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Abstract. Theoretical understanding of the relevant problem structure and
consistent mathematical modeling are necessary keys to formulating operations
research models to be used for optimization of decisions in real applications.
The numbers of alternative models, methods and applications of operations
research are very large. This paper presents fundamental and general decision
and information structures, theories and examples that can be expanded and
modified in several directions. The discussed methods and examples are moti-
vated from the points of view of empirical relevance and computability.
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1 Introduction

Operations research is a very large area. In this paper, we will focus on operations
research in connection to optimization of decisions, with one or more decision maker(s).
The classical analytical methods of optimization and comparative statics analysis, basic
economic theory and fundamental linear programming are well presented in Chiang [3].

Mathematical modeling is central to operations research. Usually, in applied
problems, there are many different ways to define the mathematical models repre-
senting the components of the system under analysis. The reference book of the
software package LINGO [1] contains large numbers of alternative operations research
models and applications with numerical solutions.

A particular applied problem should, if possible, be analyzed with a problem
relevant operations research method, using a problem relevant set of mathematical
models. This may seem obvious to the reader, but it is far from trivial to determine the
problem relevant method and models.

The two books by Winston, references [16, 17], give a good and rather complete
presentation of most operations research methods, algorithms and typical applications.
The operations research literature contains large numbers of alternative methods and
models, applied to very similar types of applied problems. In many cases, the optimal
decisions that are the results of the analyses, differ considerably.

For instance, if we want to determine the optimal decision in a particular problem,
we may define it as a one dimensional optimization problem, or as a multidimensional
problem where we simultaneously optimize several decisions that may be linked in
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different ways. We may also consider constraints of different sorts. In most problems,
present decisions have consequences for the future development of the system under
analysis. Hence, multi period analysis is often relevant. Weintraub et al. [15] contains
many dynamic operations research problems and solutions from different natural
resource sectors. Then, we realize that the future state of the world can change for
several reasons. In resource management problems, for instance, we often want to
determine optimal present extraction of some resource, such as coal or oil. If we take
more today, we have to take less in the future. The present and future prices are very
important parameters in such decision problems and we usually have to agree that the
future prices are not perfectly known today. Price changes may occur because of
technical innovations, political changes and many other reasons. We simply have to
accept that future prices can never be perfectly predicted. Hence, the stochastic
properties of prices have to be analyzed and used in the operations research studies in
order to determine optimal present decisions. Many types of resources are continuously
used, thanks to biological growth. Braun [2] gives a very good presentation of ordinary
differential equations, which is key to the understanding and modeling of dynamical
systems, including biological resources of all kinds. In agriculture, fishing, forestry,
wildlife management and hunting, resources are used for many different purposes,
including food, building materials, paper, energy and much more. In order to determine
optimal present decisions in such industries, it is necessary to develop and use dynamic
models that describe how the biological resources grow and how the growth is affected
by present harvesting and other management decisions. Clark [4] contains several
examples and solutions of deterministic optimal control theory problems in natural
resource sectors.

The degree of unexplained variation in the future state of the resource is often
considerable. Many crops are sensitive to extreme rains, heat, floods, parasites and
pests. Forests are sensitive to storms and hurricanes, fires etc. Obviously, risk is of
central importance to modeling and applied problem solving in these sectors. Grimmet
and Stirzaker [6] contains most of the important theory of probability and random
processes. Fleming and Rishel [5] contains the general theory of deterministic and
stochastic optimal control. Sethi and Thompson [12] cover a field very similar to [5],
but is more focused on applied derivations. Lohmander [8, 9] shows how dynamic and
stochastic management decisions can be optimized with different methods, including
different versions of stochastic dynamic programming. Lohmander [10] develops
methodology for optimization of large scale energy production under risk, using
stochastic dynamic programming with a quadratic programming subroutine. Deter-
ministic systems are not necessarily predictable. Tung [13] is a fantastic book that
contains many kinds of mathematical modeling topics and applications, including
modern chaos theory and examples. Such theories and methods are also relevant to
rational decision making in resource management problems. Until now, we have only
considered problems with one decision maker. In reality, we often find many decision
makers that all influence the development of the same system. In such cases, we can
model this situation using game theory. Luce and Raiffa [11] gives a very good cov-
erage of the classical field. In games without cooperation, the Nash equilibrium theory
is very useful. Each player maximizes his/her own objective given that the other player
maximizes his/her objective. Washburn [14] focuses on such games and the important
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and often quite relevant subset “two person zero sum games”. In such games, linear
programming finds many relevant applications. Isaacs [7] describes and analyses
several games of this nature, but in continuous time, with the method differential
games. This manuscript could have been expanded in the direction of dynamic and
stochastic games. The present format limitation however makes this impossible. Let us
conclude this section with the finding that mathematical modeling in operations
research is a rich field with an almost unlimited number of applications.

