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Abstract In incomplete markets, a basic Black-Scholes perspective has to be
complemented by the valuation of market imperfections. Otherwise this results in
Black-Scholes Ponzi schemes, such as the ones at the core of the last global financial
crisis, where always more derivatives need to be issued for remunerating the capital
attracted by the already opened positions. In this paper we consider the sustainable
Black-Scholes equations that arise for a portfolio of options if one adds to their
trade additive Black-Scholes price, on top of a nonlinear funding cost, the cost of
remunerating at a hurdle rate the residual risk left by imperfect hedging. We assess
the impact of model uncertainty in this setup.

Keywords Market incompleteness • Cost of capital (KVA) • Cost of funding
(FVA) • Model risk • Volatility uncertainty • Optimal martingale transport

1 Introduction

In incomplete markets, a basic Black-Scholes perspective has to be complemented
by the valuation of market imperfections. Otherwise this results in Black-Scholes
Ponzi schemes, such as the ones at the core of the last global financial crisis,
where always more derivatives need to be issued for remunerating the capital
attracted by the already opened positions. In this paper we consider the sustainable
Black-Scholes equations that arise for a portfolio of options if one adds to their
trade additive Black-Scholes price, on top of a nonlinear funding cost, the cost of
remunerating at a hurdle rate the residual risk left by imperfect hedging. We assess
the impact of model uncertainty in this setup.

Section 2 revisits the pricing of a book of options accounting for cost of capital
and cost of funding, which are material in incomplete markets. Section 3 specializes
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the pricing equations to a Markovian Black–Scholes setup. Section 4 assesses the
impact of model risk in a UVM (uncertain volatility model) setup. Section 5 refines
the model risk add-ons by accounting for calibrability constraints.

We consider a portfolio of options made of !i vanilla call options of maturity
Ti and strike Ki on a stock S; with 0 < T1 < : : : < Tn D T: Note that, if a
corporate holds a bank payable, it typically has an appetite to close it, receive cash,
and restructure the hedge otherwise with a par contract (the bank would agree to
close the deal as a market maker, charging fees for the new trade). Because of this
natural selection, a bank is mostly in the receivables (i.e. “!i � 0”) in its derivative
business with corporates.

We write x˙ D max.˙x; 0/.

2 Cost of Capital and Cost of Funding

2.1 Cost of Capital

In presence of hedging imperfections resulting in a nonvanishing loss (and profit)
process % of the bank, a conditional risk measure EC D ECt.%/ must be dynamically
computed and reserved by the bank as economic capital.

It is established in Albanese et al. (2016, Sect. 5) that the capital valuation
adjustment (KVA) needed by the bank in order to remunerate its shareholders for
their capital at risk at some average hurdle rate h (e.g. 10%) at any point in time in
the future is:

KVA D KVAt.%/ D hEt

Z T

t
e�.rCh/.s�t/ECs.%/ds; (1)

where Et stands for the conditional expectation with respect to some probability
measure Q and model filtration.

In principle, the probability measure used in capital and cost of capital calcu-
lations should be the historical probability measure. But, in the present context of
optimization of a portfolio of derivatives, the historical probability measure is hard
to estimate in a relevant way, especially for long maturities. As a consequence, we
do all our price and risk computations under a risk-neutral measure Q calibrated
to the market (or a family of pricing measures, in the context of model uncertainty
later below), assuming no arbitrage.

