
Robust Paradigm Applied to Parameter
Reduction in Actuarial Triangle Models

Gary Venter

Abstract The recognition that models are approximations used to illuminate
features of more complex processes brings a challenge to standard statistical testing,
which assumes the data is generated from the model. Out-of-sample tests are
a response. In my view this is a fundamental change in statistics that renders
both classical and Bayesian approaches outmoded, and I am calling it the “robust
paradigm” to signify this change. In this context, models need to be robust to
samples that are never fully representative of the process. Actuarial models of
loss development and mortality triangles are often over-parameterized, and formal
parameter-reduction methods are applied to them here within the context of the
robust paradigm.
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1 Introduction

Section 2 discusses model testing under the robust paradigm, including out-of-
sample tests and counting the effective number of parameters. Section 3 introduces
parameter-reduction methods including Bayesian versions. Section 4 reviews actu-
arial triangle modeling based on discrete parameters by row, column, etc., and
how parameter-reduction can be used for them. Section 5 gives a mortality model
example, while Sect. 6 illustrates examples in loss reserving. Section 7 concludes.

2 Model Testing Within the Robust Paradigm

Both Bayesian and classical statistics typically assume that the data being used to
estimate a model has been generated by the process that the model specifies. In
many, perhaps most, financial models this is not the case. The data is known to come
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from a more complex process and the model is a hopefully useful but simplified
representation of that process. Goodness-of-fit measures that assume that the data
has been generated from the sample are often not so reliable in this situation, and
out-of-sample tests of some sort or another are preferred. These can help address
how well the model might work on data that was generated from a different aspect of
the process. I have coined the term “robust paradigm” to refer to statistical methods
useful when the data does not come from the model.

Much statistics today is based on pragmatic approaches that keep the utility of
the model for its intended application in mind, and regularly deviate from both pure
Bayesian and pure classical paradigms. That in itself does not mean that they are
dealing with data that does not come from the models. In fact, even out-of-sample
testing may be done purely to address issues of sample bias in the parameters, even
assuming that the data did come from the model. But simplified models for complex
processes are common and pragmatic approaches are used to test them. This is what
is included in the robust paradigm.

When models are simplified descriptions of more complex processes, you can
never be confident that new data from the same process will be consistent with
the model. In fact with financial data, it is not unusual for new data to show
somewhat different patterns from those seen previously. However, if the model is
robust to a degree of data change, it may still work fairly well in this context. More
parsimonious models often hold up better when data is changing like that. Out-of-
sample testing methods are used to test for such robustness.

A typical ad hoc approach is the rotating 4
5
ths method: the data is divided, perhaps

randomly, into five subsets, and the model is fit to every group of four of these five.
Then the fits are tested on the omitted populations, for example by computing the
negative loglikelihood (NLL). Competing models can be compared on how well
they do on the omitted values.

A well-regarded out-of-sample test is leave one out, or “loo.” This fits the model
many times, leaving out one data point at a time. Then the fit is tested at each omitted
point to compare alternative models. The drawback is in doing so many fits for each
model.

In Bayesian estimation, particularly in Markov Chain Monte Carlo (MCMC),
there is a shortcut to loo. The estimation produces many sample parameter sets from
the posterior distribution of the parameters. By giving more weight to the parameter
sets that fit poorly at a given data observation, an approximation to the parameters
that would be obtained without that observation can be made. This idea is not new,
but such approximations have been unstable.

A recent advance, called Pareto smoothed importance sampling, appears to have
largely solved the instability problem. A package to do this, called loo, is available
with the Stan package for MCMC. It can be used with MCMC estimation not
done in Stan as well. It allows comparison of the NLL of the omitted points
across models. This modestly increases the estimation time, but is a substantial
improvement over multiple re-estimation. Having such a tool available makes loo
likely to become a standard out-of-sample fitting test.
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This is a direct method to test models for too many parameters. Over-fitted
models will not perform well out of sample. If the parameters do better out of
sample, they are worth it. Classical methods for adjusting for over-parameterization,
like penalized likelihood, are more artificial by comparison, and never have become
completely standardized. In classical nonlinear models, counting the effective
number of parameters is also a bit complex.

2.1 Counting Parameters

In nonlinear models it is not always apparent how many degrees of freedom are
being used up by the parameter estimation. One degree of freedom per parameter is
not always realistic, as the form of the model may constrict the ability of parameters
to pull the fitted values towards the actual values.

