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Abstract. Arbitrated quantum signature(AQS) is a cryptographic sce-
nario. There are three participants in this scheme. Sender(signer) Alice
generates the signature of a message. Receiver(verifier) Bob verifies the
signature. A trusted arbitrator helps Bob verify the signature. In this
paper, we propose an arbitrated quantum signature scheme with W
states. The W states are used for quantum signature and verification.
The W states have stronger robustness than the GHZ states in the loss
of the quantum bits. Finally, we also discuss its security against forgery
and disavowal.
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1 Introduction

Quantum cryptography is new cross subject with the combination of classic cryp-
tography and quantum information. It is a new type of cryptographic system
that uses quantum effects to realize the information exchange of unconditional
security. The ideology of quantum cryptography can be traced back to the earli-
est Wiesner Stephen article in 1983 [1]. Bennet et al. designed the first quantum
cryptography scheme named BB84 [2]. Since then, quantum cryptography has
developed rapidly. Quite a few branches of quantum cryptography have been
pointed out, including quantum key distribution(QKD) [3–7], quantum secure
direct communication(QSDC) [8–11], quantum secret sharing(QSS) [12–15] and
so on.

The principle of quantum signature is a combination of quantum theory and
the principle of digital signature. Gotteman et al. [16] and Buhrman et al. [17]
proposed quantum digital signatures in 2001. Zeng and Keitel proposed and
designed the first arbitration quantum signature scheme by using the classical
signature and the entanglement of the Greenberger-Horne-Zeilinger(GHZ) triplet
states [18]. Li et al. modified the signature of Zeng and Keitel by using Bell states
instead of GHZ states, which is more efficient and more convenient [19]. Zou
and Qiu proposed an AQS scheme with a public board which can avoid being
disavowed for the integrality of the signature by Bob [20]. With the continuous
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 12



108 Y. Jiang and Z. Mo

development and application of the arbitration quantum signature, many practi-
cal quantum signature protocols have been put forward, such as quantum proxy
signature [21,22] ,quantum group signature [23,24], quantum blind signature
[25,26], quantum multi signature [27,28], etc.

In 2000, Dür et al. proposed a new entangled state, and found that the W
states have stronger robustness than the GHZ states in the loss of the quantum
bits [29]. In the case of the loss of particles, the W states can maintain the
quantum entanglement properties well. In this paper, we propose an arbitrated
quantum signature scheme based on W states with public board. And we also
discuss its security against forgery and disavowal.

This paper is arranged as follows. In Sect. 2, we introduce the general prin-
ciple we demand for this AQS scheme. In Sect. 3, we describe the basic scheme
including an initial phase, a signing phase and a verifying phase. In Sect. 4, we
make security analyses on the proposed scheme to show neither to be disavowed
by the signatory nor to be deniable for the receiver. In Sect. 5, we give a brief
conclusion.

2 Preliminaries

There are four Bell basis shown as below

|φ+〉 =
1√
2
(|00〉 + |11〉)

|φ−〉 =
1√
2
(|00〉 − |11〉)

|ψ+〉 =
1√
2
(|01〉 + |10〉)

|ψ−〉 =
1√
2
(|01〉 − |10〉)

(1)

There are three participants in the protocol, the signer Alice, the receiver
Bob and the arbitrator Trent. Alice need to sign the message |P 〉 with a appro-
priate signature |S〉. We assume n qubits in the string, such that |P 〉 = (|p1〉,
|p2〉, · · ·, |pn〉). Any qubit |pi〉 can be expressed as below

|pi〉 = αi|0〉 + βi|1〉 (2)

where αi, βi are complex numbers with |αi|2 + |βi|2 = 1. And |P 〉 can be known
or unknown. In advance, three participants share a three-particle W state

|ϕ〉ATB =
1
2
(|000〉 + |110〉 + |101〉 + |011〉)ATB (3)
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where the subscripts A correspond to Alice, T correspond to Trent and B cor-
respond to Bob. Alice implements a Bell measurement on |pi〉 and the particle
she owns in W state, the system is expressed as follows

|Ψ〉iATB = |pi〉 ⊗ |ϕ〉ATB

=
1

2
√

2
{|φ+〉A[αi(|00〉 + |11〉)TB + βi(|10〉 + |01〉)TB ]

+ |φ−〉A[αi(|00〉 + |11〉)TB − βi(|10〉 + |01〉)TB ]

+ |ψ+〉A[αi(|10〉 + |01〉)TB + βi(|00〉 + |11〉)TB ]

+ |ψ−〉A[αi(|10〉 + |01〉)TB − βi(|00〉 + |11〉)TB ]}

(4)

where |φ+〉A, |φ−〉A, |ψ+〉A, |ψ−〉A represent the Bell states in Eq. (1). At present,
Trent uses {|0〉, |1〉} in the basis to implement a single-measurement, and sends
the outcomes to Bob. Then, Bob can apply a proper unitary operation to recover
the message.