2.2 Cost of Funding

Let rt denote a risk-free OIS short-term interest rate and ˇt D e�
R t

0 rsds be the
corresponding risk-neutral discount factor. We assume that the bank can invest at
the risk-free rate r but can only obtain unsecured funding at a shifted rate r C � > r.
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This entails funding costs over OIS and a related funding valuation adjustment
(FVA) for the bank. Given our focus on capital and funding in this paper, we ignore
counterparty risk for simplicity, so that � is interpreted as a pure funding liquidity
basis. In order to exclude arbitrages in the primary market of hedging instruments,
we assume that the vector gain process M of unit positions held in the hedging
assets is a risk-neutral martingale. The bank “marks to the model” its derivative
portfolio, assumed bought from the client at time 0, by means of an FVA-deducted
value process ‚. The bank may also set up a (possibly imperfect) hedge (��) in the
hedging assets, for some predictable row-vector process � of the same dimension
as M. We assume that the depreciation of ‚, the funding expenditures and the loss
�dM on the hedge, minus the option payoffs as they mature, are instantaneously
realized into the loss(-and-profit) process % of the bank. In particular, at any time
t, the amount on the funding account of the bank is ‚t: Moreover, we assume that
the economic capital can be used by the trader for her funding purposes provided
she pays to the shareholders the OIS rate on EC that they would make otherwise by
depositing it (assuming it all cash for simplicity).

Note that the value process ‚ of the trade already includes the FVA as a
deduction, but ignores the KVA, which is considered as a risk adjustment computed
in a second step (in other words, we assume that the trader’s account and the KVA
account are kept separate from each other). Rephrasing in mathematical terms the
above description, the loss equation of the trader is written, for t 2 .0; T�, as (starting
from %0 D y; the accrued loss of the portfolio):

d%t D �
X

i

!i.STi � Ki/
CıTi.dt/

„ ƒ‚ …
call payoffs

C rtECt.%/dt„ ƒ‚ …
Payment of internal lending of the EC funding source at OIS rate

C
�
.rt C �t/

�
‚t � ECt.%/

�C
� rt

�
‚t � ECt.%/

��
�

dt„ ƒ‚ …
portfolio funding costs/benefits

C .�d‚t/„ ƒ‚ …
depreciation of ‚

C �tdMt„ƒ‚…
loss on the hedge

D �d‚t �
X

i

!i.STi � Ki/
CıTi.dt/ C

�
�t

�
‚t � ECt.%/

�C
C rt‚t

�
dt C �tdMt:

(2)

Hence, a no-arbitrage condition that the loss process % of the bank should follow
a risk-neutral martingale (assuming integrability) and the terminal condition ‚T D
0 lead to the following FVA-deducted risk-neutral valuation BSDE:

‚t D Et

h X
t<Ti

ˇ�1
t ˇTi !i.STi � Ki/

C
i

„ ƒ‚ …
‚0

t

�Et

h Z T

t
ˇ�1

t ˇs�s
�
‚s � ECs.%/

�C
ds

i
„ ƒ‚ …

FVAt

; t 2 Œ0; T�

(3)
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(since we consider a portfolio of options with several maturities, we treat option
pay-offs as cash-flows at their maturity times rather than a terminal condition in the
equations, in particular ‚T D 0).

The funding source provided by economic capital creates a feedback loop from
EC into FVA, which makes the FVA smaller.

Note that, in the usual case of a risk measure EC only affected by the time
fluctuations of %; the Eqs. (3) and in turn (1) are independent of the accrued loss
y, which eventually does not affect ‚ nor the KVA.

If � D 0; then, whatever the hedge �, ‚ reduces to ‚0; which corresponds to the
usual trade additive (linear) no-arbitrage pricing formula for a portfolio of options,
with zero FVA, but with a KVA given by (1), depending on the hedge �:

If � ¤ 0; we introduce the following backward SDE:

‚?
t D Et

h X
t<Ti

ˇ�1
t ˇTi!i.STi � Ki/

C �

Z T

t
ˇ�1

t ˇs�s.‚
?
s /Cds

i
; t 2 Œ0; T� : (4)

This is a monotone driver backward SDE, admitting as such a unique square
integrable solution ‚? (see, e.g., Kruse and Popier (2016, Sect. 4)), provided � is
bounded from below and ‚0 is square integrable. If there exists a replicating hedge
�; i.e. � D �? such that the corresponding % is constant in (2), i.e. �?

t dMt coincides
with the martingale part of ‚?, then the resulting %; EC and KVA vanish (since we
assumed EC.0/ D 0) and the ensuing FVA-deducted value process is given by ‚?:

Example 2.1 (Single option positions) If n D 1 and !1 D 1 (one long call position),
then, by application of the comparison theorem for BSDEs with a monotonic
generator (see Kruse and Popier (2016, Sect. 4)), we have ‚? � 0, hence

‚?
t D Et

�ě�1
t

ě
T1 .ST1 � K1/C

�
; (5)

where ě
t D e�

R t
0.rC�s/ds: With respect to ‚.0/; the value ‚? corresponds to an

FVA rebate on the buying price by the bank (since we assumed a positive liquidity
basis �).

