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Abstract. Flows of transactions in digital control systems of robots are
investigated. On the base of the fact, that uses the conception of Poisson
character of transactions flow permits to simplify analytical simulation of robot
control process, the problem of estimation the degree of approach of real flow to
Poisson one is putted on. Proposed the criterion based on evaluation of
expectation of waiting function. On the example of investigation of “competi-
tion” in the swarm of robots it is shown that flow of transactions, generated by
swarm, when quantity of robots aspire to infinity approximately aspire to
Poisson one.
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1 Introduction

Functioning of mobile robots may be considered as sequence of switching from one
state of onboard equipment to another under control of commands flow [1, 2]. States of
robot may include interpretation of the programs by onboard computer [3, 4],
receiving/generating transactions, execution the commands by mechanical or electronic
units, service a queue of command [5, 6], support the dialogue with remote operator [7]
etc. Below, all switches and interconnections will be called transactions. Transactions
occur in the physical time. Time intervals between transactions for the external
observer are random values [8]. So transactions form a flow. One of variety of flows is
the stationary Poisson flow, which possesses an important property – absence of
aftereffect [9, 10]. Use such a property permits substantially to simplify the modeling
behavior of robots. So when working out robot’s digital control systems there is always
emerges a question about a degree of approximation the real flow to Poisson flow.
Methods of estimation of properties the flows of transactions are developed insuffi-
ciently, that explains the necessity and relevance of the work.
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2 Quantitative Estimations of Approximation Degree
of Transaction Flows to Poisson One

It is well known, that time intervals between transactions in Poisson flow are charac-
terized with exponential distribution law [9–11]:

f tð Þ ¼ 1
T
exp � t

T

� �
; ð1Þ

where T – is the expectation of time interval; t – is the time.
Regression criterion is based on estimation of standard-mean-square error as fol-

lows [12, 13]:

er ¼
Z1

0

g tð Þ � f tð Þ½ �2dt; ð2Þ

where g tð Þ – is the distribution under estimation.
Let g tð Þ ¼ d t � Tð Þ, where d t � Tð Þ – is Dirac d-function. Then:

er ¼
Z1

0

d t � Tð Þ � f tð Þ½ �2dt ¼ er1 þ er2 þ er3; ð3Þ

where

er1 ¼
R1
0
d2 t � Tð Þdt ¼ lim

a!0

RT þ a

T�a

1
2a

� �2
dt ¼ 1;

er2 ¼ �2
R1
0
d t � Tg
� � � 1

Tf
exp � t

T

� �
dt ¼ � 2

eT ;

er3 ¼
R1
0

1
T2 exp � 2t

T

� �
dt ¼ 1

2T :

Thus criterion er changes from 0 (flow without aftereffect) till ∞ (flow with
deterministic link between transactions), and it has the dimension as [time−1].

Correlation criterion is as follows [14]:

ec ¼
Z1

0

g tð Þ � 1
T
exp � t

T

� �
dt: ð4Þ

This criterion changes from 1
2T (flow without aftereffect) till 1

eT, where e ¼ 2; 718
(deterministic flow). With use the function:
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~ec ¼ eð1� 2 TecÞ
e� 2

: ð5Þ

Criterion may be done the non-dimensional one, and it fits the interval 0�~ec � 1.
Parametrical criterion is based on the next property of exponential low (1) [9–11]:

T ¼
ffiffiffiffi
D

p
; ð6Þ

where D ¼ R1
0

t�Tð Þ2
T exp � t

T

� �
dt – is the dispersion of the law (1).

To obtain from the property (6) non-dimensional criterion, fitting the interval
0�~ec � 1, one should calculate the next function:

ep ¼
Tg �

ffiffiffiffiffiffi
Dg

p� �
2

T2
g

; ð7Þ

where Tg ¼
R1
0
tg tð Þdt and Dg ¼

R1
0

t � Tg
� �

g tð Þdt – are expectation and dispersion of

density g tð Þ:
In the case of experimental determining g tð Þ as a histogram:

g tð Þ ¼ t0 � t\t1
n1

. . .
ti�1 � t\tk

ni
. . .

tJ�1 � t\tJ
nJ

� �
; ð8Þ

where ni – is quantity of results fitting the interval ti�1 � t\ti; then estimation of
proximity of f tð Þ and g tð Þ one should use Pearson’s criterion [15–17].

