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Preface

A better understanding of endophytic microorganisms may help to elucidate their
functions and potential role in developing sustainable systems of crop production
and their protection against abiotic and biotic stresses. Endophytes play a vital role
in growth and health promotion of plant. Endophytic bacteria are of agrobiological
interests because they create host–endophyte relationship having exciting prospects
for newer biotechnological applications. Endophytes proved beneficial alternative
for sustainable solutions for agrochemicals due to their role in biological control of
pests and diseases. They reduce the burden of excess use of agrochemicals. On the
other hand, endophytes are potential source of several secondary metabolites and
several useful other metabolites such as alkaloids, enzymes, biosurfactants, bio-
control agents, and plant growth promoters. It is imperative that these products have
industrial applications in the field of biotechnology, pharmacy, and agriculture.

The ‘Endophytes: Vol. II Crop productivity and protection’ is an endeavor to
review the current developments in the understanding of microbial endophytes and
their potential applications in the enhancement of productivity and disease pro-
tection. This book contains various chapters presenting state of knowledge on
involvement of endophytes in crop productivity and soil health because of bene-
ficial for agricultural and forest ecosystem. Endophytes contribute in nonnative
crops, volatile organic compound production, and a remarkable source of biolog-
ically active secondary metabolites and enzymes, as lignin degrading fungi, in
bioremediation, phosphate solubilization, agricultural productivity, and plant dis-
ease control. The chapters describe the strategies for crop improvement and pro-
duction of useful metabolites and aromatic compounds, enzymes, and other
metabolites. These chapters are described with advance information on endophytes
for productivity and protection in sustainable plant ecosystem.

We are sure the book will be useful to botanists, microbiologists, biotechnolo-
gists, molecular biologists, environmentalists, and those working for the protection
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of plant species of agricultural and medicinal importance. I am thankful to the
contributors of these books for their cooperation and patience in the compilation of
this task. I am also thankful to Springer team, particularly Drs. R. Valeria and
Takeesha for their constant support in the publication of this work.

Haridwar, India Dinesh K. Maheshwari
New Delhi, India K. Annapurna
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Chapter 1
Endophytes as Contender of Plant
Productivity and Protection:
An Introduction

Dinesh K. Maheshwari, Shrivardhan Dheeman and K. Annapurna

Abstract Bacterial endophytes are versatile with impeccable mastery to occupy
their niche in plant tissues, thus, experiences less competition than the other
free-living rhizospheric inhabitants. These holds vast and extended scope of their
utilization in plant health and growth promotion and contribution in sustainable
agriculture as potent contender. This chapter introduces overview on the diverse
role of endophytes for multidisciplinary benefits exclusively in plant productivity
and protection.

Keywords Bioremediation � Bacterial metabolites � Invasive endophytes
Native plants � Non-native plants � Forest ecosystem

1.1 Introduction

There is a great deal of interest in understanding the role of endophyte diversity in
plants and their ecology, evolutionary biology and applied sciences research
ranging from crop productivity to protection against abiotic and biotic stresses.
During last decade, maximum numbers of papers on beneficial endophytes have
been published from the USA followed by narrow difference between China and
India. Top nine countries have published on different aspects. Whereas subject-wise
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maximum publications appeared on their beneficial role in both native and
non-native crops and more particularly to that of agricultural benefits (Fig. 1.1).

With the growing need for increase food and bioenergy biomass but with a great
understanding of the implications of conventional intensive agriculture, the time is
right for a great emphasis on biological mechanisms for improvement of plant
growth. Endophytes have an advantage since there would be less competition, when
adding soil bacteria to the established rhizosphere communities. Endophytes with
the ability to colonize internal host tissues has made them valuable microorganisms
to improve crops performances as well as forest trees which are equally benefitted
by using endophytes via seeds, seedlings, etc.

Almost whole plant, even the pollen and pistil are the sources of endophytic
microorganisms but, present more in root than that of aerial plant tissues. Similarly,
epiphyte microbial (leaf) populations (phyllosphere) are more numerous in com-
parison to that of endophytic populations (Beattie and Lindow 1999). It is inter-
esting to note that fungal endophytes have bacteria and viruses make tritrophic
endophytic interactions (Hoffman and Arnold 2010). Recently, Aeron et al. (2014)
observed endophytic colonization of putative invasive non-rhizobia endophytes
from Clitoria ternatea L. nodules; the bacteria that lack the ability to form nodules
were also observed in the root nodules.

The majoring of reports deal with the culturable endophytes and for most of such
nodule inhabiting bacteria, their endophytic nature is not yet proven. Since, they
remain associated with plant adhering tissues, viz, nodules; these are now referred
as putative endophytes. Various genera such as Streptomyces, Agrobacterium,
Bacillus, Paenibacillus, Pseudomonas, Enterobacter, Paracoccus, Lysinibacillus,

Fig. 1.1 Beneficial endophytes in different area (subject wise distribution). Source www.scopus.
com/
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Staphylococcus, Starkeya and others exist or co-exist with or without a tree sym-
biont inside nodules.

Plant tissues colonized with diverse genera of microbes those persist as epi-
phytes and endophytes and historically, endophytes inherited from endotroph
introduces concerns in relation with endomycorrhizal association (Frank 1885) and
later used to define ferns colonized with algae as described by Campbell (1908).
Endophytes have both beneficial and harmful effect to the associated plants. But
more often, the endophytic microbes reduce herbivory (Koh and Hik 2007), induce
plant growth and development (Hardoim et al. 2008), increase mineral uptake
(Malinowski and Belesky 2000), fix nitrogen (Doty et al. 2009), suppress phy-
topathogens and diseases (Melnick et al. 2008) and induce plant defence Kloepper
et al. 2004). As a matter of fact, their colonization in an ecological niche is similar
to plant pathogens which might favour them as a potential biocontrol agent
(Ramamorthy et al. 2001). The close association with plant tissues make them
amicable and often a unique opportunity for their role in biological control. The
endophytic microbes in biocontrol received lot of interest and suitably described in
the present book.

Endophytes proved as a novel source of enzymes, antibiotics including other
secondary metabolites of agro-biological and ecological significance. In addition,
endophytes are often used in rhizoremedation. Reports on their ability and applica-
tions to degrade pollutants have now been possible (Doty 2008; Segura et al. 2009).

Next generation sequencing such as pyrosequencing, ROCHE sequencing, High
throughput sequencing etc. can lead to discovery of new groups of microbes
bioremediation of pollutants. Bacterial community from aerial part of plant bears
plant growth promoting attribute to control diseases. The leaves harbour endophytic
culturable bacteria beneficial to plant which can be used as bioinoculants for plant
growth promotion thus for increasing their productivity (Malfanova 2013).

1.2 How Endophytes Are Beneficial for Agriculture
System?

Similar to other bacteria endophytes are potential inhabitant in a wide variety of
native and cultured crop plants. Their presence inside the host tissues undoubtedly
exhibiting with diverse morphologies that ranges unicellular to filamentous forms.
Their presence in both terrestrial and aquatic ecosystem, including marine envi-
ronmental plants holds beneficial impacts via offering nutrient accumulation, sec-
ondary metabolite production, etc. Other than, rhizospheric benefits, actinobacteria
are also involved in recycling of nutrients, decomposition of organic matter,
degradation of agricultural and urban wastes, environmental pollutants, such as
petroleum, dyes and other recalcitrant compounds which in turn corroborate the soil
ecology and agro-ecosystem as discussed in Chap. 2.

1 Endophytes as Contender of Plant Productivity … 3



1.3 Endophytes: A Part of Forest Ecosystem

Forest trees are providing unique ecological reservoir for bacterial endophytes. Of
course, forests are important component to sustain environment and play significant
role to keep integrity and sustainability of nature. Forests cover one-third of entire
land on Earth, providing vital organic infrastructure for some of the planet’s thickest
and most diverse collections of life. Bacterial endophytes associated with tree spe-
cies are rather limited but their importance should not be underrated. By virtue of
beneficial endophytes associated with forest tree, wide range benefits can be har-
nessed in term raising potential future for forest trees so as to restore the density and
sustainable existence of forest to keep earth green as reviewed in Chap. 3.

1.4 Endophytes in Native and Non-native Crops

The increasing introduction of non-native plants particularly improved germ-plasm
of crops is utmost necessary for adequacy of food to human beings and feed to
animals. Microbial invasion in plants has a considerable role to play in facilitating
their growth and productivity besides biological control of deleterious phy-
topathogens causing diseases in non-native plants. To apply for beneficial rela-
tionships, endophyte-plant host interactions are suitable strategies that facilitates
agricultural productivity. Beneficial endophytes of non-native crop host can be
utilized in native or indigenous crop as reviewed in Chap. 4.

1.5 Endophytes Increase Microbial Activity in Tissues

The outer epidermal walls of plant cells are covered with mucilage and cuticle. The
cell also secretes polysaccharides and their biopolymers. The organic and inorganic
compounds in the cells cytoplasm are diffused out. This occurs probably due to
unfavourable conditions and sometimes indirectly affect the aerial surface accu-
mulate directly. In case of underground region, beneath the soil is root and loss of
organic and inorganic compounds from its surface is known as root exudates. Inside
the tissue, endophytes colonize and constitute a good base which is utilized by
microorganism and release various metabolites multifarious in nature.

1.6 Endophyte as a Source of Potential Metabolites

These are member of volatile organic compounds as well as diffusible substances
produces by endophytes. The low molecular weight hydrocarbons, aldehydes
alcohol, lectones, peptides inorganic volatiles such as HCN are produced during

4 D.K. Maheshwari et al.



primary and secondary metabolism of these endophytes. Some of these chemicals
are the source of signalling that facilitates the activity of other microorganisms
present is the ecological niche prove beneficial in both raising productivity and
protecting plants. Even few of the endophytes act as agents triggering plant
immunity and enhancing plant growth and health support. Thus, impact to under-
stand the bioconversion of cellulosic domain into liquid fuel, role of volatile organic
compounds in biocontrol, etc. cannot be ruled out. The characterization and elu-
cidation of these compounds, with suitable strategy in agricultural practices has
been elaborated in Chap. 5.

New discovery of molecule is a continuous process in pharmaceutical industry
because of development of new races and genera of resistance in microorganisms.
Various genera such as Escherichia, Salmonella, Pseudomonas, Staphylococcus,
Streptococcus, Micrococci, etc. belong to multidrug resistance and some
Enterococcus spp. proved vancomycin resistance. There is no proper drug available
to combat infections cause by these genera. Suitable strategies still need to establish
for isolating potent biomolecules both from microorganism as well as plants
(Table 1.1). Endophytes are ubiquitous in nature associated with different genera
and tissues of diversify nature cellulosic versus non-cellulosic, pectolytic versus

Table 1.1 Showing the similar product of both endophyte and plant origin

Name of the metabolite Plant/plant part Microorganisms References

Azadirachtin A Azadirachta
indica A. Juss

Eupenicillium parvumby Kusari
et al.
(2012)

Camptothecine (CPT) Miquelia
dentata Bedd.

Endophytic bacteria Shweta
et al.
(2013a)

Rohitukine Dysoxylum
binectariferum
Hook.f

Fusarium
proliferatum (MTCC
9690)

Kumara
et al.
(2012)

Paclitaxel (taxol®) Taxus brevifolia Taxomyces andreanae Stierle
et al.
(1993)

Plant-derived bioactive
compounds

– Endophytic fungi Zhao et al.
(2011)

CPT, 9-methoxy CPT
(9-MeO-CPT) and
10-hydroxy CPT
(10-OH-CPT)

Miquelia dentata
(Icacinaceae)

Fomitopsis sp. P. Karst
(MTCC 10177),
Alternaria alternata (Fr.)

Shweta
et al.
(2013b)

Keissl (MTCC 5477) and
Phomposis sp. (Sacc.)

Taxol Taxus brevifolia Taxomyces andreanae Stierle
et al.
(1993)

Camptothecin Nothapodytes
foetida

Entrophospora
infrequens

Puri et al.
(2005)
(continued)
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non-pectolytic as well as in tissues having various deposits. Screening of endo-
phytic microbes for biologically active metabolites with promising medicinal and
agricultural application may provide a suitable outcome from endophytes associa-
tion as discussed in present volume.

1.7 Are Endophytes Remediating Pollutants
in Ecosystems?

Most studies of wood-decaying fungi are based on advanced stages of wood
degradation. However, some endophytic fungi could be involved in triggering the
development of early stages of wood decay. In nature, endophytes inhabit
asymptomatic plant tissues, living in symbiosis with their hosts. Thus it becomes
necessary to explore the role of wood-inhabiting fungi and study their ligninolytic
mechanistic strategies so as to exploit as alternative for degrading lignin or other
recalcitrant compounds hazardous to environment. Technological application of
these fungi could improve current technological performance of bioconversion
processes as reviewed in Chap. 7.

Although phyto-extraction process affect many advantage to remediate heavy
metal contaminated soil but it has several demerits mainly the process is eco-
nomically non-viable (Succuro et al. 2009). The addition of microorganisms in the

Table 1.1 (continued)

Name of the metabolite Plant/plant part Microorganisms References

Camptothecin Apodytes
dimidiate

Fusarium solani Shweta
et al.
(2010)

Podophyllotoxin Sinopodophyllum
hexandrum

Alternaria sp. Trivedi
et al.
(1970)

Podophyllotoxin Sabina recurva Fusarium oxysporum Kour et al.
(2007)

Vinblastine Catharanthus
roseus

Alternaria sp. Li et al.
(2004)

Vincristine Catharanthus
roseus

Fusarium oxysporum Wang
et al.
(2006)

Hypericin Hypericum
perforatum

Chaetomium globosum Kusari
et al.
(2008)

Diosgenin Paris polyphylla
var. yunnanensis

Cephalosporium sp. Jin et al.
(2004)

Azadirachtin Azadirachta
indica

Eupenicillium parvum Kusari
et al.
(2011)
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plant rhizosphere is an established route to make the process more efficient. The
microbial inducer improvement in the accumulation of the heavy metals in plant
biomass are always coincident with enhances net phytoextraction (Pajuelo et al.
2007). Microbes in general and fungi in particular clean up environment and proved
potential source for biodegradation of organic pollutant. Various genera of endo-
phytic fungi developed a variety of tolerant mechanism toward host metabolites in
order to increase their adaptability in environment and interconnection between
different organisms further augment bioremediation potential of endophyte fungi in
the management of toxic pollutant has suitably given in Chap. 8.

1.8 Factors Affecting Endophytic Colonization

Endophytic microbial colonization affecting by mass factors such as (a) temporary
chilling of plant increases the release of amino acid from roots in sand soil
(b) exudation induce under high intensity of light (capture by endophyte plant) and
temperature (c) secondary metabolites of certain bacteria cause increase and in the
presence of competitive synergative rhizobia; polygalactouronase is released from
the roots resulting increase in polypeptide antibiotics thus increase the substantial
leakage of both organic and inorganic compounds (Swamy et al. 2016). Root
exudates are, therefore, bears induction of chemotaxis in bacteria towards the roots
and the simultaneous conditioning of bacterial cells for host cell attachment. Thus,
it is hypothesized that the capability of bacteria to condition for (plant) host cell
attachment during chemotaxis is one of the most important factors for pathogenicity
or colonization efficiency.

1.9 Conclusion and Suggestions

Endophytes in plants play significant role in microbial ecology, evolutionary
biology, applied life sciences ranging from bioprospecting for genes and molecules
to lead productivity enhancement and biocontrol for wide array of crop fungal
pathogens. They are expected to control both endophytic fungi and epibiotic to
other microorganisms of endophytic species as tools to manage plants disease,
reproductive biology of plants. Biocatalysis and other biotechnological processes,
new technologies and new crops with endophytes still have many areas open for
future research. After consideration of all the chapters included in the present
volume, some of the points have been summarized with few more interesting
aspects being highlighted. More research on endophytes, yet to be cultivated on
artificial culture media are required. This will be possible when a better knowledge
of endophyte ecology and molecular interactions is attained.
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Chapter 2
Plant Growth Promotion by Endophytic
Bacteria in Nonnative Crop Hosts

Akshit Puri, Kiran Preet Padda and Chris P. Chanway

Abstract Studies highlighting the colonization and plant growth-promoting ability
of endophytic bacteria inoculated into nonnative plant hosts reviewed and presented
in this chapter. Endophytic bacteria, especially those related to the genus Bacillus,
Burkholderia, Enterobacter, Gluconacetobacter, Herbaspirillum, Paenibacillus,
Pseudomonas have been reported to form endophytic colonies in roots and shoot of
nonnative plant hosts. Marker genes like green fluorescent protein have also been
used widely to view the sites of colonization in real time. Apart from colonizing a
nonnative plant host, these endophytic bacteria are also involved in promoting host
plant growth and acting as a biocontrol agent against pathogenic fungi. Such
endophytes have a great potential in future for sustainable agriculture since they
could be used in a range of environmental and biological conditions.

Keywords Endophytic bacteria � Nonnative crop hosts � Biological nitrogen
fixation � Plant growth promoting bacteria � Diazotrophic endophytes

2.1 Introduction

When one considers both the expected worldwide population increase and the
increasing environmental damage that is a result of ever-greater levels of indus-
trialization, it is clear that in the next 10–20 years it will be a significant challenge
to feed all of the world’s people, a problem that will only increase with time.
According to a report released by the United Nations in 2015, the world’s popu-
lation is set to rise to 9.7 billion by 2050 (United Nations 2015). Sadly, the threat of
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having inadequate food to feed all of the world’s population in future is again in the
news. At this point, our world is experiencing a variety of problems like climate
change, food wastage, spoilage on an enormous scale, unequal distribution of food
resources, and continuously growing population. There is certainly no time to lose
and the world needs to act to feed this growing population. Although it is quite
tempting to use chemical fertilizers to boost up the agricultural productivity, such a
solution will have a detrimental effect on our environment. Agricultural scientists
around the world are working round the clock to look for innovative ways to
increase agricultural productivity sustainably, but it certainly represents a great
challenge for them. The use of microorganisms with the objective of improving
agricultural productivity is one of the most important sustainable practices (Freitas
et al. 2007).

The soil is full of microscopic life including a diverse range of bacteria, fungi,
protozoa, and algae. It is estimated that there are more than 94 million organisms in
a single gram of soil, with most of them being bacteria (Glick 2015). The inter-
action between bacteria and plants could be beneficial, neutral, or detrimental to the
plant. However, the effect that a particular bacterium has on a plant may change as
the conditions change. For instance, a bacterium that facilitates plant growth by
providing either fixed nitrogen (N) or phosphorus compounds that are often present
in only limited amounts in many soils is unlikely to provide any benefit to plants
when a significant amount of chemical fertilizer added to the soil (Glick 2012). This
observed when a bacterial strain of Paenibacillus polymyxa (Bal et al. 2012) was
inoculated into lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Watson).
The bacterial strain fixed significant amounts of N directly from the atmosphere
under N-limited conditions (Anand et al. 2013), but was unresponsive when suf-
ficient amount of N was present in the soil (Yang et al. 2016, 2017).

2.2 Plant Growth-Promoting Bacteria (PGPB):
Biofertilizers for Sustainable Agriculture

Bacteria that are able to provide a range of benefits to the plant also known as plant
growth-promoting bacteria (PGPB). Bashan and Holguin (1998) proposed the term
PGPB in the field of plant-microbe interactions. These bacteria are capable to affect
plant growth via numerous independent or linked mechanisms for sustainable
agriculture (Compant et al. 2010; Palacios et al. 2014). They counteract many
stresses in plants (Kang et al. 2010; Kim et al. 2012), fighting against phy-
topathogens (Verhagen et al. 2004; Raaijmakers et al. 2009) and assisting in the
recovery of damaged or degraded environments (Denton 2007; de Bashan et al.
2012). Nowadays, PGPBs are of great interest because of their applications in
agriculture as biofertilizers, pesticides, and phytoremediation (Sturz et al. 2000;
Berg 2009; Lugtenberg and Kamilova 2009; Weyens et al. 2009; Compant et al.
2010). Classification of PGPB based on their habitable niche presented in Fig. 2.1.
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The rhizosphere is well explained and known to host a diversity of PGPB from
more than 20 genera, including Pseudomonas, Bacillus, Burkholderia,
Enterobacter, Paenibacillus, Azospirillum, Agrobacterium, and Azotobacter.
Several bacteria deriving from the rhizosphere not only colonize the rhizoplane but
can also enter plants and colonize internal tissues and many of them have shown
plant growth-promoting effects (Hallmann 2001; Sessitsch et al. 2004; Compant
et al. 2005, 2008, 2010; Hallmann and Berg 2006; Anand et al. 2013; Puri et al.
2015; Padda et al. 2016a, b). Often not considered as PGPB, cyanobacteria are also
renowned for their ability to promote plant growth indirectly by fixing carbon
through oxygen photosynthesis and N through biological nitrogen fixation. They
can survive in diverse ecological niches including but not limited to phyllosphere
(Fürnkranz et al. 2008; Hamisi et al. 2013), rhizosphere (Karthikeyan et al. 2009;
Prasanna et al. 2009) and plant interior (Tyagi et al. 1980; Krings et al. 2009).

2.3 Endophytic Bacteria: Microbial Life Inside the Plant

About 150 years ago the term, “endophyte” was first coined by de Bary (1866) for
pathogenic fungi entering inside leaves. Since then, many authors have been
redefining this term, but taken literally, the word endophyte means “in the plant”
(endon = within; phyton = plant). Galippe (1887) was the first scientist to postulate
that various vegetable plants host microbes within their interior and these microbes
are soil habitant. This was later confirmed by di Vestea (1888), but well-known
scientists at that time such as Pasteur, Chamberland, Fernbach, Laurent, and others
claimed that plants are normally free of microbes and they indeed demonstrated
contradictory results to prove that Galippe’s hypothesis is wrong (Compant et al.
2010). However, it is now well accepted that plants generally host a wide range of
phylogenetically distinct endophytes in various organs (Bacon and White 2000),

Fig. 2.1 Classification of plant growth-promoting bacteria (PGPB) based on their habitable
niches
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and that almost all of these microbes are derived from the soil environment
(Rosenblueth and Martínez-Romero 2006; Hardoim et al. 2008; Ryan et al. 2008;
Compant et al. 2010).

Since this chapter has key focus on endophytic bacteria, the term needs to
redefine before starting a new discussion. Numerous definitions of the term
“Endophytic Bacteria” could be found in the literature (Kado 1992; Quispel 1992;
Beattie and Lindow 1995; Hallmann et al. 1997), but each has its own restrictions.
In this chapter, we use the term “Endophytic Bacteria” to describe “the bacteria that
can be detected at a particular moment within the tissue of apparently healthy plant
hosts without inducing disease or organogenesis” (Chanway et al. 2014). It is
believed that via rhizosphere colonization, endophytic bacteria become colonize in
various plant parts/tissues such as roots, stem, leaves, flowers, fruits, and seeds
(James et al. 2002; Sessitsch et al. 2002; Berg et al. 2005; Compant et al. 2005,
2008, 2011; Okunishi et al. 2005; Bal et al. 2012; de Melo Pereira et al. 2012;
Anand and Chanway 2013a; Trognitz et al. 2014; Puri et al. 2015, 2016a, b).
Endophytic bacterial population is extremely variable in different plant organs and
tissues shown to vary in from as low as hundreds to as high as 9 � 109 of bacteria
per gram plant tissue (Jacobs et al. 1985; Misaghi and Donndelinger 1990; Sturz
et al. 1997; Hallmann et al. 1997; Chi et al. 2005; Padda et al. 2016a, b). In contrast
to free-living, rhizosphere or phyllosphere microorganisms, bacterial endophytes
are better protected from abiotic stresses such as extreme variations in temperature,
pH, nutrient, and water availability as well as biotic stresses such as competition
(Loper et al. 1985; Cocking 2003; Rosenblueth and Martinez-Romero 2006). In
addition, endophytic bacteria colonize niches that are more conducive to forming
mutualistic relationships with plants (Richardson et al. 2009), for example pro-
viding fixed N to the plant and getting photosynthate in return (Hallman et al. 1997;
Reinhold-Hurek and Hurek 1998a, b; Santi et al. 2013). Primary mechanisms by
which endophytic bacteria promotes plant growth are highlighted in Fig. 2.2.

2.3.1 Diazotrophic Endophytes: Biological N-Fixers Living
Inside the Plant

For plants, N is an essential mineral required to survive and grow. It is a primary
constituent of nucleotides, proteins, and chlorophyll (Robertson and Vitousek
2009). The availability of fixed N (nitrate or ammonium converted from dinitrogen)
is seen by many as the most yield-limiting factor related to crop production
(Muthukumarasamy et al. 2002). Although N is found in high abundance in the
atmosphere, biologically available N in terrestrial ecosystems is in short supply.
Root-nodulating bacteria, such as well-known rhizobia form a symbiotic associa-
tion and provide biologically fixed N directly to leguminous plants. However,
nonleguminous plants, including economically important crop species belonging to
Poaceae family like sugarcane (Saccharum officinarum L.), corn (Zea mays L.),
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wheat (Triticum spp.), and rice (Oryza sativa), do not have this type of symbiosis.
Brazilian researchers were the first to report the presence of N-fixing bacteria
(diazotrophs) in the rhizosphere and rhizoplane of a nonleguminous plant, sugar-
cane (Döbereiner and Alvahydo 1959; Döbereiner 1961). Initially, it was postulated
that nitrogenase activity occurs in the rhizosphere soil but not in roots (Döbereiner
et al. 1972; Ruschel 1981). In subsequent studies, various diazotrophs like
Azospirillum lipoferum, Azospirillum amazonense, Bacillus azotofixans,
Enterobacter cloacae, Erwinia herbicola, Bacillus polymyxa (Rennie et al. 1982;
Magalhaes et al. 1983; Seldin et al. 1984; Baldani et al. 1986) were isolated from
the rhizosphere of sugarcane. Later, it was determined that rhizospheric N-fixation
does not occur at sufficient rates to facilitate high sugarcane yields. Cavalcante and
Döbereiner (1988) reported the isolation of a diazotrophic bacterium from the stem
and root tissues of sugarcane and postulated that this bacterium might be involved
in fixing high amounts of N biologically. The isolated diazotroph was initially
named as Saccharobacter nitrocaptans (Cavalcante and Döbereiner 1988) but was
later changed to Acetobacter diazotrophicus (Gillis et al. 1989) and then renamed as
Gluconacetobacter diazotrophicus (Yamada et al. 1997). This bacterium was able
to form high endophytic populations and fix N at high sucrose concentrations
(Boddey et al. 1991) and in low pH conditions (Boddey et al. 1991; Stephan et al.

Fig. 2.2 Principal mechanisms of plant growth promotion exhibited by endophytic bacteria
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1991) and these conditions are typically found in sugarcane tissues. This led to the
suggestion that it can satisfy almost all of the sugarcane N requirements while
living inside the sugarcane tissues. The term “endophytic diazotrophic bacteria“
was then coined by Döbereiner (1992) to designate all diazotrophs able to colonize
primarily the root interior of graminaceous plants, survive very poorly in soil and
fix N in association with these plants (Baldani et al. 1998). Since the discovery of
endophytic diazotrophic bacteria in sugarcane, other agronomically important crop
species including rice (Baldani et al. 2000; Gyaneshwar et al. 2001; Hurek et al.
2002), corn (Olivares et al. 1996; Riggs et al. 2001; Roesch et al. 2008; Montañez
et al. 2009; Puri et al. 2015, 2016b), canola (Brassica napus L.) (Germida and de
Freitas 1998; Puri et al. 2016a; Padda et al. 2016a, b) and wheat (Sabry et al. 1997)
have been postulated to receive significant amounts of fixed N in this way.
Table 2.1 presents a brief list of prominent diazotrophic endophytes isolated from
key agricultural crops.

Table 2.1 Prominent diazotrophic bacteria isolated from different crop species

Crop Diazotrophic endophytes References

Canola Bacillus polymyxa Germida and de Freitas (1998)

Paenibacillus polymxa Padda et al. (2016a, b), Puri et al. (2016a)

Corn Burkholderia tropica sp. Reis et al. (2004)

Burkholderia silvatlantica sp. Perin et al. (2006)

Gluconacetobacter
diazotrophicus

Eskin (2012)

Herbaspirillum spp. Olivares et al. (1996), Roesch et al. (2008)

Ideonella spp. Roesch et al. (2008)

Klebsiella pneumoniae Palus et al. (1996), Chelius and Triplett
(2000)

Paenibacillus polymyxa Puri et al. (2015, 2016b)

Pseudomonas spp. Montañez et al. (2009)

Rice Alcaligenes faecalis
[now known as Pseudomonas
stutzeri (Vermeiren et al.
1999)]

You and Zhou (1989)

Azoarcus spp. Egener et al. (1999), Engelhard et al. (2000),
Hurek et al. (2002)

Burkholderia spp. Baldani et al. (2000), Rangjaroen et al. (2015)

Herbaspirillum spp. Baldani et al. (2000), Elbeltagy et al. (2001)

Klebsiella sp. Rangjaroen et al. (2015)

Serratia marcescens Gyaneshwar et al. (2001)

Sugarcane Azoarcus spp. Reinhold-Hurek et al. (1993)

Azospirillum brasilense Carrizo de Bellone and Bellone (2006)

Burkholderia tropica sp. Reis et al. (2004)
(continued)
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2.4 Foreign Associations: Endophytic Bacteria Promoting
the Growth of Nonnative Crop Species

Plants are a complex micro-ecosystem which can only be colonized by foreign
microbes having metabolic diversity. Foreign associations of endophytes are not
unfamiliar to the scientific community and numerous studies have highlighted the
ability of these microbes to associate with a diversity of hosts. Endophytic bacteria
can colonize and provide benefits to a variety of foreign plant hosts ranging from
monocots to dicots, gymnosperms to angiosperms and woody trees to herbaceous
plants. Although the list of these endophytes is very long and include genera such
as Acetobacter, Arthrobacter, Azoarcus, Azospirillum, Bacillus, Bradyrhizobium,
Burkholderia, Enterobacter, Flavobacterium, Frankia, Gluconacetobacter,
Herbaspirillum, Paenibacillus, Pseudomonas, Rhizobacter, Rhizobium,
Sinorhizobium, Streptomyces, and Xanthomonas, only a few important ones have
been discussed in this chapter. A brief informative list of key endophytes that have
been reported to play an important role in growth promotion of nonnative hosts
through direct or indirect mechanisms has been compiled in Table 2.2. In the
sub-sections to follow, studies relating to endophytic colonization and plant growth
promotion by six of the most important bacterial endophytes reported in foreign
plant host species have been reviewed in detail.

2.4.1 Arthrobacter

In 1947, Conn and Dimmick established a new genus “Arthrobacter” in the world
of Microbiology (Conn and Dimmick 1947). By far more than 70 species have been
included in this genus (Fu et al. 2014). Bacterial species belonging to this genus are

Table 2.1 (continued)

Crop Diazotrophic endophytes References

Burkholderia silvatlantica sp. Perin et al. (2006)

Herbaspirillum spp. Baldani et al. (1992, 1996, 2002), Cavalcante
and Dobereiner (1988), Muthukumarsamy
et al. (1999)

Gluconacetobacter
diazotrophicus

Gillis et al. (1989), Boddey et al. (1991),
Stephan et al. (1991), Cavalcante and
Dobereiner (1988), Sevilla et al. (2001)

Wheat Azorhizobium caulinodans Sabry et al. (1997)

Azospirillum brasilense Schloter and Hartmann (1998), Rothballer
et al. (2003)

Klebsiella pneumoniae Iniguez et al. (2004)

Herbaspirillum hiltneri Rothballer et al. (2006)
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Gram-positive obligate aerobes commonly found in soils. They are rod-shaped
during the stationary growth phase and cocci-shaped during stationary phase.
Members of Arthrobacter genus can survive in a variety of environmental condi-
tions, including but not limited to water, air, human skin, oil, sludge, tobacco
leaves, soil (Ding et al. 2013; Fu et al. 2014). Studies have shown that members of
this genus can be helpful in many ways in agriculture. For instance, they fix
atmospheric N, solubilize sulfur and phosphorous in soil and degrade heavy metals
in polluted sites (Singer et al. 2000; Jiang et al. 2004; Postma et al. 2010). One of
the most important aspects of plant growth promotion is deriving N from the
atmosphere. Arthrobacter sp. HS-G8 was isolated from compost in Japan’s
Okinawa prefecture that possessed N-fixing ability (Jiang et al. 2004). In another
study, two endophytic strains, Arthrobacter nitroguajacolicus A18 and A34,
originally isolated from corn leaves possess nitrogenase reductase gene nifH indi-
cating that these strains could fix atmospheric N (Pisarska and Pietr 2012). These
strains successfully colonized and fixed N in different cultivars of corn thereby
promoting the growth of a nonnative host (Pisarska and Pietr 2012). An endophytic
bacterial strain, Arthrobacter humicola YC6002, from surface-sterilized root tissues
of Korean turf grass (Zoysia japonica) reported by Chung et al. (2010). This
bacterial endophyte successfully colonized internal tissues of a nonnative host,
radish (Raphanus sativus), and could be used in future for weed management due to
its ability to produce phytotoxic compounds like 3-phenylpropionic acid (Chung
et al. 2010).

2.4.2 Bacillus

The history of genus Bacillus dates back to 1835 when Christian Gottfried
Ehrenberg isolated a bacterium (Vibrio subtilis, now known as Bacillus subtilis)
belonging to this genus (Ehrenberg 1835). Later, in 1872, Ferdinand Cohn pro-
posed a new genus “Bacillus” and renamed Vibrio subtilis to Bacillus subtilis
(Cohn 1872). Bacteria of this genus are Gram-positive, endospore-forming and
rod-shaped that could be either obligate aerobes or facultative anaerobes. Genus
Bacillus is one of the most diverse group of bacteria that is well known for its many
agricultural and industrial applications. In agriculture, bacteria of this genus are
widely used as an effective biocontrol agent for numerous crop species. The
commercial success of Bacillus thuringiensis exemplified as a biocontrol agent
worldwide. Other bacterial isolates of this genus having biocontrol and plant
growth-promoting (PGP) properties have also been widely studied and successfully
used commercially in agriculture. Endophytic colonization in plant species by
bacteria has also been reported (Wang et al. 2009b; Lee et al. 2012; Liu et al. 2014;
Khalifa and Almalki 2015). Biocontrol of pathogens like Sclerotinia sclerotiorum,
Fusarium oxysporum, Rhizoctonia solani, Botrytis cinereapers, Gibberella zeae,
Dothiorella gregaria, Colletotrichum gossypii, Phytophthora capsici, Pythium
myriotylum, Athelia rolfsii, Magnaporthe oryzae, Ralstonia solanacearum, and
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Xanthomonas axonopodis pv. punicae by Bacillus in non-native plants has been
reported over the years (Maheshwari 2013).

Stem rot disease of rapeseed (Brassica napus L.), caused by a pathogenic fungus
Sclerotinia sclerotiorum, is a major problem faced worldwide by many countries.
Chen et al. (2014) tested the ability of an endophyte, B. subtilis EDR4, to inhibit the
growth of this pathogen in vitro and in vivo in rapeseed under greenhouse and field
conditions. B. subtilis EDR4 was initially isolated from root tissues of wheat (Qiao
et al. 2006) and subsequently reported to inhibit the growth of the fungal pathogen,
Gaeumannomyces graminis var. tritici, of wheat (Liu et al. 2007). In the in vitro
experiments, germination rate and hyphal growth of S. sclerotiorum were signifi-
cantly inhibited by B. subtilis EDR4 and the results of in vivo experiment con-
ducted under greenhouse and field conditions were no different. Scanning electron
microscopy revealed that EDR4 causes leakage in the cytoplasm, shrinking of
hyphae and irregular swelling of tips of the fungus. In another study related to
Brassica napus, an endophytic strain B. licheniformis CHM1 was isolated from
stem tissues of rice and tested for biocontrol activity and plant growth promotion in
cole (Brassica napus) (Wang et al. 2009a). Strain CHM1 colonized stem/leaf tis-
sues and significantly promoted the growth of cole seedlings (increasing the fresh
weight of seedlings by 72% and chlorophyll content by 61%). This bacterial strain
also inhibited the growth of common fungal pathogens like F. oxysporum, R.
solani, B. cinereapers, D. gregaria, G. zeae and C. gossypii in in vitro experiments.
In in vivo experiments, it provided 60% protection against R. solani in horse bean
(Vicia faba) and 70% protection against Bipolaris maydis in corn. In a more recent
study, wheat plant growth was significantly promoted by two endophytic strains
(135 and 170) belonging to the genus Bacillus, isolated from stem and root tissues
of a medicinal plant, Lonicera japonica, native to eastern China (Zhao et al. 2015).
In in vitro experiments, it was found that these two strains possess many PGP traits
that could increase wheat growth. Results of in vivo experiment were consistent
with results of in vitro experiment since inoculation with these strains significantly
increases fresh weight, dry weight and length of wheat seedlings along with the
chlorophyll content. These strains also showed in vitro antifungal activity against
common pathogenic fungi like Magnaporthe grisea (rice blast fungus), F. oxys-
porum (usually affects wheat and rice crops) and Alternaria alternate (causes leaf
spot disease). Based on the results of physiological and biochemical tests, and the
sequencing of 16S rRNA gene and phylogeny analysis, it was revealed that strains
Bacillus spp. 135 and 170 are very closely related to B. subtilis FL and B. atro-
phaeus NRRLNRS-213T, respectively. This study was also important in estab-
lishing the fact that strains belonging to genus Bacillus are potentially capable of
colonizing and promoting the growth of a completely distinct host (wheat, a
monocot) as compared to the host species from which it was isolated (Lonicera
japonica, a eudicot).

In a completely different approach to combat with pathogens and increase plant
yield, Prabhukarthikeyan et al. (2014) used a bioformulation containing a mixture
of an entomopathogenic fungus, Beauveria bassiana B2, known for its ability to
control a wide range of agriculturally important insect pests and an endophytic
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strain of B. subtilis (EPC8) against Fusarium wilt (F. oxysporum f. sp. lycopersici)
and fruit borer (Helicoverpa armigera) disease in tomato (Solanum lycopersicum
Mill.). It should be noted that B. subtilis EPC8 was initially isolated from root
tissues of coconut (Cocos nucifera) (Rajendran et al. 2008). Bioformulation of B2
and EPC8 suppressed these pathogens in in vitro experiments and under glasshouse
and field conditions when tomato plants were treated with this mixture. The
combination of B2 and EPC8 was better than the pesticide control (carben-
dazim + quinalphos) against both Fusarium wilt and fruit borer in glasshouse study
and was equally good in field conditions. Interestingly, it was also observed that
such bioformulation promotes tomato growth by increasing the plant height and
fruit yield under both glasshouse and field conditions. Recently, Munjal et al.
(2016) reported that an endophytic biocontrol agent, Bacillus megaterium BP17,
initially isolated from root tissues of black pepper (Piper nigrum) (Aravind et al.
2009) can colonize ginger plant (Zingiber officinale). Ginger roots were success-
fully colonized by this bacterial strain with population size ranging from 2.5 to 2.8
log10 cfu/g. It was also reported that this bacterial strain is capable of releasing
antimicrobial chemical compounds. In an interesting study, colonization pattern of
three nonnative host species by an endophytic Bacillus strain under sterile and
non-sterile conditions was reported by Moreira et al. (2015). Bacillus amylolique-
faciens 629 was initially isolated from Theobroma cacao (Leite et al. 2013) and was
inoculated into three distinct host species namely, cucumber (Cucumis sativus cv.
Marketmore 76), corn (cv. BRS Caatingueiro) and common bean (Phaseolus vul-
garis cv. BRS Notável). Strain 629 successfully colonized stem and leaf tissues of
cucumber, root and stem tissues of common bean, and root, stem and leaf tissues of
corn plant under both sterile and non-sterile conditions significantly. It is important
to note that the population size of endophytic bacteria was 3 times lower under
non-sterile conditions in all plant species as compared to the sterile conditions. It
could be concluded that indigenous endophytic bacteria and fungi pose a compe-
tition to the nonindigenous endophytes. Thus, the foreign association and estab-
lishment of an endophyte within a nonnative host is a formidable task.

2.4.3 Burkholderia

The genus ‘Burkholderia’ was first proposed by Yabuuchi et al. (1992) for the RNA
homology group II of Pseudomonas genus. Seven species of this group were
transferred to the new genus Burkholderia and renamed as B. caryophylli, B.
cepacia, B. gladioli, B. mallei, B. pickettii, B. pseudomallei, and B. solanacearum.
Currently, there are close to 100 species in this genus that are known to inhabit
diverse ecological niches, ranging from contaminated soils to the respiratory tract of
humans. Burkholderia species are renowned for their ability to promote plant
growth through various mechanisms including, N-fixation (Gillis et al. 1995; Cruz
et al. 2001; Estrada-De Los Santos et al. 2001) and biocontrol of pathogens (Hebbar
et al. 1998; Heungens and Parke 2000; Parke and Gurian-Sherman 2001). The
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majority of species are soil bacteria that are generally found in the rhizosphere or as
free-living microbes in the soil but there are some species that can colonize internal
tissues of plants and form beneficial interactions (Caballero-Mellado et al. 2004;
Pandey et al. 2005; Park et al. 2005; Mendes et al. 2007; Ho et al. 2015). The
interactions of some endophytic species of Burkholderia genus seem to be restricted
to only one type of host, whereas other species have a diverse host range (Coenye
and Vandamme 2003).

In a recent study, three strains belonging to the B. gladioli species were isolated
from roots and seeds of ancient and wild maize plants (Shehata et al. 2016). In vitro
studies revealed that these strains can inhibit fungal pathogen Sclerotinia
homoeocarpa and their interaction was also visualized on microscope slides by
staining with Evans blue. These strains were also successful in inhibiting the
growth of other common crop pathogens. The ability of these strains to act as a
biocontrol against S. homoeocarpa was also tested in vivo with creeping bentgrass
(Agrostis stolonifera) in two greenhouse trials and the results were no different from
the in vitro studies. The endophytic ability of one of the strains, B. gladioli 3A12,
was also tested in a nonnative host, creeping bentgrass, by tagging the strain with
green fluorescent protein (GFP) and examining under a confocal microscope. It was
found that GFP-tagged 3A12 strain successfully colonized shoots of creeping
bentgrass. The authors concluded that wild cultivars of agricultural crops might
possess an unexplored reservoir of bacterial endophytes having biocontrol traits
against a wide range of pathogens. In a study conducted a few years back, an
endophyte, B. cenocepacia 869T2, was isolated from root tissues of vetiver grass
(Chrysopogon zizanioides) (Ho et al. 2015). In vitro, strain 869T2 was able to
inhibit the mycelial growth of Fusarium oxysporum f. sp. cubense tropical race 4
(Foc TR4), a pathogenic fungus that causes Panama disease in banana (Musa
acuminata), showing 44% antifungal efficiency. When this endophytic strain was
inoculated into banana plantlets (Cavendish cv. Pei-Chiao), it developed stable
endophytic population in pseudostem tissues, thus showing endophytism in a dis-
tinct host. The in-field experiment revealed that inoculation of banana plantlets with
strain 869T2 not only reduces the disease symptoms of Foc TR4 but also promotes
growth by increasing the plant height and pseudostem girth significantly. This strain
of B. cenocepacia can be used as an effective biocontrol agent in susceptible banana
cultivars. Species of Burkholderia MSSP inhabit root nodule of Mimosa pudica
capable for N fixation along with antagonism against Rhizoctonia solani, and
Sclerotinia sclerotiorum has been reported by Pandey et al. (2005).

A remarkable endophytic bacterial strain (PsJN) was isolated by Dr. Jerzy
Nowak as a contaminant from surface-sterilized onion (Allium cepa L.) roots
infected with fungal pathogen Glomus vesiculiferum (Frommel et al. 1991;
Sessitsch et al. 2005). This strain has shown outstanding ability over the years to
endophytically colonize a wide range of plant hosts. The strain PsJN was initially
classified as a Pseudomonas sp. (Frommel et al. 1991), but was later reclassified as
a B. phytofirmans sp. (Sessitsch et al. 2005). Endophytic colonization by PsJN in a
nonnative host was first reported in potato (Solanum tuberosum) (Frommel et al.
1991). By using light and electron microscopy Frommel et al. also reported that
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endophytic population of PsJN strain is present in the epidermal layers of root and
in the xylem tissues of the stem. They also found that inoculation significantly
promotes the growth of potato plantlets by increasing root dry weight, secondary
root branching, root number, haulm dry weight, stem length, leaf hair formation,
and total lignin content of the plant. They also laid out a preliminary hypothesis that
growth promotion by the strain PsJN is due to the production of phytohormones. In
a subsequent study (Frommel et al. 1993), the ability of this strain to colonize
internal root tissues and promote plant growth in field conditions was reported with
the same cultivar of potato as was used in Frommel et al. (1991). In-field, it
stimulated plant emergence, root development, and overall yields of the potato
plant. Another report about the endophytic colonization of a nonnative host by
strain PsJN was published in 1997, in which the effect of inoculum density, tem-
perature, and genotype on colonization and growth promotion of tomato
(Lycopersicon esculentum L.) seedlings was evaluated (Pillay and Nowak 1997). In
this study, the inoculum range that promoted shoot and root interior colonization
also best-promoted plant growth of tomato cultivars. Endophytic colonization
patterns of strain PsJN were reported for the first time by Compant et al. (2005)
inside grapevine (Vitis Vinifer L.). The strain PsJN was tagged with GFP or gusA
and visualized under the desired microscope to examine internal tissue colonization.
Colonization of grapevine plantlet started with the bacterial strain gaining entry
through the sites of the emergence of lateral root or through the root tips, then
accumulating near the cell wall of the rhizodermis cells followed by intercellular
colonization of cortical cells. PsJN bacterial cells moved up through the xylem
vessels colonizing the fifth internode and leaf internal tissues. It was also observed
that the strain PsJN secretes cell wall-degrading enzymes, endoglucanase, and
endopolygalacturonase thus supporting the findings of microscopy studies. In a
subsequent study with grapevine, GFP-tagged PsJN strain could also be visualized
as an endophyte inside young berries (Compant et al. 2008) and was able to thrive
inside and outside the plantlet even when grown under non-sterile conditions (with
the presence of other microorganisms). Analysis of the complete genome of a
microorganism can reveal a lot about its properties and behavior in diverse eco-
logical niches. Although, the complete genome of B. phytofirmans PsJN was
sequenced and reported earlier (Weilharter et al. 2011), the analysis of the genome
was carried out by Mitter et al. (2013). As reported by Mitter et al. PsJN strain in
many aspects is outstanding because it has a large genome which is well-equipped
with genes that can degrade complex organic compounds (plant cell walls). It also
possesses a high number of cell surface signaling and secretion systems and has a
3-OH-PAME quorum-sensing system that might be helping this bacterium to
switch from free-living to symbiotic lifestyle. In another interesting study, the
ability to fix N was successfully transferred from a known N-fixing bacterium, B.
phymatum STM 815, to B. phytofirmans PsJN through horizontal gene transfer
(Lowman et al. 2015). The new strain was named PsJN+, which outperformed the
wild-type strain PsJN in terms of promoting the growth of switchgrass plant even
under low N conditions. B. phytofirmans PsJN is a unique and completely out-
standing endophyte that has been shown wide spectrum of endophytic lifestyles in
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diverse host species ranging from monocots to dicots since its isolation from onion
roots (Frommel et al. 1991, 1993; Liu et al. 1995; Pillay and Nowak 1997; Sharma
and Nowak 1998; Nowak et al. 2004; Compant et al. 2005, 2008; Sun et al. 2009;
Poupin et al. 2013; Naveed et al. 2014a, b) and could be used as an effective
commercial biofertilizer in agriculture production.

2.4.4 Gluconacetobacter

The genus Gluconacetobacter was proposed by Yamada et al. (1997) in an attempt
to reclassify and include the bacterial species Acetobacter diazotrophicus into a
new genus. Although there are currently 24 species in this genus but the most
widely studied species is Gluconacetobacter diazotrophicus. G. diazotrophicus is a
renowned diazotrophic endophyte found frequently in tissues of sugarcane and
other grasses, known for its ability to provide significant amounts of N to the plant
directly from the atmosphere. Studies about this bacterial species, including earliest
isolation, endophytism, and N-fixing trait have already been discussed in
Sect. 2.3.1. The studies highlighting the association of this bacteria with diverse
host species are discussed here. A. diazotrophicus (now known as G. diazotroph-
icus) strain PA15 isolated from sugarcane roots (Gillis et al. 1989) was tagged with
three different reporter genes, uidA, GFP and cobA to evaluate the colonizing ability
of this bacterial strain in three different crops namely wheat, corn and rice (Sevilla
and Kennedy 2000). Strain PA15 heavily colonized corn kernels, primary root, and
root hairs in just two days after inoculation. Rice seeds were not as heavily colo-
nized as corn but lateral roots and root hairs of rice were colonized heavily.
Colonization pattern in wheat was similar to rice. Plant growth promotion by strain
PA15 was observed only in rice seedlings and was thought to be due to the
bacteria’s N-fixing ability since mutants of PA15 with nif gene removed were not
able to promote rice growth. In another study, diazotrophic isolates belonging to the
genus Gluconacetobacter were isolated from internal tissues of sugarcane growing
in ancient agricultural fields of the Nile Delta (Giza) (Youssef et al. 2004). It was
observed that these Gluconacetobacter spp. were able to form colonies in the stem
(xylem vessels) and roots (cortex and vascular cylinder) of 21-day-old wheat
seedlings when studied by using scanning electron microscopy. Apart from endo-
phytically colonizing a diverse host species (wheat) these isolates were able to
increase the stem and root dry weight significantly, thus increasing the overall plant
biomass of wheat. Another study, G. diazotrophicus strain PAL5 (Bertalan et al.
2009) isolated from sugarcane was shown to colonize rice shoot and root endo-
phytically with a population size of 104 cfu/gm fresh tissue. To visualize the
endophytic colonies in rice, this strain was tagged with GFP and observed by using
confocal laser microscopy. Microscopy experiment revealed that bacterial cells of
PAL5 initially gather near the sites of lateral root emergence and at junctions
between root cap and root axis in the vicinity of the apex and then enter the roots
through these different openings (Rouws et al. 2010). In a subsequent study,
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Alquéres et al. (2013) also indicated the endophytic colonization of rice roots by
strain PAL5 through GFP-tagging. Secretion of reactive oxygen species (ROS) is a
typical defense response activated by the plants in response to a pathogen attack.
This study also established that strain PAL5 secrets ROS-scavenging enzymes that
play a key role in the endophytic colonization of rice. Further, endophytic colo-
nization pattern of strain PAL5 in A. thaliana root was studied by tagging it with a
red-fluorescent protein (Rangel de Souza et al. 2016). Inoculation by this strain
significantly promoted shoot and root fresh weight, shoot and root dry weight, total
leaf area, the number of leaves. Whole canopy gas exchange was also evaluated in
this study by using a portable photosynthesis system and the results revealed that
inoculation by PAL5 significantly increases net photosynthetic rates, lowers tran-
spiration rate and increases water-use efficiency in A. thaliana. These studies clearly
establish the ability of G. diazotrophicus PAL5 to endophytically colonize a range
of plant hosts and promote plant growth through different mechanisms. Although,
G. diazotrophicus bacterium grows well in high sucrose environments like internal
tissues of sugarcane and has been associated most of the time with sugarcane either
as an endophyte or as a beneficial rhizospheric microbe, but this bacterium can also
endophytically colonize a variety of plant species and promote their growth mainly
through N-fixation.