A method that seems to work well within this context is the generalized degrees
of freedom method of Ye (1998). Key to this is the derivative of a fitted point from
a model with respect to the actual point. That is the degree to which the fitted point
will change in response to a change in the actual point. Unfortunately this usually
has to be estimated numerically for each data point.

The generalized degrees of freedom of a model fit to a data set is then the sum
across all the data points of the derivatives of the fitted points with respect to the
actual points, done one at a time. In a linear model this is just the number of
parameters. It seems to be a reasonable representation of the degrees of freedom
used up by a model fit, and so can be used like the number of parameters is used in
linear models to adjust goodness-of-fit measures, like NLL. A method of counting
the effective number of parameters is also built into the loo package.

3 Introduction to Parameter Reduction Methodology

Two currently popular parameter reduction methodologies are:

• Linear mixed models (LMM), or in the GLM environment GLMM
• Lasso—Least Absolute Shrinkage and Selection Operator

3.1 Linear Mixed Models

LMM starts by dividing the explanatory variables from a regression model into two
types: fixed effects and random effects. The parameters of the random effects are to
be shrunk towards zero, based perhaps on there being some question about whether
or not these parameters should be taken at face value. See for example Lindstrom
and Bates (1990) for a discussion in a more typical statistical context.
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Suppose you are doing a regression to estimate the contribution of various factors
to accident frequency of driver/vehicle combinations. You might make color of
car a random effect, thinking that probably most colors would not affect accident
frequency, but a few might, and even for those you would want the evidence to be
fairly strong. Then all the parameters for the car color random effects would be
shrunk towards or to zero, in line with this skepticism but with an openness to being
convinced.

This could be looked at as an analysis of the residuals. Suppose you have done the
regression without car color but suspect some colors might be important. You could
divide the residuals into groups by car color. Many of these groups of residuals
might average to zero, but a few could have positive or negative mean—some of
those by chance, however. In LMM you give color i parameter bi and specify that
bi is normal with mean zero and variance di�

2, where �2 is the regression variance
and di is a variance parameter for color i. LMM packages like in SAS, Matlab, R,
etc. generally allow a wide choice of covariance matrices for these variances, but
we will mainly describe the base case, where all of them are independent.

The di’s are also parameters to be estimated. A color with consistently high
residuals is believably a real effect, and it would be estimated with a fairly high
di to allow bi to be away from zero. The bi’s are usually assumed to be independent
of the residuals. LMM simultaneously maximizes the probability of the bi’s, P.b/,
and the conditional probability of the observations given b, P.yjb/, by maximizing
the joint likelihood P.y; b/ D P.yjb/P.b/.

For a bi parameter to get further from zero, it has to improve the likelihood of the
data by more than it hurts the density of the b’s. This is more likely if the previous
residuals for that color are grouped more tightly around their mean, in the color
example. Then the parameter would help the fit for all those observations. That
clustering is not what is measured by di, however. It instead determines how much
bi could differ from zero, and its estimate increases to accommodate a useful bi.

3.2 Lasso

Lasso is a regression approach that constrains the sum of the absolute values of the
parameters. It is related to ridge regression, which limits the sum of squares of the
parameters. In practice with a lot of variables included, Lasso actually shrinks a
fair number of the parameters to zero, eliminating them from the model, whereas
ridge regression ends up with many small parameters near zero. Lasso is preferred
by most modelers for this reason, and is also preferable to stepwise regression.

In its standard application, all the parameters except the constant term are shrunk,
although there is no reason some parameters could not be treated like fixed effects
and not shrunk. See Osbourne et al. (2000) for an introduction. Also Pereira et al.
(2016) gives examples more general than standard regression.

To make the competition among the independent variables fair, all of them are
standardized to have mean zero and variance one by subtracting a constant and
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dividing by a constant. The additive transform gets built into the constant term of
the regression, and the multiplicative one scales the parameter of that variable.

Then what is minimized is the NLL plus a selected factor times the sum of the
absolute values of the parameters. The selection of the factor can be subjective—
several are tried with the resulting models evaluated by expert judgment. Using loo
to see how well the models with different factors do on the omitted points is more
highly regarded, but in a classical setting requires a lot of re-estimation, depending
on the sample size.

3.3 Problem with LMM: All Those Variances

Counting parameters is an issue with classical Lasso and LMM. For both, fewer
degrees of freedom are used than the apparent number of parameters, due to the
constraints. For LMM there is a partial shortcut to counting parameters.

