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Preface

This volume of LNCS contains the proceedings of the 14th European Performance
Engineering Workshop, held in Berlin, Germany, September 7–8, 2017. EPEWwas part
of the week-long umbrella conference QONFEST, which co-located QEST, CONCUR,
FORMATS, and EPEW, along with several workshops. This gave researchers the
opportunity to explore and engage with a broad range of topics and colleagues across the
space of performance, dependability, and security modelling, verification, evaluation,
and engineering. We wish to express our gratitude for the support QONFEST received
from the Freie Universität Berlin, the Technische Universität Berlin, the
Ernst-Reuter-Gesellschaft, the DFG, and the Max-Planck-Gesellschaft.

The goal of the annual EPEW workshop series is to gather academic and industrial
researchers working on all aspects of performance engineering. The papers presented at
the workshop reflect the diversity of modern performance engineering, with topics
ranging from the analysis of hybrid Petri nets and Markov decision processes, even
under uncertainty; to performance, security and energy analysis of computer systems
and networks; to machine-learning techniques for predictive analysis and testing. The
domains of the application studies are diverse and at the cutting edge of current
developments, ranging from cloud computing environments to cyber-physical systems
and to communication protocols.

EPEW 2017 received submissions from 14 countries all over the world. There were
30 submissions. Each paper was peer reviewed by an average of four reviewers from
the Program Committee (PC) on the basis of its relevance, novelty, and technical
quality. After the collection of reviews, the PC members discussed the quality of the
submissions for one week before getting the final decision. Based on the reviews and
discussions, 18 high-quality contributions were selected for publication in the pro-
ceedings and presentation at the workshop.

This year, we were honored to have two keynote speakers: Prof. William Knot-
tenbelt, from Imperial College London (UK), who works in applied quantitative
analysis; and Antonino Sabetta, a senior researcher at the Security Research department
of SAP Research (Sophie Antipolis, France), who works in the analysis and man-
agement of vulnerabilities of open-source components when embedded in large-scale
enterprise applications.

We thank our keynote speakers, as well as all PC members and external reviewers
for their terrific work in the review process. We also express our thanks to the Orga-
nizing Committee, especially to the two General Chairs, Uwe Nestmann (TU Berlin)
and Katinka Wolter (FU Berlin) for their continuous and valuable help, the EasyChair
team for their conference system, and Springer for their continued editorial support.



Above all, we would like to thank the authors of the papers for their contribution to this
volume. We are sure that these contributions will be as useful and inspiring to the
readers as they were to us.

September 2017 Philipp Reinecke
Antinisca Di Marco
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Cryptocurrency and Blockchain Technology:
Challenges and Opportunities

William J. Knottenbelt

Imperial College Centre for Cryptocurrency Research and Engineering,
Imperial College London, London, UK

wjk@imperial.ac.uk

The meteoric rise of blockchain-enabled cryptocurrencies, and Bitcoin [2] and Ethereum
[1] in particular, has received global attention, not least from governments, entrepre-
neurs and researchers. Cryptocurrencies, of which there are now more than 8001, pro-
vide an attractive alternative to traditional fiat currencies via a distributed, trustless and
self-governing framework which not only enables low-friction financial transactions
around the globe but also preserves the freedom and privacy of spending inherent in
cash transactions.

Cryptocurrency and blockchain technology brings with it a host of new challenges
from the quantitative modelling perspective. Indeed, a range of issues including per-
formance, security, energy use, incentives and scalability are poorly understood, as are
the inherent trade offs between them, despite these being critical barriers to mass
adoption. What analyses are carried out often do not take into account problems posed
by the lack of diversity that emerges from a natural tendency towards dominant con-
centrations of computational and other power. These can arise from something as
simple as the majority of network participants flocking to deploy the most
energy-efficient cryptocurrency mining hardware. Indeed it is estimated that up to 70%
of the computational power assuring the integrity of the Bitcoin network is provided by
a single model of a hardware device. This device was recently found to have a
backdoor that could be used by the manufacturer to shut the device down2.

This talk will cover some of the challenges and opportunities posed in this context,
with a special emphasis on the performance evaluation and quantitative modelling
perspectives. It turns out that classical performance evaluation techniques, especially
Markovian analysis and queueing theory, are readily applicable to the study of cryp-
tocurrencies and blockchains. Further, a judicious combination of analytical modelling,
simulation and benchmarking techniques can be effectively applied to yield insights.
Building on [3], we will illustrate this in the context of a study of a queue-based
Ethereum mining pool [4] whose superficially fair reward scheme turns out not only to
penalise more powerful miners, but also to incentivise a number of attacks which can

1 W.J. Knottenbelt—The content of the talk is the result of joint work with A. Zamyatin, K. Wolter,
C. Mulligan, P. Harrison, S. Werner and I. Stewart, amongst others.

1 Source: http://coinmarketcap.com. Accessed 5 July 2017.
2 Source: http://antbleed.com. Accessed 5 July 2017.



increase rewards, including the donation of mining power to other participants in
certain circumstances. Examples of such attacks observed in the real world will be
presented.

The talk will conclude by outlining student-led spinout activity and ongoing
directions of research in the Imperial College Centre for Cryptocurrency Research and
Engineering. The former includes Gradbase3, a qualification verification startup,
Aventus4, a blockchain-based ticketing company and Kotiva Technologies5, who are
seeking to use blockchain technology to increase the integrity of supply chains. The
latter includes work being supported by industrial partners such as Blockchain.com and
Outlier Ventures, as well as grants sponsored by government-related bodies such as
Innovate UK.

Biography

William Knottenbelt is Professor of Applied Quantitative Analysis and Director of
Industrial Liaison in the Department of Computing at Imperial College London, where
he became a Lecturer in 2000. He is a founder of the Imperial Blockchain Forum, is
co-Director of the Centre for Cryptocurrency Research and Engineering and is Director
of the Data Economy Lab in Imperial's Data Science Institute. He serves on the
editorial board of the cryptocurrency/blockchain journal Ledger, is an editor of Per-
formance Evaluation Journal, and has served as general or program chair of numerous
conferences and workshops related to quantitative modelling and analysis. A keen
supporter of student-led innovation, he is the Innovation Fellow for the Department of
Computing and serves on the Entrepreneur First Science Partners panel. In June 2017,
he presented his Inaugural Lecture entitled “Memoirs of the Memoryless: A Markovian
Meander from Disk Drives to Digital Money”, which is available online6.
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Open-Source Libraries Included in Enterprise
Applications: Workhorses or Trojan Horses?

Antonino Sabetta

SAP Labs, France
antonino.sabetta@sap.com

The adoption of open-source software (OSS) components in the software industry has
grown at a spectacular pace over the last decade. By some estimates [3], the average
commercial software product contains 100 distinct open source components whose
code weights as much as 35% of the overall application size1.

At the same time, new vulnerabilities affecting open-source software (OSS) are
reported on a daily basis, sometimes hitting the headlines of mainstream media (as it
happened, for example, with Heartbleed2 and ShellShock3).

The relevance of this problem has been well documented by now [1, 2] and
establishing effective vulnerability management practices for OSS is broadly under-
stood as a priority in the software industry.

Despite the deceiving simplicity of the existing solutions (especially of the most
obvious: updating to a recent, non-vulnerable version), OSS libraries with known
vulnerabilities are found to be used for quite some time after a fixed version has been
released [3].

As a matter of fact, updating a library to a more recent release is quite straight-
forward at development time. However, things become considerably more difficult
when vulnerable OSS libraries are part of large enterprise systems that are already in
operation and serve business-critical functions. Any change (including corrections)
may cause costly system downtime and comes with the risk that new unforeseen issues
could arise.

For this reason, it is extremely important to properly assess whether an application
requires an urgent patch to update an OSS dependency, or whether the update could be
scheduled for the next regular release cycle. Just the presence of a vulnerable depen-
dency is not enough to justify a urgent update, with its high costs and even higher risks.
The real question is whether a given vulnerability is indeed exploitable given the
particular way the dependency is used.

Unfortunately, assessing the exploitability and the potential impact of a vulnera-
bility found in a dependency is difficult, expensive, and error-prone. Vulnerabilities are

1 A. Sabetta—The content of the talk is the result of joint work with Serena E. Ponta and Henrik Plate,
SAP Labs France.

1 The same study reports that for applications developed for internal use, the proportion is as high as
75%.

2 http://heartbleed.com/.
3 https://shellshocker.net/.



documented in advisories that consist of short, high-level, textual descriptions
expressed in natural language, whereas a reliable assessment demands much
lower-level, detailed, technical information.

The consequences of a wrong assessment can be expensive. If an exploitable
vulnerability is not identified as such, users remain exposed to attackers. When, on the
contrary, a correction is produced for a non-exploitable vulnerability, the effort of
developing, testing, and deploying the correction is spent in vain.

This talk summarizes the key elements of our research on how to make the assessment
of OSS vulnerabilities more efficient and systematic [4]. Our approach aims to auto-
matically produce concrete evidence (when it can be found) supporting the case for urgent
patching. Such evidence consists of concrete call sequences (traces) that start from
application methods and reach the vulnerable methods of a dependency. We complement
potential traces obtained through static analysis with actual observations of runtime
executions collected through dynamic instrumentation. Our approach relies on the
availability of detailed (code-level) vulnerability information, which we extract by mining
software repositories with the support of machine learning. The initial research prototype
that we implemented to validate our approach evolved over time into an enterprise-grade
OSS vulnerability analysis toolkit (internally known as Vulas), which is used regularly in
hundreds of development (and maintenance) projects across our company.

Biography

Antonino Sabetta is a senior researcher at the Security Research department of
SAP. The main focus of Antonino's recent work is the analysis and management of
vulnerabilities of open-source components embedded in large-scale enterprise appli-
cations. In particular, Antonino is interested in the application of machine-learning to
the mining of open-source software repositories and the automation of the vulnerability
management workflow.

Before moving to SAP in 2010, Antonino was a researcher at CNR, Pisa, Italy. He
earned his PhD in Computer Science and Automation Engineering from the University
of Rome Tor Vergata, Italy in 2007. From the same university he had received in 2003
his “Laurea cum Laude” degree in Computer Engineering.
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Analysis of Markov Decision Processes Under
Parameter Uncertainty

Peter Buchholz, Iryna Dohndorf(B), and Dimitri Scheftelowitsch

Department of Computer Science, TU Dortmund, Dortmund, Germany
{peter.buchholz,iryna.dohndorf,

dimitri.scheftelowitsch}@cs.tu-dortmund.de

Abstract. Markov Decision Processes (MDPs) are a popular decision
model for stochastic systems. Introducing uncertainty in the transi-
tion probability distribution by giving upper and lower bounds for the
transition probabilities yields the model of Bounded Parameter MDPs
(BMDPs) which captures many practical situations with limited knowl-
edge about a system or its environment. In this paper the class of BMDPs
is extended to Bounded Parameter Semi Markov Decision Processes
(BSMDPs). The main focus of the paper is on the introduction and
numerical comparison of different algorithms to compute optimal poli-
cies for BMDPs and BSMDPs; specifically, we introduce and compare
variants of value and policy iteration.

The paper delivers an empirical comparison between different numer-
ical algorithms for BMDPs and BSMDPs, with an emphasis on the
required solution time.

Keywords: (Bounded Parameter) (Semi-)Markov Decision Process ·
Discounted reward · Average reward · Value iteration · Policy iteration

1 Introduction

Markov Decision Processes (MDPs) are a commonly used stochastic model in
various areas like operations research, control theory, model checking or arti-
ficial intelligence [15,18]. Often the parameters of a Markovian model are not
exactly known. Reasons might be that parameters result from measurements
where each parameter is a point estimate whereas a confidence interval would
be a much better choice, or the states are chosen in a way that the memory-
less property is only approximately fulfilled and the future behavior depends
slightly on the past behavior. In these cases, the parameter values of the result-
ing MDP are best described by an uncertainty set to which the parameter values
belong. MDPs with parameter uncertainty have been defined in different vari-
ants in the past [10,16,20]. Most prominent became recently Bounded Parameter
MDPs (BMDPs) [10] where parameters are defined by intervals rather than sin-
gle values.

Computation of optimal policies for MDPs can be done with value iteration,
policy iteration or linear programming [15]. Different variants of these algorithms
c© Springer International Publishing AG 2017
P. Reinecke and A. Di Marco (Eds.): EPEW 2017, LNCS 10497, pp. 3–18, 2017.
DOI: 10.1007/978-3-319-66583-2 1



4 P. Buchholz et al.

have been investigated in the past. For BMDPs the situation is different, the
basic paper introducing BMDPs [10] proposes a value iteration algorithm for the
discounted reward. Only very few additional papers on numerical approaches for
BMDPs are available. This is surprising since the computation of optimal policies
for BMDPs is much harder than the computation for MDPs and the approach
is only useful in practice if optimal policies can be computed for BMDPs of a
reasonable dimension. The main focus of this paper is on numerical techniques
for computing optimal policies and corresponding reward vectors for BMDPs. We
present and compare algorithms based on value iteration and on policy iteration.
Furthermore we extend BMDPs to Bounded Parameter Semi-Markov Decision
Process (BSMDPs) and extend the algorithms to this class of models.

The paper is structured as follows. Section 2 reviews related work. Then, in
Sect. 3 MDPs, Semi-MDPs, BMDPs and BSMDPs are defined and it is shown
that it is sufficient to consider the discrete time case. Section 4 introduces numer-
ical algorithms for BMDPs and BSMDPs. The algorithms are evaluated experi-
mentally, results are presented in Sect. 5. The papers ends with the conclusions.

2 Related Work

An enormous number of papers about MDPs and BMDPs exists. We review
approaches that are related to the numerical computation of optimal policies for
BMDPs which is the topic of the current paper. The basic results can be found
in [10]. In the papers [7,9] discounted rewards are computed for a class of MDPs
with imprecise transition rates. For the analysis, mathematical programming
approaches are considered, which result in the problem to solve a bilevel or mul-
tilinear program. Due to the high computational effort only small instances can
be solved. In [7] a specific algorithm for factored MDPs, based on approximated
multilinear programming is presented. Factored MDPs with imprecise transition
probabilities are also considered in [8]. There, a value iteration approach to com-
pute the discounted reward is presented which exploits the factored structure
using a BDD based implementation. A further extention of MDPs with impre-
cise parameters are parameteric MDPs where transition probabilities are given
as functions over a set of parameters. The computational effort for solving these
problems is high such that more sophisticated solution techniques are required
in general [5,6].

The average reward case for BMDPs is handled in [19]. Based on the basic
approach for BMDPs in [10], a value iteration approach is presented which con-
secutively increases a weight value that weights the reward accumulated in the
next step in relation to the reward accumulated in the current step. In our
experiments this algorithms shows a bad convergence behavior and numerical
instabilities. In none of the mentioned papers, larger sets of experiments are
performed for BMDPs to evaluate the algorithms empirically. Furthermore, the
extension to semi-Markov processes, which is available for MDPs, is investigated
for BMDPs in this paper. Such an extension is, to the best of our knowledge,
not available in the literature.
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3 Background and Definitions

In this section we introduce the basic definitions and notation. We begin with
the definition of Markov and semi-Markov decision processes following the stan-
dard literature [2,15]. Afterwards, BMDPs are introduced and the new class of
BSMDPs is defined. We consider MDPs with a finite state and action space.

Definition 1. A (Discrete Time) Markov Decision Process is a 5-tuple(S,A, (P a)a∈A , (ra)a∈A ,p
)
, where S is a (finite) set of states of cardinality

n, A is a (finite) set of actions, (P a)a∈A is a set of n × n stochastic matri-
ces, (ra)a∈A is a set of non-negative reward vectors, p is the initial probability
distribution.

To simplify the notation we assume S = {1, . . . , n} such that states can be
identified by their numbers. We assume here that the MDP is unichain [15].
Furthermore we assume that rewards are bounded.

A policy π assigns at each time t ∈ IN to each state i ∈ S a probability
distribution over the set of actions A. A policy is deterministic if the distribution
is a Dirac distribution, it is stationary if it does not depend on t and it is pure if
it is deterministic and stationary. Let Π be the set of pure policies. A pure policy
can be described by a vector π where π(i) ∈ A is the action chosen in state i ∈ S.
An MDP with a pure policy defines a Markov Reward Process (S,P π, rπ,p),
where P π is a stochastic matrix of size n × n whose i-th row is the i-th row of
P π(i) and the reward vector rπ is of size n×1 with rπ(i) = rπ(i)(i). Our results
apply to unichain models. An MDP is called unichain, if for each strategy π the
Markov chain induced by π is ergodic [13].

We consider optimization of MDPs over infinite horizons. For the discounted
case we have to solve the optimization problem

g∗ = max
π∈Π

(rπ + γP πg∗) and π∗ = arg max
π∈Π

(rπ + γP πg∗) , (1)

where γ ∈ [0, 1) is the discount factor. It can be shown [15] that the optimum is
reached by a pure policy. g∗ is the optimal gain vector and π∗ an optimal policy
which is not necessarily unique. For the average reward we have

ḡ∗ = max
π∈Π

(
lim

K→∞

(
1
K

K∑
k=1

(P π )k rπ

))
, π̄∗ = arg max

π∈Π

(
lim

K→∞

(
1
K

K∑
k=1

(P π )k rπ

))
.

(2)
Like in the discounted case, the maximum is reached by a pure policy. MDPs

can be generalized by defining Semi-Markov Decision Processes (SMDPs).

Definition 2. A Semi-Markov Decision Process is a 6-tuple(S,A, (P a)a∈A , (F a(i, t))a∈A,i∈S , (ra)a∈A ,p
)
, where

(S,A, (P a)a∈A ,

(ra)a∈A ,p
)
are defined as in Definition 1 and for all i ∈ S, a ∈ A: F a(i, t)

is a distribution function with F a(i, t) = 0 for t < 0, some δ, ε > 0 exist such
that F a(i, δ) < 1 − ε.
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Let fa(i, t) = (F a(i, t))′ be the density of the sojourn time in state i under
decision a. For discrete distributions we can define probabilities rather than
densities. The dynamics of a SMDP is described by a set of decision epochs
which start and end at decision points. At a decision point, the process enters
a state i and the decision maker selects an action a. Then the process stays in
state i a time which is distributed according to F a(i, t) and afterwards jumps
to state j with probability P a(i, j). During each time unit the process stays in
state i with decision a, it earns a gain of ra(i). The definition of F a(i, t) assures
that the process can make in each finite interval only a finite number of jumps
with probability 1. The probability distribution p defines the probability to start
in a given state at time t = 0.

If all F a(i, t) are constant distributions with the same mean, then the SMDP
is an MDP. If all F a(i, t) are exponential distributions, then the SMDP is a
MDP in continuous time. In this case it can be transformed into a discrete time
MDP using uniformization and the discounted and average reward remain the
same [15,17]. Hence, we consider here the general case with general sojourn time
distributions in the states.

For the discounted reward with discount rate β > 0, the process earns reward
e−βtra(i) at time t in state i with decision a. The relationship between the
discount parameters in discrete and continuous time is γ = e−βT , if T is the
time spent in a decision epoch. To compute the optimal policy and gain vectors,
the SMDP is transformed into an equivalent discrete time MDP [13]. Define for
i ∈ S, a ∈ A1

sa(i) = ra(i)
∞∫

0

(1 − F a(i, t))e−βtdt, and Qa(i, j) = P a(i, j)
∞∫

0

fa(i, t)e−βtdt.

(3)
Vector sa includes the discounted rewards accumulated between two decision
points and Qa is a substochastic matrix that includes the effect of discount-
ing. Let F a(i, t) be (p,D0) phase-type distributed (PHD) with parameters
p, D0, where p is an initial distribution and D0 is a subgenerator [4]. Then
d1 = −D0 I1 [4] and the integral evaluates to

∫ ∞

0

pe−βteD0td1dt =
∫ ∞

0

(

p

∞∑

k=0

(D0 − βI)k

k!
d1

)

dt. (4)

The integral can then be evaluated using uniformization [11]. The optimal dis-
counted gain vector and policy can then be computed as solution of the following
equations.

h∗ = max
φ∈Π

(
sφ + Qφh∗

)
and φ∗ = arg max

φ∈Π

(
sφ + Qφh∗

)
(5)

1 We consider in the following and subsequent equations continuous random variables
where the integrals are well-defined for sojourn times in the states. For discrete
random variables, the integrals have to be substituted by sums and the densities by
probabilities, respectively.
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Qφ is a substochastic matrix constructed from matrices defined in (3) accord-
ing to the policy φ. For the optimization of the average reward let ya(i) =
∞∫

0

tfa(i, t)dt be the average sojourn time in state i under action a. Then

h̄
∗ = max

φ∈Π

(
sφ − H∗yφ + P φh∗

)
and φ̄

∗ = arg max
φ∈Π

(
sφ − H∗yφ + P φh∗

)

(6)
are the equations to be solved for the average reward [15]. H∗ is the long run
average gain and vector h̄

∗ contains the short term deviations from the average.
The equations have a unique solution if one value h̄

∗(i0) is fixed. Observe that
(6) with yφ = I1 is the solution of (2). For further details about SMDPs and
their analysis we refer to [15, Chap. 11] and [13, Chap. 9.5].

3.1 Bounded Parameter Markov Decision Processes

Most times the parameters of a stochastic model are only estimates resulting
from measurements or expert guesses. Consequently, parameters are uncertain
and are given by intervals rather than point estimates. This is the idea of
Bounded-Parameter MDPs (BMDPs). In the following the comparison of vectors
and matrices is pointwise.

Definition 3 (Bounded-parameter Markov decision process [10]). A
Bounded-Parameter MDP is a 5-tuple

(
S,A, (P a

�)a∈A, (ra
�)a∈A,p�

)
, where S

and A are defined as in Definition 1, P a
� =

(
P a

↓,P a
↑
)
with P a

↓,P a
↑ ∈ IRn,n

≥0 .

For all a ∈ A it holds that P a
↓ ≤ P a

↑,P a
↓ I1 ≤ I1 ≤ P a

↑ I1 and ra
� =

(
ra

↓, ra
↑
)

with ra
↓, ra

↑ ∈ IRn,1
≥0 , ra

↓ ≤ ra
↑. p� =

(
p↓,p↑

)
, with p↓,p↑ ∈ IR1,n

≥0 , p↓ ≤ p↑ and
p↓ I1 ≤ 1 ≤ p↑ I1. P a

�, ra
� and p� define the following sets of matrices and vectors,

respectively.

P a
� =

{
P a | P a

↓ ≤ P a ≤ P a
↑ ∧ P a I1 = I1

}
, ra

� =
{

ra | ra
↓ ≤ ra ≤ ra

↑
}

,

p� =
{
p | p↓ ≤ p ≤ p↑ ∧ p I1 = 1

}
.

(7)

Thus, each BMDP defines a set of MDPs and the best policy is no longer
unique. Commonly considered are two cases, computation of the policy that
behaves best in the worst case scenario or in the best case scenario, where the
worst and best case scenarios are defined over the set of MDPs defined by the
BMDP. Analysis of the worst case is often more important and can be inter-
preted as a form of robust optimization. Therefore we consider in the sequel
only the worst case scenario. The best case scenario can be handled similarly
after exchanging minimum and maximum. We denote a BMDP as unichain, if
all MDPs described by the BMDP are unichain. In the sequel we will assume
that this is the case.
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For the discounted reward we then have the following equations to solve.

g↓ = max
π∈Π

min
P π∈P π

�

(
rπ

↓ + γP πg↓
)

and π↓ = arg max
π∈Π

min
P π∈P π

�

(
rπ

↓ + γP πg↓
)

(8)
Due to the nested max,min operations (8) is harder to solve than (1). The

expressions for the expected average reward of BMDPs are

ḡ↓ = max
π∈Π

min
P π∈P π

�

(
lim

K→∞

(
1
K

K∑

k=1

(P π)k
rπ

↓

))

π̄↓ = arg max
π∈Π

min
P π∈P π

�

(
lim

K→∞

(
1
K

K∑

k=1

(P π)k
rπ

↓

))
.

(9)

3.2 Bounded Parameter Semi-Markov Decision Processes

To the best of our knowledge the concept of BMDPs has not been extended to
SMDPs yet, although such an extension seems to be important from a practical
point of view.

Definition 4. A Bounded-Parameter Semi-Markov Decision Process (BSMDP)
is a 6-tuple

(
S,A, (P a

�)a∈A, (F a
� (i, t))a∈A,i∈S , (ra

�)a∈A,p
)
,

where
(
S,A, (P a

�)a∈A, (ra
�)a∈A,p�

)
is defined as in Definition 3 and for all i∈S,

a ∈ A it holds that F a
� (i, t) =

(
F a

↓ (i, t), F a
↑ (i, t)

)
with F a

↓ (i, t) ≥ F a
↑ (i, t) for all

t is a pair of distribution functions with F a
↑ (i, t) = F a

↓ (i, t) = 0 for t < 0, and
for all 1 > ε > 0 some δ > 0 exists such that F a

↑ (i, δ) < 1 − ε.

Observe that F a
↑ (i, t) is stochastically larger than F a

↓ (i, t) which implies that
for any non-decreasing function g,

∫ ∞
0

g(t)dF a
↓ (i, t) ≤ ∫ ∞

0
g(t)dF a

↑ (i, t) [14]. We
denote by fa

↓ (i, t) = (F a
↓ (i, t))′ and fa

↑ (i, t) = (F a
↑ (i, t))′ the corresponding prob-

ability density functions. Again the approach can be easily extended for discrete
time models by considering probabilities rather than densities. F a

� (i, t) defines a

set of distribution functions F a
� (i, t) =

{
F a(i, t) | F a

↓ (i, t) ≥ F a(i, t) ≥ F a
↑ (i, t)

}
.

Thus, a BSMDP defines a set of SMDPs. Each SMDP is defined by choosing
one element from each of the sets (P a

�)a∈A, (F a
�(i, t))a∈A, (ra

�) and p�. For the
optimization of the discounted reward it is not possible to use (3), instead we
have to compute state and action dependent discount factors and combine them
with the matrices in P φ

� . For discount rate β we obtain

sa
↓(i) = ra

↓(i)
∞∫

0

(1 − F a
↓ (i, t))e−βtdt, sa

↑(i) = ra
↑(i)

∞∫

0

(1 − F a
↑ (i, t))e−βtdt,

γa
↓(i) =

∞∫

0

fa
↓ (i, t)e−βtdt, γa

↑(i) =
∞∫

0

fa
↑ (i, t)e−βtdt.

(10)
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For policy φ ∈ Π define diagonal matrices Γ φ
↓ ,Γ φ

↑ with Γ φ
↓ (i, i) = γ

φ(i)
↓ (i)

and Γ φ
↑ (i, i) = γ

φ(i)
↑ (i). Then the following equations have to be solved for the

discounted reward of BSMDPs.

h↓ = max
φ∈Π

min
P φ∈P φ

�

(
sφ

↓ + Γ φ
↓ P φh↓

)
and φ↓ = arg max

φ∈Π
min

P φ∈P φ
�

(
sφ

↓ + Γ φ
↓ P φh↓

)

(11)
Observe that for Γ φ

↓ = Γ φ
↑ and P φ

↓ = P φ
↑ the relation Qφ = Γ φ

↓ P φ
↓ holds. For

the average reward we first define ya
↓(i) =

∞∫

0

tfa
↓ (i, t)dt, ya

↑(i) =
∞∫

0

tfa
↑ (i, t)dt and

ya
� = (ya

↓,ya
↑). Then the average reward in the worst case and the policy can be

computed, following [15]

h̄↓ = max
φ∈Π

min
P φ∈P

φ
�

(
rφ

↓ −H↓yφ
↑ + Pφh̄↓

)
, φ̄↓ = arg max

φ∈Π
min

P φ∈P
φ
�

(
rφ

↓ −H↓yφ
↑ + Pφh̄↓

)

(12)
To obtain a unique solution one has to fix h̄↓(i0) = 0 for some i0 ∈ S. Then H↓
is the minimal expected average reward and h̄↓ is the expected total deviation
vector.

4 Numerical Analysis

Before we introduce numerical algorithms for BMDPs and BSMDPs, we briefly
review the available methods for MDPs. The pseudocode of the presented algo-
rithms is available online [1].

4.1 Numerical Methods for Markov and Semi-Markov Decision
Processes

Optimal policies and gain vectors for MDPs can be computed with value itera-
tion, policy iteration or linear programming (LP). LP formulations are useful to
prove some results and they are currently the standard method to solve MDPs
with additional constraints. However, for most MDPs, LP solvers are signifi-
cantly slower than the other two approaches [15]. Additionally, it is not possible
to analyze BMDPs or related models using LP [9]. Therefore we briefly introduce
the basic realizations of value and policy iteration for discounted and average
reward.

We start with value iteration for discounted rewards. Let v(0) ≥ 0 be the
initial vector and set k = 0. Then compute for all i ∈ S and k ∈ N

v(k+1)(i) = max
a∈A

⎛

⎝ra(i) + γ
∑

j∈S
P a(i, j)v(k)(j)

⎞

⎠ (13)
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until
∥
∥v(k+1) − v(k)

∥
∥ < ε 1−γ

2γ . If the condition holds, then ‖v(k+1) −g∗‖ < ε and

π∗(i) ∈ arg max
a∈A

⎛

⎝ra(i) + γ
∑

j∈S
P a(i, j)v(k)(j)

⎞

⎠ (14)

is an ε-optimal policy2. Policy iteration evaluates a policy before the policy is
improved. Let π(0) ∈ Π some pure initial policy and set k = 0. Then, for k ∈ N,

Solve rπ(k)
=

(
I − γP π(k)

)
v(k), π(k+1) = arg max

a∈A
(
ra(i) + γP av(k)

)
(15)

If π(k+1) = π(k), then the optimal policy has been found.
To compute the optimal policy for the long term average reward, in principle

(13) can be applied, then ḡ∗ = limγ→1(1 − γ) limk→∞ v(k). However, since the
entries in v(k) are unbounded, it is preferable to use relative value iteration [15].
One state i0 is chosen, vector v(0) is initialized and

w(k) = v(k) − v(k)(i0) I1
v(k+1)(i) = maxa∈A

(
ra(i) +

∑
j∈S P a(i, j)w(k)(j)

)
for all i ∈ S (16)

is computed until

sp(v(k+1) − v(k)) = max
i∈S

(
v(k+1)(i) − v(k)(i)

)
− min

i∈S

(
v(k+1)(i) − v(k)(i)

)
< ε.

(17)
(14) can then be applied to compute the optimal policy π̄∗. The major advantage
of relative value iteration is that values in the vectors v(k) remain small because
they include the difference of the value of a state i and the value of state i0. To
obtain the optimal value vector ḡ∗ (6) with y = I1 is used. Thus, by solving

r̄π̄∗
=

(
I − P π̄∗)

ḡ∗ + H∗ I1 (18)

with ḡ∗(i0) = 0 the optimal average gain H∗ and the deviation vector are com-
puted. For unichain MDPs the equations have a unique solution. In policy iter-
ation for the average reward case, one can also use the representation in (18). In
this case policy π̄(k) is evaluated using (18) and a new policy is computed with
(15). The approach is iterated until the policy remains.

The approaches for SMDPs are very similar. For the discounted case reward
vectors sa rather than ra and matrices Qa rather than γP a (computed with
(3)) are used in (13) or (15). For the average case we apply uniformization
to transform the SMDP into an MDP that is equivalent w.r.t. expected average
reward [3]. Define η = mini∈S mina∈A ya(i)/(1−P a(i, i)), vector s̄a with s̄a(i) =
ra(i)/ya(i) and matrix Q̄

a with

Q̄
a = I + ηdiag(ya)−1(P a − I) (19)

(Q̄a)a∈A and (s̄a)a∈A define an MDP which can then be analyzed using value
or policy iteration for MDPs as described above.
2 ε-optimality means that the optimal value is reached up to ε.
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4.2 Discounted Rewards for Bounded Parameter (Semi-) Markov
Decision Processes

The approach can be applied for BMDPs as well as for BSMDPs which can
be transformed into BMDPs by computing expected rewards with (10 and 11).
Value iteration for BMDPs has been introduced in [10]. For P φ

� and vector v

define

f↓(P a
�(i•),v) = min

P ∈P a
�
(P (i•)v) and M↓(P

φ
� ,v) = arg min

P ∈P φ
�

(Pv) , (20)

where P (i•) is the row in a matrix P corresponding to state i. The effort to
evaluate f↓ is proportional to the number of non-zero elements in row P φ

↑ (i•)
and the effort to evaluate the function M↓, resulting in a stochastic matrix,
is proportional to the number of non-zero elements in P φ

↑ . Value iteration for
BMDPs and BSMDPs is very similar to (13). Initialize v(0) ≥ 0 and k = 0. Then
compute for each i ∈ S

v(k+1)(i) = max
a∈A

(
ra

↓(i) + γf↓
(
P a

�(i•),v(k)
))

(21)

until the error bound of (13) is met. We can apply the same error bound as for
MDPs because (21) like (13) can be shown to be a contraction mapping with
factor γ; the proof can be found in [10]. Using this property, Banach’s fixed point
theorem can be applied to show that the iteration converges to a unique fixed
point which corresponds to the value of an optimal policy.

For policy iteration let φ(1) ∈ Π be some initial policy, v(0) = rφ(1)
and

k = 1. Then

Solve rφ(k)

↓ =
(
I − γM↓

(
P φ(k)

� ,v(k−1)
))

v(k)

φ(k+1)(i) = arg maxa∈A
(
ra

↓(i) + γf↓(P a
�(i•),v(k))

)
for all i ∈ S

choosing φ(k+1)(i) = φ(k)(i) when possible.

(22)

There are two variants of policy iteration in this case. In the first variant the
solution (first line in (22)) and policy selection (second line in (22)) are performed
successively until φ(k) = φ(k−1). In the second variant the solution is iterated
until M↓

(
P φ(k)

� ,v(k−1)
)

= M↓
(
P φ(k−1)

� ,v(k−2)
)

and then a new policy is
selected. Again the algorithm terminates when the policy remains the same.
This variant of policy iteration is also proposed in [16].

The convergence of both variants of policy iteration follows, again, from
the fixed point theorem, as the steps in (22) are all contraction mappings: the
policy selection step is analogous to one step of value iteration, and the policy
evaluation step can be written as an iterative application of v

(k+1)
i+1 = rφk

↓ +

γM↓
(
P φ(k)

� v(k)
)

v
(k+1)
i , which also is a contraction mapping with factor γ and

has v(k+1) as its fixed point. This implies, again, the existence of a unique fixed
point which corresponds to the value of the optimal policy.
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Value and both variants of policy iteration can be applied for BMDPs and
BSMDPs. For BSMDPs we observe that the main difference from BMDPs is the
consideration of transition times, which affects the discount factor. Therefore, for
BSMDPs, we have to substitute γ by Γ φ

↓ (i, i) and γa
↓(i) in (21) and (22). This,

in turn, affects the contraction mapping statement and replaces the contraction
factor with a term from γa

↓; however, as it always is γa
↓(i) < 1, since γa

↓(i) is
the expected value of exp(−βX) with a non-negative random variable X, the
contraction mapping property still holds.

In contrast to value and policy iteration for plain MDPs, the functions f↓ or
M↓ have to be evaluated in each iteration and it is unclear how this affects the
performance of both algorithms and how much more effort has to be spent in
comparison to the optimization of MDPs.

4.3 Average Rewards for Bounded Parameter (Semi-) Markov
Decision Processes

As already mentioned, computation of the average reward has rarely been con-
sidered in the literature, and for BMDPs only the value iteration algorithm
from [19] is available. We develop new algorithms based on relative value iter-
ation and on policy iteration. It is important to note that our algorithms are
designed for unichain models; multichain models are subject to future research.
The first step is to transform the BSMDP into an, according to average reward,
equivalent BMDP using uniformization as in (19).

Each BSMDP defines a set of SMDPs and each SMDP from the set can be
transformed into an equivalent MDP. We begin with rewards and obtain for ra ∈
ra

� and ya ∈ ya
� the bounds s̄a

↓(i) = ra
↓(i)

ya
↑(i)

≤ ra(i)
ya(i) ≤ ra

↑(i)
ya

↓(i)
= s̄a

↑(i) for all i ∈ S.

The uniformization rate is then given by η = mini∈S mina∈A ya
↓(i)/(1−P a

↓(i, i))
and matrices Q̄

a
↓, Q̄

a
↑ are defined as

Q̄
a
↓ = I + η · diag(ya

↓)−1(P a
↓ − I), Q̄a

↑ = I + η · diag(ya
↑)−1(P a

↑ − I) (23)

The transformation can also be applied for BMDPs. In this case ya
↓ = ya

↑ = I1
and the transformation has no effect if P a(i, i) = 0 for some i ∈ S, a ∈ A exists.
s̄a

� = (s̄a
↓, s̄a

↑) and Q̄
a
� =

(
Q̄

a
↓, Q̄

a
↑
)

define the reward and transition probability
bounds of a BMDP. Optimization according to the average reward can be done
with relative value or policy iteration.

The relative value iteration algorithm performs the following iteration step
starting with some initial vector v(0) ≥ 0 and k = 0 for some previously fixed
constant i0. Intuitively, i0 is the state where the relative value iteration is applied
and from which the changes made by the Bellman updates are propagated.

w
(k)
↓ = v

(k)
↓ − eT

i0
v
(k)
↓ (i0)

v
(k+1)
↓ (i) = maxa∈A

(
ra

↓(i) + f↓
(
Q̄

a
�,w(k)

))
for all i ∈ S.

(24)

until the error bound given in (17) is met. We expect convergence from this
algorithm as this is a straightforward application of the relative value iteration
algorithm from [15] to BMDPs.
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The policy iteration algorithm is derived from the algorithm of Hoffman and
Karp [12] and has the same convergence properties. It starts with some initial

policy φ̄
(1), k = 1, h̄

(0)
↓ = rφ̄

(1)

↓ and evaluates then

Solve s̄φ̄
(k)

=
(

I − M↓

(
Q̄

φ(k)

� , h̄
(k−1)
↓

))
h̄
(k)
↓ + H̄

(k)
↓ I1 with h̄

(k)
↓ (i0) = 0

φ̄
(k+1)(i) = arg maxa∈A

(
s̄a

↓(i) + f↓
(
Q̄

a
�(i•), h̄(k)

↓
))

for all i ∈ S
choosing φ̄

(k+1)(i) = φ̄
(k)(i) when possible.

(25)
Here, the scalar H̄

(k)
↓ corresponds to the average gain in step k. We also note

that as in the discounted case, two variants of policy iteration can be defined.

5 Experimental Results

We use two series of experiments to evaluate the presented algorithms. First, ran-
domly generated (B)(S)MDPs are analyzed and afterwards a BSMDP resulting
from a maintenance model is analyzed. All computations were carried out on a
PC with a 3.0 GHz 20-Core processor and 126 GB main memory running Debian
Linux. All algorithms are implemented in octave. Matlab implementations of the
algorithms are currently under way. We compare the different algorithms for
MDPs and BMDPs. Computational times for SMDPs and BSMDPs are similar
since they are transformed into MDPs and BMDPs. The transformation usually
requires only a small amount of time.

Models with expected average criterion: In a first series of experiments
we use randomly generated dense matrices and vectors to define (B)MDPs
with a number of states varied from 100 to 1200 and a number of actions
|A| ∈ {5, 10, 15, 20}. We repeat each run 10 times with newly generated matrices
and determine the mean and variance of the solution time. In all experiments,
relative value iteration runs with precision parameter ε ∈ {10−4, 10−9}. The left
plot in Fig. 1 shows computation times for all tested algorithms for MDPs as a
function of the number of states. As one can see, policy iteration outperforms
value iteration with precision parameter ε = 10−9. For ε = 10−4 value iteration
is faster than policy iteration. The computation time for the MDPs is small,
even the largest models can be solved in less than 10 s. The plot, shows only
the mean values because variances are so small that confidence intervals would
become almost invisible. This indicates that at least for randomly generated
dense matrices, computational times are mainly determined by the number of
states and actions and not by the structure. This will be different for sparse
matrices, where the structure and size of the non-zero elements determines the
runtimes of value and policy iteration much more.

For BMDPs we compare both variants of policy iteration and relative value
iteration. The experimental results for the long term average reward are shown
in the right plot in Fig. 1. As one can see, the second variant of policy iteration
yields the smallest solution time, whereas the first variant of policy iteration
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Fig. 1. Average CPU time of average reward criterion solution algorithms. The plotted
results are obtained for models with 5 and 20 actions. nac is the number of actions, PI
1 and PI 2 denote two variants of policy iteration, and VI stands for value iteration.

requires the longest solution time for BMDPs. Again the variance is relatively
small such that the mean value bears enough information. For instance, for
|S| = 400, |A| = 20, value iteration requires 682 s on average with σ = 5.4, the
first variant of policy iteration requires 755 s in average with σ = 40.07, and the
second variant takes 486 s on average with σ = 55.7. For larger state spaces,
e.g., |S| = 900, value iteration requires 3327 s on average with relatively small
σ = 9.33, the first variant of policy iteration has mean solution time of 3801 s
with large σ = 283.08, and the second variant takes 2689 s with σ = 371.2. The
effort to solve a BMDP compared to an MDP of the same size and with the same
number of actions is between two and three orders of a magnitude larger. This is
caused by the effort to evaluate the functions M↓ and fa

↓ and a larger number
of iterations which is caused by the two levels, namely the change of the policy
and the matrix belonging to a policy. The proposed algorithms for computing
the long run average reward for BMDPs are original. We are aware of only one
value iteration based algorithm presented in [19]. This algorithm is based on
the value iteration for the discounted reward where the discount factor is slowly
increased towards 1. The paper presenting the algorithm contains no numerical
results. We tested the algorithm on the randomly generated test examples where
the iteration is stopped if the estimated error is below 10−4 or 10.000 iterations
have been performed. The value iteration variant from [19] is denoted as CB.
Results are shown in Fig. 2. It can be seen that the runtimes of the algorithm
from [19] are several orders of a magnitude longer than the runtime of our value
iteration variant and that most times the algorithm stops due to the number of
iterations resulting in an unsatisfactory error.

The expected discounted reward criterion: We now analyze the perfor-
mance of the algorithms for the expected discounted reward. In this case we
have another free parameter, namely the discount factor which is chosen from
{0.5, 0.9}. Results are shown in Fig. 3. In principle results are similar to the
results for the long run average reward. The difference between the solution
time for an MDP and a BMDP is now less than two orders of magnitude which
is smaller than in the average reward case. This is caused by the decreasing
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Fig. 2. Comparison between average reward criterion value iteration variants. nac is
the number of actions, VI denotes value iteration and VI CB is the value iteration
variant from [10].

Fig. 3. CPU time of discounted reward criterion solution algorithms. The plotted
results are obtained for models with 5 and 20 actions. nac is the number of actions, PI
1 and PI 2 denote two variants of policy iteration, and VI stands for value iteration.

influence of the future due to discounting which makes the evaluation of M↓
more stable.

Case study: Dependability models: To analyze algorithmic performance on
more realistic processes, we consider a maintenance and repair (M&R) model.
The model describes two components that may degrade over time and can
be repaired or replaced; the states of an individual component are visualized
in Fig. 4. Degrading is modeled as a stepwise process where a component can
be in one of n operational phases, and the change from the kth to the k − 1st
operational phase occurs according to a PHD (πo

k,Do
0,k); analogously, repair and

replacement are modeled as well by PHDs (πr
k,Dr

0,k) for the repair process in the
k-th operational phase and a PHD with representation (πf ,Df

0) for the replace-
ment process in the case of a failure. Two actions are possible, either letting the
system run or performing maintenance on a component. Without maintenance,
the component either eventually degrades to the first operational phase and fails



16 P. Buchholz et al.

Fig. 4. Maintenance model of a generalized component with N operational phases

then or fails earlier (due to random failure) and is replaced by a new one, start-
ing again in the nth operational phase. This model can be considered on an
event-based level, by associating the states with operational phases and allowing
actions when a component changes its operational phase. In our application, we
consider two components with a shared repair worker to model scarcity of repair
resources. Depending on which sojourn times are used in operational phases (we
may consider mean rates or upper and lower exponential distribution bounds
for the PHDs), we can derive, after uniformization is applied, an MDP (sojourn
times are assumed to be exponentially distributed) or a BMDP (sojourn times
are phase type distributed and lower/upper rate bounds are used). The under-
lying PH distributions are random PHDs of order two. We vary the number
of operational phases in the range between 4 and 10 to generate MDPs and
BMDPs of different sizes. The results can be seen in Fig. 5. Policy iteration is
significantly better than value iteration here. Compared to random instances,
one can observe a drop in performance which can be explained by a more com-
plex problem structure. However, also for the example it becomes clear that
the introduction of uncertainty (i.e., going from MDPs to BMDPs) has its price
which is a significantly higher effort to compute optimal policies.

Fig. 5. CPU time in dependence of state space size for dependability models. PI 1,
2 pes denotes two variants of policy iteration for pessimistic case; VI denotes value
iteration.
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6 Conclusions

In this work we develop variants of value and policy iteration to compute an
optimal policy and value vector according to the long run average and the dis-
counted reward for BMDPs. Furthermore, the class of BMDPs is extended to
BSMDPs. The algorithms are extended to this class of processes. The different
algorithms are compared on a set of examples such that the price of uncertainty,
namely the additional effort to analyze a BMDP compared to a MDP, becomes
visible. Although the algorithms have been proposed here only for BMDPs, they
can be used for other classes of MDPs with imprecise or uncertain parameters
that appeared in the literature [9,16,20]. Furthermore, the algorithms can be
adopted for multichain processes [15]. To allow efficient optimization of large
processes it is necessary to implement variants of the algorithms that work on
sparse data structures and possibly exploit the inherent parallelism of several
operations. This will be a topic for future research.
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Abstract. Markov decision processes suffer from two problems, namely
the so-called state space explosion which may lead to long computation
times and the memoryless property of states which limits the modeling
power with respect to real systems. In this paper we combine existing
state aggregation and optimization methods for a new aggregation based
optimization method. More specifically, we compute reward bounds on
an aggregated model by exchanging state space size with uncertainty. We
propose an approach for continuous time Markov decision models with
discounted or average reward measures.

The approach starts with a portioned state space which consists of
blocks that represent an abstract, high-level view on the state space.
The sojourn time in each block can then be represented by a phase-
type distribution (PHD). Using known properties of PHDs, we can then
bound sojourn times in the blocks and also the accumulated reward in
each sojourn by constraining the set of possible initial vectors in order
to derive tighter bounds for the sojourn times, and, ultimatively, for
the average or discounted reward measures. Furthermore, given a fixed
policy for the CTMDP, we can then further constrain the initial vector
which improves reward bounds. The aggregation approach is illustrated
on randomly generated models.

Keywords: Markov Decision Process · Aggregation · Discounted
reward · Average reward · Bounds

1 Introduction

Continuous time Markov decision processes (CTMDPs) are a well-established
class of stochastic processes which are widely applied in performance and depend-
ability analysis. A significant problem for Markov models are uncomfortably
high-dimensional state spaces which lead to high runtime complexities. One way
to handle this issue is bounded state aggregation, where each state results from
aggregation of several detailed states, as discussed in [3,7]. Another problem
when decisions are added to Markov models are the inherent memoryless prop-
erty of states. In Markov models this problem is alleviated by using phase type
c© Springer International Publishing AG 2017
P. Reinecke and A. Di Marco (Eds.): EPEW 2017, LNCS 10497, pp. 19–32, 2017.
DOI: 10.1007/978-3-319-66583-2 2
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distributions (PHDs) [6]. However, this step can not be used in Markov Deci-
sion Processes (MDPs) because decisions are made in states and if PHDs are
used for generally distributed sojourn times in states, each state of the PHD
becomes a decision state which does not correspond to the state of the system
where decisions can be made. By bounded aggregation also this problem can be
handled.

The processes resulting from bounded aggregation is a so called bounded
parameter MDP (BMDP), where for some parameters only intervals and not
exact values are known. When lower and upper bounds are known, a set of
CTMDPs, rather than a single CTMDP, is described. The goal of an optimiza-
tion is then the minimization or maximization of the worst result value. The
available papers on bounded aggregation in Markov processes or Markov deci-
sion processes consider only discrete time models. In this paper, the approach is
extended to continuous time models coincidently computing improved bounding
parameters based on recent work and available results for PHDs.

An extensive discussion of MDP theory and its applications is given in [13],
where different optimality criteria for the unaltered MDP formalism are dis-
cussed. Given some uncertainty in transitions and rewards, a more general
Markov model is necessary, like BMDPs described in [11]. In [4] some variants
of policy and value iteration approaches to compute an optimal policy and value
vector for the case of average and discounted reward optimality measures are
evaluated with respect to their runtime.

There exist several papers concerned with aggregation of MDPs. In [10], a
factored MDP is reduced to a MDP with an exponentially smaller state space
MDP by stochastic bisimulation, such that an optimal policy for the reduced
one is also optimal for the original MDP. The authors in [12] introduce different
abstraction schemes for the states of a MDP. Some other techniques for state
aggregation are given by (εp, εf )-lumpable partitions [14] and ε-homogeneous
partitions [8]. In [15] numerical methods for bounding the stationary distribution
for large state spaces are given which can be extended to obtain better bounds
for BMDP models.

For the discrete time Markov models with state aggregation some approx-
imations are studied: [1] treats approximate policy iteration for the described
problem with discounted rewards and [18] attends to a value iteration algorithm.

In [8], it is shown how the reduced MDP with states corresponding to blocks
of a partition of the state space can be generated. Furthermore, upper and
lower bounds on the transition probabilities and rewards in the resulting BMDP
model correspond to bounds on the transition probabilities for states that are
grouped in the same partition. However, the mentioned approach operates only
on discrete time models, and it computes simple bounds using minimal and
maximal exit probabilities out of aggregated blocks.

In this paper, the approach of [8] is extended. Bounded aggregation for con-
tinuous time Markov decision models and the differences compared to avail-
able methods for discrete time Markov formalisms are considered. For dis-
counted CTMDPs, continuous time introduces a different bounded aggregation
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method. Another goal is to improve upper and lower bounds for continuous
time bounded (semi) Markov decision problems and compare the results to the
previous work [8].

The paper is organized as follows. In the following section, we give an
overview of the mathematical foundations for (semi) Markov decision processes
and their extensions to uncertain transition probabilities as well as uniformiza-
tion and optimization techniques for computation of optimal value vectors for
Markov processes. Then, in Sect. 3, we briefly summarize known aggregation
results for MDPS and develop an extended bounded aggregation approach for
CTMDPs to derive a reduced state space model and make computing improved
bounds and optimal policies tractable even for large state spaces. Finally, we
continue with some examples and discuss the results in Sect. 5.

2 Background and Definitions

Here, we introduce basic definitions and notation. Vector and matrix identifiers
are written in bold script, and individual elements of a vector v or a matrix M
are accessed by v(i) and M(i, j). A column vector of ones is designated by I1.

2.1 Markov Decision Processes

A continuous-time Markov decision process (CTMDP) is defined as a tuple(
S,A, (Qa)a∈A, (ra)a∈A,p

)
where S is a finite set of states of a given order

n, A is a finite set of actions of order m, Qa ∈ IRn×n is a transition rate matrix
with Qa(i, j) giving the transition rate of moving from the state i to some state
j when action a has been chosen. For the transition rate matrix Qa it has to
hold that Qa I1 = 0 and Qa(i, j) ≥ 0 if i �= j for all actions a ∈ A. Further-
more, the initial probability distribution vector p ∈ IR1×n and the reward rate
vector ra ∈ IRn×1 define a MDP. In the following, the states are numbered as
S = {1, . . . , n}, and the actions are numbered as A = {1, . . . , m}.

To optimize some performance criteria of a CTMDP decision rules and poli-
cies are specified. A decision rule is a mapping ut : S → A which is an assignment
of actions to states at some point in time t. A policy can then be defined as a
sequence of decision rules π = (u0,u1, . . . ,uT ) for some T ≤ ∞. A deterministic
policy which is independent of time t is called pure. We consider here only pure
policies and denote them for simplicity as policies. A pure policy can be described
by a vector π ∈ AS . We use the notation π to denote the policy whereas the vec-
tor notation π is applied if specific elements of the policy are accessed, i.e. π(s)
is the action chosen in state s under policy π. We designate by Qπ(t) and rπ(t)

the matrices and vectors that are constructed from Qπ(t,s) and rπ(t,s) in row s.
If the MDP is in state s and action a is selected, then it accumulates reward
with rate rπ(t,s)(s), its sojourn time in this state is exponentially distributed
with rate −Qπ(t,s)(s, s), and the transition probability to a different state s′ is
Qπ(t,s)(s,s′)
−Qπ(t,s)(s,s)

. For the definition of optimal policies and their values in CTMDPs
as the methods for computing them we refer to the literature [5,13,17].
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Uniformization: For long-term, “stationary” reward measures such as
expected average reward and expected discounted reward, it is possible to trans-
form continuous-time MDPs into discrete-time models with the same optimality
behavior, which is sufficient for finding optimal policies [2,13,16]. Intuitively,
a CTMDP is transformed into a discrete-time MDP in two steps: First, the
sojourn time distributions are made identical for all states by introducing virtual
self-transitions. Second, with uniform sojourn time distribution, the CTMDP is
transformed to an equivalent discrete-time MDP.

Given a CTMDP
(
S,A, (Qa)a∈A, (ra)a∈A,p

)
, we can transform it into a

discrete-time MDP with the following operations. First, we choose λ ≥ −Qa(s, s)
for all s ∈ S, a ∈ A; λ is the so-called uniformization rate. Define matrices
(P a)a∈A and vectors (za)a∈A with P a = I + 1

λQa. The reward vectors are
modified depending on the reward measure. For expected discounted rewards
with discount rate β, we define reward vectors za

β with za
β(s) = ra(s)

λ+β and assume
a discount factor γ = λ

λ+β . For the expected average reward measure, the reward

vectors are z̄a with z̄a(s) = ra(s)
λ .

This construction yields a discrete-time MDP
(
S,A, (P a)a∈A, (za)a∈A

)
,

where, depending on the reward measure selected, the reward vectors za are
either z̄a or za

β . The uniformization method is summarized in Algorithm 1.

Algorithm 1. Uniformization method for CTMDPs

Require: CTMDP
(
S, A, (Qa)a∈A, (ra)a∈A

)
, discount rate β, discounted is true for

the discounted reward measure and false else.
1: λ = max∀i∈S,∀a∈A |Qa(i, i)|;
2: for a ∈ A do
3: P a = I + 1

λ
Qa;

4: if discounted then
5: za(i) = ra(i)

λ+β
, ∀ i ∈ S ;

6: else
7: za(i) = ra(i)

λ
, ∀ i ∈ S ;

8: if discounted then
9: γ = λ

λ+β
;

10: return Discrete-time MDP
(
S, A, (P a)a∈A, (za)a∈A

)
, discount factor γ if dis-

counted is true;

2.2 Bounded-Parameter Markov Decision Processes

In most cases, the parameters of a stochastic model are not known exactly.
Consequently, they can be given by intervals rather than point estimates. The
formalism of bounded-parameter MDPs [8,11] captures this concept. Bounded-
parameter MDPs have been often defined in the literature. We review their
definition and some optimality results here.
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A bounded-parameter MDP is a tuple {S,A,
(
P a

�
)

a∈A
,
(
ra

�
)

a∈A
} containing

a set of discrete-time MDPs defined by a state and action space S,A. The
discounting is performed with a discount factor γ ∈ [0, 1). For each action a ∈ A
lower and upper bounds on the transition probability parameters P a

� = (P a
↓ ,P a

↑ )
are defined with matrices P a

↓ ,P a
↑ satisfying the conditions

P a
↓ ≤ P a

↑ ,

where P a
↓ ,P a

↑ ∈ IRn×n
≥0 and P a

↓ I1 ≤ I1 ≤ P a
↑ I1. Similarly, lower and upper bounds

for the rewards are defined as ra
� =

(
ra

↓ , ra
↑
)

with ra
↓ , ra

↑ ∈ IRn×1
≥0 where the

condition
ra

↓ ≤ ra
↑

is satisfied for all actions a ∈ A.
The BMDP model defines a set of discrete-time MDPs with parameters

varying according to this bounds. One is often interested in the set of poli-
cies that optimize the lower and upper bounds for the reward measures from the
set ra

� . These policies are permissible for the whole set of MDPs contained in

{S,A,
(
P a

�
)

a∈A
,
(
ra

�
)

a∈A
}, the optimistic policy optimizing the upper bound

of ra
� , and the pessimistic policy optimizing the lower bound for the rewards.

In the following we consider only the lower bound computation, since the upper
bound case is analogous. As in the area of robust optimization, the objective is
to obtain the optimal solution for the whole uncertainty set. For BMDPs with
discounted reward criterion one is interested in policy that maximizes the lower
bound. In the pessimistic case the policy should fulfill

π↓ = arg max
π∈Π

min
P π∈P π

�
gπ

γ↓ (1)

for a value function gπ
γ↓ which maps the policy π and the γ-discounted MDP

P π to the value of π in the MDP P π. To obtain the optimal pessimistic gain
vector the Bellman-like equation has to be solved for each state i ∈ S

gγ↓(i) = max
π∈Π

min
P π∈P π

�

(
rπ

↓ (i) + γ
∑
j∈S

P π(i, j)gγ↓(j)
)
. (2)

The analysis of a BMDP can be performed efficiently regarding the nested
max min operator [4]. For the BMDPs with average reward criterion, define
the expected reward in the k-th step in the future R(r,P , k) = P kr. Then an
optimal policy and the associated gain vector is the solution of the following
equations.

ḡ↓ = max
π∈Π

min
P ∈P π

�
lim

K→∞

( 1
K

K∑
k=1

R(rπ
↓ ,P , k)

)
,

π↓ = arg max
π∈Π

min
P ∈P π

�
lim

K→∞

( 1
K

K∑
k=1

R(rπ
↓ ,P , k)

)
.

(3)

For further reference on analysis algorithms for BMDPs, we refer to [4,11].



24 P. Buchholz et al.

3 Bounded Aggregation Approach

Now that the backgrounds and syntax are clear, we are able to deal with aggre-
gation. In the first part of this section we describe a common method for state
space aggregation. Then in the second part we present our main contribution by
introducing a new aggregation method for CTMDPs with specific constraints.
Our refinement is in the calculation of the rates λa−

i and λa+
i , which are the

bounds for the diagonal elements of the aggregated transition rate matrices.
The last part consists of an application example.

3.1 Aggregation of MDPs

In this subsection we describe existing concepts of state space aggregation and
of bounds and apply known results to continuous Markov processes. The state
space S can be clustered into blocks with states from the set Sij which exhibit
nearly the same stochastic behavior with respect to other blocks [7–9]. There
are different motivations and approaches to define or compute the state space
partition. In general, the computation of an optimal partition with respect to
minimal rates between blocks is NP-hard [8]. This implies that only heuristic
approaches for computing a partition are useful. In our setting an additional
motivation exists, namely the combination of states where decisions should be
identical (e.g. due to physical restrictions like the unobservability of the detailed
state). In the aggregated process all states in a block are represented by a single
state such that a single decision is naturally chosen in this state.

Typically, parameter bounds for the aggregated process are obtained due
to the bounds on the transition probabilities of separated blocks. Consider a
continuous time Markov decision model. Assume that the generator matrix Qa

can be structured into k submatrices Qa
ij of dimension ni ×nj belonging to some

block of states Bij .

Qa =

⎡
⎢⎣

Qa
11 · · · Qa

1k
...

. . .
...

Qa
k1 · · · Qa

kk

⎤
⎥⎦

Then the aggregated Markov process can be generated by substituting each block
Bij by a single macro state s ∈ {1, . . . , k} thus shrinking the initial state space to
overall k aggregates. Let S̃ denote the state space structured into macro states.
Let now 0 ≤ qa−

ij ≤ qa+
ij < ∞ be the upper and lower bounds for transition rates

between two macro states i, j ∈ S̃ as described in [3]. The bounds can then be
computed with

qa−
ij = min

m=1,...,ni

(∑nj

l=1
Qa

ij(m, l)
)

qa+
ij = max

m=1,...,ni

(∑nj

l=1
Qa

ij(m, l)
) (4)

such that intervals bounding the uncertain transition rates between two macro
states i and j can be easily obtained as qa

ij� = {qa | qa−
ij ≤ qa ≤ qa+

ij }.
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3.2 New Aggregation Method for CTMDPs

If we assume that the system starts in some macro state i ∈ S̃, then the expected
sojourn time in i under decision a can be obtained using phase-type distribution
(PHD) with subgenerator matrix Da

i = Qa
ii. Then, the process stays in macro

state i a time which is distributed according to the PHD with parameters (φ,Da
i )

and afterwards moves to the next macro state j with rate qa
ij ∈ qa

ij�.

Let us consider some macro state i ∈ S̃. Rewriting the generator matrix Qa

for some action a ∈ A as

Qa =

⎡
⎢⎢⎢⎣

Qa
ii Ea

i→

F a
i←

⎛
⎜⎝

Qa
jj . . .
...

. . .
...

. . . Qa
kk

⎞
⎟⎠

⎤
⎥⎥⎥⎦ , (5)

where the transition rate matrix Ea
i→ is of dimension ni × ∑

l∈S̃\{i} nl and the
matrix F a

i← is of dimension
∑

l∈S̃\{i} nl × ni, the initial vector of the PHD with
subgenerator Da

i can be approximated using rows of the matrix F a
i← as follows.

Let q =
∑k

l=1,l �=i nl be the number of rows of the matrix F a
i←. Note that

PHD with subgenerator Da
i describes the sojourn time distribution of a macro

state i corresponding to the submatrix Qa
ii. The initial vector φ of the PHD

with subgenerator Da
i can be guessed using rows of the matrix F a

i← in order to
bound the sojourn time as follows. We obtain an initial vector φa

l , for each row
l ∈ {1, . . . , q} of F a

i←, ∀a ∈ A where F a
i←(l•) is the lth row of the matrix F a

i←
and F a

i←(l•) �= 0 as
φa

l = F a
i←(l•)/‖F a

i←(l•)‖1. (6)

Note that Eq. 6 is in fact a normalization of the vector F a
i←(l•). Evaluating the

Eq. 6 for all non-zero rows q of F a
i← and for all a ∈ A, the initial vectors resulting

in minimal and maximal expected sojourn times of the PHD with subgenerator
Da

i can be computed. Then, the sojourn time bounds can be obtained as

νa−
i = min

∀φj∈Φ

(
φj(−Da

i )−1 I1
)
,∀a ∈ A

νa+
i = max

∀φj∈Φ

(
φj(−Da

i )−1 I1
)
,∀a ∈ A (7)

where I1 is a vector of dimension ni×1. In Eq. 7, Φ is the set containing probability
distribution vectors computed using (6) for all non-zero rows l ∈ {1, . . . , q} of
F a

i←, and all a ∈ A. The rate bounds for the sojourn time distributions can then
be estimated by λa−

i = 1
νa−

i

and λa+
i = 1

νa+
i

for all macro states i ∈ S̃.

Now we turn our attention to the non-diagonal elements qa±
ij . As the value of

qa±
ij is a bound on the exit rate from macro state i to macro state j, we bound

it by computing the probability to enter macro state j from macro state i. This
probability is φk(−Da

i )−1Qa
ij I1. By multiplying it with the rate bounds we get

the bounds
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qa−
ij = λa+

i min
∀φk∈Φ

(
φk(−Da

i )−1Qa
ij I1

)
,∀a ∈ A

qa+
ij = λa−

i max
∀φk∈Φ

(
φk(−Da

i )−1Qa
ij I1

)
,∀a ∈ A.

(8)

as νa+
i ≥ νa−

i ⇔ λa+
i ≤ λa−

i .
Together, we obtain a continuous time BMDP model where λa−

i and λa+
i

from (7) specify bounds of an exponential distribution for each macro state
and (8) specifies bounds for transition rates between macro states. The resulting
aggregated process is shown below.

Qa− =

⎡
⎢⎢⎢⎣

−λa−
1 qa−

12 . . . qa−
1k

qa−
21 −λa−

2 . . . qa−
2k

...
. . . . . .

...
qa−
k1 qa−

k2 . . . −λa−
k

⎤
⎥⎥⎥⎦ , Qa+ =

⎡
⎢⎢⎢⎣

−λa+
1 qa+

12 . . . qa+
1k

qa+
21 −λa+

2 . . . qa+
2k

...
. . . . . .

...
qa+
k1 qa+

k2 . . . −λa+
k

⎤
⎥⎥⎥⎦ . (9)

As for bounding matrices Qa−(i, j) ≤ Qa+(i, j) has to hold, the diagonal ele-
ments are −λa−

i resp. −λa+
i since −λa−

i ≤ −λa+
i . Afterwards, the obtained

bounds can be further improved as follows. First, we apply the uniformization
technique described in Sect. 2.1 and solve Eq. 3 for the aggregated discrete-time
BMDP model resulting from the uniformization. Then we use the pessimistic
optimal policy π↓ to update the bounds, but, in principle, also the optimistic
optimal policy can be used to obtain tighter bounds.

Assume that the optimal policy π↓ obtained for an aggregated process holds
for all states partitioned in a block corresponding to the macro state for which
the optimal action has been determined. We compute Eq. 7 where possible initial
vectors in the set Φ are obtained using optimal policy π↓ as follows

φ
π↓(l)
l = F

π↓(l)
i← (l•)/‖F

π↓(l)
i← (l•)‖1, (10)

for all non-zero rows l of the policy matrix Qπ↓ which is assembled by pick-
ing Qπ↓(l•) = Qπ↓(l)(l•). At first we optimize the sojourn time bounds νa−

i

and νa+
i over the whole set of initial vectors Φ. The update step supplies us a

reduced subset of Φ that leads to an improved optimization. In general we get
tighter bounds for the sojourn times by recalculating. We can now summarize
our approach in Algorithm 2.

function compute initial vectors(Set F containing matrices F )
Φ = ∅;
for F ∈ F̃ do

q = rows(F );
for i = 1 → q do

Compute φi as given in Eq. 6;
Φ = Φ ∪ φi;

return Set Φ containing guessed initial vectors;
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function compute sojourn time bounds(Φ, Set Di containing matrices Da
i , a ∈

{1, . . . , m})
Λ = ∅;
Evaluate Eq. 7 using sets Φ and Di; Save results in the set Λ;
return Set Λ containing λa−

i , λa+
i for all a ∈ A;

Algorithm 2. Aggregation algorithm for CTMDPs

Require: Block structured CTMDP process with decision matrices Qa, ∀a ∈ A. For
each generator Qa, b blocks of dimension ni × nj and corresponding submatrices
Qa

ij . Independend of a we define k as the number of blocks in a row of Q1.
1: F = ∅; D1 = ∅, . . . , Dk = ∅; Λi = ∅, . . . , Λk = ∅;
2: for i = 1 → k do
3: for ∀a ∈ A do
4: Compute a PHD with subgenerator Da

i = Qa
ii; Di = Di ∪ Da

i ;
5: Compute matrix F a

i← as given in Eq. 5; F = F ∪ F a
i←;

6: Φ = compute initial vectors(F) ;
7: Λi = compute sojourn time bounds(Φ, Di);
8: r̃a+

i , r̃a−
i = maximum/minimum of all rewards in this block and action;

9: for j = 1 → k do
10: if i �= j then
11: Compute transition rate bounds qa−

ij and qa+
ij by the given set Φ using

Eq. 8 ∀a ∈ A;
12: F = ∅;

13: Compute bounded discrete-time MDP model

(
S̃, A,

(
P a

�
)

a∈A
,
(
ra

�
)

a∈A
, p�

)

using Algorithm 1;
14: Compute optimal policy π↓ and gain vector g↓ using Eq. 1 and Eq. 2 or Eq. 3 ;
15: Determine policy matrix Qπ↓ with Qπ↓(l•) = Qπ↓(l)(l•) for each row l of Qπ↓ ;
16: for i = 1 → k do � Update bounds according to the optimal policy
17: Compute matrix F

π↓
i← as given in Eq. 5; F = F ∪ F

π↓
i← ;

18: Φ = compute initial vectors(F) ;
19: Λi = compute sojourn time bounds(Φ, Di);
20: for j = 1 → k do
21: if i �= j then
22: Compute transition rate bounds qa−

ij and qa+
ij by the given set Φ using

Eq. 8 ∀a ∈ A;
23: F = ∅;

24: Compute set of aggregated transition rate matrices
(
Q̃a

�
)

a∈A
like in 9;

25: return
(
Q̃a

�
)

a∈A
,
(
r̃a

�
)

a∈A

4 Experiments

We perform different experiments with randomly generated CTMDP instances
with state space sizes ranging from 100 to 500 to compare the different aggrega-
tion approaches. All computations were performed on a machine with a 3.0 GHz
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Fig. 1. CPU times for average reward criterion aggregation algorithms. The plotted
results are obtained for random CTMDP models with 5 and 25 actions, an average
reward of 5, an average sojourn time of 1/5 · |S| and a block size of mean 10/3.

20-Core processor and 126 GB main memory running Debian Linux. We used
Matlab implementation of our algorithms.

