparing

crystal structures of the channels in the respective states. Fortunately, there are

structures of the Closed State of unliganded channels (GLIC at pH 7 and the

Glutamate gated Chloride channel [117, 119, 124]) as well as the strychnine-

bound state of the Gly receptors [123]. In all of these structures, side chains of

long, hydrophobic amino acid residues point into the lumen of the pore restricting it

to under 2 Å radius precluding the transport of hydrated ions like Na+. The presence

of the hydrophobic side chains prevents passage of desolvated ions, which would

need compensatory ligands from the channel lining residues. Open State structures

of GLIC at pH 4 [117, 119, 124], glutamate activated chloride channel in the

presence of agonists [125, 126] and the glycine receptor bound to glycine [122]

are also available. The pore-lining M2 helices move outwards towards the M3

helices of the same subunit and also undergo an anticlockwise rotation which move

the constricting Isoleucine side chains away from the pore and towards the helical

interface. This results in an opening of the pore to allow the passage of hydrated

ions. Such a model of channel opening is consistent with a variety of mutagenesis

studies which implicate an activation-gate hydrophobic block in the nAChR [127],

as well as the finding that mutation of the critical hydrophobic resides to polar

residues results in stabilisation of the Open State.

10.7 Concluding Remarks

There are several stages in the life of a membrane protein where dynamics play a

critical role. We have very little information on the folding of membrane proteins,

although the machinery involved has been identified. It may be, that the process will

have to be studied with the full panoply of the cellular machinery intact. Trafficking

of the membrane integrated protein to its target location is well studied. Operation

of the protein in its native location requires the elucidation of structures of the

protein in the various stable states that it adopts. The gradually increasing reposi-

tory of atomic resolution structures provide a starting point for understanding how

these remarkable proteins do what they do.
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Chapter 11

G-Protein-Coupled Receptors: Membrane

Diffusion and Organization Matter

Evert Haanappel and Laurence Salomé

Abstract G-protein coupled receptors constitute an important family of membrane

proteins. They are involved in numerous signaling pathways. The efficiency and

regulation of these signaling events depend on the organization of the receptors

with their different partners in the plasma membrane, and the way this organization

influences the encounters between them. By studying the dynamics of the receptors

and their partners in the plasma membrane, important information can be obtained

on this membrane organization. In this chapter, we will first review experimental

techniques used to study receptor dynamics. Then we discuss how the membrane

environment influences receptor dynamics, and how measurements of this dynam-

ics can inform us on interactions of the receptors with their signaling partners and

on the effect of ligands. We finish by discussing recent theoretical advances on

models of receptor organization, in particular the cluster phases, which provide a

coherent framework for the understanding of this organization.

11.1 Introduction

As soon as it had been established that plasma membranes were highly heteroge-

neous yet dynamically organized, a relationship was postulated between the lateral

distribution and mobility of membrane proteins and the cellular functions in which

they are involved [1]. In a similar vein, and on the basis of mainly biochemical data,

Neubig [2] had suggested earlier that G-protein-coupled receptors (GPCRs) form

supramolecular complexes with their signaling partners, hence accounting for the

specificity of their interactions. Addressing this question represents a major chal-

lenge in membrane biology. GPCRs constitute the largest family of membrane

proteins with more than 800 members in humans. GPCRs mediate intracellular

responses upon activation by a wide variety of extracellular stimuli, including

photons, ions, diverse molecules and proteins. GPCRs are involved in almost all

known physiological processes and are the target of about 50% of current drugs.

E. Haanappel • L. Salomé (*)
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This superfamily of membrane receptors, also called seven transmembrane (7TM)

receptors, is divided into several classes based on sequence homology (according to

the International Union of Basic and Clinical Pharmacology). The class A or

rhodopsin-like receptors represent the vast majority of the GPCRs and will be the

main focus of this chapter. While tremendous progress has been made in obtaining

crystallographic structures of these receptors, following the breakthrough by

Kobilka and coworkers [3], a lot remains to be done to unveil the signaling

processes of GPCRs in their biological context [4]. Their interaction with one or

more members of the G-protein family upon stimulation was long thought to be the

only signaling pathway enabling GPCRs to regulate the activity of various ion

channels and enzymes. However, alternative non-G-protein dependent pathways

have been discovered, among which the one mediated by β-arrestin is the most

important. The emerging view of the successive membrane steps involved in

signaling is that the binding of an agonist ligand to the receptor induces its coupling

with a heterotrimeric G protein which, after exchanging GDP for GTP, can in turn

activate an effector. This is followed by the phosphorylation of the receptor by

GPCR kinases (GRKs). The subsequent binding of β-arrestin to the phosphorylated
intracellular domain promotes the internalization of the receptor mediated by

clathrin-coated pits and also triggers G-protein-independent downstream signals

(Fig. 11.1) [5]. In this context, the concept of biased agonism has emerged, which

states that ligands can selectively stabilize distinct subsets of receptor conforma-

tions promoting different cellular responses [6]. Together with the observation that

a receptor’s function is modulated by its membrane environment, this revives the

need to fully understand the coupling of the receptor’s signaling with its dynamics

and organization in the membrane. This question is relevant both at the molecular

and supramolecular level. At the molecular level, progress made through a

agonist

GPCR

G protein

beta arrestin

clathrin

Fig. 11.1 Schematic view of the cascade of events occurring at the plasma membrane after an

agonist binding to a GPCR, leading to G-protein and beta-arrestin dependent signaling
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combination of crystallographic and computational methods gives insight into the

influence of the membrane environment on the structural features of the receptors

[7]. At the supramolecular level, fluorescence-based microscopy techniques, in

particular those probing lateral diffusion, have yielded precious information on

the dynamic organization of the receptors at the nm to μm scale [8, 9].

The hypothesis of a subtle arrangement of the receptors with their signaling

partners makes sense in the context of the plasma membrane which is highly

compartmentalized at various spatiotemporal scales [10]. As foreseen by Neubig,

the confinement of the receptors with their partners in the same compartment could

promote rapid and selective signaling. It could also modulate or impede interfer-

ences between distinct signaling pathways. The main sources identified so far for

the existence of more or less specialized membrane domains are the obstruction to

diffusion via the underlying cytoskeleton and the membrane proteins anchored to it

[11], specific lipid-lipid interactions leading to the formation of nanodomains

enriched in cholesterol and sphingolipids [12] and protein-protein interactions

[13, 14]. In this chapter, we will first review the main experimental techniques

and labeling methods available for the study of receptor lateral diffusion. Then

through a selection of studies performed on distinct GPCRs we will examine the

emerging features of the behavior of GPCRs. We will first consider GPCRs in their

basal state and discuss the type of behavior GPCRs exhibit in this state and how it is

influenced by various factors from the membrane environment. Second, we will

attempt to identify the dynamic signatures of the various functional states at the

different steps of the signaling process.

11.2 Experimental Techniques to Analyze Lateral

Diffusion in Membranes

To characterize the lateral diffusion properties of membrane constituents, three

methods are commonly used which are schematized in Fig. 11.2.

Fluorescence Recovery After Photobleaching (FRAP) analyzes the diffusional

behavior of a population of fluorescently labeled receptors (Fig. 11.2a). A short

intense pulse of laser light photobleaches the fluorescent markers in a small region

of the membrane. Due to receptor diffusion, the fluorescence returns in the bleached

region. The recovery curve contains information on the dynamic parameters of the

receptors [15], in particular their diffusion coefficient D and their mobile fraction

M. By changing the size of the bleached region, additional information can be

obtained on compartmentalization of the receptors [16] down to domain sizes of

150–200 nm.

In Fluorescence Correlation Spectroscopy (FCS) [17, 18], a low-intensity laser

beam is focused on a membrane region containing a low density of fluorescently

labeled receptors (Fig. 11.2b). As a result of molecules diffusing into and out of the

observation area, the fluorescence intensity fluctuates on a time scale characteristic

of the residence time (typically microseconds to milliseconds) of a molecule in this
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area. The fluorescence autocorrelation function contains information on the diffu-

sion constant, the average number of molecules in the observation region and on

receptor interactions and binding. By varying the diameter of the waist of the laser

beam, receptor compartmentalization can be studied [19, 20].

Fig. 11.2 Outline of the experimental techniques discussed in this chapter. (a) Fluorescence

recovery after photobleaching (FRAP). An intense laser pulse photobleaches the fluorescence of

labeled receptors in a small region. The fluorescence intensity I recovers due to receptor mobility

with a characteristic time scale τd up to a level dependent on the mobile fraction M. (b)

Fluorescence Correlation Spectroscopy (FCS). Fluorescently labeled receptors diffusing through

the detection region generate a fluctuating fluorescence signal, whose autocorrelation function g(τ)
contains information on the dynamics of the receptor. (c) Single Particle Tracking (SPT) Individ-

ual labeled receptors are tracked and their trajectories reconstructed. The Mean Square Displace-

ment (MSD) is sketched for three different diffusion modes: directed (super-), Brownian (free) and

confined (sub-) diffusion
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Single Particle/Molecule Tracking (SPT/SMT) allows the study of the dynamics

of individual membrane receptors with nanometer-scale spatial and millisecond-

scale temporal resolution [21–24] (Fig. 11.2c). Here the receptors are labeled with a

nanoparticle (SPT) or a fluorescent molecule (SMT) and the receptor movements

are tracked using videomicroscopy. Individual particles are localized with high

precision [25, 26] in each image and the positions are connected using advanced

algorithms [27–29] to reconstruct the trajectory of the receptor. Trajectory analysis

allows the correct identification of the diffusion mode of the receptors [30–32], as

well as the numerical estimation of the associated dynamic parameters from a fit of

the Mean Square Displacement (MSD) [21, 33]. Recently, Bayesian inference

techniques have been developed enabling to map the force and diffusion constants

over the cell surface [34, 35].

All techniques have in common that the analysis of receptor diffusion generally

assumes a flat membrane perpendicular to the direction of observation. In reality,

cells and other biological structures are 3D, highly corrugated entities showing

membrane ruffling, invaginations or spines. The complex membrane geometry has

a significant influence on the measured dynamics properties of receptors [36] and

ideally should be taken into account, e.g. by doing full 3D particle localization and

tracking [37, 38].

Receptors must be labeled with an appropriate probe: either a fluorescent

molecule (for FRAP, FCS and SMT) or a nanoparticle (for SPT). A large variety

of probes with different properties exist [39]. The best choice of probe depends on

the experimental design and involves considerations of probe size, wavelength

range, brightness, photobleaching and blinking, ease of labeling, influence of the

probe on the properties of the receptor of interest.

Several types of probes are commonly used. Organic dyes are small (less than

1 kDa) molecules that combine a fluorescent moiety with a chemically reactive

group to allow covalent attachment to a molecule of interest. Their small size

represents only a small perturbation to the labeled molecule, but they are prone to

photobleaching, intensity fluctuations and blinking. A large family of fluorescent
proteins (FPs) exist with different properties [40, 41], including versions that can be
photoconverted or photoactivated. Their main advantage is that they can be

expressed by the cell, as fusion proteins by conjugating the sequence of the FP to

that of the protein of interest. FPs also suffer from fluorescence blinking and

photobleaching, although genetic engineering has resulted in improved stabler

and brighter versions. Nanoparticles are used for particle tracking applications.

Quantum Dots (QDs) are very common [42] but they suffer from an intermittent

fluorescence emission (“blinking”). Small fluorescent polystyrene (“latex”) parti-

cles are a non-blinking alternative to QDs [43]. Colloidal Au particles were used in

the original SPT experiments [44] and recently in high-speed SPT [11, 45, 46].

A recurring and legitimate question is whether the nanoparticle modifies the

dynamic properties of the receptor. The influence of the probe has been studied

experimentally [43, 47]. Tracking studies on lipids in supported bilayers labeled

with different types and sizes of nanoparticles showed that QDs and ϕ40 nm latex
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particles had negligible influence on lipid diffusion, whereas larger latex particles

and ϕ40 nm Au colloidal particles significantly did reduce the measured diffusion

coefficient [43].

Conjugation Techniques To label a receptor with a fluorescent protein (FP), a

fusion protein must be created where the FP is conjugated directly to the receptor

of interest. The FP can be intracellular or extracellular. It must be verified that the

fusion protein still is a functional receptor. In addition, the expression rate of the

fusion protein is usually different from that of the native protein, which can lead to

non-physiological results. Alternatively, a short tag (ACP tag, SNAP/CLIP tag, T7

tag) can be fused to the extracellular terminus of the receptor, that can be labeled

chemically or via an antibody.

Native endogenous membrane receptors can be labeled with high specificity

using an antibody directed against the receptor. This antibody can either be

fluorescent or labeled with a reactive group, e.g. biotin. In the latter case,

streptavidin or neutravidin-coated nanoparticles can attach to a biotin group on

the antibody, leading to receptor labeling. Antibodies are large (~150 kDa) proteins

potentially leading to modified receptor behavior. Single-domain antibodies from

camelids (nanobodies) are much smaller (12–15 kDa) and have recently been

applied for dual-color receptor labeling [48].

An alternative labeling strategy for GPCRs uses fluorescent ligands, consisting

of an agonist or antagonist conjugated to a fluorophore, that bind to the receptor of

interest with high specificity [49, 50]. Binding of the ligand leads to a specific

functional state of the receptor, and may induce internalization. The ideal method

for receptor labeling would be to covalently attach a fluorescent label to an

endogenous receptor of interest, while maintaining full receptor functionality and

dynamical properties. A promising way to reach this goal is provided by the

traceless affinity-based labeling technique [51]. Here a ligand of the receptor,

covalently coupled to a fluorescent probe via a chemically reactive linker, binds

to the receptor’s binding site. The reactive linker subsequently reacts with a residue
on the receptor, binding the fluorescent moiety to the receptor while the ligand is

released after a washing step. The feasibility of this method has been demonstrated

for the bradykinin B2 receptor [51].

11.3 Receptor Diffusion Is Under the Influence

of the Membrane Environment

The influence of cholesterol on the function and signaling of GPCRs has been well

documented [52], but its influence on the dynamic properties of GPCRs has rarely

been studied. This is surprising because cholesterol profoundly modulates the

membrane’s properties. It induces the emergence of the liquid-ordered membrane

phase with reduced lipid lateral diffusion. Membrane nanodomains enriched in

cholesterol and sphingolipids (“rafts”) may provide a favorable environment for
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certain GPCRs and may constitute platforms for receptor signaling [53]. In addi-

tion, specific cholesterol-GPCR interactions might induce conformational changes

in GPCRs, modulating their diffusional properties or interactions with other recep-

tors. This could influence the formation of receptor oligomers with different

diffusion properties than the monomer. Indeed, specific cholesterol binding sites

exist in the structures of a number of GPCRs [54].

The influence of the membrane environment on the properties of the serotonin1A
receptor has been extensively studied in the group of Chattopadhyay by a combi-

nation of techniques. Using variable-radius FRAP, Pucadyil and Chattopadhyay

[55] found that, in normal CHO cells, the diffusion coefficient and mobile fraction

of serotonin1A receptor-EYFP were independent of the radius of the bleached area,

indicating that the receptor diffuses in a homogeneous membrane environment.

Upon cholesterol depletion by methyl-β-cyclodextrin treatment, both the diffusion

coefficient and mobile fraction of the serotonin1A receptor showed a marked

dependence on the bleach radius, suggesting that cholesterol depletion leads to a

dynamic confinement of the receptor attributed to a membrane organization in

domains. Using z-scan FCS, they found that the same receptor was confined at a

length scale of ~210 nm in normal cells [56] and that cholesterol depletion reduced

receptor confinement. The discrepancy between results obtained by FRAP and by

zFCS was attributed to the fact that these techniques probe different spatial and

temporal regimes.

Not only cholesterol, but also sphingomyelin had an influence on the dynamics

of the serotonin1A receptor. Metabolic depletion of sphingomyelin induced an

increase of the mobile fraction of the receptor, but had no influence on its diffusion

coefficient [57]. Other substances affecting membrane fluidity have also been found

to influence the dynamics of GPCRs. As an example, Vukojevic et al. [58] found by

FCS that ethanol at concentrations relevant in alcohol consumption increases the

lateral mobility and surface density of the μ-opioid receptor in PC12 cells, while the
antagonist naltrexone, used to prevent relapse in alcoholism, reverses this effect.

Cholesterol removal from the plasma membrane is expected to increase its

fluidity leading to an increase of the mobility of a GPCR. The actual observation

that cholesterol depletion induced a confinement of the serotonin1A receptor is

therefore paradoxical [59] and suggests that other factors are influenced by choles-

terol depletion. Studying the influence of cholesterol depletion on the diffusion of

HLA, a non-GPCR, Kwik et al. [60] observed a reduction of the lateral mobility of

this protein after cholesterol depletion. This reduction was demonstrated to be a

consequence of the reorganization of the actin cytoskeleton, related to a redistribu-

tion of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Cholesterol depletion

interfered with the interactions of PI(4,5)P2 with other partners controlling the

organization of the actin cytoskeleton. Earlier observations had already shown that

the actin cytoskeleton is involved in receptor dynamics. Jans et al. [61] observed a

decrease in the diffusion coefficient and the mobile fraction of the vasopressin

receptor after treatment with cytochalasin B, a drug that interferes with actin

polymerization. On the other hand, Roess et al. [62] observed an increase of the

rotational diffusion of the LH receptor after treatment with cytochalasin D. In
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studies of the interaction of different GPCRs with the actin cytoskeleton, Wheeler

et al. [63] showed that this interaction may be different for different receptors. The

β2-adrenergic receptor and the parathyroid hormone receptor (PTH1R) were shown

to interact with the cytoskeleton via one or several partners, in particular NHERF-1,

but the calcium-sensing receptor (CaSR) was not influenced by the cytoskeleton.

Even structurally related receptors may show different interactions with the actin

cytoskeleton. Valentine and Haggie [64] studied the diffusional behavior of the β1-
and β2-adrenergic receptors (AR). They found that the unstimulated β1-AR and β2-
AR are highly confined in the cell membrane, and that the interaction of these

GPCRs is due to interaction of their C-terminus with different scaffold proteins.

Taken together, these results imply that GPCR diffusion in the plasma mem-

brane may be regulated by multiple factors: cholesterol, the actin cytoskeleton and a

number of partner proteins interacting with actin.

As an aside, the other main component of the cytoskeleton, the microtubules

which also extend out close to the plasma membrane [65], also play a role in

receptor diffusion, as illustrated e.g. by the observation by de Keijzer et al. [66] that
the mobility of the cAMP receptor cAR1 was abolished upon microtubule disrup-

tion. We will not discuss this further.

Apart from being the support of scaffold proteins responsible for the tethering of

receptors, actin is also thought to operate as a physical barrier to the diffusion of

proteins and lipids. Indeed, according to the “fence and picket” model, the actin-

based membrane skeleton itself and the transmembrane proteins anchored to it act

in concert to confine the movement of membrane constituents within compartments

over short timescales [11]. Supporting this model is the interpretation of single-

molecule trajectories of proteins, and also lipids, as due to hop-diffusion: a short-

term confined diffusion with jumps between adjacent domains on a longer time

scale. Such a diffusive behavior, with nested double compartments and consistent

with an actin-based compartmentalization, was inferred from single-molecule

tracking experiments of the human μ-opioid receptor (hMOR) [67]. However, due

to the statistical fluctuations inherent to diffusion of the membrane constituents,

detecting jumps within a trajectory is extremely delicate and requires sophisticated

mathematical tools. After the development of a rigorous algorithm for the detection

of confinement and jumps [68], we revisited the analysis of trajectories acquired

previously for the same hMOR receptor [69]. These trajectories have roughly the

same features as those obtained by Suzuki et al., namely a long-term slow diffusion

superimposed on a short-term confined diffusion. The analysis revealed that the

frequency of jumps was low, too low in fact to account for the long-term diffusion.

It rather suggested a predominant involvement of interprotein interactions that

would lead to dynamic protein assemblies [69]. These protein domains are not

static and should be seen as dynamic protein clusters, stabilized by short-range

attractive and long-range repulsive forces, diffusing themselves and exchanging

components over large distances [70]. Interestingly, some theoretical developments

predict that such clusters can selectively segregate distinct proteins [14, 71]. Along

these lines, an attractive recent model proposes that the clusters are grouped into

mesoscale assemblies of several hundred nanometers [13]. Such a double scale
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self-organization of the membrane proteins combined with a potential role of the

cytoskeleton via anchoring proteins offers a coherent view of receptor diffusion

able to account for all aspects of the observed single-molecule trajectories.

11.4 The Choreography of Signaling Receptors

The model of dynamic nanodomains or cluster phases presented in the last section

constitutes a conceptual framework for explaining the spatiotemporal features of

receptor signaling and reconciling their different aspects.

First of all, the possible existence of nanoclusters of proteins is consistent with

the observed multimerization of receptors. The question of the exact structure of

receptor multimers, whether they are dimers or higher order oligomers, and their

physiological relevance is still under debate but a significant body of evidence of

their existence has now been accumulated [72–75]. Initially deduced from bio-

chemical experiments, the aggregation of receptors was further characterized by

in vitro and in vivo biophysical approaches. The dimerization or oligomerization

below a very high order cannot be identified from a simple measurement of the

diffusion coefficient of receptors as the Saffman-Delbrück theory predicts that the

diffusion coefficient of a protein depends weakly on its radius [76]. However, a

cunning approach using dual-color FRAP with antibodies to immobilize a fraction

of the receptor population made it possible to distinguish transient and stable

interactions between receptors for the β1-AR and β2-AR, respectively [77]. Using

the same approach, the D2 dopamine receptors were shown to interact only

transiently to form oligomers [78]. In a more resolutive manner, the direct visual-

ization of individual muscarinic, β1- and β2-adrenergic receptors and N-formyl

peptide receptors by Single Molecule Tracking revealed the transient formation

of dimers, with about 30–50% of receptors involved in dimers at any moment [79–

83], in agreement with the popular resonance energy transfer approaches such as

FRET or BRET [84]. The analysis of the oligomerization state of receptors previ-

ously studied by FRET or related techniques should be revisited by these powerful

super-resolutive methods in order to update the data and obtain a dynamic view of

these assemblies. To make the findings fully relevant, studies should preferably be

performed on endogenous receptors expressed in their native environment

[85]. Considering the evidence of multimerization of GPCRs, its role in the receptor

signaling function will need to be understood.

The cluster phase model predicting the formation of dynamic assemblies

maintaining several distinct proteins in close proximity, provides a theoretical

basis for the hypothesized signalosomes or signal transduction platforms that are

thought to assemble receptors and G proteins and presumably effectors and other

signaling partners. Let us consider the question of the mechanism of coupling

between the receptors and their G proteins. Two conflicting models have been

examined by biophysical approaches: the classical “collision coupling” model

supposing a free diffusion of both molecules that accounts for the diffusion
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facilitated encounter between the signaling partners, and the “physical scaffold”

supposing the existence of pre-coupled GPCR—G protein complexes. Overall,

experimental results are compatible with an assembly of the receptors and associ-

ated G proteins in dynamic [86–89].

The observed changes in the membrane dynamics of the receptor after activation

by an agonist ligand is probably the most convincing demonstration of the interplay

between signaling and membrane organization of GPCRs. In contrast to the binding

of antagonists, which generally does not induce modifications of the diffusion

parameters of the receptors, the activation of receptors by agonists is generally

accompanied by a decrease of receptor mobility [8] with a few exceptions, e.g. for
the serotonin1A receptor [88], and some contradictory results, e.g. for the β2-
adrenergic receptors [79, 90]. Studies covering a large variety of receptors coupled

to various G proteins used tools that allowed to deepen the analysis of the diffusion

of the agonist bound receptors. All studies converge and show an increase of the

population of confined receptors together with a decrease of the domain size and of

the diffusion coefficient of the receptors inside the domains [90–98]. Of particular

physiological relevance are the differences observed for distinct agonists. We focus

in the following on the μ-opioid receptor (MOR), the main target of morphine, an

opioid analgesic predominantly used in severe pain treatment despite its important

side effects [99]. Our own work on MOR using extensive variable-radius FRAP

(vrFRAP) experiments showed that morphine and DAMGO caused markedly

different modifications of MOR diffusion [94]. Morphine maintained the confine-

ment in permeable domains that was observed for receptors in their basal state but

with smaller domain size. This effect was abolished by the inhibition of G-protein

activation but persisted upon inhibition of internalization. DAMGO induced a

redistribution of the receptors between a freely diffusing population and a popula-

tion with slow diffusion in small closed domains, this latter being attributed to

receptors entering the internalization pathway via clathrin-coated pits. Considering

the agonist-selective phosphorylation of MOR [100], we argued that the slow

phosphorylation of the receptors following morphine binding allows to observe

the dynamic changes related to G-protein activation, while these changes could not

be detected due to the rapid receptor phosphorylation induced by DAMGO binding.

It should be noted that the results of a recent independent study of MOR signaling in

response to the same ligands quite consistently point to a relationship between the

dynamic organization of MOR and its spatiotemporal signaling [101]. Different

agonists are likely to stabilize or induce distinct conformational states of the

receptors that in turn trigger the cascade of interactions favoring particular partners

among the different ones available and involving distinct patterns of the membrane

organization.

A similar mechanism seems to be involved in formation of heteromers which are

accompanied by a modulation of their signaling properties [102, 103]. Again taking

MOR as an example, our vrFRAP analysis showed a modification of MOR dynam-

ics after the activation of α2-adrenergic and NPFF2 receptors known to functionally
interact with MOR [104]. The activation of the Neuropeptide Y receptor, that is not

described to interact with MOR, did not affect MOR diffusion. FRET experiments
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could demonstrate that the crosstalk between MOR and α2-AR is mediated by

conformational changes propagating from one receptor to the other [105]. Here

again, conformational changes could impact the interactions of the receptors with

their partners and be responsible for the changes in diffusional behavior. However,

as demonstrated by vrFRAP combined with bimolecular fluorescence complemen-

tation, the MOR/NPFF2 heterodimer adopts a specific dynamical behavior

corresponding to a mix of the properties of both monomers [104]. A similar earlier

FCS study of the A1/A2 adenosin receptor heteromer led to similar

observations [106].

11.5 Concluding Remarks

We believe that a coherent explanatory model is emerging from the experimental

and theoretical developments presented here. This model will go beyond an

oversimplified representation and propose a robust framework to interpret the cell

surface choreography of G-protein coupled receptors with their partners during the

signaling events. Ultimately, and integrating the impressive biochemical and struc-

tural knowledge accumulated, it should also substitute physical interactions for the

arrows habitually used in schematic representations of signaling pathways.

Further research using advanced methods is still needed to refine our description

of the mechanisms at play. Efforts should be put into monitoring individual

receptors at normal and high temporal resolution during a binding event to obtain

the full spatiotemporal information on the processes [93]. In addition, model

experiments on receptors reconstituted in biomimetic membranes [107] or on

isolated cell plasma membranes [108], combined with micropatterning [109], will

allow to test the validity of the theory and establish which are the dominating

interactions and their regulation mode. In this respect, recent progress on the

purification of GPCRs in lipid nanodiscs offer promising perspectives [110].
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Chapter 12

Role of Membrane Microdomains in Serotonin

Receptor Functions

Josephine Labus, Alexander Wirth, Andre Zeug, and Evgeni Ponimaskin

Abstract The plasma membrane is a highly compartmentalised organelle

containing specialised lipid microdomains or lipid rafts that enable the spatial regu-

lation of signal transduction. Lipid microdomains are enriched in sphingolipids and

cholesterol that are arranged in a highly ordered state. Functionally, they contribute

to a lesser fluidity compared to the surrounding membrane. Besides their unique

lipid composition, these domains are characterised by the accumulation of various

signalling molecules, including G protein-coupled receptors (GPCRs) and its down-

stream effectors. In this way lipid microdomains can integrate a plethora of signal-

ling cascades and thereby modulate the functions of e.g. GPCRs. Here, we provide a

short overview about the role of lipid microdomains in the distribution and signal-

ling of GPCRs with particular focus on serotonin receptors. Since recent investi-

gations dealing with lipid microdomain functions revealed the participation of these

membrane domains in various pathophysiological processes, we also discuss a

possible link between lipid microdomains and serotonin receptor functions in the

pathogenesis of depression.
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DRMs Detergent-resistant membranes

PDMP D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol

ER Endoplasmic reticulum

ERK Extracellular-activated kinase

FCS Fluorescence correlation spectroscopy

FLIM Fluorescence lifetime imaging

FRAP Fluorescence recovery after photobleaching

FRET F€orster resonance energy transfer

GRKs G protein-coupled receptor kinases

GPCRs G protein-coupled receptors

GPI Glycosylphosphatidylinositol

G proteins Guanine nucleotide-binding proteins

IP3 Inositol-1,4,5-triphosphate

β-MCD Methyl-β-cyclodextrin
MAPK Mitogen-activated protein kinases

PATs Palmitoyl-acyl transferases

PLCβ Phospholipase Cβ
PALM Photoactivated localisation microscopy

PET Positron emission tomography

SNOM Scanning optical microscopy

STED Stimulated emission depletion

STORM Stochastic optical reconstruction microscopy

SIM Structured illumination microscopy

12.1 The Concept of Lipid Microdomains

12.1.1 Structure and Function of Lipid Microdomains

Unlike postulated by Singer and Nicolson in the early 1970s, lipids and proteins are

not randomly distributed in the phospholipid bilayer [1]. According to the current

understanding, the plasma membrane is compartmentalised into various domains

that differ in their structure and composition, and thus enable spatially restricted

signal transduction. Depending on the protein and lipid content, protein-based and

lipid-based membrane domains can be distinguished [2].

Lipid rafts are planar lipid microdomains of about 10–200 nm diameter which

are enriched in sphingolipids and cholesterol [3]. In these structures, the sphingo-

lipid head groups associate laterally with one another in the outer leaflet of the

membrane and their long, largely saturated acyl chains are densely packed inside

the membrane. In addition, rigid cholesterol molecules intercalate into hydrophobic

gaps of the acyl chains [4]. This special lipid organisation causes the characteristic,

highly ordered and less fluid state of lipid rafts (also referred to as liquid-ordered
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phase) separating them from the surrounding membrane, which is characterised by

a greater fluidity resulting from the presence of phospholipids with kinked unsat-

urated acyl groups (also referred to as liquid-disordered phase) [5, 6].

Another type of lipid-based microdomains are caveolae, which are small

(50–100 nm diameter) flask-shaped invaginations of the plasma membrane

[7, 8]. Although the lipid composition is similar to lipid rafts and caveolae are

often regarded as non-planar subtype of lipid rafts, they rather seem to be biochem-

ically different [6]. In contrast to planar rafts, caveolae express the transmembrane

protein caveolin, which exists in three different isoforms (Caveolin-1, -2 and -3).

Since caveolin molecules can oligomerise in large clusters, this protein was thought

to be the structural protein coating membrane invaginations [9, 10]. However, more

recently, an additional protein named cavin was identified as novel integral com-

ponent for the caveolae formation [11, 12]. Lipid rafts are found in nearly all cell

types, whereas caveolae are not formed in neurons, erythrocytes and lymphocytes

[5], although these cells have been shown to express caveolin and form planar

rafts [13].