If n D !1 D �1 (one short call position), then we deduce likewise that ‚? � 0;

hence ‚? D ‚.0/:

But, apart from the above special cases where � D 0 or � D �?, the BSDE (3)
for ‚ is nonstandard due to the term EC D ECt.%/ in the FVA.

3 Markovian Black-Scholes Setup

In this section we assume a constant risk-free rate r and a Black-Scholes stock S
with volatility � and constant dividend yield q. The risk-neutral martingale M is
then taken as the gain process of a continuously rolled unit position on the stock S,
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assumed funded at the risk-free rate via a repo market, i.e. dMt D dSt � .r �q/Stdt:
We denote by Abs

S D .r � q/S@S C 1
2
�2S2@2

S2 the corresponding risk-neutral Black-
Scholes generator.

Doing our modeling exercise in the context of the Black-Scholes model, where
perfect replication, hence no KVA, is possible, may seem rather artificial. However,
doing all the computations in a stylized Black-Scholes setup with a single risk factor
S yields useful practical insights. In addition, this conveys the message that, in real-
life incomplete markets, a basic Black-Scholes perspective has to be complemented
by the valuation of market imperfections, otherwise this unavoidably results in
Black-Scholes Ponzi schemes, such as the ones that have been involved in the global
financial crisis, where always more derivatives are issued to remunerate the capital
required by the already opened positions (if priced and risk-managed in a basic
Black-Scholes way ignoring the cost of capital).

In the Black-Scholes setup and assuming a stylized Markovian specification

ECt.%/ D f

r
dh%i

dt
(6)

(the stylized VaR which is proportional to the instantaneous volatility of the loss
process % modulo a suitable “quantile level” f ) as well as � D �.t; St/; �t D �.t; St/,
then the above FVA and KVA equations can be reduced to the “sustainable Black-
Scholes PDEs” (12), as follows (resulting in an FVA- and KVA-deducted price that
would be sustainable for the bank even in the limit case of a portfolio held on a
run-off basis, with no new trades ever entered in the future).

First, observe that given a tentative FVA-deducted price process of the form ‚t D

u.t; St/ for some to-be-determined function u D u.t; S/; we have, assuming (6):
r

dh%i

dt
D �St

ˇ̌
@Su.t; St/ � �.t; St/

ˇ̌
: (7)

Accordingly, let the function u be defined by ui.t; S/ on each strip .Ti�1; Ti� �

.0; 1/; where .ui/1�i�n is the unique sequence of viscosity solutions, which can
then be shown to be classical solutions, to the following PDE cascade, for i
decreasing from n to 1 (closing the system by setting unC1 D 0 and T0 D 0):

(
ui.Ti; S/ D uiC1.Ti; S/ C !i.S � Ki/

C on .0; 1/

@tui C Abs
S ui � �

�
ui � f �Sj@Sui � �j

�C
� rui D 0 on ŒTi�1; Ti/ � .0; 1/:

(8)
Itô calculus shows that the process ‚ D .u.t; St//t solves the Markovian,

monotonic driver (assuming � bounded from below) BSDE

u.t; St/ D Et

h X
t<Ti

ˇ�1
t ˇTi!i.STi � Ki/

C

�

Z T

t
ˇ�1

t ˇs�s

�
u.s; Ss/ � f �Ss

ˇ̌
@Su.s; Ss/ � �.s; Ss/

ˇ̌�C

ds
i
; t 2 Œ0; T� ;

(9)



