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Abstract. Successful interactive collaboration with a human demands
mobile robots to have an advanced level of autonomy, which basic
requirements include social interaction, real time path planning and nav-
igation in dynamic environment. For mobile robot path planning, poten-
tial function based methods provide classical yet powerful solutions. They
are characterized with reactive local obstacle avoidance and implemen-
tation simplicity, but suffer from navigation function local minima. In
this paper we propose a modification of our original spline-based path
planning algorithm, which consists of two levels of planning. At the first
level, Voronoi-based approach provides a number sub-optimal paths in
different homotopic groups. At the second, these paths are optimized
in an iterative manner with regard to selected criteria weights. A new
safety criterion is integrated into both levels of path planning to guar-
antee path safety, while further optimization of a safe path relatively to
other criteria is secondary. The modified algorithm was implemented in
Matlab environment and demonstrated significant advantages over the
original algorithm.
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1 Introduction

Contemporary robotic applications target for human replacement in diverse sce-
narios that spread from social-oriented human-robot interaction [11] and col-
laboration [13] to automatic swarm control [12] and urban search and rescue
in hostile environments [9]. All such applications demand indoor and outdoor
autonomous path planning and navigation abilities with simultaneous localiza-
tion and mapping (SLAM) [2], collaboration with other robots [10] and other
functionality.

Path planning distinguishes global and local approaches. While the later
operates in a completely unknown environment and robots make immediate
decisions that are based on locally available information only, the global approach
can access complete knowledge about environment, i.e., robot shape, initial and
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goal postures, and a set of environment obstacles are known in advance. Within
a global approach model, potential field based methods [14], [4] could provide
a globally defined potential function such that a goal position is represented as
an attractive pole and obstacles are represented with repulsive surfaces. Next, a
robot follows the potential function gradient toward its minimum [1]. Two main
problems of potential field methods are oscillations in narrow passages between
obstacles and a failure to select a good global potential function, which in turn
results in local minima issues.

Our previous research had proposed a global approach path planning spline-
based algorithm for a car-like mobile robot [7]. It uses potential field for obstacle
avoidance and provides a locally sub-optimal path with regard to path length,
smoothness and safety optimization criteria. In this paper we propose a mod-
ification of our original algorithm, which targets to improve robot safety with
regard to environment obstacles. The path planning is performed in two stages:
first, Voronoi-based approach provides a number sub-optimal paths in different
homotopic groups; next, one of these paths is optimized in an iterative manner
with regard to selected criteria weights. The algorithm integrates safety crite-
ria into both levels of path planning in order to guarantee path safety, while
further optimization of a safe path relatively to other path evaluation criteria
is secondary. The new algorithm was implemented in Matlab environment and
demonstrated significant advantages over the original algorithm.

The rest of the paper is organized as follows. Section 2 briefly describes our
previous research. Section 3 presents a new criterion that improves the algo-
rithm performance with regard to robot safety, and our modified spline-based
algorithm, which successfully overcomes the weaknesses of the initial approach
and uses advantages of the new optimization criterion. Section 4 compares the
results of the original and the new algorithm, demonstrating the superiority of
the later. Finally, we conclude in Sect. 5.

2 Original Spline-Based Navigation Algorithm Drawbacks

In our previous research [7] we had proposed a spline-based method that nav-
igates an omnidirectional circle-shape robot in a 2D configuration space with
known a-priori static obstacles. Each obstacle is approximated with a finite set
of intersecting circles of different size. Given a start and a target positions, the
robot searches for a collision-free path being guided by a cost function with
pre-determined weights of each criteria.

