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Abstract We consider a defaultable asset whose risk-neutral pricing dynamics
are described by an exponential Lévy-type martingale. This class of models
allows for a local volatility, local default intensity and a locally dependent Lévy
measure. We present a pricing method for Bermudan options based on an analytical
approximation of the characteristic function combined with the COS method. Due
to a special form of the obtained characteristic function the price can be computed
using a fast Fourier transform-based algorithm resulting in a fast and accurate
calculation.

Keywords Bermudan option • Local Lévy model • Defaultable asset • Asymp-
totic expansion • Fourier-cosine expansion

1 Introduction

In order to price derivatives in finance one requires the specification of the
underlying asset dynamics. This is usually done by means of a stochastic differential
equation. In this work we consider the flexible dynamics of a state-dependent model,
in which we account for a local volatility function, a local jump measure such
that the jumps in the underlying arrive with a state-dependent intensity and a local
default intensity, so that the default time depends on the underlying state. One of the
problems when considering such a state-dependent model is the fact that there is no
explicit density function or characteristic function available. In order to still be able
to price derivatives, we derive the characteristic function by means of an advanced
Taylor expansion of the state-dependent coefficients, as first presented in Pagliarani
et al. (2013) for a simplified model and similar to the derivations in Borovykh
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et al. (2016) for the local Lévy model. This Taylor expansion allows one to rewrite
the fundamental solution of the related Cauchy problem in terms of solutions of
simplified Cauchy problems, which we then solve in the Fourier space to obtain
the approximated characteristic function. Once we have an explicit approximation
for the characteristic function we use a Fourier method known as the COS method,
first presented in Fang and Oosterlee (2009), for computing the continuation value
of a Bermudan option. Due to a specific form of the approximated characteristic
function the continuation value can be computed using a Fast Fourier Transform
(FFT), resulting in a fast and accurate option valuation.

2 General Framework

We consider a defaultable asset S whose risk-neutral dynamics are given by:

St D 1ft<�geXt ;

dXt D �.t;Xt/dt C �.t;Xt/dWt C
Z
R

d QNt.t;Xt�; dz/z;

d QNt.t;Xt�; dz/ D dNt.t;Xt�; dz/ � �.t;Xt�; dz/dt;

� D infft � 0 W
Z t

0

�.s;Xs/ds � "g;

where QNt.t; x; dz/ is a compensated random measure with state-dependent Lévy
measure �.t; x; dz/. The default time � of S is defined in a canonical way as the
first arrival time of a doubly stochastic Poisson process with local intensity function
�.t; x/ � 0, and " � Exp.1/ and is independent of X. Thus the model features:

• a local volatility function �.t; x/;
• a local Lévy measure: jumps in X arrive with a state-dependent intensity

described by the local Lévy measure �.t; x; dz/. The jump intensity and jump
distribution can thus change depending on the value of x. A state-dependent Lévy
measure is an important feature because it allows to incorporate stochastic jump-
intensity into the modeling framework;

• a local default intensity �.t; x/: the asset S can default with a state-dependent
default intensity.

We define the filtration of the market observer to be G D F X _ FD, where F X

is the filtration generated by X and FD
t WD �.f� � ug; u � t/, for t � 0, is the

filtration of the default. We assume
Z
R

ejzj�.t; x; dz/ < 1;
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and by imposing that the discounted asset price QSt WD e�rtSt is a G -martingale, we
get the following restriction on the drift coefficient:

�.t; x/ D �.t; x/C r � �2.t; x/

2
�
Z
R

�.t; x; dz/.ez � 1 � z/:

3 The Characteristic Function

Is it well-known (see, for instance, Linetsky 2006, Sect. 2.2) that the price V of a
European option with maturity T and payoff ˚.ST/ is given by

Vt D 1f�>tge�r.T�t/E
h
e� R T

t �.s;Xs/ds'.XT/jXt

i
; t � T;

where '.x/ D ˚.ex/. Thus, in order to compute the price of an option, we must
evaluate functions of the form

u.t; x/ WD E
h
e� R T

t �.s;Xs/ds'.XT/jXt D x
i
: (2)

Under standard assumptions, u can be expressed as the classical solution of the
following Cauchy problem

(
Lu.t; x/ D 0; t 2 Œ0;TŒ; x 2 R;

u.T; x/ D '.x/; x 2 R;
(3)

where L is the integro-differential operator

Lu.t; x/ D @tu.t; x/C r@xu.t; x/C �.t; x/.@xu.t; x/ � u.t; x//

C �2.t; x/

2
.@xx � @x/u.t; x/ �

Z
R

�.t; x; dz/.ez � 1 � z/@xu.t; x/

C
Z
R

�.t; x; dz/.u.t; x C z/ � u.t; x/ � z@xu.t; x//: (4)