In a regression, the so-called hat matrix is an N �N matrix, where N is the sample
size, which can be calculated from the matrix of independent variables—the design
matrix. Multiplying the hat matrix on the right by the vector of observations gives
the vector of fitted values. The diagonal of the hat matrix thus gives the response of
a fitted value to its observation, and in fact is the derivative of the fitted value with
respect to the actual value.

The sum of the diagonal of the hat matrix is thus the generalized degrees
of freedom. This holds in LMM as well, but only conditional on the estimated
variances. Thus the degrees of freedom used up in estimating the variances do not
show up in the hat matrix.

Different LMM estimation platforms can give slightly different parameters—but
usually with fits of comparable quality. One triangle model we fit, similar to those
discussed below, nominally had 70 parameters, not including the variances. We fit it
with two methods. Using the diagonal of the hat matrix indicated that 17.3 degrees
of freedom were used by one fitting method, and 19.9 by the other. The second
one had a slightly lower NLL, and the penalized likelihoods, by any methods, were
comparable.

Since these parameter counts are conditional on the estimated variances di, we
then did a grind-out generalized-degrees-of-freedom calculation by re-estimating
the model changing each observation slightly, one at a time. That got the variances
into the parameter counts. The same two methods as before yielded 45.1 and 50.7
degrees of freedom used, respectively. That means that 27.8 and 30.8 degrees of
freedom, respectively, were used up in estimating the variances.

In essence, the fitted values responded much more to changes in the actual values
than you would have thought from the hat matrix. The parameter reduction from the
apparent 70 original parameters was much less than it at-first appeared to be. For
the models we were fitting we concluded that base LMM with variances estimated
for each parameter was not as effective at parameter reduction as we had thought.
This lends more support to using Lasso, or perhaps LMM with fewer, perhaps just
a single, variance to estimate. That is, you could assume the di are all the same.
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3.4 Bayesian Parameter Reduction

A way to shrink parameters towards zero in Bayesian models is to use shrinkage
priors. These are priors with mean zero and fairly low variances, so tend to prioritize
smaller values of the parameters. An example is the Laplace, or double exponential,
distribution, which is exponential in x for x > 0 and in �x for x < 0:

x > 0 W f .x/ D e�x=b=2b (1)

x < 0 W f .x/ D ex=b=2b (2)

This has heavier tails and more weight near zero than the normal has. Even more
so is the horseshoe distribution, which is a normal with �2 mixed by a Cauchy.

Typically shrinkage priors are used in MCMC estimation (Fig. 1). There is a lot
of flexibility available in the choice of the variances. They can all be the same,

Fig. 1 Shrinkage priors
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which is Lasso-like, or vary for different parameters. Some or all of the parameters
can have shrinkage priors. Thus the distinctions between LMM and Lasso are not
so meaningful in MCMC. There is a wide variety of approaches that can be used.

One fairly viable approach is to use the same variance in the shrinkage priors for
all the parameters, and then use loo to see approximately what this variance should
be to get the best out-of-sample performance.

3.5 Non-informative Priors

For parameters you do not want to shrink, if you have information or beliefs about a
reasonable range for the parameter, that can be coded into the prior distribution.
A convenient alternative is non-informative priors. For instance in Stan, for a
parameter that could be positive or negative, if a prior is not specified the prior
is assumed to be uniform on the real line.

This prior density is infinitesimal everywhere and in fact is just specified as being
proportional to 1. In Stan it is typical to omit constants of proportionality, even if
they are not real numbers. This prior, however, viewed as a prior belief, is patently
absurd. Most of the probability would lay outside of any finite interval, so it is like
saying the parameter probably has a very high absolute value, but we don’t know if
it is positive or negative.

Nonetheless using it as a prior tends to work out well. Posterior variances from
it are often quite similar to what classical statistics would give for estimation
variances. Thus the results seem familiar and reasonable. In essence, the prior ceases
to be an opinion about the parameter, and instead is chosen because it tends to work
out well. This is further evidence that we are no longer in the realm of either classical
or Bayesian statistics—it is a pragmatic focus more than a theoretical one.

Things get more awkward when a parameter has to be positive. Assuming
uniformity on the positive reals is problematic. While the uniform on the real line
has infinite pulls both up and down, on the positive reals the infinite side is only an
upward pull. There is thus a tendency for this prior to give a higher estimate than
classical statistics would give.

