Stochastic Control for Insurance: Models,
Strategies, and Numerics

Christian Hipp

Abstract This survey on stochastic control for insurance is written for stimulation
research of the topic, addressing new problems (such as dividend values with
ruin constraint) and new methods (as the non-stationary approach) as well as
numerical issues (Euler type discretizations). In the context of discretizations,
viscosity arguments are important which are adapted here for the purpose of solving
insurance problems. Finally, open problems are listed.
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1 Prologue

This paper is based on a short course given at University of Cartagena, Columbia,
during the Second International Congress on Actuarial Science and Quantitative
Finance. Its issue is an introduction into stochastic control in insurance, with special
emphasis on new problems, new approaches and new methods, as well as on
numerical issues. We will consider control for minimizing ruin probability (which
results in reduction of solvency capital) as well as maximizing dividend payment
(which has impact on the company value). Combining these two objectives, we
consider maximization of dividend value under a ruin constraint. We will start with
a simple discrete example where the tools and methods for more complex models
are introduced. This example is just for illustration, it is too simple for applications
or for advanced mathematics. Such simple models have their merits in education
(see, e.g., De Finetti 1957). In this discrete example we consider
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. infinite time ruin probability,

. minimal ruin probability by control of reinsurance,

. minimal ruin probability by control of investment,

. company value, i.e. maximal dividend value by control of dividend payment,
. maximal company value by control of reinsurance,

. company value under ruin constraint, and

7. maximal company value under ruin constraint with control of reinsurance.

AN AW =

A Discrete Example We consider a discrete time and space risk process S(¢),t > 0,
which jumps from s to s 4+ 2 with probability p; = 0.55, to s — 1 with probability
p2 = 0.3, and to s — 3 with probability p; = 0.15. This can be regarded as a risk
process of an insurer who in each period receives a premium of size 2 and pays
claims of size 3 and 5, respectively. The infinite horizon ruin probability

¥ (s) = P{S(¢) < 0 for some 7 > 0|S(0) = s}

satisfies the dynamic equation
V() =piy(s+2) +pa(s—1) +psy(s —3).s =0, ey

with ¥ (s) = 1 for s < 0. Using the operator

Gf(s) = pif (s +2) + pof (s = 1) + paf(s = 3)
the above dynamic equation reads

V(s) =Gy(s).s 2 0.

The common computation of ¥ (s) is done via generating functions, the solution of

the characteristic equation and the adjustment to the boundary values ¥ (s) = 1,5 <
0 and v (00) = 0. The characteristic equation

2 =pi2 +pa +ps
has the five complex solutions z; which with coefficients C; form the solution

¥(s) = Ci1z1 + ... + Cszs having the appropriate boundary values. In our example,
in particular, ¥ (12) = 0.08828824.

i |z C;

11 0

2 1 0.835935 0.758246

3 | -1.503707 0

4 | —0.166114 4 0.435170i | —0.006270 + 0.020799i
5 | —0.166114 — 0.435170i | —0.006270 — 0.020799;
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For numerical computation and for the next problems it is useful to consider
instead a nonstationary approach. For ¢ > 0 define v (s, 7) as the probability of ruin
after time 7, given S(¢) = s. The functions s — (s, ) satisfy

Y(s,t—1) =Gy(s,1),s >0, 2)

with ¥ (s, 1) = 1 for s < 0. Starting with large 7 > 0 and initial function ¢ (s, T) =
0,s > 0, ¢(5,T) = 1,5 < 0 we calculate with (2) for the functions ¢ (s, t) all
terms down to t+ = 0, and ¢(s,0) is a good approximation for ¥ (s) : ¢(s,0) is
the probability for ruin before or at T which is close to ¥ (s) when T is large. For
T = 5000 we obtain for ¢(12, 0) all the digits for ¥ (12) shown above.

Assume that for each period we can buy reinsurance: for the price of 1 the
reinsurer pays 3 when a claim of size 5 occurs, and 1 when the claim has size 3.
So for each claim the first insurer has to pay 2; this type of risk sharing is called
excess of loss reinsurance. What is the optimal reinsurance strategy to minimize
the ruin probability, and what is the corresponding ruin probability v/ (s)? The
nonstationary approach—with a slightly changed dynamic equation—produces the
solution: replace (2) by

Y(s,t—1) = min[GY (s, 1), G (s.1)] 3)
Gif(s) = pif(s + 1) + paof (s — 1) + paf (s — D). 4)

The operator G shows the dynamics in the case without reinsurance, while the
operator in (4) corresponds to the dynamics with reinsurance. The numerical
procedure and the initial functions are the same as above. With dynamic reinsurance,
the ruin probability is reduced to ¥ (12) = 0.063095. The optimal reinsurance
strategy is: buy reinsurance whenever s > 2. With static reinsurance, i.e. reinsurance
for all s > 0, we obtain ¥ (12) = 0.073629.

Assume that for each period we can invest an amount of 1 which in this
period either doubles with probability w > 1/2, or is lost with probability
1 — w, where investment return is independent of insurance business. What is the
optimal investment strategy to minimize the ruin probability? The nonstationary
approach—again with a slightly changed dynamic equation—produces the solution:
replace (2) by

Y(s.t—1) = min[GV (s, 1), G (s, 1)] (5)
Gof (s) = wgf(s + 1) + (1 —w)Gf (s — 1) (6)

The operator G shows the dynamics in the case without investment, while the
operator in (6) corresponds to the dynamics with investment. The numerical
procedure and the initial functions are the same as above. With dynamic investment,
the ruin probability for w = 0.55 is reduced to ¥ (12) = 0.07611. The optimal
investment strategy is: invest whenever s ¢ {0,2}. With static investment, i.e.
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investment for all s > 0, we obtain 1}(12) = 0.0923987 which is larger than without
investment. Of course, one might extend the control to invest more than 1, which
can be solved with a larger set of operators.

For discount rate 0 < r < 1 and for a given dividend strategy d(z),t > 0, we
consider the expected discounted dividends

Vi) =E [Z r'd(n)|S(0) = s:| ,

n=0

where d(¢) is paid at time ¢ and depends on the history up to time ¢t — 1. The dividend
risk process is §%(s) = S(t) — d(0) — ... — d(t — 1); its ruin time is denoted by 7¢.
Dividend payments are forbidden at and after ruin. The company value is given by

V(s) = sup V4(s),s > 0,
d

its dynamic equation equals
V(s) = max{rGV(s),V(s—1) + 1}, @)

with V(s) = 0 for s < 0. As above, the generating function method can be applied
here, but this equation can also be solved with a nonstationary approach. For ¢t > 0
consider the time ¢ dividend functions

Vi(s, 1) =E [Z Fd(n)|S(1) = s] ,

and define V (s, 1) as the supremum of these dividend functions. The functions V (s, )
satisfy

V(s,t—1) = max{GV(s,1), V(s — 1, — 1) + 1}, (8)

with V(s,f) = 0, s < 0. Starting with large 7 > 0 and initial function V(s,7) = 0
we calculate with (8) the functions V(s,t) down to ¢t = 0, and V(s,0) is a good
approximation for V(s). For r = 0.98 we obtain V(12) = 17.933928.

For simultaneous control of dividend payments and reinsurance we simply
replace the expression GV(s,t) in (8) by max(GV(s,t),GV(s,t)). The dividend
value changes to V(12) = 18.104876. The optimal reinsurance strategy is: buy
reinsurance when s > 10.

Optimal dividend payment with a ruin constraint has the value function

V(s ) = sup[V9(s) : P{r? < o0} < a].
d
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To solve it we use the Lagrange multiplier method and maximize for a large constant
L the expression

W(s, L) = sup[V%(s) — LP{r¢ < oo}].
d

For the nonstationary approach we consider again the dividend payments after time
t, together with the ruin time r,d after time ¢ :

W(s, 1) = sup[V’(s, ) — LP{t? < 0o|S(t) = s}].
d

The dynamic equation for these functions reads
W(s, t—1) = max{GW(s, 1), W(s — 1,1 — 1) + '}, 9)

where W(s,t) = —L for s < 0. The initial function here is W(s, T) = —Ly (s). For
the computation of the corresponding ruin probability, we simultaneously compute
functions v (s, #) from

Y(s.t—1) =Gy (s.0), (10)

when the maximum in (9) is at GW(s, 1) (no dividend payment), and ¥ (s,t — 1) =
¥(s — 1,1 — 1) otherwise. The initial function is ¥ (s, T) = ¥ (s). For s = 12 we
have a ruin probability without dividend payment v (12) = 0.088288 and a dividend
value without constraint V(12) = 18.933928. We take L = 40 and obtain W(12) =
5.646781. The ruin probability with dividend payments equals ¥ (12) = 0.160923,
so the dividend value is W(12) 4+ Ly (12) = 12.083708.

