
Learning-Based Testing of Cyber-Physical
Systems-of-Systems: A Platooning Study

Karl Meinke(B)

School of Computer Science and Communication,
KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

karlm@kth.se

Abstract. Learning-based testing (LBT) is a paradigm for fully auto-
mated requirements testing that combines machine learning with model-
checking techniques. LBT has been shown to be effective for unit and
integration testing of safety critical components in cyber-physical sys-
tems, e.g. automotive ECU software.

We consider the challenges faced, and some initial results obtained
in an effort to scale up LBT to testing co-operative open cyber-physical
systems-of-systems (CO-CPS). For this we focus on a case study of test-
ing safety and performance properties of multi-vehicle platoons.
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1 Introduction

A cooperating cyber-physical system-of-systems can be characterised by the use
of wireless communication, multiple stakeholders, dynamic system definitions,
and unpredictable operating environments. Such systems-of-systems have been
termed Cooperative Open Cyber-Physical Systems (CO-CPS) [33]. It is assumed
that no single stakeholder has overall system responsibility, and that cooperation
relies on wireless communication to perform safety-relevant functions.

CO-CPS are emerging around the world, due to rapid progress in telecommu-
nications, robotics and AI. Many examples can be found in Cooperative Intelli-
gent Transport Systems (C-ITS) and intelligent manufacturing. However, they
represent a great challenge to the software quality assurance (SQA) community.
Not least, the cyber-physical character of CO-CPS means that the impact of
safety and security incidents (malicious or unintended) is potentially very high.
However, if we survey the range of current technologies available for SQA, we
can find significant limitations in many current approaches to quality assurance
of CO-CPS.

On the one hand, the dynamic and heterogeneous nature of CO-CPS makes
a full static analysis technically difficult. The sheer scale of many proposed CO-
CPS suggests that a full system-of-systems analysis would even be technically
c© Springer International Publishing AG 2017
P. Reinecke and A. Di Marco (Eds.): EPEW 2017, LNCS 10497, pp. 135–151, 2017.
DOI: 10.1007/978-3-319-66583-2 9



136 K. Meinke

infeasible. Furthermore, it is unclear (for commercial reasons) whether all source
code in a CO-CPS would ever be made available for this. Static analysis of the
individual components by their vendors might be technically feasible. However,
it is difficult to see how such low-level component analysis could take into consid-
eration unpredictable environment factors and high-level emergent phenomena
(such as physical collisions). For this reason, software testing, laboratory simula-
tions and field tests are the de-facto SQA standard used in industry today. Here
the problem is that software testing traditionally focuses on unit, integration and
system level testing. Simulation and field testing can be reliable and decisive at
the level of systems-of-systems, but tend to be slow and unsystematic in their
coverage. There is thus a great need to perform systematic and fully automated
requirements testing on CO-CPS.

The scalability problem for quality assurance of CO-CPS might be made more
tractable by taking amodel-based approach, using judicious abstraction to suppress
irrelevant technical detail. However, one is still faced with the fact that not all soft-
ware vendors will take a model-driven approach, let alone exchange their models,
to protect intellectual property (IP). Therefore, in the worst case one would be left
to perform a model based analysis where some component models are known, but
others are missing, inconsistent with code, or out of date.

Against this background situation for CO-CPS, within the EU ECSEL
project SafeCOP1, we are evaluating the potential of a technology known as
learning-based testing (LBT) [23,24]. LBT is a paradigm which combines tech-
niques from model-driven development (e.g. model-based testing, model check-
ing of safety requirements etc.) with machine learning. The basic idea is to use
machine learning to reverse engineer a behavioral system model from runtime
observations of a system under test (SUT). Since LBT is a black-box technique,
it is code and platform independent, potentially scalable, and need not infringe
upon component IP rights. The runtime SUT observations can be made either by
laboratory simulation (e.g. software-in-the-loop SIL, hardware-in-the-loop HIL)
or field testing. The learned model can then be used to analyse safety proper-
ties [11], and even security properties [14], by using appropriate tools such as
model checkers. Potential system anomalies discovered during model analysis are
confirmed by executing the corresponding test cases on the SUT.

