
Reliable Control Architecture with PLEXIL
and ROS for Autonomous Wheeled Robots

Héctor Cadavid1, Alexander Pérez1, and Camilo Rocha2(B)

1 Escuela Colombiana de Ingenieŕıa Julio Garavito,
AK 45 No 205-59, Bogotá, D.C., Colombia

{hector.cadavid,alexander.perez}@escuelaing.edu.co
2 Pontificia Universidad Javeriana, Calle 18 No 118-250, Santiago de Cali, Colombia

camilo.rocha@javerianacali.edu.co

Abstract. Today’s autonomous robots are being used for complex
tasks, including space exploration, military applications, and precision
agriculture. As the complexity of control architectures increases, relia-
bility of autonomous robots becomes more challenging to guarantee. This
paper presents a hybrid control architecture, based on the Plan Execution
Interchange Language (PLEXIL), for autonomy of wheeled robots run-
ning the Robot Operating System (ROS). PLEXIL is a synchronous reac-
tive language developed by NASA for mission critical robotic systems,
while ROS is one of the most popular frameworks for robotic middle-
ware development. Given the safety-critical nature of spacecraft opera-
tions, PLEXIL operational semantics has been mathematically defined,
and formal techniques and tools have been developed to automatically
analyze plans written in this language. The hybrid control architecture
proposed in this paper is showcased in a path tracking scenario using
the Husky robot platform via a Gazebo simulation. Thanks to the archi-
tecture presented in this paper, all formal analysis techniques and tools
currently available to PLEXIL are now available to build reliable plans
for ROS-enabled wheeled robots.

Keywords: Robot autonomy · Plan Execution Interchange Language
(PLEXIL) · Robot Operating System (ROS) · Control architectures ·
Formal verification · Rewriting logic · Automatic reachability analysis

1 Introduction

Wheeled robots are popular because of the simplicity and versatility of their
components. Nowadays, autonomous wheeled robots are being used for com-
plex tasks, including space exploration, mission-critical military applications,
and precision agriculture. The integration of a vast amount of sensors and their
interaction with the environment, make these robots highly concurrent. This

Camilo Rocha—The first two authors have been supported in part by grant
DII/C008/2016 funded by Escuela Colombiana de Ingenieŕıa.

c© Springer International Publishing AG 2017
A. Solano and H. Ordoñez (Eds.): CCC 2017, CCIS 735, pp. 611–626, 2017.
DOI: 10.1007/978-3-319-66562-7 44

612 H. Cadavid et al.

scenario poses a significant challenge for guaranteeing correct behavior such as
safe navigation, precise goal tracking, and fault tolerance [2]. Moreover, because
of the high value of some of the components and the costs associated to mal-
function (e.g., money investment, human lives, or crop production), autonomous
robots are expected to be highly reliable [13].

The robotics community has developed near-real simulation environments
to test control architectures in operation conditions that can help in design-
testing a robot development before its deployment. Nevertheless, due to the
intrinsic limitations of simulation-based testing, these environments are far from
answering the important question of, up to a high degree of confidence, how
reliable control architectures really are. The inherent non-deterministic nature
of robot autonomy, and the divide between the mathematical properties and
the operational semantics of the language used to program the robot, can make
this situation more dramatic. For example, an extensive test-guided validation
in the design phase of a robot development could suggest absence of deadlocks
in a control architecture. However, deadlocks may be present in the resulting
implementation because of semantic issues with synchronization structures in
the programming language.

Today’s formal methods are scaling up to meet the challenges in the develop-
ment of mission-critical software and hardware. The notion of software/hardware
verification via automatic reachability analysis or model checking has evolved to
become an accepted technology in development processes. Moreover, new sym-
bolic techniques based, e.g., on the satisfiability modulo theories (SMT) approach
are being readied for industrial use as a solution to the state-explosion problem,
commonly faced in the algorithmic verification of concurrent systems. Nowadays,
formal methods are being used in the development, e.g., of unmanned aircraft
systems [15] and have had big impact in the design of policies for unmanned
aircraft systems [25]. A key benefit of the formal methods approach is that
it provides techniques, tools, and insights highly valuable in a mission-critical
development.

