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Abstract Leverage has been shown to be procyclical and indicative of financial
market risk. Here, we present a novel, inherently forward-looking way to estimate
market leverage ratios based on derivative prices, option hedging, and the ‘opera-
tional’ riskiness measure by Foster and Hart (J Polit Econ 117(5):785–814, 2009).
Furthermore, we report option-implied ‘optimal’ leverage levels inferred via the
(Kelly, IRE Trans. Inf. Theory 2(3):185–189, 1956) criterion. The resulting measure
of leverage exhibits strong procyclicality prior to the Global Financial Crisis of
2008. Finally, we find it to successfully predict large stock market downturns.
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1 Introduction

With the benefit of hindsight, we clearly should have put even greater emphasis on the risks
of excessive leverage.
Hildebrand (2008)

The Global Financial Crisis of 2008 brought questions related to excessive leverage
back on the table of risk regulation. Previous risk regulation frameworks (e.g., Basel
I and II) posed capital requirements that were (at least partially) based on the relative
riskiness of various types of assets (Hildebrand, 2008). While such risk-based
capital measures signaled high stability of banks prior to the Global Financial Crisis,
simple leverage ratio assessments exposed the largely undercapitalized situation of
key financial actors which exacerbated the crisis. As a reaction to the crisis, the new
regulatory framework (Basel III) contains a simple, non-risk-based leverage ratio
requirement (Basel Committee on Banking Supervision, 2010).

Nevertheless, as Schularick and Taylor (2012) have noted, we have entered an age
of unprecedented financial risk due to leverage. In particular, the vast expansion of
credit and financial innovation, combined with implicit government insurance and
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the prospect of rescue operations, have resulted in massively increased leverage.
As a result, the financial system has become more vulnerable to endogenously
generated instabilities as manifested by recurring booms and busts (Von der Becke
and Sornette, 2014).

A key issue inherent to leverage is procyclicality, which means that leverage
ratios are only a partial remedy. In theory, standard portfolio rules would seem to
imply anticyclical leverage; high leverage when the risk premium is high. Empiri-
cally, however, procyclicality of leverage has been documented extensively (Adrian
and Shin, 2014). This empirical phenomenon has been explained through increased
collateral requirements during downturns creating leverage cycles (Geanakoplos,
2010): increased uncertainty and volatility of asset returns lead lenders to require
tighter margins, which, in turn, mechanically implies falling prices and consequently
large losses for the most leveraged investors. Importantly, both of these elements
feed back on each other, thus starting the leverage cycle. Any institution in the
financial system where investors hold long-term, illiquid assets that are financed
by short-term liabilities is particularly at risk of this, and falling leverage can
consequently lead to ‘runs’ on such institutions (Adrian and Shin, 2014). Perhaps
serving as the most famous example, the Global Financial Crisis of 2008 started as
a run on the sale and repurchase (repo) market (Gorton and Metrick, 2012).

Generally, due to procyclicality, leveraged financial markets exhibit fat tails of the
return distribution and clustered volatility (Thurner et al., 2012). This suggests the
use of leverage ratios as indicators for the likelihood of future financial crashes and
crises. Indeed, changes in dealer repos can be used to successfully forecast changes
in financial market risk as measured by the Chicago Board Options Exchange
Volatility Index (VIX) index (Adrian and Shin, 2010). Similarly, intermediary
leverage has been shown to be negatively aligned with the banks’ Value-at-Risk
(VaR) (Adrian and Shin, 2014).

Our present paper pursues a similar goal, namely to use leverage procyclicality to
predict market risk. Our contribution to the existing literature is the construction of
leverage ratios from derivative markets. Prior work had either focused on leverage
as the ratio of collateral values to the down payment (with data generally being
inaccessible, Geanakoplos 2010), or as the ratio of total assets to book equity
(Adrian and Shin, 2010, 2014). By contrast, our approach will be to construct
forward-looking estimates of leverage ratios based on prices of financial options.
Specifically, we will use risk-neutral probability distributions to evaluate the
estimated, forward-looking performance of hedged portfolios as quantified by the
recently proposed ‘operational’ riskiness measure of Foster and Hart (2009). In our
generalization of the measure, allowing leverage, the measure indicates the level of
leverage at which the estimated growth rate becomes negative. We note that this
is fundamentally different from previous theoretical work on optimal trading with
leverage. For example, the previous study by Grossman and Vila (1992) establishes
optimal dynamic trading rules subject to a leverage constraint that is given. Here,
our goal is to empirically determine such a constraint in the first place.