We present here some initial results of applying LBT to a case study of
testing co-operative vehicle platoons [4]. One reason for choosing this case study
is because the problem size can be scaled up uniformly by adding more vehicles.
This allows us to measure the influence of different factors on the scalability of
LBT technology.

The case study of platooning presented here is a first attempt to address two
important questions about state-of-the-art LBT technology:

(1) how well does recently developed multi-core based LBT technology scale
up to testing complex CO-CPS scenarios;

(2) how do problem size and other factors affect scalability?

1 See www.safecop.eu.

www.safecop.eu


Learning-Based Testing of Cyber-Physical Systems-of-Systems 137

The organisation of this paper is as follows. In Sect. 2 we review fundamental
concepts and the state-of-the-art in learning-based testing. In Sect. 3, we consider
the architecture and functionality of platooning as a CO-CPS. In Sect. 4 we
present our case study of LBT applied to a platoon model. In Sect. 5 we survey
related work in the literature. Finally in Sect. 6, we draw conclusions from our
initial results, and comment on future research directions.

2 Learning-Based Testing

In this section, we review some fundamental principles of learning-based testing
as these have been implemented in our research tool LBTest. The earliest version
of this tool (LBTest 1.x) has been described in [26]. Therefore we will focus on the
latest tool architecture LBTest 3.x, presented in Fig. 1. In Sect. 2.1 we use this
architecture to explain the basic principles of LBT. Then, in Sects. 2.2 and 2.3,
we show how concurrent aspects of this architecture contribute towards solving
tool scalability issues2.

2.1 Principles of LBT

LBTest uses active automaton learning aka. regular inference (see e.g. [13]) to
generate queries about a black-box system, which can be used to infer a behav-
ioral model in polynomial time [2].

Fig. 1. LBTest 3.x concurrent learning architecture

2 This architecture has been developed within the VINNOVA FFI project VIRTUES,
http://www.csc.kth.se/∼karlm/virtues/.

http://www.csc.kth.se/~karlm/virtues/
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For requirements testing, partial models of the SUT can be subjected to
model checking against a temporal logic requirement specification, even before
the learning process is complete. In LBTest, propositional linear temporal logic3

(PLTL) is used as a requirements modeling language. This particular logic has
the advantage that test cases can easily be extracted from counterexamples gen-
erated by a model checker. LBTest makes use of a loosely integrated symbolic
checker NuSMV [7]. We are also developing a more tightly integrated explicit
state model checker for efficiency reasons. These two processes of learning and
model checking may be interleaved, an idea first suggested in [27]. Then they
incrementally build up a sequence M1,M2, ... of models of the SUT, while gen-
erating and executing requirements test cases on each model Mi.

To separate true counter-examples (SUT errors) from false counter-examples
(artifacts of an incomplete model) it is necessary to validate each counter-
example derived from model checking. For this we can: (i) extract a test case
representing the counter-example4, (ii) execute it on the SUT, (iii) apply an
equality test that compares the observed SUT behavior with the predicted bad
behavior from the model, and (iv) automatically generate the test verdict (pass,
fail) from step (iii). The soundness of this process relies on the soundness of
the underlying model checker, and the soundness of equality testing.

The completeness of LBT relies on the completeness of the underlying model
checker, as well as convergence results about the learning algorithms which are
used (see [13]). However, within practical case studies of large complex systems
it may not be possible for learning to be completed in any reasonable time frame
(see e.g. [11]). This problem is significant for CO-CPS. Therefore, development
of LBTest has focused on incremental learning algorithms that can generate
incomplete approximating models of the SUT in small increments.

One measure of the coverage achieved by LBT is in terms of the behavioral
accuracy of the final model. This accuracy could be defined in terms of trace
inclusion between the model and the SUT. However, phenomena of both over
and under approximation often occur within the same partial model, i.e. no strict
trace inclusion holds either way. Nevertheless, by using a probably exactly correct
(PEC) model of convergence, we can obtain a satisfactory black-box convergence
measure as follows.

