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Abstract. In the present paper, the L-fuzzy filter theory on R0-algebras
is further studied. Some new properties of L-fuzzy filters are given. Rep-
resentation theorem of L-fuzzy filter which is generated by a fuzzy set
is established. It is proved that the set consisting of all L-fuzzy filters
on a given R0-algebra, under the L-fuzzy set-inclusion order �, forms a
complete distributive lattice.
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1 Introduction

To make the computers simulate beings in dealing with certainty and uncertainty
in information is one important task of artificial intelligence. Logic appears in
a “sacred” (resp., a “profane”) form which is dominant in proof theory (resp.,
model theory). The role of logic in mathematics and computer science is twofold–
as a tool for applications in both areas, and a technique for laying the founda-
tions. Nonclassical logic [1] including many-valued logic and fuzzy logic takes the
advantage of classical logic to handle information with various facets of uncer-
tainty [2], such as fuzziness and randomness. At present, nonclassical logic has
become a formal and useful tool for computer science to deal with fuzzy informa-
tion and uncertain information. R0-algebra is an important class of non-classical
fuzzy logical algebras which was introduced by Wang in [3] by providing an alge-
bra proof of the completeness theorem of the formal deductive system L∗. From
then, R0-algebras has been extensively investigated by many researchers. Among
them, Jun and Liu studied the theory of filters in R0-algebras in [4]. The concept
of fuzzy sets is introduced firstly by Zadeh in [5]. Liu and Li in [6] proposed the
concept of fuzzy filters of R0-algebras and discussed some their properties by
using fuzzy sets theory. As an extension of the concept of fuzzy filter, in [7] the
author and Xu propose the notion of L-fuzzy filters of R0-algebras in terms of
the notion of L-fuzzy set in [8], where the prefix L a lattice. In this paper, we
will further research the properties of L-fuzzy filters in R0-algebras. The lattice
structural feature of the set containing all of L-fuzzy filters in a given R0-algebra
is investigated. It should be noticed that when L = [0, 1], then [0, 1]-fuzzy sets
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are originally meant fuzzy sets. Since [0, 1] is a special completely distributive
lattice, to investigate properties of L-fuzzy filters, sometimes we assume that the
prefix L is a completely distributive lattice.

2 Preliminaries

Definition 1 (cf. [3]). Let M be an algebra of type (¬,∨,→), where ¬ is a
unary operation, ∨ and → are binary operations. (M,¬,∨,→, 1) is called an R0-
algebra if there is a partial order � such that (M,�, 1) is a bounded distributive
lattice with the greatest element 1, ∨ is the supremum operation with respect
to �, ¬ is an order-reversing involution, and the following conditions hold for
every a, b, c ∈ M :

(M1) ¬a → ¬b = b → a;
(M2) 1 → a = a, a → a = 1;
(M3) b → c � (a → b) → (a → c);
(M4) a → (b → c) = b → (a → c);
(M5) a → (b ∨ c) = (a → b) ∨ (a → c), a → (b ∧ c) = (a → b) ∧ (a → c);
(M6) (a → b) ∨ ((a → b) → (¬a ∨ b)) = 1.

Lemma 1 (cf. [3]). Let M be an R0-algebra, a, b, c ∈ M . Then the following
properties hold.

(P1) a � b if and only if a → b = 1;
(P2) a � b → c if and only if b � a → c;
(P3) (a ∨ b) → c = (a → c) ∧ (b → c), (a ∧ b) → c = (a → c) ∨ (b → c);
(P4) If b � c, then a → b � a → c, and if a � b, then b → c � a → c;
(P5) a → b � ¬a ∨ b and a ∧ ¬a � b ∨ ¬b;
(P6) (a → b) ∨ (b → a) = 1 and a ∨ b = ((a → b) → b) ∧ ((b → a) → a);
(P7) a → (b → a) = 1 and a → (¬a → b) = 1;
(P8) a → b � a ∨ c → b ∨ c and a → b � a ∧ c → b ∧ c;
(P9) a → b � (a → c) ∨ (c → b).