2.4.5 Paenibacillus

The genus Bacillus was very heterogeneous containing phylogenetically diverse
bacterial species. To reclassify some facultative anaerobes into a new genus (par-
ticularly B. polymyxa and some of its close relatives; rRNA group 3 of Ash et al.
(1991, 1993) created the genus Paenibacillus (meaning: almost a Bacillus).
Bacterial species belonging to this genus are low (mol% G + C contants) in DNA,
Gram-positive, neutrophilic, peri-flagellated heterotrophic, endospore-forming
facultative anaerobes. There are currently more than 180 species in this genus,
most of them discovered within the last decade (http://www.bacterio.net/
paenibacillus.html). The type species of this genus, Paenibacillus polymyxa, is
well known for its ability to fix N (Guemouri-Athmani et al. 2000; Anand et al.
2013; Anand and Chanway 2013b; Bal and Chanway 2012a, b), promote plant
growth (Timmusk et al. 1999; Puri et al. 2015; Puri et al. 2016a, b; Padda et al.
2016a, b) and suppress plant pathogens (Dijksterhuis et al. 1999; Ryu et al. 2006;
Choi et al. 2007; Haggag and Timmusk 2008; Timmusk et al. 2009). P. polymyxa is
known to colonize diverse ecological niches like soil, rhizosphere, intercellular and
intracellular spaces of plant tissues, marine environments, fermented food products
(Lal and Tabacchioni 2009). Endophytic colonization of plant tissues by this
bacterial species has been reported time and again by various scientists (Bent and
Chanway 1998; Shishido et al. 1999; Chanway et al. 2000; Bal et al. 2012; Pu et al.
2015; Yang et al. 2016; Tang et al. 2017).
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An interesting study about the invasion of plant roots and endophytic colo-
nization by P. polymyxa suggests that it form biofilms on the surface of the roots to
gain entrance into the plant (Timmusk et al. 2009). Biofilms are communities of
bacterial cells covered in a self-produced extracellular matrix, that are
surface-attached and highly structured (Costerton 1995). GFP-tagging of
P. polymyxa and visualization under confocal laser microscope has revealed that
this bacterium can colonize both intercellular and intracellular spaces of stem and
root tissues, which was significant in establishing its endophytic nature (Timmusk
et al. 2009; Anand and Chanway 2013a). Zhao et al. (2015) isolated several
endophytic strains from a medicinal plant, Lonicera japonica, generally grown in
eastern china. Two of the isolated strains belonged to genus Paenibacillus
(P. polymyxa and P. ehimensis) and possessed many plant growth-promoting
characteristics including siderophore production, phosphate solubilization, IAA
production, aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and
cellulase and pectinase activity. Apart from that, these strains were able to suppress
the growth of common crop pathogens. These Paenibacillus strains endophytically
colonized a nonnative host, wheat, and promoted its growth by significantly
increasing shoot and root length, seedling fresh and dry weight, and chlorophyll
content. In another recent study, several endophytic strains were isolated from wild
maize (teosinte) believed to harbor beneficial endophytes that could provide
resistance to common crop pathogens (Mousa et al. 2015). After initial in vitro
screening against fungal pathogen, Fusarium graminearum, causative agent of
Gibberella Ear Rot (GER) in modern corn, three antifungal endophytes identified as
P. polymyxa were tested for their ability to suppress GER in modern corn seedlings.
GFP-tagged P. polymyxa endophytic strains colonized internal tissues of modern
corn plants and suppressed the growth of F. graminearum pathogen in vivo. It was
concluded that wild relatives of modern crops might have a reservoir of endophytes
that could be used as biocontrol against pathogens that lead to extensive crop loss.

Chris P Chanway and his group have been working with P. polymyxa since 1988
and have published significant reports about the role of this bacterium in promoting
plant growth and health in both agricultural and forest ecosystems. In 2012, the
group reported the existence of an endophytic diazotroph, P. polymyxa P2b-2R,
living in stem tissues of a gymnosperm, lodgepole pine (Pinus contorta), naturally
regenerating at a site located in Williams Lake, BC, Canada (Bal et al. 2012).
P2b-2R was able to grow on N-free media, combined carbon medium (CCM;
Rennie 1981), and consistently reduced significant amounts of acetylene in the
acetylene reduction assay (ARA) (Bal et al. 2012). By using a more accurate
method of determining the amount of N fixed (15N foliar dilution assay), Anand
et al. (2013) discovered this bacterial strain’s remarkable ability to derive up to 79%
of N from the atmospheric pool. In a subsequent report, it was observed that strain
possesses nif genes, required to fix atmospheric N (Anand and Chanway 2013c).
GFP-tagged P2b-2R strain was constructed to evaluate the endophytic colonization
sites in lodgepole pine and it was reported to colonize both intercellular and
intracellular spaces of lodgepole pine interior tissues (Anand and Chanway 2013a).
First reports about P2b-2R’s ability to colonize a nonnative host came out in 2012
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and 2013 when this bacterial strain was found to colonize internal tissues of stem
and root of another gymnosperm tree species, western red cedar (Thuja plicata)
(Bal and Chanway 2012b; Anand and Chanway 2013b). P2b-2R significantly
enhanced seedling length and biomass of western red cedar and also fixed con-
siderable amounts of N from the atmosphere (Anand and Chanway 2013b).
Subsequently, Puri et al. (2015) hypothesized that this bacterial strain could provide
similar benefits to angiosperms, especially the crop species, by colonizing them
endophytically. Their hypothesis was evidenced and P2b-2R colonized internal root
tissues of corn seedlings with a population size of 105 cfu/g fresh tissue weight in
just 10 days. P2b-2R also fixed up to 20% of N from the atmosphere, increased
seedling length by 35% and biomass by 30% in 30-day long trials (Puri et al. 2015).
P2b-2R’s ability to colonize diverse host species was ascertained, when it suc-
cessfully colonized interior tissues of an important oilseed crop species, canola
(Puri et al. 2016a) and vegetable crop species, tomato (Padda et al. 2016a). Similar
benefits were provided by P2b-2R to these crop species indicating that P2b-2R can
symbiotically associate with a broad range of hosts (see Table 2.3). Padda et al.
(2017) reported an astonishing discovery with the GFP-tagged P2b-2R (P2b-2Rgfp)
constructed by Anand and Chanway (2013a), where P2b-2Rgfp inoculation sig-
nificantly enhanced corn seedling growth (length and biomass) as compared to the
wild-type P2b-2R inoculation. This was the first report in literature where
GFP-tagging of a bacterial strain related to the Bacillus (and Paenibacillus) genus
enhanced its growth-promoting abilities. A similar discovery about the enhance-
ment of PGP abilities by GFP-tagging was reported in Azospirillum brasilense a

Table 2.3 Nitrogen fixation and plant growth promotion of important agricultural crops by
Paenibacillus polymyxa P2b-2R

Days after inoculation Corn Canola Tomato

%Ndfaa 20 6.52 8.08 10.0

30 10.9 12.9 12.3

40 15.7 16.2 18.1

90 30.2 27.1 –

% seedling length promotionb 20 28.4 17.8 40.6

30 24.1 20.5 36.5

40 24.7 28.4 24.9

90 51.9 70.7 –

% seedling biomass promotionc 20 17.2 57.0 56.1

30 34.1 53.7 69.0

40 28.4 37.1 93.0

90 52.7 100.9 –
aPercent nitrogen derived from the atmosphere (%Ndfa)
bPercent seedling length promoted by inoculation with P. polymyxa P2b-2R
cPercent seedling biomass promoted by inoculation with P. polymyxa P2b-2R. These parameters
were calculated using the formulas described in Puri et al. (2016b). [Data provided in the table has
been compiled from [Padda et al. (2016a, b, 2017); Puri et al. (2016b)]
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decade ago (Rodriguez et al. 2006). The ability of P2b-2Rgfp to perform better than
the wild-type strain was also confirmed in canola and tomato (Padda et al. 2016a).
Benefits of inoculating this PGP endophytic strain and its GFP-tagged counterpart
in a long-term trial were also evaluated and the results were even better than the
previous studies which were of shorter duration (Puri et al. 2016b; Padda et al.
2016b). Thus, it can be concluded that P. polymyxa strain P2b-2R is an ideal
endophytic strain that is able to colonize a variety of host species that are com-
pletely different physiologically and botanically.

2.4.6 Pseudomonas

Pseudomonas genus was first identified and described in the late nineteenth century
(Migula 1894). The history of this genus from the time when it was first discovered
till now has been described in great detail by Palleroni (2010). It is a diverse genus
containing more than 230 species (http://www.bacterio.net/pseudomonas.html).
Most of these species have a wide range of metabolic and catabolic capabilities.
Bacterial species can be found in diverse ecological niches and could be plant
growth and health-promoting bacteria, plant pathogens, or disease-causing human
and animal pathogens (Preston 2004; Miller et al. 2008). Pseudomonas spp. are
known to promote plant growth through a variety of mechanisms like biocontrol of
pathogens, stimulating induced systemic resistance, N-fixation, phosphorus solu-
bilization, and secreting phytohormones like auxins and cytokinins (Miller et al.
2008). Many studies have reported the ability of Pseudomonas spp. to associate
endophytically with a variety of plant hosts, such as Peanut (Gupta et al. 2006),
Sesame (Sesamum indicum L.) (Kumar et al. 2009), Mustard (Aeron et al. 2011),
potato (Andreote et al. 2009), olive (Olea europaea) (Prieto et al. 2009;
Maldonado-González et al. 2013), poplar (Populus deltoides) (Weyens et al. 2010,
2012), and wheat and cucumber (Pandey et al. 2012). Due to the diversity of
Pseudomonas spp., many scientists have reported about their ability to colonize a
range of nonindigenous plant hosts.

A diazotrophic endophyte, P. aeruginosa PM389, was isolated from an
important forage crop, pearl millet (Pennisetum glaucum), widely grown in the
Indian subcontinent, South America, USA and Australia (Gupta et al. 2013). It was
observed that PM 389 has the ability to fix N, solubilize mineral phosphate, produce
siderophores, inhibit the growth of bacterial and fungal pathogens. Looking at its
plant growth-promoting abilities, Gupta et al. (2013) inoculated this bacterial strain
into wheat and observed that it successfully colonizes the wheat seedlings and
significantly enhance root and shoot length, and vigor index. In another study,
another strain of P. aeruginosa originally isolated from wheat stem successfully
shielded cucumber seedlings from various biotic and abiotic stresses (Pandey et al.
2012). Biomass of P. aeruginosa PW09-inoculated cucumber seedlings increased
significantly as compared to the controls when grown under biotic stress (treated
with pathogenic fungus, Sclerotium rolfsii) and abiotic stress (NaCl treatment). In a
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subsequent study, another strain PaBP35, belonging to this bacterial species, iso-
lated from stem tissues of black pepper and tagged with GFP to visualize the
endophytic colonization sites in a nonnative host, tomato (Kumar et al. 2013).
GFP-tagged PaBP35 colonized interior tissues of the root, stem, and leaves of a
14-day-old tomato with high population densities, thus confirming its ability to
form endophytic colonies in a nonnative host. Effective root colonization is a
prerequisite attribute for the success of PGPR in plant growth and yield promotion.
Colonization by fluoresent Pseudomonas in sesame rhizosphere promotes growth
and proved effective as indigenous microflora over nonindigenous microflora
(Aeron et al. 2010). Recently, a phenanthrene-degrading endophytic Pseudomonas
strain was isolated from clover (Trifolium pratense L.) (Sun et al. 2014).
Phenanthrene is a polycyclic aromatic hydrocarbon, which is a toxic metabolite
found in some soils and can be taken up by the plants through roots. It can enter the
food chain and cause serious harm to human health. Sun et al. (2014) investigated
the ability of Pseudomonas strain Ph6 to colonize ryegrass (Lolium multiflorum
Lam.) and degrade phenanthrene. GFP-tagged Ph6 colonized root, stem, and leaf
tissues internally when visualized under fluorescence microscope. Heavy colo-
nization of root and shoot tissues by GFP-tagged Ph6 was observed with population
density ranging from 103 to 105 cfu/g fresh tissue weight. Inoculation of ryegrass
with Ph6 led to a significant decrease in the concentration of phenanthrene in shoot
and roots. Along with that the overall accumulation of phenanthrene in roots and
shoot was also significantly reduced with inoculation, possibly due to the degrading
mechanism of Ph6 strain (Sun et al. 2014).

P. fluorescens and P. putida are the most commonly studied PGPB known to
associate with many different plant host species and colonize them both internally
and externally. In a study conducted on phosphate solubilizing P. fluorescens
strains, L132 and L321, isolated from Miscanthus giganteus leaf tissues (Keogh
2009) were tested for their ability to promote pea (Pisum sativum L.) growth
(Oteino et al. 2015). It was observed that inoculation with these endophytic strains
significantly increased fresh weight as well as the dry weight of the pea seedlings
possibly due to the phosphate solubilizing abilities of these endophytes since mean
soluble phosphorous levels were also observed to be higher in inoculated plants as
compared to the controls. Another endophyte related to Pseudomonas genus was
isolated from internal root tissues of Artemisia sp. (Chung et al. 2008). The strain
was identified as P. brassicacearum YC5480 and was observed to demonstrate
antifungal activity against common pathogens like Colletotrichum gloeosporioides,
Fusarium oxysporum, and Phytophthora capsici. When colonized into a different
host, radish, treated with C. gloeosporioides, the bacterial strain YC5480 coun-
teracted the inhibitory effects of this pathogenic fungus. Therefore, it can be con-
cluded that Pseudomonas spp. have the ability to cross-infect plant species other
than their native host and have a broad application as a PGP agent in the agri-
cultural industry.
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2.5 Conclusion

Since their discovery, endophytic bacteria have been considered to play a crucial
role in survival and growth of plants. By living inside the plant they are better
protected from various biotic and abiotic stresses as compared to the rhizobacteria
and free-living bacteria in soil. They have been reported to occupy almost every
part of the plant, including intracellular and intercellular spaces. Due to the unique
metabolic diversity of selected endophytes, they have been reported to colonize
many nonindigenous plant host species and promote growth through direct or
indirect mechanisms. Special mentioning deserves the endophytic bacteria
belonging to the genus Burkholderia and Paenibacillus. Species belonging to these
two genera have been frequently reported to endophytically colonize a variety of
important agricultural crops, promote their growth in greenhouse and field condi-
tions, and inhibit the growth of common crop pathogens in vitro as well as in vivo.
These endophytic bacteria could potentially be the future commercial biofertilizers
and biocontrol agents that can be used with many different crops and in various
growing conditions, thus promoting sustainable agriculture.
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Chapter 3
Endophytic Fungi Bioremediation

Yelugere L. Krishnamurthy and B. Shankar Naik

Abstract Fungal endophytes are isolated from almost every host plant studied so
far. The relationship between endophytes and host plants involves both mutualism
and antagonism. Plants have many mechanisms to limit the growth of endophytes
which include producing a variety of toxic metabolites such as terpenoides. But
over a long period of co-evolution, endophytes have gradually formed a variety of
tolerant mechanisms towards host metabolites by producing exo enzymes and
mycotoxins. These enzymes include pectinase, cellulase, lipoidase, proteinase,
phenol oxidase and lignin catabolic enzymes. When host plants die the fungi utilize
the carbon source, plant residues such as glucose, oligosaccharides, cellulose,
hemicelluloses, lignin, keratin, pectin, lipids and proteins and decomposes effec-
tively. These enzymes may also degrade macromolecule compounds into small
molecules or convert more toxic substances into less toxic in order to increase their
adaptability. The use of fungi to clean up environmental pollutants has gained
momentum in the past few years. However, most studies have focussed on white rot
fungi and use of endophytic fungi might be a novel and important source for
degradation of toxic pollutants including hydrocarbons, polychlorinated biphenyl’s
(PCBs), polyaromatic hydrocarbons (PAHs), radionuclides, and metals.
Phytoremediation is another important bioremediation aspects of endophytic fungi
in soils contaminated with hydrocarbons and heavy metals. Depolymerisations is
one of the most efficient methods of plastic waste management by endophytic
fungal enzymatic action. Complex polymers disintegrate into short chains of oli-
gomers, dimers and monomers which can act as a source of carbon and energy. The
enzymes produced by the microbes vary with the species even between strains of
the same species. Enzymes are very specific in their action on substrates so that
different enzymes help in the degradation of various types of enzymes.
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3.1 Introduction

Endophytes are bacterial or fungal microorganisms that colonize healthy plant
tissues intercellular and/or intracellular without causing any apparent symptoms of
disease (Wilson 1995). Almost every host plant studied so far is associated with
some microorganism (Arnold et al. 2000; Shankar Naik et al. 2008). Symbioses
between a fungus and a plant a wide spread phenomenon in nature and plays a
major role in structuring plant communities by affecting colonization, competition,
co-existence and soil nutrient dynamics (Clay and Holah 1999; Lemons et al. 2005;
Krishnamurthy et al. 2009; Ghimire et al. 2010; Shankar Naik et al. 2014). The
relationship is noted for balanced antagonism between endophytic virulence and
plant defensive response (Schulz and Boyle 2005).

Plants have several mechanisms to limit the growth of endophytes including
producing a variety of toxic metabolites (Muciarelli et al. 2007; Shankar Naik et al.
2006), but over a long period of co-evolution, the host endophyte may develop
genetic systems allowing for the transfer of information themselves. Thus, endo-
phytes have gradually formed a variety of tolerant mechanisms towards host
metabolites by producing exo enzymes and mycotoxins (Costa et al. 2000; Schulz
et al. 2002). Several workers have reviewed that endophytes produce diverse sec-
ondary metabolites related to terpenes, flavonoides, alkaloids, quinines, cyclohex-
anes and hydrocarbons. Many of these compounds showed antimicrobial,
antioxidant, antineoplastic, anti-leishmanial and anti-proliferative activity, cyto-
toxicity and also fuel production (Shankar Naik et al. 2006; Wei et al. 2007;
Chomcheon et al. 2009; Shankar Naik and Krishnamurthy 2010; Wang and Dai
2011) (Table 3.1). The enzymes produced by endophytic fungi may degrade
macromolecule compounds into small molecules which could allow them to survive
and reproduce despite plant defence mechanisms (Zikmundova et al. 2002). The
extra cellular enzymes include pectinase, cellulase, lipoidase proteinase, phenol
oxidase and lignin catabolic enzymes (Oses et al. 2006; Tan and Zou 2001; Bischoff
et al. 2009). Generally fungal endophytes have the ability to utilize various organic
compounds (carbon) which enables them in degradation of structural components
such as glucose, oligosaccharides, cellulose, hemicelluloses, lignin, keratin, pectin,
lipids and proteins (Lumyong et al. 2002; Urairaj et al. 2003; Tomita 2003;
Kudanga and Mwanje 2005) present in leaf, litter and wood (Osono and Takeda
2001; Urairaj et al. 2003). In addition they have potential to decompose environ-
mental pollutants and improve the soil micro environment (Wang and Dai 2011).

Few recent studies revealed that endophytes affect litter decomposition rates
(Purahong and Hyde 2011) and stimulate soil carbon sequetraton and alter the flux
of greenhouse gases (CO2 and N2O) from soil to the atmosphere (Iqbal et al. 2013;
Saikkonen et al 2015). With the increasing industrialization of the global economy
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over the past century, a wide variety of pollutants such as (PHC, PAHs, halogenated
hydrocarbons, pesticide solvents, salt and heavy metals have been introduced into
the environment and cause environmental problems (Rajkumar et al. 2010; Ma et al.
2011).

New technology such as phytoremediation and bioremediation using microbes
especially endophytes are gaining considerable momentum (Li et al. 2012; Weyens
et al. 2009; Germaine et al. 2009). In this review, we attempted to discuss the role
of endophytic fungi and their potential in bioremediation of natural and anthro-
pogenic toxic pollutants.

Table 3.1 Therapeutic compounds from endophytes for various hosts

Natural product Endophyte Host plant Activity References

Taxol Taxomyces
andreanae

Taxus
brevifolia

Anticancer Stierle et al.
(1993)

Cryptocandin Cryptosporiopsis
quercina

Tvipterigeum
wilfordii

Antifungal Strobel et al
(1999)

Cryptocin Cryptosporiopsis
quercina

Tvipterigeum
wilfordii

Antifungal Li and
Strobel
(2001)

Pestaloside Pestalotiopsis
microspore

Torreya
taxifolia

Antifungal Lee et al.
(1995)

Torreyanic acid Pestalotiopsis
microspore

Torreya
taxifolia

Anticancer Lee et al.
(1996)

Subglutinols
A&B

Fusarium
subglutinols

Taxus
cuspidata

Immunosuppressive Kim et al
(2004)

Campothecin Entrophospora
infrequens

Nothapodytes
foetida

Antineoplastic Puri et al.
(2005)

Naptha-y-pyrone Aspergillus niger Cynodon
dactylon

Antitumor Song et al.
(2007)

Vincristine Fusarium
oxysporum

Cantharanthus
roseus

Anticancer Kumar et al.
(2013)

Peniprequinolone Penicillium
janezewskii

Prumnopitys
andina

Nematicidal Hirschmann
et al. (2005)

Podophyllotoxin Alternaria sp. Sabina vulgaris Antiviral Eyberger
et al. (2006)

Vinblastin Alternaria sp. Catharanthus
roseus

Anticancer Guo et al.
(1998)

Volatile
hydrocarbons

Gliocladium
roseum

Eucryphia
cordifolia

Mycodiesel Stinson et al.
(2003)

Volatile
hydrocarbons

Hypoxylon sp. Persea indica Mycodiesel Tomsheck
et al. (2010)

Volatile
hydrocarbons

Muscodor albus Ginkgo biloba Mycodiesel Banerjee
et al. (2010)
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3.2 Enzymes in Endophytic Fungal Remediation

Endophytic fungi produce enzymes such as amylases, lipases, proteases, etc., as
part of their mechanism to overcome the defence of the host against microbial
invasion and to obtain nutrients to their development (Sunitha et al. 2012; Torres
et al. 2003). Naturally, endophytic fungi play an important role in global carbon and
nitrogen cycling by promoting the bioconversion of organic matter through enzy-
matic and non-enzymatic systems. In forest region, the endophytes breakdown
wood polysaccharides using a combination of enzymes which break glycosides
linkages between B-D-xylopyranosyl and glucopyranosyl residues using cellulase
system consists of three classes of enzymes, i.e. 1,4-b-D-glucan cellobiohydrolases,
endo-1,4-b-D-glucanases and 1,4-b-D-glucosidase (Rodrigues et al. 2011).

Phenol oxidase enzymes which include peroxidases, laccases and tyrosinases
degrade lignin which is a hydrophobic polymer that fills up the space between the
cellulose micro fibrils and laccases are the copper containing oxidases that have the
ability to oxidize substrates with high redox potential in the presence of synthetic
mediators which allow the degradation of non-phenolic lignin. Lignin peroxidase
and manganese peroxidases are described as true ligninases because of their high
redox potential. Some researchers stated that on the role of Xylariaceous endophytic
fungi simply waiting for their host to senesce to begin the decomposition of the host
cell wall material (Petrini and Petrini 1985; Rodrigues et al. 2011). Several endo-
phytic fungi are known to produce lignocellulolytic enzymes (Suryanarayanan et al.
2009). Lignin is a heterogenous and irregular arrangement of phenyl propanoid
polymer protects cellulose from chemical or enzymatic degradation. Fungi produce
extracellular enzymes to cleave the aryl –a-carbon bond or bond between the a- and
b-carbons of the alkyl chain radical in lignin (Karsten 2008). Shi et al. (2004)
demonstrated that adding endophytic fungi Phomopsis sp. to scantly decompose
straw by degrading lignin. In another study, laccase and peroxide produced by
endophytic fungi contribute directly to the decomposition of litter lignin (Dai et al.
2010).

Nutritional and environmental stress may induce fungal relative enzymatic gene
express, and then change endophytic fungal metabolic pathway (Chen and Dai
2013). The synergetic metabolism of endophytic (Basidiomycetes) and soil fungi
transform stable polymers to other simple compounds such as CO2, humus sub-
stance and glycoproteins (Granit et al. 2007; Talbot et al. 2008).

Rodrigues et al. (2011) reported that a basidiomycete and a deuteromycete
corresponding to mycelia sterile isolated from the Chilean native trees Prumnopity
sandina and an unidentified basidiomycete and mycelia sterile from Drimys winteri
had lingo-cellulolytic activity thus promoted the wood biodegradation. Researchers
reported that the lignocellulosic materials were degraded by fungal enzymes on two
systems (a) hydrolytic system consisting xylanases and cellulases and (b) unique
oxidative ligninolytic system comprises laccases, ligninases and peroxidases
(Correa et al. 2014).

50 Y.L. Krishnamurthy and B.S. Naik



On the other hand, amylases (a amylase, b-amylases and glucoamylases) which
are the amylolytic enzymes convert starch into different sugar solutions also con-
tained in endophytic fungi. Fungal amylases especially glucoamylases are widely
used in industries. Aspergillus sp. and Rhizopus sp. are often used as sources for the
production of glucoamylases (Pandey et al. 2000). In a study endophytic
Fusicoccum sp. showed strong amylolytic activity under in vitro conditions
(Champreda et al. 2007). Similarly, the endophytic Cylindro cephalum sp. isolated
from medicinal plant Alpinia calcarata (Haw.) Roscoe found to produce amylase
under 30 °C and at pH 7.0 in the presence of maltose and sodium nitrate sources
(Sunitha et al. 2012). In another study, enzymes of endophytic strains belonged to
Gibberella pulicaris, Acremonium sp., and Nodulisporium sp. hydrolysed raw
sagostarch to produce solely glucose whereas amylases of Synnematous sp. pro-
duced glucose and maltose (Marlida et al. 2000).

Another import enzyme secreted by a group of endophytic fungi are lipases
which are hydrolytic enzymes that in vivo break the ester bond of triacyl glycerol
releasing free fatty acids and glycerol being then classified as a special class of
esterases (Oliveira et al. 2012). They also catalyze interesterification, alcoholysis,
acidolysis, esterification and aminolysis reactions under proper conditions
(Damassoet al. 2008). Endophytic Rhizopusoryzae isolated from Mediterranean
plants found to be producers of membrane bound lipases (Torres et al. 2003).
Similarly, protees are enzymes which hydrolyse peptide bonds of proteins, they are
also called proteolytic enzymes or proteinases. Few year back, a novel fibrinolytic
enzyme was discovered from endophytic Fusarium sp. isolated from
Chrysanthemum stems (Wu et al. 2009).

Fungi are the major decomposers of lignocelluloses in several ecosystems and
play an essential role in cycling of carbon and other nutrients. The main hydrolytic
enzymes involved in lignocelluloses degradation are exo and endoglucanases,
b-glycosidase, exo and endoxylanases and b-xylosidases (Dyk and Pletschke
2012). Correa et al. (2014) reported that for complete degradation of lignocellulose
materials, laccases, manganese peroxidise and lignin peroxidise (oxidative
enzymes) and additional hemicelluloses (e.g., acetyl esterase, b-glucuronidase,
endo-1, 4-b-mannanase, a-galactosidase) and oxidoreductases (aryl alcohol oxi-
dase, glucose-1-oxidase, glyoxal oxidase, pyranose-2-oxidase) are also needed.

3.3 Endophytic Fungi and Nutrient Cycling

The importance of phyllospheric endophytic fungi to ecosystem functioning via soil
processes has aroused increasing interest during the past decade. The endophytes
may affect plant litter quality, organisms that control litter decomposition, and the
availability of nutrients in plant communities. Endophytes are likely to affect the
decomposition of plant litter and soil nutrient trans formations at least in three ways
(i) by acting as saprophytes in abscised plant parts and aiding their decay (ii) by
affecting the amount and/or quality of plant litter (iii) by affecting the abundance
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richness and composition of decomposer organisms (Saikkonen et al. 2015). The
non-systemic endophytes from grasses and other plants are also survive in
decomposing plant litter as saprotrophs and endophytes, as they can play a role in
leaf senescence (Purahong and Hyde 2011). Systemic grass endophytes can
increase growth, reproduction and stress resistance of their host plant (Clay and
Hollah 1999) and thereby increase the amount of litter produced by the host. They
can affect the quality of plant litter by modulating the foliage quality of the host
plant.

The endophyte plant symbiosis produces various alkaloids such as pyrolizidines
(Lolines), ergot alkaloids, indolediterpenoides (including lolitrems), and the
pyrrolopyrazine alkaloids (Peramine) (Saikkonen et al. 2010; Schardl 2010) and
alter the concentration of sugars, water and modulates their oxidative balance,
phytohormone signalling and other metabolic pathways (Liu et al. 2011; Saikkonen
et al. 2013).

The host plants induce responses to invaders and attackers by two evolutionary
conserved phytohormone signalling pathways, i.e., by the salicylic acid (SA) and
jasmonic acid (JA) pathways (Pieterse and Dicke 2007). Plant defence responses to
bio trophic pathogens are mediated by SA pathways (Thaler et al. 2012).
Endophytes have both positive and negative effects of decomposer organisms
(Lemons et al. 2005). Saikkonen et al. (2013) proposed that endophytes similar to
that of the parasites likely induce SA pathway, thus suppressing the mutually
antagonistic JA pathway, which is mainly involved in the defence system against
pathogens and herbivores. Alternatively, the negative effects can arise prior to
colonization of the leaf litter and competitive exclusion of the saprophytic fungi.
The allelopathic chemicals produced by endophytes toxic to both microbial and
invertebrate decomposers would also lead to negative effects (Saikkonen et al.
2015). Endophytic fungi occur in various plant organs and have a close relationship
between hosts and soil (Sun et al. 2008; Chen and Dai 2013). Compounds released
as a result of endophytic plant symbiosis could decompose organic matter or inhibit
other microbial growth (Suberkropp and Weyers 1996). Endophytic fungi colo-
nizing the host roots could affect soil productivity by promoting soil nutrition
through decomposition and reduces soil heavy metal toxicity (Chen and Dai 2013).
Endophytic fungi also play an important role in the degradation of plant debris.
Oses et al. (2006) found that endophytic fungi belonged to basidiomycetes isolated
from Chilean tree species Drimys winteri and Prumnopitysandina were able to
degrade the wood similar to white rot fungi. Endophytes from spruce needles
shown to pioneer decomposers in lab experiments (Muller et al. 2001). In a study
lignocellulolytic activity was observed from Alternaria, Phoma and Phomopsis
isolated from surface sterilized pods of Colophospermum mopane (Jordaan et al.
2006; Wang and Dai 2011). A strain of Phomopsis sp., isolated from the inner bark
of Bischofia polycarpa was able to decompose pea nut straw (Shi et al. 2004).
A number of strains belonged to endophytic fungi such as Xylaria,
Geniculosporium, Coccomyces, Monotospora produced lignicellulolytic enzyme
activity (Koide et al. 2005; Osono and Takeda 2001).
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3.4 Endophytic Fungi in Phytoremediation

Phytoremediation is one of the approaches in which living green plants in situ are
used for bioremediation. They have the ability to decrease and/or removing con-
taminants from soil, water, sediments and air. Numerous recent studies have
demonstrated that endophytic microorganisms can accelerate these processes
effectively by interacting closely with their host plants (Li et al. 2012). Endophytic
Neotyphodium coenophialum and Neotyphodium uncinatum both were found to be
successfully removed PAH and TPH from rhizosphere by two grass species
Festucaarun dinacea Schreb and F.pratensis Hude (Soleimani et al. 2010).
Espinosa et al. (2005) demonstrated that phytoremediation of hydrocarbon con-
taminated soil with Cyperuslaxus inoculated with endophytic fungi. Similarly,
phytoremediation efficiency of wheat, mungbean and eggplant grown in hydro-
carbon contaminated soil was reported by Rabie et al. (2005). Recently
Cruz-Hernandez et al. (2013) demonstrated the removal of polyaromatic hydro-
carbons by Festuca aruninaceae from both perlite and soil by endophytic Lewia
sp. The inoculated plants exhibited higher phenanthrene degradation (100%) as
compared to non-inoculated plants in perlite and soil.

Fungi are highly resistant to heavy metal pollution (Jordan and Lechevelier
1975) and play very important role in element cycling and mineral transformations
(Gadd 2007). The mechanism of metal tolerance in fungi includes metal adsorption
and immobilization, complexing and quanti-valence changing (Collin et al. 2003;
Gadd 2007). Fungal cell wall contains various active groups such as hydrosulphide
carboxyl hydroxyl which could respond to heavy metal ions and precipitate on the
surface of the cell wall (Shen et al. 2006). It was found that dark septate endophytic
fungi tolerant to environmental metal pollution and accumulates heavy metal
in vitro (Zhang et al. 2008; Ruotsalainen et al. 2007). Generally, endophytes which
live in host roots are similar to mycorrhizal fungi in many aspects (Brundett 2006).

The fungal endophytes have been shown to ameliorate metal toxicity for their
plant hosts by restricting the uptake of toxic metals and improving the supply of
essential elements (Likar et al. 2011) in red plant biomass despite higher Cu and Zn
accumulation in plant roots through expression of certain genes together with
increased free and conjugated polyamine levels (Cicatelli et al. 2010). Endophytic
fungi may increase host tolerance towards biotic and abiotic stresses. The plants
inoculated with endophytic fungi exhibited higher biomass production and higher
potential to accumulate Cd in roots and shoots than fungi free plants (Soleimani
et al. 2010).

In another study, endophytic Trichoderma sp. associated with Acacia
auriculoformis produced more fresh weight than control plants and also increased
the translocation factors and metal bio concentration on growth of mustard,
(Brassica juncea L.) grown on Cd and Ni contaminated soils (Jiang et al. 2008). In
a phytoremediation study, the endophytic Mucor sp. enhanced the phytoremedia-
tion potential of rape roots grown in soil contaminated with Pb and Cd. Deng et al.
(2013) proposed an efficient method of phytoremediation by constructing mutant by
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protoplasm fusion of endophyte Mucor sp. in rape roots contaminated the soil with
Pb and Cd.

Although heavy metals are toxic to plants, it has been demonstrated that many
plants are metal tolerant and some of them are metal hyper accumulators (Rosa
et al. 2004; Li et al. 2012). Many metal resistant endophytes were isolated from
hyperaccumulating plants. These fungi belonged to various taxa include
Microsphaeropsis, Mucor, Phoma, Alternaria, Pyronellaea, Steganosporium and
Aspergillus. Soleimani et al. (2010) demonstrated that endophytic fungi were
helpful in phytoremediation of aged petroleum contaminated soil and that these
fungi improved host plants roots and shoot biomass and created higher levels of
water soluble phenols and dehydrogenase activity in the soilTCE, Naphthalene,
BTEX, catechol and phenol could be degraded by endophytes which decreased the
contaminant phytotoxicity and improved plant growth (Weyens et al. 2010; Ho
et al. 2009; Li et al. 2012).

3.5 Endophytic Fungi in Bio Degradation of Pollutants

Fungi are known to utilize a wide range of organic compounds for nutrition and
energy generation through extracellular enzymes. These organic compounds
include cellulose, pectin, lignin, lignocelluloses, chitin and starch and anthro-
pogenic substances such as hydrocarbons, pesticides and other xenobiotics. The
white rot fungi like Phaenerochate chrysosporium can degrade several xenobiotics
such as aromatic hydrocarbons, chlorinated organics, poly chlorinated biphenyls,
nitrogen containing aromatics and many other pesticides, dyes and xenobiotics
(Gadd 2007; Harvey and Thursten 2009).

The use of fungi to clean up environmental pollutants has gained the momentum
in past few years, however most studies have focussed on white rot fungi
(Marco-Urrea et al. 2008; Nikiforova et al. 2009) and the use of endophytic fungi
might be a novel approach and important source for degradation of toxic pollutants
which includes hydrocarbons, polychlorinated biphenyls (PCBs), polyaromatic
hydrocarbons (PAHs), radionuclides and metals.

Fungi are known to degrade PAHs in surface of soil. These fungi produce
extracellular enzymes with lower substrate specify which enable degrade aromatic
compounds including PAHs (Leonardi et al. 2007; Farnet et al. 2009). In a study,
manganese peroxidase was found to be the dominant ligninolytic enzyme in the
degradation PAH (Tian et al. 2007; Dai et al. 2007). Researchers found that
endophytic fungi might be a novel and important resource for the degradation of
polycyclic aromatic hydrocarbons (PAHs). An endophyte fungal strain
Ceratobasidium stevensii isolated from the plant of Euphorbiaceae was found to
metabolize phenanthrene effectively (Dai et al. 2010). Tian et al. (2007) demon-
strated the degradation of phenanthrene by endophytic Phomopsis sp., with rice
plant. In a study, endophytic Xylariaceae strains isolated from healthy tropical
native plants of Thailand found to be the producers of ligninolytic enzymes
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(Urairaj et al. 2003). Russel et al. (2011) demonstrated that the ability of endophytic
fungal degradation of synthetic polymer polyester polyurethane (PUR) by the
production of serine hydrolases. The Pestalotiopsis microspora isolate was
uniquely able to grow on PUR as the sole carbon source under both aerobic and
anaerobic conditions. Recently endophytic Fusarium sp., isolated from the leaves
of Pterocarpus macrocarpus Kurz.was able to degrade benzo(a)pyrene (BAP), a
five ring polycyclic aromatic hydrocarbon produced by the incomplete combustion
of organic materials (Juhasz and Naidu 2000).

3.6 Conclusion

Fungal involvement in element cycling has important implications for living
organisms and human health. Hence, better understanding of fungal activities,
complexity of heterogeneous environment and interactions between different
organisms helps to formulate further effective bio remedial strategies. In this
review, we have reported the bioremediation potential of endophyticfungi and
discussed the role of endophytic fungi in the management of toxic pollutants in
future.
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Chapter 4
Endophytic Bacteria: Role in Phosphate
Solubilization

Abhishek Walia, Shiwani Guleria, Anjali Chauhan and Preeti Mehta

Abstract The worldwide need to increase agricultural and horticultural production
from a consistently diminishing and degraded land resource has set remarkable strain
in light of agro biological systems. The current methodology is to keep up and
enhance agricultural and horticultural productivity only by means of the utilization of
chemical fertilizers and pesticides. Despite the fact that the utilization of chemical
fertilizers is credited with almost fifty percent of increase in agricultural production
yet they are closely associated with environmental contamination and health prob-
lems in human beings and animals. Microbial assorted qualities in the soil are viewed
as critical for keeping up for the manageability of agriculture and horticulture sys-
tems. Nonetheless, the connections between microbial differences and environmental
processes are not surely known. Rhizosphere soil strongly affects a range of proce-
dures influencing crop yield. Rhizobacteria that are present inside plant roots, framing
more close associations, are known as endophytes. These endophytes are likewise
called intracellular plant growth-promoting rhizobacteria (PGPR) microorganisms
dwelling inside plant cells, producing nodules and being present inside these specific
structures. These incorporate an extensive variety of soil microorganisms framing
less formal relationship than the rhizobia-legume advantageous interaction called
symbiosis, endophytes may empower plant development, directly or indirectly and
incorporate the rhizobia. In this review, we essentially concentrate on the plant
development by Phosphate solubilization furthermore by different means.
Phosphorus is normally lacking in most characteristic soils since it is settled as
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insoluble iron and aluminum phosphates in acidic soils or calcium phosphates in
soluble soils. Phosphate-solubilizing bacteria (PSB) as inoculants have the ability to
convert insoluble forms of phosphorus to an usable form for high plant yields. This
chapter mainly focuses on endophytic P-solubilizing bacteria, mechanism of
P-solubilization, genetic diversity of P-solubilizers, and mass production of inocu-
lants inoculant production and response of the crop to P-solubilizers bioinoculants.

Keywords Endophytes � Phosphate solubilization � PGPR � Bioinoculants
Genetic diversity

4.1 Introduction

Microbial diversity in soil is viewed as critical for keeping up for the manageability
of horticulture/agriculture creation frameworks. Notwithstanding, the connections
between microbial diversity and ecosystem processes is not surely understood (Stark
et al. 2007; Jha et al. 2014). Rhizosphere soil strongly influences the range of
processes impacting crop yield. Numerous microorganisms are pulled in by sup-
plements oozed from plant roots and this “rhizosphere impact” was initially depicted
by Hiltner (1904). He observed higher number and activity of microorganisms in the
region of plant roots. These microbes gain profit by the nutrient exudates by the plant
roots, which ultimately advantageously impact the development of plants.

As of late, the interest in soil microorganisms has expanded, as they are a key
component in supplement cycling and the support of soil fertility. Phosphorus is
one of the essential macronutrient for plant growth and development In average
soils, the P-content is about 0.05% (w/w) but only 0.1% of the total P is available to
plants (Scheffer and Schachtschasel 1992; Otieno et al. 2015), since it is fixed as
insoluble iron and aluminum phosphates in acidic soils or calcium phosphates in
alkaline soils. These precipitated forms cannot be absorbed by plants, this leads to
excessive and repeated application of P fertilizer to cropland (Sharma et al. 2013).

The capacity of a few soil microorganisms to change over insoluble types of
phosphorus (P) to an accessible form is an imperative attribute in plant
growth-promoting bacteria (PGPR) also known as P-solubilizing microorganisms
(PSM). The utilization of PSM as inoculants enhances the P uptake by plants thus
increasing plant yields (Ahemad and Khan 2010; Jain and Khichi 2014). Because of
the negative ecological effects of compound composts and their expanding costs,
the utilization of PSM is considered as a supplementary method for reducing the
utilization of chemicals in agribusiness/cultivation (Welbaum et al. 2004; Hameeda
et al. 2006; Mehta et al. 2013c; Walia et al. 2013a).

4.2 PSB and Their Hosts: Endophytic Region

For P-solubilizing PGPR to have an impact on plant development by means of an
increment of the nutrient status of their host, there evident should be an intimate
relationship between the phosphate-solubilizing bacteria (PSBs) and the host plant.
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In any case, the level of closeness between the PSBs and the host plant can differ
contingent upon where and how the PSBs colonizes the host plant. Connections
between PSBs and their hosts can be ordered into two levels of complexity
(1) Rhizospheric (2) Endophytic.

4.2.1 Endophytic Region

Rhizobacteria that build up and spends the entire piece of its life cycle inside plant
roots, exhibit no outside contamination or negative impact on their host and
forming more intimate associations, are endophytes or intracellular PGPR-(iPGPR).
Perotti (1926) was the first to portray the event of nonpathogenic organisms in root
tissues. Endophytic microorganisms have been considered to originate from the
outside environment and enter the plant through stomata, lenticels, wounds,
emergence of lateral roots and germinating radicals (Gaiero et al. 2013). Endophytic
microbes can effectively or inactively colonize plants locally or systemically and
both intercellularly and intracellularly. The endophytic niche provides protection
from the environment for the colonizing bacteria that establish in planta.
Subsequently, to be biologically effective, endophytes that infect plants from soil
must be able to root colonizers. Despite the fact that, it is, for the most part,
accepted that numerous bacterial endophyte groups are the result of a colonizing
process started in the root zone (Compant et al. 2010), they might likewise begin
from other sources than the rhizosphere, for example, the phyllosphere, the an-
thosphere, or the spermosphere. Lytic proteins created by root colonizing bacteria
may likewise add to more effective penetration and colonization. The deliverable of
endophytes like cellulolytic and pectinolytic catalysts are being considered for
certain types of infection process, cell wall degrading chemicals, endogluconase
and polygalacturonase causes infection of Vitis vinifera by Burkholderia
sp. (Hallmann et al. 1997; Compant et al. 2005).

Endophytic microorganisms inhabiting vast assorted qualities of plants was
looked into by Sturz et al. (2000) and Posada and Vega (2005). Rhizosphere is
considered as a hot spot for P-solubilizing bacteria suggesting that these bacteria
proliferates both in rhizosphere soil and root endosphere (Hui et al. 2011). But apart
from that, population of endophytic bacteria is at the lower site as compare to
rhizospheric bacteria or any other bacterial pathogens (Feng et al. 2013). Although,
many researchers have confirmed the occurrence of least amount of endophytes in
rhizosphere but Mehta et al. (2015) had given a strong evidence in their study with
perpetually higher P-solubilizing bacteria in apple rhizosphere than those in roots
endosphere (Table 4.1). The most acceptable reason for a higher population of
rhizospheric bacteria could be due to high level of carbon fluxes creating the’rhi-
zosphere impact’ used to sustain bacterial growth (Reyes et al. 2006; Mittal and
Johri 2007).

The population of PSB is always higher around the rhizosphere and around roots
as compare non-rhizosphere. The high concentration of PSB around the roots
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occurs because of the presence of high levels of nutrients exuded from the roots of
most plants that can support bacterial growth and metabolism (Glick 2003; Sharma
et al. 2007). Higher the population of P-solubilizers is of direct significance to the
plants as it helps in mobilization of insoluble P near the root, especially in
P-deficient soils (Chatli et al. 2008; Gulati et al. 2008; Aranda et al. 2011).

In plant tissue, in general, endophytic P-solubilizing bacterial populations have
been reported between 102 and 104 viable bacteria per gram (Sobral et al. 2004;
Piromyou et al. 2010; Patel et al. 2012; Kumar et al. 2013a, b; Saini et al. 2015).
Mehta et al. (2015) isolated one hundred and four and 85 of total 200 soil and root
samples of apple trees harbored P-solubilizing bacteria. They observed that the
proportion of rhizosphere soil and root endophytic P-solubilizing bacteria among
culturable one varied greatly with respect to sampling sites, ranging from 0–79.2%
to 0–60.6%, which was in agreement with previous study that showed large vari-
ation from 3 to 67 � 106 cfug−1 (Kundu et al. 2009). A large variation within and
amongst different sites in population of P-solubilizing bacteria indicated their wide
distribution within the crop and place of sampling. The poor population of
P-solubilizing bacteria could be attributed to their meager natural population as a
result of environmental factors along with physiochemical properties of the soil.
Variation in the population of P-solubilizing bacterial status of samples within the
sites is possible due to the collection of samples from a different point and an
uneven population of competitive P-solubilizing bacteria.

Endophytic bacteria in a single plant host are not restricted to a single species but
comprise several genera and species (Ryan et al. 2008; Mehta et al. 2015). The
variation in endophytes occurrence might be a function of the different maturation
stages specific to each plant, sampling time and environment condition, which
contribute higher impact on different types and amounts of root exudates (Vendan
et al. 2012). The presence of large population of bacteria isolated from all the sites
unequivocally suggests the hypothesis that natural plant genotypic variants of a
single species have a special choice for selection of specific microbiota consortia as
a result of their unique root exudates profile (Micallef et al. 2009; Aranda et al.
2011).

Table 4.1 Comparative data on P-solubilizing bacterial population in rhizosphere soil and roots
of apple trees at different sites

Location Percent P-solubilizers

Rhizosphere soil bacterial population Root endophytic bacterial population

Chamba 79.2 38.8

Kinnaur 35.2 15.6

Shimla 29.2 18.7

Kullu 48.3 11.3

T = 2.06
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4.2.2 Role of Phosphorus Solubilizing Microorganisms

The term microorganisms broadly encompass bacteria and fungi including other
mini-creature only observed by microscope. Among the microorganisms, bacteria
and fungi are more versatile to facilitate phosphate solubilization.

4.2.2.1 Phosphorus Solubilizing Bacteria and Fungi

PSM consist predominantly the bacteria and fungi among ectorhizospheric strains,
Pseudomonas, Bacillus, and endosymbiotic rhizobia have been served as effective
phosphate solubilizers (Igual et al. 2001). The vast majority of fungi are
non-Phosphate solubilizers except for species of Aspergillus and Penicillium
(Sagervanshi et al. 2012; Sahoo and Gupta 2014). Villegas and Fortin (2002)
identified microorganism viz., Rhizobium, Klebsiella, Mesorhizobium,
Acinetobacter, Erwinia, Achrobacter, Enterobacter, Micrococcus, Pseudomonas
and Bacillus isolated from different soils as efficient P solubilizing strains. Majority
of Gram-positive soil bacilli almost 95% belong to the genus Bacillus (Garbeva
et al. 2003) and are capable to form endospores and for this reason survive beneath
detrimental conditions; some species are diazotrophs along with Bacillus subtilis
(Timmusk et al. 1999), while others have specific PGPR capacities (Kokalis-Burelle
et al. 2002; Barriuso and Solano 2008). From rhizobial strains, two species of
nodulating chickpea,Mesorhizobium mediterraneum andMesorhizobium ciceri, are
known for their high phosphate-solubilizing efficiency (Rivas et al. 2006). But, it is
recognized that each aspect of nodule formation is limited due to the supply of
P. legumes like alfalfa and clover displaying a positive effect in response to P
supplementation (Gyaneshwar et al. 2002), however most of the supplemented P
become unavailable when its reacts with soil components. The extracellular oxi-
dation of glucose to gluconic acid via the quinoprotein glucose dehydrogenase
results in efficient phosphate-solubilizing phenotype in Gram-negative microor-
ganism (Otieno et al. 2012). Numerous soil microorganisms have the ability to
solubilize this unavailable P through their metabolic activities exudating organic
acids, which directly dissolve the rock phosphate, or chelating calcium ions that
release P to the solution.

4.2.3 Microbes in Biogeochemical Cycle of P in Soil

Microorganisms are fundamental to the biogeochemical cycle of phosphorus and as
such play crucial role in mediating the availability of phosphorus to flora
(Richardson et al. 2011; Jain and Khichi 2014). Biogeochemical cycling of phos-
phorus is essential for various reasons. Every living cell requires phosphorus for
nucleic acids, lipids, and a few polysaccharides. In soil, phosphorus exists in both
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inorganic and organic forms. Inorganic phosphorous complexes without problems
with cations (includes iron, aluminum, and calcium) in the environment as it is
negatively charged. These compounds are relatively insoluble, and their separation
is pH dependent, being accessible to plants and microorganisms between pH 6 and
7. Under such conditions, these organisms rapidly convert phosphate to its organic
form in order that it becomes available to animals. A significant percentage of
culturable bacterial and fungal communities were being accounted for inorganic P
solubilizing activity (Barraquio et al. 2000; Chen et al. 2008; Ashrafuzzaman et al.
2009). The form of phosphorus found in biomass and materials such as humus and
organic compounds is known as organic phosphorus. This organic phosphorus is
recycled by microbial activity that involves transformation of simple orthophos-
phate (PO4

−), with +5 valence state into more complex forms. These include the
polyphosphate seen in metachromatic granules in addition to greater acquainted
macromolecules.

4.2.4 P-Solubilizer as Biofertilizers

Microbial inoculants have provided a worth biological alternative to compensate
agro chemicals and to sustain environment-friendly crop production (Dobbelaere
et al. 2003; Musarrat and khan 2014). Phosphorus solubilizing microorganisms
proved as an effectual approach for imparting balanced nutrition (Martins et al.
2004) and have recently attracted the attention of agriculturalists as soil inoculums
to enhance the plant growth and yield (Fasim et al. 2002; Otieno et al. 2015).

The inorganic phosphates solubilization in soil by microorganisms and making
them available to plants is the well-known mechanism (Bhattacharya and Jain 2000;
Chen et al. 2006) and organisms responsible for this are referred as phosphate
solubilizers. Population count of phosphate-solubilizing microorganisms is at the
concentrated form in the rhizosphere, and they are metabolically more active than
other sources (Vazquez et al. 2000). It is well known that both groups of
microorganisms including phosphate-solubilizing bacteria and fungi are equally
important to enhance plant growth by using solubilization mechanism and their
acquisition to plant production via synthesis of plant growth-promoting substance
and organic acid (Yadav et al. 2011).

The improvement of soil health in terms of fertility is one of the most common
ways to increase agricultural production for which biological nitrogen fixation is
considered to be the most important. After biological nitrogen fixation, phosphate
solubilization is equally essential, as phosphorus (P) is significant key macronu-
trients for biological growth and development. Microorganisms provide a biological
rescue system that enables to solubilize the insoluble inorganic P of soil and make it
available to the plants. The ability of a few microorganisms to convert insoluble
phosphorus (P) to an available form, like orthophosphate, is a critical trait in a
PGPB for improving soil fertility and plant yields. Thus, the rhizospheric
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phosphate-solubilizing microorganism can be a promising source for plant
growth-promoting agent in agriculture (Rodriguez et al. 2006).

Using phosphate-solubilizing microorganism as inoculants will increase the P
uptake through plants (Chen et al. 2006). The production of bioinoculants on a
commercial scale and their acceptance by farming communities are closely linked
as it is not easy. Furthermore, environmental variables including salinity, pH,
moisture, temperature and climatic conditions of the soil largely affect the estab-
lishment and performance in field cum demonstrations trials of these PSM inocu-
lants developed under laboratory conditions. Hence, there is a great need for proper
development of suitable technology for the isolation of effective inoculants of PSM
based biofertilizers for their adoption under farmer’s fields. Current approach and
developments in our understanding of the functional diversity, rhizosphere colo-
nizing ability, mode of actions and judicious application are likely to facilitate their
use as reliable components in the management of sustainable agricultural systems
(Zaidi et al. 2009a).

4.3 Mechanism of P-Solubilization

Organic acid production by soil microorganisms is predominant mechanism of
phosphate solubilization. Organic acids result in a decrease in pH of microbial cell
and its surroundings (Halder et al. 1990; Khan et al. 2014a) (Fig. 4.1). In soil,
phosphorus is present in the organic and inorganic form. Soil microorganisms
release phosphorus by organic and inorganic P solubilization. Organic P solubi-
lization is mineralization process (Richardson and Simpson 2011). Numerous
mechanisms are opted by soil microorganisms in order to perform P solubilization
such as lowering of pH, organic acid production, chelation and exchange reactions
(Gerke 1992). Microorganisms secrete different types of organic acids during sol-
ubilization and lower the pH of rhizosphere and consequently dissociate the bond
form of phosphates like Ca3(PO4) (Tri Calcium Phosphate) in calcareous soil.
Furthermore, these microorganisms also serve as a sink for P in the vicinity of labile
C. Soil microorganisms immediately immobilize it even in low P soils. Ecological
changes, for example, freezing–thawing or drying–rewetting, can bring about
flush-events, a sudden increment in accessible P because of high extent of microbial
cell lysis (Butterly et al. 2009).

The major processes employed by microorganisms for soil P solubilization
summarized here:

(1) Secretion of mineral dissolving compounds e.g. organic acid anions, protons,
hydroxyl ions, CO, siderophores

(2) Biochemical P mineralization by release of extracellular enzymes and
(3) Biological P mineralization by liberation of P during substrate degradation
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As described by Sims and Pierzynski (2005), the major processes of the soil P
cycle that affect soil solution P concentrations are biologically mediated conver-
sions of P between inorganic and organic forms, i.e., mineralization–immobiliza-
tion; interactions between P in solution, and soil solid surfaces, i.e., sorption–
desorption and dissolution–precipitation, i.e., mineral equilibria.