Figure 1 illustrates the stochastic equivalence checker used in LBTest 3.x.
This checker empirically estimates the behavioral accuracy of the final learned
model Mfinal for replicating the behavior of the SUT on a randomly chosen
set of input sequences. For this, the input sequences are executed both on the
SUT and the model. We then measure the percentage of behaviorally identical
output sequences generated by both. This convergence model is related to the
probably approximately correct (PAC) convergence model of [30], but for PEC

3 Recall that propositional LTL extends basic propositional logic with the temporal
modalities G(φ) (always φ), F(φ) (sometime φ) and X(φ) (next φ). Other derived
operators and past operators may also be included. See e.g. [12] for details.

4 Infinite counter-examples to LTL liveness formulas are truncated around the loop,
and the weaker test verdict warning may be issued.
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the probability of exact identity (not approximate equivalence) is estimated.
PEC convergence aims at the needs of software safety analysis over the discrete
data type partitions commonly employed in testing.

2.2 Towards Scalable LBT Architectures

From empirical studies such as [11,20,25] we have observed two important obsta-
cles to scaling up LBT methods for large and complex SUTs. These are:

(i) the tendency for learned model size to increase rapidly with SUT size;
(ii) the tendency for test latency (i.e. the time to execute a single test case) to

increase with SUT size.
Even worse, these two problems compound one another, leading to long
test session times and low final convergence measures. In benchmarking
the architectural proposal of [27] we have also observed another significant
problem:

(iii) model checking each member Mi of a converging sequence of models
M1,M2, ... is highly inefficient, and does not seem to improve the rate of
model convergence.

We will consider each of these issues, and how it can be addressed, in turn.

(i) Model Size. The size of a learned model is a function of the code complexity
of the underlying SUT, as well as the number of parameters of the SUT which
the learning algorithm tries to stimulate and observe.

One factor influencing model size is the number of SUT input variables and
the number of test values chosen for each input variable. These parameters bound
the number of exit transitions from each model state. The number of exit tran-
sitions is further influenced by the combinatorial strategy used to generate com-
posite input test vectors from the individual input variable values. A judicious
combinatorial choice is necessary to control the otherwise exponential explosion
in the number of transitions. In LBTest 3.x, n-wise testing [17] is available as a
combinatorial strategy.

Another factor influencing model size is the number of observed SUT out-
put variables, and the number of output value partition classes for each output
variable. These factors influence the number of states in a learned model, since
more output variables and finer output partitions lead to more easily distin-
guished SUT states.

So, a judicious choice of model accuracy, combinatorial test strategy and
model abstraction can all be applied to improve the efficiency of learning and
testing.

Besides these test configuration parameters, the problem of large model sizes
has also been ameliorated by new research into machine learning algorithms.
Since Angluin’s seminal algorithm [2], many new learning algorithms, that can
learn a model with fewer and/or shorter queries, have been derived, e.g. [16].
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(ii) Test Latency. Improvements in learning and model checking algorithms
are scarcely able to overcome a distinctive feature of large complex SUTs which is
the tendency towards long test latency or execution times. For CO-CPS, commu-
nication network delays also become significant. Test latency times can become
a significant component of an LBT test session duration.

Test latency can be ameliorated by executing test cases concurrently. With
this aim we have conducted research into parallelized learning algorithms on
multi-core platforms. Already in [15] certain improvements in learning perfor-
mance by parallelization have been reported. An important challenge is to sys-
tematically characterize such improvements in terms of problem size parameters.
Our work contributes to this area by studying a parameterized and uniformly
scalable learning problem namely platooning. As the size (i.e. number of vehicles)
of a platoon of identical vehicles scales up, the problem parameters:

(i) total number of lines of code under test, and
(ii) total number of program registers determining the global state space,

both increase linearly. Thus it becomes meaningful to compare testing results for
different platoon sizes (c.f. the similar curves in Fig. 4). Without such uniform
properties, benchmark results across an ad-hoc collection of SUTs can be very
difficult to interpret.