Our findings are twofold. First, leverage ratios as constructed from derivative
prices exhibit a pronounced and persistent peak prior to the Global Financial Crisis
of 2008, thus quantifying the procyclical leverage regime of the market. Second,
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leverage ratios are found to be indicative of extreme future market-downturns. These
findings complement our own investigation of option-implied operational market
risks (Leiss and Nax, 2015), particularly during the build-up of the Global Financial
Crisis of 2008, where our previous, leverage-free approach had only limited reach.

2 Operational Metrics of Disaster Risk

Well-known tail measures, like Value at Risk (VaR) and Expected Shortfall (ES),
have become industry standards for assessing extreme market risks (Embrechts
et al., 2005). By construction, they only characterize the risk of negative events
while ignoring the potential upside. On the other hand, measures of dispersion such
as volatility/variance or interquartile range account for up- and downturns, but are
largely blind to rare extreme events on both sides of the spectrum. For example, the
widely used Sharpe ratio (Sharpe, 1994) only accounts for the first two moments of
the underlying return distribution, thus implicitly (and falsely) assuming that higher
moments do not matter.

Two novel measures of riskiness (by Aumann and Serrano (2008) and Foster
and Hart (2009)) promise to balance both, sensitivity to extreme risks and potential
gains. Formally, these measures are defined for any gamble g in the set of gambles G
characterized by random variables with positive expectation and positive probability
of negative outcomes. For any gamble g 2 G , Foster and Hart (2009) uniquely
define their risk measure, FH, as the zero of1

E Œlog.1 C FH.g/g/� D 0; (1)

whereas Aumann and Serrano (2008) define their risk measure, AS, as the zero of

E Œexp.�AS.g/g/� D 1: (2)

One issue with expression (1), which will become extremely relevant for our
leverage analysis, is that, for some continuous gambles g 2 G , FH thus defined
may have no positive solution. In this case, Riedel and Hellmann (2015) extend the
definition consistently by setting FH to the maximum possible loss incurred by that
gamble. In particular, if g is a return distribution with maximum loss of 100%, FH
is bound by 1.

Importantly, definitions (1) and (2) involve forming the expectation over the
whole distribution of the gamble’s outcomes. Thus, FH and AS are able to capture all
moments of a gamble. This is formalized by Kadan and Liu (2014), who prove that
higher moments do not necessarily have a weaker effect on FH and AS. In practice,

1The logarithmic growth rate had entered risk analysis already earlier. Examples involve the Kelly
(1956) criterion (which aims to maximize growth rate), or, very similar to Foster and Hart (2009),
Whitworth (1870, p. 217).
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Fig. 1 Foster-Hart FH.g/ and Aumann-Serrano AS.g/ measures of riskiness vs. the standard
deviation ˛ of a normally distributed gamble g � N .0:01; ˛2/. The implied leverage ratios
coincide in the case of high risk (˛ � 0:01). In the opposite case of vanishing risk (˛ ! 0),
AS diverges indicating zero risk and suggests infinite leverage, while the no-bankruptcy property
of FH.g/ leads to an upper bound of 1

one often finds higher moments to have a strong impact on the risk measures
(Kadan and Liu, 2014; Leiss and Nax, 2015; Anand et al., 2016). However, FH is
significantly more sensitive to left-tail events than AS. Be g˛ the composite gamble
of g0 2 G and an extreme loss �L < 0 with respective probabilities 1 � ˛ and
˛ 2 .0; 1/ and FH.g0/ > 1=L. It is easy to show that (Kadan and Liu, 2014)

lim
˛!0

FH.g˛/ D 1=L; (3)

whereas

lim
˛!0

AS.g˛/ D AS.g0/: (4)