First, we analyzed randomly generated CTMDP models with dense matrices
and reward vectors with a number of states varied from 100 to 500 and a number
of actions A = {5, 25}. The average sojourn times (the entrees on the diagonal
of a transition rate matrix) depends on the size of states and is 1/5 · |S| and all
nondiagonal elements are randomly and normalized to the sojourn time. Also the
number of blocks and their size depend on |S|, cause there are 3/10 · |S| blocks
given with a mean size of 10/3. In both cases, the discounted and the average,
the rewards are expected 5. For the discounted problem we test diefferent values
for β, but the results are similar enough to show you only one case for β = 2. For
every combination of state space and actions we build ten examples, compare
the seperate results of the aggregation methods, and then we compute the mean
of them. To obtain the average or discounted reward value and optimal strategy
policy iteration method has been applied.

The plots in Fig. 1 show computation times for exact and aggregation algo-
rithms for CTMDPs as a function of the number of states. We compared results
obtained using the exact solution method, trivial aggregation and the improved
aggregation methods. In the trivial aggregation method bounds for block sojourn
times are obtained using minimal and maximal exit rates out of block. As one
can see, the improved aggregation algorithm requires much more computation
time. The reason is the computational effort required to compute Eq. 7 in order
to derive tighter bounds.

In Tables 1 and 2 we list the compared values computed by an intuitive aggre-
gation algorithm and by our new aggregation method. The exact solution is only
given to show you the quality of our results. The main consequence is the relative
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Table 1. Results for average CTMDPs with 25 actions

Number of
states
(States)

Trivial lower
bounds
(TrivL)

Improved
lower
bounds
(ImprL)

Exact
solution
(Exact)

Improved
upper
bounds
(ImprL)

Trivial
upper
bounds
(TrivU)

Relative
ratio (Ratio)

100 0.14378 0.18362 0.24946 0.24040 0.24954 1.71247

200 0.06657 0.08501 0.12466 0.11924 0.12469 1.50527

300 0.04580 0.05705 0.08313 0.07958 0.08314 1.46999

400 0.03455 0.04293 0.06118 0.05954 0.06237 1.47638

500 0.02868 0.03531 0.04904 0.04768 0.04991 1.52802

Table 2. Results for discounted CTMDPs with 25 actions and discount factor 2

(States) (TrivL) (ImprL) (Exact) (ImprU) (TrivU) (Ratio)

100 2.87161 3.49862 5.08380 5.19395 5.22686 1.38927

200 2.66808 3.34325 4.97368 5.07058 5.10530 1.41288

300 2.73046 3.37402 4.94414 5.03400 5.06653 1.40827

400 2.69198 3.32580 4.92630 5.01026 5.04692 1.39925

500 2.64740 3.31049 4.91676 5.00030 5.03700 1.41653
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Fig. 2. CPU times for average reward criterion aggregation algorithms. The plotted
results are obtained for random CTMDP models with 5 and 25 actions, an average
reward of 5, an average sojourn time of 1/5 · |S|, a block size of mean 10/3 and β = 2.

ratio, which is calculated as the quotient of the difference between the trivial
bounds and improved bounds. With our aggregation method we gain a relativ
improvement of round about 50% in comparison to the intuitive algorithm. A
relativ ratio of 2 would mean, that the span of upper and lower bounds is halfed.
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We discuss the applicability of the aggregation approach using a small closed
central server queueing network where jobs can be alternatively routed to one
of two peripheral servers. The queueing network is illustrated in Fig. 3. The
central queue is a FCFS station with exponentially distributed service times
with rate μ = 2. After leaving the central station, a job enters one of the two
peripheral stations. The choice of the station is a decision which can be made
upon leaving the central station. Service times at the peripheral stations are
distributed according to an Erlang 2 distribution with mean 1 at station Q2 and
according to a hyperexponential distribution with parameters μ31 = 4, μ32 = 1/4
and p21 = 0.2 for queue Q3. Thus, both peripheral queues have the same mean
service time.

The decision to choose Q2 or Q3 can be made according to the current pop-
ulation at the queues but cannot be based on the state of the service time dis-
tribution which is introduced in the Markov model to describe non-exponential
times. If the whole model is interpreted as a CTMDP, then the optimal policy
will consider the internal state of the service time and it might be better to
choose a longer queue. E.g., if in Q3 a single customer is in phase 2, then the
mean service time of this customer is 4, whereas the mean service time of a
customer in phase 2 of Q2 is 0.5. Thus, in this situation Q2 is the better choice
as long as it contains at most 3 customers more than Q3.

If decision have to be made based on the population only, states with the
same population in the queues are collected in one block. This implies that
in our case blocks contain up to 4 states, if Q2 and Q3 are non-empty. Using
aggregation a BMDP is computed. The robust and therefore pessimistic policy
for this BMDP avoids routing into queue Q2 as long as the population difference
between Q3 does not become too large because in the worst case, the service
time distribution is in the slower phase. On the other hand, an optimistic policy
tries to route customers to queue Q3 because the service time might be much
smaller than in Q2 whenever the customer in service is in the fast phase (Fig. 3).

λ Q1

Q2

Q3

Fig. 3. Queueing network example.
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Table 3. Results for the described example in the average and discounted case

(States) (TrivL) (ImprL) (Exact) (ImprU) (TrivU) (Ratio)

25 avg 0.6290 0.6743 1.0053 1.1535 1.1866 1.1636

61 avg 0.5756 0.6562 0.9912 1.1047 1.1779 1.3429

113 avg 0.6115 0.6707 0.8467 1.1384 1.2247 1.3111

25 disc 2.6608 2.9835 4.2256 5.4417 5.6080 1.1989

61 disc 2.5388 2.8003 4.3079 5.2663 5.4300 1.1724

113 disc 1.9375 2.2571 4.1899 5.4533 5.6438 1.1596

We analyze the model for the populations 3, 5 and 7 resulting in CTMDPs
with 25, 61 and 113 states. The state spaces of the corresponding BMDPs contain
10, 21 and 36 states. For the results look at Table 3.

5 Conclusions

In this paper, we propose a state aggregation method for CTMDPs. In gen-
eral, state aggregation enables one to reduce the number of states in a given
CTMDP by deriving a bounded-parameter Markov model. The paper presents
an improved aggregation approach to compute upper and lower reward bounds
for CTMDPs for groups of similar states which are treated equally by a deci-
sion maker. It is shown that continuous time models can be efficiently aggregated
when sojourn times in blocks are approximated using phase-type distributions. In
the proposed method, one can refine the obtained bounds after an optimal policy
has been computed. Comparing our results to established aggregation methods,
we show that the proposed algorithm computes better bounds by an acceptable
extra computational effort. Though the required CPU time is increased by a
factor close to two, the difference between upper and lower bounds is reduced
by nearly one half compared to a trivial aggregation algorithm.

The approach can be extended to refine the reward aggregation on the basis
of stationary quantities in CTMDPs as presented in [3]. We have evaluated
our aggregation method on randomly generated CTMDPs and a small queueing
model. A special case that is in our opinion most interesting occurs when the
states that are lumped into one are similar in behavior (with respect to transition
and reward rates); we conjecture that in this case, our approach would show an
even further improvement over the standard bounded-parameter aggregation
approach. Furthermore, it is possible to improve the bounds for a fixed policy
further by using the iterative bounding approach form [15].
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Abstract. Behavioral equivalences relate states which are indistinguish-
able for an external observer of the system. This paper defines two equiva-
lence relations, interactive Markovian equivalence (IME) and weak inter-
active Markovian equivalence (WIME) for closed IMCs. We define the
quotient system under these relations and investigate their relationship
with strong bisimulation and weak bisimulation, respectively. Next, we
show that both IME and WIME can be used for repeated minimization of
closed IMCs. Finally we prove that time-bounded reachability properties
are preserved under IME and WIME quotienting.

Keywords: Markov chains · Scheduler · Equivalence · Bisimulation ·
Reachability

1 Introduction

Interactive Markov chains (IMCs) [15,16] extend labeled transition systems
(LTS) with stochastic aspects. IMCs thus support both reasoning about non-
deterministic behaviors as in LTSs and stochastic phenomena as in continuous-
time Markov chains (CTMCs). IMCs are compositional, i.e., a parallel compo-
sition operator allows one to construct a complex IMC from several component
IMCs running in parallel.

IMCs are widely used for performance and dependability analysis of complex
distributed systems, e.g., shared memory mutual exclusion protocols [20]. They
have been used as semantic model for amongst others dynamic fault trees [9,10],
architectural description languages such as AADL [8,11], generalized stochastic
Petri nets [17], and Statemate [7]. They are also used for modeling and analysis of
GALS (Globally Asynchronous Locally Synchronous) hardware design [12]. For
analysis, model checking algorithms [14,21] are applied on closed1 IMC models to
compute the probability of linear or branching real-time objectives, e.g., extremal
time-bounded reachability probabilities [16,21] and expected time [14].

Equivalence relations are used to compare the behavior of IMC models [15].
Abstraction techniques based on equivalence relations reduce the state space
of IMCs, by aggregating equivalent states into a single state. The reduced state
space obtained under an equivalence relation, called a quotient, can then be used
1 An IMC is said to be closed if it is not subject to any further synchronization.

c© Springer International Publishing AG 2017
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for analysis provided it preserves a rich class of properties of interest. Strong and
weak bisimulation [15,16] are two well known equivalence relations for IMCs.
Both these equivalences preserve time-bounded reachability probabilities [16].

This paper proposes a novel theoretical framework for the state space reduc-
tion of closed IMCs. We define interactive Markovian equivalence and weak
interactive Markovian equivalence for closed IMCs. Unlike bisimulation which
compares states on the basis of their direct successors, IME considers a two-step
perspective. Before explaining the idea of IME, let us recall that every state
of a closed IMC can either have Markovian transitions or τ -labeled interactive
transitions. Every Markovian transition is labeled with a positive real number
λ. This parameter indicates the rate of the exponential distribution, i.e., the
probability of a λ-labeled transition to be enabled within t time units equals
1 − e−λ·t. Two Markovian states s and s′ are IME equivalent if for each pair of
their direct predecessors weighted rate to directly move to any equivalence class
via the equivalence class [s] = [s′] coincides. Similarly, two interactive states are
IME equivalent if for each pair of their direct predecessors it is possible to reach
the same set of equivalence classes in two steps. For WIME, we abstract from
stutter steps and thus each predecessor of equivalence class C should reach the
same set of equivalence classes in two or more steps such that all the extra steps
are taken within C.

Contributions. The main contributions of this paper are as follows:

– We provide a structural definition of IME on closed IMCs, define quotient
under IME and investigate its relationship with strong bisimulation.

– We provide a structural definition of weak IME (WIME) on closed IMCs, define
quotient under WIME and investigate its relationship with weak bisimulation.

– Finally, we prove that time-bounded reachability probabilities are preserved
under IME and WIME quotienting.

1.1 Related Work

For continuous-time Markov chains (CTMCs), several variants of weak and
strong bisimulation equivalence and simulation pre-orders have been defined in
[4]. Their compatibility to (fragments of) stochastic variants of computation tree
logic (CTL) has been thoroughly investigated, cf. [4]. In [5], Bernardo consid-
ered Markovian testing equivalence over sequential Markovian process calculus
(SMPC), and coined the term T-lumpability [6] for the induced state-level aggre-
gation where T stands for testing. His testing equivalence is a congruence w.r.t.
parallel composition, and preserves transient as well as steady-state probabilities.
Bernardo’s T-lumpability has been reconsidered in [26] where weighted lumpabil-
ity (WL) is defined as a structural notion on CTMCs. Note that DTA and MTL
specifications are preserved under WL [26]. In [27], several linear-time equiv-
alences (Markovian trace equivalence, failure and ready trace equivalence) for
CTMCs have been investigated. Testing scenarios based on push-button exper-
iments have been used for defining these equivalences.
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In [22], authors have defined strong bisimulation relation for CTMDPs. This
paper also proves that CSL properties are preserved under bisimulation for
CTMDPs. Trace semantics for interactive Markov chains (IMCs) have been
defined in [28]. In this paper testing scenarios using button pushing experi-
ments have been used to define several variants of trace equivalences that arise
by varying the type of schedulers. Note that the relationship of IME and trace
semantics for IMCs is not clear. In the branching-time setting, strong and weak
bisimulation relations for IMCs have been defined in [15,16]. IME and strong
bisimulation are incomparable. Similarly, in the weak setting, WIME and weak
bisimulation are incomparable. Our definition of IME here builds on that inves-
tigated in [26] for CTMCs.

Organisation of the paper. Section 2 briefly recalls the main concepts of IMCs.
Section 3 defines interactive Markovian equivalence (IME) and investigates its
relationship with strong bisimulation. Section 4 defines the weaker variant of
IME (WIME) and investigates its relationship with weak bisimulation. Section 5
proves the preservation of time-bounded reachability properties. Finally, Sect. 6
concludes the paper and discusses directions for future research.

2 Preliminaries

This section presents the necessary definitions and basic concepts related to
interactive Markov chains (IMCs) that are needed for the understanding of the
rest of this paper.

Definition 1 (IMC). An interactive Markov chain (IMC) is a tuple I =
(S, s0, Act, AP,→,⇒, L) where:

– S is a finite set of states,
– s0 is the initial state,
– Act is a finite set of actions,
– AP is a finite set of atomic propositions,
– →⊆ S × Act × S is a set of interactive transitions,
– ⇒⊆ S × R≥0 × S is a set of Markovian transitions, and
– L : S → 2AP is a labeling function.

We abbreviate (s, a, s′) ∈→ as s a−→ s′ and similarly, (s, λ, s′) ∈⇒ by s
λ=⇒ s′.

Let IT (s) and MT (s) denote the set of interactive and Markovian transitions
that leave state s. A state s is Markovian iff MT (s) �= ∅ and IT (s) = ∅; it
is interactive iff MT (s) = ∅ and IT (s) �= ∅. Further, s is a hybrid state iff
MT (s) �= ∅ and IT (s) �= ∅; finally s is a deadlock state iff MT (s) = ∅ and
IT (s) = ∅. In this paper we only consider those IMCs that do not have any
deadlock states. Let MS ⊆ S and IS ⊆ S denote the set of Markovian and
interactive states in IMC I. For any Markovian state s ∈ MS let R(s, s′) =
∑{λ|s λ=⇒ s′} be the rate to move from state s to state s′. The exit rate for state
s is defined by: E(s) =

∑
s′∈S R(s, s′).
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It is easy to see that an IMC where MT (s) = ∅ for any state s is an LTS. An
IMC where IT (s) = ∅ for any state s is a CTMC. The semantics of IMCs can
thus be given in terms of the semantics of CTMCs (for Markovian transitions)
and LTSs (for interactive transitions).

The meaning of a Markovian transition s
λ=⇒ s′ is that the IMC moves from

state s to s′ within t time units with probability 1−eλ·t. If s has multiple outgoing
Markovian transitions to different successors, then we speak of a race between
these transitions, known as the race condition. In this case, the probability to
move from s to s′ within t time units is R(s,s′)

E(s) · (1 − eE(s)·t).

Example 1. Consider the IMC I shown in Fig. 1, where S = {s0, s1, s2, s3, s4,
s5, s6, s7, s8, s9}, AP = {a, b, c}, Act = {α, β, γ} and s0 is the initial state.
The set of interactive states is IS = {s0, s1, s2}; MS contains all the other
states. Note that there is no hybrid state in IMC I. Non-determinism between
action transitions appears in state s0. Similarly, race condition due to multiple
Markovian transitions appears in s3 and s4.

s0 {a}

{b}s1 s2 {b}

s3 {a} s4 {c}

{b}s5

{b}s6

{b}s7

{c}s9

{a}s8

α

γ

β

α

4

8

4

2

2

2
2

1

1

Fig. 1. An example IMC I

We assume that in closed IMCs all outgoing interactive transitions from every
state s ∈ S are labeled with τ ∈ Act (internal action).

Definition 2 (Maximal progress [16]). In any closed IMC, interactive transi-
tions take precedence over Markovian transitions.

Intuitively, the maximal progress assumption states that in closed IMCs, τ
labeled transitions are not subject to interaction and thus can happen imme-
diately2, whereas the probability of a Markovian transition to happen immedi-
ately is zero. Accordingly, we assume that each state s has either only outgoing
2 We restrict to models without zenoness.
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τ transitions or outgoing Markovian transitions. In other words, a closed IMC
only has interactive and Markovian states.

Definition 3 (IMC timed paths). Let I = (S, s0, Act, AP,→,⇒, L) be
an IMC. An infinite path π in I is a sequence s0

σ0,t0−−−→ s1
σ1,t1−−−→

s2 . . . sn−1
σn−1,tn−1−−−−−−−→ sn . . . where si ∈ S, σi ∈ Act or σi = ⊥, and ti ∈ R≥0 is

the sojourn time in state si. A finite path π is a finite prefix of an infinite path.
The length of an infinite path π, denoted |π| is ∞; the length of a finite path π
with n + 1 states is n.

We use a distinguished action ⊥ /∈ Act to indicate Markovian transitions and
extend the set of actions to Act⊥ = Act∪{⊥}. Let PathsI = PathsI

fin ∪PathsI
ω

denote the set of all paths in I that start in s0, where PathsI
fin =

⋃
n∈N

PathsI
n

is the set of all finite paths in I and PathsI
n denote the set of all finite paths of

length n that start in s0. Let PathsI
ω is the set of all infinite paths in I that start

in s0. For infinite path π = s0
σ0,t0−−−→ s1

σ1,t1−−−→ s2 . . . and any i ∈ N, let π[i] = si,
the (i + 1)th state of π. For any t ∈ R≥0, let π@t denote the sequence of states
that π occupies at time t. Note that π@t is in general not a single state, but
rather a sequence of several states, as an IMC may exhibit immediate transitions
and thus may occupy various states at the same time instant. Let Act(s) denote
the set of enabled actions from state s. Note that in case s is a Markovian state
then Act(s) = {⊥}.

Example 2. Consider an example timed path π = s0
α,0−−→ s1

γ,0−−→ s3
⊥,1.5−−−→

s2
γ,0−−→ s5. Here we have π[2] = s3 and π@(1.5 − ε) = 〈s3〉, where 0 < ε < 1.5.

Similarly, π@1.5 = 〈s2s5〉.
σ-algebra. In order to construct a measurable space over PathsI

ω, we define the
following sets: Ω = Act⊥ × R≥0 × S and the σ-field J = (2Act⊥ × JR × 2S),
where JR is the Borel σ-field over R≥0 [2,3]. The σ-field over PathsI

n is defined as
JPathsI

n
= σ({S0×M0× . . .×Mn−1|S0 ∈ 2S ,Mi ∈ J , 0 ≤ i ≤ n−1}). A set B ∈

JPathsI
n

is a base of a cylinder set C if C = Cyl(B) = {π ∈ PathsI
ω|π[0 . . . n] ∈

B}, where π[0 . . . n] is the prefix of length n of the path π. The σ-field JPathsI
ω

of measurable subsets of PathsI
ω is defined as JPathsI

ω
= σ(∪∞

n=0{Cyl(B)|B ∈
JPathsI

n
}).

2.1 Schedulers

Non-determinism in an IMC is resolved by a scheduler [16,29]. Schedulers are
also known as adversaries or policies. More formally, schedulers3 are defined as
follows:

3 We only consider total-time deterministic positional (TTDP) schedulers as they are
sufficient for computing the maximum (resp. minimum) probability of time-bounded
reachability properties [16].
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Definition 4 (Scheduler). A scheduler for IMC I = (S, s0, Act, AP,→,⇒, L)
is a measurable function D : S ×R≥0 → Act⊥, such that for n ∈ N and t ∈ R≥0,

D(sn, t) ∈ Act(sn)

Intuitively, next action to be executed depends on the current state and total-
time that passed up to the current state. This scheduler is deterministic as it
always selects the next action with probability 1. Note that for Markovian states
scheduler always selects ⊥ with probability 1. Let AdvTTDP (I) denote the set
of all total-time deterministic positional schedulers of I.

Once the non-deterministic choices of an IMC I have been resolved by a
scheduler, say D, the induced model obtained is purely stochastic. To that end
the unique probability measure for probability space (PathsI

ω,JPathsI
ω
) can be

defined [18,21]. Given a scheduler D and a set Π of infinite paths, then PrD(Π)
denotes the probability of visiting all paths in Π under scheduler D starting from
initial state s0. The probability of the set of paths of length (n + 1) is defined
as a product between the probability of the set of paths of length n and the
one-step transition probability to go from (n + 1)-th state to (n + 2)-th state by
executing action, say α, selected by the scheduler D [21].

Assumptions. Throughout this paper we make the following assumptions:

1. Every state of IMC I has at least one predecessor. This is not a restriction, as
any IMC I = (S, s0, Act, AP,→,⇒, L) can be transformed into an equivalent
IMC (S′, s′

0, Act, AP ′,→′,⇒, L′) which fulfills this condition. This is done by
adding a new state ŝ to S equipped with a self-loop and which has a transition
to each state in S without predecessors. Let all the outgoing transitions from
ŝ be labeled with τ . To distinguish this state from the others we set L′(ŝ) = #
with # �∈ AP (All other labels, states and transitions remain unaffected). Let
s′
0 = s0. It follows that all states in S′ = S∪{ŝ} have at least one predecessor.

Moreover, the reachable state space of both IMCs coincides.
2. We also assume that the initial state s0 of an IMC is distinguished from all

other states by a unique label, say $. This assumption implies that for any
equivalence that groups equally labeled states, {s0} constitutes a separate
equivalence class.

Remark 1. Both assumptions do not affect the basic properties of an IMC such
as linear or branching real-time properties. For convenience, we neither show
the state ŝ nor the label $ in figures. These assumptions are required as Sect. 3
proposes an equivalence relation for closed IMCs that checks reachability from
predecessors of every equivalence class to its successor equivalence classes.

3 Interactive Markovian Equivalence

Before defining interactive Markovian equivalence, we first define some auxiliary
concepts. All the definitions presented in this section are relative to a closed IMC
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I = (S, s0, Act, AP,→,⇒, L), where Act = {τ}. For any state s ∈ S and Act =
{τ}, the set of τ -predecessors of s is defined by: Pred(s, τ) = {s′ ∈ S|s′ τ−−→ s}
and Pred(s) = {s′ ∈ S|R(s′, s) > 0} ∪ Pred(s, τ). Let for C ⊆ S, Pred(C) =⋃

s∈C Pred(s). Similarly, the set of τ -successors of any state s is defined by:
Post(s, τ) = {s′ ∈ S|s τ−−→ s′} and Post(s) = {s′ ∈ S|R(s, s′) > 0} ∪ Post(s, τ).
Let Post(C) =

⋃
s∈C Post(s) and Post(s, τ, C) = {s′ ∈ C|s τ−−→ s′}.

Definition 5. Let C ⊆ S, then C is said to be interactive closed iff C ⊆ IS ∧
Pred(C) ⊆ IS.

Definition 6. Let C ⊆ S, then C is said to be Markovian closed iff C ⊆ MS ∧
Pred(C) ⊆ MS.

Let I(S) denote the set of all possible subsets of S that are interactive closed.
Let M(S) denote the set of all possible subsets of S that are Markovian closed.

Example 3. Consider the IMC shown in Fig. 2 (left). Let C = {s1, s2} and D =
{s5, s6, s7}. Here C is interactive closed since C ⊆ IS and Pred(C) = {s0} ⊆ IS.
Similarly, D is Markovian closed.

Definition 7 (Predecessor based reachability4). For s ∈ S and C,D ⊆ S,
the function Pbr : S × 2S × 2S → {0, 1} is defined as:

Pbr(s, C,D) =
{

1 if ∃s′ ∈ Post(s, τ, C) s.t. Post(s′, τ,D) �= ∅

0 otherwise.

Definition 8 (Weighted probability). For s, s′ ∈ S and C ⊆ S, the function
P : S × S × 2S → R≥0 is defined by:

P (s, s′, C) =

{
P (s,s′)
P (s,C) if s′ ∈ C and P (s, C) > 0
0 otherwise.

where P (s, s′) = R(s,s′)
E(s) and P (s, C) =

∑

s′∈C

P (s, s′).

Intuitively, P (s, s′, C) is the probability to move from state s to s′ under the
condition that s moves to some state in C.

Example 4. Consider the IMC shown in Fig. 2 (left). Let C = {s5, s6, s7}. Then
P (s3, s5, C) = 1

3 , P (s3, s6, C) = 2
3 , P (s4, s6, C) = 2

3 and P (s4, s7, C) = 1
3 .

Definition 9 (Weighted rate). For s ∈ S, and C,D ⊆ S, the function
wr : S × 2S × 2S → R≥0 is defined by:

wr(s, C,D) =
∑

s′∈C

P (s, s′, C) · R(s′,D)

where R(s′,D) =
∑

s′′∈D R(s′, s′′).

4 Note that Pbr is not really a probability, it is a Boolean indicator of whether certain
states are reached in a certain way or not.
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Intuitively, wr(s, C,D) is the (weighted) rate to move from s to some states in
D in two steps via states of C.

Example 5. Consider the example in Fig. 2 (left). Let C = {s5, s6, s7} and D =
{s8}. Then wr(s3, C,D) = P (s3, s5, C) · R(s5,D) + P (s3, s6, C) · R(s6,D) =
1
3 · 0+ 2

3 · 2 = 4
3 . Similarly, for D = {s9}, wr(s3, C,D) = P (s3, s5, C) ·R(s5,D)+

P (s3, s6, C) · R(s6,D) = 1
3 · 2 + 2

3 · 0 = 2
3 .

Definition 10 (IME). Equivalence R on S is an interactive Markovian equiv-
alence (IME) if we have:

1. ∀(s1, s2) ∈ R it holds: L(s1) = L(s2) and E(s1) = E(s2),
2. ∀C ∈ S/R s.t. C ∈ I(S), ∀D ∈ S/R and ∀s′, s′′ ∈ Pred(C) it holds:

Pbr(s′, C,D) = Pbr(s′′, C,D),
3. ∀C ∈ S/R s.t. C ∈ M(S), ∀D ∈ S/R and ∀s′, s′′ ∈ Pred(C) it holds:

wr(s′, C,D) = wr(s′′, C,D),
4. ∀C ∈ S/R s.t. C /∈ I(S) ∧ C /∈ M(S), we have |C| = 1.

States s1, s2 are IM related, denoted by s1 ≡ s2, if (s1, s2) ∈ R for some IME R.

The first condition asserts that s1 and s2 are equally labeled and have identical
exit rates. The second condition asserts that for any interactive closed equiva-
lence class C, the predecessor based reachability of going from any two predeces-
sors of C to D via any state in C must be equal. Similarly, the third condition
requires that for any Markovian closed equivalence class C, the weighted rate of
going from any two predecessors of C to D via any state in C must be equal.
Fourth condition says that if C is neither Markovian closed nor interactive closed
then the number of states in set C is 1.

s0 {p}

{q}s1 s2 {q}

s3 {p} s4 {r}

{q}s5 {q}s6 {q}s7

{r}s9

{p}s8

τ

τ

τ

τ

4
8

4
2

2

2
2

1

{p}s0

{q}s1

{p}s2 {r}s3

{q}s4

{p}s6{r}s5

τ

τ
τ

12
6

2
3

4
3

1 1

1

Fig. 2. An IMC I (left) and its quotient under an IME R (right)
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Example 6. For the closed IMC in Fig. 2 (left), the equivalence relation induced
by the partitioning {{s0}, {s1, s2}, {s3}, {s4}, {s5, s6, s7}, {s8}, {s9}} is an IME
relation.

Remark 2. It is easy to check that for any closed IMC where MS = ∅, the
definition of IME coincides with that of Kripke minimization equivalence (KME)
[25]. Similarly, for any closed IMC where IS = ∅, the definition of IME coincides
with that of weighted lumpability (WL) [24,26].

3.1 Quotient IMC

Definition 11. For an IME relation R on I, the quotient IMC I/R is defined
by I/R = (S/R, s′

0, Act, AP,→′,⇒′, L′) where:

– S/R is the set of all equivalence classes under R,
– s′

0 = C where s0 ∈ C = [s0]R,
– →′⊆ S/R × Act × S/R is defined as follows:

C∈I(S)∧Pbr(s′,C,D)=1, s′∈Pred(C)

C
τ−−→D

and C /∈I(S)∧∃s∈C,s′∈D:s
τ−−→ s′

C
τ−−→D

,
– ⇒′⊆ S/R × R≥0 × S/R is defined as follows:

C∈M(S)∧λ=wr(s′,C,D), s′∈Pred(C)

C
λ−−→D

and C /∈M(S)∧λ=R(s,D), s∈C

C
λ−−→D

,
– L′(C) = L(s), where s ∈ C.

Example 7. The quotient IMC for the Fig. 2 (left) under the IME relation with
partition {{s0}, {s1, s2}, {s3}, {s4}, {s5, s6, s7}, {s8}, {s9}} is shown in Fig. 2
(right).

Next, we show that any closed IMC I and its quotient under IME relation are
≡-related.

Definition 12. Any IMC I and its quotient I/R under IME R are ≡-related,
denoted by I ≡ I/R, if and only if there exists an IME relation R∗ defined on
the disjoint union of state space S � S/R such that

∀C ∈ S/R,∀s ∈ C =⇒ (s, C) ∈ R∗.

Theorem 1. Let I be a closed IMC and R be an IME on I. Then I ≡ I/R.

Proposition 1. Union of IMEs is not necessarily an IME.

In simple words, it is possible that R1,R2 are two IMEs on S s.t. R1 ∪ R2 is
not an IME. Intuitively, it means that the original closed IMC I can be reduced
in different ways.
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3.2 Repeated Minimization

Next, we show that IME can be used for repeated minimization of a closed IMC.
Intuitively, this means that if a quotient system I ′ has been obtained from a
closed IMC I under IME R, then it might still be possible to further reduce I ′

to I ′′ under some IME R′.

Example 8. Consider the example in Fig. 3 (left). IMC in Fig. 3 (middle) is
the quotient for the IME induced by the partition {{s0}, {s1, s2}, {s3, s4},
{s5}, {s6}, {s7}, {s8}}. IMC in Fig. 3 (right) is the quotient of the IMC Fig. 3 (mid-
dle) for the IME induced by the partition {{s′

0}, {s′
1}, {s′

2, s
′
3}, {s′

4}, {s′
5}, {s′

6}}. It
is easy to check that s3, s4, s5 in the original system cannot be merged in one shot,
since s1 can reach states labeled with atomic propositions a and b in two steps via
s3 and s4 respectively, but s2 cannot reach these states. This is no longer a problem
once s1 and s2 are merged as shown in Fig. 3 (middle) as s′

2, s
′
3 now have a single

predecessor, i.e., s′
1.

s0 {a}

s1 {b} s2 {b}

s3 {} s4 {} s5 {}

s6 {a} s7 {b} s8 {c}
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Fig. 3. Repeated minimization

Next, we investigate the relationship between IME and strong bisimulation
for IMCs.

3.3 IME vs. Bisimulation

Definition 13 (Strong bisimulation [15,16]). Let I = (S, s0, Act, AP,→,⇒, L)
be a closed IMC. An equivalence relation R ⊆ S × S is a strong bisimulation on
I if for any (s1, s2) ∈ R and equivalence class C ∈ S/R the following holds:

– L(s1) = L(s2),
– R(s1, C) = R(s2, C),
– Post(s1, τ, C) �= ∅ ⇔ Post(s2, τ, C) �= ∅.
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States s1 and s2 are strongly bisimilar, denoted s1 ∼ s2, if (s1, s2) ∈ R for some
strong bisimulation5 R.

Strong bisimulation is rigid as it requires that each individual step should be
mimicked.

Example 9. Consider the closed IMC shown in Fig. 2 (left). Here s5 and s7 are
bisimilar, i.e., s5 ∼ s7.

Proposition 2. ∼�≡ and ≡�∼.

This proposition says that bisimulation and IME are incomparable.

Example 10. Consider the equivalence class C = {s5, s6, s7} under ≡ for closed
IMC shown in Fig. 2 (left). Here s5 � s6 since s5 can reach a state labeled with
atomic proposition r while s6 cannot.

4 Weak Interactive Markovian Equivalence

In this section we define weak interactive Markovian equivalence (WIME).
WIME is a variant of IME that abstracts from stutter steps, also referred to
as internal or non-observable steps. Note that weak equivalence relations are
important for system synthesis as well as system analysis. To compare IMCs
that model a given system at different abstraction levels, it is often too demand-
ing to require a statewise equivalence. Instead, a state in an IMC at a high level
of abstraction can be modeled by a sequence of states in the more concrete IMC.
Secondly, by abstracting from internal steps, quotient IMCs are obtained that
may be significantly smaller than the quotient under corresponding strong equiv-
alence relation. We first define some auxiliary concepts followed by the definition
of WIME.

Definition 14 (∗ reachability). Let s, s′ ∈ S. Then s τ∗−−→ s′ denote an alter-
nating sequence of states and τ transitions, i.e., π = s01

τ−−→ s02
τ−−→ s03 . . . s0n,

where n ≥ 1, s01 = s, s0n = s′ and L(s0i) = L(s0i+1), 1 ≤ i < n.

Remark 3. Note that if n = 2 then s τ∗−−→ s′ equals s τ−−→ s′ where L(s) = L(s′).
Similarly, if n = 1 then we just have s without any outgoing τ labeled transitions.

Definition 15 (+ reachability). Let s, s′ ∈ S. Then s τ+−−−→ s′ denote an alter-
nating sequence of states and τ transitions, i.e., π = s τ−−→ s1

τ−−→ s2 . . . sn︸ ︷︷ ︸
n

τ−−→ s′,

where n ≥ 0 and L(s) = L(si), i = 1, . . . , n.

Remark 4. Note that if n = 0 then s τ+−−−→ s′ equals s τ−−→ s′, i.e., one step reach-
ability in IMC. For s τ+−−−→ s′, the labeling of s and s′ need not be the same but
s and all the intermediate states should be equally labeled.
5 Note that the definition of strong bisimulation has been slightly modified to take

into account the state labels.
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Example 11. Consider the closed IMC shown in Fig. 4 (left). Here s7
τ+−−−→ s8

since s7 can reach s8 in two steps such that s7 and all the intermediate states
are equally labeled, i.e., L(s7) = L(s6).

Definition 16 (Weak predecessor based reachability6). For s ∈ S and
C,D ⊆ S, the function WPbr : S × 2S × 2S → {0, 1} is defined as:

WPbr(s, C,D) =

{

1 if ∃s′ ∈ Post(s, τ, C), s′′ ∈ D s.t. s′ τ+−−−→ s′′

0 otherwise.

Definition 17 (WIME). Equivalence R on S is a weak interactive Markovian
equivalence (WIME) if we have:

1. ∀(s1, s2) ∈ R it holds: L(s1) = L(s2),
2. ∀C ∈ S/R s.t. C ∈ I(S), ∀D ∈ S/R and ∀s′, s′′ ∈ Pred(C) it holds:

WPbr(s′, C,D) = WPbr(s′′, C,D),
3. ∀C ∈ S/R s.t. C ∈ M(S), ∀D ∈ S/R and ∀s′, s′′ ∈ Pred(C) it holds:

wr(s′, C,D) = wr(s′′, C,D) and ∀s1, s2 ∈ C : E(s1) = E(s2),
4. ∀C ∈ S/R s.t. C /∈ I(S) ∧ C /∈ M(S), we have |C| = 1.

States s1, s2 are WIM related, denoted by s1 ∼= s2, if (s1, s2) ∈ R for some
WIME R.

The first condition asserts that s1 and s2 are equally labeled. The second con-
dition asserts that for any interactive closed equivalence class C, the weak pre-
decessor based reachability of going from any two predecessors of C to D must
be equal. Similarly, the third condition requires that for any Markovian closed
equivalence class C, the weighted rate of going from any two predecessors of C
to D via any state in C must be equal and all the states in C need to have
identical exit rates. The last condition says that if C is neither Markovian closed
nor interactive closed then the number of states in set C is 1.

Example 12. For the closed IMC shown in Fig. 4 (left), the equivalence relation
induced by the partitioning {{s0}, {s1, s2}, {s3}, {s4}, {s5, s6, s7}, {s8}, {s9}} is
a WIME relation.

4.1 Quotient IMC

Definition 18. For WIME relation R on I, the quotient IMC I/R is defined
by I/R = (S/R, s′

0, Act, AP,→′,⇒′, L′) where:

– S/R is the set of all equivalence classes under R,
– s′

0 = C where s0 ∈ C = [s0]R,
– →′⊆ S/R × Act × S/R is defined as follows:

C∈I(S)∧WPbr(s′,C,D)=1, s′∈Pred(C)

C
τ−−→D

and C /∈I(S)∧∃s∈C,s′∈D:s
τ−−→ s′

C
τ−−→D

,

6 Note that WPbr is not really a probability, it is a Boolean indicator of whether
certain states are reached in a certain way or not.
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– ⇒′⊆ S/R × R≥0 × S/R is defined as follows:
C∈M(S)∧λ=wr(s′,C,D), s′∈Pred(C)

C
λ−−→D

and C /∈M(S)∧λ=R(s,D), s∈C

C
λ−−→D

,
– L′(C) = L(s), where s ∈ C.

Example 13. The quotient IMC for the Fig. 4 (left) under the WIME rela-
tion with partition {{s0}, {s1, s2}, {s3}, {s4}, {s5, s6, s7}, {s8}, {s9}} is shown in
Fig. 4 (right).
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Fig. 4. An IMC I (left) and its quotient under a WIME R (right)

Definition 19. Any IMC I and its quotient I/R under WIME R are ∼=-related,
denoted by I ∼= I/R, if and only if there exists a WIME relation R∗ defined on
the disjoint union of state space S � S/R such that

∀C ∈ S/R,∀s ∈ C =⇒ (s, C) ∈ R∗.

Theorem 2. Let I be a closed IMC and R be a WIME on I. Then I ∼= I/R.

Proposition 3. Union of WIMEs is not necessarily a WIME.

Remark 5. WIMEs can be used for repeated minimization of a closed IMC.

4.2 WIME vs. Weak Bisimulation

Definition 20 (Weak bisimulation [16]). Let I = (S, s0, Act, AP,→,⇒, L) be a
closed IMC. An equivalence relation R ⊆ S × S is a weak bisimulation on I if
for any (s1, s2) ∈ R and equivalence class C ∈ S/R the following holds:

– L(s1) = L(s2),
– ∃s′ ∈ C : s1

τ+−−−→ s′ ⇔ ∃s′′ ∈ C : s2
τ+−−−→ s′′,
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– s1
τ∗−−→ s′ ∧ s′ ∈ MS ⇒ s2

τ∗−−→ s′′ ∧ s′′ ∈ MS ∧ R(s′, C) = R(s′′, C) for some
s′′ ∈ S.

States s1 and s2 are weakly bisimilar, denoted s1 ≈ s2, if (s1, s2) ∈ R for some
weak bisimulation7 R.

Proposition 4. ≈�∼= and ∼=�≈.

This proposition says that bisimulation and WIME are incomparable.

Example 14. Consider the equivalence class C = {s5, s6, s7} under ∼= for closed
IMC shown in Fig. 4 (left). Here s5 �≈ s6 since s5 can reach a state labeled with
atomic proposition r while s6 cannot do it in one or more transitions.

Theorem 3. ≡ is strictly finer than ∼=.

This theorem asserts that WIME can achieve a larger state space reduction as
compared to IME.

Example 15. Consider Fig. 4 (left), here three q-labeled states, i.e., s5, s6 and
s7 can be merged under WIME but cannot be merged under IME. For C =
{s5, s6, s7}, Pred(C) = {s3, s4}. From s3 we can reach both s8 and s9 in two
steps via C but from s4 we can only reach s9 in two steps via C but s8 cannot
be reached in two steps. This means that condition 2 of IME is not satisfied and
therefore s5, s6 and s7 cannot be merged under IME.

5 Preservation of Time Bounded Reachability

Let I be a closed IMC with state space S, initial state s0, and let G ⊆ S be
a set of goal states and I ⊆ R≥0 a time interval with rational bounds. The
time-bounded reachability event �IG is defined as:

�IG = {π ∈ PathsI
ω|∃t ∈ I.∃s′ ∈ π@t.s′ ∈ G}

This set contains all infinite paths starting in state s0 that hit a state in G at
some time point that lies in the interval I. In other words we are interested in
the probability of the event �IG. Since IMC supports non-determinism, we need
to consider the probability of �IG relative to the specific resolution of the non-
determinism in the closed IMC. More formally, we are interested in obtaining
the maximum (resp. minimum) probability of �IG over all possible total-time
dependent positional schedulers of a closed IMC I.

pmax
I (I,G) = supD∈AdvT T DP (I)PrD(�IG)

Minimum time-bounded reachability properties are defined in an analogous
manner.
7 Note that the definition of weak bisimulation has been slightly modified to take into

account the state labels.
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Next, we show that maximum (resp. minimum) time-bounded reachability
probabilities are preserved under IME quotienting. In principle, this result allows
performing model checking on the quotient IMC structure provided that we can
obtain it in an algorithmic manner.

Theorem 4. Let I be a closed IMC with state space S and R be an IME on
I. Then for any set of goal states G ⊆ S and time interval with rational bounds
I ⊆ R≥0:

pmax
I (I,G) = pmax

I/R
(I,G)

pmin
I (I,G) = pmin

I/R
(I,G)

Corollary 1. IME preserves transient state probabilities.

Next, we show that time-bounded reachability probabilities are also preserved
under WIME quotienting. Intuitively, this says that hiding of stutter steps does
not have any affect on reachability probabilities.

Theorem 5. Let I be a closed IMC with state space S and R be a WIME on
I. Then for any set of goal states G ⊆ S and time interval with rational bounds
I ⊆ R≥0:

pmax
I (I,G) = pmax

I/R
(I,G)

pmin
I (I,G) = pmin

I/R
(I,G)

Corollary 2. WIME preserves transient state probabilities.

6 Conclusions and Future Work

This paper presented two equivalence relations for closed IMC models. We have
shown that smaller models obtained under these equivalences can be used for
verification as they preserve time-bounded reachability properties. Our work
can be extended in several directions. We plan to investigate the preservation of
deterministic timed automata (DTA) [1] and metric temporal logic (MTL) [19,
23] properties under IME (resp. WIME) quotienting. We also plan to investigate
the relationship between IME and trace semantics for IMCs [28]. It would be
interesting to study and characterize the class of systems where IME can provide
better state space reductions compared to bisimulation. Another direction is to
develop and implement an efficient quotienting algorithm and validate it on
some case studies. Finally, it would be interesting to check if a similar technique
can be used for state space reduction of Markov automata (MA) [13]. Markov
automata (MA) constitute a compositional behavioral model for continuous-time
stochastic and non-deterministic systems.
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Abstract. Resequencing of customers during the service process results
in hard to analyze delay distributions. A set of models with various ser-
vice and resequencing policies have been analyzed already for memoryless
arrival, service and resequencing processes with an intensive use of trans-
form domain descriptions. In case of Markov modulated arrival, service
and resequencing processes those methods are not applicable any more.
In a previous work we analyzed the Markov modulated case with HOQ-
FIFO-FIFO policy (head of queue customer of the higher priority FIFO
queue is moved to resequencing FIFO queue). In this work we investigate
if the approach remains applicable for different service discipline for the
HOQ-FIFO-LIFO policy.

It turns out that the analysis of the new service policy requires the
solution of a coupled quadratic matrix equations which were separated
in the HOQ-FIFO-FIFO case.

Keywords: Resequencing buffer · Delay analysis · Markov modulated
arrival · Service process

1 Introduction

In models with resequencing delay distributions are of primary interest. Usu-
ally resequencing is due to some disruptive events but it also may be one of
the features, which are inherent to the system (for models in the context of
queueing theory see, for example, the reviews [2,3]). With the evolution and the
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widespread use of matrix analytic methods [4–7], there is a belief that the more
and more Markov chain based analysis of stochastic models with memoryless
components can be extended for the same problem with modulating Markov
environment. The transform domain delay analysis of the resequencing buffer
models in [9] was an example of notoriously hard extension with modulating
Markov environment. For the HOQ-FIFO-FIFO policy, which is one of the poli-
cies studied in [9], the analysis with modulating Markov environment is presented
in [10].

This work is essentially a methodological study to understand if the method-
ology developed in [10] is general enough for applying in other queueing models,
particularly for the same resequencing buffer model but with HOQ-FIFO-LIFO
policy.

The rest of the paper is structured as follows. In Sect. 2 the system descrip-
tion is provided. In the next section we summarize the results concerning the
joint stationary distribution, which, in fact, coincides with the one for the sys-
tem from [10]. Section 4 provides the new contribution of the paper, which is
the waiting time distribution for the HOQ-FIFO-LIFO policy. Some numerical
experiments are provided in Sect. 5 and the paper is concluded with Sect. 6.

2 Model Description

The system under consideration is a single server queueing system with two infi-
nite buffers: the regular buffer (or, simply, buffer) and the resequencing buffer.
Regular customers (or, simply, customers) arrive at the system and occupy
one place in the regular buffer. Resequencing signals arrive at the system accord-
ing to a resequencing process. If the buffer is not empty, then, upon arrival, each
resequencing signal moves one customer from the regular buffer to the resequenc-
ing buffer and itself leaves the system, otherwise it leaves the system without
having any effect on it. A single server serves customers from both queues. Upon
service completion one customer from the regular buffer goes to the server and
only if there are no regular customers in the buffer, one customer from rese-
quencing buffer enters the server. No service interruption is allowed. The HOQ-
FIFO-LIFO policy means that the resequencing signal moves the oldest waiting
regular customer to the resequencing buffer (Head Of Queue, HOQ), the service
policy of the regular buffer is FIFO and of the resequencing buffer is LIFO.

Since the customers from the resequencing buffer are served if and only if the
regular buffer is empty, the considered system is a variant of a priority queue
with regular buffer customers as high priority customers and resequencing buffer
customers as low priority customers.

We assume that regular customers arrive according to a MAP process with
generator matrices (A0,A1) and resequencing signals arrive according to a MAP
with (H0,H1). The service process is a MAP with (S0,S1). Let AJ = A0 +
A1, SJ = S0 + S1, and HJ = H0 + H1 denote the phase processes of the
associated MAPs (see e.g. [5] for details). The block structure of the Markov
chain representing the number of high and low priority customers in the system
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is depicted in Fig. 1. The block represents the set of states with the same number
of high and low priority customers and with different phases of the MAPs. The
letters on the figures describe

– arrival of a customer: A = A1 ⊗ I ⊗ I,
– service of a customer: S = I ⊗ S1 ⊗ I,
– resequencing of a customer: H = I ⊗ I ⊗ H1,
– phase change when resequencing is possible: L = A0 ⊕ S0 ⊕ H0,
– phase change when resequencing is not possible: L′ = A0 ⊕ S0 ⊕ HJ,
– phase change when resequencing is not possible and the service process is

stopped: L0 = A0 ⊗ I ⊕ HJ = A0 ⊗ I ⊗ I + I ⊗ I ⊗ HJ,

where ⊗ (⊕) denotes the Kronecker product (sum) and I the identity matrix of
appropriate size. The phase of the service process is frozen (does not change)
when the system is empty.

The main goal of the analysis is to evaluate the stationary waiting time
distribution of a regular customer arriving at the system.

3 Joint Stationary Distribution of the Number
of Customers

Before deriving the expressions for the stationary waiting time distribution one
has to obtain expressions for joint stationary distribution of number of customers
in regular buffer, resequencing buffer and phases of regular and resequencing
arrivals and service process. Since the service order does not affect the number
of customers in the system, the joint stationary distribution in the HOQ-FIFO-
LIFO system is identical with the one of the HOQ-FIFO-FIFO system studied
in [10]. In this section we introduce the notation and repeat results from [10],
which will be used later on.

3.1 Censored Process

To simplify the analysis and obtain a Markov chain with a regular structure we
censor the Markov chain in Fig. 1 for the cases when the server is busy. The
structure of the censored Markov chain is depicted in Fig. 2. The transitions of
upper left block of the censored chain is obtained as

L′′ = L′ −SL−1
0 A = (A0 ⊕S0 ⊕HJ)− (I ⊗S1 ⊗I)(A0 ⊗I ⊕HJ)−1(A1 ⊗I ⊗I).

3.2 QBD Representation of the Censored Process

Following, for example, the discussion of Sect. 13.1 in [5] we can represent the
censored Markov chain as QBD process where the levels are composed by the set
of states where the number of regular customers is the same (these states form
the columns of blocks in Fig. 2). The generator Q of the censored process can be
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represented in hyper-block tridiagonal form, where the hyper-block refers to the
set of (infinitely many) states on the same level.

Q =

⎛
⎜⎜⎜⎜⎜⎝

L
′
F 0 0 0 · · ·

B L F 0 0 · · ·
0 B L F 0 · · ·
0 0 B L F · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

,

and, due to the fact that the number of states within each level is infinite,
matrices L

′, L, B, F have infinite rows and columns which are associated with
the blocks in Fig. 2.

L
′
=

⎛
⎜⎜⎜⎝

L′′ 0 0 · · ·
S L′ 0 · · ·
0 S L′ · · ·
.
.
.

.

.

.
.
.
.

. . .

⎞
⎟⎟⎟⎠, L =

⎛
⎜⎜⎜⎝

L 0 0 · · ·
0 L 0 · · ·
0 0 L · · ·
.
.
.

.

.

.
.
.
.

. . .

⎞
⎟⎟⎟⎠, F =

⎛
⎜⎜⎜⎝

A 0 0 · · ·
0 A 0 · · ·
0 0 A · · ·
.
.
.

.

.

.
.
.
.

. . .

⎞
⎟⎟⎟⎠, B =

⎛
⎜⎜⎜⎝

S H 0 0 · · ·
0 S H 0 · · ·
0 0 S H · · ·
.
.
.

.

.

.
.
.
.

.

.

.
. . .

⎞
⎟⎟⎟⎠.

In the censored Markov chain we denote the stationary probability vector of
the set of states with i regular and j delayed customers by πij (i, j ≥ 0) and
compose the following row vectors

pi = (πi,0, πi,1, πi,2, πi,3, . . . ), i ≥ 0,

p = (p0,p1,p2,p3, . . . ).

Henceforth we consider the distribution p, which is the solution of the linear
infinite system of equations pQ = 0, p1 = 1, to be known.
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3.3 Distribution Right After Customer Arrival

Notice that as MAP arrivals do not see time averages (that is PASTA property
does not hold) one has to calculate stationary probabilities π̃ij that after a
customer arrival there are i (i ≥ 1) customer in the regular buffer and j (j ≥ 0)
in the resequencing buffer. Following the same argument as in [8], we can write

π̃ij =
1
λ

πi−1,jA, i ≥ 1, j ≥ 0, and π̃00 =
1
λ

πidleA.

Here πidle is the stationary distribution of the block of states representing idle
server (the left most block in Fig. 1). It is found (see the details in [10, Sect. 3.6])
from the system of linear equations πidle(L0 − AT−1

0 S) = 0, πidle1 = 1 − λ/μ.
As usual, λ denotes the average arrival rate and μ denotes the average service
rate.

4 Stationary Waiting Time Distribution

The waiting time (W ) is understood here, as usual, as the time lapse, starting
from the instant when regular customer arrives at the system up to the instant
when it enters server. Its stationary distribution will be evaluated in terms of
Laplace–Stieltjes transform ω(s) = E(e−sW ). Regular customer may enter the
server either from the regular buffer or from the resequencing buffer and thus
its stationary waiting time distribution can be computed as

ω(s) = E(e−sW ) = ωH(s) + ωL(s)

= E(e−sW I{served from regular buffer}) + E(e−sW I{served from resequencing buffer})

where I{a} is the indicator of event a.
It is clear that under HOQ-FIFO-LIFO policy the stationary waiting time

distribution of the regular customer that receives service from regular buffer
coincides with that under the HOQ-FIFO-FIFO policy. Thus we will not repeat
these derivations here and refer the reader for the details to the [10, Sect. 4.1].
Henceforth we consider ωH(s) to be known.

4.1 Stationary Waiting Time Distribution of the Customer that
Receives Service from Resequencing Buffer

For i ≥ j ≥ 0 and k > 0 let F(t, i, j, k) be the matrix (according to the initial and
final phases of the MAPs (A0,A1), (S0,S1) and (H0,H1)) of the probabilities
that k customers arrive, i − j customers are served and j are moved to the
resequencing buffer in time t, when the initial number of customers in the buffer
is larger than i. For the Laplace transform F̃(s, i, j, k) =

∫
t
e−st

F(t, i, j, k)dt we
have

F̃(s, 0, 0, 0) = (sI − L)−1 = L(s), (1)
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and otherwise

F̃(s, i, j, k) = I{i>j}L(s)SF̃(s, i − 1, j, k) + I{j>0}L(s)HF̃(s, i − 1, j − 1, k) (2)

+ I{k>0}L(s)AF̃(s, i, j, k − 1),

where L(s) is defined in (1). An intuitive explanation of the first term of (2)
is as follows. There is no arrival, service and resequencing up to time τ (L(s))
than an service occurs (S) and than i − 1 services, j resequencing and k arrival
occur in (τ, t) (F̃(s, i − 1, j, k)). The other terms follow the same pattern. The
cases that the tagged customer moves to the resequencing buffer is described by
F̃(s, i, j, k)H.

Similarly, let W̃(s, i, j) be the matrix (according to the initial and final phases
of the MAPs (A0,A1), (S0,S1) and (H0,H1)) Laplace–Stieltjes transform of
the waiting time of a customer which starts its life in the resequencing buffer
in LIFO position j, when the number of customers in the regular buffer is i.
The LIFO position is j = 1 for the customer which arrived most recently to the
resequencing buffer and all existing LIFO positions are increased by one when a
new customer arrives to the resequencing buffer. For i ≥ 0, j ≥ 1, we have

W̃(s, i, j) = I{i>0}L(s)SW̃(s, i − 1, j) + I{i=0}L(s)SW̃(s, 0, j − 1) (3)

+ I{i>0}L(s)HW̃(s, i − 1, j + 1) + I{i=0}L(s)HW̃(s, 0, j) + L(s)AW̃(s, i + 1, j),

where W̃(s, 0, 0) = I. The solution of W̃(s, i, j) is not trivial. We search for the
solution in product form W̃(s, i, j) = G̃(s)iĜ(s)j . The product from solution
satisfies (3) for i ≥ 0, j ≥ 1 if

sĜ(s) − LĜ(s) = S + HĜ(s) + AG̃(s)Ĝ(s), (4)

sG̃(s) − LG̃(s) = S + HĜ(s) + AG̃2(s), (5)

which are obtained from (3) by substituting the product form at i + 1 = j = 1
and i = j + 1 = 1. The Eqs. (4) and (5) form a pair of coupled matrix quadratic
equations whose minimal non-negative solution can be computed by efficient
iterative numerical methods, but do not exhibit closed form result. A simple
linearly convergent iterative method is as follows.

4.2 Iterative Solution of the Coupled Matrix Equations

The system of Eqs. (4) and (5) can be re-written as

Ĝ(s) =
(
sI − L − H − AG̃(s)

)−1

S, (6)

G̃(s) =
(
sI − L − AG̃(s)

)−1 (
S + HĜ(s)

)
. (7)
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In order to find Ĝ(s) and G̃(s) for the given value of s, we start with G̃0(s) = 0.
Then for i = 1, 2, . . . the next two iterative steps are performed until the con-
vergence is reached

Ĝi(s) =
(
sI − L − H − AG̃i−1(s)

)−1

S, (8)

G̃i(s) =
(
sI − L − AG̃i−1(s)

)−1 (
S + HĜi(s)

)
. (9)

4.3 Delay Analysis of Customer Served from the Resequencing
Buffer

Based on the previously computed matrix Laplace–Stieltjes transforms, the wait-
ing time of the customer which enters server from the resequencing buffer can
be computed as

ωL(s) = E(e−sW I{served from resequencing buffer})

=
∞∑

i=1

∞∑
j=0

π̃ij

i−1∑
�=0

∞∑
k=0

F̃(s, i − 1, �, k)HG̃(s)kĜ(s)1

=
1
λ

∞∑
i=0

∞∑
j=0

πi,jA
i∑

�=0

∞∑
k=0

F̃(s, i, �, k)HG̃(s)kĜ(s)1. (10)

The main part of the analysis of ωL(s) is deferred to the next section. But
in the course of the subsequent derivations we will make use of several quanti-
ties which are better introduced by considering terms of ωL(s) with i = 0. We
represent ωL(s) as

ωL(s) = ωi>0
L (s) + ωi=0

L (s)

=
1
λ

∞∑
i=1

∞∑
j=0

πi,jA
i∑

�=0

∞∑
k=0

F̃(s, i, �, k)HG̃(s)kĜ(s)1

+
1
λ

∞∑
j=0

π0,jA
∞∑

k=0

F̃(s, 0, 0, k)︸ ︷︷ ︸
(L(s)A)kL(s)

HG̃(s)kĜ(s)1. (11)

In what follows we will need the expressions for probability generating func-
tions π̂0(z) =

∑∞
m=0 π0,mzm and π̂i(z) =

∑∞
j=0 πijz

j , i ≥ 1, which were obtained
in [10]:

π̂0(z) = π0,0(L′ − L′′ +
1
z
S)(AG(z) + L′ +

1
z
S)−1, (12)

π̂i(z) = π̂i−1(z)R(z), i ≥ 1, (13)

where R(z) is the minimal non-negative solution of the quadratic matrix equa-
tion

A + R(z)L + R
2
(z) (zH + S) = 0. (14)
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Derivation of ωi=0
L (s). The methodology from [10], which we apply here in

order to obtain the stationary waiting time distribution, is based on the technique
which can be referred to as the Kronecker expansion (see [1,11]). It is based on
the identity vec(ABC) = (CT ⊗ A)vec(B). In this identity vec denotes the
column stacking vector operator, which transforms a matrix of size n × m into
a vector of size nm × 1. In all further derivations we will make extensive use of
the Kronecker expansion, which will appear in seemingly different but, in fact,
equal forms (for example, vec(AB) = (IT ⊗ A)vec(B) = (BT ⊗ A)vec(I) =
(BT ⊗ I)vec(A)).

Coming back to ωi=0
L (s) and using the identity vec(ABC) = (CT ⊗A)vec(B),

one obtains

ωi=0
L (s) =

1
λ

∞∑
j=0

∞∑
k=0

π0,jA(L(s)A)kL(s)HG̃(s)kĜ(s)1

=
1
λ

∞∑
j=0

∞∑
k=0

(
1T Ĝ(s)

T
G̃(s)kT ⊗ π0,jA(L(s)A)k

)
vec(L(s)H)

and

ωi=0
L (s) =

1
λ

(
1T Ĝ(s)T ⊗ 1

)

·
∞∑

j=0

(I ⊗ π0,j)

︸ ︷︷ ︸
I⊗π̂0(1)

(I ⊗ A)
∞∑

k=0

(
G̃(s)kT ⊗ (L(s)A)k

)

︸ ︷︷ ︸
(I−G̃(s)T ⊗L(s)A)−1

vec(L(s)H)

=
1
λ

(
1T Ĝ(s)T ⊗ 1

)
(I ⊗ π̂0(1)) (I ⊗ A)

(
I − G̃(s)T ⊗ L(s)A

)−1

· vec(L(s)H)

=
1
λ

(
1T Ĝ(s)T ⊗ π̂0(1)A

) (
I − G̃(s)T ⊗ L(s)A

)−1

vec(L(s)H).

Derivation of ωi>0
L (s). Having found the expression for ωi=0

L (s) the last
unknown quantity in ωL(s) is ωi>0

L (s). In the following we split expression (10)
for ωi>0

L (s) into the following two terms:

ωi>0
L (s) = ωk=0

L (s) + ωk>0
L (s),

where ωk=0
L (s) includes only terms of ωi>0

L (s) with k = 0 and ωk>0
L (s) all other

terms. Further we obtain the expressions for each of them individually.
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Derivation of ωk=0
L (s). In order to compute ωk=0

L (s) we perform the Kronecker
expansion and apply the relation vec(ABC) = (CT ⊗ A)vec(B) two times. We
have

ωk=0
L (s) =

1

λ

∞∑

i=1

∞∑

j=0

πi,jA
i∑

�=0

F̃(s, i, �, 0)H
︸ ︷︷ ︸

F̂k=0(s,i)

Ĝ(s)1

=
1

λ

∞∑

i=1

∞∑

j=0

πi,jAF̂k=0(s, i)Ĝ(s)1=
1

λ

∞∑

i=1

∞∑

j=0

(
1T Ĝ(s)

T ⊗πi,jA
)

vec(F̂k=0(s, i))

=
1

λ

(
1T Ĝ(s)

T ⊗ 1

) ∞∑

i=1

∞∑

j=0

(
I ⊗ πi,j

)(
I ⊗ A

)
vec(F̂k=0(s, i))

=
1

λ

(
1T Ĝ(s)

T ⊗ 1

) ∞∑

i=1

∞∑

j=0

[
vec(F̂k=0(s, i))

T ⊗
(

I⊗ πi,j

)]

︸ ︷︷ ︸
M(s)

vec

(
I ⊗ A

)
.

Here the only unknown quantity is M(s). We will show now that the matrix
M(s) can be expressed in the form M(s) = M1(s) + M(s)M2(s), where M1(s)
and M2(s) are known matrices. Thus for any given s it can be computed as
M(s) = (I − M2(s))−1M1(s). Summing over j ≥ 0 (remembering (13)) and
extracting the term with i = 1, one can write

M(s) =
∞∑

i=1

∞∑
j=0

[
vec(F̂k=0(s, i))T ⊗

(
I⊗ πi,j

)]

=
∞∑

i=1

[
vec(F̂k=0(s, i))T ⊗

(
I⊗ π̂i(1)

)]

= vec(F̂k=0(s, 1))T ⊗
(

I⊗ π̂1(1)
)

+
∞∑

i=2

vec(F̂k=0(s, i))T ⊗
(

I⊗ π̂i(1)
)

. (15)

In order to obtain the expression for the only unknown quantity vec(F̂k=0(s, i))T

we revisit the definition of F̂k=0(s, i). By applying (2) when i > 0, we obtain
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F̂k=0(s, i) =
i∑

�=0

F̃(s, i, �, 0)H

=
i−1∑
�=1

F̃(s, i, �, 0)H + F̃(s, i, 0, 0)H + F̃(s, i, i, 0)H

=
i−1∑
�=1

L(s)SF̃(s, i−1, �, 0)H +
i−1∑
�=1

L(s)HF̃(s, i−1, � − 1, 0)H

+ L(s)SF̃(s, i−1, 0, 0)H + L(s)HF̃(s, i−1, i−1, 0)H

= L(s)S
i−1∑
�=0

F̃(s, i−1, �, 0)H + L(s)H
i−1∑
�=0

F̃(s, i−1, �, 0)H

= L(s) (S + H)
i−1∑
�=0

F̃(s, i−1, �, 0)H ,

or, equivalently, in terms of F̂k=0(s, i):

F̂k=0(s, i) = L(s) (S + H) F̂k=0(s, i − 1) , i ≥ 1. (16)

By applying vec operator to (16) one finds the following expression for
vec(F̂k=0(s, i))T , i ≥ 1:

vec(F̂k=0(s, i))T =vec(F̂k=0(s, i − 1))T

[
I ⊗ L(s) (S + H)

]T

, i ≥ 1. (17)

By substituting the (17) into (15) and remembering that according to (13)
π̂i(1) = π̂i−1(1)R(1), we find the sought-for representation for M(s):

M(s) = vec(F̂k=0(s, 1))T ⊗
(

I⊗ π̂1(1)
)

+
∞∑

i=1

[
vec(F̂k=0(s, i))T ⊗

(
I⊗ π̂i(1)

)]

=

⎛
⎜⎝vec(F̂k=0(s, 0)︸ ︷︷ ︸

L(s)H

)T

[
I ⊗ L(s) (S + H)

]T

⎞
⎟⎠⊗

(
I⊗ π̂0(1)R(1)

)

+
∞∑

i=2

[
vec(F̂k=0(s, i − 1))T

[
I ⊗ L(s) (S + H)

]T

⊗
(

I⊗ π̂i(1)
)]
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=

(
vec(L(s)H)T

[
I ⊗ L(s) (S + H)

]T
)

⊗
(

I⊗ π̂0(1)R(1)
)

+
∞∑

i=1

[
vec(F̂k=0(s, i))T

[
I ⊗ L(s) (S + H)

]T

⊗
(

I⊗ π̂i(1)
)(

I⊗ R(1)
)]

=

(
vec(L(s)H)T

[
I ⊗ L(s) (S + H)

]T
)

︸ ︷︷ ︸
M1(s)

⊗
(

I⊗ π̂0(1)R(1)
)

+ M(s)
[(

I ⊗ L(s) (S + H)
)T

⊗
(

I⊗ R(1)
)]

︸ ︷︷ ︸
M2(s)

.

Derivation of ωk>0
L (s). Now we tackle the most complex case – the analysis of

ωk>0
L (s). For ωk>0

L (s) the Kronecker expansion has to be applied multiple times.
At first we recall that the definition of ωk>0

L (s) is

ωk>0
L (s) =

1
λ

∞∑
i=1

∞∑
j=0

πi,jA
i∑

�=0

∞∑
k=1

F̃(s, i, �, k)HG̃(s)k

︸ ︷︷ ︸
F(s,i)

Ĝ(s)1.

Let us now consider term F(s, i). Applying vec operator to F(s, i) according to
the following Kronecker expansion

vec(ABCD) = (DT ⊗ A)vec(BC) = (vec(BC)T ⊗ (DT ⊗ A))vec(I)

= (vec(I)T ⊗ I ⊗ I)(C ⊗ BT ⊗ DT ⊗ A)vec(I),

one gets

vec(F(s, i))

= (vec(I)T ⊗ I ⊗ I)
i∑

�=0

∞∑
k=1

(
G̃(s)k ⊗ HT ⊗ IT ⊗ F̃(s, i, �, k)

)

︸ ︷︷ ︸
F⊗(s,i)

vec(I)

= (vec(I)T ⊗ I ⊗ I)F⊗(s, i)vec(I).
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By considering the expression for F(s, i) and using (2), when i > 0 and k > 0,
we obtain

F(s, i) =
i∑

�=0

∞∑
k=1

F̃(s, i, �, k)HG̃(s)k

=
i−1∑
�=0

∞∑
k=1

L(s)SF̃(s, i−1, �, k)HG̃(s)k

+
i−1∑
�=0

∞∑
k=1

L(s)HF̃(s, i−1, �, k)HG̃(s)k

+
i∑

�=0

∞∑
k=0

L(s)AF̃(s, i, �, k)HG̃(s)k+1. (18)

Having such expression for F(s, i) one can write out relation for the term
F⊗(s, i) in the following form:

F⊗(s, i)

=
[(

I ⊗ I ⊗ I ⊗ L(s)S
)

+
(

I ⊗ I ⊗ IT ⊗ L(s)H
)]

︸ ︷︷ ︸
L(s)

F⊗(s, i−1)

+
(
G̃(s) ⊗ I ⊗ I ⊗ L(s)A

)

︸ ︷︷ ︸
K(s)

(
F⊗(s, i) + F̂⊗

k=0(s, i)
)

= [I − K(s)]−1[L(s)F⊗(s, i−1) + K(s)F̂⊗
k=0(s, i)], (19)

where we have introduced the notation

F̂⊗
k=0(s, i) =

i∑
�=0

(
I ⊗ HT ⊗ IT ⊗ F̃(s, i, �, 0)

)
, i ≥ 0.

From (2) it follows that

F⊗(s, 0) =
∞∑

k=1

(
G̃(s)k ⊗ HT ⊗ I ⊗ (L(s)A)kL(s)

)

=
[
I −

(
G̃(s) ⊗ I ⊗ I ⊗ L(s)A

)]−1(
G̃(s) ⊗ HT ⊗ I ⊗ L(s)AL(s)

)
,

and F̂⊗
k=0(s, 0) = I ⊗ HT ⊗ IT ⊗ L(s). For i ≥ 1 from (16) we have

F̂⊗
k=0(s, i) = L(s) F̂⊗

k=0(s, i − 1) , i ≥ 1.
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Now we go back to ωk>0
L (s) and apply vec operator multiple times in the

following way:

ωk>0
L (s) =

1
λ

∞∑
i=1

∞∑
j=0

πi,jAF(s, i)Ĝ(s)1

=
1
λ

∞∑
i=1

∞∑
j=0

(
1T Ĝ(s)

T ⊗ πi,jA
)

vec

(
F(s, i)

)

=
1
λ

(
1T Ĝ(s)

T ⊗ 1
) ∞∑

i=1

∞∑
j=0

(
I ⊗ πi,j

)(
I ⊗ A

)
vec

(
F(s, i)

)

=
1
λ

(
1T Ĝ(s)

T ⊗ 1
) ∞∑

i=1

∞∑
j=0

[
vec

(
F(s, i)

)T

⊗
(

I⊗ πi,j

)]
vec

(
I ⊗ A

)

=
1
λ

(
1T Ĝ(s)

T ⊗ 1
) ∞∑

i=1

∞∑
j=0

[
vec(I)T F⊗(s, i)T (vec(I)T ⊗ I ⊗ I)T

⊗
(

I ⊗ πi,j

)]
vec

(
I ⊗ A

)

=
1
λ

(
1T Ĝ(s)

T ⊗ 1
)[

vec(I)T ⊗ I

] ∞∑
i=1

∞∑
j=0

[
F⊗(s, i)T ⊗

(
I ⊗ πi,j

)]

︸ ︷︷ ︸
N(s)

·
[
(vec(I)T ⊗ I ⊗ I)T ⊗ I

]
vec

(
I ⊗ A

)
.