Define � .t; xI T; y/ to be the fundamental solution of the Cauchy problem (3). The
function u in (2) can be represented as an integral with respect to � .t; xI T; dy/:

u.t; x/ D
Z
R

'.y/� .t; xI T; dy/: (5)

Here we notice explicitly that � .t; xI T; dy/ is not necessarily a standard probability
measure because its integral over R can be strictly less than one; nevertheless, with
a slight abuse of notation, we refer to its Fourier transform
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O� .t; xI T; �/ WD F .� .t; xI T; �//.�/ WD
Z
R

ei�y� .t; xI T; dy/; � 2 R;

as the characteristic function of log S. Following the method developed in Borovykh
et al. (2016) we use an adjoint expansion of the state-dependent coefficients

a.t; x/ WD �2.t; x/

2
; �.t; x/; �.t; x; dz/;

around some point Nx. The coefficients a.t; x/, �.t; x/ and �.t; x; dz/ are assumed to
be continuously differentiable with respect to x up to order N 2 N. Introducing the
n-th order Taylor approximation of the operator L to be (4):

Ln D L0 C
nX

kD1

�
.x � Nx/kak.@xx � @x/C .x � Nx/k�k@x � .x � Nx/k�k

�
Z
R

.x � Nx/k�k.dz/.ez � 1 � z/@x C
Z
R

.x � Nx/k�k.dz/.ez@x � 1 � z@x/
�
;

where

L0 D@t C r@x C a0.t/.@xx � @x/C �0.t/@x � �0.t/ �
Z
R

�0.t; dz/.ez � 1 � z/@x

C
Z
R

�0.t; dz/.ez@x � 1 � z@x/;

and

ak D @k
xa.Nx/
kŠ

; �k D @k
x�.Nx/
kŠ

; �k.dz/ D @k
x�.Nx; dz/

kŠ
; k � 0:

Let us assume for a moment that L0 has a fundamental solution G0.t; xI T; y/ that is
defined as the solution of the Cauchy problem

(
L0G0.t; xI T; y/ D 0 t 2 Œ0;TŒ; x 2 R;

G0.T; �I T; y/ D ıy:

In this case we define the nth-order approximation of � as

� .n/.t; xI T; y/ D
nX

kD0
Gk.t; xI T; y/;

where, for any k � 1 and .T; y/, Gk.�; �I T; y/ is defined recursively through the
following Cauchy problem
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8̂
<
:̂

L0Gk.t; xI T; y/ D �
kP

hD1
.Lh � Lh�1/Gk�h.t; xI T; y/ t 2 Œ0;TŒ; x 2 R;

Gk.T; xI T; y/ D 0; x 2 R:

Correspondingly, the nth-order approximation of O� is defined to be

O� .n/.t; xI T; �/ D
nX

kD0
F
�
Gk.t; xI T; �/� .�/ WD

nX
kD0

OGk.t; xI T; �/; � 2 R:

Now, by transforming the simplified Cauchy problems into adjoint problems and
solving these in the Fourier space we find

OG0.t; xI T; �/ D ei�xe
R T

t  .s;�/ds;

OGk.t; xI T; �/ D �
Z T

t
e
R T

s  .	;�/d	F

 
kX

hD1

� QL.s;�/h .s/ � QL.s;�/h�1.s/
�

Gk�h.t; xI s; �/
!
.�/ds;

with

 .s; �/ Di�.r C �0.s//C a0.s/.��2 � i�/ �
Z
R

�0.s; dz/.ez � 1 � z/i�

C
Z
R

�0.s; dz/.eiz� � 1 � iz�/;

the characteristic exponent of the Lévy process with coefficients �0.s/, a0.s/ and
�0.s; dz/, and

QL.s;y/h .s/ � QL.s;y/h�1.s/ Dah.s/h.h � 1/.y � Nx/h�2

C ah.s/.y � Nx/h�1
�
2h@y C .y � Nx/.@yy C @y/C h

�
� �h.s/h.y � Nx/h�1 � �h.s/.y � Nx/h �@y C 1

�

C
Z
R

�h.s; dz/.ez � 1 � z/
�
h.y � Nx/h�1 C .y � Nx/h@y

�

C
Z
R

N�h.s; dz/
�
.y C z � Nx/hez@y

� �
y � Nx/h � z

�
h.y � Nx/h�1 � .y � Nx/h@y

��
:

From these results one can already see that the dependency on x comes in through
ei�x and after taking derivatives the dependency on x will take the form .x � Nx/mei�x:
this fact will be crucial in our analysis. After some algebraic manipulations, see
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for details Borovykh et al. (2016), we find that the approximation of order n is a
function of the form

O� .n/.t; xI T; �/ WD ei�x
nX

kD0
.x � Nx/kgn;k.t;T; �/; (6)

where the coefficients gn;k, with 0 � k � n, depend only on t;T and � , but not on
x. The approximation formula can thus always be split into a sum of products of
functions depending only on � and functions that are linear combinations of .x �
Nx/mei�x, m 2 N0.

4 Bermudan Option Valuation

A Bermudan option is a financial contract in which the holder can exercise at a
predetermined finite set of exercise moments prior to maturity, and the holder of the
option receives a payoff when exercising. Consider a Bermudan option with a set
of M exercise moments ft1; : : : ; tMg, with 0 � t1 < t2 < � � � < tM D T . When
the option is exercised at time tm the holder receives the payoff ˚ .tm; Stm/. For a
Bermudan put option with strike price K, we simply have '.t; x/ D .K � ex/C.
By the dynamic programming approach, the option value can be expressed by a
backward recursion as

v.tM; x/ D 1f�>tMg'.tM; x/

and
8<
:

c.t; x/ D E
h
e
R tm

t �.rC�.s;Xs//dsv.tm;Xtm/jXt D x
i
; t 2 Œtm�1; tmŒ

v.tm�1; x/ D 1f�>tm�1g maxf'.tm�1; x/; c.tm�1; x/g; m 2 f2; : : : ;Mg:
(7)

In the above notation v.t; x/ is the option value and c.t; x/ is the so-called
continuation value. The option value is set to be v.t; x/ D c.t; x/ for t 2 
tm�1; tmŒ,
and, if t1 > 0, also for t 2 Œ0; t1Œ.
Remark 4.1 Since the payoff of a call option grows exponentially with the log-stock
price, this may introduce significant cancellation errors for large domain sizes. For
this reason we price put options only using our approach and we employ the well-
known put-call parity to price calls via puts. This is a rather standard argument (see,
for instance, Zhang and Oosterlee 2012).
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4.1 An Algorithm for Pricing Bermudan Put Options

The COS method as proposed in Fang and Oosterlee (2009) is based on the insight
that the Fourier-cosine series coefficients of � .t; xI T; dy/ (and therefore also of
option prices) are closely related to the characteristic function of the underlying
process. Remembering that the expected value c.t; x/ in (7) can be rewritten in
integral form as in (5),

c.t; x/ D e�r.tm�t/
Z
R

v.tm; y/� .t; xI tm; dy/; t 2 Œtm�1; tmŒ;

we apply the COS formulas to find the approximation:

Oc.t; x/ D e�r.tm�t/

N�1X0

kD0
Re

�
e�ik� a

b�a O�
�

t; xI tm;
k�

b � a

��
Vk.tm/; t 2 Œtm�1; tmŒ

(8)

Vk.tm/ D 2

b � a

Z b

a
cos

�
k�

y � a

b � a

�
maxf'.tm; y/; c.tm; y/gdy;

with '.t; x/ D .K � ex/C.
Next we recover the coefficients .Vk.tm//kD0;1;:::;N�1 from .Vk.tmC1//kD0;1;:::;N�1.

To this end, we split the integral in the definition of Vk.tm/ into two parts using the
early-exercise point x�

m, which is the point where the continuation value is equal to
the payoff, i.e. c.tm; x�

m/ D '.tm; x�
m/; thus, we have

Vk.tm/ D Fk.tm; x
�
m/C Ck.tm; x

�
m/; m D M � 1;M � 2; : : : ; 1;

where

Fk.tm; x
�
m/ WD 2

b � a

Z x�

m

a
'.tm; y/ cos

�
k�

y � a

b � a

�
dy;

Ck.tm; x
�
m/ WD 2

b � a

Z b

x�

m

c.tm; y/ cos
�

k�
y � a

b � a

�
dy;

and Vk.tM/ D Fk.tM; log K/:

Remark 4.2 Since we have a semi-analytic formula for Oc.tm; x/, we can easily find
the derivatives with respect to x and use Newton’s method to find the point x�

m such
that c.tm; x�

m/ D '.tm; x�
m/. A good starting point for the Newton method is log K,

since x�
m � log K.
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The coefficients Fk.tm; x�
m/ can be computed analytically using x�

m � log K. On the
other hand, by inserting the approximation (8) for the continuation value into the
formula for Ck.tm; x�

m/ have the following coefficients OCk for m D M � 1;M �
2; : : : ; 1:

OCk.tm; x
�
m/ D 2e�r.tmC1�tm/

b � a

N�1X0

jD0
Vj.tmC1/

Z b

x�

m

Re

�
e�ij� a

b�a O�
�

tm; xI tmC1;
j�

b � a

��

cos
�

k�
x � a

b � a

�
dx:

Similar to the FFT-based algorithm in Fang and Oosterlee (2009) for an
exponential Lévy process with constant coefficients, the continuation value in case
of the state-dependent coefficients can also be calculated using the FFT. Using the
structure of the characteristic function (6) we write the continuation value in vector
form as:

OC.tm; x�
m/ D

nX
hD0

e�r.tmC1�tm/Re
�
V.tmC1/M h.x�

m; b/�
h
�
;

where V.tmC1/ is the vector ŒV0.tmC1/; : : : ;VN�1.tmC1/
T and M h.x�
m; b/�

h is a
matrix-matrix product with M h being a matrix with elements

Mh
k;j.x

�
m; b/ D 2

b � a

Z b

x�

m

eij� x�a
b�a .x � Nx/h cos

�
k�

x � a

b � a

�
dx; k; j D 0; : : : ;N � 1

and �h is a diagonal matrix with elements

gn;h

�
tm; tmC1;

j�

b � a

�
; j D 0; : : : ;N � 1:

It can be shown using standard trigonometric that the matrix M can be rewritten as
a sum of a Hankel and Toeplitz matrix such that M D MH C MT with elements

Mh
j .x

�
m; b/ D 1

b � a

Z b

x�

m

cos
�

ij�
x � a

b � a

�
.x � Nx/hdx

C 1

b � a

Z b

x�

m

sin
�

ij�
x � a

b � a

�
.x � Nx/hdx:

Using the split into sums of Hankel and Toeplitz matrices we can write the
continuation value in matrix form as:

OC.tm; x�
m/ D

nX
hD0

e�r.tmC1�tm/Re
�
.M h

H C M h
T /u

h
�
;
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where M h
H D fMH;h

k;j .x
�
m; b/gN�1

k;jD0 is a Hankel matrix and M l
T D fMT;h

k;j .x
�
m; b/gN�1

k;jD0
is a Toeplitz matrix and uh D fuh

j gN�1
jD0 , with uh

j D gn;h

�
tm; tmC1; j�

b�a

�
Vj.tmC1/

and uh
0 D 1

2
gn;h .tm; tmC1; 0/V0.tmC1/. It is well-known that a product of a Hankel

or Toeplitz matrix with a vector can be calculated using FFTs, see Borovykh
et al. (2016) for full details. Using the fact that an FFT can be computed with
computational complexity O.N log2 N/, we find that for a Bermudan option with
M exercise dates the overall computational complexity is O..M � 1/N log2 N/.

5 Numerical Experiments

In this section we apply the method developed in Sect. 4 to compute the European
and Bermudan option values with various underlying stock dynamics. The computer
used in the experiments has an Intel Core i7 CPU with a 2.2 GHz processor. We use
the second-order approximation of the characteristic function.

For the COS method, unless otherwise mentioned, we use N D 200 and L D 10,
where L is the parameter used to define the truncation range Œa; b
 as follows:

Œa; b
 WD
�

c1 � L
q

c2 C p
c4; c1 C L

q
c2 C p

c4

	
;

where cn is the nth cumulant of log-price process log S calculated using the 0th-
order approximation of the characteristic function. We compare the approximated
values to a 95% confidence interval computed with a Longstaff-Schwartz method
with 105 simulations and 250 time steps per year. Furthermore, in the expansion we
always use Nx D X0.