Lemma 2 (cf. [3]). Let M be an R0-algebra. Define a new operator ⊗ on M
such that a⊗b = ¬(a → ¬b), for every a, b, c ∈ M . Then the following properties
hold.

(P10) (M,⊗, 1) is a commutative monoid with the multiplicative unit element
1;
(P11) If a � b, then a ⊗ c � b ⊗ c;
(P12) 0 ⊗ a = 0 and a ⊗ ¬a = 0;
(P13) a ⊗ b � a ∧ b and a ⊗ (a → b) � b and a � b → (a ⊗ b);
(P14) a ⊗ b → c = a → (b → c) and a ⊗ (b ∨ c) = (a ⊗ b) ∨ (a ⊗ c).

Let X be a non-empty set and L a lattice. A map A : X → L is called an
L-fuzzy subset on X. The set of all L-fuzzy subsets on X is denoted by FL(X).
(cf. [8]). Let A and B be two L-fuzzy subsets on X. We define A � B, A � B
, A � B and A = B as follows:
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(i) (A � B)(x) = A (x) ∧ B(x), for all x ∈ X;
(ii) (A � B)(x) = A (x) ∨ B(x), for all x ∈ X;
(iii) A � B ⇐⇒ A (x) � B(x), for all x ∈ X;
(iv) A = B ⇐⇒ (A � B and B � A ).

3 On L-fuzzy Filters in R0-algebras

In this section, we recall the definition of L-fuzzy filters and give their some new
properties.

Definition 2 (cf. [7]). Let M be an R0-algebra and L a lattice. An L-fuzzy
subset A on M is said to be an L-fuzzy filter of M , if it satisfies the following
conditions:

(LF1) A (1) � A (a) for all a ∈ M ;
(LF2) A (b) � A (a) ∧ A (a → b) for all a, b ∈ M .

The set of all L-fuzzy filters of M is denoted by LFil(M).

Theorem 1. Let M be an R0-algebra, L a lattice and A an L-fuzzy subset on
M . Then A ∈ LFil(M) if and only if it satisfies the following conditions:

(LF3) a � b implies A (b) � A (a) for all a, b ∈ M ;
(LF4) A (a ⊗ b) � A (a) ∧ A (b) for all a, b ∈ M .

Proof. Assume that A ∈ LFil(M). From Theorem 6 in [7], we know that A
satisfies the condition (LF3). Let a, b ∈ M , since a � b → (a ⊗ b), by (LF2)
and (LF3)), we have that A (a ⊗ b) � A (b) ∧ A (b → (a ⊗ b)) � A (a) ∧ A (b).
Thus A also satisfies the condition (LF4). Conversely, Assume that A satisfies
the condition (LF3) and (LF4). since a � 1, by (LF3) we have A (1) � A (a).
Thus A satisfies the condition (LF1). From a ⊗ (a → b) � b, (LF3) and (LF4),
it follows that A (b) � A (a ⊗ (a → b)) � A (a) ∧ A (a → b). Thus A satisfies
the condition (LF2). Therefore A ∈ LFil(M) by Definition 2.

Definition 3. Let M be an R0-algebra, L a lattice and A an L-fuzzy subset
on M . An L-fuzzy subset A λ on M is defined as follows:

A λ(a) =

{
A (a), a 	= 1,

A (1) ∨ λ, a = 1,
(1)

for all a ∈ M , where λ ∈ L.

Theorem 2. Let M be an R0-algebra, L a lattice and A ∈ LFil(M). Then
A λ ∈ LFil(M) for all λ ∈ L.