This paper presents a hybrid control architecture, based on the Plan Exe-
cution Interchange Language [6] (PLEXIL), for autonomy of wheeled robots
running the Robot Operating System [8] (ROS). PLEXIL is a synchronous reac-
tive language created by NASA for mission-critical robotic systems. ROS is one
of the most popular frameworks for robotics middle-ware development. The
proposed hybrid architecture is given in a deliberative/reactive/driver layered
setting. PLEXIL is used in the reactive layer to implement behavior in a mis-
sion plan with a hierarchical composition of nodes, where the ones at the top
represent high-level behavior and the ones at the bottom basic actions (e.g.,
primitive robot commands and variable assignment). On the other hand, ROS
(and its drivers) is used to represent components specific to wheeled robots as a
hardware abstraction at the level of the robot’s sensors. The deliberative layer,
where mission plans are generated according to some given goals, is not directly
addressed in this paper. The technical contribution of this paper can now be
better explained. The integration between PLEXIL and ROS is a bi-directional

Reliable Control Architecture with PLEXIL and ROS for Robot Autonomy 613

software adapter between the reactive and driver layers. This adapter enables: (i)
the execution of PLEXIL low-level commands in a wheeled robot running ROS,
and (ii) the interaction of PLEXIL with the external environment via events
triggered by sensors under the control of ROS in the driver layer. This approach
is showcased in a path tracking scenario using the Husky robot platform via a
Gazebo simulation.

The integration of PLEXIL and ROS presented in this paper has the addi-
tional benefit of making available to ROS-enabled robots all the formal analy-
sis and verification tools already developed for PLEXIL. These tools include
a rewriting logic semantics in Maude [5], an interactive environment for auto-
matic reachability analysis and LTL model checking [22], and automatic sym-
bolic reachability analysis based on rewriting modulo SMT [23]. This integration
opens the door of formal verification to a wide class of ROS modules, thus mak-
ing autonomous planning more reliable. Furthermore, new plans can now be
developed following a more rigorous formal methods-oriented approach.

The rest of the paper is organized as follows. Section 2 reviews some related
work. Sections 3 and 4 present, respectively, a high-level description of PLEXIL
and ROS. Section 5 proposes the layered architecture based on the PLEXIL-ROS
integration and Sect. 6 exhibits a proof of concept. Section 7 concludes the paper.

2 Related Work

There is a vast amount of research in the field of control architecture for
autonomous robots. Control architectures can be classified in several categories:
by the type of interaction between control modules (e.g., hierarchical or cen-
tralized architectures), by the type of functionality assigned to each module
(e.g., general or specific purpose), and by the way modules interact with the
external environment (e.g., event-based or procedural behavior). The latter cat-
egory, which is closest to the proposal in this paper, can be further classified
as deliberative, reactive, or hybrid. In a deliberative control architecture, a plan
is generated based on a goal and a static model of the environment targeted
after successful operation. In a reactive control architecture, control commands
are generated during operation based on interaction with the environment. In a
hybrid control architecture, a deliberative agent statically generates plans that
will be executed by reacting to the external environment during operation. Fairly
complete surveys of works in each category and subcategory are [13,17,27].

There are significant efforts to have reliable and modular hybrid control archi-
tectures for autonomy in robotic systems. On the one hand, the main focus is
on using languages with mathematically proven properties, e.g., PLEXIL as the
intermediate layer for plan representation and execution. On the other hand,
the main focus is on defining control structures on top of ROS-enabled systems.
Muñoz et al. [16] propose a control architecture for the Ptinto robot, a hexapod
robot for exploration in difficult terrains. They use PLEXIL as the intermediate
plan specification language and reactive layer for SGPlan (a deliberative plan-
ner that automatically partitions large planing problems into subproblems with

614 H. Cadavid et al.

specific goals). However, in their work, the hardware abstraction layer is propri-
etary and therefore the architecture is tied to the specific target robot. Jenson
et al. [10], propose a control architecture for AMIGO and other ROS-enabled
robots to perform tasks in human environments. Their system uses a hierarchical
ordered planner, a special type of deliberative system in which a predefined set
of actions is hierarchically arranged once a goal is set for the autonomous robot.
Benjamin et al. [1] propose ROSoClingo, a control architecture with a reac-
tive layer for ROS-enabled robots. Their approach uses answer set programming
(ASP), a declarative programming paradigm intended to solve NP-hard combi-
natorial search problems. The proposed architecture encodes adaptive behaviors
directly in a declarative knowledge formalism, which requires the addition of
reactive capabilities not necessarily available from the target robot.