The only unknown quantity in the expression for ωk>0
L (s) is N(s). It can be

found from (19) in the manner similar to M(s). We have

N(s) =
[
F⊗(s, 1)T ⊗

∞∑
j=0

(
I ⊗ π1,j

)

︸ ︷︷ ︸
I⊗π̂0(1)R(1)

]
+

∞∑
i=2

∞∑
j=0

[
F⊗(s, i)T ⊗

(
I ⊗ πi,j

)]

=
[
F⊗(s, 1)T ⊗ (

I ⊗ π̂0(1)R(1)
) ]

+
∞∑

i=2

[
F̂⊗

k=0(s, i)
T ⊗

(
I ⊗ π̂i(1)

)]

︸ ︷︷ ︸
Z(s)

(
K(s)T [I − K(s)]−1T ⊗ I

)

+
∞∑

i=2

[
F⊗(s, i−1)T L(s)T [I − K(s)]−1T ⊗

(
I ⊗ π̂i−1(1)

)(
I⊗ R(1)

)]

︸ ︷︷ ︸
N(s)(L(s)T [I−K(s)]−1T ⊗[I⊗R(1)])

.
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For Z(s), using properties of the Kronecker product, one obtains the following
relation:

Z(s) =
∞∑

i=2

[
F̂⊗

k=0(s, i)
T ⊗

(
I ⊗ π̂i(1)

)]

=
∞∑

i=2

[
F⊗

k=0(s, i − 1)T L(s)T ⊗
(

I ⊗ π̂i(1)
)]

=
∞∑

i=1

[
F⊗

k=0(s, i)
T L(s)T ⊗

(
I ⊗ π̂i(1)R(1)

)]

=
∞∑

i=1

[
F̂⊗

k=0(s, i)
T L(s)T ⊗

(
I ⊗ π̂i(1)

) (
I⊗ R(1)

) ]

=
∞∑

i=1

[
F̂⊗

k=0(s, i)
T ⊗

(
I ⊗ π̂i(1)

)](
L(s)T ⊗ (

I⊗ R(1)
) )

=
[(

F̂⊗
k=0(s, 1)T ⊗

(
I ⊗ π̂0(1)R(1)

))
+ Z(s)

](
L(s)T ⊗ (

I⊗ R(1)
) )

.

The latter relation allows computation of Z(s) and subsequently N(s) and
ωk>0

L (s). Thus the expression for ωL(s) is obtained.

5 Numerical Example

In order to give a more complete picture of how the service and the resequencing
policies influence the waiting time of an arbitrary customer, we present a simple
numerical example. Due to the Little’s law the mean waiting times of arbitrary
customer under the HOQ-FIFO-FIFO and HOQ-FIFO-LIFO policies coincide.
Thus we dwell on comparison of the standard deviation of the waiting time.

Two use cases are considered. The first one is taken from [10], where the regu-
lar customers and resequencing signals arrive according to Poisson processes with
rates λ and γ, respectively. The service process has the phase-type distribution
with the representation:

β = (0.5, 0.5) B =
(−4 2

1 −4

)
, from which S0 =

(−4 2
1 −4

)
, S1 =

(
1 1

1.5 1.5

)
.

The service rate is μ = −1/(βB−11) = 2.5 and consequently λ = 2.5ρ, where
ρ and γ are the parameters of the example. As the second use case we take the
same service process (S0,S1), but the arrival process of regular and resequencing
customers are characterized by

A0=
(−5 1.5

2 −3

)
,A1=

(
3.5p 3.5(1−p)
p (1−p)

)
,H0=

(−7 0
0 −7q

)
,H1=

(
7q 7(1−q)
7q2 7q(1−q)

)
.

Indeed they mean order 2 phase-type renewal processes with mean intensity
λ = 120

70−25p (ρ = 240
350−125p ) and γ = 7q

1−q+q2 . By tuning the values of p and q
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Fig. 3. ρ = 0.72
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Fig. 4. ρ = 0.88

we can set the load and the resequencing rate. In Figs. 3 and 41 one can see the
graphs of the standard deviation of the waiting times as function of resequencing
rate γ for two arbitrary values of load ρ = 0.72 and ρ = 0.88 and both use cases.

When γ is low the second order characteristics of the waiting time are almost
the same. As the resequencing rate γ grows, the difference in the behaviour of the
both curves becomes more significant. This difference comes from the following
fact. As the resequencing rate γ grows almost all customers get resequenced.
Thus under the HOQ-FIFO-FIFO policy they are served according to FIFO and
under the HOQ-FIFO-LIFO policy – according to LIFO. Intuitively in the latter
case the variance of the waiting time is bigger because LIFO policy can generate
some extremely high response times. Indeed we may have to wait for a very long
time in order to take care of the first arrival to the resequencing buffer.

Finally, as γ grows the standard deviations of waiting time under the HOQ-
FIFO-FIFO and HOQ-FIFO-LIFO policies tend to the standard deviations of
the waiting time (horizontal lines in the figures for the Poisson arrival case) in
the standard M/PH/1 FIFO and M/PH/1 LIFO queues respectively. At γ = 0
we also have the case of pure FIFO queue.

6 Conclusion

The delay analysis of the HOQ-FIFO-LIFO policy shows that the majority of the
analysis steps (recursive evolution equation like description of properly chosen
performance measures, Kronecker expansion based treatment of non-commuting
matrices, describing the relation of infinite summations from 0 to ∞ with the
one from 1 to ∞) remain applicable, but also new analysis elements are required.
In particular, the analysis of the HOQ-FIFO-LIFO service policy requires the
solution of a coupled quadratic matrix equation, which was separated in the
HOQ-FIFO-FIFO case. In spite, the computational complexity of the HOQ-
FIFO-LIFO case is not higher than the one of the HOQ-FIFO-FIFO case,
1 Standard deviation of customer’s waiting time as function of resequencing intensity

(γ) for two different load (ρ) levels, two different policies and two use cases.



68 R. Razumchik and M. Telek

because the solution of the coupled equation is comparable with the solution
of two separate ones.
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Abstract. Density dependent Markov chains (DDMCs) describe the
interaction of groups of identical objects. In case of large numbers of
objects a DDMC can be approximated efficiently by means of either a
set of ordinary differential equations (ODEs) or by a set of stochastic dif-
ferential equations (SDEs). While with the ODE approximation the chain
stochasticity is not maintained, the SDE approximation, also known as
the diffusion approximation, can capture specific stochastic phenomena
(e.g., bi-modality) and has also better convergence characteristics. In this
paper we introduce a method for assessing temporal properties, specified
in terms of a timed automaton, of a DDMC through a jump diffusion
approximation. The added value is in terms of runtime: the costly simu-
lation of a very large DDMC model can be replaced through much faster
simulation of the corresponding jump diffusion model. We show the effi-
cacy of the framework through the analysis of a biological oscillator.

Keywords: Diffusion approximation · Stochastic differential equations
with jumps · Statistical model checking

1 Introduction

Context. Advances in modelling lead to increasingly complex models of con-
current systems whose analysis, consequently, has become a critical issue. In
particular the analysis of quantitative aspects of these systems by means of
stochastic models (e.g., Markov chains) may be impaired by the combinatorial
explosion of their state space. To cope with this problem several approaches have
been proposed in the literature including, e.g., decomposition and aggregation,
bounding techniques, compact representations of the state space. However, when
the model accounts for large groups of individuals (e.g., Internet users, molecule
populations) these techniques may turn out to be insufficient, meaning that
discrete event simulation (DES) is the most practical option for analysing the
system’s performance. Indeed, DES based approaches do not require the explicit
c© Springer International Publishing AG 2017
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storage of the state space, but instead exploit a set of sample executions (i.e.,
traces) in order to devise arbitrarily accurate (statistical) estimates of relevant
indicators of a model’s behaviour.

Fluid approximations. In the case of large interacting populations, an alterna-
tive to simulation is to use a deterministic approximation in which the behavior is
represented by a set of ordinary differential equations (ODE) [17]. However, this
approach is not suitable for the study of models where stochasticity (bimodality,
high variance) plays an important role even for large population counts. To ana-
lyze a model’s stochastic nature, in [18] a diffusion approximation was proposed,
based on a set of stochastic differential equations (SDE), that can be applied
up to the first visit of the boundary of the state space. Both the deterministic and
the diffusion approximation are such that every state variable is approximated
by a continuous variable, i.e., the state variables are made “fluid”. Since in real
systems the boundaries of the state space often can be visited many times, in [7]
we proposed an extension, namely, a jump diffusion approximation, to properly
approximate the original model at the boundaries as well. A further extension
was made in [3] that uses partial fluidification of the state space, which results
in a switching jump diffusion approximation, allowing us to mimic better the
original process in the case of low population counts.

Contribution. Starting from [7], in this paper, we propose a new statistical
model checking method based on jump diffusion approximation. This method
takes as input a DDMC and, following [9–11,16], a formal description of a prop-
erty, in this paper described as a (deterministic) timed automaton [1]. The jump
diffusion approximation of the DDMC is used to generate trajectories of the
system and the deterministic timed automaton is used to accept or reject each
trace. Based on the proportion of the accepted traces confidence intervals are
derived for the probability that the system exhibits the property in question.

Applicability. The applied theoretical framework requires a sequence of
DDMCs indexed by a parameter N [17]. The sequence is such that the state
space, the transition intensities and also the vector describing the initial state
increase as N increases. Four possibly overlapping ranges of values can be identi-
fied for N . N can be so small that the corresponding DDMC can be analyzed by
analytical approaches. As N grows, analytical analysis becomes unfeasible, but
the DDMC can still be evaluated efficiently by simulation. By further increas-
ing N , even simulation of the DDMC becomes impractical but the model can
still exhibit important stochastic behavior. This is the range in which the app-
roach we propose is convenient to use: in this range the diffusion approximation
provides results with reasonable precision in much shorter time than dealing
with the original DDMC. For even larger values of N , the stochastic behavior
disappears and the model can be analyzed with a deterministic approximation.

Organization. The paper is organized as follows. Section 2 introduces DDMCs
and Sect. 3 discusses their approximations. In Sect. 4 we provide the definition of
the applied timed automata. We discuss the issues related to assessing properties
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through a diffusion approximation in Sect. 5. In Sect. 6 a case study is presented.
Conclusions are drawn in Sect. 7.

2 Nearly Density Dependent Markov Chains

Continuous time Markov chains (CTMC) are often used to describe the inter-
action of groups of identical objects. Informally, such CTMCs are called density
dependent if the intensities of the interactions can be expressed as a function of
the density of the objects present in the area (or volume) described by the model
(as opposed to being expressed as a function of the number of objects itself).

Definition 1. Consider a sequence of CTMCs, denoted by X [N ](t), indexed by
N ∈ N \ {0} and with state space S [N ] ⊆ Z

k (i.e., every state is identified by a
vector of k integers), that describe the interaction of k groups of identical objects.
The sequence X [N ](t) is called density dependent if the associated transition
intensities, given any two states r ∈ S [N ] and r + m ∈ S [N ] that are connected
by a transition, can be written in the form

q
[N ]
r,r+m = Nf

( r

N
,m

)
(1)

where f : R
k × Z

k → R≥0 is a bivariate function whose first argument is a
vector that provides the density for each group of objects in state r and its second
argument is the change in the state due to the transition from state r to state
r + m ( R≥0 is the set of non-negative real numbers).

The indexing parameter N can represent the size of the considered area or vol-
ume, or the total number of objects in the model (in this case the vector r/N
is a vector of proportions). Note that in Definition 1 a single function, namely
f , provides the intensity of every transition of every CTMC of the sequence of
CTMCs. This implies that in every CTMC the transitions have the same effect
on the state.

The above definition can be relaxed by substituting (1) with

q
[N ]
r,r+m = Nf

( r

N
,m

)
+ Ng

( r

N
,m,N

)
(2)

where g : Rk×Z
k×N → R≥0 is a trivariate function and g(r/N,m,N) ∈ O (1/N).

Sequences of CTMCs in which the transition intensities are in the form given
in (2) are referred to as nearly density dependent. The rationale behind the
definition is the following. As N grows, thanks to g(r/N,m,N) ∈ O (1/N), the
term Ng(r/N,m,N), which is not density dependent, remains in the order of
a constant. The other term instead grows proportionally to N . Accordingly, as
N grows the density dependent nature of the process prevails. Indeed, density
dependent and nearly density dependent processes can be studied with the same
approximations.

As for notation, the set of possible changes in the state due to a transition
will be denoted by C. Formally, a vector m ∈ Z

k is in C if and only if there exist



72 P. Ballarini et al.

two states r ∈ S [N ] and r + m ∈ S [N ] such that there is a transition from r to
r + m. Note that, like the function f , also the set C is shared by every member
of a given sequence of DDMC.

Example 1. As an example we consider a simple epidemic model in which two
groups are involved, namely, susceptible and infected individuals. Accordingly,
each state is described by a pair (i, j) providing the number of susceptible
and infected people, respectively. We assume that the modelled individuals are
uniformly distributed over an area split into N equally sized cells and that
three kinds of events are possible. The number of susceptible individuals grows
with an intensity proportional to the number of cells: q

[N ]
(i,j),(i+1,j) = Nλ1.

Due to the contact of two infected and one susceptible person in one of the
cells, one susceptible individual becomes infected; this happens with intensity
q
[N ]
(i,j),(i−1,j+1) = ij(j−1)

2
1

N3 Nλ2, where the first term is the number of ways the
three individuals can be selected, the second term is the probability that the
three selected individuals are together in a given cell, and the multiplication by
N is due to the fact that the contact can occur in any cell. Infected individuals
can become immune independently of each other and independently of the num-
ber of cells; the associated intensity is q

[N ]
(i,j),(i,j−1) = jλ3. The intensity of the

first type of event is independent of the actual state and proportional to N and
thus it is a special form of (1). The intensity of the other two kinds of events
can be rewritten as

q
[N ]
(i,j),(i−1,j+1) = N

(
λ2

2
i

N

(
j

N

)2
)

− N

(
1
N

λ2

2
i

N

j

N

)
, q

[N ]
(i,j),(i,j−1) = Nλ3

j

N

where the first intensity is nearly density dependent while the second is density
dependent. The set of possible state changes is C = {(1, 0), (−1, 1), (0,−1)}.

3 Approximations of Nearly Density Dependent CTMCs

All approximations we describe in the following use a process with a continuous
state space and thus are considered “fluid” approximations. In order to proceed
we need to introduce the sequence of normalized CTMCs given by Z [N ](t) =
X [N ](t)/N , called also the density process. The reason to use Z [N ] instead of
the original process is that normalization brings all CTMCs of a given density
dependent sequence to the same scale, making them comparable.

The first approximation we consider uses a set of ODEs in which there is
one equation per group. Accordingly, the original stochastic behavior is approx-
imated by a deterministic process. The set of ODEs used in the approximation
is provided by the following result of Kurtz [17]. Given a nearly density depen-
dent sequence of CTMCs X [N ](t) with initial state that tends to z0 as N tends
to infinity, i.e., limN→∞ Z [N ](0) = limN→∞ X [N ](0)/N = z0, if the function∑

l∈C lf (y, l) satisfies some relatively mild conditions, then the density process
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Z [N ](t) converges to a deterministic function z(t). The function z(t) is the solu-
tion of the following set of ODEs

dz(t) =
∑
l∈C

lf (z(t), l) dt, z(0) = z0. (3)

We note that (3) is equivalent to the more familiar form dz(t)
dt =

∑
l∈C lf (z(t), l);

however we prefer the form in (3) because it has more in common with the other
approximations that we introduce later.

The approximation given by z(t) has the following property:

lim
N→∞

P

{
sup
t≤T

∣∣∣Z [N ](t) − z(t)
∣∣∣ > δ

}
= 0, (4)

for every δ > 0 and where T is the upper limit of the considered finite time hori-
zon. Moreover, it was shown in [17] that the difference between the deterministic
approximation and the original stochastic behavior is characterized by

sup
t≤T

∣∣∣Z [N ](t) − z(t)
∣∣∣ = O

(
1/

√
N

)
(5)

The practical meaning of (5) is that the error of the deterministic approxi-
mation decreases as 1/

√
N .

Another approximation of a density dependent sequence X [N ], which is based
on stochastic differential equations and thus it preserves the stochastic nature
of the original process, was proposed in [18,19]. This approximation, denoted by
Y [N ](t), is obtained by the following set of SDEs:

dY [N ](t) =
∑
l∈C

lf
(
Y [N ](t), l

)
dt +

∑
l∈C

l√
N

√
f

(
Y [N ](t), l

)
dWl(t) (6)

where the Wl(t) with l ∈ C are independent standard one-dimensional Brown-
ian motions. The approximation holds up to the first time Y [N ](t) reaches a
boundary of the state space. In (6) the first term is the same used by the deter-
ministic approximation in (3), while the second term is a noise that mimics the
stochasticity of the original CTMCs.

For what concerns the relation of the diffusion approximation and the original
density process, in [18] it has been proven that, for any finite N , we have

sup
t≤T

∣∣∣Z [N ](t) − Y [N ](t)
∣∣∣ = O (log N/N) (7)

In practice, one uses N ·z(t) or N ·Y [N ](t) to approximate the original CTMC
X [N ](t). The difference between N · z(t) and X [N ](t) according to (5) is in the
order of N(1/

√
N) =

√
N . Between N · Y [N ](t) and X [N ](t) according to (7) it

is instead N(log N/N) = log N which is much lower than
√

N .
A limitation of the previous approach based on SDEs is that it can be applied

only to models where the probability of reaching a boundary of the area of the
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process is negligible. In order to overcome this limitation, in [7] we introduced a
jump diffusion process in which the jumps are used to capture the behavior of
the process at the boundaries. We provide here a brief description of the jump
diffusion process, denoted by J [N ](t); for a detailed treatment, see [3,7].

The main idea is to split the transitions of the model into two sets depending
on the current state. In particular, we denote by C◦(y) the set of transitions
that change one or more components of the state which are at the boundary in
state y. The jump diffusion process is defined then by

dJ [N ](t) =
∑

l∈C−C◦(J [N](t))

lf
(
J [N ](t), l

)
dt+ (8)

∑
l∈C−C◦(J [N](t))

l√
N

√
f

(
J [N ](t), l

)
dWl(t) +

∑
l∈C◦(J [N](t))

l

N
dM

[N ]
l (t)

where the first two terms are analogous to those in (6) but are restricted to
those transitions that change components away from the boundaries. If none
of the components are at the boundary of the state space then J [N ](t) behaves
exactly as Y [N ](t). The term M

[N ]
l (t) corresponds to Poisson counting processes

that gives rise to jumps that mimic the behavior of the original CTMC at
the boundaries. In other words, when the process reaches a boundary then
discrete jumps regulated by a Poisson process make it jump back eventually
to the inner part of the state space. The intensity associated with dM

[N ]
l (t)

is μl (t) = Nf
(
J [N ](t), j

)
, i.e., it is taken directly from the original CTMC

(note that J [N ](t) provides directly a vector of densities as required by f). Then
dM

[N ]
l (t) is multiplied by l/N because that is the effect of the transition in the

normalized state space.
Recent studies [8] have shown that the jump diffusion approximation has

similar characteristics to those of the pure diffusion approximation and, in par-
ticular, that the approximation it introduces is as good as that of the “pure”
diffusion process, that is:

sup
t≤T

∣∣∣Z [N ](t) − J [N ](t)
∣∣∣ = O (log N/N) (9)

Numerical evaluation of the goodness of the jump diffusion approximation has
been illustrated instead in [3,7].

4 Timed Automata

In this section, we introduce a timed automata-based formalism for the specifica-
tion of timed properties of CTMCs. As is standard when using timed automata
for the specification of properties of stochastic systems (e.g., [10–13,20]), we use
deterministic timed automata (DTA): that is, each input sequence of the timed
automaton (which in our context is a trajectory, i.e., a function from time to the
state space of the CTMC, representing a particular behavior of the CTMC or
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of its diffusion approximation) corresponds to a single run of the timed automa-
ton. In order to provide a uniform framework for timed properties interpreted on
CTMC and on jump diffusion approximations, our DTA are labeled with con-
straints both on clocks and on variables characterizing the state space, but are
not labeled with actions corresponding to individual CTMC transitions (which
have no meaning in the jump-diffusion diffusion approximation setting). Edges
of our variant of DTA are urgent : they are taken as soon as they are enabled.
Urgency of edges allows for a natural interpretation of our DTA not only on
behaviors of CTMC, but also on trajectories of their diffusion approximations.

We denote by S ⊆ Z
k the state space and by V = {ϑ1, ..., ϑk} a set of k

variables, where we interpret ϑi as a variable corresponding to the i-th element
of the vector representing a state. Let C be a finite set of variables called clocks.

Definition 2. A constraint is defined by the following grammar:

Φ ::= ϕ ≤ ϕ | c ≤ λ | c ≥ λ | Φ ∧ Φ ,

ϕ ::= ϕ + ϕ | ϕ − ϕ | ϕ ∗ ϕ | ϕ/ϕ | ϑi | λ ,

where c ∈ C is a clock, ϑi ∈ V and λ ∈ Q is a rational constant. A guard
constraint is a constraint Φ such that, for each a ∈ V ∪ C, there is at most one
subformula of Φ featuring a. An invariant constraint is a guard constraint Φ in
which there is no subformula of the form c ≥ λ. We write Guards(V, C) and
Invariants(V, C) to denote the set of guard constraints and invariant constraints,
respectively, over V and C.

Examples of invariant constraints include ϑ1 ≤ 10∧ϑ2 ≥ ϑ3 and ϑ1 ≥ 3∧c1 ≤
15, whereas c1 ≥ 3 ∧ c2 ≤ 10 ∧ ϑ1 ≥ 3 is an example of a guard constraint that
is not an invariant constraint (due to the conjunct c1 ≥ 3).

A function v : C → R≥0 is referred to as a clock valuation, and the set of all
clock valuations is denoted by Val(C). For any v ∈ Val(C), γ ∈ R≥0 and C ⊆ C,
we use v+γ to denote the clock valuation that increments all clock values in
v by γ (that is, (v+γ)(c) = v(c)+γ for all c ∈ C), and v[C:=0] to denote the
clock valuation in which clocks in C are reset to 0 (that is, v[C:=0](c) = 0 for
c ∈ C, and v[C:=0](c) = v(c) for c ∈ C \ C). The clock valuation that assigns 0
to all clocks in C is denoted by 0. Let Φ be a constraint, let y ∈ S be a state
and let v ∈ Val(C) be a clock valuation. Then we write (y, v) |= Φ if and only if
substituting ϑi by yi (where yi is the i-th element of the vector y) and c by v(c)
in Φ results in Φ resolving to true. For example, for y such that y1 = 4 and v
such that v(c1) = 12.1, we write (y, v) |= ϑ1 ≥ 3 ∧ c1 ≤ 15.

Definition 3. A timed automaton is a tuple (L, �init,F , C, Inv, E) comprising:
(1) a finite set L of locations, with an initial location �init ∈ L and a set
F ⊆ L of final locations; (2) a finite set C of clocks; (3) an invariant con-
dition Inv : L → Invariants(V, C); (4) a set E ⊆ L × Guards(V, C) × 2C × L
of edges, where each edge (�, Φ,C, �′) ∈ E comprises a source location �, an
enabling condition Φ, a set C of clocks to be reset to 0, and a target location �′.
A timed automaton is deterministic if, for any location � ∈ L and for any pair
(�, Φ1,C1, �1), (�, Φ2,C2, �2) ∈ E, we have that Φ1 ∧ Φ2 is unsatisfiable.



76 P. Ballarini et al.

We use DTA to determine whether a trajectory X : R≥0 → S satisfies a timed
property. More precisely, the DTA reads the trajectory X and traverses edges
between locations on the basis of (1) the states visited by the trajectory as time
passes and (2) the current values of the clocks. The values of the clocks increase
at the same rate as real-time. The DTA must leave its current location � without
letting time pass if there exists an edge (�, Φ,C, �′) ∈ E such that the enabling
condition Φ is currently satisfied (hence, the DTA can be regarded as having an
“urgent” semantics in which an enabled edge must be taken as soon as possible):
this satisfaction of the enabling condition of the guard may occur, for example,
because the value of a state variable falls below some threshold, or the value
of a clock reaches a particular value. Furthermore, an additional constraint on
the trajectory is imposed by the invariant conditions: during a period in which
the DTA is in a particular location �, the invariant condition Inv(�) must be
satisfied by the states visited by the trajectory and by the current value of
the clocks during that period, otherwise the trajectory will be regarded as not
satisfying the timed property. A set of clocks can be reset to 0 when an edge
is taken. If the DTA, starting from the initial location, reaches a final location
when reading the trajectory X, then we say that the trajectory is accepted by
the DTA (which, intuitively, corresponds to the trajectory X satisfying the timed
property represented by the DTA), otherwise it is rejected.

In the following, we describe formally the acceptance of trajectories by
a DTA. Let (�, Φ,C, �′) ∈ E be an edge of a DTA A. Then we write
source(�, Φ,C, �′) = �, guard(�, Φ,C, �′) = Φ, reset(�, Φ,C, �′) = C, and
target(�, Φ,C, �′) = �′. Let � ∈ L be a location of A, and let y ∈ S be state
and v ∈ Val(C). We write (y, v) �|= Guards(�) if and only if (y, v) �|= guard(e) for
all e ∈ E such that source(e) = �. A pair (�, v) ∈ L × Val(C) is called a config-
uration. We write (�, v)

γ,e−−→ (�′, v′) to denote the DTA-transition from configu-
ration (�, v) to configuration (�′, v′) after γ > 0 time units have elapsed and by
taking the edge e. The transition (�, v)

γ,e−−→ (�′, v′) exists if (1) source(e) = �,
(2) v′ = (v + γ)[reset(e):=0], and (3) target(e) = �′. A path of A is a finite
sequence of DTA-transitions π = (�0, v0)

γ0,e0−−−→ (�1, v1)
γ1,e1−−−→ · · · γm−1,em−1−−−−−−−→

(�m, vm). Let Λπ = {λπ
0 , λπ

1 , . . . , λπ
m} be the set of constants such that λπ

0 = 0
and λπ

i =
∑i−1

k=0 γk for all i such that 1 ≤ i ≤ m.

Definition 4. Let A be a DTA. We say that X : R≥0 → S is accepted by
the DTA if there exists a path π = (�0, v0)

γ0,e0−−−→ (�1, v1)
γ1,e1−−−→ · · · γm−1,em−1−−−−−−−→

(�m, vm) of A such that �0 = �init, v0 = 0, �m ∈ F and, for all 0 ≤ i < m, the
following conditions are satisfied:

– for all 0 ≤ γ′ < γi, we have (X(λπ
i + γ′), vi + γ′) |= Inv(�i) and (X(λπ

i +
γ′), vi + γ′) �|= Guards(�i);

– (X(λπ
i + γi), vi + γi) |= guard(ei).
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5 Assessing Timed Automata Based Properties
by Diffusion Approximations

In this paper we limit our attention to illustrating the practical applicability
of the approach. According to (9), there is a correspondence between the tra-
jectories of the CTMC and those of the approximating jump diffusion process.
Moreover, the larger N is, the tighter the relation gets. It is natural hence to
expect that over a certain threshold for N , which depends on the considered
model, one can safely use trajectories of the diffusion process instead of trajec-
tories of the CTMC to assess DTA-based temporal properties.

There is, however, a fundamental difference between a CTMC and a diffu-
sion process. A diffusion process exhibits extreme oscillatory nature along its
drift in any infinitesimal interval. This means that if a diffusion exceeds a given
limit L for the first time then it goes below L with probability 1 afterwords
in any infinitesimal interval. Consider now a diffusion process X(t) and a DTA
with three locations. The initial location is with invariant X(t) ≤ L and has a
transition enabled if X(t) ≥ L. The second location is with invariant X(t) ≥ L,
it does not have an enabled transition associated with the situation X(t) ≤ L
and it has a transition enabled when X(t) ≥ 2L that leads to the third location
which is a final one. Due to the oscillatory nature of the diffusion process, with
probability 0 a trajectory is accepted by the DTA. Note however that such a
situation is coherent with what happens in a CTMC as N grows large. For large
values of N , the trajectories of a CTMC are more and more similar to those of
a diffusion. Consequently, the probability of the set of those trajectories of the
CTMC that are accepted by the above described DTA tends to 0 as N tends
to infinity. The characteristics of the diffusion process and that of the CTMCs
with large N must be taken into account during the definition of the DTA in
order to avoid results that are consequences of these characteristics and not the
properties of the studied phenomenon. In practice, the problem is alleviated by
using piecewise constant abstractions of the trajectories of the diffusion process.
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 0  2  4  6  8  10
time

δ=0.002
δ=1

Fig. 1. Two versions of the
same trajectory of a pure Wiener
process with different time steps.

We consider now the three kinds of approx-
imations errors that occur during the analy-
sis of CTMCs based on diffusion processes.
First, the diffusion process is an approximation
of the original CTMC. The goodness of this
approximation was discussed in Sect. 3. Sec-
ond, the analysis is carried out based on traces
generated by approximate simulation. Indeed,
exact simulation can be carried out only in spe-
cial cases of diffusion (for example, in case of
a Wiener process without drift) but in general
the process is multidimensional and it includes
a state dependent drift and a state dependent
noise that cannot be simulated exactly in general. Third, a diffusion process fluc-
tuates in any infinitesimal interval which means that it is not possible to obtain a
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complete representation of a trace. Indeed, the temporal properties are assessed
based on a constant piecewise approximation of an infinitely fluctuating trace.

Let us illustrate this third source of approximation error in some detail. In
Fig. 1 we plotted two versions of the same trajectory with two different time
steps (δ). Consider now a DTA which accepts only those traces along which
the process never exceeds level 12 in the time interval [0, 10]. Clearly, using the
piecewise constant abstraction of the trace, the trace with δ = 1 is accepted
while the other is rejected.

The previous example indicates that the choice of the time step during the
generation of the traces is of fundamental importance to achieve good approxima-
tion of the original behavior. The same problem, i.e., not knowing the fluctuation
between two consecutive time points, is present to a somewhat lesser extent also
when jump diffusion processes are used to obtain approximations of more classi-
cal measures, like transient probabilities. In that case, it is of crucial importance
to find with sufficient precision the time instants when the process reaches the
boundary, i.e., the time instants when the change from pure diffusion process
to jump diffusion process has to be made. When assessing temporal properties
described by DTA, the problem appears also inside the state space around the
thresholds present in the automaton. The choice of the time step was discussed
to some extent in [3,7]. In theory, it is possible to add intermediate points given
a trace but this can be done only in very special cases, like the one used before,
i.e., the pure Wiener process.

All the three kinds of approximation error decrease as the indexing parameter
N increases. Numerical experiments suggest that in the situation when it is
reasonable to use the diffusion approximation, i.e., when the CTMC is too large
for the analysis but there are still important stochastic behaviors in the system,
the approximation errors are in an acceptable range.

6 Experimental Results

The experimental results described in this section were carried out using a pro-
totype implementation integrated in the GreatSPN suite [2], for the SDE part,
and with the COSMOS statistical model checker [6] (which uses a generalisation
of the DTA formalism [5]), for the CTMC part.
Case study: A model of the Wnt pathway. We consider a model of the Wnt/β-
catenin pathway, an intracellular signalling pathway involved in neuroinflamma-
tion, a key mechanism in numerous brain diseases [14]. Such model [15] accounts
for 8 biochemical species (Table 1) regulated through 12 reactions (Table 2). It
consists of three main actors: the β-catenin (denoted B) and Axin2 proteins
(A), forming a negative feedback loop, and the Wnt protein (here subsumed by
the LRP5-6 membrane receptor, i.e., L), representing the extracellular signal.
The behavior can be summarised as follows. With scarcity of extracellular Wnt
molecules (low L), a degradation complex (C, a trimer resulting by β-catenin
binding to previously formed GSK3-Axin2 dimer, i.e., GA) causes the phospho-
rylation and subsequent destruction of β-catenin located in the cell’s cytosol. On
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Table 1. Species of the Wnt pathway.

Name Description Init. values

A Axin2 protein 0

Am Axin2 mRNA 0

G GSK3 protein 50 · N
L LRP5/6 coreceptor 20 · N
B free β-catenin 0

AL Axin2-LRP5/6 complex 50 · N
GA GSK3-Axin2 complex 0

C GSK3-Axin-β-catenin
complex

0

Table 2. Reactions of the Wnt
pathway.

Table 3. Kinetic rate constants
and initial populations for the
DDMC model of the Wnt pathway
(both dependent on index N).
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Fig. 2. Sample paths of A (Axin2 protein)
for various values of N and the behavior
obtained by the ODE description.

the other hand with an abundant Wnt signal (high L), the degradation complex
is deactivated (as Axin is degraded through reversibly binding with receptor L,
i.e., forming the AL complex) resulting in an accumulation of β-catenin which in
turn activates (through transcription of the Axin2 messenger RNA, i.e., Am) the
expression Axin2, and therefore determining its own destruction (i.e., negative
feedback loop).

In [15] the model is given in ODE form and it is shown to exhibit sustained
oscillations (Fig. 2) for specific parameter settings. Here we consider a sequence of
DDMCs indexed by N (here proportional to the volume) and of the parameters
of the ODE model in [15]1. Table 3 depicts the kinetic rate constants and the
initial populations of the Wnt-pathway DDMC2 whereas Fig. 2 compares species
A’s projection of a sample path of the CTMC for various values of N with the
deterministic trajectory of the corresponding ODEs (notice that for readability

1 I.e., for N = 1 we assumed the discrete initial populations and reaction intensities
being equal to the continuous ones as given in [15], note that this is in agreement
with a cell volume V = 109/nA where nA is the Avogadro number given that species
concentrations and kinetic rate constants of the ODE model are expressed in nM.

2 Notice that zero-order and second-order reactions’ rates are dependent on N because
for these conversion from continuous to discrete rates depends on cell’s volume.
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the CTMC paths have been normalised, i.e., the molecule count of A is divided
by N). Furthermore observe that ODEs exhibit sustained oscillations, which,
after the second period, have almost constant amplitude, and that, for increasing
values of N , CTMC trajectories approximated quite accurately the ODE’s. The
choice of N when analyzing a real scenario depends on the considered volume;
in wet-lab experiments typically molecular value is usually greater than 500.

Automaton. Inspired by Mikeev et al. [20] we propose a DTA (Fig. 3) to measure
the duration of the period exhibited by the population of the Axin2 protein. The
rationale for noisy period detection [20] is to split the domain of the observed
species, i.e., A, in three subintervals: low (i.e., A ≤L), mid (i.e., L < A ≤ H)
and high (i.e., A ≥H)3. A noisy period realisation [4] corresponds to the time
interval occurring between two successive entries to the low region of the state-
space interleaved by a visit to the high region. The single clock DTA in Fig. 3
is indeed designed to detect the first noisy period realisation of species A. It
consists of two parts: the first one processes the initial low0-high0-low1 traversal
(representing a spurious period), at the end of which (low1-mid2 transition) the
clock x is reset to start timing the realisation of the first non-spurious period
whose termination corresponds with the low3-midend edge. Note that ignoring
the first spurious period (through the first part of the DTA) is necessary since
to detect a complete period we need to identify the actual starting point (i.e.,
the first low-mid crossing that follows a visit to high) which we cannot do
from the initial state because the system starts at A = 0. Furthermore note that
trajectories are accepted on condition that the observed duration of the first
period is within Tmin ≤x≤Tmax which, by choosing different values for Tmin and
Tmax, allows us to assess the probability density of the period duration (Fig. 4).
Observe that for any element N >1 of the Wnt-DDMC sequence the probability
of non-sustainably oscillating paths (i.e., paths non-perpetually traversing the
low-mid-high regions) is negligible, therefore, given that L and H are properly
chosen (so to be above, resp. below, the average height of minimal, resp. maximal
peaks of oscillations), the DTA accepts all trajectories of the model.

low0

A≤L

mid0

L≤A≤H

high0

A≥H

A≥L,∅
A≤L,∅

A≥L,{x := 0}

mid1

L≤A≤HA≤L,∅
low1

A≤L

A≥L,∅
A≤L,∅

(A≥L) ∧ (Tmin ≤ x ≤ Tmax),∅

low2

A≤L

mid2

L≤A≤H

high2

A≥H

A≤L,∅ midend

L<A≤H

low3

A≤L

mid3

L≤A≤H

A≥H,∅ A≥H,∅

A≤H,∅
A≤H,∅

A≥H,∅
A≥H,∅

Fig. 3. DTA to study the oscillation period of Axin2 proteins.

3 L and H, where L<H, are two thresholds chosen so that the minimal, resp. maximal,
peaks of oscillation are most likely to fall below L, resp. above H.
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Experiments. We compare the proposed approach by assessing of DTA-based
oscillation-period properties on both a few CTMCs (of the Wnt-DDMC
sequence) and on their SDE approximation. The experiments were executed
on a server with 48 core AMD Opteron(tm) Processor 6176 by considering five
CTMCs of the Wnt-DDMC sequence corresponding to the following values of N ,
i.e., N ∈{100, 500, 1000, 2000, 5000}, and while the SDE results were computed
with the GSPN prototype the CTMCs results were computed with COSMOS [6]
which, to the best of our knowledge, is one of the most efficient statistical model
checkers. We have run two families of experiments. The first one is devoted
to assessing the density function of the oscillation period (Fig. 4) and employs
the DTA of Fig. 3. The second one is devoted to comparing both runtime and
accuracy of the two approaches w.r.t. estimating the duration of the oscillation
period (Table 4) and employs a slightly modified DTA4.

Table 4 compares, as a function of N , the execution times and the confidence
intervals for the mean duration of the first non-spurious oscillation period with
confidence level set to 0.99 in case of generating 10000 traces. Columns two and
three depict the value of the L, resp. H, parameter of the DTA; the fourth
and fifth (resp. seventh and eighth), columns show the runtime and estimated
confidence-interval computed through our SDE prototype (resp. COSMOS); the
sixth column shows the proportion of the number of jumps occurred because of
hitting the border during the simulation of the SDE; finally the ninth column
gives the speed up obtained by our SDE approach. In Fig. 4 the probability
density functions (pdf) of the length of the first non-spurious period are plotted
for N equal to 100, 500, 1000 and 2000. The pdf for N equal to 5000 (not shown
for the lack of space) confirms the trend toward a closer correspondence between
the SDE and COSMOS results.

Table 4. Comparing SDE and COSMOS results considering 10000 traces.

SDE COSMOS Speedup

N L H Time Average period Jump
Tot.

Time Average period

100 50 1×104 180 h [103.174, 103.344] 0.90 30 h [112.628, 113.133] 0.17

500 50 5×104 88 h [111.021, 111.115] 0.76 167 h [112.654, 112.784] 1.9

1,000 500 1×105 54 h [111.977, 112.089] 0.60 344 h [112.381, 112.499] 6,37

2,000 500 1.5×105 39 h [112.408, 112.474] 0.45 705 h [112.504, 112.578] 18.08

5,000 500 5×105 28 h [112.693, 112.725] 0.26 1763 h [112.708, 112.749] 62.96

4 I.e., we use the DTA in Fig. 3 but without the Tmin ≤ x ≤ Tmax conjunct on the edge
from low3-midend, which allows us to obtain the value of the clock x at the moment
of reaching the final location of this modified DTA: this value gives the length of the
first non-spurious oscillation period.
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Fig. 4. Probability mass functions of the length of the first non-spurious oscillation
period with bin length equal to 0.1 and with N equal to 100 (top left), 500 (top right),
1000 (bottom left), 2000 (bottom right).

Discussion. As expected, the SDE approach becomes more convenient, in terms
of runtime and precision, as N increases.5 In particular, for N =100 the precision
is strongly affected by the SDE approximation error, moreover the SDE execution
time is greater than COSMOS since for each SDE trace the process hits the
boundaries, on average, along 90% of a trace length (col. 6, Table 4). With N =
1000 the SDE based analysis is about twice faster than that based on the CTMC
(col. 9, Table 4) while the precision is acceptable: indeed the SDE approach is
able to reproduce the multimodal behavior of the pdf generated by COSMOS
(Fig. 4 bottom-left plot, i.e., N =1000). Such trend is confirmed by experiments
with N = 2000, (speedup ∼6x, even closer approximation) and with N = 5000
(exhibiting a 63x speedup obtained with the SDE approach).

7 Conclusions

In this paper we presented a framework that allows for assessing temporal proper-
ties, described in terms of DTA, of DDMCs through their jump diffusion approx-
imation. The applicability of the approach was illustrated through a case study
regarding a biological oscillator. As future work we aim to study the theoret-
ical limits of assessing DTA-based temporal properties of diffusion processes.
Furthermore, the approach can be extended to hybrid jump diffusion processes,
which are obtained by partial fluidification of DDMCs, that are useful to study
systems in which not all population counts are high and thus fluidification of all
state variables would lead to large approximation errors.

5 Observe that the dimension of integration step is dynamically computed through a
heuristic function which provides a good trade-off between speed-up and precision
of the solution.
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Abstract. In this work we consider a single-server system accepting N
types of retrial customers, which arrive according to independent Poisson
streams. In case of blocking, type-i customer, i = 1, 2, ..., N is routed to
a separate type-i orbit queue of infinite capacity. Customers from the
orbit queues try to access the server according to the constant retrial
policy. We consider coupled orbit queues. More precisely, the orbit queue
i retransmits a blocked customer of type-i to the main service station
after an exponentially distributed time with rate μi, when at least one
other orbit queue is non-empty. Otherwise, if all other orbit queues are
empty, the orbit queue i changes its retransmission rate from μi to μ∗

i .
Such a scheme arises in the modeling of cooperative cognitive wireless
networks, in which a node is aware of the status of other nodes, and
accordingly, adjusts its retransmission parameters in order to exploit
the idle periods of the other nodes. Using the regenerative approach we
obtain the necessary conditions of the ergodicity of our system, and show
that these conditions have a clear probabilistic interpretation. We also
suggest a sufficient stability condition. Simulation experiments show that
the obtained conditions delimit the stability domain with remarkable
accuracy.

Keywords: Multiclass retrial queues · Stability · Constant retrial
rates · Coupled orbit queues · Cooperative cognitive network

1 Introduction

We consider a fairly general single server retrial system with multiple classes
of retrial customers (i.e., multiclass retrial systems), fed by independent arrival
streams. If upon arrival, a customer of either type finds all servers unavail-
able joins an infinite capacity orbit queue1 from where re-attempts to connect
with the server after some random time, according to a constant retrial policy;
e.g., [4,6].

In this work, using the regenerative approach, we obtain the necessary sta-
bility conditions of this multiclass system with an arbitrary number of coupled
1 In this work the terms “orbit” and “orbit queue” are identical.
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orbit queues, and general service times. To the best of our knowledge, these
results are completely new, and it is the main contribution of this work. Some
stationary performance measures are obtained as well, as a by-product of the sta-
bility analysis. We also suggest a sufficient stability condition, which is verified
by simulation experiments.

Retrial queues have been extensively studied in the literature, and for further
reading we refer to the books [3,11] and the survey papers [2,16]. Clearly, the
analysis, and in particular the stability problem of a multiclass system, is much
more challenging than that of the single-class variant. Due to their mathematical
difficulty, there are only few works regarding the analysis of multi-class retrial
systems.

We mention the seminal papers in [12,17], where the authors derived the
expected number of customers at each orbit queue as a solution of a linear sys-
tem of equations; see also [18,26]. In [5,7] the authors derived necessary and
sufficient stability conditions, respectively, for the case of a single-server, multi-
class retrial queue with constant retrial rates. Recently, stability conditions for
the multiclass system with classical retrial policy along with some generalizations
were given in [21]. In all above mentioned works the authors used the regenera-
tive approach [22–25], which has become an elegant methodology to study the
stability conditions of such systems.

Contrary to other works in the related literature, the major contribution in
this work is that we assume that the service rate at each orbit queue (i.e., the
re-transmission rate) depends on the number of customers in the other orbit
queues (i.e., coupled orbit queues). More precisely, we assume that an orbit
queue is aware of the status of the other orbit queues, and accordingly, re-
configures its retransmission parameters. Recently, the stability conditions for a
two class retrial system with coupled orbit queues were obtained in [13–15] by
using results from the theory of random walks in the quarter plane. In this work,
we investigate the stability conditions of the model with an arbitrary number of
orbit queues, and show that the regenerative approach is an adequate method
to handle it.

Retrial systems with coupled orbit queues [13–15] have potential applica-
tions in the modeling of wireless multiple access systems. In particular, they are
natural for the modeling of relay-assisted cognitive cooperative wireless systems
[27–29]. Such a system operates as follows: There is a finite number of source
users that transmit packets to a common destination node, and a finite num-
ber of relay nodes (i.e., orbit queues) that assist source users by retransmitting
their blocked packets; e.g., [27,28]. More precisely, when a direct source user
transmission is blocked, (i.e., the destination node is unavailable), it forwards
its blocked packet at a relay node (i.e., a relay overhears the transmission, and
stores the blocked packet), which in turn retransmits the blocked packet after
some random time.

It is evidently proved that the current trend towards dense networks and the
spatial reuse of resources potentially increase the impact of wireless interference,
and thus it is essential to take it into account in the network planning. Moreover,
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although nowadays there is an increasing demand for variety of wireless applica-
tions, the usable radio spectrum is of limited physical extent. Recent studies on
the spectrum usage have revealed that substantial portion of the licensed spec-
trum is underutilized, and thus there is an imperative need for developing the
cognitive radio communication, which is a promising solution to the spectrum
underutilization problem [20,28].

In the full cognitive radio [20] a wireless node is capable to obtain knowledge
of its operational environment (i.e., it is “smart”), and to dynamically adjusts its
operational parameters accordingly. Thus, in order to achieve full spectrum uti-
lization of the shared channel, it adjusts its retransmission parameters according
to the state of the other relay node (i.e., coupled relay nodes); e.g., [8,10,13].
Moreover, in other applications in cellular networks, the available transmission
rate for users in a particular cell is decreasing as the number of users in the
neighboring cells increase [8]. Another important category of related applications
deals with processor sharing models, where several customer classes simultane-
ously use one or more servers, whose rate allocations and total processing rates
depend on the number of customers in each of the classes [9,19].

The paper is organized as follows: in Sect. 2 we briefly describe the mathe-
matical model and obtain some basic results. In Sect. 3, we develop the stability
analysis of a multi-class retrial system with coupled orbit queues, and deduce
the necessary stability condition, while in Sect. 4 we propose a sufficient stability
condition. Finally, in Sect. 5, we present simulation results, which demonstrate
a remarkable consistency with the theoretical results.

2 Description of the Model

We consider a single-server, multiclass retrial queueing system with no buffer,
which operates as follows. Let {tn} be the arrival instants of primary customers
with the iid exponential interarrival times τn = tn+1 − tn, n ≥ 1, with the rate
λ = 1/Eτ ∈ (0,∞). (Here and in what follows, we omit serial index to denote
a generic element of an iid sequence.) There are N classes of arrivals, and we
denote {S

(i)
n , n ≥ 1} the iid service times of class-i customers with the rate

γi = 1/ES(i) ∈ (0, ∞), i = 1, . . . , N . It is assumed that a new arrival is class-i
with the probability pi, and thus the arrival rate of class-i customers is λi := λpi,
and λ =

∑N
i=1 λi.

Our main assumption is that the retrial rate is state-dependent (i.e., orbit
queues are coupled). More precisely, we assume that orbit queue i retransmits
after an exponentially distributed time period with rate μi, if at least one other
orbit queue is non-empty. Otherwise, that is, if all other orbit queues are empty,
it changes its retransmission rate to μ∗

i , i = 1, . . . , N .
Let S(t) be the remaining service time at instant t− (S(t) = 0, if the server

is free). Denote the total idle time of the server in [0, t] by,

I(t) =
∫ t

0
1(S(u) = 0)du,
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where 1 is an indicator function. Denote also by Ai(t) the number of class-i
arrivals in [0, t]. Then, Vi(t) :=

∑Ai(t)
n=1 S

(i)
n is the work generated by class-i

customers, and V (t) :=
∑

i Vi(t) is the total amount of work arrived in [0, t].
Thus,

V (t) =
∑N

i=1

∑Ai(t)
n=1 S

(i)
n , t ≥ 0.

Denote by Ni(t) the number of class-i orbital customers and Wi(t) the work-
load (remaining work) in orbit queue i, at instant t−, i = 1, . . . , N . Let also
S(t) be the remaining work (i.e., the remaining service time) in the server at
instant t−. Define the forward interarrival time τ(t) = infn(tn − t : tn − t > 0)
at instant t.

We consider the one-dimensional non-Markovian process X(t) := N(t) +
Q(t), t ≥ 0, where Q(t) ∈ {0, 1} is the number of customers in the primary
system at instant t−, and N(t) :=

∑
i Ni(t) is the summary orbit size (at instant

t−). In order to study the process X := {X(t), t ≥ 0}, let X(tn) = Xn, put
T0 = 0, and define recursively,

Tn+1 = inf
(
tk > Tn : Xk = 0

)
, n ≥ 0.

It is easy to see that {Tn} are classical regenerations of the basic process X.
Note that Tn+1 − Tn are iid regeneration periods, and let T denote the generic
period. We call the process X (and the basic system) positive recurrent if the
first regeneration period is finite, T1 < ∞ with probability 1 (w.p.1), and the
mean generic period is finite, ET < ∞ [23,30]. Throughout the paper we assume
zero initial state, in which case customer 1 arrives at the empty system at instant
t1 = 0. In this case the instant T0 = 0 is indeed the 1st regeneration epoch, and
the first regeneration period T1 =st T (stochastically)2. Thus the regenerations
constitute a zero-delayed renewal process [1]. In what follows we use the following
result of the renewal theory: in the zero-delayed renewal process, the remaining
renewal (regeneration) time at instant t,

T (t) = mink

(
Tk − t : Tk − t > 0

)
�⇒ ∞, t → ∞, (1)

if and only if ET < ∞. (Here symbol ⇒ stands for convergence in probability.)
Hence to establish positive recurrence in the zero-delayed case, it suffices to

show (1). In this work our aim is to show that, under predefined conditions, (1)
holds true. Before proceeding further, we note that the positive recurrence is the
key ingredient of the regenerative stability analysis, see [1,22–25]. Denote traffic
intensity for each class, ρi = λi/γi, i = 1, . . . , N .

2 We mention first the general case of non-zero initial conditions, in which case T1 �= T .
For such a case, positive recurrence means both ET < ∞ and T1 < ∞ w.p. 1. For
zero initial state T1 =st T , and thus in order to prove the positive recurrence, it only
remains to show that ET < ∞. See also some comments in Remark 1.
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3 Necessary Stability Conditions

Recall that our main assumption is that retrial rates are state-dependent. More
precisely, we assume that all retrial times are exponentially distributed, and, for
orbit queue i, the retrial rate is μi, if at least one other orbit queue is non-empty.
Otherwise, this rate changes to μ∗

i , i = 1, . . . , N .
To obtain necessary stability condition, we assume that the model is stable,

i.e., the basic regenerative process {X(t)} is positive recurrent. In the following
we provide some preparatory results that are important for the proof of our main
result given in Theorem 1.

Denote by Pb the stationary busy probability of the server, i.e. P0 = 1 − Pb

is the stationary idle probability. More exactly, P(S(t) = 0) → P0 as t → ∞.
This limit exists since the interarrival time τ is spread-out [1]. Denote by B(t)
the busy time of the server in [0, t]. It is evident that B(t) equals the departed
work and can be expressed via idle time as,

B(t) = t − I(t).

We start with the following balance equation:

V (t) =
∑N

i=1
Wi(t) + S(t) + B(t)

=
∑N

i=1
Wi(t) + S(t) + t − I(t), t ≥ 0. (2)

Under positive recurrence, see [31],
∑N

i=1 Wi(t) + S(t) = o(t), t → ∞,

where o(t) is any quantity such that limt→∞
o(t)

t = 0; [31]. By the Strong Law
of Large Numbers, w.p.1,

V (t)
t =

∑N
i=1

∑Ai(t)
n=1 S(i)

n

Ai(t)
Ai(t)

t → ∑N
i=1 ρi, t → ∞. (3)

Since the busy time process, B(t), t ≥ 0, is a cumulative process with the positive
recurrent process of regenerations {Tn}, there exists (w.p.1) the limit [31]

limt→∞
B(t)

t = Pb. (4)

Moreover, since the input process is Poisson, then, the weak limit S(t) ⇒ Se, t →
∞ exists as well, and Pb = P(Se > 0) is the stationary busy probability of
the server. It follows from (2)–(4) that

∑N
i=1 ρi ≤ 1, and we prove the basic

(expected) strict inequality

Pb =
∑N

i=1 ρi < 1. (5)
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Theorem 1. Assume that the N -class retrial system with N coupled orbit
queues is positive recurrent. Then,

Pb =
∑N

i=1 ρi ≤ min1≤i≤N

[
max(μi, μ∗

i )
λi+max(μi, μ∗

i )

]
< 1. (6)

Proof: Denote by I0 the duration of an empty period within a regeneration
cycle. Let also B be a generic busy period, i.e., the time the server is busy
within a regeneration cycle. Then, the regeneration period can be represented as
T =st B + I0. By the positive recurrence of the cumulative process I(t), t ≥ 0,
there exists the limit (w.p.1)

limt→∞
I(t)

t = EI0
ET = P0 = 1 − Pb.

Since,
V (t) = o(t) + B(t) = o(t) + t − I(t), t → 0,

then,
limt→∞

V (t)
t =

∑N
i=1 ρi = 1 − limt→∞

I(t)
t ≤ 1 − EI0

ET . (7)

We show that EI0 > 0. Since τ is exponential, then there exist constants δ0 > 0,
ε0 > 0, such that for each class-i, i = 1, ..., N,

P(τ > S(i) + δ0) ≥ ε0 > 0. (8)

Denote the indicator function,

1i = 1(a class − i customer starts a new regeneration cycle).

Note that E1i = pi > 0, and that regeneration cycle may contain one class-i
customer only. Thus,

I0 ≥ I0 1i 1(τ > S(i) + δ0) ≥ δ0 1i 1(τ > S(i) + δ0).

Note that (5) follows from (7) and from the inequality

EI0 ≥ δ0 pi P(τ > S(i) + δ0) ≥ δ0 pi ε0 > 0.

However the inequality (5) can be strengthened if we apply a balance between
the input to each orbit queue, and the output from the same orbit queue.

Denote A
(0)
i (t) the number of class-i customers joining orbit queue i in inter-

val [0, t], i = 1, . . . , N . Denote, in interval [0, t], T
(i)
0b (t) the time when server is

free, orbit queue i is busy and at least one orbit queue j �= i is busy. Note that in
this case retrial rate from orbit queue i is μi. Let also T

(i)
00 (t) be the time when

orbit queue i is busy, the server is free, and all other orbit queues are empty. In
this case the retrial rate from orbit queue i is μ∗

i , i = 1 . . . , N .
Then A

(0)
i (t) =

∑Ai(t)
k=1 Ik, where indicator Ik = 1 if the kth class-i customer

joins orbit queue i. Since Ai(t)/t → λi, then,

limt→∞
A

(0)
i (t)

t = limt→∞ 1
Ai(t)

∑Ai(t)
k=1 Ik

Ai(t)
t = λiPb,
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where we use the equality

limt→∞ 1
Ai(t)

∑Ai(t)
k=1 Ik = Pb, (9)

since, by PASTA [32], the limiting fraction of all class-i customers, which see
the server busy, and join orbit queue i, equals the fraction of time the server is
busy. Note that the limit (9) is independent of i. Note also that the sum,

T
(i)
0b (t) + T

(i)
00 (t) =: T

(i)
0 (t),

is the time period, in interval [0, t], where the server is free and orbit queue i is
busy.

It is easy to see that, within [0, t], the (successful) output from orbit queue i

is possible during summary time T
(i)
0 (t). Denote by D̂i(t) the number of class-i

customers leaving the orbit queue i in [0, t]. Due to the fact that when orbit
queue i is busy and server is free, the process of (successful) retrial attempts is
Poisson, either with rate μi, or with rate μ∗

i , then we have the stochastic equality,

A
(0)
i (t) = D̂i(t) =st Di(T

(i)
0b (t)) + Di(T

(i)
00 (t)), (10)

where Di(t) denotes the Poisson process (with the corresponding rate). Using
results from renewal theory, and the Strong Law of Large numbers, the limits
(w.p.1) exist and

limt→∞ 1
t Di(T

(i)
0b (t)) = limt→∞

Di(T
(i)
0b (t))

T
(i)
0b (t)

T
(i)
0b (t)

t = μiP
(i)
0b , (11)

where P
(i)
0b is the stationary probability that server is free, orbit queue i, and at

least one other orbit queue are busy. Analogously,

limt→∞ 1
t Di(T

(i)
00 (t)) = limt→∞

Di(T
(i)
00 (t))

T
(i)
00 (t)

T
(i)
00 (t)

t = μ∗
iP

(i)
00 , (12)

where P
(i)
00 is the stationary probability that server and all orbit queues j �= i are

idle, while orbit queue i is busy. Due to the fact that under positive recurrence,
orbit queue i size is Ni(t) = o(t), then, from (10)–(12) and the local balance

A
(0)
i (t) = D̂i(t) + o(t),

we obtain,
λiPb = μ∗

iP
(i)
00 + μiP

(i)
0b , i = 1, . . . , N. (13)

Note that
P
(i)
00 + P

(i)
0b =: P(i)

0 , (14)

is the stationary probability that server is free and orbit queue i is busy. Finally,

P
(i)
0 ≤ P0 = 1 − Pb. (15)
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Now, it follows from (13)–(15) that

λiPb ≤ max(μi, μ∗
i )(1 − Pb), i = 1, . . . , N, (16)

implying the following relation between parameters:

Pb =
∑N

i=1 ρi ≤ min1≤i≤N [ max(μi, μ∗
i )

λi+max(μi, μ∗
i )

] < 1. (17)

Similarly, we can deduce (less interesting) inequality

Pb =
∑N

i=1 ρi ≥ maxi[
min(μi, μ∗

i )
λi

P
(i)
0 ].

�
Denote by I(t) ∩ Bi(t) the set of instants of time (in [0, t]) when server is

free and orbit queue i is busy. Then we have the following balance relation:

A
(0)
i (t) = o(t) + Di(I(t) ∩ Bi(t)).

Using arguments from renewal theory, we can easily show that,

lim supt→∞
Di(t)

t ≤ max(μi, μ∗
i ).

Then, it follows from
Di(Bi(t))

t = Di(Bi(t))
Bi(t)

Bi(t)
t ,

that the following inequality holds:

λiPb ≤ max(μi, μ∗
i )Pb(i), (18)

where,
Pb(i) = limt→∞

Bi(t)
t ,

is the stationary probability that orbit queue i is busy. Now (18) gives the
following inequality (which however is not uniform in i):

Pb(i) ≥ λi

max(μi, μ∗
i )

∑N
i=1 ρi, i = 1, . . . , N.

Remark 1. It is easy to extend this analysis to the m-server system (with sto-
chastically equivalent servers), in which case, the r.h.s. in inequality (6) (and
in (5)) must be replaced by m. Note also that it is straightforward to extend
the analysis to an arbitrary initial state X(0), in which case positive recurrence
means that ET < ∞ and the first regeneration period T1 < ∞ w.p.1, for more
details see [23].

Remark 2. Note that (6) has a very interesting (but expected) probabilistic
interpretation. Indeed, rewrite the term in brackets as 1 − λi

λi+max(μi, μ∗
i )

, and

without loss of generality let min1≤i≤N [1 − λi

λi+max(μi, μ∗
i )

] = 1 − λk

λk+max(μk, μ∗
k)

,

for some k = 1, ..., N . Then, (6) is rewritten as Pb + λk

λk+max(μk, μ∗
k)

< 1, which
is expected since the mean number of external arrivals between two consecutive
departures during a busy period must be smaller than 1.
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4 On the Sufficient Stability Conditions

Based on the results presented in [5,13], we claim that the sufficient stability
condition is ∑

i ρi + maxi

[
max( λ

λ+μi
, λ

λ+μ∗
i
)
]

< 1, (19)

which coincides with the corresponding stability condition on p. 30 in [13] for
N = 2 and γ1 = γ2. The proof is based on negative drift arguments and regen-
erative approach, and will be presented in a separate work.

The simulation experiments in Sect. 5 enhances our claim. We also define in
the following an additional metric, called Δ, in order to evaluate the “difference”
between necessary (17) and sufficient condition (19). More precisely, it is easy
to check that (19) can be rewritten as

∑
i ρi ≤ mini

(
min(μi, μ∗

i )
λ+min(μi, μ∗

i )

)
. (20)

Since the function f(x) = x/(λ + x) is monotone increasing in x, then (20)
implies (17):

mini
min(μi, μ∗

i )
λ+min(μi, μ∗

i )
≤ mini

min(μi, μ∗
i )

λi+min(μi, μ∗
i )

≤ maxi
max(μi, μ∗

i )
λi+max(μi, μ∗

i )
.

Denote the difference between the two conditions as

Δ = maxi
max(μi, μ∗

i )
λi+max(μi, μ∗

i )
− mini

min(μi, μ∗
i )

λ+min(μi, μ∗
i )

> 0. (21)

Our aim is to study the dependence of Δ on parameters λi, μi, μ∗
i .

Remark 3. Assume that μi = μ∗
i for all i (i.e., non-coupled system). Then (13)

becomes λiPb = μiP
(i)
0 , and we obtain explicit formula for the stationary prob-

ability that orbit queue i is busy and server is free:

P
(i)
0 = λi

μi

∑N
k=1 ρk, i = 1, . . . , N.

5 Simulations

In the following, we present some numerical results which illustrate that condi-
tions (17), (19) are necessary and sufficient, respectively, for the ergodicity of
our system. This is verified for exponential service time distribution. For N = 2,
and γ1 = γ2 = γ, set

Γ1 := mini[
max(μi, μ

∗
i )

λi + max(μi, μ∗
i )

] − ρ,

Γ2 :=1 − ρ − maxi[max(
λ

λ + μi
,

λ

λ + μ∗
i

)]. (22)

According to the theoretical findings, the necessary condition is 0 ≤ Γ1 < 1,
and the sufficient Γ2 > 0. As simulation shows, these measures allow to delimit
stability regions with a remarkable accuracy.
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Fig. 1. Orbit queue dynamics for the exponential system with γ = 40, Γ1 = 0.8625 < 1,
Γ2 = 0.6523 > 0, with μ1 = 20, μ2 = 10, μ∗

1 = 30, μ∗
2 = 20, λ1 = 2, λ2 = 1.
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Fig. 2. Orbit queue dynamics for the exponential system with γ = 20, Γ1 = 0.2 < 1,
Γ2 = −0.0738, with μ1 = 20, μ2 = 30, μ∗

1 = 20, μ∗
2 = 40, λ1 = 10, λ2 = 1.

Example 1: Orbit Queue Dynamics. In Figs. 1, 2 and 3 we study the dynamics
of the orbit queues depending on the value of the above introduced measures.
In Fig. 1 we observe the orbit queue dynamics when Γ1 = 0.8625 < 1, Γ2 =
0.6523 > 0. Therefore, under such conditions, our system is stable as expected.

Similar observations can be deduced by Fig. 2. There, the sufficient condition
Γ2 > 0 is violated. In particular, Γ2 = −0.0738. Note that in such a scenario
we have set λ1 = 10, and reduced γ from 40 to 20. We can easily observe the
effect of changing these parameters especially on the number of customers in
orbit queue 1. Recall that the necessary condition 0 ≤ Γ1 = 0.2 < 1 is still valid.

In Fig. 3, we have further reduced the service rate γ from 40 to 12. In such
a case the server becomes very slow, which in turn has a negative effect on the
system performance. Indeed, in such a case both stability conditions are violated,
and we can easily observe that the system becomes unstable. In particular, orbit
queue 1 is unstable.
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Fig. 3. Orbit queue dynamics for the exponential system with γ = 12, Γ1 = −0.1667 <
0, Γ2 = −0.4405 < 0, with μ1 = 20, μ2 = 10, μ∗

1 = 20, μ∗
2 = 40, λ1 = 10, λ2 = 1.

Fig. 4. Study the “difference” for μ1 = 20, μ2 = 10, μ∗
2 = 20, λ2 = 1.

Example 2: Effect of Δ. In Figs. 4 and 5 we study the dependence of Δ on the
system parameters. Recall that Δ is a measure of “distance” between sufficient
and necessary stability conditions.

Figure 4 shows how the “difference” Δ varies for increasing values of λ1, and for
different values of μ∗

1, by setting μ1 = 20, μ∗
1 = 30, μ2 = 10, μ∗

2 = 20, λ2 = 1.
We can observe that as μ∗

1 increases, Δ is relatively larger for small values of λ1.
When λ1 passes a certain threshold value, the effect of μ∗

1 vanishes. Moreover,
for such a scenario we can easily observe that for increasing values of λ1, the
“difference” between necessary and sufficient condition increases too.

Finally, in Fig. 5 we can observe how Δ decreases for increasing values of
μ∗
1 by setting μ1 = 20, μ∗

2 = 20, λ1 = 2, λ2 = 1. In particular, that decrease
becomes more apparent as μ2 increases too. Therefore, we conclude that when
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Fig. 5. Study the “difference” for μ1 = 20, μ∗
2 = 20, λ1 = 2, λ2 = 1.

the orbit queues retransmit faster and faster, the gap between necessary and
sufficient condition tends to be vanished.

6 Conclusion

We considered a multi-class bufferless retrial system accepting N types of retrial
customers, which arrive according to independent Poisson streams. In case of
blocking, class-i customer is routed to a separate infinite capacity orbit queue
i, i = 1, 2, ..., N . When at least one other orbit queue is non-empty, the orbit i
retransmits a class-i customer to the main service station after an exponentially
distributed time with rate μi. If all other orbit queues are empty, orbit queue i
changes its retransmission rate from μi to μ∗

i .
Using the regenerative approach we obtained the necessary stability condi-

tions of the system, which have a clear probabilistic interpretation. Moreover we
proposed a sufficient stability condition and study numerically the “difference”
between sufficient and necessary conditions. Simulation experiments shown that
the obtained conditions delimit the stability domain with remarkable accuracy.
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Abstract. Hybrid Petri nets have been extended with so-called gen-
eral transitions, which add one random variable and one dimension to
the underlying state space for each firing of a general transition. We pro-
pose an algorithm for model checking the time-bounded until operator in
hybrid Petri nets with two general transition firings, based on boolean-set
operations on Nef polyhedra. A case study on (dis)-charging an electri-
cal vehicle shows the feasibility of the approach. Results are validated
against a simulation tool and computation times are compared.

1 Introduction

Critical infrastructures are vital for societal well-fare and industrial operations.
The high requirements that are placed on their dependability can often be ver-
ified for different situations using model checking, where an abstract model of
the system is checked against a set of properties [1]. The modeling formalism of
Petri nets has been introduced in [2] for communication models and extended to
Hybrid Petri nets [3], which form a subclass of Hybrid Automata [4]. Recently,
also stochastic firing times have been added to the hybrid formalism in [5].
These so-called Hybrid Petri nets with general transitions (HPnGs) can repre-
sent systems with discrete, continuous and probabilistic features. The continuous
behaviour is however restricted to a piece-wise linear evolution. Model checking
properties expressed in Stochastic Time Logic (STL) against HPnGs has been
proposed before, either limited to HPnGs with a single general transition firing
[6] or excluding the time-bounded until operator [7]. For model checking HPnGs,
we need to identify regions in the underlying state space representation - a so-
called Stochastic Time Diagram (STD) - where certain properties hold. These
regions have been shown to correspond to (possibly open) convex polyhedra.
For model checking the until operator we need to perform among others, the set
difference operation on these polyhedra, yielding non-convex polyhedra, which
e.g., the Parma Polyhedra Library (PPL) [8] does not cover.

This paper proposes model checking algorithms for hybrid Petri nets with
multiple general transitions firings based on boolean set-operations on Nef poly-
hedra[9]. These include non-convex polyhedra and are closed under the set oper-
ations ∪, ¬, \ and ∩. To validate the described concepts, the algorithms are
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implemented for HPnGs with two general transitions firings, resulting in a three
dimensional state-space. We used the Computational Geometrical Algorithms
Library, which offers a library for Nef polyhedra in only three dimensions.

Related work. Parametric reachability analysis [5] characterises the possible
evolutions of a system as trees of parametric locations, on which certain proper-
ties can be checked. Region-based analysis [6] constructs the underlying Stochas-
tic Time Diagram, where states with similar properties are collected in regions.
This approach resembles the analysis of (probabilistic) timed automata [10,11],
or systems with piecewise-constant derivatives [12]. The syntax of STL for spec-
ifying properties of HPnGs is similar to MITL [13] or the temporal layer of
STL/PSL [14]. Model checking for HPnGs with a single general transition firing
is presented in [15] and for multiple firings, however without the time-bounded
until operator in [7]. This paper presents model checking the time-bounded Until
in HPnGs with multiple general transition firings. While the approach in this
paper aims for exact model checking of HPnGs, related work also considers
abstraction and simulation techniques. Statistical model checking for HPnGs
is presented in [16] and e.g. simulation for Fluid Stochastic Petri Nets in [5].
Abstraction is often applied Stochastic Hybrid Systems, as presented in [17,18].

2 Hybrid Petri Nets with General Transitions

Hybrid Petri nets with multiple general transition firings (HPnGs) have discrete,
continuous, and probabilistic features. Figure 1 illustrates the primitives of an
HPnG. In the following, we provide an informal model definition, discuss their
evolution and state-space representation and refer to [5] for the formal definition.