Suppose Alice’s measurement result is |φ+〉A. After the Trent’s measurement,
the particles of Trent and Bob collapse into the state as follows

|0〉T (αi|0〉 + βi|1〉)B + |1〉T (αi|1〉 + βi|0〉)B (5)

If Trent’s measurement result is |0〉, Bob’s particle will be αi|0〉 + βi|1〉.
Bob can use local unitary operation I to recover the message |pi〉. If Trent’s
measurement result is |1〉, Bob’s particle will be αi|1〉 + βi|0〉. Bob can use
unitary operation σx to recover the message |pi〉, where

I = |0〉〈0| + |1〉〈1|
σx = |0〉〈1| + |1〉〈0|
iσy = |0〉〈1| − |1〉〈0|
σz = |0〉〈0| − |1〉〈1|

(6)

All possibilities of the scheme are shown in Table 1. |MA〉 means Alice’s
measurement results in Table 1. |MT 〉 means Trent’s measurement result. |φB〉
means Bob’s collapse state and UB means the unitary operation which Bob needs
to recover the Alice’s message.

Table 1. Relation between the local unitary operations and measurement results

|MA〉 |MT 〉 |φB〉 UB

|φ+〉A |0〉T /|1〉T α|0〉 + β|1〉/α|1〉 + β|0〉 I/σx

|φ−〉A |0〉T /|1〉T α|0〉 − β|1〉/α|1〉 − β|0〉 σz/iσy

|ψ+〉A |0〉T /|1〉T α|1〉 + β|0〉/α|0〉 + β|1〉 σx/I

|ψ−〉A |0〉T /|1〉T α|1〉 − β|0〉/α|0〉 − β|1〉 iσy/σz
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3 Arbitrated Quantum Signature Based on W States

There are three participants in the protocol, the signer Alice, the receiver Bob
and the arbitrator Trent. Trent is absolutely trusted by Alice and Bob. The two
sides share classical keys with arbitrator respectively. The key is stored by the
communication terminal, which can be used for a long time. We also use public
board to avoid being disavowed by Bob. The presented scheme includes three
phases, initializing phase, signing phase, and verifying phase.

3.1 Initializing Phase

Step I1. Alice shares the secret keys KA with arbitrator Trent through the
quantum key distribution [3–7], which were proved to be uncondition-
ally secure [7,30]. Similarly, Bob shares the secret keys KB with Trent.

Step I2. Trent generates n W triplet states |ϕ〉ATB = (|ϕ1〉, |ϕ2〉, · · ·, |ϕn〉).|ϕi〉
is the same as Eq.(3).

|ϕi〉ATB =
1
2
(|000〉 + |110〉 + |101〉 + |011〉)ATB (7)

where the subscripts A, T and B correspond to Alice, Trent and Bob.
Trent distributes corresponding particles to Alice and Bob.

Step S1. Alice need to sign a qubit string |P 〉 = (|p1〉, |p2〉, · · ·, |pn〉) related to
the message with |pi〉 = αi|0〉 + βi|1〉. Alice prepares three copies of
|P 〉 necessarily. Then, Alice uses four unitary operators on the |P 〉 for
local operation.

|P ′〉 = σ|P 〉 = (σ1|p1〉, σ2|p2〉, · · ·, σn|pn〉) (8)

where σi ∈ {I, σx, iσy, σz}, i = 1, 2, · · ·, n. Here notice that |P ′〉 return
to the original states perfectly because of Hermitian conjugate opera-
tors of unitary operators, while measurement operations are not usually
reversible.

Step S2. Alice transforms the qubit string |P ′〉 into a secret qubit string |RA〉
in terms of the key KA.

|RA〉 = EKA
|P ′〉 (9)

For example, assume that the key KA is related to a collection of
unitary operators RKA

= (R1
K1

A
, R2

K2
A
, · · ·, Rn

Kn
A
). If Ri

Ki
A

= 0, Alice

applies the unitary operation σx, namely, Ri
Ki

A
= σx. If Ri

Ki
A

= 1,

Alice applies the unitary operation σz, namely, Ri
Ki

A
= σz. So |RA〉 =

RKA
(P ) = (|r1〉, |r2〉, · · ·, |rn〉) with |ri〉 = M i

Ki
A
(pi).

Step S3. Alice combines each secret message state |P ′〉 and the W states. Then,
she implements a Bell measurement on her particles. It shows in Eq.(4).
And she can obtain |MA〉 = (|M1

A〉, |M2
A〉, · · ·, |Mn

A〉), where |M i
A〉 rep-

resents one of the four Bell states in Eq.(1).
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Step S4. Alice generates the signature |S′〉 = EKA
(|MA〉, |RA〉) of the message

|P ′〉 with the secret key KA by using the quantum one-time pad algo-
rithm.