Proof. Firstly, for all a, b ∈ M , let a � b, we consider the following two cases:

(i) Assume that b = 1. If a = 1, we have that A λ(b) = A (1) ∨ λ = A λ(a). If
a 	= 1, by using A ∈ LFil(M) and (LF1), we have that A λ(b)=A (1) ∨ λ �
A (1) � A (a) = A λ(a).
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(ii) Assume that b 	= 1, then a 	= 1. It follows that A λ(b) = A (b) � A (a) =
A λ(a) from A ∈ LFil(M) and (LF3).

Summarize above two cases, we conclude that a � b implies A λ(b) � A λ(a),
for all a, b ∈ M . That is, A λ satisfies (LF3).

Secondly, for all a, b ∈ M , we consider the following two cases:

(i) Assume that a ⊗ b = 1. If a = b = 1, it is obvious that

A λ(a ⊗ b) = A (1) ∨ λ = A λ(a) ∧ A λ(b).

If a = 1, b 	= 1 or a 	= 1, b = 1, then a ⊗ b 	= 1, it is a contradiction.
If a 	= 1 and b 	= 1, it follows that A λ(a)∧A λ(b) = A (a)∧A (b) � A (a⊗b) =

A (1) � A (1) ∨ λ = A λ(a ⊗ b) from A ∈ LFil(M), (LF4) and (1).

(ii) Assume that a ⊗ b 	= 1. If a = b = 1, it is obvious a contradiction.

If a = 1, b 	= 1 or a 	= 1, b = 1, let’s assume a = 1, b 	= 1, then a ⊗ b = ¬(1 →
¬b) = b, and so A λ(a) ∧ A λ(b) � A λ(b) = A (b) = A (a ⊗ b) = A λ(a ⊗ b).

If a 	= 1 and b 	= 1, it follows that A λ(a ⊗ b) = A (a ⊗ b) � A (a) ∧ A (b) =
A λ(a) ∧ A λ(b) from A ∈ LFil(M) and (LF4).

Summarize above two cases, we conclude that A λ(a ⊗ b) � A λ(a) ∧ A λ(b),
for all a, b ∈ M . That is, A λ satisfies (LF4).

Thus it follows that A λ ∈ LFil(M) from Theorem 1.

Definition 4. Let M be an R0-algebra, L a lattice and A ,B two L-fuzzy sub-
sets on M . Defined L-fuzzy subsets A B and BA on M as follows: for all a ∈ M ,

A B(a) =

{
A (a), a 	= 1,

A (1) ∨ B(1), a = 1,
and BA (a) =

{
B(a), a 	= 1,

B(1) ∨ A (1), a = 1.

(2)

Corollary 1. Let M be an R0-algebra, L a lattice and A ,B two L-fuzzy subsets
on M . If A ,B ∈ LFil(M). Then A B,BA ∈ LFil(M).

Definition 5. Let M be an R0-algebra, L a completely lattice and A ,B two
L-fuzzy subsets on M . An L-fuzzy set A 
B on M is defined as follows: for all
a, x, y ∈ M ,

(A 
 B)(a) =
∨

x⊗y�a

[A (x) ∧ B(y)] . (3)

Theorem 3. Let M be an R0-algebra, L a completely distributive lattice and
A ,B two L-fuzzy subsets on M . If A ,B ∈ LFil(M). Then A B 
 BA ∈
LFil(M).

Proof. Firstly, for all a, b ∈ M , let a � b, then {x⊗y|x⊗y � a} ⊆ {x⊗y|x⊗y �
b}, and so(

A B 
 BA
)
(b) =

∨
x⊗y�b

[
A B(x) ∧ BA (y)

]
�

∨
x⊗y�a

[
A B(x) ∧ BA (y)

]
=

(
A B 
 BA

)
(a).
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Hence A B 
 BA satisfies (LF3). Secondly, for all a, b ∈ M , we have that(
A B 
 BA

)
(a ⊗ b)

=
∨

x⊗y�a⊗b

[
A B(x) ∧ BA (y)

]
�

∨
x1⊗x2�a and y1⊗y2�b

[
A B(x1 ⊗ y1) ∧ BA (x2 ⊗ y2)

]

�
∨

x1⊗x2�a and y1⊗y2�b

[
A B(x1) ∧ A B(y1) ∧ BA (x2) ∧ BA (y2)

]

=
∨

x1⊗x2�a

[
A B(x1) ∧ BA (x2)

] ∧
∨

y1⊗y2�b

[
A B(y1) ∧ BA (y2)

]
=

(
A B 
 BA

)
(a) ∧ (

A B 
 BA
)
(b),

and so A B
BA also satisfies (LF4). Hence A B
BA ∈ LFil(M) by Theorem 1.