(iii) Model Checking Overheads. Incremental learning generates a conver-
gent sequence of models M1,M2, .... However, each model Mi will contain a good
many structural features (states and transitions) that persist in model Mi+1. It
is beyond the capability of any model checker we know of to identify these persis-
tent features and avoid checking them twice in both Mi and Mi+1. Therefore, a
long model generation sequence will contain significant redundant model check-
ing effort. Our empirical observations with LBTest 2.x and NuSMV have shown
that this redundant checking can consume more than 50% of the overall test
session time. Furthermore, as reported in [21], model checker generated queries
have not been observed to accelerate the convergence of learning in any case
study so far.5

While it might be possible to introduce a sophisticated delta-oriented app-
roach to model checking, the simplest solution seems to be to defer model check-
ing until after machine learning.

2.3 Concurrent Multi-core LBT

Figure 1 illustrates a new architecture for LBT that significantly departs from
the proposals of [23,27]. Two new features are prominent, and both are intended
to counter the scalability bottlenecks described in Sect. 2.2.

5 It seems possible to theoretically explain this observation for certain types of formu-
las by considering their semantics. However, this is outside the scope of our present
discussion.
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Firstly, the new architecture supports parallel execution of multiple instan-
tiations of the SUT on a multi-core platform. The aim is to mitigate long SUT
test latency. At the start of a test session, LBTest clones K versions of the exe-
cutable SUT, each within its own external OS process. The value of K is chosen
as a function of the number of SUT input values to be tested. Once started,
each SUT process persists throughout the learning phase, and acts as a server
to answer certain kinds of queries about SUT behavior. Different load balancing
schemes on these query servers are used according to the learning strategy.

Of course, concurrent execution is a rather obvious solution to test latency.
The real technical challenge here is to devise efficient parallel learning algo-
rithms that can allow multiple threads to efficiently and safely perform concur-
rent updates on a single shared automaton model. At the same time we need to
optimise multi-core usage on the hardware level. For this we have investigated
concurrent implementations of Kearn’s algorithm [19]. For reasons of space, these
rather complex concurrent algorithms will be described elsewhere.

The second new feature of LBTest 3.x is its support for deferred model check-
ing, as described in Sect. 2.2, using an iteration bound to terminate learning.
Only when learning is terminated do model checking and counter-example val-
idation of the final model Mfinal begin in a second phase. This minimises the
redundant model checking identified in Sect. 2.2.

3 Platooning as a CO-CPS

In this Section we review some general features of platooning that characterise it
as a CO-CPS. Then we discuss the particular platooning model that was tested
in Sect. 4.

3.1 General Principles of Platooning

Platooning technology is sometimes called an “electronic towbar” between road
vehicles, and this phrase gives much insight into the idea.

A platoon consists of a sequence of road vehicles V1, ..., Vn which (by means of
sensors, wireless V2V communication and control algorithms for longitudinal or
distance control) are able to maintain a fixed distance xr between one another
and a relative velocity vr = 0 under normal cruising conditions. (See Fig. 2,
adapted from [5].) The lead vehicle, V1, is under manual control by a qualified
platoon leader who needs to have the necessary technical skills to control the
platoon. The vehicles V2, ..., Vn are its followers, and may be autonomous or semi-
autonomous, depending on the extent to which lateral control (i.e. steering) is
automated.