Besides their unique lipid composition, lipid microdomains are characterised by

the accumulation of signalling molecules including glycosylphosphatidylinositol

(GPI)-anchored proteins, G protein-coupled receptors (GPCRs), heterotrimeric G

proteins, membrane-associated kinases, and various cytoplasmic effector proteins

[4, 6]. Furthermore, also cytoskeletal proteins such as actin, tubulin, vinculin,

filamin, actinin and tau are enriched in lipid rafts [14, 15]. It has been suggested

that these proteins are important for forming and maintaining the structure of lipid

rafts by tethering the plasma membrane to the underlying cytoskeleton [14]. In

addition, the actin cytoskeleton, which is organised in a lattice network, might have

an ordering effect on lipid domains [16].

Lipid rafts and caveolae function as specific compartments within the plasma

membrane that spatially regulate the interaction of signalling molecules [17]. By

facilitating the formation of large protein clusters, these lipid domains enable a

rapid and site-specific activation of signalling cascades. However, complexes of

lipids and/or proteins within these structures can also inhibit activity of signalling

molecules leading to attenuated signal transduction. Consequently, lipid micro-

domains have been found to be involved in the regulation of the numerous cellular

functions, including protein sorting, endocytosis, exocytosis and transcytosis,

cell polarity, homeostasis of cholesterol, nutrient transport, signalling cascades of

receptors and ion channels as well as entry of viruses, bacteria, toxins and nano-

particles [3, 5, 9, 15].

Lipid rafts and caveolae are dynamic structures underlying continuous changes

in size, individual composition of lipids and proteins as well as stability. Generally,

two raft states can be defined: small, metastable assemblies referred to as “reserve

rafts” and larger, stabilised “receptor-cluster rafts” [18]. Stabilisation of reserve

rafts, which are mainly found in resting cells, is induced by specific interaction

between rafts components, which get recruited into lipid rafts upon stimulation

[18, 19]. The lateral diffusion of proteins and lipids inside and outside of rafts is

partly mediated by the actin cytoskeleton [15]. Raft size can be further increased by
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ligand-induced oligomerisation of proteins as well as by protein modifications like

phosphorylation, leading to the generation of more potent signalling platforms [19].

12.1.2 Methods to Investigate Lipid Microdomains

Various biochemical, spectroscopic and microscopic approaches have been devel-

oped to study the structure of lipid rafts and their possible role in signalling events.

One of the commonly used method to isolate lipid rafts from cell membranes is

based on its insolubility in detergents [20]. Due to the accumulation of lipids in the

highly ordered state, rafts are resistant to treatment with non-ionic detergents, such

as Triton X-100, Brji 96 or CHAPS, and float into fractions of low density within a

sucrose gradient upon ultracentrifugation [20–22]. These so-called detergent-resis-

tant membranes (DRMs) contain a couple of specific protein markers including

caveolin [5], which is specific for caveolae, CD55 and alkaline phosphatase. In

addition, pore-forming toxins like cholera toxin B, which binds ganglioside GM1,

are also enriched in rafts [23]. Another raft marker for cells which do not form

caveolae, such as blood [24] and neural cells [25] is flotilin. Non-raft fractions can

be verified by the presence of transferrin receptor, CD71 and geranylated proteins

[26, 27]. Depending on the choice of the used detergent, DRMs can differ in their

composition of the lipid raft components as well as in their distribution within the

low density fraction [5, 28]. For that reason, the detergent-extraction of lipid rafts

was controversially discussed [29, 30], leading to the development of detergent-free

isolation methods [31, 32]. These techniques allow the fine disruption of the

membrane and the extraction of a larger portion of the inner leaflet by sonication,

which results in more reproducible outcomes [33].

The most direct method to study lipid rafts is based on monitoring chemical

(lipid) composition of the cell membranes with mass spectrometry [34–

36]. Although nuclear magnetic resonance spectroscopy provides direct informa-

tion about the order of lipid head groups and fatty acid chains, it is limited to model

membranes with simple lipid compositions [37–39]. A chemical cross-linking

method was also proposed, which provides evidence for the proximity between

sphingomyelin and cholesterol species [40]. Though this method could be extended

to a variety of lipid species and even to proteins, it is invasive and requires

destruction of the cell membranes.

Direct visualisation of lipid rafts is rather challenging due to their typical size

below diffraction limit and their high dynamics. Thus, postulating the concept of

membrane compartmentalisation let to a controversial discussion and low accep-

tance of the raft concept over the years [41]. Nowadays, Atomic Force Microscopy

(AFM) provide the necessary resolution [42] and can clearly distinguish between

raft and non-raft segments of the membrane [43]. However, AFM usually requires

modelled or isolated native membranes immobilised on surfaces. The AFM related

near-field scanning optical microscopy (NSOM or SNOM) uses a fibre probe with

an aperture below wavelength to scan the sample and is able to provide structural

information below the far field resolution limit [44]. Thus, SNOM was successfully
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applied to study the nanoscale organisation of membrane surfaces and enables the

investigation of lipid rafts in both model-supported and cellular membranes

[45, 46].

In addition, recent improvements in light microscopy allow to apply single

molecule spectroscopy and microscopy techniques to study the biophysical prop-

erties of lipid rafts as well as the localisation and distribution of receptors at

nanometre resolution. The spectroscopic and microscopic methods, however,

intrinsically require the implementation of fluorescent probes or contrast agents

to the lipid raft structure since such biological systems are poor in auto-

fluorescence. Meanwhile, lipid rafts have been visualised in numerous studies

using fluorescent probes that partition specifically into liquid-ordered or liquid-

disordered phases [47]. For example, Schütz et al. [48] imaged the distribution of

fluorescein–polyethylene glycol–cholesterol in comparison to Cy5-dimyristoyl-sn-

glycero-phosphatidylethanolamine in native cell membranes on a millisecond time

scale and with positional accuracy of approximately 50 nm using single molecule

tracking. They characterised small areas in a liquid-ordered phase and identified

those as lipid rafts. Sato et al. [49] extended such investigations to membrane

fragment clustering of the Golgi apparatus. In addition, Sharma et al. [50] used

green fluorescent protein coupled GPI-anchored proteins to visualise micro-

domains. They used F€orster resonance energy transfer (FRET)-microscopy to

determine the size and structure of GPI-anchored protein organisation. In other

studies, non-toxic recombinant derivatives of pore-forming toxins, such as lysenin,

cholera toxin subunit B, and aerolysin, have been used as lipid raft markers since

they specifically bind to sphingomyelin, glycosphingolipid GM1, and

GPI-associated proteins, respectively [23, 51–53]. Alternatively, environment-

sensitive membrane dyes have been developed, which show different fluorescence

properties depending on the membrane phases. The classical example for these

probes is laurdan, which is among the first probes introduced for imaging liquid-

ordered or liquid-disordered phases in model membranes [54]. Such probes can

directly address the properties of each separate phase, but their cellular appli-

cations are still limited. An ample collection was recently provided by

Klymchenko and Kreder [55]. These fluorescent analogues and probes are useful

tools to visualise lipid microdomains, although the size of the individual raft

seems to be beyond the resolution of the current conventional microscopy. A

comprehensive collection of specific optical methods visualising membrane rafts

was reviewed by Lagerholm et al. [56].

The development of super-resolution imaging techniques surpassed the

diffraction-limited resolution of optical systems and enables the direct observation

of small membrane clusters with the size of lipid rafts. Stimulated emission

depletion (STED) in combination with fluorescence recovery after photobleaching

(FRAP) analysis was applied for the first time by Siebert and colleagues to

investigate lipid microdomains [57]. Later STED was combined with fluorescence
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correlation spectroscopy (STED-FCS) to overcome the poor spatial resolution of

standard FCS and to diminish the statistical extrapolations [58, 59]. Fluorescence

fluctuation methods including photoactivated localisation microscopy (PALM) and

stochastic optical reconstruction microscopy (STORM) were also exploited to

directly prove existence of the nano-scaled lipid complexes and meso-scaled lipid

domains in cell membranes [60–62]. In line with the mentioned super-resolution

techniques, structured illumination microscopy (SIM) was recently applied to ana-

lyse biopsies of patients suffering from pemphigus vulgaris, an autoimmune epi-

dermal blistering disease, to better understand how autoantibodies alter desmosome

morphology and function in vivo [63].

Various additional cutting-edge optical methods have also been applied to

investigate the functional properties of lipid rafts, such as FRET, fluorescence

lifetime imaging (FLIM), FRAP, and FCS [56, 64, 65]. These optical techniques

in combination with super-resolution approaches are expected to provide more

accurate information about lipid raft dynamics and the spatiotemporal signalling

events at these microdomains.

One common approach to evaluate the functional role of lipid rafts in cell signal-

ling is their targeted disruption. This can be achieved by modifying the content of

its lipid components, especially cholesterol, and is confirmed by the redistribution

of raft markers from low density to high density fractions upon density gradient

centrifugation. Several antimycotics, such as filipin, nystatin and amphotericin,

destabilise lipid raft integrity by binding and sequestering membrane cholesterol

[66–69]. Depletion of plasma membrane cholesterol using methyl-β-cyclodextrin
(β-MCD) is another often applied method [70]. However, it has been shown that

β-MCD only partially removes membrane cholesterol at concentrations that retain

cell viability leading rather to the impairment than to a complete disruption of

lipid microdomains [71–73]. Besides directly altering the cholesterol content in the

plasma membrane, lipid raft’s integrity can be influenced indirectly by interfering

with the lipid biosynthesis. Statins, such as simvastatin, lovastatin and mevastatin

[67, 74, 75], as well as mevalonate are used to inhibit 3-Hydroxy-3-Methylglutaryl-

Coenzyme-A (HMG-CoA) reductase, the rate-limiting enzyme of cholesterol syn-

thesis. Moreover, blocking sphingolipid and ganglioside biosynthesis by fumu-

sonisin [76] or D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol

(PDMP) [77] can be used to induce lipid raft disruption. In addition to these bio-

chemical methods, genetic approaches to disrupt caveolae have been developed

including caveolin-1 knockout mice [78] or silencing caveolin-1 in cell lines by

RNA interference [79]. Since all techniques mentioned above bear the inherent

disadvantage to interfere with the lipid raft structure, an alternative conceptual

approach focusses on the specificity of the lipid raft downstream signalling in

comparison to non-raft region signalling. For example, Agarwal and colleagues

employed different genetically encoded FRET-based biosensors Epac2, which are

specifically targeted to lipid rafts (Epac2-MyrPalm) and non-raft domains (Epac2-

CAAX) [80]. These sensors were used to monitor local cyclic adenosine mono-

phosphate (cAMP) synthesis near the plasma membrane in comparison to the freely

diffusible Epac2-camps, which monitors the global [cAMP] [80].
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12.1.3 Targeting Proteins into Lipid Microdomains

Since lipid microdomains represent signalling hot spots, the association and disso-

ciation of defined signalling proteins with lipid rafts have to be highly regulated.

Central mechanisms responsible for the targeting of proteins into lipid rafts include

different co- and post-translational modifications.

One of the prominent lipid raft targeting signals is the GPI anchor. This protein

modification occurs in the endoplasmic reticulum (ER) by covalent attachment of

the protein-bound core oligosaccharide to a phosphoinositide residue to the outer

leaflet of the subsequent plasma membrane. GPI-anchored proteins include

enzymes such as placental alkaline phosphatase, cell adhesion molecules like

NCAM as well as several receptors (e.g. growth hormone receptors and glial-cell

derived neurotrophic factor receptor) [81].

Another common signal to guide proteins into the lipid rafts is S-palmitoylation

(in the following designated as palmitoylation), a widespread post-translational

lipid modification [82, 83]. Palmitoylation is the covalent attachment of the satu-

rated (C16:0) fatty acid palmitate to free thiol groups of cysteine side chain(s) via a

labile thioester bond. Palmitoylation is an enzymatic process mediated by at least

23 palmitoyl-acyl transferases (PATs) in mammals [82]. The catalytic centre of

these proteins contains an aspartate-histidine-histidine-cysteine (DHHC)-motif,

which mediates the palmitoyl transfer to the target protein [84]. Generally,

palmitoylation takes place at the ER and the Golgi apparatus, but can also be

carried out at the plasma membrane [85, 86]. Three depalmitoylation enzymes

have been characterised: Acyl protein thioesterases 1 and 2 (APT1 and APT2) and

palmitoyl protein thioesterase 1 (PPT1). APT1 and APT2 mediate depalmitoylation

of many proteins in the cytosol, whereas PPT1 resides in lysosomes and participates

in depalmitoylation during protein degradation [87]. Quite recently, Lin et al. found

that proteins of the ABHD17 protein family also possess functions of the depal-

mitoylation enzymes. Using a dual pulse-chase approach, they demonstrated that

ABHD17 proteins can remove palmitate from PSD-95 and N-Ras [88]. These

results point to more complex depalmitoylation mechanisms than thought.

Palmitoylation per se increases hydrophobicity and thus affinity of proteins

towards membranes. Thereby, it can influence subcellular localisation, conforma-

tion and stability, but also protein-protein interactions as well as protein degrada-

tion [89]. In case of soluble proteins like Src family kinases, heterotrimeric G

proteins and small GTPases such as Ras and Rho GTPases, palmitoylation facili-

tates the access to the plasma membrane [90–92]. Palmitoylation often assists other

protein modifications such as N-myristoylation in guiding peripheral proteins to

liquid-ordered membrane domains [93]. Transmembrane proteins, such as GPCRs,

are often palmitoylated on cysteine residues in close proximity to their transmem-

12 Role of Membrane Microdomains in Serotonin Receptor Functions 265



brane segment, and GPCR palmitoylation might act as guidance cue to lipid rafts

[94]. The palmitoylation of juxtamembrane cysteines can tilt transmembrane

domains [95] and can also be responsible for the formation of a fourth C-terminal

intracellular loop, which might be of importance for proper signalling [96].

However, palmitoylated transmembrane proteins reside not exclusively in lipid

rafts. The best example is the transferrin-receptor, a palmitoylated non-raft marker

[97]. This highlights the need to further study molecular processes induced by

palmitoylation of membrane-spanning proteins.

Interestingly, other co- or post-translational modifications of soluble proteins

with unsaturated fatty acids, like prenylation, prevent proteins from inserting into

lipid microdomains. It can be explained by the appearance of lipid rafts as liquid-

ordered membranes, in which branched fatty acids and isoprenyl or geranyl-geranyl

moieties do not fit as good as unbranched fatty acids [98].

Although GPI-anchoring and acylation are the most common signals to target

proteins into lipid rafts, there might be other mechanisms. A recent study demon-

strated that upon depalmitoylation and removal of GPI-anchors a small percentage

of proteins still reside in lipid rafts [99]. This group of proteins might interact

directly with raft lipids, such as cholesterol and sphingolipids [9, 19]. Furthermore,

the direct interaction of the cytoplasmic N-terminus of caveolin-1 with numerous

raft proteins was shown, including G proteins, growth hormone receptors and

various kinases [100–102]. In addition, it has been suggested that transmembrane

proteins can be targeted into lipid microdomains by their C-terminal amino acid

sequence [103, 104].

12.2 GPCR Signalling Complexes and LipidMicrodomains

12.2.1 G Protein-Coupled Receptors

Lipid rafts form an important platform for GPCR-mediated signalling, since

GPCRs as well as multiple downstream effectors are often targeted to lipid rafts.

GPCRs represent the largest and most diverse superfamily of transmembrane

receptors. They can be divided into five families: rhodopsin, secretin, glutamate,

adhesion and frizzled receptors [105]. All GPCRs belong to the family of seven

transmembrane receptors, which feature seven membrane spanning helices with an

extracellular amino-terminus and an intracellular carboxy-terminus. Ligand bind-

ing to different domains within the receptor’s outer surface leads to conformational

changes within the transmembrane segments which in turn results in activation of

multiple downstream effectors [106]. In this way, GPCRs translate extracellular

cues into intracellular, which influence a plethora of signalling cascades [107].

The best characterised downstream effectors of GPCRs are heterotrimeric G

proteins. They are comprised of three subunits: α, β, γ and act as molecular
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switches, cycling between inactive GDP-state and active GTP-state

[108]. Heterotrimeric G proteins can be divided into several subgroups according

to their Gα-subunits: GαS proteins activate adenylyl cyclases (AC) and are referred
to as stimulatory G proteins. In contrast, inhibitory G proteins, Gαi/o, inhibit ACs.
Another class of heterotrimeric G proteins, Gαq/11, couples to phospholipase Cβ
(PLCβ), resulting in the production of inositol-1,4,5-triphosphate (IP3) and leading

to calcium mobilisation. The last subgroup of heterotrimeric G proteins is termed

G12 and consists of Gα12 and Gα13, both activating different RhoGEFs, linking

GPCR signalling to Rho GTPases [109, 110]. Even though heterotrimeric G pro-

teins are clustered according to their α-subunits, βγ dimers have also been shown to

act as effectors of GPCRs signalling [111, 112].

GPCRs transduce extracellular stimuli not exclusively via trimeric G proteins.

Well-studied heterotrimeric G protein-independent signalling is mediated by

arrestins [113, 114]. Canonically, the C-termini of GPCRs get phosphorylated by

G protein-coupled receptor kinases (GRKs), followed by binding of β-arrestin 1 and
2 [115]. In turn, arrestins can switch off G protein-dependent signalling [116]. Fur-

ther evidence points towards the participation of arrestins in receptor trafficking,

internalisation, non-receptor tyrosine kinase signalling (e.g. c-Src) and mitogen-

activated protein kinases (MAPK) [117].

In the following section, we will provide a short overview of the role of lipid

microdomains in the distribution and signalling functions of the defined serotonin

GPCRs.

12.2.2 Influence of Lipid Microdomains on Serotonin
Receptor Functions

Serotonin (5-hydroxytrympamine or 5-HT) is an important neurotransmitters

within the central nervous system (CNS) as well as in the periphery. It is critically

involved in regulation of multiple physiological and pathological processes, includ-

ing body temperature, appetite, breathing, sleep and mood [118, 119]. Serotonin

can activate a large family of 5-HT receptors (5-HTRs) belonging to the seven

distinct classes. The majority of the 5-HTRs belongs to the family of the G-protein

coupled receptors (GPCRs), with only the 5-HT3R being a ligand-gated ion

channel.

Several 5-HTRs, including 5-HT1AR, 5-HT2R and 5-HT7R, have been shown to

be localised in caveolae and/or planar lipid rafts. Furthermore, several studies

provide evidence for the importance of raft localisation in terms of the regulation

of 5-HTR functions, including ligand binding properties, trafficking, internalisation

and/or signalling.
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12.2.2.1 5-HT1AR

The 5-HT1AR is the most extensively studied member of the serotonin receptor

family. This receptor is highly expressed in the cerebral cortex, hippocampus and

raphe nuclei, but it is also present in the gastrointestinal tract and platelets

[96]. Functionally, 5-HT1ARs are involved in a wide range of physiological pro-

cesses including the regulation of mood, sleep, appetite, body temperature, sexual

behaviour, learning and memory as well as the control of respiration, blood pressure

and heart rate [96, 120, 121]. Considerable interest in this receptor has been raised

due to its involvement in the pathogenesis of neurological disorders such as

depression and anxiety [122].

On the molecular level, 5-HT1ARs can couple to heterotrimeric G proteins of the

Gi/o family leading to AC inhibition and a subsequent decrease in cAMP levels. In

addition, 5-HT1ARs are involved in opening of K+ channels, closing of Ca2+

channels as well as activation of the extracellular-activated kinase (ERK) and

PLCβ by signalling via Gβγ subunits [123].

The localisation of the 5-HT1AR in lipid rafts was firstly demonstrated in CHO

cells stably transfected with a YFP-tagged recombinant 5-HT1AR using an micro-

scopic approach [124]. In these experiments, a small yet significant percentage of

5-HT1AR-eYFP retained in the plasma membrane after treatment with the non-ionic

detergent Triton X-100, indicating the association with lipid rafts. However, since

the fluorescence intensity was significantly decreased upon Triton X-100 treatment,

the authors concluded that only a small fraction of 5-HT1AR is associated with lipid

rafts [124]. Furthermore, agonist stimulation of 5-HT1AR did not increase the

amount of 5-HT1AR in detergent-insoluble membrane domains suggesting that

receptor activation is not involved in translocation into rafts [125]. The raft

localisation of a small portion of 5-HT1AR in CHO cells as well as in bovine

hippocampal neurons was further confirmed using a detergent-free approach

[126]. In the follow-up study, by applying z-scan FCS (zFCS), Ganguly and

Chattopadhyay have shown that 5-HT1AR exhibits confinement in cell membranes,

which was altered by the depletion of membrane cholesterol [127]. It appears to

reduce receptor confinement in a manner similar to that observed in the case of

cytoskeletal destabilisation, implying possible changes in the actin cytoskeleton

induced upon cholesterol depletion. In addition, raft association of 5-HT1AR was

studied after its incorporation into the artificial system of giant unilamellar vesicles

using an agarose rehydration method [128]. In this study, the preferential segrega-

tion of 5-HT1AR into the cholesterol-poor liquid-disordered phase of the membrane

was observed with fluorescence techniques. Noteworthy, modifying the concentra-

tion of cholesterol and sphingomyelin does not alter 5-HT1AR segregation into the

liquid disordered phase.

In our own studies we have demonstrated that the murine 5-HT1AR undergoes

palmitoylation at its cysteine residues 417 and 420 within the proximal C-terminal

domain [129]. Using gradient centrifugation and copatching assays, we have dem-

onstrated that a significant fraction of 5-HT1AR (app. 30%) resides in lipid rafts in a
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palmitoylation-dependent manner, suggesting that palmitoylation functions as a

targeting signal for lipid rafts [52]. The importance of 5-HT1AR palmitoylation for

receptor localisation in lipid rafts was further confirmed in two follow-up studies

using a FRET-based approach [130, 131]. Investigations in our lab also suggest that

the palmitoylation-dependent raft localisation of the receptor is critically involved

in the regulation of signalling processes. Characterisation of non-palmitoylated

5-HT1AR mutants revealed the importance of receptor palmitoylation for signal-

ling. In particular, non-palmitoylated mutants of 5-HT1AR showed reduced cou-

pling to the Gαi/o protein and impairment in the inhibition of AC leading to high

forskolin-induced cAMP levels [129]. Furthermore, the phosphorylation of ERK

was increased, indicating a preference for the coupling of non-palmitoylated

5-HT1AR to Gβγ over Gαi/o outside of lipid rafts. Similar effects have been

observed in human primary neuronal cultures [132].

These findings clearly demonstrate the importance of raft localisation of

5-HT1AR for the regulation of the receptor-mediated signalling (Fig. 12.1).

12.2.2.2 5-HT2R

The 5-HT2Rs comprise three subtypes—5-HT2AR, 5-HT2BR and 5-HT2CR—and

are involved in the regulation of learning, memory, sleep, mood and appetite

[121]. The 5-HT2Rs have also been implicated in pathological conditions such as

migraine, depression, anxiety and sleep disorders [133]. 5-HT2Rs couple to hetero-

trimeric Gq/G11 proteins, which in turn activate PLCβ, leading to increased accu-

mulation of IP3 and the stimulation of Ca2+ release from the ER.

The localisation of 5-HT2Rs in caveolae has been reported in smooth muscle cell

of the murine intestine [134] and the bovine trachea [135] as well as in rat endo-

thelial cells [135–137]. Furthermore, Bhatnagar et al. demonstrated that 5-HT2Rs

can be co-immunoprecipitated with the caveoale marker caveolin-1 in C6 glioma

Fig. 12.1 5-HT1AR signalling in lipid microdomains. Palmitoylated 5-HT1ARs are recruited into

lipid microdomains, where they couple to Gαi/o subunit leading to agonist-induced inhibition of

AC and decreased cAMP levels. Non-palmitoylated 5-HT1ARs are excluded from the lipid raft

domains, which results in impaired signalling towards Gαi-mediated AC inhibition and increased

phosphorylation of ERK via Gβγ subunits
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cells and in rat synaptic membrane preparations, indicating the interaction of both

proteins in caveolin-enriched lipid microdomains [79]. However, in smooth muscle

cells this interaction seems to be also existent in non-caveolar fractions [135]. None-

theless, siRNA induced knockdown of caveolin significantly reduced coupling of

5-HT2Rs to Gαq/11 proteins in the absence of agonist, pointing to a functional

significance of the 5-HT2R/caveolin interaction for 5-HT2R-mediated signalling

[79]. Potential interaction of the receptor with cholesterol might also be relevant for

5-HT2R functions, since cholesterol depletion by β-MCD impaired the agonist-

induced Ca2+ signalling in myocytes and endothelial cells [135, 136]. These studies

indicate that the proper function of the 5-HT2R is dependent on a unique membrane

organisation mediated by its interaction with cholesterol and rafts associated pro-

teins, such as caveolin-1 (Fig. 12.2).

12.2.2.3 5-HT7R

The 5-HT7R is abundantly expressed in smooth muscle cells of vessels and in the

gastrointestinal tract [121]. In the CNS, 5-HT7Rs are located in the spinal cord,

thalamus, hypothalamus, hippocampus, prefrontal cortex, amygdala, raphe nuclei

and suprachiasmatic nucleus [138]. With regard to its function, 5-HT7Rs have been

implicated in the regulation of circadian rhythm, sleep-wake cycle, body core

temperature, locomotion as well as learning and memory processes [139, 140]. A

large body of evidence indicates the involvement of the 5-HT7Rs in anxiety and

depression, and recent studies suggest that 5-HT7Rs can be highly relevant for the

treatment of major depressive disorders [141]. At the cellular level, 5-HT7Rs couple

to the stimulatory Gs proteins which results in the activation of AC leading to a rise

in cAMP concentration. Receptor stimulation can also activate small GTPases of

the Rho family by signalling via G12 proteins.

5-HT7Rs have been shown to co-localise with the caveolae marker caveolin in

Triton X-100-resistant fractions. However, this receptor was also detected in

non-raft fractions after sucrose gradient centrifugation [142]. This indicates that

the 5-HT7R can be localised both inside as well as outside of lipid rafts. In contrast

Fig. 12.2 5-HT2R signalling in lipid microdomains. Direct interaction of 5-HT2Rs with caveolin

facilitates receptor coupling to Gαq/11 and induces PLCβ-mediated Ca2+ signalling. Decreased

concentrations of caveolin and/or cholesterol in non-raft membranes reduce 5-HT2R binding to

Gαq/11 leading to impaired downstream signalling

270 J. Labus et al.



to the 5-HT1AR, signal(s) responsible for targeting the 5-HT7R into lipid micro-

domains have not been investigated yet. Since palmitoylation is a known regulator

for raft localisation of the 5-HT1AR, this post-translational modification might also

be responsible for raft targeting of the 5-HT7R. Indeed, 5-HT7(a)R has been shown

to undergo palmitoylation at its C-terminal cysteine residues 404, 438 and 441 in an

agonist-dependent manner [143]. Functionally, 5-HT7R palmitoylation negatively

regulates the constitutive, Gαs-mediated activity of the receptor, while agonist-

induced activation of Gαs and Gα12 were not altered in palmitoylation-deficient

mutants [140, 143]. In addition, it has been demonstrated that the specific compo-

sition of lipids in the plasma membrane can regulate 5-HT7R-mediated signalling.

Depletion of membrane cholesterol either by β-MCD treatment or inhibition of

cholesterol biosynthesis results in reduced agonist and antagonist binding to

5-HT7R as well as in decreased agonist-induced phosphorylation of the cAMP

response element-binding protein (CREB) and of the activating transcription factor

1 [144]. Reduction in agonist and antagonist binding was also reported after

inhibition of sphingolipid and ganglioside biosynthesis and caveolin-1 knockdown

[142, 145]. Furthermore, proper caveolin-1 expression is necessary for the recruit-

ment of 5-HT7Rs to the cell surface as well as for its agonist-induced internalisation

[142]. These results suggest that 5-HT7R signalling and internalisation might be

influenced by its localisation in lipid microdomains (Fig. 12.3).

12.2.3 Role of Lipid Microdomains in Functional Regulation
of G Proteins and Their Effectors

Lipid rafts act as potent signalling platforms, and nearly each type of Gα subunit

has been shown to be localised in lipid rafts [17]. For example, raft association of

Fig. 12.3 5-HT7R signalling in lipid microdomains. 5-HT7Rs can be recruited into lipid micro-

domains either by direct interaction with caveolin or via palmitoylation. Agonist-dependent

internalisation of the 5-HT7R-caveolin-Gαs-complex from lipid microdomains can result in the

impairment of the 5-HT7R-mediated signalling. 5-HT7R residing outside of lipid raft possesses a

high constitutive activity towards Gαs-mediated activation of AC

12 Role of Membrane Microdomains in Serotonin Receptor Functions 271



the Gαi/o subunits coupled to the 5-HT1R and 5-HT2R has been reported in cardiac

myocytes [146], fibroblasts [147], smooth muscle cells [21], epithelial cells [22, 32,

147–149] and endothelial cells [149]. The Gαq/11subunit, which can be activated via
5-HT2R, resides in caveolae of endothelial and epithelial cells [22, 149, 150]. The

Gαs protein is also localised in lipid rafts in different cell types, including glioma

cells [151, 152], breast cancer cells [152], cardiac myocytes [146], smooth muscle

cells [21], epithelial cells [149, 153, 154] and endothelial cells [149]. Also the Gα12
protein is localised within lipid rafts in fibroblasts [155] and epithelial cells

[153, 155]. In addition, Gβ-subunits reside in plasma membrane microdomains in

fibroblasts [31], epithelial cells [32] and endothelial cells [149]. However, the indi-

vidual Gα protein subtype seems to differ in the distribution between raft and

non-raft domains as well as in their preference for association with planar lipid

rafts or caveolae. For example, in endothelial cells Gαq/11 preferentially localises

into caveolin-rich caveolae, while Gαi/o, Gαs and Gβ concentrates in lipid rafts

enriched in GPI-anchored proteins [149].

The recruitment of G proteins to lipid rafts can be mediated by different mech-

anisms. One important raft targeting signal is palmitoylation of G protein subunits.

It has been shown that palmitoylation-deficient mutants of Gαs [151] as well as

Gα12 are not associated with lipid rafts, while myristoylation of the Gα12 subunit
can partially restore its raft localisation [155]. In addition, dual acylation by

myristoylation and palmitoylation was found to be sufficient to recruit Gαi/o into
lipid microdomains [147, 148, 156]. Interestingly, not all acylated G proteins are

necessarily targeted to lipid rafts. Although Gα13 is palmitoylated at three different

cysteine residues [157], it can only be detected within non-raft domains in fibro-

blasts and endothelial cells [155]. Furthermore, the prenylated Gβγ subunit is also

excluded from lipid raft domains within reconstituted membranes or liposomes

[156]. Another possible mechanism to recruit G proteins to lipid microdomains is

their interaction with scaffolding proteins. Several Gα subunits including Gαi/0,
Gαq/11, Gαs and Gα12 have been demonstrated to directly interact with the

N-terminus of caveolin [147, 149, 153], and palmitoylation of caveolin seems to

be important for the proper interaction [147]. In addition, the activation state of G

proteins can influence its binding affinity for caveolin. It has been shown that the

constitutive active mutant of the Gαs subunit is not able to interact with caveolin

and thus fails to translocate into lipid rafts [153]. Furthermore, caveolin-1 knock-

down decreases Gαs association with lipid rafts supporting the fact that binding to

caveolin is an important signal for raft targeting [151]. It has been suggested that

caveolin can negatively regulate GTPase activity and GTP binding of G proteins,

which in turn stabilises the inactive conformation of G proteins during their local-

isation in caveolae [153]. Besides caveolin, another component of lipid rafts tubulin

can interact with various G protein subunits, including Gαi, Gαq and Gαs, thus
facilitating their localisation into lipid microdomains [158, 159].