It is fair to say that the main difference between the above-mentioned works
and the proposal in this paper, is that the latter aims at combining the best
elements of both worlds: a robust, mathematically verifiable high-level language
such as PLEXIL for the reactive layer, and ROS, the actual de-facto standard for
robotic middle-ware. This unique combination brings an important advantage
to future projects in robotics. Namely, the possibility of having verified – and
eventually certified – control architecture software for autonomous robots that
use conventional and affordable hardware.

3 The Plan Execution Interchange Language

The Plan Execution Interchange Language [6] (PLEXIL) is a synchronous reac-
tive language developed by NASA to support autonomous spacecraft operations.
It has been used on applications such as robotic rovers, a prototype of a Mars
drill, and to demonstrate automation capabilities for potential future use on the
International Space Station. Programs in PLEXIL, called plans, specify actions
to be executed by an autonomous system as part of normal spacecraft operations
or as reactions to changes in the environment. The computer system on board
the spacecraft that executes plans is called the Universal Executive [26].

3.1 PLEXIL in a Nutshell

A PLEXIL plan consists of a set of nodes representing a hierarchical decomposi-
tion of tasks. A leaf node in the tree represents a primitive task such as variable
assignment or a command execution, whereas an intermediate node defines the
control structure of its descendants such as sequential or concurrent execution.
Each node is equipped with a set of conditions that trigger its execution, e.g., a
start condition and an end condition. At any time, each node offers information
about its execution state: inactive, waiting, executing, iterationended, failing, fin-
ishing, or finished. There is also information about the termination status of a
task: success, skipped, or failure.

When events are reported by interaction with the external environment (e.g.,
by sensors or timers), the nodes triggered by such events are executed concur-
rently, updating e.g., local variables, until quiescence. The internal execution of

Reliable Control Architecture with PLEXIL and ROS for Robot Autonomy 615

each node, in turn, can trigger the execution of other nodes. Although more than
one event can become enabled simultaneously, all parallel operations in PLEXIL
are synchronized and will not arbitrarily interleave. This is because PLEXIL
semantics is designed under the synchronous hypothesis [18]. One important
feature of PLEXIL semantics is that it guarantees determinism (in the absence
of external events), which is a convenient property for autonomous programming
because it helps in having a clean mathematical semantics.

As an example, consider the simple PLEXIL plan in Fig. 1. It consists of a tree
with three nodes: the root node SamplePlan, and the leaf nodes ActionOne and
ActionTwo. In this plan, there are two integer variables, namely, x and y, which
are accessible from any node in the plan. The run-to-completion semantics of the
leaf nodes depends on the value of the variable sensorOne, which is under control
of the external environment. For instance, if the value of sensorOne becomes
201, then both leaf nodes will execute in parallel. In an asynchronous setting,
such an execution would result in an unpredictable outcome because of the race
condition in the assignment of x and y. However, thanks to its synchronous
semantics, PLEXIL guarantees a consistent variable swap in this case so that
x is assigned the value 20 and y is assigned the value 10, without any race
condition.

Fig. 1. A very simple PLEXIL plan.

3.2 Rewriting Logic-Based Automatic Analysis

PLEXIL has been designed with verification and validation in mind, and has
motivated the development of an important amount of research and tools in
the rewriting logic community. Rewriting logic [14] is a semantic framework that
unifies a wide range of models of concurrency. Specifications in rewriting logic are
called rewrite theories and can be executed in the rewriting logic implementation
Maude [4]. By being executable, they benefit from a set of formal analysis tools
available to Maude, such as state-space exploration and automata-based LTL

616 H. Cadavid et al.

model checking. A rewrite theory is a tuple R = (Σ,E�B,R) with: (i) (Σ,E�B)
an order-sorted equational theory with signature Σ, E a set of equations over
the set TΣ of Σ-terms, and B a set of structural axioms – disjoint from the set of
equations E – over TΣ for which there exists a finitary matching algorithm (e.g.,
associativity, commutativity, and identity, or combinations of them); and (ii) R
a finite set of rewrite rules over TΣ . Intuitively, R specifies a concurrent system
whose states are elements of the set TΣ/E�B of Σ-terms modulo E�B and whose
concurrent transitions are axiomatized by the rewrite rules R. In particular,
for t, t′ ∈ TΣ representing states of the concurrent system described by R, a
transition from t to t′ is captured by a formula of the form [t]E�B →R [t′]E�B ;
the symbol →R denotes the binary rewrite relation induced by R over TΣ/E�B.