4.3.1 Different Microbial Mechanisms of P-Solubilization

Microorganisms are observed as proprietor of diverse mechanism to solubilize both
organic and inorganic phosphate.

4.3.1.1 Organic P-Solubilization

Mineralization of organic phosphorus constituting 4–90% of the total soil P is
referred as Organic P solubilization (Khan et al. 2009). Each organism can act in
one or multiple ways to bring about the solubilization of insoluble P in soil. One of

Fig. 4.1 Schematic representation of P solubilization/mineralization by various organic/inorganic
substances produced by PSM
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which is use of enzyme, i.e., Non-specific acid phosphatases (NSAPs), phytases, C–
P lyases, and Phosphonatases.

Non-specific acid phosphatases (NSAPs) have a capacity of dephosphorylate
phosphoanhydride or phospho-ester bonds of organic matter. Among the different
classes of phosphatase enzyme released by PSM, most studied and abundant class is
Phosphomonoesterases (often called phosphatases) (Nannipieri et al. 2011).
Depending upon the pH optima, phosphatases are further divided into acid and
alkaline phosphomonoesterases (Jorquera et al. 2008). These enzymes (acid and
alkaline phosphatases) are produced by plant roots as well as by PSM.
Differentiation between phosphatases on the basis of their production source is very
difficult (Richardson et al. 2009). However, plant roots can only produce large
quantities of acid phosphatases. There are evidence proposing that phosphatases
released from microbes have higher affinity for Po compounds as compared to
phosphatases produced from plant roots (Chen et al. 2003), but still, there is not
much understanding regarding the relationship between phosphatase activity of
inoculated PSM and the subsequent mineralization of Po.

Phytases have a specific capacity of phytate degradation and cause P release.
Phosphorous is stored in plant seeds and pollen in form of phytate. In the plant, it is
primary inositol source. The key driver of regulation of phytate mineralization in
soil is microorganisms. In spite of the fact that the capacity of plants to get P
specifically from phytate is exceptionally restricted, but the vicinity of PSM inside
of the rhizosphere provide an opportunity to plants to take up P directly from
phytate (Richardson and Simpson 2011).

C–P lyases and phosphonatases are enzymes that act mainly in the breakdown
of the C–P bond in organophosphonates (Rodriguez et al. 2006).

4.3.1.2 Inorganic P-Solubilization

Organic Acid Production

The major reason of inorganisc phosphorous solubilization is organic acid pro-
duction by PSM. Primarily following organic acids are produced, i.e., acetic, citric,
fumaric, glycolic, lactic, melonic, oxalic, propoionic, succinic acid, tartaric, etc.
(Ahmad and Shahab 2011). Among all, the principal organic acid involved in
inorganic P solubilization is gluconic acid. PSBs which produce abundant amount
of gluconic acid are Burkholderia cepacia, Erwinia herbicola, Pseudomonas sp and
Pseudomonas cepacia (Goldstein et al. 1994). However, sulphuric and nitric acids
producing PBMs, i.e., Thiobacillus and Nitrosomonas species were also reported to
solubilize phosphate compounds (Azam and Memon 1996).

HPLC (high-performance liquid chromatography) and enzymatic methods are
mostly employed for the detection of organic acids produced by PSM (Whitelaw
2000). Mehta et al. (2013a) detected six different organic acids in culture filtrate of
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Bacillus subtilis CB8A by HPLC (Fig. 4.2). Six organic acids produced by Bacillus
subtilis CB8A are oxalic acid, gluconic acid, formic acid, 2-ketogluconic acid, citric
acid, and fumaric acid. Out of these, major organic acids were gluconic acid
(1.43%) and citric acid (0.67%) (Fig. 4.2). The reason of P solubilization by
organic acid production may be: decrease in the pH; complex formation with metal
ions of insoluble P (calcium phosphate, iron phosphate) and finally, P release; by
competing with P for sites on the soil.

Fig. 4.2 HPLC chromatograms of authentic organic acids (a) and culture supernatant of Bacillus
subtilis CB8A grown for 3 days in PVK broth (b). Adopted from Mehta et al. (2013a). OA Oxalic
acid; GA gluconic acid; FA formic acid; ICA isocitric acid; LA lactic acid; 2-KGA 2-ketogluconic
acid; SA succinic acid; MA maleic acid; CA citric acid; and FumA fumaric acid
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4.3.1.3 Important Facts of P-Solubilization by Organic Acid
Production

i. Organic acids responsible for P-solubilization are the microbial metabolic
product such as the product of fermentation of organic carbon sources (e.g.,
glucose) or oxidative respiration (Trolove et al. 2003).

ii. There is release of organic acids from the outer face of cytoplasmic membrane
of P-solubilizing microorganisms which is the site of direct oxidation pathway.
This organic acid release into the medium result in a decrease in pH (Zaidi
et al. 2009b).

iii. PSM strains acidify the surrounding environment by synthesis and discharge
of organic acid. Organic acids have the ability to chelate cations, i.e., Al, Ca,
and Fe linked with P or they can result in exchange of acid anion with
phosphate anion (Omar 1998).

iv. According to the abiotic study of Whitelaw et al. (1999), it was proved that
HCl and gluconic acid can solubilize P. On the basis of above fact, solubi-
lization of colloidal Al phosphate might be due to chelation of Al3+ by glu-
conic acid.

v. There is the presence of soluble inorganic phosphate i.e. H2PO4 at low pH.
However, divalent and trivalent inorganic phosphate, i.e., HPO4

−2 and HPO4
−3

arise with the increase in soil pH.

However, acidification does not appear to be the main system of solubilization,
as the capacity to decrease the pH at times did not associate with the ability to
solubilize mineral P (Subba Rao 1982). The phosphate-solubilizing activity was
ascribed both to reduction and to chelation processes.

4.3.1.4 Excretion of Proton

One of the major aspects responsible for P solubilization is pumping out of protons
from cell (Krishnaraj et al. 1998). Some microorganisms release proton during
NH4+ assimilation as the sole mechanism to promote P solubilization (Parks et al.
1990). Illmer and Schinner (1995) reported the absence of organic acids in culture
solution by HPLC during P-solubilization by Pseudomonas sp. They also reported
the probable reason of P-solubilization in culture solution, i.e., release of protons
accompanying NH4+ assimilation or respiration. Participation of H+ pump mech-
anism in P solubilization is also reported in Penicillium rugulosum (Reyes et al.
1999). Different mechanisms of proton release have been followed by different
species. However, for P solubilization, only a few depends upon the presence of
NH4+ ion (Carrillo et al. 2002).
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4.3.1.5 Role of Siderophores and Exopolysaccharides
in P-Solubilization

Siderophores are small, iron chelating molecules that bind with ferric ion and
transport it to a cell. As, ligand exchange by organic acid anion is not a dominant
P-solubilizing mechanism as compared to mineral dissolution. On the basis of this
fact, the role of siderophores in enhancing P-solubilization is considered (Parker
et al. 2005). There are various reports in the literature regarding the release of
siderophores from PSM (Vassilev et al. 2006; Hamdali et al. 2008).

Microbial exopolysaccharides may play role in P-solubilization.
Exopolysaccharides, secreted outside the cell by bacteria and fungi are mainly
carbohydrate polymers. They are of different types, i.e., homo polysaccharides and
heteropolysaccharides and may additionally contain a number of extraordinary
organic and inorganic substituents. The role of microbial polysaccharides in P
solubilization has been assessed by Yi et al. (2008). They reported significant
production of EPS by highly efficient P-solubilizing bacteria, i.e., Arthrobacter
sp. (ArHy-505), Azotobacter sp. (AzHy-510), Enterobacter sp. (EnHy-401), and
Enterobacter sp. (EnHy-402).

4.3.1.6 Other Mechanisms

It has been suggested that processes such as sulphur oxidation, carbon monoxide,
and nitrate production result in the formation of inorganic acids like sulphuric acid
are a consequence of microbial phosphate solubilization (Swabyand Sperber 1958).
The reaction between H2S and ferric phosphate result in the formation of ferrous
sulphate along with the simultaneous release of phosphate. So, production of H2S
can be one of the P-solubilization mechanisms.

4.3.1.7 Genetic Basis of Inorganic P-Solubilization

One of the major mechanism of P-solubilization is the production of organic acids,
i.e., MPS. Therefore, understanding of the genetics behind MPS phenotype is
necessary (Goldstein and Liu 1987). This assumption has been supported by
cloning of PQQ gene responsible for gluconic acid production.

Pyrroloquinoline Quinone (PQQ) [(4,5-dihydro-4,5-dioxo-1H-pyrrolo-[2,3-]
quinoline-2,7,9 tricarboxylic acid), aromatic, tricyclic ortho-quinone], belongs to
the family of quinone cofactors. It serves as the redox cofactor for several bacterial
dehydrogenases such as methanol dehydrogenase and glucose dehydrogenase
(Fig. 4.3). PQQ-dependent glucose dehydrogenase (GDH) resides in the cyto-
plasmic membrane, can oxidize glucose to gluconate GDH, which needs PQQ for
the holoenzyme. PQQ is derived from tyrosine and glutamic acid. It is characterized
as a third class of redox cofactors following pyridine nucleotide and
flavin-dependent cofactors (Houck et al. 1991).
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Glucose dehydrogenase (GDH) Glucose dehydrogenase (GDH) is a quino-
proteins which has the ability to oxidize glucose into gluconic acid. During catalytic
reaction, GDH needs pyrroloquinoline quinone (PQQ) and metal ions such as Ca+2

or Mg+2 (in vitro). Membrane GDHs (m-GDHs) are monomeric proteins of 88 kDa
with an N-terminal hydrophobic and large conserved PQQ-binding C-terminal
domains. This C-terminal domain has catalytic activity (Yamada et al. 1994).
However, N-terminal hydrophobic domain (residues 1–150) anchors the protein to
the membrane. It consists of five trans-membrane segments which play a major role
in anchoring the protein (Yamada et al. 1994). GDH plays a regulatory key in
bioenergetic role in the bacteria. Uptake of exogenous compounds such as amino
acids is due to trans-membrane proton motive force (PMF). Protons produced
during oxidation participate directly in the generation of trans-membrane proton
motive force (PMF). Therefore, this oxidative glucose pathway might be important
for the survival of bacteria.

Very little is known regarding genetic or biochemical mechanisms involved in
the synthesis of the GDH-PQQ halo enzyme. The possible inducers of halo enzyme
are manitol, glucose, gluconate, and manitol (Van Schie et al. 1987). However,
among several bacterial species, the difference in their constitutive and inducible
phenotypes is observed (Goldstein 1994).

4.3.2 Genetic Diversity and Role of Genetic Engineering
in P-Solubilization

4.3.2.1 Genetic Diversity of Phosphate-Solubilizing Microorganisms

Rhizosphere comprises of a huge microbial population of bacteria, fungi, protozoa,
and algae. Bacteria are the most copious among them. The selection and

Fig. 4.3 Prosthetic group of
bacterial quinoprotein
dehydrogenases
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colonization of bacteria with in plant is based on their contribution to the fitness by
releasing organic compounds through exudates (Lynch 1990), and therefore low
diversity, selective environment is created (García et al. 2001). Since bacteria
profusely colonize the rhizosphere and to the greater extent influence plants
physiology, mainly taking into consideration of their competitiveness in root col-
onization (Antoun and Kloepper 2001).

The genotypic and phenotypic characteristic analysis of indigenous rhizobacteria
can elucidate the mechanisms of interaction between them and plant roots. Studies
on bacterial diversity are much more complex at taxonomic, functional and genetic
levels in comparison to eukaryotes owing to the minute working scale and a large
number of different bacterial species present in the environment.

Molecular basis behind phosphate solubilization by microorganisms is still
limited and inconclusive (Rodriguez et al. 2006). Complete study of genes involved
in P-solubilization and development of genetically engineered microbes is impor-
tant not only for understanding their ecological role in the natural environment but
also for their biotechnological application. As far as soil health is concerned
exhaustive efforts are being made to explore indigenous soil microbial diversity
with nutrient acquisition and mobilization potential with a special understanding of
their distribution and behavior in soil habitats as well their influence on the quality
of plant and soil health after introducing them as bioinoculants (Kumar et al. 2015).

A substantial number of phosphate-solubilizing culturable bacterial communities
apart from genera Pseudomonads and Bacilli, there are some efficient P-solubilizing
fungi that do not lose the P dissolving capacity even on repeated sub culturing
under laboratory conditions as it occurs with most of the P-solubilizing bacteria
(Kucey 1983). Generally, the release of organic acids by P-solubilizing fungi than
bacteria consequently exhibit greater P-solubilizing activity. Among filamentous
fungi that solubilize phosphate more efficiently belongs to genera Aspergillus and
Penicillium (Reyes et al. 2002) although strains of Trichoderma and Rhizoctonia
solani (Jacobs et al. 2002) have also been reported as good P solubilizers. Very few
studies have been conducted in case of yeast to gauge their phosphate-solubilizing
ability, these include Yarrowiali polytica, Schizosaccharomyces pombe and Pichia
fermentans (Vassilev et al. 2001).

4.3.2.2 Genetic Engineering of PSM

High agricultural yield depends upon plant growth and nowadays it is achieved by
employing high cost as well as environmentally hazardous phosphate fertilizers. To
overcome this, an ecofriendly approach is to develop bacterial strains that can
convert the form of phosphorus present in the soil to soluble forms which can be
easily taken up by plants. Various attempts for developing such strains were made
in past but failed due to incomplete knowledge of the phosphate-solubilizing genes,
as well as the failure of the survival of bacterial strains under plant root environ-
ment. To deal with these challenges, this is desired to discover novel genes and
pathways underlying solubilization of phosphorus sources which can be done by
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the use of genome wise mutagenesis of phosphate-solubilizing bacteria. Validation
of such novel genes and functions in E. coli is possible through advanced synthetic
biological approaches which ultimately transfer novel phosphate-solubilizing
capabilities associated with plant rhizosphere bacterium.

Several genes are isolated and characterized which are involved in mineral and
organic phosphate solubilization. Cloning and expression of such genes in selected
rhizobacterial strains through molecular biotechnology and genetic engineering
have made a promising perception for obtaining recombinant strains with improved
phosphate-solubilizing capability for agricultural purpose. Insertion of
phosphate-solubilizing genes into microorganisms that lack P-solubilization trait
may avoid the current need of using more than one strain of PGPR or consortia,
when used as bioinoculants. The foremost success in cloning of a gene involved in
mineral P solubilization in Gram-negative bacteria Erwinia herbicola was first time
done by Goldstein and Liu (1987). The expression of this gene allowed the
phosphate solubilization activity in E. coli HB101. E. coli can synthesize GDH, but
not PQQ, thus it does not produce GA. This gene contributed in the synthesis of
enzyme pyrrolo quinoline quinone (PQQ) synthase which was investigated through
sequence analysis. For the synthesis of holoenzyme glucose dehydrogenase (GDH)-
PQQ, PQQ is required which is a cofactor whose synthesis is directed by the
enzyme pyrrolo quinoline quinone (PQQ) synthase. Formation of gluconic acid
from glucose through direct oxidation pathway is catalyzed by glucose dehydro-
genase (GDH)-PQQ. Sub cloning of the specific gene encoding mineral phosphate
solubilization was done in a broad host range vector (pKT230). The recombinant
plasmid expressed in E. coli, and further transferred to plant growth-promoting
strains of Burkholderia cepacia and Pseudomonas aeruginosa, using tri-parental
conjugation.

4.3.2.3 Mineral Phosphate-Solubilizing Genes for Strain Improvement

Genetic background, presence of number of copies of plasmids as well as metabolic
interaction of recipient strains could highly influence the expression of an MPS
gene in a different host. Thus, genetic transfer of any isolated gene involved in MPS
to stimulate phosphate-mobilizing aptitude in PGPB strains, is an
attention-grabbing approach.

Kim et al. (1998) reported the expression of MPS genes isolated from Ranella
aquatilis which when cloned in E. coli boost a high-level production of gluconic
acid (GA) and hydroxyapatite dissolution as compared to donor strain. It was
suggested that different genetic regulation of the MPS genes might occur in both
species. In another case study, an increase in exudation of organic acids as well as
phosphate availability to plants was observed by the expression of bacterial citrate
synthase gene when expressed in tobacco roots. More yield of leaf and fruit bio-
mass was observed in citrate overproducing plants when grown under phosphate
limiting conditions along with low P-fertilizer doze which depicted the putative role
of organic acid synthesis genes in P uptake in plants.
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Most of the bacterial phosphatase-encoding genes were isolated by means of
expression cloning systems entirely based on histochemical based screening of
genomic libraries (Table 4.2). These procedures not only allow quick recognition of
clones harboring, but also the expression of enzymatic activity.

Riccio et al. (1997) developed a selection system based upon indicator medium
consisted of phosphatase substrate phenolphthalein diphosphate (PDP) and methyl
green (MG) stain, resulted in green putative colonies with phosphatase positive
phenotype (pho1) whereas, phosphatase negative (pho2) clones were grown as
unstained colonies. This system offers an imperative approach for the isolation of
several bacterial phosphatase-encoding genes from different species, such as
Providencia sturatii, Providencia rettgeri and Morganella morganii.

Another important system for the expression of cloning of bacterial
phosphatase-encoding genes (phoC) used by Pond et al. (1989) consists of Luria
Agar amended with 5-bromo-4-chloro-3-indolyl phosphate (BCIP) which was used
for cloning of an acid phosphatase-encoding gene from Zymomonas mobilis. The
transformant colonies were of dark blue which makes its easy direct selection on
indicator plates.

Groisman et al. (1984) cloned the structural gene for the pH 2.5 acid phosphatase
(appA) of E. coli for direct amplification of higher para-nitrophenyl-phosphate
(pNPP) hydrolysis (phosphatase activity) responsible genes as a result acid phos-
phate colonies appeared yellow. Thaller et al. (1994) classified a non-specific
phosphohydrolases into three different families: class A, class B, and class C
phosphatases based on the cloning of phosphatase genes sequence analysis with
other important parameters. Rossolini et al. (1998) studied the sequence level high
homology in case of class A phosphatase genes from M. morganii and P. stuartii,
which signifies that these genes are vertically derived from a common ancestor.
A number of other phosphatase genes from Escherichia coli include: ushA, which
encodes a 59-nucleotidase (Burns and Beacham 1986) agp, which encodes an acid

Table 4.2 Microorganisms encoding phosphatase genes for P-solubilization

Microorganisms Gene or
plasmid

Features References

Serratia
marcesence

pKG3791 Produce gluconic acid and solubilizes P Krishnaraj and
Goldstein (2001)

Rahnella
aquatilis

pKIM10 Solubilize P and produce gluconic acid
in E. coli DH5a

Kim et al. (1998)

Enterobacter
agglomerans

pKKY Solubilize P in E. coli 109, does not
lower pH

Kim et al. (1997)

Pseudomonas
cepacia

Gab Y Solubilize P and produce gluconic acid in
E. coli JM 109

Babu-Khan et al.
(1995)

Erwinia
herbicola

Mps Solubilize P and produce gluconic
acid in E. coli HB 101, probably involve
in synthesis of PQQ

Goldstein and Liu
(1987)

Bacillus subtilis
CB8A

Gdh Solubilise P and produce gluconic acid Mehta et al.
(2013c)
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glucose-1-phosphatase (Pradel and Boquet 1988) and cpdB, encoding the 29–39
cyclic phosphodiesterase (Beacham and Garrett 1980).

Sharma et al. (2013) had suggested the application of genetically modified PSM
as a potential candidate mover transgenic plants for improving plant performance:
(1) with current technologies, a bacterium is much more easier to modify than
complex higher organisms, (2) Multiple beneficial plant growth-promoting attri-
butes can be introduced into a single organism, which could minimize the appli-
cation of multi-strain bio-inoculant (3) Instead the engineering of crop by crop, a
single, engineered inoculant can be used for several crops, especially when using a
non-specific genus like Azospirillum (Rodriguez et al. 2006).

Gene recombination though an important conclusive approach but there are
some barriers that needs be resolved first in order to achieve success, such as
difference at the metabolic level and regulatory mechanisms between the donor and
recipient strains. Despite many constraints and difficulties, significant and consis-
tent progress are being done step by step in this field of molecular biology by
genetically engineered microorganisms for sustainable and improved agriculture
(Armarger 2002). On the whole, further advance studies on this aspect of PSM will
provide key information in future for the better use of these PSM in diverse eco-
logical conditions.

4.4 Phosphate-Solubilizing Bacteria as Plant Growth
Promoters

P-solubilizers colonize plant roots and employ valuable effects on growth of plant
and enhancement by a prevalent mechanism. To be an efficacious P-solubilizer,
microorganisms need to set up itself in the rhizosphere at concentrations adequate
to deliver the beneficial impacts. In this way, plant inoculation by P-solubilizer
microorganism at a much higher rate than that regularly present in soil is important
to exploit the property of phosphate solubilization for plant yield enhancement.
There have been various reports on plant development and enhancement by
microorganisms that can solubilize inorganic and/or natural P from soil after their
inoculation in soil or plant seeds (Mehta et al. 2011; Kumar et al. 2015). The exact
mechanism by which P-solubilizer stimulate plant growth is not clearly recognized,
although several assumptions such as production of phytohormones, i.e., indolea-
cetic acid production, activation of P-solubilization, siderophore production, sup-
pression of deleterious organisms, and promotion of the mineral nutrient uptake are
usually accepted to be involved (Kumar et al. 2012; Walia et al. 2013b; Mehta et al.
2013a, b, c).

The P-solubilization capacity of the microorganisms is considered to be one of
the most essential traits related with plant P-nutrition (Walia and Shirkot 2012).
These PSMs render insoluble phosphate into available forms by the process of
acidification, chelation, and exchange reaction (Pankaj and Sa 2008). This method
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not only compensates the higher cost of industrial fertilizers but also mobilizes the
fertilizers supplemented to the soil. In any case, at present, there is proof supporting
the part of this component in plant development upgrade. For instance, a few soil
microorganisms, including microbes, enhance the supply of P to plants as a result of
their ability for inorganic or natural P solubilization (Lifshitz et al. 1987;
Richardson 1994; Mehta et al. 2011). Considering that P accessibility is a restricting
progress in plant sustenance, this confirmation proposes a basic assurance of
phosphate-solubilizing microorganisms to plant nourishment and, consequently
increase the performance of plant growth development. Mehta et al. (2013a, b) and
Sharma et al. (2015) exhibited plant growth development of apple and tomato by a
few microorganisms fit for mineral phosphate solubilization. There are so many
strains indicating no indoleacetic acid production, however showing critical mineral
phosphate solubilization and adequate movement of phosphatase has enhanced the
yield of tomato, cauliflower, capsicum, apple, apricot, etc., among different culti-
vars, in field experiments.

Besides, a few illustrations of synchronous development and expansion in P
uptake by plants as the consequence of phosphate-solubilizing microbial inocula-
tions have been accounted for. Inoculation with two strains of P-solubilizers, i.e.,
Rhizobium leguminosarum has been showed to enhance root colonization and
development advancement and to increase essentially the P application in tomato
and apricot (Mehta et al. 2013c; Chauhan et al. 2014; Guleria et al. 2014a, b).
Chabot et al. (1996) presumed that the P-solubilization impact of Rhizobia and
other PSMs is by all accounts the most vital system of plant development
advancement in reasonably rich and extremely fruitful soils. Then again, a strain of
Pseudomonas putida too strengthened the development of roots and shoots and
expanded 32P-named phosphate uptake in canola (Lifshitz et al. 1987). Inoculation
of rice seeds with Azospirillum lipoferum strain 34H and tomato plants with
Bacillus subtilis strain CKT1 expanded the phosphate particle content and brought
about a huge change of root and shoot length and dry weights (Murty et al. 1988;
Walia et al. 2013a). Concurrent expansions in P uptake and harvest yields have
likewise been seen after inoculation with Bacillus methylotrophicus CKAM (Mehta
et al. 2014), Bacillus polymyxa (Gaur and Ostwal 1972), Bacillus subtilis (Sharma
et al. 2015), Bacillus subtilis CKT1 (Walia et al. 2013a) and Bacillus circulans
(Mehta et al. 2013c), and others.

Another approach for the utilization of PSMs as microbial inoculants is the
utilization of mixed or co-inoculation with different microbes. A few studies exhibit
the useful impact of consolidated inoculation of P-solubilizing microbes and
Azotobacter on yield, and in addition to nitrogen (N) and P accumulation in various
crops (Kundu and Gaur 1984). Co-inoculation of Pseudomonas striata and Bacillus
polymyxa strains demonstrating phosphate-solubilizing capacity, with a strain of
Azospirillum brasilense, brought about a noteworthy change of grain and dry matter
yields, with an increase in N and P uptake (Alagawadi and Gaur 1992). Likewise,
phosphate-solubilizing Agrobacterium radiobacter coinoculated with nitrogen fixer
Azospirillum lipoferum showed enhanced grain yield as contrasted to single inoc-
ulations in pot and field tests (Belimov et al. 1995). These authors explained that

78 A. Walia et al.



mixed inoculants gave more adjusted sustenance to the plants, and that the change
in N and P uptake was the real mechanism involved. This proof focuses to the
upside of the mixed inoculations of PGPR strains including PSMs.

Then again, it has been proposed that some PSMs act as mycorrhizal assistant
microbes (Garbaye 1994). In such manner, a few studies have demonstrated that
PSMs cooperate with vesicular arbuscular mycorrhizae (VAM) by discharging
phosphate particles in the soil, which causes a synergistic connection that takes into
consideration better use of ineffectively solvent P sources (Ray et al. 1981). It is
likely that the phosphate solubilized by the microbes could be all the more effec-
tively taken up by the plant through a mycorrhizae-intervened span in the middle of
roots and encompassing soil that permits supplement translocation from soil to
plants (Jeffries and Barea 1994). These authors concluded that the inoculated rhi-
zobacteria could have released phosphate particles from insoluble rock phosphate
and other P sources, and were then taken up by the outer VAM mycelium.
Commercial biofertilizers affirming to experience phosphate solubilization utilizing
mixed bacterial cultures have been produced. Extensive confirmation boosts the
particular part of phosphate solubilization in the improvement of plant development
by phosphate-solubilizing microorganisms. In any case, not all research center or
field trials have offered positive results. For instance, an inoculant utilizing Bacillus
megaterium var. phosphoricum, was used effectively in the previous Soviet Union
and India, yet it did not demonstrate the same effectiveness in soils in the United
States (Smith et al. 1962). Also, there are some deleterious species of bacteria
present in the rhizosphere that have the potential to influence seed germination,
plant growth, and crop yields significantly. These bacteria affect the plant growth
through production of phytotoxins (Kumar et al. 2013a, b). Remarkably, in the
study conducted by Walia et al. (2013a), a few isolates were found to significantly
inhibit seed germination as demonstrated by a reduction in per cent of seed ger-
mination over uninoculated control, apparently by producing volatile metabolites.
When studied, these deleterious bacterial isolates showed no HCN activity in vitro.
Therefore, it is probable that some other gaseous metabolites produced by the
bacteria under these conditions have repressed seed germination. This statement is
supported by the increase in per cent seed germination by isolate N11 which
otherwise produced HCN under in vitro conditions (Walia et al. 2013a, b; Alstrom
and Burns 1989). Without a doubt, the productivity of the inoculation changes with
the soil type, particular cultivar, and different parameters. The P substance of the
soil is likely one of the critical elements in deciding the viability of the item.

4.4.1 Production of Phosphate-Solubilizing Microorganism
Inoculants

Effective PSM cultures are mass-produced for supply to the agriculturists as
microphos. The generation of microphos, i.e., a preparation containing
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microorganisms with phosphate-solubilizing action, incorporates three stages: the
main concerns choice and testing of phosphate-solubilizing strains; also, inoculant
readiness, including determination and handling of the material carrier and mass
culture of PSM; and thirdly, quality control methodology and dispersal. For
microphos generation, peat, farmyard compost (FYM), soil and dairy animals waste
cake powder have been recommended as suitable carriers (Kundu and Gaur 1981).
For storage of cultures, these are packed in polybags for around three months at
30 ± 2 °C. In India, a microbial development termed Indian Agricultural Research
Institute (IARI) microphos society (Gaur 1990; Khan et al. 2014b) was formed that
contained two proficient phosphate-solubilizing microscopic organisms
(Pseudomonas striata and Bacillus polymyxa) and three phosphate-solubilizing
growths (Aspergillus awamori, A. niger and Penicillium digitatum).

4.4.2 Technology of Bioinoculants Production

Advancement of an effective inoculant includes a few basic components, for
example, strain determination, choice of a carrier, mass duplication, detailing of the
inoculant, and bundling and promoting. Stringent quality certification at different
strides of generation guarantees the creation of reliably excellent inoculants. By and
large, not long after the microbes are brought into the soil, the bacterial populace
decays logically (Van Elsas et al. 1986; Bashan and Levanony 1988). This wonder
might keep the development of an adequately vast microbial populace in the rhi-
zosphere to acquire the expected plant reaction. The key snag is that the soil is a
heterogeneous and flighty environment, even on the little scale (Van Elsas and Van
Overbeek 1993). The inoculated microorganisms must contend with the frequently
better adjusted local microflora. A noteworthy part of inoculant plan is to give a
more suitable microenvironment to keep the fast decay of presented microorgan-
isms in the soil. Although quite a bit of it is thought about the survival of
microorganisms inside of the defensive environment of an inoculant transporter,
little is thought about the burdens that microorganisms must persist upon exchange
to the aggressive and regularly cruel soil environment (Rodriguez-Navarro et al.
1991; Heijnen et al. 1992). Inoculants must be intended to give a reliable wellspring
of advantageous microorganisms that make due in the soil and get to be accessible
to the plant. The assembling of bioinoculants requires four noteworthy steps
(a) Selection of effective strain, (b) Mass culture, (c) Carrier materials and their
handling and (d) Packaging, which are to be prepared after strictly ensure the
quality of a production item.

4.4.2.1 Inoculant Formulation Technology for P-Solubilizers

Formulation is an urgent perspective for producing inoculants containing a com-
pelling bacterial strain that can decide the achievement or disappointment of

80 A. Walia et al.



organic workers. Formulation normally comprises of setting up the dynamic fixing,
i.e., microorganism (s) in a suitable carrier together with added substances that
guide in the adjustment and insurance of the microbial cells amid capacity and
transport at the objective site. The formulation is difficult to protect after applying in
the fields from destructive ecological components, and keep up or upgrade
movement of the living beings in the field (Jones and Burges 1998). Another critical
thought is the cost-viability of the plan.

To encourage the performance of high cell numbers and build survival of
microorganisms in soil, diverse plans utilizing carrier materials have been utilized.
The issue of value inoculant production relies on upon utilization of good carrier
material in biofertilizer production unit. The carrier is the conveyance vehicle of
live microorganisms from the production line to the field; nonetheless, no wide-
spread carrier or plan is accessible for the arrival of microorganisms into the soil
(Trevors et al. 1992). Carrier materials might act to improve survival of inocula by
giving microorganisms a defensive domain keeping in mind the end goal to escape
unfavorable conditions in the soil. The explanations behind a reduction in inoculum
populace in the soil after some time incorporate inadequate supplements accessible
for upkeep and replication, and imperfect ecological conditions, for example, pH,
ionic quality, temperature and so forth (Van Elsas and Van Overbeek 1993).
Predation by bacteriovorus microorganisms, for example, protozoa, and rivalry with
indigenous microbes can likewise diminish inoculum application.

To be effective, a carrier material must upgrade survival of inocula amid capacity
and after performance into the soil. The carrier must show two crucial properties,
i.e., it must be backing the development of the objective produce and keep up a
sought populace of inoculant over an adequate time period. To accomplish these
objectives, a carrier should likewise show high water-holding limit and mainte-
nance attributes, show compound and physical consistency and be nonlethal to
inoculant strains and earth safe (Stephens and Rask 2000). Extra attributes for a
decent inoculant should be as per the following:

1. The inoculants should be almost sterile or effectively cleaned, and as artificially
and physically uniform as could be expected under the circumstances.

2. They must have steady quality, high water-holding limit (for wet transporters)
and suitable for whatever number bacterial species and strains as could be
allowed.

3. The inoculant must have an effectively movable pH, and be made of a sensibly
valued crude material in satisfactory supply.

4. The inoculant must be nontoxic, biodegradable and nonpolluting, and have to
minimize ecological dangers, for example, the dispersal of cells to the climate or
to the ground water.

5. The inoculant must have an adequate time frame of realistic usability maybe a
couple of years at room temperature.

Normally, no single carrier can have every one of these qualities, yet a decent
one should have however many as could be expected under the circumstances.
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4.4.2.2 Types of Carriers for P-Solubilizer Inoculants

The most useful carrier for inoculants are (i) Soils: peat, coal, soils, and inorganic
soil (Smith 1995). (ii) Plant waste materials: fertilizers, barnyard compost, soybean
and shelled nut oil, wheat grain, press-mud, spent mushroom manure. (iii) Inert
materials: vermiculite, perlite, ground rock phosphate, calcium sulfate. These
arrangements can later be fused into a strong carrier or utilized as they may be.

To produce an inoculant, the objective microorganism can be brought into a
sterile carrier. From an absolutely microbiological perspective, the clean carrier has
huge preferences yet from a commercial point of view, it is very costly to produce
sterile carrier. In any case, sterile-originated inoculants have been effectively
advertised even with their higher sticker price. But the less expensive non-sterile
carriers, regardless of their potential burdens, have a much bigger market in the
business sector (Olsen et al. 1994). The formulation is the key issue for inoculants
containing a viable bacterial strain and can decide the achievement or failure of a
biological agent.

Inoculants come in four essential dispersal frames. Powder form is utilized as a
seed covering before planting. The little the molecule estimate, the better the
inoculant will stick to the seeds. Standard sizes differ from 0.075 to 0.25 mm, and
the measure of inoculant utilized is around 200–300 g/ha. These inoculants are the
most well known both in developed and developing nations (Tang and Yang 1997).
Slurries depend on powder-sort inoculants suspended in a fluid (typically water).
The suspension is straightforwardly connected to the furrow or on the other hand,
the seeds are plunged only preceding sowing. Granular form inoculants are con-
nected straightforwardly to the furrow together with the seeds.

4.4.3 Applications of Endophytic P-Solubilizers
in Agriculture and Response of Crops
to Bioinoculants

High quality of planting material is a basic requirement for the achievement of any
cultivation wander. To guarantee the nature of the planting materials, a successful
production and assurance framework is of principal significance. Endophytic bac-
terial species can be conveyed stem or established cuttings of green plants. Such a
conveyance system for endophytic microbes during ahead of schedule phase of its
improvement would guarantee better establishing of the planting material. A few
techniques for the conveyance of endophytic microorganisms are accounted for
which incorporates seed treatment, bacterization of plant spread material, soil
application and even foliar application. For vegetatively spread plant species,
endophytic microorganisms can be specifically conveyed into the succulent plant
framework before the planting in the soil (Panhwar et al. 2013). In these plants,
shoots are amiable for bacterization by endophytic microorganisms. Endophytic
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microbes from tomato, apricot, apple, seabuckthorn, and Podophyllum hexandrum
(medicinal plant) illustrative of the overwhelmingly viewed genera Bacillus,
Pseudomonas, Enterobacter and Serratia were tried for their abilities to enhance
establishing of their host plant (Mehta et al. 2014; Kumar et al. 2015; Sharma et al.
2016). After endophytic inoculation and resulting development in soil, we saw that
the root structures of inoculated apple cuttings were frequently denser with
numerous fine attaches contrasted with those of the noninoculated control plants.
Root arrangement was moderate for noninoculated plants. Interestingly, for cuttings
that were permitted to establish in the vicinity of the chose endophytes, root
development was started inside of 1 week, and shoot arrangement was more
declared contrasted with that of the noninoculated plants.

The use of P-solubilizers is rapidly increasing in agriculture and horticulture and
offers a finest way to replace chemical fertilizers and pesticides (Zaidi et al. 2014;
Ahemad 2015). Earlier, Walia et al. (2013a) had isolated and characterized different
P-solubilizers from the rhizosphere soils/roots of tomato having multiple plant
growth-promoting traits (PGPTs). For the testing of effective P-solubilizers, a pot
culture experiment was conducted where they reported a significant increase in
shoot length, root length and dry matter production of shoot and root of tomato
seedlings. Among seven P-solubilizers, strain CKT1 exhibited concomitant pro-
duction of PGPTs, i.e., siderophore production, indoleacetic acid production,
nitrogen fixation activity, and hydrogen cyanide production. Significant increase
was observed in seed germination (36.08%), shoot length (5.22%), root length
(21.12%), shoot dry weight (63.50%) and root dry weight (54.08%), nitrogen
(18.75%), potassium (57.69%) and phosphorus (22.22%) as compared to uninoc-
ulated control. This study, therefore, suggests that the use of single strain inoculum
of CKT1 with multiple PGPTs offers a new concept to address multiple modes of
action.

In an another study by Mehta et al. (2013) endophytic P-solubilizing bacterial
isolate Bacillus circulans CB7 isolated from apple rhizosphere soil of Himachal
Pradesh, India exhibited PGPTs of auxin, nitrogenase activity, ACC deaminase
activity, siderophore production, and antifungal activity against Dematophora
necatrix. In vivostudies showed remarkable increase in seed germination (22.32%),
shoot length (15.91%), root length (25.10%), shoot dry weight (52.92%) and root
dry weight (31.4%). Also, the nutrient uptake by plants, i.e., nitrogen (18.75%),
potassium (57.69%) and phosphorus (22.22%) was increased in shoot biomass.
These results exhibited strongly that isolate CB7 has the favorable PGPR traits to be
developed as a biofertilizer to boost soil fertility and enhance plant growth.

The synergistic effect of the combination of three PGPRs, Bacillus licheniformis
CECT 5106, Pseudomonas fluorescens CECT 5398, and Chryseobacterium
balustinum CECT 5399 with LS 213 on the growth promotion and biocontrol on
tomato and pepper against Fusarium wilt and Rhizoctonia damping off was
observed by Domenech et al. (2006). They concluded that when both rhizobac-
terium and strain LS213 were combined together to form an inoculum, the growth
parameters were significantly higher than with individual rhizobacterium, in tomato
and pepper, which revealed a synergistic and most effective effect on growth
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promotion. Similarly, Pandey and Maheshwari (2006) studied the interaction for
plant growth promoting comprising of two species i.e. Burkholderia sp. MSSP and
Sinorhizobium meliloti PP3 which can produce IAA and solubilize inorganic
phosphate. The consortium of two strains was tested on Cajanus cajan in sterile soil
and their results revealed an increase in seedling length, yield and weight after
inoculation with these species. A similar study was also conducted by Sharma et al.
(2007) who isolated two phosphate-solubilizing strains namely Pseudomonas
fluorescens and Bacillus megaterium. They coinoculated them into seeds of Cicer
arietinum and observed that the consortium of two enhanced the seedling length,
radical and plumule length.

Adesemoye et al. (2008) conducted a field study to test the effect of
P-solubilizers microbial inoculants on corn plant growth, yield and nutrient uptake.
The field results showed that inoculants promoted grain yields (kg/ha) 7717 for
AMF (Arbuscular Mycorrhiza Fungi), 7260 for PGPR + AMF, 7313 for PGPR,
5725 for the control group and also enhanced nitrogen content per gram of grain
tissues. Significantly higher amounts of N, P and K were taken up by microbes thus
indicated the application of inoculants lead to a reduction in buildup of N, P, and K
in agricultural soils which is measure of an integrated nutrient management system.
Similarly, Yazdani et al. (2009) reported that use of PSM and PGPR in addition to
conventional fertilizer applications (NPK) could improve root and shoot weight,
and grain number per row and finally increased grain yield of Zea mays L. They
concluded that application of PSM and PGPR together could reduce P application
by 50% without any significant reduction of grain yield. PGPR can enhance plant
growth by alleviating soil stresses experimentally observed by Mehta et al. (2013a).
They hypothesized that the isolated strains of Azospirillum sp. and Bacillus subtilis
CB8A may alleviate the adverse effects of drought stress on wheat and apple
growth.

4.5 Conclusion and Future Prospects

In intensive agricultural practices, the application of phosphatic fertilizer requires a
greater input that cannot be afforded by the farmers furthermore due to impending
impacts to the biological system. Keeping this in perspective, numerous researchers
have occupied their examination in finding the shrouded treasure under the soil and
thus, rhizosphere competent bacteria (RCB) or endophytic P-solubilizers came into
light and gained interest as inoculants or economically efficient substitute for fer-
tilization of crops by solubilization of phosphate from inadequately accessible
sources in the soil. The characteristic state of plants is by all accounts in a nearby
interaction with endophytes. In the endophyte–host communications, the base
commitment of the plant to the endophyte is one of giving nutrition. Endophytic
microorganisms are the rich wellspring of an extensive variety of bioactive mixes,
bringing about the generation of each of the five classes plant development hor-
mones (auxins, abscisins, ethylene, gibberellins, and kinetins). The accomplishment

84 A. Walia et al.



of this microbiological approach, in any case, relies on upon identification,
preparation and delivery of multifunctional endophytic phosphate solubilizers to
farm practitioners. This would be amiable when a superior learning on endophyte
environment and their molecular associations is achieved. Once recognized and
physiologically portrayed, phosphate-solubilizing microorganisms are liable to give
advantages to crops in sustainable agriculture. Further, keeping in mind the end
goal to guarantee food security in developing nations, there is a dire requirement for
the eco-friendly sustainable intensification of farming production systems. In this
context, efficient indigenous or genetically modified region or crop specific endo-
phytic PSM and advancements for their definitive exchange to the fields must be
produced and delivered to farmers in a relatively brief time.
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Chapter 5
Endophytic Microbes: A Resource
for Producing Extracellular Enzymes

Abdul Latif Khan, Raheem Shahzad, Ahmed Al-Harrasi
and In-Jung Lee

Abstract Endophytes (fungi and bacteria) have been known to live asymptomat-
ically with plants throughout the different growth and developmental stages.
Endophytic microbes provide an additional resource to the plant due to the presence
of beneficial secondary metabolites, enzymes, and nutrients, which help the host to
combat diverse arrays of stressful conditions of biotic and abiotic stresses.
Extracellular enzymes are the product of microbial’s cell growth and perform its
function outside the cell in many biological or environmental processes. In fact,
certain category of enzymes namely, xylanases, hemicellulases, phytases, proteases,
asparaginase, cellulases, pectinases, tyrosinase, gelatinase, chitinase, amylases, etc.,
are some of the key enzymes produced by endophytic bacteria and fungi. Most of
these enzymes have been reported from endophytes living within medicinal or crop
plants, whereas they are detected through agar-based methods. The current chapter
aims to identify the sources, kinds of enzymes, and the perspectives for further
studies in their application in endophytic-based extracellular enzymes resources.
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5.1 Introduction

Endophytic microorganisms (bacteria or fungi) are belonging to a key class of plant
symbionts, living inside the plant tissues without causing any symptoms of disease
to the host. These endophytic microorganisms are associated with the plant
throughout their life history, starting from seed germination to fruit development.
These can be distributed in rhizosphere (roots), phylloplane (in leaves), laimosphere
caulosphere (in stems), carposphere (in fruits), spermosphere (in seeds), and an-
thosphere (in flowers) as suggested by Clay and Holah (1999). Various workers
(Lindow and Brandl 2003; Saikkonen et al. 2004; Sessitsch et al. 2012) stated the
role of endophytes, bacteria, and or fungi unique in their interactions with plants.
They provide an alternative resource or facilitate the distribution or production of
biologically active metabolites, such as enzymes, biofunctional chemicals, phyto-
hormones, nutrient, and minerals (Schulz et al. 2002). On the other hand, the host
plant provides a protective sanctuary to reproduce and nutrients to grow inside plant
tissues without compromising its own growth resources (Khan et al. 2015).

Endophytic microorganisms have also been coined for their protective role to the
host during biotic and abiotic stress conditions (Arachevaleta et al. 1989; Bacon
1993; White and Torres 2010; Leitão and Enguita 2016). These stresses include
salinity, drought, temperature, heavy metal, and phytopathogenic infections. In
most of the previous studies, this role of counteracting stress invasion to the plant
cell has been revoked or reduced through the production of essential biochemical
resources (Khan et al. 2015). Among these sources, phytohormones and extracel-
lular enzymes are few which have been regarded the most important and significant
for their association with plants. Though phytohormones are one of the recent
phenomena that have been known from endophytes, however, extracellular
enzymes or exozymes have mostly been emphasized due to their industrial
importance in food, fermentation dye synthesis, and other biotechnological appli-
cations (Traving et al. 2015).

Fungi and bacteria produce various kinds of extracellular enzymes, which are
hydrolases, lyasese, oxidoreductases, and transferases (Traving et al. 2015). These
extracellular enzymes target various macromolecules such as carbohydrates, lignin,
organic phosphate, proteins, and sugar-based polymers to breakdown into trans-
portable product throughout the cells and to continue heterotopic metabolism
(Sinsabaugh 1994; Boer et al. 2005; Strong and Claus 2011; Wingender et al.
2012). Hallmann et al. (1997) showed that endophyte-producing enzymes could
help to initiate the host symbiosis process. Besides establishment of association
with host, these also initiate action of extracellular hydrolyases to counteract plant
pathogenic infection (Tan and Zou 2001; Leo et al. 2016). Since, the endophytic
resources offer a new source of genes, enzymes, and secondary metabolites,
therefore, we aimed to investigate in the current chapter broadening our under-
standing related to extracellular enzymes from endophytic origin.
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5.2 Extracellular Enzymes Quantification

Extracellular enzymes have been qualitatively and quantitatively measured through
various ways ranging from agar plate-based methods to sophisticated advanced
spectrophotometric methods. The enzyme production ability of endophytic
microbes has also been coined for their ability to grow and reproduce in a specific
media. However, a detailed assessment of such abilities has been least known for
endophytic microbes. Overall, the endophytic microbes are isolated from plants
rigorous surface sterilization methods by using tween 80 weak acids, and sterilized
distilled water. Alternatively, the bulk material of plant grown in a sterilized
microbial media is used where endophytic microbes were isolated. Once the pure
culture is maintained, the strains are identified through either 16S rRNA sequencing
or internal transcribed spacer (ITS) region of bacteria and fungi, respectively, using
PCR amplification, sanger sequencing, BLASTn, and finally a detailed phyloge-
netic analysis. The isolated endophytes are grown in specific growth media to detect
the enzymes producing either on agar plate (initial screening) or detailed spec-
trophotometry methods (UV/VIS or fluorescence). Currently, the advances in
fluorogenic substrate such as 4-methylumbelliferone (MUB) have also been used
for this purpose largely for soil or marine enzyme analysis (Hoppe 1993;
Wallenstein et al. 2008; Khan et al. 2016). However, more sensitive techniques
have to be adopted not only to measure time course estimation and analysis
quantification of these enzymes, but also such studies may be coupled with
molecular and genomic work to validate the findings and processes (III and Allison
2015) (Fig. 5.1).

Fig. 5.1 Diagrammatic representation of the isolation, fermentation and quantification of
extracellular enzymes. a Grinding plant, b isolating endophytes, c, d pure culture growth,
d fermentation, e, f, g, h isolation of enzymes, and i quantification through advanced
chromatographic techniques
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5.3 Extracellular Enzymes from Endophytic Fungi

Endophytic fungi isolated from various plants sources have been reported for the
production of various kinds of extracellular enzymes from last two decades or so
(Khan et al. 2016; Esteves et al. 2014; Petrini et al. 1993). The categories of
enzymes have been described in Table 5.1. Most of the endophytic fungi producing
extracellular enzymes have been reported from medicinal plants (Chathurdevi et al.
2016). The endophytic fungi have been reported to be xylanase producers including
Alternaria alternate (Wipusaree et al. 2011), Hymenoscyphus ericae (Burke and
Cairney 1997), and Aspergillus terreus (Sorgatto et al. 2012). Similarly,
Harnpicharnchai et al. (2009) showed that endophyte Periconia sp. produces
b-glucosidase. De-Almeida et al. (2012) reported that endophytes of Acremonium
species produce cellulases and hemicellulases. In another study, Suto et al. (2002)
isolated and identified one hundred and fifty-five fungal strains showing their ability
to produce xylanases. Silva et al. (2006) investigated the fungal strain isolated from
Annona spp., while Luz et al. (2006) from Passiflora edulis to understand their
potential for extracellular enzymes production.

Gazis and Chaverri (2010) isolated and identified various endophytic strains
belonging to Xylariaceae and Annulohypoxylon sp. from a medicinal plant Hevea
brasiliensis. Earlier, Wei et al. (1992) grown A. stigyum strain and found that this
strain produces b-glucosidase with a very low level of cellulases. Some of the
common endophytes such as Alternaria species have been isolated from eucalyptus
plants such as Eucalyptus globulus (Lupo et al. 2001) and Eucalyptus citriodora
(Kharwar et al. 2010). Strains of A. alternata are able to produce endopoly
galactunorase (Isshiki et al. 1997) in the presence of pectin, and b-glucosidase in
the presence of saccharose (Sáenz-de-Santamaria et al. 2016).

Among other common endophytic strains, A. niger was also found to produce
extracellular enzymes, which is famous to produce an extensive range of extra-
cellular glucohydrolases (b-glucosidase, pectinases, and xylanases; Ward et al.
2005). Such attributes are always helpful to fungus to colonize and propagate across
different kinds of environments and plant hosts (Meijer et al. 2011). Chow and Ting
(2015) reported that endophytic fungi belonging to Colletrotrichum, Fusarium,
Phoma, and Penicillium species are producing l-Asparaginase in their pure culture
isolated from anticancer medicinal plants.

A semiarid plant Opuntia ficus-indica was subjected to endophyte isolation,
which resulted in the identification of 44 endophytic fungi (Bezerra et al. 2012).
According to the screening assays for extracellular enzymes, Aspergillus japonicus
and Penicillium glandicola have shown significant pectinolytic activity. In addition,
the author showed that endophytes belonging to Xylaria sp. were showing signif-
icantly higher xylanase and cellulase activity. In a recent study by Khan et al.
(2016), 18 different endophytic fungi isolated from the bark and leaf parts of the
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Table 5.1 Enzyme production from different endophytic fungal species

Specie name Enzyme produced Detection method References

Penicillium funiuclas,
Trichoderma viride

Amylase,
cellulose,
protease, lipase

Agar plate base
test

Chathurdevi et al.
(2016)

Colletrotrichum,
Fusarium, Phoma,
Penicillium

l-Asparaginase Pink zones on
agar,
Nesslerization

Chow and Ting
(2015)

Aspergillus sp., Amylase Agar medium Jurynelliz et al.
(2016)

Pochonia chlamydosporia Protease Spectrophotometer Escudero et al.
(2016)

Colletotrichum
gloeosporioides

Protease,
chitinase,
amylase

Rabha et al.
(2014)

Fusarium sp.,
Chaetomium sp.,
Colletotrichum sp.,
Aspergillus flavus,
Cylindrocephalum sp.,
Coniothyrium sp., Phoma
sp., Aspegillus niger
Colletotrichum sp.,
Mycelia sterilia sp.,
Aspergillus fumigatus
Alternaria sp.,
Colletotrichum
gleosporoides.
Colletotrichum sp.,
Myrothecium sp.,
Fusaruim
chlamydosporum. Xylaria
sp., Fusicoccum sp.,
Mycelia sterilia sp.,
Aspergillus sp.,
Pestalotiopsis sp.,
Colletotrichum sp.,
Talaromyces emersonii,
Pyllosticta sp.,
Pestalotiopsis sp.,
Discosia sp., Aspergillus
sp., Mycelia streilia sp.,
Isaria sp., Xylaria sp.,
Phoma sp., Pestalotiopsis
disseminate, Fusarium
oxysporum, Paecilomyces
variotii, Fusarium
chlamydosporum,
Acremonium implicatum,
Nigrospora sphaerica

Amylase,
cellulase, laccase,
lipase, pectinase,
protease

Agar medium Sunitha et al.
(2013)

(continued)
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Table 5.1 (continued)

Specie name Enzyme produced Detection method References

Fusarium solani,
Penicillium sp., Mycelia
sterilia sp., Phoma sp.,
Basidiomycetes sp.,
Colletotrichum falcatum,
Phomopsis longicolla
Fusarium oxysporum,
Colletotrichum
gleosporoides,
Colletotrichum truncatum,
Drechsclera sp.,
Cladosporium sp.,
Myrothecium sp.

Cladosporium sp.,
Rhizoctonia sp.,
Aspergillus sp.,
Chaetomium sp.,
Biosporus sp., Fuzarium
sp., Curvularia sp.,
Cladosporium sp.,
Colletotrichum sp.