Collision avoidance is managed with a repulsive potential function with a
high value inside of a circular obstacle and a small value in free space. High
values of the function push points of a path outside obstacles to minimize path
cost during optimization. The potential field begins to decrease drastically on
obstacle boundary and wanes rapidly with distance while moving away from the
boundary. A contribution of a single circular obstacle repulsive potential at robot
position q(t) = (x(t), y(t)) in time t is described with the following equation:

Urep(q) = 1 + tanh(α(ρ −
√

(x(t) − x)2 + (y(t) − y)2)) (1)



Modified Spline-Based Navigation 125

Fig. 1. Example of environment with five obstacles and start/target points (left) and
repulsive potential function of Eq. 1 for α = 0.5 (right) that corresponds to the
obstacles

where ρ is the radius of the obstacle with centre (x, y) and α is an empirically
defined parameter that is responsible for pushing a path outside of an obstacle.
Figure 1 (right) demonstrates the example with α = 0.5 for a single obstacle that
is formed by five intersecting circles (Fig. 1, left), and the potential function has
undesirable peaks at the circle intersections. Next, influence of all N obstacles
of the environment are accumulated into topology T (q) parametric function that
is defined within [0, 1]:

T (q) =
N−1∑

j=0

∫ 1

t=0

U j
rep(q) · δl(t) · dt (2)

where δl(t) is a segment length. Smoothness property of the path is considered
through roughness R(q) function and is also integrated along the path:

R(q) =

√∫ 1

t=0

(x′′(t))2 + (y′′(t))2dt (3)

And the path length L(q) sums up the lengths of all path segments:

L(q) =
∫ 1

t=0

δl(t) · dt (4)

The final path cost function sums up the three components with empirically
predefined weights γi=1...3:

F (q) = γ1T (q) + γ2R(q) + γ3L(q) (5)

For example, obstacle penalty influence component is defined as γ1 = β
2 , where

β ranges over an array that correlates with array of α parameters from Eq. 1 [6].
The original algorithm works iteratively, starting from a straight line

(between S and T points) initial path. This line forms a first spline that uti-
lizes three points: S, T and an equidistant point in between. Equation 5 sets the
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Fig. 2. Compound obstacle: first iteration (left) and final path after 18 iterations (right)

path cost, which is further optimized with Nelder-Mead Simplex Method [5] to
minimize the total cost. A resulting better path serves as an initial guess for
the next iteration. The optimization deals only with the points which define the
spline, while path evaluation accounts for all points of the path. The spline is
rebuilt at each iteration using information from a previous stage, increasing the
number of spline’s points by one. The algorithm terminates when number of
iterations overflow a user-defined limit or if a new iteration fails to improve a
previous one.

The original method is successful for simple obstacles that could be approx-
imated with a single circle, while for compound obstacles a good selection of
initial path becomes essential. Compound obstacles that consist of intersecting
circles introduce potential field local maxima at each intersection (e.g., Fig. 1,
right), which may trap a path in cost function local minimum as a next iteration
spline can not overcome local maxima due to a local nature of the optimization
process. Figure 2 demonstrates an example with one compound obstacle; three
intersecting circles produce local repulsive potentials that sum up in a such way
that an optimization succeeds to avoid local maxima, but stops after 18 iterations
and reports a failure of providing a collision free path (Fig. 2, right).

3 Voronoi Graph Based Solution with Integrated Safety

We propose a modification of our original spline-based path planning algorithm
for a mobile robot. The new algorithm consists of two levels of path planning. At
the first level, Voronoi-based approach provides a number sub-optimal paths in
different homotopic groups. At the second level, one of these paths is optimized
in an iterative manner with regard to selected criteria weights. The algorithm
integrates safety criteria into both levels of path planning in order to guarantee
path safety, while further optimization of a safe path relatively to other path
evaluation criteria is secondary.
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3.1 Minimal Distance from Obstacles Criterion

First, we introduce an additional path quality evaluation criterion - minimal
distance from obstacles. While navigating in obstacle populated environments,
a robot should maximize its distance from the obstacles, and this feature is
integrated into T(q) component of our cost function. However, in hostile envi-
ronments, there may be an explicit requirement to stay at least at some minimal
distance from obstacle boundaries - these may include semi-structured debris of
urban scene, which risk to collapse further, or a danger of short-range emissions
from the obstacles, etc. In such cases, the use of some paths that may be optimal
with regard to Eq. 5 should be forbidden due to violation of minimal distance
requirement, and a different path should be selected. A minimal distance of a
robot from all obstacles of environment is calculated in each configuration q(t)
along the parametrically defined path as follows:

m(C) = min
∀t∈[0,1]

distc(q(t)) (6)

where distc(q(t)) is a minimal distance from obstacles in configuration q(t):

distc(q(t)) = min
∀c∈C

√
(x(t) − x(c))2 + (y(t) − y(c))2 − r(c) (7)