160 Y. Armenti et al.

which in view of (6)–(7) is precisely (3).
The ensuing FVAD ‚.0/ � ‚ and KVA processes are given as (cf. (3) and (1)):

FVAt.%/ D Et

h Z T

t
e�r.s�t/�s

�
u.s; Ss/ � f

r
dh%i

ds

�C

ds
i

KVAt.%/ D hEt

h Z T

t
e�.rCh/.s�t/f

r
dh%i

ds
ds

i
;

(10)

where
q

dh%i
dt is given by (7). We set � D .1�˛/@Su; where ˛ in Œ0; 100%� is the mis-

hedge parameter (noting that, for ˛ D 0; the BSDE (9) reduces to the replication
BSDE (4)), then the latter reduces to ˛�St

ˇ̌
@Su.t; St/

ˇ̌
and we have

FVAt.%/ D Et

h Z T

t
e�r.s�t/�s

�
u.s; Ss/ � ˛f �Ss

ˇ̌
@Su.s; Ss/

ˇ̌�C
ds

i

D v.t; St/ D ubs.t; St/ � u.t; St/;

KVAt.%/ D hEt

h Z T

t
e�.rCh/.s�t/˛f �Ss

ˇ̌
@Su.s; Ss/

ˇ̌
ds

i
D w.t; St/;

(11)

where ubs is the trade additive Black-Scholes portfolio value and where the FVA and
KVA pricing functions v and w satisfy

8̂
<
:̂

v.T; S/ D w.T; S/ D 0 on .0; 1/

@tv C Abs
S v C �

�
ubs � v � ˛f �Sj�bs � @Svj

�C
� rv D 0 on Œ0; T/ � .0; 1/

@tw C Abs
S w C ˛hf �Sj�bs � @Svj � .r C h/w D 0 on Œ0; T/ � .0; 1/;

(12)
in which �bs D @Subs:

These “sustainable Black-Scholes PDEs” (12) allow computing an FVA and
KVA deducted price

u � w D ubs � v � w

that would be sustainable for the bank even in the limit case of a portfolio held on a
run-off basis, with no new trades ever entered in the future.

4 With Volatility Uncertainty

An important and topical issue, referred to by the regulation as AVA (additional
valuation adjustment), is the magnifying impact of model risk on the different XVA
metrics.
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In this section, we assess model risk from the angle of Avellaneda et al. (1995)’s
uncertain volatility model (UVM). Namely, we only assume positive bounds � and
� but we do not assume any specific dynamic on the stock volatility process � .
Therefore, there is a model uncertainty about it. That is, we only consider dMt WD

�tStdWt D dSt � .r � q/Stdt; where �t 2 Œ�; �� for every t.
We call C the space of continuous paths on RC; C the canonical process on the

space C; F D .Ft/0�t�T the canonical filtration generated by C and Q the set of F
local martingale probability measures for C: We recall from Soner et al. (2012) that,
for any probability measure Q 2 Q, the process C satisfies dCt D a1=2

t dWQ
t , for

some Q Brownian motion WQ, where at is the Lebesgue density of the aggregated
quadratic variation of C: In the following we restrict attention to the probability
measures Q such that a1=2

t 2 Œ�; �� holds dt � Q almost surely, still denoting by Q
the (restricted) set of measures, and we model dMt D dSt � .r � q/Stdt as StdCt:

Under each Q, similarly to (2), the loss equation of the trader is written, for
t 2 .0; T�, as:

d%Q
t D �d‚Q

t �
X

i

!i.STi � Ki/
CıTi.dt/ C

�
�t

�
‚Q

t � ECQ
t .%Q/

�C

C rt‚
Q
t

�
dt C �tdMt

(13)

where ECQ is some conditional risk measure under Q. The ensuing equation for the
Q FVA-deducted value ‚Q appears as

‚Q
t D E

Q
t

h X
t<Ti

ˇ�1
t ˇTi!i.STi � Ki/

C �

Z T

t
ˇ�1

t ˇs�s
�
‚Q

s � ECQ
s .%Q/

�C
ds

i
;

t 2 Œ0; T� :

(14)

Under each Q, the trader should value the derivative portfolio ‚
Q
0 at time 0 (or

‚
Q
t at time t). However, due to the model uncertainty, the trader values it ‚0 D

inf
Q2Q

‚
Q

0 (or at time t, ‚t D ess inf
Q2Q

‚
Q
t ), which is a robust non-arbitrage price in the

sense of Biagini et al. (2015).
At time t, ECQ

t .%Q/ may depend on the whole future of the process (%Q
s ), s � t.