An HPnG is a tuple P = (P, T ,A,m0, x0, Φ). The set P of places consists
of the subsets PD of discrete places and PC of continuous places. The discrete
marking m contains the number of tokens of the discrete places and the contin-
uous marking x the amount of fluid (from R+) in the continuous places.

The set T of transitions consists of immediate transitions (T I), deterministic
transitions (T D), general transitions (T G), and continuous transitions (T F ),
which can all fire multiple times. A transition firing alters the marking of a
place. Discrete arcs AD, continuous arcs AF , test arcs AT and inhibitor arcs
form the set of arcs A. Test arcs connect transitions and places and enable the
transition iff the connected place contains at least as many tokens or fluid as
determined by the arc’s weight. For inhibitor arcs the opposite holds.

The various sets of parameters are aggregated in the tuple Φ =
(ΦP

b , ΦT
w , ΦT

p , ΦT
d , ΦT

f , ΦT
g , ΦA

w , ΦA
s , ΦA

p ). Continuous places have a maximum
capacity ΦP

b . ΦT
w and ΦT

p , assign weight and priority to transitions, which is
used for conflict resolution. Firing times for deterministic transitions can be
found in ΦT

d . ΦT
f assigns a rate to continuous transitions. General transition ΦT

g

fire according to a cumulative distribution function (CDF) gi. All arcs have a
weight ΦA

w , and fluid arcs have a share ΦA
s and priority ΦA

p .
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Fig. 1. Graphical representation of HPnG components.

The evolution of an HPnG is characterised as the change of state over time.
We collect all firing times of general transitions in the datastructure s, which
contains all realizations for each general transition that occurred before time t.

The state of an HPnG with fixed general transition firing times at time
t ∈ [0, tmax] is defined as Γ (s, t) := (m,x, c, d, g). Next to the discrete and
continuous marking, the state contains three more parameters. The vector c
carries a clock ci for each deterministic transition TD

i ∈ T D, that counts the
time for which the transition has already been enabled. The drifts1 d of the
continuous places is stored in the state tuple. Finally, vector g contains the time
a general transition has been enabled since its last firing.

Given an HPnG P with fixed general transition firing times s and a state
Γ (s, t), the subsequent evolution of the Petri net is completely determined. Since
the markings at time t are captured in the state, the current drifts as well as
the enabled transitions are known, which fully characterises the behaviour of the
system. Hence, the change in both markings and the future enabling or disabling
of transitions can be predicted. The entire change of the state over time starting
from an initial configuration Γ (s, 0) up to Γ (s, tmax) only depends on the firing
times of the general transitions.

The most significant changes in the state of an HPnG during its evolution
are due to events. Events mark either the firing, enabling or disabling of any
kind of transition or a rate adaptation for a continuous transition. Between two
events only the markings of the continuous places and the clocks of the enabled
transitions change according to their specific drifts. All the other parameters of
the state are constant. For the computation of the next event we refer to [5].

While the discussion so far has conditioned the firing times of all general
transitions to fixed realizations, we need to take into account all possible evo-
lutions to evaluate the overall behaviour of an HPnG. This can be done by
using a graphical representation of the Petri net’s state space, which is called
Stochastic Time Diagram (STD). This multidimensional representation features
one dimension for the time and one dimension for each firing of a general tran-
sition. Furthermore, it combines states with similar characteristics over time
into so-called regions. STDs for HPnGs with a single general one-shot transi-
tion [6] have already been extended to an arbitrary number of general transition
firings [7].

1 The change of fluid per time.
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In an STD, the possible firing times si of the general transition TG
i , i ∈

{1, . . . , n−1}, are plotted against the system time t. A point in an STD is hence
a tuple (s1, . . . , sn−1, t) of the si and t, thereby identifying a single state Γ (s, t) of
the HPnG. We write (s, t) as an abbreviation for such a point. An STD includes
all evolutions in a subset [0, tmax]n of Rn, as the individual general transition
firing times si and the time t are limited by the observed time interval [0, tmax].
The time of occurrence of events partitions the STD into so-called regions. They
aggregate sets of points (s, t), whose associated states Γ (s, t) only differ in their
continuous marking Γ (s, t).x and their clocks Γ (s, t).c.

All states contained in a region share the same discrete marking and the
same drifts of fluid places and clocks. All these parameters of a state can only
be altered by events. Therefore, the borders of a region correlate to the time, at
which an event takes place. According to Proposition 1 from [7], this time can
be expressed as a linear function, i.e. a hyperplane equation, of s and t. Hence,
the regions are surrounded by hyperplanes, which we call event hyperplanes.

3 Model Checking Time-Bounded Until

Semantics of time-bounded Until is presented in Sect. 3.1, the translation to Nef
polyhedra in Sect. 3.2 and the model checking algorithm in Sect. 3.3.

3.1 Time-Bounded Until

Following the definition of STL as in [15], the time-bounded Until φ1 U [t1,t2] φ2 is
a temporal modality that requires property φ1 to hold until another property φ2

holds in the time interval [t1, t2]. Excluding the nesting of Until operators, the
formulas φ1 and φ2 are restricted to the negation and conjunction of atomic prop-
erties, that compare the continuous or discrete marking to a certain constant.
By defining a so-called satisfaction relation |= between a state of an HPnG and
an Until formula, the STL is equipped with the means to describe the properties
of a hybrid Petri net.

Γ (s, t) |= φ1U [t1,t2]φ2 ⇐⇒ ∃τ ∈ [t + t1, t + t2] : Γ (s, τ) |= φ2 ∧
(∀τ ′ ∈ [t, τ) : Γ (s, τ ′) |= φ1).

Investigating the satisfaction of a time-bounded Until formula requires the
examination of an evolution in the time interval [t, t + t2]. The state Γ (s, t) and
its successors have to fulfil three conditions to satisfy an Until formula:

1. The property φ1 must hold in all states Γ (s, τ ′), where τ ′ ∈ [t, t + t1). If
t1 = 0, this condition is omitted.

2. The property φ1 must hold in all states Γ (s, τ ′′), where τ ′′ ∈ [t + t1, τ) and
τ ∈ [t + t1, t + t2].

3. The property φ2 must hold eventually in some state Γ (s, τ).
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In an HPnG with n − 1 general transition firings, this corresponds to identi-
fying those combinations of firing times s, such that Γ (s, t) fulfils φ1 U [t1,t2] φ2,
which are combined in the so-called satisfaction set Sat(φ, t).

The probability operator as in Definition 1, compares the probability that
from a system state Γ (t) an evolution is taken that fulfils φ with a given threshold
�p. This can be computed by an n − 1-dimensional integration of the density
function that corresponds to each general transition over the satisfaction set.

Definition 1. Let P be an HPnG with n general transition firings. A system
state Γ (t) satisfies a probability operator P� p(φ) for an STL formula φ, a prob-
ability p ∈ [0, 1], and a comparison operator � ∈ {<,≤, >,≥}, iff:

Γ (t) |= P� p(φ) ⇐⇒ Prob(φ, t) � p.

Where Prob(φ, t) :=
∫

· · ·
∫

Sat(φ,t)
g1(s1) ∗ · · · ∗ gn(sn) dsn . . . ds1 is the multiple

integral over the domain Sat(φ, t) with the probability density functions gi of the
general transition firing times.

3.2 Translation to Nef Polyhedra

According to [9], Nef Polyhedra can be defined as intersections of a finite number
of open half-spaces. Moreover, they are closed w.r.t. the operations ∪, ¬, \ and
∩. Note that the requirement of open half-spaces is not a restriction, since every
closed half-space can be expressed as the complement of an open half-space.
Hence, convex polytopes are a subclass of Nef polyhedra, since they are defined
as the intersection of closed half-spaces.

Regions in an STD correspond to convex polytopes, also in the case of mul-
tiple stochastic firings and a region in an STD is the union of the faces of a
hyperplane arrangement [7]. According to [9], a point set P ⊂ Rd is a Nef poly-
hedron if there exists a finite family H of hyperplanes in Rd, such that P is
the union of certain faces of the corresponding arrangement A(H). Hence, the
regions of an STD are also Nef polyhedra. We use Nef polyhedra and the fact that
they are closed under boolean-set operations ∪, ¬, \ and ∩ for model checking.

The satisfaction set Sat(φ1 U [t1,t2] φ2, t) is computed in three steps. First, the
set M ⊆ [0, tmax]n−1 of general transition firing times is determined, for which:

∀s ∈ M, t′ ∈ [t, t + t1] : Γ (s, t′) |=s,t φ1.

The elements s in M fulfil the first condition for satisfying an Until formula, as
described in the previous subsection. Then all combinations of firing times are
identified for which φ1 holds until eventually the right-hand formula φ2 holds
within [t+t1, t+t2]. They are combined in another set N ⊆ [0, tmax]n−1 and fulfil
Conditions 2 and 3 from Sect. 3.1. All points s contained in both sets M and N
fulfil all three conditions and satisfy the Until formula φ. Hence, the intersection
of M and N forms the satisfaction set Sat(φ, t). To compute both M and N ,
we first determine the subsets of all regions in the respective time interval, in
which φ1 and φ2 hold. The computation of these subsets is identical for M and
N , except for the treatment of the upper and lower boundary.
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3.3 Model Checking

We explain the details of the model checking approach in terms of Nef polyhedra,
following the conditions discussed in Sect. 3.1.

Checking condition 1: Examining the first interval [t, t+t1] reveals the system
evolutions for which φ1 holds permanently inside the interval. These so-called
candidates that potentially fulfil the Until formula are computed by function
ComputeCandidateSets (c.f. line 1, Algorithm1). Function CheckInterval
(line 2) computes two Nef polyhedra containing all states, which satisfy φ1 and
φ2, in the respective intervals. Figure 2 illustrates the output of the algorithm,
i.e., polyhedra P1, which contains all points that fulfill φ1 and P2 for φ2. As
l = t and u = t + t1, φ1 should hold and φ2 is not allowed to hold during the
time interval [l, u]. Hence, we exclude all points which fulfil φ2 too early, i.e., in
[t, t + t1]. Thus, P1 is limited to the volumes in which φ1 but not φ2 holds by
subtracting P2 from P1 (line 3).

A system evolution defined by s does not satisfy φ1 during a given time
interval iff there are points (s, t′) with t′ ∈ [t, t + t1] that lie outside the Nef
polyhedron P1. Hence, a segment, that fulfils φ1 at time t and does not pierce
through any facet of P , represents a system evolution, which constantly satisfies
φ1 during [t, t+t1]. Figure 3 shows this concept for a two-dimensional STD, where
evolution (a) passes through a facet of P and does hence not fulfil φ1 throughout
the interval [t, t + t1]. However, evolution (b) does stay in the area covered by P
during the time interval. Hence, (b) is considered a candidate evolution.

Algorithm 1. Determining the t-satisfying sets for φ1 in the interval [t, t + t1]
Require: regions of the STD R, subformulas φ1, φ2, checking time t, time bound t1
Ensure: Returns set of firing times which t-satisfies φ1 in the time interval [t, t + t1]
1: function ComputeCandidateSets(R, φ1, φ2, t, t1)
2: P1, P2 ← CheckInterval(R, φ1, φ2, t, t + t1)
3: P ← P1 \ P2

4: return IdentifyFulfillingSystemEvolutions(t,t + t1, P )

Fig. 2. Polyhedra P1 and P2 corresponding to formulas φ1 and φ2
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Fig. 3. An evolution that does not satisfy a formula in the complete interval [t, t + t1]
(a) vs. one that satisfies the formula throughout the interval (b) in an STD in R

2.

Algorithm 2. Identifing system evolutions that fulfil φ during [l, u]
Require: time interval [l, u], Nef polyhedron P , i.e., satisfaction set of φ in [l, u]
Ensure: Returns set of firing times s that identify fulfilling system evolutions
1: function IdentifyFulfillingSystemEvolutions(l,u,P )
2: M ← IntersectionToSubspace(P , Hl)
3: for all facets f ∈ P do
4: if f �= Hl ∧ f �= Hu then
5: M ← M\ ProjectToSubspace(f)

6: return M

Based on this idea, Procedure IdentifyFulfillingSystemEvolutions
(c.f. Algorithm 2) determines s that specify evolutions that are completely
enclosed by P in the given time interval [t, t + t1]. The algorithm is defined
for arbitrary intervals [l, u], as it is reused later for the second time interval. By
intersecting the input polyhedron with the hyperplane Hl := t = l and subse-
quently projecting the result to R

n−1, a set M is generated, that contains all
firing times of the general transitions, for which φ holds at time l (line 2). In
Fig. 4, the interval M is in R and results from the intersection of the Nef poly-
hedron P with the hyperplane Hl, which corresponds to the lower dashed line.
In the next step, M is restricted using the facets of P to keep only those firing
times, which correspond to evolutions that fulfil φ1 in the complete interval. A
facet whose hyperplane is equal to the interval borders l or u is excluded from
this process (line 4). Projecting the facet f , that lies inside the interval (l, u) to
R

n−1 identifies those evolutions, which intersect with f . Hence, the projection
of such a facet is substracted from the set M (line 5). After having processed
all facets of P , M is reduced to the firing times, for which the corresponding
system evolutions do not intersect with facets of P .

Figure 5 shows the result of the method applied to our running example. The
facets of P between l and u have been used to restrict M to the marked interval,
such that the remaining evolutions represented by M constantly fulfil φ in [l, u].
If M is empty after IdentifyFulfillingSystemEvolutions returns from the
call in ComputeCandidateSets, no system evolution constantly fulfils φ1 in
the first interval [t, t + t1]. The model hence does not satisfy the Until formula
and the process can be stopped at that point.
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Fig. 4. Hyperplane inters. to identify evolutions satisfying φ1 at a time l (Algorithm 2,
line 2).

Fig. 5. Restriction of satisfying evolutions using the facets of P (Algorithm 2, line 5).

Checking condition 2 and 3: When analyzing the interval [t + t1, t + t2] the
observation of a system evolution should be cancelled, when a φ2 state is reached.
Algorithm 3 handles the second interval, which first identifies the time points at
which φ2 holds. Similar to Algorithm1 the first step computes the subsets of the
regions in the interval [t+ t1, t+ t2], which satisfy φ1 and φ2 using the previously
mentioned procedure CheckInterval (line 2). The next task is to determine
the points, at which an evolution switches from P1 to P2, that is the facets of P2

which intersect with P1 have to be found. Points that are shared between P1 and
P2 do not need to be considered, which is why they are excluded from P1 (line 3).
By intersecting the limited P1 with the boundary of P2 (line 4), we receive the
desired point set. The interior and the border of a Nef polyhedron are again Nef
polyhedra, so that the result set B of the operation is a Nef polyhedron, too.

For each point on a facet of B then both φ1 and φ2 hold. A system evolution
with general transition firing times s, which crosses such a facet at some time
τ ∈ [t + t1, t + t2], potentially fulfils the Until formula. If, in addition, all points
of the evolution in the interval [t, τ) satisfy the formula φ1, the firing times s
belong to the set N . For this purpose, we can reuse the function IdentifyFul-
fillingSystemEvolutions (Algorithm 2), which has been introduced for the
computation of the set M in the first interval (line 8).
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Algorithm 3. Determining t-satisfying sets for ψ1 U [t1,t2] ψ2.
Require: regions of STD R, subformulas φ1, φ2, checking time t, interval [t1, t2]
Ensure: Returns set of firing times which t-satisfy φ1 U [0,t2]φ2 at time t + t1
1: function ComputeSatisfyingSets(R, φ1, φ2, t, t1, t2)
2: P1, P2 ← CheckInterval(R, φ1, φ2, t + t1, t + t2)
3: P1 ← P1 \ P2.interior()
4: B ← P1 ∩ P2.boundary()
5: for all facets f ∈ B do
6: fprojected ← ProjectToSubspace(f)
7: Temp ← P1∩{(f1, . . . , fn−1, t

′)|(f1, . . . , fn−1) ∈ fprojected, t
′ ∈ [t+t1, t+t2]}

8: N ← N∪ IdentifyFulfillingSystemEvolutions(t + t1, f , Temp)

9: return N∪ IntersectionToSubspace(P2, Ht+t1)

Fig. 6. Limiting P1 with the prisms generated from facets of B (Algorithm 3, lines 6–7).

Each facet f of B is visited separately to identify the fulfilling system evolu-
tions. The area fprojected, that results from projecting f to R

n−1 (line 6), defines
the subset of P1, which is processed for the facet. We use fprojected as a basis,
to create a so-called prism, which is then intersected with P1 (line 7). Figure 6
depicts the facets f of B which are projected to R

n−1, and the prisms for each
of the projected facets. Note that in R

2 the prisms are simple rectangles.
The intersections Temp of the individual prisms and P1 are passed succes-

sively to the function IdentifyFulfillingSystemEvolutions. Instead of a
time point the facet f is passed as the upper boundary, which corresponds for
each s to the time τ for which Φ2 holds. The hyperplane Hu, which is used as
the upper limit inside Algorithm2, is however just replaced by the hyperplane
of the facet. Otherwise, nothing else is changed. The function call determines
the projected sets in R

n−1 from the intersection of Ht+t1 and Temp. Afterwards
they are limited with the projection of the facets of Temp, which are located
below f . The result is a set of firing times, which fulfil the second and third
condition for the satisfaction of the Until formula.
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Fig. 7. Result of the checking process according to Algorithm 3 for the 2-d example.

After all facets of B have been processed in this manner, N does not yet
contain all relevant firing times, as the evolutions which satisfy φ2 immediately
when entering the interval [t + t1, t + t2] have been ignored. They can however
be easily computed by the intersection of P2 and the hyperplane Ht+t1 and
subsequent projection of the result to R

2 (line 9). The union of N with the result
of this last operation now corresponds to the set of all general transition firing
times, which fulfil the second and third condition in the interval [t + t1, t + t2].

Figure 7 shows the final result for the running example. The left two facets of
B can not be reached without leaving P1, hence only the marked interval is part
of N . In addition, the interval covered by the intersection of Hl with P2 is part
of N , since these evolutions immediately satisfy φ2 when entering [t + t1, t + t2].
Intersecting the sets M and N as computed by Algorithms 1 and 3, yields the
satisfaction set Sat(φ, t) for the time bounded Until formula. The evolutions
identified by the elements in M fulfil the first condition for the satisfaction of
the Until formula, while the points in N fulfil the second and third condition.
Hence, checking an Until formula φ at time t results in Sat(φ, t) = M ∩ N .

4 Case Study: Electric Vehicle Charging

We examine the charging process for electric vehicles; following a just-in-time
strategy, which aligns the charging process to the client’s behaviour. By predict-
ing the return time of the driver, the state of charge of the battery is kept at
an optimal state for the battery’s lifetime before charging the battery to its full
capacity just before the driver returns (cf. [19]). Note that we do not consider
discharging the battery for grid balancing. The developed model checking algo-
rithms allow to investigate the impact of different parameters on the probability
that the battery is fully charged when beeing picked up.

Figure 8 depicts a simplified version2 of the HPnG model used in this case
study. It models the charging process (left part of Fig. 8), which is observed for

2 The model used for computation consists of 19 places and 26 transitions.
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Fig. 8. HPnG model for charging a battery in an electric vehicle (based on [19]).

144 time units3. The central element is the place battery with a capacity of
90000 (in Watt-hours) and its dynamic continuous source transition load. The
latter hides a time-dependent loading process (partly depicted in the right part
of Fig. 8) that starts, when the car is plugged to the charger, corresponding to
the firing of the first general transition tts.

As long as the place loading contains one token, the car is connected to the
charger. The duration of the charging cycle is determined by the second general
transition client returned, which specifies, after how many time units the driver
of the car unplugs it. The abstract state of the battery is either empty, good,
or full, as indicated by the token that moves between those states during the
charging process. The delay of 0.05 time units (30 s) for the firing of TD

4 and TD
2

models the reaction time of the charging station to begin or respectively end the
process. If the battery is fully charged, T 2

D fires after 0.05 time units and moves
the token to the place full, thereby disabling the transition load via the inhibitor
arc. The charging strategy is modelled via the dynamic continuous transition
load and as implemented in this model, fills the battery in two consecutive
steps. In a first phase, the capacity is brought quickly to the level of 40 kWh.
The second phase charges the battery up to its capacity limit, such that the
client can use the maximum range of his electric vehicle. In the mean time, the
charging is stopped and while in the current model the power level of the battery
remains unchanged, the available capacity could be offered to the grid operator
to flexibly charge/discharge. Additionally, the transition drain allows the grid to
consume battery capacity, if enabled, i.e., if the place drain from grid contains
a token. A client might consider this charging strategy reasonable, if the battery
is charged at least up to some threshold when the car is unplugged, specified in
STL as follows:

φ1 := mloading ≥ 1 U [0,144] xbattery ≥ c,

where the constant c represents the required state of charge. The place loading
contains a token while the general transition client returned has not fired.

3 Corresponding to 1440min or 24 h.
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Table 1. Test series 1–3.

Case ID drain
enabled?

Distributions Parameters
client returned

Parameters tts STL
formula

(1a) ✗ Normal μ = 54, σ = 6 μ = 40, σ = 6 φ1

(1b) ✗ Normal μ = 52, σ = 6 μ = 40, σ = 6 φ1

(1c) ✗ Normal μ = 52, σ = 12 μ = 40, σ = 12 φ1

(1d) ✗ Normal μ = 54, σ = 12 μ = 40, σ = 12 φ1

(2a) ✓ Normal μ = 54, σ = 6 μ = 40, σ = 6 φ1

(2b) ✓ Normal μ = 54, σ = 6 μ = 40, σ = 6 φ2

(2c) ✓ Normal μ = 54, σ = 12 μ = 40, σ = 12 φ2

(3b) ✗ Uniform a = 52, b = 56 a = 46, b = 50 t = 36

(3c) ✗ Uniform a = 52, b = 56 a = 46, b = 50 t = 54

(3d) ✗ Uniform a = 52, b = 56 a = 46, b = 50 t = 66

(3e) ✗ Uniform a = 52, b = 56 a = 46, b = 50 t = 72

A first series of tests (1a to 1d in Table 1) investigates the influence of dif-
ferent distribution parameters on the probability that φ1 is satisfied. Here, the
firing times of both general transitions client returned and tts follow normal
distributions with varying mean and standard deviation. The client unplugs the
car from the charger on average after μ = 54 time units (9 h) with a standard
deviation between σ = 6 (1 h) and σ = 12. Then φ1 is checked for a threshold
of c = 81000 Wh, which corresponds to 90% of the battery capacity. The sec-
ond test series assumes that the grid also consumes battery power. Our model
however fills the place battery with a fixed total amount of 90 kWh, so that the
reachable level in battery is reduced by the amount of power, which is consumed
by transition drain. If drain is enabled for one time unit with e.g. a rate of
3 kWh, the battery can only be charged up to 77 kWh, and φ1 will not hold.
Hence, for scenarios (2b) and (2c), the constant in φ1 is set to c = 75000 Wh,
as indicated in Table 1. The last test series determines the probability that the
battery is charged to 81 kWh at a specific time point. As shown in Table 1, the
firing times of client returned and tts are both uniformly distributed between
[52, 56] and [46, 50] in Scenarios 3b–3e. This corresponds to starting the second
phase of charging after 460 to 500 min and to unplugging the car after 520 to
560 min. The following formula is investigated at different times:

φ3 := xbattery ≤ 81000.

All configurations, as summarized in Table 1, have been model checked using
the algorithms presented in this paper. Note that, depending on the configuration
of the HPnG, the corresponding STD consists of 335 to 360 regions. In addition,
the results have been compared with a statistical model checking tool for HPnGs
[16], which samples the firing times of all general transitions. Model checking a
formula then reduces to testing the single evolution for the desired property.
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Table 2. Comparison of results for all test series.

Case ID Nef polyhedra tool
probability

Simulation mean Simulation
confidence interval

(1a) 0.9026 0.9015 [0.8965, 0.9065]

(1b) 0.8556 0.8557 [0.8507, 0.8607]

(1c) 0.7016 0.7020 [0.6970, 0.7070]

(1d) 0.7411 0.7401 [0.7351, 0.7451]

(2a) 0 0 [0, 0]

(2b) 0.8643 0.8654 [0.8604, 0.8704]

(2c) 0.6667 0.6662 [0.6612, 0.6712]

(3b) 0.9985 1 [1, 1]

(3c) 0.0313 0.0289 [0.0239, 0.0339]

(3d) 0.0317 0.0334 [0.0284, 0.0384]

(3e) 0.0314 0.0287 [0.0237, 0.0337]

By repeating this process several times, the tool is able to approximate the
probability for the satisfaction of the formula. After a finite number of iterations,
the tool outputs a mean value with a confidence interval. Table 2 summarises the
results rounded to four decimal places.

In test series 1 and 2 the analytical results lie well within the 99% confi-
dence intervals provided by the simulation. Assuming that the chosen distribu-
tion N (54, 62) correctly models the return time distribution of the client (tran-
sition client returned), the second charging phase (transition tts) starts early
enough to satisfy the property φ1 in over 90% of all cases. As expected, a higher
variation in the return time distribution, leads to a lower probability of Φ1 to
hold and to larger confidence intervals in the simulation. Recall, that test series
3 model checks an atomic formula at different time points. Case (3c), for exam-
ple, implies, that the battery is charged to less than 81 kWh after 54 time units
in only about 3% of the possible evolutions. Only for case (3b) the analytical
result of 0.9985, does not match the simulation value of 1. This deviation can be
traced back to a numerical error in the integration over the satisfaction set. By
increasing the number of iterations in the numerical integration, the error can
be reduced, but the higher precision can significantly increase the computation
time. Table 3 compares the computation times the statistical model checker and
of the Nef polyhedra tool for different iteration numbers. The computation times
in the highlighted column correspond to the results presented in Table 2.

In most test cases, the Nef polyhedra tool with 4096 iterations computes
the probabilities faster than the simulation tool. Only in the cases where the
probability amounts to 0 or 1, the simulation tool outperforms the analytical
approach. Even for 8192 iterations the Nef polyhedra tool is often faster than
the simulation tool. Note that the computation time of our approach consists of
three parts: building the STD, computing the satisfaction set, and integrating
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Table 3. Comparison of computation times for Nef polyhedra tool and simulation tool.

case ID
Nef polyhedra tool runtime Simulation

runtime
Number of
simulations1024 iterations 4096 iterations 8192 iterations

1a) 3.157s 3.454s 4.144s 31.122s 23573

1b) 3.213s 3.443s 4.15s 64.1s 32774

1c) 3.167s 3.397s 4.145s 84.179s 55525

1d) 3.187s 3.384s 4.119s 81.049s 51059

2a) 1.718s 1.715s 1.717s 1.523s 100

2b) 2.394s 2.626s 3.378s 41.256s 30927

2c) 2.397s 2.628s 3.334s 143.403s 59020

3b) 3.105s 6.675s 15.303s 388s 100

3c) 3.112s 6.015s 15.333s 10.588s 7447

3d) 3.043s 6.783s 16.04s 7.594s 8569

3e) 3.482s 6.063s 15.295s 10.777s 7396

over the satisfaction set. The former two steps are not affected by the number
of iterations, which is why in test series 1, for example, the generation of the
STD and the following computation of the satisfaction set take about 3.14 s for
every configuration. The mere integration thus requires about 0.02 s with 1024
iterations, about 0.3 s with 4096 iterations, and about 1.1 s with 8192 iterations,
which implies that doubling the number of iterations approximately quadruples
the computation time. However, our computations have shown that the precision
gain is often negligible or even non-existent. Computations have been performed
on an Intel Core i5-750 @2.67 GHz CPU.

5 Conclusion

We proposed an algorithm for model checking the time-bounded until operator
in Hybrid Petri nets with multiple general transition firings based on opera-
tions on Nef polyhedra. It has been shown that an STD consists of a set of Nef
polyhedra, which is a special class of polytopes, that is defined by intersections
of half-spaces. The proposed algorithm has been implemented in C++ using
the Computational Geometrical Algorithms Library CGAL [20], which offers an
implementation for operations on Nef polyhedra in three dimensions. This allows
to model check HPnGs with two firings of general transitions. A case study with
several scenarios not only shows the feasibility of the approach, but also val-
idates the results against a dedicated simulator for HPnGs. The analysis of
HPnGs with multiple general transition firings requires an implementation of
polyhedra in arbitrary dimensions and a more sophisticated technique for the
integration over the multidimensional satisfaction set. Future work will investi-
gate the use of Hypro, a toolbox for the Reachability Analysis of Hybrid Systems
using Geometric Approximations [21].
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Abstract. For more than five decades, efforts of calculating exact proba-
bilistic quantiles for generally distributed project runtimes have not been
successful due to the tremendous computation requirements, paired with
hard restrictions on the available computation power. The methods estab-
lished today are PERT (Program Evaluation and Review Technique) and
CCPM (Critical Chain Project Management). They make simplifying
assumptions by focusing on the critical path (PERT) or estimating appro-
priate buffers (CCPM). In view of this, and since today’s machines offer
an increased computation power, we have developed a new approach: For
the calculation of more exact quantiles or – reversely – of the resulting
buffer sizes, we combine the capabilities of classical reduction techniques
for series-parallel structures with the capabilities of probabilistic model
checking. In order to avoid the state space explosion problem, we propose
a heuristic algorithm.

Keywords: Project planning · Stochastic graph model · Series-parallel
reduction · Probabilistic model checking · PERT · CCPM

1 Introduction

In project planning, predicting the total runtime of activity chains and/or con-
current project activities, is an important task. In most situations, due to the
influence of many unpredictable factors, probabilistic methods are more appro-
priate than deterministic ones. Two well-known representatives, PERT (Program
Evaluation and Review Technique [13, pp. 303–365]) and CCPM (Critical Chain
Project Management [4]), mostly only yield inaccurate results, due to methodical
simplifications (taken in order to make them computable).

PERT is limited in principle by focussing on the critical path. Sub-critical paths
are completely neglected – even if they appear in a high number or with a signifi-
cant variance influencing the total runtime distribution. (A more detailed analysis
of PERT networks, albeit under Markovian assumptions, has been described in
[7].) CCPM works in a more differentiated (but also non-preemptive) way: Using
this method, all non-critical paths are augmented by feeding buffers in order to
lower the influence of the critical path. For determining the size of the buffer, the
so-called Cut & Paste Method and the Root Square Error Method have been sug-
gested. But these methods for buffer sizing handle the variance of the side-paths
c© Springer International Publishing AG 2017
P. Reinecke and A. Di Marco (Eds.): EPEW 2017, LNCS 10497, pp. 117–132, 2017.
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only in an indirect, usually inaccurate manner, and thus their effectiveness is hard
to quantify. This motivated us to take a review on this topic, seeking for a new, bet-
ter approach. In particular, since the introduction of both methods in 1958 resp.
1996 the available computation power has increased significantly, and new calcu-
lation methods such as probabilistic model checking (pMC) [8], together with effi-
cient tools like PRISM [12], have become available.

We propose a method for complete and accurate calculation of a project’s
total runtime distribution, where our key ideas are as follows:

– The nodes of a stochastic graph model (SGM), i.e. a directed acyclic graph
(DAG), represent the activities of a project. Each node is equipped with a
continuous probability distribution, representing its individual runtime.

– The nodes of the graph are reduced in a step-by-step manner, ultimately lead-
ing to only a single node, with a related result distribution which represents
the project’s total runtime.

– We seek to find subgraphs which can be reduced to a single node by serial or
parallel reduction, as explained below in Sect. 2.

– When no further series-parallel reduction is possible, we identify the starting
and end points of a so-called complex cluster (a generally structured sub-
graph). We use the concept of syncpoints (see Sect. 3 below) for defining such
clusters. The cluster is then reduced by a complex reduction to a single node,
for which step pMC is employed. In order to avoid state space explosion, it
is essential to limit the size of the graph to be fed into pMC. Therefore the
clusters analysed by pMC should be as small as possible.

– One faces the challenge of finding an appropriate (heuristic) fitting for the
given source distributions, because pMC tools usually only accept exponential
distributions. “Fitting” in this context means the approximate modelling of a
given distribution by some phase type distribution, for instance by matching
the first moments.

– It is an interesting side effect that already one complex reduction step can
often eliminate a local complexity hotspot and thereby enable further series-
parallel reduction steps.

1.1 Related Work

Melchiors and Kolisch [10,11] have presented a heuristic approach for estab-
lishing and assessing scheduling policies for dynamically arriving, concurring
project activities competing for limited resources. In contrast to our approach
which works on the operational planning level, their work is targeted at the
“tactical” planning level (aka “Macro Process Planning”). It uses aggregated
work packages as well as global estimates of runtime and precedence relation-
ships. It assumes high variability project environments, allowing for dynamically
emerging activities as well as dynamically changing dependencies between activ-
ities. Several heuristics (based on CTMCs and MDPs) are combined, to gain
a computable model state space (including a preemptive modelling approach).
The final valuation and performance assessment of the priority policy methods
is done via simulation.
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Kapici [5] presented an approach where complex projects are mapped to a
newly developed stochastic model. He then derives statements on the adherance
of deadlines, costs or other results. His approach is fully simulation-based.

There are further approaches, most of them based on simulation and/or
complexity-reducing heuristics. The destinctive feature of our work, however,
is the accurate consideration of the individual project activities and their prece-
dence relations, combined with the power of a probabilistic model checker.

1.2 Paper Structure

The rest of this paper is structured as follows: Sect. 2 provides background infor-
mation on PERT, CCPM and the analysis of stochastic graph models. The
shortcomings of these classical methods motivated us to develop an innovative
approach, which is presented in detail in Sect. 3. To illustrate our method, Sect. 4
presents some non-trivial examples. Finally, Sect. 5 summarizes the results and
describes some ideas for continuing work.

2 State of the Art

2.1 Stochastic Graph Models

Stochastic Graph Models are a simple and intuitive formalism for modelling the
structure of projects, parallel programs, collections of interdependent tasks, etc.
They have been described in detail, e.g., in [6].

Definition 1. A Stochastic Graph Model (SGM) is a directed acyclic graph G =
(V,E, exec) with the following properties:

1. V is a finite set of vertices (aka nodes), and E ⊆ V × V is the set of directed
edges. G is connected and has a single source and a single sink node.

2. exec : V �→ Distr is a function which assigns to each vertex its associated
continuous nonnegative runtime distribution. The runtime distributions of all
vertices are mutually independent.

3. A tuple p = (e1, e2, . . . , ek) ∈ Ek of edges is called a directed path, if and
only if ∀1<i≤k : start(ei) = end(ei−1), where start(e)/end(e) denotes the
start/end node of edge e. The set of all possible paths in G (induced by E) is
denoted by paths(E).

A vertex of a SGM starts its execution as soon as all its predecessor vertices
have completed. The goal of SGM analysis is to determine the total runtime
distribution, i.e. the elapsed time between the start of the source node and the
finishing of the sink node.

Definition 2. An edge e ∈ E is called redundant iff there is a path p =
(e1, e2, . . . , ek) of edges with e /∈ p, start(e) = start(e1) and end(e) = end(ek).
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For the rest of this paper, without any loss of information, we assume the SGM to
be free of redundant edges (if a particular SGM is not so, they can be discovered
and removed easily).

There is a class of SGMs, featuring a series-parallel structure, which is
amenable to efficient analysis. This class is characterised by the following defin-
ition and theorem.

Definition 3. Two vertices ni and nj of a SGM are said to be serially connected
iff nj is the only successor of ni and ni is the only predecessor of nj (or vice
versa). A set of vertices P ⊆ V with |P | ≥ 2 is called parallelly connected iff all
vertices n ∈ P have the same set of predecessors and the same set of successors.

Theorem 1. (from [6, p. 184]) Two serially connected vertices n1 and n2 may
be serially reduced to a single vertex n12 as follows:
pred(n12) = pred(n1), succ(n12) = succ(n2), exec(n12) = exec(n1) ∗
exec(n2), where pred(n)/succ(n) denotes the set of predecessor/successor nodes
of n, and ∗ denotes the convolution operator on continuous distributions. Two
or more parallelly connected vertices n1, n2, . . . , nk may be parallelly reduced to
a single vertex n1...k as follows:
pred(n1...k) = pred(n1), succ(n1...k) = succ(n1),
exec(n1...k) = max(exec(n1), . . . , exec(nk)),
where max denotes the maximum operator on continuous distributions.

Definition 4. A SGM G is called series-parallel reducible if it can be reduced
to a single node by successive serial and parallel reduction steps.

In short, serial reduction means that two serially connected nodes are reduced
to a single node whose distribution is the convolution of the two operand dis-
tributions (the convolution yields the distribution of the sum of the execution
times). Parallel reduction means that two or more “parallel” nodes are reduced
to a single node which is distributed according to the maximum of the operand
runtimes. Series-parallel reduction is a very efficient method for analysing SGMs.
However, while many graph structures are series-parallel reducible, in practice
many SGMs are not of this class, see e.g. the graph shown in Fig. 1, which is no
longer series-parallel reducible if the traverse edge A-D is inserted.

2.2 A Simple SGM

We consider a simple SGM consisting of four significant nodes {A,B,C,D},
enclosed by the source node S and the sink node E (shown in Fig. 1). It is assumed
that nodes S and E have negligible runtime, i.e. their runtime is deterministic
with value zero. The runtimes of the four significant nodes all follow an Erlang-
distribution with n phases and basic rate λ (having mean μ = n

λ and variance
σ2 = n

λ2 ): For A and B with λ = 1, n = 10, for C with λ = 0.2, n = 2, and for D
with λ = 0.201, n = 2. The resulting μ and σ2 values are given in Fig. 1.
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Fig. 1. Example – the traversal edge A-D is initially neglected (Color figure online)

Fig. 2. Comparison of the densities; 50%- and 90%-quantiles (Color figure online)

For the sake of simplicity, we first neglect the traverse edge from A to D,
such that the SGM is series-parallel reducible. Its overall runtime distribution is
thus

exec(ABCD) = max(exec(A) ∗ exec(B), exec(C) ∗ exec(D))

This density is depicted in Fig. 2 as curve (3) (green).

2.3 PERT

PERT focusses only on the critical path, thereby taking only the mean execution
times into account. For the SGM from Fig. 1 (without traversal edge A-D), this
results in the critical path (S-A-B-E) (orange coloured nodes), which has a mean
value of 20 time units and a variance of 20 (standard deviation 4.47 time units).
We calculated exact distributions for two variants and depicted the associated
densities in Fig. 2:

(1) only the critical path (S-A-B-E) (curve (1), blue)
(2) only the sub-critical side-path (S-C-D-E) (curve (2), red)

Curves (1) and (2), representing the competing paths, possess indeed similar
means (20 resp. 19.95 time units), but quite different variances (20 resp. 99.5
time units squared). The crucial conclusion is gained by comparing curves (1)
and curve (3). The former represents the (seeming) PERT view, whereas the
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latter equals the precise overall distribution. The PERT-caused error becomes
most apparent if we focus on the 90% quantiles:

– PERT (curve (1)) suggests, that a runtime of about 25.9 time units would be
sufficient to finish the project at a confidence level of 90%.

– The accurate calculation (curve (3)) clarifies, that this confidence level in
reality is reached only at about 34 time units.

Figure 2 also shows that for this particular SGM, the 90%-quantile of the sub-
critical path (curve (2), red) – by chance – is almost exact, but its distribution
is far from the exact distribution.

2.4 CCPM

Now one will rightly point out that the weaknesses of the PERT method in its
almost 60 years of history are sufficiently known. But what about the example,
fed into a more modern planning method like CCPM?

The deciding feature of the CCPM method consists of planning all paths at
a 50%-quantile level and equipping the critical path as well as all sub-critical
side-paths with appropriate buffers. In the literature, two methods for buffer
calculation are described: The Cut & Paste method (C&PM), introduced
by CCPM inventor E.M. Goldratt [4], proposes for each path to sum up its
50%-quantiles, then take that result as the path’s base runtime and add to it
an additional buffer of 50% of that. Alternatively, some authors [3] recommend
the Root Square Error Method (RSEM), which takes as buffer the square
root of the sum of squared differences between the 50%- and the 90% quantiles.

Table 1 shows the results of these two variants of the CCPM method applied
to the SGM from Fig. 1 (without traversal edge A-D). Looking only at the medi-
ans, again path (S-A-B-E) with value 19.34 dominates path (S-C-D-E) which has
value 16.75 (these values differ from the medians of Fig. 2 because they are sim-
ple sums of the single activity medians and not of the convoluted distributions).
But taking into account the buffers, the RSEM method identifies (S-C-D-E) as
the critical chain. If we compare the relating exact quantiles of the calculated
finishing times to the desired 90% quantile of the accurate model evaluation (at
33.65 time units), we can conclude:

– C&PM yields an “in time”-completion probability of only around 80.5%,

Table 1. CCPM – total runtime (+ buffer) & associated quantiles (Color figure online)

C&PM RSEM

path A-B [time units] 19.34 (+9.67) 19.34 (+6.42)

path C-D [time units] 16.75 (+8.38) 16.75 (+15.60)

total/maximum [time units] 29.01 32.35

relating exact quantile 80.46% 88.01%
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– with RSEM the problematic sub-critical side path (C-D) gains more impor-
tance by its dominating feeding buffer. That indeed increases the completion
probability to around 88% (which is still below the desired 90% level).

2.5 Non-series-parallel SGMs

We now return to the SGM in Fig. 1, but this time we include the traversal edge
A-D into the calculations. This is remarkable, since exactly that edge destroys the
series-parallel reducibility of the graph. Therefore, in order to obtain the precise
runtime distribution, we can no longer rely on the convolution and maximum
operators, but we need indeed a more powerful computation method. We chose to
employ pMC, in particular we use the probabilistic model checker PRISM [12],
which under the hood performs a state space analysis (transient analysis by
means of uniformization). Since PRISM provides no explicit calculation feature
for discrete densities, we use it as follows:

1. First we choose an appropriate discretization step width, e.g. 1% of the small-
est occuring mean or standard deviation, as well as an estimation of the upper
interval limit, which – for instance – can be gained by a pathwise considera-
tion, thereby taking each single distribution’s upper limit.

2. Then for each discrete time value ti we perform a PRISM call of the form
P (T < ti) =?, which delivers the cumulative distribution value for time ti.

3. PRISM provides a feature to chain such calculations for entire intervals by
only one call (given start time, end time and step width); this obviously leads
to a tremendous decrease of the calculation effort (granting PRISM the reuse
of prior results).

4. The desired density values are eventually gained by a simple numerical differ-
entiation, taking the difference of each two neighbouring distribution values.

5. The calculation time can be further reduced by splitting the PRISM call
intervals and distributing them onto several CPU threads.

Figure 3 depicts the influence of the traversal edge by comparing the overall
densities with/without it. Note that curves (1) (blue) and (3) (green) equal those
of Fig. 2. The exact overall density for the SGM with traversal edge, shown as
curve (4) (magenta), deviates slightly from curve (3) (without traversal): Now
the 90% quantile is reached at 35.01 time units (previously: 33.65). For the sake
of comparison, the PERT based density (1), gained by concentrating on the
critical path only, is displayed once again (after insertion of the traverse edge,
the critical path is still the same!). The 90% quantile of the PERT view lies (at
25.9 time units) more than a quarter below the actual value.

In summary, it can be stated that an accurate calculation of the density
offers significant advantages over the established methods PERT and CCPM. In
principle, state-space-based methods such as implemented by PRISM are able
to produce such accurate distributions, but they are limited to small or medium-
sized models because of the arising state space explosion problem. Admittedly,
the SGM considered in this section was an extremely simple case – the reality
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Fig. 3. Comparison of the densities: without (3) resp. with (4) the traverse A-D (Color
figure online)

is usually much more complex. Therefore, in the following section, we develop a
new method which combines series-parallel reduction and pMC, thereby making
it applicable to larger SGMs of realistic size.

3 A New Reduction Method for Analysing Project
Runtimes

Calculating the exact overall runtime density for arbitrarily structured graphs,
equipped with general runtime distributions, is in general not feasible for the
following reasons:

(a) Series-parallel reduction by use of the convolution and maximum operators
quickly leads to very complicated mathematical expressions, if carried out
symbolically. Those are difficult to handle, even with advanced tools such as
Mathematica [14] or Maple [9].

(b) If the SGM at hand is not series-parallel reducible, purely analytic approaches
fail if activity runtimes have general distributions, since state space analysis
relies on the memoryless property of the exponential distribution.

(c) Even if all node execution times are exponentially or PH-type distributed,
such that state space analysis would be possible in principle, one quickly
reaches the limits of computability because of state space explosion.

Our proposed method, presented in this paper, overcomes these problems in
the following way: Problem (a) is dealt with by representing general distribu-
tions not symbolically, but numerically. That means a general distribution is
discretized and represented as a step function, and the convolution and max-
imum operators are performed on the basis of such numerical representations.
A similar numerical approach had previously been described in [6]. Concerning
problem (b), we enable state space analysis of SGMs (or subgraphs thereof)
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with non-exponential execution times by replacing those general distributions
with fitted phase-type distributions (see, e.g. [2]). Finally, with regard to prob-
lem (c), our scheme avoids performing state space analysis on the overall model.
Instead, it combines series-parallel reduction steps with state space analysis of
small subgraphs in an iterative manner.

3.1 The Iterative Reduction Algorithm

Figure 4 illustrates our iterative reduction algorithm to calculate the overall run-
time distribution. In each round, the algorithm searches for candidates for serial
or parallel reduction and performs the respective reductions, as long as possi-
ble. If no further serial or parallel reduction is possible, the algorithm identifies
a so-called “complex cluster”, which is a generally structured subgraph whose
runtime distribution will be analysed with the help of pMC. Since the vertices of
the given SGM are associated with generally distributed execution times, which
cannot be fed immediately into probabilistic model checkers such as PRISM, we
need a suitable fitting method to approximate general distributions by exponen-
tial phases. This is explained in Sect. 3.3. There remains the problem of how to
identify an appropriate cluster? We solve this problem by introducing so-called
“syncpoints”, as elaborated on in the following subsection.

3.2 An Efficient Algorithm Using Syncpoints

When performing the stepwise reduction, our algorithm needs to be able to
identify appropriate starting points and end points of clusters to be reduced

Fig. 4. Flow diagram of the iterative reduction algorithm
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(either serially or parallelly or by complex reduction). This search can be directed
by focusing on particular edge subsets which we call syncpoints:

Definition 5. Given a SGM G = (V,E, exec). A set E ⊆ E of edges is called
a full syncpoint (FSP), if and only if for the node set P consisting of all the
starting points of E and for the node set S consisting of all the end points of E
the following three conditions hold:

1. Each edge from P to S is in E.
2. All nodes in P have the same set of successor nodes, namely S.
3. All nodes in S have the same set of predecessor nodes, namely P.

If |P| = |S| = 1, we call E a 1-to-1-SP (11SP), a special subclass of FSPs. If only
conditions (1) and (2) with |P| > 1 resp. conditions (1) and (3) with |S| > 1
hold, we call E a backward or forward halfsyncpoint (BHSP or FHSP). We
denote P as the entrance side and S as the exit side of any syncpoint type.

Figure 5 illustrates the concept of full syncpoints and halfsyncpoints. During
SGM reduction, we make use of the syncpoint definition as follows:

– For each 11SP, we can combine its predecessor and its successor node to a
single node by serial reduction, convolving the associated densities.

– If a FSP or a FHSP has got exit-sided node set M , which coincides with
the entrance-sided node set of another FSP or BHSP, then there is a parallel
reduction opportunity for all nodes of M , i.e. the associated densities can be
combined by calculating their maximum.

– If all paths emerging from a FSP or FHSP lead to another FSP or BHSP
and – vice versa – all paths reaching the latter come from the former one,
then the set C of all nodes included in-between forms a cluster. Such a cluster
can then be reduced by a complex reduction step using pMC.

Fig. 5. FSPs (magenta), FHSP (blue), BHSP (green); node labels for later use (Color
figure online)
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Definition 6. A FHSP resp. BHSP E is called a subsyncpoint (FSSP resp.
BSSP), if and only if there is another set E ′ with E � E ′ and E ′ is either a FSP
or a FHSP resp. BHSP.

It is clear by definition, that the class of FHSPs decomposes in two subclasses,
namely the FSSPs and the so-called real FHSPs, not beeing a subset of any
superordinated syncpoint E ′; the same applies to BHSPs/BSSPs.

Each FSP with n entrance- resp. m exit-sided nodes implicitly defines
(
n
k

)

BSSPs of cardinality k at its entrance side, resp.
(
m
l

)
FSSPs of cardinality l at

its exit side, with k, l the number of nodes attached at the respective side. Thus
a FSP covers in sum 2n − n − 2 BSSPs and 2m − m − 2 FSSPs (n,m > 1).
From a hierarchical point of view, each FSP or HSP with cardinality k (k > 2)
immediately covers k SSPs of cardinality k − 1 (at the entrance resp. exit side).

The idea now is: The set of all syncpoints/halfsyncpoints in the given SGM
induces a new, in general less complex DAG (regarding a kind of precedence to
be defined), such that all described reduction steps can be performed on that
structure, with a potentially tremendous reduction of calculation effort. In order
to be able to identify and manage this, we need some more definitions:

Definition 7. A set of edges E ⊆ E is called Z-connected, if and only if for
each two edges a, b ∈ E there exist k ≥ 0 and edges e1, e2, . . . , ek ∈ E such that
for (a, e1, e2, . . . , ek, b) each two neighboring edges have either the same start
node or the same end node. E is called max-Z-connected if there is no other
Z-connected set E ′ ⊆ E with E � E ′.

Definition 8. Reusing the notation of Definition 5, a set of edges E ⊆ E is
called a top-level manager(TLM), if and only if

1. E is max-Z-connected.
2. E contains at least one (full or half) syncpoint.

Examples of TLMs are shown in Fig. 6. Remarks:

– Condition 2 of Definition 8 is for operational reasons, since TLMs without
any contained syncpoint would not be useful.

– Since the SGM is acyclic, each FSP is also a TLM. In Fig. 5, for instance:
FSP (567 <> 8) or FSP (0 <> 12).

– In Fig. 5, FHSP (1 < 34) is neither a FSP nor a SSP, hence a real FHSP.

The next definition is needed, since it is possible to construct an acylic DAG
without redundant edges where two max-Z-connected sets can be traversed in
any order.

Definition 9. Using the notation of Definition 5, we call a SGM max-Z-
acyclic if

1. ∀E ⊆ E max-Z-connected and ∀p = (e1, . . . , ek) ∈ paths(E) holds: |E ∩p| ≤ 1.
2. ∀E ,F ⊆ E max-Z-connected, ∀p1, p2 ∈ paths(E) : If both p1 and p2 intersect

with both E and F , then they pass through E and F in the same order.
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Fig. 6. TLM examples: only (e) is a FSP; (a). . . (d) contain HSPs (green). (Color figure
online)

Definition 10. A TLM E ⊆ E is called a predecessor of another TLM F ⊆ E
with E �= F if and only if there are edges a ∈ E , b ∈ F and a directed path
(a, e1, . . . , ek, b) ∈ paths(E). In this case F is called a successor of E.

Theorem 2. For each max-Z-acyclic SGM there is a set of TLMs, fulfilling:

1. The TLMs are mutually disjoint and the set of TLMs is unique.
2. Definition 10 induces a well defined DAG on the TLMs, the TLM-DAG.
3. Each FSP resp. real HSP of the given SGM is covered by exactly one TLM.

Proof (sketch): In a first step we use the max-Z-connected property of the TLMs
to show that they are mutually disjoint and there is only one unique representation
of them (independent of the discovering algorithm). Using the properties of Defi-
nition 9, we can show the precedence relationship on TLMs to be well defined. As
remarked, each FSP is automatically a TLM; on the other hand each real HSP E is
Z-connected and thus can be expanded to a max-Z-connected E ′, a TLM.

The following pseudocode sketches a recursive algorithm for identifying the
TLMs and building the TLM-DAG:
# top -level call:
recFindTLMDAG(<SGM source node >, <emptyMap >, null)

# recursion method definition:
# @param curRecNode the current recursion subject node
# @param visitedNodeMap map of visited nodes -> already found following TLMs
# @param latestTLMOnStack the latest discovered TLM on recursion stack
# @returns the TLMGraph
TLMGraph recFindTLMDAG(curRecNode ,visitedNodeMap ,latestTLMOnStack)

if (visitedNodeMap.contains(curRecNode )) # curRecNode already visited?
if (visitedNodeMap.get(curRecNode ). size()>0) # already found follow. TLMs?

# update the result by adding edge(s):
# connect latest TLM on stack to already found TLMs beneath curRecNode

else:
# run recursion call for all successors of curRecNode

else:
# determine all Z-connected"children" (S) and "brothers" (P)
# by alternating fw/bw expansion , until there are no more new nodes.
# group S and P by mutual dependencies in both directions:
# a) group P by common successors
# b) group S by common predecessors
if (zBrotherGroupMap.size ()==1 & zChildrenGroupMap.size ()==1) # it’s a FSP?

# create new FSP and add it and the new connecting edge
# (from latestTLMOnStack) to the result
# remember all brothers (P) as visited , mapping to the found FSP
# run recursion call for all children (S)
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else: # it is not a FSP!
# if there are HSP(s) between P and S, create a TLM to cover them:
# each a)-group with at least 2 p, sharing same common successors
# each b)-group with at least 2 s, sharing same common predecessors
# induces such a HSP , to be kept by the TLM.
# remember brothers (P) as visited: wrt. without a found following TLM
# run recursion call for all children (S)

endMethod

Having constructed the TLM-DAG (including all FSPs), the next question is the
integration of the halfsyncpoints, especially the subsyncpoints. At this so-called
micro level, each TLM has to manage three issues:

(2) its subordinated HSPs, ideally in a hierarchical manner,
(2a) the relation between the entrance-/exit-sided nodes and the affecting HSPs,
(2b) the reachability (over paths) between its exit sided nodes and the entrance-

sided nodes of the succeeding TLMs.

A solution for this is illustrated in Fig. 7, where the development of the micro
linkage is shown based on the two rightmost examples of Fig. 6, assuming that
TLM (d) is an immediate predecessor of TLM (e). Figure 8 illustrates the step-
wise reduction of the example from Fig. 5 by relying on the corresponding sync-
point TLM-DAG and its underlying micro structure. The transitions within the
figure are reached by (P)arallel, (S)erial and (C)omplex reduction steps.

3.3 Numerical Reduction and Fitting of General Distributions

Whenever a serial or parallel reduction step is performed, our algorithm works
on numerical representations of the operand densities. This avoids having to deal
with complicated mathematical expressions (they arise very quickly after a cou-
ple of such operations have been performed) which could no longer be handled
by formula manipulation packages. The precision of the numerical representation
increases with increasing number of interpolation points, whereas the calcula-
tion effort for these numerical operations grows quadratically with the number
of interpolation points. A similar numerical implementation of series-parallel
reductions had been described in [6].

For each complex reduction, i.e. before a complex cluster can be analysed
by means of pMC, an appropriate PRISM-Model needs to be generated. For

Fig. 7. Micro linkage of Fig. 6(d, e): each TLM manages its HSPs (2), their usage of
entrance-/exit-sided nodes (2a) and the mutual reachability by these nodes (2b).
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Fig. 8. Reduction steps along the syncpoint DAG: full SPs (orange) and half SPs (blue)
(Color figure online)

this purpose, each single activity’s runtime distribution is fitted by a phase-type
distribution. At the moment, we advocate a fitting by two convolved Erlang
distributions Erl(λ1, n) and Erl(λ2,m). Their parameters can be chosen in such
a way that the first two moments match exactly to the original distribution and
the error at the third moment is minimized. This fitting provides good results,
as long as the coefficient of variation of the original distribution is at most 1,
i.e. as long as σ2/μ2 ≤ 1. As a concluding remark on the issue of fitting, note
that our algorithm presented in Sect. 3.1 is independent of the particular fitting
method used, i.e. other fitting approaches (e.g. [1]) can easily be incorporated.

4 Complex Examples

Let us look once again at the example in Fig. 5 and assume that an Erlang dis-
tribution is chosen for all activity runtimes (find λ and n values printed directly
on the nodes). Figure 9 displays the densities of the critical path (0–1–4–7–8), of
the exact distribution (obtained by PRISM) and of the result by our algorithm.
While our algorithm works quite accurately (submitting a real 89.57% confidence
level as “90%”), PERT presents an actual level of about 50% as “90%”!

But what about CCPM? Table 2 considers the possible paths, assigned with
their relating buffer. It is interesting that the more reliable quantile with 84.68%
(at 72.53 time units) now comes from the C&PM. But there is still a considerable
deviation to the wanted exact 90%-quantile (at 77.04 time units). RSEM now
leads – with 79.96% (at 69.65 time units) – to an even worse result.

For the prototypical calculation in our approach (on an I7-2600K CPU with
4 cores/8 threads) we chose a stepwidth of 1� · μmin = 0.01 time units (where
μmin is the smallest mean of the node distributions), which resulted in a total
machine time of 15.6 s. Another example (SGM with 19 nodes, 3 complex clusters
to be analyzed by pMC, μ ∈ [5 . . . 10], σ = �μ

2 ) finished within 35.5 s under the
same conditions. Increasing the number of nodes (each one now having a normal
N(10,4) distribution, with a 1% · μmin stepwidth) showed, as expected, that
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Fig. 9. Densities for the SGM from Fig. 5: PERT (red) vs. exact (blue) and our algo-
rithm (green) (Color figure online)

Table 2. Pathwise CCPM end times (+buffer) and corresponding quantiles

path 0258 0158 01478 01468 01378 01368 overall quantile

C&PM 44.31 +
22.16

45.63 +
22.81

48.35+
24.18

47.03 +
23.52

47.03 +
23.52

45.71 +
22.86

72.53 84.68%

RSEM 44.31+
25.34

45.63 +
23.26

48.35 +
10.15

47.03 +
14.27

47.03 +
14.27

45.71 +
17.44

69.65 79.96%

the runtime grows strongly with the complexity of the contained clusters: For
instance, a randomly generated SGM with 137 nodes (73 caught in clusters, max.
cluster size: 5) was finished within 182 s. Another example with 133 nodes (77
caught in clusters, max. cluster size: 16) required 2,269 s to complete.

5 Summary and Future Work

The presented method offers a remarkable chance to improve the accuracy of
established project planning methods by the combined use of exact calculations
and heuristic approximations, using pMC. Estimates of the overall runtime dis-
tribution – even for complex graph structures – can be calculated more accu-
rately and also – compared to the customary simulation-based approaches –
with feasable computation effort. For instance, one of the leading management
methods, CCPM, can be enhanced in several ways: For a given project schedule,
one obtains a handy calculus of the time-to-finish distribution. Furthermore –
reversely – for a given project finalization confidence level (e.g. a 90% quantile)
we can determine all buffer sizes (on the critical path and all side paths) in an
analytical manner.

This holds even if the scheduling complexity of the CCPM is increased by
an additional calculus regarding the resource- or skill-dependencies (an exten-
sion already envisaged in our work plan). In that context, we will also use the
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presented method to solve resource conflicts of the “bad multitasking” type [4]
by taking or hedging a founded decision for a particular prioritization. In addi-
tion, it might become necessary to use bounding methods (e.g. by inserting or
removing edges) in order to make larger SGMs tractable.
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Abstract. Learning-based testing (LBT) is a paradigm for fully auto-
mated requirements testing that combines machine learning with model-
checking techniques. LBT has been shown to be effective for unit and
integration testing of safety critical components in cyber-physical sys-
tems, e.g. automotive ECU software.

We consider the challenges faced, and some initial results obtained
in an effort to scale up LBT to testing co-operative open cyber-physical
systems-of-systems (CO-CPS). For this we focus on a case study of test-
ing safety and performance properties of multi-vehicle platoons.

Keywords: Cyber-physical system · System-of-systems · Platooning ·
Model-based testing · Learning-based testing · Machine learning ·
Requirements testing

1 Introduction

A cooperating cyber-physical system-of-systems can be characterised by the use
of wireless communication, multiple stakeholders, dynamic system definitions,
and unpredictable operating environments. Such systems-of-systems have been
termed Cooperative Open Cyber-Physical Systems (CO-CPS) [33]. It is assumed
that no single stakeholder has overall system responsibility, and that cooperation
relies on wireless communication to perform safety-relevant functions.

CO-CPS are emerging around the world, due to rapid progress in telecommu-
nications, robotics and AI. Many examples can be found in Cooperative Intelli-
gent Transport Systems (C-ITS) and intelligent manufacturing. However, they
represent a great challenge to the software quality assurance (SQA) community.
Not least, the cyber-physical character of CO-CPS means that the impact of
safety and security incidents (malicious or unintended) is potentially very high.
However, if we survey the range of current technologies available for SQA, we
can find significant limitations in many current approaches to quality assurance
of CO-CPS.

On the one hand, the dynamic and heterogeneous nature of CO-CPS makes
a full static analysis technically difficult. The sheer scale of many proposed CO-
CPS suggests that a full system-of-systems analysis would even be technically
c© Springer International Publishing AG 2017
P. Reinecke and A. Di Marco (Eds.): EPEW 2017, LNCS 10497, pp. 135–151, 2017.
DOI: 10.1007/978-3-319-66583-2 9
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infeasible. Furthermore, it is unclear (for commercial reasons) whether all source
code in a CO-CPS would ever be made available for this. Static analysis of the
individual components by their vendors might be technically feasible. However,
it is difficult to see how such low-level component analysis could take into consid-
eration unpredictable environment factors and high-level emergent phenomena
(such as physical collisions). For this reason, software testing, laboratory simula-
tions and field tests are the de-facto SQA standard used in industry today. Here
the problem is that software testing traditionally focuses on unit, integration and
system level testing. Simulation and field testing can be reliable and decisive at
the level of systems-of-systems, but tend to be slow and unsystematic in their
coverage. There is thus a great need to perform systematic and fully automated
requirements testing on CO-CPS.

The scalability problem for quality assurance of CO-CPS might be made more
tractable by taking amodel-based approach, using judicious abstraction to suppress
irrelevant technical detail. However, one is still faced with the fact that not all soft-
ware vendors will take a model-driven approach, let alone exchange their models,
to protect intellectual property (IP). Therefore, in the worst case one would be left
to perform a model based analysis where some component models are known, but
others are missing, inconsistent with code, or out of date.

Against this background situation for CO-CPS, within the EU ECSEL
project SafeCOP1, we are evaluating the potential of a technology known as
learning-based testing (LBT) [23,24]. LBT is a paradigm which combines tech-
niques from model-driven development (e.g. model-based testing, model check-
ing of safety requirements etc.) with machine learning. The basic idea is to use
machine learning to reverse engineer a behavioral system model from runtime
observations of a system under test (SUT). Since LBT is a black-box technique,
it is code and platform independent, potentially scalable, and need not infringe
upon component IP rights. The runtime SUT observations can be made either by
laboratory simulation (e.g. software-in-the-loop SIL, hardware-in-the-loop HIL)
or field testing. The learned model can then be used to analyse safety proper-
ties [11], and even security properties [14], by using appropriate tools such as
model checkers. Potential system anomalies discovered during model analysis are
confirmed by executing the corresponding test cases on the SUT.

We present here some initial results of applying LBT to a case study of
testing co-operative vehicle platoons [4]. One reason for choosing this case study
is because the problem size can be scaled up uniformly by adding more vehicles.
This allows us to measure the influence of different factors on the scalability of
LBT technology.

The case study of platooning presented here is a first attempt to address two
important questions about state-of-the-art LBT technology:

(1) how well does recently developed multi-core based LBT technology scale
up to testing complex CO-CPS scenarios;

(2) how do problem size and other factors affect scalability?

1 See www.safecop.eu.

www.safecop.eu
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The organisation of this paper is as follows. In Sect. 2 we review fundamental
concepts and the state-of-the-art in learning-based testing. In Sect. 3, we consider
the architecture and functionality of platooning as a CO-CPS. In Sect. 4 we
present our case study of LBT applied to a platoon model. In Sect. 5 we survey
related work in the literature. Finally in Sect. 6, we draw conclusions from our
initial results, and comment on future research directions.

2 Learning-Based Testing

In this section, we review some fundamental principles of learning-based testing
as these have been implemented in our research tool LBTest. The earliest version
of this tool (LBTest 1.x) has been described in [26]. Therefore we will focus on the
latest tool architecture LBTest 3.x, presented in Fig. 1. In Sect. 2.1 we use this
architecture to explain the basic principles of LBT. Then, in Sects. 2.2 and 2.3,
we show how concurrent aspects of this architecture contribute towards solving
tool scalability issues2.

2.1 Principles of LBT

LBTest uses active automaton learning aka. regular inference (see e.g. [13]) to
generate queries about a black-box system, which can be used to infer a behav-
ioral model in polynomial time [2].

Fig. 1. LBTest 3.x concurrent learning architecture

2 This architecture has been developed within the VINNOVA FFI project VIRTUES,
http://www.csc.kth.se/∼karlm/virtues/.

http://www.csc.kth.se/~karlm/virtues/
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For requirements testing, partial models of the SUT can be subjected to
model checking against a temporal logic requirement specification, even before
the learning process is complete. In LBTest, propositional linear temporal logic3

(PLTL) is used as a requirements modeling language. This particular logic has
the advantage that test cases can easily be extracted from counterexamples gen-
erated by a model checker. LBTest makes use of a loosely integrated symbolic
checker NuSMV [7]. We are also developing a more tightly integrated explicit
state model checker for efficiency reasons. These two processes of learning and
model checking may be interleaved, an idea first suggested in [27]. Then they
incrementally build up a sequence M1,M2, ... of models of the SUT, while gen-
erating and executing requirements test cases on each model Mi.

To separate true counter-examples (SUT errors) from false counter-examples
(artifacts of an incomplete model) it is necessary to validate each counter-
example derived from model checking. For this we can: (i) extract a test case
representing the counter-example4, (ii) execute it on the SUT, (iii) apply an
equality test that compares the observed SUT behavior with the predicted bad
behavior from the model, and (iv) automatically generate the test verdict (pass,
fail) from step (iii). The soundness of this process relies on the soundness of
the underlying model checker, and the soundness of equality testing.

The completeness of LBT relies on the completeness of the underlying model
checker, as well as convergence results about the learning algorithms which are
used (see [13]). However, within practical case studies of large complex systems
it may not be possible for learning to be completed in any reasonable time frame
(see e.g. [11]). This problem is significant for CO-CPS. Therefore, development
of LBTest has focused on incremental learning algorithms that can generate
incomplete approximating models of the SUT in small increments.

One measure of the coverage achieved by LBT is in terms of the behavioral
accuracy of the final model. This accuracy could be defined in terms of trace
inclusion between the model and the SUT. However, phenomena of both over
and under approximation often occur within the same partial model, i.e. no strict
trace inclusion holds either way. Nevertheless, by using a probably exactly correct
(PEC) model of convergence, we can obtain a satisfactory black-box convergence
measure as follows.

Figure 1 illustrates the stochastic equivalence checker used in LBTest 3.x.
This checker empirically estimates the behavioral accuracy of the final learned
model Mfinal for replicating the behavior of the SUT on a randomly chosen
set of input sequences. For this, the input sequences are executed both on the
SUT and the model. We then measure the percentage of behaviorally identical
output sequences generated by both. This convergence model is related to the
probably approximately correct (PAC) convergence model of [30], but for PEC

3 Recall that propositional LTL extends basic propositional logic with the temporal
modalities G(φ) (always φ), F(φ) (sometime φ) and X(φ) (next φ). Other derived
operators and past operators may also be included. See e.g. [12] for details.

4 Infinite counter-examples to LTL liveness formulas are truncated around the loop,
and the weaker test verdict warning may be issued.
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the probability of exact identity (not approximate equivalence) is estimated.
PEC convergence aims at the needs of software safety analysis over the discrete
data type partitions commonly employed in testing.

2.2 Towards Scalable LBT Architectures

From empirical studies such as [11,20,25] we have observed two important obsta-
cles to scaling up LBT methods for large and complex SUTs. These are:

(i) the tendency for learned model size to increase rapidly with SUT size;
(ii) the tendency for test latency (i.e. the time to execute a single test case) to

increase with SUT size.
Even worse, these two problems compound one another, leading to long
test session times and low final convergence measures. In benchmarking
the architectural proposal of [27] we have also observed another significant
problem:

(iii) model checking each member Mi of a converging sequence of models
M1,M2, ... is highly inefficient, and does not seem to improve the rate of
model convergence.

We will consider each of these issues, and how it can be addressed, in turn.

(i) Model Size. The size of a learned model is a function of the code complexity
of the underlying SUT, as well as the number of parameters of the SUT which
the learning algorithm tries to stimulate and observe.

One factor influencing model size is the number of SUT input variables and
the number of test values chosen for each input variable. These parameters bound
the number of exit transitions from each model state. The number of exit tran-
sitions is further influenced by the combinatorial strategy used to generate com-
posite input test vectors from the individual input variable values. A judicious
combinatorial choice is necessary to control the otherwise exponential explosion
in the number of transitions. In LBTest 3.x, n-wise testing [17] is available as a
combinatorial strategy.

Another factor influencing model size is the number of observed SUT out-
put variables, and the number of output value partition classes for each output
variable. These factors influence the number of states in a learned model, since
more output variables and finer output partitions lead to more easily distin-
guished SUT states.

So, a judicious choice of model accuracy, combinatorial test strategy and
model abstraction can all be applied to improve the efficiency of learning and
testing.