A platoon may be heterogeneous, consisting of different models from different
vendors carrying different payloads. It should be possible to add and remove
vehicles dynamically during a journey, and there are many safety critical use
cases, such as lane change, emergency braking etc.
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Fig. 2. Platoon vehicle pair: Vi+1 (left) and Vi (right)

The interest in platooning technology, lies in the possibility to reduce fuel
consumption and corresponding CO2 emissions, as well as to improve road usage
and safety while reducing traffic congestion (see e.g. [29]). Platoons exploit the
reduced aerodynamic drag that arises with short inter-vehicle distances. There
is an important trade-off between fuel efficiency and safety in platoon design,
since drag is reduced by shorter inter-vehicle spacing. System response times,
component reliability, road hazards and the effects of safety critical uses cases
such as emergency braking on the platoon and its environment all need to be
evaluated during software design.

3.2 A Simple Platooning Model

For pragmatic reasons, our study of LBT scalability was restricted to software-
in-the-loop (SIL) testing of a basic platoon simulator. The simulation is 1-
dimensional, meaning that no steering model is used. The simulator is therefore
only able to analyze certain use cases, such as straight-line cruising and emer-
gency braking. Other use cases need a more complex simulation model, and this is
the subject of ongoing research and industrial collaboration. However, our model
includes many important physical characteristics such as maximum engine and
brake torque, vehicle mass, aerodynamic drag etc. defined using a point-mass mod-
eling approach. (See e.g. [34] for an introduction to vehicle modeling.)

The simulator consists of about 2000 Java LOC. However, to get a clearer
impression of the underlying SUT complexity we provide here some details about
its structure and function.

The block architecture of a single vehicle in the platoon simulator is illus-
trated in Fig. 3. This depicts a brake-by-wire BBW subsystem augmented with
a co-operative adaptive cruise controller CACC. The latter is connected to an
odometry unit ODOM (providing host vehicle position and velocity) and a wire-
less communication WCOM unit (relaying host and target positions and veloc-
ities). Odometry is based upon host velocity measurements6. The WCOM unit
simulates a 2 ms inter-vehicle wireless message delay, without any transmission
error model.

The CACC controller is a crucial component that provides longitudinal con-
trol of each follower vehicle. It dynamically issues accelerator and brake torque

6 In practise, GPS localisation would be relied upon for greater accuracy.
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Fig. 3. Software architecture for platoon vehicle Vi

requests to maintain the position of the host vehicle within maximum and min-
imum distances from the target vehicle in front. A wide variety of CACC algo-
rithms have been proposed in the literature. The controller tested here is a simple
PD control algorithm with adaptive parameters, taken from [5]. For a general
introduction to PID control theory one may consult e.g. [10]. The function of
any PID controller in the context of an ACC problem is to maintain the relative
position of the host vehicle Vi+1 within the boundaries xr,d,max and xr,d,min

(metres) from the target Vi, where

xr,d,max = thw · vh + xr,0, xr,d,min = (thw − thw,δ) · vh + xr,0.

Here thw (seconds) is the time headway between Vi+1 and Vi, and thw,δ causes
a small difference in headway. The parameter xr,0 > 0 (m), maintains a safe
relative inter-vehicle distance at vh = 0 (m/s), to support so called stop-and-go
functionality. The host position is maintained by two PD equations:

acc = KACC(kxr
· (xr − xr,d,max) + kvr

· vr),

brake = KACC(kxr
· (xr − xr,d,min) + kvr

· vr),

governing requested accelerator and brake torque. In the above formulas:
(i) KACC (dimensionless) is a constant overall gain parameter. (ii) xr = xt − xh

(metres) and vr = vt − vh (metres/second) are the relative distance and velocity
to the target vehicle (c.f. Fig. 2). (iii) kxr

is the P action: this gain is tuned to
regulate the distance error to zero (xr−xr,d,max = 0 for acc and xr−xr,d,min = 0
for brake). (iv) kvr

is the D action and the regulated error is vr. (v) Since acc
is smaller than brake (due to a different desired distance), it takes some time
before the brakes are activated after the accelerator is released.
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In this PD controller design, kxr
and kvr

are dimensionless adaptive
parameters:

kxr
= kxr,1(vh) · kxr,2(xr − xr,d,max), kvr

= kvr
(xr − xr,d,max).

All forces acting on the vehicle, both positive and negative, are resolved at each
wheel individually.