An alternative is to use a prior proportional to 1=x. This diverges at zero and
infinity, so pulls infinitely in both directions. It tends to produce estimates similar
to classical unbiased estimates. It is equivalent to giving the log of the parameter a
uniform distribution on the reals, which is the easiest way to set it up in Stan.

People who do not like non-informative priors sometimes use very diffuse proper
priors. One example can be written Gamma(0.001, 0.001). It has mean one and
standard deviation about 31 5

8
. It is, however, a quite strange prior. Even though the

mean is one, the median is in the vicinity of 10�300. The 99th percentile is about
0.025, while the 99.9th is 264 and the 99.99th is 1502. Thus it strongly favors very
low values, with occasional very high values showing up. It usually works out alright
in the end but can cause difficulty in the estimation along the way.
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4 Actuarial Triangle Models with Time Variables

Data for the evolution of insurance liabilities and for mortality can be arranged in
two-dimensional arrays, for example with rows for year of origin, and columns for
lag to extinction. Actually the time periods are not always years—they could be
quarters, months, or even days—but here we will call them years for simplicity. For
liabilities, year of origin is often the year the event happened, and lag is the time it
takes to close the case and make final payments. For mortality, year of origin is year
of birth and lag is the number of years lived. For mortality, the rows are sometimes
taken as the calendar years that the extinctions occur in, which is just a different
arrangement of the same data—the diagonals are rotated to become the rows, and
vice versa.

A common arrangement within the array has the data all above the SW—
NE diagonal, giving the term triangle, but various shapes are possible. Mortality
triangles for a population usually contain the ratio of deaths in the year to the number
alive at the start of the year. Liability triangle cells could contain incremental or
cumulative claims payments or claims-department estimates of eventual payments.
Here we will assume they are incremental paid losses and are positive or blank.

A popular class of models the log of each entry as the sum of a row effect and a
column effect—so there is a dummy variable and a parameter for each row and each
column. It is also not unusual to have a parameter for each calendar year, which is
the year of origin plus the lag (assuming beginning at lag zero). The calendar-year
effects are trends—perhaps inflation for liabilities and increased longevity over time
for mortality. It is fairly common in mortality modeling to allow for different ages
to feel the longevity improvement more strongly, so an additional parameter might
be added for each age as a multiplier to the trend to reflect how strongly that age
benefits from the trend.

In doing this modeling actuaries have found that trends in longevity sometimes
affect different ages differently, so a single pattern of age-responsiveness does not
always hold. To account for this, models now allow a few calendar-year trends, each
with its own impact by age. Some models also allow for interaction of age with
the year-of-birth cohort parameters, but this effect does not seem to be consistent
across cohorts and is less common in recent models. Even in the liability models
there could be changes in the lag effects over time, which could be modeled by
interactions of lag with year of origin or calendar year.

Letting pŒn� be the year-of-origin parameter for year n, qŒu� be the age parameter
for age u, r refer to a calendar year trend, and s be a set of age weights, the model
for the logged value in the n; u cell can be expressed as:

yŒn; u� D pŒn� C qŒu� C
X

i

riŒn C u�siŒu� C "n;u (3)

The sum is over the various trends. With a single trend and no age interaction with
trend, this would be a typical liability emergence model. There it is not unusual to
even leave off the trend entirely—for instance if the trend is constant it will project
onto the other two directions.
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4.1 Parameter Reduction

The model as stated so far is over-parameterized. One approach to parameter
reduction is to require that nearby years or lags have similar parameters. Life
insurance actuaries have tried using cubic splines for this. General insurance
actuaries have independently been using linear splines. That is, differences between
adjacent parameters (i.e., slopes) are constant for a while, with occasional changes
in slope. The slope changes are thus the second differences across the parameters.

As the second differences change only occasionally, they are good candidates
for parameter-reduction methods. That is the approach explored here. The slope
changes are the parameters modeled with specified priors, and these accumulate to
the slopes and those to levels, which are the p; q; r; s in the model equation. This can
apply to long or short trend periods so can be used for both the life and the general
insurance models.

The fitting was done with the Stan package, taking double exponential priors
for the slope changes. A single variance was specified for all these priors, which in
the end was determined by loo in the mortality example. Judgment was used for this
in the liability example, but that is not a finished model.