Besides these test configuration parameters, the problem of large model sizes
has also been ameliorated by new research into machine learning algorithms.
Since Angluin’s seminal algorithm [2], many new learning algorithms, that can
learn a model with fewer and/or shorter queries, have been derived, e.g. [16].
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(ii) Test Latency. Improvements in learning and model checking algorithms
are scarcely able to overcome a distinctive feature of large complex SUTs which is
the tendency towards long test latency or execution times. For CO-CPS, commu-
nication network delays also become significant. Test latency times can become
a significant component of an LBT test session duration.

Test latency can be ameliorated by executing test cases concurrently. With
this aim we have conducted research into parallelized learning algorithms on
multi-core platforms. Already in [15] certain improvements in learning perfor-
mance by parallelization have been reported. An important challenge is to sys-
tematically characterize such improvements in terms of problem size parameters.
Our work contributes to this area by studying a parameterized and uniformly
scalable learning problem namely platooning. As the size (i.e. number of vehicles)
of a platoon of identical vehicles scales up, the problem parameters:

(i) total number of lines of code under test, and
(ii) total number of program registers determining the global state space,

both increase linearly. Thus it becomes meaningful to compare testing results for
different platoon sizes (c.f. the similar curves in Fig. 4). Without such uniform
properties, benchmark results across an ad-hoc collection of SUTs can be very
difficult to interpret.

(iii) Model Checking Overheads. Incremental learning generates a conver-
gent sequence of models M1,M2, .... However, each model Mi will contain a good
many structural features (states and transitions) that persist in model Mi+1. It
is beyond the capability of any model checker we know of to identify these persis-
tent features and avoid checking them twice in both Mi and Mi+1. Therefore, a
long model generation sequence will contain significant redundant model check-
ing effort. Our empirical observations with LBTest 2.x and NuSMV have shown
that this redundant checking can consume more than 50% of the overall test
session time. Furthermore, as reported in [21], model checker generated queries
have not been observed to accelerate the convergence of learning in any case
study so far.5

While it might be possible to introduce a sophisticated delta-oriented app-
roach to model checking, the simplest solution seems to be to defer model check-
ing until after machine learning.

2.3 Concurrent Multi-core LBT

Figure 1 illustrates a new architecture for LBT that significantly departs from
the proposals of [23,27]. Two new features are prominent, and both are intended
to counter the scalability bottlenecks described in Sect. 2.2.

5 It seems possible to theoretically explain this observation for certain types of formu-
las by considering their semantics. However, this is outside the scope of our present
discussion.
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Firstly, the new architecture supports parallel execution of multiple instan-
tiations of the SUT on a multi-core platform. The aim is to mitigate long SUT
test latency. At the start of a test session, LBTest clones K versions of the exe-
cutable SUT, each within its own external OS process. The value of K is chosen
as a function of the number of SUT input values to be tested. Once started,
each SUT process persists throughout the learning phase, and acts as a server
to answer certain kinds of queries about SUT behavior. Different load balancing
schemes on these query servers are used according to the learning strategy.

Of course, concurrent execution is a rather obvious solution to test latency.
The real technical challenge here is to devise efficient parallel learning algo-
rithms that can allow multiple threads to efficiently and safely perform concur-
rent updates on a single shared automaton model. At the same time we need to
optimise multi-core usage on the hardware level. For this we have investigated
concurrent implementations of Kearn’s algorithm [19]. For reasons of space, these
rather complex concurrent algorithms will be described elsewhere.

The second new feature of LBTest 3.x is its support for deferred model check-
ing, as described in Sect. 2.2, using an iteration bound to terminate learning.
Only when learning is terminated do model checking and counter-example val-
idation of the final model Mfinal begin in a second phase. This minimises the
redundant model checking identified in Sect. 2.2.

3 Platooning as a CO-CPS

In this Section we review some general features of platooning that characterise it
as a CO-CPS. Then we discuss the particular platooning model that was tested
in Sect. 4.

3.1 General Principles of Platooning

Platooning technology is sometimes called an “electronic towbar” between road
vehicles, and this phrase gives much insight into the idea.

A platoon consists of a sequence of road vehicles V1, ..., Vn which (by means of
sensors, wireless V2V communication and control algorithms for longitudinal or
distance control) are able to maintain a fixed distance xr between one another
and a relative velocity vr = 0 under normal cruising conditions. (See Fig. 2,
adapted from [5].) The lead vehicle, V1, is under manual control by a qualified
platoon leader who needs to have the necessary technical skills to control the
platoon. The vehicles V2, ..., Vn are its followers, and may be autonomous or semi-
autonomous, depending on the extent to which lateral control (i.e. steering) is
automated.

A platoon may be heterogeneous, consisting of different models from different
vendors carrying different payloads. It should be possible to add and remove
vehicles dynamically during a journey, and there are many safety critical use
cases, such as lane change, emergency braking etc.



142 K. Meinke

Fig. 2. Platoon vehicle pair: Vi+1 (left) and Vi (right)

The interest in platooning technology, lies in the possibility to reduce fuel
consumption and corresponding CO2 emissions, as well as to improve road usage
and safety while reducing traffic congestion (see e.g. [29]). Platoons exploit the
reduced aerodynamic drag that arises with short inter-vehicle distances. There
is an important trade-off between fuel efficiency and safety in platoon design,
since drag is reduced by shorter inter-vehicle spacing. System response times,
component reliability, road hazards and the effects of safety critical uses cases
such as emergency braking on the platoon and its environment all need to be
evaluated during software design.

3.2 A Simple Platooning Model

For pragmatic reasons, our study of LBT scalability was restricted to software-
in-the-loop (SIL) testing of a basic platoon simulator. The simulation is 1-
dimensional, meaning that no steering model is used. The simulator is therefore
only able to analyze certain use cases, such as straight-line cruising and emer-
gency braking. Other use cases need a more complex simulation model, and this is
the subject of ongoing research and industrial collaboration. However, our model
includes many important physical characteristics such as maximum engine and
brake torque, vehicle mass, aerodynamic drag etc. defined using a point-mass mod-
eling approach. (See e.g. [34] for an introduction to vehicle modeling.)

The simulator consists of about 2000 Java LOC. However, to get a clearer
impression of the underlying SUT complexity we provide here some details about
its structure and function.

The block architecture of a single vehicle in the platoon simulator is illus-
trated in Fig. 3. This depicts a brake-by-wire BBW subsystem augmented with
a co-operative adaptive cruise controller CACC. The latter is connected to an
odometry unit ODOM (providing host vehicle position and velocity) and a wire-
less communication WCOM unit (relaying host and target positions and veloc-
ities). Odometry is based upon host velocity measurements6. The WCOM unit
simulates a 2 ms inter-vehicle wireless message delay, without any transmission
error model.

The CACC controller is a crucial component that provides longitudinal con-
trol of each follower vehicle. It dynamically issues accelerator and brake torque

6 In practise, GPS localisation would be relied upon for greater accuracy.
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Fig. 3. Software architecture for platoon vehicle Vi

requests to maintain the position of the host vehicle within maximum and min-
imum distances from the target vehicle in front. A wide variety of CACC algo-
rithms have been proposed in the literature. The controller tested here is a simple
PD control algorithm with adaptive parameters, taken from [5]. For a general
introduction to PID control theory one may consult e.g. [10]. The function of
any PID controller in the context of an ACC problem is to maintain the relative
position of the host vehicle Vi+1 within the boundaries xr,d,max and xr,d,min

(metres) from the target Vi, where

xr,d,max = thw · vh + xr,0, xr,d,min = (thw − thw,δ) · vh + xr,0.

Here thw (seconds) is the time headway between Vi+1 and Vi, and thw,δ causes
a small difference in headway. The parameter xr,0 > 0 (m), maintains a safe
relative inter-vehicle distance at vh = 0 (m/s), to support so called stop-and-go
functionality. The host position is maintained by two PD equations:

acc = KACC(kxr
· (xr − xr,d,max) + kvr

· vr),

brake = KACC(kxr
· (xr − xr,d,min) + kvr

· vr),

governing requested accelerator and brake torque. In the above formulas:
(i) KACC (dimensionless) is a constant overall gain parameter. (ii) xr = xt − xh

(metres) and vr = vt − vh (metres/second) are the relative distance and velocity
to the target vehicle (c.f. Fig. 2). (iii) kxr

is the P action: this gain is tuned to
regulate the distance error to zero (xr−xr,d,max = 0 for acc and xr−xr,d,min = 0
for brake). (iv) kvr

is the D action and the regulated error is vr. (v) Since acc
is smaller than brake (due to a different desired distance), it takes some time
before the brakes are activated after the accelerator is released.
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In this PD controller design, kxr
and kvr

are dimensionless adaptive
parameters:

kxr
= kxr,1(vh) · kxr,2(xr − xr,d,max), kvr

= kvr
(xr − xr,d,max).

All forces acting on the vehicle, both positive and negative, are resolved at each
wheel individually.

To inject behavioral faults into our platooning model for testing, we replaced
the non-linear adaptive parameter functions kxr,1, kxr,2, kvr

: R → R of [5] with
highly simplified piecewise linear approximations. These linear approximations
to non-linear functions make the brake and accelerator control responses, acc
and brake, less smooth with both over- and under-compensation for change, as
we show in Sect. 4.2.

For each follower vehicle, the BBW subsystem takes the accelerator and brake
torque requests from CACC, and translates these into forces on the four vehicle
body wheels VBW7. The brake torque controller BTC calculates the global brake
torque request (in Newton metres)

torqueRequest = (brake/100) · maxBrakeTorque

and the global brake controller GBC distributes this brake request to each anti-
locking brake system ABSi, which controls wheel V BWi.

The fundamental simulation cycle corresponds to 1 ms of real-world time,
while the various architectural components have execution cycle times varying
between 2 and 20 ms. Normally, vehicle software components would communicate
periodically (but not necessarily deterministically) using the vehicle’s CAN bus
network, while the vehicles themselves communicate asynchronously. However, it
is common industrial practise to perform SIL testing using a simplified synchro-
nous composition of components to ensure reproducibility of test results. So our
platoon simulator is also based on a synchronous composition of all architectural
components, as well as the platoon vehicles themselves.

4 Test Experiment Design and Results

In this section, we first describe our testing experiment conducted on the pla-
tooning simulator described in Sect. 3, using the LBT tool architecture described
in Sect. 2.3. We then describe the test results obtained, and interpret these from
the perspective of LBT scalability.

4.1 Test Experiment Design

To test the primary use case of high-speed cruising for a platoon configuration
of n vehicles, we focused on emulating the lead driver behavior, since in our

7 For the lead vehicle, CACC is disabled and accelerator and brake pedal values are
used by BBW instead. See Fig. 3.
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simulator all follower vehicles autonomously adapt to this. Thus, each test case tc
for an n-vehicle platoon consisted of a sequence tc = (r1, r2, ..., rλ) of lead driver
accelerator and brake torque requests rj . The continuous input spaces for each
of these two input variables (accelerator and brake pedal angles) were sampled
at 10% intervals, yielding K = 21 symbolic input values 0, a1, ..., a10, b1, ..., b10
ranging from 0% to 100% pedal depression8. No assumptions were made about
lead driver behavior, so both excessive and sporadic acceleration and braking
could occur. The time headway thw between each successive pair of vehicles was
nominally set to 2.0 s. A time headway of this size is normally quite safe for
commercial CACC algorithms (see e.g. [5]).

For each test case tc = (r1, r2, ..., rλ), the length λ and torque requests rj were
chosen dynamically both by the learning algorithm and the equivalence checker.
In the experiments of Sect. 4.2, λ typically took an average value around 12.
The test case tc was then submitted to one of K = 21 SUT server processes Sp

executing an n vehicle platoon simulator instance. The communication wrapper
around Sp loaded and executed the request sequence (r1, r2, ..., rλ) sequentially.
Each torque request value rj was maintained constantly for a nominal 5 s (5000
simulation cycles). Thus the length of the simulation corresponding to tc was 5λ
virtual seconds. The values chosen for λ were sufficient to reach high cruising
speeds, in excess of 110 km/h.

Maintaining the torque request over a fixed number of seconds is a temporal
abstraction technique necessary to achieve a balance between long simulation
times and small final model size. This abstraction can be adjusted in the simula-
tor. It also has the advantage that we can easily calculate the cumulative virtual
simulation time for an entire test session.

The principle SUT output recorded for the test case tc was the time sequence
of inter-vehicle gaps xi

r,0, . . . , x
i
r,λ, for each vehicle i = 1, . . . n−1. Here, the time

sequence term xi
r,t, for 0 ≤ t ≤ λ, represents the gap between the host-target

pair, Vi and Vi+1 measured at the end9 of 5t virtual seconds (i.e. 5000t simulation
cycles). The continuous values of each distance observation xi

r,t were partitioned
within the communication wrapper into three discrete equivalence classes:

tooClose, tooFar, good,

based on the (host velocity dependent) distance boundaries xi
r,d,min and xi

r,d,max.
Thus the symbolic output good for xi

r,t represented the output partition class
xi

r,d,min ≤ xi
r,t ≤ xi

r,d,max.
To gain further insight into the physical state space covered by testing we

also observed the lead vehicle velocity values v1
0 , . . . , v

1
λ and acceleration values

a1
0, . . . , a

1
λ at the same observation times. These continuous valued observations

were partitioned into 1 km/h and 1 km/h2 equivalence classes.
8 Thus a10 represents 100% accelerator depression, a9 represents 90% depression, etc.

Simultaneous depression of both pedals is handled as a brake request by the BBW
component.

9 It is also possible to use SUT observations between the output cycles by thresholding.
This can yield greater accuracy, but this approach was not taken here.
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With regard to system-of-systems requirements, the most fundamental
requirement is that all n platoon vehicles should always maintain a safe but
fuel efficient distance between each other. This test requirement could be rep-
resented in PLTL for an n + 1-vehicle platoon (where n ≥ 1) by the safety
formula:

G( Distance1 = good& Distance2 = good& . . . & Distancen = good ). (*)

Here Distancei represents the discretized gap between vehicles Vi and Vi+1

corresponding to measurements xi
r,t.

One experimental goal was to try to observe the injected errors in the CACC
component, (described in Sect. 3.2) as violations of the test requirement (*). The
other goal was to characterise the scalability of the tool.

4.2 Test Experiment Results

The test experiment described in Sect. 4.1 was conducted for platoon sizes
n = 2, . . . , 6 to investigate the scalability of the testing tool. To uniformise the
results, each platoon vehicle in each configuration had identical physical parame-
ters10. We measured the final model size for different platoon sizes and different
test session durations. While test session duration is a platform dependent mea-
surement11, it was felt that this value gave good insight into tool usability and
potential future improvements.

Figure 4 shows the growth of model size over time for platoon sizes n =
2, . . . , 6 using concurrent learning. To analyse the benefit of concurrency, Fig. 4
also shows model growth for n = 3 under sequential learning. Note that the
y-axis is in thousands of states (Kstates). The graph shows the effects of increas-
ing test latency as the platoon size increases. The largest inferred model (for
n = 6) had over 64,600 states and 1.35 million transitions achieved after 20 h
and 25 min of learning. During this time, 1.5 million test cases tc were executed,
with an average test case length of λ = 10.6. Since each step in tc corresponds
to 5 virtual seconds, the total virtual testing time was over 22,000 h.

Notable in Fig. 4 is the gradual slowdown in rates of model growth over time.
However, there is no sharp fall in tool performance. Furthermore, the vertical
intervals between the curves are very similar, both for increasing n and t. These
two characteristics seem to suggest good scalability properties for our approach
as a function of the problem size n.

With regard to requirements errors, NuSMV developed a segmentation fault
already with the smallest of our models for n = 2 (8826 states, 185 K transitions).
However, using our explicit state model checker on the largest model for n = 6
(64,671 states, 1.35 million transitions), the error tooFar was found to occur in
50,076 states (77% of all states), while the error tooClose was found in just 101
10 Non-homogeneous platoons could also be tested using our approach.
11 The actual platform used was a 4-core MacBook Pro, Mid 2014, running Yosemite

OS-X 10.10.5 with 2.8 GHz Intel Core i7, 16 GB 1600 MHz DDR3 and 1 TB static
disk flash storage.
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Fig. 4. Rates of model growth (state space size) over time for different platoon sizes.

states (0.0015% of all states) after 32.4 s of model checking. All errors proved
to be valid SUT errors when corresponding test cases were executed on the
SUT. The error tooClose was found only at low velocities, mainly at v1 = 0,
which seems to confirm the thesis of [5] that stop-and-go functionality is rather
difficult to implement correctly. For the smallest model of n = 2 (8826 states),
the error tooFar could also be found after 19 ms of model checking, but not error
tooClose.

Through runtime monitoring, we estimated long term multi-core usage to
range between 85%–95% over the problem size range n = 2, . . . , 6, with approx-
imately 10% fluctuations short term12. At peak core usage, CPU idle time was
less than 1%, implying that further cores would have been of benefit.

For the experiments described in Fig. 4, the platoon models reached maxi-
mum convergence values of 9.4%, 9.4%, 8.8%, 7.1% and 6.0% for n = 2, . . . , 6
respectively.

5 Related Work

The application of machine learning to testing has a somewhat long history,
beginning with [32]. The architecture used in LBTest 2.x first appeared in [27]
and was independently proposed in [24]. However, scalability and the effect of
model checking on convergence, were not originally considered. Recently, the

12 Based on 1 s sampling.
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literature on machine learning applied to software engineering has become quite
extensive. Known techniques use models based on deterministic automata [14,
16,23,28,31], non-deterministic finite automata [21], and extended finite state
machines [6]. The emphasis ranges from unit and integration testing to software
documentation. A state-of-the-art survey is [3]. Our experience [22] suggests that
machine learning of hybrid automata would be too slow to deal with complex
continuous state CO-CPS such as platoons.

To our knowledge, only one other study of parallelized machine learning
for testing exists, namely [15]. This shares our premise that parallel learning
is important to mitigate test latency. However, it evaluates only synthetic SUT
latency obtained by inserting a 5 ms busy waiting loop into each SUT call. Model
checking and requirements testing are not considered. The authors investigate
speedup of learning randomly generated SUTs of different state space sizes in
the range 1, . . . , 256 states. They conclude that under an increasing number of
cores, a saturation point is met, where adding more cores yields no benefit13. By
contrast, we have varied a much larger problem size 8K, . . . , 64K states, keeping
the core number fixed.

Platooning has been widely studied in the C-ITS literature. A survey of
platooning research is [4]. An account of traditional SIL and HIL testing of a 3
vehicle platooning system is [1]. This work has very similar safety concerns to our
own. Examples of static analysis applied to platooning are [8,9,18] where it is
shown that verifying vehicle code does not scale to the whole system-of-systems,
and a mixed top-down and bottom up strategy are applied.

6 Conclusions and Future Work

We have presented an initial assessment of the scalability of multi-core learning-
based testing technology to cyber-physical systems-of-systems (CO-CPS). For
this we have conducted testing experiments on a vehicle platooning simulator,
where we have injected faults that violate safety and fuel efficiency requirements.
Extensive testing experiments over different platoon sizes have demonstrated
that learned model size scales well over the experimental time horizon and dif-
ferent platoon sizes. However, unsurprisingly perhaps, model convergence is low,
at least according to the current PEC metric. Nevertheless effective testing,
capable of finding valid SUT errors (both common and rare) was possible by
learning large but incomplete models.

Future research needs to address several issues. Learning efficiency needs
to be further improved to enhance coverage. Our study could be generalized
by using more advanced simulators to test other use cases. We will also fur-
ther consider how to scale up LBT to many-core platforms. Can the saturation
effects cited in [15] be observed or avoided? The reliability questions surround-
ing incomplete model learning warrant further attention, e.g. the optimal choice
of a learning convergence metric is an open question. Finally, equation (*) of
13 Unfortunately our limited computing platform did not provide an opportunity to

evaluate this result.
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Sect. 4.1 represents a safety requirement that could be captured by a suitable
spatio-temporal logic. Further study of spatio-temporal logics and model checking
might be fruitful for CO-CPS use case testing.

This research has been funded by VINNOVA FFI project 2013-05608
VIRTUES and the Electronic Component Systems for European Leadership
Joint Undertaking under grant agreement No. 692529 project SafeCOP.
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Abstract. We present a model-based approach to performance evalu-
ation of a collection of similar systems based on runtime observations.
As a concrete example, we consider an assembly line made of sequential
workstations with transfer blocking and no buffering capacity, imple-
menting complex workflows with random choices and sequential/cyclic
phases with generally distributed durations and no internal parallelism.
Starting from the steady state, an inspection mechanism is subject to
some degree of uncertainty in the identification of the current phase of
each workstation, and is in any case unable to estimate remaining times.
By relying on the positive correlation between delays at different work-
stations, we provide stochastic upper and lower approximations of the
performance measures of interest, including the time to completion of the
local workflow of each workstation and the time until when a worksta-
tion starts a new job. Experimental results show that the approximated
evaluation is accurate and feasible for lines of significant complexity.

Keywords: Workflow · Assembly lines · Inspection at steady state ·
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1 Introduction

Quantitative approaches combining predictive models with runtime observations
find a relevant application in monitoring and control of several manufactur-
ing processes, including in particular assembly lines. Depending on the level
of abstraction, these methods can support both high-level horizontal integra-
tion along a supply chain or scheduling of actions performed by humans [11] or
end-effectors within a physical assembly line, notably fitting in the agenda of
Industry 4.0.

Evaluation of performance measures for manufacturing processes has been
widely addressed using models based on open queuing networks in sequential
composition. In particular, blocking in the transfer of products across subsequent
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stages of the line has been investigated and advocated as a way to account
for buffering constraints that take relevance and may become restrictive in the
handling of physical products [1,20]. Numerical solution for the evaluation of
the distribution of the lead time of a line subject to disturbances or fluctuations
is addressed in [2], and impact of the lead time variability on the quality of
deteriorating products is evaluated in [10]. The transfer blocking abstraction
has been addressed also beyond the limits of manufacturing systems, notably
in Software Architectures, considering different blocking schemes that may fit
the expressive needs of the context or may allow product form solution [3].
As a common trait, in these works, stations are associated with exponentially
distributed (EXP) service times, so that the underlying stochastic process falls
in the class of Continuous Time Markov Chains (CTMCs), and the emphasis of
complexity is instead focused on the structure and size of the composition of the
line. Moreover, solution methods are applied off-line without actualizing models
with respect to information that may become available during the runtime.

Methods for performability evaluation of stochastic systems have addressed
the analysis of models conditional to the occurrence of unexpected changes
such as an internal failure or a variation of external conditions [18,23], usually
assumed to occur when the model is in the steady state. This reduces complex-
ity by decoupling the evaluation of performance under nominal conditions from
a set of transient behaviors following a variety of rare unexpected events. Also
in this case, most approaches develop on models with EXP durations, so that
the analysis can be accomplished by restarting the system from the steady state
distribution of the logical state, without taking into account remaining times
of activities ongoing when the change occurs. In [6], the analysis is applied to
models with Continuous Phase Type durations [15,21] by relying on the EXP
sojourn time occurring within individual phases.

When models are applied during the runtime [5,9], actual observations can
be used to restrain the set of plausible current states [8] and thus reduce the
variability in the prediction of future behavior. In turn, this may become the
basis for scheduling actions [4,22] that adapt the system in response to changes
in requirements or deviations from the nominal behavior of the environment.

In this paper, we address inspection-based evaluation of performance mea-
sures in collections of similar systems, and we illustrate the proposed approach
with reference to the case of assembly lines. Specifically, we consider worksta-
tions implementing a complex workflow modeled as a state machine [19], with
random choices and sequential phases with generally distributed (GEN) dura-
tions, with possible cycles but without internal parallelism. Workstations are
composed in series with transfer blocking and no buffering capacity, so that, on
completion of a job, a workstation is blocked until the subsequent workstation is
ready to start a new job; though the approach is open to extensions to encom-
pass buffering, this aspect is not considered here not to increase the complexity
of solution. The structure of the overall model can be conveniently connected
with the formalism of UML state charts [12] following the approach of [13].

We consider the case that some inspection mechanism is able to acquire a
partial observation on the logical location of the state of all the workstations.
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The observation is partial in a twofold sense: it does not capture remaining times of
ongoing phases within active workstations, which are relevant due to the presence
of GEN durations; and, it may be not able to distinguish some logical locations
within the same workstation. Note that the assumption of partial observability is
realistic in several applicative scenarios, given that keeping track of the starting
time of activities requires event-driven monitoring or at least a very strict polling
system, which may be not available in many manufacturing systems. Moreover,
it may be convenient to perform operations on the system only sporadically, for
instance to save costs, so that continuous monitoring is not adopted.

We assume that the time between consecutive inspections is significantly
larger than average temporal parameters of the system, so that it can then
be considered in a steady state at the time of observation. Starting from the
assumption of steady state conditional to the acquired observation, we are inter-
ested in evaluating a suite of transient performance measures including: the time
to completion of the local workflow of each workstation; the time when a ready
product will be accepted by the subsequent workstation; and, the time until when
a workstation starts a new job. Due to GEN durations, the underlying stochastic
process of each workstation is in the class of Semi Markov Processes (SMPs);
besides, due to the concurrent execution at multiple workstations, the overall
composition falls in the class of Generalized Semi Markov Processes (GSMP), so
that numerical solution is not practically feasible. To circumvent this complexity,
we provide stochastic upper and lower approximations of the measures of interest
by relying on the positive correlation between delays at different workstations.

The approach is implemented using the API of the ORIS Tool [7] for model
construction and analysis, showing that the approximated evaluation is accurate
and feasible for assembly lines of significant complexity. Overall, the obtained
experimental results support the definition of high-level strategies for the opti-
mization of system operation and maintenance, for instance with the goal of
limiting the time during which workstations are blocked.

In the rest of the work, we describe the considered class of assembly lines
(Sect. 2.1) and we define transient performance measures (Sect. 2.2); then, we
provide a Petri net model of an assembly line (Sect. 3.1) and we present a solution
method (Sects. 3.2 and Sect. 3.3); finally, we present the experimental results
(Sect. 4) and we draw our conclusions (Sect. 5).

2 Problem Definition

2.1 Production Line Model

We consider an assembly line made of N sequential workstations WS1, . . . , WSN ,
each performing a specific job that must be completed before the assembly is
moved to the next workstation in the line. An additional initial block termed
generator issues requests to start the manufacturing of a new product, and an
additional final block termed sink collects the finished products. Figure 1 shows
the state diagrams of the generator, the n-th workstation WSn, and the sink. The
generator is in the producing state while generating a request; it moves from the
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Fig. 1. State diagrams of: (a) the generator, (b) the n-th workstation, (c) the sink.

producing state to the done state whenever a request is issued; and, it moves
back to the producing state as soon as workstation WS1 has received the request
and has started manufacturing the corresponding product.

A workstation is producing while performing its job on a product, imple-
menting a specific workflow with known phases (sequential, alternative, cyclic)
and durations. A workstation moves to the done state as soon as its task on the
current product has been completed; next, it enters the idling state when the
product has been received by the next workstation or by the sink (if this is the
last workstation); finally, it moves back to the producing state when a product
has arrived from the previous workstation or from the generator (if this is the
first workstation). A workstation can process only one product at a time, and it
is termed busy if it is in the producing or in the done state.

The sink is always in the idling state, collecting finished products received
from workstation WSN , which have traversed the whole assembly line.

An assembly line is monitored by external observers, e.g., human inspec-
tors, polling sensors. If the time between consecutive inspections is signifi-
cantly larger than average temporal parameters of the system, the line can
be considered in a steady state at the observation time. An observation is
a tuple ω = 〈ω0, ω1, . . . , ωN 〉 where: (i) ω0 = 〈σ0〉 identifies the state σ0 ∈
{producing, done} of the generator; and, (ii) ∀n ∈ [1, N ], ωn = 〈σn, φn〉 identi-
fies the state σn ∈ {producing, done, idling} of workstation WSn and the set φn

of its possible current phases. In particular, given that ambiguity affects only
the observation of producing states, φn is equal to the power set P(Γn) of the
set of producing phases Γn = {γ1

n, . . . , γMn
n } if σn = producing, and φn = ∅ if

σn ∈ {done, idling}. In so doing, the current producing phase is not identified
unambiguously if |φn| > 1. Given that observations are subject to ambiguity in
the identification of the current producing phase, and that, in any case, they
do not provide information on the time spent in the current state or phase, the
assembly line turns out to be partially observable.

2.2 Transient Performance Measures

Observations can be used to predict the future behavior of the system and to
improve the production process in individual workstations and in the overall line.
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To this end, the time to done TTD(n, ω) is defined as the time to complete the
manufacturing of a product in workstation WSn (making it available for worksta-
tion WSn+1 or the sink), conditioned to the observation ω = 〈ω0, ω1, . . . , ωN 〉:

TTD(n, ω) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

γ∈φn

Pn,γ,ω · (R(n, γ) + Z(n, γ)) if σn = producing

TTD(n − 1, ω) + V (n) if σn = idling

0 if σn = done

(1)

where: φn is the set of producing phases identified by ωn; Pn,γ,ω is the steady-
state probability that WSn is in phase γ conditioned to observation ω; R(n, γ)
is the remaining time in phase γ of WSn; Z(n, γ) is the execution time of the
producing phases of WSn that follow γ; V (n) is the producing time of WSn; and,
TTD(0, ω) is equal to 0 if the generator state is σ0 = done and equal to the
remaining time to the arrival of a new request if σ0 = producing.

Note that, if WSn is producing, TTD(n, ω) is the time to complete the job on
the product currently being processed; otherwise, if WSn is idling, TTD(n, ω) is
the time until a product is moved to WSn plus the time required to process it;
finally, if WSn is in the done state, TTD(n, ω) is equal to zero, given that a
product is waiting to be moved from WSn to WSn+1. Equation 1 can be solved
by recursively computing the TTD of workstations that precede WSn in the line,
until a busy workstation or the generator is reached.

In the applicative perspective, TTD(n, ω) could be used to optimize produc-
tion in workstations, reducing the time during which they are blocked.

The time to idle TTI(n, ω) is the time to complete the manufacturing
of a product in workstation WSn and move the product to workstation WSn+1,
conditioned to the observation ω = 〈ω0, ω1, . . . , ωN 〉:

TTI(n, ω) :=

{
max{TTD(n, ω),TTI(n + 1, ω)} if σn ∈ {producing, done}
0 if σn = idling

(2)
Equation 2 can be solved by recursively computing the TTD of workstations

that follow WSn in the line, until an idling workstation or the sink is reached,
i.e., TTI(n, ω) = max{TTD(n, ω), . . . ,TTD(n+k, ω)}, where either WSn+k is the
last workstation (i.e., n + k = N) or it is idling. According to this, WSn becomes
idling when the slowest workstation WSj among the following busy workstations
WSn, . . . , WSn+k becomes idling (i.e., WSj is the bottleneck).

In the applicative perspective, TTI(n, ω) could be used to determine whether
the considered workstation is early or late, and consequently switch the preceding
workstations to faster or slower operation modes, respectively, reducing energy
consumption while preserving the throughput of final products.

The time to start next TTSN(n, ω) is the time to start the manufacturing
of a new product in WSn, conditioned to the observation ω = 〈ω0, ω1, . . . , ωN 〉:

TTSN(n, ω) := max{TTI(n, ω),TTD(n − 1, ω)} (3)
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Solution of Eq. 3 requires the evaluation of both the preceding and the fol-
lowing workstations to compute TTD(n − 1, ω) and TTI(n, ω), respectively.
In the applicative perspective, TTSN(n, ω) can be compared with TTD(n, ω)
to evaluate the time interval during which workstation WSn is not working on
a product. Moreover, TTSN(n, ω) could be exploited to temporarily switch off
workstations that are not likely to process a new product in the near feature,
permitting to reduce energy wasted by the assembly line.

For TTD(k, ω), TTI(k, ω), TTSN(k, ω), we evaluate the Cumulative Distri-
bution Function (CDF) FTTD(k,ω)(t), FTTI(k,ω)(t), FTTSN(k,ω)(t), respectively.

3 Modelling and Solution Technique

3.1 Partially Observable Stochastic Time Petri Nets

PO-STPN syntax. Petri nets are widely used to specify workflow models [26],
given that they inherently support the representation of concurrency. To model
partially observable assembly lines with stochastic execution times, we extend
Stochastic Time Petri Nets (STPNs) [27] with observation symbols. Specifi-
cally, a Partially Observable Stochastic Time Petri Net (PO-STPN) is a tuple
〈P, T,A−, A+,m0, F,W,O,H〉 where: P and T are the (disjoint) sets of places
and transitions, respectively; A− ⊆ P × T and A+ ⊆ T × P are the sets of pre-
condition and postcondition arcs, respectively; m0 : P → N is the initial marking
assigning a number of tokens to each place; F : T → [0, 1][EFTt,LFTt] associates
each transition t with a CDF F (t) : [EFTt, LFTt] → [0, 1], where EFTt ∈ Q≥0

and LFTt ∈ Q≥0 ∪ {∞} are termed earliest and latest firing time, respectively;
W : T → R>0 associates each transition with a weight; O is the set of observable
symbols; and, H : P → O associates each place with an observation symbol.

A place p is an input or an output place for a transition t if 〈p, t〉 ∈ A− or
〈t, p〉 ∈ A+, respectively. A transition t is immediate (IMM) if EFTt = LFTt = 0
and timed otherwise; a timed transition t is exponential (EXP) if Ft(x) = 1−e−λx

over [0,∞] with λ ∈ R>0, and general (GEN) otherwise; a GEN transition t is
deterministic (DET) if EFTt = LFTt > 0 and distributed otherwise; for each
distributed transition t, Ft is the integral function of a Probability Density Func-
tion (PDF) ft, i.e., Ft(x) =

∫ x

0
ft(y)dy. IMM, EXP, GEN, and DET transitions

are represented by thin black, thick white, thick black, and thick gray bars,
respectively; weights are annotated next to transitions as weight = value; obser-
vation symbols are annotated next to places as obs = value.

PO-STPN semantics. The state of a PO-STPN is a pair 〈m, τ〉, where m
is a marking and τ : T → R≥0 associates each transition with a time-to-fire.
A transition is enabled by a marking if each of its input places contains at
least one token; an enabled transition t is firable in a state if its time-to-fire is
equal to zero. When multiple transitions are firable, one of them is selected to
fire with probability μ = W (t)/

∑
ti∈Tf,s

W (ti), where Tf,s is the set of firable
transitions in s. When t fires, s = 〈m, τ〉 is replaced by s′ = 〈m′, τ ′〉, where: m′

is derived from m by removing a token from each input place of t, which yields
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Fig. 2. PO-STPN of an assembly line with two workstations WS1 and WS2.

an intermediate marking mtmp, and by adding a token to each output place of t;
τ ′ is derived from τ by: (i) reducing the time-to-fire of each persistent transition
(i.e., enabled by m, mtmp and m′) by the time elapsed in s; (ii) sampling the
time-to-fire of each newly-enabled transition tn (i.e., enabled by m′ but not by
mtmp) according to Ftn

; and, (iii) removing the time-to-fire of each disabled
transition (i.e., enabled by m but not by m′).

Remark. For each symbol o ∈ O, we define U(o) := {p ∈ P |H(p) = o} as the
set of places associated with o. If |U(o)| = 1 ∀ o ∈ O, each symbol identifies one
and only one place; conversely, if |U(o)| > 1 for some o ∈ O, multiple places of
the same workstation are associated with the same symbol, leading to ambiguity
in the identification of the current producing phase (places belonging to different
workstations are associated with different symbols).

An example. Figure 2 shows the PO-STPN of an assembly line made of two
workstations WS1 and WS2, each implementing two sequential producing phases.
The firing of the EXP transition arrival with rate 1 represents the generation of
a request to start the manufacturing of a new product, moving a token from place
Producing to place Done, which encode the namesake states of the generator
shown in Fig. 1(a). For each workstation WSn: places Idlingn and Donen encode
the namesake states shown in Fig. 1(b); place WSnPhasei encodes the i-th phase
of the producing state of Fig. 1(b); and, place Busyn encodes either the producing
or the done state. In both workstations, the first phase has a uniform duration
within [1, 4], while the second phase has a uniform duration over [2, 3]. Given
that WS2 is the last workstation, when its job is completed, which is represented
by the firing of duration22, the product is directly sent to the sink, which is
modeled by the firing of the namesake IMM transition.

3.2 Evaluation of the Steady State Probability of a Producing
Phase Conditioned to an Observation

The steady-state probability Pn,γ,ω that workstation WSn is performing phase
γ conditioned to observation ω = 〈ω0, ω1, . . . , ωn〉 is derived from unconditional
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steady state probabilities of the producing phases of WSn through the Bayes the-
orem, i.e., Pn,γ,ω = Pω |Pn,γ · Pn,γ/Pω, where Pω is the steady state probability
of ω and Pn,γ is the steady state probability that WSn is performing phase γ (not
conditioned on ω). Given that Pω |Pn,γ is equal to 1, Pn,γ,ω can be rewritten as
Pn,γ,ω = Pn,γ/

∑
η∈φn

Pn,η, where φn is the set of phases identified by ωn.
In principle, for each workstation WSn and for each phase γ of its job, Pn,γ

could be evaluated from steady state analysis of the PO-STPN model of the
assembly line, yielding Pn,γ,ω = π(mp)/

∑
q∈U(o) π(mq), where p is the place

that encodes the execution of phase γ (e.g. in Fig. 2, place WS1Phase1 encodes
the execution of the first of the two sequential phases of WS1), mp is any marking
where place p contains a token, o is the symbol observed when WSn is performing
phase γ, and U(o) is the set of places associated with o (which includes p).

However, the complexity of steady state evaluation grows with the number
of workstations and with the complexity of their manufacturing phases. Given
that uncertainty affects the identification of the logical location within individual
workstation (i.e., ∀ o ∈ O, all places in U(o) belong to the same workstation),
Pn,γ can be derived through steady state evaluation of an isolated model of WSn,
obtained by chaining transition startn+1 (transition sink for the last worksta-
tion WSN ) with transition startn through a single place, which turns out to be
the unique output place of startn+1 and the unique input place of startn:

Theorem 1. The steady-state probability Pn,γ,ω that workstation WSn is per-
forming phase γ conditioned to observation ω = 〈ω0, ω1, . . . , ωn〉 can be evaluated
from the steady state probabilities π̃ of the markings of the isolated model of WSn:

Pn,γ,ω =
π̃(mp)

∑

q∈U(o)

π̃(mq)
(4)

where p is the place encoding the execution of phase γ, o is the symbol observed
when WSn is performing γ, and U(o) is the set of places associated with symbol o.

3.3 Evaluation of Transient Performance Measures

Evaluation of the transient performance measures defined in Sect. 2.2 requires,
for each workstation WSn with n ∈ [1, N ] and for each of producing phase γ ∈ Γn,
the evaluation of: the CDF FR(n,γ) of the remaining time R(n, γ) in γ, the CDF
FZ(n,γ) of the execution time Z(n, γ) of the producing phases that follow γ, and
the CDF FV (n) of the overall producing time V (n) of WSn.

Evaluation of FR(n,γ). In the PO-STPN model of an assembly line, the remain-
ing times of the enabled GEN transitions (i.e., durations of manufacturing
phases) are dependent random variables. As an example, consider the case of
two subsequent single-phase workstations WS1 and WS2 that are in the done and
in the producing state, respectively, with WS1 having an incoming product wait-
ing to be processed; as soon as WS2 completes the manufacturing of its current
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product, WS2 starts working on the last product processed by WS1 which, in turn,
starts processing a new product; in so doing, when the assembly line is subse-
quently inspected, the remaining times of WS1 and WS2 are dependent random
variables.

A lower bound on FR(n,γ) can be derived assuming that R(n, γ) is zero, as if
the GEN transition modeling γ was newly enabled (immediate approximation),
i.e., F̃R(n,γ)(t) = 1 ∀ t. Conversely, an upper bound can be computed assuming
that R(n, γ) is sampled from the distribution of the duration of phase γ, as if
the corresponding transition was newly enabled (newly enabled approximation),
i.e., F̃R(n,γ)(t) = Fg(t) where g is the transition modeling the duration of γ.

Another lower bound on FR(n,γ) can be obtained by considering the remain-
ing times of the ongoing manufacturing phases of the active workstations as
independent random variables (independent remaining times approximation):

Theorem 2. If R̂ is an independent version of the vector R of the remaining
times of the ongoing phases at inspection, then R̂ ≥st R, where ≥st is the usual
stochastic order among random variables.

The steady state distribution of each remaining time R̂(n, γ) in R̂ can be derived
according to the Key Renewal Theorem [17,24]:

F̃R(n,γ)(t) =
1
μ

∫ t

0

[1 − Fg(s)]ds (5)

where Fg(s) is the sojourn time CDF in phase γ and μ is its expected value.
In particular, if the sojourn time PDF in phase γ has a bounded support,
i.e., f(t) : [a, b] → [0, 1], then f̃R(n,γ)(t) can be derived as:

f̃R(n,γ)(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
μ if x < a

1
μ − 1

μF (x) if a ≤ x < b

0 otherwise

(6)

Evaluation of FZ(n,γ) and FV (n). Evaluation is performed through transient
analysis of the isolated workstation model discussed in Sect. 3.2, computing
FZ(n,γ) and FV (n) as the transient probability of the marking where place Donen

contains a token, assuming WSnPhase1 and WSnPhasek as initial marking, respec-
tively (where WSnPhase1 encodes the execution of the first phase of WSn and
WSnPhasek encodes the execution of the phase of WSn that follows phase γ).

Values of F̃R(n,γ), FZ(n,γ), and Z(n, γ) are combined according to Eqs. 1, 2,
and 3. Given that the convolution and the max operations preserve the usual
stochastic order, we obtain bounds on TTD(n, ω), TTI(n, ω) and TTSN(n, ω).

4 Computational Experience

The approach is first experimented on a simple assembly line, permitting to
validate results against stochastic simulation (Sect. 4.1), and then applied to a
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more complex case study, for which simulation would be too computationally
expensive, showing the scalability of the solution method (Sect. 4.2). In both
models, durations are associated with example CDFs selected so as to highlight
the capability to manage GEN timers and bounded supports; in general, any kind
of expolynomial approximant could be used depending on the available statistics.
Evaluation is performed using the API of the ORIS Tool [7] to implement the
PO-STPN model of the assembly line and to perform transient and steady-
state analysis of isolated models of workstations. Experiments were performed
on a single core of an Intel Core i5-6600K processor equipped with 16 GB RAM,
computing transient performance measures with a time step equal to 0.01, which
is by far lower than temporal parameters of the two models.

4.1 A Simple Assembly Line

Using simulation to evaluate the considered performance measures, which are
conditional to an observation ω at an inspection time ti, requires: (i) estima-
tion of the time ts beyond which marking probabilities reach a steady state;
(ii) selecting of ti from time ts on; (iii) execution of a large number of runs,
discarding those where the marking of the PO-STPN model at time ti is not the
one identified by ω. According to this, we consider the model of Fig. 2, which
underlies a Markov Regenerative Process (MRP) and permits to evaluate time ts
through regenerative transient analysis based on the method of stochastic state
classes [14]. Specifically, ts = 85 with a tolerance of ±0.001; thus, we select
ti = 90. Moreover, we assume that, at the inspection time, a new product is
waiting to be served and both WS1 and WS2 are performing their first phase,
which corresponds to marking Done WS1Phase1 WS2Phase1 having probability
nearly equal to 0.208 at time ti, causing about 79.2% of the 2 000 000 simulation
runs to be discarded.

Figures 3(a), (b), and (c) plot FTTD(1,ω)(t), FTTI(1,ω)(t), and FTTSN(2,ω)(t),
respectively, computed through simulation in nearly 41 min, 45 min, and 42 min,
respectively, and the corresponding bounds computed through the approximate
methods of Sect. 3, requiring nearly 0.15 s, 0.18 s, and 0.10 s, respectively.
As expected, the immediate and the newly enabled curves represent a lower
and an upper bound on the simulation curve, respectively; moreover, the inde-
pendent remaining times curve is also a lower bound on the simulation curve,
significantly tighter than the immediate curve. In particular, for FTTD(1,ω)(t)
note that: the immediate curve is a uniform CDF with support [2, 3] like the
distribution of the second phase of WS1, given that this approximation assumes
that the first phase has just been completed; the newly enabled curve represents
the convolution between the CDF of the two phases of WS1, due to the fact that
this approximation assumes that the first phase has just begun.

4.2 A Complex Assembly Line

We consider three types of workstation: (i) two sequential phases (see Fig. 4(a));
(ii) an initial phase followed by two alternative phases with probability 0.7
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Fig. 3. Simple case study: (a) FTTD(1,ω)(t), (b) FTTI(1,ω)(t), (c) FTTSN(2,ω)(t). Complex
case study: (d) FTTD(5,ω)(t), (e) FTTI(5,ω)(t), (f) FTTSN(5,ω)(t).

and 0.3, respectively (see Fig. 4(b)); (iii) an initial phase that can be cyclically
repeated, each time with probability 0.1, followed by a second final phase (see
Fig. 4(c)) Note that the alternative workstation is affected by ambiguity in the
observation of the two alternative phases, which are in fact associated with the
same symbol.

We consider an assembly line composing three times a serial, an alternative,
and a cyclic workstation, for a total of 9 workstations, plus a generator with
exponentially distributed arrivals with rate 1. To stress evaluation complexity, we
assume that workstations are busy and the generator is blocked at the inspection
time, and we compute performance measures for WS5, an alternative workstation
affected by observation ambiguity (simulation would be too computationally
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Fig. 4. PO-STPN model of 3 workstation types: (a) serial, (b) cyclic, (c) alternative

expensive due to the small probability of the considered marking). Figures 3(d),
(e), and (f) plots bounds on FTTD(5,ω)(t), FTTI(5,ω)(t), and FTTSN(5,ω)(t) respec-
tively, computed in nearly 0.126 s, 0.123 s, and 0.75 s, respectively, showing that
the approach is feasible for models of real scale. As expected, the independent
remaining times curves lie between the immediate and the newly enabled curves,
comprising a tighter lower bound with respect to the newly enabled curves.

5 Conclusions

We have proposed a novel approach for the evaluation of transient performance
measures in collections of similar systems on the basis of runtime observa-
tions. The approach is illustrated with reference to the case of assembly lines
made of a sequence of workstations, with transfer blocking and no buffer-
ing capacity, each implementing a complex workflow with random choices,
sequential/alternative/cyclic phases, GEN durations, without internal paral-
lelism. Some inspection mechanism partially identifies the current logical loca-
tion of each workstation, but is not able to determine the remaining times of
the ongoing phases. Starting from the steady state, we consider transient perfor-
mance measures conditional to an observation, including the time to complete
the specific job of each workstation. Leveraging the positive correlation among
the remaining times in different workstations, we compose the results of the
analysis of individual workstations to derive stochastic bounds on the consid-
ered measures. The approach is experimented on a complex case study, showing
that the obtained bounds are accurate and models of real scale can be effectively
handled.

Future work includes encompassing more complex assembly lines, for instance
with buffering, and evaluating other performance measures, including the total
lead time until when the product that is presently at some intermediate work-
station will reach the end of the line. Moreover, the approach could be exploited
in the optimization of manufacturing processes, for instance to limit the wasted
energy or to reduce the time during which workstations are blocked.
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6 Appendix

We report proofs and background on stochastic ordering of random variables.

Proof of Theorem 1. Let Sn,σ be the steady state probability that workstation WSn

is in state σ ∈ {producing, done, idling}, M be the finite set of markings of the
PO-STPN model of the overall assembly line, and Mn,σ ⊂ M be the subset of
M made of markings where WSn is in state σ. Sn,σ can be evaluated as Sn,σ =∑

m∈Mk,σ
π(m), where π(m) is the steady state probability of marking m.

Let Mn,producing,γ ⊂ Mn,producing be the set of markings where WSn is per-
forming phase γ. Given that the behavior of a workstation during the producing
state does not depend on the other workstations (interactions occur only when
it is in the idling state, waiting for a product from the preceding workstation,
or in the done state, waiting for the following workstation to accept the prod-
uct), the probability Pn,γ that WSn is performing phase γ can be computed as
Pn,γ =

∑
m∈Mn,producing,γ

π(m) = π̄γ · Sn,processing where π̄γ is the steady state
probability that WSm is performing phase γ given that it is producing.

Hence, the steady-state probability Pn,γ,ω that WSn is performing γ condi-
tioned to ω = 〈ω0, ω1, . . . , ωn〉 can be derived as Pn,γ,ω = Pn,γ/

∑
η∈φn

Pn,η =
π̄γ ·Sn,processing/

∑
η∈φn

π̄η ·Sn,processing = π̄γ/
∑

η∈φn
π̄η. The conditional prob-

ability π̄γ can be derived from the evaluation of the isolated model of WSn, as
the steady state probability π̃(mp) of any marking mp where the place p that
encodes the execution of phase γ contains a token. Similarly,

∑
η∈φn

π̄η (where
φn is the set of phases identified with ambiguity by ωn through the observation
of symbol o) can be derived as the sum of the steady state probabilities π̃(mq) of
markings mq where place q ∈ U(o) encoding the execution of phase η contains
a token. According to this, Pn,γ,ω = π̃(mp)/

∑
q∈U(o) π̃(mq). ��

To make the paper self-contained, we recall results on stochastic ordering of
random variables [16,25], which we use to prove Theorem 2.

Definition 1. A real random variable X is stochastically smaller than another
real random variable Y (X ≤st Y ) if Pr(X > z) ≤ Pr(Y > z) for all z.

Definition 2. Two random variables X and Y with covariance cov(X,Y ) are
positively correlated if cov(X,Y ) ≥ 0.

Definition 3. Let X̂ = {X̂1, ..., X̂n} be an independent version of random vari-
ables X = {X1, ...,Xn}. The following properties hold: (i) {X̂1, ..., X̂n} are mutu-
ally independent, and (ii) Xi and X̂i have the same PDF ∀ i ∈ {1, . . . , n}.
Theorem 3. If X̂ is an independent version of a vector X of positively corre-
lated random variables, then X̂ ≥st X.

Corollary 1. max
i

X̂i ≥st max
i

Xi

Leveraging the above results, we can prove the following statement:
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Theorem 4. At inspection, the remaining times of the ongoing phases of the
producing workstations are positively correlated.

Proof. Let a production line made of n workstations WS1, . . . , WSN be inspected
at time i, and let R = {Ra(1), Ra(2), ..., Ra(h)} be the vector of the remaining
times of the ongoing phases of the h ≤ N processing workstations, where a(l)
is the physical number of the l-th processing workstation. Let xj

n be the time
at which WSn starts processing the j-th product, yj

n be the time at which WSn

completes its job on the j-th product, and Δn be the sojourn time of a product
in WSn. Based on the production line model of Sect. 2.1, Rj

a(l) = Δa(l) − i+xj
a(l),

yj
n = xj

n + Δn, and xj
n = max{yj

n−1, x
j−1
n+1}. According to this, random variables

{xj
1, . . . , x

j
a(h)} are positively correlated. Moreover, exploiting the fact that time

i is a constant and random variables Δa(1), . . . , Δa(h) are independent of each
other and identically distributed for each manufactured product, it can be shown
that the covariance between any two xi

n xj
n is equal to the covariance between

Ri
a(l) and Rj

a(l). Therefore, the remaining times are positively correlated. ��
Finally, Theorem 2 is proved by leveraging Theorems 3 and 4.

Proof of Theorem 2. By Theorem 4, the remaining times stored in vector R are
positively correlated. As a consequence, by Theorem 3, their independent version
R̂ is stochastically ordered with respect to R.
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3. Balsamo, S., Personè, V.D.N., Inverardi, P.: A review on queueing network mod-
els with finite capacity queues for software architectures performance prediction.
Perform. Eval. 51(2), 269–288 (2003)

4. Biagi, M., Carnevali, L., Paolieri, M., Patara, F., Vicario, E.: A stochastic model-
based approach to online event prediction and response scheduling. In: Fiems, D.,
Paolieri, M., Platis, A.N. (eds.) EPEW 2016. LNCS, vol. 9951, pp. 32–47. Springer,
Cham (2016). doi:10.1007/978-3-319-46433-6 3

5. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42, 10 (2009)
6. Bruneo, D., Distefano, S., Longo, F., Puliafito, A., Scarpa, M.: Evaluating wireless

sensor node longevity through Markovian techniques. Comput. Netw. 56(2), 521–
532 (2012)

7. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification
and evaluation of real-time systems. Int. J. Softw. Tools Technol. Transf. 12(5),
391–403 (2010)

8. Carnevali, L., Nugent, C., Patara, F., Vicario, E.: A continuous-time model-
based approach to activity recognition for ambient assisted living. In: Campos, J.,
Haverkort, B.R. (eds.) QEST 2015. LNCS, vol. 9259, pp. 38–53. Springer, Cham
(2015). doi:10.1007/978-3-319-22264-6 3

http://dx.doi.org/10.1007/978-3-319-46433-6_3
http://dx.doi.org/10.1007/978-3-319-22264-6_3


166 M. Biagi et al.

9. Cheng, B.H.C., et al.: Using models at runtime to address assurance for self-
adaptive systems. In: Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.)
Models@run.time. LNCS, vol. 8378, pp. 101–136. Springer, Cham (2014). doi:10.
1007/978-3-319-08915-7 4

10. Colledani, M., Horvath, A., Angius, A.: Production quality performance in manu-
facturing systems processing deteriorating products. CIRP Ann. Manuf. Technol.
64(1), 431–434 (2015)

11. Gorecky, D., Schmitt, M., Loskyll, M., Zühlke, D.: Human-machine-interaction in
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Abstract. Virtual machine (VM) consolidation is among the key strate-
gic approaches that can be employed to reduce energy consumption in
large computing infrastructure. However, live migration of VMs is not a
trivial operation and consequently not all VMs can be easily consolidated
in all circumstances. In this paper we present experiments attempting to
live migrate the Kernel-based VM (KVM) executing workload form the
SPECjvm2008 benchmark. In order to understand what factors influ-
ence live migration we investigate three machine learning models to pre-
dict successful live migration using different training and evaluation sets
drawn from our experimental data.

Keywords: VM consolidation · Live migration · Prediction · Energy
efficiency

1 Introduction

Virtual Machine (VM) Live Migration has become an established technology
used to consolidate virtualised workload onto a smaller number of physical
machines, as a mechanism to reduce overall energy consumption. Live migra-
tion is attractive as it attempts to provide a seamless transfer of service between
physical machines without impacting client processes or applications. Given the
capacities of load balancing, fault tolerance, and energy management, data cen-
tres routinely employ live migration [1]. However, such transfer is not trivial and
clearly impacts on the resources of the physical machines involved and the net-
work which connects them. As such, depending on the resources available and
the load experienced by the VM and on the physical machines, live migration
might not always be feasible or even possible.

The primary factor that contributed to the rise and development of cloud
computing was the relatively recent advent of novel technologies. Applying these
developments facilitated the worldwide provision of opportune, functional, and
cost-effective consumer products. A central feature of cloud computing is the
virtualisation component, and this drives the cloud on account of an extensive
range of advantages, including isolation, straightforward manageability, cost-
effectiveness, adaptability, and partitioning.

This paper addresses the above need by presenting predictive models for VM
live migration which can be employed to select the VMs that can be readily
c© Springer International Publishing AG 2017
P. Reinecke and A. Di Marco (Eds.): EPEW 2017, LNCS 10497, pp. 169–183, 2017.
DOI: 10.1007/978-3-319-66583-2 11
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migrated based on the characteristics of their workload. In order to build the
models, we perform a live experiment to measure the VM live migration duration
time, CPU utilisation, memory usage, and I/O activities during the migration
process. The experiment involves employing two physical hosts to facilitate the
migration of VMs from one to the other by using Kernel-based Virtual Machine
(KVM) [2]. The SPECjvm2008 benchmark [3] is selected for the purpose of
producing workloads on the VMs, which allows us to consider a range of different
workload features. Following this, the migration times associated with identical
workloads are considered for VMs characterised by various hardware constraints.

The remainder of this paper is organized as follows. Section 2 discusses the
related work. In Sect. 3, we introduce the experiment environment. Section 4
presents the results of our preliminary experimentation. We explain and build
the predictive models in Sect. 5. In Sect. 6, we evaluate the model with various
datasets, before concluding and motivating future work in Sect. 7.

2 Related Work

The concept of VM live migration approach originated with Clark et al. [1],
whose core idea was to facilitate the relocation of the VM from source to target
host with minimal downtime. To achieve the goal, the researchers formulated
a pre-copy algorithm. This algorithm operates in the following way: prior to
transitioning the VM’s execution host, it copies and transfers pages from the
source memory host to the target memory host; this is carried out until there
are relatively few uncopied pages. Following the transferal of the remainder of
the pages from the source host, the source host VM engages in suspension and
resumption on the target host.

The modelling and prediction of virtual machine migration has formed the
basis for a number of previous works. Prior experimental work has sought to
quantify the impact of network bandwidth [4] and workload characteristics [5]
on the performance of VM live migration. Akoush et al. [6] develop predictive
models of live migration performance based on experimentation with a number
of SPEC benchmarks, and observe that network link speed exists as the most
dominant factor in migration performance. Meanwhile, Hu et al. [7] develop
predictive models of the performance and energy impact of virtual machine live
migration on the Xen platform, and demonstrate potential savings of 73%.

Machine learning approaches have been used operationally to inform var-
ious resource scheduling decisions within large scale computing systems [8].
Uriarte et al. [9] apply a Random Forest method to service clustering in auto-
nomic cloud environments.

3 Experiment Environment

A live experiment constitutes the basis of this paper, and this is carried out
to measure the durations of VM live migration and resource utilisation of the
VMs during the migration in the context of different workloads. In order to
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produce the different workloads, the SPECjvm2008 benchmark [3] is employed,
and KVM [2] is used as a hypervisor. Section 3.1 describes the experimental
setup; following this, Sect. 3.2 introduces the benchmark for VM workload gen-
eration and Sect. 3.3 details the experimental scenario used for the rest of the
paper.

3.1 Experiment Set Up

The principal obligation which has influenced the experimental setup is that
it should reproduce the VM live migration procedure as it takes place in real-
world contexts. For this reason, the Kernel-based Virtual Machine (KVM), a
common hypervisor for data centres, has been employed. VM live migration
necessitates the storage of VM images in a dedicated area that can be accessed by
every physical host. Consequently, VM images are stored using network attached
storage (NAS), and this has created a situation in which the procedure of VM
live migration is restricted to copying the memory pages and the CPU state
among physical hosts; this method is referred to as pre-copy live migration. For
NAS, we used the free software licensed Openfiler [10]. In addition, the setup
involves two servers and one client computer, linked together by a 1,000 Mb
switch. The servers run CentOS 7 Linux and KVM is installed on each. The
hardware features of both servers as follows: server 1 employs 4 CPUs Core 2
Quad @ 2.66 GHz and 4 GB DDR2 SDRAM. Server 2 has 8 CPUs Intel Core i7 @
2.80 GHz and 4 GB DDR3 SDRAM. The client computer operates Ubuntu 16.04
LTS and employs 1 CPU Intel Core i7 @ 3.20 GHz and 4 GB DDR3 SDRAM.
The difference between the two servers is a factor that assists us to obtain various
results. Finally, it should be noted that the client computer is employed to trigger
VM live migration between the servers.

3.2 Benchmarks

39 distinct workloads are incorporated into the SPECjvm2008 benchmark [3],
and these are used to examine the way in which hardware systems and Java VMs
(JVMs) perform. The default runtime for every workload is four minutes, and
the benchmark involves a pair of running configurations: namely, base and peak.
The fixed runtime of the base configuration involves a warm-up period of two
minutes and a general operational period of four minutes. In our experiment, we
use 20 workloads from the SPECjvm2008 benchmark as shown in Table 1.

3.3 Experiment Scenario

We first formulated a VM in Sever 1 by using KVM. In turn, the image was stored
in NAS. The VM runs Ubuntu 16.04 LTS, and it incorporates the SPECjvm2008
to generate a range of workloads. Several distinct VM hardware capacities have
been employed. Each VM is denoted as VMij where i, j = {1, 2, 3}, i is the
number of CPUs, and j is the RAM capability in Gigabytes (GB).



172 O. Alrajeh et al.

Table 1. SPECjvm2008 Benchmark workloads

Group name Workloads

Compiler compiler.compiler, compiler.sunflow

Compress compress

Crypto crypto.aes, crypto.rsa, crypto.signverify

Mpegaudio mpegaudio

Scimark Large scimark.fft.large, scimark.lu.large,
scimark.sor.large,scimark.sparse.large, scimark.monte carlo

Scimark Small scimark.fft.small, scimark.lu.small, scimark.sor.small,
scimark.sparse.small, scimark.monte carlo

Serial serial

Sunflow sunflow

Xml xml.transform, xml.validation

The experiment employs 20 SPECjvm workloads, and each is operated inde-
pendently. Once the first minute of workload operation has been completed, the
VM live migration procedure is started to transfer the VM from Server 1 to
Server 2. After the VM has been migrated to Server 2, the VM gets restarted
and starts the previous steps again between Server 2 and Server 1.

The presence of the client computer is important in facilitating the operation
of the experiment in an automated way. We developed a bash script [11] that
enables the client computer to run the benchmark on the VM and, following this,
the initiation of the live migration between the two severs. The client accesses
the VM and commences the operation of a single workload; following one minute
of running the workload, the client facilitates the migration of the VM from the
first to the second server; in turn, the commencement and completion times of
the VM live migration are recorded in a logs file. In addition to this, the script
maintains a log of the memory usage of each workload over the course of its
runtime from second to second, and this is measured by the Memusg script [12].
Furthermore, top and sar are used to maintain a log of the CPU utilisation,
total system memory, free memory, memory used, buffer cache, I/O activities,
queue size, and load average over the course of the migration.

For future researchers who are interested in reproducing our test using their
own hardware, a copy of the automated bash script can be found at [11]. It is
possible to modify both the number of the test and the runtime of each workload.

4 Experimental Results

In this section, we discuss the results of our preliminary experimentation. We
demonstrate the impact of different workload characteristics, and their impact
on VM live migration time, on various VMs capacities.
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Fig. 1. Average migration time of VMij with various workloads

Figure 1 presents the results of VM migration from Server 1 to Server 2. The
VMs migration starts after one minute of running the workload. We migrated
each VM with each workload 10 times from Server 1 to Server 2 and from Server
2 to Server 1. The figure illustrates the average duration of the VM live migration
of each workload from Server 1 to Server 2. The results of the migration time
between Server 2 to Server 1 has drawn the same conclusion. For brevity, results
of migration from Server 2 to Server 1 are not shown.

The results represent a clear discrepancy in average migration time between
workloads due to the various workload characteristics. Some workloads such
as Compiler.compiler, xml.transform, and xml.validation consume much
memory than others which increases the time of VM live migration between
servers. The reason is that VM live migration process requires copying the VM’s
memory pages from the source host to the destination host. At the point when
there is a high rate of changing memory pages during the live migration with an
insufficient network speed, the migration might never achieve or might take a
long time. Also, the number of threads that produced by the workloads is another
reason of delaying the VM live migration or making it impossible. For example,
the threads that generated by Serial and Sunflow workloads put pressure in
the memory which defined them as non-migratable workloads in our experiment.

The number of operations in the SPECjvm2008 benchmark is based on
the available resources. When there are more resources available in the VM,
the workloads generate more operations to test these resources. In our experi-
ment, some workloads in VM2., and VM3. have longer migration time than the
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workloads in VM1. due to the fact that they contain more memory pages compare
to VM1..

In addition, the standard deviation bars in the figures are shown for all work-
loads. Here we observe in some workloads that average migration time demon-
strate a variance, across each workload and VM configuration. Due to the uncer-
tainty and inconstancy of the average migration time on some workloads over
various VMs and servers, we selected 10 stable workloads to build our VM live
migration predictive models as discussed in the next section.

5 Virtual Machine Live Migration Modelling

In this paper, we used supervised learning in the form of classification to build
our predictive models. We used classification and regression training (caret)
package [13] by using R language [14]. Section 5.1 briefly introduces Stochastic
Gradient Boosted (SGB), Random Forest (RF), and Bagged Tree (BT) Models.
Section 5.2 discusses the dataset that is used for building the models, while
Sect. 5.3 expresses the comparisons between the models.

5.1 Stochastic Gradient Boosted, Random Forest, and Bagged Tree

Stochastic Gradient Boosting (SGB) [15] is an advanced model of the Gradient
Boosting model. The basic idea of the Gradient boosting method is to fit a
classifier, typically a decision tree, at each iteration, so that the next classifier is
trained to improve the existing trained ensemble. In the SGB, the subset of the
training data is selected randomly in each iteration. Then, the random subset of
the training set is used to fit the base learner and tune the model for the current
iteration. The SGB model has many parameters [16] which can be defined by
the user. The number of trees which determines what number of trees are to be
built in the model. The interaction depth parameter can control the maximum
size of each tree. The impact of each consecutive tree on the final predictions
controlled by shrinkage also known as learning rate. The low learning rate with
a few number of trees can give poor results, while a large number of trees, may
improve results.

Random Forest (RF) [17] is a collection of decision trees that are different in the
structure. RF selects the best splits of each node between a random subset of the
features. Also, the bootstrap or subsampling methods used by the training set to
grow each tree. The RF has two parameters which can be specified by the user; the
total number of trees of the model, and the number of splits controls the number of
features in each node split. Building RF models with a large number of trees does
not lead to overfitting due to the “strong law of large numbers” [18].

Bagging [19] is a method that takes different samples datasets, creates a
set of high-variance base learners (usually decision tree), and then averages the
prediction results. In the Bagging, the subset of the training data is drawn with
replacement from the training set which makes it different that SGB. Also, all
features are considered for splitting a node, unlike RF where a subset of the
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features is randomly selected, and the best features of the subset are used to
split the node.

5.2 Dataset

In order to create the predictive model for VM live migration decision, we need
to select data from the experiment results which address the following question
“what VMs are migratable or non-migratable?”. The answer to the question
assists choosing the VMs with a low migration time to be migrated. That will
reduce the associated cost with the migration as well as the network traffic.

It is critical that we feed the model with the right data that solve the above
question. Consequently, the dataset for training and testing the models is selected
from 10 stable workloads’ results with 10 features and marked with two class
labels as illustrated in Table 2. When the workload can be migrated during its
run time, we mark it as migratable workload. The migratable workloads take
around 15 s to be fully migrated between hosts.

The dataset is determined to 20 s which is from 50 to 70 s where the migra-
tions starting point occurred during this period. Each row of the dataset repre-
sents one second which is taken from the recorded logs of the experiment, and
it has the values of the futures as well as the class labels. The dataset contains
18000 rows and is divided into two sets: a training set (75%) and testing set
(25%). The training set is used to build the model, and the testing set is used
to evaluate the performance of the model. We took advantage of the built-in
function createDataPartition in caret package [13] to have stratified random
splits within each class label of the data set.

5.3 Tuning the Models

We used caret package [13] to create our predictive models. The package
depends on 27 packages, and the train is the main function that can be used to

Table 2. Dataset structure

Workload Class label Features

crypto.rsa Migratable Total system memory

scimark.monte carlo Memory used

scimark.sor.small Free memory

scimark.sparse.small Buffer cache

scimark.sparse.large Number of CPUs

compiler.compiler Non-migratable CPU usage

serial Load average

sunflow Queue size

xml.transform Blocked tasks

xml.validation Transactions (I/O)
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build and evaluate the models. The first step in creating a predictive model is
to choose the model. In this paper, we selected the following models: Stochastic
Gradient Boosted (SGB), Random Forest (RF), and Bagged Tree (BT). We used
gbm package [16] for SGB, randomForest package for RF, and ipred package
for BT.

Next, we need to set the tuning parameters of the models. There are no tuning
parameters for BT model. However, for the SGB model, we tuned combinations
of values of the number of trees, n.tree = seq(100, 1000, by = 50), the depth of
each tree, interaction.depth = seq(1, 7, by = 2), and the learning rate (or shrink-
age), shrinkage= c(0.01, 0.1) which is in total generates 152 combinations. For RF
model, the values of the number of trees to grow, ntree= seq(100, 1000, by = 50),
and the number of variables at each node splits, mtry = seq(1, 7, by = 2).

Then, we need to specify the measures of performance for the models and
pass it to the metric argument of the train function. We chose the area under
the Receiver Operating Characteristic (ROC) curve, or simply AUC, to assess
the performance of the models as advised in [20,21]. Finally, we need to spec-
ify the method of resampling such as cross-validation or bootstrap by using the
trainControl function. We selected repeated K -fold cross-validation as resam-
pling method where K = 10 which recommended in [22] and repeated 5 times.
After resampling, the train function determines the best values of the tuning
parameters and fit them to the final model.

5.4 Performance Evaluation of the Models

We evaluate and compare the performance of the models to determine which
model performs best for our dataset. We explore the impact of model parameters
on the performance, training time, and prediction time. We then identify the
most important features of each model, before comparing the accuracy of the
SGB, RF, BT models with seven alternative models.

Figures 2 and 3 exhibit the correlation between different tuning parameters
of SGB and RF models and the resampled estimate of the AUC. For SGB model,
the AUC value increases when the number of trees grows, and the value max
tree depth increases. Also, the SGB performs better with 0.1 shrinkage value.
The best parameters value of the SGB model for our dataset when the number
of trees is 1,000, the depth is 7, and the shrinkage is 0.1. However, the best AUC
value can be achieved with fewer trees and number of splits in RF model as
illustrated in Fig. 3. Also, it should be noticed that the increasing of the number
of the splits of each node could reduce the value of AUC which appeared in Fig. 3
when the number of splits is 5 or 7.