To inject behavioral faults into our platooning model for testing, we replaced
the non-linear adaptive parameter functions kxr,1, kxr,2, kvr

: R → R of [5] with
highly simplified piecewise linear approximations. These linear approximations
to non-linear functions make the brake and accelerator control responses, acc
and brake, less smooth with both over- and under-compensation for change, as
we show in Sect. 4.2.

For each follower vehicle, the BBW subsystem takes the accelerator and brake
torque requests from CACC, and translates these into forces on the four vehicle
body wheels VBW7. The brake torque controller BTC calculates the global brake
torque request (in Newton metres)

torqueRequest = (brake/100) · maxBrakeTorque

and the global brake controller GBC distributes this brake request to each anti-
locking brake system ABSi, which controls wheel V BWi.

The fundamental simulation cycle corresponds to 1 ms of real-world time,
while the various architectural components have execution cycle times varying
between 2 and 20 ms. Normally, vehicle software components would communicate
periodically (but not necessarily deterministically) using the vehicle’s CAN bus
network, while the vehicles themselves communicate asynchronously. However, it
is common industrial practise to perform SIL testing using a simplified synchro-
nous composition of components to ensure reproducibility of test results. So our
platoon simulator is also based on a synchronous composition of all architectural
components, as well as the platoon vehicles themselves.

4 Test Experiment Design and Results

In this section, we first describe our testing experiment conducted on the pla-
tooning simulator described in Sect. 3, using the LBT tool architecture described
in Sect. 2.3. We then describe the test results obtained, and interpret these from
the perspective of LBT scalability.

4.1 Test Experiment Design

To test the primary use case of high-speed cruising for a platoon configuration
of n vehicles, we focused on emulating the lead driver behavior, since in our

7 For the lead vehicle, CACC is disabled and accelerator and brake pedal values are
used by BBW instead. See Fig. 3.
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simulator all follower vehicles autonomously adapt to this. Thus, each test case tc
for an n-vehicle platoon consisted of a sequence tc = (r1, r2, ..., rλ) of lead driver
accelerator and brake torque requests rj . The continuous input spaces for each
of these two input variables (accelerator and brake pedal angles) were sampled
at 10% intervals, yielding K = 21 symbolic input values 0, a1, ..., a10, b1, ..., b10
ranging from 0% to 100% pedal depression8. No assumptions were made about
lead driver behavior, so both excessive and sporadic acceleration and braking
could occur. The time headway thw between each successive pair of vehicles was
nominally set to 2.0 s. A time headway of this size is normally quite safe for
commercial CACC algorithms (see e.g. [5]).

For each test case tc = (r1, r2, ..., rλ), the length λ and torque requests rj were
chosen dynamically both by the learning algorithm and the equivalence checker.
In the experiments of Sect. 4.2, λ typically took an average value around 12.
The test case tc was then submitted to one of K = 21 SUT server processes Sp

executing an n vehicle platoon simulator instance. The communication wrapper
around Sp loaded and executed the request sequence (r1, r2, ..., rλ) sequentially.
Each torque request value rj was maintained constantly for a nominal 5 s (5000
simulation cycles). Thus the length of the simulation corresponding to tc was 5λ
virtual seconds. The values chosen for λ were sufficient to reach high cruising
speeds, in excess of 110 km/h.

Maintaining the torque request over a fixed number of seconds is a temporal
abstraction technique necessary to achieve a balance between long simulation
times and small final model size. This abstraction can be adjusted in the simula-
tor. It also has the advantage that we can easily calculate the cumulative virtual
simulation time for an entire test session.