5 Mortality Model Example

US mortality data before 1970 is considered of poor quality, so we use mortality
rates in years 1970–2013. Cohorts 1890–1989 were modeled for ages 15–89. A
model using Eq. (3) with two trends r1 and r2 was selected (i takes on two values: 1
and 2). The first trend is for all the years and the second is zero except for the years
1985–1996, which had increased mortality at younger ages, primarily associated
with HIV, but also drug wars. The latter trend was strongest for ages 27–48, so
weights were estimated for those years. Here n is the year of birth and u is the age
at death, so n C u is the year of death.

The model was calibrated using the MCMC package Stan with the second
differences of the p, q, r, and s parameters given double exponential priors. Then
the parameters in (3) are cumulative sums of the second differences. A lot of the
second differences shrink towards zero due to this prior, so the parameters come out
looking like they fall on fairly smooth curves—which are actually linear splines.

It is possible to get fairly different parameter sets with quite similar fits, so a
fair number of constraints are needed for the sake of specificity. For symmetry, a
constant term was added to the model, and then a base mortality parameter q, a
trend parameter r, and a cohort parameter p were set to zero. The HIV trend was
forced to be upward (positive), and all the trend weights were forced to be in [0,1].

It is a bit awkward in Stan to force these parameters to be positive. They are
sums of the underlying slope parameters, which in turn are sums of slope changes.
Any of those could be negative, as slopes could go up or down. Simple constraints,
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like using the minimum of the parameter and zero, are problematic in Stan because
you then lose derivatives needed for the internal calculations. Squaring the value is
awkward as well, as then different paths for the slope changes can get to the same
level parameter, which makes it look like the slope changes did not converge. In the
end, however, this choice is easier to deal with and was taken. Modeling the logs of
the levels as piecewise linear is an alternative worth exploring.

The weights were made to stay in [0,1] by dividing them all by the highest of
them after squaring. This may make finding parameters more difficult as well, and
it seems to slow down the estimation considerably, but it looks like the best way to
get specificity.

Cohort levels are regarded as the year-of-birth effects left after everything else
is modeled, so were forced to have zero trend—just by making them the residuals
around any trend that did appear.

Another problem with cohorts is that the most recent ones are seen only at young
ages, which creates a possible offset with the trend change weights. In fact, giving
the most recent cohorts high mortality and simultaneously giving the youngest ages
high trend weights gave fairly good fits, but does not seem to be actually occurring.

In the end we forced all cohorts from 1973 to 1989 to have the same parameter—
which in fact was made zero to avoid overlap with the constant term. For similar
reasons, cohorts 1890–1894 all got the same parameter.

Stan simulates parameter sets from the posterior distribution of the parameters
in several parallel chains—typically four of them. One check of convergence is to
compare the means of each parameter across the chains, and the within and between
variances. With these constraints, even though estimation was slow, all the chains
had very comparable mean values for every level parameter. The slopes and slope
changes from different chains sometimes look like mirror images, however, even
though they have the same squares.

The parameters graphed here include all four chains as separate lines mainly to
show how well they have converged, as the four lines are all very close.

The main trend is fairly steady improvement, but with a slowdown in the 1990s
that is not fully accounted for by the HIV trend, and another slowdown in the last
3–4 years. The trend take-up factors by age range from 65% to 100%, and are lowest
in the early 30s and the late 80s (Fig. 2).

The HIV trend is highest in the mid-1990s just before treatments became
available (Fig. 3). The ages most affected are the 30s (Fig. 4).

The cohort parameters show a fair degree of variation over time (Fig. 5). Relative
to trend, etc. the most longevity is seen in those born in the 1940s and before 1910,
with a dip around 1970 as well. While thorough modeling of these patterns is a
future project, some clues are available in demographic, macroeconomic, and public
health events (Fig. 6).

Those born in 1900 were 70 by the start of this data. The portion of this group that
got that old seems to have been particularly hardy. In fact they displayed as much
chance to get from age 70 to 90 as those born decades later. The cohort parameters
would reflect only the ages in the dataset, so are not necessarily indicative of the
cohort mortality for earlier ages.
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Fig. 2 Time trend 1970–2013

Fig. 3 Age weights to trend ages 15–89

The group born in the 1930s and early 1940s is called the silent generation,
or sometimes the fortunate few, and is a unique population. They have had by
far the highest real income and net worth of any American generation. This is
often attributed to demographics—it was a relatively small population and had little
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Fig. 4 HIV trend 1985–1996

Fig. 5 Age weights to HIV trend ages 27–48
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Fig. 6 Cohort level parameters for years of birth 1890–1989

workplace competition from earlier generations. Wealth is linked to longevity and
if that were the entire story, this set of cohorts would have had the lowest mortality
rates.