Here C is a set of all circular obstacles c with the centre at (x(c), y(c)) and
radius r(c); further, these elementary circular obstacles may intersect to form
compound obstacles. Also the user is required to specify a particular minimally
acceptable distance to the boundaries of any obstacle dm, and them optimization
criterion D(q) is defined as follows:

D(q) = ωdm−m(C) (8)

where ω is a sufficiently large empirically defined value that prevents a path from
approaching obstacles beyond the permitted limit. Value of this function is one
when minimal distance to obstacles m(C) is equal to safe value dm, but it gains
large positive value when the limit is violated, and diminishes to a small positive
value when the robot keeps safe distance from an obstacle. We combine all four
criteria within the total cost function for the optimization procedure as follows:

F (q) = γ1T (q) + γ2R(q) + γ3L(q) + γ4D(q) (9)

where γ4 is the weight for minimum distance criteria influence. Figure 3 demon-
strates the criterion influence on the path: while with γ4 = 0 it does not con-
tribute to the total cost (left sub-figure), with γ4 = 1, dm = 3 and ω = 20
the path avoids touching the obstacles (right sub-figure); other parameters are
defined as γ1 = 1, γ2 = 1, and γ3 = 0.5 for the both cases.

3.2 Selecting a Path with Voronoi Graph

In order to provide a good initial spline that could be further improved locally
with regard to user selection of the cost weights, we apply Voronoi Diagram
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Fig. 3. The path moves away from obstacles when we use the new criterion

approach [15]. This helps to avoid the drawbacks of original algorithm, which is
caused by a poor selection of an initial spline. The previously mentioned first
level of path planning includes three stages: preparing environment, constructing
Voronoi graph V G that spans the environment, and selecting a number of sub-
optimal paths within V G with regard to a single evaluation criterion from Eq. 9.

Fig. 4. Compound obstacles (left) and their external contours (right)

To prepare the environment, two steps are performed. First step groups inter-
secting circles c ∈ C together in order to form a single compound obstacle O1

through iterative growth. It continues to form such obstacles Oi, i = 1 . . . k,
where k is a number of compound obstacle within the environment, until all
circles of the environment will be assigned to a particular compound obstacle.
For example, there are four obstacles that are formed by groups of circles in
Fig. 4 and three in Fig. 5. The second step shapes outer boundaries of each com-
pound obstacle Oi of set Obst = {O1, O2, . . . , Ok}. For example, this successfully
removes three tiny internal contours inside compound obstacles in Fig. 4.

Next, Voronoi graph V G is constructed based on a classical brushfire app-
roach [3]. Figure 5 (the middle image) demonstrates Voronoi graph V G construc-
tion example for the environment in Fig. 5(left). Thick blue lines are compound
obstacles borders and thin blue lines depict emerging outwards and inwards rays.
The rays intersection points are equidistant to nearest obstacles, and all together
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form V G, which is depicted with a thin red line in Fig. 5 (middle and right). At
this stage we apply safe value dm in order to remove from V G all edges that
already do violate the safety requirements. Such example is demonstrated in
Fig. 7 and will be explained in more details in the next section.

Fig. 5. Environment with obstacles (left), Voronoi graph building procedure (middle),
the obtained Voronoi graph and the path within the graph (right) (Color figure online)

Finally, upon obtaining Voronoi graph V G, we finalize it by adding start S
and target T nodes and perform a search of several sub-optimal paths within
V G with Dijkstra algorithm; they are depicted with thick red lines in Fig. 5
(right). Next, a set of spanning points is extracted from this spline candidate
and these points are utilized as via points for initial spline of the spline-based
method [7]. As the path optimization with regard to Eq. 9 is performed only
locally, the influence of additional parameter is also local. At the second level
of path planning, a selected at the first level path is optimized in an iterative
manner with a help of Eq. 9. More technical details about graph construction
and spanning points selection could be found in [8].