As mentioned above, lipid rafts can be involved in activity-dependent G protein

trafficking, internalisation and signalling. For example, thyrotropin-releasing hor-

mone receptor-mediated Gαq/11 activation results in decreased raft association

[150]. In contrast, Gαs gets enriched in caveolae and subsequently internalised
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upon GPCR-mediated activation [152]. In addition, it has been shown that endo-

cytosis of Gαs is dependent on the integrity of caveolae since their its disruption by
β-MCD or caveolin-1 knockdown prevents proper Gαs internalisation

[151, 152]. Furthermore, depletion of cholesterol, sphingolipids or caveolin from

the plasma membrane prevents Gαs localisation in lipid rafts, which in turn mod-

ifies Gαs/AC downstream signalling leading to increased receptor-mediated cAMP

production [146, 151, 154].

In addition to the heterotrimeric G proteins, also their downstream effectors are

often localised in lipid microdomains. For example, Ca2+-sensitive isoforms of AC

are localised in lipid rafts [146, 160–162], where they interact with caveolin-3 and

other membrane components via their cytoplasmic C1 and C2 loops [103, 146,

163]. Cholesterol depletion by treatment with β-MCD as well as caveolin-1 knock-

down results in relocation of AC to non-raft membranes and in the enhancement of

AC-mediated cAMP signalling [146, 151]. Similar effects have been observed after

disruption of the actin and microtuble cytoskeleton [15], suggesting that raft

association can lead to inhibition of AC activity followed by lowering the cAMP

levels. This is in line with a recently published study demonstrating a higher basal

AC activity in non-raft domains by applying different spatially restricted FRET-

based cAMP biosensors [80]. In addition, lipid raft disruption by cholesterol

depletion has been shown to selectively alter cAMP responses of receptors found

in those membrane domains [80].

Besides AC, the Gαq/11 effector PLCβ has recently been shown to translocate

into lipid rafts of astrocytes upon agonist stimulation [164]. Furthermore, the PLCγ
resides in lipid rafts and PLCγ palmitoylation seems to be necessary for raft recruit-

ment. From the functional point of view, PLCγ association with lipid rafts is suffi-

cient to promote its phosphorylation-induced activation [165]. Furthermore, lipid

raft disruption delayed agonist-evoked calcium waves propagation, indicating that

intact lipid rafts are important for GPCR-induced Ca2+ signalling [164].

12.3 Role of Lipid Microdomains and Serotonin Receptors

in Depression

Lipid microdomains are important for many physiological processes and their inte-

grity is essential for 5-HTR functions under physiological conditions. Accordingly,

changes in the composition of lipid domains have been implicated in the develop-

ment and progression of brain pathologies such as Alzheimer’s Disease, Parkin-

son’s Disease, schizophrenia and depression [166, 167]. In the following section,

we will focus on the possible role of membrane lipid rafts and 5-HTR signalling in

depression.
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12.3.1 The Possible Role of Lipid Composition in Depression

Depression is a major neurological disorder characterised by altered mood,

impaired concentration and a couple of neuro-vegetative symptoms. One key factor

for the pathogenesis of depression is chronic stress, which is used in animal models

to induce depression and anxiety-like behaviours. Several recent studies suggested

a correlation between depression-like behaviours and modified membrane lipid

composition. For example, chronic stress has been reported to induce a general

dysregulation in lipid metabolism by increasing the transcriptional activity of genes

involved in lipid synthesis [168]. Furthermore, Faria et al. investigated the brain’s
phospholipid content in a mouse model of depression [169]. They observed signif-

icantly reduced levels of phosphatidylinositol and increased levels of phosphati-

dylcholine as well as phosphatidylethanolamine in the whole brain. A recently

published study suggests a brain area-specific regulation of phospholipid levels

during depression [170]. In this study authors demonstrated that chronic unpredict-

able stress induces an increase in the amount of phosphatidylinositol in rat hippo-

campus, while phosphatidylethanolamine levels decreases in rat prefrontal cortex.

In addition, the lack of n-3 polyunsaturated fatty acids in the brain might be

involved in the development of depression/anxiety [167].

Besides general alteration in lipid synthesis, the metabolism of sphingomyelin is

particularly influenced by depressive conditions. Lipid rafts have been suggested to

be specific sites for the activation of acid sphingomyelinase (a-SMase), which

hydrolyses sphingomyelin to ceramide in response to various stimuli, e.g. stress

as well as bacterial and viral infection [167, 171]. In patients with severe depres-

sion, the activity of a-SMase is dramatically enhanced and a-SMase activity has

been shown to correlate with the severity of depression [172]. In line with these

observations, reduced levels of sphingomyelin and increased levels of ceramide

have been detected in the prefrontal cortex and hippocampus of rats exposed to

chronic unpredictable stress over a period of four weeks [170]. Furthermore, direct

injection of C16 ceramide into the hippocampus of wild-type C57BL/6 mice

induces depression-like symptoms even in the absence of stress [173]. Altogether,

these findings indicate that enhanced a-SMase activity and subsequent ceramide

release might contribute to the pathogenesis of depression. However, the mecha-

nisms involved in ceramide-related control of depressive behaviours need to be

elucidated.

One possible scenario implicates spatial regulation and signalling of monoamin-

ergic receptors by modifying their lipid environment. Indeed, released ceramide can

associate with each other to form small ceramide-rich domains, which can further

fuse to larger platforms serving as signalling hot spots. Consequently, the tight

packing and the high hydrophobicity of ceramide molecules can cause the removal

of cholesterol from the membrane. Changes in the biophysical properties of mem-

brane domains in turn might contribute to reorganisation of signalling receptors,

e.g. 5-HTRs, or modification of its activation states [171]. Furthermore, a

high concentration of ceramide molecules can result in the formation of ceramide

channels which have been implicated in apoptosis [174].
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Since enhanced a-SMase activity can directly influence depression-like behav-

iours, this enzyme has emerged as possible target for the treatment of depression.

Different tricyclic and tetracyclic anti-depressant drugs (e.g. desipramine, imipra-

mine and amitriptyline) functionally inhibit the activity of a-SMase by induction of

the proteolytic degradation of the enzyme inhibiting activity of a-SMase [175–

177]. In addition, the anti-depressants amitriptyline and fluoxetine were shown to

reduce acid sphingomyelinase activity and ceramide concentrations in the hippo-

campus [173]. Furthermore, treatment with these drugs increased neuronal prolifer-

ation, maturation and survival, and improve depression-like behaviour in a

rodent model of depression, while anti-depressive effects were not observed in

a-SMase deficient mice [173], indicating an important role of a-SMase as thera-

peutic target in the treatment of depression.

12.3.2 The Role of Serotonin Receptors in Depression

An imbalance in monoaminergic neurotransmission and in particular alteration in

the serotonergic system are tightly associated with the pathogenesis of depression

[178]. In addition, abnormalities in the expression or signalling of different 5-HTRs

have been implicated in the pathophysiology of this disease. Analysis of post-

mortem brains of subjects suffering from depression revealed reduced postsynaptic

5-HT1AR mRNA levels in the hippocampus and prefrontal cortex [179]. Several

Positron emission tomography (PET) studies confirmed a decreased 5-HT1AR

density in the prefrontal cortex of patients with major depression [180–182]. Con-

sistent with a lowered expression of 5-HT1AR in depression, attenuated 5-HT1AR-

mediated signalling was also observed in tissue depressed suicide victims [183]. In

addition, it has been shown that transgenic mice with low expression of 5-HT1A

autoreceptors exhibit increased resistance to chronic stress as compared to mice

with high expression of presynaptic 5-HT1AR [184]. Besides 5-HT1AR, also

5-HT7R has been implicated in the pathogenesis of depression, since pharmaco-

logical blockage of 5-HT7R or genetic knockout of this receptor result in anti-

depressive effects [185–189].

Numerous drugs used to treat depressive disorders affect the serotonin levels in

the brain. They mainly increase extracellular serotonin concentrations by blocking

the presynaptic reuptake [178]. Furthermore, some anti-depressants directly influ-

ence serotonergic signalling by acting as agonist for 5-HT1AR (e.g. buspirone and

vilazodone) or antagonist for 5-HT7R (e.g. imipramine, desipramine, fluoxetine and

vortioxtine). In addition, various pharmaceuticals applied in the treatment of

depression have been shown to modify 5-HTR signalling indirectly by affecting

the rafts translocation of the corresponding G proteins and its effectors. Some anti-

depressants such as desipramine, fluoxetine, and reboxetine have been found to

accumulate in lipid rafts without influencing the cholesterol content [190]. Further-

more, several studies demonstrated that chronic treatment with anti-depressants

results in the translocation of Gαs out of lipid rafts [191–195]. The analysis of post-
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mortem brains from suicide victims with a confirmed unipolar depression revealed

an increased localisation of Gαs in DRM of cerebellum indicating altered raft

association of Gαs in depression [196]. Anti-depressants seem to affect not only

the localisation of G proteins, but also its downstream signalling. For example,

coupling of Gαs to AC is enhanced upon anti-depressant treatment [197], which

correlates with an increase in cAMP levels [198]. These data suggest that altering

the lipid raft environment by anti-depressants can promote trafficking of Gαs into
non-raft domains, which facilitates interaction and activation of AC leading to

increased cAMP production.
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Chapter 13

Rotation of Single Cell Surface Receptors

Examined by Quantum Dot Probes

Dongmei Zhang, Peter W. Winter, Deborah A. Roess,

and B. George Barisas

Abstract Rotational diffusion, which depends linearly on the in-membrane volume

of the rotating molecule, is, relative to lateral diffusion, a more sensitive probe of an

individual molecule’s size and local environment. Single-particle tracking has

provided new perspectives on lateral compartmentalization of membrane proteins.

However, little is known at present about rotational motions of single membrane

protein molecules. We discuss correlation analysis of fluctuations in fluorescence

polarization from proteins labeled by asymmetric quantum dots. Such analysis

provides rotational information on single membrane molecules which can be

directly related to that from ensemble measurements of cell surface protein rotation.

We have used asymmetric quantum dots to examine individual Type I Fcε receptors
on 2H3-RBL cells and to conduct imaging measurements of receptor rotational

diffusion on timescales down to 10 ms per frame. To achieve removal of blinking-

based contributions to rotation measurements, we discuss an approach based on the

necessary statistical independence of polarization and intensity fluctuations. Imag-

ing results demonstrate rotational correlation times broadly ranging from 50 to

500 ms among individual molecules of the same type. The magnitude of these

orientational fluctuations is comparable to the fraction of molecules which appear

rotationally immobile when examined on the microsecond timescale by time-
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resolved phosphorescence anisotropy. These slow motions, not observable previ-

ously, appear to be a property of the membrane rather than the receptor state. Our

results suggest that individual mesoscale membrane regions may rotate or liberate

with respect to the overall cell surface.

Abbreviations

FcεRI Type I Fcε receptor
FRET Fluorescence resonant energy transfer

MSD Mean square displacement

NP Nanoparticle

PBS Phosphate-buffered saline

QD Quantum dot

ROI Region of interest

TACF Time autocorrelation function

TPA Time-resolved phosphorescence anisotropy

13.1 Optical Methods Permit Examination of Rotational

Motions of Cell Surface Receptors

Protein function and interactions between proteins in local cell environments are

central areas of interest in contemporary cell biology. Techniques for observing

proteins within specialized environments and interactions within those compart-

ments on viable cells are limited by the small numbers of a particular molecule.

When both partners in an intermolecular interaction are known, fluorescence reso-

nant energy transfer (FRET) measurements permit the changes in the intermolecular

distance to be evaluated. However, to evaluate intermolecular interactions of a

single known molecule with unknown species or structures or the effects of confor-
mation change or local environment on protein molecular motions, kinetic

approaches based on rotational or lateral diffusion provide the most practical tools.

Protein lateral and rotational diffusion reflect the size, interactions, environment

and temperature of the molecule examined. If a molecule self-associates or interacts

with other molecules or structures, whether in solution, in the cytoplasm or in

membranes, other factors being held constant, slower rotational and lateral diffu-

sion necessarily result. For example, for two-dimensional diffusion in membranes,

the Saffman-Delbrück treatment shows the translational diffusion coefficient to

vary inversely with the logarithm of the particle radius. This represents a very weak

dependence on particle size [1]. By contrast, the rotational correlation time varies

according to the in-membrane volume of the rotating protein [1, 2]. In particular,

for a spherical particle of hydrated volume Vhyd in a medium of viscosity η, this
correlation time is 1/6Drot or ηVhyd/kT. Thus measurements of rotational motions

are highly sensitive to the size and shape of the protein and as well as to the

viscosity of the surrounding environment. Rotational diffusion measurements
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provide a rather sensitive method to investigate the structure of large macromolec-

ular complexes and are sensitive enough to reveal receptor oligomerization and

aggregation events [3–5].

Further, cell membranes are dynamic structures with complex,

non-homogeneous organization [6] including membrane microdomains within the

plasma membrane and protein organizational effects created by the membrane

cytoskeleton. Due to compartmentalization of the plasma membrane and the for-

mation of membrane microdomains, receptors are distributed in a variety of envi-

ronments in the cell surface. Particular receptors function only in specific lateral

environments, such as lipid rafts, and depend on co-localization there of other

proteins [7]. In particular, rotational parameters of individual copies of a particular

receptor should indicate differences in receptor aggregation state and local envi-

ronment. However, only by studies of single molecules can such heterogeneity in

behavior among different copies of the same molecule be examined.

To measure rotation of a particular receptor type on a selected cell, only optical

methods have adequate sensitivity. All such optical approaches are based on

measuring polarization of light emitted, absorbed or scattered from molecules,

since only polarization phenomena reflect molecular orientation. Before discussing

specific techniques applicable to examination of single protein molecules on cell

surfaces, we should note some of the various techniques that have been applied in

earlier cellular studies of rotational motions within ensembles of molecules, either

on individual cells or in cell suspensions. Rotation of fluorescent lipid probes in

membranes occurs on the few-nanosecond timescale and so time-resolved fluores-

cence anisotropy is an effective technique for measuring such rotation. However,

unhindered rotational diffusion of cell surface proteins occurs on the 10–100 μs
timescale, so that fluorescence anisotropy is not applicable. Rotation of proteins on

or in cells has been studied using various methods based on generation of aniso-

tropic distributions of long-lived, typically triplet, species and subsequent exami-

nation of the decay of the distribution’s asymmetry. Such techniques have included

linear dichroism [8], delayed or E-type fluorescence [9], time-resolved phospho-

rescence anisotropy (TPA; [10]) and fluorescence depletion anisotropy [11, 12]. Cel-

lular studies demand robust, broadly-applicable methods and measurements of

phosphorescence and E-type fluorescence anisotropy decay, being the most

straightforward to conduct, have been most widely used.

These techniques use luminescent dye molecules as probes. Rotational motion of

membrane proteins can only be measured within a critical time window that is

determined by the limited lifetime of probe luminescence. For example, time-

resolved phosphorescence anisotropy can measure rotational diffusion times up to

a few times the phosphorescence lifetime of the probe, typically <500 μs for

phosphors like erythrosin, and so provides little information on motions slower

than about 5 ms. Polarized photobleaching [2] is applicable to very slow motions

but requires at least 100 ms to bleach fluorophores and cannot be used to examine

faster rotational motions. Thus there is a time window, extending from perhaps 5 to

500 ms, within which little is known about rotation motions of membrane receptors,

whether in ensembles or as single molecules.
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The development of asymmetric, typically rod-shaped, nanoparticles capable of

attachment to specific cell surface proteins has made possible measurement of

rotational dynamics of individual molecules in vivo within the aforementioned

time frame. The most commonly used rod-shaped nanoparticles are gold nanorods

and asymmetric fluorescent nanocrystals [13] including commercial quantum dots

[14]. Quantum dots emit high brightness polarized fluorescence [15]. Nanorods

scatter light preferentially along their long axis [16]. Both types of nanoparticles are

stable under normal levels of illumination and so permit extended examination of

samples labeled with these materials.

A key issue involving nanoparticle probes is whether quantum dots or nanorods

might significantly inhibit rotation of membrane proteins which they label. In fact,

physical considerations indicate that nanoparticle probes should not significantly

restrict the rotation of membrane proteins. The rotational correlation time τ of a

randomly-oriented molecular complex depends on the rotational correlation times

τA, τB of its parts as τ ¼ τA τB/(τA þ τB) since the friction coefficients of its parts

in their respective environments must be additive. The quantum dots we have

studied most extensively, Invitrogen’s Qdot655, measure ~5.8 � 12.8 nm and,

even if labeling a membrane protein, the particle itself must nonetheless exist

primarily in the aqueous extracellular fluid. The slower rotational correlation time

of such a particle, reflecting rotation about one of the degenerate short axes, is

calculated to be approximately 0.27 μs [17]. By contrast, relatively small proteins

such as major histocompatibility complex (MHC) class I and class II antigens [18–

20] exhibit rotational correlation times of 25–30 μs. Thus the perturbation of the

rotation rate of a membrane protein by conjugation of an extra-cellular quantum

dot should be negligible. Because gold nanorods are larger than quantum dots, their

possible effects on membrane proteins can be more problematic.

A quantum dot property of concern in measurements of protein rotational diffu-

sion is their “blinking” noted, for example, by Nirmal et al. in 1996 [21]. Individual

QDs display intermittent blinking with continuous excitation, alternating between

an emitting state (on) and a non-emitting state (off) with blinking timescales ranging

from nanoseconds to hundreds of seconds [22, 23]. The presence of a single QD can

in fact be confirmed from this blinking. The probabilities P(τ) of observing a given
“on” time or “off” time τ both follow power law distributions P(τ)/ τ�μ where the

exponents μ~1.1–2.2 are largely independent of sample temperature and nanoparti-

cle shape and size. Blinking “off” times are largely independent of temperature and

excitation intensity, but “on” times vary with these factors [24]. Compensating for

QD blinking is a challenge in lateral diffusion measurements such as single particle

tracking where an “off” state leads to uncertainty in the identification of a particular

particle once it again becomes “on”. For rotational motion measurements, polariza-

tion or anisotropy of quantum dot fluorescence, being ratios of measured fluores-

cence intensities, would seem to be immune to blinking effects. However, in

practical terms, blinking is a key problem in calculating rotation rates of quantum

dot-labeled proteins, as will be discussed subsequently.

Most previous work using nanoparticle probes of single molecule rotation has

involved gold nanorods. Although our own work utilizes asymmetric quantum dots,

some important nanorod studies should be mentioned as they inform certain aspects
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of our own work. Rotational motion measurement of gold nanorods was first

performed using dark field microscopy by S€onnichsen and Alivisatos [16]. Polari-

zation fluctuations in light scattered by gold nanorods, loosely attached to a glass

surface in a solution at pH 8.0, exhibited two-dimensional rotation with a rapid

rotational correlation time of about 60 ms. Pierrat and his coworker, monitoring

rotational diffusion of polymer-coated gold nanorods attached to artificial

biomembranes on solid supports using polarization contrast microscopy [25],

demonstrated that rotational diffusion times of about 100 ms could obtained.

Spetzler and coworkers observed the rotation of ATPase molecular motors using

dark-field microscopy. A single gold nanorod, attached to the rotating γ-subunit of
an immobilized F1-ATPase molecule on a glass slide, exhibited rotation rates of

7.62 rad/ms with a time resolution of 2.5 μs [26]. Chang and coworkers determined

the rotational motion of gold nanorods using a polarization-sensitive instrument to

measure the orientation of a 25� 73 nm nanorod from either the longitudinal or the

transverse surface plasmon resonance [27]. Wang and coworkers were the first

investigators to successfully use gold nanorod probes to track the rotational motions

of proteins on a live cell. Derivatized gold nanorods were internalized by A549

human lung cancer cells and transported by the cytoskeleton. Orientational infor-

mation on moving nanoparticles was extracted from asymmetries in nanorod DIC

images [28]. Xiao and coworkers directly tracked the rotational diffusion of indi-

vidual nanorods being transported by kinesin motor protein along microtubule

networks inside live cells. They illuminated gold nanorods with two orthogonal

sheets of light instead of using dark-field illumination. This method allowed

determination of three-dimensional orientation of single gold nanorods [29].

13.2 Evaluating Orientational Changes of Nanoparticles

Both physical considerations and existing literature suggest that measurement of

single nanoparticle rotation is necessarily based on examination of the spontaneous

orientational fluctuations of an individual nanoparticle-protein complex. The obvi-

ous analogy is with determination of molecular lateral diffusion by single particle

tracking [30]. In such studies, the position of a particle is determined over time and

used to determine the mean square displacement (MSD) occurring within a given

time interval. Such a calculation is effectively a determination of the time autocor-

relation function for fluctuations in particle position. For rotational studies, an

analogous approach would be to evaluate fluctuations in some function of particle

orientation related to particle rotational motion. Correlation analysis of single

molecule orientational fluctuations yields the same rotational information as

would be available in ensemble methods like time-resolved fluorescence or phos-

phorescence anisotropy.

Consider a quantum dot emitting polarized fluorescence resulting from polarized

illumination, whether an excitation pulse or continuous light. This description also

applies to a nanorod exhibiting polarized light scattering. Emission intensities
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polarized parallel and perpendicular with respect to the x-polarized exciting light

can be recorded using polarizer-equipped detectors to select x- and y-polarized

emission. Each signal is corrected for any background signal and for unequal

response by the two detectors [31]. This latter correction is achieved by multiplying

raw y-channel data by the so-called “g-factor”, namely the ratio of a nonpolarized

signal detected in the x-signal to that detected in the y-channel. We denote the

corrected intensities as I║(t) and I┴(t) to indicate their relation to the excitation

polarization. Various functions using such measurements reflect orientation of the

fluorescent particle(s). One such function is emission anisotropy r

r tð Þ ¼ Ijj tð Þ � I⊥ tð Þ� �
= Ijj tð Þ þ 2I⊥ tð Þ� � ð13:1Þ

while the other, the polarization p, is

p tð Þ ¼ Ijj tð Þ � I⊥ tð Þ� �
= Ijj tð Þ þ I⊥ tð Þ� �

: ð13:2Þ

It is important to note that polarization and anisotropy are defined empirically

here as functions of signals measured in two orthogonally-polarized detectors,

whatever the light signal and independent of the nature of illumination. In partic-

ular, it is not necessary that the exciting light be polarized. Consider a single

molecule illuminated with non-polarized light. When the molecule points in the

x-direction, signal will appear in the ║-channel but if it diffuses orientationally its

signal may appear mainly in the ┴-channel. Thus a time-dependent polarization or

anisotropy can be calculated. The two functions contain essentially the same

information and, for an ensemble of randomly oriented molecules, can be inter-

converted as p ¼ 3r/(2 þ r) and r ¼ 2p/(3 � p).

In the majority of our experiments, we have measured the fluctuations in

apparent fluorescence polarization from single quantum dots illuminated by con-

stant, non-polarized light. We first showed that such experiments provide informa-

tion on the rotational correlation time of the quantum dot probe. Then we compared

these results with those obtainable from hypothetical time-resolved fluorescence

anisotropy measurements on an ensemble of such systems if the quantum dot

fluorescence lifetime were sufficiently long. This comparison shows that both

approaches yield qualitatively comparable information.

The Qdot655 asymmetric quantum dots we used experimentally have been

shown to exhibit a “two-dimensional” absorption dipole [32]. Such a molecule or

particle possesses a degenerate transition dipole uniformly distributed around a

molecular “bright plane” and a “dark axis”, light polarized along which cannot

excite the molecule [33]. Such a situation obtains for CdSe nanoparticles with a

wurtzite crystal structure and an aspect ratio less than about 2. For these structures,

the dark axis is the long (C3) axis of the crystal and the bright plane, the equatorial

plane, here is symmetrical [34]. Such a system exhibits substantially different

fluorescence polarization behavior than that arising from one-dimensional

absorbers. Rotational fluctuation correlation calculations for 1D transitions have

been described elsewhere [35]. We consider the simplified case of such a rapidly-

fluorescing 2D fluorophore observed along the optical (z-) axis of a microscope,
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along which either x-polarized or non-polarized excitation is applied. The mole-

cule’s long or “dark” axis has an orientation (θ, φ) in the corresponding spherical

coordinates. Because of the both physical and optical symmetry of the nanoparticle

about the dark axis, we need not consider rotation about this axis and so need only

consider diffusion of the dark axis in θ and φ. The applicable rotational diffusion

equation is then

∂c
∂t

¼ Dr∇2c ¼ Dr
1

sin θ

∂
∂θ

sin θ
∂c
∂θ

� �
þ 1

sin 2θ

∂2
c

∂φ2

" #
ð13:3Þ

where Dr is the mean rotational diffusion constant. If the molecule is oriented at

(θ1, φ1) at t ¼ t1 then Eq. (13.3) can be solved to yield the probability

c(t2, t1, θ2,ϕ2, θ1,ϕ1,Dr) of finding the molecule at a new orientation (θ2, φ2) at a

subsequent time t2 in terms of a series of spherical harmonics Yn
m of even order

[36]:

c t2;t1;θ2;φ2;θ1;φ1;Drð Þ¼
X1
n¼0

Xn
m¼�n

e�n nþ1ð ÞDr t2�t1ð ÞYm
n θ1;φ1ð Þ∗Ym

n θ2;φ2ð Þ ð13:4Þ

If the integral of c over θ1 and φ1 is unity at a time t1, then the integral is also

unity at any subsequent time any time t2, as physical reality requires. For a

molecular orientation (θ, φ), the fluorescences recorded in the ║-and ┴-channel

detectors and, if present, in a z-polarized detector at 90� to the optical axis, i.e. x-, y-
and z-respectively, for x-polarized excitation are then (Barisas, unpublished)

Fxx t; θ;φð Þ ¼ F0 tð Þ cos 2θsin 2ϕþ cos 2ϕð Þ2
Fxy t; θ;φð Þ ¼ F0 tð Þ cos 2θsin 2ϕþ cos 2ϕð Þ cos 2θcos 2ϕþ sin 2ϕð Þ
Fxz t; θ;φð Þ ¼ F0 tð Þ cos 2θsin 2ϕþ cos 2ϕð Þsin 2θ

ð13:5Þ

and, for non-polarized excitation of equal intensity,

Fnx t; θ;φð Þ ¼ 1

2
F0 tð Þ 1þ cos 2θ

� �
cos 2θsin 2ϕþ cos 2ϕ
� �

Fny t; θ;φð Þ ¼ 1

2
F0 tð Þ 1þ cos 2θ

� �
cos 2θcos 2ϕþ sin 2ϕ
� �

Fnz t; θ;φð Þ ¼ 1

2
F0 tð Þ 1þ cos 2θ

� �
sin 2θ

ð13:6Þ

where F0(t) is a time-dependent quantity reflecting exciting light intensity,

fluorophore absorption cross-section, fluorescence lifetime and quantum yield,

detection efficiency and, most importantly, any blinking of the QD. For this particle

oriented at (θ, φ), the apparent polarization p and anisotropy r, being ratios of

fluorescences, are independent of F0(t). For both x-polarized and non-polarized

excitation, the single-molecule polarization and anisotropy signals are defined as
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p ¼ cos 2φ sin 2θ

1þ cos 2θ
;

r ¼ 1

2
cos 2φ sin 2θ

ð13:7Þ

However, to simplify calculations, we approximate p with 3r/2 with the result

p � 3f

4
cos 2φ sin 2θ ð13:8Þ

The factor f in Eq. (13.8) reflects the fact that molecules typically exhibit a

polarization less than that expected theoretically. This can arise, for example, from

chromophore motion too rapid to be observed directly.

We require the time-autocorrelation function G(τ) of p, assuming unrestricted

rotation over θ and φ for a given correlation time τ. It is given by the average

GðτÞ ¼< ðpolarization of molecule at time t2 ¼ t1 þ τÞ
�ðprobability of finding molecule at ðθ2,φ2Þ

at time t2 if it was at ðθ1,φ1Þ at time t1Þ
�ðpolarization of molecule at time t1Þ
�ðprobability of finding molecule at ðθ1,φ1Þ at time t1Þ >

ð13:9Þ

One assumes that, over a sufficiently long measurement times T, the molecule

explores all initial orientations φ1 equally so that c1(t1, θ1, φ1, Dr )¼ 1/4π. This also
implies that final orientations θ2, φ2 are also explored without bias. Averages over

θ1, φ1 and θ2, φ2 effectively imply an arbitrarily long experiment time. Given a long

experiment and unrestricted rotation, the average polarization must be zero so G(τ)
is also the time-autocorrelation function for fluctuations in p. Expanding Eq. (13.9)
using the notation

ð
S

Fðθ,φÞ ¼
ð2π
φ¼0

ðπ
θ¼0

Fðθ,φÞ sin θ dθ dφ ð13:10Þ

for integration of an arbitrary function F(θ, ϕ) over the surface of a sphere, we

obtain

GðτÞ¼ lim
T!1

1

T

ðT�τ

t1¼0

ð
S2

3f

4
cos2φ2sin

2θ2

� �ð
S1

cðt1þτ,t1,θ2,φ2,θ1,φ1,DrÞ

� 3f

4
cos2φ1sin

2θ1

� �
1

4π

� �
dS1dS2dt1

¼3f 2

20
e�6Dr τ

ð13:11Þ

The constant f where 0 � f �1 reflects either photophysical aspects of the

chromophore or depolarization too rapid to be observed. The expected initial
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amplitude G(0) of the polarization fluctuation TACF can be predicted from mea-

surements of time-resolved fluorescence anisotropy (see below). These provide an

estimate of the constant f in terms of the measured initial anisotropy r0 as 5 r0. The

apparent rotational correlation time τc is 1/(6Dr).

It is important to note that rotational motion measurements on a single molecule

will yield useful information only if the individual molecule’s measured rate of

fluorescence emission is sufficiently rapid. At least one photon must be detected per

rotational correlation time of the molecule, otherwise data acquired over time

contain essentially no rotational information.

The mean rotational correlation time exhibited by molecules in an ensemble is

typically measured by time-resolved fluorescence or phosphorescence anisotropy.

