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Abstract. In this paper, the variational iteration method is applied
to solving an inverse problem of determining more than one unknown
parameters in a linear parabolic equation with Neumann boundary con-
ditions. If one of boundary conditions is considered as unknown, it is
desirable to be able to determine more than one parameter from the
given data. This method is based on the use of Lagrange multipliers for
identification of optimal valuse of parameters in a functional. We get a
rapid convergent sequence tending to the exact solution of the inverse
problem. To show the efficiency of the present method, one interesting
example is presented.
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1 Introduction

In this work, we will consider the following inverse problem of simultaneously
finding unknown coefficients p(t), one boundary condition q(t) and u(x, t) from
the following parabolic equation

ut = uxx + p(t)u + f(x, t), x ∈ (0, 1), t ∈ (0, T ], (1)

with the initial-boundary conditions

u(x, 0) = ϕ(x), x ∈ (0, 1), t ∈ (0, T ], (2)
ux(0, t) = q(t), t ∈ (0, T ], (3)
ux(1, t) = μ1(t), t ∈ (0, T ], (4)
u(1, t) = μ2(t), t ∈ (0, T ], (5)

and the additional specification

u(x∗, t) = E(t), x∗ ∈ (0, 1), t ∈ (0, T ], (6)
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where f(x, t), ϕ(x), μ1(t), μ2(t) and E(t) �= 0 are known functions, p(t) and q(t)
are unknown function, x∗ is a fixed prescribed interior point in (0, 1).

The determination of unknown coefficients in partial differential equations of
parabolic type from additional boundary conditions (i.e., measured data taken on
the boundary) is well known in literature as inverse coefficient problems (ICP).
Physically, the ICP is the reconstruction of an intra property of a medium in some
bounded region by using state measurements taken on the boundary. ICP for
semi-linear parabolic equations have been studied by many people, for example,
by Cannon and Lin [1], Emine [2], Hasanov and Liu [3], Liu [4–6], Odibat [7],
Varedi, Hosseini, Rahimi, et al. [8].

The variational iteration method is introduced by He [9–11] as a modifica-
tion of a general Lagrange multiplier method [12], which has been proved by
many authors to be a powerful mathematical tool for various types of nonlinear
problems. It was successfully applied to burger’s equation and coupled equa-
tion [13], a biochemical reaction model [14], singular perturbation initial value
problems [15], strongly nonlinear problems [16,17], nonlinear differential equa-
tions of fractional order [18,26], generalized nonlinear Boussinesq equation [19]
and generalized KdV [20], Dehghan, Liu Jinbo, Huang Dejian and Ma Yunjie
have studied the inverse problems by use of the variational iteration method
[7,21,22,25,27].

In this paper, we will apply the variational iteration method to find the exact
solution of a control parameter p(t), a boundary condition q(t) in parabolic
equation.

2 The Variational Iteration Method

In this section the application of variational iteration method is discussed for
solving problem (1)–(5) with over specification (6). Applying a pair of transfor-
mations [2] as follows:

r(t) = exp(−
∫ t

0

p(s)ds), (7)

w(x, t) = u(x, t)r(t). (8)

We reduce the original inverse problem (1)–(6) to the following auxiliary
problem:

wt = wxx + r(t)f(x, t), x ∈ (0, 1), t ∈ (0, T ]. (9)
w(x, 0) = ϕ(x), x ∈ (0, 1), t ∈ (0, T ], (10)
wx(0, t) = r(t)q(t), t ∈ (0, T ], (11)
wx(1, t) = r(t)μ1(t), t ∈ (0, T ], (12)
w(1, t) = r(t)μ2(t), t ∈ (0, T ], (13)

subject to

r(t) =
w(x∗, t)

E(t)
, t ∈ (0, T ]. (14)
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It is easy to show that the original inverse problem (1)–(6) is equivalent to the
auxiliary problem (9)–(14). Obviously, Eq. (9) has only one unknown function
w(x, t) [23,24] and has suitable form to apply the variational iteration method.

According to the variational iteration method, we consider the correction
functional in t− direction in the following form

wn+1(x, t) = wn(x, t) +

∫ t

0
λ(s){∂wn(x, s)

∂s
− ∂2w̃n(x, s)

∂x2
− w̃n(x∗, s)

E(s)
f(x, s)}ds, (15)

where λ(t) is the general Lagrange multiplier, its optimal value is found by using
variational theory, w0(x, t) is an initial approximation which must be chosen
suitably and w̃n is the restricted variation i.e. δw̃n = 0 [9].