The ground rewriting logic semantics of PLEXIL [5] is a rewrite theory
RPLEXIL with topsort s, meaning that concurrent transitions in the system are
mathematically captured by →RPLEXIL and are over the set TΣ,s of Σ-terms
of sort s. The symbolic rewriting logic semantics of PLEXIL [21,23], based on
the rewriting modulo SMT technique, is a rewrite theory SPLEXIL with topsort
s × Γ , meaning that symbolic concurrent transitions in the system are mathe-
matically captured by →SPLEXIL and are over state pairs of the form (t ;ϕ) with
t ∈ TΣ(X)s and ϕ(X) a quantifier-free first-order logic formula under the control
of the SMT solver. Intuitively, a symbolic state (t ;ϕ) in SPLEXIL can represent
infinitely many concrete states, namely, those states tσ for each ground substi-
tution σ satisfying ϕ. The constraint ϕ in a symbolic state is used to model
the behavior of variables under control of the external environment. Techniques
and tools for reachability analysis and LTL model checking with →RPLEXIL and
→SPLEXIL have been developed. They have been used for detecting the violation
of safety properties such as invariants, race conditions, and deadlock freedom.
For details, the reader is referred to [22,24].

4 The Robot Operating System

The creation and development of robots involves the interaction and collabora-
tion of several areas of knowledge such as mechanics, electronics, and computer
science. For example, once a robotic device has been mechanically designed and
its electronic components able to read data from the environment, software arti-
facts may be developed to pursue autonomy. In general, a large-span robotics
project can require a vast amount of collaborative effort – both in time and
money. Thus, it would be highly convenient to reuse as many artifacts as possi-
ble across similar projects.

An open source initiative promoted by Willow Garage has emerged and, as
a result, the Open Source Robotic Foundation (OSRF) has been established
recently. The Robot Operating System (ROS) has been created by the OSRF
with the goal of increasing the reusability of the software components specifically
developed for robots. The adoption of ROS can also dramatically decrease the
time and money needed to deploy robot applications. During the past few years,
ROS has gradually become the de-facto standard in robot development. For

Reliable Control Architecture with PLEXIL and ROS for Robot Autonomy 617

example, the paper [19] introducing ROS has been cited 3350+ times since 2009.
ROS has not only gained a distinguished position in the research community,
but it has also become an important player in the robot manufacturing industry:
the ROS Industrial Consortium has the support of 42 of the most prestigious
robot manufacturers in the world.

The Robot Operating System is defined in [8] as follows:

ROS is a meta-operating system for your robot. It provides the services you

would expect from an operating system, including hardware abstraction, low-

level device control, implementation of commonly-used functionality, message-

passing between processes, and package management. It also provides tools and

libraries for obtaining, building, writing, and running code across multiple com-

puters.

ROS has been designed to be modular at a fine-grained scale, where the
basic unit is a node representing a process. For example, one node can control a
laser range-finder, or the wheel motors, or perform localization. A robot appli-
cation in ROS can be specified as a computation graph representing the peer-
to-peer network resulting from node interaction: an edge in this graph denotes
message-passing communication between two processes. Figure 2 depicts a graph
corresponding to a ROS program.

Tools are provided by ROS to analyze and visualize data, simulate robots
and environments, and to store large amounts of data generated by sensors and
processes. For instance, RViz [9] and Gazebo [7] are useful tools to visualize and
analyze the data captured by sensors and kinematics. RViz has been designed
to visually interact with almost all processes running in a ROS graph. Gazebo,
on the other hand, is an open source 3D dynamic simulator [11], which will be
included by the OSFR in modern distributions of ROS.

Figure 3 depicts the interaction between the Gazebo simulation environment
and a Husky robot deployed in an environment with obstacles. On the left, a
computer simulation of the environment can be seen. On the right, a RViz appli-
cation is shown with the information retrieved by several sensors. For example,
data captured from the camera and laser mounted on the Husky has been inter-
preted and drawn by RViz.