Amylase,
protease,
cellulose, lipase

Agar medium,
spectrophotometer

Patil et al. (2015a,
b)

Cladosporium
cladosporioides,
Curvularia brachyspira,
C. verruciformis,
Drechslera awaiiensis,
Colletotrichum carssipes,
Colletotrichum falcatum,
Colletotrichum
gloeosporioides,
Lasiodiplodia
theobromae, Nigrospora
Sphaerica, Phyllosticta
Sp. Xylariales

Amylase,
cellulase, laccase,
lipase, protease

Agar medium Amirita et al.
(2012)

Cladosporium
cladosporioides, C.
sphaerospermum,
Acremonium terricola,
Monodictys castaneae,
Penicillium glandicola,
Phoma tropica, Tetraploa
aristata

Pectinases,
cellulases,
xylanases,
proteases

Agar medium Bezerra et al.
(2012)

Amanita muscaria, A.
muscaria, A. spissa,
Boletus luridus,
Cenococcum geophilum,
Cortinarius glaucopus, C.
purpurascens, Hydnum

Protease Agae medium Nygren et al.
(2007)

(continued)
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Table 5.1 (continued)

Specie name Enzyme produced Detection method References

rufescens, Hymenoscyphus
ericae, Laccaria cf.,
Lactarius acerrimus, L.
auriolla, L.chrysorrheus,
L. controversus, L.
deliciosus, L. deterrimus,
L. evosmus, L. pubescens,
L. quieticolor, L. quietus,
L. rufus, L.
semisanguifluus, L.
subdulcis, L.
subumbonatus, L.
zonarius, Piceirhiza
bicolorata, Piloderma
fallax, Piloderma
byssinum, Russula
chloroides, R. sanguinea,
Suillus luteus, S. luteus,
Tricholoma cf. equestre, S.
variegatus, T. fulvum, T.
scalpturatum

Eurotiales,
Chaelomiaceae, Incertae
sadis, Aureobasiduaceae,
Nectriaceae,
Sporomiaceae

Celluloses,
phosphatases,
glucosidases

Spectrophotometer Khan et al. (2016)

Colletotrichum sp.,
Macrophomina
phaseolina, Nigrospora
sphaerica and Fusarium
solani

Cellulase,
protease, amylase

Agar medium Ayob and
Simarani (2016)

Cochliobolus lunatus, C.
australiensis, Gibberella
baccata, Myrmecridium
schulzeri, Penicillium
commune, Phoma
putaminum, Acremonium
curvulum, Aspergillus
niger, A. ochraceus,
P. glabrum,
C. lunatus, G. fujikuroi,
Myrothecium verrucaria,
Nodulisporium,
Trichoderma piluliferum,
A. chartarum, A.
ochraceus, P. glabrum,
Pithomyces atro-olivaceus

Cellulase,
protease,
xylanase, lipase

Agar medium Bezerra et al.
(2015)

(continued)
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desert wood land plant shown to produce new prospects for extracellular enzymes.
The study revealed a new method of quantifying enzymes (glucosidase, phos-
phatases, cellulases) in outer environment of the microbial cell using fluorogenic
substrates and standards.

Table 5.1 (continued)

Specie name Enzyme produced Detection method References

Penicillium chrysogenum,
Alternaria alternate,
Sterile hyphae

Amylase,
pectinase,
cellulase,
gelatinase,
xylanase and
tyrosinase

Agar medium Fouda et al.
(2015)

Aspergillus terreus l-asparaginase Agar medium,
spectrophotometer

Kalyanasundaram
et al. (2015)

Phialocephala fortinii s.l.
eliniomyces variabilis,
Umbelopsis isabellina,
Hebeloma incarnatulum,
Laccaria bicolor

Protease Mayerhofer et al.
(2015)

Hormonema sp.,
Pringsheimia smilacis,
Ulocladium sp.,
Neofusicoccum luteum,
Neofusicoccum australe

Laccase Agar medium,
spectrophotometer

Fillat et al. (2016)

Acremonium sp.,
Alternaria sp., Aspergillus
sp., Fusarium sp.,
Pestalotiopsis sp.,

Amylase,
cellulase, lipase,
protease

Agar medium Maria et al. (2005)

Chaetomium sp., Preussia
sp., Penicillium citrinum,
Thielavia arenaria,
Phoma medicaginis,
Aureobasidium sp.,
Preussia sp.,
Dothideomycetes sp.,
Aureobasidium pullulans,
Phoma sp., Penicillium
citrinum,
Aureobasidium pullulans,
Aureobasidium pullulans,
Thielavia arenaria,
Sordariomycetes sp.,
Fusarium proliferatum,
Preussia sp.

Glucosidase,
phosphatases,
cellulases

Fluorescence
spectrophotometer

Khan et al. (2016)
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5.4 Endophytic Bacterial Communities Producing
Extracellular Enzymes

Endophytic bacterial communities are also considered an important source of
extracellular enzymes. Endophytic bacterial strains have been isolated and identi-
fied from various plants such as pea (P. sativum), tomato (Lycopersicum esculen-
tum), corn (Zea mays), wheat (Triticum aesitivum), oat (Avena sativa), canola
(Brassica napus), barley (Hordeum vulgare), radish (Raphanus sativus) soybean
(Glycine max), potato (Solanum tuberosum), lettuce (Lactuca serriola), and
cucumber (Cucumis sativa). In addition, various bacterial strains have also been
isolated from the economically important medicinal plants species. Some of the
novel strains identified and characterized belong to the Arthrobacter, Actinobacter,
Aeromonas, Agrobacterium, Alcaligenes, Bacillus, Azospirillium, Enterobacter,
Flavobacterium Pseudomonas, Acinetobacter, Azotobacter, Beijerinckia,
Burkholderia, Enterobacter, Erwinia, Flavobacterium, Rhizobium, and Serratia
genuses (Gray and Smith 2005).

In addition, the bacterial endophytes have been reported for the production of
ACC deaminase, cellulases, protease, amylase, pectinase, esterase, lipase, protease,
asparaginase, phytase, etc. (Sturz et al. 2000; Carrim et al. 2006). There are a wide
array of resource studies showing that production of these enzymes by endophytic
bacteria is isolated from different parts of the plant (Table 5.2). In such exploratory
studies based on agar plate detection methods, Pereira et al. (2016) examined that
Lavandula dentate harbored more than 30 endophytic bacterial strains. These
endophytic microbes produced cellulases, lipases, pectinases, and proteases besides
improving the growth of the host plant. In phyllosphereic part of the Lavandula
dentate, the endophytic microbes produced higher quantities of plant cell
wall-degrading enzymes, as also evidenced by Verma et al. (2001) who have
reported higher number of endophytic bacteria from diazotrophs plant and their
growth regulation by producing cellulase and pectinase.

In species-specific bacterial strains, Nocardiopsis sp. (39.2 U ml−1) identified to
secrete higher quantities of the a-amylase as an extracellular enzyme during dif-
ferent growth stages (Stamford et al. 2001). Davis et al. (1980) showed similar
prospects for Bacillus stearothermophilus, whereas Castro et al. (1993) for B.
amyloliquefaciens. The authors revealed a strong association of enzymes produc-
tion by bacteria during different growth stages. When a-amylase was produced by
Lactobacillus plantarum, maximum enzyme synthesis occurred during stationary
phase (Giraud et al. 1993). Vijayalakshmi et al. (2016) isolated endophytic bacteria
from medicinally important plants, producing a-amylase, protease, and cellulase. In
one of the recent reports, Leo et al. (2016) observed the recovery of endophytic
bacteria (Alcaligenes faecalis, Burkholderia cepacia, and Enterobacter hor-
maechei) from perennial grasses that showed the hyper-enzymatic activity of
a-amylase, protease, and cellulase.

Bacterial endophyte, Pantoea sp. Sd-1, isolated from paddy shows a higher
ligninolytic activity (Xiong et al. 2013). Castro et al. (2014) suggested that
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Table 5.2 Endophytic bacterial strains producing extracellular enzymes

Species Enzyme produced Detection method References

Actinomyces pyogenes,
Bacillus circulans,
Bacillus coagulans,
Bacillus licheniformis,
Bacillus megaterium,
Corynebacterium
renale, Pseudomonas
stutzeri,
Staphylococcus sp.,
Bacillus sp.

Amylase, esterase,
lipase, protease

Agar medium Carrim et al.
(2006)

Pseudomonas
oryzihabitans

Asparaginase Spectrophotometer Bhagat et al.
(2016)

Bacillus sp., Bacillus
clausii, Bacillus
pumilus, Bacillus
licheniformis

Amylase, protease,
cellulose, lipase

Agar medium Kannan et al.
(2015)

Pseudomonas sp. Exo-b-agarase Spectrophotometer,
NMR

Gupta et al. (2013)

Bacillus sp. L-asparaginase Spectrophotometer Ebrahiminezhad
et al. (2011)

Bacillus
amyloliquefaciens

Phytase Spectrophotometer Idriss et al. (2002)

Paenibacillus
polymyxa

Fibrinolytic
enzymes

Agar medium, SDS
Page

Lu et al. (2007)

Rhizobium, Massilia,
Kosakonia,
Pseudorhodoferax,
Caulobacter, Pantoea,
Sphingomonas,
Burkholderia,
Methylobacterium,
Bacillus,
Curtobacterium,
Microbacterium,
Mucilaginibacter,
Chitinophaga

ACC deaminase,
Endoglucanase,
Protease

Agar medium Chimwamurombe
et al. (2016)

Acinetobacter sp.,
Bacillus sp.

ACC deaminase,
Cellulase, Protease,
Amylase, Pectinase

Agar medium Joe et al. (2016)

Bacillus licheniformis,
Bacillus
pseudomycoides,
Paenibacillus
senitriformus

L-asparaginase M9 medium Joshi and Kulkarni
(2016)

Pseudomonas
hibiscicola,
Macrococcus

Cellulase, xylanase,
amalyase, pectinase

Agar diffusion
method

Akinsanya et al.
(2016)

(continued)
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endophytic microbes produced production of ligninases derived from Brazilian
mangrove ecosystem. Yang et al. (2011) explained that Alcaligenes faecalis pro-
duced cellulases and xylanases with higher ability to degrade cellulosic substrate in
a coculture system.

5.5 Conclusion and Perspectives

The scientific community is familiar about endophytic microbes since last two and
half decades with vibrant and potent roles in agriculture, ecology, biotechnology,
and industry. There are still many overlooked and unexplored aspects of these
ecologically unique microorganisms which require special attention on primary
metabolite production in general and enzyme in particular. This consortium of
endophytes (bacteria and fungi) can thrive and capable to live together with host
plants and produced synergistically hydrolytic enzymes for counteracting emerging

Table 5.2 (continued)

Species Enzyme produced Detection method References

caseolyticus,
Enterobacter ludwigii,
Bacillus anthracis,
Bacillus tequilensis,
Pseudomonas
entomophila,
Chryseobacterium
indologenes, Bacillus
aerophilus

Bacillus thuringiensis Anthracene Spectrophotomete Roy et al. (2016)

Bacillus
amyloliquefaciens

Exopolysaccharides Colorimetric
method

Chen et al. (2013)

Bacillus subtilis YbdN protein SDS-PAGE,
MALD-TOF-MS

Jamal and
Mudarris (2010)

Serratia marcescens,
Bacillus subtilis,
Bacillus
methylotrophicus,
Bacillus siamensis

L-asparaginase Spectrophotometer Nongkhlaw and
Joshi (2015)

Paenibacillus
polymyxa, Bacillus sp.

Cellulase, xylanase,
pectinase

Agar diffusion
method

Cho et al. (2007)

Paenibacillus
amylolyticus

Pectin lyase Spectrophotometer Sakiyama et al.
(2001)

Alcaligenes faecalis,
Burkholderia cepacia,
Enterobacter
hormaechei

Cellulosic,
hemicellulosic,
lignin

National renewable
energy laboratory
methods

Leo et al. (2016)

5 Endophytic Microbes: A Resource … 105



issues. These can be utilized in enzymology-based enzyme fermentation industries,
where endophytes derived from plants living in extreme environments possess
higher ability to produce higher quantities of extracellular enzymes. In addition,
endophytic microbes producing enzymes can help to counteract biotic stress;
however, the role of such endophytes in abiotic stresses cannot be ruled out. The
significances of enzymes producing endophytes with special attention on remedi-
ating environmental pollutants such as metals, polyaromatic hydrocarbons, and
polychlorinated hydrocarbons have been understood very least. Most of the
researches have been performed in monoculture, while on the coculture and other
aspects such as quorum sensing signaling pathway of these endophytes in growth
media are yet to be elaborated. Besides the enzymes quantification methods need a
rigorous review as with the advancement of technology, new techniques with
higher sensitivity are much needed. Methods such as fluorescence spectropho-
tometer, near-infra red (NIR), and FTIR-based methods further improve enzyme
analysis. The endophytic biomasses are extremely significant in determining their
viability and alternative to an important resource for biofuel production. The
molecular and genomic bases of these endophytic resources for enzymes production
also need cross-validation.
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Chapter 6
Beneficial Effects of Bacterial Endophytes
on Forest Tree Species

Akshit Puri, Kiran Preet Padda and Chris P. Chanway

Abstract Since their discovery, beneficial bacteria living inside the plant tissues
(known as bacterial endophytes) have been studied widely in agricultural crop
species. But their ecology and effects on tree species in a forest ecosystem could be
very different yet intriguing. In this chapter, studies highlighting the isolation of
bacterial endophytes, re-inoculation and detection of the endophytic population in
the host tree, and benefits provided to the host tree through direct and indirect
mechanisms have been reviewed. Important tree species including those belonging
to the genus Pinus, Populus, and Picea have been reported widely to harbor bac-
terial endophytes belonging to the genus Bacillus, Paenibacillus, and Pseudomonas
and possibly obtain benefits like nitrogen fixation and increased biomass production
from them. Nitrogen-fixing bacterial endophytes are the most commonly studied
beneficial microbes of forest tree species, and thus have been reviewed in detail in
this chapter.

Keywords Endophytes � Diazotrophic bacteria � Pinus � Populus � Picea

6.1 Introduction

Plants are a complex micro-ecosystem that harbors a range of microbes both in their
internal tissues as well as on their external surfaces. Although the importance of
microbes for plant health and growth promotion has been known for a long time,
internal tissues colonization was largely perceived as being related to the spread of
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disease. Even the first microorganism reported to colonize internal tissue of plant
leaves was a pathogenic fungus (de Bary 1866). But now, it is widely known that
microorganisms can colonize internal tissues of plants and establish beneficial
symbiotic interaction with the host plant. Such microbes are known as endophytes.
Literally taken, endophyte means “within plant” (Chanway 1996). Although many
authors have defined the term endophyte, but in this chapter, we will use the term
defined by Chanway et al. (2014). According to Chanway et al. (2014), bacterial
endophytes are “bacteria that can be detected at a particular moment within the
tissue of apparently healthy plant hosts without inducing disease or organogenesis.”
The occurrence of bacterial endophytes was first reported in internal tissues of
healthy potato plant (Trevet and Hollis 1948). Since then, most studies have been
focused on isolating and evaluating the benefits of bacterial endophytes in agri-
cultural plants (reviewed by Hallmann et al. 1997; Kobayashi and Palumbo 2000;
Sturz et al. 2000; Suman et al. 2016). Although there is huge literature about
endophytic fungi in forest ecosystem (reviewed by Doty 2011), studies of bacterial
endophytes in forest tree species are rather limited but their importance should not
be underrated.

6.2 Bacterial Endophytes in Forest Tree Species

Forest trees can provide unique ecological conditions for bacterial endophytes since
they have larger biomass and exist for a longer period in terrestrial ecosystems as
compared to agricultural plants (Izumi 2011). Bacterial endophytes have only been
reported in very limited host tree species including pine, spruce, poplar, oak, cedar,
and willow. The most common bacterial endophytes isolated from forest trees
belong to the genus Acinetobacter, Burkholderia, Bacillus, Enterobacter,
Methylobacterium, Microbacterium, Pseudomonas, Paenibacillus, Rahnella,
Sphingomonas, and Xanthomonas (Izumi 2011; Pirttilä 2011). The diversity of
bacterial endophytes found in forest ecosystem has been reviewed by Izumi (2011).
Endophytes enhance the growth of forest tree species by various direct and indirect
mechanisms. Direct mechanisms involve production of phytohormones like cy-
tokinins (Pirttilä 2011), auxins (Taghavi et al. 2005; Madmony et al. 2005), gib-
berellins (Bottini et al. 2004), and nitrogen (N) fixation (Bal and Chanway 2012a, b;
Anand and Chanway 2013b; Anand et al. 2013; Tang et al. 2017). Indirect
mechanisms involve suppression of pathogens and improvement of the mutualistic
relationship of a mycorrhizae and plant host (Anand et al. 2006). It is believed that
most interactions between plants and beneficial bacteria occur in roots of host plant
but shoots represent a unique ecological niche where endophytes can carry out
major plant-beneficial activities. Generally, bacterial endophytes in forest trees have
been isolated from shoot tips, flowers, pollens or seeds, and seedlings (Pirttilä
2011). Although shoot endophytes provide similar benefits as provided by root
endophytes, they have also been reported to induce plant growth through other
mechanisms like the production of adenine derivatives and vitamin B12 (Pirttilä
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2011). Endophytic bacterial colonization sites in tree shoots and their potential
growth-promoting effects have been reviewed in detail by Pirttilä (2011).

6.2.1 Diazotrophic Bacterial Endophytes in Forest Tree
Species

N-fixing bacteria also known as “diazotrophic bacteria” are well known for their
ability to fix N biologically. Apart from root nodule-forming diazotrophs living in
association with leguminous plants, there are bacterial species that can fix N in
association with non-leguminous plant species. The presence of diazotrophic bac-
teria in non-leguminous plants was first detected by Brazilian researchers in the
rhizosphere of sugarcane (Döbereiner and Alvahydo 1959; Döbereiner 1961). In
subsequent studies, it was determined that diazotrophic bacteria in rhizosphere
contributed only small amounts of N to the sugarcane plants and diazotrophic
bacteria living in internal tissues of stem and roots fix significant amounts of N from
the atmosphere (Cavalcante and Döbereiner 1988; Boddey et al. 1991; Stephan
et al. 1991). Cavalcante and Döbereiner (1988) isolated a diazotrophic bacteria,
Saccharobacter nitrocaptans (renamed to Acetobacter diazotrophicus (Gillis et al.
1989), and then to Gluconacetobacter diazotrophicus (Yamada et al. 1997)), from
internal tissues of sugarcane. Such diazotrophs were designated as diazotrophic
bacterial endophytes (Döbereiner 1992) and were detected in many other agricul-
tural crops like corn (Padda et al. 2017; Puri et al. 2015, 2016b), rice (Baldani et al.
2000), wheat (Sabry et al. 1997), and canola (Padda et al. 2016a, b; Puri et al.
2016a). Diazotrophic bacterial endophytes have been detected in stem tissues of
forest trees like poplar (Populus trichocarpa) (Ulrich et al. 2008a; Scherling et al.
2009; Doty et al. 2009; Xin et al. 2009; Knoth et al. 2014), willow (Salix sitchensis)
(Doty et al. 2009), lodgepole pine (Pinus contorta) (Bal et al. 2012; Bal and
Chanway 2012a; Anand et al. 2013; Tang et al. 2017; Yang et al. 2016), and
western red cedar (Thuja Plicata) (Bal and Chanway 2012b; Anand and Chanway
2013b). Diazotrophic bacterial endophytes have fixed significant amounts of N
from the atmosphere (in some cases up to 79%) after establishing a symbiotic
relationship with these tree species.

6.3 Plant Growth Promotion by Bacterial Endophytes
in Forest Tree Species

In this section, studies highlighting the beneficial effects of bacterial endophytes in
forest trees have been reviewed. We have compiled an elaborative list of bacterial
endophytes that have been isolated from forest trees and have shown plant
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Table 6.1 List of bacterial endophytes isolated from prominent forest tree species and their
beneficial effects on host trees

Host plant Bacterial
endophytes

Benefits to host References

Australian native
pine (Callitris
preissii)

Nocardia callitridis
sp. nov. strain CAP
290T

– Kaewkla and Franco
(2010)

Black cottonwood
(Populus
trichocarpa)

Burkholderia
vietnamiensis WPB

Nitrogenase activity,
production of
indole-3-acetic acid
(IAA)

Doty et al. (2009),
Knoth et al. (2014),
Xin et al. (2009)

Willow (Salix
sitchensis)

Herbaspirillum
sp. WW2 and
Pseudomonas
sp. H9zhy (WW6)

Nitrogen fixation Doty et al. (2009)

Douglas-fir
(Pseudotsuga
menziesii)

Rhodotorula
graminis WP1,
Rahnella sp. WP5,
Burkholderia
sp. WP9,
Acinetobacter
calcoaceticus
WP19, Rhizobium
tropici bv populus
PTD1,
Sphingomonas
yanoikuyae WW5,
Pseudomonas
putida WW6,
Sphingomonas
sp. WW7

Increases biomass,
root length and
shoot height

Khan et al. (2015)

Hybrid spruce
(Picea glauca x
P. engelmannii)

Bacillus polymyxa
strain Pw-2R and
Pseudomonas
fluorescens strains
Sm3-RN and
Ss2-RN

Boosts seedling
biomass and height

Chanway et al.
(2000), Shishido
et al. (1996a, b,
1999), Shishido and
Chanway (1999,
2000)

Limber pine (Pinus
flexilis)

Acetic Acid
Bacteria (AAB)

Nitrogen fixation Moyes et al. (2016)

Live oaks (Quercus
fusiformis)

Pseudomonas
denitrificans 1-15,
Pseudomonas
putida 5-48

In vitro inhibition of
the pathogen,
Ceratocystis
fagacearum, reduces
crown loss

Brooks et al. (1994)

Lodgepole pine
(Pinus contorta var.
latifolia (Dougl.)
Engelm.)

Bacillus polymyxa
strain Pw-2 (or
Pw-2R)

Enhances seedling
biomass, produces
phytohormones
(IAA and cytokinin)

Bent et al. (2001),
Shishido et al.
(1995, 1996a)

(continued)
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growth-promoting (PGP) properties (see Table 6.1). Most studies about bacterial
endophytes have been reported in tree species belonging to genera Pinus, Picea,
and Populus.

Table 6.1 (continued)

Host plant Bacterial
endophytes

Benefits to host References

Lodgepole pine
(Pinus contorta var.
latifolia (Dougl.)
Engelm.) and
western red cedar
(Thuja plicata Donn
ex D. Don)

Paenibacillus
polymyxa P2b-2R

Nitrogen fixation,
growth promotion
(biomass and length)

Bal and Chanway
(2012a, b), Bal et al.
(2012), Anand and
Chanway (2013a,
b), Anand et al.
(2013), Tang et al.
(2017), Yang et al.
(2016)

Norway spruce
(Picea abies) seeds

Pseudomonas
spp. and Rahnella
spp.

– Cankar et al. (2005)

Poplar (Populus
deltoides x P. nigra
DN-34)

Enterobacter
sp. strain 638

Synthesizes plant
growth-promoting
compound acetoin,
increases seedling
biomass

Taghavi et al. (2005,
2009)

Poplar (Populus
deltoides x
(trichocarpa x
deltoides))

Pseudomonas
putida W619

Improves plant
health and growth,
decreases activities
of anti-oxidative
defense-related
enzymes, reduces
stomatal resistance,
and degrades TCE

Taghavi et al. (2005,
2009), Weyens et al.
(2009, 2010, 2012)

Poplar (Populus
trichocarpa x
deltoides cv.
Hoogvorst)

Pseudomonas
sp. PopHV4,
PopHV6 and
PopHV9

– Germaine et al.
(2004)

Poplar (Populus
trichocarpa x
P. deltoides hybrids)

Rhizobium tropici
CIAT899

– Doty et al. (2005)

Scots pine (Pinus
sylvestris L.)

Methylobacterium
extorquens
DSM13060

Increases root and
shoot dry weight,
increases root and
shoot potassium
content

Pirttilä et al. (2000),
Pohjanen et al.
(2014)
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6.3.1 Pinus

The genus Pinus is one of the largest and most important among the coniferous
genera. Pines are widely distributed and mostly found in the Northern Hemisphere.
They range from Alaska to Nicaragua, from Scandinavia to North Africa, and from
Siberia to Sumatra (Krugman and Jenkinson 1974). The most common Pinus
sp. found in western North America is lodgepole pine. It is a commercially
important gymnosperm species that grows throughout the Rocky Mountain and
Pacific Coast regions. It extends from Yukon Territory, Canada in the north to Baja
California, Mexico in the south and from the Pacific Ocean in the west to South
Dakota, USA in the east (Lotan and Critchfield 1990). The first evidence of
endophytic colonization by plant growth-promoting bacteria in lodgepole pine was
detected by Shishido et al. (1995). They isolated a bacterial endophyte (strain Pw-2)
from root tissues of lodgepole pine seedlings (<3 years old) naturally regenerating
at a site near Williams Lake, BC, Canada (52°N, 122°W). Preliminary characteri-
zation revealed that strain Pw-2 belongs to Bacillus polymyxa (now known as
Paenibacillus polymyxa). The beneficial effects of B. polymyxa Pw-2 were assessed
by re-inoculating it into lodgepole pine and growing in a greenhouse for 9 weeks.
Inoculation with Pw-2 significantly increased shoot height, shoot dry mass, and root
dry mass of lodgepole pine seedlings as compared to the uninoculated controls.
A rifamycin-resistant strain, Pw-2R, was derived from Pw-2 so as to check internal
root colonization of lodgepole pine after re-inoculation (Shishido et al. 1995).
Pw-2R endophytically colonized the internal root tissues of lodgepole pine with a
population size in the range of 105 cfu/g fresh tissue, 4 weeks after inoculation. In a
subsequent study, Shishido et al. (1996a) ruled out the theory about the involve-
ment of mycorrhizal fungi in growth promotion observed in Pw-2 (or Pw-2R)
inoculated lodgepole pine seedlings. According to their findings, Pw-2R enhanced
lodgepole pine seedling biomass significantly (up to 18%) through a mechanism
that is unrelated to mycorrhizal fungi. It was also reported that strain Pw-2 is
involved in elevating the levels of PGP hormones like indole-3-acetic acid
(IAA) and dihydrozeatin riboside (DHZR; a form of cytokinin) produced in
lodgepole pine roots (Bent et al. 2001).

In an effort to look for diazotrophic bacterial endophytes in stem and needle
tissues of lodgepole pine trees (>20 years old) and seedlings (2–4 years old)
growing in nutrient-poor (N-limited) forest sites of British Columbia, Canada; Bal
et al. (2012) isolated an endophytic strain P2b-2R that was capable of growing on
N-free medium (combined carbon medium; Rennie 1981) and consistently reduced
significant amounts of acetylene in acetylene reduction assay (ARA) used for
measuring N-fixing activity. Strain P2b-2R (GU132543) was identified as
belonging to P. polymyxa (Bal et al. 2012). Since ARA is an indirect method of
measuring the amount of N fixed, Bal and Chanway (2012a) used a more accurate
method, 15N isotope dilution method (Danso 1995), to assess the amount of N
fixed. In two separate growth trials, P2b-2R inoculated lodgepole pine seedlings
were able to derive 30 and 66% of N directly from the atmosphere 27 and 35 weeks
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after inoculation, respectively (Table 6.2). In a subsequent study, Anand et al.
(2013) reported that lodgepole pine seedlings inoculated with P2b-2R were able to
derive 79% of N directly from the atmosphere, 13 months after inoculation
(Table 6.2). Along with fixing high amounts of N, P2b-2R inoculation also
enhanced lodgepole pine shoot height by 33%, shoot dry weight by 78%, and root
dry weight by 165%. They postulated that plant growth promotion was directly
related to the amount of N fixed by P2b-2R. Since seedlings were grown in an
N-limited environment and N fertilizer was provided only once at the onset of the
experiment, so after sometime, soil N depletion would eventually restrict the growth
rate of control seedlings to a point where P2b-2R inoculated (N-fixing) seedlings
would outperform them. When lodgepole pine seedlings were grown in sufficient N
conditions (N fertilizer provided regularly in a yearlong growth experiment),
P2b-2R inoculation had no effect on the growth of lodgepole pine and the inocu-
lated seedlings were not able to fix atmospheric N (Yang et al. 2016, 2017), thus
confirming the hypothesis proposed by Bal and Chanway (2012a) that P2b-2R
triggers N fixation mechanism under N-limited conditions. Full sequencing of
nitrogenase reductase protein (nifH) of P2b-2R was also conducted by amplifying a
388-bp internal nifH gene fragment and performing a Southern blot analysis of total
genomic DNA digested with Pst I/HindIII (Anand and Chanway 2013c). The
Southern blot profile showed just one positive signal at 1.8 kb of the Pst I digest
and 9 kb of the HindIII digest (Fig. 6.1), indicating that there is only one copy of
nifH in P2b-2R. Anand et al. (2013) evidenced that P2b-2R strain can form a
significant amount of endophytic colonies in the root, shoot, and needle tissues,
thus indicating that perceived growth promotion and N fixation was bacteria driven.
But in this study, a culture-based technique was used to assess the bacterial colonies
in each part of the plant. Endospore-forming bacteria like P. polymyxa P2b-2R are
susceptible to misidentification when such technique is used (Bent and Chanway
2002). Anand and Chanway (2013a) then applied a more precise technique to prove
that P2b-2R can colonize lodgepole pine endophytically. Green fluorescent protein
(GFP) tagging in conjunction with confocal laser scanning microscopy (CLSM)
was used to view the sites of endophytic colonization in real time. A plasmid-borne
GFP (pBSGV104) was used to tag P2b-2R and the transformed strain was named

Table 6.2 Percent N derived from the atmosphere (%Ndfa) by a diazotrophic bacterial
endophyte, Paenibacillus polymyxa P2b-2R, when inoculated into two different host trees and
determined in several studies at different time periods

Host tree Time after inoculation %Ndfa References

Lodgepole pine 27 weeks 30 Bal and Chanway (2012a)

35 weeks 66 Bal and Chanway (2012a)

12 months 40 Tang et al. (2017)

13 months 79 Anand et al. (2013)

Western red cedar 27 weeks 23 Bal and Chanway (2012b)

35 weeks 56 Bal and Chanway (2012b)

13 months 36 Anand and Chanway (2013b)
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P2b-2Rgfp. With the help of CLSM, it was observed that P2b-2Rgfp had com-
pletely engulfed the root surface of lodgepole pine, similar to what was reported by
Timmusk et al. (2005). P2b-2Rgfp effectively colonized stem cortical cell of 2–
14-week-old lodgepole pine seedlings intracellularly (Figs. 6.2 and 6.3) but was not
observed in vascular tissues. Thus, Anand and Chanway (2013a) provided a strong
evidence that P2b-2R can effectively colonize stem tissues endophytically from as
early as 2 weeks after inoculation. However, Padda et al. (2016a) reported that
GFP-tagging might affect the performance of P2b-2R to promote plant growth and
fix N. After some successful initial reports about colonization and plant growth
promotion of agricultural crops, viz., corn, canola, and tomato by P2b-2R. Puri
et al. (2015, 2016a), Padda et al. (2016a, 2017) reported that GFP-tagging could
positively affect the plant growth-promoting and N-fixing capability of P2b-2R in
agricultural crops like corn and canola. Recently, Puri et al. (2016b) concluded that
this effect is temporary in corn and diminishes as the plant develops. However,
Padda et al. (2016b) further reported that the positive effect of GFP-tagging is not
temporary in canola and could be seen throughout the life cycle of the plant. Tang
et al. (2017), in an effort to evaluate the positive effect of GFP-tagging of P2b-2R in
its original host lodgepole pine, found that P2b-2Rgfp outperforms the wild-type
strain in the initial stages of plant development only (till 4 months after sowing) and
the positive effect diminishes as the pine plant grows. It has been discovered that
GFP-tagging leads to overexpression of nifH, nifD, and nifK genes. Therefore, the
effect of reporter gene GFP on physiological activities of host–microbe cell should
be taken into account in using it as a cytological marker (Unpublished data).

Fig. 6.1 Southern blot profile of P. polymyxa P2b-2R total DNA digested with Pst I (Lanes 1, 2,
and 4) or HindIII (Lanes 5, 6, and 8) and probed with the nifH fragment (from Anand and
Chanway 2013c)
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In studies with other pine species, a novel endophytic actinobacterium strain,
CAP 290T (=DSM 45353T = ACM 5287T), was isolated from root tissues of a pine
tree native to Australia (Callitris preissii) (Kaewkla and Franco 2010). Phylogenetic
analysis and physiological and biochemical tests conducted on strain CAP 290T

revealed that it is a novel endophytic actinobacterium belonging to the
Nocardiaceae family and the name Nocardia callitridis sp. nov. was proposed. It
should be noted that beneficial effects of this endophytic strain were not evaluated
in this study. In another study with Scots pine (Pinus sylvestris L.), a pine species

Fig. 6.2 Longitudinal section of the stem showing intracellular colonization by P. polymyxa
P2b-2Rgfp viewed under green (top left panel), red (top right panel), and a combination of both
green and red lights (bottom). Arrow points to a bright green P2b-2Rgfp cell that appears to
contain a terminal endospore located to the right of the red-orange chloroplasts (Anand and
Chanway 2013a)
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native to Eurasia, Pirttilä et al. (2000) isolated bacterial endophytes from buds of
mature, healthy Scots pine trees growing on a natural stand in northern Finland.
One of the bacterial endophytic strains (isolate F) was identified as
Methylobacterium extorquens (DSM 13060). In a subsequent study, it was reported
that this bacterial endophyte produced adenine derivatives like adenine ribosides,
which could be used as precursors in cytokinin biosynthesis (Pirttilä et al. 2004). In
an effort to detect the endophytic colonization sites ofM. extorquens DSM 13060 in
Scots pine, Pohjanen et al. (2014) tagged DSM 13060 with GFP and viewed
endophytic colonies by using CLSM. GFP-tagged DSM 13060 was observed in
root epidermis and root parenchymatic and xylem tissues. Also, M. extorquens
DSM 13060 significantly increased shoot and root dry weight of Scots pine
seedlings. In addition, this bacterial endophyte in association with ectomycorrhizal
(ECM) fungi (Suillus variegatus and/or Pisolithus tinctorius) was able to enhance
the growth of Scots pine seedlings even more than the only ECM fungi inoculation.
In a recent study with limber pine (Pinus flexilis), Moyes et al. (2016) found
evidence of diazotrophic bacterial endophytes in foliar parts of the plant. These
bacteria can provide 6.8–13.6 lg of N per square meters to limber pine stands per
day or approximately 1–2 mg of N per square meters in one year (Moyes et al.
2016). In another study, Carrell and Frank (2014) found that limber pine and
another conifer tree species, Engelmann spruce (Picea engelmannii), growing in a
sub-alpine, N-limited environment are colonized by bacterial endophytes of the
same phylotype. This phylotype was related to Gluconacetobacter diazotrophicus
and other N-fixing acetic acid bacterial endophytes.

Fig. 6.3 Intracellular colonization of a 4-week-old lodgepole pine stem cortex cell by
P. polymyxa P2b-2Rgfp. Arrows point to P2b-2Rgfp near the red-orange chloroplasts (Anand
and Chanway 2013a)
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6.3.2 Populus

Populus is a genus of deciduous flowering plants mostly native to the northern
hemisphere. It includes commercially important species like poplar, cottonwood,
and aspen. The first tree species whose full genome was sequenced belong to this
genus (Black cottonwood). The genome of black cottonwood (Populus tri-
chocarpa) is four times larger than the genome of the first plant sequenced,
Arabidopsis thaliana (Tuskan et al. 2006). Apart from traditional varieties of poplar
and cottonwood trees, many hybrid varieties have been developed. Populus spp. are
known for rapid growth, deep root network, and ability to grow in nutrient-poor
sites (Stettler et al. 1996). They are economically important and are grown in
short-rotation plantations for the production of pulp and paper, lumber, and fuel
(Doty et al. 2009). The first discovery about the presence of a diazotrophic bacterial
endophyte in a Populus sp. was reported by Doty et al. (2005). In this study, clones
of hybrid cottonwood (Populus trichocarpa � P. deltoides) were evaluated for the
presence of bacterial endophytes in stem tissues. Rhizobium tropici was the most
common bacterial endophyte found in all clones of hybrid cottonwood. Although
this bacterial species is well known for its nodule-forming ability and diazotrophic
trait in legumes (Perret et al. 2000), this study reported its endophytic nature in a
non-legume host. Populus spp. are also known for their phytoremediation capa-
bilities. Endophytic bacteria belonging to genus Pseudomonas were isolated from
xylem sap of hybrid poplar trees growing on a phytoremediation site near a motor
factory in Genk, Belgium (Germaine et al. 2004). Isolated strains were tested for
their ability to solubilize phosphorus, produce IAA, act as biocontrol agents, and
resist heavy metal. Selected strains were tagged with GFP to visualize endophytic
colonization sites. GFP-tagged strains were found to colonize inner cortex and
xylem tracheid cells in the root and intercellular spaces of root xylem cells when
visualized with CLSM. Although stem and leaf colonization was not observed with
CLSM but through culture-based technique, it was determined that these
Pseudomonas strains colonize root, stem/sap, and leaf tissues with population
density ranging from 103 to 106.

Poplar trees harbor diverse bacterial endophytes in different parts and each
bacterial community plays its own role in enhancing the growth and protecting the
tree against pathogens. The diversity of endophytic bacterial communities residing
inside field-grown poplar trees was evaluated by Ulrich et al. (2008b). Aerial parts
(leaves and branch sections) of four hybrid poplar clones were evaluated for the
presence of endophytic bacteria. Bacterial endophytes belonging to 53 different
genera were isolated including Curtobacterium, Plantibacter, Pseudomonas,
Xanthomonas, Sphingomonas, Methylobacterium, Pedobacter, and Paenibacillus
and the most abundant genera among all clones of hybrid poplar were
Curtobacterium and Pseudomonas. Several bacterial endophytes were also isolated
from young poplar seedlings (black cottonwood) growing in Three Forks Park
alongside the Snoqualmie River in Western Washington state, USA (Doty et al.
2009). Isolates belonging to the genus Burkholderia, Rahnella, and Acinetobacter
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possessed nifH gene and were able to reduce significant amounts of acetylene in
ARA. One of the strains WPB (Burkholderia vietnamiensis) was able to produce
ethylene (concentration = 68.4 ppm) enormously higher than other strains when
exposed to acetylene for 72 h. Phylogenetic analysis of recA gene and nifHDK gene
cluster of WPB strain was performed in a subsequent study (Xin et al. 2009). In this
study, it was also determined that WPB strain can produce 5.7 mg IAA/g dry cell
after 7-day incubation with 0.1% L-tryptophan but does not produce IAA when
L-tryptophan was not applied. Tryptophan generally acts as a precursor for the
release of IAA (Omay et al. 1993; Hung et al. 2007; Taghavi et al. 2009), but some
microbes lack the ability to synthesize tryptophan, essential for protein synthesis,
and must obtain it from the plant (Radwanski and Last 1995). Thus, it can be
inferred that a mutually advantageous plant–microbe interaction occurs in this case,
where the plant provides tryptophan for WPB and WPB, in return, converts extra
tryptophan to IAA for promoting the plant growth. Strain WPB and other dia-
zotrophic strains isolated by Doty et al. (2005, 2009) were used in a glasshouse and
a field experiment on black cottonwood and hybrid cottonwood (Knoth et al. 2014).
They tested each strain individually as well as collectively by making consortiums.
Diazotrophic bacterial endophytes significantly increased the biomass of black
cottonwood and cottonwood hybrid in both glasshouse and field experiments and
inoculation with microbial consortia made of many strains was more successful
than single-strain inoculation. Inoculated cottonwood seedlings fixed up to 65% of
N directly from the atmosphere in this study, clearly exhibiting the role of dia-
zotrophic bacterial endophytes in promoting poplar tree growth by providing
substantial N nutrition.

Pseudomonas spp. are one of the most common bacterial endophytes found in
Populus trees (Ulrich et al. 2008b; Doty et al. 2009; Gottel et al. 2011; Izumi 2011).
Taghavi et al. (2005, 2009) isolated several endophytes from the root and shoot
tissues of hybrid poplar and used three representative strains, Serratia protea-
maculans 568, Enterobacter sp. strain 638, and Pseudomonas putida W619, for
further evaluation of their endophytic and growth-promoting properties.
GFP-tagged strains colonized root surface and interior of hybrid poplar and one of
the strains, Enterobacter sp. strain 638, significantly increased shoot biomass in
greenhouse experiment (Taghavi et al. 2009). In a subsequent study, P. putida
W619 was used to construct a trichloroethene (TCE)-degrading strain W619-TCE
(Taghavi et al. 2005; Weyens et al. 2009, 2010). P. putida W619-TCE inoculation
of hybrid polar trees reduced TCE evapotranspiration significantly and promoted
plant growth (Weyens et al. 2010). In field conditions (TCE contaminated sites),
TCE evapotranspiration from hybrid poplar was reduced by 90% by inoculation
with this strain (Weyens et al. 2009), thus clearly establishing its phytoremediation
characteristics. Weyens et al. (2012) used the GFP-tagged derivative of strain W619
(Taghavi et al. 2009) to compare the colonization ability of wild-type and
GFP-tagged strain W619 along with investigating the morphological, physiological,
and biochemical parameters so as to compare the PGP ability of the two strains.
Although wild-type W619 was able to promote plant growth by producing IAA and
cytokinins, increasing root and shoot mass, reducing stomatal resistance, decreasing
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the activities of anti-oxidative defense-related enzymes like glutathione reductase
and superoxide dismutase in hybrid poplar seedlings (Weyens et al. 2012),
GFP-tagging of W619 had negative effects on plant growth and health since the
W619 + gfp strain significantly lagged in the before-mentioned parameters. They
also found that GFP-tagging effects the endophytic colonization ability of W619.
These results are contradictory to what was observed when Azospirillum brasilense
8-I (Rodriguez et al. 2006) and Paenibacillus polymyxa P2b-2R were tagged with
GFP (discussed in Sect. 6.3.1), thus casting doubts on this phenomenon of reduced
microbial efficiency after GFP-tagging. In a recent study, a novel endophytic
bacterium, Pseudomonas populi sp. nov. (KBL-4-9T), was isolated from stem tis-
sues of Populus euphratica trees (Anwar et al. 2016). The plant growth-promoting
traits of this bacterial endophyte have not been fully determined yet. Since the
complete genome cottonwood was sequenced (Tuskan et al. 2006), there has been
an increased interest in elucidating the interaction of bacterial endophytic and
rhizospheric communities with Populus trees at the molecular and genetic level
(Schaefer et al. 2013, 2016), which will obviously help in understanding their
interaction with other tree species.

6.3.3 Picea

Picea genus is most closely related to Pinus since they belong to the same family,
Pinaceae. Tree species belonging to Picea are usually found in northern temperate
and boreal regions and are commonly known as spruce trees. Commercially
important species like black spruce (Picea mariana), engelmann spruce
(P. engelmannii), sitka spruce (P. sitchensis), white spruce (P. glauca), Norway or
alpine spruce (P. alpestris and P. abies), and Siberian spruce (P. obovata and
P. omorika) are generally found in northern hemisphere (North America, North
Europe, and Eurasia) (Parish and Thomson 1994). Evidence of plant
growth-promoting rhizobacteria (PGPR) in spruce (hybrid spruce) was reported by
O’neill et al. (1992) and Chanway and Holl (1993a, b). But the first reported spruce
endophyte, Pseudomonas sp. Ss2, was isolated from roots of hybrid spruce (Picea
glauca (Moench) Voss x Picea engelmannii Parry) seedlings naturally regenerating
near Salmon Arm, BC, Canada (51°04′N, 119°26′W, 1250 m elevation) (Shishido
and Chanway 1999). Rifamycin-resistant derivative of Ss2 was generated and the
resulting strain was designated as Ss2-RN. Shishido et al. (1996b) inoculated
Ss2-RN into hybrid spruce (Picea glauca x P. engelmannii) seedlings and grew
them in the greenhouse for 15 weeks. Inoculate hybrid spruce seedlings increased
root weight by 19%, shoot weight by 10%, and seedling height by 6% in com-
parison to the non-treated (control) seedlings. In this study, it was also observed that
bacterial inoculation had no effect on the mycorrhizal status of seedlings and
growth promotion achieved by bacterial inoculation was similar in mycorrhizal and
non-mycorrhizal spruce seedlings. It was also reported that strain Ss2-RN performs
better when inoculated into spruce ecotype that originated from the same
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geographical area as the bacteria (Shishido and Chanway 1999). In an interesting
study, Shishido and Chanway (2000) used a combination of greenhouse and field
trial to assess the growth-promoting effects of Ss2-RN. Hybrid spruce seedlings
were first grown in greenhouse for 4 months and were then outplanted in field sites.
Some seedlings were harvested after greenhouse trial to assess the growth pro-
motion due to inoculation of Ss2-RN in the first 4 months. As expected, Ss2-RN
inoculated seedlings had significantly higher root and shoot biomass than controls.
Relative growth rate (RGR) of outplanted seedlings was determined 4 months after
outplanting in the field. Root and shoot RGR of inoculated seedlings were 10–
234% higher than controls, thus establishing the fact that bacterial endophyte
Ss2-RN can perform exceptionally in field conditions. Surprisingly, Ss2-RN was
not able to colonize spruce seedlings endophytically as observed in two different
studies (Shishido and Chanway 2000; Chanway et al. 2000), thus indicating that
this strain promotes spruce tree growth by colonizing the rhizosphere.

Shishido and Chanway (1999) had also isolated a PGPR, Pseudomonas Sm3,
from rhizosphere of 1–3-year-old hybrid spruce seedlings naturally regenerating
near Mackenzie, BC, Canada (55°11′N, 122°58′W, 780 m elevation). Sm3-RN, a
rifamycin-resistant derivative of Sm3, was found to colonize rhizosphere of spruce
seedlings with a population density of 104–105 cfu/g rhizosphere soil and signifi-
cantly enhance root and shoot weight and seedling height (Shishido et al. 1996b).
Although Sm3-RN was isolated from rhizosphere, it was able to colonize root
interior of hybrid spruce seedlings grown in both greenhouse and field conditions
with a population size of 102–104 cfu/g root tissue and significantly promote root
and shoot RGR when grown at a field site (Shishido and Chanway 2000). Internal
root tissue colonization and growth promotion of spruce seedlings by Sm3-RN in
field conditions was also confirmed by Chanway et al. (2000). Apart from
culture-based studies, Shishido et al. (1999) also evidenced the endophytic colo-
nization by Sm3-RN of spruce seedlings by using immunofluorescent antibody
staining (IFAS) technique. Sm3-RN strain was detected in root hairs, cortical cells,
and stem vascular tissues of spruce after 4 months of inoculation. It can be con-
cluded that Sm3-RN, a PGPR, enters the spruce seedling likely through the root
openings and form detectable endophytic colonies in root and stem tissues.

A lodgepole pine endophyte, Paenibacillus polymyxa Pw-2R (Shishido et al.
1995), was also tested for its ability to endophytically colonize hybrid spruce and
promote its growth. Strain Pw-2R was able to colonize internal root and stem
tissues of hybrid spruce (Picea glauca x engelmannii) with population size of 104–
105 cfu/g root tissue in controlled environment experiment 5 months after inocu-
lation and promoted seedling biomass by 57% in field trials 17 months after
inoculation (Chanway et al. 2000). Effects of Pw-2R inoculation on spruce seed-
lings were also assessed by Shishido et al. (1996a). Endophytic colonization of
hybrid spruce by culture-based technique was also evaluated by Shishido and
Chanway (2000) and it was observed that this endophyte can colonize internal root
tissues with a population size of 102–104 4 months after inoculation and increase
shoot RGR by up to 82%. Internal tissues colonization of spruce by Pw-2R was also
evaluated by IFAS technique to have a more precise evidence since culture-based
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techniques could be imprecise in detecting endophytic population (Bent and
Chanway 2002). Pw-2R colonized both stem vesicular tissues and root cortical
tissues in a 4-month-old spruce seedling, thus establishing its endophytic nature in
spruce (Shishido et al. 1999). Earlier studies have confirmed the presence of bac-
terial endophytes in hybrid spruce growing in regions of BC, Canada, and their role
in growth promotion of spruce seedlings both in greenhouse and field conditions.
Most bacterial endophytes are isolated from either root or stem tissues of plants but
Cankar et al. (2005) reported the presence of bacterial endophytes in Norway spruce
(Picea abies L. Karst) seeds. In a previous study, this group confirmed the presence
of PGPR bacteria in the rhizosphere of Norway spruce trees and characterized their
beneficial effects (Geric et al. 2000). Fresh seeds from four different trees of
Norway spruce growing in different locations within a 36 km2 area in Pokljuka,
Slovenia (1200–1400 m elevation) revealed the presence of bacterial endophytes in
seed coat, endosperm, and embryonic tissue. Most endophytes belonged to genera
Pseudomonas and Rahnella, which are well known for their plant
growth-promoting and N-fixing properties (Cankar et al. 2005).

6.3.4 Pseudotsuga, Quercus, Salix, and Thuja

The presence of bacterial endophytes has also been reported in other coniferous
trees like Douglas-fir (Pseudotsuga menziesii) and western red cedar (Thuja
Plicata) and deciduous trees like oak (Quercus L.) and willow (Salix L.). Bal et al.
(2012) reported the isolation of endophytic bacteria from stem and needles tissues
of western red cedar seedlings (2–4 years old) and trees (>20 years old) growing at
a site near Boston Bar, BC, Canada (49°50′N, 121°31′W, elevation 600 m; moist
warm Interior Douglas-fir zone (IDFmw)). Endophytic bacterial strains were
identified as belonging to the genera Arthrobacter, Bacillus, Burkholderia,
Paenibacillus, and Pseudomonas. One of the strains Paenibacillus amylolyticus
C3b was found to produce 241 pmols C2H4 mL−1 h−1 of ethylene in the acetylene
reduction assay and was able to grow on N-free growth medium, thereby estab-
lishing its diazotrophic ability (Bal et al. 2012). Lodgepole pine bacterial endo-
phyte, P. polymyxa P2b-2R (Bal et al. 2012), was also tested for its ability to
colonize and promote the growth of western red cedar seedlings. Bal and Chanway
(2012b) reported that P2b-2R can colonize rhizosphere of cedar with a population
size of 105 cfu/g root but cannot colonize the internal tissues. They also reported
that P2b-2R inoculation increased the foliar N content by 33% as compared to the
controls 27 weeks after inoculation. Cedar seedlings inoculated with P2b-2R
derived 56% and 23% of N directly from the atmosphere 27 and 35 weeks after
inoculation, respectively (Table 6.2). These results were later confirmed by Anand
and Chanway (2013b). Apart from deriving significant amounts of N from the
atmosphere, western red cedar seedlings accumulated 45% greater shoot biomass
than control seedlings 13 months after inoculation (Anand and Chanway 2013b).
Another aim of this study was to investigate the endophytic colonization of cedar

6 Beneficial Effects of Bacterial Endophytes … 125



seedlings. P2b-2R endophytically colonized stem and root of cedar seedlings with a
population size of 104–106 cfu/g fresh tissue and needles with 101–102 cfu/g fresh
tissue.

Young willow (Salix sitchensis) trees growing in Three Forks Park alongside the
Snoqualmie river in Western Washington state, USA were also evaluated for the
presence of diazotrophic bacterial endophytes by Doty et al. (2009). Ten endophytic
strains capable of growing on the N-free medium were isolated and were identified
as belonging to the genera Acinetobacter, Herbaspirillum, Pseudomonas,
Sphingomonas, and Stenotrophomonas. Two of the willow isolates, Herbaspirillum
sp. WW2 and Pseudomonas sp. H9zhy (WW6), reduced acetylene to ethylene in
acetylene reduction assay and it was also observed that Pseudomonas sp. H9zhy
(WW6) possess nif genes necessary to encode nitrogenase enzymes (Doty et al.
2009). These willow isolates along with some cottonwood isolates (Doty et al.
2005, 2009) were tested for their ability to promote the growth of a distinct host,
Douglas-fir. Khan et al. (2015) prepared an endophytic consortium by mixing these
endophytic isolates. Endophytic consortium was inoculated into Douglas-fir and
grown in a greenhouse environment for 15 months. Inoculated seedlings had 48%
greater biomass and 13% greater root length and were 16% taller than control
seedlings. Two endophytic isolates, Acinetobacter calcoaceticus WP19 and
Rahnella sp. WP5, were tagged with GFP to visualize endophytic colonization sites
in Douglas-fir (Khan et al. 2015). Intercellular colonization of Douglas-fir root
tissues by WP19 and needle tissues by WP5 was observed 3 weeks after inocu-
lation. These results indicate that willow and cottonwood bacterial endophytes not
only colonize the internal tissues of a distinct host (Douglas-fir) but also promote its
growth significantly in a greenhouse environment. Such studies increase our
understanding about the bacterial endophytes that could be valuable for increasing
production of seedlings in forest nurseries.