However, this was also a generation of heavy smokers. The early boomers,
born in the late 1940s, probably smoked less, and had some of the demographic
advantages of the fortunate few. The early-boomer cohort may also have been a bit
less exposed to obesity than the next group.

Having a small or shrinking population five or so years older seems to be good
for career opportunities. Being from the mid-1940s group, I can say that many in
my cohort stepped into easily available leadership roles, and hung in there for 30–
40 years. The mid-50s cohorts were always back there one level lower—although
individual exceptions abound.

The cohorts around 1970 were part of a slowing of population growth that
probably also lead to ample career opportunities. Another determinant of career
wealth accumulation and so average mortality is the state of the economy upon
entering the workforce. That would be another factor to include in this study (Fig. 7).

Looking at the raw mortality rates by age (across) and cohort (down) shows how
the age pattern of mortality has been evolving. The width of that graph at an age
shows how much mortality improvement that age has experienced from 1970 to
2013.

One thing that stands out is the clumping of lines at the upper right. For most of
this period there was little change in the mortality rates at older ages. Then in the
last 10 or 11 years, mortality in this group started reducing considerably. This looks
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Fig. 7 Log mortality rates by age (increasing from left to right) and cohort (individual lines, most
recent generally lower)

like another candidate for a separate trend. Probably the way to do this is to have
a separate upward trend in mortality for ages 75+ before 2002, and then give this
group the overall trend after that.

Another new trend since 2000 or so is to find little or no improvement in mortality
rates for ages in the late 40s through early 60s. This shows up as a clumping of lines
at the bottom of the graph above the word “Log.” This actually is producing higher
mortality for some parts of the population, as has been reported widely in the press.
(Our data does not have subpopulation breakouts.) It is again a candidate for its own
trend. However, this is also the mid-to-late boomer cohort, which shows up having
higher mortality rates anyway, and was also impacted by HIV, so there could be a
combination of effects here. Nonetheless, the cohort effect is supposed to be after
all other trends have been accounted for, so it seems appropriate to put in a trend
here and see what it does to the cohorts.
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6 Reserve Modeling Example

Loss reserving has much smaller triangles than mortality does—usually—and
simpler models—only one trend and no trend weights by lag typically.

yŒn; u� D pŒn� C qŒu� C rŒn C u� C "n;u (4)

We explore here a bit broader model, but will start off with the above. Below is a
worker’s compensation loss paid triangle for a New Jersey insurer from Taylor and
McGuire (2016). The cells are incremental payments.

6.1 Exploratory Analysis

Looking at residuals from standard development factor analysis can provide infor-
mation about possible changes in trend and payout patterns. The first test is to
calculate the incremental/previous cumulative development factors for each cell,
then subtract the column averages from the cell values.

Looking at the results by diagonal can show calendar-year differences. Consis-
tently high or low differences of individual trend factors from column averages
along a given diagonal would suggest a possible cost difference for that diagonal
compared to the triangle as a whole. It is easier to see such patterns by rotating the
triangle so that the diagonals become rows. That was done below with some color
coding, and decimals expressed as percents.
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It is apparent that the first four diagonals are all positive and the next four mostly
negative, with the last again positive. This is suggestive of a calendar-year trend
change. The first column seems to be on its own path, however, and may be a payout-
change indicator.

A look at payout patterns can be taken by developing each row to ultimate by
development factors, then taking the ratio of paid in column to ultimate paid in row
for each cell. This can be done for lag zero as well. This test can show changes
in payout pattern, but changes in the later columns would be included in averages
below that, obfuscating some of the impact.

Starting with row 5, there is an increasing trend in payouts at lag 0, offset by a
decreasing trend at lag 1. These might reverse slightly in row 9, but that could be
due to calendar-year trend.

6.2 Modeling

The model without interaction terms does not include any provision for payout
pattern changes. We start with that, however, to see what it says about calendar-
year trends, and to see if those could account for the apparent payout shift. Again
the double exponential distribution was used for the changes in slope, here with a
fairly high variance to make sure that shrinkage was not obscuring any real effects.
The development year and accident year parameters came out fairly smooth anyway
(Fig. 8).