For simultaneous control of dividend payments under a ruin constraint and
reinsurance we simply replace the expression GW(s, 1) in (9) by

max(GW (s, 1), GiW(s, 1)).

Also here, we obtain the corresponding ruin probability in a simultaneous com-
putation: we use the dynamic equations (10) when no dividends are paid and no
reinsurance is bought, or the relation

W(S,l‘— 1) = QIW(S»t)

when no dividends are paid and reinsurance is bought, or finally

Yis,t—1)=v¢(s—1,t—1)

when dividends are paid. For s = 12 and L = 13.754 we obtain a ruin probability
¥(12) = 0.160828 and a dividend value W(12,L) + Ly (12) = 17.635244.
Comparing this company value with the one without ruin constraint, one can see that
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a ruin constraint can be cheap when an appropriate reinsurance cover is available
(which, in our case, has a rather small loading: the premium is 1 while the expected
payments are 0.75).

Apparently, the nonstationary approach seems to be well suited for the compu-
tation of value functions and optimal strategies since it can easily be adapted to
various different problems. It is superior to the stationary method given in Hipp
(2003) which is based on a modified Hamilton-Jacobi-Bellman equation: it is much
faster. This is caused by the fact that in the stationary approach one has to compute
value functions for all 0 < @ < 1, while in the nonstationary approach one has only
one fixed o (specified by L).

The following figure shows the optimal strategies for control of dividends with
ruin constraint with and without reinsurance. They depend on the current surplus s
and time . In both cases the optimal dividend strategies are barrier strategies defined
by a barrier M(t); the optimal reinsurance strategy is also a barrier strategy: buy
reinsurance when s > N(7). The values of M(z) and N(r) are piecewise constant;
they are shown for + = 0,...200. The highest curve shows M(z) for the case
without reinsurance, while the two curves below show M(f) and N(¢) for the case
with reinsurance.
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Continuous Time Models and Their Generators For applications, continuous
time models are of major importance. The classical risk model for insurance is
the Lundberg model in which the claim arrivals are modeled as a homogeneous
Poisson process N(t),t > 0, with constant intensity A > 0, and the claim sizes
X,Xi,X,, ... are independent and identically distributed and independent of the
process N(t). The risk process is then given by
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St =s+ct—Xi —...—Xno»

where s is the initial surplus and ¢ the premium rate. We always assume a positive
loading, i.e. ¢ > AE[X]. S(¢) is a time homogeneous process with independent
increments. The above operator G in continuous time homogeneous Markov
processes is the infinitesimal generator

Gf(s) = lim E/(S(t) = [(5)IS(0) = s]/h. an
which for the Lundberg model equals

Gf(s) = AE[f(s — X) —f(s)] + ¢f'(s)

which is defined on the set of all bounded differentiable functions f(s).
A large scale approximation of stationary risk processes with independent
increments is the simple diffusion with dynamics

ds(t) = pdt + odW(r), t = 0, (12)
where W(?) is the standard Brownian motion. The generator equals

Gf(s) = uf'(s) + " (s)/2,

it is defined on the set of locally bounded functions with second derivative.

One possible way to include parameter uncertainty is the choice of mixture
models for S(z), such as the Cox process in which the intensity of the claims arrival
process is random and modeled as a time homogeneous finite Markov process.
Here, we have a finite number of possible non-negative and distinct intensities
Ai, i = 1,...,m, and A(¢) jumps between these intensities in a homogeneous
Markovian way. This is usually described via parameters b;;, i,j = 1,...,m,
satisfying b;; > 0, i # j, and

bii=— b

i

If the intensity is in state A;, then it stays there an exponential waiting time with
parameter —b;;, and then it jumps to A; with probability —b; ;/b; ;.

Mixture models are more complex than the above-mentioned models, they
sometimes lack the independence of increments and often also the Markov property.
When A(¢) is observable, then the state (S(¢), A(¢)) has the Markov property, and the
generator for thisats > 0, i = 1,...,mequals

m

Gf (s.1) = MEIf(s = X.0) = f(5. )] + cfils. D) + D bij(F(s.)) = f(s.D).  (13)

j=1
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When A(r) is not observable, then again one can enlarge the state vector to
obtain the Markov property: if F; is the filtration generated by S(¢), ¢+ > 0, then
(S(@),p1(2), ..., pu(t)) has the Markov property, where p;(t) is the conditional prob-
ability of A(f) = A;, given F(¢). The processes py(t) are piecewise deterministic,
they depend on ¢ and the history S,, u < t. Between claims they can be computed
using the following system of interacting differential equations:

1 1
P = Y PO — aprt) + pe() Y pi(DAy, i =1, L. (14)

J=1 J=1

This follows from the fact that from ¢ to 14 dt, given A(f) = A4, there is no transition
and no claim with probability 1—Adt+by xdt+o(dt), and forj # k, given A(r) = A;,
there is a transition from A; to A, and no claim with probability b;xdt + o(dt). So,
given N(t + dt) = N(2),

pk(l) (1 — Akdl + bk,kdl) + Zi7ék bj'kpj(l)dt

P{N(t 4 dt) = N(t)| F:}
_ pk(f) (1 — Akdl‘) + Zj bj,kp_j(t)dt
o 1-— ijj(l)kjdt

pi(t 4 dn) = + o(dn)

o(dt)

=pe(®) | 1= Aedr + D piOAsde | + Y biupi(0dt + o(dr).
Jj J

At a claim, the process pi(f) has a jump: given N(t + df) > N(¢) we have for
k=1,...,1

Api(t)

. 15
2 Pi(DA, 1

P = pr(tt) =
This follows from
PIN(t + h) > N(t), At + h) = M| Fi} = pr(t)Ach + o(h),

1
P{N(t+ h) > N(O|F} = > pi()Ah + o(h).

J=1

From this dynamics we obtain the following generator:

Gf(s.p) = Y PMElf(s — X.p™) —f(s.p)] + chils.p) + Y _fou(s.p)Pf (16)
k k

Here, f; and f,, are the partial derivatives with respect to s and py, respectively.
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Mixtures with constant but unknown parameters in a finite set {1y, ..., 4,,} can
be modeled as follows: let A be a random variable with p; = P{A = A;} known.
Assume that given A = A;, S(¢) is a classical Lundberg process with intensity A;.
With p;(7) the conditional probability of A = A;, given S(u), u < t, the vector
(8(2),p1(2), ..., pm(t)) has the Markov property. The dynamics of the p;(f) is the
same as in the above example, with b;;y = 0 for j,k = 1,...,m. The generator is
the same as in (16).

For mixture models as well as for dividend problems with ruin constraint, it is
convenient to consider also non-stationary generators. As illustration we mention
the example which is also considered in Sect. 5. It is a delayed compound Poisson
process where up to a random time 7 we have S(f) = s + ct, and for r > T, given
T the risk process s + S(¢) — S(T) is a compound Poisson process. The time 7 has
an exponential distribution. We want to minimize the ruin probability by control of
reinsurance. For this, write V(s, r) for the controlled ruin probability after time ¢,
given that no claim happened until ¢. Then V(s, f) has a dynamic equation of the
form

0 = infp(NAE[Vi(s — ga(X)) = V(s, D] + (c = h(@)Vi(s, 1) + Vi(s, 1),

where p(?) is the conditional probability of # < T, given no claim up to time ¢, and
Vi(s) is the minimal ruin probability for the case with constant positive intensity.
The quantity i(a) is the reinsurance price for risk sharing g,(X).

2 Ruin and Company Value

We shall restrict ourselves to three types of control problem: one in which we
minimize the infinite time of ruin, next the maximization of the company value, and
finally the maximization of a company value with a ruin constraint. We shall always
consider an infinite horizon view, since insurance uses diversification in time, and
some insurance products are long term.

For Lundberg models, the infinite time ruin probability is a classical bounded
solution of the dynamic equation ¥ (s) = Gy (s),s > 0, with a continuous first
derivative. It is the unique classical solution satisfying ¥ (s) = 1, s < 0, ¥(oc0) =
0, and ¥'(0) = —A(1 — V(0))/c. Analytic expressions for ¥ (s) can be given for
exponential or more general phase-type distributions (see Chap. IX of Albrecher and
Asmussen 2010).