One key effort in ROS has been the standardization of message-passing and
the abstraction of the format they use. Messages are important in ROS because
they are at the heart of interaction infrastructure. Each message in ROS is a
data structure comprising different types of fields such as integers, floating point
values, Booleans, and arrays of primitive types. For example, the Twist message
format is part of the geometry package in ROS, and is used to communicate
linear and angular velocities of a body:

Vector3 linear
Vector3 angular

The message standardization in ROS makes it possible to create a clean
hardware abstraction layer (HAL) between hardware and software. In particular,

618 H. Cadavid et al.

Fig. 2. An example of a ROS program. It is a graph where a node is a process providing
or obtaining data from other processes. Related processes are linked by edges and
denote interaction based on message passing.

it makes it possible to define a common communication channel between software
components that control the behavior of the robot and the hardware components
actually enforcing such a behavior. In this sense, ROS reduces the effort of
tailoring software components to each particular kind of robot. For example,
in ROS, any robot can be commanded to move by using the Twist message
by indicating the linear and angular velocities. ROS assumes that each robot
will execute this command accordingly to its own “anatomy”. In the case of
wheeled robots, only linear velocity has an important meaning since the angular
velocity in the axis of movement is perpendicular to the floor. In the case of
aerial vehicles, they can be commanded to change position by using three linear
and three angular velocities, without any kinematic restriction.

5 Layered Architecture for the Integration

This section presents the main contribution of this paper. The key idea is to
use PLEXIL as reactive layer and thus, by taking advantage of all automatic
formal analysis techniques and tools available to it, enable the development of
autonomous control modules for ROS with high degrees of reliability.

Reliable Control Architecture with PLEXIL and ROS for Robot Autonomy 619

CameraVirtual Environment

Laser

Fig. 3. Example of interaction between the Gazebo simulation environment and a
Husky robot deployed in an environment with obstacles.

The proposed architecture is depicted in Fig. 4. It is based on the hybrid
deliberative/reactive paradigm (see Sect. 2) and has the following elements:

The top layer (or deliberative layer): a software component that uses a
global “environment model” (e.g., it contains terrain features and obstacles)
and on a set of goals or problem description. It ultimately generates a mission
plan composed of subtasks required to accomplish the goals in the given world
model.

The deliberative/reactive binding layer: a software component responsible
for providing compatibility between the format of the mission plan generated
by the planner in the deliberative layer and the language used to describe the
hierarchy of action nodes in the reactive layer.

The reactive layer: a hierarchical composition of nodes in which nodes at the
top represent high-level behavior in the mission plan and the ones at the
bottom represent basic actions in the plan (e.g., primitive robot commands
and variable assignment).

The driver layer: a software component using ROS and the ROS drivers
required for the specific robot components. This layer represents the hardware
abstraction for the robot at the level of sensor actions and their access.

In particular, the control architecture resides in the reactive layer. On the
one hand, this layer handles information from the environment such as changes
on Yaw or position coordinates, which are updated based on data received via
the driver layer from ROS drivers. On the other hand, the hierarchical com-
position of nodes in this layer has, at the top level, goal-oriented nodes such
as driving straight for a distance or following a sequence of points. Such nodes
will decompose in lower-level action nodes that, for instance, can perform track-
ing strategies such as follow-the-carrot or pure-pursuit [12] by calculating the
required speed and steering settings.

As a proof of concept, a general purpose PLEXIL-ROS adapter has been
developed by the authors, following the ideas proposed as future work in [3]. Con-
ceptually, this adapter transforms ROS events triggered by the environment into

620 H. Cadavid et al.

Fig. 4. Proposed ROS and PLEXIL layered architecture.

variables that PLEXIL plans can handle, and PLEXIL commands into requests
to ROS driver nodes. Figure 5 depicts how the PLEXIL-ROS adapter integrates
PLEXIL plans and ROS nodes, transforming the data that flows from the layers
when necessary:

1. The PLEXIL Universal Executive executes the plan defined for the reactive
layer of the architecture using a PLEXIL adapter.

2. The adapter defines the low-level operations and environment variables for
such a plan.

3. The adapter uses an interface that is subscribed to relevant events in ROS.
4. The adapter transforms the generated events by updating environment vari-

ables and handles command invocation by publishing ROS events.
5. The message-oriented middle-ware of ROS (ROSCORE) enables the indirect

communication with a real or simulated robot.