4 Simulation Results

In order to verify our approach the new algorithm was implemented in Matlab
environment and an exhaustive set of simulations was run. Particular attention
was paid to the cases where the original algorithm fails [7]. The cost function
of Eq. 9 was applied with empirical parameter selection γ1 = 1, γ2 = 1, γ3 =
0.5, γ4 = 1, dm = 3 and ω = 20. The algorithm succeeded to provide collision-
free paths in all cases, which was a natural consequence of applying initial
Voronoi-based path as an input for iterative optimization algorithm.

Figure 6 demonstrates environment, where the original spline-based algo-
rithm had failed. At the first level, Voronoi graph V G provides us with a safe
path without obstacle collisions. It serves as an initial path at the second level,
which ensures a final path calculation with the modified spline-based algorithm
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Fig. 6. Voronoi graph path (left) and corresponding spline-based optimal path (right)

within a significantly smaller number of iterations. Even though potentially sig-
nificant time complexity of V G construction was not considered as an issue due
to its off-line construction, the simulations empirically demonstrated that V G
calculations take acceptably small amount of time for simple cases, while more
simulations in complicated large-size environments are scheduled for the future.

For example, for the environment in Fig. 6 the Voronoi-based initial path
calculation took only 2 s. The total running time of the new algorithm decreased
in three times in average with regard to the original algorithm. This way, the
final path in Fig. 6 was calculated in just 2 iterations within 2.5 min in Matlab,
while the original spline-based algorithm had spent 18 iterations and 38 min to
report its failure to provide a collision free path. Similarly, the original algorithm
required 9 iterations and 15 min to provide a good path within Fig. 3 environ-
ment, while the new algorithm required 4 iterations and 5 min. In Fig. 4 the
original algorithm failed to find a path, while the new algorithm successfully
completed the task within 3 iteration and 2 min.

Voronoi graph (V G) contains multiple homotopy class paths and their vari-
ety depends on map complexity: the more distinct obstacles appear within the
map, the larger is the amount of homotopy classes. In our simulated experiments
we decided to limit the algorithm to no more than 5–7 homotopies. Next, these
selected homotopies served as initial spline for a new smart spline-based method.
We have tested this strategy with a number of environments. For each selected
homotopy we verify minimal distance value dm within a corresponding equidis-
tant to obstacles edges and reject homotopies that pass in dangerous proximity
of obstacles. The calculation of all suitable homotopies takes 1 to 3 min in aver-
age, depending on environment complexity. In Fig. 7 for dm = 3, safe VD edges
are depicted with green and forbidden edges in red colour (Fig. 7, left). Thus,
only the homotopies that contain green edges could be considered for safe path
candidates. After the first level of planning provided a candidate path, second
level optimal path (Fig. 7, right) calculation took just 3 iteration and 2 min.

Figure 8 demonstrates an example where original spline-based method spends
32 min and 18 iterations before reporting a failure. The new algorithm calculates
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Fig. 7. Voronoi graph with dangerous edges (left) and a resulting safe path (right)
(Color figure online)

Fig. 8. Path with (right) and without minimal distance criterion (left)

5 homotopies within 3 min (Fig. 8 demonstrates paths in 2 different homotopy
classes) and bases its selection on safety criterion (Fig. 8, right).

5 Conclusions

In this paper we presented a modification of our original spline-based path
planning algorithm, which consists of two levels of planning. At the first level,
Voronoi-based approach provides a number sub-optimal paths in different homo-
topic groups. At the second, these paths are optimized in an iterative manner
with regard to selected criteria weights. A new safety criterion is integrated into
both levels of path planning to guarantee path safety, while further optimization
of a safe path relatively to other criteria is secondary. The modified algorithm
was implemented in Matlab environment and demonstrated significant advan-
tages over the original algorithm, including guaranteed path acquisition, suc-
cessful avoidance of local minima problem, increased speed and guaranteed path
safety in static planar environment. As a part of our future work, the algorithm
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will be tested in large-size environments in order to verify the acceptability of
the Voronoi graph construction time at the first level of path planning. We also
consider extending the path cost function with additional optimization criteria
and perform exhaustive testing of criteria weight selection.
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