2 Analysis

Let us investigate alternative specifications of operations research models and discuss
the properties. We may consider (1) as a general representation of linear constraints, as
we find them in most logistics problems, manufacturing problems and many other
applied problems. We assume that a feasible set exists and know that the feasible set
obtained with linear constraints is convex. In a production problem, xk is the production
volume of product k and the constraints are capacity constraints, where Cl is the total
capacity of resource l.

a11x1 þ . . .þ a1KxK �C1

. . .
aL1x1 þ . . .þ aLKxK �CL

8<
: ð1Þ

In case we have a linear objective function, such as the total profit, p, we may
express that as (2).

pðx1; . . .; xKÞ ¼ p0 þ p1x1 þ . . .þ pKxK ð2Þ

Linear programming is a relevant optimization method if we want to maximize (2)
subject to (1). The simplex algorithm will give the optimal solution in a finite number
of iterations. In many applied problems, such as production optimization problems, it is
also important to be able to handle the fact that market prices often are decreasing
functions of the produced and sold quantities of different products. Furthermore, the
production volume of one product may affect the prices of other products, the marginal
production costs of different products may be linked and so on. Then, the objective
function of the company may be approximated as a quadratic function (3). (Note that
(3) may be further simplified.)

pðx1; . . .; xKÞ ¼p0 þ p1x1 þ . . .þ pKxK þ
þ r11x

2
1 þ r12x1x2 þ . . .þ r1ðK�1Þx1xK�1 þ r1Kx1xK þ

þ . . .

þ rK1xKx1 þ rK2xKx2 þ . . .þ rKðK�1ÞxKxK�1 þ rKKx2K

ð3Þ

With a quadratic objective function and linear constraints, we have a quadratic
programming problem (4). Efficient quadratic programming computer codes are
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available, that have several similarities to the simplex algorithm for linear program-
ming. The Kuhn-Tucker conditions can be considered as linear constraints and in [1,
16], many such examples are solved.

maxpðx1; . . .; xKÞ
s:t:

a11x1 þ . . .þ a1KxK �C1

. . .

aL1x1 þ . . .þ aLKxK �CL

ð4Þ

In real applications, we are often interested to handle the sequential nature of
information. Market prices usually have to be regarded as partially stochastic. We may
influence the price level via our production and sales volumes. Still, there is usually a
considerable price variation outside the control of the producer. Then, we can optimize
our decisions via stochastic dynamic programming, as shown in the example in (5) and
(6). Let us consider the optimal extraction over time from a limited oil reserve. In every
period t until we reach the planning horizon T , we maximize the expected present
value, f ð:Þ, for every possible level of the remaining reserve, s, and for every market
state, m. f ð:Þ = 0 for t ¼ T þ 1, which is shown in (6). In all earlier periods, the values
of f ð:Þ are maximized for all possible reserve and market levels, via the control u, the
extraction level. In a period t, before we reach t ¼ T þ 1, the control u is selected so
that the sum of the present value of instant extraction pð:Þ and the expected present
value of future extraction

P
n
sðn mj Þf ðtþ 1; s� u; nÞ is maximized. sðn mj Þ denotes the

transition probability from market state m to market state n from one period to the next.
The control u has to belong to the set of feasible controls Uð:Þ which is a function of t, s
and m. Equations (5) and (6) summarize the principles and the recursive structure.

f ðt; s;mÞ ¼ max
u2Uðt;s;mÞ

pðu; t; s;mÞþ
X
n

sðnjmÞf ðtþ 1; s� u; nÞ
 !

8ðt; s;mÞj 0� t� Tð Þ
ð5Þ

f ðT þ 1; s;mÞ ¼ 0 8ðs;mÞ ð6Þ

With the stochastic dynamic programming method as a general tool, we may again
consider the detailed production and/or logistics problem (4). Now, we can solve many
such problems, (4), as sub problems, within the general stochastic dynamic program-
ming formulation (5), (6). Hence, for each state and stage, we solve the relevant sub
problems.

Now, the capacity levels (7) may be defined as functions of the control decisions,
time, the remaining reserve and the market state. Furthermore, all other “parameters”,
may be considered as functions, as described in (8), (9) and (10). As a result, we may
describe the sub problems as (11) or even as (12).
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Cl ¼ Clðu; t; s;mÞ 8l ð7Þ
alk ¼ alkðu; t; s;mÞ 8ðl; kÞ ð8Þ
pk ¼ pkðu; t; s;mÞ 8k ð9Þ

rk1k2 ¼ rk1k2ðu; t; s;mÞ 8ðk1; k2Þ ð10Þ

maxpðx1; . . .; xK ; u; t; s;mÞ
s:t:

a11x1 þ . . .þ a1KxK �C1

. . .

aL1x1 þ . . .þ aLKxK �CL

ð11Þ

maxpðx1; . . .; xK ; u; t; s;mÞ
s:t

a11ðu; t; s;mÞx1 þ . . .þ a1Kðu; t; s;mÞxK �C1ðu; t; s;mÞ
. . .

aL1ðu; t; s;mÞx1 þ . . .þ aLKðu; t; s;mÞxK �CLðu; t; s;mÞ

ð12Þ

Now, we include the sub problems in the stochastic dynamic programming
recursion Eq. (13). A problem of this kind is defined and numerically solved using
LINGO software [1] by Lohmander [10].