The main effect seen in the calendar-year trend is a substantial downward jump in
1993. There are two inflation drivers in workers comp. Wage replacement is driven
by wage inflation, but is mostly fixed at the wages at time of injury, so shows up
in the accident-year, i.e., row, parameters. Medical payments are made at the cost
levels at time of payment, on the other hand, so are calendar-year effects (Fig. 9).

Many state laws specify that payments are to be made at the medical providers’
standard rates. At some point providers and medical insurers agreed that the
providers would increase their rates substantially but those insurers would get a
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Fig. 8 Log payout level by lag

Fig. 9 Accident year levels

discounted rate. That left comp insurers as the only ones paying those artificial
standard rates. At some point states started to realize this and basically get the comp
insurers inside the game—perhaps through medical fee schedules for comp or other
approaches. The comp insurers did not have the political clout to accomplish this,
but they pass costs on to employers, who often do. Still, however, some states have
higher medical payments for workers comp compared to other insurers (Fig. 10).

The downward jump in costs on the 1993 diagonal could well have come from
this kind of reform. By 1997 it appears to be eroding a bit, however.

In any case, this model does not resolve the payout pattern issue. Lag 0 and lag
1 residuals show an inverse relationship starting with row 5 (Fig. 11).
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Fig. 10 Calendar year levels

Fig. 11 Lag 0 and Lag 1 residuals by accident year

6.3 Model Extensions

Probably the most typical actuarial response to changes in payout pattern is to
just use the data after the change. Meyers (2015) introduces modeling of changing
payout patterns. With yŒn; u� = log of incremental claims for year n and lag u, one
of his models can be written as:

yŒn; u� D pŒn� C qŒu�zn�1 C "n;u (5)

If z D 1, the payout pattern is constant, but if it is a bit above or below 1, the
payout is speeding up or slowing down. This model does not include changes in
trend, however, nor parameter reduction. One possible way to incorporate all of
these effects is to add an interaction term between lag and accident year:

yŒn; u� D pŒn� C qŒu� C wŒn�xŒu� C rŒn C u� C "n;u (6)
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The slope changes for uŒn� and xŒu� in the interaction term were modeled as
starting at the bottom and right, and built up going across the triangle right to left.
The linear combination qŒu� C wŒn�xŒu� for the changing payout pattern is shown by
cell.

The zeros at the bottom left are for identifiability and are the largest numbers in
the triangle. A payout shift is seen from lag one, mostly to lag zero, but slightly to
lag two as well. With the payout change modeled, the calendar-year levels below
seem to be moving more uniformly. However, there is still a bigger change showing
up in 1993 (Fig. 12).

At this point this model with interaction is still exploratory, but it does suggest
such interactions may have a place in reserve triangle modeling (Fig. 13).

Fig. 12 Calendar year levels in model with changing payout patterns
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Fig. 13 Calendar year trends (slopes) in model with changing payout patterns

7 Conclusion

I like the maxim: All statements that begin with “All” are aimed at dramatic effect.
Still the idea that models may be only approximations but nonetheless can be

useful is a key element of the shift towards pragmatism taking place in statistics. I
am calling this the Robust Paradigm because of the notion that models need to be
robust to effects that do not show up in the data at hand. This is broader than what
usually is called robust statistics.

Assuming that the data is generated by the model process produces statistical
tests that are mainly suggestive in this context. Out-of-sample testing is the
requirement now. The availability of fast loo allows this to be standardized to a
degree. Overfitting and so penalizing for too many parameters is no longer an issue
when model performance out of sample is the focus.

But this is not traditional Bayesian either. Prior and posterior distributions are not
statements of opinion. They are pieces of the story the model is telling us, and are as
real as any other mathematical objects, such as quantum fields in the standard model
of physics. And they are first and foremost pragmatic—helping to build a coherent
narrative that provides insight into a process.

Parameter reduction now has classical and Bayesian modes. In the end the
Bayesian approaches look more flexible and so more useful, particularly because
of efficient loo.

The actuarial model with time variables is over-parameterized and so is a
natural place for parameter reduction. This appears promising both for mortality
and loss development applications. The more complex versions with interactions
seem applicable to reserves, especially with payout pattern changes. Fairly extensive
constraints are needed to get the parameters to do what they are meant to, however.
There are a lot of possible overlaps and tradeoffs among parameters that need to be
recognized explicitly if the models are going to perform as intended.
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