As a technical detail, it is important to note that in order to ensure that
the PLEXIL plan in the reactive layer is able to check that the environment
information has been initialized – preventing the initialization of the plan with
inconsistent data –, a special variable called ‘Ready’ is assigned true when ROS
reports the status of the robot for the first time. The current implementation of
the adapter, for testing purposes, is based on the Husky platform [20].

6 Proof of Concept

This section presents a proof of concept of the implementation of the PLEXIL-
ROS adapter proposed in Sect. 5. The Husky robot platform – via a Gazebo

Reliable Control Architecture with PLEXIL and ROS for Robot Autonomy 621

PLEXIL
UNIVERSAL
EXECUTIVE

Ready

XPosition

YPosition

Yaw

Environment

RequestAngularVelocity
RequestLinearVelocity

Commands

Adapter
ROS

NODE

P
LE

X
IL

 A
d

ap
te

r

ROS
Interface

ROSCORE

Topic:
cmd_vel Topic:

Odometry

publisher
subscriber

subscriber

publisher

Onboard Computer

ROS
Husky
Driver/
Node

ROS
Husky
Driver/
Node

(simulation)

1 2

3

4

5

Transformation

Fig. 5. Proposed PLEXIL-ROS integration architecture.

simulation – and a basic path tracking scenario were chosen for the experiment.
The goal of the experiment is to demonstrate how a PLEXIL plan in the reactive
layer can command a ROS-enabled robot whose drivers are in the hardware-
abstraction layer. Note that for the purpose of this paper, the plan has been
developed manually and without the help of a deliberative layer software.

The experiment is the following: make a Husky follow a fixed-size square-
shaped path specified by a PLEXIL plan. Figure 6 depicts the logical description
of the plan as a tree of tasks and Listing 1.1 presents the code of the plan.
Intuitively, the PLEXIL plan consists of:

– Two high-level nodes: move forward for a given distance and turn a given
amount of degrees.

– The plan performs four consecutive iterations of the sequence: move N meters,
stop, and turn 90 degrees.

– The Move node is defined as a sequence of two nodes: OdometryUpdate and
MoveUntilDistanceReached. The first one performs a lookup of the current
position and the second one performs a LinearVelocityRequest until the
repeat condition is not met (i.e., until the distance from the starting point to
the current position is less than the expected distance).

– Angular velocity is continuously requested by Stop.
– Node Turn re-calculates the angular displacement every time a new Yaw

is reported. Once the angular displacement is approximately close to the

622 H. Cadavid et al.

SquareTrajectoryTracking

Loop

Move Turn

UpdateOdometry

MoveUntil
DistanceReached

StaticTurn

Stop

CompleteTurnCheck

ConcurrenceSequence

Enviroment

Commands
Interface

E
xecutive Interface

Fig. 6. PLEXIL plan tree for the proof of concept.

expected one, CompleteTurnCheck makes StaticTurn reach the final (i.e.,
FINISHED) state in the plan.

Listing 1.1. PLEXIL plan for the proof of concept.

Command RequestLinearVelocity(Real);
Command RequestAngularVelocity(Real);
Command pprint(...);
SquareTrajectoryTracking:{

Boolean completeTurn=false, goal=false;
Real PI=3.1416, initialYaw=0, WIDTH=5;
Start Lookup(Ready);
initialYaw=Lookup(Yaw);
//four times: move forward, turn 90deg
for (Integer i = 1; i <= 4; i + 1) {

//Move until distance from starting position (aprox)== WIDTH
Move:{

Real currXPos,currYPos;
Sequence{

UpdateOdom:{
currXPos=Lookup(XPosition);
currYPos=Lookup(YPosition);

}
MoveUntilDistanceReached:{

Start
sqrt((currXPos−Lookup(XPosition))∗(currXPos−Lookup(XPosition))+
(currYPos−Lookup(YPosition))∗(currYPos−Lookup(YPosition))) <

WIDTH;
Repeat

sqrt((currXPos−Lookup(XPosition))∗(currXPos−Lookup(XPosition))+
(currYPos−Lookup(YPosition))∗(currYPos−Lookup(YPosition))) <

WIDTH;

RequestLinearVelocity(1);

Reliable Control Architecture with PLEXIL and ROS for Robot Autonomy 623

}
}

}
Stop:{

RequestAngularVelocity(0);
}
//turn until a PI/2 rotation is achieved
Turn:{

initialYaw=Lookup(Yaw);
completeTurn=false;
Concurrence{

StaticTurn:{
Repeat completeTurn==false;
RequestAngularVelocity(0.1);

}
CompleteTurnCheck:{

Start (abs(initialYaw−Lookup(Yaw)) <= PI &&
abs(initialYaw−Lookup(Yaw))>=PI/2) ||
(abs(initialYaw−Lookup(Yaw)) > PI &&

(2∗PI−abs(initialYaw−Lookup(Yaw)))>=PI/2);
completeTurn=true;

}
}

}
}

Finally, Fig. 7 shows a superposition of screenshots of the simulation executed
in Gazebo.