The principle SUT output recorded for the test case tc was the time sequence
of inter-vehicle gaps xi

r,0, . . . , x
i
r,λ, for each vehicle i = 1, . . . n−1. Here, the time

sequence term xi
r,t, for 0 ≤ t ≤ λ, represents the gap between the host-target

pair, Vi and Vi+1 measured at the end9 of 5t virtual seconds (i.e. 5000t simulation
cycles). The continuous values of each distance observation xi

r,t were partitioned
within the communication wrapper into three discrete equivalence classes:

tooClose, tooFar, good,

based on the (host velocity dependent) distance boundaries xi
r,d,min and xi

r,d,max.
Thus the symbolic output good for xi

r,t represented the output partition class
xi

r,d,min ≤ xi
r,t ≤ xi

r,d,max.
To gain further insight into the physical state space covered by testing we

also observed the lead vehicle velocity values v1
0 , . . . , v

1
λ and acceleration values

a1
0, . . . , a

1
λ at the same observation times. These continuous valued observations

were partitioned into 1 km/h and 1 km/h2 equivalence classes.
8 Thus a10 represents 100% accelerator depression, a9 represents 90% depression, etc.

Simultaneous depression of both pedals is handled as a brake request by the BBW
component.

9 It is also possible to use SUT observations between the output cycles by thresholding.
This can yield greater accuracy, but this approach was not taken here.



146 K. Meinke

With regard to system-of-systems requirements, the most fundamental
requirement is that all n platoon vehicles should always maintain a safe but
fuel efficient distance between each other. This test requirement could be rep-
resented in PLTL for an n + 1-vehicle platoon (where n ≥ 1) by the safety
formula:

G( Distance1 = good& Distance2 = good& . . . & Distancen = good ). (*)

Here Distancei represents the discretized gap between vehicles Vi and Vi+1

corresponding to measurements xi
r,t.

One experimental goal was to try to observe the injected errors in the CACC
component, (described in Sect. 3.2) as violations of the test requirement (*). The
other goal was to characterise the scalability of the tool.

4.2 Test Experiment Results

The test experiment described in Sect. 4.1 was conducted for platoon sizes
n = 2, . . . , 6 to investigate the scalability of the testing tool. To uniformise the
results, each platoon vehicle in each configuration had identical physical parame-
ters10. We measured the final model size for different platoon sizes and different
test session durations. While test session duration is a platform dependent mea-
surement11, it was felt that this value gave good insight into tool usability and
potential future improvements.

Figure 4 shows the growth of model size over time for platoon sizes n =
2, . . . , 6 using concurrent learning. To analyse the benefit of concurrency, Fig. 4
also shows model growth for n = 3 under sequential learning. Note that the
y-axis is in thousands of states (Kstates). The graph shows the effects of increas-
ing test latency as the platoon size increases. The largest inferred model (for
n = 6) had over 64,600 states and 1.35 million transitions achieved after 20 h
and 25 min of learning. During this time, 1.5 million test cases tc were executed,
with an average test case length of λ = 10.6. Since each step in tc corresponds
to 5 virtual seconds, the total virtual testing time was over 22,000 h.

Notable in Fig. 4 is the gradual slowdown in rates of model growth over time.
However, there is no sharp fall in tool performance. Furthermore, the vertical
intervals between the curves are very similar, both for increasing n and t. These
two characteristics seem to suggest good scalability properties for our approach
as a function of the problem size n.

With regard to requirements errors, NuSMV developed a segmentation fault
already with the smallest of our models for n = 2 (8826 states, 185 K transitions).
However, using our explicit state model checker on the largest model for n = 6
(64,671 states, 1.35 million transitions), the error tooFar was found to occur in
50,076 states (77% of all states), while the error tooClose was found in just 101
10 Non-homogeneous platoons could also be tested using our approach.
11 The actual platform used was a 4-core MacBook Pro, Mid 2014, running Yosemite

OS-X 10.10.5 with 2.8 GHz Intel Core i7, 16 GB 1600 MHz DDR3 and 1 TB static
disk flash storage.
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Fig. 4. Rates of model growth (state space size) over time for different platoon sizes.

states (0.0015% of all states) after 32.4 s of model checking. All errors proved
to be valid SUT errors when corresponding test cases were executed on the
SUT. The error tooClose was found only at low velocities, mainly at v1 = 0,
which seems to confirm the thesis of [5] that stop-and-go functionality is rather
difficult to implement correctly. For the smallest model of n = 2 (8826 states),
the error tooFar could also be found after 19 ms of model checking, but not error
tooClose.