This makes (14) a so-called anticipated BSDE under Q (ABSDE in the sense of
Peng and Yang (2009)), with generator �t

�
‚

Q
t �ECQ

t .%Q/
�C

, where ‚Q corresponds
to the “Y-component” and (d%Q

s ��sSsdCs) to the “Z-component” of the solution.
However, in the Markovian setting of Sect. 3, ECQ

t .%Q/ only depends on (%Q
t ) at

time t, so that the ABSDE (14) reduces to a BSDE.
For taking model risk (i.e. the impact of several Q) into consideration, we need

the notion of second order BSDE. Wellposedness results regarding second order
anticipated BSDEs are not yet available in the literature. Hence, we only give
heuristic formulations in this regard. Namely, by analogy with the second order
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BSDEs theory introduced by Soner et al. (2012), we should have the following
representation, where FC D .FC

t /0�t�T the right limit of F, i.e. FC
t D \s>tFs for

all t 2 Œ0; T/ and FC
T D FT :

There exists a process % such that, for each Q 2 Q, % is a Q-local martingale and
it Q � a:s: holds that

d%t D �d‚t �
X

i

!i.STi � Ki/
CıTi.dt/

C
�
�t

�
‚t � ECQ

t .%/
�C

C rt‚t

�
dt C �tdMt C dAQ

t ;

(15)

where ECQ is some conditional risk measure and the family fAQg of non-decreasing
processes satisfies the minimality condition

AQ
t D ess infQ

Q
0
2Q.t;Q;FC/

E
Q

0
h

AQ
0

T

ˇ̌
ˇFQC

t

i
; 0 � t � T; Q � a:s:; 8Q 2 Q; (16)

where Q.t;Q;FC/ WD
n
Q

0

2 Q; Q
0

D Q on FC
t

o
.

The corresponding equation for the FVA-deducted value ‚ would appear as

‚t D ess inf
Q02Q.t;Q;FC/

E
Q0

t

h X
t<Ti

ˇ�1
t ˇTi!i.STi � Ki/

C

�

Z T

t
ˇ�1

t ˇs�s
�
‚s � ECQ0

s .%/
�C

ds
i
; t 2 Œ0; T� ; Q � a:s:

(17)

4.1 Equations in the Markovian Setting

By contrast, in the Markovian setting of Sect. 3 with VaR-like specification of
Economic Capital, we can make rigorous statements. According to the second order
BSDE theory introduced in Soner et al. (2012), the PDE (8) becomes:

8<
:

ui.Ti; S/ D uiC1.Ti; S/ C !i.S � Ki/
C on .0; 1/

@tui C inf
�2Œ�;��

h
Abs

S ui � �
�
ui � f �Sj@Sui � �j

�C
i

� rui D 0 on ŒTi�1; Ti/ � .0; 1/:

(18)
Let u be defined by ui.t; S/ on each strip .Ti�1; Ti��.0; 1/: The FVA can be defined
as ‚�D0 � ‚ and the ensuing KVA process is given as (cf. (3) and (1)):

KVAt.%/ D h esssup
Q02Q.t;Q;FC/

E
Q0

t

h Z T

t
e�.rCh/.s�t/f

r
dh%i

ds
ds

i
; Q a:s:; (19)
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where
q

dh%i
dt D a1=2

t St

ˇ̌
@Su.t; St/ � �.t; St/

ˇ̌
: In the case where � D .1 � ˛/@Su; we

obtain

KVAt.%/ D w.t; St/;

where
8<
:

w.T; S/ D 0 on .0; 1/

@tw C sup
�2Œ�;��

�
Abs

S w C ˛hf �Sj@Suj
�

� .r C h/w D 0 on Œ0; T/ � .0; 1/;