A variation of this is illustrated in Fig. 1. The gamble g is normally distributed with
positive mean and standard deviation ˛, g � N .0:01; ˛2/. In the high-risk scenario
of large variance, ˛ � 0:01, FH and AS coincide almost perfectly. However, in the
case of low risk, i.e. as ˛ ! 0, AS diverges indicating asymptotically zero risk and
therefore infinite leverage, whereas FH is bounded by 1 to avoid bankruptcy with
one shot.

Besides the above-mentioned practical appeal of taking into account the whole
distribution of a gamble, both FH and AS also fill an important theoretical gap.
It is known that risk-averse investors who choose their investments by maximiz-
ing expected utility may rank investments by second-order stochastic dominance
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(SOSD) (Hadar and Russell, 1969; Hanoch and Levy, 1969; Rothschild and Stiglitz,
1970). However, some pairs of investments cannot be ranked on the basis of SOSD.
Kadan and Liu (2014) show that both FH and AS extend SOSD in a natural
way as they induce a complete ranking on G that agrees with SOSD whenever
applicable. The induced rankings differ, because loosely speaking FH and AH order
independently of an investor’s utility and wealth, respectively.

The theoretical reason for FH to be bounded is the no-bankruptcy theorem by
Foster and Hart (2009). It states that when confronted with an infinite series of
gambles gt 2 G , the simple strategy of always investing a fraction of wealth smaller
than FH.gt/ guarantees no-bankruptcy, i.e.

P

h
lim

t!1 Wt D 0
i

D 0; (5)

where Wt denotes wealth at time t. This bound is independent of the investor’s risk
attitudes, which is the sense in which FH is ‘operational’ according to Foster and
Hart (2009). By contrast, following such a strategy leads to wealth divergence to
infinity (a.s.).

3 Extending Operational Riskiness Measures to Leveraged
Gambles

The hard bound of FH that is induced by the no-bankruptcy constraint poses a
challenge for dynamic risk management, as in some scenarios there is no more
variation in FH. Indeed, our empirical study of option-implied FH found FH to
be at the upper bound on 27% of the business days during the decade 2003–2013,
and on 45% of the business days during the 5 years leading up to the collapse of
Lehman Brothers in September 2008 (Leiss and Nax, 2015). One might wonder,
therefore, how much information is lost because of a lack of variation during those
days.

Instead of focusing on other risk indicators, we would like to explore a different
‘leverage route’ in this paper. Since the hard bound of one inherent to the original
FH measure is induced by the maximal loss, one could think of building a portfolio
that is hedged against extreme events: let rs be a gamble that describes the relative
return distribution of buying at asset S at time t D 0 and holding it until time t D T .
Accounting for dividends paid during that period Y and discounting

rs D ST C Y � S0

S0

: (6)

If the asset defaults and no dividends are being paid, the investor incurs a maximum
loss of min.rs/ D �100% such that FH.rs/ � 1. A simple way of hedging this
portfolio is via a put option written on S with premium P0 (at t D 0), strike price K,
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and maturity T . The return of a portfolio that consists of one unit of the stock and a
put option is given by

rh D max.ST ; K/ C Y � S0 � P0

S0 C P0

; (7)

with maximum loss of

min.rh/ D K � S0 � P0

S0 C P0

> �100% (8)

for Y D 0 and K > 0 (provided the seller of the option does not default). In other
words, a gamble of the form (7) generally allows for FH.rh/ > 1, i.e. leverage.2 Our
definition (7) generalizes FH to allow for leverage.