We compare the training time of each model with various tuning parameters
values as exposed in Fig. 4. The training time of BT model is 62 s which is
not in Fig. 4 because the model has no tuning parameters to compare between
their values. Figure 4 shows a link between the training time and the number
of trees and the number of splits or depth. When the number of trees, the
number of splits, or the tree depth grows, the training time increases. Also,
when the learning rate value of the SGB increases, the training time increases.
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Fig. 2. The value of AUC with various SGB parameters’ values
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Fig. 3. The value of AUC with various RF parameters’ values

Furthermore, the results show that the training time of SGB model can be faster
than RF model when its tree depth is 1 or 3 and longer when its tree depth is 5
or 7. Moreover, the training time of different SGB models shows a wide variation
while the training time of the RF models presents less variation. In addition, the
prediction time of the models is very fast, between 1 to 15 ms.
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Fig. 4. Training time of SGB and RF

However, we used the varImp function to characterize the importance of
predictors on the models. Each model has its method for estimating the link
of each feature to the model described in [23]. Figure 5 presents the impact of
each feature on the models and the order. The importance is scaled to have
a maximum value of 100. The feature importance values and their order are
distinct in each model due to the different algorithms and methods that are
used to build the classifiers and determine the most important features in the
models.

We went further to evaluate the accuracy of SGB, RF, and BT models with
another seven models as follows: Support Vector Machines with Radial Basis
Function Kernel (SVMRadial), K-Nearest Neighbors (KNN), Support Vector
Machines with Linear Kernel (SVMLinear), Naive Bayes (NB), NeuralNetwork
(NNet), Linear Discriminant Analysis (LDA), and Learning Vector Quantization
(LVQ). We assessed the models in the same way with the same dataset to gain
a fair comparison. To evaluate the models’ performance on the test set, we used
the confusionMatrix function to obtain a summary of the prediction results on
our models. The function can provide information such as the accuracy rate,
the confidence interval, the number of correct and incorrect predictions, the
sensitivity, and the specificity. Figure 6 illustrates the estimated accuracy of each
model as well as the 95% confidence interval. From Fig. 6, we can conclude that
there is little difference between the SGB, RF, and BT in estimated accuracy
and they have the highest accuracy compared to other models.
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6 Predicting Migration Outcome

This section introduces the performance evaluation of SB, RF, BT models which
created from various subsets of the original dataset. The aim is to understand the
effect of one type of workloads or VMs on the estimated accuracy. First, we train
the models with 9 workloads (dataset) and evaluate the classifiers with the 10th
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workload (test set). For example, we train the model with Scimark.monte carlo,
Scimark.sor.small, Scimark.sparse.small, Scimark.sparse.largel,
Compiler.compiler, Serial, Sunflow, and Xml.transform workloads then we
test it with xml.validation. In total, there are 10 distinct training sets to create
the models and 10 different 10 test sets to evaluate the models.

Figure 7 shows the results of the estimated accuracy and the confidence 95%
interval for each classification problem. In general, the SGB models perform
better than other models in most of the cases. The models showed a poor per-
formance in some of the cases than others due to the variation in the workloads’
characteristics. When the model has been trained with a similar type of data set
and tested with a new kind of data set, the model will fail to give a high accuracy
on the prediction of the new test set which is the cause in scimark.sparse.large,
sunflow, and serial. For example, the sunflow workload produces a greater num-
ber of threads than others which make its features different than other workloads.
However, the SGB is not the best prediction to the sunflow workloads. The rea-
son is that the SGB feature importance as previously discussed in Sect. 5.4 gives
the load average a small importance rate than other models which affect the
estimate accuracy in this case.

In the migratable workloads, Scimark.sparse.large has a poor perfor-
mance over the models. The workload has similar characteristics of the non-
migratable workloads which make the model predict it as a non-migratable work-
load. We can conclude that other workloads’ features are not accurate to predict
the scimark.sparse.large.

We went further to evaluate the estimated accuracy of the various type of
VMs’ datasets. Our aim is to know which characteristics of the VMs present the
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Fig. 7. Compare SGB, RF, and BT with various datasets
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Fig. 8. Compare SGB, RF, and BT with various datasets of VMi. types

most impact on the estimated accuracy. Regardless the memory size of the VMs
in our dataset, Fig. 8 shows the results of training the models with VMs that are
different in the number of the CPUs while Fig. 9 present the estimated accuracy
of VMs which are different in memory sizes.

In each case, the models created from 3 various training sets and validated
with two testing sets. In Fig. 8, the experiment results of VM1., VM2., and VM3.

are the data sets to build and evaluate the models. We used one of the datasets
to create the models, and the other two datasets are used to assess the models.
For example, the experiment results of the VMs with one CPU used to build the
models, and the results of the VMs with two and three CPUs used to evaluate
the model. The VM1. models are better in predicting the VMs with 2 CPUs,
and the VM2. models perform better in predicting the VMs with 3 CPUs while
VM3. models are much beneficial in predicting the VMs with 2 CPUs.

We used the experiment results of VM.1, VM.2, and VM.3 to train and test
the models as shown in Fig. 9. For example, the experiment results of the VMs
with 1 GB RAM used to build the models, and the results of the VMs with 2
and 3 GB RAM used to evaluate the model. The VM.1 models are not the best
in predicting the VMs with 2 and 3 GB RAM compare to the other models. The
VM.2 models perform better in predicting the VMs with 3 GB RAM while VM.3

models are much useful in predicting the VMs with 2 GB RAM.
The prediction results of the models are influenced by a number of factors.

First, the differences in the sub-datasets that are used to train and test the
models can affect the estimated accuracy of the prediction. In order to create
a predictive model, the sub-datasets of the original dataset should reflect the
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dataset. Second, the influence of predictors on the each model (importance of
features) can affect the prediction results of the models. Finally, the process of
building the models are different in each model. Each model has its algorithm
and parameters to create the model. Any change on one of the parameters leads
to amending the predictions results.

7 Conclusions

This paper has measured the live migration time for different workload character-
istics on various VMs capacities. We used KVM as hypervisor and SPECjvm2008
benchmark to generate the workloads. The results show that some VMs can
be migrated within a short time while others take a long time to migrate and
some cannot be migrated during the workload execution. The paper presents the
process of creating Stochastic Gradient Boosted (SGB), Random Forest (RF)
and Bagged Tree (BT) models from the results of the experiment. We showed
the effect of tuning the models with different values as well as training and eval-
uating the models among the various sub-datasets from the original dataset. It
is clear that there is no easy choice of the best model to employ and in practice
a combination of the models presented could be used to gain a better prediction
of which VMs to migrate. In our future work we aim to deploy these models
into a trace driven simulation environment in order to experiment with different
consolidation strategies under different workload assumptions.
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Abstract. This paper addresses the generation of stochastic models for
dependability and performability analysis of complex systems, through
automatic replication of template models inside the Möbius modeling
framework. The proposed solution is tailored to systems composed by
large populations of similar non-anonymous components, loosely inter-
connected with each other (as typically encountered in the electrical or
transportation sectors). The approach is based on models that define
channels shared among replicas, used to exchange the values of each
state variable of a replica with the other replicas that need to use them.
The goal is to improve the performance of simulation based solvers
with respect to the existing state-sharing approach, when employed in
the modeling of the addressed class of systems. Simulation results for
the time overheads induced by both channel-sharing and state-sharing
approaches for different system scenarios are presented and discussed.
They confirm the expected gain in efficiency of the proposed channel-
sharing approach in the addressed system context.

1 Introduction and Related Work

Model-based approaches are well-suited to analyze complex systems in terms of
a variety of metrics, such as dependability and security related indicators [12].
Modern systems exacerbate the challenges of complexity and scalability. In this
prospect, we target systems made of large populations of similar and loosely
interconnected non-anonymous components. This is a typical configuration of
many critical infrastructures, e.g. in the transportation and energy sectors, and
in general in cyber-physical systems where the cyber control manages a set of
physical components arranged according to a topology. Our goal is to enhance
efficiency of performance and dependability analyses for such kinds of systems.

Research on efficient solutions to modeling and analysis of large systems is
active for a long time and numerous studies are available in the literature. In the
case of analytical solvers, many papers focus on the anonymous replication of
an atomic model, well suited to represent a population of identical components,
each interacting with all the others or completely independent, following the
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approach originally presented in [17]. This configuration favors the application
of the strong lumping theorem [4,15], enhancing the state space generation based
solvers [11].

The need to cope with systems where components, although belonging to
the same typology, differ in their parameters setting and in their impact on the
overall system behavior, depending on the position they hold in the system con-
figuration, triggered studies offering solutions under specific conditions. Hierar-
chical modeling [20], where lower-level models capture the detailed behaviour of
components and the topmost level model represents the topology of interactions
among components, is commonly adopted when the directed graph of interac-
tions is acyclic and measures capturing global system behaviour, e.g., system
availability or reliability, are considered. Instead, in systems typically composed
by many loosely interconnected components according to dependency topologies
presenting cycles, fixed-point solution strategies [19] can be considered, but only
if components are nearly independent and the measure of interest allows the
application of Brouwer’s theorem to guarantee the solution’s existence.

From a wider perspective, our interest is in systems whose components are
loosely interconnected but not nearly independent, such as in a monotone load
sharing regime [2], and in performability measures tackling aspects of many
individual components, not necessarily linked to a global Brouwer-compatible
measure. In addition, targeted system components can have non-Markovian
behaviour, e.g., because of deterministic time delays, thus efficient analytical
approaches, such as the techniques presented in [3,8,13,16], are not applica-
ble. Hence, we focus on simulation-based solvers. In particular, we developed
our solution adopting the Möbius modeling and evaluation framework [10], a
powerful and widely adopted environment, encompassing a variety of model-
ing formalisms, composition operators, analytical solvers and a simulation-based
solver.

In [6,12], a solution, referred in the following as state-sharing approach, is
proposed in the context of Möbius, where an indexing mechanism is exploited
to build non-anonymous replicas of a given template model. It is a general solu-
tion, but its efficiency, also when a simulation-based solver is employed, remains
limited by the fact that it assumes a complete graph of interactions among the
replicated components. This is a pessimistic vision in the great majority of real-
world systems, typically composed by many loosely interconnected components
according to regular dependency topologies (tree, mesh, cycle, etc.).

To improve in efficiency when simulation based solvers are employed, we
investigated solutions exploiting the dependency topology. In this paper, a
new strategy, named channel-sharing approach is presented. It implements non-
anonymous replication, but using a single channel shared among all the replicas
to exchange values of the state variables following the actual system topology,
thus enhancing simulation performance.

An alternative approach, presented in [7], is instead based on: (1) the auto-
matic generation of the indexed replicas of a template model representing a set
of system components, and (2) the automatic definition of the composed model
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joining the indexed replicas, where the state variables are shared among the
replicas following the actual system topology, thus removing (or excluding) the
unnecessary interactions among replicas.

The rest of the paper is organized as follows. Section 2 describes the formalism
and tool used to define and evaluate our approach, while Sect. 3 presents the
logical architecture of targeted systems. Section 4 is then devoted to present
our channel-sharing solution. Adopting the case study introduced in Sect. 5, the
results obtained from the new approach are discussed and compared with those
of the existing state-sharing approach. Some final considerations are made in
Sect. 7, while conclusions are drawn in Sect. 8.

2 Formalism and Tool

To describe, implement and evaluated our approach, the Möbius modeling
framework [10] and its supporting tool Möbius [9] have been used. Among the
formalisms available in Möbius, our models are defined using the Stochastic
Activity Networks (SAN) formalism [18], a stochastic extension of Petri nets
based on four primitives: places, activities (transitions), input gates, and output
gates. Special places, called “extended places”, allow the representation of the
primitive data types of the programming language C++, like short, float, dou-
ble, including structures and arrays of primitive data types or of extended place
types. Input gates control when an activity is enabled. The marking changes
occurring when an activity completes are defined by the input and output gates.
The SAN primitives are defined by C++ statements. Each SAN place is inter-
preted as a State Variable (SV) and the Cartesian product of all the feasible SVs
values is the state space of the SAN model.

In Möbius, submodels can be composed hierarchically by sharing one or more
SVs among them. In particular, the Join and Rep compositional operators [17]
can be used, respectively, to bring together two or more submodels or to automat-
ically construct identical copies (replicas) of a submodel. In a Join composed
model, a SV can be local to a submodel, if it cannot be directly accessed by
other submodels, or shared among a subset of submodels, if each submodel of
the subset can directly access it. In a Rep composed model, a SV can be either
local to each replica or shared among all replicas. To simply illustrate the Join
and Rep operators at work, consider two SAN models, M1 and M2, containing
places A1, B1 the former and A2, B2 the latter. We can obtain 7 different com-
posed models joining M1 and M2 together with different combinations of shared
variables. In fact, if A1 is shared with A2 then the composed join model has 3
SVs, namely the shared variable A1 = A2 and the local variables B1 and B2;
if A1 and B1 are shared with B2 and A2, respectively, then the composed join
model has 2 SVs, namely A1 = B2 and B1 = A2; and similarly for the other
combinations, counting also a join with only local SVs. We can obtain 4 com-
posed models replicating n times the submodel M1 with different combinations
of SVs. In fact, sharing only one SV among n replicas the composed model has
n + 1 SVs, namely: one shared variable A

(1)
1 = · · · = A

(n)
1 and n local variables
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B
(1)
1 , . . . , B

(n)
1 , or one shared variable B

(1)
1 = · · · = B

(n)
1 and n local variables

A
(1)
1 , . . . , A

(n)
1 , where the superscript (j) refers to the j-th replica; a composed

Rep model sharing both A1 and B1 has 2 shared SVs and no local SVs, namely
A

(1)
1 = · · · = A

(n)
1 and B

(1)
1 = · · · = B

(n)
1 ; and finally, a composed model sharing

no SV has 2n local SVs, namely A
(1)
1 , . . . , A

(n)
1 , B

(1)
1 , . . . , B

(n)
1 .

A template model is an atomic or composed generic model identified as a
building block. It represents a group of homogeneous components, as described
in Sect. 3. All the formalisms and solvers supported by Möbius are based on and
defined in terms of C++ code. Thus, the tool supports external C++ data struc-
tures, statically defined at compilation time, and can include and link external
C++ libraries.

3 Logical Architecture of Targeted Systems

The focus is on systems composed of a large number of components, character-
ized by a low degree of connectivity (and therefore dependency) as resulting from
the system topology. Let’s take for example the case of the electrical grid: the
grid portion under analysis includes a number of collection points called buses.
All buses have the same aim, that is collecting and distributing electricity, so
they belong to the same component category and their models are similar. How-
ever, each bus has individual peculiarities, namely the position occupied in the
grid topology and the number and kind of attached electrical equipment.

In the regular semi-Markov context, such as in [8], the degree of similarity
among system components, once a model for each component has been designed,
can be defined in terms of the infinitesimal generator matrix structure, and
has a direct impact on solver’s performance. In our non-Markov context, when
abstracting the system component for analysis purpose, a generic component can
be assumed and a template model for it can be built, which is then replicated
through an indexing function to model all the specific components included in the
system, each with its individual peculiarities. Component models are considered
similar because they are instances of an unique template. The solution proposed
in this paper helps the modeler in modeling a generic component and then
automatically building the set of its non-anonymous indexed replicas.

In general terms, the logical architecture of the given reference system can
be seen as composed by:

– A large number n of connected components (called specific components).
– One or more generic components. Each generic component groups all the

specific components that can be defined using a single template SAN model,
where an index is used to refer each specific component. Doing so, each specific
component maintains individual peculiarities.

– A topology that defines the connections among the generic or specific compo-
nents. The directed graph representing interdependencies among components
can have cycles.
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The proposed approach can be adopted in modeling those systems for which a
generic component can be defined to represent the set of its specific components,
using all the features supported by the SAN models. A SAN model, in particular,
supports the following features: initial state of each component, state changing,
random choices and random exponential or not exponential times can be defined
as a function of the index of the specific component. Thus, for example, the
deterministic repair time of the i-th specific component can be defined in the
SAN using the i-th entry det[i] of the constant C++ array det, initialized with
the repair times of all the components. In addition, structure, behavior and
parameters of specific components defined by the same template can be different.

In order to allow automatic generation of the non-anonymous replicas, the
structure, behavior and parameters of the generic component have to be defined
as a function of the index i of the replica, with i = 0, 1, . . . , n − 1. The state Si

of each component i is represented by the Cartesian product of v state variables

Si = SV
(i)
0 × SV

(i)
1 × · · · × SV

(i)
v−1

with v being the same for each replica. The SVs values can be discrete or con-
tinuous. A specific component can depend on the SVs of other components. The
SVs of each specific component that impact on the other components, called
dependency-related SVs, are SV

(i)
0 , SV

(i)
1 , . . . , SV

(i)
m−1, with m ≤ v, being m

the same for each replica. The other v − m SVs are local SVs. The dependency
degree of the component i, called δi ∈ {0, 1, . . . , n − 1}, indicates that the struc-
ture, behavior and parameters of the component i depend on the SVs of δi other
components. The list of the components from which the component i depends
on is called Δi = {j0, j1, . . . , jδi−1}. If δi = 0 then the component i does not
depend on any other components, although Si can impact on Sj , if i ∈ Δj .
When δi = 0 and �j | i ∈ Δj the component i is said to be independent. From a
topological point of view, Δi, for i = 0, . . . , n−1, defines an oriented graph that
represents how the n components are connected and how they depend on each
other to form the overall system. An independent component corresponds to a
disconnected node of the graph, while a system where there is full connectivity
among its components results in a complete graph.

4 Channel-Sharing Approach

The proposed channel-sharing approach models the interactions among simi-
lar components represented by non-anonymous replication of a given template
model. Its formal definition relies on the Möbius framework, but it is a gen-
eral mechanism applicable to any modeling and evaluation environment that
supports:

– the SAN-like formalism,
– composition of submodels based on sharing of SVs,
– automatic replication operator.
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(a) (b)

Fig. 1. Replicated model (a) of a generic component and SAN-based update (b),
defined in CM, of a dependency-related SV (place) at completion of an activity.

Differently from the state-sharing approach, which relies on an n-sized array
shared among all the replicas of the template model for each dependency-related
SV (see [6,12]), the channel-sharing approach consists of: (1) defining as local
to each replica all its dependency-related SVs, (2) using a small-sized channel,
shared among all the replicas, to exchange the values of dependency-related SVs
among the interested replicas, each time they are updated. The channel-sharing
approach models similar components and the interactions among them, defining
the composed model CHMs in Fig. 1a, where:

– The state-sharing Rep operator is used to automatically construct the over-
all model CHMs, composed by the indexed non anonymous replicas of the
template CHM.

– The template CHM is the submodel defined by the operator Join composing
the template model CM, that represents the generic component, with the
submodel CHANNEL, that models the channel and the related read and write
operations.

– All the dependency-related SVs, whose values are exchanged with other repli-
cas, are shared with the submodel CHANNEL joined to the same replica, but
they are local to the replica of the template CHM. All the other SVs can
be local to the replica or shared among all the replicas, depending on the
definition of the component.

– The model CHANNEL is used to send the values of the dependency-related
SVs of a replica to other replicas, each time the dependency-related SVs are
updated by the model CM.

– The channel used to transmit the values of the dependency-related SVs among
replicas is defined in the model CHANNEL by a set of SVs (places) shared
among the replicas.

– The model CHANNEL is defined by the operator Join composing the two
atomic SAN models WRITECHANNEL and READCHANNEL that are used,
respectively, by the sender replica to write the data into the channel and by
all the destination replicas to read the data from the channel.

– The SAN models WRITECHANNEL and READCHANNEL include only
immediate activities, thus they do not impact on the measures of interest.

Each time one or more dependency-related SVs of a replica are updated, the
following steps are performed in the listed order:
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(1) the model WRITECHANNEL writes the new values (the data) in the channel
and locks the channel from writing (the channel is busy),

(2) the model READCHANNEL of each destination replica updates the SV(s)
of the replica with the data received from the channel,

(3) when all destination replicas have received the data, the channel is unlocked
from writing, and can be used to transmit new data.

Figure 1b depicts how the template model CM updates a dependency-related
SV when an activity T completes, using the SAN formalism. Obviously, in the
final complete model, all the SAN primitives (places, input and output gates)
connected to T, are to be considered and defined in CM, depending on the actual
component to model. The index of each replica is modeled by the place Index,
that is defined at time 0, using the indexing mechanism proposed in [6,12]. The
place Index is local to the replica, but is shared with the model CHANNEL. The
place Si represents the dependency-related SV of a specific replica. The place
Sj represents the dependency-related SVs of the other replicas that impact on
Si. For each replica i, the places Si and Sj are local to the replica and the size
of the array Sj is equal to δ, i.e., the number of replicas (components) from
which the replica i depends. Thus, each dependency-related SV associated to a
replica requires the definition of δ+1 SVs local to the replica. The places Si and
Sj are shared with the model CHANNEL. The place ToChannel is shared with
the model CHANNEL and it is used to trigger the activation of the submodel
WRITECHANNEL each time the SV Si is updated. The SV Si is updated by
the gate update at completion of the activity T as a function of the values of
the array-type place Sj. The actual definition of the function, depending on the
modeled component, is not shown being out of the scope of the paper. Figure 2a
depicts the model used to write into the channel the data to be sent to the des-
tination replicas, when one dependency-related SV Si is considered (m = 1). It
can be easily extended when more than one dependency-related SV is updated
at the same time, by adding fields to the record place Channel representing
the channel data structure. The place ReadyChannel, initialized with 1 token,
is shared among all replicas and is used to lock the channel (ReadyChannel ->
Mark() == 0) from writing until the data are read by all the destination replicas.
The record-type extended place Channel represents the channel shared among

(a) (b)

Fig. 2. SAN models used to write (a) and to read (a) the shared data into the channel.
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all replicas used to transmit the values of the SVs. It is defined by 3 short-type
fields: data, index and ndest, used to represent, respectively, the value of the
dependency-related SV to send to the replicas, the index of the sender replica
and the current number of destination replicas that have not yet read the data. In
general, a field (a list or more efficiently an array) with the information about the
destination replicas should be used, in order to trigger the destination replicas.
But, depending on the topology of the dependencies, more simple data struc-
tures can be used to identify the destination replica. For example, considering
a circular dependency topology, a simple function of the field index (the index
of the sender) can be used to identify the destination replicas. The field ndest is
used to get the current destination replica that have to read the data from the
channel.

At completion of the immediate activity tw, that is enabled when there is 1
token in both places ToChannel and ReadyChannel, the gate wChannel updates:
(1) the fields data and index with the values of the places respectively Si and
Index, that are shared with the template model CM, and (2) the field ndest
to δ. Figure 2b depicts the model used by a replica to receive data from the
channel. At completion of the activity tupd, the output gate Upd performs the
following steps in the listed order: (1) updates the value of Sj with the data
of the channel, (2) decrements the field ndest of the channel, and (3) reset the
shared place ReadyChannel to 1, if Channel->ndest->Mark() == 0, when the
channel is ready to accept new data to send. The activity tupd is only enabled
when the replica indexed by the place Index is the destination of the data in the
channel, i.e., when the value of the place Index corresponds to the current value
of the field ndest of the channel, as defined in the input gate Read. Thus the
value of ndest is used to avoid multiple readings of the same data by a replica.

For the channel-sharing approach, each dependency-related SV of each replica
is local to the replica. In addition, the channel definition requires only a small set
of SVs to be shared among all the replicas (more precisely, there are m+2 shared
SVs, i.e., m for data, 1 for the index and 1 for ndest). Therefore, a reduction in
the time overhead during the initialization of the simulation solver is expected,
with respect to approaches that share each dependency-related SVs among all
replicas. However, the channel-sharing approach introduces a time overhead at
simulation time, after the initialization of the data structures of the simulator,
due to the new channel model, that is triggered each time the shared SVs are
updated. In Sect. 6, comparisons between the channel-sharing approach and the
state-sharing approach have been performed to understand the impact of these
phenomena on the efficiency of the approaches, at varying both the number of
considered replicas and the dependency degree.

5 Case Study

To illustrate the proposed approach, a simple but effective case study for our
purpose is considered, having all the characteristics of the addressed category
of systems as described in Sect. 3. This case study is based on systems where
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the failure of a component impacts on the failure of its neighbors, based on the
interdependencies topology (failure correlation). Let’s consider a population of
n components working in parallel and properly functioning at time t = 0. At
every time instant t > 0, each component can be either functioning or failed.
No repair is considered. For the purpose of our analysis, the time to failure
of each component is an exponentially distributed random time, although each
probability density functions implemented in Möobius could be considered [10].
Whenever a component fails, the failure rate of its neighbors is updated. In
particular, the failure of component i changes the failure rate of the components
(i + 1)%n, . . . , (i + δ)%n, i.e., the first δ components that cyclically follow the
failed component, with δ � n.

The SAN model implementing the logical structure of the generic component,
consists of two places, A and B, and a transition with a state-dependent rate.
When a token is in A the component is properly working, when a token is in
B the component is failed, and the two alternatives are mutually exclusive. In
order to represent the interaction among components, either one or four shared
dependency-related SVs are employed, i.e., m = 1, 4.

Being the focus of this paper on the efficacy of the channel-sharing modeling
approach, further details are not relevant and therefore omitted.

6 Evaluation Results

In order to demonstrate the feasibility and utility of the proposed approach,
a comparison of the performance results of the Möbius simulator induced by
both channel-sharing and state-sharing approaches has been conducted. To this
purpose, the terminating Möbius simulator [10] has been used to evaluate at each
execution different measures of dependability (reward variables) for the proposed
case study, like the cumulated time component i stays in a specific state and the
probability that component i is failed at time t. As a form of validation, for some
sample models and using state space generation of Möbius, it has been verified
that the number of stable states obtained with both approaches is the same. In
addition, also the results obtained for the defined measures have been the same
for both channel-sharing and state-sharing approaches.

Each execution of the terminating Möbius simulator is defined for a spe-
cific setting of all the parameters of the considered models (corresponding to an
experiment in the Möbius terminology). Each execution of the terminating sim-
ulator starts initializing the data structures, then runs k batches (replications in
Möbius notation) with k ≥ 1, each batch of t = 100 time units.

The following performance measures have been considered:

– τ(k): The total amount of CPU, in seconds, used by one execution of the
Möbius simulator that runs k batches, with k ≥ 1.

– τinit or τ(0): The amount of CPU, in seconds, used by each execution of
the Möbius simulator to initialize the data structures of the simulator. This
is the CPU time used by the simulator to output the string “SIMULA-
TOR::Preparing to run()”. The definition of τinit as a function of τ(k) is:
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τinit = τ(1) − (τ(2) − τ(1)) = 2τ(1) − τ(2), where τ(2) − τ(1) is the total
amount of CPU, in seconds, used by one execution of the Möbius simulator
to run a batch.

– Δτ̂(k) and Δτ(k) to quantify the gain (if positive) or loss (if negative)
of the channel-sharing over the state-sharing in percentage and in seconds,
respectively:

Δτ̂(k) =
τss(k) − τ cs(k)

τss(k)
,

Δτ(k) = τss(k) − τ cs(k)

The considered CPU time includes both user and system CPU times. To exercise
the approaches in relevant contexts, the following scenarios have been considered:

– for each specific component (replica) both one and four dependency-related
SVs, i.e., m = 1 and m = 4,

– number n of replicas ranging from 100 to 1000,
– dependency degree δ varying from 1 (minimum connectivity) to 10,
– number of batches k = 1000, k = 5000 and k = 10000 (impacting on the

precision required for the results).

Simulations were sequentially performed on Intel(R) Core(TM) i7-5960X with
3.00–3.50 GHz CPU, 20 M cache and 32 GB RAM.

Figure 3 depicts the execution times τ(1000), τ(5000) and τinit for both
approaches, as a function of the number of replicas n, for δ = 1, when only
one dependency-related state variable is used, m = 1. The values of τinit for
the state-sharing approach are always higher than the corresponding channel-
sharing values. The difference between the two approaches increases greatly for
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higher values of n, varying from about 0.08 s for n = 100 to about 500 s for
n = 1000. This increase is caused by the n-sized array used by state-sharing to
represent the dependency-related SV of each replica. Conversely, in the channel-
sharing approach, the initialization time is negligible at varing of n. Values of
τ(1000) and τ(5000) in Fig. 3 show how the execution time of both approaches
is impacted differently by the number of batches and by the number of replicas.
For n ≥ 500 and for 1000 batches, the channel-sharing approach provides a sig-
nificant performance increase over the state-sharing approach, whereas for 5000
batches the gain remains within 10%. As for τinit, the worse overall performance
of the state-sharing approach, at increasing the number of replicas, is caused by
the higher number of connections among components it considers.

Changing scenario to include m = 4 dependency-related SVs, and considering
more batches, k = 5000, 10000, to obtain measures with higher confidence inter-
vals, the advantage of using the channel-sharing approach is evident for n ≥ 100
and δ = 1, as shown in Fig. 4. For δ = 3, the advantage of the channel-sharing
starts for n ≥ 300, k = 5000, and for n ≥ 500, k = 10000, as shown in Fig. 5.
Finally, Fig. 6 depicts the gains for τinit, τ(5000) and τ(10000) as a function of
the dependency degree δ, for n = 500 replicas and considering m = 4 shared SVs.
Figure 6 confirms that the execution times of τinit of the state-sharing approach
does not depend on the dependency degree δ. In addition, Fig. 6 shows how the
gain of the channel-sharing approach over the state-sharing approach decreases
at the increase of δ, leading to a loss for δ≥ 4 where k = 10000 and for δ ≥ 6
where k = 5000.
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7 Final Considerations

The performed analyses pointed out how the performance of the two models
replication approaches is differently impacted by the four dimensions considered
(n, m, δ, k). They provide useful support to understand which approach is better,
given a system configuration in terms of number of replicas for each template
model, number of dependency-related SVs, dependency degree among replicas,
and the precision requested to the analysis results.
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The performance analysis of the two approaches distinguishes between the
initialization time and the overall execution time. The latter is impacted by all
the four analysis parameters in both approaches. The former, instead assumes
always a negligible value in case of channel-sharing, while it increases at increas-
ing n and m in case of state-sharing, reaching in the performed analyses values
around 8 min when n = 1000 and m = 1. Overall, from the obtained results
in the analysed scenarios, channel-sharing shows preferable to state-sharing for
high values of n and m, but relatively low values of δ, k. This confirms the
expected behavior and supports our claim on promoting efficiency through the
channel-sharing solution in large systems of loosely connected components.

Of course, the parameter k also plays a relevant role since it is represen-
tative of the accuracy level of the analysis results. High values of k penalize
the channel-sharing approach, since operations to manage the channel structure
are executed at each simulation batch. However, there are two interesting con-
siderations around k. First, there are measures for which the simulation study
converges in a relatively low number of batches (e.g., in the performed analyses,
1000 batches are always sufficient for the scenario with m = 1 to measure Mean
Time To Failure of a specific component with a confidence interval narrower
than 3 · 10−5). Second, having the replication mechanism depending on a higher
number of parameters gives more opportunities to the fine tuning of parame-
ters values, in relation with the purpose of the analysis itself. For example, if
employed as design support to take decision on system configuration options, less
accurate results would be well acceptable since the objective is to comparatively
evaluate alternatives and not provide definitive quantification of individual per-
formances. In such a case, a low value of k could be a right choice, thus favoring
the channel-sharing approach over the state-sharing approach, which always has
to afford the same initialization time independently from k.

Concerning the values of the dependency degree δ and of the dependency-
related SVs m, those adopted in the analyses are reasonable values in real con-
texts, such as in electrical systems configurations (e.g., the IEEE300 testbed [1]
and the Illinois Center for a Smarter Electric Grid’s Texas synthetic grid [14]).

Another feature of the discussed approaches is that they can actually co-exist
in the same modeling framework, to gain in efficiency from both approaches
by employing the one that fits better the peculiarities of the specific system
components under analysis.

Finally, the channel-sharing approach, as well as the state-sharing approach
and the one in [7], are solutions developed upon the primitives offered by the
Möbius framework. A more radical approach is to implement the new operator
directly inside Möbius, as preliminary proposed in [5]. However, it is still at
embryonic level; more elaboration and, above all, implementation are required
to be practically employed.

8 Conclusions

Moving from considerations on the opportunity to improve dependability and per-
formability modeling framework by exploiting the generally limited connections
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among large population of system components, this paper proposed a novel mod-
eling approach to automatically build (a possibly high number of) replicas of a
template model. Differently from the already adopted state-sharing approach, the
new channel-sharing approach is defined to account only for the actually existing
dependencies among components of the system under analysis. To quantify the
extent of the expected gain in performance and to better understand the inter-
play of the peculiarities of both solutions, an evaluation study involving both the
state-shared and channel-shared approaches has been conducted.

Several scenarios, characterized by different values of the dependency degree,
the number of replicas, the number of dependency-related SVs for each replica
and the number of simulation batches, have been considered. Not surprisingly,
the results show cases where the channel-shared solution is better, and oth-
ers where the state-shared approach wins. Overall, the initial reasoning on the
expected benefit brought by exploiting topology awareness has been confirmed.
Although limited to the considered scenarios and parameters setting, the simula-
tion outcomes demonstrate the superiority of the newly introduced method with
respect to the state-sharing competitor, when the dependency degree is low, the
number of replicas is high and few SVs are needed to represent the dependencies
among components.

Among the most immediate advancements there is the adoption of the new
approach in more complex system scenarios, as offered by the power grid sector.
It would require relaxing the simplistic assumption on having just one template
model with equal dependency degree among all its replicas, which has been made
in this paper to easy the presentation of the channel-shared solution. It would be
also the context to potentially exploit the co-existence of both channel-shared
and state-shared approaches, to take advantage of the best performance shown
by them, as discussed in Sect. 7.
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Abstract. We analyze here a cloud system represented by hysteresis
multi server queueing system. It is characterized by forward and back-
ward thresholds for activation and deactivation of block of servers repre-
senting a set of VMs (Virtual Machines). The system is represented by a
complex Markov Chain which is difficult to analyse when the size of the
system is huge. We propose both analytical and numerical mathemat-
ical methods for deriving the steady-state probability distribution. We
compute then performance and energy consumption measures and we
define an overall cost taking into account both aspects. We compare the
proposed methods with respect to the computation time and we analyse
the impact of some parameters on the behaviour of the system.

1 Introduction

Improving the energy consumption of a cloud while guaranteeing a given quality
of service is a problem encountered today by cloud providers. One way to achieve
this is to adapt the capacities to demand which is made easier today with the
virtualization of the servers. Hence, it is possible to modulate, in a transparent
manner, the number of active Virtual Machines (VMs) over time. However, find-
ing the policy that tailors resources to demand is a crucial point that requires
accurate assessment of both the energy expended and the performance of the
system. Multi server queuing models [2,3] or server farms models [6,15] have
been proposed to represent dynamicity of a data center as well as to compute
performance metrics. Multi-server threshold based-queueing system with hys-
teresis policy [4,9,13], in which activations and deactivations are governed by
sequences of forward and reverse different thresholds, have been proposed, on the
other hand, to efficiently manage the number of active VMs. For systems driven
by hysteresis policies, the assessment of both performance and energy consump-
tion requires the computation of the expected measures, but since cloud systems
c© Springer International Publishing AG 2017
P. Reinecke and A. Di Marco (Eds.): EPEW 2017, LNCS 10497, pp. 199–213, 2017.
DOI: 10.1007/978-3-319-66583-2 13
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are often defined on very large state spaces such a computation is difficult. When
the system is represented by a complex Markov chain, we face up a computa-
tional complexity problem which makes exact analysis very cumbersome or even
impossible.

Under some assumptions, evaluation of hysteresis multiserver systems has
been already studied in the literature and different resolution methods have
been presented to compute efficiently the performance measures of the system.
Among the most significant works, we can mention the work of Lui and Gol-
ubchik [13] which is widely used in the literature. It solves the model using the
concept of Stochastic Complement Analysis (SCA). It is based on partitioning
the state space in disjoint sets in order to aggregate the Markov chain. In [12],
Le Ny et al. propose an other way to compute the steady-state probabilities of
a heterogeneous multi-server threshold queue with hysteresis by using a closed-
form solution. Otherwise, in [1] an aggregated bounding approach is proposed
to derive accurate bounds on performance measures. However, in these papers,
it had been only considered the case where one VM is activated (resp. deacti-
vated) according to the demand and the threshold sequences. On the other hand,
Mitrani [14,15] defines server farm models in which several servers are activated
at the same time. They are called activations by block. Such approaches allow
to model more general practical models.

We propose in this paper to extend the current state of art and to cou-
ple the advantages of the activation by block and the advantages of hystere-
sis policy by considering a multi-server system with hysteresis in which activa-
tions/deactivations are made by block. This, up to our knowledge, has never
been considered and studied previously in the literature.

This allows us to consider both performance and energy consumption in order
to propose a trade-off between them. For the multi-server system with hysteresis
and block activation, we establish and present three resolution methods. First
method consists to adapt and extend the SCA aggregation method of [13]. The
second investigated method is a numerical approach based on Level Dependent
Quasi Birth and Death (LDQBD) method. At last, an analytical approach based
on the balance equations method of [12] is presented in details. We adapt [12] and
get closed form formulas for the steady-state probability distribution. Further-
more, by relaxing the former assumptions on the threshold sequences imposed
by [13] or [12], we have generalized the set of threshold values. We then perform
numerical results for Markov chains with large state space, as in cloud systems,
and establish an overall cost taking into account both performance and energy
consumption. Moreover, as we consider in this model more general assumptions
for the thresholds, we can see in details the impact of their values on performance
and energy consumption.

The paper is organized as follows: next (in Sect. 2), we describe the cloud
system and present the considered queueing model. In Sect. 3, we detail the
different methods to solve the model and compute the steady state probabil-
ity vector. While part 4 presents the formulation used to express the expected
costs in terms of performance and energetic consumption for the model, Sect. 5
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presents numerical results of performance and energy consumption measures.
Finally, achieved results are discussed in the conclusion and comments about
further research issues are given.

2 Cloud System Description

We analyse a cloud system composed by a set of Virtual Machines (VMs). We
model it using a multi-server queue, with C homogeneous servers representing
the VMs. The service time of each VM is exponential with mean rate μ. In
order to represent the dynamicity of resource provisioning, the VMs can be
activated and deactivated over time. We assume that the job requests arrive at
the system following a Poisson process with rate λ, and are enqueued in a finite
queue. An arriving request can be rejected if it finds the system, which have
a whole capacity of B, full. The servers management is governed by threshold
vectors which control the operation of activating and deactivating the VMs.
These thresholds depend on the number of customers waiting in the system.

We suppose the case where several VMs can be simultaneously activated
or deactivated what is called activated or deactivated by block. We define K
functioning levels, where each level corresponds to a given number of active
servers. The number of active servers at level k is fixed and denoted by Sk,
where S1 ≤ S2 ≤ ... ≤ SK = C. We suppose that S1 ≥ 1, so we have at least
one active server by assumption.

The transition from functioning level k to level k +1 allows to allocate (turn
on) one or more additional servers, going from Sk to Sk+1 active servers, while
the transition from level k to level k − 1 allows to remove (turn off) one or more
active servers, going from Sk to Sk−1 active servers. Depending on the system
occupancy, we transit from the level k to level k + 1 when the occupancy in the
system exceeds a threshold Fk, and from level k to level k−1 when the occupancy
in the system falls below a threshold Rk−1. The model is then characterized by
activation thresholds F = (F1, F2, ..., FK−1) (called also forward thresholds), and
deactivation thresholds R = (R1, R2, ..., RK−1) (called also reverse thresholds).
These thresholds are fixed and can not be modified during the system works.
We furthermore assume that F1 < F2 < ... < FK−1, that R1 < R2 < ... < RK−1

and that Rk < Fk,∀k, 1 ≤ k ≤ K − 1. We suppose that server deactivations
occur at the end of the service, and when multiple servers are deactivated at the
same time, all the customers who have not completed their service return to the
queue.

The underlying model is described by the Continuous-Time Markov Chain
(CTMC), denoted {X(t)}t≥0. A state is represented by a couple (m, k) such that
m is the number of customers in the system and k is the functioning level. The
state space is denoted by A and is given by:

A = {(m, k) | 0 ≤ m ≤ F1, if k = 1 ,

Rk−1 + 1 ≤ m ≤ Fk, if 1 < k < K ,

RK−1 + 1 ≤ m ≤ B, if k = K} .
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The transitions between states then follows:

(m, k)→ (min{B,m + 1}, k), with rate λ , if m < Fk ;
→ (min{B,m + 1},min{K, k + 1}), with rate λ, if m = Fk ;
→ (max{0,m−1}, k), with rate μ·min{Sk,m}, if m> Rk−1+1;
→ (max{0,m−1},max{1, k−1})with rate μ·min{Sk,m}, ifm=Rk−1+1 .

An example of the transitions is given Fig. 1.
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Fig. 1. Transition structure for K = 3, S1 = 4, S2 = 6, S3 = 8, R1 ≥ 5 and R2 ≥ 7.

From a practical perspective, several other models fit with this block repre-
sentation. For example, it can represent heterogeneous nodes of a cluster (pos-
sibly virtual), each node having a different number of cores. These nodes can
be idle or activated. In this case, a node is represented by a level and Sk is the
number of cores of the node. It can also represent a single physical component
composed by many cores that can be activated or deactivated. On each core
(represented by a level) a given number of Sk VMs are placed that share the
CPU. These models follow the same markovian representation than the model
studied here but their costs are different.

3 Resolution Approaches

We expose hereafter three techniques to solve the CTMC and compute the
steady-state probability vector. These resolution methods are either numerical
or analytical or both analytical and numerical. They have been developed for the
model and their correctness is shown. Some comparisons are presented Sect. 5.

3.1 Stochastic Complement Analysis (SCA)

To solve the {X(t)}t≥0 Markov chain, the first approach, proposed by Lui et al.
[13], consists to aggregate the underlying Markov chain and uses a numerical
method to compute the steady-state distribution. The different restrictions of
[13] (i.e. Rk < Fk−1, ∀k and activation deactivation of a single server) can be
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relaxed without substantially modifying the framework. Our approach considers
block activations and deactivations as well as different orders of the thresholds:
Rk < Fk−1 and Rk ≥ Fk−1, for all k. It is presented below and some details can
be found in [8].

First, we aggregate the state space of the underlying Markov chain by parti-
tioning the set A into disjoint subsets. These subsets depend here on the func-
tioning levels. Hence, the state space A is partitioned into K distinct sets denoted
Ak, where, for any k in 1, . . . ,K, we have Ak = {(i, j) | (i, j) ∈ A, j = k}. The
set Ak contains the states belonging the level k.

From each subset, we define a corresponding Markov chain. Let {Xk(t)}t≥0

be the Markov chain defined on state space Ak. These derived Markov chains
are defined on reduced state spaces which makes their analysis less complex.
The resolution of each of the derived Markov chain defines a conditional steady
state probabilities. For the whole chain {X(t)}, by applying the state aggregation
technique, each subset Ak is now represented by a single state, and an aggregated
process is defined. A resolution of this aggregated process is performed, i.e.,
the probabilities of the system being in any given set are computed. At last,
a disaggregation technique is applied to compute the individual steady state
probabilities for the original Markov process. The method correctness is based
on the following theorem stated by Lui et al. in [13].

Theorem 1. Given an irreducible Markov process with state space A, let us
partition this state space into two disjoint sets A1 and A2. Then, the transition
rate matrix (denoted by Q) is given as follows:

Q =
(

QA1A1 QA1A2

QA2A1 QA2A2

)
,

where Qi,j is the transition rate sub-matrix corresponding to transitions from
partition i to partition j.

We point out that the computation of the steady state probabilities of the derived
Markov chains {Xk(t)} is performed using a numerical resolution method.

3.2 Level Dependant Quasi Birth and Death Process

The particular form of the generator of {X(t)}t≥0 suggests us to use the Quasi
Birth and Death (QBD) processes in order to benefit from the numerous numer-
ical methods to solve them [16]. For short, a QBD process is a stochastic process
in which the state space is two dimensional and can be decomposed in disjoint
sets such that transition may only occur inside a set or occur towards only two
other sets. This results in a generator with a tridiagonal form (as the birth and
death process) in which the terms on the diagonals are matrices. When the
matrices are identical for each level, it is said level independent but when the
matrices are different the QBD is said level dependant (LDQBD).

Let us define Qk,k′(i, j) that denotes the i-th line and j-th column element
of matrix Qk,k′ . We have:



204 M. Kandi et al.

Proposition 1. The Markov Chain {X(t)}t≥0 is a Level Dependant QBD with
K levels, corresponding to the functioning levels. Its generator Q is decomposed
in:

Q=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Q1,1 Q12,

Q2,1 Q2,2 Q2,3

Q3,2 Q3,3 Q3,4

. . . . . . . . .
QK−1,K−2 QK−1,K−1 QK−1,K

QK,K−1 QK,K

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

For all k, the inner matrices Qk,k−1, Qk,k and Qk,k+1 are respectively of dimen-
sion dk × dk−1, dk × dk and dk × dk+1, letting dk = Fk − Rk−1, R0 = −1 and
FK = B.

For k = 1 we have:

Q1,1(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ if j = i + 1
μmin{S1, i} if j = i − 1
−λ if i = 1 and j = 1
−(λ + μmin{S1, i}) if i = j and i �= 1
0 otherwise

,

and

Q1,2(i, j) =

{
λ if i = d1 and j = F1 − R1 + 1
0 otherwise

.

For k ∈ {2, . . . , K − 1}, we get:

Qk,k−1(i, j) =

{
μmin{Sk, Rk−1+1} if i =1 and j =Rk−1−Rk−2
0 otherwise

,

also

Qk,k(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ if j = i + 1
μmin{Sk, Rk−1 + i} if j = i − 1
−(λ + μmin{Sk, Rk−1 + i}) if i = j

0 otherwise

,

and

Qk,k+1(i, j) =

{
λ if i = dk and j = Fk − Rk + 1
0 otherwise

.

Finally for k = K, it follows

QK,K−1(i, j) =

{
μmin{SK , RK−1+1} if i=1 and j =RK−1−RK−2
0 otherwise

,
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and

QK,K(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ if j = i + 1
μmin{SK , RK−1 + j} if j = i − 1
−(λ + μmin{SK , RK−1+j}) if i = j and j �=dK

−μmin{SK , RK−1 + j} if i = j =dK

0 otherwise

.

The proof can be found in [8].
Numerically solving QBD is a hard computational task requiring to solve

matrix equations and is often based on matrix geometric methods [11,16] or
kernel methods [7]. This is even more the case for LDQBD. Here, among the
numerical existing methods to solve them, this one proposed in [5] is used since
it is shown that this method is efficient and numerically stable.

3.3 Closed Form Solution Using Balance Equations

We follow the approach of [12] and give a closed form for the steady state prob-
ability using balance equations and cuts on the state space. The relevance of our
work is that we can take more general cases than [12] for the thresholds. We
assume not only the case Rk ≤ Fk−1, but also the case Rk > Fk−1 for each level
2 ≤ k ≤ K. In this method, the probabilities are computed level by level, from
level 1 to level K. For states of level 1, the steady-state probabilities are expressed
in terms of π(0, 1). For a level k ∈ {2 . . . K}, the process has two steps. First, the
steady-state probability of the first state of the level: π(Rk−1 +1, k) is expressed
in terms of the last state of the precedent level π(Fk−1, k − 1) which has been
already computed and which can be expressed in terms of π(0, 1). After that,
the other probabilities of the level k are computed in terms of π(Rk−1 + 1, k).
Henceforth, it results that all the probabilities are computed in terms of π(0, 1).
At the end, from the normalizing condition, π(0, 1) can be derived. From now
on, for any k ∈ {1 . . . K}, we define μk = μSk, ρ = λ

μ and ρk = λ
μk

. Next, we
give the formulas for the level 1 probabilities.

Level 1. The following lemma gives the steady-state probabilities for level 1.

Lemma 1 (Level 1 probabilities). In level one, the service rate depends on
the number of customers in the system. So, for a state (m, 1), if 1 ≤ m < S1,
then the service rate is mμ and if m ≥ S1 it is S1μ. We can deduce π(m, 1) by :

π(m, 1)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρm

m!
π(0, 1) if 0 ≤ m ≤ S1, (1)

ρm−S1
1

ρS1

S1!
π(0, 1) if S1 < m ≤ R1,(2)

ρS1

S1!

(
ρm−S1
1 − ρF1−S1+1

1 (1 − ρm−R1
1 )

1 − ρF1−R1+1
1

)
π(0, 1) ifR1+1≤m≤F1(3)
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The proof uses special cuts on state space from which one derives local balance
equations. It is given in [8].
Level k. Let us consider now k such that 2 ≤ k ≤ K − 1. We assume that
Rk−1+1 ≥ Sk, and thus the service rate for each level is min(Rk−1+1, Sk) = Skμ.
In order to express the relationship between level k − 1 and level k, we should
consider the cut of the state space between states of level k − 1 and states
of level k. This gives us the following evolution equation: π(Fk−1, k − 1)λ =
π(Rk−1 + 1, k)μk, which is equivalent to:

π(Rk−1 + 1, k) = ρkπ(Fk−1, k − 1). (4)

All probabilities of level k can be expressed with respect to π(Rk−1 + 1, k).
However, these probabilities depend also of the level k+1 by the threshold value
Rk. Therefore two cases should be considered: either Rk ≤ Fk−1 or Rk > Fk−1.

We present now the case where Rk > Fk−1.

Lemma 2. When Rk > Fk−1, for any k ∈ {2 . . . K − 1}, we have:

π(m, k) =
1 − ρm−Rk−1

1 − ρk
π(Rk−1 + 1, k) if Rk−1 + 2 ≤ m ≤ Fk−1 + 1, (5)

π(m, k) =
ρ

m−Fk−1−1
k − ρ

m−Rk−1
k

1 − ρk
π(Rk−1 + 1, k) if Fk−1 + 2 ≤ m ≤ Rk, (6)

π(m, k) =
ρ

m−Fk−1−1
k − ρ

m−Rk−1
k

1 − ρk
π(Rk−1 + 1, k) (7)

− ρk

ρk+1

1 − ρm−Rk

k

1 − ρk
π(Rk + 1, k + 1) if Rk + 1 ≤ m ≤ Fk.

with

π(Rk+1, k + 1) = ρk+1
ρ

Fk−Fk−1−1
k − ρ

Fk−Rk−1
k

1 − ρ
Fk−Rk+1

k

π(Rk−1 + 1, k) . (8)

The proof of Lemma 2 is in [8].
We deduce from Eq. (8), that π(Rk + 1, k + 1) is also expressed in terms of

π(Rk−1 + 1, k). Thus all the probabilities in Lemma2 can be expressed in terms
of the steady-state π(Rk−1 + 1, k) which is the first state of the level. Since,
furthermore, π(Rk−1 + 1, k) is computed from π(Fk−1, k − 1), then it can be
expressed in terms of π(0, 1). So from the normalizing condition we derive all
the probabilities.

Since the case Rk ≤ Fk−1, has been considered in [12], it follows:
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Lemma 3 ([12]). When Rk ≤ Fk−1, for any k ∈ {2 . . . K − 1}, we have

π(m, k) =
1 − ρ

m−Rk−1
k

1 − ρk
π(Rk−1 + 1, k) if Rk−1 + 2 ≤ m ≤ Rk (9)

π(m, k) =
1 − ρ

m−Rk−1
k

1 − ρk
π(Rk−1 + 1, k) (10)

− ρk

ρk+1

1 − ρm−Rk

k

1 − ρk
π(Rk+1,k+1) if Rk+1 ≤ m ≤ Fk−1 + 1,

π(m, k) = ρ
m−Fk−1−1
k

1 − ρ
Fk−1−Rk−1+1
k

1 − ρk
π(Rk−1 + 1, k) (11)

− ρk

ρk+1

1 − ρm−Rk

1 − ρk
π(Rk + 1, k + 1 if Fk−1 + 2 ≤ m ≤ Fk .

Proofs are given in [12].
Level K. Let us consider newt the level k = K.

Lemma 4 ([12]). The steady-state probabilities for the level K: π(m,K) are
equal to:

π(m,K)=

(
1 − ρ

m−RK−1
k

1 − ρK

)
π(RK−1+ 1,K) if RK−1+2 ≤ m ≤ FK−1+1,

π(m,K)=

(
1 −ρ

FK−1+1−RK−1
k

1 − ρK

)
ρ
(m−FK−1−1)
K π(RK−1+1,K) if FK−1+2 ≤ m≤B.

It is proved in [12].

4 Performance Measures and Energy Cost Parameters

We propose now to calculate the expected cost in terms of performance and
energy consumption for the model presented in this paper. Once the steady-
state vector is calculated, we get various performance and energy consumption
measures. Indeed the cost is expressed as an expected Markov reward function
R, where R =

∑
m,k π(m, k) r(m, k) and r(m, k) be the reward of state (m, k).

Metrics of interest are described hereafter.
First, we give the performance measures. These one are related to the Ser-

vice Level Agreement (SLA) which defines several QoS (Quality of Service) con-
straints that the provider should guarantee. Losses, queue lengths and processing
speed are the main parameters that are taken into account.

The mean number of customers in the system is denoted by NC and is equal
to: NC =

∑
(m,k)∈A π(m, k) · m.

The mean number of losses due to full queue by time unit is denoted by NR

and is equal to: NR = λ · π(B,K).
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The mean response time is denoted by R and is equal to: R = NC/
(
λ · (1 −

π(B,K))
)
.

Energy consumption measures are defined now. The energy costs representa-
tion adopted here is mainly based on [10]. In this paper, the energy costs of a VM
in use can be decomposed in two parts: static and dynamic costs. Static costs are
mainly independent of the workload and comprise idle (or standby) consumption
of the nodes, routers and consumption of the data center (cooling system, power
distribution units,....) which is evaluated by the industrial metrics of the Power
Unit Efficiency (PUE). On the other hand, dynamic costs include the energy
consumption part of servers, storage devices and network that is induced by
the resource usage and then depends on the workload. The hysteresis approach
considers only the dynamic costs but static costs should be added in order to
get the whole consumption of a VM. Hence, energy consumption is depending
on both mean number of active servers (dynamic part of the cost) and mean
number of their activation and deactivations, which represent the energy cost of
the start (or pausing) and the data migration of a VM.

The mean number of active servers in the system is denoted by NS and is
equal to: NS =

∑
(m,k)∈A Sk · π(m, k).

The mean number of activations triggered by time unit, is denoted by NA

and is given by: NA = λ
∑

(m,k)∈A(Sk+1 − Sk) · 1{m=Fk;1≤k≤K−1} · π(m, k).

The mean number of deactivations triggered by time unit is denoted by ND

and is given by:

ND =
∑

(m,k)∈A

μmin{Sk,m}(Sk − Sk−1)π(m, k) · 1{m=Rk−1+1 ; 1≤k≤K−1}

In order to consider both performance and energy consumption, then we
define the overall expected cost by time unit for the underlying model as follows:
C = CH ·NC +CS ·NS +CA ·NA+CD ·ND +CR ·NR. Where, CH is the per capita
cost of holding one customer in the system within one time unit, CS is the per
capita cost of using one working server within one time unit, CA is the activating
cost (cost of switching one server from deactivating mode to activating mode),
CD is the deactivating cost and CR is the cost of job losses due to full queue.

5 Numerical Results

This section focuses on the analysis of the queueing model defined before
(Sect. 2). We perform some numerical examples in order to show the interest
of the model and the improvement of the resolution methods for the analysis of
Cloud performance.

First, the three resolution approaches depicted in this work (SCA, LQBD
and closed form solution) are compared and we observe which approach is the
most relevant in terms of computational complexity and results accuracy. At
last, using the most relevant resolution method, some use cases of cloud systems
are analyzed and we observe some performance metrics. All evaluations were
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implemented in Matlab and performed on laptop with 64-bit Windows 10, 8 GB
RAM and 2.00 GHZ Intel i7-4750HQ CPU.

5.1 Comparing the Resolution Approaches

Our objective here is to determine among the proposed resolution methods, the
most relevant one. The relevance criteria are defined in terms of computation
time and accuracy of the results. So, a set of experiments are performed for
this purpose. We consider a threshold queueing model with hysteresis where the
activation and deactivation of VMs are occurred one by one (i.e. S1 = 1, Sk+1 =
Sk + 1, ∀k < K, which means that C = SK = K). This one by one activation
case is considered since it represents the worst case in terms of computational
complexity, and is thus the best way to compare the different proposed methods.
We assume here that each server provides a service following an exponential
distribution with rate 1. We generate several instances by increasing the size of
the model (i.e. the number of levels (K) and the size of buffer B). We illustrate in
Table 1, the computation times of each method for these instances. The forward
and reverse thresholds are set as follow: F = {50, 100, 150, . . . , B} and R =
{10, 40, 90, 140, 190, . . . , B}. Threshold values have been taken arbitrarily and
additional studies with different choices of threshold sequences will be the subject
of future work.

Table 1. Computational times (in seconds) of proposed resolution methods.

SCA with SCA with LDQBD Closed form

Power method GTH method

λ = 2, K = 10, 2.933 0.0406 0.0121 0.00905

B = 750, (1271 states)

λ = 10, K = 100, 4117.59 0.9587 0.9889 0.0823

B = 7500, (13421 states)

λ = 10, K = 500, +3600 41.573 88.01 0.4979

B = 37500, (67421 states)

λ = 10, K = 1000, +3600 307.54 1330.27 1.0561

B = 75000, (134921 states)

Through this table, one can clearly see that the closed form solution is the
fastest one. This method is more than 1000 times faster than LQBD and 100
times than the SCA with GTH method. This result is expected because the
closed form solution is based on a set of formulas containing basic operators
contrary to LQBD method based on matrix inversion or SCA method with GTH
approach where the numerical resolution approach GTH has a cubic complexity.
It should be precised that since the SCA approach is a combination of state
aggregation technique and numerical solution of Markov chain, then we propose
to distinguish two numerical methods commonly used: the GTH [18] and power
methods [17].
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Considering the precision of the results, it could be noticed that even if the
SCA and LQBD methods are numerical resolution approach, their precisions
are not so far from the closed form method. Indeed, the gap on the stationary
distribution vector between the different methods is smaller than 10−12.

To confirm our conclusions, we propose to observe the relevance of the reso-
lution methods according to the variation of the arrival rate λ. For this example,
previously cited in the Table 1, parameters are C = K = 100, B = 7500 and
μ = 1. Then, we let vary the arrival rate from λ = 1 to λ = 100, and assess
the computational resolution times of the closed form, LDQBD and SCA+GTH
methods. In view of the computation times of the SCA + Power method (rather
longer) this method is not considered in this comparative study. The obtained
results are illustrated in the following Fig. 2.
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Fig. 2. Computational times (in seconds) versus arrival rate (λ).

In view of these results, it is clear that the closed form method is the most
relevant resolution approach. However, for large ρ numerical methods could be
more precise than the formal one due to the limits of the computer. This point
should receive further investigations.

5.2 Performance and Energy Consumption Measures

In this part, all computations are made with the closed form formula. We assess
here the performance of a large cloud system and illustrate the trade-off between
performance and energy consumption. We consider a multi server queue model
driven by a hysteresis policy. We want to see the impact of the number of servers
on the performance and the energy-efficiency of a cloud henceforth, the metrics
defined Sect. 4 are used. We exhibit several cases in which our data center is
composed by a pool of C virtual machines. It is assumed that the number C
ranges from 50 to 10000 VMs, this last number being the size of a small data
center. The buffer size is set to B = 1000 jobs, the service rate of each VM
is set to μ = 10 and we let vary the arrival rate varying between 100 and
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1000 jobs/min. We assume that for each considered model there are fifty levels
(K = 50). The forward thresholds and reverse thresholds are set respectively to
F = {20, 40, 60, . . . , 1000} and R = F − 10. The sequence of service levels is
taken as follows: S = {s | s = i × � C

50	, ∀i = 0 . . . 50}. Concerning the energy
consumption parameters, we set the costs to 1: the energy consumption of one
working server within one time unit is CS = 1, the cost of holding one job in the
system within one time unit is CH = 1, the cost of activating or deactivating
one server are respectively CA = 1 and CD = 1, and the cost of job losses due
to full queue is CR = 1.
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Fig. 3. Performance metrics versus arrival rate (λ).

The performance results are illustrated in Fig. 3(a) and (b). In Fig. 3(b), one
illustrates only the curves for C = 50 and C = 100, since the other models
have a zero blocking probability. From these figures, we can obviously observe
that the number of servers increase improves the performance. This is shown,
in Fig. 3, by the decrease of the number of jobs in the system and the blocking
probability.

However, in terms of cost, one obviously observes the opposite when the
system is moderately loaded. Hence, when the system is weakly/moderately
loaded, the models that have a significant number of active VMs underperform
comparatively to models with relatively few active VMs. Indeed, some VMs
consume energy without performing any service. This can be seen on Fig. 4 for
C = 10000. On the other hand, when the system is overloaded, the cost of losses
increases and affects the global cost. This can be clearly seen Fig. 4 for the model
with C = 50 when λ > 450 and for the one with C = 100 when λ > 900. This
is consistent with intuition. The oscillation phenomenon observed for large C
remains unclear and deserves to be studied in more detail.

It could be noticed that the closed form resolution allows to compute the
performance measures of all the instances in very short times (smaller than 2
seconds) even in cases where the number of VMs is 10000. Since concrete small
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Fig. 4. Overall expected costs versus arrival rate (λ).

cloud systems or cloud modules have a number of VMs around 10000, this shows
the practical value of our method for answering rather quickly the questions
about energy consumption and network dimensioning.

6 Conclusion

We develop numerical and analytical methods for the analysis of a hysteresis
queueing system modelling a cloud system with activation/deactivation by block
of VMs. One important contribution of this paper is to suppose few constraints
on the thresholds. We give numerical values of the performance even in the case
of large Markov chains, and show that our methods are hugely faster than the
classical ones. We define a global cost for performance and energy consumption
in order to propose a trade off between performance and energy consumption,
and we analyse the impact of the thresholds on it. For the future, we need to
analyze real cloud architectures with concrete energy consumptions for the VMs
in order to compute relevant cost values. We also want to develop optimization
algorithms to obtain the thresholds which minimize the overall cost.

Acknowledgement. This work was supported by grant ANR MARMOTE (ANR-12-
MONU-0019).
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Abstract. In early design phases and during software evolution, design-
time energy efficiency analyses enable software architects to reason on the
effect of design decisions on energy efficiency. Energy efficiency analyses
rely on accurate power models to estimate power consumption. Deriv-
ing power models that are both accurate and usable for design time pre-
dictions requires extensive measurements and manual analysis. Existing
approaches that aim to automate the extraction of power models focus
on the construction of models for runtime estimation of power consump-
tion. Power models constructed by these approaches do not allow users to
identify the central set of system metrics that impact energy efficiency pre-
diction accuracy. The identification of these central metrics is important
for design time analyses, as an accurate prediction of each metric incurs
modeling effort. We propose a methodology for the automated construc-
tion of multi-metric power models using systematic experimentation. Our
approach enables the automated training and selection of power models
for the design time prediction of power consumption. We validate our app-
roach by evaluating the prediction accuracy of derived power models for
a set of enterprise and data-intensive application benchmarks.

1 Introduction

Design-time quality analyses allow software architects to estimate quality charac-
teristics of a designed system in early design phases and during software evolution.
In the context of software systems, energy efficiency refers to the ratio of useful
work the system performs and the energy it consumes, as Barroso et al. [1] out-
line. Energy efficiency is an essential quality characteristic as it determines a large
portion of the deployed systems’ operational cost. Power consumption accounts
for over 15% of the Total Cost of Ownership (TCO) [2]. The usage profile of soft-
ware determines the power consumption of servers on which it is deployed [3–6].
Meaningful reasoning on the energy efficiency of software hence requires the con-
sideration of both design and deployment of software architectures [7].

The consideration of energy efficiency at design time enables software archi-
tects to reason on the implications of design decisions on infrastructure sizing
and operational cost. The energy efficiency of software architectures can be pre-
dicted using approaches as proposed by Brunnert et al. [5] and in our previous
c© Springer International Publishing AG 2017
P. Reinecke and A. Di Marco (Eds.): EPEW 2017, LNCS 10497, pp. 214–229, 2017.
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work [6]. The approaches utilize software performance models and power models
to predict a system’s power consumption at design time. Performance models
predict performance and system metrics of a software system under a given
workload. Power models then correlate the predicted system metric with power
consumption of servers or individual hardware components to estimate power
consumption. Using power models, previous work accurately predicts the effect
of varying user workload [5] and architectural design decisions [6] on energy
efficiency.

When extracting power models to evaluate the energy efficiency of a software
system at design time, the implementation of the system is not yet fully available.
Hence, the power models need to be trained on workloads for systems other than
the system under design. Collecting representative measurements as training
data is challenging as the relation between issued workload and values of the
observed metrics is non-linear. A set of measurements hereby is representative if
it allows to correlate the variance of power consumption with variances of system
metrics. Individual workloads might not stress all the resources of the system
under evaluation that impact its power consumption. In this case, individual
workloads do not produce representative sets of measurements.

In early design phases and during software evolution, metrics such as through-
put and utilization of processing units can be predicted with reasonable accuracy
and modeling effort. Fine-grained system metrics such as the number of page
faults per second are difficult to predict or require significant effort in refining the
models. The effort in constructing fine-grained models should only be invested
if it results in a significant increase in accuracy.

Existing approaches [5,6] for the design time prediction of energy efficiency
use a manual process for selecting a suitable power model for a system under
investigation. The authors assume that the utilization of certain server compo-
nents significantly correlate with power consumption. They do not systemati-
cally select these metrics for each server under investigation. Previous work on
the automated construction of power models [3,4] for run time estimation allow
for an automated selection of metrics that correlate with power consumption.
The approaches outlined in [3,4] do not consider the tradeoff between accuracy
and effort that is essential to the extraction of power models for design time con-
sumption predictions. Rather, they produce power models that rely on low-level
system metrics and hardware performance counters.

We propose a methodology for the automated extraction of power models for
design time energy efficiency analyses. Our approach enables software architects
to evaluate which system metrics are worth considering for a specific server type
based on their expected impact on power consumption prediction accuracy. Our
Contributions are as follows:

C1: We define a profiling approach for automatically deriving power and system
metric measurements based on representative workload combinations.

C2: We train a set of power models to identify the power models that most
accurately predict our systems’ power consumption.
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C3: We outline a methodology for evaluating the effect of considering additional
system metrics in the energy efficiency analysis.

We evaluate our approach with application workloads different from the
workloads used in profiling. The evaluation workloads cover an enterprise appli-
cation workload, SPECjbb2015 [8], and a set of diverse Big Data application
workloads contained in the HiBench benchmarking suite [9]. To evaluate the
benefit gained by applying our profiling approach (C1) we compare the predic-
tion accuracy of power models derived from measurements extracted using our
approach with a baseline approach. The baseline approach subsumes a set of
profiling approaches found in related work [3,4]. We investigate the accuracy of
power models constructed using our approach. The power models predict power
consumption with an error of less than 4.9% for 19 of 27 considered models (C2).
This confirms that we are able to construct power models that accurately predict
the power consumption for application workloads not available at the time of
profiling. We show that we correctly predict the accuracy gained by considering
additional system metrics (C3).

This paper is structured as follows. Section 2 outlines our methodology.
Section 3 outlines evaluation experiments and discusses their results. Section 4 dis-
cusses related work. Section 5 concludes and provides an outlook on future work.

2 Methodology

Figure 1 provides an overview of our methodology for deriving power models
for architecture-level energy efficiency analyses. Our methodology consists of

Fig. 1. Activity diagram overview of our power model extraction methodology
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the three main steps server profiling, model training, and model selection. In
server profiling, we automatically profile the power consumption for a set of
system metrics to derive a representative server profile. We hereby consider a
profile to be representative if it covers the typical values of system metrics of
the system under the expected load. In model training, we construct a set of
power models based on the server profile extracted in the first step. The final
step model selection enables users to compare different power models and reason
on the effect of system metrics on prediction accuracy. The following sections
further elaborate on each of the three steps.

2.1 Server Profiling

In order to learn accurate power models for a server, we need representative
measurements of the power consumption and relevant system metrics under dif-
ferent levels of utilization. A set of measurements is representative if it covers
the typical behavior of the system under its expected workload. Using a sin-
gle workload type to stress the server produces measurements that match only
similar workload types. Thus, it is not sufficient to use an individual workload
type as the foundation for learning power models. Different workload types need
to be considered when learning power models. The measurements used to learn
the models also need to cover different utilization levels for the model to be
representative for possible workload mixes.

To the best of our knowledge, there does not exist an approach for targeting
specific utilization levels for multiple resources using representative workloads.

We designed an approach for profiling the power consumption of a server
under specific load levels. Our approach collects representative server profiles
using workload mixes that use multiple resources. Our profiling approach con-
trols the load intensity of a set of workloads to reach target values for a set of
system metrics. This allows us to train power models that are representative of a
large range of workloads and workload mixes. In order to validate our approach
we implemented it upon the technical foundation of the Server Efficiency Rating
Tool (SERT) [10,11] framework. This enabled us to reuse industry-proven work-
loads for classifying server energy efficiency. The ENERGY STAR program of
the U.S. Environmental Protection Agency (EPA) uses SERT and its workloads
to classify server energy efficiency [12].