An anisotropic distribution of excited states is produced by a rapid pulse of light and

the decay of luminescence polarization or anisotropy reflects orientational random-

ization. We can consider a situation where the luminescence lifetime of the

molecule is much longer than its expected rotational correlation time so that excited

state decay need not be considered. At a time t after excitation by polarized light,

the excited state distribution function ce for the ensemble is

ce t;θ;φð Þ
¼ 1ffiffiffiffiffi

4π
p Y0

0 θ;φð Þþ 1

2
ffiffiffi
5

p Y0
2 θ;φð Þþ1

2

ffiffiffiffiffi
3

10

r
Y2
2

�
θ;φ

�þ1

2

ffiffiffiffiffi
3

10

r
Y�2
2

�
θ;φ

�" #
e�6Drt

( )

ð13:12Þ

The signals I║(t) and I┴ (t) detected in the x- and y-channels, respectively, and in

the 90� z-channel if available, are then

IxðtÞ ¼ A ne
Ð
Sceðt, θ,φÞcos 2φ sin 2θdS ¼ 1

3
1þ 1

5
e�6 Drt

� �
;

IyðtÞ ¼ A ne
Ð
Sceðt, θ,φÞsin 2φ sin 2θdS ¼ 1

3
1� 2

5
e�6 Drt

� �
;

IzðtÞ ¼ A ne
Ð
Sceðt, θ,φÞcos 2θdS ¼ 1

3
1þ 1

5
e�6 Drt

� �
;

ð13:13Þ

where ne is the total number of excited state molecules produced and A is the

detected photon count rate per molecule. The anisotropy and polarization are then

r tð Þ ¼ f

5
e�6Dr t ¼ r0e

�6Dr t;

p tð Þ ¼ 3f

10

e�6Dr t

1� 1=10e�6Dr t
� 3f

10
e�6Dr t ¼ p0e

�6Dr t
ð13:14Þ

Thus the initial anisotropy r0 expected theoretically is 1/5 but lower values will

be observed in practice. Similarly the theoretical initial polarization, if measured,
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would be 3/10 or lower. These equations allow estimation of f as 5 r0 and thus

prediction of what value of G(0) would be consistent with the direct measurements.

Comparison of G(τ) in Eq. (13.11) with p(t) in Eq. (13.14) shows that single-

molecule correlation experiments and pulsed-excitation ensemble measurements

provide the same kinetic information on rates of orientational relaxation and that

the amplitudes of relaxations curves yielded by the two methods are related in a

simple, known way.

13.3 Evaluating Quantum Dot Probes for Measuring

Receptor Rotational Diffusion

Experimentally, we evaluated the use of QD probes for measurements of single

receptor rotational diffusion on cell surfaces. QD polarization was examined on

RBL-2H3 cells expressing the Type I Fcε Receptor (FcεRI), a useful cell system for

studying protein rotational diffusion. This receptor has been extensively studied by

both TPA and fluorescence depletion anisotropy [37, 38]. FcεRI bind IgE with a

stoichiometry of 1:1 and crosslinking of receptor-bound IgE by polyvalent allergen

initiates a signaling cascade leading to mast cell degranulation, i.e. the release of

vesicle contents from the cell. Receptor crosslinking is accompanied by formation

of large receptor-containing complexes and virtual immobilizes the protein on the

microsecond-timescale where its hydrodynamic rotation is otherwise

observed [39].

Streptavidin-conjugated quantum dots Qdot655 and Qdot605 (Invitrogen) were

selected on account of their asymmetry, commercial availability as streptavidin

conjugates and wide use by other investigators. QD size was estimated from TEM

images (Fig. 13.1) and yielded average sizes of 5.1 nm � 10.9 nm for Qdot 605 and

5.8 nm � 12.8 nm for Qdot 655. Dimensions of approximately 5 nm � 12 nm and

8 nm � 15 nm, respectively, are listed by the Manufacturer [40]. Fluorescence

lifetimes and anisotropies (Fig. 13.2) were estimated using an IBH 5000U lifetime

fluorometer with 456 nm NanoLED excitation and 605 or 655 nm emission

TEM Image 
of Qdot605

20 nm

Fig. 13.1 TEM image of

Qdot605 showing an

average size of

10.9 � 5.1 nm
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monochromator settings at 32 nm bandpass. Qdot 605 exhibit an initial anisotropy

in solution of approximately 0.079 while a value of 0.085 is cited by Grecco et al.

[15]. We estimate a rotational correlation time in solution of about 0.2 μs, through
this is very approximate given the short fluorescence lifetime of the material. For

Qdot 655, initial anisotropy was measured at 0.042 and the rotational correlation

time estimated at about 0.3 μs. Biotinylated DNP-specific A2 IgE antibody, a kind

gift from Dr. Israel Pecht of the Weizmann Institute of Science, Rehovoth, Israel,

has very high affinity for FcεRI and provided the link between the receptor and

streptavidin quantum dots. A published protocol from the Invitrogen company [41]

was used to conjugate one QD or less per protein molecule.

Untreated and treated cells were maintained in pH 7.4 PBS solution. Images

from cells were collected by fluorescence microscopy using a Zeiss Axiovert 200M

microscope with a Zeiss αPlan-Fluar 100x NA 1.45 oil objective and custom

Chroma filter sets including excitation filter (460/50 nm), dichroic beam splitter

(475 nm) and emission filter (655/40 nm). At 600 nm the Airy radius on the sample

was 252 nm [42]. Fluorescence from cell-bound quantum dots was excited by

illumination from a 100 W arc lamp. In most experiments, non-polarized exciting

light was used but some measurements involved exciting light vertically polarized

at the sample, i.e. x-polarized. A Princeton Instruments Dual View image splitter

equipped with a polarizing beamsplitter allowed recording of image sequences

containing simultaneous x- and y-polarized sub-images in each frame. Orthogo-

nally polarized images were collected every 10 ms for a typical duration of 1000

frames at a final magnification of 100x after 5x binning to enhance acquisition rates.

An Andor Ixon Andor DU897E EMCCD camera having 512� 512 16 μm� 16 μm
pixels was used. Figure 13.3 provides a diagram of image data acquisition including

a low resolution image of Qdot655 on a 2H3 cell surface. Dry QD on glass were

Fig. 13.2 Time-resolved

fluorescence anisotropy of

Qdot 605 in water at room

temperature. The apparent

fluorescence lifetime is

~5.5 ns and the initial

anisotropy is 0.079
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imaged in the same way as cell-bound QD. An image of dry Qdot605 on glass is

shown in Fig. 13.4. In both figures, to indicate varying orientations among dots,

vertically and horizontally polarized images are presented superimposed in

contrasting green and red colors, respectively, after alignment and correction by

an appropriate g-factor.

images 
superimposed in 
contrasting colors

receptor-
bound QDs

excitation 
vertically 
polarized

polarizer

objective

exciter
filter

dichroic
mirror

image
splitter

vertical 
polarizer

horizontal
polarizer

fluorescence 
illuminator

EM
CCD
Cam-
era

time-sequence of camera frames

computer analysis

Fig. 13.3 Equipment for imaging measurement of slow QD rotation on cell surfaces. The inset
image shows vertically- and horizontally-polarized fluorescence from Qdot655 on 2H3 cell FcεRI
overlaid in green and red, respectively, to indicate different orientations of individual QD. Color

differences among various QD are enhanced for clarity

20 μm

Fig. 13.4 Vertically- and horizontally-polarized fluorescence images of dry Qdot605

superimposed in green and red, respectively, to indicate different orientations of individual

QD. Color differences among various QD are enhanced for clarity

298 D. Zhang et al.



13.4 Initial Processing of Image Sequences

Image stacks collected were analyzed using NIH Image J and expanded five-fold in

each dimension to 510 � 510 pixels, each corresponding to 32 nm � 32 nm on the

sample. For convenience in notation, we considered the x-axis to be the vertical

direction as observed in the microscope and that polarization, if any, of exciting

light is also in this direction. Thus Iv(t) � I║(t) and Ih(t) � I┴(t). Moreover we

typically omitted “(t)” so that v ¼ Iv(t) and h ¼ Ih (t). Sub-pixel alignment of the

vertically- and horizontally-polarized sub-images was necessary for rotational

correlation calculations but could not be achieved mechanically, even with careful

alignment of the Dual-View before the start of every experiment. Therefore, image

stacks of QD on a cell or surface were segmented into substacks containing

vertically and horizontally-polarized images. Each stack was flattened,

i.e. averaged, and the horizontally-polarized average image adjusted with respect

to the vertically-polarized one to correct for displacement, rotation and dilation of

one image relative to the other. The parameters of this adjustment were then used to

correct the entire horizontally-polarized stack to achieve sub-pixel alignment with

the vertically-polarized one. Given the image expansion, the alignment parameters

were accurate to�1/5 of a pixel with respect to the original image. 25- and 50-pixel

diameter regions of interest (ROI; 0.8 and 1.6 μm diameter, respectively) were

centered around individual QD at the same locations in the aligned vertically- and

horizontally-polarized images. The diameters of the Airy disc calculated previously

for the microscope showed that these regions contain 0.90 and 0.95 of each dot’s
total image intensity. Figure 13.5 shows 800 nm ROI around several QD on a 2H3

cell surface while Fig. 13.6 shows the blinking of an individual quantum dot in such

a region. Typically ten or more QD were examined per cell. ROIs in background

areas, well away from any QD, were also selected for each cell. For each image

sequence, and the average v- and h-polarized intensities in the ROI surrounding

each dot plus the averaged v- and h-polarized intensities in each background ROI

region were measured in Image J and exported as a CSV file.

Fig. 13.5 Section of

fluorescence image showing

Qdot655 bound to 2H3 cell

FcεRI. Indicated circular
regions are 25 pixels or

800 nm in diameter and

contain ~91% of the

intensity in the QD Airy

disc
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13.5 Removal of Blinking Effects and Correlation

Calculations

Complete removal of quantum dot blinking effects is the critical step in data

analysis. Polarization is defined as (v� h)/(vþ h) where v and h are true intensities

of the two fluorescence signals. However, correction of observed fluorescences vobs
and hobs to obtain true values involves experimental parameters such as the “g-

factor”, camera background and local cell background which can change between

QDs, even in the same image. For computational reasons, we replace g with (1þ g0)
and correspondingly multiplied vobs by (1 � g0). We then have

vobs ¼ 1

1� g0
ðvþ bvÞ þ c;

hobs ¼ 1

1þ g0
ðhþ bhÞ þ c

ð13:15Þ

where g0 is the new g-correction as described, c is a camera background signal

constant across the image and containing both CCD dark counts and offset inten-

tionally added by the camera driver. bv and bh represent actual background fluo-

rescences present in the image. We have measured background signals averaged

over QD-free regions but might expect the backgrounds applicable to a particular

dot to differ from the all-cell average by constants bdv and bdh. This gave the

following equations

800
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400

300
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Horizontally-polarized
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u.
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Fig. 13.6 Raw fluorescence data from an 800 nm ROI surrounding an individual Qdot655 bound

to a 2H3 cell FcεRI. Signals from the vertically- and horizontally-polarized images are shown in

black and red, respectively. Both traces show the QD’s random blinking on various timescales
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v ¼ ð1� g0Þðvobs � bvobsÞ � ð1� g0Þbdv;
h ¼ ð1þ g0Þðhobs � bhobsÞ � ð1þ g0Þbdh: ð13:16Þ

Three constants g0, bdv and bdh are therefore needed to correct raw intensities and

these constants vary slightly from cell to cell and from dot to dot. Hence calibration

in independent experiments is not possible. Corrected intensities were used to

calculate the intensity function s ¼ v þ h and the polarization p ¼ (v � h)/s, the

true values of which are necessarily statistically independent. However, if the three

constants are not properly chosen, calculated polarization values p can contain a

contribution from the intensity function s which varies with QD blinking. When, in

turn, polarization fluctuations are correlated to obtain the polarization time auto-

correlation function (TACF) to quantitate molecular rotation, errors in these param-

eters can introduce into the polarization TACF a contribution from the intensity

fluctuation TACF arising from QD blinking.

A non-linear procedure in Mathematica was applied to each QD to select

values for the adjustable constants yielding maximum statistical independence

of p and s as assessed by the weighted correlation coefficient. Other factors, such

as non-negativity of corrected intensities provided additional necessary con-

straints. For some QD, typically less than 20% of the total, optimizations of

instrumental parameters failed, typically by failure to converge or by converging

to physically impossible values such as negative g-factors. Such QD were not

examined further.

Once corrected intensities were obtained for a given QD, polarization p was

calculated for each frame. The time-autocorrelation functions gp(τ) and gs(τ) for
polarization and intensity fluctuations, respectively, about the appropriate long-

time means are given by

Gp τð Þ¼1

T

XT�τ�1

t¼0

p tð Þ�pt½ 	 p tþτð Þ�ptþτ

� �
w tð Þw tþτð Þ=

XT�τ�1

t¼0

w tð Þw tþτð Þ ð13:17Þ

Gs τð Þ ¼ 1

T

XT�τ�1

t¼0

s tð Þ � st½ 	 s tþ τð Þ � stþτ½ 	 ð13:18Þ

where τ is correlation time in frames and T is the total number of frames recorded.

Because integrated QD and background intensities in each ROI were substantial

(Fig. 13.6), the uncertainty in corrected intensity was assumed to be constant for

each QD. Thus, in the calculation of the polarization fluctuation TACF, the weight

factors w(t) for each point were set to the intensity function st for that point. For

each dot analyzed, the various numeric parameters and graphs obtained were saved

automatically in a CSV file and PDF files, respectively. Subsequently, a model

consisting of a single exponential decaying to zero at long times was least-squares

fitted to the TACF decay for each dot. The resulting fitted parameters, RCT and G

(0), were recorded for each QD and statistics of data from similarly treated cells

computed.
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13.6 Perspectives and Conclusions

Our measurements indicate initial anisotropies of 0.079 and 0.042 for Qdot605 and

Qdot655, respectively. Considered as 2D fluorophores emitting and absorbing in an

equatorial “bright plane”, Eq. (13.14) suggests these materials should exhibit initial

solution anisotropies of 1/5. Both QD have aspect ratios of about 2. At aspect ratios

only slightly higher, CdSe nanocrystals apparently transition to 1D emitters,

absorbing and emitting along the crystal long axis [43]. Thus one explanation for

the observed anisotropies would be participation of this 1D transition, increasing

the effective optical symmetry of the molecule and reducing measured fluorescence

anisotropy.

Fluctuations of QD fluorescence polarization of ~300 Qdot655 bound to 2H3

cell FcεRI were examined and the TACF for each QD’s fluctuations plotted

vs. apparent rotational correlation time. Figure 13.7 shows a composite of

85 such traces. It is apparent that, among individual QD, substantial variation exists

in both RCT and TACF initial amplitude. The average features of such decay are

presented in Fig. 13.8 for subsets of the Qdot655 bound to 2H3 cell FcεRI and dry

Qdot655 examined. Inspection suggests, for cell bound QD, an initial amplitude of

about 0.0014 and multi-exponential decay with a mean RCT of perhaps 200 ms. By

contrast, the dry dots exhibit essentially flat decay curves with an average G(0) of

about 0.0002. Moreover, the intensity fluctuation TACF for cell-bound dots has

substantially different kinetics from the polarization fluctuation TACF (results not

shown). This, to our thinking, largely eliminates the possibility that the exponential

decay of polarization fluctuation TACF decay is a artifact of feed-through of

quantum dot blinking into the TACF. This is because the dry dots blink much

like cell bound ones, yet their decay curves differ as shown.

Fig. 13.7 Composite plot of polarization fluctuation TACF vs. time for 85 individual Qdot655

bound to 2H3 cell FcεRI
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Cell surface features which might cause apparent polarization fluctuations need

to be considered. The most important of these is lateral diffusion of cell surface

receptors. If the ROI surrounding the QD in the v- and h-images were displaced

somewhat one to another, then receptor lateral diffusion into the v-channel ROI and

out of the h-channel would increase the v-signal relative to the h-signal giving rise

to time-dependent fluctuation in the apparent polarization. Two experimental facts

argue against the presence of such an artifact. Figure 13.9 shows averaged TACF

decay traces for 35 Qdot655 on 2H3 cell FceRI examined using both 800 nm and

1600 nm ROI for each QD. The traces are essentially indistinguishable, the

increased noise in the 1600 nm trace being due to increased background signal in

the larger ROI. Additionally, paraformaldehyde fixation, presumably reducing

receptor lateral diffusion substantially [20], caused no significant changes in

-0.0005

0

0.0005

0.001

0.0015

0.002

0 0.5 1 1.5 2
RCT (s)

Average polarization fluctuation TACF
QD655-IgE-FceRI (85)

Dry QD655 (87)

Fig. 13.8 Average polarization fluctuation TACF decay for 87 Qdot655 bound to 2H3 cell FcεRI
(black trace) compared to decay for 85 dry Qdot655 on glass (red trace)

Fig. 13.9 Average polarization fluctuation TACF decay for 35 Qdot655 bound to 2H3 cell FcεRI
as determined from fluorescence in 25- and 50-pixel ROIs surrounding the same QD. The traces

for the 25- and 50-pixel ROIs are shown in blue and red, respectively. The absence of significant
difference in the traces demonstrates that receptor lateral diffusion does not combine with ROI

misalignment between vertically- and horizontally polarized images to produce apparent QD

rotation as an artifact
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TACF decay, as is described subsequently. Moreover, physical considerations

make lateral diffusion effects unlikely. Assuming the QD are well-centered in the

ROI as shown in Fig. 13.9, the amplitudes of such fluctuations would be negligible.

The timescale of such fluctuations can also be estimated from the possible

misalignment Δx of the ROI and the lateral microscopic diffusion constant Dmicro

of a typical receptor as Δx2/2Dmicro. Assuming worst-case values of 10 nm for Δx
and a very slow Dmicro of 5� 10�11 cm2 s�2 [44], such fluctuations would be 10 ms

or faster, much faster than the receptor motions implied by our rotational correla-

tion results.

Various treatments cause changes in cell membranes and/or membrane recep-

tors that affect molecular motions of these receptors. Samples were treated at room

temperature with either 0.01% DNP-BSA in PBS for 1 h, 4% paraformaldehyde in

PBS for 45 min, 0.01% methyl-β-cyclodextrin (MBCD) in PBS for 1 h or 40 μM
cytochalasin D in PBS for 1 h. Cells were washed and then incubated with 100 pM

streptavidin-QD for 10 min and washed before imaging. Labeling was adjusted to

give approximately ten suitably located QD per cell. In some experiments, the order

of FcεRI loadingwith IgE and treatments were reversed.We examined the rotational

fluctuation TACF of Qdot655 bound to 2H3 cell FcεRI on cells subjected to these

four such treatments and on control cells pre-loaded with IgE alone. Figure 13.10

shows histograms of RCT distributions on the variously-treated cells while

Tables 13.1 and 13.2 provide statistics on the geometric mean RCT and fitted initial

TACF, respectively.

If 2H3 cell FcεRI are pre-loaded with DNP-specific A2 IgE, subsequent treat-

ment with DNP-BSA substantially increases the receptor limiting anisotropy

observed in TPA experiments, implying rotational immobilization of the 100 μs
timescale [37]. Similarly, paraformaldehyde fixation effectively eliminates mem-

brane protein rotation [20]. Methyl-β-cyclodextrin extracts membrane cholesterol

and so a variety of effects resulting from such treatment can be rationalized. For

example, Shvartsman et al. report that methyl-β-cyclodextrin inhibits membrane

protein lateral diffusion although other cholesterol-depleting treatments accelerate

such motions [45]. Finally, cytochalasin D disrupts actin filaments and so, for

example, reduces the lateral mobility of the luteinizing hormone receptor, a G

protein-coupled receptor [46]. For both these latter treatments, effects on membrane

protein rotation remain to be determined.

Results shown in Fig. 13.10 demonstrate that FcεRI, both on untreated cells and

on cells treated with DNP-BSA, paraformaldehyde, methyl-β-cyclodextrin or

cytochalasin D, all exhibit broad ranges of rotational correlation times. This is

also independent of the order in which IgE and treatment reagents are applied.

Figure 13.10 shows that each of the treatment groups exhibits rotational kinetics

covering a greater than ten-fold range of RCT. Because of the wide range of RCT,

we present geometric averages of RCT in Table 13.1. Among the various treatment

groups, no substantial differences in histograms or statistics are apparent; the

histograms are very similar regardless of treatment with geometric averages of

150–250 ms. The standard deviation of log10RCT is quite constant at about 0.5,

indicating that about the RCT of about 70% of QD fall within a tenfold range.
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Fig. 13.10 Histograms of rotational correlation times for Qdot655 bound to FcεRI on variously-

treated cells. Abbreviations indicating treatment groups are: IgE, IgE only; DNP, DNP-BSA; PF,

paraformaldehyde; MBCD, methyl-β-cyclodextrin; cytD, cytpochalasin D. Frequencies are given

as percents of the numbers of QD indicated in Table 13.1. The left-hand bar (solid fill) of each pair
represents cells loaded with IgE before the indicated treatment while the right-hand bar if any

(hatched fill) denotes cells treated before IgE loading
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The initial fitted values G(0) of the TACF (Table 13.2) are also grossly similar

for all treatment groups. Nonetheless, if applied after IgE loading, DNP-BSA,
methyl-β-cyclodextrin, paraformaldehyde and cytochalasin D seem to reduce the

TACF amplitude significantly relative to IgE control cells, suggesting these treat-

ments have affected more or less complete immobilization of a fraction of recep-

tors, thus removing their contribution to the TACF which considers only receptors

with RCT below about 2 s. Treated cells also exhibit slightly reduced standard

deviation. This might be rationalized by suggesting that these treatments essentially

immobilize an otherwise highly mobile fraction of receptors thus reducing both the

average G(0) and the heterogenity of the receptor population. By contrast, if cells

are first exposed to treatment reagents, not including DNP-BSA, and then loaded

with IgE, both the average G(0) and the standard deviation are slightly increased,

precisely the opposite of that observed when cell are treated immediately before

QD binding. It is difficult to rationalize this difference.

A major question is what broader relevance the observed polarization fluctuation

TACFs of initial amplitude ~0.0012 and RCTs of about 200 ms might have to

membrane protein dynamics. TPA measurements on cell suspensions are limited by

Table 13.1 Statistics of RCTs exhibited by Qdot655 bound to FcεRI on variously-treated cells

1st reagent 2nd reagent Geometric Avg RCT SD of log10 (RCT) Total QD

IgE – 175.1 0.475 298

IgE DNP 150.1 0.481 95

IgE PF 238.1 0.488 105

PF IgE 208.2 0.491 51

IgE MBCD 259.3 0.435 53

MBCD IgE 148.9 0.482 23

IgE CytD 203.5 0.564 68

CytD IgE 164.3 0.522 68

Abbreviations indicating various treatment groups are the same as those used in Fig. 13.10. The

geometric mean of the RCT in each treatment group is provided, together with the standard

deviation of log10 (RCT) and the number of QD examined in each group

Table 13.2 Statistics of initial amplitudes of the polarization fluctuation TACF exhibited by

Qdot655 bound to FcεRI on variously-treated cells

1st reagent 2nd reagent Avg fitted Gr(0) SD Total QD

IgE – 0.001243 0.001206 298

IgE DNP 0.000978 0.000877 95

IgE PF 0.000971 0.000797 105

PF IgE 0.001311 0.001299 51

IgE Mbcd 0.000905 0.000900 53

Mbcd IgE 0.001595 0.001814 23

IgE CytD 0.000895 0.000667 68

CytD IgE 0.001774 0.001759 68

Abbreviations indicating various treatment groups are the same as those used in Fig. 13.10. The

mean initial amplitude for each treatment group is provided, as is the standard deviation of these

amplitudes and the number of QD examined in each group
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the lifetime of organic phosphorescent probes and hence molecules rotating more

slowly than about 1 ms appear rotationally immobile in such experiments. Data on

all cell types typically show a “limiting anisotropy” which does not decay on

microsecond timescale. For example, we have examined the rotation of

erythrosin-labeled IgE-FcεRI complex on suspended 2H3 cells [37]. The ~80 μs
anisotropy decays of both the receptor and the MAFA regulatory protein are

understandable as hydrodynamic rotation of the proteins’ transmembrane domains.

However, residual anisotropies of 0.039 and 0.047, respectively, remain at 350 μs
after excitation. We have noted [47] that, for FcεRI, the limiting anisotropies

observed in fluorescence depletion anisotropy experiments represent about 1/6 of

the photophysical maximum. If Qdot655 behaves as an ideal symmetric 2D chro-

mophore and if its initial anisotropy of 0.042, as determined by time-resolved

nanosecond fluorescence anisotropy measurements, represents the actual limiting

photophysical anisotropy, then we would predict that G(0) should be about 0.0066.

Our correlation experiments yield a G(0) of about 0.0012 for motion between about

10 ms and 2 s. The ratio of the measured G(0) to that predicted from time-resolved

fluorescence anisotropy experiments is also about 1/6. This suggests that these

orientational fluctuations of quantum dots on the 20–2000 ms timescale might

account for a substantial fraction of the apparent rotational immobility exhibited

by membrane receptors examined with faster techniques.

The other key question is why the various treatments such as receptor

crosslinking by polyvalent DNP-antigens have such limited effects on receptor

rotational dynamics. One explanation could be that the slow QD motions shown

in TACF decay reflect properties of the membrane itself, rather than properties of

the embedded receptors. Lateral motions of “lipid rafts” within the cell surface are

well-known. Likewise, a rigid cylindrical membrane region would be expected to

rotate as well. The relation between region size and RCT is easily calculated [1]. To

exhibit unhindered rotation with an RCT of 200 ms, a structure in a 5 nm-thick

membrane of viscosity 3 Poise would need a radius of 400 nm. However, such times

could arise from much smaller domains whose motion was hindered by cytoplasmic

species attached to embedded proteins. Thus, our results may indicate that individ-

ual mesoscale membrane regions rotate or librate somewhat with respect to the

overall cell surface and that receptor-bound quantum dots share this overall motion.
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Chapter 14

Combining NMR Spectroscopy and Molecular
Dynamics Simulation to Investigate
the Structure and Dynamics of Membrane-
Associated Proteins

Alexander Vogel and Daniel Huster

Abstract Nuclear magnetic resonance (NMR) spectroscopy and molecular

dynamics (MD) simulations are both powerful methods for the investigation of

the structure and dynamics of biological membranes and membrane proteins but

like every scientific method they both have their inherent advantages and disad-

vantages. Fortunately, these strengths and weaknesses are rather complementary to

each other. Typically, MD simulations perform best on model systems with a

limited number of molecules, while NMR methods can be applied to much larger

and more complex systems. Furthermore, MD simulations are very limited in the

size of the systems and the timescales which can be simulated, while NMR is an

ensemble technique that is sensitive to a very broad window of timescales. How-

ever, interactions of the like molecules of the ensemble are difficult to study which

does not pose a problem in MD simulations. In complex systems that do not provide

atomistic resolution, tracing an NMR result to its molecular origin can be very

difficult while MD simulations offer a complete atomistic representation of the

system. This all argues that a combination of the two methods can produce

synergies that lead to a much deeper understanding of a specific research question.

In this chapter, we address how experimental results can be used to guide MD

simulation setup and validate its results and how these results can be used to obtain

a much more detailed picture of the processes that occur in the investigated system.

The combined use of both methods is illustrated on several examples of investiga-

tions on the human N-Ras protein, which represents a membrane-associated small

GTPase.
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14.1 Introduction

Biological membranes are highly important interfaces and represent a mediator of

many crucial functions of life. They consist of a double layer of lipids composed of

a multitude of chemical structures, in which a huge variety of proteins and also

other molecules is embedded. While the lipid moiety of the membrane itself was

viewed only as a passive matrix that represents the solvent for proteins for a long

time, a picture has emerged now, in which the membrane actively participates in

many biological functions in various ways. For instance, lipid molecules have been

identified as second messengers that are involved in signaling [1–3] or as cofactors

for membrane proteins [4, 5]. Furthermore, in contrast to the Singer Nicolson model

[6], the lipid phase of the membrane is not homogeneous but represents a dynamic

assembly of inhomogeneously mixed lipids that organize in small domains, which

are often referred to as rafts [7, 8]. Both membrane-embedded and membrane-

associated proteins have a certain propensity to partition into specific domains most

likely driven by preferential interactions with particular lipids that enables specific

functions. Furthermore, increased protein concentration at the domain boundaries

may indicate storage of inactive proteins that can be activated by partitioning into

the respective domain [9, 10].

Lipid membranes are highly dynamic. Lipid molecules undergo a multitude of

structural transitions on several time scales that have been revealed by diffraction

methods [11–13], NMR spectroscopy [14–16], and molecular dynamics

(MD) simulations [17, 18]. A cartoon representation of the lipid dynamics in

membranes is given in Fig. 14.1. Amplitudes of motion are large such that contacts

between lipid headgroups and the hydrocarbon tail ends are possible and frequently

observed [13, 14, 16]. Furthermore, both membrane-embedded and membrane-

associated proteins have been reported to be highly mobile as also indicated in

Fig. 14.1 [19, 20].

In this chapter, we shall address the combined use of nuclear magnetic resonance

(NMR) spectroscopy and molecular dynamics (MD) simulations for the investiga-

tion of membrane structure and dynamics with particular emphasis on membrane-

associated proteins. Both represent powerful methods by themselves to obtain

detailed information about membrane constituents and in particular membrane

proteins. However, the combination of both produces synergies with the benefit

to lead to a much deeper understanding of the molecular details of the underlying

mechanisms of a respective research question. Obviously, both methods have

strengths and weaknesses that in the best case perfectly complement each other.

This is expressed by the fact that MD simulations perform best on model systems

with a limited number of molecules, while NMR methods can be applied to much

more complex systems and even live cells [22–24]. MD simulations are very

limited in the size of the systems that can be simulated, while NMR methods are

able to study long range interactions. The same applies for the timescales, which

again are very limited in MD simulations, rarely reaching the microsecond regime

for all-atom simulations, while NMR methods can cover many different timescales
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depending on the experimental setup. This also means that MD simulations are very

dependent on their starting conformation since equilibration in many cases is

performed for a fraction of the actual simulation time. If the system is far from

equilibrium, the short available equilibration time will not be sufficient to actually

reach equilibrium. NMR is an ensemble technique and specific interactions for

instance between lipids and proteins can only be studied with great effort, while

MD simulations can easily highlight the role of specific lipids in a simulation.

To mitigate some of the disadvantages of MD simulations, their setup should be

guided by experimental data as much as possible, such that the simulated system is

DL ~ 10-11m2/s
τtg ~ 10-10 s 

τint ~ 10-9 s

τ ~ 10-9 s τ ~ 10-9 s τ ~ 10-6 s 

τ ~ 10-4 s 

τ ~ 10-6 s 

τ ~ 10-5 s 

DP ~ 10-12 m2/s

Fig. 14.1 Cartoon representation of the typical motions in biological membranes and the time

scales on which they typically occur. Reprinted from [21], Copyright (2005), with permission from

Elsevier

14 Combining NMR Spectroscopy and Molecular Dynamics Simulation to. . . 313



a good representation of the experimental one. In addition, the results of the

simulation should be carefully checked against experimental data for validity to

ensure that the simulated system evolves as in the experiments. However, if both

these criteria are met, the main strength of MD simulations can be exploited, which

is the amount of detail (atomistic) simulations provide. Particularly in membrane

biophysics, NMR parameters are often difficult to interpret with respect to molec-

ular specificity. Isotope labeling helps, but molecules with specific isotopic labels

are sometimes difficult to prepare and often not commercially available with

respect to specific lipids. Due to the low intrinsic sensitivity of NMR, the influence

of very low abundant membrane constituents is also difficult to track. The applica-

tion of sometimes very complex models can help in such cases but even then the

results tend to be model dependent. Furthermore, the interpretation of the results in

terms of the underlying mechanisms often remains in the realm of speculation. In

such cases, MD simulations can greatly support the interpretation of experimental

results as basically all information is contained in the simulation trajectory. The

difficult part is to extract this information since it is often not immediately obvious

why for instance an order parameter is low or a correlation time long by looking at

snapshots or movies of the trajectory. Hence, the most time consuming and difficult

part, when conducting a MD simulation actually is data analysis after the simulation

run is completed.