In later sections, we will compute and analyze our ‘leverage Foster-Hart’ FH.rh/

for hedged portfolios based on risk-neutral probability distributions estimated from
option prices. Thus, the forward-looking information contained in derivative prices
enter FH.rh/ twice: in P0 via the return (7), and in the computation of the
expectation via (1). Figure 2 illustrates this with an example showing the payoff
for investment strategy (7) for buying the S&P 500 with the corresponding put
option. Here, the values are t0 D 2004-11-22, T D 2004-12-18, S0 D 1177:24

USD, K D 1190, P0 D 21:50 USD. Note that the strike of the put is higher than
index price at time t D 0. Option pricing according to Black and Scholes (1973)
suggests that the put option ask implies a volatility of only 11.9%. In this example,
one finds FH.rh/ D 10:7, i.e. a leverage ratio of more than 10 (see Fig. 3).

Another sensible and closely related leverage ratio is the option-implied Kelly
(1956) criterion K: instead of setting the expected logarithmic growth rate to zero
as in (1), one asks for that multiple (or fraction) of wealth that maximizes it, thus
defining

˛K.g/ D arg max
˛

E Œlog.1 C ˛g/� : (9)

For gambles g 2 G , one has ˛K.g/ � FH.g/. Continuing the example from above,
we obtain a maximal growth rate at a leverage ratio of ˛K.rh/ D 5:1 (see Fig. 3).
The leverage ratio implied by derivative prices is not meant to be identical to other
definitions (Geanakoplos, 2010; Adrian and Shin, 2010, 2014), but should be seen
as complementary.

2Sircar and Papanicolaou (1998) document that dynamic option hedging strategies imply feedback
effects between the price of the asset and the price of the derivative, which results in increased
volatility.
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Fig. 2 Relative payoff rh of an option-hedged portfolio example at maturity T and risk-neutral
density of the underlying estimated at t < T (scaled for visualization). The minimal loss of the
hedged portfolio is min.rh/ D �0:6%
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Fig. 3 Option-implied expected logarithmic growth rate of option-hedged portfolio example. The
right zero crossing equals the Foster-Hart riskiness FH.rh/ D 10:7, the maximum growth rate the
Kelly criterion ˛K.rh/ D 5:1

4 Data and Methods

In this section we discuss our data and the statistical methods employed in the
empirical analysis.
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4.1 Data

We obtain end-of-day bids, asks and open interest for standard European SPX
call and put options on the S&P 500 stock market index for the period January
1st, 2003, to October 23rd, 2013, from Stricknet.3 Throughout this decade the
average daily market volume of SPX options grew from 150 to 890 K contracts
and the open interest from 3840 to 11,883 K, respectively. In this study, we focus on
monthly options, which are AM-settled and expire on the third Friday of a month.
In addition, we use daily values for the S&P 500, its dividend yield, interest rates of
3-Month Treasury bills as a proxy of the risk-free rate, the (Chicago Board Options
Exchange, 2009) Volatility Index (VIX) and the LIBOR from the Thomson Reuters
Datastream.

4.2 Risk-Neutral Densities

Our first step is to extract risk-neutral densities from the option data as a market
view on the probability distribution of the underlying gamble (which for our real-
world finance application is of course unknown). There is a large literature on
estimating risk-neutral probability distributions (Jackwerth, 2004). Here, we use
our own method from Leiss et al. (2015), Leiss and Nax (2015) who generalize
Figlewski (2010) for a modern, model-free method. We start with the fundamental
theorem of asset pricing that states that in a complete market, the current price of
an asset may be determined as the discounted expected value of the future payoff
under the unique risk-neutral measure (e.g., Delbaen and Schachermayer, 1994). In
particular, the price Ct of a standard European call option at time t with exercise
price K and maturity T on a stock with price S is given as

Ct.K/ D e�rf .T�t/
E
Q
t Œmax.ST � K; 0/� D e�rf .T�t/

Z 1

K
.ST � K/ft.ST/dST ;

(10)

where Q and ft are the risk-neutral measure and the corresponding risk-neutral
probability density, respectively. Since option prices Ct, the risk-free rate, rf , and
time to maturity, T � t are observable, we can invert the pricing Eq. (10) to obtain an
estimate for the risk-neutral density ft. In practice, this involves numerical evaluation
of derivatives (Breeden and Litzenberger, 1978) and fitting in implied volatility
space (Shimko et al., 1993). Outside of the range of observable strike prices we
fit tails of the family of generalized extreme value distributions, which are well-
suited for the modeling extreme events (Embrechts et al., 1997). We refer the more
interested reader to Figlewski (2010); Leiss et al. (2015); Leiss and Nax (2015) for
details of the method.