To find the optimal value of λ(t), we have

δwn+1(x, t) = δwn(x, t) + δ

∫ t

0
λ(s){∂wn(x, s)

∂s
− ∂2w̃n(x, s)

∂x2
− w̃n(x∗, s)

E(s)
f(x, s)}ds, (16)

or

δwn+1(x, t) = δwn(x, t) + δ

∫ t

0

λ(s){∂wn(x, s)
∂s

}ds. (17)

Using integration by parts, we have

δwn+1(x, t) = δwn(x, t)(1 + λ(t)) −
∫ t

0

δwn(x, s)λ′(s)ds = 0, (18)

which yields

λ′(s) = 0|s=t, (19)
1 + λ(s) = 0|s=t. (20)

Thus we have

λ(t) = −1. (21)

and we obtain the following iteration formula

wn+1(x, t) = wn(x, t)−
∫ t

0
{∂wn(x, s)

∂s
− ∂2wn(x, s)

∂x2
− wn(x∗, s)

E(s)
f(x, s)}ds. (22)

Now using (22) we can find the solution of Eq. (9). Then we get the solutions
of the original inverse problem from the following

u(x, t) =
w(x, t)
E(t)

, (23)

and

p(t) = −r′(t)
r(t)

, (24)
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then

q(t) = ux(0, t), (25)

where r(t) is given in (7).
Also we can consider wn as an approximation of the exact solution for suffi-

ciently large values of n.

3 The Test Example

To show the efficiency of the present method, we consider the following example,
which can be solved iteratively by using the variational iteration method.

Consider Eqs. (1)–(6) with the following conditions:

u(x, 0) = cos(πx) + x, (26)
ux(1, t) = exp(t), (27)
u(1, t) = 0, (28)
f(x, t) = π2 exp(t) cos(πx) − t2 exp(t)[cos(πx) + x], (29)

E(t) = (
√

2
2

+
1
4
) exp(t), (30)

with x∗ = 0.25. The exact solution of this problem is [26]

u(x, t) = exp(t)[cos(πx) + x], (31)

and

p(t) = 1 + t2, (32)
q(t) = exp(t). (33)

We set from (10)

w0 = ϕ(x) = cos(πx) + x. (34)

Using Eq. (22), we obtain

w1(x, t) = w0(x, t)− ∫ t
0 {

∂w0(x,s)
∂s

− ∂2w0(x,s)

∂x2 − w0(x
∗,s)

E(s)
f(x, s)}ds

= cos(πx) + x − ∫ t
0 {π2 cos(πx)− [π2 cos(πx)− s2(cos(πx) + x)]}ds

= [cos(πx) + x](1− t3

3
)

=
∑1

j=0

(− t3
3 )j

j!
[cos(πx) + x],

(35)

w2(x, t) = w1(x, t)− ∫ t
0 {

∂w1(x,s)
∂s

− ∂2w1(x,s)

∂x2 − w1(x
∗,s)

E(s)
f(x, s)}ds

= [cos(πx) + x](1− t3

3
)− ∫ t

0 {−[cos(πx) + x]s2 + (s2 − s5

3
)[cos(πx) + x]}ds

= [cos(πx) + x](1− t3

3
+ t6

18
)

=
∑2

j=0

(− t3
3 )j

j!
[cos(πx) + x],

(36)
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w3(x, t) = w2(x, t) − ∫ t

0
{∂w2(x,s)

∂s − ∂2w2(x,s)
∂x2 − w2(x

∗,s)
E(s) f(x, s)}ds

= [cos(πx) + x](1 − t3

3 + t6

18 ) − ∫ t

0
{[cos(πx) + x] s8

18}ds

= [cos(πx) + x](1 − t3

3 + t6

18 − t9

162 )

=
∑3

j=0
(− t3

3 )j

j! [cos(πx) + x],

(37)

and so on.
Generally we obtain

wn(x, t) =
n∑

j=0

(− t3

3 )j

j!
[cos(πx) + x]. (38)

Thus the exact value of w in a closed form is

w(x, t) = exp(− t3

3
)[cos(πx) + x] (n → ∞), (39)

which results the exact solution of the problem. It can be seen that the same
results are obtained using Finite difference method [25], Comparing with Finite
difference method, it is easy to know that the approximation obtained by the
variational iteration method converges to its exact solution faster than those of
Finite difference without calculating implicit difference scheme. The results show
the computation efficiency of the variational iteration method for the studied
model.

4 Conclusion

In this work, the variational iteration method has been successfully applied
to inverse parabolic equation with Neumann boundary conditions. Since this
method solves the problem without any need to discretization of the variables,
it is not affected by computation round off errors and one is not faced with neces-
sity of large computer memory and time. The example shows that this method
provides the solution of the problem in a closed form without calculating implicit
difference scheme, which is an advantage of the variational iteration method over
Finite difference method. Thus we can say the proposed method is very simple
and straightforward.
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