Since both NMR spectroscopy and MD simulations are complex matters by

themselves, in the following both will be briefly introduced individually. Next, the

benefits of combining both approaches will be detailed followed by an example, in

which the combination of both methods has been applied successfully multiple

times and led to very detailed understanding of the structure and dynamics of the

membrane-associated human N-Ras protein.

14.2 NMR Spectroscopy

14.2.1 2H NMR Spectroscopy

One of the most powerful tools for the investigation of the structure and dynamics

of biological membranes is 2H NMR spectroscopy [25, 26]. Various lipids with

different deuteration schemes are commercially available and can be used to

elucidate their structure and dynamics and the influences that e.g. membrane

peptides/proteins or small molecules have on membrane structure and dynamics.

Deuterated fatty acids are also available and can be used to synthesize 2H labeled

lipid-modified proteins allowing their direct investigation [27]. From these mole-

cules, samples can be prepared and NMR spectra recorded. One advantage of this

approach is that the natural abundance of deuterium is very low and even in dilute

samples only the labeled molecules are detected in the 2H NMR spectra. Only when

the molecule of interest is extremely diluted, a peak from natural abundance
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deuterium in water may show up, which can largely be suppressed by using

deuterium-depleted water. The position of this peak is always in the center of the

spectrum due to the large mobility of water and, therefore, often does not interfere

with data analysis of the quadrupolar splittings that represent the dominating

interaction in 2H NMR. Another advantage of selective labeling is that in samples

with a mix of different lipids or lipid modified proteins, different samples can be

prepared, in which each molecular species is labeled at the time, allowing the

selective investigation of each species.

A typical 2H NMR spectrum of DMPC-d54, where both acyl chains are fully

deuterated is shown in Fig. 14.2. It consists of a superposition of several Pake

doublets that originate from the individual deuterated carbon positions in the acyl

chains [28]. The intense Pake doublet in the center of the spectrum represents the

terminal methyl groups of both chains.

From the 2H NMR spectra, a wealth of information can be obtained. Most easily,

order parameters can be extracted that are indicative of the amplitude of motion of

the C-D bond vector in the labeled position [25]. The order parameter is defined as

S
ið Þ
CD ¼ 1=2 3cos 2βi � 1

� �
, ð14:1Þ

where β is the angle between the C-D bond orientation and membrane normal and

the angular brackets indicate the ensemble average. Since experimentally only the

absolute value is accessible, the order parameter ranges from 0 to 1, where a value

of zero indicates that the C-D bond vector undergoes isotropic motion while a value

of 1 indicates a totally rigid C-D bond. However, in reality, the problem is more

complex since the average orientation of the C-D bond with respect to the external

magnetic field also influences the magnitude of the order parameter and information

of this average orientation is required for interpretation. For lipids or lipid modifi-

cations of proteins, it is usually assumed that the C-D bonds are on average

perpendicular on the membrane normal, which is true for most cases and most

–30 –20 –10 0 10 20 30

frequency / kHz

Fig. 14.2 2H NMR spectrum of dimyristoylphosphatidylcholine (DMPC-d54) membranes at

30 �C
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positions in the acyl chain. Since lipids in the liquid crystalline phase state undergo

rapid rotation around an axis parallel to the membrane normal, the angle of 90�

leads to a reduction of the order parameter by 50% such that it only ranges from 0 to

0.5. Experiments with selectively labeled lipids have shown that the uppermost

segments of lipid acyl chains that are directly connected to the carboxyl group

deviate from this orientation, which leads to an additional apparent reduction in

their order parameter. Experimentally, the absolute values of the order parameters

are easily determined from the quadrupolar splitting (ΔνQ) that can be measured

directly in the 2H NMR spectrum as the distance between the two maxima in the

Pake doublet

Δν ið Þ
Q

��� ��� ¼ 3

4
χQ S

ið Þ
CD

��� ���, ð14:2Þ

where χQ¼ e2qQ/h represents the quadrupolar coupling constant (167 kHz for 2H in

an aliphatic C-2H bond) [29]. Since experimentally mostly lipids with acyl chains

are used, in which all positions are deuterated simultaneously, the 2H NMR spectra

of such lipids consist of a superposition of numerous Pake doublets as in Fig. 14.2

and it is almost impossible to assign the individual segments to the individual

doublets. Therefore, commonly the order parameters are assigned consecutively

with the largest values at the top of the chain and the smallest for the terminal

methyl group resulting in an order profile of the entire lipid chain. The order profile

that was obtained from the 2H NMR spectrum shown in Fig. 14.2 is shown in

Fig. 14.3A.

These order parameters provide valuable information on the dynamics of the

membrane as they are directly related to the amplitude of motion. In addition, using

advanced methods, much more information about the structure of the membrane is

accessible, since in the highly dynamic membrane environment structure and

dynamics are closely related. Accessible values include but are not limited to the

length of the acyl chain, area per acyl chain, and hydrocarbon thickness of the

membrane. One of the most successful models for obtaining these values is the mean

torque model that has been developed with the help of MD simulations [30]. It

allows the prediction of the aforementioned values based upon a potential of mean

torque that governs the distribution of angles between C-D bond and membrane

normal. The most important value for calculating the structural parameters is the

average travel hDii of each carbon segment i along the bilayer normal, which can

have a maximum value of DM ¼ 2.54 Å. For each carbon segment hDii can be

calculated from

Dih i ¼ DM cos βih i ¼ zi�1h i � ziþ1h i, ð14:3Þ

where zi�1 and zi+1 denote the positions of carbon segments i�1 and i+1 along the

membrane normal. The calculation of hcosβii will be detailed later. Therefore,

knowing the travel for all carbon segments, chain extension plots can be calculated.

For this first hDω�1i has to be calculated, where ω represents the terminal methyl
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position of the acyl chain. Therefore, this is the average travel for the methylene

segment directly preceding the terminal methyl group and gives the distance

between the terminal methyl ω and the next but one methylene group ω�2. Next,

the value for hDω�3i has to be calculated, which is the distance between ω�2 and

ω�4. Continuing this procedure until the top of the chain is reached, a chain

extension profile can be created, in which usually the position of the terminal

methyl is fixed at 0 along the membrane normal and the position of every other

carbon position before that is plotted as shown in Fig. 14.3B. From this, the distance

LC* between position 2 and the terminal methyl ω projected onto the membrane

normal can be extracted via [31]

L∗C ¼ z2h i � zωh i ¼
Xω�1

i¼3, 5...
Dih i: ð14:4Þ

Taking the size of the terminal methyl and the first position of the chain into

account the more realistic chain length LC can be calculated using [31]
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LC ¼ 1

2

Xω�1

i¼2

Dih i þ Dω�1h i: ð14:5Þ

Besides this chain length, further structural parameters such as the area per lipid

chain hAi and the hydrocarbon thickness of the membraneDC can be calculated. For

this, however, not the complete order profile is used but just the so called plateau

peak. This peak typically has the highest order and is very intense because it

corresponds to carbon segments in the upper part of the chain that all have very

similar order and, therefore, overlap in one single peak. Assuming that the acyl

chain has the shape of a cylinder or cuboid, its average cross-sectional area can be

expressed by

Ah i ¼ 2VCH2

DM

1

cos β

� �
, ð14:6Þ

where VCH2 is the volume of a single methylene group. For disaturated phospho-

lipids, the volume of a single methylene group VCH2, which is a function of absolute

temperature T, can be approximated by

VCH2
Tð Þ � V0

CH2
þ αCH2

T � 273:15Kð Þ ð14:7Þ

with the empirical parameters V0
CH2

¼ 26:5 Å
3

and αCH2
¼ 0:0325 Å

3
=K. The

hydrocarbon thickness can be expressed by

DC ¼ 1

2
nCDM

1

cos β

� ��1

ð14:8Þ

using the same assumption of a cylindrical or cuboidal chain. For the calculation of

both hAi and DC the value of h1/ cos βi is needed, which can be approximated by

1

cos β

� �
� 3� 3 cos βh i þ cos 2β

� �
: ð14:9Þ

Therefore, the moments hcosβi and hcos2βi are needed and can be obtained from
the measured order parameters. The calculation of hcos2βi is straightforward and is
given by

cos 2β
� � ¼ 1� 4SCD

3
ð14:10Þ

where SCD is the order parameter of the plateau peak. The calculation of hcosβi,
which also is required to calculate the average travel hDii of each carbon segment

i along the bilayer normal is more difficult and the following approximate result has

been obtained [31]
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cos βh i ¼ 1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8SCD � 1

3

r !
, ð14:11Þ

where SCD either is the order parameter of the plateau peak or the order parameter of

the carbon position, for which the average travel hDii will be calculated. This

approximation works well for order parameters larger than 0.2 but for smaller

order parameters, it is preferable to numerically solve the following system of

coupled equations for a more accurate result [31]

cos βih i ¼ 1

Z

Z1
�1

cos βiexp
�Ui cos βi

kBT

� 	
dcosβi ¼ coth � Ui

kBT

� 	
þ kBT

Ui
ð14:12Þ

cos 2βi
� � ¼ 1

Z

Z1
�1

cos 2βiexp
�Ui cos βi

kBT

� 	
d cos βi

¼ 1þ 2 �kBT
Ui


 �2
þ 2kBT

Ui
coth � Ui

kBT

� 	
:

ð14:13Þ

While the order parameter is indicative of the amplitude of the motions of the C-2H

bond, the corresponding correlation times can be investigated by means of NMR

relaxation experiments. For this, the spin system is prepared in a non-equilibrium state

and the return to equilibrium is observed. This relaxation process is facilitated by

molecular motions that result in randomly fluctuating electromagnetic fields at the

location of the nucleus and, thereby, the relaxation time or the inverse relaxation rate

contains information about these motions. While measurement of the relaxation rates

is fairly straightforward, the interpretation of these rates is not. There are some simple

ways ofmodel-free interpretation but for an in-depth analysis, models of the molecular

motions are needed. In the case of 2H NMR spectroscopy, a simple empirical

representation of the data is the so-called square-law plot and an example is shown

in Fig. 14.4 [32]. In this plot, the R1 relaxation rate is plotted against the square of the

order parameter SCD for all positions in the acyl chain. For disaturated phospholipids,

straight lines are observed and their slope provides qualitative information on the

elasticity and flexibility of the membrane [33]. In Fig. 14.4, data is shown for DMPC

membranes alone as well as in the presence of either cholesterol or the detergent

C12E8. It is immediately obvious that the plot is much shallower in the presence of

cholesterol, which significantly stiffens the membrane und much steeper in the

presence of C12E8 that renders the membrane softer. In addition, the plot in the

presence of C12E8 deviates from a purely linear dependence and instead acquires a

curved shape. Therefore, such plots can be used to judge the flexibility of the

membrane lipids over relatively short distances approaching the molecular

dimensions.

For a deeper understanding of the motions, a number of different models exists

that can be fitted to the obtained relaxation rates [34, 35]. To this end, it is advisable

14 Combining NMR Spectroscopy and Molecular Dynamics Simulation to. . . 319



to record the relaxation rates in dependence on various physical quantities such as

temperature, magnetic field strength, or orientation of an oriented sample in the

magnetic field. Then, the models can be fitted to the data obtaining a number of

fitting parameters such as order parameters, correlation times, parameters describ-

ing the membrane flexibility, and so forth. However, the sheer number of models

and their complexity is beyond the scope of this chapter and the interested reader is

referred to the literature and the example at the end of this chapter (vide infra).

14.2.2 13C/15N NMR Spectroscopy

Since biological molecules and in particular membrane proteins contain many

carbons and nitrogens, these nuclei can also be used to investigate the structure

and dynamics of the proteins as well as their interaction with lipids. For NMR

spectroscopy, the isotopes 13C and 15N have to be used and amino acids with

various labeling patterns are commercially available for the synthesis of labeled

peptides/proteins as well as a host of other labeled molecules. Again, this selective

labeling of certain positions does allow site specific resolution in the molecule

under investigation. If the concentration of the molecule is high, the natural

abundance of these nuclei (13C: ~1.1% or 15N: ~0.4%) can also be exploited to
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Fig. 14.4 Square-law plot of DMPC-d54 membranes (circles) and DMPC-d54/cholesterol (1:1
mol/mol) membranes (squares) at 30 �C, and DMPC-d54/C12E8 (2:1 mol/mol) membranes

(triangles) at 40 �C. All data was obtained at a 2H Larmor frequency of 115.1 MHz. The inset

shows an expansion of the data for DMPC-d54 and DMPC-d54/C12E8. Lines are drawn to guide the

eye. Reprinted from [33], Copyright (2005), with permission from the American Chemical Society
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investigate unlabeled samples. Typically, uniform labeling of the protein is used in

biosynthesis, but techniques to achieve selective labeling are also available.

As membrane proteins move only slowly with respect to the NMR timescale,

NMR spectra of these molecules are broadened by the orientation dependence of

the NMR frequencies [36]. This can be overcome by application of magic angle

spinning (MAS) in combination with 1H decoupling, which results in narrow lines

and in some cases allows detection of individual sites on the single amino acid basis

[37, 38]. For MAS, the sample is located in a small rotor, oriented at 54.74� with
respect to the external magnetic field (the magic angle) and spun at frequencies

between 5 and 35 kHz. More recently, the technology to carry out fast and ultrafast

MAS up to about 100 kHz has been developed such that 1H detection becomes an

attractive alternative to heteronucleus detection due to the much higher intrinsic

sensitivity [38, 39].

A huge number of 13C/15N NMR experiments exists that can be used to obtain

information about the labeled molecule [40]. In this chapter, we will focus on some

selected examples that are used rather commonly and are well-suited for combina-

tion with MD simulations. Particularly useful for the setup of MD simulations is

information on the structure of the simulated molecules. A large number of sophis-

ticated experiments exist that provide distance constraints, which are useful in

structure determination [40]. However, there are also more simple methods, and

one of the simplest is based on the chemical shift of the amino acid carbons, which

is easy to obtain if the assignment of the signals in the NMR spectrum is known.

The reason for this is that the chemical shift of Cα, Cβ, and CO contains information

on the torsion angles in the protein backbone that determine the backbone structure

as shown in Fig. 14.5. As can be seen, relative to the chemical shift in a random coil

structure the NMR signals of Cα and COmove downfield (i.e. to higher ppm values)

and the Cβ signals move upfield (i.e. to lower ppm values) in an α-helix and

opposite in a β-sheet. Therefore, in such investigations the difference between the

chemical shifts of Cα and Cβ often is used, which is larger in an α-helix than in a

β-sheet. Database approaches have been developed that exploit this empirical

correlation. In these databases, proteins for which the structure as well as the

chemical shifts are known are collected. Based on the amino acid sequence and

the measured chemical shifts of the target protein predictions about its structure can

be made. The most often used implementation of this approach is called torsion

angle likelihood obtained from shift and sequence similarity (TALOS) and its

successor TALOS+ [41, 42].

While this is useful to obtain information about the structure of molecules in

membranes, 13C/15N NMR experiments can also be used to investigate the dynam-

ics of the molecule. One of many examples is the dipolar chemical shift correlation

(DIPSHIFT) experiment that can be used to determine the 1H-X dipolar coupling

strength and thus molecular order parameters under MAS conditions [43, 44]. In

this experiment, the strength of the dipolar coupling between either 13C or 15N and a

directly bound 1H nucleus is measured. In the static case it has a strength of

22.7 kHz for a 13C-1H bond and 10.9 kHz for a 15N-1H bond. If the bond orientation

fluctuates, this value is reduced due to partial averaging. Therefore, by measuring
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the residual dipolar coupling the order parameter can be calculated as the ratio of

the residual and static dipolar coupling constant. One difference to the order

parameters measured by 2H NMR spectroscopy is the timescale, on which they

are defined. For 2H NMR order parameters the timescale of the NMR experiment

and therefore the time over which the quadrupolar coupling is averaged is<6 μs. In
the DIPSHIFT experiment this timescale is <44 μs, which means that also slower

motions contribute to the reduction of these order parameters. As before, the order

parameter is indicative of the amplitude of motion. To also investigate the corre-

lation time of the motion, again relaxation experiments are very useful. The

collection of the data is relatively simple and should be conducted in dependence

on as many experimental parameters as possible, such as temperature or magnetic

field strength. This data can be interpreted by various complex motional models, but

here also a relatively simple model-free approach exists. In the Lipari-Szabo model,

it is assumed that the relaxation process is governed by a single internal motion in

addition to overall isotropic reorientation of the molecule [45]. The correlation

function G(t) for this model is

13C chemical shift / ppm
10203040506070170180

A

B

C

CO Cα Cβ Cγ

Fig. 14.5 Illustration how the 13C chemical shift of Cα, Cβ, Cγ, and CO carbons in a valine residue

report the secondary structure of the peptide backbone. Typical random coil shifts for valine are

shown in (B). If the same amino acid resides in an α-helix structure Cα and CO signal are shifted to

higher ppm values and Cβ to lower values (A) while shifts in the opposite directions are observed

in a β-sheet (C). The values of Cγ and further side chain signals in other amino acids are typically

uninfluenced by secondary structure. Reprinted from [21], Copyright (2005), with permission from

Elsevier
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G tð Þ ¼ 1

5
S2e

�t
τM þ 1� S2

� 

e
�t
τ


 �
ð14:14Þ

with

τ�1 ¼ τ�1
M þ τ�1

e , ð14:15Þ

where τM is the correlation time of the overall isotropic tumbling of the protein in

solution and τe is the effective correlation time of the internal motion. The order

parameter describes the amplitude of the internal motion. The nature of the internal

motion is not relevant in this model (thereby this is a model-free approach) and is

approximated by a single exponential decay as is the overall isotropic motion. The

overall isotropic reorientation was included for soluble proteins that tumble freely in

solution. Since this is not the case for membrane proteins, it is assumed that the

overall isotropic tumbling correlation time τM is infinite, which simplifies the calcu-

lation. This model can then be fitted to relaxation rates by converting the correlation

function into a spectra density. The spectral density J(ω) is a measure of how often

certain frequencies occur in the randomly fluctuating electromagnetic fields that are

caused by the dynamics of the molecules. It is defined as the Fourier transform of the

correlation function:

J ωð Þ ¼ Re

Z1
�1

G tð Þe�iωtdt: ð14:16Þ

Solving the integral for the correlation function from Eq. (14.14) yields

J ωð Þ ¼ 2

5

S2τM

1þ ωτMð Þ2 þ
1� S2
� �

τ

1þ ωτð Þ2
 !

: ð14:17Þ

This spectral density can then be used to calculate relaxation rates where the

exact nature of the equation depends on the relaxation mechanism. In 13C/15N NMR

often dipolar relaxation by directly bound 1H atoms is predominant and the

resulting relaxation rates R1 and R1ρ (which are the inverse of the relaxation

times T1 and T1ρ) can be calculated via

R1 ¼ 1

T1

¼ nHπ
2χ2D J ωH � ωCð Þ þ 3J ωCð Þ þ 6J ωH þ ωCð Þ½ � þ ωCΔσffiffiffi

3
p

� 	2

J ωCð Þ

ð14:18Þ

and
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R1ρ¼ 1

T1ρ
¼1

6
nHπ

2χ2D 3J ωHð Þþ1

3
J ωe�2ωrð Þþ2

3
J ωe�ωrð Þþ2

3
J ωeþωrð Þþ1

3
J ωeþ2ωrð Þ

� �

þ1

6
ωCΔσð Þ2 1

2
J ωe�2ωrð ÞþJ ωe�ωrð ÞþJ ωeþωrð Þþ1

2
J ωeþ2ωrð Þ

� �
þ1

2
R1

ð14:19Þ

from the spectral densities.

In cases, where the molecule of interest is relatively mobile, also T2 relaxation
rates may be useful and can be calculated as

R2 ¼ 1

T2

¼ nHπ2χ2D
2

4J 0ð Þ þ J ωH � ωCð Þ þ 3J ωCð Þ þ 6J ωHð Þ þ 6J ωH þ ωCð Þ½ �

þ ωCΔσffiffiffiffi
18

p

 �2

4J 0ð Þ þ 3J ωCð Þ½ �:
ð14:20Þ

In these equations, nH is the number of hydrogens bound to the 13C/15N nucleus,

χD is the dipolar coupling constant, Δσ is the span of the chemical shift anisotropy

tensor and ωX is the Lamor frequency of nucleus X. The frequencies ωe and ωr

correspond to the spinlock field strength and the MAS frequency, respectively. Now

using Eq. (14.17) and (14.18), (14.19) or (14.20) temperature and/or field strength

dependent 13C/15N NMR relaxation data can be fitted obtaining the order parameter

S and the correlation times τM and τe as fitting parameters. The temperature

dependence of the correlation times often is modeled via an Arrhenius approach

τ ¼ τ0 � e
EA
RT , ð14:21Þ

where EA is the activation energy and R the gas constant. Numerous variants of the

Lipari-Szabo model exist, e.g. considering anisotropic overall motion [45] or two

separated internal motions with a fast and a slow motion [46]. Furthermore, a

wealth of other models exists that make certain assumptions about the nature of

the system and are therefore useful for certain systems. A particularly useful model

for membrane constituents is modeling the overall motion of the molecule as

restricted rotational diffusion with different correlation times parallel and perpen-

dicular to the membrane normal [47].

Interpretation of such order parameters and correlation times however often

proves to be difficult. First, various assumptions about the system have to be

made that might impact the accuracy of the results. Examples from this section are:

• C-D bond vectors are perpendicular on the membrane normal.

• The order parameters drop monotonically from the top of the acyl chain towards

the terminal methyl group.

• Overall isotropic protein tumbling can be neglected for membrane proteins in

the Lipari-Szabo model.

• Chemical shift in a certain secondary structure motif is always similar.
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Second, even if complex models are used for the interpretation and values such

as order parameters, chain lengths, or correlation times are obtained the underlying

mechanisms that lead to these values or changes in them often still are a matter of

speculation. In such cases, MD simulations can provide valuable insights into the

system that lead to much better understanding.

14.3 MD Simulations

Compared to NMR experiments; MD simulations represent a relatively new

method. The first molecular simulations were conducted in the late 1950s and

with the increasing success of modern computers the method became more popular

[48]. Today, MD simulations are one of the most commonly used methods in

biophysics despite the fact that until recently running all-atom MD simulations of

reasonably sized systems (e.g. 100,000 atoms for a patch of membrane with an

incorporated membrane protein) for the duration of a microsecond still required

months of computing time on a small Linux cluster. The situation has considerably

improved in the recent years with the rapid development of new graphics

processing units (GPU) for gaming graphics cards. While the newest generations

of GPUs are still far from being as flexible as classical CPUs, they are extremely

efficient at calculating simple mathematical equations. Since MD simulations

mostly consist of huge amounts of rather simple calculations, they are a perfect

case for GPU acceleration and speedups of up to 20-fold have been reported for

e.g. NAMD v2.11. This now even allows smaller workstations with GPUs to reach

the performance levels that just a few years ago were only achievable by Linux

clusters with many CPUs running in parallel. However, despite the many advances

in the usability of the software and power of the hardware, which even allows

beginners to conduct MD simulations rather easily [49], the methods that are

employed in the background are a very complex matter. The reason for this is

that the length and time scales available to current MD simulations are still very

limited. The largest simulations published today contain millions of atoms (where

one million atoms correspond to a total mass of about 10�17 g) but the timescale of

such large simulations usually is on the order of 100 ns and huge computational

effort is necessary to conduct these simulations often involving many thousands of

CPUs and GPUs [50]. Since the computational demand of running MD simulations

is so high, many different optimizations are used allowing the simulation to run

faster without sacrificing too much accuracy. Therefore, it is important to under-

stand how MD simulations and the various performance optimizations work, what

their advantages/disadvantages are, and also what the general capabilities and

limitations of MD simulations are.

AnMD simulation is a computer simulation of the evolution of a fixed number of

atoms under the laws of physics. To conduct a MD simulation, first a set of starting

coordinates has to be generated and the exact details of how the simulation will be

run have to be determined. These arguably are the most important steps of running a
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MD simulation since any decision made at this stage is difficult or impossible to

reverse later. First, it has to be decided what the system should contain and how big

the simulation is going to be. There, a compromise has to be found such that the

system is large enough to contain all molecules of interest without causing boundary

effects while still being small enough to be computationally feasible. Then, a starting

structure has to be built, which should be as close to reality as possible, because

many equilibration processes (e.g. structural transitions) are much slower than the

timescale that is accessible to MD simulations [51, 52]. For the starting structure of

membrane simulations, usually pre-equilibrated lipid structures are taken from

libraries and distributed in the membrane plane [49]. If other molecules such as

proteins or peptides or are part of the simulation, for them also a starting structure has

to be used. If a structure is available from crystallography or NMR, this is easy.

However, since structures of membrane proteins are scarcely known, often a model

has to be generated (e.g. via homology modeling or structure prediction) and the

success of the simulation will strongly depend on the quality of the model

[53, 54]. Subsequently, the simulation has to be hydrated and neutralized by the

addition of ions. If the system is relatively uncomplicated, automated input gener-

ators such as the membrane builder on charmm-gui.org are available [49]. After the

starting coordinates are created, first minimization of the system is performed to

remove bad contacts before equilibration is started. The equilibration period often is

a normal MD run, which is not used for data evaluation. Sometimes, the system is

heated up to higher temperatures during equilibration to increase the probability of

structural transitions. To keep certain molecules in their intended positions/struc-

tures, often constraints are used during equilibration which are subsequently weak-

ened and finally switched off.

The actual procedure of calculating the trajectory is fairly straightforward. After

the starting structure is defined forces between all atoms are calculated. For this, a

force field such as CHARMM is used that contains parameters, which allow

calculating the force between given atoms in the simulation [55]. In the case of

two atoms that are directly bonded to each other, their interaction force is typically

approximated by a spring and the stored values in the force field are the equilibrium

bond length and the spring constant. Similar approaches are used for angles

between three bonded atoms and dihedral angles as well as improper torsions of

four connected atoms. The most demanding calculations, however, are the through

space forces such as steric interactions as well as electrostatic forces due to the

sheer number of atom pairs that need to be considered. Therefore, much optimiza-

tion happens in this calculation step. First, these forces are only directly calculated

for atoms that are within a certain distance from each other that is called cutoff and

has a typical value of 12 Å. To avoid jumps in the force, when an atom enters the

cutoff distance during the simulation, the forces are switched off gradually over a

region of typically 10–12 Å. Longer range electrostatics are approximated by

Fourier space based methods such as Particle Mesh Ewald, which are much faster

but still highly accurate [56]. Such force fields now allow calculating the total force

that is exerted on any atom in the system. Next, each atom is moved according to

this force for the duration of one time step. Since the atoms have changed their
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positions, the interaction forces have changed as well and need to be recalculated.

This procedure is conducted in an iterative manner to create the trajectory of the

simulation. The choice of the time step is crucial as it will determine the number of

times all forces need to be calculated to reach a certain simulation length. In many

all-atom MD simulations, a time step of 1 fs is used since the fastest bond length

fluctuations in MD simulations that involve hydrogens are then still sampled

reasonably well without introducing artifacts. A useful simplification to double

the performance of the simulation is the use of an algorithm called SHAKE that

fixes the length of all bonds involving hydrogens to their equilibrium length

allowing to increase the time step to 2 fs. since all other fluctuations are accordingly

slower [57]. A further optimization that is sometimes used is to calculate the long-

range electrostatic interactions not for every time step but rather only every second

or fourth step since changes in these forces are slow.

To avoid inconsistent forces at the boundaries of the simulation cell, periodic

boundary conditions are used, which means that copies of the system are added to

each of its sides. If a molecule moves in the main system, it also moves within all

copies and if an atom leaves the main cell on one side it reenters the cell on the

opposite side. Thereby, any atom on the boundary of the simulation cell still “feels”

all relevant forces and is not exposed to vacuum or a hard wall. The size and shape

of the periodic boundary cell can fluctuate in such a setup depending on the choice

of the so-called ensemble. An ensemble is a choice of values that are kept constant

during the simulation. Often used ensembles are NPT, NVT, or NVE. In the first

ensemble the number of atoms (N), pressure (P), and temperature (T) are kept

constant via various methods (e.g. barostat and thermostat) while energy (E) and

volume (V) can fluctuate. The other ensembles apply constant number of atoms,

volume, and temperature or energy, respectively. A particularly useful variation is

the NPγT ensemble, which is identical to the NPT ensemble with the addition of

forces that solely act within one plane of the simulation (described via the surface

tension γ). This can be used to counter inaccuracies in the area per lipid that often

occur due to force field inaccuracies, while retaining flexibility of the system size in

this plane.

The methods described so far are the most commonly used approaches for MD

simulations, where all atoms are represented and a single system is simulated for a

certain number of time steps. However, many variations exist and some of them

will be summarized briefly in the following. Taken together, a number of methods

exists, which aim to improve the sampling of conformational states of the system,

which is one of the most common problems. Some approaches modify the force

field to lower energy barriers for the transition, but one particularly intriguing

approach is called replica exchange. In this method, not just a single copy of the

system is simulated, but rather a number of replicas at ever increasing temperatures

[58]. Each replica of the system is simulated independently for a certain (short)

amount of time before systems at neighboring temperatures can swap their coordi-

nates based on their temperature and potential energy. This way during the simu-

lation a certain copy of the system can start at the lowest temperature bath, which

usually is the temperature of interest, and then subsequently travel to much higher
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temperature baths, where structural transitions are much more likely to occur than

at the lowest temperature. When the system returns, the new conformations also

show up at the lowest temperature bath, where usually all data analysis is

performed. Disadvantages of the replica exchange method are that the system can

only be rather small and that the simulation time of each replica will be much

shorter than a classical simulation due to the number of copies. However this

shorter simulation time is more than compensated for by the much better sampling

due to the use of higher temperatures.

Another often used approach to overcome limitations in system size and/or

simulation length is called coarse grained MD simulations. In these simulations,

several atoms are united into one particle to save computation time and specifically

adjusted force fields such as MARTINI are used [59]. These simulations can run

much faster, but lose some of the detail inherent in all-atom MD simulations.

Furthermore, time progresses faster in these simulations due to the reduced number

of atoms and thereby interactions between them, which further helps in extending

the simulation timescale. Coarse grained MD simulations are particularly useful in

cases, where principal physical effects such as hydrophobic mismatch are studied.