3The data is available for purchase at http://www.stricknet.com/. More information on the SPX
option contract specifications can be found at http://www.cboe.com/SPX.

http://www.stricknet.com/
http://www.cboe.com/SPX
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4.3 Leverage Ratios

We will use the option-implied Foster-Hart riskiness of levered investments
FHQ.rh/ with rh defined in (7) to estimate the prevailing leverage ratio. We compute
FHQ.rh/ for each business day and each put option available on that day. Be OP0

the premium and OK the exercise price with maximum FHQ.rh/ on that business
day. We report leverage ratios FHQ.rh. OP0; OK// and, as a comparison, also the Kelly
criterion ˛Q.rh. OP0; OK// as that quantity that numerically maximizes the option-
implied logarithmic growth rate. Finally, we compute the future return rh. OP0; OK/

with the realized value ST of the underlying index at maturity.

4.4 Return Downturn Regression

We will assess the predictive power of risk measures with respect to extreme losses
in the form of logistic regressions. For this, we define a binary downturn variable
�r�

t that equals 1 in the case of an extreme event, and 0 otherwise:

�r�
t D

(
1; if rt!T < �;

0; if rt!T � �;
(11)

where � is a quantile describing the 5%, 10%, or 20% worst return. We note that
rt!T is the future realized return from time t to the maturity of the option T , and
corresponds to the capital gain of a non-levered rs (6) or levered portfolio rh (7). In
this sense our analysis allows inference about the predictive power of risk measures.
We will regress downturns on individual risk measures R

�r�
t D a0;t C aR;t Rt C "t; (12)

and on sets of risk measures R:

�r�
t D a0;t C

X
R2R

aR;tRt C "t: (13)

Specifically, we will include the option-implied Foster-Hart riskiness FHQ.rh/ and
5% Value at Risk of levered portfolios VaRQ.rh/.4 Leiss and Nax (2015) performed
rigorous variable selection using the least absolute shrinkage and selection operator
and found three further risk measures to be indicative (Tibshirani, 1996): (1) option-
implied 5% expected shortfall of non-levered portfolios ESQ.rs/, (2) the Chicago
Board Options Exchange (2009) Volatility Index (VIX), and (3) the difference
between the 3-month LIBOR and 3-month T-Bill rates (TED), a measure of credit
risk. We will consider those indicators as well.

4Our results are robust with respect to choosing a different VaR level.



148 M. Leiss and H.H. Nax

Over successive business days the downturns (11) focus on the same maturity
T , as option exercise dates are standardized. This may induce autocorrelation in
the dependent variable, which we correct for by using the heteroskedasticity and
autocorrelation consistent covariance matrix estimators by Newey and West (1987,
1994).

5 Empirical Results

Having established the leveraged Foster-Hart riskiness and methods used, we now
study empirical applications. First, we discuss the time dynamics of the option-
implied leverage ratios around the Global Financial Crisis of 2008. Next, we analyze
the predictive power of various risk measures with respect to extreme losses of
levered and non-levered portfolios.

5.1 Option-Implied Leverage Around the Global Financial
Crisis

Geanakoplos (2010) reports dramatically increased leverage from 1999 to 2006. In
2006, a bank could borrow as much as 98.4% of the purchase price of a AAA-
rated mortgage-backed security, which corresponds to an average ratio of about 60
to 1. However, these numbers should not be directly compared to our findings, as
the leverage ratios are defined differently. We assess leverage in time periods before
and after the onset of the Global Financial Crisis, which Leiss et al. (2015) identified
as June 22, 2007. Table 1 summarizes the option-implied Foster-Hart riskiness for
non-levered FH.rs/ and levered investments FH.rh/. Prior to the Global Financial
Crisis of 2008 the non-levered FH.rs/ on average recommends investments of about
78% of one’s wealth. During and after the crisis this value drops to about half its
previous level.