Fig. 7. Gazebo simulation.

7 Concluding Remarks

Designing and developing control software for an autonomous robot is a challeng-
ing and complex task, specially considering that – with cyber-physical systems –
the costs of failure or unexpected behaviors can be dramatic. Unfortunately,

624 H. Cadavid et al.

formal verification methods, a powerful set of techniques and tools aimed at
ensuring software correctness and reliability are not easily accessible to most
robot developers. Although ROS has simplified the development of robotic solu-
tions with its low level control layer commanding a robot to perform desired
movements, moving the actuators (e.g., servo-motors), and process data pro-
vided by sensors, the problem of identifying control flaws is far from solved.
Common flaws include deadlocks, violation of conformance to temporal, spatial,
or timed constraints, which are key to mission-critical applications.

This paper has presented a software architecture and implementation for
integrating PLEXIL and ROS. The main idea is to use PLEXIL, a synchro-
nous reactive language created by NASA for mission critical robotic systems,
in the reactive layer in a hybrid architecture to command ROS-enabled robots.
PLEXIL has been proved to be mathematically reliable and robust by the scien-
tific community. Given the fact that during the past 10 years ROS has become a
de-facto standard in robotics, both in research and in industry, the PLEXIL-ROS
integration can have positive impact in the development of mission-critical plans
for autonomy in rovers. For example, it offers automatic verification techniques
and tools already available for PLEXIL to ROS programmers. The proposed
architecture has been validated and illustrated with an example consisting of an
autonomous plan written in PLEXIL for a wheeled ROS-enabled robot.

Future work will integrate PLEXIL-compatible modules in the deliberative
layer, which will be tested with specific tasks. They can include strategic areas
in Colombia where reliable automation is needed. These include, for instance,
precision agriculture. On the other hand, it will be ideal to deploy an official
PLEXIL-ROS package to make the integration of components and the valida-
tion environments above-mentioned fully available to the ROS programming
community. The feedback from the ROS community will be a valuable input for
future stages of this project. Finally, specific-purpose verification techniques and
tools need to be developed for the PLEXIL-ROS integration depending on the
area of use.

References

1. Andres, B., Rajaratnam, D., Sabuncu, O., Schaub, T.: Integrating ASP into
ROS for reasoning in robots. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.)
LPNMR 2015. LNCS, vol. 9345, pp. 69–82. Springer, Cham (2015). doi:10.1007/
978-3-319-23264-5 7

2. Broenink, J., Brodskiy, Y., Dresscher, D., Stramigioli, S.: Robustness inembedded
software for autonomous robots. Mikroniek 54, 38–45 (2014)

3. Cadavid, H.F., Chaparro, J.A.: Hardware and software architecture for plexil-
based, simulation supported, robot automation. In: IEEE Colombian Conference
on Robotics and Automation (CCRA), pp. 1–6. IEEE (2016)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework: How to Spec-
ify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer,
Heidelberg (2007)

http://dx.doi.org/10.1007/978-3-319-23264-5_7
http://dx.doi.org/10.1007/978-3-319-23264-5_7

Reliable Control Architecture with PLEXIL and ROS for Robot Autonomy 625

5. Dowek, G., Muñoz, C., Rocha, C.: Rewriting logic semantics of a plan execution
language. Electron. Proc. Theoret. Comput. Sci. 18, 77–91 (2010)

6. Estlin, T., Jonsson, A., Pasareanu, C., Simmons, R., Tso, K., Verma, V.: Plan
Execution Interchange Language (PLEXIL). Technical report TM-2006-213483,
NASA, April 2006