However, it is difficult to extract NMR observables from these simulations due to

the loss of bonds, whose orientation is crucial in NMR as well as the accelerated

progression of time. Therefore, their potential for combination with NMR methods

is limited.

In summary, MD simulations are a highly versatile method that can be used to

investigate many different aspects of biological membranes. However a number of

limitations exist that may compromise the validity of the results. Therefore, MD

simulation can greatly benefit from the use of experimental data to improve the

simulation setup as well as to validate the obtained results.

14.4 Combining NMR Spectroscopy and MD Simulations

14.4.1 Using NMR Data to Setup MD Simulations

As mentioned before, MD simulations offer many possibilities but also suffer from

several weaknesses. Since they are computationally very demanding the main

limiting factor is computational power. This results in the fact that MD simulations

are very limited in size and timescale. Therefore, MD simulations are not well

suited to equilibrate systems that are far from equilibrium and are very dependent

on good starting coordinates and as much knowledge and effort as possible should

be invested into the starting model of an MD simulation. One of the best ways to

improve simulation quality is the constant use of experimental results to guide

simulation setup and in particular NMR is able to contribute parameters that

significantly improve simulation setup.
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Membrane simulations often contain membrane bound or inserted peptides or

proteins. However, structural information for membrane proteins is scarce and the

RCSB protein data bank to date only contains 615 unique structures of membrane

proteins. The reason is that membrane proteins are notoriously difficult to investi-

gate and so far no standard method has been developed for their structure determi-

nation. It is unlikely that the huge effort required to determine the structure of a

membrane protein will be undertaken just for the sake of running a MD simulation.

In such cases, homology models are a good compromise. These models are gener-

ated by looking for template proteins of known structure that are as similar to the

target protein as possible. Various methods exist to align the two sequences and

predict a structure of the target protein based on the template protein.

Depending on the similarity of the two proteins the quality of the homology

model can vary greatly. For two very similar proteins, the obtained homology

structure might be of very high quality, while it will be much worse for proteins

that show little similarity. But even in the case of very similar proteins, parts of the

molecule might not agree or even be missing in the template protein. Again a

number of methods exist to build loops or other protein segments de novo but in the

end, the final model will have uncertainties and it has been shown that experimental

data from many different sources can be used to significantly improve their quality.

For such approaches, distance constraints and in particular long range constraints

that help defining the global protein structure are useful and again NMR is a tool

well suited to obtain such information. A host of experiments can provide quantities

that are related to the structure of proteins and other molecules. Among them are

distance restraints obtained via the nuclear Overhauser effect, torsion angle

restraints, various NMR coupling strengths, or pseudo-contact shifts. From this

information a structure obtained via homology modeling or database approaches

such as TALOS can be refined via simulated annealing with the various experi-

mental restraints. In addition, the structure can also be refined by methods that

significantly speed up equilibration in MD simulations such as replica exchange.

Another important aspect is the topology of the membrane protein. Often, it is

useful to have information about the amino acids that are located in the interface of

the membrane to find the correct insertion depth for the start of the simulation. This

is even more complicated for proteins or peptides that are membrane associated but

do not span the membrane. In such cases, it often is not clear which parts of the

protein exactly are in contact with the membrane surface and which parts embed

into the hydrophobic region. Experimental methods can provide crucial data and

again NMR spectroscopy offers various ways to obtain this information. E.g., the

effect of spin diffusion can be used in which the magnetization is transferred

between nuclei that are close in space [60]. If such a magnetization transfer is

observed between certain amino acids of the protein and other membrane constit-

uents such as lipids they must be in close proximity. However, depending on the

experimental setup this method might not work very well in biological membranes

as their high mobility impairs spin diffusion [14]. Also, paramagnetic probes either

in the solution or attached to the molecules can be used. They cause paramagnetic

relaxation of the spins in close vicinity that results in a broadening of the
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corresponding signals in the spectrum [61–63]. This again can be used to identify

positions that are in close proximity.

Another problematic topic concerns the area per phospholipid in the membrane.

When setting up a membrane simulation, it is crucial to match it as closely as

possible, because otherwise membrane structure and dynamics will be significantly

impaired. For simple bilayers consisting of just a single lipid species values can be

found in the literature, but for more complex systems, in particular mixtures of

lipids or in presence of cholesterol, this is more complicated. For such cases

experimental areas per lipid can be obtained in various ways such as X-ray

diffraction or 2H NMR spectroscopy. As an alternative, the area per lipid can be

tuned during equilibration of the MD simulation until other values that are sensitive

to it (e.g. order parameters or membrane thickness) are matched to experimental

values.

14.4.2 Extracting NMR Observables from MD Simulations

While experimental data is extremely valuable for setting up MD simulations, they

have further use in the validation of simulation results. The need for this again lies

in the computational demands of MD simulations. This not only limits size and

timescale of the simulations, but also the force field, which can be used. Ideally, one

would like to use pure quantum mechanical (QM) force fields, but this is not

feasible with the current computing power available. Hybrid QM/MM variants

have been developed as a compromise that simulate only a small fraction of the

molecules (most often just a single small molecule) with QM accuracy but also

these force fields are very slow. Therefore, the force fields will remain classical in

the foreseeable future and even simple QM calculations will remain limited to

either small molecules and/or very short simulation times. The fastest all-atom

force fields in terms of computing time such as CHARMM, AMBER, GROMOS, or

OPLS are much faster than any QM variant but are very simple with purely classical

terms and it actually is surprising that they reproduce experimental values as good

as they do. Nevertheless, the classical force field values used today are still far from

perfect. Despite constant tuning guided by experimental results, which tremen-

dously improved simulation accuracy in last decades a lot of work remains in this

field. For instance, the problem of matching area per lipid has been considerably

improved in the CHARMM force field recently but still deviations remain in

particular when different lipid types are mixed or non lipid molecules are added

to the membrane [55].

Another difficulty is sampling. Biological membranes represent a highly

dynamic environment with motions occurring on very different time scales (see

Fig. 14.1). Some of these motions are slower than the time scales accessible to MD

simulations. Therefore, even if the simulation was started close to equilibrium, it is

very difficult to judge if all relevant conformations of the molecule under investi-

gation have been sampled with the correct probability [51, 52]. This is particularly
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true if a membrane protein e.g. a GPCR is simulated. Furthermore, the matter of

reproducibility is a problem in MD simulations. Ideally, one would like to run

multiple simulations such that the different trajectories can prove that the obtained

results are reproducible. This is particularly true if a single molecule is observed or

events that occur just once are reported. However, this is often also very limited by

computational power.

All these inaccuracies and uncertainties can potentially lead to results that are

not representative of the real system. This necessitates the MD simulations to be

checked and validated by experimental results. In general, any experimental data

that can also be obtained from MD simulations can be used as a benchmark and

again data obtained by NMR is particularly useful. The reason is that it can be

traced back to atomic details such as bond orientations that are easy to extract from

MD simulations. One such quantity is the molecular order parameter that has been

described above. In the case of 2H NMR order parameters of fast rotating molecules

such as lipids, their extraction from the MD simulation is very easy as one just has

to create a time series of the angle β between the C-D bond and the membrane

normal and then calculate the order parameter according to Eq. (14.1). If several

identical molecules are present, in addition to a time averaging an ensemble

averaging can also be applied for better sampling. In the case of C-H order

parameters measured for instance in the DIPSHIFT experiment, their extraction

from a trajectory is more complicated since the molecules (e.g. membrane proteins)

usually do not rotate fast enough for complete rotational averaging. Henceforth

these order parameters will be called C-H order parameters. For their calculation

first, the dipolar interaction tensor has to be expressed in the laboratory (lab) frame.

In the principal axis system (PAS), which is the coordinate system that is attached

to the C-H bond of the molecule this tensor is diagonal and has the general matrix

representation

DPAS ¼
Dxx 0 0

0 Dyy 0

0 0 Dzz

0
@

1
A, ð14:22Þ

where for a 13C-1H bond Dxx ¼ Dyy ¼ –11.35 kHz and Dzz ¼ 22.7 kHz. The

coordinate transformation to the lab frame has to be conducted for all simulation

frames using

Dlab ¼ R�1 α; β; γð ÞDPASR α; β; γð Þ, ð14:23Þ

where R(α,β,γ) denotes the Euler rotation matrix with the Euler angles α, β, and γ
[64, 65]. When determining the Euler angles one has to be careful to distinguish

between passive and active rotations as α, β, γ, and R(α,β,γ) are differently defined
for the two cases. After the Euler angles have been determined for each frame, the

interaction tensor in the lab frame Dlab can be calculated for all frames. Subse-

quently, Dlab is averaged over all time steps of the simulation. For this, one has to

keep in mind that although the order parameter is a measure of the amplitude of
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motion it is defined on a certain time scale. For 1H-13C order parameters, the upper

limit of the correlation time is ~44 μs and any motion significantly slower than that

will not contribute to the amplitude information contained in the order parameter.

Consequently, often sampling issues remain in MD simulation as this time scale

typically is not achieved by current MD simulations. Therefore, instead of averag-

ing over the individual order parameters, at the end additional ensemble averaging

can be applied for the calculation of the average tensor if various molecules exist in

the simulation that are expected to exchange on this time scale. Lipids or small

molecules in the same leaflet of a membrane can sometimes be expected to

exchange on the NMR time scale while molecules in different leaflets are unlikely

to exchange. This way, motions not completely sampled for a single molecule of the

simulation (e.g. axial reorientation) can artificially be introduced and contribute to

the reduction of the C-H order parameter. The average tensor is then diagonalized

by calculation of the eigenvectors, assembling them into a rotation matrix R2 by

using each eigenvector for one column and subsequent coordinate transformation

using

Ddiagonal ¼ R�1
2 Dfixed
� �

R2: ð14:24Þ

The largest principal component of Ddiagonal is then put into proportion with Dzz

to yield the C-H order parameter as

SC-H ¼ max Ddiagonal
xx

�� ��; Ddiagonal
yy

��� ���; Ddiagonal
zz

�� ��
 �
=Dzz: ð14:25Þ

Other experimental quantities that can be directly compared to MD simulations

are relaxation rates. While the order parameter contains information on the ampli-

tude of motion, a relaxation rate is also influenced by the correlation time of the

motion. In general, various types of relaxation rates exist and depend on the type of

experiment as well as the nucleus that is investigated (for examples see Sect.

14.2.2). However, when calculating relaxation rates, they mostly consist of spectral

densities J(ω) that are sampled at different frequencies ω (e.g. see Eqs. 14.18,

14.19, and 14.20). Therefore, in the following, we will focus on the determination

of the spectral density from the MD simulation. For the actual calculation of the

relaxation rate, one will have to find the right expression for the investigated

nucleus and type of relaxation rate in the literature. Their calculation will then be

fairly straightforward from the spectral densities. Depending on the details either

the spectral density J(ω) or some of its projections J0(ω), J1(ω), or J2(ω) will be
needed which can easily be converted using

J ωð Þ ¼ J0 ωð Þ þ 2J1 ωð Þ þ 2J2 ωð Þ
5

: ð14:26Þ

As before, the projections of the spectral densities Jm(ω) are the Fourier trans-

forms of the correlation functions Gm(t) and are defined as
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Jm ωð Þ ¼ Re

Z1
�1

Gm tð Þe�iωtdt: ð14:27Þ

However, in MD simulations, the trajectory is discrete and therefore the time t is
replaced by nΔt where n is the running index and Δt is the distance between

neighboring time points. The discrete spectral density can be calculated as

Jm ωkð Þ ¼ 2
Xl�1

n¼0

GmðnΔtÞ � cos ωk � nΔtð ÞΔt, ð14:28Þ

where l is the number of points in the correlation function and k¼0,. . .,l�1. The

discrete frequencies ωk are defined as

ωk ¼ 2π
k

lΔt
: ð14:29Þ

The projections of the correlation function are defined as

Gm nΔtð Þ ¼ 4π
5

Y2m o; ϑ;φð ÞY∗
2m o� nΔt; ϑ;φð Þ� �

o
� Y2m p; ϑ;φð Þh ip
��� ���2� 	

,

ð14:30Þ

where averaging is performed over all possible indices o and p. In this equation,

Y2m(nΔt,ϑ,φ) represent the well-known spherical harmonics, which are calculated

using the spherical coordinates (ϑ,φ) of the bond vector at the time point nΔt that
can be directly extracted from the MD simulation. In commercially available

mathematics packages, predefined functions with superior performance are often

available to calculate the correlation functions and Fourier transforms. However,

one has to be careful since they often use different prefactors. With these equations,

it seems fairly straightforward to obtain correlation functions and spectral densities,

which can then be used to calculate relaxation rates. However this formalism poses

several technical problems. One problem is that the correlation function typically

becomes very noisy at the end due to limited data for long correlation times. Upon

Fourier transformation, this noise refolds into the spectral density. If the correlation

function has not leveled off at this point, one possible solution is to fit a set of

exponentials to it and replace the noisy long time tail by the fit. For this approach,

one has to be careful to switch from the true correlation function to the fit in a point,

where both are very close to each other since any discontinuity leads to artifacts in

the spectral density. Another problem is that the spectral density calculated from

MD simulations will be discrete. Since it needs to be sampled at certain frequencies

for the calculation of the relaxation times this often leads to considerable errors as

this frequency might be very different from the discrete frequencies available. This

problem can be circumvented by cutting a few points at the end of the correlation
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function. This changes the spacing of points in the spectral density after Fourier

transformation since the distance between neighboring points is 2π/lΔt.

14.4.3 Interpretation of NMR Data Using MD Simulations

While the calculation of order parameters, relaxation times, structures etc. can be

used to validate MD simulations, a more detailed analysis of the simulation can

yield significant insight into the mechanisms that lead to experimental observables.

Given that the agreement to experimental data is good, such detailed analysis can

greatly benefit the interpretation of the results. As described in Sect. 14.2.2, various

models can be used to interpret experimental relaxation rates in terms of correlation

time, order parameter, and sometimes additional quantities of the investigated

system. However, these values are often model dependent and their interpretation

is difficult. MD simulations can be very helpful to aid in this task. For instance, a

correlation function obtained from a trajectory can be fitted by exponential func-

tions to directly obtain correlation times and order parameters. Also, different

motional models can be fitted to the correlation function for the assessment of

their applicability to the investigated system. Furthermore, correlation functions

can not just be calculated for bond vectors, but also for larger parts of the investi-

gated molecule. Since their motions propagate to the motion of the bond this

approach allows tracing the origin of an experimentally determined correlation

time or order parameter.

Another example are 2H NMR order parameters of molecules with more than

one label. Experimentally, it is usually not known which Pake doublet and

corresponding order parameter belongs to which labeled position. This is not a

problem in MD simulations, which therefore can be used to assign the Pake

doublets in the 2H NMR spectrum. Further, if the molecules rotate around one

axis (which is the case for most small molecules in liquid-crystalline membranes) 2

H NMR order parameters are not just dependent on the amplitude of the motion, but

also on the average orientation of the bond. Therefore, in molecules, in which the

average orientation is not known, it is often difficult to separate the influence of the

two, which again is not difficult in MD simulations, where both quantities can

easily be calculated. For instance, in the top segments of lipid acyl chains the C-H

bonds deviate from the perpendicular orientation with respect to the membrane

normal. This leads to a reduction in the order parameters of these positions that is

not caused by larger amplitude motions. Furthermore, in experimentally obtained

chain extension plots (see Fig. 14.3B) typically the position of the terminal methyl

group is artificially placed at position 0. This is particularly important if chain

extension plots of several components that reside in the same membrane

(e.g. different lipid species) are compared because it implies that the terminal

methyl groups of all components are at the same distance from the membrane

center. Again from MD simulations this information is easily determined.
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However, while the validation of MD simulations can be standardized for certain

NMR experiments, more detailed analysis for interpretation of the results very

much depends on the system and the questions under investigation. While some

observations can be made by simply looking at the trajectory, many underlying

structures, motions, etc. can only be assessed statistically and are not immediately

obvious. In principle, the inherent detail of the simulation means that only the

imagination of the researcher is the limit. In fact, a single simulated system can

result in many different investigations depending on the researcher that is looking at

it. For instance, one of the first microsecond timescale MD simulations of a GPCR

(in this case rhodopsin) led to a number of publications by various authors that all

investigated separate aspects [52, 66–72]. The simulation actually existed as a set of

26 trajectories of at least 100 ns length each and an additional 1600 ns trajectory of

rhodopsin in the ground state that were made available to various research groups.

Some articles investigated interactions between rhodopsin and polyunsaturated

fatty acids [66–68] while others investigated the interactions with cholesterol

[66, 71]. Another group was interested in the post-translational modifications of

rhodopsin [72] while the structure and dynamics of the ligand retinal were also

investigated [69]. Further, the trajectories also were used to investigate more

technical aspects of membrane protein MD simulations such as sampling and

convergence [52] as well as elastic network models [70].

In the following, we will illustrate how combinations of NMR and MD simula-

tions have been used successfully and led to a very detailed understanding of the

behavior of the membrane associated human N-Ras protein.

14.5 Examples

14.5.1 The Human N-Ras Protein

The human N-Ras protein is a peripheral membrane protein that belongs to the class

of small GTPases. It has a molecular weight of ~21 kDa and consists of 189 amino

acids. It acts as a molecular switch in a signal transduction cascade responsible for

cell proliferation, differentiation, and apoptosis [73]. In its ground state, it binds

GDP and upon exchange of GDP for GTP, N-Ras becomes activated. Deactivation

is achieved via the GTPase activity of N-Ras that is further catalyzed by a GTPase

activating protein (GAP). Mutations of N-Ras have been identified that disrupt its

GTPase activity as well as the catalysis via GAP. This leads to the inability of

N-Ras to become deactivated and results in uncontrolled cell growth and ultimately

cancer [74]. Such mutated N-Ras proteins are found in up to 30% of all human

tumors. Another possibility to deactivate N-Ras is the disruption of its membrane

association as it has been shown that it is only active in the membrane bound state

[75]. This membrane association is achieved via the C terminus that acts as a

membrane anchor. In the case of N-Ras, the membrane binding is mediated mostly
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by two post translational lipid modifications that are attached to cysteine 181 and

cysteine 186. It has been shown that already removing just one of the two lipid

modification results in almost complete loss of N-Ras function since a single lipid

modification is not sufficient for permanent membrane anchoring [76]. Other mem-

bers of the human Ras protein family are identical in the soluble part but vary

drastically in the membrane anchor but all of them feature at least one lipid

modification. The soluble part of Ras proteins was well understood and structures

had been determined by X-ray diffraction [77] and NMR spectroscopy [78]. How-

ever, despite its importance for N-Ras function the membrane anchor was not

resolved in the structures and only poorly understood due to the typical problems

arising when studying membrane proteins. Therefore, a combination of various

NMR methods and MD simulations has been used to investigate its structure and

dynamics.

At first, small peptides consisting of seven amino acids were used as models for

the membrane anchor. The two cysteines to which the lipid modifications are

attached in the wildtype were modified by chemically stable hexadecyl hydrocar-

bon chains that closely mimic palmitoyl lipid modifications. This approach allowed

the hexadecyl chains to be 2H labeled and investigated by 2H NMR spectroscopy

[33]. In addition, unlabelled peptides were investigated in membranes consisting of

deuterated lipids. This switching of the label between the individual molecular

species allowed their separate investigation. A host of useful information was

extracted for the membrane anchor as well as for the surrounding lipids that were

used to setup the first 100 ns MD simulation of the system [79]. Particularly useful

was the information that the hydrocarbon chains of the N-Ras membrane anchor are

embedded in the membrane [80]. From the order parameter profiles, chain exten-

sion plots were calculated by use of the mean torque model, which resulted in the

information that the chains fully extended to the membrane center [33]. Also, the

peptide backbone was located inside the membrane-water interface. Furthermore,

with the help of the mean torque model, the interfacial areas of the lipid acyl chains

as well as the N-Ras peptide hydrocarbon chains were determined and used to

define the size of the periodic boundary cell [33]. This resulted in a system that was

much closer to equilibrium than previous simulations where just the ends of the

peptide were inserted in the membrane and where the peptide first had to “find” the

correct position which took about 20 ns [81]. The goal of the following study was to

investigate the structure and dynamics of the lipid modifications in the membrane

bound state. To this end, oriented samples were prepared that allowed the collection

of angular dependent 2H NMR spectra which are summarized in Fig. 14.6 [79]. A

number of well resolved Pake doublets are observed that are labeled consecutively

from peak ‘a’ with the highest order to peak ‘m’ with the lowest order. In addition,

for all resolved carbon positions in the hexadecyl chains R1 relaxation rates were

determined in an angular dependent manner, which are summarized in Fig. 14.7

[79]. The orientation dependence of the relaxation rates was surprisingly low

indicating large amplitude motions of the hexadecyl chains. The data was fitted

with a complex composite membrane deformation model that included molecular

motions as well as collective motions of the membrane. The obtained fit closely
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resembled the experimental relaxation rates and various parameters of the dynamics

of the hexadecyl modifications such as rotational diffusion constants parallel and

perpendicular to the membrane normal were determined as D|| ¼ 2.1 � 109 s–1 and

D⊥¼ 4.5� 105 s–1, respectively [79]. The MD simulation was validated against the

experimental data by calculation of its angular dependent relaxation rates R1.

This was achieved by calculation of spectral densities as described above and

subsequent use of the following expression for spin-lattice relaxation of a deute-

rium nucleus that features a quadrupolar moment

R1 ¼ 1

T1

¼ 3

4
π2χ2Q J1 ωD; βDLð Þ þ 4J2 2ωD; βDLð Þ½ �: ð14:31Þ

Here ωD is the Larmor frequency of the 2H nucleus and χQ is the quadrupolar

coupling constant, that has a value of 167 kHz for 2H in an aliphatic C-2H bond,

while βDL is the angle between the membrane normal and the external magnetic

field.
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Fig. 14.6 Angular

dependent spectra obtained

for the hexadecyl chains of

a N-Ras-d66 heptapeptide in
DMPC bilayers (molar ratio

1:15). For the 0� orientation
all resolved peak positions

are identified. Reprinted

from [79], Copyright

(2007), with permission

from Elsevier
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To save computation time spectral densities Jm were only calculated for an

orientation of βDL ¼ 0� and converted to the other angles using

Jm ωD; βDLð Þ ¼ d
2ð Þ
0m βDLð Þ2J0 ωD; 0

�� �
þ d

2ð Þ
�1m βDLð Þ2 þ d

2ð Þ
1m βDLð Þ2

h i
J1 ωD; 0

�� �
þ d

2ð Þ
�2m βDLð Þ2 þ d

2ð Þ
2m βDLð Þ2

h i
J2 ωD; 0

�� �
,

ð14:32Þ

where d(2)lm(βDL) are the reduced Wigner rotation matrix elements. Note that this

equation is only valid for axially symmetric molecules and an axially symmetric

distribution about the director axis. The spectral densities at βDL ¼ 0� were

calculated from correlation functions of the orientation of the C-D bonds at the

appropriate carbon position in the hydrocarbon chain. The obtained angular depen-

dent relaxation rates are plotted in Fig. 14.7 and very good agreement between MD

simulation and experiment was observed [79]. In particular, the fact that the slope

of the relaxation rates with increasing angle βDL changes its sign around peak

position ‘d’ is well reproduced in the MD simulations. Therefore, further analysis of
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the MD simulation could be conducted. This helped in the interpretation of the fact

that experimentally significant differences were observed between the motions of

the hexadecyl chains of the N-Ras peptide and the acyl chains of the surrounding

DMPC matrix. In particular, the hexadecyl chains showed much lower order than

the surrounding lipids and the relaxation rates indicated that they are more flexible

than the surrounding DMPC acyl chains [33]. Analytical models already helped in

the interpretation as they showed that this results in relatively short C16 hexadecyl

chains that are almost identical in length to the C14 acyl chains of DMPC

[33]. Later investigations extended this observation to membranes of varying

thickness and showed that the hexadecyl chains are very malleable and adapt

their chain length almost perfectly to the environment [82]. In fact from a DLPC

matrix with C12 chains to a highly ordered C16 DPPC matrix in the presence of

cholesterol the chain length of the N-Ras peptide hexadecyl chains almost doubled

closely matching the matrix lipids in both cases. The MD simulation shed further

light on this by calculation of the correlation function of both the hexadecyl and the

DMPC chains. For this, the moment of inertia tensor of the chains was calculated

and its smallest diagonal element taken as the chain axis. In Fig. 14.8, the correla-

tion functions of these axes are shown for the hexadecyl chains of the N-Ras

heptapeptide and the acyl chains of DMPC. They were fitted by a two component

exponential decay

G tð Þ ¼ 1� S2f
� �

exp � t

τf

� 	
þ S2f � S2
� �

exp � t

τs

� 	
þ S2, ð14:33Þ

where τf and τs are the correlation times of the fast and slow motion respectively.

The order parameters of the individual motions are Sf and Ss and are related to the

order parameter S of the total motion via

S2 ¼ S2f S
2
s : ð14:34Þ

From the total correlation function, it is immediately obvious that the N-Ras

hydrocarbon chain has lower order overall because the plateau value, at which the

correlation functions level off, corresponds to the square of the order parameter.

When analyzing the individual components, it does become clear that the fast

motions are very similar for the hydrocarbon chains of DMPC and N-Ras. Both

have very similar order parameters Sf (0.69 vs. 0.71) and correlation times τf (0.81
vs. 0.72 ns). For the slow component however significant differences are observed.

The order parameter Ss of DMPC is much higher (0.87 vs. 0.69) and its correlation

time τs significantly longer (6.23 vs. 3.85 ns). Assuming that the hydrocarbon

chains wobble inside a cylinder the opening semi-angle θ of this cylinder can be

determined via [45]
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S ¼ 1

2
cos θ 1þ cos θð Þ: ð14:35Þ

Using this equation the opening semi-angle of the slow motions of the hydro-

carbon chains is 25� for DMPC while it is 39� for N-Ras. Therefore, the lipid-

modifications of the N-Ras heptapeptide adapt to the surrounding DMPC bilayer by

undergoing much larger amplitude motions on a timescale of a few ns.

In further experimental investigations, the full-length protein was used

[83]. From the experiments, 13C chemical shifts of all amino acids in the N-Ras

membrane anchor were determined. Since these shifts are a direct result of the

immediate environment of the investigated nucleus, they can be used to predict the

secondary structure of the element in which the labeled amino acid resides in. Also,

using the information of the amino acid sequence a database approach called

TALOS based on known protein structures with known chemical shifts can be

used to even predict the torsion angles Φ and Ψ of the amino acid [41]. Since the

backbone structure of a protein solely is determined by these torsion angles, a full

set can be used to calculate a structure. Although this approach is typically rather

precise, the relationship between chemical shift and secondary structure is not

always unambiguous. In this case, the result was unambiguous torsion angle pairs

for all but one amino acid [83]. For methionine 182, however, three clusters of

different torsion angle pairs were predicted, which resulted in three different

structure families of the N-Ras anchoring domain that are summarized in
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Fig. 14.8 Correlation functions of the hydrocarbon chains of DMPC (A) and N-Ras (B) are shown
in black. Both were fitted by a two-component exponential decay shown in green whose two

individual components are shown in light blue (fast component) and dark blue (slow component)

which both were started at a value of 1 at t ¼ 0 for clarity
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Fig. 14.9 [64]. Based on other experimental evidence such as the information that

both lipid modifications have to face the same side of the protein, the structure

family shown in Fig. 14.9D was considered the most likely conformation [83].

This information was very valuable for the following MD simulations since most

conformational changes are too slow to be completely sampled in all-atom MD

simulations. Therefore, the backbone structure of cluster D was used to setup

further MD simulations of the N-Ras membrane anchor in DMPC [64]. For the

simulations, the soluble part of N-Ras was again omitted to reduce the size of the

system. This allowed improving structural sampling via a replica exchange MD

simulation with 34 replicas ranging from 303 to 514 K that was run for more than

90 ns. From the final 39 ns of the replica exchange MD simulation, histograms of all

torsion angles in the N-Ras backbone at 303 K were calculated. The corresponding

Ramachandran diagrams of each amino acid are shown in Fig. 14.10 along the

torsion angles pairs predicted by TALOS [64]. The simulation results nicely agreed

with the experiments as all torsion angles predicted by TALOS are close to maxima

in the distribution obtained from the MD simulation. However from this it also is

immediately obvious that the membrane anchor backbone is not fixed in a very rigid

structure but rather samples many different structures. This is particularly true for

methionine 182, for which all three torsion angle pair regions predicted by TALOS

are found in the MD simulation. All other amino acids also show at least one torsion

angle pair region with considerable probability that was not predicted by TALOS

further highlighting the structural flexibility of the N-Ras membrane anchor.

This was somewhat surprising since it was known that the two lipid modifica-

tions attached to cysteine 181 and cysteine 186 were facing the same side of the

peptide. Furthermore, it was believed that the hydrophobic side chains of methio-

nine 182 and leucine 184 are facing the same side for membrane insertion

[80]. These constraints should severely limit the number of possible structures.
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Fig. 14.9 ARamachandran diagram of the torsion anglesΦ andΨ, in which the sterically allowed
regions are marked grey (A). For methionine 182 of the human N-Ras membrane anchor three

different clusters of torsion angle pairs were predicted by TALOS indicated by green, blue, and red
symbols. This resulted in three different structure families (B–D) predicted for the membrane

anchor. Reprinted from [64], Copyright (2010), with permission from Elsevier
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Therefore, it was investigated if torsion angles from different amino acids are also

correlated. For this correlation scores between all possible torsion angle pairs were

calculated and the results are shown in Fig. 14.11 [64]. The torsion angles Φ and Ψ
of the same amino acid are obviously strongly coupled and marked by black

crosses. Interestingly, very strong correlation is also observed between the torsion

angles of cysteine 181 and methionine 182. Further, the strongest long range

correlation (where long range means amino acids not directly neighboring each

other) is observed between leucine 184 and cysteine 181.

These correlations indicated that instead of random fluctuations a number of

structures exist. Subsequently, all structures from the replica exchange MD simu-

lation were clustered. The two largest clusters named cluster 1 and cluster 2 in the

following represented about 34 and 26% of all structures, respectively, and all other

clusters were below 10% probability [64]. Some of the minor cluster structures

were very similar to the structures of clusters 1 and 2 and if these are interpreted as

fluctuations of the two main clusters, they would in total represent about 77% of all

structures. Comparison to the experimental structure showed very good agreement

for cluster 2. The most prominent cluster 1, however, differed in the conformation

of methionine 182 resulting in a kink at this position that led to a different
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Fig. 14.10 Ramachandran diagrams of the five amino acids cysteine 181 (A), methionine 182 (B),
glycine 183 (C), leucine 184 (D), and proline 185 (E) of the membrane anchor of the human N-Ras

protein obtained at 303 K from the last 39 ns of more than 90 ns replica exchange MD simulation.