The company value is itself the result of a control problem: what is the maximal
expected discounted sum of paid dividends? In mathematical terms:

Vo(s) = sup {E [ / - e dD(1)|S(0) = s:|} ,
D 0
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where D = D(t), t > 0 is the sum of dividends paid up to time ¢ with
some admissible dividend payment strategy. Already in the Lundberg model, this
question is hard, too hard for applications in insurance. The answer is simpler if we
restrict dividend payment to strategies which are barrier strategies. Optimal barrier
strategies can be derived from a classical solution v(s) of the dynamic equation

0 = Sv(s) + Gu(s), 17

with v(0) = v'(0) = 1, where G is the generator of the risk process and § is the
discount rate. Then

Vo(s) = v(s)/v'(M), s <M, Vo(s) = Vo(M) +s—M, s > M,
where the optimal barrier is given by
M = arg min v’ (s)

(see Schmidli 2007, Sect.2.4.2). This simplified answer is a sub-solution of the
above control problem. It is an optimal dividend strategy only for special claim size
distributions (see Loeffen 2008). Generally, optimal dividend strategies are band
strategies, i.e. there might exist M < M; < M, for which no dividends are paid as
long as M| < S(t) < M>, and for M < S(f) < M, alump sum M| — S(¢) is paid out
immediately. However, optimal barrier strategies are useful for applications since
for s < M the dividend values of the barrier strategy are the same as the dividend
value of the optimal band strategy.

For the company value, a discount rate is needed which can be a market interest
rate (which should be modeled with some stochastic process which is allowed to be
negative), or a value which shareholders and accountants agree upon. We will be
concerned only with positive constant discounting rates.

A company value with ruin constraint is an even more complex quantity since
it involves a control problem with two objective functions. Its computation is still
work in progress. We consider it here since it appealing to both, the policy holders
and the stock holders. The value is given by

V(s,a) = sup %E [/000 e 1dD(1)]S(0) = s:| yPs) < oc} ,

D

where 0 < o < 1 is the allowed ruin probability and ¥”(s) is the with dividend
ruin probability. Clearly, V(s, 1) = Vy(s), and if ¥ (s) is the without dividend ruin
probability, then V(s, ¥ (s)) = 0.

The meaning of a company value with ruin constraint might become clearer when
we meditate a little about special dividend strategies which have constrained ruin
probabilities. Let us do this in a diffusion model which does not have downward
jumps. Let s(«) be the solution of {(s) = «. The simplest strategy is: pay out
s — s(a) immediately, and stop dividends forever. This has a ruin probability o«
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and a dividend value s — s(«). A better strategy is constructed using the optimal
unconstrained dividend strategy based on the barrier M and leading to the dividend
value Vj(s). Choose s > 0 and o > ¥ (s); then s(«) < s, so you can put aside s(«)
(e.g., into your pocket), and then use the unconstrained dividend strategy with initial
surplus s—s(&). Atruin, i.e. when you reach zero, you stop paying dividends forever.
With your money from the pocket, you indeed stopped with s(c), and so your ruin
probability equals «. And your corresponding dividend value equals V(s —s(«)) >
s —s(a).

Money in the pocket is never optimal, and so there should exist improvements
of the dividend strategy with the same ruin probability. Our next strategy is based
on the improvement procedure introduced in Hipp (2016). We assume s < M and
a > Y(s). Do not pay dividends until you reach M. You will be ruined before
reaching M with probability A = (Y (s) — ¥ (M))/(1 — ¥ (M)) < ¥ (s) < a. Define
0 < y < « via equation

A+y(l—-A) =a.

When you reach M, you put aside the amount s(y) and pay out dividends with the
unconstrained strategy until you reach s(y). Then you again stop paying dividends
forever. The resulting ruin probability is ¢, and the dividend value will be V(M —
s(y)), discounted over the time 7 until you reach M. With our function Vj(s) above
we have E[e~™] = V;(s)/Vo(M), and so the dividend value of our strategy is

Vo(s)
Vo(M)

Vo(M — 5(y))

which is larger than V(s — s(«)). The reason for this is: in the first case we stop
dividend payment forever at s(«), also when we did not reach M yet, and this
reduces the dividend payments. In the second we wait until we reach M, and then
money goes to our pocket.

3 Hamilton-Jacobi-Bellman Equations

The use of these equations might seem a bit old-fashioned, but with the concept of
viscosity solutions it is still a standard approach. For a stationary Markov process
which should be controlled by actions a € A we consider the process with a constant
(in time) action a and the corresponding generator G of the resulting Markov
process. If we minimize ruin probability, the Hamilton-Jacobi-Bellman equation
reads

0 = inf GV (x), (18)
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where V(x) stands for the value function of the problem and x = (s,p) is the
(enlarged) vector of states, s > 0 being the surplus. If we maximize dividend
payments, it is given by the formula

0= —8V(s) +supGV(x), (19)

where § > 0 is the discount rate. But here the range of x is restricted to {(x, p) : x <
M(p)}, where for fixed p, M(p) is the smallest point x at which V(x,p) = 1. For
larger x the function is linear with slope 1:

V(x.p) = V(M(p).p) +x —M(p).

Notice that we neglect a possible second and third, etc. band.

In Lundberg models, Eq. (18) involves a first derivative and an expectation. Such
an equation needs two boundary values to identify a unique solution. For ruin
probabilities V(s) = 1 for s < 0, and so we can use the two conditions V(co) = 0
and V'(0) = A(1—V(0)/c. For dividend values we first use a solution with v(s) = 0
for s < 0 and v(0) = 1,v'(0) = A/c, and then we minimize v’(s) (see Chap. 6).

In simple diffusion models, Eq. (18) shows a first and a second derivative. For
this we again need two conditions, which are V(0) = 1, V(co) = 0 for the ruin
probability, and V(0) = 0, V/(M) = 1 for dividend values, where M is again the
minimizer for v’(s).

We shall frequently use a nonstationary approach, even for stationary problems.
In our introductory example, we have computed the infinite horizon ruin probability
with such an approach: we considered the ruin probability V (s, ¢) after time t when
starting in s at #. We used a large number 7" and used the initial guess V(s,T) = 1 if
s < 0,and V(s,T) = 0elsewhere. Using the dynamic equation for the nonstationary
case, we calculated backward in ¢ to the end 7 = 0, and V(s, 0) was an almost exact
value for the ruin probability in the stationary model.

For this we need the dynamic equation for a nonstationary setup in the case of a
stationary Markov model. This is most simple: if G is the generator of the model,
then the equation is

0=3GV(s,t) + Vi(s,1). (20)

In the dividend case, there is no extra term with § as in (19) since the discounting is
modeled in the time dependence.

For cases like the volcano problem in Chap. 5, we obtain a nonstationary dynamic
equation in which time dependent quantities enter.
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4 Investment Control

What is the optimal investment strategy for an insurer to minimize her ruin
probability? This is one of the oldest questions in the field of stochastic control in
insurance, it was solved for the simple diffusion case by Browne (1995) in 1995.
A simple framework for this problem is a Lundberg process for the risk and a
logarithmic Brownian motion for the capital market (a stock or an index) in which
the insurer can invest.

Our first example is of little use in insurance industry, but it might serve as an
introduction since it shows many features which are present in other cases. We
assume that the insurer does not earn interest and pay taxes, and that he can invest
an unrestricted amount, i.e. unlimited leverage and short-selling are allowed. We
assume in the following that the Lundberg process has parameters ¢ (premium rate),
A (claim frequency), X (generic claim size) with bounded density, and ¢ > AE[X]
(positive loading).

The price process of the asset has dynamics

dZ(t) = pZ(t)dt + o Z(1)dW(z), t > 0,

where W () is standard Brownian motion and p, o are positive.

Theorem 1 The minimal ruin probability V(s) is a classical solution to the dynamic
equation

0 = infAE[V(s — X) = V(9)] + (c + pAV'(s) + A0V (s)/2}, s > 0. (21)

The function V(s) has a continuous second derivative V"'(s) < 0 in s > 0, with
lim;_.o V"(s) = —oc. The optimal amount A(s) invested at state s is A(0) = 0 and
A*(s) = —uV'(s)/(0*V"(s)), s > 0.
Two different proofs are given in Hipp and Plum (2000, 2003).

There are only a few parameters and exponential claim sizes for which A(s) or
V(s) can be given in explicit form.