4 Generated L-fuzzy Filter by an L-fuzzy Subset

In this section, we give the notion of generated L-fuzzy filter by an L-fuzzy
subset and establish its representation theorem.

Definition 6. Let M be an R0-algebra, L a lattice and A an L-fuzzy subset
on M . An L-fuzzy filter B of M is called the generated L-fuzzy filter by A ,
denoted 〈A 〉, if A � B and for any C ∈ LFil(M), A � C implies B � C .

Theorem 4. Let M be an R0-algebra, L a completely distributive lattice and
A an L-fuzzy subset on M . An L-fuzzy subset B on M is defined as follows:

B(a) =
∨

{A (x1) ∧ · · ·A (xn)|x1, x2, · · · , xn ∈ M and x1 ⊗ · · · ⊗ xn � a} ,

(4)
for all a ∈ M . Then B = 〈A 〉.
Proof. Firstly, we prove that B ∈ LFil(M). For all a, b ∈ M , let a � b. Then

A (a) =
∨

{A (x1) ∧ · · ·A (xn)|x1, x2, · · · , xn ∈ M and x1 ⊗ x2 ⊗ · · · ⊗ xn � a}
�
∨

{A (x1) ∧ · · ·A (xn)|x1, x2, · · · , xn ∈ M and x1 ⊗ · · · ⊗ xn � b} = B(b).

Thus B satisfies (LF3). Assume that there are x1, x2, · · · , xn ∈ M and
y1, · · · , ym ∈ M such that x1 ⊗ x2 ⊗ · · · ⊗ xn � a and y1 ⊗ y2 ⊗ · · · ⊗ ym � b, we
have that x1 ⊗ x2 ⊗ · · · ⊗ xn ⊗ y1 ⊗ y2 ⊗ · · · ⊗ ym � a ⊗ b by (P11). Thus, we can
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0

d c

a b

1

Fig. 1. The Hasse diagram of M

Table 1. Def. of “→”

→ 0 a b c d 1

0 1 1 1 1 1 1

a c 1 b c b 1

b d a 1 b a 1

c a a 1 1 a 1

d b 1 1 b 1 1

1 0 a b c d 1

obtain that

B(a) ∧ B(b)

=
∨

{A (x1) ∧ · · ·A (xn)|x1, x2, · · · , xn ∈ M and x1 ⊗ x2 ⊗ · · · ⊗ xn � a}
∧
∨

{A (y1) ∧ · · ·A (ym)|y1, y2, · · · , ym ∈ M and y1 ⊗ y2 ⊗ · · · ⊗ ym � b}
=
∨

{A (x1) ∧ · · · ∧ A (xn) ∧ A (y1) ∧ · · · ∧ A (ym)|x1, · · · , xn, y1, · · · , ym ∈ M

such that x1 ⊗ x2 ⊗ · · · ⊗ xn � a and y1 ⊗ y2 ⊗ · · · ⊗ ym � b}
�
∨

{A (x1) ∧ · · · ∧ A (xn) ∧ A (y1) ∧ · · · ∧ A (ym)|x1, · · · , xn, y1, · · · , ym ∈ M

such that x1 ⊗ x2 ⊗ · · · ⊗ xn ⊗ y1 ⊗ y2 ⊗ · · · ⊗ ym � a ⊗ b}
�
∨

{A (z1) ∧ · · ·A (zk)|z1, z2, · · · , zk ∈ M and z1 ⊗ · · · ⊗ zk � a ⊗ b}
=B(a ⊗ b).