The torsion angle pairs of the three different structures predicted by TALOS are shown as symbols

for each amino acid where the colors are the same as in Fig. 14.9 (note that the structures only

differ in the conformation of methionine 182). Reprinted from [64], Copyright (2010), with

permission from Elsevier
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conformation of the N-terminus of the membrane anchor. At the same time,

cysteine 181 also shows a different conformation such that the lipid modification

attached to this position is pointing in the same direction as the lipid modification

on cysteine 186. The hydrophobic side chains of methionine 182 and leucine

184 also face the same side as the lipid modifications such that they can all be

embedded in the membrane simultaneously.

While it had been established already that the lipid modifications of the human

N-Ras membrane anchor are highly flexible the large degree of structural flexibility

in the backbone posed the question if it was similarly flexible. To further study its

dynamics, a uniformly 13C/15N-labeled heptapeptide of the same amino acid

sequence again modified by two hexadecyl modifications on the cysteines was

investigated in a DMPC membrane. On these samples C-H order parameters were

determined with the use of the DIPSHIFT experiment that are summarized in

Fig. 14.12 [64].

These order parameters are indicative of the motions of the Cα-H bonds that are

directly connected to the backbone and, therefore, also indicative of the backbone

dynamics. Overall, very low order parameters are obtained supporting the obser-

vation of the large structural flexibility. Interestingly, apart from the termini of the

peptide the inner five amino acids show monotonically rising order parameters

towards the C-terminus. The two cysteines that could not be distinguished in the

spectra as well as methionine 182, which are the amino acids that are most tightly

correlated in their torsion angles show the largest amplitude motions. These order

parameters were also extracted from the replica exchange MD simulations and are

shown in Fig. 14.12. They are very low as well but with the exception of glycine

180 higher than the experimental values despite the use of a rapid sampling method.

Nevertheless, this is not very surprising as C-H order parameters measured with the

DIPSHIFT experiment are sensitive to motions on timescales that were not

achieved by the MD simulations. Further, with exception of the termini the general
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trend of rising order parameters towards the C-terminus is also observed in the MD

simulation. To obtain further information about the timescale of these motions T1
and T2 relaxation times were recorded in a temperature dependent manner which

are summarized in Fig. 14.13 [64].

This data was fitted by a modified Lipari-Szabo model, in which it was assumed

that the relaxation of the 13C nuclei was governed by fast and slow anisotropic

motions, while overall isotropic tumbling was assumed to be inhibited by the

presence of the membrane. This resulted in the following spectral density [46]

J ωð Þ ¼ 1

5

1� S2f
� �

τf

1þ ωτfð Þ2 þ
S2f � S2
� �

τs

1þ ωτsð Þ2
" #

, ð14:36Þ

where the overall order parameter S again is connected to the fast and slow order

parameters Sf and Ss via Eq. (14.34). To reduce the number of fitting parameters by

one, the C-H order parameters were used for the overall order parameter S. To
model the temperature dependence of the correlation times, an Arrhenius approach

with τ0¼ 10�15 s was used. The spectral densities were substituted into Eqs. (14.18)

and (14.20) for the R1 and R2 relaxation rates of a
13C nucleus in the presence of one

or more bound 1H. For each amino acid the T1 and T2 relaxation times were fitted

simultaneously using these equations where correlation times of fast and slow

motions were obtained as fitting parameters and the resulting fits are shown in

Fig. 14.13 [64]. At 310 K the correlation time τf for the fast motions was on the

order of 0.5–1.1 ns while τs for the slow motions was on the order of 100–650 ns for
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Fig. 14.12 C-H order parameters measured for all seven amino acids in the membrane anchor of

the human N-Ras protein in a DMPC matrix. Values determined with the DIPSHIFT experiment

are shown as grey bars while data obtained from the replica exchange MD simulations is shown as

white bars. The experimental C-H order parameters for cysteine 181 and cysteine 186 are identical

because they could not be distinguished in the NMR spectrum. All data was determined at 303 K.
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the individual amino acids. Since T1 and T2 relaxation times are not sensitive on the

timescale of the slow motions the large values are very imprecise and simply

indicate that the overall motions of the peptide are very slow.

To interpret these values, MD simulations were employed again. The replica

exchange MD simulation could not be used for this as one of its disadvantages is

that due to swaps of the replicas no continuous trajectory exists at any given

temperature. Consequently, correlation functions and spectral densities can not be

calculated, severely limiting the ability to analyze the timescale of the dynamics of

the peptide. Therefore, snapshots were extracted at the end of the replica exchange

MD simulation from two independent replicas at 313 K that were used as starting

coordinates of two additional conventional 300 ns MD simulations [64]. These

simulations were compared against the experimental data. Again, correlation func-

tions and spectral densities were calculated but this time for the 13Cα-
1H vectors.

From this, T1 and T2 relaxation times were calculated using Eqs. (14.18) and

(14.20), which are also shown in Fig. 14.13. Agreement to experimental data was

good again and as before the correlation functions were fitted by Eq. (14.36). The

correlation time τf for the fast motions was on the order of 1–20 ns while τs for the
slow motions was on the order of 30–250 ns for the individual amino acids. These
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values agree well to the experimentally obtained values given the fact that the

Lipari-Szabo model is a relatively simple approach and that the correlation times

for the slow motions are on the order of the MD simulation length. These values

also show good agreement to the diffusion constants obtained for motions parallel

and perpendicular to the membrane normal from the angular dependent 2H NMR

relaxation rates [79].

14.6 Conclusions

Experimental techniques along with MD simulations have largely advanced our

understanding of biophysical systems, in particular with respect to membrane

interactions. NMR spectroscopy provides structural and dynamical information

with atomistic resolution, but as an ensemble technique, can often not resolve the

impact of individual molecules in a large ensemble. MD simulations on the other

hand are limited by the size of the ensemble as well as the simulation time, but

provide atomistic resolution on the single molecule level. Both shortcomings can be

at least partially overcome by the combination of the two methods. Thus, a

comprehensive picture of the molecular details of biophysical processes emerges,

that benefits from the synergies of the combination of the two methods. MD

simulations greatly benefit from experimental parameters for the most perfect

reflection of the natural system in the simulation. Furthermore, a number of

experimental quantities such as structural and geometrical parameters, correlation

times and amplitudes of motion, nuclear Overhauser effects etc. can be well

determined from MD simulations and used for their validation and assessment if

the system has reached equilibrium. In turn, MD simulations greatly aid in the

interpretation of experimental parameters as they contain extremely detailed infor-

mation on the whole simulated system and thereby often uncover the biophysical

processes and mechanisms that led to the measured observable. It is rather clear that

neither experimental nor computational methods will dominate the future in mem-

brane biophysical research, rather, the combination of both methods will be most

promising. Both NMR and MD techniques have continuously improved over the

last decade such that larger systems can be investigated and the understanding of

complex systems and machineries has much improved.
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Chapter 15

Computer Simulations of Membrane Proteins

Christian Jorgensen, Victoria Oakes, and Carmen Domene

Abstract Developments in computational algorithms and structure-determination

technologies have enabled molecular dynamics simulations to become a routine

tool to investigate the structure and dynamics of biological membranes and mem-

brane proteins in great detail. In this chapter, we provide an overview of atomistic

molecular dynamics simulations and related methods, such as coarse-grain simu-

lations and biased sampling methods, and illustrate using key examples how such

methods have advanced our understanding in the field of membrane protein bio-

physics. We exemplify how MD simulations have provided insights into selective

permeation mechanisms through lipid bilayers and ion channels, as well as confor-

mational changes associated with transport in both G-protein coupled receptors and

membrane transporters.

15.1 Introduction

Cell membranes are formed by a lipid bilayer, spanning two layers of fatty acid

molecules, which regulate the passage of ions, small molecules and peptides into

the cell interior. Embedded proteins, in particular, are crucial for the transmission of

many of these species. Over the past half-century, our understanding of these

assemblies has been greatly aided by experimental and computational techniques

alike. Advancements in X-ray crystallography, NMR, and more recently, electron

microscopy, have resulted in an exponential growth in the number of available

membrane protein structures. Computational algorithms, such as molecular dynam-

ics (MD) simulations, have become a powerful tool to complement structural

information, providing insights into the dynamics of biological assemblies at an
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atomistic level that cannot be obtained experimentally. The field of membrane

protein MD simulations has matured alongside developments in computer techno-

logy, continuously reaching longer timescales and displaying increasing levels of

agreement with experimental observations. The availability of coarse-grained

approaches has significantly aided the timescales available for the study of complex

systems. In addition, biased-sampling simulations can be used to sample rare-

events that involve considerable energetic barriers unreachable in the time scales

presently available to MD simulations. Thus a wide range of biological timescales,

system sizes and phenomena are accessible, allowing us to fully probe the dynamics

of biological systems. In this chapter, computational methods commonly used for

the study of membrane proteins are reviewed, highlighting notable applications

concerning permeability through biological membranes and associated proteins,

namely ion channels, transporters and G-protein coupled receptors (GPCRs).

15.2 Molecular Dynamics Simulations

Computational chemistry is a branch of chemistry that supplements experimental

data on the structure and properties of matter, by using mathematical formulations.

Computational chemistry can be broadly categorized into Quantum Mechanics

(QM) and Molecular Mechanics (MM) methods, depending on the sophistication,

and hence accuracy, of the calculation. Ab initio QM methods are primarily

concerned with the calculation of molecular electronic structure by solving the

Schr€odinger equation, whilst semi-empirical methods use approximations and are

parameterized using experimental data or data obtained from quantum calcula-

tions. Quantum chemistry calculations are inherently computationally intensive,

and therefore, the size of the system, in other words, the number of particles that

can be studied, is limited. Accordingly, MM methods, which utilize classical

physics and ignore electronic contributions, are usually used for the study of the

dynamics of complex biological systems. In this respect, MD is a computational

technique used to generate the time evolution of an N-atom system configuration

by iteratively integrating Newton’s equation of motion. Based on an initial set of

coordinates, the potential energy of the system and the forces can be derived at

each timestep to obtain new positions and produce a trajectory of the positions of

all system particles as a function of time. In order to calculate the potential energy

of a system at each timestep, ab initio or classical techniques are employed. In the

latter case, particles are modelled as spherical objects with a particular charge and

a particular radii, interconnected by elastic springs. An expression for the energy of

the system, known as a force field (FF), is described as a sum of several compo-

nents generally including: (i) bond stretching, (ii) angle bending, (iii) torsional

terms, and (iv) non-bonded interactions [1, 2]. Many classical force-fields are

widely available for the simulation of proteins, lipids, water and related molecules,

among which the most popular are CHARMM [3], AMBER [4], GROMOS [5],

and OPLS [6]. Force fields often differ in the functional form of the force field
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described earlier and the procedure adopted for their parameterization. In some

cases, parameters are obtained by fitting to ab initio QM data, and others rely on the

reproduction of experimental data. These force fields are compatible with popular

MD codes such as AMBER [7], NAMD [8], GROMACS [9, 10], LAMMPS [11],

or DESMOND [12].

Due to the development of such FF’s and MD codes, the applicability of MD

simulations has expanded considerably since its outset when hard sphere simu-

lations were undertaken by Alder and Wainwright in 1957, [13] followed by simu-

lations of water performed by Rahman and Stillinger in 1971 [14], and by protein

simulations shortly after. Simulation of the bovine pancreatic trypsin inhibitor

(BPTI) in unfolded (Levitt and Warshel in 1975) [15] and folded (McCammon,

Gelin and Karplus in 1977) [16] conformations illustrates a key early example,

significantly contributing the field of in silico protein studies. In the context of this

chapter, MD was not applied to membrane proteins until the early 1990s [17], once

the first crystal structure of rhodopsin was unveiled [18]. Classical MD simulations

are now routinely employed to investigate structure-function relationships in bio-

logical macromolecules in model environments.

To apply such methods to membrane proteins in particular, the protein structure,

obtained from crystallographic data or by homology modeling, must be carefully

prepared. Early simulations, such as those of rhodopsin, employed implicit solvent

and membrane models [1]. However, due to expansions in classical FF’s to include
lipid molecules, and, the availability of computational power, simulations with an

explicit environment are now attainable on biologically relevant timescales [8]. Pro-

teins are typically embedded in a lipid bilayer, which is solvated and ionized to a

biologically relevant concentration. This procedure can be undertaken manually or

Fig. 15.1 Schematic illustration of a typical MD simulation setup of a membrane protein,

showing the protein (TRPV1) embedded in a bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC) and solvated with a background concentration of KCl. Colour code:

TRPV1 domain A blue, domain B red, domain C yellow, domain D gray, POPC lipids blue
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via automated online engines such as CHARMM-GUI [19]. An example of a simu-

lation system set-up is given in Fig. 15.1 [2].

Overall, the tools to generate MD simulations of membrane proteins are now

widely accessible and thus commonly used. It should be noted, however, that these

methods are associated with various limitations. The use of classical forcefields

prohibits the calculation of electronic properties, polarization is not explicitly

included and charge transfer, or bond breaking and forming cannot be described.

For some situations, a description of polarization is essential, and the development

of polarizable forcefields has received considerable attention in recent years.

Furthermore, all-atom MD simulations of large membrane protein systems are

computationally expensive restricting the phenomena that can be sampled even if

nanosecond timescale are now routine, with microsecond simulations currently

attainable. D.E. Shaw and colleagues have been instrumental in enabling the

performance of long-scale simulations, a millisecond in length, by the construction

of the supercomputer Anton, and the development of the DESMOND [12] code. As

these technologies are not widely available, many research groups have applied

alternative methods to reach extended timescales.

Coarse-grained (CG) simulation is one alternative method to all-atom MD simu-

lations. CG simulations use a reduced system representation whereby a collection

of atoms is grouped into a single ‘bead’, reducing the number of degrees of system

in the system and the computational expense. CG simulations have been used

widely across membrane proteins, and the reader is referred to more detailed

reviews on this subject [3]. The disadvantages of these methods should also be

taken into consideration; the reduction of the all-atom system to simpler represen-

tations means that thermodynamic properties, such as diffusion constants, and

ensemble quantities, such as free-energies, are less accurate in comparison with

experiments and all-atom MD [3].

Biased simulations provide a further method to accelerate sampling, whilst

retaining full detail. In addition, biased methods can be used to overcome high

energetic barriers by speeding up sampling along selected low-dimensional collec-

tive variables (CV) representative of the desired transition. Popular methods

include umbrella sampling [4] metadynamics [5], steered MD [6], or adaptive-

biasing force (ABF) [20]. For example, in metadynamics, a Gaussian potential

function bias is added to the chosen collective variables, in order to divert the

trajectory away from energy minima and overcome barriers. The Potential of Mean

Force (PMF) for the entire potential energy surface can be calculated after it has

effectively been flattened, by summing the full list of bias potentials added during

the simulation. In contrast, in umbrella sampling, the potential energy surface for a

particular transition can be attained by discretizing the pathway into a set of

windows, and imposing harmonic restraints (‘umbrellas’) in the form of a Hookean

potential term to constrain the system around the centre of the bin and perform

individual simulations, achieving full sampling when sufficient number of bins are

employed. The PMF is obtained using an unbiasing procedure, such as the

Weighted Histogram Analysis Method (WHAM) [21], to remove the presence of

the umbrellas. In ABF, an adaptive on-the-fly average force is applied onto the

Newtonian equations to provide a smooth energy landscape to obtain full sampling
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of the collective variable [22, 23]. This force estimate is corrected during the

simulation, and once the simulation converges the PMF is calculated from numer-

ical integration of the free-energy gradient at each point in the simulation [20, 24–

26]. Another of these techniques is steered MD, where the system is biased into

sampling a specified transition by applying an external force onto the system using

either constant-velocity of constant-force regimes. To obtain an estimate of the

PMF from a constant-velocity steered MD simulation, the list of applied forces

during the simulation is input into the Jarzynski identity [27, 28], while in a

constant-force steered MD simulation, fitting procedures to obtain an unbiased

free-energy PMF have been devised, such as that of Dudko, Hummer and Szabo

[29, 30]. Biased sampling methods have greatly expanded the phenomena that can

be sampled, with specialist versions of US, metadynamics and ABF that have also

demonstrated notable successes when studying permeation [31–33], ligand binding,

and conformational dynamics [34].

Finally, alternative methods to MD simulations include for example Brownian

dynamics (BD) simulations [35, 36], in which the equation of motion is a simplified

version of Langevin dynamics, and corresponds to the limit where no average

acceleration takes place. This approximation can also be described as ‘overdamped’
Langevin dynamics, or as Langevin dynamics without inertia. In BD simulations

the solvent molecules are not represented explicitly, but instead collectively as a

random force. Alternatives to the free-energy methods listed above include the

continuum electrostatic (Poisson-Boltzmann) methods [37], which can be used to

obtain electrostatic potential surfaces of proteins, and calculate approximate ligand-

protein binding free-energies [38, 39].

15.3 Small-Molecule Permeation Through Membranes

The permeation of small molecules across membrane involves the passage of a

solute through a channel, transporter or receptor, or directly across the cell mem-

brane. The transport of drug molecules across the cell membrane is crucial to reach

intracellular targets. Hence, the study of these processes has important implications

for drug discovery. MD simulations have been used to study permeability across a

range of lipid bilayers [31–33], as well as multiscale approaches combining MD

and QM calculations [40]. Examples cover a whole range of small molecule solutes,

including anesthetics [41], drugs, hormones [42], and fullerenes [43].

Following the Overton rule on the proportionality of solute permeability to its

partition in water/oil systems [44], Stouch et al. [45–47] used MD simulations to

estimate the diffusion coefficient as the mean-squared displacement of the molecule in

different regions of the hydrophobic membrane core. Concomitantly, theoretical and

simulation estimates of the permeability coefficient of drugs through bilayers [33, 48]

used reported drug diffusion constants [49–51] to obtain permeability values that were

directly comparable to experimental estimates [52–55]. Simulations of anesthetic

permeation in a DMPC bilayer for instance showed that diffusion is higher in the

middle of the membrane than around the water-lipid interface [45]. The mean-squared
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displacement was estimated for benzyl-alcohol [56], and halothane [57, 58], to show

how the anesthetics affected the lipid bilayer structure. Pohorille et al. [59–61]

extended this work to consider the free energies of permeation, calculated using

methods including umbrella sampling. In general, the free energy of anesthetics

permeating through the membrane was found to be at a minimum in the membrane

core or at the polar interface, rather than in the water phase [62].

In a similar manner to anesthetics, simulations probed the permeability of other

drugs, such as β-blockers alprenolol, atenolol, and pindolol, and steroid hormones,

such as progesterone and testosterone, through lipid membranes. β-blockers were
found to preferentially partition to the lipid headgroup region, while steroid hor-

mones preferentially partition in the centre of the bilayer, with a larger partition

coefficient of progesterone than testosterone estimated [42].

Finally, the permeability of systems such as fullerenes (C60) or carbon-

nanotubes (CNTs) across membranes has attracted great attention due to their

potential applications in drug delivery [63–65]. Simulations found that fullerene

molecules rapidly aggregate in bulk water [43], but do not associate in the mem-

brane phase. Permeation of fullerene from the bulk into the lipophilic phase was

found to be favoured from free-energy calculations occurring on the microsecond

timescale. It was concluded that fullerene permeability through membranes does

not cause mechanical damage of bilayers arising from high fullerene concentration.

Therefore, this would be an unlikely mechanism for membrane disruption and

fullerene toxicity [43]. Another study found that fullerenes are less likely to

aggregate inside lipid bilayers compared to pure organic solvents, suggesting that

fullerenes are interfacial permeants, which could be used to target tumor cells.

Even though some types of small molecules are able to permeate lipid bilayers,

for many polar and charged species, such as water molecules and ions, the hydro-

phobic core imposes an energetic barrier to diffusion across the membrane. As a

consequence, pore-forming membrane proteins facilitate the efficient and selective

flux of small solutes across biological membranes. Aquaporins, for example, allow

for the efficient permeation of water while excluding protons, thus preserving the

electrochemical potential across the cell membrane. Aquaglyceroporins, a related

class of membrane proteins, also allow the transport of water as well as other

non-polar solutes, such as urea or glycerol, and gases, such as ammonia, carbon

dioxide and nitric oxide. These assemblies have attracted great attention, being the

subject of the 2003 Nobel Prize following the crystallization of the first crystal

structure of an aquaporin in 2000 [66–68].

The first MD simulations of water permeation through human aquaporin-1

(AQP1) and the bacterial glycerol facilitator GlpF found the mechanism of perme-

ability to consist of two stages. A conserved asparagine-proline-alanine motif was

proposed to determine selectivity, with a second region comprised of aromatic or

arginine residues functioning as a proton filter [69]. These simulations identified a

single file line of seven to nine water molecules inside the AQP1 channel, with two

conserved asparagine residues dictating the orientation of a central water molecule,

so it can serve as a hydrogen bond donor to its neighboring water molecules
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[66]. Comparison of the free energy profiles for permeation of small molecules, O2,

CO2, NH3, glycerol, urea, and water, through the permeation pathways of AQP1

and GlpF and lipophilic membrane permeation pathways provided key insights into

transport energetics. An inverse correlation in AQP1 was observed between per-

meability and molecule hydrophobicity, paradoxical to what is observed in the

membrane pathway, which favours hydrophobic solutes. AQP1 demonstrated

selectivity for small polar solutes such as water. AQP1 selectivity for small polar

molecules arises from the sterically-hindered filter that blocks the passage of larger

molecules, and the polar nature of the filter which excludes hydrophobic

molecules [70].

15.4 Ion Channels

Ion channels are a further class of membrane proteins, which are responsible for ion

permeation across cell membranes. Ion channels facilitate passive diffusion of ions

down electrochemical gradients, enabling cells to generate and transmit electrical

signals, an integral process in the nervous system [71]. Ion channels exhibit very

high transport rates of the order of 106–108 ions per second [71], and can be gated in

response to different stimuli, such as ligand binding, transmembrane voltage,

temperature, and mechanical stress. Ion channels can be non-selective, such as

the transient receptor potential cation (TRP) channels, or highly selective for

particular ions, such as chloride, sodium or potassium channels. Crystal structures

of each of these channels are currently available, with representative examples

given in Fig. 15.2.

Potassium channels play a crucial role in excitable cells affecting many

neuronal, cardiac and immunological activities and are among the most studied

by computational means. Multiple different families have been identified, includ-

ing voltage-gated (Kv) channels, inward-rectifying (Kir) channels, two-pore

Fig. 15.2 Representative structures of ion channels: (a) TRPV1 (PDB id 3J5Q) [72], (b) NavAb

(PDB id 3RVY) [73], (c) Kv1.2 (PDB id 3LUT; normal mode refinement of PDB id 2A79) [74, 75]
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domain channels (K2P; leak channels) and calcium-activated channels (BKCa or

SK), all of which are highly selective for K+. A prototypical structure of a

potassium channel consists of a transmembrane domain composed of four mono-

mers, containing at least two pore-forming helices, with additional TM helices,

intracellular or extracellular domains observed in many cases. The TM helices

can rearrange in response to external stimuli to modulate conduction at the

cytoplasmic entrance. Furthermore, a narrow ion selectivity filter, composed of

specific amino acid residues, controls entrance from the extracellular side and

determines ion selectivity. The mechanism of permeation and selectivity through

the selectivity filter has been extensively studied using MD simulations, as

detailed in recent reviews [76–80]. Ion conduction in K+-channels is usually

described in terms of a Hodgkin-Keynes knock-on mechanism [81–83], where K+

ions progress in single file through a narrow pore in a concerted movement,

driven by electrostatic repulsion with an incoming ion. MD simulations of K+-

channels permeation have confirmed the presence of five binding sites (S0–S4),

proposed from the X-ray crystallographic data. Each site is formed by the

backbone carbonyl groups from residues lining the selectivity filter. The first

MD simulations of KcsA by Åqvist and Luzhkov [84], in combination with work

by Bernèche and Roux [85], suggested that ion conduction involves transitions

between two main states, in agreement with the Hodgkin-Keynes knock-on

mechanism, with two or three K+ ions occupying the selectivity filter and water

molecules occupying vacant sites. The largest free-energy barrier was found to be

of the order of 2–3 kcal mol�1, suggesting that ion permeation is limited by

diffusion in this case [85]. An alternative mechanism for KcsA conduction was

proposed to involve site vacancies and ions occupying consecutive sites with

direct ion-ion contact between two potassium ions in neighboring binding sites

driving ion permeation, without the need for water to mediate the process [81].

Our understanding of the mechanism of ionic selectivity in potassium channels

has also evolved significantly as a result of MD simulations, with two views

emerging. Firstly, the thermodynamic origin of selectivity, that explains selectivity

as arising from higher barriers for sodium conduction over potassium conduction.

Secondly, the kinetic view, which proposes that potassium permeates with greater

rates than sodium. Early MD simulations by Noskov et al. using KcsA showed that

carbonyl groups coordinating the ion in the narrow pore are flexible and modulate

ion selectivity [86]. Free-energy simulations underscored the thermodynamic view

of selectivity, rendering energy barriers that are generally larger for Na+ over K+

[87]. Recent multi-ion free-energy MD simulations found evidence for selectivity

arising from several potassium ions bound in the filter concomitantly [88].

As well as establishing selectivity in K+ channels, it has been proposed that the

selectivity filter is also capable of blocking ion conduction in a process known as

C-type inactivation, whereby conformational changes at the selectivity filter are

thought to obstruct ion passage. Simulations showed that KcsA can be gated by

conformational changes at the selectivity filter in which the tetrameric symmetry of

potassium channels is broken [89]. Global conformational changes are also respon-

sible for impeding ionic current; in Kv channels the voltage-sensor domain (VSD)

influences the conformational state of the pore-forming helices in response to
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changes in transmembrane voltage. MD simulations of the Kv1.2 ion channel

initially focused on the S4 helix in the VSD, which contains several positively

charged residues, mainly arginines, located at every third position along the helix

[90]. The VSD senses changes in the membrane potential across the channel, and

simulations have probed the atomistic details of the VSD, finding that all four

charged residues in the VSD interact with the bulk or polar headgroups, and none of

them with the membrane hydrophobic interface [90]. Later work focused on

describing the behaviour of the VSD in response to external currents or

hyperpolarisation [91]. Additionally, continuum electrostatic Poisson-Boltzmann

calculations [92] found that the transmembrane potential varies abruptly in the

arginine-rich region of S4 voltage-sensor, which lead the authors to describe the

membrane electric field as ‘focused’. Overall, MD simulations have served as a

powerful tool to study conformational dynamics [90, 93] and gating [94] in the

pore-forming helices as well as agonist/antagonist druggability of these regions

[95, 96]. For example, neuropeptides from spiders and scorpions have been shown

to block the pore on the extracellular face [97–100], which is different from the

known Kv inner-pore blockers including 4-AP, TEA [101], TBA [102], and

correolide [103].

The emergence of the first high-resolution structures of voltage-gated sodium

(Nav) channels from Arcobacter butzleri (NaVAb) [73], and from Magnetococcus
sp. (NaVMs) [104], meant that similar MD methodologies were applied to the

sodium channel family. Sodium ion channels initiate action potentials in nerve,

muscle and other excitable cells, and are responsible for the fast depolarizing phase

of the action potential in nerve and muscular cells [105], for which mechanistic

understanding of the physiological basis of action potentials could lead to better

therapies for a multitude of diseases and disorders. Sodium channels share similar

pore architecture to potassium channels, expectantly differing in the selectivity

filter region. In agreement with an experimental model of sodium selectivity

involving an anionic coordination site [73], the crystal structures of the sodium

channel identified a ring of four negatively charged glutamate side chains at the

extracellular entrance which could accommodate partially dehydrated Na+ ions.

Two additional binding sites were also proposed deeper in the channel involving

rings of carbonyl atoms. These sites were confirmed by MD simulations [106]. In

stark contrast with K+ channels, that exhibit significant distortions in the selectivity

filter in the absence of K+ [107–109], experimental observations from ion flux

calculations [110] and patch clamp reversal potentials [111] suggested that the pore

is stable independent of ion occupancy in Na+-channels. These proposals were

supported by early computational efforts using Brownian dynamics simulations

[112] and classical MD simulations of NavAb [113], although the scientific com-

munity is at odds in this respect.

Analysis of ion occupancy of the selectivity filter of a bacterial sodium channel

demonstrated the extracellular binding site to be a high occupancy site with ions

approaching from the extracellular side and interacting with the charged E177

motif, before reaching additional sites, partially hydrated [106]. Chakrabarti et al.

used unbiased MD simulations to identify a low-energy permeation pathway for

Na+ ion translocation through the selectivity filter of NavAb, reporting a rate of
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translocation of �6 � 106 ions s�1, and the NavAb pore occupied by two ions on

average [114]. Several groups have recently employed MD simulations with

umbrella sampling [115], metadynamics and bias-exchange metadynamics

(BE-meta) [116–118] to study ion permeation in sodium channels. Single and

multi-ion potential of mean force (PMF) calculations [119, 120], and unbiased MD

simulations [114], have all identified the molecular basis of ion permeation in Na+-

channels as involving ion occupation of up to five sites, with multi-ion sites in the

external region and the central cavity also thought to play a role [30–36]. Multi-

ion PMF agrees with 1D PMF estimates of the energetic cost of permeation of

<3 kcal mol�1, finding that different conduction states are in equilibrium with

each other, and that on average two ions occupy the filter [114, 121, 122].

Free-energy methods have also been used to uncover the mechanism of Na+

selectivity in Na+-channels. PMF calculations of Na+ and K+ ion permeation in

NavAb found both ion types bind at similar sites but the free energy to traverse

these sites is 2–3 kcal mol�1 higher for K+ over Na+ ions [79]. When considering a

knock-on mechanism of sodium permeation in NavAb involving two solvated ions,

selectivity for sodium over potassium was shown to arise using geometric argu-

ments. Hydrated K+ ions were unable to fit between the planes of glutamate

residues at the central biding site in an optimal geometry, and thus passage was

forbidden. It is worth noting other Nav channels have been studied using MD

simulations. For example, simulations with NavMs [123] found ion binding sites

that agree with those predicted for NavAb [124]. MD simulations of NavRh

identified conformational rearrangements of certain residues that could lead to

spontaneous opening of the selectivity filter [125]. In summary, simulations have

enhanced our understanding of ion conduction in sodium channels elucidating the

dynamics of the selectivity filter, potential conduction mechanisms and the origins

of ion selectivity.

Understanding the lack of selectivity in some ion channels is another unique

problem in which MD simulations have proven instrumental. The NaK channel is

distinct from sodium and potassium channels by allowing non-selective conduction

of monovalent ions K+ and Na+ [126, 127]. MD simulations under a strong applied

potential were able to illustrate both Na+ and K+ permeation through NaK,

obtaining faster conduction rates for K+ ions [128]. By using free-energy simula-

tions, comparison of the wild type and a mutated NaK channel, it was found that

non-selective ionic conductance arose from a three ion-binding site selectivity filter

[129] as opposed to the four-site selectivity filter in potassium-selective channels

such as KcsA. Other MD simulations comparing NaK to KcsA proposed that NaK

is non-selective due to differences in ion hydration in the selectivity filter of NaK,

preventing discrimination of ions during permeation [130].