Example 2 Letu = 0 = A = 1 and ¢ = 3/2. The claim size has an exponential
distribution with mean a. Then

A(s) = v/2c/av'1 — e720s,

Here, A(s)/s — oo, and this is a typical behavior of the optimal investment
strategy. Since unlimited leverage is forbidden for insurers, leverage has to be
bounded or completely forbidden by constraints on the strategies. Such constraints
can be defined state dependent, allowing a range .A(s) for the choice of the amount
invested at surplus s. With these we can deal with the case of no restriction A(s) =
(—o00, 00), no leverage A(s) = (—o0, s], no short-selling A(s) = [0, 00), neither
leverage nor short-selling A(s) = [0, 1], and bounded leverage and bounded short-
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selling A(s) = [—as, bs]. The constraints change the control problem substantially;
so, e.g. for no leverage constraint there is no optimal investment strategy. An optimal
strategy would be to invest the amount —oo on the market (volatility hunger).
Furthermore, constraints can lead to non-smoothness of the value function.

Such cases are investigated in the papers Azcue and Muler (2010), Belkina
et al. (2014), Edalati (2013), Edalati and Hipp (2013), and Hipp (2015). While the
proofs and arguments in these papers are all different, it is good to have a universal
numerical method (see Sect. 8) which works in all these situations.

The corresponding dynamic equation for the value function reads

0= C_ir}‘f( ){AE[V(S —X) = V()] + (c + pA)V'(s) + A%6*V"(5)/2}, s > 0.

If A(s) = [a(s), b(s)] is an interval, then the minimization with respect to A is easy:
there are only three possible minima: at a(s), b(s) or at the unconstrained minimizer
A*(s).

The resulting optimal investment strategies vary according to the claim size
distribution. For the unconstrained case, we see that A*(s) is

1. bounded and converging to 1/R, the adjustment coefficient of the problem, in the
small claims case (Hipp and Schmidli, 2004),
2. unbounded increasing in the large claims case as Weibull, Lognormal, Pareto:
the larger risk, the higher the amount invested (Schmidli, 2005)
. asymptotically linear for Pareto claims.
4. very special when claims are constant (see Sect. 8).

W

Extensions to other models cause little technical problems. Interest rate earned
on surplus or paid for loans can be implemented (see Hipp and Plum 2003).
In the case of two (correlated) stocks, a very simple model would be the dynamics

dz;(t) = a;Z;(t)dt + biZ;(1)dW;(t), t > 0,i = 1,2,

where p is the correlation between Wy () and W, (¢). If we first choose the proportion
p and 1 — p in which we invest the amount A in stock 1 and stock 2, then we obtain
the usual dynamic equation with u and o> depending on p. Taking the minimum
over A the dynamic equation remains with the term

1 /,LZV/(S)Z
ZGZV”(S)Z’

and since V'(s), V"(s) are fixed, we have to maximize p?/0? which produces the
well-known optimum

a1b§ —ap
alb% + azb% — (a1 + az),o

p=
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which is constant. So we indeed have investment into just one index with price
process pZ; (1) + (1 — p)Zx(2).

In other market models for the stock price Z(¢), the return on investment will
depend on the current price Z(f) which must be included as state variable: for the
dynamics

dzZ(t) = (u — Z(t))*dt + Z()dW(t), t > 0

we will do no or only little investment when Z(¥) is close to .

Optimal investment can also be used to maximize the company value. This
leads to a similar dynamic equation in which changes for dividend payment are
necessary (see Azcue and Muler 2010). For simultaneous control of investment and
reinsurance, also with constraints, see Edalati (2013).

5 Reinsurance Control

Reinsurance is a most important tool for risk management in insurance. We restrict
ourselves on reinsurance of single claims, so we disregard stop loss reinsurance
which would ask for a time discrete model. In single claims reinsurance we have
a risk sharing between first insurer and reinsurer described by some function g(x)
satisfying 0 < g(x) < x which denotes the amount paid by the first insurer; the
amount of the reinsurer for a claim of size x is x — g(x). Let G be the set of all
risk sharings on the market, and assume that there is go € G with go(x) = x (no
reinsurance).

Optimal reinsurance will here be considered for minimizing the first insurer’s
ruin probability. For maximizing the company value, see Azcue and Muler (2005).

Optimal control for reinsurance is done on a market in which for a risk sharing
g(x) aprice is specified, and this price determines the optimal strategy. If reinsurance
is unaffordable on the market, then it will be optimal not to buy reinsurance. On the
other hand, if reinsurance is cheap, then it might be optimal to transfer the total risk
to the reinsurer and reach a position with zero ruin probability.

For this exposition of reinsurance control we take a Lundberg model for the risk
process.

Assume now that a price system A(g), g € G, is given which for each risk sharing
defines its reinsurance price, with i(gy) = 0. If at time ¢ the reinsurance contract
g:(x) is active, then the risk process of the first insurer is given by

N(r)

S(t)=s+ct— /(; h(g,)du — ZgT,(Xi),
1

where T, T», . . . are the time points at which claims occur. The generator for a fixed
risk sharing g € G is
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Gf(s) = AE[f (s — g(X)) — ()] + (c — h(g))f'(5). (22)

We are minimizing the infinite horizon ruin probability through dynamic reinsur-
ance, which leads us—as in the discrete case—to a dynamic equation for the control
problem, the well-known Hamilton-Jacobi-Bellman equation:

0= gg(f;{/\E[V(S —8(X)) = V()] + (c —h()V'()}, s = 0, (23)

with the boundary values V(co) = 0 and V(s) = 1, s < 0. Rearranging terms, we
obtain
AE[V(s) = V(s —g(X))]

V/(s) = sup (24)
g€G:h(g)<c ¢ = h(g)

From this equation we come to the recursion

/ AE[V,(s) — V(s — g(X))]
v _ , 25
ut1(5) geGS:;lg)q_ c—h(g) @

Vi == [ Vi 6)

which produces an increasing sequence of continuous function converging to a
solution of (23) when we start with V,(s) = ¥ (s), the infinite time ruin proba-
bility without reinsurance. This recursion is, however, not adequate for numerical
computations.

In order to obtain a nontrivial solution for our control problem, total reinsurance
go(x) = 0 should be expensive in the sense that 4(gy) > c¢. Otherwise total insurance
would be affordable and yield a ruin probability zero for the first insurer.

In this paper, we will restrict ourselves to reinsurance prices computed as a
loaded expectation:

h(g) = ApE[X — g(X)],

where ApE[X] > c.
Common reinsurance forms are

1. proportional reinsurance with g(x) = bx, 0 <b <1,
2. unlimited XL reinsurance with g(x) = (x —M)™,0 < M < oo, and
3. limited XL reinsurance with g(x) = min((x — M)*,L),0 <M, L < co.

XL is the usual shorthand for excess of loss. The numbers M and L are called priority
and limit, respectively.

Under the above pricing formula, static proportional reinsurance (which is
constant over time) does not decrease the first insurer’s ruin probability. However in
dynamic control, expensive proportional reinsurance can reduce ruin probability.
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The unlimited XL reinsurance is optimal for the static situation in the following
sense: if g(x) is an arbitrary risk sharing function and gy/(x) an unlimited XL risk
sharing with E[g(X)] = E[gy(X)], then the first insurer’s ruin probability with g is
smaller than the ruin probability with g. Unlimited XL reinsurance is illiquid and/or
expensive on reinsurance markets, more common are limited XL forms. Also these
have some optimality in the static situation: if g is an arbitrary risk sharing with
x — g(x) < L and, for some M, gy ; a limited XL reinsurance with E[g(X)] =
E[gy.1(X)], then the first insurer’s ruin probability with g, is smaller than the ruin
probability with g.

Optimal dynamic reinsurance strategies take often the position no reinsurance
when the surplus is small. For proportional reinsurance this was shown by Schmidli
(see Schmidli 2007, Lemma 2.14) under the assumption that the price function 4(b)
satisfies lim inf,—.o(c — h(b))/b > 0.

A similar results holds for unlimited XL reinsurance: If #(M) is continuous at
M = 0, then there exists My > 0 for which /(M) > ¢ for all 0 < M < M,. Choose
s < My. The supremum in (24) is taken over M > My > s. For s < M

E[V(s — min(X. M))] = P{X > s} + E[V(s — X) 1<y}

does not depend on M, so the supremum in (24) is attained at M = oo (no
reinsurance) For more details, see Hipp and Vogt (2003).

For limited XL reinsurance, for small surplus s we will see an optimal reinsurance
strategy with M and L as well as a price (M, L) close to but not at zero.

Example 3 We consider a delayed compound Poisson process which has an expo-
nential first waiting time 7 with mean 8 = 1 in which no claims occur, and after
time 7 the claims arrival is a Poisson process with constant intensity A = 1. Also
the claim sizes have an exponential distribution with a mean 1; the premium rate is
¢ = 2. What is the optimal dynamic unlimited XL reinsurance which minimizes the
ruin probability?

Volcanos show long waiting times between periods with frequent seismic waves.
One could model claims caused by these waves as above.