More than two decades ago, Brooks et al. (1994) evaluated the role of endo-
phytic bacteria in suppressing oak wilt of live oaks (Quercus fusiformis). Mature
live oaks (50–70 years old) growing in sites located near Round Rock, La Grange,
and Kerrville State Park areas of central Texas, USA were sampled for bacterial
endophytes. After obtaining 889 endophytic isolates from the sapwood of live oaks,
bacteria were screened for in vitro inhibition of Ceratocystis fagacearum fungus. C.
fagacearum causes vascular disease of oaks, commonly known as oak wilt. The
traditional method of eradicating oak wilt is to remove diseased trees from the site
and break the connections between the healthy and diseased tree (Gibbs and French
1980; MacDonald and Hindal 1981) or injecting a fungicide into the intravascular
tissues of the oak plant (Appel and Kurdyla 1992). Brooks et al. (1994) hypothe-
sized that biological control through endophyte inoculation could be a possible and
sustainable way of controlling oak wilt. Six endophytic isolates belonging to genera
Bacillus and Pseudomonas were screened after in vitro evaluation of their ability to
suppress C. fagacearum. When injected into the stem, Pseudomonas spp. exten-
sively colonized live oaks. The ability of Pseudomonas strains to control the oak
wilt pathogen in vivo was evaluated in two growth trials. Inoculation decreased the
number of trees diseased by 50% and reduced the crown loss by 17%. This study
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indicates that there is potential for using bacterial endophytes to suppress delete-
rious pathogens in tree species.

6.4 Conclusion

In a thought-provoking commentary titled “Endophytes: they’re not just fungi!”, in
fact, research on the existence and positive effects of bacterial endophytes on tree
species has lagged far behind the amount of advanced research being conducted on
endophytic fungi. But there are still many unanswered questions regarding the tree
endophytes and their interactions with the host. As mycorrhizal fungi are well
known for their role in the forest ecosystem, in a similar manner, bacterial endo-
phytes can provide a range of benefits to the trees and could be the future biofer-
tilizers of forest trees as emphasized by a report published in the Science journal.
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Chapter 7
Role of Bacterial Endophytes in Plant
Disease Control

A. Muthukumar, R. Udhayakumar and R. Naveenkumar

Abstract Most of the plant diseases are generated by microorganisms dominated
by fungi followed by bacteria and virus. Presently, the major method for controlling
plant diseases is the application of agrochemicals. Nevertheless, this method causes
toxic effect to the human beings and animals. An alternative for chemicals is the
application of biology which includes application of bacterial endophytes in bio-
control of wide array of plant pathogens. Endophytic bacteria belongs to the class of
endosymbiotic microorganisms, ubiquitous among plants that establish in between
and within the spaces of all plant parts and not causing any plant disease. They
create array of relationship include mutalism, cannibalistic, commensalistic and
trophobiotic in nature. Most endophytes derive from soil around the plant roots or
surface of the cuticle covering the leaf epidermis; although some may be obtained
from the seed. Endophytic bacteria may play a major role in developing plant
growth enhancement, phytoremediation, phosphate solubilization, nitrogen fixation,
modulation of plant metabolism and phytohormone signalling that lead to adapta-
tion of environmental biotic/abiotic stress. There is an increased interest in the use
of endophytes for their agricultural applications that promote plant growth under
cold, drought or contaminated soil structure conditions or induce disease resistance
in plants.
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7.1 Introduction

Agricultural augmentation in the twentieth century has been greatly attained
through the use of farm machineries, high-yielding varieties, vigorous tillage, irri-
gation, fertilizers and pesticides (Foley et al. 2005). This is well illustrated by the
global use of fertilizers that increased from approx. 27 to 170 million of nutrient
tonnes over the past 50 years before 2010 (Bumb and Baanante 1996; Heffer 2013).
However, continuous use of fertilizers over a long period leads to deleterious effects
on the soil. Accordingly, environmentally safe approaches have to be implemented
to maintain sustainable agricultural production to overcome threats that lead to yield
loss, including unfavourable environmental conditions to plant stress, as well as
biotic stress induced by plant pathogens and pests. Hence, it is necessary for using
endophytic bacteria for the biocontrol of plant disease and their management (Jha
et al. 2013).

Bacterial endophytes have been explained as bacteria isolated from internal plant
parts remain colonized in the internal tissues, not having any harmful effects to the
host (Holiday 1989; Schulz and Boyle 2006). Almost 3,00,000 plant species
existed on the earth. Among these, endophytes consist of a very few (Strobel et al.
2004). Of these, complete endophytic biology was studies for only few plants.
Therefore, the prospects to upbring beneficial endophyties from the diverse genera
inhabit in different ecosystems.

Bacteria may live as in soils or attached to the root surface or phyllosphere, and
may establish symbiotic relations with plants (Smith and Goodman 1999). Unlike
phytopathogens, endophytic bacteria do not cause any symptoms on host plants,
and their occurrence is not related to the morphological changes that appear in plant
tissues such as formation of root-nodule by symbionts. Endophytes colonize all
plant parts (inbetween the spaces of the cell walls and vascular bundles of plant
roots, stems and leaves, tissues or flowers, fruits and seeds) (Compant et al. 2011;
de Melo Pereira et al. 2012; Trognitz 2014). Population dynamics of endophyte
bacteria may vary from 100 to 9 � 109 bacteria/g of plant tissue (Misaghi and
Donnedelinger 1990; Chi et al. 2005). Generally, the highest endophytic popula-
tions is found in below ground parts when compared to above ground tissues, the
apoplastic movement of endophytic bacteria from roots to rice leaves has been
showed (Reinhold-Hurek and Hurek 2011). Further, roots are considered as point of
invasion of the potential endophytes from soil to the host plant.

Strong union amid host plant and endophytes is mediated through the action of
secondary metabolites produced by the microorganisms and the host cells
(Reinhold-Hurek and Hurek 2011; Brader et al. 2014). The perusal of literature
revealed the varying consequences of endophytic bacteria on plant growth.
Bacterial endophytes colonize plant tissue same as that of plant pathogens, which
can act as biocontrol agents (Berg et al. 2005). On the other hand, innumerable
reports exhibit the endophytic bacteria have the capability to manage several
phytopathogens (Sturz and Matheson 1996; Duijff 1997; Krishnamurthy and
Gnanamanickam 1997), insects (Azevedo et al. 2000) and nematodes (Hallmann
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et al. 1997, 1998). The major mechanism of endophytic bacteria in plant disease
control is—(i) to assist nutrient availability and uptake (ii) to enhance stress tol-
erance and (iii) to provide disease resistance (Ryan et al. 2008; Hamilton et al.
2012).

Endophytic bacteria are correlated with the enhanced plant growth by the pro-
duction of hormones that increase accessibility of nutrients, such as nitrogen,
potassium and phosphorus (Glick 2012). While induced disease resistance activities
are allied with the abilities to produce secondary metabolites, such as antibiotics or
chitinase enzyme, which can inhibit growth of plant pathogens. Hence they act as
biocontrol agents (Christina et al. 2013; Wang et al. 2014). Endophytic bacteria can
also induce seedling emergence and stimulate plant growth (Chanway 1997) under
stress conditions (Bent and Chanway 1998). Further, endophytic bacteria have the
capacity to cope with phytopathogenic fungi with induced systemic resistance
(ISR) (Pieterse et al. 2014). Due to their beneficial function such as plant growth
promotion and disease control, endophytes can be used in the form of
bio-formulations (seed treatment, soil application and seedling dip) in agriculture.

7.2 Nature and Occurrence

Various groups of endophytic bacteria signify their role in ecosystems and plant
physiology. These bacteria colonize all plant compartments, generally the inter-
cellular and intracellular spaces of inner tissues. Initial studies on diversity of
endophytic bacteria were mostly based on characterization of isolates obtained from
the plants either from rhizosphere/phyllosphere region after surface disinfection.
Lodewyckx et al. (2002) characterized methods for the isolation and he found that
81 bacterial species which form endophytic associations with plants. The endo-
phytic bacteria and plant association include a vast diversity of bacterial taxa and
host plant. The early studies on composition of endophytic communities revealed
that different plant hosts harbour similar community of bacterial endophytes (Mundt
and Hinkle 1976). The genera of Bacillus and Pseudomonas are identified as fre-
quently occurring bacteria in agricultural crops (Seghers et al. 2006; Souza et al.
2013). The presence of different endophytic species depends mostly on plants biotic
and abiotic environmental factors. A single host plant species comprises several
genera and species of endophytes but the tissue type of plant or season of isolation
may determine the extent of the endophytic population (Kuklinsky-Sobral et al.
2004; Rosenblueth and Martinez-Romero 2006). An extensive research work
conducted on bacterial endopyte communities revealed that although endophytic
bacteria colonize entire plant, the roots usually contain higher number of species.
Endophytic species mostly belong to the a, b, and c-proteobacteria subgroups and
are closely related to epiphytic species (Kuklinsky-Sobral et al. 2004). Interestingly,
the c-proteo bacteria group is the most diverse and dominant. It has been reported
that most of Gram-negative endophytes act as agents of biological control
(Kobayashi and Palumbo 2000), while among the Gram-positive bacteria, the
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dominant endophytic species are Bacillus species (Gupta et al. 2002; Bacon and
Hinton 2007).

Most culturable endophytic species belongs to the phylum Proteobacteria, class
Firmicutes, Gram-negative and also Bacteroides are less common (Reinhold-Hurek
and Hurek 2011). This suggests that 50% of endophytic bacterial communities
could be identified and others are over represented based on their capability to grow
on synthetic medium. To obtain clear picture of the diversity of endophytic
microorganisms, recently a number of studies have been concentrated on identifi-
cation of unculturable endophytes using novel metagenomic analysis approaches
(Akinsanya et al. 2015). To this, direct amplification of microbial DNA from plant
tissue samples and application of modern bioinformatics tools allow analysis of a
bacterial community composition and its phylogenetic structure inside plant organs
or tissues (Chun et al. 2007; Manter et al. 2010; Sessitsch et al. 2012) examined the
structure and functions of genes of bacterial endophytes colonizing rice roots
in vivo. The results showed the population was superior by members of
c-proteobacteria, comprising mostly of enterobacter-related endophytes. Whereas
(Tsurumaru et al. 2015) studied that endophytic colonization on tap root of sugar
beet (Beta vulgari L.) is a metagenome, who observed that alphaproteobacteria are
dominant, followed by the actinobacteria and the betaproteobacteria. Maropola
et al. (2015) analysed metagenomic study of the sorghum root and stem micro-
biome and revealed that both were dominated by bacterial pathogens such as
Agrobacterium, Erwinia, Herbaspirillum, Microbacterium, Pseudomonas,
Sphingobacterium and Stenotrophomonas species.

7.3 Plant Colonization with Endophytes

The apical root zone having thin-walled surface of root cells includes cell elon-
gation and the root hair zone (zone of active penetration), and the basal root zone
with small cracks are the preferable sites of bacterial attachment and subsequent
entry caused by the emergence of lateral roots (zone of passive penetration)
(Fig. 7.1). For active invasion, endophytic bacteria must bear the abilities of pro-
duction of cellulolytic enzymes to hydrolyze exodermal cell walls of plants.

As earlier, the density of bacteria in the rhizosphere and rhizoplane is always
higher than in the soil which lacks substances secreted from the roots of plants
(Rosenblueth and Martinez-Romero 2006) for example, with seed germination,
amount of carbon and nitrogen compounds are excreted into the surrounding
environment that invites a large population of microorganisms (Okon and
Labandera-Gonzales 1994). The root exudates contain that colonize different bac-
terial genera and they differ normally according to plant species (Bisseling et al.
2009).

Root colonization or rhizospheric beneficial microorganisms are familiar bio-
control agents and plant growth promoters. They have indirect positive effects on
plants with their mechanistic behaviour that mainly includes antagonism against
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phytopathogens. Endophytic microorganisms often produce diversity of antimi-
crobial bioactive compound comprising extracellular chitin or lytic enzymes
(glucanase and chitinase). The direct positive effects are production of phytohor-
mones such as IAA, GA, etc. non-symbiotic nitrogen fixation, and biofortification
of phosphorous and other essential nutrients include the trace elements to plants for
phytostimulation and to the soil for increasing fertilization power of soil (Burdman
et al. 2000). Innumerable compounds such as hydrocyanic acids (HCN), DAPG,
phenazines, pyrrolnitrin, enzymes and phytohormones to protect plant from toxic
effect of fungal pathogens are considered as the significant products to help
endophytes to be colonized in rhizosphere (Castro-Sowinski et al. 2007; Ramette
et al. 2011; Jousset et al. 2011). Besides, under iron-stress conditions in the soil and
on the surface plant, endophytes produce iron-chelator molecule called side-
rophores used to transport iron in a competitive way and deprived for the patho-
genic fungi as essential bioavailable element (Pedraza et al. 2007).

Many rhizosphere microorganisms can activate plant defence mechanisms and
induce a systemic response in plants. Bacteria are able to trigger signalling path-
ways to produce extracellular metabolites with higher toxicity for other microor-
ganism lead to destruction of higher pathogen, called induced systemic resistance

Fig. 7.1 Endophytic bacterial colonization in plants. Bacteria can enter a plant at several root
zones as indicated above. Endophytes can either remain at the site of entry (indicated in blue) or
move deeper inside or occupy the intercellular space of the cortex and xylem vessels (indicated in
green). Red and yellow represent rhizospheric bacteria which are unable to colonize inner plant
tissues
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(ISR). Myriad of bacteria has been documented for beneficial effects, alleviation of
several abiotic and biotic stresses. Pseudomonas and Bacillus sp., have been studied
as potential candidate to provide ISR to plants (Chakraborty et al. 2006)

In earlier days, autofluorescent protein marker (AFP) were studied using stan-
dard microbiological enumeration associated with plant surfaces and in planta
protein (AFP) (Tombolini et al. 1997; Tombolini and Jansson 1998). The colo-
nization mechanisms of endophyte colonization have also been investigated to be
utilized as b-glucuronidase (GUS) reporter system. James et al. (2002) used this
technique in which Herbaspirillum seropedicae Z67 was inoculated on to rice
seedlings via GUS stain where it acted as most severe oncoleoptiles. It was
incultated that the endophytes have entered in the roots via small lesions or cracks
in the root tissues at the point from where the lateral root emerged and subsequent
to this become colonized in the intercellular spaces of root tissues, paerenchyma
and cortical cells, and further disaminated towards xylem vessels of stems and
leaves. In the exampled study, it was concluded that a compatible host plant is
necessarily needed for successful colonization. An endophyte Azoarcus sp. strain
BH72 expressed Nif genes in rice roots evaluated using proteomic approaches and
jasmonic acid treatment to dissect rice roots responsed for colonization (which
induces plant defence proteins). The strategies of adaption have been used to
decipher the expression vivo expression technology (IVET) and recombination
in vivo expression of bacterial gene in the rhizosphere and phyllosphere (Leveau
and Lindow 2001; Preston et al. 2001; Zhang et al. 2006) The insights of these
studies may provide importance of genes required by bacteria to enter, compete and
be colonized in the plant and suppress phytopathogens (Table 7.1).

Table 7.1 List of endophytic bacteria isolated from major agricultural crops

Plant origin Phylum Endophytic bacteria References

Black
pepper

Firmicutes Bacillus sp. Aravind et al.
(2009)Gamma proteo

bacteria
Pseudomonas sp.

Citrus Firmicutes Bacillus cereus, B. lentus, B.
Pumilis, B. subtilis, B. megaterium

Araujo et al.
(2001)

Cotton Gamma proteo
bacteria

Enterobacter sp. Musson et al.
(1995)

Canola Firmicutes Bacillus sp. Germida et al.
(1998)Actinobacteria Micrococcus sp.

Grapes b-protobacteria Comamonas sp. Bell et al. (1995)

Gamma proteo
bacteria

Pseudomonas cichori,
Xanthomonas sp. Moraxella bovis,
Enterobacter sp.

West et al. (2010)

Kallar grass b-protobacteria Azoarcus sp. Krause et al.
(2006)

Maize Gamma proteo
bacteria

Kilebsiella pneumoniae Fouts et al.
(2008)

(continued)
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Table 7.1 (continued)

Plant origin Phylum Endophytic bacteria References

Onion b-protobacteria Burkholderia phytofirmans Weilharter et al.
(2011)

Poplar Gamma proteo
bacteria

Serratia proteamaculans Taghavi et al.
(2009)

Potato b-protobacteria Variovorax paradoxus Han et al. (2011)

Rough
lemon

Gamma proteo
bacteria

Pseudomonas sp. Gardner et al.
(1982)

Firmicutes Bacillus sp.

Gamma proteo
bacteria

Enterobater sp.

Rice Gamma proteo
bacteria

Pseudomonas sp. Stoltzfus et al.
(1997)

Firmicutes Bacillus sp.

Sugar beet a-protoeobacteria Azospirillium sp. Kaneko et al.
(2010)

Actinobacteria Corynebacterium sp.

Straw berry a-protoeobacteria Pseudomonas fluorescens,
P. corrugate, P. tolaasii,
Xanthomonas sp.

Tanprasert and
Reed (1997)

Sorghum b-protobacteria Herbaspirillium seropedicae Pedrosa et al.
(2011)

Tomato Firmicutes Brebacillus brevis Patel et al. (2012)

Gamma proteo
bacteria

Pseudomonas sp. P. syringae,
P. aeruginosa

Yang et al.
(2011)

Wheat a-protoeobacteria Azorhizobium sp. Webster et al.
(1997)

Firmicutes B. polymyxa Zinniel et al.
(2002)

Actinobacteria Mycobacterium sp. Iniguez et al.
(2004)

Avacado
and black
grapes

Firmicutes Bacillus sp. Prasad and Dagar
(2014)

Alfalfa Firmicutes B. megaterium Ashraf et al.
(2015)

Turmeric Firmicutes Bacillus sp., B. pumilis, B.
turingiensis

Kumar et al.
(2016)

Gamma proteo
bacteria

P. putida

Actinobacteria Clavibacter michiganensis

Switchgrass Firmicutes B. subtilis, B. pumilus Gagne-Bourgue
et al. (2013)Gamma proteo

bacteria
P. fluorescens

Gamma proteo
bacteria

Serratia sp.

(continued)
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7.4 Endophytic Bacterial Genomics

Till now, very few bacterial endophytes have been sequenced to know their
genomic map. There are several bacterial endophytes such as Enterobacter sp. 638,
Stenotrophomonas maltophilia R551-3, Pseudomonas putida W619, Serratia
proteamaculans 568 and Methylobacterium populi BJ001 still under investigation
to assess their genomic sequences (http://www.jgi.doe.gov/). Azoarcus sp. strain

Table 7.1 (continued)

Plant origin Phylum Endophytic bacteria References

Cloud forest Gamma proteo
bacteria

P. fluorescens Guzmán-Trampe
et al. (2015)

Potato Gamma proteo
bacteria

P. fluorescens Rado et al.
(2015)

Devil’s
trumpet

Gamma proteo
bacteria

Pseudomonas spp. Abdallah et al.
(2016)

Indian fig
tree

Gamma proteo
bacteria

P. viridiflava Abdallah et al.
(2016)

Actinobacteria Streptomyces sp.

Gamma proteo
bacteria

Serratia marcescens

Soyabean Firmicutes B. megaterium Smita and Dipak
(2015)

Tomato Firmicutes Bacillus sp. Abbamondi et al.
(2016)Gamma proteo

bacteria
Pseudomonas sp.

a-proteobacteria Rhizobium sp.

Proteobacteria Agrobacterium sp.

Fenugreek Firmicutes Bacillus sp. Jasim et al.
(2015)

Khejri tree Firmicutes B. subtilis Rekha et al.
(2015)

Sugarcane Gamma proteo
bacteria

Enterobacter Rodrigues et al.
(2016)

Firmicutes Bacillus sp. Anjum and
Chandra (2015)

Japanese
honeysuckle

Firmicutes Bacillus and Paenibacillus Zhao et al. (2015)

Apple Proteobacteria Micrococcus luteus Miliute et al.
(2016)Firmicutes B. subtilis

Gamma proteo
bacteria

P. aeruginosa

Sugarcane Gamma proteo
bacteria

P. fluorescens Marcos et al.
(2016)
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BH72 has been studied for nitrogen fixation abilities at genomic level and complete
genome was matched with related soil- and plant-associated bacteria (Hurek and
Reinhold-Hurek 2003; Krause et al. 2006). Many plant-associated bacteria and
pathogens contain N-acyl homoserine lactone-(AHL) for quorum-sensing system
(Preston et al. 2001; Buttner and Bonas 2006). Nevertheless, (Krause et al. 2006)
another factor for plant microbe interaction has been identified encoded by BH72
genome. It includes Tpe I and II protein secretion system with Type IV surface
polysaccharides on pili, and flagella so as to produce chemotaxis proteins and ferric
siderophore uptake systems. The valuable biological insight was provided by BH72
genome. In this perspective, it is clear that as much genome sequences of endophyte
will be available, much exploration of the mechanisms involved in successful
endophyte colonization.

7.5 Post Genomic View of Bacterial EndophyteS

Metagenomics analysis of endophytic bacteria associated with rice plant confirmed
few traits that also exist in endophytes. Therefore, these traits evaluated through
genomic analysis become potentially important for their interactions with plants.
These include entire set of highly specialized bacterial secretion system, except type
III due to its non-conserved nature among endophytes that are associated with rice
plants. On the other hand, production of cellulolytic and pectinolytic enzymes are of
major concerns along with the production of glagellins. Majority of other enzyme
also involved in these interactions in terms of degradation of reactive oxygen
species (ROS). Further, receptors and transporters for iron uptake also play sig-
nificant role in intracellular microbial interaction with plant through
quorum-sensing systems (QS). Several degradative pathways of plant metabolites
and various plant growth-promoting and biocontrol traits such as ACC-deaminase
activity, biological nitrogen fixation (BNF) and production of phytohormones and
volatile and non-volatile antimicrobial compounds.

Applying postgenomic approaches, such as metaproteomisa, metaproteoge-
nomics and metatranscriptomics, can link genomic potential with plant–endophyte
interactions. Recently, a metaproteogenomic approach was used to study the
microbial communities in the phyllosphere and rhizosphere of rice (Knief et al.
2011).

7.6 Plant Growth-Promoting Endophytes

Some of the endophytes act as biocontrol agents while others increase plant growth
through the production of nutrients and minerals such as nitrogen, phosphate and
other nutrients. Infact, quite a few endophytic bacterial genera such as
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Pseudomonas, Bacillus, Xanthomonas and Erwinia are growth promontory as well
as inhibit various diseases causing phytopathogen in plants. Endophytes also pro-
mote plant growth by enhance phosphate solubilisation (Verma et al. 2001;
Wakelin et al. 2004) IAA production (Lee et al. 2004) siderophore production
(Costa and Loper 1994) and facilitating vitamins to plants (Pirttila et al. 2004). The
other physiological adjustments include osmotic, stamal regulation and morpho-
logical modifications such as alteration in root morphology enhanced immobi-
lization of minerals nutrients along with nitrogen accumulation and its metabolism
(Compant et al. 2005a, b).

Free-living and endophytic bacteria use similar mechanism to enhance plant
growth and development beside, being different in their efficiency for their bene-
ficial effect. Plant Growth-Promoting Rhizobacteria (PGPR) are able to colonize in
the root vicinity thereby promoting plant growth and increase yield. Phytohormones
such as IAA contributes for root abundance and hence, provide enhanced minerals
and nutrient uptake to the plant. Production of diffusible and non-diffusable anti-
fungal metabolites assists in the biocontrol soil-borne fungi. The detailed mecha-
nism of action of endophytic bacteria is given below (Fig. 7.2).

Fig. 7.2 Mechanism of action of endophytic bacteria
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7.7 Bacterial Endophytes as Biocontrol Agents for Wilt

Endophytic bacteria isolated from live oak stem showed in vitro antagonism against
Colletotrichum fagacearum causing Oak wilt (Brooks et al.1994). The endophytic
bacterium Burkholteria cepacia, isolated from Asparagus exhibited antagonistic
activity against banana wilt (Pan et al. 1997). Tomato seedlings treated with
endophytic P. fluorescens as seedling dip increased resistance to wilt disease
(M’Piga et al. 1997). Endophytic bacteria isolated from potato tubers showed better
antagonistic activity against F. avenaciarum, F. sambucinum and F. oxysporum
causing wilt of many tuber and commercial crops (Sturz et al. 1999).

Endophytic bacteria isolated from mustard and tomato plants, completely
inhibited the mycelail growth of V. dahliae and F. oxysporum f.sp. lycopersici
in vitro and in vivo, it reduces the disease incidence and also increases the plant
growth parameters (more than 75% and increased the plant height and shoot dry
weight) (Nejed and Johnson 2000). Endophytic Pseudomonas sp. (PDBCEN 8)
exhibited maximum mycelia growth inhibition of Fusarium udum on PDA. They
also recorded that endophytic Pseudomonas sp. (PDBCEN 7) exhibited maximum
inhibition of R. solani on PDA. The same trend was followed in the endophytic
Pseudomonas sp. (PDBCEN 3) against tomato Fusarium wilt (Rangeshwaran et al.
2002). Bhowmik et al. (2002) isolated endophytic bacteria from root and stem
region of cotton seedlings and tested for its antagonistic activity against two fungal
and one bacterial disease in cotton. Among these, five pseudomonads were highly
antagonistic to R. solani, S. rolfsii and X. axonopodis pv. malvacearum (O’Sullivan
and O’Gara 1992). Nagarajkumar et al. (2004) also reported that the production of
siderophores, secondary metabolites and cell wall degrading enzymes by
Pseudomonas strains may be responsible for the effective control of plant pathogens
including F. oxysporum and R. solani. Ziedan (2006) revealed that peanut seeds
were soaked with endophytic bacterial suspensions before sowing reduced the
infection by Aspergillus niger and F. oxysporum colonization over peanut seed at
30 days after harvesting.

The PGPR strains of Pf1 and TRC 54 were effective in reducing the mycelial
growth of F. oxysporum f.sp. cubense in vitro. The mycelia growth inhibition might
be due to the production of enzymes and antibiotics by PGPR strains (Akila et al.
2011). Nandhini et al. (2012) who reported that entophytic bacteria were isolated
from root, stem, leaves and fruits and tested for its antagonistic activity against
Fusarium wilt disease in tomato. All the isolates belonging to four bacterial genera
viz., Bacillus, Pseudomonas, Klebsiella and Citrobacter. The results revealed that
only 50% of the isolates exhibited strong antagonistic activity against tomato wilt
pathogen. Sundaramoorthy et al. (2012) who reported that the consortium of rhi-
zospheric and phyllospheric bacterial strains (P. fluorescens (Pf1) and B. subtilis
(EPCO16 and EPC5) strains) reduced Fusarium wilt incidence in chilli by 17–30%
compared to control plants.
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Seventy one bacterial endophytes were isolated from root and corm tissues of
banana plants. Among these, six endophytic and four rhizospheric bacterial isolates
effectively reduced the incidence of Fusarium wilt of banana. Later, combinations
of these potential bacteria were evaluated for biocontrol abilities. These combina-
tion resulted complete suppression of Fusarium wilt thereby increased plant growth
than that of control (Thangavelu and Muthukathan 2015).

7.7.1 Rots and Damping-Off

One seventy endophytic bacterial strains isolated from cotton and tested against
Rhizoctonia solani (damping-off in cotton). Among these, 40 strains protected
cotton plants from R. solani infection (Chen et al. 1995). Benhamou et al. (1998)
revealed seed bacterization (Serratia plymuthica) with cucumber protected the
seedlings from infection by damping-off. Cucumber seeds treated with endophytic
bacterium S. plymuthica reduce the incidence of damping-off (Benhamou et al.
2000). Bhowmik et al. (2002) reported that seed treatment with endophytic bac-
terium (PR 8) reduced the incidence of damping-off disease of cotton. On the other
hand, Anith et al. (2003) isolated a strain PN-026 from underground shoot portions
of rooted cuttings of black pepper and tested against foot rot of pepper. The results
revealed that strain PN-026 showed more efficient in reducing Phytophthora cap-
sici, which causes severe infestation of foot rot disease. Kishore et al. (2005)
reported that P. aeruginosa from groundnut rhizosphere (GRE 175) was highly
inhibitory to the growth of S. rolfisii. Muthukumar (2008) tested nine endophytic
bacterial isolates obtained from chilli plants, some of them (isolated from stem and
root) exhibited higher inhibition of P. aphanidermatum (51.4, 41.7 and 40.0%)
causing chilli damping-off. The maximum inhibition on the mycelia growth of R.
bataticola was in chickpea by P. fluorescens strains PFBC-25 and 26 (Khan and
Gangopadhyay 2008). Bacterial endophytes (46 strains) obtained from amaranthus
and tested against R. solani by dual culture technique. Among these, six bacteria
exhibited highest mycelia growth inhibition of R. solani (Uppala et al. 2009).

About 67 bacterial endophytes were isolated from cassava; they were subjected
to 16S rRNA sequencing and FAME analysis. The bacterial profile revealed that
25% of all endophytic isolates belonged to the genus Bacillus. Among these, the
isolate B. pumilus MAIIIM4a showed a strong inhibitory activity against R.
solani, P. aphanidermatum and S. rolfsii (Pereira de Melo et al. 2009).

Overall 40 antagonistic bacteria obtained from rhizosphere soil (CRB-1 to
CRB-20) and roots (CREB-1 to CREB-20) of chickpea plants. Among these, the
isolate CRB-13 and CREB-13 showed maximum inhibition on the mycelial growth
of R. bataticola (Veena et al. 2014).
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7.7.2 Blights and Leaf Spot

Foliar application with Pseudomonas spp. induced disease resistance in rice against
sheath blight pathogen. In spite of the absence of this bacterium on plant surfaces,
its presence in the internal stem led to suppression of disease (Krishnamurthy and
Gnanamanickam 1997). Endobacteria bacterium B. subtilis, isolated from xylem
fluid of chestnuts, suppressed the growth of chestnut blight pathogen,
Cryphonectria parasitica in vitro. The same bacteria reduced the lesion areas on
stems, when applied 3 days prior to challenge inoculation (Wilhelm et al. 1998).

The endophytes, viz., Bacillus circulance and Serratia marcescense supple-
mented with chitin inhibited the conidial germination of early and late tikka leaf
spot in groundnut (Kishore et al. 2005). Four endophytic bacteria (OS-9, OS-10,
OS-11 and OS-12) were isolated from healthy leaves of Ocimum sanctum and
tested against five plant pathogens namely R. solani, S. rolfsii, F. solani, A. solani
and C. lindemuthianum. Of these, the bacterial strain OS-9 was highly inhibitory to
the growth of R. solani, A. solani, F. solani and C. lindemuthianum while OS-11
alone was found antagonistic tot A. solani (Kalraa et al. 2010). The culture filtrate
of endophytic bacteria CE-6 exhibited the highest inhibition on the mycelia growth
of (61.3%) of Cercospora in vitro (Hima et al. 2013).

7.7.3 Powdery Mildew

The endophytic B. subtilis strain E1R-j exhibited high antifungal activity against
wheat take all disease both in glasshouse and field conditions (Liu et al. 2009).
Recently (Gao et al. 2015), who isolated 14 endophytic bacterial strains from wheat
leaves and tested against Blumeria graminis f.sp. tritici causing wheat powdery
mildew disease. The results revealed that B. subtilis strain (E1R-j) significantly
reduced per cent disease index by 90.97% in pot culture under greenhouse
conditions.

7.7.4 Rust

The endophytic bacteria was isolated from leaves and branches of Coffea arabica
and Coffea robusta and were tested against leaf rust pathogen Hemileia vastatrix by
detached leaf and leaf disc method. Of these, the bacterial isolates TG4-Ia (Bacillus
lentimorbus Dutky) and TF9-Ia (Bacillus cereus Frank & Frank) exhibited highest
growth inhibition against coffee rust pathogen (Shiomi et al. 2006). An endophytic
bacteria E1R-j was isolated from wheat leaves showed strong inhibitory effect on
wheat stripe rust in both greenhouse and field conditions (Li et al. 2013).
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7.7.5 Downy Mildew

Sixty different endophytic bacterial isolates belonging to different genera were iso-
lated from root and stem tissues of five medicinal plants (Cymbopogon citratus,
Azadirachta indica, Phyllanthus emblica, Boerhaavia diffusa and Boerhaavia
repens) and two agricultural crops (Pisum sativum and Sorghum bicolor) and one
weed plant (Parthenium hysterophorus) and were tested against pearl millet downy
mildew disease. The peral millet seeds were treated with endophytic bacteria;
P. fluorescens ISR 34 and Bacillus sp. ISR 37 recorded greater control of downy
mildew disease, by 68 and 63%, respectively. From the above results it is concluded
that the endophytic bacterial strains not only reduces the disease incidence but also
increased the plant growth by way of induced systemic resistance (Chandrashekhara
et al. 2007). Endophytic bacterial isolates obtained from cucumber leaves and tested
against Pseudoperonospora cubensis causing downy mildew disease. The results
revealed that the strain CE8 recorded high level of inhibition against P. cubensis. In
the field test, the same strain showed high level of control efficacy (42.1%) and
disease reduction in cucumber. Further, the phylogenetic analysis based on 16S
rDNA identified the strains as Bacillus sp. (Sun et al. 2013).

7.7.6 Basal Stem Rot/Ganoderma Wilt/Thanjavur Wilt

An endophytic bacterium Pseudomonas cepacia (B3) and Pseudomonas aerugi-
nosa (P3) isolated from root tissues of oil palm exhibited strong inhibition on the
growth of G. boninense causing ganoderma wilt (Dikin et al. 2003). Histological
studies revealed that bacteria endophytes confined to the vascular bundles of the
roots taken from symptomless palms (Zaiton et al. 2006). Total of 581 endophytic
bacteria were isolated from root tissues of oil palm and tested against Ganoderma
lucidum cause of wilt pathogen. Among these, three endophytic bacteria namely
Pseudomonas aeruginosa GanoEB1, Burkholderia cepacia GanoEB2, and
Pseudomonas syringae GanoEB3 were highly effective in inhibiting the mycelia
growth of test pathogen. All the three isolates were under field condition. The
results revealed that the only isolate P. aeruginosa GanoEB1 was highly effective
in controlling disease incidence of 13.3–26.7% compared to control (60%) (Ramli
et al. 2016).

7.7.7 Post Harvest Fungal Diseases

Finite efforts were made by using endophytic bacteria for the control of storage
diseases. Endophytic bacteria were tested to control stone fruit rot pathogens
Monilinia laxa and Rhizopus stolonifer (Pratella et al. 1993). One hundred and
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twenty two bacterial strains isolated from different fruits including red pepper,
tomato, white plum, egg plant and zucchini. Of these, 20 strains were able to
control M. laxa in apricot and plum fruits. R. stolonifer was less susceptible to
antagonistic bacteria than M. laxa and only one strain effectively controlled R.
stolonifer (Pratella et al. 1993).

Endophytic bacteria (B. subtilis) isolated from stored apples have been used in
the biocontrol of post harvest diseases of apple (Sholberg et al. 1995). Further, an
inhibitory compound acidic peptide produced by B. subtilis, was responsible for the
inhibition of Botrytis cinerea but not to Penicillium expansum (Bechard et al.
1998). The acidic peptide had a wide spectrum activity against Gram-negative
bacteria. Similarly, 175 endophytic bacterial strains were isolated from vegetable
produce and were screened for control of B. cinerea on pears (Bacon et al. 2001).

Two bacterial strains, B. amyloliquefaciens and B. pumulis, were effective.
Incubating fruits treated with these bacteria at 200 °C for 24 h before cold storage
were significantly protected against B. cinerea (Mari et al. 1996). The endophytic
bacterium Bacillus thuringiensis is capable of releasing volatile substances that lead
to the inhibition of Fusarium sambucinum in potato tubers (Sadfi et al. 2001). Two
hundred and fifty eight endophytic bacteria were isolated from chilli leaves and
screened against chilli fruit rot pathogen Colletotrichum capsici by fruit bioassay
method. Of the endophytes tested, B. megaterium (ENB-86) recorded the highest
suppression of lesion development in chilli fruits (59.66%) (Ramanujam et al.
2012).

The endophytic bacterium B. lentimorbus showed highest inhibition on the
development of Botrytis cinerea causing grey mould disease fruits. This might be
due to the production of antifungal substances alpha- and beta-glucosidase (Cheng
et al. 2015), while fruits treated with formulation of Bacillus cereus CE3 showed
effective control of chestnut blight and other fruit rot caused by Endothia
parasitica (Murr) and Fusarium solani and also increased the shelf life of fruits
(Cheng et al. 2015). Some other examples of endophytic bacteria against fungal
pathogens are shown in Table 7.2.

7.7.8 Nematode Diseases

Endophytic bacteria have an additional advantage in control of phytoparasitic
nematodes since the injuries produced by nematodes favour for the entry of bacteria
and colonize the root surface and their introduction into the root tissue (Bookbinder
et al. 1982; Khan 1993). In cotton and tomato root knot nematode infection, peanut
root knot and reniform nematode infection can be effectively controlled by using B.
subtilis (Sikora 1988). Seven endophytic bacteria, Aerococcus viridans, B. mega-
terium, B. subtilis, P. chlororaphis, P. vesicularis, S. marcescens and
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Table 7.2 Biocontrol of endophytic bacteria against fungal pathogens

Endophytic
bacterial
isolates

Plant
origin

Pathogenic fungi Author

B. pumilus and
Pseudomonas
spp.

Oak Fusarium spp. Brooks et al.
(1994)

Bacillus spp. Cucumber Collectotrichum orbuculariae Raupach and
Kloepper
(1998)

Burkholderia
sp.

Sugarcane Ustilago scitaminea and Fusarium spp. Raupach and
Kloepper
(1998)

Bacillus spp. Tomato F. oxysporum f.sp. lycopersici Benhamou
et al. (2000)

P. aeruginosa
7 NSK2

Tomato Botrytis cinerea Audenaert
et al. (2002a,
b)

P. fluorescens
EP1

Sugarcane Colletotrichum falcatum Senthil et al.
(2003)

P. fluorescens
CHAO

Mousear
cress

Peronospora parasitica Lavicoli
et al. (2003)

P. fluorescens
GRP3

Rice Rhizoctonia sp. Pathak et al.
(2004)

P. putida 5-48 Oak Ceratocystis fagacearum Compant
et al. (2005c)

Burkholderia
cepacia

Fusarium Quan et al.
(2006)

Bacillus and
Pseudomonas

Wheat F. graminearum Nourozian
et al. (2006)

B. subtilis and
P. fluorescens

Peanut Aspergillus niger and Fusarium
oxysporum

Ziedan
(2006)

Burkhloderia
phytofirmans
Ps JN

Grapevine Botrytis cinerea Compant
et al. (2008)

Bacillus sp. Cacao Pyhtophthora capsici Melnick
et al. (2008)

B. pumilus
SE34

Pea F. oxysporum f.sp. pisi Chaudhary
et al. (2009)

P. fluorescens
PICF7 and
P. putida

Olive Verticillium dahliae Prieto et al.
(2009)

B. subtilis Wheat Gaemanomyces graminis tritici Liu et al.
(2009)

Bacillus spp,
Pseudomonas
spp.

Peanut Sclerotinia sclerotiorum, S. minor,
S. rolfsii and Fusarium solani

Tonelli et al.
(2010)

(continued)
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Sphingomonas paucimobilis from cotton and cucumber plants and tested against
cucumber root knot nematode. Seed bacterization with endophytic bacteria com-
pletely protected cucumber seedlings from M. incognata infection (Hallmann et al.
1995).

Culture filtrate of P. fluorescens strains CHA0 or CHA0/PME3424 were tested
against tomato root knot nematode. The results revealed that the inoculum levels of
107, 108, 109 cfu/g showed greater disease control under glasshouse conditions
(Siddiqui and Shaukat 2003). An endophytic bacterium B. subtilis strains EPb5, 22,
31 and EPC 16 were effective against root knot nematode, burrowing nematode,
root lesion nematode infection in banana (Jonathan and Umamaheswari 2006).
Seed bacterization with culture filtrates of endophytic bacteria EB19, EB18, EB16
and EB3 significantly reduced the number of adult females. In another treatment,
plants treated with culture filtrates of B. subtilis, B. cereus and Arthrobotrys
cladodes reduced the soil population of M. incognita (Vetrivelkalai et al. 2009).

Table 7.2 (continued)

Endophytic
bacterial
isolates

Plant
origin

Pathogenic fungi Author

Pseudomonas
and
Burkholderia

Banana F. oxysporum f.sp. cubense Fishal et al.
(2010)

P. fluorescens
63-28

Pea Pythium ultimum and F. oxysporum f.
sp. pisi

Ardebili
et al. (2011)

P. fluorescens
63-28

Tomato F. oxysporum f.sp. radicis-lycopersici Vanitha and
Umesha
(2011)

Brevibacillus
brevis

Tomato Botrytis cinerea Yang et al.
(2011)

B. subtilis Loblolly
pine

F. circinatum Soria et al.
(2012)

Bacillus spp.,
Pseudomonas
spp.

Soyabean R. solani, F. oxysporum and S. rolfsii, C.
truncatum, A. alternata, Macrophomina
phaseolina

Dalal and
Kulkarni
(2013)

B. subtilis and
B. megaterium

Toromiro
tree

Verticillium dahliae Lin et al.
(2013)

Bacillus sp. Plants F. oxysporum and R. solani Ohike et al.
(2013)

Pseudomonas
spp.

Cucumber F. oxysporum f.sp. cucumerinum Ozaktan
et al. (2015)

Pseudomonas
spp.

Mousear
Cress

V. dahliae Iavicoli et al.
(2003)
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7.7.9 Bacterial Diseases

B. subtilis was isolated from healthy chestnut trees showed strong antagonistic
activity against Cryphonectria parasitica cause of chestnut blight (Wilhelm et al.
1998). Five strains of Pseudomonas inhibited the growth of X. axonopodis pv.
malvacearum and also increased cotton seed germination and seedling growth
(12.8%; 22.4%) by 12.8%) (Mondal 1999). The endophytic bacterium B. amy-
loliquefaciens, B. subtilis and B. pumilus produces several antibiotics (surfactin,
iturin, bacillomucine; azalomycin F, surfactin, arthrobactin; surfactin, amphomycin,
arthrobactin and valinomycin) which are highly inhibitory to the growth of
X. campestris pv. campestris because of black rot of crucifers (Wulff et al. 2002).

The cotton seeds treated with the endophytic bacterium (Endo PR8) reducing
cotyledonary infection with black arm of cotton is caused by X. campestris pv.
malvacearum (Bhowmik et al. 2002). Before planting grapevine shoots should be
dipped with endophytic bacterium that produced highest fresh weight of the shoots
and roots, and quick growth with more lignin deposits (Barka et al. 2002).
Similarly, cotton seeds treated with bacterial endophyte (EPCO 102) showed
increased plant vigour under in vivo (Rajendran et al. 2006). Endophytic bacterium
(PfG32) was isolated from root region of onion plants and tested against bacterial
wilt in tomatoes as seedling dip resulted in reduced incidence of wilt disease
because it produces secondary metabolites (Mulya et al. 2006). Foliar spraying and
seed soaking with bacterial antagonist Delftia tsuruhatensis (strain HR4) was iso-
lated from root region of rice plants showed reduced the bacterial blight infection in
range of 7–32% (Han et al. 2005).

Under greenhouse conditions, endophytic B. subtilis strain Lu144 remarkably
protected mulberry plants against Ralstonia solanacearum causing bacterial wilt
disease (Ji et al. 2008). Bacterial endophytes such as Pantoea agglomerans,
Pseudomonas sp. and Curtobacterium luteum reduced the growth of Erwinia
carotovora (Figueiredo et al. 2009). Ninety three isolates of rhizobacteria were
tested against Xanthomonas axonopodis pv. malvacearum. Of these, B. subtilis B49
recorded highest inhibitor on the growth of pathogen in vitro and highly effective in
controlling bacterial blight of cotton under greenhouse and field conditions
(Salaheddin et al. 2010). Bacterial endophytes (B. amyloliquefaciens Bg-C31)
isolated from Bruguiera gymnorhiza showed to be effective in controlling bacterial
wilt of chilli under pot and field condition (Hu et al. 2010).

Consortium of endophytic bacterial exhibited higher disease reduction of bac-
terial blight by two seed-dipping treatments of 24 and 48 h incubation time. The
combined application of bacterial endophytes showed better disease reduction of
bacterial leaf blight in rice (Susilowati et al. 2012). Endophytic bacterium, B.
subtilis was applied as seedling dip, soil and foliar application resulted in reduced
the bacterial blight infection in rice under laboratory and field condition and it was
found to increase the plant growth and yield (Nagendran et al. 2013).
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P. fluorescens strain (PDY7) was highly effective in reducing the incidence of
bacterial blight of rice (58.83 and 51.88%) under glass house and field condition.
This is mainly due to the production of antibiotics called 2,4-diacetylphloroglucinol
(DAPG) (Velusamy et al. 2013). Twenty six bacterial strains isolated from leaf, root
and stem region of mangrove plant (Rhizopora mucronata). Among these, highest
number bacterial isolates from leaf (38.5%) followed by root (34.5%) and stem
(26.9%). Of these, five bacterial strains namely Serratia, Bacillus, Pseudomonas,
Micrococcus and Enterobacter exhibited broad-spectrum of antagonistic activity
against fungal and bacterial pathogen (Jose and Christy 2013). Among the bacterial
strains tested, strain MB04 and MB08 were highly inhibitory to the growth of X.
campestris pv. oryzae causing rice bacterial blight (Yuliar 2014).

The endophytic bacteria isolated from tomato plants tested against bacterial wilt
pathogen. Of the isolates tested, only Ps1 and Ps8 can inhibit R. solanacearum
in vitro using seed coat method. In in vivo test, 30 days old tomato seedlings were
soaked with endophytic bacteria showed 8.07–9.19% disease suppression within
15–16 days incubation period (Purnawati et al. 2014). Cotton seeds treated with
endophytic bacteria strains B. subtilis UFLA285 recorded the lowest bacteria blight
incidence of 26% (de Medeiros et al. 2015). Four endophytic bacteria isolated from
potato stem tissue and it was tested against the growth of Streptomyces scabies in
agar plate method. The results revealed that all the isolates were highly inhibitory to
the growth of test pathogen (Flatley et al. 2015).

7.8 Conclusion

Plant pathogenic fungi particularly Pythium, Phytophthora, Sclerospora,
Rhizoctonia, Peronosclerospora and Plasmopara cause enormous crop losses. At
present, fungicides are the only source to control plant diseases but they have
several disadvantages that (i) many of them are toxic to human being and animals,
and (ii) that develop further resistance to the pathogen. Several important questions
remain unanswered concerning the practical use of endophyte ‘supplements’ in
agriculture. However, with the correct management, they hold potential for the
control of current and emerging pathogens, as well as biotic stresses, as we
encounter deviation in these through climate change. This is likely to be achieved
through a better understanding of signalling between the host plant and the
microbiome, and, ultimately, the manipulation of root exudation profiles to recruit a
more beneficial root microbiome, of which the endosphere is an integral part. The
quality of these BCAs can be further increased by using fundamental knowledge to
improve methods for their production and to increase their shelf life.
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Chapter 8
Endophytic Actinobacteria for Sustainable
Agricultural Applications

M.F. Carvalho, Y. Ma, R.S. Oliveira and H. Freitas

Abstract Endophytic actinobacteria have the capacity to establish intimate asso-
ciations with plants and colonize their inner tissues without causing apparent dis-
ease symptoms. They can protect plants by producing bioactive compounds that act
as plant growth promoters or biological control agents and, in return, obtain
nutrition and protection from the host plant. The application of endophytic acti-
nobacteria in agriculture has attracted increasing attention. We address isolation and
identification methods and the occurrence and diversity of endophytic actinobac-
teria in agricultural crops. Attention is given to the roles of endophytic acti-
nobacteria in plant growth and development and health promotion for sustainable
agriculture is discussed.

Keywords Actinobacteria � Endophytes � Sustainable agriculture
Plant growth � Promoting bacteria � Isolation � Biocontrol
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8.1 Introduction

Actinobacteria constitutes a major phylum within the domain Bacteria and includes
six classes: Actinobacteria, Acidimicrobiia, Coriobacteriia, Nitriliruptoria,
Rubrobacteria, and Thermoleophilia, with the class Actinobacteria comprising 43 of
the 53 families integrating the phylum (Barka et al. 2016; Gao and Gupta 2012;
Goodfellow et al. 2012). Actinobacteria are Gram-positive mostly aerobic bacteria
exhibiting diverse morphologies that range from unicellular organisms to fila-
mentous forms. Due to their growth style often involving the formation of
branching hyphae that can generate dense mycelia and produce spores, these
microorganisms were misclassified for a long time as fungi. However, they are
indeed prokaryotes having no nuclear membrane. Actinobacteria typically have a
high G+C content in their genomes (>50%), and are commonly known for their
remarkable capacity to produce bioactive compounds. More than half of the
bioactive substances described in the literature is attributed to microorganisms
belonging to this phylum (Barka et al. 2016; Berdy 2005), including antibiotics,
anticancer agents, immunosuppressive agents, antiviral agents, antioxidants,
enzymes, plant growth hormones, etc., that are highly important for applications in
medicine, industry and agriculture (Castillo et al. 2002; Fiedler et al. 2008; Igarashi
et al. 2007; Strobel and Daisy 2003). Within Actinobacteria, the genus
Streptomyces is particularly prolific in the production of a wide range of bioactive
compounds, being responsible for the production of ca. 80% of all natural products
produced by actinobacteria, including agriculturally relevant compounds like
insecticides and herbicides, holding a biosynthetic capacity that remains without
parallel in the microbial world (Berdy 2005; Jizba et al. 1991; Tanaka and Omura
1993). These microorganisms are widely distributed, being found in both terrestrial
and aquatic ecosystems, including marine environments. They are common
inhabitants of soils where they spend a significant part of their life cycles as
semi-dormant spores, and constitute ca. 20–30% of the rhizospheric microbial
community (Bouizgarne and Ben Aouamar 2014; Coombs and Franco 2003).
Actinobacteria are mostly saprophytic microorganisms that play important eco-
logical roles in the recycling of nutrients, in the decomposition of organic matter,
especially complex polymers derived from dead plants and animals, like lignin,
starch, and chitin (Coombs and Franco 2003; Minotto et al. 2014; Sharma 2014), in
the degradation of agricultural and urban wastes as well as in the removal of several
environmental pollutants, such as petroleum, dyes, and other recalcitrant com-
pounds (Amorim et al. 2014; Bagewadi et al. 2011; Kekuda 2016; Khedkar and
Shanker 2015). Most actinobacteria are mesophilic, having optimal growth tem-
peratures between 25 and 30 °C, and grow in soils with a neutral pH.
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8.2 Actinobacterial Endophytes

Many actinobacteria have the capacity to establish intimate associations with plants
and colonize their inner tissues without causing apparent disease symptoms, being
defined as endophytic actinobacteria (Qin et al. 2009; Schulz and Boyle 2006;
Stone et al. 2000; Strobel and Daisy 2003). Different parts of the plant can be
colonized, including roots, stems, leaves, seeds, flowers, and fruits. Frankia was the
first isolated actinobacterial endophyte, and is known for inducing the formation of
nitrogen-fixing nodules in non-leguminous plants (Benson and Silvester 1993;
Callaham et al. 1978; Coombs and Franco 2003). Endophytic actinobacteria play an
important role in the protection of plants by producing bioactive compounds that
can act as plant growth promoters, biological control agents or alleviate stress
effects in plants, while in return these microorganisms can obtain nutrition and
protection from the host plant (Cao et al. 2005; Conn et al. 2008; Goudjal et al.
2013; Igarashi et al. 2002; Yandigeri et al. 2012). Many studies also indicate that
endophytic actinobacteria are capable of producing a wide range of pharmaceuti-
cally relevant bioactive compounds such as antimicrobial, antitumor,
anti-inflammatory, antiviral agents, etc., including the production of metabolites
bioactive against drug resistant pathogens (Golinska et al. 2015; Savi et al. 2015;
Singh and Dubey 2015; Zhang et al. 2012). In addition, PKS and NRPS gene
clusters, which are behind the synthesis of a wide variety of secondary metabolites,
have also been shown to be present in many endophytic actinobacteria (Luo et al.
2013).

It is thought that almost every plant on earth hosts one or more endophytic
microorganisms, where actinobacteria are included (Golinska et al. 2015; Kekuda
2016; Strobel and Daisy 2003). Endophytic microorganisms may originate both
from the rhizosphere or phyllosphere and may enter plants through naturally
occurring wounds or epidermal root hairs, or through the production of hydrolytic
enzymes, such as cellulase and pectinase (Dudeja et al. 2012; Suman et al. 2016).
Once inside the plant they can become installed at the entry location or spread
through the different parts of the plant, where they may colonize the interior of the
cells, intercellular spaces, or vascular systems (Suman et al. 2016). Due to their
several beneficial effects in plants, endophytic actinobacteria are very promising
biological resource that can be applied in environmentally friendly and sustainable
agricultural approaches to control plant diseases and promote plant health and
growth (Kunoh 2002). The capacity of endophytic actinobacteria to colonize seeds
is particularly relevant due to the possibility of transmission of the endophytic
community to the next generation (Tchinda et al. 2016).