In terms of FH-recommended leverage, we find an average leverage ratio of 105
in the pre-crisis regime, albeit with a fairly large confidence interval of ˙40 (see
Fig. 4). During and after the crash it shrinks drastically to about 3.4. Geanakoplos

Table 1 Average levels of option-implied Foster-Hart riskiness, levered Foster-Hart riskiness, and
Kelly criterion with 95% confidence intervals prior and after the onset of the Global Financial Crisis
identified as 22 June 2007

Pre-crisis Crisis and post-crisis

Non-levered Foster-Hart riskiness FHQ.rs/ 0.78 ˙ 0.03 0.40 ˙ 0.02

Levered Foster-Hart riskiness FHQ.rh/ 105 ˙ 40 3.4 ˙ 0.8

Levered Kelly criterion ˛
Q
K .rh/ 41.00 ˙ 0.03 1.57 ˙ 0.02
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Fig. 4 Leverage according to option-implied Foster-Hart riskiness and Kelly criterion of leveraged
gambles. Leverage ratios rise to drastically high values during the boom in mortgage-backed
securities prior to 2008

(2010) explains the extraordinarily high leverage ratios during the pre-crisis years
by financial innovation, namely the extensive use and abuse of credit default
swaps (CDS). CDS are a vehicle for speculators to leverage their beliefs. Their
standardization for mortgages led to enormous CDS trading prior at the peak of
the housing bubble. Another reason for pronounced leverage before the crisis is the
existence of two mutually reinforcing leverage cycles in mortgage-backed securities
and housing (Geanakoplos, 2010). The option-implied Kelly criterion of hedged
portfolios ˛

Q
K .rh/recommends a leverage of 41 pre-crisis and 1.57 afterwards, with

respective small confidence intervals of 0.03 and 0.02.

5.2 Option-Implied Leveraged Foster-Hart Riskiness and
Downturns

We now assess the predictive power of various risk measures with respect to extreme
future losses. Leiss and Nax (2015) empirically demonstrated that both Foster-
Hart riskiness FH.rs/ and the TED spread predict future downturns of non-hedged
portfolios. Here, we will be specifically interested in the situation when the non-
levered FH.rs/ is stuck at the hard bound of 1 and therefore may only yield limited
information. Thus, we subset our data to the 740 business days in our time period
where FH.rs/ D 1.

Table 2 summarizes regression results for the 5%, 10%, 20% worst losses.
We find that the option-implied Foster-Hart riskiness of levered portfolios helps
predicting future downturns for very extreme events (at the 5% quantile and below).
In the case of the 10% most negative performances, the option-implied value at risk
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Table 2 Regressions of option-hedged portfolio downturns on various risk measures over 740
observations

Regression of the worst 5% downturns on risk measures (37 events)

(Intercept) �1:565��� �4:483��� �3:975��� �2:825��� �6:454��� �4:156��� �4:763���

.0:273/ .0:312/ .0:342/ .0:416/ .0:735/ .1:046/ .1:123/

�FHQ.rh/ 0:263��� 0:218�� 0:138�

.0:073/ .0:074/ .0:064/

VaRQ.rh/ 61:166��� 20:326

.8:661/ .13:197/

ESQ.rs/ 0:329��� 0:129 0:164

.0:081/ .0:131/ .0:156/

TED �0:183 �0:452 �0:405

.0:548/ .0:525/ .0:519/

VIX 0:194��� 0:119 0:098

.0:035/ .0:073/ .0:070/

Regression of the worst 10% downturns on risk measures (74 events)

(Intercept) �1:014��� �3:715��� �3:184��� �2:238��� �5:310��� �2:668��� �3:661���

.0:276/ .0:258/ .0:335/ .0:361/ .0:635/ .0:792/ .0:860/

�FHQ.rh/ 0:128 0:103 0:046

.0:066/ .0:070/ .0:034/

VaRQ.rh/ 64:658��� 37:721���

.7:962/ .11:266/

ESQ.rs/ 0:351��� 0:201 0:272

.0:105/ .0:138/ .0:166/

TED 0:110 �0:225 0:024

.0:508/ .0:440/ .0:414/

VIX 0:178��� 0:057 0:017

.0:034/ .0:057/ .0:061/

Regression of the worst 20% downturns on risk measures (148 events)

(Intercept) �0:439� �2:328��� �2:287��� �1:831��� �4:889��� �2:605�� �2:948���

.0:214/ .0:240/ .0:292/ .0:337/ .0:738/ .0:831/ .0:823/

�FHQ.rh/ 0:048�� 0:040� 0:030

.0:018/ .0:018/ .0:017/

VaRQ.rh/ 49:538��� 16:305

.8:005/ .10:774/

ESQ.rs/ 0:358�� 0:083 0:094

.0:113/ .0:099/ .0:105/

TED 0:778 0:084 0:229

.0:400/ .0:424/ .0:415/

VIX 0:207��� 0:101 0:087

.0:044/ .0:054/ .0:053/

���p < 0:001, ��p < 0:01, �p < 0:05
The dependent variable reflects if the realized ahead-return of an option-hedged portfolio belongs to the set of the worst
5% (top panel), 10% (middle), or 20% (bottom) downturns in that period. The risk measures involve the option-implied
Foster-Hart riskiness FHQ.rh/ and value at risk VaRQ.rh/ of the hedged portfolio, the option-implied expected shortfall
ESQ.rs/ of the non-hedged portfolio, as well as the industry measures TED spread (credit risk) and the volatility index
VIX
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Table 3 Regressions of stock market downturns on various risk measures over 740 observations

Regression of the worst 5% index downturns on risk measures

(Intercept) �2:369��� �3:460��� �3:999��� �3:820��� �6:666��� �4:450��� �4:492��

.0:296/ .0:423/ .0:410/ .0:367/ .0:752/ .1:318/ .1:429/

FHQ.rh/ 0:022�� 0:016��� 0:015���

.0:008/ .0:005/ .0:004/

VaRQ.rh/ 26:867�� 2:595

.10:186/ .11:657/

ESQ.rs/ 0:336��� 0:281� 0:282�

.0:079/ .0:134/ .0:138/

TED 1:315�� 0:862 0:886

.0:500/ .0:624/ .0:571/

VIX 0:204��� 0:022 0:020

.0:038/ .0:102/ .0:101/

���p < 0:001, ��p < 0:01, �p < 0:05
The dependent variable reflects if the realized ahead-return of the S&P 500 stock market index belongs to the set of
the worst 5% downturns in that period. The risk measures involve the option-implied Foster-Hart riskiness FHQ.rh/
and value at risk VaRQ.rh/ of the hedged portfolio, the option-implied expected shortfall ESQ.rs/ of the non-hedged
portfolio, as well as the industry measures TED spread (credit risk) and the volatility index VIX

of levered portfolios shows to be a significant predictor. Including even less extreme
events, we find that while individually risk measures remain predictively successful,
they lose significance in a joint regression.

Finally, we study if risk measures inferred from levered portfolios contain
information about the future performance of non-levered investments. Table 3
summarizes our findings. The Foster-Hart riskiness estimated for hedged returns
significantly explains future drops of simple returns both individually and in a joint
regression. The same is true for the expected shortfall of non-levered investments as
already documented in Leiss and Nax (2015).

6 Conclusion

In this paper we discussed a theoretical extension of the Foster-Hart measure of
riskiness to study leverage. Option hedging prevents the value of portfolios from
vanishing completely (provided the seller of the option does not default). In turn,
this “frees” the Foster-Hart riskiness measure to values larger than 1, i.e. allows for
leverage. Based on options data, we applied this new way of estimating prevailing
leverage ratios to the decade 2003–2013 around the Global Financial Crisis. We
found (1) a strong procyclicality of leverage during the bubble prior to the crash and
(2) predictive power of risk measures computed for levered portfolios with respect
to extreme losses.
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