The standard approach for a solution would be to solve the corresponding
Hamilton-Jacobi-Bellman equation (16) for the value function V (s, p), where p()
is the conditional probability of A(f) = A, given S(u), u < t. But we cannot solve
the equation with V(s, 1) as boundary condition since the factor of V, (s, p) is zero
when p = 1. Since we know A(f) = A after the first claim, we only need the
optimal reinsurance strategy until the first claim. Given no claim up to time ¢, the
function p(¢) has derivative given in (14) which yields p(¢r) = t/(1 + ). We use a
nonstationary approach.

This seems to work well for ruin without reinsurance: let v (s) be the ruin proba-
bility for the uncontrolled Lundberg process with intensity A, ¥ (s) = exp(—s/2)/2.
From Ev (s — X)] = 2 (s) and ¥’ (s) = —(s)/2 we can see that the separation of
variables works: for V(s, 1) = f(f)¥(s) the dynamic equation

0 = p()E[Y (s — X) = V(5. )] + cVy(s.1) + Vi(s. 1)
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yields

P2 —f@®) —fO) +f (1) =0, 1 >0, f(c0) = 1,
with the solution

1+ 2t
1+1¢

=5

and the value f(0) = 1/2. So, V(s,1) = (1 + p(r))e™*/?/4. These exact values can
be reproduced numerically with 7 = 300, ds = 0.01 and dr = 0.001.
With reinsurance we consider the value function V (s, t) and its dynamic equation

0= SEP{P(t)E[Vl (s —gu(X) = V(s. D] + 2 = h(M))Vi(s.1) + Vi(s. D)},

where g)(X) = min(X, M) and h(M) = 2pE[X — gy (X)] is the reinsurance price for
priority M, and V/(s) is the value function for the problem with constant intensity
1. The optimal priority M(s, t) is derived from maximizing

POEVi(s — gu(X)] + (2 — h(M)) Vi(s. 7).

For large T we start with V(s, T) = V(s), and calculate backwards to t = 0 using
the recursion

V(s,t—dt) = V(s, 1) +dt{p()E[V (s, 1) —Vi(s—gu(X))]—(c—h(M))Vi(s, 1)  (27)

in which M = M(s,t) is the optimal priority. The parameter for reinsurance is
p = L.1. Of course, no reinsurance is optimal for all s > 0 when ¢t = 0. We see
six priority curves M(s,),0.2 < s < 2, for t = 0.05,0.025, 0.045, 0.095, 0.17, 300
(from the right) (Fig. 1). The curves do not intersect; for smaller r we transfer less
risk to the reinsurer. In particular, the interval without reinsurance decreases with 7
from [0, 1.47] to [0, 0.23].

For more general Markov switching models one could perhaps adopt the above
approach. Starting with a given initial probability vector at time 0, we can compute
the filter p(7) for the time without claim. Assume the vectors p(t) converge to p.
Since the control problem with initial distribution p can be solved easily, we can use
the corresponding value function Vj(s) as V(s, 00), so again we would start at some
large T instead of oo, and would compute backward to + = 0 with the appropriate
dynamic equation.
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Fig. 1 M(s, 1) for t = 0.005,0.025, 0.045,0.095, 0.17, 3005
6 Dividend Control

Management decisions in insurance, such as reinsurance or investment, have an
impact on the company value, and control of investment and reinsurance can be
done with the objective to maximize this value. Since the company value is itself
the result of a control problem, the maximizing by investment or reinsurance is
a control problem with two (or more) control variables, dividends and investment
and/or reinsurance. For simplification we restrict ourselves to dividend strategies
which are barrier strategies.

Azcue and Muler (in Azcue and Muler 2005, 2010) solve the problems for
reinsurance and investment. They mainly characterize the value function as a solu-
tion to the dynamic equation, without showing numerical results. For applications
in insurance it might be interesting to see whether reinsurance can increase the
company value. For reinsurance one has to pay reinsurance premia, and this will
reduce the value. But the reduction can be compensated by the reduction of the
ruin probability or by increasing the time to ruin for the company. The answer to
this question will depend on the relation between premium rate ¢ and reinsurance
premia, as well as on the discount rate § (a large § reduces the effect of a longer time
to ruin). We will present some numerical examples in Sect. 8.

For company values V(s) in a simple diffusion the initial value is V(0) = 0. For
Lundberg models V(0) is positive and known only in the trivial case when all surplus
and premia are paid out, i.e. V(0) = ¢/(A + ) (see Schmidli 2007, Sect. 2.4.2). The
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starting value in the general case—with control—can be found exactly as in the
case without control: first compute a solution of the dynamic equation v(s) with
v(0) = 1, and then define the barrier M as M = arg min v’(s), and finally

V(0) = v(s)/v'(M).

For the computation of company values with ruin constraint we suggest the
Lagrange multiplier method and a nonstationary approach. For the nonstationary
approach we consider dividend payments and ruin probabilities after time #:

VP(s,H) = E [ / ~ e~ dD(u)|S(r) = s}

—LP{SP(u) < 0 for some u > 1|S(r) = s},
V(s,1) = sup VP (s, 1),
D

V(s, 00) = =Ly (s).

Here, v/ (s) is the ruin probability without dividends, and S (u) the risk process with
dividends which, from time 7 until time u, add up to D(u). The last relation inspires
the following method for computation: start at a large number 7', take as initial value
the function V(s,T) = —Ly/(s), and then compute backward until r = 0 using the
non-stationary dynamic equations, modified for dividend payment.

The equations for the backward computation are

M(t) = min{s : V(s, 1) = exp(—9d1)},
V(s,t) = V(s,t +dt) —diGV(s,t + dt), s < M(1),
Vs, t) = V(M(1), 1) + (s — M(t)) exp(=61t), s > M(2).

For a generator involving V" (s, r) which is the case for the simple diffusion model
we add V(0, s) = —L. For other models we get V(0, t) from V(0, ¢ + dr).

The nonstationary approach deals with partial differential equations for which we
most often have to use different discretisations for time and state. The right choice
of discretisations is a major problem in the context of these dividend problems (see
Sect. 8).

In Sect.2 an improvement approach was mentioned for the optimal dividend
problem with ruin constraint. This was presented in Hipp (2016); however, the
method is not sufficiently convincing to be a standard for the numerical computation
of the value function in this problem. It might help to find reasonable sub-solutions;
it is a method for patient owners of fast computers.

Improvement Approach Assume we have a function V,(s,«) which is the
dividend value for initial surplus s of a strategy which has a ruin probability not
exceeding «. We fix B > s and wait without paying dividends until we reach B.
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We will reach B before ruin with the probability A = (1 — ¥ (s))/(1 — ¥ (B)),
where 1 (x) is the ruin probability without dividends with initial surplus x. At B (we
have no upward jumps) we start paying dividends with a strategy corresponding to
a ruin probability a(B) having dividend value V,(B, a(B)). The ruin probability of
this strategy is 1 — A 4+ Aa(B), and the dividend value is the number V,(B, a(B)),
discounted to zero. Let t be the waiting time to reach B, and v(s) be the unique
solution of the equation 0 = §v(s) + Gu(s) with v(0) = V’(0) = 1, where § is the
discount rate and G the generator of the underlying stationary Markov process:

0 = §v(s) + AE[v(s — X) — v(s)] + cv'(s) for the Lundberg process
0 = 8v(s) + uv'(s) + o2v”(s) for the simple diffusion model.

Then
Elexp(—87)] = v(s)/v(B). (28)
If we define a(B) from the equation
A+ (1—-A)a(B) = «,
then our dividend strategy has ruin probability « and dividend value

Va(s)v(s)/v(B).

For B — s we obtain the limit V,,(s, @), so a new value dividend function which is
an improvement over V, (s, @) can be defined:

Vati1(s, ) = sup V(s a(B))v(s)/v(B). (29)

In each iteration step, we have to compute the V-function for all s > 0 and ¥ (s) <
o« < 1. And it has to be done on a fine grid. This causes long computation times.
One can start with the function Vi (s, @) = s—s(«), where s(«) is defined through

V(s(@) = a.

The strategy for this value is: pay out the lump sum s—s(«) at time 0 and stop paying
dividends forever. One should also try other initial functions which are closer to the
true function, such as Vi(s,«) = Vo(s — s(«w)) in the simple diffusion model. For
the Lundberg model, one can similarly use the function Vj(s), the company value
without ruin constraint, but s(«) has to be replaced by a number s; («) defined via
the equation

E[y(s—V)] =a,
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where Y is the deficit at ruin in the without dividend process. For exponential claims,
we can replace Y by X (see Hipp 2016). Notice that s can be smaller than s («), for
which the initial value could be V;(s) = 0 or V| (s) = s — s(x).