The following elaborates our approach. First, we provide an overview of
implementation and prerequisites of our approach. Based on a running example,
we discuss the workload intensity calibration and measurement performed as
part of the approach.

Implementation. We implemented our profiling approach atop the technical
framework of SERT [10,11]. SERT evaluates the energy efficiency of servers for
a set of transactional workloads. In order to reach different throughput lev-
els, SERT linearly scales the rate of transactions in the system based on the
maximum transaction rate the system can process. SERT applies representative
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workloads for different resources, such as CPU and storage I/O, and scales them
from idle to maximum utilization. However, SERT does not allow the parallel
execution of workloads that each stress different resources. Consequently, SERT
does not produce a sample representative of the full combined domain of system
metrics.

We implemented our profiling approach in a custom load driver. Our load
driver controls the throughput by varying the delay time. It allows for the simul-
taneous execution of multiple workloads with different mean delay times.

Prerequisites. The prerequisites subsume all activities highlighted as manual
in Fig. 1. Our approach requires the user to specify a set of target system metrics
Mprofile = {m1, . . . ,mn} ⊆ M . Mprofile is the set of system metrics targeted by
the profiling. M is the domain of measurable system metrics. Example metrics
are the average utilization of all CPU cores ucpu, storage write throughput tpwrite

and storage read throughput tpread in kilobytes per second.
The user defines a set of workload mixes used in the server profiling. A

workload mix is a tuple (w1, . . . , wn). wj is a workload with a controllable load
intensity parameter l, where there exists a monotonic relationship between l
and measurements of mj . An example element workload for ucpu is the AES
encryption workload waes ∈ Wucpu . The user defines a workload mix by selecting
a workload wj from a predefined set Wmi

for each mi ∈ Mprofile.
An individual user of our approach does not need to determine Wmi

. Rather,
Wmi

has the role of a reusable repository. Once a monotonic relationship between
l and the measurements mi of a workload have been established for a workload
wnew, any user can select from W new

mi
= Wmi

∪ {wnew}.

Running Example. In the following, we will explain the profiling process
with reference to the example workload mix (waes, wrwrite). wrwrite is a work-
load executing random disk writes. We outline the profiling process using one
of the target level tuples we used in our experiments. A target level describes
the utilization level the profiling aims to observe for a workload run. The tar-
get level tuple we selected is (ucpu, tpwrite) = (0.55, 24 000). Figure 2 illustrates
the different steps involved in the profiling for this target level tuple. It shows
measurements of tpwrite and the load intensity of wrwrite over time. The figure
depicts the measured values in the upper graph. The lower graph shows the load
intensity as the delay between two workload transactions. The figure shows the
three phases of the calibration step (phases 1–3) and the three phases of the
measurement step (phase 4–6) for (ucpu, tpwrite) = (0.55, 24 000).

Workload Intensity Calibration. The calibration phase has the goal of deter-
mining a suitable mean delay value for the transaction execution of every work-
load. We determine the mean value for each of the workloads in a workload mix
in parallel. The calibrated mean delay value should result in a rate of transaction
executions that induces the specified target level metric values.
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Fig. 2. Top: tpwrite of exemplary run for target level (ucpu, tpwrite) = (0.55, 24 000).
In gray: smoothed average of the measurements, and target value 24 MB/s. Bottom:
Transaction delays for the storage intensive workload.

Figure 2 shows the transaction delay for workload wrwrite, together with met-
ric values of tpwrite. The depicted workload calibration for the storage intensive
workload runs in parallel with the calibration for the CPU intensive workload.
In a first step, our profiling framework initializes the workload and starts trans-
actions at an initial rate (phase 1). Subsequently, the actual calibration process
starts, in which the transaction rate is varied (phase 2). Algorithm 1 lists the
algorithm used during calibration. The profiling framework executes the algo-
rithm in every measurement interval. The algorithm tries to reach a sensible
starting value for the system metric, e.g., 10 MB/s for HDD write throughput

state : thresholdReached ← false
input : Current system metric value u, Target metric value ut,

Threshold metric value uthold, Metric-specific alpha αm,
Initial delay currentDelay

output : Delay to throttle workload currentDelay
1 if ¬thresholdReached then
2 if u < uthold then thresholdReached ← true ;
3 else currentDelay ← 2 · currentDelay ;

4 else
5 targetDelay ← currentDelay · u

ut
;

6 currentDelay ← currentDelay · (1 − αm) + targetDelay · αm;
7 if αm > 0.1 then αm ← 0.9 · αm + 0.01 ;

Algorithm 1. Adaptive calibration policy for controlling the workload intensity.
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(lines 1–3). This avoids contention effects that occur for shared resources at low
transaction delays.

After the threshold has been reached, the algorithm gradually approaches the
target system metric value by determining the ratio between the current value
u and the target value ut. The algorithm determines the new target delay by
multiplying this ratio with the current delay (line 5). We attenuate the adaption
by considering the target delay with a weight αm and the previous delay value
with a weight 1 − αm in the calculation of the new delay value (line 6). The
user can choose αm for each metric. We set αm to 0.2 for random writes, and
0.05 for sequential writes for the metric tpwrite. In each run the algorithm con-
tinuously decreases αm towards 0.1 (line 7). Consequently, the algorithm steers
the transaction rate more directly in the beginning of the calibration process.
After the calibration, the profiler stores the current transaction rate and stops
all workloads for the idle phase 3.

The profiling framework executes the algorithm independently and simulta-
neously for each workload in the workload tuple. This enables the algorithm to
adjust the load intensity based on interferences between the workloads. In the
case of combining I/O-intensive with CPU-intensive workloads, the adjustment
is necessary since most I/O-intensive workloads still utilize the CPU to perform
operations on the read data, even though the CPU is not a potential bottleneck.
The measured load would not match the target load for (wcpu, wrwrite) if we were
to determine the delay time tcpu that achieves the targeted average CPU utiliza-
tion for (wcpu) independently of the delay time trwrite for wrwrite. Hence we need
to determine delay times for the workload mix. The combined calibration allows
us to achieve the utilization targets of both metrics with a parallel execution of
the workload mix (wcpu, wrwrite).

Measurement. Throughout the calibration and measurement phases our pro-
filing framework takes equidistant measurements of relevant system metrics. Idle
phase 1 reduces instabilities between the measurement of two target level tuples.
Idle phase 3 and warmup phase 4 aim to avoid instabilities when transitioning
between calibration and measurement. We consider measurements of system
metrics and power consumption taken during the measurement phase to be rep-
resentative values of a system in a stable state under the used workload.

In the pre-measurement step (phase 4), our framework starts all workloads
in the workload mix using the calibrated transaction rate. The pre-measurement
phase allows the system to stabilize and mitigates warm-up effects. Our load
driver runs the system with the stable transaction rate for the measurement
phase (phase 5). For technical reasons, the load driver continues to run the
workload mix in a short post-measurement phase (phase 6). It then stops all
workloads.

2.2 Model Training

We use power models to reason on the power consumption of the profiled servers.
We construct the models by means of statistical learning techniques. The power
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models are trained using the power consumption profile extracted using our
profiling approach discussed in Sect. 2.1. We utilize a Power Model Repository
[6] to persist a set of recurring power model types. Each power model type is
associated with a regression model formula. The power model type references the
system metrics it requires as input. To apply a power model type to a profiled
system, we instantiate it by training its non-parametrized regression model. This
produces a regression model we can use to predict the power consumption of a
software system deployed on the server.

In the scope of this paper we use an iterated reweighted least squares algo-
rithm based on a robust M-estimator as implemented by Rousseeuw et al. [13]
to train the regression models. The central advantage of robust regression tech-
niques is their robustness towards outliers and anomalous measurements. While
techniques for non-parametric regression have been applied to power modeling
[4], we did not find conclusive evidence that they are more accurate than para-
metrized learning.

2.3 Model Selection

Power models can be used to reason on the power consumption at runtime and
design time. Over the years, different power models have been proposed to model
the relation between system metrics and power consumption of servers [14]. The
accuracy of power models depends on the server under investigation and the
workload executed on the system. When training power models for runtime use,
the target workload for which we want to analyze the power consumption may
already be fully known. In this case, we can measure the accuracy of trained
power models under the expected workload mix. Based on the measured accu-
racy, we can select a suited power model.

At design time, the implementation of the target workload is not yet fully
available. We can not select the most accurate power model based on measure-
ments for the target workload. Still, we need to make an informed trade-off deci-
sion between the accuracy of a candidate power model and the effort required to
predict its input metrics. As we cannot measure the power consumption of the
target application, we need to reason on power model accuracy independent of
the final implementation of the designed application.

There exist different model selection techniques based on statistical meth-
ods such as residual sum of squares, k-fold cross-validation and Akaike’s Infor-
mation Criterion (AIC). k-fold cross validation is commonly used in software
performance engineering to evaluate the predictive quality of models. AIC is an
information-theoretic measure that quantifies the information loss between the
evaluated model versus the “unknown true mechanism” [15] that actually pro-
duced the data which the model was trained on. Stone [16] has shown AIC and
k-fold cross-validation to be asymptotically equivalent. We apply AIC to deter-
mine whether we can increase prediction accuracy by considering additional
metrics. We opted for AIC over k-fold cross due to its simplicity.

We evaluate a set of candidate power models we maintain in a Power
Model Repository to find the model that most accurately describes the power
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consumption of the profiled server. We determine the rank of each power model
based on its difference to the minimal AIC as described by Burnham and
Anderson [15]: ΔAIC = AIC − AICmin. If all models considering a set of metrics
M with m ∈ M are dominated by any model with the metric set M\{m}, we
deduce that there is no benefit in considering m. Should the consideration of
m increase accuracy, we compare the difference in ranking between the best-
performing model with metrics M and M\{m}.

3 Evaluation

In our evaluation we investigated four Evaluation Questions (EQs):

EQ1: Do the power models we derive from our server profile accurately predict
power consumption across different types of workload?

EQ2: Does the simultaneous profiling of CPU and HDD profiles increase the
accuracy over profiling CPU and HDD in isolation?

EQ3: Does our approach produce server profiles that are better suited for train-
ing power models than other approaches?

EQ4: Does the AIC-based selection of power models accurately predict the
effect of considering system metrics on prediction accuracy?

We evaluate EQ1 by analyzing the accuracy of power models from literature,
which we trained using the server profile produced by our profiling approach. We
investigate EQ2 by comparing the accuracy of power models trained on a profile
from simultaneous profiling, and a profile from isolated profiling. To evaluate
EQ3, we compare the server profiles produced by our approach against a server
profile produced by a commonly used alternative approach. To investigate EQ4,
we compare our AIC-based ranking with the actual accuracy of the power models
for a set of workloads.

3.1 Setup

We used a PowerEdge R815 with four Opteron 6174 CPUs and 256 GB RAM.
The server utilized a built-in storage RAID with six 900 GB 10, 000 RPM SAS.
The server’s resources were virtualized using XenServer 6.5. Profiling and power
measurements were conducted within Ubuntu 14.04 VMs, with 48 virtual cores
assigned to each VM. Only one VM was running at a single point in time.
The SPECjbb2015 VM was assigned 32 GB RAM while the HiBench VM was
allocated 16 GB RAM. Power monitoring was conducted using a ZES Zimmer
LMG95 power meter connected to a dedicated notebook. The measurement data
and analysis tooling used in our evaluation are available online1.

We used the workloads SequentialWrite, RandomWrite, XMLvalidate, Cryp-
toAES and SOR from the Server Efficiency Rating Tool (SERT) to profile our
server under investigation. A detailed description of the used workloads can be
1 https://sdqweb.ipd.kit.edu/wiki/Power Consumption Profiler.

https://sdqweb.ipd.kit.edu/wiki/Power_Consumption_Profiler
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found in the SERT design documents available for public review [11]. The profil-
ing of each target level including warmup lasted around two and a half minutes.
The framework collected around 60 power and system metric measurement sam-
ples per target level. The full profiling took approximately 38 h.

3.2 Considered Power Models

We collected power models based on system metrics from literature. Table 1 con-
tains an overview of the considered power models. The models range from simple
linear regression models (1), only parametrized by CPU utilization, to multi-
factorial models with exponential components (3, 4). As explained in Sect. 2.2
we extracted the power models using robust non-linear regression.

Table 1. Overview of considered power models

No Power model Considered metrics

1 P = c0 +
∑

m∈M cmum OS-level performance counters [3,5,17,18], or
only CPU utilization [19,20]

2 P = c0 +
∑

m∈M (
∑lmax

l=1 clum
l) OS-level performance counters [18], or only

CPU utilization [20]

3 P = c0 +
∑

m∈M

∑lmax
l=1 (eum + clum

l) OS-level performance counters [18]

4 P = c1 · e−(
ucpu−c2

α1
)2

CPU utilization [20]

5 P = c0 + c1ucpu + c2uα
cpu CPU utilization [17,19]

6 P = c0 + c1uα
cpu CPU utilization

Previous work [17,18] has shown that the prediction accuracy of system met-
ric based power models can be increased by considering additional metrics. To
evaluate the impact of metric selection on prediction accuracy we instantiated
each of the multi-metric power models 1, 2, and 3 with CPU and storage metrics.
Models 2 and 3 contain a complexity parameter l that defines the polynomial
degree of the function. We instantiate 2 and 3 for values of l = {1, 2, 3}.

3.3 Prediction Accuracy of Power Models

To investigate whether our profiling approach produces server profiles that are
suited for training power models, we used it to train the power models described
in the previous section. If the models produced by the robust regression are accu-
rate, we can deduce that our approach produces server profiles representative of
the power consumption of the system under investigation.

We used a diverse set of workloads from the HiBench benchmarking suite [9]
and SPECjbb2015 [8] to evaluate the prediction error of the power models. From
the considered workloads, K-means, TeraSort, DFSIOe, Page Rank and Nutch
Indexing were I/O intensive. All other benchmarks mostly stressed the CPU, or
no resources at all in the case of Sleep.
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Surprisingly, the models had a smaller prediction error when trained via
measurements from separate profiling. For the considered workloads and power
models, the results thus negatively answer EQ2. One potential reason for this is
the large number of measurements with high utilization for multiple metrics from
simultaneous profiling. The used regression approach minimizes the prediction
error for the training set. However, the application workloads considered in the
evaluation rarely stress CPU or HDD at the same point in time.

To assess the total accuracy of the models learned with our approach, we
calculated the Mean Absolute Error for each workload. Overall, robust regression
was able to train all ty1pes of power models to reach low prediction errors.
Power models of type 1 with M = {ucpu}, 5 and 6 had a median prediction error
below 2.3%. Models of types 1, 3 for l = 1, and 4 suffered from poor prediction
accuracies for utilization levels close to idle as observed for the Sleep workload.

Aside from Sleep, all power models achieved an error of at most 5.9%
across all other workloads. The power model of type 3 with l = 2 and
M = {ucpu, uread, uwrite} reached a maximum error of 4.7%. The power model 5
meets this maximum error. In total, 19 of 27 considered power models have a
maximum prediction error of 5.9% across all workloads. From this we conclude
that our approach produces representative server profiles that are well suited for
training power models with high accuracy (EQ1).

3.4 Comparison of Profiling Approach with State of the Art

To evaluate the benefit of our profiling approach we compared it to state of the
art profiling approaches. We replicate the behavior of state of the art approaches
[3,4] by monitoring the execution of SERT. As the SERT workloads individu-
ally stress the hardware components this matches the measurement procedure
of state of the art approaches. We conducted a SERT run and collected mea-
surements using the tooling described in Sect. 3.1.

The passive monitoring of SERT very rarely stressed storage to write more
than 20 MB/s. Our profiling approach managed to reach write throughputs of
up to 150 MB/s. This shows that the state of the art approach did not cover high
write throughputs. Thus, the regression models trained on the resulting profile
need to extrapolate for high write throughputs.

The power models built solely upon CPU utilization had high accuracy when
trained using the profile from the SERT run. However, the models that consider
both CPU utilization and storage throughput were significantly less accurate.
Models 2 and 3 with M = {ucpu, uread, uwrite} deviated from the measured value
by a factor of up to 70 for I/O-intensive workloads.

In conclusion, the profile obtained from monitoring SERT via a state of the
art profiling approach can not be used to train multi metric power models. As
our approach enabled us to train multi metric power models this confirms EQ3.

3.5 Impact of Metric Selection on Prediction Accuracy

We evaluated the impact of metric selection on prediction accuracy using the
AIC-based ranking approach outlined in Sect. 2.3. Our intent was to evaluate
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whether the AIC-based ranking based on our server profile correctly predicted
the effect of metric selection on prediction accuracy. For this, we compared the
ranking with the prediction error of power models for our evaluation workloads.
The ranking based on ΔAIC indicated that the CPU-only models 6 followed by 5
had the highest likelihood of having the best prediction accuracy. Model 3 with
l = 3 and M = {ucpu, uread, uwrite} followed third as the highest-placing model
that considered storage metrics.

Since models 5 and 6 parametrized by both only CPU utilization outper-
formed all other models, we can deduce that considering storage metrics does
not increase the prediction accuracy of trained power models for the models
from Table 1. This was confirmed by the evaluation of error rates for the work-
loads outlined in Sect. 3.3. In the accuracy evaluation, model 6 had the lowest
median prediction error. Considering storage write throughput did not reduce
the average prediction error using our set of considered power models.

In conclusion, we were able to correctly predict the effect of considering
additional metrics using the ΔAIC-based ranking (EQ4). This indicates that the
ranking is suited to the selection of a power model for consecutive use in design
time predictions.

3.6 Threats to Validity

We conducted both profiling and measurements in a virtualized execution envi-
ronment. This induces an overhead on the execution of both CPU and storage
operations. We opted to perform the experiments in a virtualized environment
as these environments are today’s norm in the enterprise space. Benchmarks
like SPECvirt [21] specifically target energy efficiency for virtualized environ-
ments. As with all models, power model abstract from system characteristics
that can impact the power consumption. Examples for such system character-
istics observed by Mccullough [18] are “hidden device states” and “significant
variability” in power consumption of “identical components”. Our approach does
not consider these effects. Consequently, we can not quantify their significance
to our findings.

Since we evaluated our approach for one specific server it cannot be guaran-
teed that our approach works for all server environments.

4 Related Work

Dayarathna et al. [14] provide an extensive overview of different power model-
ing techniques. The models covered by the survey range from manually created
models to models trained using machine learning techniques. The following dis-
cusses a set of referenced modeling approaches that automate the creation or
parametrization of their models.

Davis et al. [4] propose a methodology for automatically deriving power mod-
els based on OS-level performance counters. Their approach uses feature selection
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to identify the performance counters that strongly correlate with power consump-
tion. Davis et al. use piecewise-defined regression power models. The profiling
approach presented by the authors does not systematically vary load. Instead,
it passively monitors the execution of a set of workloads to extract the mea-
surement data needed to train the models. Davis et al. state that the workloads
cover different load intensities and workload types which stress CPU, storage
and network. However, their approach does not guarantee that measurements
are collected for all relevant system metric levels and combinations.

Economou et al. [3] propose a profiling approach that individually stresses the
hardware components of a server. Unlike our approach, it does not use hybrid
workloads. Consequently, it does not support the investigation of interactions
between multiple workloads on the measured system metrics. Section 3.4 had
evaluated our approach against a profiling approach that replicated the behavior
of the approaches by Davis et al. [4] and Economou et al. [3].

The PowerPack framework by Ge et al. [22] aims at profiling power consump-
tion of distributed parallel applications. Like our work, Ge et al. investigate the
effects of parallel job configurations on power consumption. In contrast to our
work, PowerPack does not extract power models. Rather, it focuses on comparing
the power consumption of the job configurations via measurements.

The Server Efficiency Rating Tool (SERT) [10] rates the energy efficiency of
servers. It uses a set of workloads to stress the server under investigation. SERT
varies the transaction rate of the workloads in order to assess the energy efficiency
of the server at different load levels. Unlike our approach, SERT does not vary the
workload to target system metric levels. SERT uses a hybrid workload based on
the SSJ simulation library to assess efficiency for a mixed transactional workload.
However, it does not assess the energy efficiency of workload combinations. This
differs from our approach which simultaneously steers multiple workloads to
reach target metric levels.

5 Conclusion

This paper presented an approach for the automated creation of power mod-
els using systematic experimentation. We outlined a methodology for deriving
representative server profiles for training power models. Our approach allows for
the creation of workload combinations from existing workloads. We presented an
adaptive workload calibration policy that allows targeting system metric levels
for combined workloads. We automatically parametrize a set of power models
using the server profile produced by our profiling approach by means of robust
nonlinear regression. To reason on the effect of considering additional system
metrics on the power consumption prediction accuracy we rank the power mod-
els based on their Akaike’s Information Criterion (AIC).

The evaluation investigated the applicability and accuracy of our approach
by predicting the power consumption of a virtualized server system for a set of
twelve benchmark applications, including the HiBench benchmarking suite [9]
version 5.0 and SPECjbb2015 [8]. The evaluation showed that the power mod-
els parametrized by our approach accurately predicted the power consumption
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across all twelve applications (EQ1). We showed that separate profiling of CPU
and HDD was sufficient to train accurate power models (EQ2). We compared a
state of the art approach with our approach to determine whether our approach
produced more representative server profiles for training power models (EQ3).
The profile produced by our profiling was more representative of the system’s
power consumption. When we trained the power models based on the profiles
collected using a state of the art approach, the model predictions deviated from
the measured value by a factor of up to 70.

A comparison of our AIC-based ranking showed that we were able to estimate
the effect of considering additional metric on prediction accuracy (EQ4). The
most consistently accurate power model’s prediction error ranged from 0.1% to
5.9%. Our AIC-based ranking had predicted this power model to have the highest
likelihood of a high prediction accuracy. Four out of the six Pareto optimal power
models from the evaluation had placed the highest in the ranking.

Our approach enables both software engineers to derive accurate power mod-
els of servers for design time predictions based on system metrics. It supports
the combination of multiple workloads to create mixed system workloads. This
enables engineers and operators to profile a server with workloads that more
realistically match the behavior when hosting multiple collocated applications.

Our approach automates parametrization and ranking of power models. This
reduces the effort for identifying a suitable power model for a given deployment
environment. Engineers can choose from an extensible set of power models based
on the system metrics they can predict. We ease reasoning on the effects of
considering additional system metrics in power consumption analysis by ranking
power models based on their estimated prediction accuracy.

In future work we will investigate how we can reduce the time needed for a
profiling run. We plan to adaptively reduce the number of required measurement
runs during profiling, reducing the total time required to create accurate power
models for a server. To reason on the effect of adaptive server management poli-
cies we plan to include power consumption profiling for server reconfigurations.
Examples for such reconfigurations are server shutdowns and bootups, as well
as Virtual Machine migrations.
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Abstract. Given a model with multiple input parameters, and multiple
possible sources for collecting data for those parameters, a data collec-
tion strategy is a way of deciding from which sources to sample data,
in order to reduce the variance on the output of the model. Cain and
Van Moorsel have previously formulated the problem of optimal data
collection strategy, when each parameter can be associated with a prior
normal distribution, and when sampling is associated with a cost. In this
paper, we present ADaCS, a new tool built as an extension of PRISM,
which automatically analyses all possible data collection strategies for a
model, and selects the optimal one. We illustrate ADaCS on attack trees,
which are a structured approach to analyse the impact and the likelihood
of success of attacks and defenses on computer and socio-technical sys-
tems. Furthermore, we introduce a new strategy exploration heuristic
that significantly improves on a brute force approach.

Keywords: Security modeling · Risk management · Attack trees ·
Experiment design · Data collection

1 Introduction

To obtain model results that reflect realistic systems accurately, one collects data
from different sources and parameterises various variables in the model. Each
data collection source might have a different cost and a different accuracy. For
instance, a model for political forecast might take as input polls from population
samples, or aggregated data from social media. While opinions polls might bring
an option to ask specific questions, collecting data from social media might bring
a more global picture. Ideally, an organisation interested in political forecast
should collect data from both sources, but in practice, the combined cost might
be too high.

Cain and Van Moorsel proposed in [4] a general model for optimising data
collection strategies, based on the variance generated by these strategies and a
cost budget. We refine this approach here by presenting the tool ADaCS, which
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takes a model as input, together with a cost model and a description of each
source for each input parameter of the model, and returns automatically the
best data collection strategy, i.e., the optimal way to spend a given budget on
data collection. We illustrate ADaCS in the domain of attack trees, which take,
among others, the likelihood of success of attacks and defensive mechanisms as
input parameters. We believe that ADaCS could be useful to a security architect
wanting to understand the best data collection strategy for a given attack tree.

The main contribution of this paper is therefore the tool ADaCS (Sect. 3),
which is implemented as an extension of the probabilistic model-checker PRISM,
together with the application of this tool on attack-trees (Sect. 4). We also
present a heuristic for finding an approximation of the optimal data collection
strategy reducing significantly the search space (Sect. 5).

2 Problem Formulation

In this section we articulate the data collection problem as a mathematical opti-
mization problem, based on the earlier work of Cain and Van Moorsel [4]. Since
we concentrate in this paper on tool support and practical applications, our
presentation of the theory will be less general, but this reduces the complexity
of the notation compared to [4]. We first present a general formulation of the
problem, which we then refine on attack trees.

2.1 Optimal Data Collection Strategy

Let us consider a model, taking as inputs a set of parameters P1, . . . , Pn, and
outputting a random variable Y . This model can be an attack tree, as we explain
below, or any other discrete-event dynamic system model [11]. In order to com-
pute the expected value of Y , which we write E[Y ], we consider a simulation-
based approach: we repeat a number of M runs, such that at each run j, we
instantiate each Pi with a value pij , compute the corresponding value yj ; the
expected value of Y is calculated as E[Y ] =

∑M
j=1 yi/M , and the variance by

∑M
j=i(yi − E[Y ])2/(M − 1) [6].
The crucial point here is to instantiate each Pi with a value pij . Without

any information, we could simply take a random value from the domain of Pi.
However, many models can use data collection to determine the value of the
parameters, for instance with the environmental metrics described above. For
instance, in a socio-technical setting, such as the ‘USB model’ introduced in [3],
the model describes the different security threats related to the use of USB sticks
within an organisation, a parameter might be the typical behavior patterns of
users of IT systems.

Hence, we now consider that each parameter Pi can be associated with a nor-
mal distribution N (μi, σi/

√
Mi) (this follows from the Central Limit Theorem,

e.g., [6]), where μi represents the mean value for Pi, σ2
i the variance, and Mi the

number of samples used to compute these values. In the USB model example,
we could for instance ask 30 employees about how often they carry a USB stick
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to their customer, and we could go through 100 travel bookings to identify the
duration of travel.

One of the key points of [4] is that a small number of data source samples Mi

for Pi implies a wide normal distribution, and therefore implies a large variance
in the values pi drawn, which then implies a large variance in the output E[Y ]
(which is not desirable). Their key argument is therefore to use the Central Limit
Theorem to reflect that when one increases the number of samples Mi it will nar-
row down the normal distribution for Pi. Given an additional number of samples
Ni > 0, one would run simulations drawing values pij from N (μi, σ

2
i /

√
Mi + Ni).

In order to add samples, given a set of parameters X = {P1, . . . , Pn}, we
assume the existence of a set of sources D = {d1, . . . , dm}, such that each source
is a predicate di : X → B (a source can sample multiple parameters at the same
time), indicating which parameters it can sample. Each source di is associated
with a cost ci, indicating the cost of one sample of di (the cost is the same
regardless of the number of parameters di can sample). A cost here represents
an abstract notion, which could for instance correspond to a monetary value or
the time required to sample.

A data collection strategy s is a set {N1, . . . , Nm}, indicating a num-
ber of samples Nj(s) for each source dj . Given a parameter Xi, we write
Ni(s) for the number of samples collected from all the sources, i.e., Ni(s) =∑

dj∈D|dj(xi)
Nj(s). The variance of Y using the strategy s, which we write

V ar[E[Y ] | s], is calculated by drawing for each parameter Pi the value pi from
N (μi, σ

2
i /

√
Mi + Ni(s)) in the simulation-based approach described above. Note

that V ar[E[Y ] | s] can be calculated using the equations in the first paragraph
of this section, but that now the randomness is not only associated with the
model but also with the parameter uncertainty under strategy s.

It is worth emphasising here that a strategy s decides which parameter dis-
tribution to narrow. Trivially, the best strategy would therefore be to add as
many samples as possible for each source. However, in practice, a data collection
strategy is bound by a budget, which leads us to the definition of the optimal
collection strategy, simplified from [4].

Definition 1 (Optimal Strategy). Given a budget B, a cost ci for each sam-
ple provided by data source di, and a set S of all possible strategies, the optimal
strategy is defined as:

arg min
s∈S

V ar[E[Y ] | s] subject to:
m∑

i=1

Ni(s) · ci ≤ B.

2.2 Attack Defence Trees

In an attack tree (AT) [17] each leaf corresponds to a basic action on the system,
and each node is a composition of sub-trees using the logical operators ∧ and ∨.
For the sake of exposition, we might associate a node with a label, representing
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the attack corresponding to that node. For instance, a brute force attack on a
password usually requires two sub-attacks to be successful: having the hash for
the password, and being able to crack it. If we represent these two attacks by the
atomic actions gethash and crack, respectively, then we can define the attack tree
for a brute force attack as1 bf = ∧(gethash, crack). Similarly, we can represent
the attack of getting the password for an account by either brute-forcing it, or
by stealing it: getpw = ∨(bf, steal). In the remainder of this paper, we assume it
is clear from the context whether a label corresponds to an atomic action (such
as crack) or a composite attack (such as bf).

An attack-defence tree (ADT) [13] is an attack tree with the addition of the
logical operator ¬, corresponding to the negation. Intuitively speaking, basic
actions can either be attacks or defensive mechanisms, and the negation of a
defensive mechanism corresponds to an attack. For instance, a typical defensive
mechanism against someone getting the password is to two-factor authentication
(TFA). Hence, getting the account can be defined as the conjunction of getting
the password and not using TFA: getaccount = ∧(getpw,¬tfa).

ADT are useful to calculate the likelihood of an attack to succeed, by breaking
it down to the likelihood of all atomic actions to succeed [2]. More precisely, given
an ADT t with a set A = {a1, . . . , an} of atomic actions, such that pi ∈ [0, 1]
represents the likelihood of action ai to succeed, we can define the function ps
which returns the likelihood of t to succeed as:

ps(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max(ps(t1), · · · , ps(tk)) if t = ∨(t1, . . . , tk),
ps(t1) ∗ · · · ∗ ps(tk) if t = ∧(t1, . . . , tk),
1 − ps(t′) if t = ¬t′,
pi if t = ai

In general, the probabilities pi correspond to a parameter Pi which can be col-
lected from the environment: the probability of a hashed password to be cracked
depends on the time spent by the attacker and the entropy of the password
domain; the probability of a user using two-factor authentication (assuming the
user has such a choice) can be statistically computed; etc. The variance of these
probabilities will depend on the source for data collection: an in-depth analysis
of the system (e.g., using penetration testing techniques) will provide an accu-
rate but costly view of the system, while relying on general statistics might be
cheaper but with more variance. In this paper, we formulate the problem of data
collection in the context of attack-defence trees: given a tree t, the parameters
we consider are the likelihood of success X = {P1, . . . , Pn} for all atomic actions,
and the variable Y corresponds to the probability ps(t) to be higher than a given
threshold.

3 ADaCS

In this section we introduce the tool ADaCS (Analysing Data Collection Strate-
gies). ADaCS has been created by extending the probabilistic model checking
1 We use here a prefix notation to avoid any ambiguity.
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tool PRISM [14] with the functionality to analyse data collection strategies and
compute the best strategy within a given budget. PRISM is used to verify the
existence of different model properties such as the probability of reaching a spe-
cific system state. We begin this section by describing the process ADaCS takes
to find the best data collection strategy. We then describe the main components
of ADaCS in more detail.

3.1 Process of Finding Best Strategy

Figure 1 shows the main components of ADaCS and the process of comput-
ing an optimal data collection strategy for a given parameterised model: (1)
files encoding the parameterised PRISM model, model verification property, and
data collection strategy configuration are inputted to ADaCS; (2) the strategy
generator analyses the inputted strategy configuration and generates all valid
data collection strategies for the given model; (3) each valid strategy is tested
M times in order to compute the model’s mean output value (i.e., probability of
holding verification property), and variance under that strategy. Each test run of
a single data collection strategy is as follows: (3a) the sample generator generates
the correct number of data samples per input parameter in accordance to the
strategy and whose values respect the data source normal distributions encoded
in the given strategy configuration; (3b) the parameter generator generates input
parameter values for the model, where each input value represents a mean of the
data source samples generated for that parameter; (3c) the PRISM model checker
computes the maximum probability of the verification property existing in the
given model under the generated input parameters; (3d) the probability value
computed by PRISM is placed in the result storage. (4) the strategy analyser
checks the M results generated under each strategy and computes the mean
output and variance of the model under that strategy. (5) the optimal strategy,
that is the strategy providing the minimum output variance, is outputted to a
text file together with the strategy’s variance and cost. We now describe the
main components of ADaCS in more detail.

PRISM
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verification
property

strategy
config.

strategy
generator

sample
generator

parameter
generator

PRISM
model checker
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storage

strategy
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Fig. 1. Optimal strategy generation process
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3.2 Strategy Configuration

Information stating how data may be collected is inputted to ADaCS by way
of a strategy configuration file encoded in the Yet Another Markup Language
(.yaml). YAML is a human-readable data serialisation language commonly used
for configuration files such as the ones ADaCS requires. We will illustrate this
by example, see Fig. 2.

data sources: [d1,d2,d3]

input parameters: [P1,P2,P3]

input mapping: [[1,0,0],[0,1,0],[0,0,1]]

sample mean: [[0.5,0,0],[0,0.5,0],[0,0,0.5]]

sample variance: [[0.01,0,0],[0,0.01,0],[0,0,0.01]]

pre collected sample count: [0,0,0]

sample cost: [1,1,1]

sample increment: [50,50,50]

sample startup cost: [0,0,0]

min values: [0,0,0]

max values: [1,1,1]

budget: 200

Fig. 2. Example ADaCS strategy configuration file encoded in YAML

Figure 2 shows an example strategy configuration file for a model m1 with
three input parameters P1, P2, and P3 mapped to three data sources d1, d2, and
d3. The internal structure of the model m1 is not particularly relevant here, and
is omitted for the sake of exposition. We can assume however that the input
parameters of m1 are probabilities therefore the min and max values are 0 and 1
respectively. The sample increment is 50 for each data source meaning samples
can be drawn from each source in sets of 0, 50, 100, 150, and so on. The cost
to draw each sample is 1 for each data source and the total maximum data
collection budget is 200. A strategy collecting 50, 100, and 50 samples from d1,
d2, and d3, respectively, is valid (i.e., respecting the budget) whereas a strategy
collecting 50, 100, and 100 samples from d1, d2, and d3, respectively, would be
invalid.

3.3 Extending PRISM Model-Checker

ADaCS is an extension of the probabilistic model checking tool PRISM, version
4.3 [14]. PRISM is an intuitive choice as it enables the specification, construction
and analysis of parameterised probabilistic models, encoded as Markov chains
and Markov decision processes for example. PRISM also comes with command
line functionality and an open-source Java code base which is easily adaptable for
our purposes. At runtime ADaCS inputs the model being analysed into PRISM
which verifies the property expressed in the inputted verification property file.
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Algorithm 1. finding optimal data collection strategy
1: Inputs:

files:config,model,property
2: Initialize:

opt strategy = null, runs = 500
3: strategies = generateAllStrategies(config)
4: results data = emptylist
5: for j = 0 → strategies.length − 1 do
6: for k = 1 → runs do
7: params = getParameters(config)
8: output = solveModel(model,property,params)
9: results data.add(output)

10: opt strategy = getOptimalStrategy(results data)
11: variance = getVariance(opt strategy)
12: cost = getCost(opt strategy)
13: return opt strategy, variance, cost

For instance, assume we wish PRISM to verify the maximum probability that
a state can eventually be reached in a model m1. This property is expressed as
Pmax=? [F state], where F is the eventually operator and state is the model state
we are interested in reaching.

ADaCS extends PRISM with the a new -adacs command line switch such
that the following command can be executed:

$ prism m1.prism m1.props -adacs m1 config.yaml -exportresults
m1.adacs

The command tells PRISM to find the optimal data collection strategy under
strategy configuration m1.yaml, given m1.prism and model.props, and output
the strategy to m1.adacs. Algorithm 1 has been implemented in ADaCS which
finds the optimal strategy, its variance and cost, by exploring all possible strate-
gies. Example output written to m1.adacs is of the form:

optimal strategy: [100,50,50]
strategy variance: 0.02

strategy cost: 200

The optimal strategy [100,50,50] states that 100 budgetary units should
be invested in collecting data for parameter P1 from data source d1, 50 units for
P2 from d2, and 50 units for P3 from d3.

4 Computer Virus Attack

In this section we demonstrate ADaCS by modelling a probabilistic computer
virus attack scenario in PRISM and use ADaCS to calculate the optimal data
collection strategy. Such analyses could be useful to security architects by inform-
ing them where best to invest limited time or money in analysing the likelihood
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its systems will fall prone to attacks. We describe an attack-defence tree of a
virus attack, how the virus ADT is analysed with ADaCS, and present data
collection strategy analysis results and tool performance.

4.1 Attack-Defence Tree

We consider the scenario of an attacker trying to infect a computer with a virus
presented by Aslanyan, Neilson, and Parker in [2]. It is assumed an attacker will
try to infect a computer in two phases. Attack Phase 1 (AP1) involves trying
to put the virus file on the computer system followed by Attack Phase 2 (AP2),
which involves executing the virus file. Two defence mechanisms exist on the
computer system to prevent such an attack. First, an anti-virus mechanism aims
to prevent the success of AP1, and second, a system rollback mechanism aims
to prevent the success of AP2.

Figure 3 depicts the virus attack as an attack-defence tree, where each leaf
corresponds to a basic action on the computer system. More precisely, there are
three attack actions: (1) email, attacker sends virus as an email attachment; (2)
usb, attacker distributes virus on a usb stick; (3) exefile, attacker executes virus;
and two defence actions: (1) antivirus, anti-virus detects and removes virus; (2)
rollback, system rollback restores system to secure state.

In order for the virus attack to succeed both attack phases AP1 and AP2 must
succeed, in other words attack success = −→∧ (AP1,AP2). The right arrow indicates
AP1 must take place before AP2. For AP1 to be successful the virus must be
uploaded and has not been subsequently detected or stopped by the anti-virus
mechanism, such that AP1 = −→∧ (virus upload, ¬antivirus). It follows that virus
upload = ∨(email, usb) meaning the attacker must send an email and/or distribute
a usb stick containing the virus in order to upload it to the system. For AP2 to be
successful the virus must be executed and the system has not been restored by the
rollback mechanism, such that AP2 = ∧(exefile, ¬rollback).

virus success−→∧

AP1−→∧

virus upload
∨

email
P1

usb
P2

¬antivirus
1 − P3

AP2
∧

exefile
P4

¬rollback
1 − P5

Fig. 3. Attack-defence tree representing virus attack on a computer system
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4.2 Analysing Attack-Defence Tree with ADaCS

We model the virus ADT as a Markov decision process shown in Fig. 4 where the
darker nodes represent virus attack failure states. The virus attack is successful
if the state [¬rollback, exefile] can be reached. We assume the attacker’s choice
of virus deployment method is a non-deterministic attack action deployvirus
whilst all other actions, email, usb, antivirus, rollback, and exefile, are proba-
bilistic. The model is encoded in the PRISM language and has five input para-
meters P1, . . . , P5 representing the probability of each of the five probabilistic
actions succeeding. Each parameter is mapped to an action as follows: (email:P1),
(usb:P2), (antivirus:P3), (exefile:P4), (rollback:P5) as shown in Fig. 3. For instance,
if the state [virus upload] is reached, the virus has been placed on the computer
system. In this state, anti-virus removes the virus with probability P3 to reach
failure state [antivirus], or does not remove the virus with probability 1 − P3 to
reach state [¬antivirus]. The model property we verify using the PRISM model
checker is Pmax=? [F success], that is the maximum probability of eventually (F
is the eventually operator) reaching the state [¬rollback, exefile], labelled as virus
success in this case.

deploy
virus

email,
¬usb

email,
usb

¬email,
usb

¬email,
¬usb

P1 & P2

P1

P2

virus
upload

¬virus
upload

P3

¬anti
virus

anti
virus

P4 & P5

AP1

rollback,
¬exefile

rollback,
exefile

¬rollback,
exefile

¬rollback,
¬exefile

virus success

AP2

Fig. 4. Markov model style representation of the attack defence tree; darker nodes
represent attack failure states.

Next we consider three data sources d1, d2 and d3 from where data can be
collected to provide values for the model’s five input parameters. Table 1 shows
the mapping of parameters to data sources, the normal distribution N (μ, σ2) for
parameter Pi mapped to data source di, and the increment and cost to sample
each data source. For instance, data can be collected for P1 and P2 from either d1
or d2, whereas data for P5 can only be collected from d3. Data collected from d3
for P5 is drawn from a distribution whose mean μ = 0.7 and variance σ2 = 0.01.

We assume attack method data can be sampled from a wide range of litera-
ture encompassing scientific and anecdotal evidence of computer virus attacks.
Such data is likely to be easy to access but may not be highly accurate, and
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Table 1. Virus attack-defence tree data collection configuration

d1 d2 d3

email:P1 (0.5,0.2500) (0.5,0.0025) ()

usb:P2 (0.5,0.2500) (0.5,0.0025) ()

antivirus:P3 () (0.7,0.0025) ()

exefile:P4 (0.5,0.2500) () (0.5,0.0100)

rollback:P5 () () (0.7,0.0100)

Sample increment 5 5 5

Sample cost 1 5 3

therefore comes with low cost and high variance. We represent literature-based
data as data source d1. The values for parameters P1, P2, and P4, represent-
ing the probabilities of attack actions email, usb, and exefile being successful,
can be drawn from d1 in this instance. Next we assume attack data related to
attack actions email and usb, and defence action antivirus can be sampled from
the results of penetration testing. Such data is likely to be expensive and take
a large amount of effort to obtain, but gives accurate scientific evidence and
therefore comes with high cost and low variance. We represent penetration test
results as data source d2 from which values for parameters P1, P2, and P3 can be
derived. Lastly, data relating to the actions exefile and rollback can be sampled
from the results of system testing, coming with medium cost and variance. Data
source d3 represents the results of such system tests, and can provide values for
parameters P4 and P5. We further assume data may be collected from each data
source in increments of 5 samples (e.g. 5, 10, 15, . . . ), no samples have been pre-
collected, there is no data source startup cost, and the maximum data collection
budget is 100.

4.3 Data Collection Strategy Analysis

We analyse data collection strategies by executing ADaCS on a MacBook Pro
with 2.7 GHz Intel Core i5 processor and 16 GB RAM. For each strategy we
conduct M runs, as explained in Sect. 2, and we choose M = 500 based on trial
runs, from which we concluded that M = 500 is large enough to compute the
output variance sufficiently accurate. The choice for M is not the subject of
study in this paper, but one potentially could further improve our approach by
selecting a different number of runs M for different strategies, as long as for
each strategy the calculated variance V ar[E[Y ]|s] has a tight enough confidence
interval. In our case, the virus ADT model is solved by PRISM 500 times for
each strategy using input parameter values generated from samples drawn from
the Normal distributions corresponding to the relevant data sources which come
with a known mean μ and standard deviation σ2. The variance of a strategy is
calculated from the M output values computed by PRISM. Results generated
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Table 2. ADaCS data collection strategy analysis results and performance

Strategy type Samples
[d1, d2, d3]

Strategy
variance

Strategy
cost

Strategies
analysed

Runtime
(m:s:ms)

Min. cost [0,0,0] 1.81479E–4 0 1 00:22:067

Max. σ2/max. cost [100,0,0] 2.38172E–4 100 540 10:44:674

Min. σ2 [0,5,25] 1.165047E–5 100 4617 58:16:819

by ADaCS and its performance are given in Table 2. In particular we focus on 3
analysis scenarios in order to illustrate the potential benefit of using ADaCS.

The first scenario highlights the case where no further data is collected to
that given in Table 1. Analysis is carried out using ADaCS on the single data
collection strategy [0,0,0] which indicates no samples are to be collected from
any of the 3 data sources. In order to do so the total collection budget is simply
set to 0. ADaCS runs the analysis in 22.067 s and computes the output variance
of the model using this strategy to be 1.81479E–4.

The second strategy highlights the case where the total budget is spent with-
out optimising the data collection strategy. We use ADaCS to identify the worst
case strategy, that is the strategy that maximises the output variance of the
virus ADT model with maximum cost (i.e., cost = budget). ADaCS analyses 540
strategies whose cost equals budget in 10 m 45s and returns the worst case strat-
egy to be [100,0,0]. This strategy indicates the entire budget to be invested
in collected data from data source d1, that is literature based data regarding
attack methods. Note, if this strategy was implemented, the output variance is
roughly as bad as when no data would have been collected. In fact, the table
shows a small increase in variance, but this difference is caused by the inherent
uncertainty introduced by simulation.

The third scenario highlights ADaCS carrying out a full analysis of data
collection strategies in order to compute the optimal, that is the strategy within
budget which minimises the variance V ar[E[Y ]|s]. To find the optimal strategy,
ADaCS analyses all strategies within budget, a total of 4617 strategies in this
case. Taking this brute force approach comes with certain computational costs,
for instance the runtime of ADaCS is 58 m 17s. The strategy computed as the
optimal is [0,5,25] indicating 0 samples to be collected from d1, 5 samples from
d2, and 25 samples from d3. This is equivalent to 75 budgetary units, or 75%
of time invested on the value for P3 and 25 units, or 25% of time on the value
for P2. The strategy would indicate that system testing of the rollback defence
mechanism is of most importance followed by some penetration testing of the
antivirus mechanism. No more literature based data on attack methods need be
collected which is in complete conflict with the worst case strategy highlighted in
the second scenario above. The output variance of the virus ADT model, under
the optimal strategy, reduces from 1.81479E–4 to 1.165047E–5.
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5 Heuristic

In Sect. 4 we explained that by default ADaCS takes a brute force approach by
analysing all data collection strategies within budget in order to find the optimal.
We showed calculating the optimal strategy can be computationally expensive,
even for models with a relatively small number of parameters and data sources.
In this section we introduce a new strategy analysis heuristic that significantly
reduces the strategy exploration space in order to find the best strategy.

We introduce the heuristic by example first. Figure 5 illustrates the heuristic
for a model m1, which can be parameterized with values coming from 3 data
sources d1, d2, and d3. Each data source has a sample set increment size of 50,
cost per sample is 1 and total collection budget is 200. Rather than generating all
valid strategies and analysing them, the heuristic generates strategies to analyse
as necessary in a series of rounds; 5 rounds in the case of the example. In round
1 the base strategy is generated and analysed, this is the strategy [0,0,0]
where no data is collected from any data source. Imagine the model output
variance is computed to be 0.0676, this is set as the best strategy. In round 2
the next possible strategies are generated. As the sample increment size is 50,
the next strategies are [50,0,0], [0,50,0], and [0,0,50] which are analysed.
If a strategy s in round 2 has a lower output variance than the current best
strategy then s is set as the best strategy, [50,0,0] in the case of the example.
The heuristic moves on to the next round and keeps doing so until no strategy in
round i has a lower output variance than the current best strategy, or the cost of
the current best strategy equals the budget. The heuristic in this example cuts
the brute force strategy space of 35 strategies to 13 strategies.

The general heuristic is presented in Algorithm 2. The heuristic has been
implemented in ADaCS and results for 6 strategy analyses of the virus ADT
model are shown in Table 3. Note the significant reduction in strategies analysed,
4617 in the brute force approach, to between 40 and 60 and a computation run-
time of under 1 min. Note also the best strategy returned in each case indicates
that most investment should be made in collecting data from source d3, followed

0,0,0
0.0676

0,50,0
0.0566

50,0,0
0.0290

0,0,50
0.0521

50,50,0
0.01646

100,0,0
0.0237

50,0,50
0.01573

50,50,50
0.00685

100,0,50
0.01446

50,0,100
0.01591

50,100,50
0.00638

100,50,50
0.00420

50,50,100
0.00640

round 2 round 3 round 4 round 5round 1

Fig. 5. Illustration of heuristic to find optimal data collection strategy for example
model
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Algorithm 2. Heuristic for finding best strategy
1: Inputs:

files: config, model, property
2: Initialize:

best strategy = null, runs = 500
3: while true do
4: next strategies = emptylist
5: if best strategy == null then
6: base strategy = generateBaseStrategy()
7: next strategies.add(base strategy)
8: else
9: next strategies = generateNextStrategies(best strategy,config)

10: results data = emptylist
11: for j = 0 → next strategies.length − 1 do
12: for k = 1 → runs do
13: params = getParameters(config)
14: output = solveModel(model, property, params)
15: results data.add(output)

16: strategy = getBestStrategy(results data)
17: if getVariance(strategy) < getVariance(best strategy) &
18: getCost(strategy) ≤ getBudget(config) then
19: best strategy = strategy
20: else
21: break
22: variance = getVariance(best strategy)
23: cost = getCost(best strategy)
24: return best strategy, variance, cost

by d2, and none from d0 which matches the result of the brute force approach
in Sect. 4.3. The heuristic does however only find a best strategy, and not the
optimal one as shown by the increase in model output variance in Table 3. This
would indicate the existence of a trade-off between strategy optimality (brute
force) and computation time (heuristic).

Table 3. Best data collection strategies found using heuristic data collection method

Collection method Samples
[d1, d2, d3]

Strategy
variance

Strategy
cost

Strategies
analysed

Runtime
(m:s:ms)

Heuristic1 [0,5,20] 2.56808E-5 85 49 00:46:856

Heuristic2 [0,5,25] 2.19972E-5 100 57 00:52:432

Heuristic3 [0,10,15] 2.65431E-5 95 49 00:45:999

Heuristic4 [0,5,15] 2.68426E-5 70 41 00:39:711

Heuristic5 [0,5,25] 1.99201E-5 100 57 00:51:534

Heuristic6 [0,10,15] 2.61067E-5 95 49 00:46:047
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6 Related Work

The data collection strategy optimization approach in this paper combines
aspects of two main strands of analysis, namely sensitivity and uncertainty analy-
sis [1,5,16], and adds to that specific detailed techniques based on statistics (the
use of the central limit theorem) and optimization. In [4] we presented the related
work, and explained that compared to known literature, the problem formula-
tion in this paper is different because of its focus on strategies for deciding on
data sources. This leads to a specific optimization problem not found in litera-
ture. For more details, please refer to [4]. The contributions in this paper focus
on the practical application of and tool support for identifying data collection
strategies, and this will also be the focus of this related work section.

The performance and dependability community has developed an important
set of software tools that support the quantitative analysis of computer systems
and networks, e.g., [15]. The specific problem formulation of the optimization
problem in fact assumes that a performance or dependability model is built, and
tool support for optimizing data collection would therefore naturally fit with
tools such as Möbius [7], PRISM [14] or the PEPA workbench [9]. The data col-
lection problem presented in this paper is related to sensitivity analysis. Sensitiv-
ity analysis aims at identifying the most important parameters, using techniques
such as those within the classes of screening methods [12] and variance-based
methods [5]. Augmenting the mentioned class of quantitative analysis tools for
sensitivity analysis was first pursued by [10], which also articulates the compu-
tational challenge of exploring the parameter space when conducting sensitivity
analysis.

The heuristics identified in this paper to improve the efficiency of exploring
the ‘space’ of strategies is of importance in any of the related approaches in
uncertainty and sensitivity analysis. For closed-form mathematical and simula-
tion models with specific structure, advanced methods can be devised for the
specific problem, see [12] and other references in [4]. Exploration of the strat-
egy ‘space’ relates to exploration techniques in very different settings, such as
codesign [8], and it may be mutually beneficial for the evaluation and codesign
communities to jointly explore ideas and algorithms.

7 Conclusion

In this paper we presented the software tool ADaCS, which, to the best of our
knowledge, is the first tool facilitating the calculation for optimal data collec-
tion strategies for model parameterization. In particular, ADaCS extends the
probabilistic model-checker PRISM and includes both graphical and command
line elements, and should therefore be easily usable by a model developer using
PRISM. We also illustrated ADaCS on attack trees, which is a standard way to
model security attacks and defenses in a system.

Since the bottleneck in determining data collection strategies is in traversing
the space of all possible strategies, we elaborated on heuristics that limited the
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number of strategies for which the output variance needs to be computed. The
algorithms can reduce the computation time by an order of magnitude, which
may mean the difference between a feasible and intractable optimization.
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Abstract. ZooKeeper atomic broadcast (Zab) is at the core of
ZooKeeper system, enforcing a total order on service requests that seek
to modify the replicated service state. Since it is a leader based protocol,
its performance degrades when the leader server is made to handle an
increased message traffic. We address this concern by having the other,
non-leader server replicas toss a coin and broadcast their acknowledge-
ment of a leader’s proposal only if the toss results in an outcome of Head.
We model the coin-tossing process and derive analytical expressions for
estimating the coin’s probability of Head for a given arrival rate of ser-
vice requests such that the dual objectives of performance gains and
traffic reduction can be accomplished. Experiments compare the perfor-
mance of our coin-tossing Zab version (ZabCT) with Zab performance
and confirm that the dual objectives are demonstrably met under heavy
workloads. Moreover, ZabCT meets all requirements essential for crash-
tolerance provisions within Zab which can therefore be adopted in any
ZabCT implementation.

Keywords: ZooKeeper · Atomic broadcast · Implicit acknowledge-
ments · Coin tossing · Probability estimation · Protocol latency ·
Throughput · Performance comparison

1 Introduction

Apache ZooKeeper [8] is a high-availability system offering coordination services
to Internet-scale distributed applications. These services include: leader election
(used by Apache Hadoop [15]), failure-detection and group membership config-
uration (by HBase [6]) and reliable information storage and update (by Storm
in Twitter [16]). ZooKeeper itself is a replicated system made up of N,N ≥ 3,
servers that can crash at any moment and recover after an arbitrary downtime
with pre-crash state in stable store. Server crashes may even be correlated and all
servers may crash at the same time. Despite these failure possibilities, ZooKeeper
is guaranteed to provide uninterrupted services, so long as at least �N+1

2 � servers
are operative and connected.

c© Springer International Publishing AG 2017
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At the heart of ZooKeeper is the ZooKeeper atomic broadcast protocol, Zab for
short, to ensure that the service state is kept mutually consistent across all opera-
tional servers. Zab performance therefore impacts directly that of Zookeeper. Fur-
thermore, efficient atomic broadcast protocols have far wider applications, e.g., in
coordinating transactions particularly in large-scale in-memory database systems
[5,14]. In such applications, the atomic broadcast protocol typically operates in
heavy load conditions and is expected to offer low latencies even at such extreme
loads. Thus, it remains a practical research problem to explore ways of improving
Zab performance particularly under heavy loads.

Zab is a leader-based protocol and, like many other leader-based ones, it tends
to offer worsening performance when the load on the leader increases. Experiments
in [7] show that ZooKeeper throughput decreases gradually as write requests out-
number read requests in a cluster of any size. This is because read requests can
be processed without involving Zab, while writes cannot start until Zab execution
completes.

The aim of this paper is to improve Zab performance by reducing message
traffic, both inbound and outbound, at the leader. This requires modifying the
behaviour of non-leader servers, also known as followers, in two simple but impor-
tant ways. In Zab, followers respond to the leader through unicast (1-to-1) com-
munication which are changed to broadcasts. This allows followers to decide
autonomously and relieves the leader from being the sole decision maker and,
importantly, from having to broadcast its decisions to followers. This, in turn,
reduces the leader’s outbound traffic.

Secondly, a follower’s broadcast is conditioned on the outcome of a coin toss:
it is made if the outcome is Head ; otherwise, not. This conditional broadcasting
allows the inbound traffic at the leader to be reduced. It also introduces many
design challenges. The principal one is in choosing the coin’s probability p of
a toss outcome being Head in such a way that enough followers broadcast for
reaching decisions swiftly and thus keeping latencies small, but not to allow too
many to broadcast at the same time. That is, determining p involves a trade-off
between competing requirements. We model the coin-tossing process and derive
analytical expressions for making this trade-off.

In extreme cases, p may not exist and servers must switch to Zab in a seem-
less manner. These aspects are addressed; the resulting protocol, termed as Zab
with Coin Tossing or ZabCT for short, also maintains the well-understood and
implementation-friendly structure of Zab itself. Moreover, ZabCT differs from
Zab only in the latter’s fail-free part and preserves all Zab invariants so that the
crash-recovery part of Zab can be used unchanged. So, ZabCT can be imple-
mented easily using Zab implementations.

The paper is structured as follows. Section 2 describes Zab for completeness.
Section 3 presents ZabCT design objectives and challenges, together with a com-
plete set of solutions and their correctness or rationale. Section 4 is devoted to
comparing the performance of Zab and ZabCT using latency and throughput
as metrics; for space reasons, we only consider heavy work load and crash-free
settings so that p can always be found and switch to Zab is not warranted. All
our experiments confirm our design objectives: smaller average ZabCT latencies
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and reduced traffic at the leader. Section 5 discusses the related work. Finally,
Sect. 6 concludes the paper.

2 ZooKeeper Atomic Broadcast Protocol

ZooKeeper implements replicated services using an ensemble of N , N ≥ 3, con-
nected servers. N is typically an odd number and commonly 3 or 5.
Assumption A1 - Server Crashes: A server can crash at any time and recover
after a downtime of arbitrary duration. It has a stable store or log and the log
contents survive a crash. A server that is operative is also said to be correct.
Assumption A2 - Server Communication: Servers are connected by a reli-
able communication subsystem: messages sent by a correct server are never per-
manently lost and are received by all correct destinations in the order sent.

Servers are replicas of each other and maintain a copy of the application state.
Zookeeper clients can submit their requests to any one of N servers. Requests
may be broadly categorised as read or write; the latter seek state modification
while the former do not and are serviced only by the server receiving it. Write
requests are first subject to total ordering through an execution of ZooKeeper
atomic broadcast (Zab) protocol and then are carried out by all servers as per
the order decided.

Let Π ={p1, p2, ...., pN} denote the set of Zab processes, one in each server.
One Zab process is designated as the leader and the rest as followers. As in
2-Phase commit protocol, only the leader initiates atomic broadcasting of m,
abcast(m) for short, and the followers respond to what they receive. So, when a
follower receives a write request m for ordering, it forwards m to the leader for
initiating abcast(m). When Zab execution for m terminates, both the leader and
followers deliver m locally for ordered processing, and this event is denoted as
abdeliver(m).

Since the leader can crash any moment, Zab, like Paxos [10], exploits the
notion of quorums: a quorum Q is any majority subset of Π and any two
quorums must intersect. Let Q be the set of all quorums in Π: Q = {Q :
Q ⊆ Π ∧ |Q| ≥ �N+1

2 �}. ∀Q,Q′ ∈ Q : Q ∩ Q′ 
= { }; e.g., when N = 3,
Q = {{p1, p2}, {p2, p3}, {p3, p1}, {p1, p2, p3}}.

By the liveness arguments in [8] (see Claim 7), when the leader crashes,
another process gets elected as the new leader so long as a quorum of processes are
correct and can communicate in a timely manner. The new leader starts abcast-
ing after it has synchronised its abdelivered message history with the quorum that
elected it. We refer the reader to [8] for crash-tolerance details and order guaran-
tees, and focus on aspects of the Zab protocol during crash-free runs.

2.1 Zab Protocol

It consists of the following steps.

– L1: Leader initiates abcast(m) by proposing a sequence number m.c for m and
by broadcasting its proposal(m) (to all processes, including itself);
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– F1: A follower, on receiving proposal(m), logs m and then sends an acknowl-
edgement, ack(m), to the leader;

– L2: Leader sends ack(m) to itself after logging m. On receiving ack(m) from
a quorum, it broadcasts commit(m) before commit(m′: m′.c = m.c + 1) is
broadcast;

– F2: A follower, on receiving commit(m), executes abdeliver(m).
– L3: Leader, on receiving commit(m) (from itself), executes abdeliver(m).

Note that processes receive commit(m) in the increasing order of m.c and
hence observe an identical abdelivery order. Also, the protocol steps need not be
sequential: the leader can use concurrent threads to execute L1, L2 and L3, and
so can followers to execute F1 and F2. The following invariant holds for every
abdelivery :

If a process executes abdeliver(m), then all processes in some Q ∈ Q have
logged m.

This invariant is necessary and sufficient for correct replacement of a crashed
leader: any m that might have been abdelivered under the old leader is guaranteed
to be abdelivered by the new leader since (i) the latter synchronises itself with
a quorum that elects it, and (ii) any two quorums ought to intersect. ZabCT is
designed to preserve this invariant. Leader crash and subsequent replacement can
therefore be dealt with using Zab mechanisms and hence are not addressed here.

3 Coin-Tossing Zab (ZabCT)

In presenting ZabCT design objectives and details, we will initially assume that
no follower crashes, there are n, �N+1

2 � ≤ n ≤ N − 1, operative followers, and
that n is known to followers via a membership view management service such as
JGroups [1]; also that the leader starts its abcasting epoch with initial sequence
number m.c0.

3.1 Design Objectives

They are primarily two-fold: to reduce inbound and outbound traffic at the leader
with no overall performance loss and an increased outbound traffic at followers.

The leader reduces its outbound traffic by not broadcasting commit at all, but
leaving it to the followers to decide locally when a given m is to be committed.
The latter requires that (i) followers broadcast their acks (not just unicast to the
leader) and (ii) n ≥ �N+1

2 � which makes ZabCT less crash-resilient than Zab;
e.g., ZabCT is not viable if a follower crashes in a system of N = 3 processes.
We later address this restriction by letting processes switch between ZabCT and
Zab without stopping abdelivery.

Inbound traffic at the leader is reduced by the use of implicit acknowledg-
ments and coin-tossing by followers. When a follower has logged m and is ready
to broadcast ack(m), it tosses a coin: if the outcome is Head, ack(m) is broadcast;
if Tail, ack(m) is sent only to itself. Further, whenever ack(m) is broadcast, it
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indicates to recipients that the broadcaster has locally logged all proposal(m′),
m.c0 ≤ m′.c < m.c, and every such proposal(m′) is thereby being implicitly
acknowledged. Recall that the assumption A2 guarantees that proposal(m′),
m′.c < m.c, is received before proposal(m) and hence that m′ is logged no later
than m.

The lines of pseudo-code executed (possibly by concurrent threads) at the
leader are as follows.

– L1: Leader initiates abcast(m) by broadcasting proposal(m) to all processes;
– L2: On receiving (from itself) proposal(m): log m; send ack(m) to itself;
– L3: Upon receiving either ack(m) or implicit ack for m from a quorum: send

commit(m) to itself;
– L4: On receiving commit(m): abdeliver(m) before abdeliver(m′), m′.c > m.c;

Those executed at a follower are:

– F1: On receiving proposal(m) from the leader: log m; send ack(m) to itself;
toss the coin; if (coin = Head) then broadcast ack(m) to leader and all other
followers;

– F2: On receiving ack(m) or an implicit ack for m from a quorum of followers,
send commit(m) to itself.

– F3: On receiving commit(m): abdeliver(m) before abdeliver(m′), m′.c > m.c;

Let committable(m) be a stable predicate that becomes true at a process if
the process has received either ack(m) or implicit ack for m from a quorum.
At any pi, committable(m) ⇒ committable(m′), ∀m′ : m.c0 ≤ m′.c ≤ m.c; also,
¬ committable(m′) ⇒ ¬ committable(m). Note that these properties also hold
true in Zab and the use of implicit acks does not invalidate them. Coin-tossing,
however, brings in challenges not present in Zab.

3.2 Coin Toss Challenges

Let us focus on committable(m) becoming true for a given m that the leader
abcast at, say, time t0. Subsequent to m, let the leader abcast mi, i ≥ 1, at time
ti, ti−1 < ti < ti+1. Assume for brevity that time taken for message processing
and transmission is zero. Thus, followers toss their coins at t0 for m and at ti
for mi as shown in Fig. 1(a).

Let p denote the probability that a coin-toss results in Head ; so, prob
(Tail) = 1 − p. Let N = 5 and the leader of this 5-process system be p1 also
denoted as p�, � = 1.

In scenario 1, at time t0, the followers p2 and p3 are assumed to get Head and
others a Tail outcome. This outcome is abbreviated in Fig. 1(b) as (H2,H3) with
subscripts indicating followers that got Head and Tail outcomes not explicitly
shown. committable(m) becomes true for {p�, p4, p5} and not for {p2, p3} which
have only two ack(m). When the coin-toss outcome at t1 is (H4,H5), p4 and p5
broadcast ack(m1) and thereby implicitly ack m. Thus, committable(m) becomes
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Fig. 1. (a) Coin toss instances; (b) Scenario 1; (c) Scenario 2

true for {p2, p3} at t1. Note that, also at t1, committable(m1) becomes true for
{p�, p2, p3} (but not for {p4, p5}).

Thus, the system-wide coin-toss outcomes determine when individual
processes can abdeliver a given m. We next claim that p� is always in the first
wave of at least 2 processes that abdeliver any m.

Lemma 1: If committable(m) becomes true for a follower at t, then commit-
table(m) becomes true for p� at t or earlier (when zero message transmission
time is assumed).

Proof is simple and done by contradiction: if a follower can receive ack(m)
or implicit ack for m from at least �N−1

2 � other followers, p� would also receive
the same.

Lemma 2: If committable(m) becomes true for p� at t then there exists at least
one follower for which committable(m) becomes true also at t.

Proof follows from the requirement n ≥ �N+1
2 � = �N−1

2 � + 1: even if p� receives
ack(m) or implicit ack for m from exactly �N−1

2 � followers, there must be one
follower that receives the same from other followers at the same time.

Thus, the earliest time a follower can abdeliver m is when p� abdelivers m.
Scenario 2 in Fig. 1(c) is used to illustrate ZabCT reliance on subsequent

abcasts for abdelivering m and hence the expected impact on performance if p
is kept too small: only p2 gets Head until tk−1, for some k > 1, and at tk only
p4 gets Head. Only at tk, p� can abdeliver m together with followers p3 and p5;
{p�, p3, p5} can also abdeliver m1,m2, . . . , mk−1 at tk due to acks broadcast by
p2 and implicit ack from ack(mk) broadcast by p4.

Observe that p� requires 0 and k abcasts subsequent to m in order to abdeliver
m in scenarios 1 and 2 respectively. For a given p, let W (p) be the expected
number of abcasts required subsequent to m for p� to abdeliver any m. (It is the
average over all possible coin-toss outcomes for a given p.)
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Note also that W (p) = 0 when p = 1 and W (p) → ∞ as p → 0. We thus
observe that abdelivery latencies depend on W (p) and the intervals between
successive abcasts. Let λ be the average rate at which p� makes abcasts. Therefore,
we have:

Challenge 1: p must be chosen by taking into account the prevailing value of
λ if the average abdelivery latency by ZabCT is to be smaller than that by Zab.

It is possible that the value of λ drops suddenly; if that happens, (ti+1 − ti)
for some i < k in scenario 2, for example, can be too long and abdelivery of m
is delayed considerably. In these circumstances, followers are forced to carry out
coin-tossing.

Challenge 2: Enforce coin-tossing by followers, when necessary, so that the
average abdelivery latency by ZabCT does not exceed that by Zab.

Suppose that followers are forced to coin-toss quite frequently. This obviously
tends to reduce ZabCT latencies but also increases the rate at which followers
generate acks (for any given p > 0). The latter has two implications: first, our
design objective of reducing inbound traffic at the leader is undermined; secondly,
a follower, due to an increased inbound traffic of acks, cannot speedily respond
to read requests.

Challenge 3: The rate of ack arrivals at a follower is bounded by θ ≤ λ.
A follower receives commit messages in Zab at the rate of λ, i.e., one com-

mit(m) for every abcast(m) and hence commit messages arrive at a follower at
rate λ in steady state. There are no commit messages in ZabCT but followers’
acks are broadcast. So, θ = λ ensures that followers handle the same inbound
traffic in both protocols.

Let us note that when followers toss coins more frequently or use larger
value of p, ZabCT latencies tend to be smaller and the rate at which acks are
broadcast tends to be larger. This means that addressing the first two challenges
can at times make addressing the third one impossible and vice versa. That is, it
may not always be possible to have ZabCT out-performing Zab; this observation
leads to:

Challenge 4: If ZabCT is judged not to offer performance benefits over Zab,
processes should be able to switch autonomously to Zab.

We next address Challenge 2, then Challenges 1 and 2, and finally Challenge 4.

3.3 Enforced Coin Tossing

Since coin-tossing is done only by followers, enforcing it causes no change in the
pseudo-code of the leader in Subsect. 3.1. For followers, F2 and F3 are unchanged,
F1 is modified and F4 is added:

– F1: On receiving proposal(m) from the leader: log m; send ack(m) to itself;
reset timer(D); toss coin; if (coin = Head) then broadcast ack(m);

– F2: // As in Subsect. 3.1;
– F3: // As in Subsect. 3.1;
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– F4: On timer(D) expiry: reset timer(D); if (∃m′: not implicitly acked by this
process

∧
ack(m′) not broadcast

∧ ¬ committable(m′)) then {select m, m.c ≥
m′c; toss coin; if (coin = Head) then broadcast ack(m)};

Every time a follower receives a proposal, it sets a timer for duration D (in F1).
When the timer expires (in F4), the follower resets it and looks for proposal(m′)
whose m′ has been neither implicitly nor explicitly acked and not committed
as well. If it has such a proposal(m′), then it selects the proposal(m) with the
largest m.c ≥ m′.c. Note that if m 
= m′, m would also not have been committed
nor acked implicitly or explicitly. The follower broadcasts ack(m), if the outcome
of coin toss is Head. Thus, a follower’s coin tossing rate is maximum

{
λ, 1

D

}
which

is no smaller than 1
D .