f ðt; s;mÞ ¼ max
u2Uðt;s;mÞ

maxpðx1; . . .; xK ; u; t; s;mÞ
s:t:

a11x1 þ . . .þ a1KxK �C1

. . .

aL1x1 þ . . .þ aLKxK �CL

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

þ
X
n

sðnjmÞf ðtþ 1; s� u; nÞ

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

8ðt; s;mÞj 0� t� Tð Þ

ð13Þ

Observe that (13) represents a very general and flexible way to formulate and solve
applied stochastic multi period production and logistics problems of many kinds. The
true sequential nature of decisions and information is explicitly handled, stochastic
market prices and very large numbers of decision variables and constraints may be
consistently considered. Furthermore, many other stochastic phenomena may be con-
sistently handled with this approach. Several examples of how different kinds of
stochastic disturbances may be included in optimal dynamic decisions are found in
Lohmander [8, 9].
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In the game theory literature, [7, 11, 14], we find many examples of two player
constant sum games. In (14), we find such an example, with one objective function.
The value of the game, Z, is what we obtain when one player maximizes and one player
minimizes the same objective function Qð/;uÞ. The maximizing player, A, determines
control u and the minimizing player, B, determines control /. Qð/;uÞ can, for
instance, represent the difference in profit or resources between two companies or
countries, during a conflict over a particular economic market, a geographical territory
or something else. During a period of conflict, it may be relevant to define this as a
constant sum game. (In other cases, con-constant sum games are sometimes more
relevant, but then it is not always the case that strictly mathematical definitions of the
game can be defined and explicitly solved.) Of course, u and / may represent vectors.

Z ¼ min
/

max
u

Qð/;uÞ ¼ Qð/;uÞ ð14Þ

We may develop and analyze constant sum games in a similar way as the earlier
discussed problems, via the stochastic dynamic programming framework. In (15) and
(16), one player maximizes and one player minimizes the value of the game. The
maximizing player A controls u and x and the minimizing player B controls v and y.
The resources of A and B at time t are sAt and sBt. Stochastic exogenous disturbances
influence the development of the system via the transition probabilities sðn mj Þ. The
state in the next period is considered as a general function of decisions of both players
and of other variables and parameters. In simple situations, continuous time versions of
dynamic game problems can be defined as differential games, as reported by Isaacs [7].
With a higher level of detail, we usually have to use discrete time and state space.
Several interesting discrete examples are found in Washburn [14].

Zðt; sAt; sBt;mÞ ¼ min
v2Vðt;sBt ;mÞ

max
u2Uðt;sAt ;mÞ

min
y2Yðt;sBt ;u;v;mÞ

max
x2Xðt;sAt ;u;v;mÞ

Qðx; y; u; v; t; sAt; sBt;mÞ
s:t:

F1;f1ðx; yÞ� 0 8f1
F2;f2ðx; yÞ� 08f2
F3;f3ðx; yÞ ¼ 08f3

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

þ
X
n

sðnjmÞZðtþ 1; sAðtþ 1ÞðsAt; t;m; v; uÞ; sBðtþ 1ÞðsBt; t;m; v; uÞ; nÞ

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

8ðt; sAt; sBt;mÞj 0� t� Tð Þ
ð15Þ

ZðT þ 1; sAt; sBt;mÞ ¼ 0 8ðsAt; sBt;mÞ ð16Þ
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Note that the specification of the structure described by (15) and (16) can be
adjusted to specific applications. This structure can be regarded as a generalization of
many problems in [7, 14].

The control decisions u and v, may represent key decisions, such as total use of
constrained resources. As seen in (15), these decisions also influence the options and
game values in future periods. The other control decisions, x and y, where x and y may
be vectors, can represent the decisions of A and B in very high resolution. Linear or
quadratic programming as a tool in the sub problems makes this possible. Furthermore,
the stochastic dynamic main program can provide solutions with almost unlimited
resolution in the time dimension. The recursive structure of problem solving does not
make it necessary to store all results in the internal memory. Of course, computation
time increases with resolution.

3 Main Results

Operations research contains a large number of alternative approaches. With logically
consistent mathematical modeling, relevant method selection and good empirical data,
the best possible decisions can be obtained. This paper has presented arguments for
using some particular combinations of methods that often are empirically motivated
and computationally feasible (Fig. 1).

Acknowledgements. My thanks go to Professor Hadi Nasseri for kind, rational and clever
suggestions.

Recommender: 2016 International workshop on Mathematics and Decision Science, Dr. Hadi
Nasseri of University of Mazandaran in Iran.

Fig. 1. The optimal oil industry management problem includes finding the optimal combination
of oil extraction in different fields, domestic crude oil transport, refining and international
logistics. All of this should be done with consideration of stochastic world market prices and
possibly other stochastic events. Source: Lohmander [10]. Equations (13) and (6) are useful to
solve this problem.
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