Culture-dependent and culture-independent methods have revealed an increasing
number of plants, including crops, hosting endophytic actinobacteria. Studies
indicate that these microorganisms are among the predominant phyla inside the
plants (Manter et al. 2010; Sessitsch et al. 2012). The potential of these microor-
ganisms for agricultural applications is enormous, where they can be used as
microbial inoculants for increasing crop yields and controlling pathogenic agents
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(Conn and Franco 2004; Franco et al. 2007; Taechowisan et al. 2003). Previous
studies have demonstrated that endophytic actinobacteria were capable of
improving grain yields in the presence of common fungal root pathogens in a range
between 5 and 60% comparing with untreated controls (Franco et al. 2007).
Moreover, several actinobacterial species have been shown to be effective against
various soil-borne plant pathogens such as, Fusarium spp. (Cao et al. 2005;
Gopalakrishnan et al. 2011; Taechowisan et al. 2003), Pythium spp. (Hamdali et al.
2008; Verma et al. 2009), Alternaria spp. (Chattopadhyay and Nandi 1982;
Vernekar et al. 1999), and Rhizoctonia spp. (Sadeghi et al. 2006; Sharma 2014),
being capable of protecting different important crops. Comparing with plant growth
promoting rhizobacteria, the use of endophytic microorganisms as microbial
inoculants for biocontrol strategies offers considerable advantages, since competi-
tion effects are greatly reduced in the colonization of the internal tissues of the
plant, thus increasing the chances of survival, growth, and effectiveness of the
endophytic inoculants (Coombs et al. 2004; Rosenblueth and Martinez-Romero
2006).

8.3 Isolation of Actinobacterial Endophytes

Endophytic actinobacteria may be isolated from a wide diversity of plants. Isolation
of these microorganisms is dependent on several factors, such as host plant species
and age, sampling mode, sampling season, cultivation conditions, surface steril-
ization strategy, and selective media used (Gaiero et al. 2013; Kaewkla and Franco
2013; Zhang et al. 2006). The selected isolation procedure will determine the
spectrum of endophytes recovered and should be able to yield the largest possible
number of endophytes, while at the same time eliminating epiphytic microorgan-
isms from the surface of plant tissues (Hallmann et al. 2006; Le et al. 2015; Li et al.
2012). Collected plants, or plant parts, should be processed as soon as possible
within a period of 24 h. Samples should be stored at 4 °C between sampling and
processing.

The critical step in the isolation of endophytic actinobacteria lies in the surface
sterilization of plant tissues. This may be achieved through the use of surface
sterilizing agents, with the most common ones being sodium hypochlorite (3–10%),
ethanol (70–95%) and hydrogen peroxide. Other less conventional sterilizing
agents, such as sodium chlorate (5%), sodium thiosulfate (2.5%), and sodium
bicarbonate (10%) have also been employed for the inhibition of growth of
endophytic fungi (Dochhil et al. 2013; Qin et al. 2008). The concentration of the
sterilizing agents will depend on the permeability of the plant tissues. In some
cases, sterilization efficiency is improved through the additional use of surfactants,
such as Tween 20, Tween 80, or Triton X-100, which reduce surface tension and
enable a better action of the sterilizing agent (Hallmann et al. 2006). Sterilization
protocols typically include a tissue washing step, to remove soil particles and
loosely adhered epiphytic microorganisms, followed by disinfection (which may or
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not be preceded by a pre-treatment step with a surfactant), final rinse with sterile
water, and sterility control to evaluate the sterilization efficiency. Apart from this
standard protocol, some additional strategies are available to increase the isolation
efficiency of endophytic actinobacteria. For instance, Qin et al. (2009) suggest the
use of a thiosulfate solution after the disinfection step with sodium hypochlorite to
minimize loss of endophytes caused by the presence of traces of disinfectant in
treated plants tissues. Nimnoi et al. (2010) suggested soaking treated plant samples
in a 10% NaHCO3 solution in order to inhibit growth of endophytic fungi. Control
tests of sterilization efficiency often consist in plating a sample of water derived
from the last washing step or directly platting a surface-sterilized plant tissue.
Microorganisms can only be assumed to be endophytes if sterility control tests are
completely negative.

Ideally, the sterilization protocol should be adapted according to the plant spe-
cies, age and type of plant tissue. After the surface sterilization procedure, sterilized
plant tissues are inoculated in appropriate growth media, using one of two common
strategies: (i) tissues are aseptically cut into small fragments (Coombs and Franco
2003; de Oliveira et al. 2010; Sardi et al. 1992) or (ii) tissues are macerated with a
mortar and pestle (El-Tarabily et al. 2009; Garbeva et al. 2001; Hallmann et al.
2006; Kaur et al. 2015). In the latter case, in order to prevent inhibition of growth of
endophytic actinobacteria caused by plant enzymes or toxins released during the
maceration process, macerated samples may be diluted or buffered with appropriate
compounds such as phosphate buffer, polyvinylpyrrolidone or EDTA (Golinska
et al. 2015; Hallmann et al. 2006). More recent methods combining enzymatic
hydrolysis and differential centrifugation have been alternatively used and shown
very efficient in the isolation of endophytic microorganisms, especially rare
endophytic actinobacteria (Jiao et al. 2006; Qin et al. 2009).

The selection of growth medium is a very important step in the isolation of
actinobacterial endophytes. Nutrient poor media, such as tap water–yeast extract
agar (TWYE), humic acid–vitamin B agar (HV), and yeast extract–casein hydro-
lysate agar (YECD), have been reported to be very effective in the isolation of these
microorganisms (Coombs and Franco 2003; Qin et al. 2009). The formulation of
growth media with nutrients identical to those found in plants has also been shown
to be an effective strategy for the isolation of endophytic actinobacteria. Qin et al
(2009) isolated rare endophytic actinobacteria comprising several genera using
growth media supplemented with the aminoacids L-asparagine, proline or arginine
as nitrogen sources and carbon substrates commonly found in plants, such as cel-
lulose, fucose, or xylan. Addition of plant extracts to the growth medium is another
effective strategy (Qin et al. 2011). Growth media should be supplemented with
antibiotics such as nystatin, nalidixic acid, or cycloheximide (50 or 100 µg/ml) to
inhibit growth of fungi and Gram-negative bacteria (Golinska et al. 2015; Lee et al.
2008; Qin et al. 2011). Examples of isolation strategies used for the recovery of
endophytic actinobacteria from various plants with agricultural relevance are pre-
sented in Table 8.1.
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8.4 Identification and Diversity of Endophytic
Actinobacteria in Agricultural Plants

Plants may host a wide range of actinobacteria genera within their inner tissues.
Identification of actinobacterial endophytes is often based in a polyphasic approach
consisting of several morphological, biochemical and molecular studies.
Morphological studies often consist in colony characterization on agar plates, which
include examination of aerial and substrate mycelia colors and spore mass color,
analysis of spores and hyphae morphology (usually observed in a scanning electron
microscope), as well as inspection for the production and color of diffusible soluble
pigments. Biochemical tests may comprise analysis of melanin production, pres-
ence of various enzymes, and utilization of a range of carbon sources, cell wall
composition, whole-cell sugar distribution, cellular phospholipid composition, and
menaquinone type (Barka et al. 2016; Labeda 1987; Shirling and Gottlieb 1966).
Molecular analyses are based on the sequencing of the 16S rRNA gene and
DNA–DNA hybridization, and are strictly necessary for the identification of new
species (Barka et al. 2016).

Diversity of endophytic actinobacteria seems to be higher in woody than in
herbaceous plants, with roots having the highest number and diversity, followed by
stems and leaves (Kekuda 2016). The ecological environment of the plant also
influences actinobacterial diversity (Sheil 1999). Endophytic actinobacteria have
been isolated from various crop plants, such as maize, wheat, tomato, rice, citrus,
potato, Aloe vera, etc. (Araújo et al. 2000, 2001; Coombs and Franco 2003; de
Oliveira et al. 2010; Garbeva et al. 2001; Prakash et al. 2014; Thanaboripat et al.
2015; Tian et al. 2007), with the most frequently isolated genus being Streptomyces
(Kampapongsa and Kaewkla 2016; Sardi et al. 1992; Taechowisan et al. 2003; Tian
et al. 2004). Other common isolated genera are Micromonospora, Microbispora,
and Nocardia (Table 8.1). Recent studies on the diversity of endophytic acti-
nobacteria in various plants have also allowed the identification of more than 40
new taxa, namely of the genera Actinoallomurus, Actinophytocola, Jishengella,
Phytohabitans, Saccharopolyspora, Streptosporangium, Plantactinospora, among
others (Masand et al. 2015; Qin et al. 2011).

Studies revealed that in addition to roots, stems, and leaves, nitrogen-fixing
nodules also harbor endophytic actinobacteria, and exhibited the isolation of the
genera Streptomyces, Agromyces, Curtobacterium, Micromonospora, and
Microbacterium from the nodules of different leguminous and actinorhizal plants
(Carro et al. 2012; Deng et al. 2011; Trujillo et al. 2006, 2007). The two latter
genera were found to be particularly predominant in plant nodules, with several
new species of Micromonospora being isolated from these tissues (Carro et al.
2013; Garcia et al. 2010; Trujillo et al. 2006, 2007, 2015). The role of these
microorganisms in plant growth promotion in not completely known, but studies
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with Micromonospora species suggest that these microorganisms have important
beneficial effects in plants (Martínez-Hidalgo 2014; Trujillo et al. 2010, 2015).

Due to the fact that culture-dependent methods are very limiting and only target
less than 1% of the existing bacterial universe, culture-independent methods such as
denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment
length polymorphism (T-RFLP) and, more recently, next generation sequencing
techniques, like metagenomics analysis, have become very important tools for the
investigation of the complex microbial communities associated with plants and of
the inherent endophytic population. In particular, metagenomics analysis has
allowed a better understanding of the abundance, diversity, and distribution of
endophytic actinobacteria in a wide variety of plants, including agriculturally
important crops. Using this approach, several studies have shown that endophytic
actinobacteria are well represented in different crops such as grapevine (Vitis
vinifera), olive (Olea europaea), rice (Oryza sativa), potato (Solanum tuberosum),
and lettuce (Lactuca sativa), with the families Corynebacteriaceae,
Kineosporiaceae, Microbacteriaceae, Micrococcaceae, Micromonosporaceae,
Nocardioaceae, and Streptomycetaceae, being amongst the predominant taxa
(Cardinale et al. 2015; Manter et al. 2010; Müller et al. 2015; Okubo et al. 2014;
Pinto et al. 2014; Trujillo et al. 2015). A combination of culture-dependent and
independent methods may be used for a deeper investigation of endophytic com-
munities, with studies suggesting that these two approaches are complementary, as
the microbial communities retrieved by isolation methods are often different from
those obtained through molecular techniques (Garbeva et al. 2001; Qin et al. 2011,
2012).

Despite the accumulating studies suggesting that endophytic actinobacteria are
beneficial to their host plants and contribute to their health, a restricted number of
these microorganisms has been reported to have a pathogenic character, though
when compared with other bacteria these exert a minor role in plant diseases.
Examples of pathogens of agricultural plants include Streptomyces scabies,
S. acidiscabies, S. europaeiscabiei, and S. turgidiscabies that cause diverse potato
scab diseases (Bignell et al. 2010; Loria et al. 2006). S. scabies has a worldwide
distribution and was the first pathogenic Streptomyces described in the literature,
while the other species have a more recent occurrence (Barka et al. 2016; Kreuze
et al. 1999; Wanner 2006). Examples of other pathogenic endophytic actinobacteria
are the species Curtobacterium flaccumfaciens which cause disease on a variety of
plants such as Phaseolus and Vigna species, sugar beet, etc. (Saddler and
Messenber-Guimaraes 2012), Leifsonia xyli subsp. xyli which causes the disease
ratoon stunting in sugarcane (Monteiro-Vitorello et al. 2004) and Clavibacter
michiganensis which is pathogenic to alfalfa, maize, potato and wheat, causing
considerable economic losses worldwide (Eichenlaub and Gartemann 2011; Flügel
et al. 2012; Trujillo et al. 2015).
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8.5 Potential of Endophytic Actinobacteria for Sustainable
Agriculture

Plant growth promoting microorganisms (PGPM) have great potential to help host
plants adapt to a changing environment, since they can help plants to tolerate
stressors like extreme temperature, drought, and salinity, and thus better withstand
the challenges of climate change in agriculture (Welbaum et al. 2004).

Although plant growth promoting bacteria are one of the well-studied groups of
PGPM, only scanty information are focused on endophytic actinobacteria pos-
sessing plant growth promoting properties. Recent findings demonstrated that
endophytic actinobacteria are able to enhance establishment, growth, development,
and health of agricultural crops directly via production/secretion of various regu-
latory chemicals in the vicinity of the rhizosphere, as well as indirectly via inhi-
bition of phytopathogens by producing specific chemicals (Fig. 8.1).

Fig. 8.1 Role of endophytic actinobacteria in plant development and health
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8.5.1 Endophytic Actinobacteria as Plant Growth
Promoting Agents

Although plants are able to adjust their activities and metabolism in the presence of
stresses during their life cycle, for instance, they can synthesize various specific
defensive proteins to overcome stress (Hossain et al. 2012), the exposure of plants
to abiotic and biotic stresses still causes major losses in yield of agricultural crops.
Certain actinobacteria have been found to be able to help their host plants by either
completely or partially avoiding abiotic and biotic stresses (Gopalakrishnan et al.
2016). Especially, beneficial endophytic actinobacteria that promote plant growth
under favorable and unfavorable conditions have recently received attention
(Hasegawa et al. 2006). Like rhizosphere actinobacteria, beneficial endophytic
actinobacteria are capable of improving plant growth via one or more plant growth
promoting mechanisms, including fixation of atmospheric nitrogen, solubilization
of mineral nutrients, secretion of phytohormones, and siderophores (Dudeja et al.
2012) (Fig. 8.1).

Endophytic actinobacteria are able to express nitrogenase and occupy an
essential ecological niche in the living plant tissue by providing fixed nitrogen to
their hosts (Soe et al. 2012). It is well known that endophytic actinobacteria pos-
sessing strong nitrogen-fixing property may confer plants the capacity to tolerate
nitrogen-poor soil environment. For instance, the endophytic genera Frankia
(Callaham et al. 1978), Micromonospora (Trujillo et al. 2015) and Streptomyces
(Soe et al. 2012) were capable of enhancing plant growth under nitrogen-limited
environment by fixing nitrogen. Recently, nitrogen-fixing endophytic actinobacteria
have been reported to be able to increase the number of nodules, nitrogen fixation
rate, as well as nitrogen uptake by plants in low nitrogen ecosystems (Le et al.
2016; Rafik et al. 2014; Trujillo et al. 2015).

Phosphorus is involved in various enzymatic reactions in living organisms, such
as transport of glucose, stimulation of cell proliferation and promotion of organ
development (Ahemad 2015). Although most of soil phosphorus is immobile and
thus unavailable for plant uptake (Ezawa et al. 2002), some endophytic bacteria are
able to solubilize precipitated phosphates through acidification, chelation, redox
changes (Nautiyal et al. 2000), or to mineralize organic P through production of
phosphatase (van der Hiejden et al. 2008) under environmental stress conditions,
thus enhancing P bioavailability. Jog et al. (2014) found that two root endophytic
actinobacteria (Streptomyces spp.) isolated from Triticum aestivum significantly
improved plant growth through phosphate solubilization and secretion of phytases
as well as some other plant growth promoting traits. This is probably because the
phytase-P complex process facilitates plant uptake of P.

Iron is a vital element for life and is needed by almost all organisms; since it
plays a significant role in physiological processes (e.g., transpiration) and enzy-
matic activities (Bothwell 1995). In general, most iron in soil exists in highly
insoluble ferric (Fe3+) form and is unavailable for plants. Siderophores produced by
soil bacteria are able to solubilize iron under iron-limited conditions, therefore
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improving iron availability to plant roots. In general, plants acquire iron either from
bacterial siderophore-iron complex, or from the phytosiderophore-iron complex
(Ma et al. 2011; Rajkumar et al. 2009). It is known that bacterial siderophores
generally have higher affinity for iron than phytosiderophores and that siderophore
producing bacteria can help plants accumulate more iron than the plant alone under
iron-limited conditions (Ma et al. 2011). After the iron is complexed by side-
rophores produced by endophytic actinobacteria, plant roots are able to uptake it
directly from bacterial siderophore-iron complexes (Chen et al. 1998; Rungin et al.
2012).

Endophytic actinobacteria can provide phytohormones to hosts in order to
facilitate nutrients accumulation (Gopalakrishnan et al. 2016). Recently, Phetcharat
and Duangpaeng (2012) investigated the role of phytohormones produced by
endophytes in protecting plants against environmental stress. The authors found that
the success of endophytic colonization was associated with increases in plant
nutrient uptake and biomass yield. Indole-3-acetic acid (IAA) has been considered
as a major auxin, which plays a vital role in stimulating plant development (Gravel
et al. 2007; Shi et al. 2009), inducing plant self-defense or adaptation system
(Navarro et al. 2006), and functioning as a signaling molecule (Spaepen et al.
2007). The IAA synthesized by endophytic actinobacteria is considered to have
great potential to modulate the establishment and development of plant-endophyte
association (Goudjal et al. 2013). Endophytic actinobacteria, such as Streptomyces,
Nocardia, Nocardiopsis, Spirillospora, Microbispora, and Micromonospora were
found to be involved in the production of this phytohormone, therefore benefiting
plants in situ (Goudjal et al. 2013; Shutsrirung et al. 2013). El-Tarabily et al. (2009)
demonstrated that some endophytic actinobacterial strains greatly enhanced growth
of Cucumis sativus by synthesizing indole-3-pyruvic acid and IAA. However,
unfavorable effects of phytohormones have also been reported by Patten and Glick
(2002), who found that low concentrations of bacterial IAA induced the elongation
of plant primary root, whereas high IAA concentrations caused the formation of
plant lateral and adventitious roots with negative effects on primary root growth.
Therefore, the endophytic actinobacteria that can modify the balance of phyto-
hormones might be good candidates for hastening plant development.

Ethylene, a universal phytohormone, is involved in plant growth and physio-
logical responses to both abiotic and biotic environmental stresses (Sun et al. 2006).
The pathway of ethylene synthesis has been extensively reviewed (Glick et al.
2007). It is well known that plants exposed to environmental stresses such as
extreme temperature, drought and salinity can induce the production of ethylene,
which is able to hamper elongation of roots as well as formation of root hairs.
Under such stresses, some endophytic actinobacteria might mitigate the negative
impact of stress by hydrolyzing 1-aminocyclopropane-1-carboxylic acid (ACC) and
subsequent diminishing plant ethylene production. It has been reported that the
enzyme ACC deaminase produced by some endophytic actinobacteria may
hydrolyze ACC into a-ketobutyrate and ammonia, which then serves as a nitrogen
source for such microbes (Viterbo et al. 2010; Xing et al. 2012).
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8.5.2 Endophytic Actinobacteria as Biocontrol Tools

Endophytes are becoming very interesting biocontrol candidates, because of their
crucial role in host–plant association, such as competition with phytopathogens for
colonization sites and mineral nutrients (Ma et al. 2016). Bacterial endophytes have
great potential to inhibit the growth of phytopathogens, and to stimulate the growth
and development of host plants (Ma et al. 2011). The understanding of the endo-
phytic actinobacteria–host plant interaction might accelerate the application of these
microbes in sustainable agriculture. Currently, endophytic actinobacteria have been
isolated from various plant species, such as Brassica rapa (Lee et al. 2008),
Brassica oleracea (Kanchanadevi et al. 2013), Oryza sativa (Mingma et al. 2015),
Lycopersicon esculentum (Cao et al. 2004; Kanchanadevi et al. 2013), Jatropha
curcas (Xing et al. 2012), Glycine max (Mingma et al. 2014), Triticum aestivum
(Jog et al. 2014), and Zea mays (Costa et al. 2013); however, only few crop species
have been investigated in terms of their endophytic actinobacterial diversity and
their effect as biocontrol agents. Additionally, the mechanisms involved in endo-
phytic actinobacteria–host plant interaction are still very poorly understood given
the limited data currently available.

Endophytic actinobacteria have been attracting interest because of their capa-
bility to produce bioactive chemicals and/or allelochemicals, such as siderophores,
antibiotics, biocidal volatiles, lytic enzymes, chitinases, and detoxification enzymes
(Bérdy 2005; Clardy et al. 2006; El-Tarabily et al. 2010; Quecine et al. 2008)
(Fig. 8.1). Siderophores chelate or complex soluble iron from the soil; antibiotics
hinder pathogenic colonization; biocidal volatiles (e.g., hydrogen cyanide) inhibit
the growth of pathogenic fungi; lytic enzymes (e.g., chitinases) degrade some
organic compounds (e.g., chitin) conferring plant resistance/tolerance to pathogens;
detoxifying enzymes protect against pathogen and toxins. Moreover, endophytic
actinobacteria are capable of successfully competing with pathogens for specific
niches and mineral nutrients in plant tissues, and of inducing systemic resistance
(Doumbou et al. 2001). For instance, antibiotics produced by Streptomyces spp. are
able to hinder the growth of a wide range of pathogenic microbes (Gopalakrishnan
et al. 2016). Moreover, these compounds are considered as important agents to
control soil-borne diseases with low toxic impacts on the environment and human
health (Cao et al. 2004).

8.5.3 Endophytic Actinobacteria as Helpers of Agricultural
Crops

The mechanisms of plant growth promotion and biological control involved in host
plant–microbe association have been discussed above. In this section, we have
summarized some recent publications on the beneficial functions of endophytic
actinobacteria in enhancing sustainable agriculture via acting as helpers of
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agricultural crops (Table 8.2). Efforts have been made in searching for biostimu-
lator/biofertilizer for crop production, and natural biocontrol agents for crop pro-
tection. Endophytic actinobacteria, especially those belonging to the genus
Streptomyces have become an important microbial source for application in various
crops, such as Lycopersicon esculentum, Triticum aestivum, Medicago sativa,
Brassica rapa, Citrus reticulate, Oryza sativa, and Zea mays (Table 8.2). Several
studies indicate that endophytic actinobacterial species are able to enhance the
performance of agricultural crops by employing a range of mechanisms, such as
nitrogen fixation (Le et al. 2016), solubilization of phosphate (Jog et al. 2014),
production of phytohormones (El-Tarabily et al. 2009; Goudjal et al. 2013; Meguro
et al. 2006), siderophores (Hastuti et al. 2012; Rungin et al. 2012), hydrogen
cyanide (Passari et al. 2015), chitinase (Singh and Gaur 2016), ammonia (Passari
et al. 2015), antibiotics (Mingma et al. 2014), and other antibacterial and antifungal
metabolites (Cao et al. 2004; Costa et al. 2013; Goudjal et al. 2014). However, the
beneficial effects contributing to plant growth promotion and the level of biocontrol
achieved by various endophytic actinobacteria are mainly performed in laboratory
or identically controlled environmental conditions. In this regard, endophytic
actinobacteria possessing biofertilizer and biocontrol properties for commercial use
must be further tested for practical agricultural applications. Studies are, therefore,
needed to evaluate the functions of these endophytic actinobacteria in terms of
enhancing host plant growth, as well as inducing systemic resistance and antibiosis
activity against phytopathogens in field trials.

Table 8.2 Enhanced performance of agricultural crops by endophytic actinobacteria

Endophytic
actinobacteria

Isolated from Plant beneficial trait Effect References

Streptomyces spp. Lycopersicon
esculentum

Production of
antibacterial and
antifungal
metabolites

Growth promotion
and enhanced
disease resistance of
tomato seedlings,
but not in cucumber
seedlings

Cao et al.
(2004)

Streptomyces spp. Zea mays Growth inhibition of
phytopathogenic
fungi

Isolate 16R3B was
able to reduce up to
71% damping-off
incidence whereas
isolate 14F1D/2
reduced disease
incidence by 36%

Costa et al.
(2013)

Actinoplanes
campanulatus,
Micromonospora
chalcea,
Streptomyces
spiralis

N.i. Production of IAA
and indole-3-pyruvic
acid

Promoted plant
growth and
suppressed
pathogenic activities
of Pythium
aphanidermatum on
seedling and mature
cucumber

El-Tarabily
et al. (2009)

(continued)
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Table 8.2 (continued)

Endophytic
actinobacteria

Isolated from Plant beneficial trait Effect References

Actinoplanes
campanulatus,
Micromonospora
chalcea,
Streptomyces
spiralis

N.i. Biological control
and plant growth
promotion

Colonized the
internal tissues of
roots, stems and
leaves under field
conditions;
promoted plant
growth and yield and
reduced seedling
damping-off and
root and crown rots
of mature cucumber
plants

El-Tarabily
et al. (2010)

Streptomyces
sp. and non-
Streptomyces

Spontaneous
plants of
Algerian
Sahara

Production of IAA Promoted seed
germination and root
elongation

Goudjal
et al. (2013)

Streptomyces
sp. and non-
Streptomyces

Native plants
of the Algerian
Sahara

Antifungal activity Increased seedling
fresh weight, the
length of shoot and
root; Reduced the
severity of
damping-off of
tomato seedlings

Goudjal
et al. (2014)

Streptomyces spp. N.i. Production of
chitinase,
phosphatase and
siderophore

Increased plant
height and produced
higher tiller number;
Inhibited the growth
of Xanthomonas
oryzae pv. oryzae

Hastuti
et al. (2012)

Streptomyces spp. Triticum
aestivum

Solubilization of
phosphate,
production of
phytase, chitinase,
IAA, siderophore
and malate

Improved plant
growth, biomass and
mineral (Fe, Mn, P)
content under
non-axenic
conditions

Jog et al.
(2014)

Streptomyces spp. Medicago
sativa

Growth promotion
and N2-fixation

Improved shoot
weight and the
number of nodules

Le et al.
(2016)

Microbispora sp.,
Streptomyces sp.,
Micromonospora
sp.

Brassica rapa Biological control Suppressed the
occurrence of a
post-inoculated
strain of
Plasmodiophora
brassicae

Lee et al.
(2008)

(continued)
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Table 8.2 (continued)

Endophytic
actinobacteria

Isolated from Plant beneficial trait Effect References

Streptomyces
sp. MBR-52

Rhododendron
ferrugineum

Production of
rooting-promoting
plant hormones

Accelerated
emergence and
elongation of plant
adventitious roots

Meguro
et al. (2006)

Streptomyces
sp. and non-
Streptomyces

Leguminosae Contained LL-isomer
of diaminopimelic
acid; antagonistic
activity

Protected against
soybean pathogen
Xanthomonas
campestris pv.
glycine

Mingma
et al. (2014)

Streptomyces
sp. and Leifsonia
xyli

Medicinal
plants

Solubilization of
phosphate,
production of
siderophores, HCN,
ammonia, chitinase,
IAA, antifungal
activities

Improved a range of
growth parameters
in Capsicum
annuum L.

Passari et al.
(2015)

Streptomyces sp.,
Nocardia sp.,
Nocardiopsis sp.,
Spirillospora sp.,
Microbispora
sp. and
Micromonospora
sp.

Citrus
reticulata

Production of IAA Promoted shoot
height, fresh shoot
weight and fresh
root weight of
seedlings

Shutsrirung
et al. (2013)

Streptomyces
diastaticus,
Streptomyces
fradiae,
Streptomyces
olivochromogenes,
Streptomyces
collinus,
Streptomyces
ossamyceticus and
Streptomyces
griseus

Medicinal
plants

Production of
chitinase; Plant
growth promoting
abilities and
antagonistic potential

Protect chickpea
against Sclerotium
rolfsii infestation;
increased the
biomass and reduced
plant mortality of
chickpea

Singh and
Gaur (2016)

Streptomyces sp. N.i. N.i. Single inoculation of
Streptomyces sp. P4
did not influence
nodulation, N2

fixation, shoot dry
weight and seed
weight at harvest of
all soybeans

Soe et al.
(2012)

Streptomyces
sp. GMKU 3100

Oryza sativa L.
cv. KDML105

Production of
siderophores

Increased root and
shoot biomass and
lengths of rice and
mungbean plants

Rungin
et al. (2012)

HCN Hydrogen cyanide; IAA Indole-3-acetic acid; N.i. Not indicated
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8.6 Conclusion

Endophytic actinobacteria have been isolated from several plant species and
inoculated onto different target agricultural crops often resulting in enhanced plant
performance. Improvements in isolation and identification methods are yielding
new isolates with plant growth promoting traits and showing that endophytic
actinobacteria are amongst the predominant bacterial phyla inside plants, including
agriculturally important crops. The use of endophytic actinobacteria as microbial
inoculants in agriculture offers considerable advantages when compared with that of
rhizobacteria, since competition effects are greatly reduced in the colonization of
the internal tissues of the plant, thus increasing the chances of survival, growth, and
effectiveness of the endophytic inoculants. Endophytic actinobacteria are able to
enhance the establishment, growth, development, and health of agricultural crops
directly via production/secretion of various regulatory chemicals and indirectly via
inhibition of phytopathogens. Thus, endophytic actinobacteria hold the prospect of
reducing the input of chemical fertilizers and pesticides and their inoculation can be
regarded as an environmentally friendly approach in agriculture. There is, therefore,
great potential in using endophytic actinobacteria as biotechnological tools for
sustainable agricultural applications.
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Chapter 9
Endophytic Fungi: A Remarkable Source
of Biologically Active Secondary
Metabolites

Pamoda B. Ratnaweera and E. Dilip de Silva

Abstract Endophytic fungi are ubiquitous in internal tissues of healthy plants and
are known to biosynthesis a remarkable array of secondary metabolites with diverse
chemical structures and assist host plants to overcome both abiotic and biotic stress
factors in their natural environment. Screening technologies have established these
natural products are an outstanding source of biologically active metabolites with
promising medicinal and agricultural applications. Selection of plants from distinct
environmental settings and/or with unconventional biology is expected to enhance
the chances of isolating novel fungal endophytes as well as new bioactive sec-
ondary metabolites. Using selected examples from different ecological niches, this
review illustrates the chemical potential of endophytic fungi for producing phar-
maceutically and agriculturally valuable products. The biosynthesis of the same
specific biologically active metabolites by the endopyte as well as the host plant and
the factors that influence the production of secondary metabolites by the endophyte
are also discussed. Finally, the current challenges in the production and commer-
cialization of bioactive compounds of endophytic fungal origin are debated.

Keywords Bioactive � Rainforest � Mangrove � Ecological � Marine � Sedges

9.1 Endophytic Fungi

The evidence from fossil records indicates that endophyte-plant association may
have evolved from the period higher plants first colonized land, thus played a long
and important role in driving the evolution of life on land (Zhang et al. 2006). Fungi
are a distinct group of heterotrophic eukaryotic organisms, wide spread in nature.
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A vast majority of fungi are composed of microscopic multicellular hyphae (with a
few unicellular species) and show cryptic lifestyles in soil and dead matter and
become noticeable only when developed fruiting bodies spores in as mushrooms or
molds. Fungi are the principal decomposers of organic matter and perform
important role in nutrient cycling in ecosystems (Cooke 2009). They establish
parasitic relationships with both plants and animals and are known to cause
widespread damage, to certain agricultural crops (Fisher et al. 2012). Endophytic
fungi on the other hand, are symbionts that spend all or part of their life cycle inter
and/or intracellularly colonizing the healthy tissues of a plant without causing any
visible manifestation of symptoms (Tan and Zou 2001). The word “endophyte”
originates from Greek, “endo” denoting within, and ‘phyte’ meaning plant and was
first proposed in 1866 (Jalgaonwala et al. 2011; de Bary 1866). In addition to fungi,
bacteria including actinobacteria are reported as the major endophytes of plants
(Bandara et al. 2006).

9.2 Distribution of Endophytic Fungi

The existence of fungi inside the organs of the asymptomatic plants has been known
since nineteenth century (Guerin 1898). The first description of endophytic fungi
was made as far as back in the year 1904, from the seeds of Lolium temulentum
(Freeman 1904). Since then fungi have been found from almost every plant species
examined to date (Guo et al. 2008). Endophytic fungi have a long life history and
their diversity among plants has been found to be one of the largest (Jalgaonwala
et al. 2011).

It is noteworthy that each of the nearly 300,000 existing plant species on Earth is
assumed to host at least one or even several hundred strains of endophytes (Strobel
and Daisy 2003). Fungal endophytes are found in a range of host plants growing in
tropical, temperate, boreal forests to extreme arctic, alphine, and xeric environments
(Zhang et al. 2006). There are as many as 1.5 million different fungal species on our
planet and about 1 million of them are endophytic fungal species (Strobel and Daisy
2003; Radic and Strukelj 2012; Hawksworth 2001). Among them, only about 0.1
million fungal species including endophytic fungi have been described in the past
century (Radic and Strukelj 2012; Ganley et al. 2004). Accordingly, fungal endo-
phytes are a group of mainly undescribed organisms that potentially is a rich and
reliable source of genetic diversity.

Endophytic fungi are known to thrive asymptomatically in the tissues of plants
above ground as well as below ground, including flowers, seeds and ovules, fruits,
stems, leaves, xylem, rachis, bark, tubers, and/or roots (Zhang et al. 2006; Kusari
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et al. 2012). Recent studies have shown that endophytes are not host-specific
(Cohen 2006). A single species of endophytes can invade a wide range of hosts
while several studies have suggested that same fungus isolated from different parts
of the same host shows diverse abilities to utilize different substances (Carroll and
Petrini 1983), thus host endophyte relationship may vary from host to host and
endophyte in general.

9.3 The Plant-Endophyte Interaction

The relationship between the endophyte and its host may range from mutualistic
symbiosis to phytopathogenesis. Sometimes the endophyte remains latent, with
symptomless nature, inside the host plant until the environmental conditions are
favorable for the fungus or the ontogenetic state of the host changes to the
advantage of the fungus (Rodriguez and Redman 2008; Sieber 2007). Therefore,
with time, endophytic fungi can also be aggressive saprophytes or opportunistic
pathogens as well (Strobel and Daisy 2003; Tan and Zou 2001; Rodriguez and
Redman 2008).

The mutualistic relationship between the fungal endophytes and the host plants
are somewhat complex, but results in fitness benefits for both partners. The plants
provide endophytes with nutrients, protection from desiccation, spatial structure,
and transmission via seed dissemination to the next generation of host (Guo et al.
2008). The plant may also provide important chemical compounds that are essential
for the endophytes’ growth and self-defense (Metz et al. 2000; Strobel 2002). On
the other hand, endophytes contribute significant benefits to their host plants by
producing a plethora of bioactive substances required to adapt to abiotic and biotic
stress factors (Guo et al. 2008). Resistance to abiotic stress is enhanced by
increasing tolerance to drought or water stress, high temperature, low pH, high
salinity and presence of heavy metals (Jalgaonwala et al. 2011). In a study done in
Lassen Volcanic and Yellowstone national park, it has been shown that an endo-
phytic Curvularia species isolated from a grass species collected from geothermal
soils gives thermotolerance to the host, probably as a result of production of cell
wall melanin that may disperse heat along fungal hyphae (Gunatilaka 2006).
A study conducted with an endophytic Penicillium minioluteum species and soy-
bean has shown that endophytic association has significantly ameliorated the
negative effects of salinity stress damage and increased the growth and metabolism
of the soybean (Khan et al. 2011).

Plants encounter biotic stress due to bacterial and fungal pathogens, and attack of
insects, nematodes, and mammalian herbivore (Rodriguez et al. 2009). The
bioactive secondary metabolites produced by the endophytes living in these plants
are known to induce resistance to biotic stress factors (Gunatilaka 2006). Previous
researches have reported that in many cases tolerance to biotic stress has been
correlated with fungal natural products (Tan and Zou 2001; Zhang et al. 2006; Aly
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et al. 2011). There are a number of reports describing various bioactive metabolites
produced by fungal endophytes which help the plant to increase the resistance
against biotic stress (Guo et al. 2008; Suryanarayanan et al. 2009). For example,
production of two macrocyclic alkaloids, pyrrocidines A and B with antibiotic
activity, by the endophytic fungus Acremonium zeae has been implicated in the
protection of its host, maize, against pathogenic and mycotoxin producing fungi
(He et al. 2002). In grasses and herbaceous plants, the endophytes are known to
produce toxic alkaloids that prevent or poison invertebrate and vertebrate herbi-
vores (Rodriguez et al. 2009). Accordingly in symbiotically conferred stress tol-
erance, endophytes act as a biological trigger to activate host defense system more
rapidly and strongly (Rodriguez and Redman 2008). At the same time some
endophytes are capable of enhancing the hosts’ allelopathic effects on other species
growing close by, being an opponent for the space and nutrients (Newcombe et al.
2009). Apart from the above benefits, many endophytes are reported to enhance
uptake of phosphorus, and other important elements for plant growth, capable of
fixing nitrogen and producing plant hormones such as auxin, indole acetic acid,
which are essential for regulation of plant growth and development (Guo et al.
2008).

9.4 Biological Rationale in Plant Selection

Due to the vast number of plant species in the world, creative and imaginative
strategies are necessary to quickly narrow down the search for bioactive endo-
phytes. This provides the best opportunities to isolate endophytes prone to produce
novel bioactive products. Plants from distinct environmental settings and/or with an
unconventional biology are considered to be a promising source for isolating novel
endophytes bearing new secondary metabolites (Strobel 2003). Strobel and Daisy
(2003) reported several reasonable hypotheses governing the plant selection for
isolating bioactive endophytes. Selection of plants from a unique environment,
having unusual biology, using novel approaches for survival is one such strategy.
Mangrove environments are an example for hosting such plants. A second tactic is
the selection of plants that have a historic background, which have been exploited
as a source of traditional medicine. Third, plants that are endemic, having an
unusual longevity or that occupy a certain ancient land mass, have the prospect of
lodging such endophytes. Finally, plants growing in areas of high biodiversity, such
as rainforest ecosystems, are potential sources housing novel and bioactive endo-
phytic fungi (Strobel and Daisy 2003).
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9.5 Bioactive Metabolites from Endophytic Fungal Origin
from Different Ecological Niches

Although the discovery of endophytic fungi dates as far back as the early 1900s,
they did not receive much attention until the recent realization of their pharma-
ceutical and ecological significance (Gunatilaka 2006). Recent developments of
screening technologies have revealed that endophytic fungi are an outstanding
source of biologically active compounds with promising medicinal and agricultural
applications (Aly et al. 2011).

Tropical rainforest ecosystems are the richest ecosystems in the world containing
more than half of the Earth’s biota (Wilson 1988). The extreme biological diversity
of tropical rainforests ultimately implies the chemical diversity resulting from the
constant chemical innovations that exist in such ecosystems (Strobel and Daisy
2003). In tropical rainforests, the resources are limited due to the high species
diversity, therefore competition among species is high, and the selection pressure is
at its peak (Strobel and Daisy 2003). These factors eventually make rainforests a
potentially productive source for the discovery of novel molecular structures and
biologically active metabolites (Redell et al. 2000; Strobel and Daisy 2003).

Specific endophytes may have evolved within endemic plant species in areas of
high plant endemicity with moist, warm, and geographically isolated climates
(Strobel 2003; Strobel and Daisy 2003). This has been reported in rainforests of
Venezuela, Central America, monsoonal areas of Australia, golden triangle of
Thailand, Papua New Guinea, Madagascar, and upper Amazon regions
(Mittermeier et al. 1999). Novel endophytic fungal taxa and series of new bioactive
compounds have been discovered from each of the above areas (Mittermeier et al.
1999).

On the other hand, Strobel (2003) has stated plants growing in extremely moist
conditions or plants growing in rainforests which have a more or less constant 90–
100% relative humidity are prone to attack by certain extremely pathogenic fungi,
thus specialized defensive mechanisms in such plants are necessary for their sur-
vival. Accordingly, such disease defences may have offered by endophytes asso-
ciated with the plant (Strobel 2003). A comparative study using statistical data,
revealed that tropical plant endophytes provide more active natural products and a
larger number of secondary metabolites in comparison to that of temperate plant
endophytes (Bill et al. 2002).

The metabolite demethylasterriquinone B-1, L-783,281 (1), isolated from an
endophytic Pseudomassari sp. collected from an African rainforest tree has acted as
an antidiabetic agent (Strobel et al. 2004; Zhang et al. 1999). Unlike insulin, this
non-peptide secondary metabolite (L-783,281) does not get ineffective in the
digestive tract and thus can be a lead for an orally ingested drug for diabetes.
Similarly, Ambuic acid (2) is an antifungal agent isolated from a common rainforest
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endophyte Pestalotiopsis microspora (Li et al. 2001). Pestaloside (3), an aromatic
b-glucoside, and two pyrones namely pestalopyrone and hydroxypestalopyrone are
other secondary metabolites isolated from P. microspora with antifungal and
phytotoxic activities (Lee et al. 1995). Antibacterial helvolic acid (4) is a nor-
triterpenoid isolated from Xylaria sp. from an endemic endangered rainforest orchid
Anoectochilus setaceus in Sri Lanka (Ratnaweera et al. 2014). Helvolic acid has
reported for antibacterial activity against Methicillin-resistant Staphylococcus
aureus (MRSA, MIC 4 µg mL−1) and Bacillus subtilis (MIC: 2 µg mL−1).
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Several important bioactive natural products found in other terrestrial plants are
as follows. Cryptocandin (5), a peptide antifungal agent was isolated and charac-
terized from the endophytic fungus Cryptosporiopsis quercina inhabiting in the
medicinal plant Tripterygium wilfordii (Strobel et al. 1999). This compound has
shown excellent antifungal activity against several human fungal pathogens,
Candida albicans, Trichophyton spp. and number of plant pathogenic fungi,
including Sclerotinia sclerotiorum and Botrytis cinerea. Currently several compa-
nies have tested and developed Cryptocandin to use against a number of fungi
causing skin and nail diseases (Strobel 2003).
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Enfumafungin (6), is a hemiacetal triterpene glycoside, isolated from
Hormonema sp. comprising in mesophyll tissue of leaves of Juniperus communis L
(Aly et al. 2011). Enfumafungin is a specific inhibitor of fungal cell wall glucan
synthesis. The compound has shown in vitro antifungal activity with 0.07 µM,
EC50 value against C. albicans (Aly et al. 2011). Extensive structural modifications
of the Enfumafungin resulted in the development of an orally available
semi-synthetic inhibitor derived from this fungal secondary metabolite. This inhi-
bitor, with EC50, 0.6 ng mL−1 against C. albicans and 1.7 ng mL−1 against
Aspergillus fumigatus, has entered phase I clinical trials as the first oral glucan
synthase inhibitor for fungal infections therapy (Motyl et al. 2010).
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Highly antibacterial naphthaquinone, javanicin (7), has been isolated from the
endophytic fungus Choridium spp. from root tissues of Azadirachta indica. The
sensitivity to javanicin with MIC value of 2 µg mL−1 showed antibacterial activity
against Pseudomonas aeruginose and P. fluorescens (Kharwar et al. 2009). Phomol
(8) is a novel polyketide lactone with antibacterial, antifungal, and
anti-inflammatory activities, isolated from an endophytic Phomopsis sp. in
Argentinian medicinal plant, Erythrina crista-galli (Weber et al. 2004). The diter-
penoids guanacastepenes A-O, have been encountered in an unidentified endo-
phytic fungal strain CR115, occurring in Daphnopsis americana. Guanacastepenes
A (9) and I (10) exhibited antibacterial activity against drug resistant strains of
Staphylococcus aureus and Enterococcus faecalis (Brandy et al. 2001). Recent
discovery of two new metabolites, antibacterial active eupenicinicols A and B (11,
12), from an endophytic fungus, Eupenicillium sp. harbored in the roots of a
Chinese medicinal plant, Xanthium sibiricum showed the unfailing potential of
endophytes as probable antimicrobial agents (Li et al. 2014).
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Besides the above-mentioned endophytic fungal antibiotic metabolites, there is a
plethora of endophytes, with no certain compound isolated, but have been reported
to show strong antibiotic activity for tested microorganisms. Methanol extract of a
new endophytic fungus Colletotrichum gloeosporioides from the medicinal plant
Vitex negundo with antimicrobial activity against methicillin-penicillin-and/or
vancomycin-resistant clinical strains of S. aureus, is an example for the former
statement (Arivudainambi et al. 2011).

Cytonic acid A and B (13, 14) are two novel human cytomegalovirus protease
inhibitors isolated from endophytic fungus Cytonaema sp. (Guo et al. 2000). The
absence of appropriate antiviral screening systems in most programs is the main
limitation in this type of compound discovery. Cytochalasins are alkaloids, com-
mon in endophytic Xylaria, Phoma, and Hypoxylon spp. exhibiting antitumor
activities (Wagenaar et al. 2000). Torreyanic acid (15), is a selectively cytotoxic
unusual dimeric quinone isolated from Pestalotiopsis microspora endophytic to the
endangered tree Torrya taxifolia (Lee et al. 1996). Torreyanic acid, in general has
demonstrated 5–10 times more potency to several cancer cell lines that are sensitive
to protein kinase C agonists and caused cell death by apoptosis (Lee et al. 1996).
A recent study has reported a new epitetrathiodioxopiperizine, secoemestrin D (16)
from an endophytic fungal strain Emericella sp., occurred in mesophyll of
Astrgalus lentiginosus. Secoemestrin D exhibited significant cytotoxic activity with
IC50 values ranging from 0.06 to 0.24 µM and moderate selectivity to human
glioma and metastatic breast adenocarcinoma cell lines (Xu et al. 2013).
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Apart from the antibiotic activities, endophytic fungi have been a potential
source of various other interesting behaviors. Nodulisporic acid A (17) is an
insecticidal fungal metabolite isolated from endophytic Nodulisporium sp. from the
Hawaiian plant Bontia daphnoides. This compound has shown systemic efficacy
against fleas by modulating an invertebrate-specific glutamate-gated ion channel
and has resulted in identifying a potent and effective oral agent for control of fleas
and ticks in mammals (Ondeyka et al. 1997; Aly et al. 2011). Subglutinols A and B
(18, 19) are immunosuppressive compounds produced by endophytic fungus
Fusarium subglutinans, from Tripterygium wilfordii. Both compounds showed IC50

value of 0.1 µM in the mixed lymphocyte reaction assay (Lee et al. 1995). Pestacin
(20) and isopestacin (21) are two antioxidants secreted by an endophytic
P. microspora isolated from Timonius morobensis growing on the north coast of
Papua New Guinea (Strobel et al. 2002; Harper et al. 2003). A new alkaloid named
16a-hydroxy-5 N-acetylardeemin (22), demonstrating acetylcholineesterase inhi-
bitory activity (EC50: 58.3 µM), has been isolated from a fermented broth of
endophytic A. terreus from stems of Artemisia annua collected from the Zijin
Mountain in China (Ge et al. 2010).
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Shipunov et al. (2008) have mentioned that in the host’s invaded range, endo-
phytes increase the competitiveness of the host by producing metabolites inhibitory
to evolutionarily native plants. An endophytic fungus Fusarium sp. of the invasive
cactus Opuntia dillenii contained antimicrobial secondary metabolite equisetin (23)
(Ratnaweera et al. 2015a). The production of such biologically active substances
may enhance the competitive ability of the host against microorganisms and per-
haps increase its adaptability to withstand the biotic and harsh abiotic stress factors
that assist in the successful establishment of O. dillenii to the detriment of native
plants in the area.

Various workers have reported grasses and sedges are reservoirs for a number of
endophytic fungi and result in enhancement of the ecological fitness and tolerance
to biotic and abiotic environmental stresses (Gunatilaka 2006; Mukhtar et al. 2010).
In grasses and herbaceous plants, the endophytes are known to produce toxic
alkaloids that prevent or poison invertebrate and vertebrate herbivores (Rodriguez
et al. 2009). A Korean study has shown endophytic fungal isolates of the roots of
Monochoria vaginalis, a weed of rice paddy significantly promote the growth of the
plant mainly due to higher secretions of Gibberellins (Ahmad et al. 2010). Among
the bioactive secondary metabolites, solanioic acid (24) isolated from Rhizoctonia
solani from Cyperus rotundus showed antibacterial activity (Ratnaweera et al.
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2015b). Solanioic acid has a highly functionalized and rearranged steroidal carbon
skeleton and is a potent antibiotic, active at 1 µg/mL against MRSA. The endo-
phytic Aspergillus strain CY725 and Rhizoctonia sp. strain Cy064 isolated from the
leaves of Cynodon dactylon, have afforded antimicrobial helvolic acid, rhizoctonic
acid, monomethylsulochrin and ergosterol (Li et al. 2005; Ma et al. 2004).
Paspalum conjugatum harbored an endophytic Microthyriaceae sp. which con-
tained a known mycotoxin sterigmatocystin which exhibited antiparasitic activity
against Trypanosoma cruzi, with an IC50 value of 0.13 µmol L−1 and a novel
polyketide integrasone B (Almeida et al. 2014).

Mangrove forests are considered as biodiversity ‘hotspots’ for marine-derived
fungi (Shearer et al. 2007). This is mainly because, the permanently and inter-
mittently submerged mangrove trunks and aerating roots are host to terrestrial,
marine and an overlap of terrestrial and marine fungi (Sarma and Hyde 2001;
Shearer et al. 2007). According to Schmit and Shearer (2003), 106 fungi have been
reported from mangrove habitats in the Atlantic Ocean, while 173 and 128 are
documented from Pacific and Indian Ocean mangroves, respectively. Among the
mangrove-derived fungal community, the fungal endophytes play an important role
protecting their host against various aggressions (Cheng et al. 2009). According to
reports more than 200 species of endophytic fungi have been isolated and identified
from mangrove plants and dominant among them are species of Alternaria,
Aspergillus, Cladosporium, Colletotrichum, Fusarium, Paecilamyces, Penicillium,
Pestalotiopsis, Phoma, Phomopsis, Phyllosticta, and Trichoderma (Liu et al. 2007).
Mangrove-derived endophytic fungi are believed to contribute to their hosts’ ability
to adapt to endure the extreme habitat conditions (Debbab et al. 2013). In addition,
these mangrove endophytic fungi are proven to be a promising source of struc-
turally unique natural products, and drug leads with remarkable bioactivities (Tan
et al. 2008). Cytosporone B (25) is such a novel natural product, isolated from an
endophytic Dothiorella sp. from mangrove plant Avicennia marina at an estuary in
China, with broad antifungal activities against A. niger, Trichoderma sp. and
Fusarium sp. and high activity against human epidermal carcinoma and several
other cell lines (Xu et al. 2005). Recent report of two new antibacterial a-pyrone
derivatives, infectopyrones A (26) and B (27) from the mangrove endophytic
fungus, Stemphylium sp. isolated from a Brguiera sp. also demonstrates the
potential of mangrove endophytes to produce bioactive chemical scaffolds (Zhou
et al. 2014). Two new compounds pinazaphilones B and (±)-penifupyrone with
significant a-glucosidase inhibitory activity have been discovered from a mangrove
endophytic Penicillium sp. isolated from the fresh branches of the mangrove plant
Cerbera manghas (Liu et al. 2015).
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Mangrove associates are species mainly distributed in terrestrial or aquatic
habitat but also occur in the mangrove ecosystem (Parani et al. 1998). According to
Tomlinson criteria, mangrove associates are also distinguished from true mangroves
by lacking aerial roots, vivipary, and no physiological mechanism for salt exclusion
(Wang et al. 2011). However, mangrove associates growing in the mangrove
habitat also have to face the same extreme ecological conditions as the true man-
groves. Therefore, these mangrove associates also have the potential of producing
bioactive natural products as the true mangroves. This is evident by the recent
report of Ratnaweera et al. (2016), who described the isolation of antimicrobial
gliotoxin (28) and Bisdethiobis (methylthio) gliotoxin (29) from an extract of the
endophytic fungus Hypocrea virens from the plant Premna serratifolia from a
mangrove habitat.

Inland fresh water bodies also are productive ecosystems in the world which
house diverse microorganisms. Aquatic plants highly adapted to its environmental
and ecological conditions also harbor endophytic fungi having bioactive metabo-
lites. A recent investigation of endophytic fungi of Nymphaea nouchali led to the
isolation of the known secondary metabolites chaetoglobosin A and C (30, 31) from
Chaetomium globosum, with chaetoglobisn A showing good antibacterial activities
(Dissanayaka et al. 2016).
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Among the vast diversity of marine-derived fungi are endophytic fungi from
macro-algae, sea grasses and other marine plants. Most of these fungi belong to
class Ascomycota and their distribution is governed by plant metabolites, temper-
ature, salinity and pH (Ji and Wang 2016). These fungi are proven to be prolific
producers of huge array of bioactive natural products. Up to date more than 300
natural products have been identified from endophytic fungi of marine macro-algae.
From the published natural products 43% were reported novel compounds with
various biological activities such as antioxidant, anticancer, antiplaspodial, and
antimicrobial (Flewelling et al. 2015). Among the novel antimicrobial metabolites
are Asperamide A, B (32, 33), Asporyzin A-C (34–36) and Asperversin A (37),
from endophytic Aspergillus spp., isolated from Colpomenia sinuosa,
Heterosiphonia japonica, and Sargassum thunbergii, respectively (Zhang et al.
2007; Qiao et al. 2010; Miao et al. 2012). Myrocin A (38) and asperwentin A-C
(39–41) are some of the anticancer compounds isolated from Apiospora montagnei
from Polsiphonia violacea and Aspergillus wentii from Sargassum fusiforme
(Klemke et al. 2004; Miao et al. 2014). Three 2-pyridone alkaloids, the known
N-hydroxy-2-pyridone PF1140 (42), and two new 2-pyridones 43 and 44 have been
isolated from a Penicillium species associated with the New Zealand marine brown
algae Xiphophora gladiata (de Silva et al. 2009). PF1140 was active against B.
subtilis and C. albicans and to that of murine leukemia P388 cells. Both 43 and 44
were inactive pointing to the importance of the presence of the N–OH functionality
meant for bioactivity.
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9.6 Production of Similar Metabolites by Endophytic
Fungi and Host Plants

The long co-evolution of endophytes with their host plants has resulted a genetic
recombination. It has opened the path for some endophytes to produce the same
bioactive compounds originally characteristic of the host plant (Tan and Zou 2001).
Taxol (45), Berberine (46), Sanguinarine (47) Camptothecin (CPT) (48) producing
endophytic fungi are examples for this phenomenon. Taxol (paclitaxel) (45), the
first billion dollar anticancer drug was discovered initially from Taxus brevifolia
and later from 11 other Taxus species in the world (Stierie et al. 1993). Therefore, as
an alternative source, taxol producing endophytic fungi have been investigated from
these yew plants, and Taxomyces andreanae, was the initially discovered taxol
producing endophytic fungus from host plant Taxus brevifolia (Strobel 2003).