Step S5. Alice transmits the signature |S′〉 and |P ′〉 to Bob.

3.2 Verifying Phase

Step V 1. Bob encrypts |S′〉 and |P ′〉 with the secret key KB and sends the
resultant outcomes |YB〉 = EKB

(|S′〉, |P ′〉) to the arbitrator Trent.
Step V 2. Trent decrypts with KB and gets |S′〉 and |P ′〉. Then he decrypts |S′〉

with KA and gets |MA〉 and |RA〉. Trent encrypts |P ′〉 by using KA

and gets |R′
A〉. The operation is same as Alice in Step S2. Then Trent

compares |RA〉 with |R′
A〉 through swap [17]. If RA〉 = |R′

A〉, Trent sets
the verification parameter r = 1; otherwise, he sets r = 0.

Step V 3. Trent implements a measurement in the basis {|0〉, |1〉} and obtains
|MT 〉 = (|M1

T 〉, |M2
T 〉, · · ·, |Mn

T 〉). All possibilities of the measurement
results are shown in Table 1.

Step V 4. Trent sends the encrypted results |YT 〉 = EKB
(|S′〉, |P ′〉, |R′

A〉, |MT 〉, r)
to Bob.

Step V 5. Bob decrypts |YT 〉 and gets |S′〉, |P ′〉, |R′
A〉, |MT 〉 and r. If r = 0, obvi-

ously the signature has been forged and Bob rejects it directly. If r = 1,
Bob goes on the next step.

Step V 6. Bob combines the |R′
A〉 and |MT 〉 and implements the corresponding

unitary operation according to Table 1. Bob obtains |P ′
B . He makes

comparisons between |P ′
B〉 and |P ′〉. This method is still swap [17]. If

|P ′
B〉 �= |P ′〉, Bob rejects the signature; otherwise he informs Alice by

the public board to publish σ, which Alice used in Eq.(8).
Step V 7. Alice publishes σ by the public board.
Step V 8. Bob gets back |P 〉 from |P ′〉 and holds |S〉 = (|S′〉, σ) as Alice’s signa-

ture for quantum message |P 〉.

The communications in this AQS scheme are described in Fig.1.

Fig. 1. The communications of the AQS scheme
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4 Security Analysis and Discussion

A secure quantum signature scheme should satisfy two requirements: the signa-
ture should not be forged by the attacker(including the malicious receiver) and
the signature should not be disavowed by the signatory and the receiver. We
discuss security of the proposed AQS scheme to against the two attacks.

4.1 Impossibility of Forgery

If the attacker Eve tries to forge Alice’s signature |S′〉 = EKA
(|MA〉, |RA〉) for his

own benefit, she has to know Alice’s secret keys KA. However, this is impossible
due to the unconditionally security of quantum key distribution [7,30]. Besides,
the use of quantum one-time pad algorithm enhances the security. Subsequently
the parameter r used in verifying phase will not pass the test.

In the worse situation, for instance, the secret key is exposed to attacker,
attacker still cannot forge the signature, since she cannot create appropriate
|MA〉 and |MT 〉. Bob would find such forgery, because the further verification
about |P ′

B〉 = |P ′〉 could not hold without the correct |MA〉 and |MT 〉.
If the malicious receiver Bob wants to forge Alice’s signature |S′〉 =

EKA
(|MA〉, |RA〉) for his own sake, he also should know Alice’s secret KA.

It’s also impossible because of the unconditionally security of quantum key
distribution.

4.2 Impossibility of Disavowal by Signatory and Receiver

Suppose that Alice disavows her signature for her own benefits. In this case,
the arbitrator Trent can confirm that Alice has signed the message since Alice’s
initial secret key kA in the signature |S′〉 = EKA

(|MA〉, |RA〉). Thus Alice cannot
deny signing the message|P 〉.

Similarly, suppose Bob repudiates the receipt of the signature. Then Trent
also can confirm that Bob has received the signature since he needs the assistance
of Trent to verify the signature. And if Bob wants to deny the signature by saying
|P ′

B〉 �= |P ′〉, he cannot get σ to recover the message |P 〉. This means that Bob
cannot disavow the signature.

5 Conclusion

We have investigated an AQS based on W states in three phases, including
initialing phased, signing phase and verifying phase. In the case of the loss of
particles, the W states can maintain the quantum entanglement properties well.
To avoid being disavowed by Bob, Bob has to ask Alice to publish the encryption
key σ which means Bob has no chance to repudiate the signature.
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