Hence B also satisfies (LF4). It follows from Theorem 1 that B ∈ LFil(M).
Secondly, For any a ∈ M , it follows from a � a and the definition of B that

A (a) � B(a). This means that A � B.
Finally, assume that C ∈ LFil(M) with A � C . Then for any a ∈ M , we

have

B(a) =
∨

{A (x1) ∧ · · · ∧ A (xn)|x1, x2, · · · , xn ∈ M and x1 ⊗ x2 ⊗ · · · ⊗ xn � a}
�
∨

{C (x1) ∧ · · · ∧ C (xn)|x1, x2, · · · , xn ∈ M and x1 ⊗ x2 ⊗ · · · ⊗ xn � a}
�
∨

{C (x1 ⊗ · · · ⊗ xn)|x1, x2, · · · , xn ∈ M and x1 ⊗ x2 ⊗ · · · ⊗ xn � a}
�
∨

{C (a)} = C (a).

Hence B � C holds. To sum up, we have that B = 〈A 〉.
Example 1. Let M = {0, a, b, c, d, 1}, ¬0 = 1,¬a = c,¬b = d,¬c = a,¬d =
b,¬1 = 0, the Hasse diagram of lattice (M,∨,∧,�) be defined as Fig. 1, and the
binary operator → of M be defined as Table 1.

Then (M,¬,∨,→, 1) is an R0-algebra. Take L = ([0, 1],max,min) and define
an [0,1]-fuzzy subset A on M by A (1) = A (c) = α,A (a) = A (b) = A (d) =
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A (0) = β, 0 � β < α � 1. Since c � b but A (b) = β 	� α = A (c), we know that
A 	∈ LFil(M). It is easy to verify that 〈A 〉 ∈ LFil(M) from Theorem 4, where
〈A 〉(1) = 〈A 〉(b) = 〈A 〉(c) = α, 〈A 〉(a) = 〈A 〉(d) = 〈A 〉(0) = β.

5 The Lattice of L-fuzzy Filters in a Given R0-algebra

In this section, we investigate the lattice structural feature of the set LFil(M)
under the L-fuzzy set-inclusion order �.

Theorem 5. Let M be an R0-algebra and L a complete lattice. Then
(LFil(M),�) is a complete lattice.

Proof. For any {Aα}α∈Λ ⊆ LFil(M), where Λ is an indexed set. It is easy to
verify that �α∈ΛAα ∈ LFil(M) is infimum of {Aα}α∈Λ, where (�α∈ΛAα) (a) =∧
α∈Λ

Aα(a) for all a ∈ M . i.e.,
∧

α∈Λ

Aα = �α∈ΛAα. Define �α∈ΛAα such that

(�α∈ΛAα) (a) =
∨

α∈Λ

Aα(a) for all a ∈ M . Then 〈�α∈ΛAα〉 is supermun of

{Aα}α∈Λ, where 〈�α∈ΛAα〉 is the L-fuzzy filter generated by �α∈ΛAα of M .
i.e.,

∨
α∈Λ

Aα = 〈�α∈ΛAα〉. Therefor (LFil(M),�) is a complete lattice. The

proof is completed.

Remark 1. Let M be an R0-algebra and L a complete lattice. For all A ,B ∈
LFil(M), by Theorem 5 we know that A ∧B = A �B and A ∨B = 〈A � B〉.
Theorem 6. Let M be an R0-algebra and L a completely distributive lattice.
Then for all A ,B ∈ LFil(M), A ∨B = 〈A � B〉 = A B 
BA in the complete
lattice (LFil(M),�).