Berberine (46), with diverse pharmacological properties is an isoquinoline
alkaloid isolated from several medicinal plants including Berberis aristata,
Hydrastis canadensis, Coptis chinensis, Coptis rhizome, Coptis japonica,
Phellondendron amurense, and Coscinium fenestratum (Timothy et al. 1997;
Tillhon et al. 2012). This natural product is currently undergoing 10 clinical trials
(Tillhon et al. 2012). Berberine has also been reported from the endophytic fungus,
Fusarium solani, from the roots of Coscinium fenestratum a critically endangered
plant species (Diana and Agastian 2013). Since C. fenestratum also been reported to
produce berberine, it supports the theory that, with the long co-evolution with the
host, an endophyte can adapt to the special microenvironments through genetic
modification which includes uptake of some plant DNA into their own genomes
(Germaine et al. 2004; Diana and Agastian 2013).

Sanguinarine (47) is an antimicrobial benzylisoquinoline alkaloid reported from
several plants belonging to the family Papaveraceae including Macleaya cordata
(Nicoletti and Fiorentino 2015). This compound has also been isolated from the
endophytic fungal strain of Fusarium proliferatum inhabiting the leaves of
Macleaya cordata (Wang et al. 2014). CPT (48) is another anticancer agent first
isolated from the extracts of Camptotheca acuminata, and later from several other
plants (Wall et al. 1966; Asano et al. 2004). The production of CPT in Ophiorrhiza
mungos was first reported by Tafur et al. (1976). Later, Salim et al. (2011) isolated
the CPT producing endophytic fungus Glomerella cingulata from O. mungos
providing an alternative strategy to reduce the need to harvest slow-growing and
possibly rare plants consequently helping to preserve the world’s ever diminishing
biodiversity. In addition, it is easier and more economical to produce a valued
phytochemical by exploiting a microbial source than using a plant, which even-
tually leads to increase availability and low market price (Radic and Strukelj 2012).
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9.7 Factors Influencing the Production of Secondary
Metabolites of Endophytic Fungi

In the natural setting, the climatic conditions, soil, season, location, age and tissue
of the host plant, all affect the endophytes’ biology, and consequently considerable
variations in the production of secondary metabolites (Strobel and Daisy 2003).
Therefore, the chemical substances isolated from two endophytic fungi of the same
species may differ from each other. At the same time, the differences also in the
isolation methods and in vitro cultivation conditions can impact the kind and range
of secondary metabolites (Gunatilaka 2006). It has been reported that the size of the
plant tissue fragments used for the isolation, time since harvesting of the tissue,
composition of the culture media and culture conditions such as aeration, temper-
ature, pH, incubation period, agitation, shape of the culturing flask (with respect to
liquid media), all affect the production of secondary metabolites in laboratory (Aly
et al. 2011; Kusari et al. 2012). Even, the production of six new secondary
metabolites by the plant associated fungus Paraphaeosphaeria quadriseptata, only
when the water used to make the media changed from tap water to distilled water is
a good example to prove this fact (Paranagama et al. 2007).
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9.8 Current Challenges

To achieve a competent endophyte with promising bioactivity is a challenging task
(Scherlach and Hertweck 2009; Kusari et al. 2012). In the traditional way, this
requires screening of a plethora of endophytes from a host. Most of the isolating
endophytes are incompetent, i.e., they do not possess desired potential to produce
bioactivity. However, whole-genome sequencing strategies have revealed that the
incompetent endophytes express only a subset of biosynthetic genes under labo-
ratory culture conditions (Scherlach and Hertweck 2009; Winter et al. 2011).
Therefore there is possibility of utilizing the large reservoir of cryptic natural
metabolites by experimenting with different in vitro culture conditions and under-
standing the chemical ecological interactions of endophytes (Kusari et al. 2012).

Another major challenge is the low yield of the active desirable compound/s
obtained from the cultures (Yu et al. 2010; Aly et al. 2011). This is a major
drawback for bioactive compounds from entering the commercial industry. For an
example, the yield of the anticancer drug paclitaxel obtained from several endo-
phytic fungal cultures are 846.1, 187.6 and 163.4 µg L−1, which is too low for
commercial production (Gangadevi and Muthumary 2008; Liu et al. 2009).
Therefore, so far fungal endophytes have not been an industrial source of paclitaxel
(Aly et al. 2011) or any other pharmaceutical. However, genetic engineering
technology and research identifying the regulatory gene/s in the biosynthesis
pathway of the active compound can lead to increase production of the compounds
(Yu et al. 2010; Radic and Strukelj 2012).

The mammalian toxicity of any prospective drug developed has also become a
major concern in the field (Yu et al. 2010). Most of these isolated bioactive
metabolites precluded clinical use due to the toxicities to animals and humans
(Waring and Beaver 1996). However, Strobel (2003) stated that plants as an
eukaryotic system, have naturally served as a selection system for microbes having
bioactive molecules with reduced toxicity toward higher organisms.

Compounds showing moderate biological activity most often cannot be used as
potential chemotherapeutic agents (Yu et al. 2010). Totally or partly unknown
biosynthesis, regulation, and synthesis, of these natural products in endophytes are
other issues in the field (Yu et al. 2010). The rapidly diminishing rainforests, which
is a huge reservoir for novel fungal endophytes and their bioactive products, is one
of the major problems facing the future in this area (Strobel 2003). Therefore,
countries need to establish information repositories of their biodiversity and at the
same time should take conservation measures to protect the biodiversity.

Despite speculation by many authors no endophytic fungal-derived metabolite
has so far become commercially useful (Kusari and Spiteller 2011). However,
interest in the biosynthetic abilities of the endophytic fungi by the scientific com-
munity has not diminished but in fact is on the rise.
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9.9 Conclusion

Exploration of competent endophyte for only subset of biosynthetic genes
expressed under laboratory culture conditions is not enough to utilize the large
reservoir of natural metabolites produced endophytes. Therefore, incorporation of
genetic manipulation technology so as to advance the research to identify the
regulatory gene/s of several biosynthesis pathways of metabolite production can
lead to increase production of the compounds to be used in human welfare. As such,
innovative approaches are bound to result in the productive utilization of this
important and remarkable resource of much potential in the coming years.
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Chapter 10
Endophytes: Potential Source
of Therapeutically Important Secondary
Metabolites of Plant Origin

Shahid Iqbal Mohammed, Mohini Panditrao Patil,
Ravindra Himmatrao Patil and Vijay Laxminarayan Maheshwari

Abstract Use of plants and plant-derived metabolites for human health and
well-being is as old as human civilization. The plant kingdom contains an estimated
400,000–500,000 different species and each plant produces a number of secondary
metabolites which enables them to withstand various biotic and abiotic stresses. The
plant secondary metabolites such as alkaloids, steroids, flavonoids, terpenoids, etc.,
are known to have a number of biological activities. Moreover, because of their
natural origin, the plant-derived metabolites are increasingly preferred for thera-
peutic applications all over the world. However, the overharvesting of plants for
biologically active secondary metabolites is rapidly diminishing the valuable trea-
sure of medicinal plants. Endophytes are the microbial symbionts which live in the
internal tissues of plants and mimic the chemistry of the host plant. Because of their
huge diversity and ability to produce a range of metabolites similar to host plant,
they have attracted significant attention of scientific community all over the world.
The plant- and endophyte-derived metabolites which have attracted sufficient
research in last decade include compounds with antioxidant, antihypercholes-
terolemic, antidiabetic, and anticancer activities. The present article reviews the
current state of research on biologically active metabolites from plant and endo-
phytic fungi. The work carried out in our lab on bioprospecting of endophytic fungi
for molecules with antihypercholesterolemic potential is also included.
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10.1 Introduction

Secondary metabolites are naturally derived substances from plants, animals, and
microorganisms (Baker et al. 2000). Plant secondary metabolites are known to pro-
vide protection from pathogen invasion to their host plant (Yang et al. 1994). As per
world health organization (WHO) estimates, 80% of the people in the developing
countries use traditional plant derived drugs for their primary health need. Moreover,
plant secondary metabolites have featured significantly in the treatment of many
diseases as well as used as base substances for the development of efficient drugs. For
example, Digitoxigenin, a steroid glycoside produced by Digitalis purpura, is the
oldest of the commonly used compounds in the treatment of heart diseases. After the
discovery of Penicillin, the wonder drug, followed by advancement in the fermen-
tation technology for cultivation ofmicrobial cells, the potential ofmicrobes as a good
source of secondary metabolites was recognized by world scientific community.
Microorganisms produce a range of secondary metabolites, many of them novel/new,
apparently as a part of survival/adaptation strategy to overcome constant metabolic
stress and challenging environmental conditions that they live and encounter con-
tinuously (Schutz 2001). On the other hand, despite the abundant biological diversity
of plants on earth, discovery of bioactive secondary metabolites has focused on
microorganisms which were mainly isolated from soil. Therefore, selection of the
ecological niche for isolation of the desiredmicrobes is an important stage in new drug
discovery rather than using a totally random approach.

Throughout history, humans have used plants and plant-derived medicines to treat
all kinds of illnesses. However, extensive use of plant derived medicines has ques-
tioned the survival of manymedicinally valuable and rare plant species. So it is a need
of hour to find alternate sources and strategies for the production of bioactive
metabolites of plant origin. Approximately 0.4–0.5 million plant species exist on the
earth and, every plant inhabits/hosts one or other endophytic microorganism in its
internal tissues. Thus, this huge and relatively unexplored biodiversity can be tapped
for the search of novel microbiota significant for chemical and functional diversity.

De Bary (1866) first coined and introduced the term “endophytes”. They are the
microbes that colonize inside the living internal tissues of the host plant without
causing any negative effect on them (Bacon and white 2000) and establish sym-
biotic relationship with their host. Among the endophytic microorganisms, the
endophytic fungi are highly diverse and are known to produce biologically active
and structurally diverse natural products of pharmaceutical importance. The
bioactive compounds isolated from endophytic fungi have been found to produce a
range of compounds/metabolites having diverse biological properties including
antimicrobial, antioxidant, antidiabetic, anticancer, antihypercholesterolemic, etc.
(Ruma et al. 2013). Use of endophytic fungi as a source of therapeutically important
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compounds/metabolites has several advantages. For example, (i) When a plant
based drug is produced from the source like endophytic fungi, it will not only
reduce our dependence on plant sources for these metabolites but also help in
preserving the continuously decreasing plant biodiversity on earth (Strobel et al.
2004). (ii) Environmental conditions which affect the quality and quantity of
desired phytochemicals in planta can be avoided if isolated endophytes are cultured
successfully in vitro by providing optimum physicochemical parameters.
(iii) Production of plant derived drugs using microbial sources can be easily scaled
up for industrial process. It is also possible to obtain improved versions of existing
drugs by simply altering the cultural conditions. (iv) Isolation of drugs from
microbial sources is relatively easier and cost-effective as compared to extraction
and purification of drugs from the whole plant or plant part(s) including tissue
culture. (v) Since the plant and fungal endophytes, both are eukaryotic systems, the
metabolites produced by the endophytes are less likely to show mammalian toxicity
when used for human applications and, (vi) High-value metabolites/compounds of
medicinal importance are produced in easier and economical way using the
endophytic microorganisms (Strobel et al. 2004).

It has been proved that both plant and endophytic fungi isolated from the same
plant produced similar compounds with same bioactivity (Kusari et al. 2012). The
possible reason for this could be the genetic recombination between the host and
endophytes or vice versa that occurred during the course of evolution (Tan and Zou
2001).

In the ensuing paragraphs, an attempt has been made to briefly review the studies
on plants and endophytic fungi which could produce antioxidant, antihyperc-
holesterolemic, antidiabetic, and anticancer metabolites of therapeutic importance.

10.2 Antioxidant Activity of Plants/Plant Extracts

Reactive oxygen species (ROS) generated in the biological system are the major cause
of the degenerative conditions such as aging, cancer inflammation, atherosclerosis, etc.
(Sandesh et al. 2014). Naturally occurring antioxidants/enzymes, superoxide dismu-
tase, catalase, glutathione, etc., can stabilize the adverse effects of ROS and, thus help
maintain the redox balance in the body. However, when generation of ROS is more
than what can be processed by the endogenous antioxidant system, it results in
oxidative damages leading to several other disorders such as arthritis, atherosclerosis,
cancer, diabetes, and many others (Castaneda et al. 2003). Sufficient amounts of
exogenous antioxidants are required to reduce the effects of ROS to the human body. In
response to the growing consumer demand for food supplements that are free of
synthetic antioxidants with carcinogenic potential (Baardseth 1989), there has been
tremendous increase in the search for naturally occurring antioxidants during the past
decades (Gould 1995). Of the vast amount of literature, a concise list of studies on the
antioxidant activities of plant/plant parts using DPPH free radical scavenging assay,
mainly in last 10 years is shown in Table 10.1.
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Table 10.1 List of plants with DPPH radical scavenging activity

Name of
plant

Extract Results References

Alnus
incana

Catkins methanolic
extract

Showed IC50 value
18.9 µg/ml

Stevie et al. (2010)

Tansy
vulgare

Arial part
methanolic extract

Showed EC50 value
37 µg/ml

Juan-Badaturuge
et al. (2009)

Tussilago
farfara

Flower bud ethanolic
extract

Dose dependent increase in
scavenging activity

Li et al. (2012)

Gemmae
betulae

Bud ethanolic
extract

Normalized phospholipid
level

Mashentseva et al.
(2011)

Sorbus
aucuparia

Fruit aqueous extract Dose dependent increase in
radical scavenging activity

Zlobin et al. (2012)

Carica
papaya

Seed ethyl acetate
fraction

Increase in radical
scavenging activity

Zhou et al. (2011)

Manihor
esculenta

Leaves aqueous
extract

Increase in radical
scavenging activity

Tsumbu et al. (2011)

Arnebia
benthamii

Plant ethyl acetate
extract

700 µg/ml extract showed
87.99% inhibition

Ganie et al. (2014)

Bauhinia
vahlii

Plant methanolic and
aqueous extract

Methanolic extract showed
strong antioxidant potential

Sowndhararajan and
Kang (2013)

Hygrophila
auriculata

Root extract Showed significant
antioxidant activity

Shanmugasundaram
and Venkataraman
(2006)

Phyllanthus
niruri

Methanolic and
aqueous extract of
leaves and fruits

Inhibited reactive oxygen
species

Chatterjee et al.
(2006)

Pistacia
lentiscus

Ethanolic extraction
from ethyl acetate
fraction

Showed radical scavenging
activity (90%) equivalent to
standard BHA (89%)

Atmani et al. (2009)

Polyalhia
cerasoides

Plant ethanolic
extract

Dose dependent inhibition
of DPPH scavenging
activity with IC50 25 µg/ml

Ramkumar et al.
(2009)

Teucrium
polium

Plant aerial part
petroleum ether,
chloroform,
methanol and water
extract

Highest antioxidant activity
was observed in methanolic
extract showed IC50 value
20.1 µg/ml nearly similar
to standard (18.3 µg/ml)
BHT

Sharififar et al.
(2009)

Bidens
pilosa

Leaves and flower
essential oil

Radical scavenging activity
with IC50 value 21 and
36 µg/ml for leaves and
flower essential oil
respectively

Deba et al. (2008)

Rheum ribes Stem and root
methanolic extract

87.07 and 60.60%
inhibition with 100 µg/ml
for stem and root extract
respectively

Ozturk et al. (2007)
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10.2.1 Antioxidant Compounds from Endophytes

Polysaccharides from plants and microorganisms have been extensively reported as
potent natural antioxidants (Chen et al. 2009). Liu and coworkers (2009), for the
first time, reported the capacity of endophytic microorganisms to produce
polysaccharides with antioxidant activity. Patil et al. (2015) isolated endophytic
Aspergillus flavus from Indian medicinal plant, Aegle marmelos, which produced
bioflavonoid, rutin with excellent antibacterial and antioxidant activities.
Graphislactone A that showed potent radical scavenging activities was obtained
from endophyte Cephalosporium spp. isolated from Trachelospermum jasminoides
(Strobel and Daisy 2003). Other endophytic fungi such as Aspergillus niger and
Alternaria alternata, isolated from Tabebula argentea have been shown to produce
Lapachol with excellent antioxidant activities (Sadananda et al. 2011). An endo-
phytic strain of Colletotrichum gloeosporioides from a fruit of plant Forsythia
suspensa was found to produce plant derived metabolite, phillyrin in liquid cultures
(Zhang et al. 2012). A representative group of antioxidant compounds obtained
from endophytic fungi that were previously produced by their host plants is shown
in Fig. 10.1.

A number of endophytic strains from Vitis vinifera, Vitis quinquangularis, and
Polygonum cuspidatum belonging to the genera Alternaria, Aspergillus,
Botryosphaeria, Cephalosporium, Geotrichum, Mucor, and Penicillium were
shown to produce resveratrol, which is a stilbene phytoalexin with excellent
antioxidant properties (Shi et al. 2012). Another phyllosphere species of Alternaria,
together with root strains of Fusarium solani, F. oxysporum and F. proliferatum
from Cajanus cajan, have been found to produce cajanin stilbene acid, a related

Fig. 10.1 Antioxidant compounds from endophytic fungi originally produced by their host plant
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antioxidant compound originally characterized from its host plant (Zhao et al.
2012). The Tanshinones are diterpenoid quinone compounds that have been
obtained from endophytic strains of the Salvia miltiorrhiza, particularly Emericella
foeniculicola TR21 (Ma et al. 2011), and Trichoderma atroviride D16 (Ming et al.
2012).

10.3 Studies on Antihypercholesterolemic Activity
of Plants

Cardiovascular diseases (CVDs) are the major cause of death in the developed as
well as in the developing countries. Among CVDs, hypercholesterolemia is the
most important contributing factor responsible for development of CVDs and
atherosclerosis. Epidemiological studies have proved that the elevated levels of
blood cholesterol increase risk of CVDs several times. Krishnakumari and Priya
(2006) evaluated hypolipidemic activity of Achyranthes aspera against sesame oil
fed lipidemic rats. Rats treated with powdered seed aqueous extract of the plant
showed significant reduction in lipid profile parameters and increase in level of
high-density lipoprotein to normal level. Similarly, antihypercholesterolemic effect
of Piper beetle ethanolic extract and its purified eugenol constituent against triton
WR-1339 induced hypercholesterolemia in rats was demonstrated by
Venkadeswaran et al. (2014). Hypercholesterolemic rats treated with 500 mg/kg
body weight Piper beetle extract or 5 mg/kg body weight of the purified con-
stituent, eugenol orally for seven days showed significant improvement in param-
eters of lipid profile. The improvement by the plant extract was found to be at par
with that of standard lipid lowering drug, lovastatin at 10 mg/kg body weight.
Subash and Augustine (2012) evaluated hypolipidemic effects of methanol fraction
of Aconitum heterophyllum in diet-induced obese rats. Treatment of obese rats with
extract decreased level of total cholesterol, triglycerides, apolipoprotein B and
increased the level of high-density lipoprotein and apolipoprotein A level as
compared to control rats. In our laboratory, hypolipidemic effect of bark ethanolic
extract of Terminalia arjuna against high fat induced hypercholesterolemic rats
treated with 40 mg/kg body weight of plant extract showed statistically significant
reduction in total cholesterol, triglycerides and low density lipoprotein, with a
concomitant increase in level of high-density lipoprotein, lipoprotein lipase, and
enhanced bile acid synthesis as compared to control rats (Patil et al. 2011).

A list of selected antihyperlipidemic studies of plant/plant extracts, along with
methods/model employed for study and high light of the obtained results in past
decade is shown in Table 10.2.
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Table 10.2 Plant/plant extracts with antihypercholesterolemic activity

Name of plant Extract/plant
part

Model/method Results References

Alchornea
cordifolia

Leaves
n-butanolic
fraction

Streptozotocin-induced
diabetic wistar rats

Significant decrease in
total cholesterol

Mohammed
et al. (2012)

Aloe vera Processed
Aloe vera gel

Non-insulin dependent
diabetes mellitus mouse
(feeding mouse with a
high fat diet)

Hypoglycemic and
hypolipidemic activity

Kwanghee
et al. (2009)

Cajanus cajan Methanolic
leaf extract

Alloxan-induced
hyperlipidemia in
diabetic rabbits

Significant decrease in
LDL/HDL ratio

Akinloye
and Solanke
(2011)

Curcuma longa Rhizomes
methanol
extract

Alloxan-induced
hyperlipidemia in
diabetic rabbits

Decrease in plasma
triglyceride

Nwozo et al.
(2009)

Eclipta
prostrata

Leaves
aqueous
extract

Atherogenic diet
induced hyperlipidemic
rats

Significant decrease on
total cholesterol and
triglycerides

Dhandapani
(2007)

Emila
praetermissa

Leaves
aqueous
extract

Wistar rats Hypolipidemic activity Nwodo et al.
(2014)

Eugenia
jambolana

Composite
extract of
seeds

Streptozotocin-induced
diabetic male albino rat

Serum lipid profile came
significantly close to
normal level in a dose
dependent manner

Mallick
et al. (2006)

Moringa
oleifera

Leaves
petroleum
ether extract

Fat diet induced obesity
in rats

Antiobesity and
hypolipidemic

Bais et al.
(2014)

Pithecellobium
dulce

Leaves
aqueous
extract

Triton Wr-1339
induced hyperlipidemic
rats

Significant decrease in the
levels of serum
cholesterol,
phospholipids,
triglyceride, LDL, VLDL
and significant increase in
the level of serum HDL

Sundarrajan
et al. (2010)

Stachytarphela
augustifolia

Plant
methanolic
extract

Streptozotocin-induced
diabetic wistar rats

Significant decrease in
total cholesterol, low
density lipoprotein and
lipid peroxides as
function of treatment

Garba et al.
(2013)

Tephrosia
purpurea

Leaves
ethanolic
extract

Streptozotocin-induced
diabetic rats

600 mg/kg body weight
normalized the lipids and
lipoproteins profile

Pavana et al.
(2007)

Urtica dioica Leaves
ethanolic and
aqueous
extract

Alloxan-induced
diabetic or
hyperlipidemic rats

Rats treated with
ethanolic and aqueous
extract showed
significantly reduction in
levels of triglyceride and
cholesterol

Mahjoub
et al. (2012)
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10.3.1 Antihypercholesterolemic Compounds
from Endophytes

HMG–CoA reductase (HMGR) is the key enzyme in the cholesterol biosynthesis
pathway and it is the attractive target of several antihypercholesterolemic drugs.
Statins, the fungal secondary metabolites, are widely used as competitive inhibitors
of HMG–CoA reductase all over the world. Lovastatin, a highly potent inhibitor of
HMG–CoA reductase is commercially produced using a micro-fungus, Aspergillus
terreus (Patil et al. 2011). Endophytic fungus, Aspergillus niger was isolated from
Taxus baccata which was able to produce lovastatin when cultivated in solid-state
fermentation (Raghunath et al. 2012). In another study, rosuvastatin, a potent inhi-
bitor of HMG-CoA reductase, used for treating dyslipidemias, was produced from
Penicillium citrinum and P. brevicompactum (Scott et al. 2004). Bhargavi et al.
(2014) studied lovastatin production using soil and endophytic fungi, demonstrated
that the soil isolate, Aspergillus terreus NCBI (KM017963) produced lovastatin
whereas none of the endophytic fungi tested showed lovastatin production when
cultured in solid-state fermentation. Endophytic fungi have been recognized as an
important source for these antihypercholesterolemic compound/metabolites and
structures of a few compounds obtained from them are shown in Fig. 10.2.

Another metabolite, chartarlactams A-P, phenylspirodrimanes produced by
Sponge- associated endophytic fungus Stachybotrys chartarum exhibited potent
antihyperlipidemic activity in HepG2 cells assessed by Oil Red O staining (Yong
et al. 2013). On the other hand, endophytic fungus Mycosphaerella sp. PF13 was

Fig. 10.2 Antihypercholesterolemic compounds produced by endophytic fungi
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found to have the potential to produce piperine (Chithra et al. 2014a). Piperine has
also been reported to possess a wide range of applications because of its antimy-
cobacterial, antihyperlipidemic, antiandrogenic, immunoregulatory, and antitumor
properties (Chithra et al. 2014b).

Obesity is also a contributing factor for variety of serious diseases like hyper-
tension, hyperlipidemia, atherosclerosis, and type II diabetes (Birari and Bhutani
2007). One of the key enzymes involved in lipid metabolism is pancreatic lipase
(PL) which acts on triglycerides and converts them into glycerol and free fatty
acids. The free fatty acids further increase the level of low density lipoprotein
(LDL) and very low density lipoprotein (VLDL) in the blood and ultimately con-
tribute to development of CVDs. Inhibition of PL would decrease the level of LDL
and VLDL and hyperlipidemia is prevented (Sreerama et al. 2012; Onakpoya et al.
2015). Therefore, PL can be recognized as attractive therapeutic target for man-
agement of hypercholesterolemia and diet-induced obesity. Endophytic fungi have
been identified as promising good source of effective PL inhibitors. Recently, Gupta
et al. (2015) isolated 70 endophytic fungi and screened them qualitatively using
in vitro screening methods. The PL inhibitory effect of endophytic Penicillium
spp. in their study was comparable with the standard PL inhibitor, Orlistat. Other
studies have also shown the potential PL inhibitory activity of polyphenol-rich
extracts in vitro (Birari and Bhutani 2007; McDougall et al. 2009). In our lab, we
have isolated, screened, and identified a number of endophytic fungi which could
produce metabolites with antihypercholesterolemic potential. One of our isolates,
obtained from Terminalia arjuna and identified as Diaporthe arengae, showed
strong in vitro as well as in vivo antihypercholesterolemic activity. Administration
of the extract of Diaporthe arengae at 100 mg kg−1 body weight dose in rats
showed significant decrease in the levels of serum total cholesterol (TC), triglyc-
erides (TG), very low density lipoproteins (VLDL), and low density lipoprotein
(LDL) cholesterol (unpublished data).

10.4 Antidiabetic Activity of Plants/Plant Extracts

Diabetes mellitus (DM) is characterized by hyperglycemia resulting from either
lack of insulin, or insulin resistance at the cellular level (Haire-Joshu 1996). It has
been estimated that 366 million people may be affected by diabetes worldwide by
the year 2030. In India, about 40.9 million people are affected by hyperglycemia
and this number may rise up to 60.9 million by the year 2025 (Maahs et al. 2010).
Present diabetes management strategies primarily employ insulin and other syn-
thetic antidiabetic agents like sulfonylureas, biguanides, glinides, etc. Despite
considerable success in diabetes management by these strategies, there is a need for
newer strategies to overcome the limitations of existing compounds (Ghazanfar
et al. 2014). It should be noted that diabetes management with minimal side effects
is a challenge before the scientific community (Saxena and Vikram 2004). There
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has been an enhanced focus on exploring indigenous medicinal plants with
antidiabetic potential so that a low cost, safer, and effective alternative strategy to
insulin and other synthetic compounds for diabetes management can be realized.
Hypoglycemic effects of several plants used to treat diabetes are already known and
the underlying mechanisms of the observed affects are also being worked out (Patel
et al. 2012). Recently, Mohammed et al. (2016), in a comprehensive study, eval-
uated antidiabetic activity of Coccinia grandis against streptozotocin-induced dia-
betic rats. Treatment of diabetic rats with Coccinia grandis leaf ethanolic extract
(500 mg/kg) for 21 days showed significant reduction in blood glucose level,
increase in body weight and serum insulin in a dose dependent manner. Diabetes
induced hypercholesteremia and hypertriglyceridemia, which can lead to secondary
complications, were also found to be significantly improved as a result of treatment.
Marked recovery was also recorded in liver and kidney function tests of diabetic
rats. The study demonstrated a strong antioxidant activity of the ethanolic leaf
extract of the plant. It should be pointed out here that oxidative stress is a natural
consequence of chronically elevated blood glucose level and thus, compliments
diabetes (Rahimi et al. 2005). Baldea et al. (2010) evaluated antidiabetic activity of
crude ethanolic extract of 17 Boreal forest medicinal plants by in vitro on Caco-2
human enterocylic cell lines and in vivo on normal rats by oral administration of
250 mg/kg body weight of extract. In in vitro experiments, of the 17 plants, 13
showed approximately 40% decreased glycaemia and another 2 plants showed
reduction in intestinal glucose absorption in rats. Similarly, antidiabetic activity of
Allium cepa, Allium sativum, and Zingiber officinale aqueous extract was evaluated
against alloxan-induced diabetic rats. All three plant extracts showed decrease in
blood glucose level in treated diabetic rats as compared to control rats (Eyo et al.
2011). A comprehensive list of studies of the last 5–6 years on antidiabetic activ-
ities of plant/plant extracts demonstrating the interest and scope in the field is given
in Table 10.3.

10.4.1 Antidiabetic Compounds from Fungal Endophytes

Dhankar et al. (2013) demonstrated the antidiabetic and hypolipidemic activity of
endophytic fungi, Aspergillus sp. and Phoma sp. isolated from Salvadora oleoides
(Salvadoraceae). The study showed that 2,6-di-tert-butyl-p-cresol and Phenol,
2,6-bis [1,1-dimethylethyl]-4-methyl, isolated from the broth extract of endophytic
fungi, significantly reduce blood glucose level in glucose loaded, fasting and al-
loxan-induced diabetic Wistar albino rats. Bioactivity-guided fractionation of the
culture filtrate of an endophytic fungus, Dendryphion nanum, isolated from Ficus
religiosa yielded a compound herbarine 1 and its analogue herbaridine A2 showing
promising antidiabetic activities. Both of them were found to be naphthaquinones
(Mishra et al. 2013).

Berberine from several medicinal plants is a compound known for its cardio-
protective, antidiabetic, antibiotic, and antitumor roles (Sun et al. 2009). Recently, it
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has been produced by a strain of F. solani isolated from roots of the medicinal liana,
Coscinium fenestratum (Vinodhini and Agastian 2013). An endophytic fungus,
Pseudomassaria sp. isolated from African rainforest was found to produce a
metabolite [L-783] which showed significant antidiabetic activity. Aspergillusol, a
compound isolated from the marine derived endophytic fungus Aspergillus
aculeatus isolated from the leaves of Cassia siamea Lam. also proved to be good
source of a-glucosidase inhibitors in previous studies (Abdul et al. 2013; Ingavat
et al. 2009).

A number of bioactive compounds with antidiabetic potential are characteristics
of their host plant that have been isolated from endophytic fungi of different
medicinal plants (Fig. 10.3). Methyl eugenol production by Alternaria sp. isolated
from Rose (Kaul et al. 2008); phillyrin-producing endophytic fungi Colletotrichum
gloeosporioides (Forsythia suspensa) (Zhang et al. 2012); sterigmatocystin, aru-
gosin C, and epiisoshamixanthone from Emericella sp. (inhabiting Astragalus
lentiginosus) have shown potential antidiabetic activities (Xu et al. 2013). Another
example includes Helvolic acid from Xylaria sp. (Anoectochilus setaceus)
(Ratnaweera et al. 2014), diphenyl ether producing Verticillium sp. (Rehmannia
glutinosa) (Ola et al. 2014); Dihydroanthracenone metabolites from Diaporthe
melonis (Annona squamosa) (Peng et al. 2013), piperine production by
Colletotrichum gloeosporioides (Piper nigrum L) (Chithra et al. 2014), a chromone
alkaloid such as rohitukin produced by endophytic fungi isolated from Dysoxylum
binectariferum Hook. f and Amoora rohituka (Roxb) have been reported (Kumara
et al. 2014).

Fig. 10.3 Antidiabetic compounds of plant origin produced by endophytes from host plant
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10.5 Anticancer Activity of Plants/Plant Extracts

Cancer is currently one of the leading causes of death worldwide and it is estimated
that there are more than 1.6 million deaths occurred due to invasive cancer in 2013
(Siegel et al. 2013). The economic burden of cancer has necessitated the search for
new, safe, affordable, and effective anticancer drugs. Purified asiatic acid fraction
from Centella asiatica when tested in vitro on human melanoma SK-MEL-2 cells
showed induction of apoptosis and decline in their viability in a time and dose
dependent manner (Park et al. 2005). Similarly, induction of apoptosis in Hela
cervical cancer cell line was recorded with Goniothalamin isolated from
Goniothalamus macrophyllus (Aied et al. 2013). Ethanolic extract of Atractylis
lancea showed inhibition of HEP-G2 liver cancer cell lines in a concentration and
time dependent manner (Wei et al. 2013). Apoptosis of cancer cell in human
intestinal epithelium was observed in presence of sesquiterpenes, Salograviolide-A
isolated from Centaurea ainetensis (El-Najjar 2008). Kundusen et al. (2011)
demonstrated decrease in tumor volume and increase in weight of Swiss albino
mice as a function of treatment with methanolic leaf extract of Citrus maxima.
Similarly, ethanolic extract of plant, Derris scandens resulted in death of human
colon cancer cell line HT-29 in in vitro (Arunee et al. 2014). Both the aqueous and
methanolic extract of plant Ficus religiosa showed cytotoxicity to HT-29 and
MDA-MB-435S cancer cells in in vitro (Uddin and Grice 2011). Decrease in
growth of breast cancer cell lines as a function of treatment with aqueous leaf
extract of Taraxacum officinale (Sigstedt et al. 2008), suppression of proliferation
of prostrate, breast, ovary, colon, lung, and bladder cancer cell lines by isolated
flavonoids from Silybum marianum (Agarwal et al. 2006) and death of human
T-47D cancer cell lines by chloroform extract of plant, Physalis minima (Ooi et al.
2010) are few other example from many such studies carried out using different
plant/extracts and cancer cell lines.

10.5.1 Anticancer Compounds from Endophytes

Endophytic fungi have been reported to produce a myriad of anticancer substances
(Table 10.4). The bioactive potential of the endophytic fungi was first recognized
when world’s first multibillion dollar anticancer drug, Paclitaxel (Taxol), was
obtained from an endophytic fungus. Taxol is known to be a potent chemothera-
peutic agent, used for a variety of cancers including ovarian and breast cancers
(Weaver 2014). Wani et al. (1971) first isolated and chemically characterized the
Taxol from the bark of yew plant (Taxus brevifolia). However, the amount of taxol
produced by the slow growing African yew is very small and a number of plants
need to be sacrifice to obtain a few milligrams of compound. The cost of the taxol
obtained from the plant source was a major constrain for its clinical use (Gangadevi
et al. 2009). Stierle et al. (2001) first reported an alternative source for Taxol
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production using endophytic fungus Taxomyces andreanae. Another important
drug for cancer is the alkaloid “Camptothecin”—a potent anticancer compound
found in the plant Camptotheca acuminata Decaisne (Nyssaceae) (Wall et al.
1966). Camptothecin and 10-hydroxycamptothecin are widely used as precursors in
the synthesis of topotecan, and irinotecan, which are clinically used as potent
anticancer drugs (Uma et al. 2008). An endophytic fungus Fusarium solani isolated
from the same plant produced Camptothecin and 10-hydroxycamptothecin when
cultivated in submerged cultures (Kusari et al. 2009). Subsequently, several
workers reported endophytic fungi which could produce Camptothecin and other
similar compounds (Puri 2005; Rehman et al. 2008).

Guo et al. (1998) reported that Alternaria sp. isolated from the phloem of
Catharanthus roseus had the ability to produce well-known alkaloid, vinblastine
(Fig. 10.4). Later, another endophytic fungus Fusarium oxysporum from the
phloem of C. roseus is shown to produce vincristine (Zhang et al. 2000). In another

Table 10.4 Anticancer compounds from endophytes and respective host plant

Host plant Endophytic fungi Bioactive compound References

Taxus brevifolia Taxomyces andreanae Diterpenoid Strobel
(1997)

Torreya taxifolia Pestalotiopsis
microspora

Torreyanic acid Lee (1996)

Catharanthus
roseus

Mycelia sterilia Vincristine Yang (1994)

Plumeria acutifolia Colletotrichum
gloeosporioides

Taxol Nithya (2009)

Spondias mombin Phomopsis sp. Phomopsidin &
Phomopsichalasin

Kobayashi
(1995)

Rhizophora
annamalayana

Fusarium oxysporum Taxol Elavarasi
(2012)

Tinospora
cordifolia

Fusarium culmorum
SVJM072

Taxol Sonaimuthu
(2010)

Annova squamosa Penicillium sp. Meleargine and
Chrysogine

Yunianto
(2014)

Tripterygium
wilfordii

Rhinocladiella sp. 22-oxa-(12)-
cytochalasins

Wagenaar
(2000)
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study, an unidentified vincristine producing endophytic fungus was isolated from
the leaves of C. roseus (Yang et al. 2004). A new compound “Ergoflavin” with
excellent anticancer activity was extracted from the culture filtrate of an endophytic
fungus isolated from an Indian medicinal plant Mimusops elengi (Deshmukh et al.
2009). Similarly, Cytotoxic quinone dimer, Torreyanic acid is another important
anticancer agent produced from P. microspore and isolated from T. taxifolia
(Florida torreya). Recent studies showed that Hypocrea lixii, a novel endophytic
fungi, isolated from Cajanus cajan, produced anticancer agent cajanol (Zhao et al.
2013). Another endophytic fungus, M. fragilis exhibited production of bioactive
metabolites, viz., podophyllotoxin and kaempferol (Huang et al. 2014) besides,
guanacastane diterpenoids reported from the plant endophytic fungus Cercospora
sp. (Feng et al. 2014).

A pentacyclic triterpenoid, ursolic acid, a known compound for its anticancer and
cardioprotective properties (Liu 1995), was found to be produced by endophytic
strain of Annulohypoxylon stygium (Cheng et al. 2014). A sterol ergosta-8(9),
22-diene- 3,5,6,7-tetrol (3b, 5a, 6b, 7a, 22E) (Compound 1) along with other three
known sterols, namely 3b, 5a, 6b-trihydroxyergosta-7, 22-diene (2) 3b-hydroxy-5a,
8a-epidioxyergosta-6,22-diene (3) and ergosterol (4) from the unidentified endo-
phytic fungi obtained from Castaniopsis fissa (Hou et al. 2004).

Endophytic fungi seem to be the store house of bioactive compounds with
anticancer potential characteristics of their host plant. A new compound naphtho-ã-
pyrone, 5-hydroxy-6,8-dimethoxy-2-benzyl-4H-naphtho[2,3-b]-pyran-4-one (1),
together with three known compounds 5,7-dihydroxy-2-methylbenzopyran-4-one
(2), 3,5-dihydroxy-2,7dimethylbenzopyran-4-one (3) and cyclo (Tyr-Tyr) (4) has

Fig. 10.4 Structure of anticancer compounds produced by endophytes
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been isolated from the mangrove endophytic fungus Phomopsis sp. (Huang et al.
2010). Primary bioassays showed that compound 1 exhibited cytotoxicity against
Hep-2 and HepG2 cells with IC50 values of 10 and 8 µg/ml, respectively.

10.6 Conclusion

The injudicious use of plant biodiversity for human use, increased commercial and
scientific interests is continuously increasing the pressure on the population of
higher plants. India, despite being one of the global biodiversity hotspot, uncon-
trolled use of medicinal plants is leading to many valuable medicinal species at risk
of extinction. Globally, about 100,000 species of angiosperms are used for
medicinal purpose. However, because of overharvesting, irrational use and loss of
habitat about 15,000 species are near to extinction. Therefore, the sustainable use
and conservation of medicinal plant biodiversity is the need of time.

Endophytic microorganisms, by virtue of their ability to produce metabolites of
plant origin, can be of great significance to save fast diminishing plant biodiversity.
Microbial endophytes have been intensively studied in last decade because of their
potential to produce diverse biologically active metabolites of therapeutic impor-
tance. Their coevolution with host plant is thought to enable them to mimic host
chemistry. Isolation of potential endophyte followed by their successful laboratory
cultivation and scale-up are the important steps for exploring the endophytes for
biotechnological purpose. Of late, thousands of endophytic microorganisms have
been isolated, identified and their products such as steroids, alkaloids, peptides,
terpenoids, tannins, polyketones, flavonoids, and phenolics have been character-
ized. However, producing the metabolites of plant origin using endophytes has
several limiting factors. The laboratory cultivation conditions are completely dif-
ferent from that of in planta conditions. Moreover, the complex host–endophyte
relationship controls expression of genes coding for secondary metabolite pro-
duction. It is therefore concluded that, in spite of huge biotechnological potential,
endophytic microorganisms are relatively less explored microbial community that
can be tapped as rich source of bioactive metabolites of plant origin.
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Chapter 11
Harnessing Endophytic Microbial Volatile
Organic Compound (MVOC)
for Sustainable Agroecosystem

Dinesh Chandra, Pallavi and A.K. Sharma

Abstract Endophytic bacteria and fungi emit a wealth of volatiles, representing a
promising group of microorganisms, as they are a largely untapped reservoir of
metabolic diversity. These volatile organic compounds (VOCs) occur as mixtures
of low molecular mass hydrocarbons, alcohols, heterocyclic compound, aldehydes,
ketones, and other small molecules. They have characteristic aromas and are pro-
duced during primary and secondary metabolism of microbes. Their ability to
diffuse makes them excellent chemical signaling molecules in nonaqueous habitats
and facilitates the ability of microbes to engage in chemical conversations. The
methods for the collection and detection of MVOC are steam distillation, liquid–
liquid extraction, simultaneous distillation extraction, purge and trap, supercritical
fluid extraction, and solid phase microextraction (SPME). Among them, SPME is
the most commonly used technique as it integrates the extraction, concentration,
and introduction in one step thus resulting in reducing preparation time. A growing
body of evidence indicates that MVOCs are eco-friendly and can be exploited as a
cost-effective and sustainable strategy in agricultural practice as agents triggering
plant immunity and promoting plant growth. Also, MVOC-mediated conversion of
solid cellulosic biomass to liquid biofuels may provide a renewable energy source
for transportation fuels.
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11.1 Introduction

The term endophyte was first coined by De Bary in 1884 for microorganisms
including bacterial, yeast, archaeal, fungal, and protistic taxa colonizing internal
plant tissues (De Bary 1884). Hallmann et al. (1997) defined endophytes as, con-
sidering any microorganism as an endophyte if it can be isolated or extracted from
inside surface disinfected plant tissue and it does not seemingly harm the plant. This
definition has been widely accepted for cultivable species in most laboratories in the
world over the last 20 years. However, due to the suspected lack of adequate
elimination of nucleic acids after sterilization of plant surfaces, this definition
seemed to be less suited for non-cultured species upon the interpolation of
molecular detection techniques in endophyte research. Coombs and Franco (2003)
defined microbial endophytes as ubiquitous colonizers of the interior tissues of host
plants and can constitute a range of different relationships such as symbiotic,
mutualistic, and commensalistic where they do not usually have any substantial
morphological changes and disease symptoms.

11.2 Microbial Volatile Organic Compound (MVOC)

Several prokaryotic and eukaryotic microorganisms generate a plethora of complex
and dynamic array of gaseous secondary metabolites, usually known as volatile
organic compound (VOCs) of low molecular weight lipophilic (<300 Da) com-
pounds, high vapor pressure (0.01 kPa or higher at 20 °C), low boiling point,
belonging to different chemical classes that vaporize and diffuse easily through air
and water-filled pores and thus play essential biological/ecological roles in
aboveground as well as belowground habitats (Penuelas et al. 2014; Tyc et al. 2014;
Wenke and Piechulla 2013). Recent studies showed that soil microbiotas can use
these volatile compounds as ideal info-chemical as growth stimulants, growth
inhibitors, and inhibitors of quorum-sensing, i.e., quorum quenching (Effmert et al.
2012; Kim et al. 2013). In living organism, these compound are formed as part of
normal metabolism and derived from different biosynthetic pathways and act as
signal molecules for inter- and intra-organismic communication between plants,
antagonists, and mutualistic symbionts both below (soil) and above ground (at-
mosphere) (Kanchiswamy et al. 2015). At the plant–microbe community level,
substantial progress has been made in studying the multifaceted role of MVOCs
produced by bacteria, fungi, and phytopathogens in agroecosystems. Researcher
considers MVOCs as potential semiochemicals that function as attractants and
repellents to insects and other invertebrates, as biocontrol agents to control various
phytopathogens, as biofertilizers for plant growth promotion, as a potential source
of biofuel, and are also used to prevent postharvest plant diseases.
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11.3 Diversity of Microbial Volatiles

The available literature and databases allow estimating the known structural
diversity of volatiles derived from plant flowers ca. 1,700 volatiles from 991 species
(Dunkel et al. 2009), 1,093 volatiles from 491 microbes, including 135 fungi and
356 bacteria (Lemfack et al. 2014). Yet considering that 2,98,000 of plant species
(Mora et al. 2011), 107–109 bacterial species (Schloss and Handelsman 2004), and
1.5 million fungal species (Hawksworth 2001) might exist on earth, the number of
volatiles will be added more to databases as new species are being characterized
and discovered. The 1,093 volatilome from the MVOC database (Lemfack et al.
2014) grouped into 13 chemical classes (Table 11.1).

11.4 Microbial Volatile Organic Compound (MVOCs)
Collection and Detection

For bioprospecting the microbial volatile compound, the first and foremost
requirement is their detection in the source, identification and afterwards their
collection. However, analysis of these volatile compounds poses challenges as they
tend to occur in mixtures, possess different chemical properties, and are generally

Table 11.1 Per cent contribution of major and minor group of microbial volatiles (Lemfack et al.
2014)

% contribution of
volatile

Total diversity

Major group of volatile

Terpenes 11 Major groups of volatile compound representing
64% of total diversityKetones 13

Organic acid 10

Alcohol 16

Aromatic
compounds

14

Minor groups of volatile

Alkanes 5 Minor groups of volatile compound constitute 36%
of total diversityAlkenes 3

Nitrogen
compound

5

Sulfur
compound

7

Aldehydes 7

Esters 7

Furans 2

Ethers <1
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present in low concentrations. Thus, for accurate interpretation, it is crucial to
obtain as many volatile components as possible from the samples, therefore, the
desired sampling technique must be able to extract different polar and structural
biological VOCs.

Over time, many strategies have been applied in the field of MVOC detection
and concentration. Steam distillation (Vanhaelen et al. 1978; Kaminski et al. 1972),
liquid–liquid extraction (Wu et al. 2005), and simultaneous distillation extraction
are some of the conventional methods that were employed by the researchers. They
required long extraction times, large amounts of solvents, and multiple steps. These
methods also result in degradation of unstable volatiles such as alkene, ester, and
some unsaturated VOCs. However, because of their simplicity, they are still
extensively applied for the fragrance-and-aroma characterization. Another method
for collection of microbial volatiles is purging and trapping. In studies of odor
formation in moist cereal grain during granary storage, the volatiles were collected
by the withdrawal of intergranular air through adsorbent cartridges (Abramson et al.
1980, 1983). Norrman (1977) developed a fast method to study volatile production
by direct injection of a headspace sample into a gas chromatograph with a packed
column.

However, currently the widely used method is headspace solid-phase microex-
traction method (HS-SPME) because it integrates the extraction, concentration, and
introduction in one step thus resulting in reduced preparation time and simultaneously
increasing sensitivity over other extractions (Tait et al. 2014). The HS-SPME pro-
cedure includes introduction of fused silica fiber coated with a polymeric organic
material into the headspace above the sample. The volatile organic analytes are
extracted and concentrated in the fiber coating and then transferred to the analytical
instrument which is mostly gas chromatograph for thermal desorption and analysis.
The technique has great importance in microbiological studies and food technology
(Zhang and Pawliszyn 1993; Nilsson et al. 1995). The fiber chosen for extractionmay
have a marked effect on the detected VOC profile. Different fiber coatings are com-
mercially available for SPME, like polydimethylsiloxane, carbowax-divinylbenzene
(Jia et al. 2010), and polyacrylate (Buchholz et al. 1994) that have exclusively been
applied to the analysis of phenols. Only for a few phenols comparative results are
available, indicating higher sensitivity with the polyacrylate than with the poly-
dimethylsiloxane fiber coating for these more polar compounds.

After extraction, analysis of samples is performed by coupled (GC) and mass
spectrometry (MS) (Madrera et al. 2005). Other methods of volatile analysis include
comprehensive two-dimensional gas chromatography (Welke et al. 2014), ion trap
mass spectrometry (Noguerol et al. 2009), or time-of-flight mass spectrometry
(Bordiga et al. 2014).Among innovative procedures, near-infrared (NIR) spectroscopy
is becoming popular in the field of volatile studies as a rapid, accurate, simple to
operate, as it requires no sample pretreatments prior to analysis (Buratti et al. 2011).
Recently, Ye et al. (2016) have used this method in detecting volatiles in apple wines.
Near-infrared region of the electromagnetic spectrum (700–2500 nm) provides more
sophisticated structural information based on the variation behaviors of combinations
of bonds (Bauer et al. 2008; Reid et al. 2006). Proton transfer reaction-mass
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spectrometry (PTR-MS) is another method that can be used to measure the concen-
tration volatile emission by ionizing organic molecules in the gas phase through their
reaction with H3O

+, forming mostly MH+ molecules (where M is the neutral organic
molecule), which can then be detected by a standard quadrupole/multiplier mass
analyzer (Ezra et al. 2004).

11.5 MVOCs as Signals Mediating Intra- and Interspecies
Communications

Recently, a new communication path, sense of smell has been well established in
many organisms. This sense of smell or volatile-mediated communication played
significant function in both above and belowground ecosystems. Living organisms
use these volatile as ideal semiochemical for chemical conservations among intra-
and interspecies. For example, vertebrates and invertebrates are capable to detect
minute quantities of volatiles even over very long distances. The plants use volatiles
to broadcast with their pollinators as well as with plants of the same species or other
plants and microorganisms as well use these sweet scents for communication
among microbes and plants so they can interact with each other (Heil and Walters
2009; Effmert et al. 2012).

11.5.1 MVOC in Bacterial–Plant Interactions

A number of bacteria preferentially live in the soil in close association with plant
roots utilizing root exudates as their food source. These exudates are ordinarily rich
in sugars, amino acid, organic acids, and other compounds, many of them promote
plant growth. These bacteria are called as rhizobacteria, whereas the root envi-
ronment they colonize is called the rhizosphere (Bhattacharyya and Jha 2012;
Mendes et al. 2013). Some of these microbes get genetically modified to acquire
traits like endophytic competence to be able to colonize the interior of the plant. For
long, scientists have speculated that all rhizobacteria can be expected to be endo-
phytic at least at one point in their entire life cycle (Sturz et al. 2000; Hardoim et al.
2008, 2012).

VOCs produced by rhizobacteria are involved in their interaction with plant
pathogenic microbes and host plants and exhibit antimicrobial and plant growth
regulating activities. The bacterial VOCs such as 2-heptanol, 2-pentanone,
2-pentadecanone, 2-undecanone, 2-tridecanone, 4-heptanone, and sodorifen pro-
duced by Serratia odorifera are able to interfere with plants. Forty-two soilborne
bacterial strains were screened and evaluated for their volatile-mediated effect on
6-day-old seedlings of Arabidopsis thaliana. A total 36 volatile compounds of
bacterial origin were selected, many of them exerting negative consequences on
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plants growth while only three compound indole, 1-hexanol, and pentadecane
stimulated plant growth. Cocultivation of A. thaliana with S. odorifera in divided
Petri dishes, which only let volatiles to diffuse from one side of the plate to the
other, resulted in dramatic growth inhibition of plants (Kai et al. 2010; Blom et al.
2011; Weise et al. 2014). Groenhagen et al. (2013) in their study compared the
effect of volatiles produced by three Burkholderia strains isolated from clinical
environment, pea rhizosphere, and maize roots. Exposure of Arabidopsis thaliana
plants to these volatiles resulted in significant increase in biomass, as well as growth
inhibition of Rhizoctonia solani and Alternaria alternata. Also, volatile profiles of
these strains were found to be similar, and dimethyl disulfide was the most abun-
dant compound and sulfur compounds, ketones, aromatic compounds were other
significant components. This indicates that like their rhizospheric counterparts
endophytic strains are also capable of producing the similar volatiles and this can be
further explored in many other important species.