7 Viscosity Solutions

In many control problems, the value function can be characterized as the unique
viscosity solution to the classical Hamilton-Jacobi-Bellman equation. What is
more important: it helps in the proof for convergence of numerical methods
(discretizations).

The concept of viscosity solutions—introduced in 1980—is well known today,
but still not well enough understood. It is not a subject in most lectures on stochastic
processes and control. There are various attempts to make the concept more popular:
the famous User’s guide of Crandall et al. (1992) as well as the books by Fleming
and Soner (2006) and Pham (2009). We aim at a better understanding for the concept
and properties of viscosity solutions, and its use for the proof of convergence for
Euler type discretization schemes of a Hamilton-Jacobi-Bellman equation. This
use is based on the fact that upper and lower limits of discretization schemes are
viscosity solutions.

In particular we try to provide

1. a better understanding of the Crandall-Ishii maximum principle

2. a proof for the comparison argument which uses V(0) and V’(0)

3. an understanding that the concept, being rather technical, is of major importance
for applications (numerics and understanding control problems).

For this, we think that a complete and detailed proof for the Crandall-Ishii
comparison argument should be included in this section, although for smooth
reading one would transfer the proof to an appendix.

Value functions are not always smooth, the viscosity concept is useful to deal
with these value functions. Here are two figures from optimization problems with
singular value functions; they come from the optimal investment problem with
constraint sets .A(s): the amount A(s) invested in stock must lie in .A(s) when we are
in state s. In both figures the blue line shows the proportion A(s)/s invested, while
the black is the first derivative of the value function V(s) (Figs. 2 and 3).

The dynamic equation for our control problem, valid for s > 0, is

0= sup {AE[V(s—U)—V(s)] + (c+A)V'(s) + A>V"(s)/2} .
AEA(s)

Because of the above examples there is no hope for the statement: the value function
is the unique smooth solution of the above dynamic equation. Instead one can try
to prove that the value function is a (unique smooth) viscosity solution of the above
HIJB. For this section we will always consider the optimal investment problem with
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Fig. 2 A(s) = {0}, 30
s<1,A(s) =[0,00),5s > 1
25

20

Fig. 3 A(s) = [0, 00), 30
s<1,A(s) ={0},s > 1

constraints; in particular, sub-solutions, super-solutions, and viscosity solutions are
always defined with respect to the above HJB.

Definition 4 A function V(s), s > 0, is a viscosity super-solution at s > 0 if for
V(x) > ¢(x) € C; having in s a local minimum for V(x) — ¢ (x)

sup {AE[V(s — U) — V(s)] + (c + A)¢'(s) + A’¢"(s)/2} < 0.
A€A(s)

V(s) is a viscosity sub-solution at s > 0 if for V(x) < ¢(x) € C, having in s a
local maximum for V(x) — ¢ (x)

sup {AE[V(s—U) — V(s)] + (c + A)¢'(s) + A’¢"(s)/2} > 0.
A€ A(s)

V(s) is a viscosity solution: if it is a super- and sub-solution at all s > 0.
An equivalent definition using sub- and superjets is

Definition 5 V(s) is a viscosity super-solution at s > 0 if for V(s + h) < V(s) +
ah + bh?/2 + o(h?*) we have
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sup {AE[V(s — U) — V(s)] + (c + A)a + A’b/2} < 0.
A€ A(s)

V(s) is a viscosity sub-solution at s > 0 if for V(s 4+ h) > v(s) + ah+ bh*/2 + o(h?*)

sup {AE[V(s — U) — V(s)] + (c + A)a + A’b/2} > 0.
A€A(s)

(a, b) are called 2nd order sub- and super-jet of V(x) at s.

The concept of viscosity solutions is important for numerical methods which are
based on Euler type discretisations of the dynamic equation. The discretized version
of the value function Va (s) is the numerical solution for step size A > 0 which, at
s = kA, is defined from

0= A A(gals) = Va()) + (c + AV, (5) + A*V(5)/2} .

with

k
ga(s) = ) _Va(tk=DMP{( — DA <X <iA}.

i=1
Vo) = (Vals + A) = Va(9)/A,
VA($) = (Va(s) = Vas — A)/A.

Its computation is possible via the recursion:

Lo AAVA(s) — ga(s) + APV (s — A)/2
als) = Inf) Ac+A) +A2)2

Then
V*(x) = limsup,—is . o—oVa(5)
is a viscosity sub-solution, while
Vi(x) = lim infs:kA—)x,A—w Val(s)
is a viscosity super-solution of the dynamic equation. The convergence is a strong
convergence concept: it implies uniform convergence on compact sets.
A convergence proof (see Chap.IX of Fleming and Soner 2006) can now be

very short: since a sub-solution can never be larger than a super-solution, we have
V*(x) < Vi(x). Since Vi (x) < V*(x), by definition, we have equality. For the above
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inequality between the sub- and the super-solution one uses the famous Crandell-
Ishii maximum principle which we discuss later. First we give a proof for the sub-
solution property for limsup V*(s) :

Proof Let ¢ (x) € C, for which V*(x) — ¢(x) has a strict local minimum at sy. With
¢ (s) being the restriction of ¢ (x) to the A-grid we define

sa = argming_;roVa(s) — da(s).

Then

Va(sa) —@a(sa) < Valsa £ A) — palsa £ A),

and so V) (sa) < @) (sa) and V{(sa) < ¢X(sa). We can find a sequence A, for
which sp, — s and Vj, (sa,) — V*(s). Recall that Va(s) is a solution to the
discretised dynamic equation

0= ASZI?) {A(gal(s) = Va(s) + (c + AV (s) + AVi(s)/2} .

Now let s = sp and A = A,, and n — oo. Then the first term in the brackets has
only limits < E[V*(s — U)] (by Fatou’s lemma), the second term in the brackets has
limit = —V*(s), the third term in the brackets has limits < (¢ + A)¢’(s), and the
last term in the brackets has limits < A%/2 ¢”(s). So

0< sup {AE[V*(s—U)—V*)]+ (c+A)¢ (s) + A%p"(s)/2} .
A€A(s)

which is the desired result for a sub-solution. O
The inequality sub-solution < super-solution is based on the famous maximum
principle.

Theorem 2 Assume that P{U > x} > 0 for all x > 0, and that the constraints
A(x) are intervals [a(x), b(x)] with Lipschitz functions a(x), b(x) satisfying b(x) >
0,x > 0. Let v(x), w(x) with v(0) < w(0) be locally Lipschitz, v(x) a sub-solution
and w(x) a super-solution of our dynamic equation. Assume that v(x) — w(x) has a
strict local maximum in (0, 00). Then v(x) < w(x) for all x > 0.

This statement is concerned with the values v(x), w(x) for x > 0. We define
v(x) = w(x) = 0 for x < 0 and note that P{U < 0} = 0. We shall first give a
simple proof for the case that the function v(x) and w(x) have continuous second
derivatives.

Proof Simple version: Assume that v(x), w(x) are twice differentiable on (0, c0)
having a global maximum x* for v(x) — w(x) in (0, K). For £ > 0 let

(x¢, y¢) = arg max v(x) —w(y) —§(x = 2.
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Then v'(x¢) = w'(ye) = 2&(xg — ye), and v”(xg) = w”(ye) = 2€. For § — oo we
have x; — x* and y; — x* and furthermore & (x; — ys)?> — 0. Define

Hi(A) = E[u(x — U) — v(xe)] + (¢ + A’ (xe) + A" (xe),
Hy(A) = E[w(ye — U) = w(e)] + (c + A (3e) + A% (ve).
Then

sup Hi(A) > 0. and sup H,(A) <0.
A€A(xg) AE€A(ye)

So there is A¢ € A(x;) and Bg € A(yg) with
Ag = Be| < Llxe — e
where L is the Lipschitz constant, giving

H\(Ag) —Hy(Bg) = 1(1) +1(2) +1(3) = 0,
I(1) = AE[v(xs — U) — w(ye — U)] — (v(xg) — w(¥e)).
1(2) = (c + Ag)v' (x) — (¢ + B(ye))w' (%)),
1(3) = Apv" (x) /2 — Bw" (ve) /2.

Now

12) = (AE —BS)ZS()CE —yg) < 2L(x5 —yg)z — 0, E — 00.
1(3) < 26(As — Be)? < 2L%E(xs — y¢)* — 0.

With £ () = v(xe +Ah) —w(ye + Bh) — £ (x¢ + Ah — y; — Bh)? we have f(h) < f(0)
and so f”(0) <0, i.e.