(20)
in which (cf. (18))

8<
:

ui.Ti; S/ D uiC1.Ti; S/ C !i.S � Ki/
C on .0; 1/

@tui C inf
�2Œ�;��

h
Abs

S ui � �
�
ui � ˛f �Sj@Suij

�C
i

� rui D 0 on ŒTi�1; Ti/ � .0; 1/:

5 Optimal Transportation Approach

Since vanilla call options are liquidly traded, their time 0 price components

E
Q

�
ˇTi.STi � Ki/

C
�

should not be seen as subject to model risk, but calibrated to the market. Hence, we
need to refine our preliminary UVM assessment of model risk in order to account for
these calibration constraints. For simplicity we consider a single call option .T; K/

and we set � D 0, focusing on KVA in this section. Hence, the system (18) reduces
to a single PDE with � D 0, with solution denoted by u.

(Tan and Touzi (2013)) consider the optimal transportation problem consisting
of minimizing a cost among all continuous semimartingales with given initial
and terminal distributions. They show an extension of the Kantorovich duality to
this context and suggest a finite-difference scheme combined with the gradient
projection algorithm to approximate the dual value. Their results can be applied
to our setup as follows.

Let �0 D ıS0 denote the Dirac measure on the initial value of S0 and let �T

denote the marginal distribution of ST ; inferred by calibration to the market prices
of all European call options with maturity T (assuming quotations available for all
strikes). Let

Q.�0/ D fQ 2 Q W Q ı S�1
0 D �0g; Q.�0; �T/ D fQ 2 Q.�0/ W Q ı S�1

T D �Tg:

From the Remark 2.3 in Tan and Touzi (2013), Q.�0; �T/ is not empty in our setting.
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The KVA with model uncertainty and terminal marginal constraint is defined as
follows:

KVA0.%/ D h sup
Q2Q.�0;�T /

E
Q

h Z T

0

e�.rCh/.s/f

r
dh%i

ds
ds

i
; (21)

where % represents the portfolio loss in this setting, that is, the loss and profit of the
bank in a world with uncertain volatility subject to the law of ST : However, it is not
clear how to extrapolate the theory of Tan and Touzi (2013) to valuation at future
time points when only the unconditional law of ST is known. Hence for the sake of
tractability we conservatively assume that % in (21) is the UVM one and we only
apply the constraint to the outer expectation in (21) (as opposed to the conditional
expectations that are hidden in %).

With this understanding of (21), given any measure �, we define

�.	/ D

Z
Rd

	.x/�.dx/

on the set Cb.Rd/ of all bounded continuous functions 	 on R
d. We can readily

check that Assumptions 3.1–3.3 in Tan and Touzi (2013) are satisfied. Hence, by an
application of their main duality result, we can rewrite the KVA as

KVA0.%/ D inf
	2Cb.Rd/

n
�0.ˆ0/ � e�.rCh/T�T.	/

o
; (22)

where the “pseudo-payoff function” 	 corresponds to a Lagrangian for the con-
strained optimization problem (21) and where

ˆ0.x/ D sup
Q2Q.ıx/

E
Q

h
e�.rCh/T	.ST/ C

Z T

0

e�.rCh/shf

r
dh%i

ds
ds

i
: (23)

Hence, the KVA in an optimal transportation (OT) setting can be represented as an
infimum of KVAs in modified UVM setting.