Through runtime monitoring, we estimated long term multi-core usage to
range between 85%–95% over the problem size range n = 2, . . . , 6, with approx-
imately 10% fluctuations short term12. At peak core usage, CPU idle time was
less than 1%, implying that further cores would have been of benefit.

For the experiments described in Fig. 4, the platoon models reached maxi-
mum convergence values of 9.4%, 9.4%, 8.8%, 7.1% and 6.0% for n = 2, . . . , 6
respectively.

5 Related Work

The application of machine learning to testing has a somewhat long history,
beginning with [32]. The architecture used in LBTest 2.x first appeared in [27]
and was independently proposed in [24]. However, scalability and the effect of
model checking on convergence, were not originally considered. Recently, the

12 Based on 1 s sampling.
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literature on machine learning applied to software engineering has become quite
extensive. Known techniques use models based on deterministic automata [14,
16,23,28,31], non-deterministic finite automata [21], and extended finite state
machines [6]. The emphasis ranges from unit and integration testing to software
documentation. A state-of-the-art survey is [3]. Our experience [22] suggests that
machine learning of hybrid automata would be too slow to deal with complex
continuous state CO-CPS such as platoons.

To our knowledge, only one other study of parallelized machine learning
for testing exists, namely [15]. This shares our premise that parallel learning
is important to mitigate test latency. However, it evaluates only synthetic SUT
latency obtained by inserting a 5 ms busy waiting loop into each SUT call. Model
checking and requirements testing are not considered. The authors investigate
speedup of learning randomly generated SUTs of different state space sizes in
the range 1, . . . , 256 states. They conclude that under an increasing number of
cores, a saturation point is met, where adding more cores yields no benefit13. By
contrast, we have varied a much larger problem size 8K, . . . , 64K states, keeping
the core number fixed.

Platooning has been widely studied in the C-ITS literature. A survey of
platooning research is [4]. An account of traditional SIL and HIL testing of a 3
vehicle platooning system is [1]. This work has very similar safety concerns to our
own. Examples of static analysis applied to platooning are [8,9,18] where it is
shown that verifying vehicle code does not scale to the whole system-of-systems,
and a mixed top-down and bottom up strategy are applied.

6 Conclusions and Future Work

We have presented an initial assessment of the scalability of multi-core learning-
based testing technology to cyber-physical systems-of-systems (CO-CPS). For
this we have conducted testing experiments on a vehicle platooning simulator,
where we have injected faults that violate safety and fuel efficiency requirements.
Extensive testing experiments over different platoon sizes have demonstrated
that learned model size scales well over the experimental time horizon and dif-
ferent platoon sizes. However, unsurprisingly perhaps, model convergence is low,
at least according to the current PEC metric. Nevertheless effective testing,
capable of finding valid SUT errors (both common and rare) was possible by
learning large but incomplete models.

Future research needs to address several issues. Learning efficiency needs
to be further improved to enhance coverage. Our study could be generalized
by using more advanced simulators to test other use cases. We will also fur-
ther consider how to scale up LBT to many-core platforms. Can the saturation
effects cited in [15] be observed or avoided? The reliability questions surround-
ing incomplete model learning warrant further attention, e.g. the optimal choice
of a learning convergence metric is an open question. Finally, equation (*) of
13 Unfortunately our limited computing platform did not provide an opportunity to

evaluate this result.
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Sect. 4.1 represents a safety requirement that could be captured by a suitable
spatio-temporal logic. Further study of spatio-temporal logics and model checking
might be fruitful for CO-CPS use case testing.

This research has been funded by VINNOVA FFI project 2013-05608
VIRTUES and the Electronic Component Systems for European Leadership
Joint Undertaking under grant agreement No. 692529 project SafeCOP.
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