A second non-selective channel that has attracted great attention is the transient

receptor potential Vannilloid-1 channel (TRPV1). TRPV1 is a known pain receptor,

responsible for mediating nociception [131]. Recent cryo-EM structures of TRPV1

[2] show a similar tetrameric topology to those in voltage-gated ion channels. Due

to the resolution of these EM structures, ion binding sites could not be resolved.

However, MD simulation studies provided this information and three main ion

binding sites where characterized. MD simulations of permeation of monovalent
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(Na+, K+) and divalent (Ca2+) ionic species in TRPV1 [132] observed multiple

permeation events for monovalent ions, with different behaviour of the selectivity

filter observed when sodium or calcium was present, compared to potassium. The

availability of TRPV1 structures in complex with known agonists has also sparked

interest in ligand binding to TRPV1. In particular, the properties of the activator

capsaicin have been studied computationally. Capsaicin is thought to bind to a

distinct intracellular vanilloid-binding site; docking studies and MD simulations

confirmed the location and orientation of capsaicin in this position consistent with

previous experimental studies [133]. Modelling refinement of the vanilloid-binding

site of capsaicin and resiniferatoxin has predicted the pose of one hundred addi-

tional TRPV1 agonists, yielding five new TRPV1 mutants that bind capsaicin and

resiniferatoxin [134]. These results provide a rational suggestion of TRPV1 ligand

modifications that should improve binding affinity.

15.5 Transporters

As ion channels primarily endorse passive diffusion across the cell membrane,

additional membrane assemblies exist that facilitate active transport when a concen-

tration gradient is not present. Membrane transporters fulfill this role; using an

external energy input, transporters undergo reversible conformational changes to

deliver solutes across the cell membrane. The mechanism by which substrates are

transported is called the alternating access model, where the transporter oscillates

between cytoplasmic-open to extracellular-open states. There are currently

620 unique structures of membrane proteins reported (Stephen White laboratory;

http://blanco.biomol.uci.edu/mpstruc/), of which almost 300 correspond to mem-

brane transporters. The first simulations of a transporter embedded in explicit lipid

membrane environment were those of the TonB-dependent transporter FhuA in 2003

[135], which examined conformational changes in the crystal structures of apo and

holo states, with and without bound substrate [136, 137]. These simulations reported

that substrate binding induces closure of the binding site. Since 2003, hundreds of

publications on transporters [138–142] have addressed the mechanistic basis of

substrate binding, the conformational changes required for alternating access and

how this is coupled to external sources of energy.

In primary transporters, conformational changes are driven by exothermic reac-

tions like the hydrolysis of ATP. ATP-binding cassette transporters provide a key

example of this, using ATP to drive the active transport of substrates, such as ions,

sugars, lipids, peptides, toxins, and small-molecule drugs across membranes. Con-

formational changes associated with the alternating access model are driven by

cytoplasmic nucleotide-binding domains (NBDs), which interact with the trans-

membrane domains (TMDs) during an ATP hydrolytic cycle. MD simulations of

primary transporters have studied the full ATP-hydrolytic cycle of binding and

release of ADP in the maltose transporters MalK [143], and MalFGK-E (Fig. 15.3)

as well as many others. Overall, MD simulations have suggested a common

substrate access model, in which ATP-hydrolysis induces conformational changes
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in the helical sub-domain region, which are transferred to the TMD via the coupling

helices [151]. The NBD dimer proposed to close upon ATP binding, with ADP

release prompting opening suggesting that a single ATP binding event is needed to

induce the opening of the NBD dimer [152]. MD simulations showed that in the

absence of bound species, the NBD dimer dissociates to an intermediate signalling

state, with subsequent opening dependent on the nature of the substrate. Proposals

have since emerged of cooperative or allosteric coupling between the dimer active

sites, mediated by intrasubunit conformational changes.

While primary ABC transporters utilize ATP to drive transport, secondary

transport of substrates is driven by the co-transport of ions (e.g. Na+, K+ or H+)

down the ion concentration gradient. The alternative access model of facilitated

diffusion has been studied extensively in secondary transporters, by both experi-

mental and computational means. The recent publication of the structures of the

secondary SemiSWEET transporter in intracellular-open, closed and extracellular-

open states (Fig. 15.4) [148] has provided structural insights into this phenomenon.

MD simulations have been crucial in elucidating dynamic processes that cannot be

obtained from static structures, concerning the proposed mechanisms of alternating

access [153]. The rocker-switch opening mechanism, in which a large conforma-

tional change in two protein domains is needed to transition between conforma-

tional states, a gated-pore mechanism, in which smaller, localized conformational

gates control access, and, the elevator-like substrate model, in which the vertical

motion of an interior domain allows for substrate access [154] have all been

explored computationally.

For both lactose transport in LacY or leucine transport into LeuT [19, 155–158],

substrate access occurs through small helix motions and side-chain rotations,

consistent with the gated-pore hypothesis, and dismissing rocker-switch behaviour

[159]. In GLUTPh, vertical motion of an interior domain is observed to allow

substrate access suggesting an elevator-like substrate access [154]. Other studies

have suggested that salt-bridge dynamics and the protonation of key residues could

modulate transport. [159–163] Finally, certain transporters are proposed to function

Fig. 15.3 Representative structures of transporters coloured by domain. Primary transporters

MalFGK-E tetramer complex (PDB id 2R6G) [144], bound to the maltose-binding protein in

purple. Secondary transporters LeuT (PDB id 2A65) [145], LacY (PDB id 1PV7) [146], GLUT

(PDB id 4PYP) [147], bacterial SemiSWEET (PDB id 4X5N) [148], and eukaryotic SWEET (PDB

id 5CTG) [149]. Finally, one transporter with non-primary or secondary substrate, the ADP/ATP

transporter AAC (PDB id 1OKC) [150]. Monomer A is red, B is black, C is yellow.
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via an electrostatic funnel, like the mitochondrial ADP/ATP carrier (AAC)

(Fig. 15.3) [164, 165].

15.6 G Protein-Coupled Receptors (GPCRs)

Another important class of membrane proteins, known as receptors, is responsible

for signal transduction across the cell membrane. These proteins convert extra-

cellular signals, such as chemical stimuli into an intracellular response. G protein-

coupled receptors (GPCRs) are the largest family of membrane receptors, with

the human genome encoding for over 1000 GPCR genes, and spanning 19% of

the established drug-targeted portion of the human genome [166]. Their overall

architecture consists of seven transmembrane (TM) helices, which rearrange on

receipt of an extracellular signal to couple with intracellular entities, such as

G-proteins. MD simulations have focused on three main aspects of GPCR

dynamics; conformational changes between active and inactive signalling states

of receptors, ligand binding mechanisms of GPCRs, and finally, protein-lipid

interactions.

The first high-resolution structure of rhodopsin [167] gave insights into the

organisation of these receptors, and was the subject of the first simulation of a

GPCR in an explicit membrane bilayer [8], which probed the interconversion

between two rhodopsin signalling states, a dark-state and a photoisomerized state.

MD simulations demonstrated that this interconversion was mediated by conforma-

tional changes to the bound ligand (cis to trans), occurring via a concerted series of

hydrogen-bond shifts. Several groups have studied how other GPCRs open and close

via substrate binding, with a specific salt-bridge (denoted the ionic lock) crucial in

this process. Microsecond MD simulation of the β2AR in the absence of agonists

found the ionic lock to open and close on a nanosecond timescale, proposed to

represent active and inactive functional states respectively [168]. Subsequent sim-

ulations by Dror et al. [169] revealed the inactive β2AR actually sampled two

conformations, one with the lock broken and another with the lock formed. Finally,

C0 Closed Ci

Fig. 15.4 Bacterial SemiSWEET transporter in outward-open (C0) state (PDB id 4QND) [148],

closed state (PDB id 4QNC) [148], and inward-open (Ci) state (PDB id 4X5N). Individual

monomers are coloured black and red.
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both tryptophan and proline residues are also proposed to act as conformational

switches in GPCR TMD domains [170]. Louet et al. [171] used MD simulations of

the ghrelin GPCR A, to identify conformational movements of TM6 and TM7

required to induce opening of the G-protein binding pocket. The role of G-protein

binding to the inactive GPCR state has also been studied in the β2Rs [172].
Ligand binding to GPCRs has received substantial attention from simulations.

Microsecond MD simulations of retinal binding to rhodopsin has been studied by

several groups (Lau et al. in 2007 [173]; Mertz et al. in 2012 [174]) have found that

the bound state of rhodopsin spans an ensemble of states, with the substrate mobile

in the binding pocket. Similar observations were also described in the A2A adeno-

sine receptor, showing that adenosine is highly dynamic when bound to A2A,

possessing more than one binding orientation, which is not apparent in the crystal

structure [175]. MD simulations have further shown that agonist binding can break

the ionic lock of GPCRs, such as in the binding of sn-2-arachidonylglycerol to the

cannabinoid receptor [176]. Rosenbaum et al. reported β2AR to bind two different

agonists [177], and further work described the transition between two conforma-

tional states predicted from the crystal structures of β2AR [178]. Other work on

β-blockers and β-agonists, found that these drugs use the same pathway to bind to

the β1AR and β2AR receptors, by interacting with the extracellular GPCR

surface [172].

Besides manipulating the structure of GPCRs, simulations have also focused on

the key interactions of GPCRs with their lipid environment. MD simulations of

GPCR interactions with cholesterol have focused on the GPCR ‘CRAC’ (choles-
terol recognition/interaction amino acid consensus) or ‘CARC’ [179–181] motifs,

found in β2AR (Fig. 15.5) [184], with estimates reporting the CARC motifs

accounting for 50 kcal mol�1 energy interaction on a single GPCR. Simulations

found multiple cholesterol interaction sites (cholesterol hot spots) having a micro-

second exchange timescale with bulk lipids [185]. Simulations suggest that the

5-HT1A receptor is more compact in the presence of cholesterol [186]. Lipid

regulation of other GPCRs has been studied, including the nAChR [187–189].

Fig. 15.5 Representative structures of GPCRs: Rhodosin monomer (PDB id 1F88) [167], β2-
adrenergic receptor (β2AR) complexed with trypsin (PDB id 3VGA) [182], and 5-HT1B recep-

tor complexed with ergotamine ligand (blue; PDB id 4IAR) [183]. Monomers are represented in

red, G-protein in gray, and the ligand substrate in blue
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15.7 Conclusions

The key contributions of MD simulations and related methods to our understanding

of transport across biological membranes have been reviewed. In the field of ion

channels, computational work has provided insight into gating, ion permeation and

selectivity. In the field of transporters, simulations have provided mechanisms of

substrate access, and identified key residues involved in gating. Simulations have

also mapped out the multiple conformational states of ligand-bound transporters.

Finally, for GPCRs, simulations have advanced our understanding of the mecha-

nisms linking distinct GPCR signaling states, and key insights into substrate and

lipid binding.

The field of membrane proteins is expanding with the ever-increasing number of

crystal structures. Therefore, MD simulations have come far in the aim of eluci-

dating the conformational dynamics of membrane proteins, and in the process, have

raised a great amount of new questions, whose answers are mainly limited by the

amount of computing power available, as well as the number of structures solved.

The continuous increase in the accessible timescales of routine MD simulation, as

well as the development of smarter, more efficient biased sampling methodologies

and sophisticated CG models and polarizable force fields will greatly aid this field

in the future.
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44. Overton CE. Über die osmotischen Eigenschaften der lebenden Pflanzen-und Tierzelle.
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89. Bernèche S, Roux B. A gate in the selectivity filter of potassium channels. Structure. 2005;13

(4):591–600.

90. Jogini V, Roux B. Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane

environment. Biophys J. 2007;93(9):3070–82.

91. Delemotte L, Tarek M, Klein ML, Amaral C, Treptow W. Intermediate states of the Kv1.2

voltage sensor from atomistic molecular dynamics simulations. PNAS. 2011;108

(15):6109–14.

92. Jogini V, Roux B. Dynamics of the Kv1. 2 voltage-gated K+ channel in a membrane

environment. Biophys J. 2007;93(9):3070–82.

93. Jensen MO, Jogini V, Borhani DW, Leffler AE, Dror RO, Shaw DE. Mechanism of voltage

gating in potassium channels. Science. 2012;336(6078):229–33.

94. Khalili-Araghi F, Jogini V, Yarov-Yarovoy V, Tajkhorshid E, Roux B, Schulten K. Calculation

of the gating charge for the Kv1. 2 voltage-activated potassium channel. Biophys J. 2010;98

(10):2189–98.
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Chapter 16

Hydrophobic Mismatch in Membranes:

When the Tail Matters

Bhagyashree D. Rao, Sandeep Shrivastava, and Amitabha Chattopadhyay

Abstract Hydrophobic mismatch is a specific case of lipid-protein interaction that

takes place when the hydrophobic thickness of the transmembrane region of a

membrane protein does not match the hydrophobic thickness of the membrane in

which it is localized. Depending on the type of mismatch (positive or negative), the

responses of membrane lipids and proteins vary. Hydrophobic mismatch could lead

to changes in membrane protein folding, conformation, oligomerization and activ-

ity due to adaptation (mismatch response) by lipids or proteins. Hydrophobic mis-

match can be observed in peptides as well as in larger transmembrane proteins that

traverse the membrane a number of times such as G protein-coupled receptors

(GPCRs). We propose a model of GPCR activation via hydrophobic mismatch

based on literature data. Hydrophobic mismatch could play a role in cellular sorting

and trafficking due to the gradient of cholesterol present in cellular organelles

which gives rise to a gradient of increasing bilayer thickness from the endoplasmic

reticulum to Golgi to the plasma membrane. We envision that hydrophobic mis-

match could be an important player in lipid-protein interactions in the complex

cellular milieu.
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16.1 Lipid-Protein Interaction

Biological membranes are organized molecular assemblies held together due to

the hydrophobic effect [1] and display large variations in their lipid and protein

compositions. They offer individual identity to the cell and its organelles, and are

involved in cell-cell communication. Membrane proteins are crucial since they

carry out a number of vital processes in cells and cell membranes help in

maintaining an optimum environment for their function. Contrary to earlier

models [2], cellular membranes are often crowded [3, 4] with a high protein

density (typically �25,000 proteins/μm2; [5]). This is particularly true for bio-

logical membranes that carry out important cellular functions. A consequence of

such crowding is that lipid-protein interactions play a crucial role in maintaining

the structure and function of biological membranes [6, 7]. A major part of mem-

brane proteins is immersed in the lipid bilayer and this offers a chance to mem-

brane lipids to interact with the proteins for optimum functioning. Variations in

cell membrane lipid composition due to stress or stimuli could therefore alter

lipid-protein interactions.

In most cases of lipid-protein interactions, the interaction is mainly between

various residues of the protein and the headgroup of the lipid (the hydroxyl group

in case of cholesterol-protein interactions). However, there is a particular type of

lipid-protein interaction, where the tail of the lipid is more important in terms of

interaction with the membrane protein or peptide (and therefore ‘the tail

matters!’).

16.2 Hydrophobic Mismatch

The hydrophobic thickness of the membrane is a fundamental property that has a

profound effect on transmembrane protein structure and function [8, 9]. Hydro-

phobic mismatch is a specific case of lipid-protein interaction that takes place when

the hydrophobic thickness of the transmembrane region of a membrane protein

does not match the unperturbed hydrophobic thickness of the membrane in which it

resides (see Fig. 16.1). Hydrophobic mismatch could lead to changes in membrane

protein folding, conformation, and activity [10–12]. Such mismatch has obvious

energetic consequences due to the juxtaposition of energetically unfavorable

regions of the membrane lipids and the protein. While many lipid-protein interac-

tions involve interaction of specific residues of membrane proteins with specific

lipid headgroups (such as negatively charged lipids), hydrophobic mismatch is

dependent on the hydrophobic thickness of the membrane bilayer, specifically of

the annular lipids and the hydrophobic surface of the protein in contact with the

membrane lipids. Mismatch is therefore an interaction that causes local pertur-

bations in the membrane and may be linked to lateral heterogeneity in the mem-

brane [13, 14].
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16.3 How to Determine Hydrophobic Thickness

of Membranes and Membrane Proteins?

The extent of mismatch between the hydrophobic thickness of the membrane and

the protein would determine the extent of the mismatch response [15]. A key

concern is to experimentally estimate the hydrophobic thickness of membrane

(a)

(b)

dHT

dHT

dTM

dTM

Extent of lipid order

Extent of lipid order

Fig. 16.1 A schematic representation of two types of hydrophobic mismatch and possible

adaptations by membrane lipids. (a) A positive mismatch is induced when transmembrane domain

length (dTM) of the membrane protein is greater than the membrane bilayer hydrophobic thickness

(dHT). Under this condition (dTM > dHT), annular lipids surrounding the protein would get

stretched to match the hydrophobic thickness of the transmembrane segment of the protein. This

induces local ordering of lipid acyl chains in the vicinity of the protein and an increase in the phase

transition temperature, leading to a reduction in the phospholipid headgroup area. The top view is

shown at the right. (b) Negative mismatch results when the transmembrane domain length is

shorter than the bilayer hydrophobic thickness (i.e., dTM < dHT). Negative mismatch induces local

disorder in annular lipid chains, and a decrease in the phase transition temperature. This results in

an increase in the phospholipid headgroup area. The top view is shown at the right
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proteins and the membrane bilayer. Determining membrane thickness is a

non-trivial issue due to fluctuations of the membrane bilayer in addition to the

inherent variations in available bilayer structural data [16]. One way to obtain

hydrophobic thickness is from continuous X-ray scattering which measures the

Gaussian distribution of the phosphate groups, and therefore the phosphate-to-

phosphate distance [17]. The boundary of the hydrophobic thickness of the mem-

brane is placed at the region where water ceases to be detected in the bilayer, i.e., at

the sn-2 carbonyl carbon [16, 18]. Hydrophobic thickness can therefore be obtained
from the phosphate-to-phosphate distance by subtracting the thickness of the polar

head group region, known from neutron diffraction of specifically deuterated

samples to be 5.5 Å [19, 20]. Calculated this way, the hydrophobic thickness of

pure fluid phase bilayers is found to vary linearly with acyl chain length [17]. This

fluid phase thickness can be used to calculate the thickness of the gel phase by

accounting for lipid tilt (�30�) and increased thickness (�30%) due to the all-trans
acyl chain conformation in the gel phase [21]. However, such a calculation would

give only approximate values for gel phase bilayers since average lipid tilt is known

to be dependent on chain length [22].

The hydrophobic thickness of membrane proteins is more difficult to assess due

to difficulty in obtaining high-resolution structures of membrane proteins. Hydro-

phobic thickness may be determined directly from crystal structures when the struc-

ture contains resolved lipid molecules that would mark the membrane interface

[23]. In general, hydropathy profiles can provide an estimate of the number of

residues in the transmembrane domain. The length of the hydrophobic (transmem-

brane) region can then be calculated assuming the transmembrane domain to be an

α-helix, oriented parallel to the bilayer normal, with a vertical rise of 1.5 Å per

residue. However, due to possible helical tilt, and contributions from the flanking

residues, calculation of membrane protein thickness based on the length of the

transmembrane domain may not always be straightforward. In addition, hydro-

phobic thickness of proteins has also been determined experimentally [24, 25].

16.4 Lipid and Protein Adaptation: Responses

to Hydrophobic Mismatch

Lipids and proteins adapt to two different types of hydrophobic mismatch (positive

and negative) in a number of ways. A positive mismatch occurs when the trans-

membrane domain length (dTM) of the membrane protein is more than the mem-

brane bilayer hydrophobic thickness (dHT). When dTM > dHT, annular lipids

surrounding the protein would get extended to match the hydrophobic thickness

of the transmembrane domain of the protein (see Fig. 16.1a). This induces local

ordering of annular lipid acyl chains resulting in an increase in the phase transition

temperature, and a decrease in the phospholipid headgroup area (see Fig. 16.1a).

The second kind of mismatch, i.e., negative mismatch, takes place when the
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transmembrane domain length is shorter relative to the bilayer hydrophobic thick-

ness (i.e., dTM< dHT). Negative mismatch causes compression and local disorder-

ing of annular lipid acyl chains, a reduction in the phase transition temperature and

a concomitant increase in the phospholipid headgroup area (see Fig. 16.1b). On the

other hand, there could be several possible adaptations of the protein in case of

positive mismatch (i.e., when dTM> dHT) which include protein aggregation, tilting

of transmembrane helices and conformational changes (see Fig. 16.2a). In case of

negative mismatch (i.e., when dTM< dHT), possible responses of the protein

could be lateral aggregation, surface orientation and conformational change (see

Fig. 16.2b). In addition, hydrophobic mismatch is believed to play an important role

in membrane protein insertion and folding [26].

16.5 Hydrophobic Mismatch Models

Adaptation to hydrophobic mismatch has previously been described using a com-

prehensive thermodynamic model termed as the ‘mattress model’ [27]. The main

idea underlying the mattress model is that any alteration of the sharp melting phase

transition temperature (Tm) of lipid bilayers by the inclusion of proteins is a direct

consequence of adaptation to hydrophobic mismatch that would occur on either

side of the phase transition (since phase transition involves a large change (�30%)

in the hydrophobic thickness of the membrane; [21]). In this model, adaptation to

hydrophobic mismatch is modeled as a change in thickness of the annular lipid ring

(a)

Helix tiltAggregation Conformational
change

(b)

Aggregation Conformational
change

Surface
orientation

dHT

dHT
dTM

dTM

Fig. 16.2 A schematic

representation of the

possible adaptations of

transmembrane proteins to

hydrophobic mismatch. (a)

Various adaptations of the

protein upon positive

mismatch (i.e., dTM > dHT).

These include protein

aggregation, tilting of

transmembrane helices and

conformational changes

(shown in a different color)

of the protein. (b) Under

conditions of negative

mismatch (i.e., dTM < dHT),

the protein could adapt by

aggregation, surface

orientation and

conformational change

(shown in a different color)
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as a result of compression or stretching of acyl chains, which leads to a shift (ΔT ) in
the phase transition temperature, relative to the Tm of a pure lipid bilayer. The

magnitude of this shift is related to the extent of the mismatch. Therefore, long

proteins in a short bilayer would cause stretching of annular lipids resulting in a

shift toward a more gel-like (ordered) phase, and an increase in Tm (see Fig. 16.1a).

Short proteins in a long bilayer would lead to compression of annular lipids, shift

toward a more fluid phase and a decrease in Tm (see Fig. 16.1b).

In another model, Fattal and Ben-Shaul [28] characterized lipid-protein interac-

tions and perturbations due to mismatch in terms of lipid deformation free energy

change (ΔF), represented as a sum of hydrophobic core (lipid chain) and interfacial

contributions. Importantly, this model assumes that protein-induced deformations

persist in the membrane plane from the lipid-protein interface over typically a few

molecular diameters (see Fig. 16.1). The lipid deformation free energy change (ΔF)
accounts for changes in lipid chain order at the lipid-protein interface. When the

hydrophobic lengths of the membrane and protein are equal, ΔF> 0 due to the loss

of conformational entropy experienced by the lipid chains at the protein interface.

In mismatch situations, when the protein is longer than the membrane, ΔF further

increases due to the enhanced stretching of the lipid chains. On the other hand,

when the protein is shorter than the membrane, conformational entropy increases

due to compression, but ΔF increases due to an increase in interfacial free energy.

Therefore, ΔF is at a minimum when the hydrophobic lengths of the protein and

membrane are equal but is always positive.

It should however be noted that theoretical models treat transmembrane proteins

as smooth, rigid cylindrical impurities in the bilayer without vertical flexibility,

characterized only by cross sectional area and hydrophobic thickness [15]. At the

lipid-protein interface, the protein is assumed to be a nearly planar, smooth hydro-

phobic wall. In addition, these models are only valid for proteins at the infinite

dilution limit and therefore do not account for any possible protein-protein inter-

actions (e.g., lateral aggregation). Importantly, theoretical models highlight mem-

brane deformation as a vital consequence of mismatch. Membrane deformation is

related to the material properties of the membrane, and is therefore dependent on

membrane composition, specifically cholesterol content ([29]; see later).

16.6 Hydrophobic Mismatch in Peptides

We will highlight representative examples of hydrophobic mismatch in peptides,

which have been extensively studied. Gramicidin is a peptide which forms proto-

typical ion channels specific for monovalent ions and has been studied extensively

to chararcterize lipid-protein interactions [30]. Previous experiments have shown

that gramicidin adopts non-channel conformations under conditions of hydrophobic

mismatch and aggregates in thicker gel phase membranes [31]. Simulation studies

support the results obtained and revealed that in extremely negative mismatched

condition, bilayer thinning occurs and is accompanied by conversion of gramicidin
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from channel to non-channel form [32]. It has been previously shown that a mis-

match between the length of gramicidin and the lipid acyl chains could induce

non-bilayer phase (such as the hexagonal II phase) in model membranes [33]. In

another study, the affinity of the pore-forming cholesterol-dependent peptide

Perfringolysin O was found to increase for ordered lipid domains by hydrophobic

matching between transmembrane hydrophobic thickness and bilayer hydrophobic

thickness [34].

The WALP family of peptides [35], contains a stretch of alternating Leu-Ala

residues that form the hydrophobic core of the peptide and two Trp residues at both

ends that act as membrane interfacial anchors. Trp-flanked WALP peptides form

rigid α-helices in the membrane [36] and have proved to be useful to understand

basic characteristics of mismatch adaptation [37, 38]. Interestingly, synthetic

WALP peptides illustrate the role of anchoring residues in mismatch adaptation,

due to specific interactions of amino acid side chains with the membrane interface.

The mismatch response of peptides of equal transmembrane thickness (i.e., with the

same number of residues in the hydrophobic core) has been shown to be dependent

on the nature of the anchoring residues [39–41]. Trp-flanked WALP peptides

induce a larger lipid response (i.e., acyl chain ordering) in shorter bilayers as com-

pared to equivalent Lys-flanked (KALP) or Arg-flanked (RALP) peptides [40, 42]

due to the ‘snorkeling’ effect.

16.7 Hydrophobic Mismatch in GPCRs: A Model

for GPCR Activation

G protein-coupled receptors (GPCRs) are important signaling hubs that serve as key

drug targets in all clinical areas [43, 44]. Hydrophobic mismatch not only affects

peptide orientation and function, but recent reports show that it plays a key role in

maintaining the structure and function of GPCRs. For example, NMR measure-

ments have shown that increasing bilayer thickness favors formation of meta-

rhodopsin II (MII, active conformation) while oligomerization favors

metarhodopsin I (MI, inactive conformation) [45].

Integral membrane proteins such as GPCRs utilize oligomerization as a response

to hydrophobic mismatch since this helps to prevent the exposure of specific

residues. The dimerization of β2-adrenergic receptor has been studied at different

cholesterol concentrations and a modulation of the dimer interface was observed by

increasing cholesterol concentration [46]. Interestingly, in case of the β2-adrenergic
receptor, the hydrophobic mismatch was observed to be higher in presence of

cholesterol [7, 46].

An elegant model of GPCR activation could be envisaged based on results of

Alves et al. [47] on hydrophobic mismatch of human delta opioid receptor (see

Fig. 16.3). This is based on active state dependent partitioning of the receptor, i.e.,

preferential partitioning of the agonist bound delta opioid receptor to
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upon activation by agonist (    ) 
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L

L’

Fig. 16.3 Proposed model for activation of GPCR based on hydrophobic mismatch. (a) The

receptor is localized in the shorter phosphatidylcholine (PC)-rich domain in the absence of ligand.

(b) Upon activation by the agonist, the receptor undergoes conformational change such that the

length of its transmembrane domain increases from L (unliganded state) to L0 (activated state). In

response to the change in the transmembrane length of the receptor, the activated receptor is

preferentially partitioned in the thicker sphingomyelin-rich domain due to favorable hydrophobic

matching. This model is inspired from data reported in Alves et al. [47] on the human delta opioid

receptor
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sphingomyelin-rich thicker regions of the membrane due to elongation of its trans-

membrane domain upon activation by the ligand (see Fig. 16.3).

16.8 Is Hydrophobic Mismatch Relevant in Cell

Membranes?

Cellular membranes display heterogeneity in thickness and composition due to the

presence of a cholesterol gradient in various intracellular membranes. In eukaryotic

cells, there is a gradient of increasing bilayer thickness from the endoplasmic reti-

culum to Golgi to the plasma membrane and all membrane proteins traverse this

path. Hydrophobic mismatch has been proposed to play a crucial role in such

sorting [48].

The endoplasmic reticulum is the site of cholesterol biosynthesis, yet interest-

ingly has the lowest cholesterol content in membranes of the secretory pathway

[48]. Cholesterol content increases gradually in the Golgi (along the cis-, medial-,
and trans-Golgi stacks) with the plasma membrane having the highest concentra-

tion of cholesterol (�90% of total cellular cholesterol). This cholesterol gradient

could set up a possible thickness gradient along the biosynthetic pathway of mem-

brane proteins since cholesterol is known to increase thickness of bilayers

[49, 50]. This means that hydrophobic mismatch could occur if proteins specific

to the Golgi, for example, gets mis-targeted to the plasma membrane. Interestingly,

several studies have pointed out the importance of the transmembrane domain

(TMD) in retention of proteins in the Golgi and ER [51–56]. Analysis from hydro-

pathy plots showed that the average length of the TMD in Golgi proteins is �15

amino acids whereas the average length of the TMD in plasma membrane proteins

is �20 amino acids [48, 51]. For example, replacing the TMD of a Golgi protein

(sialyltransferase) by a hydrobhobic poly-Leu stretch of the same length results in

its retention in the Golgi. However, when the length of the poly-Leu sequence was

increased to �23 amino acids, the protein was expressed at the cell surface. This

proves the significance of the length rather than sequence of the TMD to be the

driving factor for sorting of proteins in cells [48, 51–53].

Long chain lipids and cholesterol often phase separate to form membrane

domains of increased thickness in a complex membrane. Mismatched proteins

could segregate to domains to relieve mismatch under such conditions. This type

of membrane domains act as clustering hubs for mismatched proteins. Hydrophobic

mismatch could lead to sorting of membrane proteins from cholesterol/sphingolipid

rich domains of the Golgi to the plasma membrane. This hypothesis is further sup-

ported by the prediction that shorter proteins are efficiently excluded out of thicker

cholesterol rich domains due to the high energetic penalty of deformation [57]. We

should mention here that an alternate hypothesis, based on membrane thickness

change along the exocytic pathway due to depletion of membrane proteins (rather

than cholesterol content), has been reported [58].
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16.9 Future Perspectives: What Lies Ahead

Biological membranes are complex, closely packed assemblies of lipids, proteins

and carbohydrates. Work from a large number of groups over the years has shown

the relevance of lipid-protein interactions in maintaining membrane structure and

function. Most of these interactions involve the phospholipid headgroup with its

various characteristics (size, shape, charge). In contrast, hydrophobic mismatch

brings into focus the importance of the lipid acyl chains in lipid-protein interac-

tions. In this review, we have highlighted the importance of hydrophobic mismatch

in model and biological membranes with representative examples. Since mem-

branes of eukaryotic cells contain thousands of diverse lipid types [59, 60], there

could be further implications of hydrophobic mismatch that would encompass a

broader area of cell biology. This will become apparent in years to come with

advancements in lipidomics, proteomics and related approaches.
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