5.1 Equations in the Markovian Setting

In the Markovian setting of Sect. 3, we consider the probability measures Q on the
canonical space .
;FT/, under which the canonical process C is a local martingale
on Œt; T�. Define Qt as the collection of all such martingale probability measures Q
such that a1=2

s 2 Œ�; �� dQ�ds-a:e: on 
� Œt; T�. Denote Qt;x WD fQ 2 Qt W QŒSs D

x; 0 � s � t� D 1g. For any 	 2 Cb.Rd/, let

ˆ.t; x/ D sup
Q2Qt;x

E
Q

h
e�.rCh/.T�t/	.ST/ C

Z T

t
e�.rCh/.s�t/hf

r
dh%i

ds
ds

i
; (24)
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where
q

dh%i
dt D a1=2

t St

ˇ̌
@Su.t; St/ � �.t; St/

ˇ̌
; in which u is the solution to (18) with

� D 0:

Then, in the case where � D .1 � ˛/@Su; ˆ is a viscosity solution to the dynamic
programming equation

8<
:

ˆ.T; S/ D 	.S/ on .0; 1/

@tˆ C sup
�2Œ�;��

h
Abs

S ˆ C ˛hf �Sj@Suj
i

� .r C h/ˆ D 0 on Œ0; T/ � .0; 1/:

(25)
In view of (22), in the present OT setup, KVA0 is obtained as the minimum of

ˆ.0; S0/ � e�.rCh/T
Z
R

	.x/�T.dx/ (26)

over 	 2 Cb.Rd/: This minimization is achieved numerically by the Nelder-Mead
simplex algorithm.

As a sanity check, observe that, if �T is Black-Scholes � and � D � D �;

then (26) is exactly the time 0 KVA of Sect. 3, independent of 	:

6 Numerical Results

Figure 1 shows the results obtained by solving the related PDEs (and minimiz-
ing (26) in the OT setup) without model uncertainty as of Sect. 3 (left panel), with
UVM uncertainty as of Sect. 4.1 (middle panel) and with OT uncertainty as of
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Fig. 1 XVAs and FTP as a function of the mis-hedge parameter ˛. Left: Without model
uncertainty. Middle: With UVM uncertainty (� D 15%; � D 60%). Right: With OT uncertainty
(� D 15%; � D 60%; � D 30%)
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Sect. 5.1 (right panel), for a level of the mis-hedge parameter ˛ increasing from
0 to 100%. We used the following parameters:

S0 D 100; r D 2%; q D 0; � D 30%;

� D 200 bps; f D 1:2; h D 10%

and considered a single call option of maturity T D 5 years and strike K D 107.
The main observation from the left panel is that, unless the hedge is very good (of

the order of 25% of mis-hedge or less), the KVA dominates the FVA, and becomes
about ten times greater than the FVA in the absence of hedge (˛ D 1). This is logical
given that EC has only an indirect reduction effect on the FVA, whereas it directly
sizes the KVA.

Going to the middle panel, the FVA changes little, but both u and the KVA (unless
the hedge is almost perfect) are tremendously impacted by the uncertainty on the
volatility. Regarding the KVA this is in line with the fact that it is the cost of a risk
measure, which nonlinearly amplifies the impact of perturbations to its input data.

In reality the time 0 price of a vanilla option such as the one considered in
our numerics is given by the market, so there is no model risk on it, but only on
the KVA. This is what is reflected by the OT right panel. The model risk on the
KVA component however is essentially the same as in the UVM case, because it is
conservatively assessed by using the UVM u in (25), fault of a developed theory of
valuation at future time points under uncertain volatility subject to the unconditional
law of ST .

XVA desks, KVA in particular, are the first consulted desks in all major trades
today. Our results in a toy model where all the quantities of interest can be
computed exactly (modulo the numerical error on the PDE solutions) emphasize
that, accounting for model risk, the relative importance of the KVA should become
even larger. Moreover one can easily imagine how to transpose these results to the
setup of Albanese et al. (2016) where each option payoff .STi � Ki/

C is replaced
by the CVA exposure of the bank to the default at time of its counterparty i; at
the (random) time Ti, with corresponding position of the bank !iSTi and margins
received by the bank !iKi. However in this case a relevant risk measure really needs
to be computed at a 1-year horizon (as opposed to instantaneous in (6)), in order to
leave time to credit events to develop. This points out to developments of a slightly
different nature, which would be interesting to develop.
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