A" (xg) — B*w" (ye) = 26(A — B)”.
This yields
I(1) = AE (" = U) = w(x™ = U)] = (v(x") — w(x™))
<MP{U<x*}—-1) <0,

with M = v(x*) — w(x™), a contradiction. |
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Here is a proof without derivatives. It is clearly inspired by the proof given in the
User’s guide, with some modifications.

Proof First we restrict the argument x to a finite interval (0, K) containing a global

maximum x* with v(x*) —w(x*) =M > 0. Forn > 0 and 0 < x < K define

va(x) = sup v(x) —n*(x— %)% (30)
X€[0,K]

These functions are semiconvex (i.e., v,(x) + Sx* is convex for some § > 0).
Similarly, for n > 0 we define

wa(y) = inf w(@) +n’(y— )%,
YE[0.K]
which is semiconcave (w,(y) — Sy? concave for some S). We have
0 < v(x) — vy(x) < L*/n* and 0 < w,(y) — w(y) < L*/n’.

The functions v, (x), w,(y) are twice differentiable almost everywhere (according to
Alexandrov’s theorem, see Crandall et al. 1992, Theorem A.2, p. 56, with a 1.5 pp
proof).

Now let X,y be given at which we have second derivatives for v, (x), w,(y). Let
% be the maximizer in (30), i.e. satisfying v,(¥) = v(%) — n*(x — %)2, and denote
the similar point for w,(x) and y by y. For notational convenience we omitted the
dependence on n.

Then for small enough 4 we have v,(X + h) > v(X + h) — n*(x — %) and then

V(& + ) < vE) + ) (X) + B2 (X)/2 + o(h?).
Similarly,

W@+ 1) = wi) + () + W G)/2 + o(h?),
which implies the two inequalities

sup {AE[v(E — U) —v(@)] + (c + A)v,(x) + A™)(%)/2} > 0,
A€AR)

sup {AEWE — U) —w@)] + (c + AW, () + A2W)(5)/2} <0,
A€AQ)

Finally we apply Jensen’s Lemma for semiconvex functions (Lemma A.3 in
Crandall et al. 1992), which in our special situation reads

Lemma 7 Letr > Oand§ > 0be arbitrary. Then the set of (x*, y*) with || (x*, y*)—
(e, ye)|| < 8 for which
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Un(x) —wu(y) — E(x — y)> — prx — pay

is maximized at (x*, y*) for some p1, p> with p? + p3 < r has positive measure.
For & > 0 let

(X, yg) = argmax, yero g {0n(*) — wa(y) — E(x — y)*} + p1x — pay
with p{ + p3 small for which the second derivatives of v, and w, exist at x¢ and yg,
respectively. (x¢, ye¢) depends on &, p, n.
For some A € A(X¢)
I(A) = AE[v(&s — U) — v(&e)] + (c + A)v)(xe) + A%/ (x¢)/2 > 0.
For all B € A(3¢)
1(B) = AE[w(¥s — U) = v()] + (c + B)w, (¢) + B*w] () /2 < 0.

The difference I(A) — I(B) is non-negative for some A; € A(x;) and B; € A(J;)
satisfying

|Ag — Bg| < L|xg — el

We now let p — 0,n — 00,& — oo in this order! The difference consists of three
terms:

1(1) = E[v(x — U) — v(xg)] — E[w(ys — U) —w(yg)],
1(2) = (c + Ag)v,(x¢) — (c + Be)w), (v%).
1(3) = Bv)/ (x¢) /2 — Afw) (ve) /2

v (xg) = 26(xe — yg) + pi.
w,(ve) = 2E(xg — ye) + pa.

We have
[1(2)] < cllpl| + 2&[x — Pellxe — yel

converges to zero for p — 0,n — 00, § — oo.
The argument in the proof with second derivatives leads to

1(3)] < 28(A¢ — Bg)® < 2% (¢ — §¢)°

which converges to 0 for £ — oo.
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Finally, with x; — x* and y; — x*
I(1) > Ep(x™ = U) = w(x™ = U)] = (v(x™) —w(x")) <0
because of v(x) — w(x) < v(x*) —w(x*) = M and
Ev(x* = U) —wx* —U)] < MP{U < x™} < M.

This contradicts that the difference must be non-negative, so M > 0 cannot be true,
and thus our assertion v(x) < w(x),x > 0, holds. O
Usually, the maximum principle is applied for v(0) = w(0) and v(c0) = w(c0),
so the initial conditions are for values of the functions. This is appropriate for
diffusion models where we often have v(0) = w(0) = 0, v(c0) = w(oco) = 1.
In Lundberg models we have instead v(co) = w(oco) = 1 and a given value for
the derivative at zero:

v'(0) = —A(1 = v(0))/c, W' (0) = —A(1 —w(0))/c.

Fortunately, with the above maximum principle one can also handle this situation.

Lemma 8 Assume that P{U > x} > 0 for all x > 0, and that the constraints A(x)
are intervals [a(x), b(x)] with Lipschitz functions a(x), b(x) satisfying b(x) > 0,
x> 0.

Let v(x), w(x) be viscosity solutions of our dynamic equation having continuous
first derivatives with v(0) = w(0) and v'(0) = w/(0). Then v(x) = w(x) for all
x> 0.

Proof Assume that there exists xo > 0 such that v(x) = w(x),0 < x < xj and that
v(x) < w(x) for xyp < x < x9 + €. The case v(c0) > w(o0) is easy.

Assume v(00)(1 + )% < w(c0).

Choose x, > x close to xo such that v’ (x)(1 + y) > w'(x),0 < x < x,. Define

V(@) = wx),x < x5, and V(@) = v'@)(1 + y),x = 2.
Similarly,
W(x) = v(x),x <x3, and W (x) = w'(x)/(1 + y),x > x,.

with the properties

- V(0) = W(0),

. V(x), W(x) are Lipschitz,

. V(x) is a sub-solution and W(x) a super-solution,
. V(o) < W(0).

AW N =

Hence
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V(x) < W(x),x > 0, rm contradicting V(x;) = w(xz) > v(x2) = W(xp). O

For the above discretization schemes, one can prove equi-continuity of the
approximations V), (s),s = kA > 0 (see Hipp 2015) which implies that lim sup
and lim inf have continuous derivatives.

In all, we can prove that the discretization schemes converge to some function
W (x) having a continuous first derivative. For many optimization problems one can
also show that the value function V(x) is a viscosity solution of the corresponding
HJB equation. However, we need a continuous first derivative for W(x) to obtain
V(x) = W(x) from the above comparison argument. It is still open for which
optimization problem the value function V(x) has a continuous derivative. So,
regrettably, we do not know whether the limit of our discretizations is the value
function of the given control problem.

Cases in which the value function is known to have a continuous first and second
derivative are

* unrestricted case: A(x) = (—o0, 00) (see Hipp and Plum 2003),

* no short-selling and limited leverage: A(x) = [0, bx] (see Azcue and Muler
2010),

* bounded short-selling and bounded leverage: A(x) = [—ax, bx] (see Belkina et al.
2014)

8 Numerical Issues

Numerical computations for solutions of control problems are demanding, they
cannot be done on a simple spreadsheet. The results shown in this article are all
done with MatLab. This matrix oriented programming language is well suited for
the handling of large arrays; in particular, the commands £ind and cumsum (or
cumtrapz) are used frequently, and arrays with more that a million entries were
stored and handled easily.

Continuous time and state functions have to be discretized, and the same is done
with integrals and derivatives. The step size for the surplus will be denoted by ds
and for time by dr. If other state variables show up in the model (e.g., in mixture
models), we try to replace them by 7 in a nonstationary model. We will use Euler
type discretisations of the following kind: with s = k ds

Vi(s, 1) = (V(s + ds, 1) — V(s,1))/ds,

st(s» t) = (VS(S, t) - Vx(s - dS))/dS,
Vils, 1) = (V(s,t + dt) — V(s,1))/dt,
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k
E[V(s—X.0] =Y V(s —ids)P{(i — I)ds < X < ids}.

i=1

For the expectation, one could use higher order integration methods; however, we
here essentially need summation with weights which add up to 1.

In most control problems, the difference between maximizing survival probabil-
ity and maximizing company value is very small: Rearranging the dynamic equation
to solve for V'(s), we obtain in the reinsurance control problem

AV(s) — AE[V(s — 84(X))]

V'(s) = min @) for survival prob.
V/(s) = min 2T OVE = Af([‘;(s — 8D ¢ dividends.
c—h(a

Since the equations are homogeneous, one can use an arbitrary value for V(0) to see
the optimal strategy.