Application of dimethyl disulfide (DMDS) produced by a Bacillus cereus strain
significantly protected tobacco and corn plants against gray mold Botrytis cinerea
and southern corn leaf blight Cochliobolus heterostrophus, respectively. It also
reduced the expression of Nicotiana attenuata sulfur assimilation genes, methionine
biosynthesis, and recycling (Huang et al. 2012). Acetoin and 2,3-butanediol
(2,3-BD) were frequently released from strains of Bacillus subtilis and B. amy-
loliquefaciens and were found to raise the total leaf surface area and induced
systemic resistance (ISR) of Arabidopsis thaliana (Ryu et al. 2003; Rudrappa et al.
2010). The study of D’Alessandro et al. (2014) revealed that production of 2,3-BD
by E. aerogenes rendered corn plants more resistant against the northern corn leaf
blight fungus Setosphaeria turcica. A large number of volatile produced by lemon
rhizobacteria is benzaldehyde, tridecanal, acetophenone, tetradecanal, and
6,10,14-trimethyl 2 pentadecanone have differential effects on Arabidopsis roots is
correlated to the type and quantity of compounds produced by the bacteria
(Gutierrez-Luna et al. 2010). Similarly, 3-exanone produced by Burkholderia
ambifaria significantly enhanced Arabidopsis biomass, as did acetophenone and
DMDS produced by lemon rhizobacteria and Bacillus cereus, respectively
(Groenhagen et al. 2013).

11.5.2 MVOC in Bacterial–Bacterial Interactions

Very scanty information is available about the nature of volatiles in bacterial–
bacterial communication, what is known till yet is briefly described here. The
communication may be stimulatory and inhibitory depending upon the one species
exerts an effect on other species. The stimulating effect of volatile compound
produced by Collimonas pratensis and Serratia plymuthica observed on the growth
of Pseudomonas fluorescens. The unique volatiles produced by the both bacterial
strains were benzonitrile, methyl thiocyanate, S-methyl thioacetate, and DMDS.
A blend of volatiles emitted by four bacteria namely, Paenibacillus sp., Pedobacter
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sp., Collimonas pratensis and Serratia plymuthica did not affect P. fluorescens
growth. Moreover, the specific volatiles produced by C. pratensis were methyl
salicylate, methyl 2-methylbutanoate, methyl 3-methylbutanoate,2-methyl propa-
nal, 3-methyl 2-pentanoene, 3-methyl 2-heptanone, 3-hexanone, 4-methyl
3-penten-2-one, ethenyl acetate, myrcene, and terpinene. Similarly, the specific
volatiles produced by S. plymuthica were chlorobenzene, dimethylsulfone, ethyl
butanoate, 2-pentadecanone, 2-octanone, 1H-pyrrole, and 5-dodecanone (Garbeva
et al. 2014).

Many workers demonstrated the inhibitory effect of two Pseudoalteromonas
strains on the growth of Burkholderia cepacia complex (Bcc) strains through the
synthesis of Methyl-2,3,3,4-tetrahydroxytetrahydrofuran, indole and its derivatives,
quinolones and (S)-3-hydroxytridecan-4-one volatile organic compound (Papaleo
et al. 2013; Orlandini et al. 2014; Kanchiswamy et al. 2015). Similarly,
Dandurishvili et al. (2011) examined that some strains of P. fluorescens and S.
plymuthica inhibited the growth of Agrobacterium tumefaciens and A. vitis strains
in vitro. The tomato treated with S. plymuthica produced DMDS that strongly
suppressed Agrobacterium growth and might be involved in suppression of onco-
genicity in plants.

11.5.3 MVOCs in Bacterial–Fungal Interactions

A number of rhizobacterial species such as P. fluorescens, P. trivialis,
Stenotrophomonas maltophilia, S. rhizophila, Serratia plymuthica, and S. odorifera
are known to synthesize and emit complex blends of volatile organic compound
that inhibit growth of many phytopathogenic as well as non-phytopathogenic fungi
(Kai et al. 2010). Pyrrolnitrin (PRN) is a chlorinated phenylpyrrol antibiotic from
Burkholderia pyrrocinia,Pseudomonas sp., Enterobacter sp., Myxococcus sp., and
Serratia sp. (Garbeva et al. 2004). This compound has shown broad spectrum
activity against a wide range of fungi belonging to the ascomycota, basidiomycota,
and deuteromycota, including several economically important phytopathogens such
as Sclerotinia sclerotiorum, Botrytis cinerea, Rhizoctonia solani, and Verticillium
dahliae. The stem rot of Euphorbia pulcherrima is caused by Rhizoctonia solani
and also suppressed by B. cepacia strain 5.5B mediated PRN (Hwang et al. 2002).

MVOCs emitted by S. rhizophila P69, S. maltophilia R3089, S. plymuthica
3Re4-18, S. plymuthica HRO-C48, S. odorifera 4Rx13, P. trivialis 3Re2-7, and
Bacillus subtilis B2g had exerted a strong negative impact on the mycelial growth
of soilborne phytopathogenic fungus R. solani (Kai et al. 2007). Also, the volatile
O-anisaldehyde emitted by Bacillus atrophaeus CAB-1 exerts the highest inhibition
on the mycelial growth of the fungal pathogen Botrytis cinerea (Zhang et al. 2013).
Growth inhibition of phytopathogen is also dependent on the varying concentration
of volatile produced by different microbes. The high concentration of
volatile-mediated growth inhibition of R. solani and Alternaria alternata was
observed with 2-undecanone, DMDS, dimethyl trisulfide, S-methyl
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methanethiosulphonate, 4-octanone, and 1-phenylpropan-1-one produced by
Burkholderia ambifaria. The mycelial growth of Fusarium culmorum, F. oxyspo-
rum, Colletotrichm gloesporioides, and Sclerotum rolffsi was significantly inhibited
by fifteen Burkholderia tropica strains (Groenhagen et al. 2013).

11.6 Endophytic Microbial Volatiles as Promising Source
of Next Generation Biofuel Production

Recently, a number of endophytic bacteria and fungi have been discovered that
make hydrocarbons while utilizing cellulosic polymers found in plant-based agri-
cultural wastes. The action of different hydrolytic enzymes converts the agricultural
waste substrate into volatile compounds that are either identical to or are closely
linked to those specific categories of molecules that are found in diesel such as
mono-terpenoids, alkanes, cyclohexanes, cyclopentanes, and alkyl alcohols,
ketones, benzenes, and polyaromatic hydrocarbons. For example, the Phomopsis
sp. produces VOCs such as sabinene, pinene, 3-methyl-1-butanol, 1-propanol,
2-methyl and 2-propanone, and benzeneethanol that are being explored as the
components for the next generation aircraft fuel (Grigoriev et al. 2011; Strobel et al.
2011). Similarly, Ascocoryne sarcoides, Ascocoryne cylichium, and Ascocoryne
solitaria produced a broad range of volatiles including alkanes, alkenes, alcohols,
ester, ketones, acids, benzene derivatives, terpenes, and esquiterpenes. Majority of
these VOCs are similar to diesel because of their cyclic and branched structure
(Rude and Schirmer 2009; Griffin et al. 2010; Mallette et al. 2014).

An endophyte, Nodulisporium sp. was isolated from Myroxylon balsamum pro-
duced VOCs with fuel potential. Under microaerophilic growth environments, the
organism produced 1,8-cineole, propylcyclohexane, acetone, 2-pentanone,
3-hexanone, 4-methyl and 5-hepten, 2-one, 4-methyl, 3-hexanone, -methyl-1-butanol,
1,4-cyclohexadiene, 2,4-dimethyl, 1-4 pentadiene and cyclohexene, 2-hexanone,
1-methyl-, 1-methyl-4-(1-methylethenyl)-, along with some alcohols and terpenoids of
interest as potential fuels. In an aerated large fermentor, Nodulisporium sp produced a
number of products such as 3-methyl-1-butanol, 2-methyl-1-propanol, 1-pentanol,
1-hexanol, 1-heptanol, 1-octanol, benzene derivatives, alkyl alcohols, ketones, esters, a
few terpenoids, 1-nonanol along with phenylethyl alcohol as ingredient of diesel
(Mends et al. 2012). The 1,8-cineole, 1-methyl-1,4-cyclohexadiene, and (+)-
amethylene-a-fenchocamphorone also have the potential to be used as a fuel additive,
produced by Hypoxylon sp. (CI-4A) (Tomsheck et al. 2010). In addition to alkanes
and long-chain hydrocarbon, many fungal species produce other potential biofuel
targets, such as ethylene, ethane, propane, and propylene (Ladygina et al. 2006).

However, little information is available about the bacterial volatiles as fuel
potential as compared to traditional bioethanol and plant oil-derived biodiesel. The
identified relevant volatile compounds include various short-to-medium chain
alkanes, alkenes, alcohols, and isoprenoids, which hold large potential to substitute
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or supplement petroleum-derived fuels. For example, undecene, butanol, and
isopentanol are consistently observed in Pseudomonas sp. 1-Undecene is particu-
larly fascinating due to its superior physical properties, which may receive a direct
application as a fuel (Rui et al. 2014).

11.7 Potential of MVOCs for Applications in Agriculture

The list of VOC produced by many endophytic microorganisms and their effect on
interacting organisms is summarized in Table 11.2. Several rhizobacterial species
enhanced and regulate the growth of plants, impart resistance against abiotic and
biotic stresses through volatile-mediated compounds and exhibit their potential in
biocontrol. The B. amyloliquefaciens-borne volatile 2,3-butanediol mediates the
growth promotion and ISR against E. carotovora in A. thaliana (Ryu et al. 2004;
Farag et al. 2006;). Several strains of Bacillus isolated from rhizosphere of lemon
plants facilitate the growth and root architecture of A. thaliana by VOC production
(Gutierrez-Luna et al. 2010). It has been also shown that Serratia plymuthica and
Stenotrophomonas maltophilia borne volatile had negative consequences on the
growth of model plant Arabidopsis thaliana (Wenke and Piechulla 2013). Sensor
kinase GacS mediated synthesis of 2,3-butanediol in P. chlororaphis enhanced the
growth of tobacco and also imparted drought tolerance in A. thaliana. Among three
stereoisomers of 2,3-butanediol, only 2R,3R-butanediol was effective in plant
growth promotion suggesting the presence of specific receptors for this isomer in
plants (Han et al. 2006; Cho et al. 2008). Moreover, VOC produced by several
genera such as Burkholderia, Chromobacterium, Pseudomonas, Serratia, and
Stenotrophomonas may have negative consequences on the plant growth and health
(Bailly and Weisskopf 2012).

Endophytic Bacillus and Psuedomonas strains are capable of species-specific
production of six volatile compounds such as dimethyltrisulfide, n-decanal, non-
anal, benzothiazole, cyclohexanol, and 2-ethyl-1-hexanol which completely inhibit
mycelial growth and sclerotial germination of Sclerotinia sclerotiorum (Bitas et al.
2013). A more extensive survey involving 1,018 bacterial isolates showed that
VOC from 328 isolates, which belong to families Alcaligenaceae, Bacillales,
Micrococcaceae, Rhizobiaceae, and Xanthomonadaceae, inhibited spore germina-
tion and mycelial growth of two nematicidal fungi. Seven VOC including acet-
amide, benzaldehyde, benzothiazole, 1-butanamine, 1-decene, methanamine, and
phenylacetaldehyde appear to play roles in fungistasis. Benzothiazole is the only
VOC that was found in both surveys, suggesting that different species produce
different VOC for fungistasis, antifungal activity of many compounds are target
specific, or a combination of both (Zou et al. 2007).

VOC emitted from the fruiting body of Pleurotus ostreatus (oyster mushroom)
such as 1-octanol, 3-octanol, 3-octanone, 1-octen-3-ol, benzoic acid, and ben-
zaldehyde inhibited the growth of several bacterial species (Beltran-Garcia et al.
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1997). Certain endophytes produce antimicrobial VOC which may directly con-
tribute to defense against pathogens.Muscodor albus, a fungal endophyte originally
isolated from cinnamon tree, emits a blend of VOC that inhibits or kills a broad
range of bacteria, fungi, and oomycetes (Strobel et al. 2001). The GC-MS analysis
of its VOC revealed that many of the identified compounds such as 1-butanol and
3-methyl-acetate have antimicrobial activity (Strobel 2006; Porras-Alfaro et al.
2011).

Some biocontrol fungi appear to employ VOC to control pathogenic fungi
(Hynes et al. 2007). For instance, many strains of Trichoderma have been proven to
effectively prioritize a wide range of soilborne fungal pathogens by employing
mechanisms such as mycoparasitism, nutrient competition, and secretion of inhi-
bitory compounds and hydrolytic enzymes (Lorito et al. 2010; Harman 2011).
Trichoderma viride and T. aureoviride emitted VOC that inhibit the growth and
protein production of Serpula lacrymans, a wood-rotting basidiomycete. However,
T. pseudokoningii had no effect on any of the Serpula isolates tested, suggesting the
species-specific nature of antifungal VOC production (Humphris et al. 2002). Also,
VOC produced by Trichoderma spp. are useful in growth inhibition of F. oxys-
porum f. sp. ciceris, a soilborne fungal pathogen that causes chickpea wilt (Dubey
et al. 2007). F. oxysporum strain MSA35, which enhanced lettuce growth via VOC
also inhibits the growth of pathogenic strains of F. oxysporum (Minerdi et al. 2011).

11.8 Conclusion

Volatiles are only a minor proportion of the entire number of metabolites produced
by existing organisms. Nevertheless, because of their unique attributes they are
predestined to act as infochemicals in intra- and interspecies communications in the
atmosphere as well as in soil. Among microbes, endophytic filamentous fungi are
an excellent platform for exploiting biosynthetic routes to hydrocarbon biofuels or
biofuel precursors. In recent years, bacterial and fungal production of volatiles has
emerged as a novel process by which these endophytes modulate plant growth and
induce resistance against abiotic and biotic stresses. Exposure to the volatiles
produced by microbes has been shown to lead to up to fivefold increased plant
biomass or to plant death.
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Chapter 12
Potential of Lignin-Degrading Endophytic
Fungi on Lignocellulosic Biorefineries

Úrsula Fillat, Raquel Martín-Sampedro, David Macaya-Sanz,
Juan A. Martín, David Ibarra and María E. Eugenio

Abstract Renewable lignocellulosic biomass is considered as feedstocks to play a
significant role in the future of biorefineries for the sustainable production of food,
chemicals, materials, and biofuels. Lignin, the natural barrier that protects cellulose
and hemicelluloses from microbial attack, represents an important limiting factor in
these processes. Removal of lignin has a vast scope with central importance to be
utilized as a source of carbohydrates in the manufacturing of cellulose-based
chemicals including paper pulp and ethanol production. Enzymes produced by
ligninolytic fungi acted as an alternative to develop competent and eco-friendly
technologies to use biomass of lignin and cellulose. Among these microorganisms,
the “white-rot” causing fungi that belong to basidiomycetes are potential contenders
of efficient depolymerization and mineralization of lignin via secretion of low
molecular mass oxidative enzymes. Recently, some endophytic fungi have been
tested for ligninolytic enzymes and their possible biotechnological applications. This
chapter highlights the recent progress that has been made in screening endophytic
fungi for ligninolytic activities and their capacities for transforming lignocellulosic
biomass into fermentable sugars and paper pulps in a biorefinery framework.
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12.1 Introduction

Wood is the main renewable material on Earth, and primarily composed of lignin,
cellulose, and hemicellulose (Higuchi 1997). Lignin provides mechanical resistance
to the plant. Lignin complex polymer with a three-dimensional structure consisting
guaiacyl (G), p-hydroxyphenyl (H), syringyl (S), and phenylpropanoid as compo-
nents. The unit of lignin is derived from the hydroxycinnamyl alcohols
(p-coumaryl, coniferyl, and sinapyl alcohols), which gives rise to variants of C–C
and ether bonds subunits (Martínez et al. 2009). Very few organisms are able to
degrade lignin, due to its chemical complexity and recalcitrance (Martínez et al.
2005). Degradation of lignin becomes a central issue in biorefinery processes, such
as in the production of ethanol and cellulose-based papers (Cañas and Camarero
2010). In the plant cell wall, lignin is intimately associated to carbohydrates
(hemicellulose and celluloses) to prevent easy hydrolysis for bioethanol production.
Thus, a step as pre-treatment (mainly physical or physico-chemical methods) is
necessary for increasing fermentable sugars for hydrolysis step (Salvachúa et al.
2011; Kataaria et al. 2013; Ofori-Boateng and Lee 2013). Regarding paper pulp
manufacture, the process basically consists in the separation (chemically or
mechanically) of lignin from fibers. After that, residual lignin in pulps are removed
by oxidative bleaching reactions, including totally chlorine-free (TCF) bleaching
sequences (Fillat and Roncero 2010; Sixta 2006; Fillat and Roncero 2009b).

Biotechnological processes could provide efficient and eco-friendly biocatalysts
for lignin modification or removal (Cañas and Camarero 2010). Bacteria and fungi
are capable of competently depolymerizing and mineralizing lignin (Martínez et al.
2005; Kunamneni et al. 2007). Wood-decaying fungi can secrete extracellular
enzymes related to lignin degradation, developing a complex system involving
reductases, oxidases, peroxidases, mediators, low molecular weight compounds,
etc. (Martínez et al. 2005). Laccases are the oxidoreductases most studied to be
applied in biotechnological processes; these enzymes oxidize phenol and other
compounds of aromatic nature (Cañas and Camarero 2010). Basidiomycota is
recognized as the most relevant phylum secreting laccases. However, there are
species within ascomycota, such as Myceliophthora thermophila, which also pro-
duce ligninolytic enzymes with high industrial interest due to thermal stabilities and
activities at higher pH (Ibarra et al. 2006). In the industrial applications, the ability
of ligninolytic fungi and their oxidoreductases enzymes (laccases and peroxidases)
to alter or remove lignin are eco-friendly schemes for utilization of renewable
lignocellulosic feedstocks. Various workers have observed that these fungi and their
enzymes act for pre-treatment steps to enhance enzymatic hydrolysis of
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lignocellulosic biomass (Moreno et al. 2015a; Castoldi et al. 2014; Kudanga and Le
Roes-Hill 2014; Singh et al. 2014; Ghorbani et al. 2015; Moreno et al. 2013). In the
same way, these biotechnological tools have been used as biological pre-treatment
before pulping process improving fiber individualization or lignin removal,
respectively (Bajpai et al. 2001). Moreover, laccases, mainly being used as a
laccase-mediator system (LMS) to catalyze the development of efficient TCF
biobleaching (Singh et al. 2015; Fillat and Roncero 2009a, 2010). Lignin degra-
dation by fungi has been previously evaluated significant and necessary for
long-term storage for the growth of desired saprophytic fungi which complicates
industrial applications. Therefore, novel candidates of potential fungi become
essential to find out to solve or ameliorate the hurdle of industrial implementation.

Various studies on wood-attacking fungi were based on advanced degradation
stages. However, few fungal endophytes also served as potential wood-
decomposers (Fukusawa et al. 2009). In nature, fungal endophytes are found liv-
ing in symbiosis in asymptomatic photosynthetic tissues of all major lineages of
land plants. These fungi represent an enormous fungal diversity and its geo-
graphical distribution, host range and ecological roles are yet unknown (Arnold
et al. 2002; Martín et al. 2013). Some endophytic fungi remain in a dormant stage
until the plant or its organs become dead and then trigger to grow to become
primary colonizers (Promputtha et al. 2010a). Thus, these fungi advantageously
compete on other saprophytes in early stages of decomposition (Fukusawa et al.
2009). A number of studies on fungal succession have been carried out to suggest
that some of the early colonizers are fungal endophytes (Promputtha et al. 2010b),
those bears complex enzymatic systems (Wang and Dai 2011; Sunitha et al. 2013),
become able to degrade tissues of their host plant. On the other hand, other fungi
such as vesicular and arbuscular mycorrhizal (VAM) interact with living plant roots
modifying lignin biosynthesis in the plant and then altering their resistance to pest
and pathogens (Bennett et al. 2014). Other studies focused on the environmental
effect on the nonstatic interaction amid plant and endophyte (Faeth and Fagan 2002;
Lehtonen et al. 2005). However, temporal and spatial distribution of endophytes in
the bulky and ancient forest is still poorly understood.

The study of the wood-associated fungi in lignin degradation, as well as their
oxidative enzymes, is necessary, as they could advance current bioconversion
processes.

12.2 Lignin-Degrading Enzymes

In nature, basidiomycetes cause white-rot with a wide array of enzymes that are
effective for lignin degradation (Wong 2009). Peroxidases and laccases are the
major groups of ligninolytic enzymes (Fig. 12.1) (Alcalde 2015). Ligninolytic
peroxidases are hemeperoxidases with high redox potential that can oxidize phe-
nolic and nonphenolic units of lignin using hydrogen peroxide mediated hydrolysis
as a co-substrate. Lignin peroxidases can directly oxidize the substrates, whereas
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manganese peroxidases produce Mn3+ and act mainly on phenolic units; both were
discovered in Phanerochaete chrysosporium (Martínez et al. 2005). Pleurotus
eryngii produces versatile peroxidase that shows catalytic properties similar to
lignin and manganese peroxidases (Ruiz Dueñas et al. 1999). On the other hand,
oxidades, such as glyoxal and aryl-alcohol oxidases described in Phanerochaete
chrysosporium and P. eryngii, respectively (Guillén et al. 1992), produce the
hydrogen peroxide necessary for the catalytic action of the peroxidases (Kersten
1990), Finally, to avoid the repolymerization of the derived phenols produced
during lignin oxidation, aryl-alcohol dehydrogenases and quinone reductases cat-
alyze their reduction (Guillén et al. 1997).

Laccases oxidize several phenolic and nonphenolic substrates using four Cu+

ions on the active site. Type 1 copper acts as an electron acceptor from substituted
phenols or amines and is liable for the development of blue color. While type 2
copper transfer electrons to the molecular oxygen which further reduces water
molecule (Martínez et al. 2005). Laccases also generate radicals, and then nonen-
zymatic reactions were also produced, such as polymerization and hydrogen
abstraction. Although they have been isolated from ascomycetes and deuter-
omycetes, lignin degradation studies have not been a focus as much on the ba-
sidiomycetes (Madhavi and Lele 2009). Most common laccase producers are

Fig. 12.1 Overview of the place of lignin in cellulosic biomass and the reactions catalyzed by
lignoenzymes. Figure extracted from Alcalde (2015)
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wood-rotting fungi from the genus Trametes, Pleurotus, Pycnoporus, Coriolopsis,
and Cerrena (Morozova et al. 2007; Kunamneni et al. 2007; Madhavi and Lele
2009). Laccase activity has also been reported in bacteria including Azospirillum
lipoferum, Bacillus subtilis, Bordetella campestris, Caulobactercrescentus,
Escherichia coli, Mycobacterium tuberculosum, Pseudomonas syringae,
Pseudomonas aeruginosa, Yersinia pestis, Stenotrophomonas maltophilia,
Streptomyces cyaneus, and Streptomyces ipomoea (Diamantidisa et al. 2000;
Chandra and Chowdharya 2015; Arias et al. 2003; Eugenio et al. 2011).

12.3 Ligninolytic Enzymes in Endophytic Fungi

Most endophytic fungi are ascomycetes, though other phyla are also represented.
Literature about ligninolytic enzymes production by endophytes is limited and, in
general, although few ascomycetes have shown the ability for lignin degradation
largely being ignored as liable for the degradation of wood-biomass (Pointing 1999;
Liers et al. 2006; Shary et al. 2007).

Most studies carried out to screen ligninolytic enzymes from fungi were
culture-procurement based beside, culture-dependent (Levin et al. 2004; Järvinen
et al. 2012). However, recently some microorganisms have been isolated from the
decayed wood of forests in Zimbabwe (Tekere et al. 2001), Tunisia (Dhouib et al.
2005) and Spain (Barrasa et al. 2009; Fillat et al. 2016) have been reported. Solid
media facilitate a fast selection of diverse fungi for enzymatic activity (Sunitha et al.
2013; Niku-Paavola et al. 1988). Different substrates as ABTS (2,2′-azinobis-
(3-ethylbenzothiazoline-6-sulfonic acid)), naphthol and Poly R-478 have been
assayed for the search of lignin-degrading enzymes in endophytes isolated from
living plants (Table 12.1). A solid screening suggests that fungal endophytes
possess enzymatic machinery, which could produce decay of wood under certain
conditions (Oses et al. 2006). Ligninolytic activities in basidiomycetous fungi
associated with woody trees, isolated from the Chilean tree species Drymiswinteri
and Prumnopitysandina, were found using Poly R-478 (Oses et al. 2006). Only two
endophytes, Xylaria sp. from Xylariaceae and Curvularia brachyspora from
Pleosporaceae, were positive in naphthol from twelve different species isolated
from four medicinal plants (Adhatodav asica Nees, Costus igneus N.E.Br. Coleus
aromaticus Benth and Lawsonia inermis Linn) (Amirita et al. 2012b). Fifty fungal
strains, isolated from medicinal plants (Alpiniacalcarata, Bixaorellana,
Calophyllum inophyllum, and Catharanthusroseus) were selected for extracellular
enzymes and thirty percent of the fungi screened showed naphthol oxidation from
different families (Table 12.1) (Sunitha et al. 2013). Endophytic fungi community
of Acer truncatum trees was investigated and seventeen from twenty isolates oxi-
dized the substrate naphthol, as indicated in Table 12.1 (Sun et al. 2011).

A new screening study with an enormous amount of strains isolated from
eucalyptus trees in Spain has recently been published (Fillat et al. 2016) (Fig. 12.2).
In this study, strains of endophytic fungi isolated from E. globulus trees in different
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Table 12.1 Endophytic fungi with potential for producing ligninolytic enzymes assayed in solid
plates

Substrate Accession family Accession species References

ABTS Lophiostomataceae Lophiostoma corticola Fillat et al. (2016)

ABTS Dothioraceae Hormonema sp. Fillat et al. (2016)

ABTS Dothioraceae Pringsheimia smilacis Fillat et al. (2016)

ABTS Montagnulaceae Paraconiothyrium
variabile

Fillat et al. (2016)

Naphtol Montagnulaceae Paraconiothyrium
brasiliense

Sun et al. (2011)

ABTS Botryosphaeriaceae Neofusicoccum luteum Fillat et al. (2016)

ABTS Botryosphaeriaceae Neofusicoccum australe Fillat et al. (2016)

ABTS Botryosphaeriaceae Dothiorella sarmentorum Fillat et al. (2016)

ABTS Botryosphaeriaceae Botryosphaeria sp. Cruz et al. (2012)

Naphtol Botryosphaeriaceae Fusicoccum sp. Sunitha et al. (2013)

ABTS Pleosporaceae Ulocladium sp. Fillat et al. (2016)

Naphtol Pleosporaceae Curvalaria brachyspora Amirita et al. (2012a)

Naphtol Pleosporaceae Curvularia sp. Patel et al. (2013)

Naphtol Pleosporaceae Drechslera biseptata Sun et al. (2011)

Naphtol Pleosporaceae Alternaria alternata Sun et al. (2011)

Naphtol Pleosporaceae Alternaria arborescens Sun et al. (2011)

ABTS Amphisphaeriaceae Leiosphaerella praeclara Fillat et al. (2016)

Poly
R-478

Xylariaceae Xylaria sp. Urairuj et al. (2003)

Naphtol Xylariaceae Xylaria sp. Amirita et al. (2012a)

Naphtol Diaporthaceae Phomopsis longicolla Sunitha et al. (2013)

Naphtol Trichosphaeriaceae Nigrospora sp. Patel et al. (2013)

Naphtol Nectriaceae Fusarium sp. Patel et al. (2013)

Naphtol Chaetomiaceae Chaetomium sp. Sunitha et al. (2013)

Naphtol Trichocomaceae Aspergillus niger Sunitha et al. (2013)

Naphtol Trichocomaceae Penicillium sp. Sunitha et al. (2013)

Naphtol Pestalotiopsidaceae Pestalotiopsis sp. Sunitha et al. (2013)

Naphtol Cordycipitaceae Isaria sp. Sunitha et al. (2013)

Naphtol Amphisphaeriaceae Pestalotiopsis disseminata Sunitha et al. (2013)

Naphtol Leptosphaeriaceae Leptosphaeriasp. Sun et al. (2011)

Naphtol Leptosphaeriaceae Coniothyrium olivaceum Sun et al. (2011)

Naphtol Diaporthaceae Diaporthe sp. Sun et al. (2011)

Naphtol Glomerellaceae Glomerella miyabeana Sun et al. (2011)

Naphtol Gnomoniaceae Gnomoniella sp. Sun et al. (2011)

Naphtol Melanconidaceae Melanconis sp. Sun et al. (2011)

Naphtol Montagnulaceae Microsphaeropsis
arundinis

Sun et al. (2011)

Naphtol Incertae sedis Ascochytopsis vignae Sun et al. (2011)

Naphtol Incertae sedis Coelomycetes sp. Sun et al. (2011)
(continued)
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regions of Spain were screened on agar medium containing ABTS. Among more
than one hundred strains of endophytic fungi tested, twenty-one fungal strains
oxidized ABTS at some extent. High ABTS oxidation was observed in eight strains
after 48 h with a higher ratio of green halo and diameter of the colony (DH/DC) and
other five strains were observed to produced medium oxidation (DH/DC ratio 1.5–
1.2). However, Pycnoporus sanguineus and Trametes sp. I-62 strains (DH/DC

Table 12.1 (continued)

Substrate Accession family Accession species References

ABTS Incertae sedis Phaeomoniella effusa Fillat et al. (2016)

ABTS Incertae sedis Phaeomoniella niveniae Fillat et al. (2016)

Naphtol Incertae sedis Discosia sp. Sunitha et al. (2013)

Naphtol Incertae sedis Phoma sp. Sunitha et al. (2013), Sun
et al. (2011)

Naphtol Incertae sedis Phoma glomerata Sun et al. (2011)

Naphtol Incertae sedis Sirococcus clavigignenti
juglandacearum

Sun et al. (2011)

Poly
R-478

Meruliaceaea Bjerkandera sp.a Oses et al. (2006)

aAll are Ascomycete fungi except the Basidiomycete Bjerkandera sp.

Fig. 12.2 Scheme of the experimental procedure for screening of ligninolytic enzymes from
eucalyptus wood endophytes. Figure extracted from Fillat et al. (2016)
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ratio) used as a model of white-rot fungi known to be a good producer of laccases
(Martín-Sampedro et al. 2013; Martín-Sampedro et al. 2013; Eugenio et al. 2013).
Endophytic strains showing positive oxidation were identified a member of asco-
mycetes such as Neofusicoccum, Ulocladium, Lophiostoma, Pringsheimia,
Hormonema, Dothiorella, Pyrenochaeta, and Coniothyrium) and Sordariomycetes
(genus Leiosphaerella). Four strains classified as genera Phaeomoniella and
Tumularia and were of Incertae sedis classes. It should be noted that the majority of
endophytic strains found a member of Dothideomycetes and to the orders of
Pleosporales, Dothideales, and Eurotiomycetes. This predominance of
Dothideomycetes in this screening can be due to different facts (i) more common in
the endophytic community; (ii) their isolation is easier than that of others endo-
phytes or (iii) produce more oxidoreductases.

Endophytic strains of Xylariaceae shown ligninolytic activity on agar medium
using Poly R-478 as indicator (Urairuj et al. 2003; Cruz et al. 2012); and a positive
result has been found with naphthol in Curvularia sp., Nigrospora sp. and
Fusarium sp. from Pleosporaceae and Nectriaceae families, respectively (Patel et al.
2013).

Various workers have observed laccase activity in liquid medium for some
endophytic fungi (Anderson et al. 2005; Fillat et al. 2016; Shary et al. 2007)
(Table 12.2). These include members of the class Sordariomycetes, and family
Xylariaceae (Urairuj et al. 2003), Fusarium proliferatum of the family Nectriaceae
(Anderson et al. 2005; Muthezhilan et al. 2014), Podospora anserina of the family
Lasiosphaeriaceae (Durand et al. 2013), Chaetomium globosum of the family
Chaetomiaceae (Benhassine et al. 2016; El-Zayat 2008), Colletotrichum gloespo-
rioides of Glomerellaceae (Xie and Dai 2015; Zhou et al. 2014) and Phomosis
liquidambari of Diaporthaceae (Xie and Dai 2015; Zhou et al. 2014). Similarly,
laccase activity has been demonstrated for members of class Dothideomycetes,
Monotospora sp. of the family Hysteriaceae (Wang et al. 2006), few genera such as
Neofusicoccum australe, N. luteum and Botryosphaeria sp. of Botryosphaeriaceae
(Barbosa et al. 1996; Srivastava et al. 2013; Cruz et al. 2012; Sunitha et al. 2013;
Fillat et al. 2016), Ulocladium sp. of Pleosporaceae (Atalla et al. 2010) and
Hormonema sp. and Pringsheimia smilacis of Dothioraceae (Fillat et al. 2016;
Zifcáková et al. 2011). Laccase activity has been measured in endophytic basid-
iomycetes Peniophora sp. of Peniophoraceae family (Zifcáková et al. 2011). To the
best of our knowledge, four laccases from endophytes have been purified and
characterized from Trichoderma harzianum (Sadhasivama et al. 2008), Podospora
anserine (Durand et al. 2013), Cladosporium cladosporioides (Halaburgi et al.
2011), and Paraconiothyrium variabile (Forootanfar et al. 2011).

On the other hand, ligninolytic activities have been detected in endophytes
cultures: manganese peroxidase and independent manganese peroxidase in several
species of the family Xylariaceae (Urairuj et al. 2003) and aryl-alcohol oxidadase in
F. proliferatum (Anderson et al. 2005). The peroxidase activity has been measured
in the endophytic basidiomycete strain Bjerkandera sp. (Oses et al. 2006).
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12.4 Role of Biotechnology in Lignocellulosic Biorefineries

Biorefineries are facilities that provide fiber products, biofuels, and other chemical
materials including plastics, sugar polymers, oils, and biomass derived proteins
(Cañas and Camarero 2010). Biorefineries combine and integrate various tech-
nologies, among which major are biotechnical methodologies which have the
potential to reduce carbon emissions through different ways; substituting petroleum
as a fuel and as a starting material, increasing process efficiency, closing loops, and
diminishing wastes (Erickson et al. 2012). In nature, lignin oxidation performed by
wood-rotting fungi is an important issue for carbon cycling, and its implementation
in the industry can improve the accessibility of chemicals or enzymes to cellulose.
Application of ligninolytic fungi and its enzymes has been extensively studied in
the pulp and paper industry and the production of biofuels (Camarero et al. 2014).

Cellulose and hemicelluloses can be hydrolyzed by acid treatments or enzymatic
hydrolysis after pre-treatment, conversion into bioethanol by a microbial fermen-
tation. In contrast, lignin is not constituted of fermentable sugars and due to their
structural properties has an unruly structure challenging to discompose. The
introduction of a pre-treatment step is indispensable to improve digestion ability of
lignocellulose and sugars production (Parawira and Tekere 2011; Salvachúa et al.
2011; Kataaria et al. 2013; Ofori-Boateng and Lee 2013). Several physico-chemical
and chemical pre-treatment processes exist for ammonia fiber explosion to improve
lignocellulose saccharification thereby (Kumar et al. 2009). However, these tech-
nologies include high high-capital investment with energy demand and also pro-
duce certain sugars that influence the subsequent fermentation (Moreno et al.
2015b). In order to overcome this disadvantages produced by the physico-chemical
pre-treatment, different eco-friendly approaches using biotechnology have been
studied to degrade lignocellulose (biodelignification) and to decrease the quantity of
inhibitors (biodetoxification) (Parawira and Tekere 2011; Moreno et al. 2015b).
These biotreatments exhibit higher product yield and few side reactions (Moreno
et al. 2015b). Moreover, biotechnology processes use mild reaction conditions that
reduced reactor requirements to resist pressure and corrosion and also energy costs
(Moreno et al. 2015b). White-rot fungi and their oxidative enzymes avoid the
formation of inhibitors and are an alternative or an additional pre-treatment step to
physico-chemical methods for bioethanol production (Moreno et al. 2015a; Castoldi
et al. 2014; Castoldi et al. 2014; Kudanga and Le Roes-Hill 2014; Singh et al. 2014;
Ghorbani et al. 2015; Moreno et al. 2013; Ruíz-Dueñas and Martínez 2009).

On the other hand, the pulping process consists of the separation of pulp fibers
from wood for papermaking. One of the less harmful and more promising alter-
natives to improve conventional pulping processes is the use of microorganisms
(such as white-rot fungi) and their enzymes for biotreatment wood chips to reduce
lignin content (Fonseca et al. 2014). This process was industrialized to reduce the
electrical energy required for pulping wood chips and to economize active alkali
charge or cooking time for chemical pulping (Mendonça et al. 2002; Villalba et al.
2006). As mentioned above endophytic fungi have been widely studied as
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biotechnological pre-treatments. Recently, the role of five ascomycete endophytic
strains Neofusicoccum luteum, Ulocladium sp., Pringsheimia smilacis, Hormonema
sp. and Neofusicoccum australe in lignin degradation has been studied extensively.
Application of the endophytic fungal strain Hormonema sp. CECT 13092 for the
mentioned applications has been patented (Martín et al. 2014).

12.4.1 Effect of Fungal Pre-treatments on Enzymatic
Hydrolysis

Wood chips were inoculated with individual preinoculum of each fungal strain.
After the biotreatments and before enzymatic saccharification, a mild alkali treat-
ment was performed on solid samples, in order to improve the hydrolysis yields
(Salvachúa et al. 2011). An autohydrolysis (AH) pre-treatment was carried out prior
or after the fungal (and alkali) pre-treatment (Fig. 12.3) (Martín-Sampedro et al.
2015b). The AH pre-treatment augmented glucose yield from 4 to 11% more than
xylose in comparison to that of untreated control (Fig. 12.4). Pre-treated material
presents a major accessibility due to the decrease of hemicelluloses and the
increased porosity achieved in the biotreatment (Alvira et al. 2010). Earlier
enhanced sugar yields using more severe pre-treatment conditions were observed
and Martin-Sampedro et al. (2014) and Romaní et al. (2010) have been reported
glucose yields of 23–51% after AH pre-treatment with 3.1–3.8 severity factor.
When fungal pre-treatment was carried out before or after AH pre-treatment sac-
charification improved in all samples. It should be pointed out that a synergistic
effect of both pre-treatments could be observed and it was more noticeable when
Ulocladium sp. or Hormonema sp. were used: 8.5 and 8.0 times increases in total
sugar yields for both fungi (31–34% glucose and 24–29% xylose yields) regarding
no pre-treated control sample (4% glucose and 3% xylose yields) (Fig. 12.4). When
the white-rot fungus Trametes sp. I-62 used as a reference was inoculated after AH
pre-treatment, total sugar yields were 2–3 times higher than that of the yields
increased by autohydrolyzed E. globulus wood without fungal treatment.

Fig. 12.3 Scheme of the experimental procedure of biological pre-treatments to enhance
enzymatic saccharification. Figure extracted from Martín-Sampedro et al. (2015b)
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Interestingly, when AH pre-treatment was performed after fungal treatment, the
increase in saccharification produced by this reference fungus was lower than that
observed for the control sample. The endophytic fungi caused a higher boost of
hydrolysis than the white-rot fungi, probing their high potential for enhancing
saccharification of E. globulus wood. Other studies combined fungal pre-treatments
with white-rot or brown-rot fungi with chemical and physical methods so as to
improve saccharification yields (López-Abelairas et al. 2013; Wang et al. 2013; Gui
et al. 2013) and/or to decrease biotreatment times (Fu et al. 2013; Yu et al. 2009).
However, increases in saccharification were lower than that of observed with
endophytic strains. López-Abelairas et al. (2013) observed a glucose yield 3.9 and
4.6 times higher in wheat straw pre-treated with a thermal treatment and a fungal
treatment with Pleorotus eryngii or Irpex lacteus. Gui et al. (2013) obtained glucose
yields 1.7 times higher using Pycnoporus chrysosporium combined with 2.5%
sulphuric acid treatment than in acid-treated Glycyrrhiza uralensis under the similar
conditions. Wang et al. (2013) reported that fungal pre-treatment of poplar wood
with Trametes orientalis or Fomitopsis palustris before a FeCl3 treatment increased
sugar yields 1.4 and 1.6 times more than FeCl3 treatment without fungi. Yang et al.
(2013) reported a similar value to that found in the endophytic fungi mentioned
before when poplar was treated with Trametes velutina D10149 and alkaline
fractionation.

Fig. 12.4 Glucose concentrations during the enzymatic hydrolysis of the samples after fungal
treatments and those subjected to autohydrolysis (AH) before or after fungal pre-treatments.
Figure extracted from Martín-Sampedro et al. (2015b)
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12.4.2 Effect of Fungal Pre-treatments on Kraft Pulping

Fungal pre-treated chips with endophytes and saprophytic fungi were subjected to
kraft pulping (Fig. 12.5). Lower Kappa number and higher brightness values were
obtained for all the samples treated with fungi compared to control pulp (without
fungal treatment). However, no significant differences in polymerization degree
were found. Moreover, higher delignification was observed with endophytic strains
during kraft pulping compared to Trametes sp. I-62, except P. smilacis. The highest
increment in delignification (27% compared to control) was found when
Hormonema sp. was applied compared with 9% obtained by Trametes sp. I-62.
Moreover, Hormonema sp. and N. australe provided higher brightness (46.0 and
44.3% ISO, respectively) than Trametes sp. I-62 (41.6% ISO). Other white-rot
fungi have improved delignification during kraft pulping in previous works, but the
results were worse than that observed for this endophytic fungus in most of the
cases: when chips from hardwood (eucalyptus and poplar) were pre-treated with
Ceriporiopsis subvermispora an increase of 14% was obtained (Yadav et al. 2010);
increases around 18% were produced from pine pre-treated with Pycnoporus
sanguineus, Pycnoporus sp. and Stereumhirsutum (Wolfaardt et al. 2004). Higher
increases were measured when soda pulping was performed in rice straw pre-treated
with P. chrysosporium and Pleorotus ostreatus: 26 and 35%, respectively (El-Din
et al. 2013).

Among all the strains studied, Hormonema sp. showed the minor NaOH con-
sumption during pulping, 12% less than control and similar Na2S consumption.
N. australe pre-treated samples consumed also around 8% less NaOH than control
and Trametes sp. I-62 samples. However, Na2S consumption increased from 54 to
82%, and kappa number and brightness were worse than those found for pulps
pre-treated with Hormonema sp. These reductions in the alkali dose necessary to
produce a target kappa number in chemical pulps have been associated with the
modifications in wood chips caused by fungi (Mardones et al. 2006).

Mechanical properties of handsheets of the obtained pulps were improved when
a fungal pre-treatment was performed before pulping. Endophytic fungi, except

Fig. 12.5 Scheme of the experimental procedure of biological pre-treatments to enhance Kraft
and mechanical pulping
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P. smilacis, produced increases in tensile, tear and/or burst indices. Hormonema
sp. again showed the best results and was the only fungus which enhances the three
properties compared to control:indices. N. australe presented good outcomes in
relation to delignification yield, also increased tensile and burst indices. Other
authors have found similar results: 8% increase in tensile and 12% in burst indices
and an 8% decrease in tear index after pre-treated black pine with C. subvermis-
pora, (Gulsoy and Eroglu 2011). Mechanical properties as tensile and burst indices
are associated with bond ability amid fibers, whereas tear index is correlated with
the degradation of fibers. Those pre-treated pulps that present less lignin content can
present a greater bonding amid cellulose-to-cellulose that could improve the
strength in the handsheets (Ismail et al. 2005).

12.4.3 Effect of Fungal Pre-treatments on Mechanical
Pulping

Fungal pre-treated chips with the endophytes and the saprophytic fungi were sub-
jected to mechanical pulping (Fig. 12.5) (Martín-Sampedro et al. 2015a). After
mechanical pulping of pre-treated chips, the pulps presented higher refining degree
compare to an untreated pulp (48° SR), especially the one pre-treated with
Hormonema sp. (69° SR). Gulsoy and Eroglu (2011) reported easier fibrillation in
pine pulp pre-treated withC. subvermispora than control pulp; this enhancement was
related to a higher production by fungus. As well, time reductions in refining to obtain
a given fibrillation degree was observed in Eucalyptus tereticornis pulp pre-treated
with C. subvermispora (Bajpai et al. 2001) and hornbeam with P. chrysosporium
(Kasmani et al. 2012). The easier beating of fungal pre-treated pulps to obtain target
wetness imply less energy consumption (Gulsoy and Eroglu 2011).

A reduction in kappa number of 8 points and 1.4% in Klason lignin was found
when chips were pre-treated with Hormonema sp. This endophyte can modify
lignin and also, remove it from the wood. Other authors have also observed kappa
number reductions in pulps pre-treated with fungi and subjected to
chemo-mechanical pulping (Singh et al. 2013).

Enhanced mechanical properties were found in all fungal pre-treated pulps,
except for Ulocladium sp. According to Ferraz et al. (2008), fungal pre-treatment
produces a double effect, a deep short period depolymerization of lignin and also an
increase of the water saturation point due to the oxalate esterification on the
polysaccharides chains mediated by the fungus. Both changes could influence the
fiber bonding, and then, the physical properties of the wood and the pulp obtained
after mechanical pulping. Handsheets obtained from pulp pre-treated with
Hormonema sp. provided the highest tensile and burst indices increases of 28% in
tensile, 16% in tear, and 44% in burst indices, compared with an untreated sample.
whereas when using the reference fungus Trametes sp. I-62 increments of 23, 17,
and 12% were obtained, for the same properties. Ramos et al. (2001) and Singh
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et al. (2013) found less increases in tensile, tear, and brust indices during
pre-treatment of oil palm trunk with T. versicolor and C. subvermispora. On the
other hand, Kasmani et al. (2012) reported significant reductions in tensile and burst
indices when hornbeam was pre-treated with P. chrysosporium. Therefore, endo-
phytic fungi, mainly Hormonema sp., show a high potential in biomechanical
pulping when these results were compared to other white-rot fungi. Thus, it is
expected that endophytes pre-treated chips would need less energy for fibrillation
target and/or similar mechanical properties than untreated pulp.

12.5 Conclusions

Endophytic fungi have been screened for the search of oxidative enzymes that could
be used as an alternative to existing industrial processes of transformation of lig-
nocellulosic biomass. Ligninolytic activity has been reported for several endophytic
strains in the solid and liquid medium. Among several, endophytes isolated from
eucalyptus trees have been recently applied for biotechnological applications in
biorefineries. Fungal treatments with endophytes are able to enhance saccharifica-
tion of E. globulus, as well as kraft and mechanical pulping. Moreover, some of
them provided greater enhancement than various white-rot fungi. Therefore,
endophytic fungi show a high potential to be applied in the lignocellulosic industry.
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Chapter 13
Conclusion

K.G. Ramawat

Abstract Endophytes form a very complex physical and physiological association
with the host plant influencing many biological activities. This complex association
results in several novel and beneficial activities for these hidden organisms as
evident by chapters presented in the two-volume set on endophytes. All the work on
endophytes can be categorized as i) isolation and identification, ii) role in agri-
culture, iii) production of industrially important products, and iv) production of
useful secondary metabolites. The concluding remark envisioned the future bene-
ficial role of endophytes with the use of new technology in industry and agriculture.

Keywords Endophytes � Molecular tools � Future of endophytes

Endophytes, as their name suggests, are organisms living within the plants without
any noticeable symptom. These form a very complex physical and physiological
association influencing the host and other microorganisms present in plant on the
one side and all the host’s pests on the other side. This complex association results
in several novel and beneficial activities for these hidden organisms as evident by
data presented in these two volumes on endophytes. Information about endophytic
actinobacteria for sustainable agricultural application, their role in phosphate sol-
ubilisation, beneficial effects of bacterial endophytes on forest tree species, plant
growth promotion by endophytic bacteria in non-native crop hosts, harnessing
endophytic microbial volatile organic compound for sustainable agroecosystem,
endophytic fungi as source of biologically active secondary metabolites, potential
of lignin-degrading endophytic fungi on lignocellulosic biorefineries, endophytic
fungi and bioremediation, extra-cellular enzymes, and plant disease control is
presented in the chapters.

All the work on endophytes can be categorized as (i) isolation and identification,
(ii) role in agriculture, (iii) production of industrially important products, and
(iv) production of useful secondary metabolites. Production of useful metabolites
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and applications in sustainable agriculture are important areas of research on
endophytes producing a plethora of secondary metabolites and growth promoting
substances of diverse chemical nature from wide variety of species of plants and
endophytes. Endophytes have been reported from various crop plants, grasses, tree
species, and several other plants. It is envisioned that plants of extreme habitat such
as cold and hot conditions, carnivores of marshy lands, and all sorts of parasites
should be explored to find out more diverse endophytes and hitherto lesser known
properties and metabolites. This might increase the inventory of useful metabolites.
Involvement of endophytes has also been evaluated in fields as diverse as phy-
toremediation and biofuels production. Very limited options are available for
treating polluted water from agriculture and landfills. This area needs more attention
to use endophytes for developing this technology (Redfern Lauren and Gunsch
Claudia 2016).

Endophyte and host relationship is complex and not clearly understood. This
creates a further complex situation when a pathogen is present in the same host
plant. Cell-to-cell communication between different entities is not clearly under-
stood and this area will provide more understanding about the complex relationship,
which may provide clue for novel traits for plant breeding.

Reduction in dependence on chemical pesticides and fertilizers for sustainable
agriculture is an important area to meet the food security. Endophytes are beneficial
to crops directly by producing growth promoting compounds or indirectly by
inhibiting the growth of pathogens (Passari et al. 2016). Therefore, it is necessary to
characterize the endophytes and their products for crop improvement and sustain-
able environment. Their effective use will reduce the dependence on chemical
fertilizers and pesticides (Le Cocq et al. 2016).

Symbiotic nitrogen fixing endophytes is important class of endophytes studied in
great detail in leguminous plants and trees. Efforts to transfer nif gene to non-
leguminous plants were not successful. In this case also, characterisation of
endophytes using genomics and tools of molecular biology would result useful
information. Characterization of endophytic bacterial and fungal endophytes will
also help in finding non-native hosts. Internal transcribed spacer (ITS) barcoding
along with classical taxonomic characterization are important areas of research on
endophytes (Tanney et al. 2016). Characterization of endophytes using genomic
tools can help in finding more bacterial biocontrol agents and understanding the
mechanism of action (Eljounaidi et al. 2016).

All microorganisms, pathogenic, non-pathogenic and endophytes, produce var-
ious types to enzymes to dissolve host cell wall and other barriers to establish
themselves. These enzymes are useful in many scientific and industrial processes
and thus are explored for their optimum production system (Goyal et al. 2017).
Mycorrhyzal fungi occur as ecto- or endo-mycorrhyza in plant roots and recognized
as phosphate solubilising fungi. In light of recent works these fungi need to work
out for many more plant beneficial traits. This will benefit plant as well as
ecosystem.

Production of secondary metabolites of interest to pharmaceutical industry is
very attractive field of research using biotechnological methods of plant cell
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cultures grown in bioreactors. This scale up technology of growing cells at large
scale up to 75,000 l has been established and methods of isolation and identification
as well as downstream processing of secondary metabolites has been developed for
many products. Thus technology is available for industrial-scale production of
secondary metabolites of interest and finding a compound of interest from endo-
phytes can leads to its industrial production quickly (Goyal et al. 2015, 2017). In
many cases, precursors from plants are converted to final product by endophyte.
The complex relationship between endophyte and its host thus is evaluated care-
fully to establish the biosynthetic process of secondary metabolites. The research
work on endophytes applications and use of new technology along with develop-
ment of industrial level production system is summarized in Fig. 13.1.

Modern tools and techniques of molecular biology including metagenomes,
proteomes and transcriptomes will help in defining characteristics of endophytes
and finding novel products for development of industrial products. Generally plant
breeding is carried out to develop resistant plants with focus on its pathogen. Once
endophytes and their relationship are established, plant breeder can take in account
the endophyte of the host for breeding for pathogen resistance. This will enable
better crop plants from health and productivity point of view.

It is evident from the literature surveys presented in the chapters that future of
endophytes research is bright as demand for pharmaceutical products and agricul-
tural produce is increasing day by day with ever-increasing population. Use of

Fig. 13.1 Schematic presentation of summary of research on endophytes applications and use of
new technology along for the development of industrial level production system. Scale up
technology for the production of useful metabolites from plant cells is already standardized and
can effectively used for the production of metabolites from endophytes

13 Conclusion 285



multiple technologies will produce quick results to select target compounds for
human welfare. The book will be useful for agriculturists, biotechnologists and
those working in the fields of pharmacy, food and feed industry, and plant breeding.
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