Proof. For all A ,B ∈ LFil(M), it is obvious that A � A B 
 BA and B �
A B
BA , that is, A (a) �

(
A B 
 BA

)
(a) and B(a) �

(
A B 
 BA

)
(a) for all

a ∈ M . Thus(A � B)(a) = A (a) ∨ B(a) �
(
A B 
 BA

)
(a), that is, A � B �

A B 
 BA , and thus 〈A � B〉 � A B 
 BA ∈ LFil(M) by Theorem 3. Let
C ∈ LFil(M) such that A � B � C . For all a ∈ M , we consider the following
two cases:

(i) If a = 1, then
(
A B 
 BA

)
(1) =

∨
x⊗y�1

[
A B(x) ∧ BA (y)

]
= A B(1) ∧

BA (1) = A (1) ∨ B(1) = (A � B) (1) � C (1).
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(ii) If a < 1, then we have

(
A B 
 BA

)
(a) =

∨
x⊗y�a

[
A B(x) ∧ BA (y)

]
=

∨
x⊗y�a,x�=1,y �=1

[
A B(x) ∧ BA (y)

] ∨
∨
x�a

{A (x) ∧ [A (1) ∨ B(1)]}

∨
∨
y�a

{[A (1) ∨ B(1)] ∧ B(y)}

=
∨

x⊗y�a,x�=1,y �=1

[
A B(x) ∧ BA (y)

] ∨
⎡
⎣ ∨

x�a

A (x)

⎤
⎦ ∨

⎡
⎣ ∨

y�a

B(y)

⎤
⎦

�
∨

x⊗y�a,x�=1,y �=1

[C (x) ∧ C (y)] ∨
⎡
⎣ ∨

x�a

C (x)

⎤
⎦ ∨

⎡
⎣ ∨

y�a

C (y)

⎤
⎦

=
∨

x⊗y�a

[C (x) ∧ C (y)] �
∨

x⊗y�a

C (x ⊗ y) � C (a),

thus A B 
 BA � C for above two cases.

By Definition 6 and Theorem 4 we have that A ∨B = 〈A � B〉 = A B
BA .

Theorem 7. Let M be an R0-algebra and L a completely distributive lattice.
Then (LFil(M),�) is a distributive lattice, where, A ∧B = A �B and A ∨B =
〈A � B〉, for all A ,B ∈ LFil(M).

Proof. To finish the proof, it suffices to show that C ∧ (A ∨ B) = (C ∧ A ) ∨
(C ∧ B), for all A ,B,C ∈ LFil(M). Since the inequality (C ∧ A )∨ (C ∧ B) �
C ∧ (A ∨ B) holds automatically in a lattice, we need only to show the inequal-
ity C ∧ (A ∨ B) � (C ∧ A ) ∨ (C ∧ B). i.e., we need only to show that(
C �

(
A B 
 BA

))
(a) �

(
(C � A )C�B 
 (C � B)C�A

)
(a), for all a ∈ M .

For these, we consider the following two cases:

(i) If a = 1, we have(
C �

(
A B 
 BA

))
(1) = C (1) ∧ (

A B 
 BA
)
(1)

=C (1) ∧
∨

x⊗y�1

[
A B(x) ∧ BA (y)

]
= C (1) ∧ [

A B(1) ∧ BA (1)
]

= [C (1) ∧ A (1)] ∨ [C (1) ∧ B(1)] = (C � A ) (1) ∨ (C � B) (1)

= (C � A )C�B (1) ∧ (C � B)C�A (1)

=
∨

x⊗y�1

[
(C � A )C�B (x) ∧ (C � B)C�A (y)

]

=
(
(C � A )C�B 
 (C � B)C�A

)
(1).
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(ii) If a < 1, we have(
C �

(
A B 
 BA

))
(a) = C (a) ∧ (

A B 
 BA
)
(a)

=C (a) ∧
∨

x⊗y�a

[
A B(x) ∧ BA (y)

]
=

∨
x⊗y�a

[
C (a) ∧ A B(x) ∧ BA (y)

]
=

∨
x⊗y�a,x�=1,y �=1

[
C (a) ∧ A B(x) ∧ BA (y)