Reinsurance Example In our first example we consider optimal unlimited XL
reinsurance for a Lundberg model, first for maximizing the company value, and
second to minimize the ruin probability. The parameters are A = 1, ¢ = 2, § =
0.07, and the claims have an exponential distribution with mean 1. First we show
the derivative of the function v(s) solving the dynamic equation, and next you
see the optimal priority M(s) (middle). On the right you see the optimal M(s)
which minimizes ruin probability. We see that v(s) has one minimum which is at
M = 4.84. So the possible values of s are [0, M]. In both cases we have a region of
small s in which no reinsurance is optimal. Then we see a region with M(s) = s,
which means reinsurance for the next claim. Then M (s) is increasing almost linearly
for the dividend case, while for the ruin case M(s) is almost constant. In both
cases, reinsurance is paid for, and in the dividend case this starts at larger surplus.
Furthermore, M(s) is higher in the dividend case (which means less reinsurance)
(Figs. 4, 5, and 6).

In most optimization problems, the optimizers are found by complete search.
In problems with more than one control parameter one should check wether the
optimal parameters are continuous in s. Then one can speed up the search: restrict
the search for state s on a neighborhood of the value for s — ds.

The numerically demanding term is the expectation in the dynamic equation:
E[V,(s — gn(X))]. It has to be computed for many s and M’s, and for each
iteration n. In some cases this nonlocal term can be transformed to a local one
(e.g., for exponential or phase-type distributions,) but with MatLab one can produce
the values—following the MatLab-rule no loops—in one line. Once define the
matrix P of probabilities with step size ds, range 0, ds, 2ds, .., KS ds for s, and
f@O=P{(i—1)ds <X <ids},i=1,.,KSas
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Fig. 4 Derivative of 0.6 : .
HIB-solution v’ (s)
0.55 -

0.5
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0.4
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0.15 +

0.1 . : ‘
0

Fig. 5 Optimal priority 3 - .
dividends

P@i.j)=f(),j=1,...,i—1,

KS
P(i,i) = ) f(),
=i
PGi,j)=0,j=i+1,...,KS.
IfA={1 <i<KS:h(ids) < c}, then the vector VI with entries

E[V(s—M)]|: M =ids, i €A,

25
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Fig. 6 Optimal priority ruin

is generated by
VIi=PA1:(—-1)*xV(i—-1:=1:1));

and the dynamic equation for the value function V in the Lundberg model leads to
the formula

[V/(s).sb] = min(A * (V(i) = VI')/ (c — h(A)));

In special cases the set A can be replaced by a smaller set which speeds up
computation.

Investment Example Optimal investment for minimal ruin probability in the
Lundberg model has the following equation (where we set © = 02 = 1) :

0 =sup AE[V(s — X) — V(s)] + (c + A)V'(s) + A2V (5)/2,
A

which has maximizer A(s) = —V’(s)/V"(s). With U(s) = A>(s) we obtain the
equation

_ AE[V(s) — V(s = X)

= T2



108 C. Hipp

For U(s) we get in the case of exponential claims with parameter 0

U@G)=VUSA+1/2—0c—0/U(5)/2) + ¢

(see Hipp and Plum 2003, Remark 8). To obtain the optimal strategy, we can restrict
ourselves on U(s) and start with U(0) = 0. For the dividend objective we just have
to replace A by A 4 8. In the special case 6 = 1,¢ = A + 1/2 we can see that for
the dividend objective investment is higher than for the ruin probability objective:
for dividends we obtain

U'(s) =c—U(s)/2,
while for dividends it reads

U'(s) =c—U(5)/2+ 8/ U(5).

The above system of two coupled differential equations enables a simple, robust, and
efficient computation. The resulting strategies never use short selling, the amount
invested A(s) is not always increasing, and generally: the more risky the insurance
business is, the larger A(s) will be.

Optimal Investment with Constraints In the unconstrained case, optimal invest-
ment is completely different from the one in the unrestricted case. The following
figures are based on a Lundberg model with exponential claims for which the
unconstrained optimal strategy is increasing and concave and almost constant for
large surplus. In the case without leverage and shortselling in the next figure, we see
the proportion A(s)/s and the second derivative of the value function. For small s
we see A(s) = s, and the value function is not concave. An example with volatility
hunger is seen in the next figure: here we have the same model and the constraints
A(s) = [—4s, 5] (see Belkina et al. 2014). For very small s we have A(s) = s, then
in a larger interval A(s) = —4s, and then the strategy switches back to A(s) = s and
continues continuously. The jump from maximal long to a maximal short position
can be explained by the fact that a high volatility position can produce also high up
movements. The black curve is again the second derivative of the value function.

Constraints can generate singularities in the value function, even the first
derivative can have a jump. Such singularities are present also in uncontrolled ruin
probabilities, when the claim size distribution has atoms. An example with X = 1
is given in the third figure below, it shows A(s) in the unconstrained case (blue line)
and for A(s) = [0, s] (Figs.7, 8 and 9).

Optimal Dividends with Ruin Constraint The method for the computation of
company values with ruin constraint has been described before; we will here discuss
the numerical problems and results for the computation using Lagrange multipliers
and the nonstationary approach. Our backward calculation starts with V(s, T) =
—Lyr(s) which will produce good approximations if T is large enough such that
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Fig. 7 Constrained optimal 15
investment

Fig. 8 Example with
extreme jumps 10
5
0
0 2 4 6 8 10

Optimal investment A(s)

15 2 25 3 385 4 45 5
Initial capital s

Fig. 9 Optimal investment for X = 1
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dividend payments do not matter after time T since they are discounted by e~%"
at least. But the discretization df must be quite small to get convergence: in the
simple diffusion model, for ds = 0.02 we need a step size dt of at most 0.0004; for
ds = 0.02 and dr = 0.00041 we obtain results which are completely wrong: barrier
close to zero and value functions close to V(s) = s — L. The Lundberg model is less
sensitive: it works with ds = 0.02 and dr = 0.004.

The next two figures show the results for simple diffusion models. First, we show
the computed curves V (s, f) for 21 values of ¢, where the largest values belong to t =
0. The second is the curve of barriers M (¢) which has the expected form: increasing,
asymptotically linear, with a decrease close to T. The same form had been obtained
in the discrete case of Hipp (2003), the decrease is caused by the choice of V(s, T).
The parameters for the plots are ;4 = 0> = 1 and the discount rate § = 0.03.

The third figure shows an efficiency curve for company values and ruin proba-
bilities, which is the same as a plot for V(s, ), the maximal dividend value with
a ruin constraint of «. For this we computed V(s, L) with the corresponding ruin
probabilities, and plotted the results for a number of L's from 0 to 100. The plot
is given for a simple diffusion model with 0 = © = 1 and § = 0.07. The initial
surplus is 5. We could not produce reliable results for larger L since they produce
a = 1ora < ¥(5). Surprisingly, the dividend value stays near the unconstrained
value V((5) = 16.126 over a long range for « (Figs. 10, 11, and 12).

Results for the Lundberg model are given in the contribution (Hipp, 2016) in
these proceedings.

50 T T T T T T T T T

40+ .

30+

20

Fig. 10 V(s, 1) for 0 < s < 20 and various values of ¢
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9 Open Problems

Here is a collection of questions which—according to my knowledge—are open,
and in my opinion interesting enough to attract (young) mathematicians. They are of
course biased by my preferences, but they might still be of some use. They are given
in a numbered list, where the order is random (no ordering according to difficulty or
importance).

1. For the proof that the discretisations converge to the value function in the optimal
investment problem with constraints, one needs that the value function has a
continuous derivative. What is the class of problems for which the value function
has this property?

2. Optimal company values with ruin constraint are computed with the Lagrange
multiplier approach. Do we have a Lagrange gap here? Some positive results are
in Hernandez and Junca (2015, 2016).

3. Optimal investment is considered here in a market with constant parameters. How
do the solutions change if the market values change as in a finite Markov chain
with fixed or random transition rates? What changes if also negative interest is
possible?

4. What is the right model for simultaneous control of stop loss and excess of loss
reinsurance?

5. Can the nonstationary approach solve control problems also in more complex
Markov switching models?

6. Is the capital V(s, o) with ruin constraint a smooth function of s and «?

7. Existing results in models with capital injections solicit the question whether
classical reinsurance is still efficient. What is the right model for this question,
and what is the answer?

8. Does the approach described at the end of Chap. 5 work for a model in which the
state A is not absorbing?

9. Can the improvement approach in Chap. 6 be applied in the Lundberg model with
claim size not exponentially distributed?
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