5.1 Tests Under CEV-Merton Dynamics

Consider a process under the CEV-Merton dynamics:

dXt D
�

r � a.Xt/ � 
�

emCı2=2 � 1
��

dt C
p
2a.Xt/dWt C

Z
R

d QNt.t; dz/z;

with

a.x/ D �20 e2.ˇ�1/x

2
;

�.dz/ D 
1p
2�ı2

exp

��.z � m/2

2ı2

�
dz;

 .�/ D �a0.�
2 C i�/C ir� � i

�
emCı2=2 � 1

�
� C 

�
emi��ı2�2=2 � 1

�
:
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Table 1 Prices for a European and a Bermudan put option (expiry T D 1 with 10 exercise
dates and expiry T D 2 with 20 exercise dates) in the CEV-Merton model for the 2nd-order
approximation of the characteristic function, and a Monte Carlo method

European Bermudan

T K MC 95% c.i. Value MC 95% c.i. Value

1 0.6 0.006136–0.006573 0.006579 0.006307–0.006729 0.006096

0.8 0.02526–0.02622 0.02581 0.02595–0.2689 0.02520

1 0.08225–0.08395 0.08250 0.08480–0.08640 0.08593

1.2 0.1965–0.1989 0.1977 0.2097–0.2115 0.2132

1.4 0.3560–0.3589 0.3574 0.3946–0.3957 0.3954

1.6 0.5341–0.5385 0.5364 0.5930–0.5941 0.5932

2 0.6 0.01444–0.01513 0.01529 0.01528–0.01594 0.01365

0.8 0.04522–0.04655 0.04613 0.04596–0.04719 0.04659

1 0.1046–0.1067 0.1077 0.1149–0.1170 0.1171

1.2 0.2054–0.2083 0.2065 0.2319–0.2345 0.2345

1.4 0.3351–0.3386 0.3382 0.3968–0.3987 0.3991

1.6 0.4904–0.4944 0.4919 0.5927–0.5938 0.5935

We use the following parameters S0 D 1, r D 5%, �0 D 20%, ˇ D 0:5,  D 30%,
m D �10%, ı D 40% and compute the European and Bermudan option values in
Table 1. The results are compared to a widely used method for valuing Bermudan
options, the Least-Squares Monte Carlo method (LSM), see Longstaff and Schwartz
(2001). The error in our approximation consists of the error of the COS method
and the error in the adjoint expansion of the characteristic function. In particular
for low strikes the method seems to be more sensitive to the approximation, as the
approximated value does not always fall into the LSM confidence interval.

In Fig. 1 the convergence results of the COS method using the 2nd-order
approximation of the characteristic function for T D 1 and 10 exercise dates are
presented. We choose L D 10 and N D 2d and see that a very quick convergence is
obtained.

5.2 Tests Under a CEV-Like Lévy Process
with a State-Dependent Measure

In this section we consider a model similar to the one used in Jacquier and Lorig
(2013). The model is defined with local volatility and a state-dependent Lévy
measure as follows:

a.x/ D 1

2
.b20 C "1b

2
1�.x//;

�.x; dz/ D "3�N.dz/C "4�.x/�N.dz/;

�.x/ D eˇx: (9)
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Fig. 1 Error convergence for pricing Bermudan put options, N D 2d , L D 10, T D 1 and 10
exercise dates and strikes K D 0:8; 1; 1:2

We will consider Gaussian jumps, meaning that

�N.dz/ D 
1p
2�ı2

exp

��.z � m/2

2ı2

�
dz:

In Table 2 the results are presented for a model as defined in (9) with a state-
dependent jump measure, so �.x; dz/ D �.x/�N.dz/. In this case we have

 .�/ D ir� � a0.�
2 � i�/ � �0.emCı2=2 � 1/i� C �0.e

mi��ı2�2=2 � 1/;

where a0 D 1
2
b21e

ˇNx and �0.dz/ D eˇNx�N.dz/. The other parameters are chosen
as: b1 D 0:15, b0 D 0, ˇ D �2,  D 20%, ı D 20%, m D �0:2, S0 D 1,
r D 5%, "1 D 1, "3 D 0, "4 D 1, the number of exercise dates is 10 and T D 1.
Again the method performs accurately, but for out-of- and at-the money strikes the
approximation tends to under- and over-estimate the LSM value.
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Table 2 Prices for a European and a Bermudan put option (10 exercise dates, expiry T D 1) in
the CEV-like model with state-dependent measure for the 2nd-order approximation characteristic
function, and a Monte Carlo method

European Bermudan
K MC 95% c.i. Value MC 95% c.i. Value

0.8 0.01025–0.01086 0.009385 0.01068–0.01125 0.01024

1 0.04625–0.04745 0.04817 0.05141–0.05253 0.05488

1.2 0.1563–0.1582 0.1564 0.1942–0.1952 0.1952

1.4 0.3313–0.3334 0.3314 0.3927–0.3934 0.3930

1.6 0.5207–0.5229 0.5218 0.5919–0.5926 0.5920

1.8 0.7103–0.7124 0.7122 0.7906–0.7913 0.7910
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