] ∨
∨
y�a

[
C (a) ∧ A B(1) ∧ B(y)

] ∨
∨
x�a

[
C (a) ∧ A (x) ∧ BA (1)

]
=

∨
x⊗y�a,x�=1,y �=1

{[C (a) ∧ A (x)] ∧ [C (a) ∧ B(y)]} ∨
∨
y�a

{[
C (a) ∧ A B(1)

] ∧ [C (a) ∧ B(y)]
} ∨

∨
x�a

{
[C (a) ∧ A (x)] ∧ [

C (a) ∧ BA (1)
]}

�
∨

x⊗y�a,x�=1,y �=1

{[C (a ∨ x) ∧ A (a ∨ x)] ∧ [C (a ∨ y) ∧ B(a ∨ y)]} ∨
∨
y�a

{[C (1) ∧ (A (1) ∨ B(1))] ∧ [C (a ∨ y) ∧ B(a ∨ y)]} ∨
∨
x�a

{[C (a ∨ x) ∧ A (a ∨ x)] ∧ [C (1) ∧ (B(1) ∨ A (1))]}

=
∨

x⊗y�a,x�=1,y �=1

[(C � A ) (a ∨ x) ∧ (C � B) (a ∨ y)] ∨
∨
y�a

{[(C � A ) (1) ∨ (C � B) (1)] ∧ (C � B) (a ∨ y)} ∨
∨
x�a

{(C � A ) (a ∨ x) ∧ [(C � B) (1) ∨ (C � A ) (1)]}

=
∨

x⊗y�a,x�=1,y �=1

[
(C � A )C�B (a ∨ x) ∧ (C � B)C�A (a ∨ y)

]
∨

∨
y�a

[
(C � A )C�B (1) ∧ (C � B)C�A (a ∨ y)

]
∨

∨
x�a

[
(C � A )C�B (a ∨ x) ∧ (C � B)C�A (1)

]

=
∨

x⊗y�a

[
(C � A )C�B (a ∨ x) ∧ (C � B)C�A (a ∨ y)

]
.
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Let a ∨ x = u and a ∨ y = v, since x ⊗ y � a, using Lemma 2 we get that

u ⊗ v = (a ∨ x) ⊗ (a ∨ y) =((a ∨ x) ⊗ a) ∨ ((a ∨ x) ⊗ y)
=(a ⊗ a) ∨ (a ⊗ x) ∨ (a ⊗ y) ∨ (x ⊗ y)
�a ∨ a ∨ a ∨ (x ⊗ y)
=a ∨ (x ⊗ y) � a ∨ a = a.

Hence we can conclude that(
C �

(
A B 
 BA

))
(a) �

∨
x⊗y�a

[
(C � A )C�B (a ∨ x) ∧ (C � B)C�A (a ∨ y)

]

�
∨

u⊗v�a

[
(C � A )C�B (u) ∧ (C � B)C�A (v)

]

=
(
(C � A )C�B 
 (C � B)C�A

)
(a).

To sum up, we have that

(
C �

(
A B 
 BA

))
(a) �

(
(C � A )C�B 
 (C � B)C�A

)
(a),

for all a ∈ M . The proof is completed.

6 Conclusion

As well known, filters is an important concept for studying the structural features
of R0-algebras. In this paper, the L-fuzzy filter theory in R0-algebras is further
studied. Some new properties of L-fuzzy filters are given. Representation theorem
of L-fuzzy filter which is generated by an L-fuzzy subset is established. It is
proved that the set consisting of all L-fuzzy filters in a given R0-algebra, under
the L-fuzzy set-inclusion order �, forms a complete distributive lattice. Results
obtained in this paper not only enrich the content of L-fuzzy filters theory in
R0-algebras, but also show interactions of algebraic technique and L-fuzzy sets
method in the studying of logic problems. We hope that more links of fuzzy sets
and logics emerge by the stipulating of this work.
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