3.4 Computing Coin Toss Probabilities

We will continue to retain (for now) the simplifying assumptions that n is known,
fixed and is at least �N+1

2 �. Followers must meet two (competing) requirements:
R1: The average abdelivery latency is less than the average latency in Zab; and,
R2: The average rate at which followers broadcast acks is bounded by θ ≤ λ.

Let L denote the average leader latency in Zab and d the average transmission
delay for commit messages to reach the followers. Thus, the average follower
latency in Zab is L + d.

Suppose that ZabCT is run with p = 1; i.e., followers broadcast their acks
(instead of unicasting them to the leader as in the equivalent Zab runs). If the
broadcasting overheads are ignored, L is also the average ZabCT latency for
all pi ∈ Π. However, when p < 1, leader requires an average of W (p) follow-
up abcasts for abdelivery, and each of these abcasts is separated by an average
duration of min

{
1
λ ,D

}
. So, the average leader latency in ZabCT is L + W (p) ×

min
{

1
λ ,D

}
. By Lemmas 1 and 2, a follower can abdeliver only as early as the

leader. So, a necessary condition for R1 is:

W (p) × min
{ 1

λ
,D

}
< d (1)

Followers toss coins at the average rate of max
{
λ, 1

D

}
and the expected number

of heads in each of these tosses is np. Thus, R2 requires np × max
{
λ, 1

D

}
< θ; so,

p <

(
θ

n

)

× min
{ 1

λ
,D

}
(2)

With D fixed at the start, each follower periodically measures λ and computes
prob(Head) as follows. It estimates P1 as the smallest probability that satisfies
Eq. 1, and P2 as the largest probability that satisfies Eq. 2. When P2 ≥ P1,
prob(Head) for ZabCT is chosen as some p, P1 ≤ p ≤ P2 with a default choice
of p = P1; when P2 > P1, ZabCT is not feasible and a switch to Zab is needed.
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Computing W (p) = E(No. of subsequent abcasts for abdelivery
by Leader)
It is similar to computing the hitting times of specific states in a transient Markov
chain. Let us assume that message transmission and processing times are zero
and focus on abdelivery of m that was abcast at t0 as depicted in Fig. (1a). Let Si,
0 ≤ i ≤ n, refers to the system state in which i followers have broadcast either
ack(m) or ack(m′ : m′.c > m.c). f(h; g) =

(
g
h

)
ph(1 − p)(g−h) is the binomial

probability that h heads occur when g followers toss their coins. Thus, Si is
reached at t0 with probability f(i;n), i.e., when i of n followers get Head in
their coin-toss for m at t0.

When i ≥ a = �N−1
2 �, the leader abdelivers m, and hence Sa, Sa+1, ....... Sn

are called absorption states which, if reached, require no further abcasts for m
to be abdelivered by the leader. Let Wi(p) be the expected number of abcasts
required for leader to abdeliver m, given that system is in Si at t0; note that
Wi(p) = 0,∀i ≥ a.

Let qij be the probability that the system transits from Si to Sj , j ≥ i, when
one more abcast is made. It is the probability that (j − i) followers, out of those
(n − i) followers that have not yet got Head since receiving m, get Head for the
latest abcast. So, qij =

(
n−i
j−i

)
p(j−i)(1 − p)(n−j). Wi(p) = (1 + Wj(p)), given that

Si prevails at t0 and Sj at t1; any Sj , i ≤ j ≤ n, is possible at t1 with probability
qij . So, we have:

Wi(p) =
n∑

j=i

qij(1 + Wj(p)) =
n∑

j=i

qij +
a−1∑

j=i

qijWj(p) = 1 +
a−1∑

j=i

qijWj(p) (3)

∴ W (p) =
n∑

i=0

f(i;n)Wi(p) =
a−1∑

i=0

f(i;n)Wi(p).

For example, when N = 5 and n = 4, W4(p) = W3(p) = W2(p) = 0;
from Eq. 3, W1(p) = 1

1−q11
and W0(p) = q01×W1(p)

1−q00
. W (p) = f(0; 4)W0(p) +

f(1; 4)W1(p).

3.5 Protocol Switching

A follower may wish to switch to executing Zab on two occasions: (i) p could
not be computed as per Eqs. 1 and 2; and, (ii) another follower crashes, value
of n changes and the membership service is yet to update the new membership.
In the latter case, the value of p being used may be inappropriate and abcasts
can remain uncommitted for too long. This is deduced by setting timer(Cm) on
receiving proposal(m).

Protocol switching is organised similar to 2-Phase commit: even one follower’s
vote to quit ZabCT is enough for all to switch to Zab, and all followers must vote
for ZabCT for switching from Zab to ZabCT; moreover, the leader decides based
on followers’ votes and informs them of its decision. Followers use a message field
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prot in their acks to indicate their votes, and the leader uses prot in its commit
messages to inform followers of its decision.

If a follower, while executing ZabCT, experiences timer(Cm) or cannot find
p, it unicasts its ack (as in Zab) to the leader with prot set to Zab. Whenever
the leader receives an ack(m) with prot =Zab, it broadcasts commit(m) with
prot =Zab to all followers, when it sends, or if it has already sent, commit(m) to
itself. When a follower executing ZabCT receives commit(m) with prot =Zab, it
starts executing Zab.

A follower that executes Zab still measures λ and attempts to compute p; if p
can be computed successfully on several consecutive iterations and membership
remains unchanged for a prolonged period, a follower votes for ZabCT using
prot. If the leader receives votes for ZabCT from all n, n ≥ �N+1

2 �, followers,
it broadcasts its commit with prot =ZabCT and thus instructs the followers to
switch to ZabCT.

4 Performance Comparison

In this section, we compare the performances of Zab and ZabCT. Atomic broad-
cast latency and throughput are the two metrics used for comparison.

We use 250 concurrent clients distributed equally on 10 identical machines;
each machine thus hosts 25 clients. At most 9 machines were dedicated to running
the protocols, thus covering N = 3, 5, 7, 9. Machines used in our experiments are
commodity PCs of 2.80 GHz Intel Core i7 CPU and 8 GB of RAM, running
Fedora 21 and communicating over 100 Mbps Switched Ethernet. Connections
between machines were established at the beginning of the experiment.

The protocols were implemented in Java (JDK 1.8.0) on top of the JGroups
framework. JGroups is a toolkit for reliable communication and also supports
crash detection, joining of a recovered process and installation of group mem-
bership views [1]. Messages are transmitted using JGroups’ FIFO reliable UDP,
more precisely, by using UNICAST3 protocol in JGroups suite which is func-
tionally identical to TCP.

Each client generates a read or write request with a payload of 1Kbyte and
sends the request to one of N servers. If the request is of read type, then the
server simply returns the request as the response; if the request is of write type,
the server (if not the leader) forwards it for abcasting ; when a server abdelivers
a request it had received directly from a client, it sends the request back to
the client as the response. Thus, no read/write operations actually occur since
the aim is to measure and compare abdelivery latencies and throughput. On
receiving the response, the client repeats its action after a specified wait-time
and selects the destination server in a round-robin manner. If wait-time is zero,
servers collectively handle at most 250 requests at any moment.

We use write-ratio, WR, 0 < WR ≤ 1, for clients to vary the load they
impose on servers. For every write request that a given client generates, it will
generate 1−WR

WR read requests; in other words, WR > 0 is the probability that
a request generated by a client is of write type. Experiments reported consider
WR values ranging from 10% to 100% in steps of 10%.
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In an experiment, where the protocol, WR and N are fixed, clients send,
and receive responses for, a total of 10000 write requests after the warm-up
phase. For example, if WR = 50%, the server system will process 10000

0.5 = 20000
read/write requests, i.e., each of the 250 clients will issue 80 requests. Note that
servers handle at most 250 × WR abcasts at any moment when client wait-time
is zero.

Let t0 and t1 be the instances when a server receives a request from a client
and abdelivers that request respectively; t1 − t0 defines the abdelivery latency
for that request. We compute the average of 10000 such latencies and repeat
the experiment 20 times for a confidence interval of 95%. Throughput is defined
as the number of abdeliveries (abds) made by all servers per unit time and is
computed, like latencies, with a 95% confidence interval. For space reasons, we
report latency/throughput improvements offered by ZabCT over Zab and are
computed as follows. Let X and Xct be metrics for Zab and ZabCT respectively;
improvement in latency (L) is L−Lct

L and that in throughput (T ) is Tct−T
T . (Thus,

a positive value implies ZabCT is better.)
Experiments are run in failure-free scenarios. Furthermore, servers do not

log m in disk (as ideally required) but only record m in main-memory. Thus the
performance figures we present here do not include disk write delays, but only
network delays. This kind of evaluations corresponds to the ’Net-Only’ category
of the evaluations in [8] where several ways of logging have been considered. Since
both protocols require logging of m exactly at the same point in the execution for
every abcast(m), ignoring delays due to disk writes cannot invalidate the integrity
of observations made and conclusions drawn from the performance figures.

We consider two values for client wait-time: zero and a random value that
is uniformly distributed (u.d. for short) on (25, 75) millisecond (ms), with the
average of 50 ms. In the former, client does not wait between receiving response
and issuing its next request, whereas in the latter client waits for an average of
50 ms. Thus, the arrival rate of proposals, λ, measured by followers every second,
will be different for different values of wait-time and WR used.

Ideally, θ in Eq. 2 must satisfy θ ≤ λ - see Challenge 3 in Subsect. 3.2. To
avoid followers being unable to compute p and thereby having to switch to Zab
in experiments, we set θ = λ when WR = 1 when Zab was run. That is, we
measured the average value of λ encountered when Zab was run for WR = 1,
and used that values to fix θ in ZabCT for all values of WR (including WR = 1).

Thus, with zero client wait-time, the θ values used in ZabCT are: 3967,
2351, 1639, 1332 when N = 3, 5, 7, 9 respectively; similarly, for wait-time u.d.
on (25, 75), θ values for ZabCT are: 3597, 2236, 1597, 1302 when N = 3, 5, 7, 9
respectively.

Finally, each follower continually measures d as the communication delay
(one-way transmission) from the leader to itself (see Subsect. 3.4), without clock
synchronisation. This is done by a follower selectively timestamping its ack and
the leader incorporating the duration elapsed between receiving a timestamped
ack and broadcasting its next timestamped proposal.
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4.1 Observations

Figure 2 presents the average latency and throughput comparison for N = 5
and zero client wait time. Let us first focus on latency comparison depicted in
Fig. 2a. As we can observe, ZabCT offers lower latencies compared to Zab for all
WR values.
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Fig. 2. Performance comparison for N = 5 and zero client wait-time

Table 1. Zero client wait-time

The difference between Zab and ZabCT varies between 7 and 11 ms. This can
be attributed to (i) absence of commit message transmissions in ZabCT and (ii)
ZabCT leader receiving fewer acks compared to Zab leader, see column N = 5
in Table 1a. (Recall that number of acks received by the Zab leader per commit
is N − 1.) Due to (i) and (ii), the leader and followers have fewer messages in
their buffer, which results in messages being received faster at destinations and
in reduced abdelivery latency.
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Figure 2b compares throughput with zero client wait-time. The throughput
of ZabCT is at least as good as, if not better than, Zab; when WR = 100%, the
difference is maximum at about 70 abds/sec.

Table 1 shows the number of acks received by the leader per commit and the
coin-toss probabilities computed for experiments with zero client wait-time. An
important observation to be drawn from the Table 1a that, in all N , the ZabCT
leader receives less incoming traffic compared to the Zab leader. For example,
when N = 5 and at WR = 10%, 100%, ZabCT leader receives 1.319 and 0.599
acks per commit respectively whereas in Zab, the leader would receive N −1 = 4
acks. This reduction in ack messages for ZabCT leader corresponds to the small
coin-toss probabilities of 0.338 chosen for WR = 10 and 0.156 for WR = 100.
This is the main reason we observe lower latency and relatively high throughput
as shown in Fig. 2.

Figure 3 shows latency and throughput comparison using an average of 50 ms
client wait-times (u.d. on (25, 75)). An interesting finding is that in Fig. 3a at
WR = 10%, 20%, 30%, the latency becomes nearly equal for ZabCT and Zab. A
possible explanation for these results may be λ is low (due to (1) non-zero client
wait-time and (2) reads far out-numbering writes) which leads to high coin-toss
probabilities 0.750, 0.561 and 0.381 respectively (see Table 2b column N = 5).
This results in increasing incoming traffic for leader and followers (increasing
the number of acks per commit) to 3.253, 2.688 and 2.046 respectively (see
Table 2a column N = 5). However, as WR increases, λ becomes high. This leads
to less incoming traffic on the leader and followers, resulting in ZabCT latency
being smaller than Zab, with a maximum difference of 1 ms at WR = 40% and
increasing to about 5 ms at WR = 100%.

Figure 3b compares throughput for N = 5. It is obvious that ZabCT demon-
strates high throughput. With WR = 70%, 80%, 90%, 100% the difference is
about 130 abds/sec.
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Table 2 indicates the number of acks received by ZabCT leader per commit
and coin-toss probabilities for an average of 50 ms client wait-time. Consider
Table 2a; it is significant to notice that the number of acks per commit is higher
than that shown in Table 1a. This is explained by the fact that λ decreases for all
N and WR (due to non-zero wait-times), resulted in probability, Prob(Head)
increases, hence the likelihood of sending an ack increases as well (see Table 2b).

Table 2. Client wait time in (25, 75) ms

Table 3 shows latency improvements for all N and WR, and for both zero
and 50 ms client wait-time experiments. Overall, what is interesting to note is
that the performance of ZabCT nearly outweighs that of Zab for all N and WR.
Frequent abcasting leads to frequent coin-tosses which in turn reduce the delays
due to the leader having to commit by receiving implicit acks from followers;
moreover, the incoming traffic at the leader reduces remarkably (see Tables 1a
and 2a) when followers toss coins which will have the effect of reducing latencies
at the leader.

Table 3. Latency improvement
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5 Related Work

As per [4], Zab belongs to the group of fixed sequencer protocols and its intel-
lectual ancestor is Paxos [3,10]. Unlike Paxos, Zab permits at most one leader
at any moment and a new leader cannot commence its leadership role until a
quorum of servers have disowned the old leader; thus, it avoids Paxos-style bal-
lots, but it may omit abdelivering some abcasts during, and because of, leader
change. Consequently, Zab cannot guarantee causal order delivery as tradition-
ally understood [9].

Leader based protocols tend to overload the leader and several authors [2,11,
12,17] have sought to remedy this drawback. S-Paxos [2] relieves the leader from
broadcasting client requests by separating the roles of request dissemination and
request ordering. Each process directly broadcasts client requests to others and
request ordering is done using only request identifiers.

Mencius [12] allows each process to act as a leader by numbering its own
abcasts with unique and increasing m.c such that all abcasts are uniquely and
continuously numbered. It thus achieves a high throughput but any server crash
could stop abdelivery until reconfiguration. Chain replication [17] reduces the
leader load by distributing the role between two servers called the head and the
tail but involves sequential transmission of m which tends to increase abdelivery
latencies for large N .

Broadcasting an acknowledgement is common in symmetric (leaderless)
atomic broadcast protocols such as [14]. That it helps to avoid the leader
broadcasting commit messages has been hinted by Zab authors themselves (e.g.,
[8,13]). In this paper, we explored this idea with coin-tossing approach to reduce
the number of acknowledgements being broadcast. Implicit acknowledgments
and membership service which we have used here are not new. The former are
commonly used in TCP implementations where they are also called cumulative
acknowledgements. The latter is readily offered by the (open-source) JGroups
framework [1].

6 Conclusions and Future Work

We have extended the well-known Zab protocol under its original fault assump-
tions. Extensions use ack broadcasting - not an unknown idea [8,13] - but subject
to coin-toss outcomes to reduce network traffic and also the traffic at the leader.
Coin-tossing is one instance of the general concept of using only a subset of
randomly selected nodes to engage in communication at any given time in order
to reduce traffic, particularly at bottleneck nodes. Examples are: controlling ack
implosion at multicasting nodes and information dissemination through gossip-
ing in large systems.

While coin-toss reduces leader traffic, it also delays abdelivery which requires
future abcasts to be made or coin-tossing to be forced. This paper demonstrates
that the effect of leader traffic reduction is so overwhelming that much smaller
latencies can be obtained particularly at heavy loads when coin-toss probability
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is appropriately chosen. This is our principal contribution and, to the best of
our knowledge, improving Zab performance through coin-toss guided ack broad-
casting has not been investigated. Followers broadcasting their acks to eliminate
commit phase in Zab has been deemed impractical in [13]; here, we demonstrate
that it is indeed a practical approach to improve Zab performance when it is
combined with coin-tossing.

Having established that coin-tossing is effective, irrespective of WR and N ,
when λ is relatively large, we plan to conduct more evaluations with θ vary-
ing realistically with λ and with a follower being allowed to crash which would
force protocol switching (Subsect. 3.5). We also plan to investigate ZabCT per-
formance at heavier loads that saturate the Zab leader to an extent that Zab
throughput starts deteriorating.
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Abstract. This paper introduces performance models of two phase and
three phase commit protocols specified formally using the Markovian
process algebra PEPA. We show how we can investigate the performance
of such distributed commit protocols to get more insight into the system
behaviour under different loads. The commit phases of the protocols are
examined using discrete state space (CTMC) and fluid (ODE) analysis
and then compared to better understand how performance is affected by
the different protocol behaviours.
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1 Introduction

In a distributed database system a transaction is logically an atomic operation,
thus either it will be executed to completion (i.e. committed) or not executed
(i.e. aborted) [15–17]. Nonetheless, a transaction physically is comprised of a
sequence of sub-operations. This discrepancy causes a considerable problem in
distributed systems implementations [15]. Commit protocols are used for pre-
serving the atomicity of distributed transaction, where all participating servers
either unanimously abort or unanimously commit a transaction. Examples of
distributed database systems include banking applications, airline reservation
systems, and stock-market transactions.

Two Phase Commit Protocol (2PC) [7] is a distributed algorithm used in
distributed database systems. Also, it is a simple commit protocol [7,14] that
allows unilateral abort. This characteristic preserves transaction atomicity in the
absence of failures. Skeen’s Three Phase Commit protocol (3PC) is an extension
of the 2PC protocol [15], to cope with the blocking problem of the 2PC pro-
tocol. The 3PC protocol is a replicated data management protocol, which not
only increases data availability but also, decreases the cost of data retrieval
[6]. Consequently, it provides high performance and also, can tolerate perfor-
mance failures. 2PC and 3PC protocols have long been widely used in trans-
action processing, computer networking and databases [3,7,20]. Additionally,
these protocols are widely used in numerous distributed database environments,
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for instance, real-time databases [8], Web databases [21], distributed database
systems homogeneous [4] and heterogeneous [1].

According to [15] commit protocols are classified into two generic classes:
The first, centralized class, designate a coordinator to control the transaction
execution at other servers. The second class is completely decentralized, as in
the models in this paper. The centralized model of the 2PC protocol, however,
is a costly protocol due to required logs and communication between servers and
potentially the blocking of a server in the case of failure; which makes the other
participating servers wait until the failed server recovers.

This paper aims to model and analyse the performance of the decentralized
2PC and 3PC protocols in the commit phase. We do not consider the failure and
recovery phases of these protocols. Our motivation is to better understand how
the behaviour of these two protocols affects their performance. The outline of this
paper is as follows. The background for decentralized 2PC protocol is given in
the next section, and then its PEPA model is introduced. In Sect. 3 we present
the decentralized 3PC protocol and in Sect. 4 we introduce our performance
metrics. In Sect. 5 we discuss the experiments and results and we end the paper
with Sect. 6 with the conclusion and our future work.

2 Decentralized Two Phase Commit Protocol

According to Skeen and Stonebraker [15], the decentralized model has the fol-
lowing characteristics: Servers are equally participating in the protocol and the
same protocol is executed by all servers. Additionally, each server communicates
with every other participating server. Successive rounds of message interchanges
are one of the main characteristics of decentralized protocols, where each server
will send the same message to all other servers during a message round inter-
change. Also, before beginning the next round of messages the sender will wait
until receiving messages from all other servers. The decentralized 2PC protocol
is the simplest decentralized commit protocol as illustrated in Fig. 1.

As reported by [15] the execution of a transaction at each server is modelled
as finite state automaton (FSA), where the local states of serveri are the states
of the FSA for serveri. A state transition involves the server reading nonempty
received messages, writing messages, and then proceeding to the next local state.
The local state change is an instantaneous event, indicating the end of the tran-
sition. Basically, each FSA has four local states: an initial state (qi), a wait state
(wi), an abort state (ai), and a commit state (ci). Commit and abort repre-
sent the final states, specifying that the transaction has been either committed
or aborted. Furthermore, server state transitions are asynchronous with other
servers.

The finite state automata of 2PC has the following properties [15,17]: First,
they are nondeterministic and the order of the received messages by one server is
arbitrary. Second, the commit states and abort states represent the final states
of the FSA. Next, transitions are not allowed to non-abort states as long as
a transition to an abort state has been made. Consequently, the same restric-
tions are applied to commit states. So, committing and aborting are irreversible
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Fig. 1. Decentralized two phase commit protocol [15]

operations. The FSA state diagram is acyclic, thus the execution will eventu-
ally terminate at every server. Distributed commit protocols have at least two
phases.

The global transaction state [15] consists of: a global state vector containing
the local states of all participating FSA’s, as well as the outstanding network
messages. Moreover, the complete transaction processing state is defined by the
global state. So, a global state is inconsistent in the case it has both local com-
mit and local abort states. Hence, a protocol that maintains the atomicity of
a transaction will not have any inconsistent global states. A global state will
be either a final state or a terminal state. Final state if all its local states are
final states, and, if there are no instantly reachable successors it is said to be a
terminal state.

The concurrency set of a serveri state consists of all local states concurrently
occupied by other servers that can be derived from the reachable global state
graph. A local state is said to be committable if all occupied servers voted to
commit the transaction. On the other hand, a non-committable state is the state
that a server does not know whether other servers voted to commit or not. All
messages interchanged in a round have two subscripts; the first refers to the
sender server and the other refers to the receiver server. Skeen [15] states that
the decentralized 2PC protocol is synchronous in one state transition.

Let us assume that there are three servers obeying the decentralized 2PC
protocol, and server1 has received a request message. The interchange commu-
nications between these servers will be as follows: First phase, server1 sends
“xact” message to both server2 and server3, and moves to the waiting state.
On receiving “xact” message, server2 and server3 decide whether to unilaterally
abort this message, and they send that decision to each of their peers. Second
phase, each server receives all the decisions and then moves to a final state (i.e.
commit or abort).
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2.1 Decentralized Two Phase Commit Protocol PEPA Model

In this section the decentralized 2PC protocol PEPA model will be presented.
The created PEPA model will be used to simulate the performance of the decen-
tralized 2PC protocol (commit phase). Performance Evaluation Process Algebra
PEPA is a high-level quantitative modelling language developed by Hillston [12],
and one of its essential uses is for modelling distributed systems. Models are built
at a high level of abstraction using stochastic process algebra (SPA), for instance
(PEPA [12], EMPA [2] and SPADES [9]), and stochastic Petri net (SPN) [5].

PEPA offers several significant features in performance modelling, such as,
compositionality, formality and abstraction [13]. The PEPA Eclipse Plug-in tool
[19] is a supporting tool which has been used for developing and analysing the
performance of systems, offering a variety of analysis techniques, for example,
continuous time Markov chain (CTMC), Stochastic Simulation and Ordinary
Differential Equations (ODEs). Such approaches allow the observation of a sys-
tem as it evolves from an initial state over a period of time [19]. Furthermore,
each action within the PEPA model has a rate which is the reciprocal of the
average duration, or delay, to undertake by the action.

The specified PEPA model consists of three main components: Request,
Client and Server. The model is not only analysed by the Continuous Time
Markov Chain (CTMC) steady state analysis, but also, the behaviour of the
model is approximated using the Ordinary Differential Equations (ODEs) analy-
sis for both throughput and population, which supports the numerical calculation
of a large scale model with a large number of Client and Request components.
ODE solvers are continuous and deterministic [19] and have been used by [10,11]
as a solution to the CTMC state space explosion problem. The number of clients
and requests has been varied from 1 to 10. Each client generates 20 threads and
sends requests to the Request component. Accordingly the number of requests
that will be sent to a server equals the number of clients times 20 threads (e.g.
10 clients * 20 threads = 200 requests sent in parallel).

Several simplifications have been made on the 2PC protocol PEPA model.
We have applied a model of abstraction on the 2PC protocol, because we are
interested to look at the behaviour of one of the servers implementing the pro-
tocol. So, we are not only looking at one server but also, we are looking at only
the actions that have impact on that server. These actions are identified as they
have the biggest impact on a server, and the other actions are generally messag-
ing actions which have a very low impact on the server. Actually, the messaging
does not have much impact on the servers. For example, the time to generate
or read a request is not the same as the server action (e.g. Commit), because
most of that time is a transmission. But the processing part does have an impact
on the servers. Nevertheless, these simplifications have not affected the overall
performance of the model, and allow us to improve the model scalability.

The Request component has all actions that are processed by the protocol.
For convenience of reference we have separated this component up into named
derivatives Requesti, 1 ≤ i ≤ 10. Furthermore, each of the components (Client
and Server) cooperates with the main component Request. In other words, these
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components are simultaneously communicating with the Request component in
order to correctly follow the sequence of actions in the protocol. Additionally,
the component Client is used to represent a client who sends a write request
or update request. Accordingly, the actions sequence is preserved in the model
through the use of the Request component. Moreover, the model is cyclic, where
it starts when a client sends a request message and then waits until it is processed.
Thus the model is returned back to the initial state where a client will be able
to send a new request. The following specifies the decentralized 2PC in PEPA:

Client def= (sendRequest , r1 ).(getRequest , r1 ).Client
Request def= (sendRequest , r1 ).Request1
Request1

def= (receiveRequest , r1 ).Request2
Request2

def= (cpu, c).Request3
Request3

def= (snd xactToServer2 , r4 ).Request4
Request4

def= (snd xactToServer3 , r4 ).Request5
Request5

def= (processAckServer2 , r9 ).Request5a
Request5a

def= (processAckServer3 , r9 ).Request6
Request6

def= (ackServer2 , r5 ).Request6a
Request6a

def= (ackServer3 , r5 ).Request7
Request7

def= (cpu, c).Request8
Request8

def= (commitServer2 , r7 ).Request9
Request9

def= (commitServer3 , r7 ).Request10
Request10

def= (getRequest , r1 ).Request
Server def= (cpu, c).Server

System
def= Client [N ] ��

S1
Request [N ] ��

S2
Server

As shown above, the system equation representing the components of the
model and the cooperation between these components over the sets S1 and S2.
Whereas, N has been varied from 20 to 200, and the cooperation sets S1 and S2

have the following actions:

S1 = {sendRequest, getRequest}
S2 = {cpu}

Some local actions of the Server, such as addRequest and processingCom-
mit, have been renamed to cpu in the model and the rate of the cpu action is
calculated as follows, which gives the average rate of those actions:

c =
2

∑
1
ri

(1)

Where, i ∈ {3, 6}. The cpu action is used because PEPA does not allow us to
directly limit the rates across multiple action types with a single bound. Hence
we model a single action (cpu) and limit the total rate of this action, however
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it is in effect a combination of all the actions of which it is comprised. So, cpu
cannot run faster than all the comprising actions (bounded capacity).

This PEPA model has been parametrised by the rates illustrated in Table 1.
Note that these assumed rates were chosen as indicative based on measurements
taken from a related system, but we have not measured implementations of 2PC
or 3PC.

Table 1. The rates of 2PC PEPA model

Rate Value Rate Value Rate Value

r1 7.42 r3 61.96657616 r4 7.42

r5 7.42 r6 437.1975906 r7 7.42

r8 26.33486286 r9 1330.250132 c 2/(r3+r6)

3 Decentralized Three Phase Commit Protocol

The Three Phase Commit Protocol (3PC) is a non-blocking protocol that
extends the 2PC protocol. In the absence of failure the 2PC protocol works
without any problems. However, if a server from a quorum fails for any reason,
the other peers of the server will be blocked until it is recovered. This affects
the performance of the 2PC protocol significantly. Consequently, a non-blocking
commit protocol is presented by [15], where it allows operational servers to con-
tinue processing of a transaction even in the presence of a failure. Skeen [15]
has presented two models of non-blocking commit protocol central and decen-
tralized. Herein, we will only discuss and analyse the decentralized non-blocking
protocol performance.

Skeen [15] has extended the 2PC protocol to be non-blocking by introduc-
ing a buffer state, which is called “prepare to commit”, between the wait state
and the final state (commit) as depicted in Fig. 2. The prepare to commit state
is only reachable if all other participants have voted to commit a transaction.
Otherwise, the transaction will be aborted by other participants after a waiting
time. So, as stated in [15] the protocol will be non-blocking if the concurrency
set of a local state has no commit and abort at the same time; and also, the
concurrency set of a non-committable state has no commit state. For the details
about the fundamental non-blocking theorem we refer the interested reader to
[15]. Accordingly, the non-blocking protocol is the canonical protocol. Nonethe-
less, the newly introduced state will introduce additional costs in both time and
message interchanges communications.

3.1 Decentralized Three Phase Commit Protocol PEPA Model

The PEPA model of the non-blocking decentralized 3PC protocol is the same as
the PEPA model presented in the Sect. 2.1 with the following changes: the action
prepareToCommit has been added to the Request component. Additionally, the
3PC PEPA model has been parameterized by the same values illustrated in
Table 1.



272 S.N.S. Kamil and N. Thomas

Fig. 2. Nonblocking decentralized three phase commit protocol [15].

Furthermore, two assumptions have been made: First (Assumption1 ), the
prepareToCommit action has been defined as an independent action. In the sec-
ond assumption (Assumption2 ) the action prepareToCommit is used as a cen-
tralized action. Whereas, this action is used as one of the cpu actions, and it
has been renamed to cpu. Also, it has been assumed that it will present more
contention for the available resources. The following is only showing some parts
of the PEPA model of the 3PC protocol, where the changes have been made
which differ from the model shown in Sect. 2.1.

– Assumption1
Request6a

def= (ackServer3 , r5 ).Request6b
Request6b

def= (prepareToCommit , r8 ).Request7
Request7

def= (cpu, c).Request8
Server def= (cpu, c).Server

– Assumption2
Request6a

def= (ackServer3 , r5 ).Request6b
Request6b

def= (cpu, c).Request7
Request7

def= (cpu, c).Request8
Server def= (cpu, c).Server

4 Performance Metrics

Two performance benchmarks will be considered, latency and throughput, with
the intention of inspecting the model behaviour.
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Latency is considered as the total time for a data transmitted to a destination
and then returned back to its source (measuring the round trip) on average. This
calculation requires computing the cumulative average delay for all independent
actions, plus the waiting time (queueing and service time) accrued at the shared
cpu actions. The waiting time is calculated from the component populations
using Little’s law and the PASTA property. Based on the derived ODEs analysis
results the latency of the model which has 2 cpu actions (i.e. 2PC and 3PC
Assumption1 ) has been calculated as follows:

(1 + Pop(Req2 + Req7))
2
c

+
∑

∀a∈σ

1
ratea

(2)

Also, the latency of the 3PC Assumption2, which has 3 cpu actions, has been
calculated as:

(1 + Pop(Req2 + Req6b + Req7))
3
c

+
∑

∀a∈σ

1
ratea

(3)

Where σ = {sendRequest, receiveRequest, cpu,snd xactToServer2, snd xactTo
Serve− r3,processAckServer2,processAckServer3,ackServer2,ackServer3,commit
Server2,commitServer3,getRequest}. Also, a is the type action for all actions
in the set σ. It is clear that the model here is a closed queuing network. The
reason of calculating the latency for the non-cpu actions 1/rate because they
are not subject to queuing, just the time it takes to do that action. But for
the shared cpu actions they have to queue (competitive actions) and they take
serving time and the average waiting time. Hence, the population average queue
length equals one (the current request) plus the queue length for a system with
1 less entity in it, i.e. the population for the system with N − 1 requests.

Throughput is one of the important performance metrics that is used to
measure the number of times an action is performed per unit time. It has been
calculated using the PEPA Eclipse Plug-in tool scalable analysis (Throughput).

5 Experiments and Results

The experiments which follow have been made based on the assumption that the
processing is in the absence of failures. The performance benchmarks latency
and throughput are used to evaluate the protocol behaviour. Whereas, it has
been used the steady state analysis (CTMC) and the fluid flow analysis (ODEs)
provided by PEPA Eclipse Plug-in tool, through the derived metrics (Through-
put and Population). Additionally, latency and throughput have been measured
from the server side. In the first set of experiments we have compared the per-
formance of 2PC and 3PC (Assumption1 and Assumption2) using CTMC. Next,
by using the ODEs the decentralized 2PC protocol is examined, and then the
decentralized 3PC protocol has been evaluated.
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5.1 CTMC Analysis

The CTMC steady state analysis can only be used with small scale systems due
to the well-known problem of state space explosion; however, in this section we
are going to explore the scale of clients that can be analysed using the steady
state (CTMC) analysis. So, this will allow us to exactly identify what is the
scaling limit of the CTMC analysis. The following figures illustrate the through-
put and the population of only two most significant actions (cpu and getRe-
quest). The throughput of the 2PC protocol and 3PC protocol (Assumption1 &
Assumption2 ) are shown in Figs. 3 and 4. The maximum number of clients that
can be derived using the CTMC is 4, and also, the comparison shows that the
behaviour of the 2PC and the 3PC Assumption1 are extremely similar with a
very slight difference as depicted in Figs. 3 and 4. However, the throughput of
the 3PC Assumption2 (i.e. cpu action) is much higher than the others. This is
because we have used 3 cpu actions in Assumption2 ; replacing prepareToCommit
action with a cpu. So, we have now an extra cpu action which is another part of
processes which increases the overall throughput on the cpu action. Also, in these
cases the load is very low, and the server has sufficient capacity. Nevertheless, in
terms of the request completion (i.e. getRequest action) that is shown in Fig. 4,
the performance of all protocols are consistent. For the reason that the number
of clients is only varied from 1 to 4 (low load) due to the state space problem.
Hence, in this case always there is enough resources and negligible queuing time.

Fig. 3. Throughput of 2PC, 3PC
(Assumption1 & Assumption2) using
CTMC (cpu action).

Fig. 4. Throughput of 2PC, 3PC
(Assumption1 & Assumption2)
using CTMC (getRequest action).

The population shown in Figs. 5 and 6 show the system evolution and the
maximum number of jobs at a specific time. Again, we can see the variation
only in the Fig. 6, which is intuitive due to the number of cpu actions that has
been used in Assumption2. The population is very small because there is a very
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Fig. 5. Population of 2PC, 3PC
(Assumption1 and Assumption2) using
CTMC (Request10 ).

Fig. 6. Population of 2PC, 3PC
(Assumption1 and Assumption2)
using CTMC (Request2,6b,7 ).

small number of clients, which spend a very little time waiting for response from
the server. Hence it is clear that the utilization is very low. As the CTMC only
allows to analyse the system with a small scale (specifically 4 clients), therefore
in the next section we will consider the fluid flow analysis (ODEs), which is used
to overcome the state space problem of the CTMC and allows us to analyse very
large scale systems.

5.2 Decentralized Two Phase Commit Protocol Using ODEs

The decentralized 2PC protocol PEPA model latency is shown in Fig. 7. The
latency of the model is displayed as a flat line at the beginning, which means
there is no waiting time and there are enough resources for manipulating the
coming requests. Then it rises gradually as the load increases to reach its maxi-
mum latency (w = 3.55023) when the number of clients equals (200). The linear
increase shown arises because the maximum capacity of the system is reached,
and there are not enough resources for handling the incoming requests, thus the
queuing time is increased for each additional client.

Figure 8 illustrates the throughput of the decentralized 2PC protocol. It is
obvious that the saturation point of the 2PC protocol is given when the number
of clients is 80, which gives the maximum throughput the model can have. After
this point, the throughput is displayed as a flat line, which means that the
system is saturated and throughput cannot increase further as all resources are
taken. It is worth noting that the throughput of the getRequest action is used to
represent the throughput of the protocol, whereas it has been used in the model
to represent successful request completion.
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Fig. 7. The latency of the decentral-
ized 2PC protocol PEPA model.

Fig. 8. The throughput of the
decentralized 2PC protocol PEPA
model.

5.3 Decentralized Three Phase Commit Protocol Using ODEs

In this section we are going to introduce the results of the decentralized 3PC
protocol. The latency and the throughput of the decentralized 3PC protocol
Assumption1 that are shown in Figs. 9 and 10 are very similar to the results of
the decentralized 2PC protocol which are illustrated in Figs. 7 and 8 respectively.
The comparison shows that, there are very slight differences in both latency and
throughput before reaching the saturation point (i.e. clients = 80), then the 3PC
Assumption1 and the 2PC are giving exactly the same performance with the use
of 2 cpu actions. Unlike the Assumption1 of the decentralized 3PC protocol, the
use of Assumption2 gives much higher latency and lower throughput as shown
in Figs. 9 and 10 respectively. That is because in the Assumption2 we have used

Fig. 9. The latency of the decen-
tralized 3PC protocol PEPA model
(Assumption1 & Assumption2 ).

Fig. 10. The throughput of the decen-
tralized 3PC protocol PEPA model
(Assumption1 & Assumption2 ).
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3 cpu actions which has led to more contention for the resources, and also the
rate of cpu action c in the Assumption2 is slower than the same rate in the
Assumption1. In particular, the rate of the cpu action in Assumption2 is calcu-
lated as c = 3/(1/r3 + 1/r6 + 1/r8), thus c = 53.19384 which is less than the c
rate in the Assumption1, i.e. c = 2/(1/r3 + 1/r6), thus c = 108.548007. So, the
Assumption2 shows more contention for the resources (i.e. cpu actions). Conse-
quently, this limits the model throughput to the rate of cpu actions, reducing
the performance significantly.

5.4 Comparing Decentralized 2PC and 3PC Protocols Using ODEs

Here, we are compare the performance of the decentralized protocols 2PC and
3PC (Assumption1 and Assumption2 ), as shown in Figs. 11 and 12. Obviously,
the use of 3PC Assumption1 gives a performance that is extremely similar to
the 2PC in both the latency and the throughput. That is because assuming
that prepareToCommit is an independent action in Assumption1 has a very
slight effect on the model behaviour. Whereas, it is noticeable before reaching
the saturation point in both cases (latency and throughput). So, although a
new action (prepareToCommit) is added, the system is not overloaded. On the
other hand, in the case of Assumption2 the system is saturated rapidly (40
clients), which allows us to understand why the linear increase of the latency
(i.e. w = 11.144) and the lower throughput where it is at most equals (17731.3).

Fig. 11. The latency of the decentral-
ized 2PC and 3PC protocols PEPA
models (Assumption1 & Assump-
tion2 ).

Fig. 12. The throughput of the
decentralized 2PC and 3PC proto-
col PEPA models (Assumption1 &
Assumption2 ).
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5.5 Investigating the 3PC Assumption2 bottleneck using ODEs

In this section, we have investigated further the problem of the 3PC Assump-
tion2 illustrated in Sect. 5.3. As the rate r8 was slow and it was limiting the
performance of 3PC Assumption2 this led to a bottleneck. Therefore, the per-
formance implications of varying the rate r8 have been investigated. The main
purpose of varying r8 is to consider the sensitivity of our results to deal with this
rate. In the previous section the outcomes shown that there is one end where r8
is very slow (Assumption2 ) and the other end r8 is independent (Assumption1 ).
So, by varying this rate we just consider the range of possibilities between those
two extreme points.

As seen in Fig. 13, the latency of 3PC Assumption2 is gradually decreased
as the value of r8 becomes higher, hence, eventually the latency becomes very
similar to the latency of Assumption1. Also, in Fig. 14 the model throughput
is increased with the increase of the rate r8, and the saturation point has been
shifted (from 40 to 60 clients). Obviously, the performance of 3PC Assumption2
has improved significantly in comparison with the results that were shown in
Sect. 5.3 by only increasing the rate r8 of the prepareToCommit action, which
is used as a cpu action. So, r8 causes us to vary the behaviour and it is obvious
that if we are wanting to speed up a real system (i.e. make the throughput
better or latency less), it is that action which is the dominant feature. The
prepareToCommit action has the biggest impact on the overall performance.
Therefore, making that faster in some way will free the server up, whether that
means giving more resources or faster servers.

Fig. 13. The latency of the 3PC proto-
cols (Assumption2) varying r8.

Fig. 14. The throughput of the 3PC
protocols (Assumption2) varying r8.
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6 Conclusion

The commit phase of the Two Phase Commit Protocol (2PC) and the Three
Phase Commit Protocol (3PC) have been formally specified using the Markov-
ian process algebra PEPA. Also, performance metrics of latency and throughput
have been used to evaluate the protocol behaviours in the absence of failures.
Initially, we have investigated scaling the demand (i.e. number of clients that can
be derived) to show the limitations of CTMC analysis. By using a fluid (ODE)
analysis we are able to consider much larger systems. The experimental ODEs
results have shown that both the 2PC (blocking) protocol and the Assumption1
of the 3PC (nonblocking) protocol, have consistent latency and throughput with
an extremely slight variation before the saturation point is reached (Figs. 11
and 12). That is because the experiments are executed in the absence of failure,
and the use of the prepareToCommit action in the Assumption1 as indepen-
dent action, has a very insignificant impact on the model behaviour. However,
Assumption2 of the 3PC has shown that the system is overloaded because of the
new introduced prepareToCommit action as it is used as a centralized action cpu
(see Sect. 5.3). Where, the system is saturated, hence, the latency increased lin-
early and the throughput is decreased in the comparison with the Assumption1
(see Figs. 11 and 12).Therefore, we have varied the rate r8, which is the rate
of the action prepareToCommit, that have been used as a cpu action (Assump-
tion2 ). As shown in Figs. 13 and 14 increasing this rate has an important impact
on the model behaviour, and the performance is increased significantly.

Although, the work presented here is at an abstract level and ignores many
details, it does provide insight into the behaviour of the presented protocols and
allows us to approximate the saturation point at various loads. The broader con-
text in undertaking this work has been to better understand the performance
of the ZooKeeper Atomic Broadcast protocol (ZAB). By modelling 2PC and
3PC we have seen how the different action sequences affect performance under
different parameters. ZAB shares some properties with 3PC and so the compar-
ison with 2PC also gives us some insight as to the expected ZAB performance
which we will investigate further in our future work. The numerical figures in
this paper are based on assumptions of rates and it would clearly be desirable to
take measurements from actual implementations on different systems to achieve
a more realistic parameterisation and to conduct validation.

Finally, the models specified here are very close to the class of PEPA model
which has been defined as being amenable to mean value analysis (MVA) [18].
Unlike the ODE approximation used here, MVA can give exact results, so extend-
ing the class of PEPA model to include the form of model used here for 2PC
and 3PC would clearly be of theoretical and practical interest.

Acknowledgements. The authors would like to acknowledge the contribution of
Ibrahim El-Sanosi, a PhD student at Newcastle University, for providing measure-
ments from another system which we have used to make assumptions for the rates in
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Abstract. In this work we develop a stochastic model for the solar
power at the surface of the earth. We combine a deterministic model of
the clear sky irradiance with a stochastic model for the so-called clear
sky index to obtain a stochastic model for the actual irradiance hitting
the surface of the earth. Our clear sky index model is a 4-state semi-
Markov process where state durations and clear sky index values in each
state have phase-type distributions. We use per-minute solar irradiance
data to tune the model, hence we are able to capture small time scales
fluctuations. We compare our model with the on-off power source model
developed by Miozzo et al. (2014) for the power generated by photovoltaic
panels, and to a modified version that we propose. In our on-off model the
output current is frequently resampled instead of being a constant during
the duration of the “on” state. Computing the autocorrelation functions
for all proposed models, we find that the irradiance model surpasses the
on-off models and it is able to capture the multiscale correlations that are
inherently present in the solar irradiance. The power spectrum density of
generated trajectories matches closely that of measurements. We believe
our irradiance model can be used not only in the mathematical analysis
of energy harvesting systems but also in their simulation.

Keywords: Solar power · Semi-Markov process · Photovoltaic panel

1 Introduction

In the past decade, there has been an awareness rising concerning the energy cost
and environmental footprint of the fastly growing Information and Communica-
tion Technology (ICT) sector. In [17] Van Heddeghem et al. assess how did the
electricity consumption of the ICT sector evolve between 2007 and 2012. They
report an increase in the relative share of ICT products and services (commu-
nication networks, personal computers and data centers, excluding TVs’ set-top
boxes and (smart)phones) in the total worldwide electricity consumption from
about 3.9% in 2007 to 4.6% in 2012. Even though devices from new technologies
are more energy efficient, this is outweighed by the fast growth in their numbers.

Among the most promising approaches recently pursued to reduce the envi-
ronmental footprint of the ICT sector, we focus on the use of renewable energy
c© Springer International Publishing AG 2017
P. Reinecke and A. Di Marco (Eds.): EPEW 2017, LNCS 10497, pp. 282–297, 2017.
DOI: 10.1007/978-3-319-66583-2 18
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sources and in particular solar energy. As photovoltaic panels are being used
worldwide to power multiple components of the ICT sector, there is an increas-
ing effort in the literature to consider the solar energy production when modeling
computer and communication systems. For illustration purposes, we mention two
recent papers modeling ICT systems involving renewable energy sources.

In [4], Dimitriou, Alouf and Jean-Marie consider a base station that is pow-
ered by renewable energy sources and evaluate in particular the depletion prob-
ability. The base station is modeled as a multi-queue queueing system where
energy queues model the batteries that store the harvested energy. The authors
of [4] model the renewable energy production as a Poisson process whose rate is
modulated by a Markov chain representing the random environment.

Neglia, Sereno and Bianchi consider in [13] the problem of geographical load
balancing across data centers that have a dual power supply: grid and solar
panels. They study the problem of scheduling jobs giving priority to data centers
where renewable energy is available. The renewable energy source at each data
center is modeled as an on-off process governed by a continuous time Markov
chain. In the “on” state the data center can be fully powered by its renewable
energy source; in the “off” state the data center is powered by the grid.

These examples among others illustrate the lack of a unified stochastic model
for the solar energy to be used in the mathematical analysis of communica-
tion/computer systems. Our objective in this work is to develop such stochastic
models for the solar power at the surface of the earth. Although there are a few
models in the recent literature of the networking community [12], these rely on
per-hour measurements. Therefore, such models do not capture the fluctuations
in the solar irradiance at smaller time scales.

Our main contribution combines a deterministic model of the clear sky irradi-
ance with a stochastic model of the so-called clear sky index to obtain a model of
the actual irradiance hitting the surface of the earth. We will compare our model
(after converting the actual irradiance to power generated by photovoltaic pan-
els) to the night-day clustering model developed by Miozzo et al. in [12] for the
generated power. We will propose for the latter a modified night-day clustering
model. Our model for the harvested power is that of an on-off source in which
the power generated in each state is frequently resampled from an appropriate
distribution capturing the short-time scale fluctuations observed in practice.

To evaluate our models, we consider the autocorrelation functions and the
periodograms of the generated trajectories. The autocorrelation function illus-
trates how well do our proposed models capture the multiscale correlations found
in the data, whereas the spectral analysis allows to determine which character-
istic time-scales are reproduced by the models.

In the following, we review the main notions used in the paper in Sect. 2 and
discuss the related work in Sect. 3. Section 4 discusses the model of the clear sky
index, and Sect. 5 is devoted to the model of the generated power. We assess our
models in Sect. 6 before concluding the paper in Sect. 7.



284 D. Politaki and S. Alouf

2 Problem Definition

In this work, we are interested in two stochastic processes: the first one is the
solar irradiance hitting a given surface on the earth, the second one is the power
generated by a photovoltaic (PV) panel. We will define precisely each one of
these processes in the following sections.

2.1 The Solar Irradiance

The amount of the solar energy that arrives per unit of time at a specific area
of a surface is the solar irradiance and is expressed in W/m2. In the following,
the solar irradiance will refer to the global irradiance IG(t) accounting for all
radiations arriving at a surface except for the ground-reflected ones. The reason
for this is that we will rely on daily measurements of the global irradiance [1] to
tune our models. No measurements of the ground-reflected radiations are avail-
able for download from [1]. However, their corresponding irradiance is usually
insignificant compared to direct and diffuse irradiance.
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Fig. 1. Variations in the daily pattern of the solar irradiance are due to (a) the weather
conditions and (b) the day of the year

The solar irradiance exhibits a night-day pattern that is affected by weather
conditions which may induce burstiness at multiple time scales. Beside the obvi-
ous dependency on the geographic location, the solar irradiance depends also on
the day of the year. Figure 1 illustrates these variations: per-minute measure-
ments of the solar irradiance in Los Angeles [1] are depicted for the same day of
different years (Fig. 1a) and for different days of the same year (Fig. 1b).

The solar irradiance IG(t) can be seen as the result of applying a multi-
plicative noise to the clear sky solar irradiance ICS(t). This multiplicative noise,
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denoted α(t) in this paper and called clear sky index in the literature, captures
the perturbations seen in the solar irradiance with respect to the clear sky solar
irradiance. We have IG(t) = α(t)ICS(t). Figure 2 illustrates IG(t), ICS(t) and
α(t) for a sample day.
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Fig. 2. Illustrating the global irradiance IG(t), the clear sky irradiance model ICS(t)
given in Eq. (2) and the resulting clear sky index α(t) on September 28th, 2010, in
Phoenix, Arizona [16]

2.2 The Power Generated by a PV Panel

The solar irradiance can yield electricity through the use of a PV panel as shown
in Fig. 3. The usable power is directly related to the solar irradiance arriving at
the panel (that is IG) as thoroughly explained in [12] and implemented in the
tool SolarStat that is available online [6]. The general idea is the following:

1. The solar irradiance effectively used by the PV panel is the component of
IG(t) that is perpendicular to its surface, that is Ieff(t).

2. The PV panel translates the effective solar irradiance Ieff into electric power
with current iPV(t) and voltage vPV(t).

3. A Schottky diode reduces slightly the voltage but preserves the current.
4. A power processor extracts the maximum power from the PV panel and the

output power has current iout(t) and voltage vout.

The fluctuations seen in the solar irradiance IG(t) are still present in the output
current iout(t). There may be additional fluctuations due to the local temperature
and humidity that affect the functioning of the PV cells.

3 Related Work

Studies on the solar irradiance are abundant in the literature. Given the para-
mount role of the solar energy in many biological ecosystems, it is crucial to
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Fig. 3. Using a fraction Ieff of the solar irradiance IG, the PV cells generate a power
(current iPV and voltage vPV) that goes through a Schottky diode and a power processor
before it can be consumed

have models for the solar irradiance as measurements are not always available.
For instance, Piedallu and Gégout develop in [14] a model that can predict
the accumulated solar energy anywhere, providing annual figures for an entire
country, as would be required for predictive vegetation modeling at a large scale.
However such biology-oriented models are not fit for ICT applications that evolve
typically on a much smaller time scales than vegetation.

Targeting the design of a solar system, there is a large body of work focusing
on the clear sky irradiance. To cite a few references, Dave, Halpern and Myers
overview in [3] several clear sky irradiance models and compare the accumulated
daily and annual energy. They consider a tilted surface and account for both
sky radiations and ground-reflected radiations. They find in particular that the
effective irradiance at a surface is proportional to the cosine of the angle between
the sunlight direction and the normal to the surface. Bird and Hulstrom com-
pare in [2] five models for the maximum clear sky solar irradiance and propose
a sixth model based on algebraic expressions. All these models require many
meteorological input parameters (e.g., the surface pressure, the total ozone, the
precipitable water vapor).

Another important component when modeling the solar irradiance is the
clear sky index. Jurado, Caridad and Ruiz characterize the clear sky index using
5-minute measurements of the solar irradiance [10]. They partition the data
according to the solar angle, considering two one-hour intervals at a time (both
intervals corresponding to the same range of solar angle). They find that the
density of the clear sky index in each partition is bimodal and can be modeled as
a mixture of Gaussian distributions. The parameters of the distributions and the
mixing factor are obtained from measurements by least squares approximation.
The authors observe that the standard deviations of the Gaussian distributions
depend on the solar angle. Also the bimodal behavior observed over 5-minute
intervals is no longer observed when the interval in the data is larger. This is an
important outcome that indicates that a model tuned with data having a given
frequency of measurements can not match data having a different measurements
rate. This observation supports our intuition that if one wants to use a model of
solar power at a given time scale, then the model must be tuned with data at
the same time scale. The authors of [10] are not clear on how do they compute
the clear sky index from the measurements of the solar irradiance. Surprisingly,
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the computed clear sky index is always below 1 suggesting that they consider a
very large maximum clear sky irradiance.

Gu et al. consider in [7] a related metric which is the relative change of
solar irradiance (this would be 100(α − 1)) under the impact of clouds. They
analyze per-minute measurements of solar irradiance collected in Brazil over a
period of two months during the wet season. They observe that broken cloud
fields create a bimodal distribution for the relative change: shaded areas receive
attenuated solar irradiance while sunlit areas may receive higher irradiance than
under a clear sky. This effect is caused by radiations scattering and reflections
from neighboring clouds. Conducting a spectral analysis on the time series of
measured surface irradiance, they observe that clouds are responsible for two
different regimes according to their types and density causing either large or
small scale fluctuations. This study highlights the effect of clouds and have cer-
tainly impacted the development of subsequent models for the solar irradiance.

Miozzo et al. focus on the solar power generated by small embedded photo-
voltaic panels such as those used in sensor networks. They develop in [12] two
stochastic models in which the dynamics of the power source is described by
a semi-Markov process with N ≥ 2 states. The first model is an on-off power
source and the authors tune the sojourn time and power in each state by using a
night-day clustering on hourly measurements of the solar irradiance. In the sec-
ond model, the power source goes through a number of N states in a round-robin
way and all sojourn times are equal and constant. A time slot based clustering
enables the authors to estimate the power distribution in each state.

Ghiassi-Farrokhfal et al. consider also the solar power generated by photo-
voltaic panels but in the context of dimensioning an energy storage system. To
near-optimally size a storage system, they develop in [5] a new envelope model
for the generated power. In the general envelope model, the solar power is char-
acterized by a statistical sample path lower envelope such that the probability
of having the maximum of the distance envelope-solar energy exceed a given
value is upper bound by a characteristic bounding function evaluated at the
given value. Inspired by the findings of [7], the authors of [5] adapt the general
envelope model to enable a separate characterization of the three underlying
processes of solar power (diurnal, long-term, and short-term variations).

4 Modeling the Solar Irradiance IG

In this section, we focus on the solar irradiance IG(t). Our aim is to define a
model able to capture the small time-scale fluctuations inherently present in
the global irradiance. To that end, we model separately the clear sky irradiance
ICS(t) and the clear sky index α(t). By definition, we have

IG(t) = α(t)ICS(t). (1)

We discuss ICS(t) in Sect. 4.1 and model α(t) in Sect. 4.2.
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4.1 Modeling the Clear Sky Irradiance ICS(t)

The solar irradiance arriving at a surface during a clear sky day without any
perturbations due to a change in the meteorological conditions exhibits a pre-
dictable pattern as shown in Fig. 1b. The models discussed in [3] for the hourly
clear sky irradiance and in [2] for the maximum clear sky irradiance are not eas-
ily applicable given the unavailability of many input parameters. Instead, we use
the so-called “simple sky model” [9] which defines a simple sinusoidal form for
each day, taking into account the times of sunrise and sunset and the maximum
clear sky irradiance. The clear sky irradiance ICS(t) is given by the following
equation:

ICS(t) = MaxClearSky · sin
(

t − sunrise
sunset − sunrise

π

)
. (2)

The values of “sunrise”, “sunset” and “MaxClearSky” are astronomical data
that can be easily obtained in practice for any date and many selected locations
from the website [15] (the maximum clear sky irradiance is called there “maximal
solar flux”). An illustration of Eq. (2) is in Fig. 2a.

4.2 Modeling the Clear Sky Index α(t)

The clear sky index α(t) captures the fluctuations over time of the global irra-
diance with respect to clear sky conditions, as illustrated in Fig. 2b for a sample
day and a sample location. Consequently, one thinks of defining a state for each
macro weather condition. Based on our review of the literature, we define four
states for α(t) that correspond to: heavy clouds between the sun and the surface
(very low values of α(t)), medium to light clouds between the sun and the surface
(values of α(t) around 0.6), clear sky (values of α(t) around 1), and high reflec-
tion and diffusion in the atmosphere (values of α(t) larger than 1). We assume
all transitions between different states to be possible.

We propose to capture the dynamics of α(t) by a discrete-time semi-Markov
process.1 Our model works as follows. When the process α(t) enters a state i, it
will remain there for a duration τi governed by a probability density function fi.
While in state i, the clear sky index α(t) behaves like αi(t), a stochastic process
with probability density function gi. When the sojourn time τi expires, the process
changes its state. The distributions fi and gi, for i ∈ {1, 2, 3, 4} will be fitted to
empirical distributions of the sojourn times and values of α(t).

To tune our model of α(t) we use per-minute measurements of the solar
irradiance IG(t). The data is for the region of Los Angeles from April 2010 until
March 2015 [1]. We compute α(t) = IG(t)/ICS(t) using the data and Eq. (2) for
each minute during the five years.2 For illustration purposes, we compute the
1 Using a discrete-time Markov process does not yield satisfactory results as correla-

tions are not described well.
2 We observe that we may well have in the real measurements IG(t) > 0 around sunset

and sunrise due to diffusion. As ICS(t) = 0 at sunrise (and before) and sunset (and
after), this implies that infinite values for the ratio IG(t)/ICS(t) can occur. To discard
such values when computing α(t), we enforce the (arbitrary) bound α(t) < 3.
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Fig. 4. Density and cumulative distribution curves of the clear sky index α(t) computed
using Eq. (2) and per-minute solar irradiance data [1]

density and the cumulative distribution of the clear sky index and depict them
in Fig. 4.

Remark 1. The density of the clear sky index depicted in Fig. 4a is not bimodal
as found in [10]. The measurements used in [10] were made every 5 min and the
densities were computed over two intervals of 1 h each corresponding to the same
range of the solar angle. Instead, the density shown in Fig. 4a is for all 1-minute
measurements over a period of 5 years.

Once that we have computed the values of α(t), we first aim to validate the
number of states of our semi-Markov model. We apply the k-means clustering
algorithm [11] and use the Davies-Bouldin index to define the optimal number
of clusters. The Davies-Bouldin index is based on a ratio of within-cluster and
between-cluster distances. The smaller its value the better the clustering.

We tested nine different clustering (for k ∈ {2, . . . , 10}) and computed the
Davies-Bouldin index for each clustering obtained. The values of the index were
between 0.5017 and 0.5290. The smallest value was obtained for k = 4 implying
that ideally the values of α(t) should be classified into four clusters. This analysis
supports our choice of having four states in the model for the clear sky index
and each state is mapped to one of the four clusters obtained. The details on the
four clusters/states obtained when applying the k-means clustering algorithm
are given in Table 1.

Now that we have clearly identified the four states of our semi-Markov model,
our next step is to identify the transition probabilities among the states. We
estimate them using the computed values of α(t) and the identified clusters. We
first map each computed value of α(t) to its corresponding state, then we count
the number of transitions between any pair of states. The transition probability
from state i to state j is estimated as the ratio of the number of transitions from
state i to state j to the total number of transitions out of state i. We find the
following transition probability matrix for the four-state semi-Markov model:
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Table 1. Values in each cluster according to k-means, their corresponding state in the
semi-Markov model and weather condition

Range of values of α(t) State Physical interpretation

[0, 0.44152) 1 Heavy clouds between
the sun and the surface

[0.44152, 0.81639) 2 Medium to light clouds
between the sun and
the surface

[0.81639, 1.4343) 3 Clear sky

[1.4343, 3) 4 High reflection and
diffusion in the
atmosphere

P =

⎡
⎢⎢⎣

0 0.8361 0.0549 0.1090
0.3645 0 0.6296 0.0059
0.0274 0.9019 0 0.0707
0.0484 0.0536 0.8980 0

⎤
⎥⎥⎦ . (3)

The last step is to characterize the densities fi and gi for i = 1, . . . , 4. We
carry out a statistical analysis on the computed values of α(t) in order to deter-
mine the distributions of the sojourn times {τi}i=1..4 and the values {αi(t)}i=1..4.
Observe that the sojourn time τi in a given state i corresponds to the number
of consecutive values of α(t) inside the corresponding cluster. Recall that α(t) is
a discrete-time process and as the measurements used for tuning the model are
minute-based, therefore the time unit in our model is the minute.

We opt to fit the data with phase-type (PH) distributions given their attrac-
tive analytical tractability and their high flexibility in fitting data. We use the
PhFit tool [8] to find the phase-type distribution that best fits each one of the
empirical distributions. In the PhFit tool, we choose the relative entropy as
distance measure according to which the fitting is performed.

We repeatedly fit the data related to each variable changing the number of
phases. We use probability plots to assess the quality of the fit and select the
number of phases that yields the best fit. We report the chosen number of phases
for each fitted variable in Table 2.

The probability plots of the selected phase-type distributions are displayed
in Figs. 5 and 6. Each graph in Fig. 5 depicts on the y-axis the probabilities of
the fitted distribution against the probabilities of the sojourn times in a given
state on the x-axis. We observe that the phase-type distribution fits reasonably
well the sojourn times for all states.

Regarding the values of α(t) in each state, we can see in Fig. 6 that the
selected phase-type distributions fit very well the values of α(t). We observe
that the quality of fit for α1(t) and α2(t) is obtained at the cost of having a
significantly larger number of phases (that is 20; see Table 2) with respect to the
other variables.
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Table 2. Number of phases of the phase-type distribution fitting the (shifted) sojourn
times and values in each state

Variable Number of sam-
ples used in the
fitting

Number of
phases of the
phase-type dis-
tribution fitting
the variable

τ1 − 1 19678 5

τ2 − 1 8456 6

τ3 − 1 2094 6

τ4 − 1 15400 6

α1(t) 298141 20

α2(t) − 0.44152 345973 20

α3(t) − 0.81639 563411 6

α4(t) − 1.4343 34432 3
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Fig. 5. Probability plots of the phase-type fitting for sojourn times in each state
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Fig. 6. Probability plots of the phase-type fitting for α(t) values in each state

5 Modeling the Harvested Power

To account for the power generated by PV panels when evaluating solar-powered
systems, one has mainly two options. The first option is to use a model for the
solar irradiance such as the one developed in Sect. 4 and then infer the power
generated by the PV cells (or equivalently iout(t); see Fig. 3). This second step
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may be a simple linear model (i.e. the power generated by a panel of unit size
is the solar irradiance effectively received multiplied by the efficiency of the
panel) or a more detailed model such as the one implemented in the SolarStat
tool [6]. The second option is to use directly a model for the power generated by
a given PV panel (i.e. a model for iout). Miozzo et al. have developed two such
models in [12]. In this section, we propose a modification to their on-off model.
We will compare our modified model to theirs in Sect. 6 and also to the model
of Sect. 4 after we translate the solar irradiance to generated power using the
SolarStat tool. We present briefly the on-off model in [12] before explaining our
modification.

The dynamics of the harvested current iout(t) are captured by a two-state
semi-Markov process. The distributions of the sojourn times and of iout(t) in
each state are statistically defined using hourly measurements of the solar irra-
diance. In practice, Miozzo et al. apply the procedure summarized in Sect. 2.2 to
map the solar irradiance data into the power generated by a PV panel of given
size (number of solar cells connected in series/parallel) and characteristics (open
circuit voltage, short circuit current, and reference temperature). Assuming the
output voltage to be constant, the generated power and the output current are
proportional to each other. The mapped data is grouped by month and for
each month the values of the output current iout(t) are classified into two states
according to an arbitrarily low threshold. All points falling below the threshold
correspond to the “night” state and points falling above the threshold corre-
spond to the “day” state. The authors of [12] use kernel-smoothing techniques
to estimate the distributions of the durations and output current in each state
for every month of the year. The model is as follows: when entering a state,
a current and a duration are drawn from the corresponding distributions, then
the source outputs the drawn current constantly for the drawn duration. At the
end of the drawn duration, the source switches its state. In practice, the output
current in the night state is set to 0.

Modified On-Off Model. To better capture the fluctuations observed in the solar
irradiance IG(t) (which will inevitably be present in iout(t)), we propose to mod-
ify the above-mentioned model in the following way: instead of keeping the
current constant during the time the process remains in the “day” state, we
frequently resample (every ten minutes) from the current distribution until a
transition occurs.

6 Results

In this section we will evaluate the models presented in Sects. 4 and 5. We con-
sider first the autocorrelation function (ACF) as a metric to test how well do
generated synthetic data match the empirical data according to second order
statistics. The empirical data is a 5-year long set of output current values sam-
pled every minute. The current values are those matched by SolarStat (for a
Panasonic solar panel of unit size) for the solar irradiance measurements [1]. We
generate three synthetic data that are:
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Fig. 7. ACF of the current harvested using Panasonic solar panels

1. a 5-year long set of output current values sampled every minute using the
model of the solar irradiance presented in Sect. 4 and SolarStat to translate
the irradiance into output current;

2. a 5-year long set of output current values sampled every 10 min using the
on-off model in [12];

3. a 5-year long set of output current values sampled every 10 min using our
modified on-off model (Sect. 5).

The autocorrelation functions of these four data sets are depicted in Fig. 7.
Our solar irradiance model performs fairly well, capturing most of the correla-
tions present in the empirical data. As already found by the authors of [12], the
ACF of the on-off source model poorly resembles that of the empirical data. The
ACF of our modified on-off model performs seemingly equally badly.

Strong correlations in the solar power exists over yearly lags due to the earth’s
annual circumnavigation of the sun. To assess how well does our solar irradiance
model capture the correlations over very long periods, we sample the ACFs
every 30 days and display the values in Fig. 8. We can make three observations:
first, the ACF of the real data confirms the expected strong annual correlation;
second, our solar irradiance model exhibits correlations that mimic those in the
real data, even though to a lesser extent; third, the on-off models fail to track
the ACF of the real data.

To complete this comparative analysis of the models, we compute the
root mean square error (RMSE) between the ACF of the empirical data set
and that of each of the synthetic data set. The RMSE metric is as follows:

RMSE =
√

1
n

∑n
i (yi − ŷi)2, where yi and ŷi are the ith samples of the empirical

and synthetic data respectively, and n is the number of samples. The results
reported in Table 3 confirm the superiority of the solar irradiance model over
the on-off models.
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Table 3. Root mean square error (RMSE) between real and synthetic data

Model of solar irradiance IG Model of harvested power

On-off source model [12] Modified on-off

0.1274 0.3231 0.2839

We can conclude from the comparison of the ACFs that our model of the solar
irradiance outperforms the on-off models of the output current and captures well
the multiscale correlations found in the real data.

We consider next the periodograms of the empirical data set and the syn-
thetic data set generated by the solar irradiance model (see Sect. 4). The spectral
analysis allows to determine which characteristic time-scales are reproduced by
the model.

We compute the periodogram using the function with the same name in the
Signal Processing Toolbox of Matlab. We adjust appropriately the x-axis in order
to have frequencies (f , in Hertz) instead of the angular frequency ω. The power
spectrum densities (PSD) are depicted in Figs. 9 and 10.

Observe that Gu et al. have analyzed in [7] the power spectrum of a 2-
month set of 1-minute measurements of solar irradiance. The PSD had two clear
peaks corresponding to 24 and 12 h but other than those the absence of other
characteristic time-scale was striking. This is not the case of the PSD of the real
data set displayed in Fig. 9. We can observe a series of peaks at larger frequencies
that are the harmonics of 1.157407 10−5 Hz (which corresponds to 24 h). The
same observation applies to the PSD of the synthetic data set displayed in Fig. 10.
The peak at the fundamental frequency corresponding to 1 day is clearly visible
as well as those of its harmonics frequencies.
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Fig. 10. Power spectrum of the 1-minute values of output current obtained after gen-
erating a 5-year trajectory from the model of Sect. 4 and translating it to current with
the SolarStat tool

We conclude this section by stating that our solar irradiance model is able
to generate synthetic data that exhibits all of the frequency peaks of real data,
capturing its characteristic time-scales.

7 Conclusions

We have developed in this work a stochastic model for the solar irradiance.
The model combines a deterministic model of the clear sky irradiance with a
stochastic model for the so-called clear sky index to obtain a stochastic model
for the actual irradiance hitting the surface of the earth. As per-minute solar
irradiance data is used to tune our model, we are able to capture small time scales
fluctuations as would be needed by ICT applications. Computing autocorrelation
functions and periodograms of empirical and synthetic traces we found that our
solar irradiance model performs very well. We believe our model can be used not
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only in the mathematical analysis of energy harvesting communication/computer
systems but also in their simulation.
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