7. O. S. R. Foundation. GAZEBO: A 3D dynamic simulator. http://gazebosim.org.
Accessed 19 May 2017

8. O. S. R. Foundation. ROS: Robot operating system. http://wiki.ros.org. Accessed
19 May 2017

9. O. S. R. Foundation. RViz: 3D visualization tool for ROS. http://wiki.ros.org/rviz.
Accessed 19 May 2017

10. Janssen, R., van Meijl, E., Di Marco, D., van de Molengraft, R., Steinbuch, M.:
Integrating planning and execution for ros enabled service robots using hierarchi-
cal action representations. In: 2013 16th International Conference on Advanced
Robotics (ICAR), pp. 1–7. IEEE (2013)

11. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sendai, Japan, pp. 2149–2154, September 2004

12. Lundgren, M.: Path tracking for a miniature robot. Department of Computer Sci-
ence, University of Umea, Masters (2003)

13. Medeiros, A.A.: A survey of control architectures for autonomous mobile robots.
J. Braz. Comput. Soc. 4(3) (1998)

14. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oret. Comput. Sci. 96(1), 73–155 (1992)

15. Muñoz, C.A., Dutle, A., Narkawicz, A., Upchurch, J.: Unmanned aircraft systems
in the national airspace system: a formal methods perspective. SIGLOG News 3(3),
67–76 (2016)

16. Muñoz, P., R-Moreno, M.D., Castaño, B.: Integrating a PDDL-based planner and
a PLEXIL-executor into the ptinto robot. In: Garćıa-Pedrajas, N., Herrera, F.,
Fyfe, C., Beńıtez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS, vol. 6096, pp. 72–81.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13022-9 8

17. Nakhaeinia, D., Tang, S.H., Noor, S.M., Motlagh, O.: A review of control architec-
tures for autonomous navigation of mobile robots. Int. J. Phys. Sci. 6(2), 169–174
(2011)

18. Potop-Butucaru, D., de Simone, R., Talpin, J.-P.: The synchronous hypothesis and
synchronous languages. In: The Embedded Systems Handbook, pp. 1–21 (2005)

19. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on
Open Source Software, vol. 3, p. 5 (2009)

20. Robotics, C.: Husky-unmanned ground vehicle. Technical Specifications, Clearpath
Robotics, Kitcener, Ontario, Canada (2013)

21. Rocha, C.: Symbolic Reachability Analysis for Rewrite Theories. Ph.D. thesis,
University of Illinois, December 2012

22. Rocha, C., Cadavid, H., Muñoz, C., Siminiceanu, R.: A formal interactive verifi-
cation environment for the plan execution interchange language. In: Derrick, J.,
Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 343–357.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-30729-4 24

23. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system
analysis. J. Logic. Algebr. Methods Program. 86(1), 269–297 (2017)

http://gazebosim.org
http://wiki.ros.org
http://wiki.ros.org/rviz
http://dx.doi.org/10.1007/978-3-642-13022-9_8
http://dx.doi.org/10.1007/978-3-642-30729-4_24

626 H. Cadavid et al.

24. Rocha, C., Muñoz, C., Cadavid, H.: A graphical environment for the semantic
validation of a plan execution language. In: Third IEEE International Conference
on Space Mission Challenges for Information Technology (SMC-IT 2009), pp. 201–
207. IEEE, July 2009

25. Rozier, K.Y.: Specification: the biggest bottleneck in formal methods and auton-
omy. In: Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 8–26.
Springer, Cham (2016). doi:10.1007/978-3-319-48869-1 2

26. Verma, V., Jonsson, A., Pasareanu, C., Iatauro, M.: Universal-executive and
PLEXIL: engine and language for robust spacecraft control and operations. In:
American Institute of Aeronautics and Astronautics SPACE Forum (Space 2006).
American Institute of Aeronautics and Astronautics, September 2006

27. Zheltoukhov, A.A., Stankevich, L.A.: A survey of control architectures for
autonomous mobile robots. In: 2017 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering (EIConRus), pp. 1094–1099.
IEEE (2017)

http://dx.doi.org/10.1007/978-3-319-48869-1_2

	Reliable Control Architecture with PLEXIL and ROS for Autonomous Wheeled Robots
	1 Introduction
	2 Related Work
	3 The Plan Execution Interchange Language
	3.1 PLEXIL in a Nutshell
	3.2 Rewriting Logic-Based Automatic Analysis

	4 The Robot Operating System
	5 Layered Architecture for the Integration
	6 Proof of Concept
	7 Concluding Remarks
	References