3 Criterion, Based on “Competition” Analysis

Let us consider transactions generation process as the “competition” of two subjects:
external observer and transaction generator. Model of “competition” is the 2-parallel
semi-Markov process, shown on the Fig. 1a.:

M ¼ A; h tð Þ½ �; ð9Þ

where A ¼ aw1; aw2; ag1; ag2;
	 


– is the set of states; aw1; ag1 – are the starting states;
aw2; ag2 – are the absorbing states; h tð Þ – is the semi-Markov matrix:

h tð Þ ¼
0 w tð Þ
0 0

� �
0

0
0 g tð Þ
0 0

� �
2
664

3
775; 0 ¼ 0 0

0 0

� �
: ð10Þ
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Let us consider the situation, when observer “wins” and at from the moment s waits
the event, when occurs the next transaction. For determine the waiting time let us
construct on 2-parallel process M the ordinary semi-Markov process M′ (Fig. 1b):

M0 ¼ A0; h0 tð Þ½ �; ð11Þ

where A0 ¼ A [ B – is the set of states; A ¼ a1; a2; a3f g – is the subset of states,
which simulate beginning and ending of wandering through semi-Markov process;
a1 – is the starting state; a2 – is the absorbing state, which simulate “winning” of
transaction generator; a3 – is the absorbing state, which simulates end of waiting by the
observer the event of generation transaction; B ¼ b1; . . .; bi; . . .f g – is the infinite set
of states, which define time intervals for various situation of finishing of transaction

generator; h0 tð Þ ¼ h0m;n tð Þ
n o

– semi-Markov matrix, which define time intervals.

Elements h0m;nðtÞ are as follows: h0m;nðtÞ is the weighted density of time of finishing
transaction generator if it “wins” the “competition”:

h012ðtÞ ¼ gðtÞ 1�WðtÞ½ �; ð12Þ

where W tð Þ ¼ Rt
0
w hð Þdh – is the distribution function; h – is an auxiliary variable;

h01;2þ iðtÞ; i ¼ 1; 2; . . ., are defined as weighted densities of time of finishing of
observer exactly at the time s, if he “wins” the “competition” and waits the transaction:

h01;2þ iðtÞ ¼ d t � sð Þ � wðsÞ 1� GðsÞ½ �ds; ð13Þ

where d t � sð Þ – Dirac function; GðtÞ ¼ Rt
0
g hð Þdh; w sð Þ 1� G sð Þ½ �ds – probability of

finishing the observer exactly at the time s, if he “wins” the “competition”;

Fig. 1. To waiting time calculation
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gðtÞ�g tþ sð Þ
1�G sð Þ – is the density of time of residence semi-Markov process h0ðtÞ in state B,

where η(t) – is the Heaviside function.
Thus, probability of hitting the process h0ðtÞ to the state B is as follows

pa0b ¼ R1
0

1� G sð Þ½ �w sð Þds ¼ R1
0
WðtÞgðtÞdt. Weighted density of time of waiting by

observer the next transaction is equal to hw!gðtÞ ¼ gðtÞ R1
0
w sð Þg tþ sð Þds. Pure density

is as follows:

fw!gðtÞ ¼
g tð Þ R1

0
w sð Þg tþ sð Þds

R1
0
WðtÞdGðtÞ

: ð14Þ

Let us consider function fw!g tð Þ behavior when gðtÞ ¼ 1
Tg
exp � t

Tg

� �
(flow of

transactions without aftereffect) and when g tð Þ ¼ d t � Tg
� �

(flow with deterministic
link between transactions).

Formula (14) for the first case is as follows:

fw!g tð Þ ¼
g tð Þ R1

0
w sð Þ 1

Tg
exp � tþ s

Tg

h i
ds

1� R1
t¼0

1� exp � t
Tg

� �h i
dW tð Þ

¼ 1
Tg

exp � t
Tg

� �
: ð15Þ

Formula (14) for the second case is as follows:

fw!gðtÞ ¼
gðtÞw Tg � t

� �
W Tg
� � : ð16Þ

Suppose that w tð Þ have range of definition Twmin � argw tð Þ� Twmax and expec-
tation Twmin � Tw � Twmax: In dependence of location wðtÞ and gðtÞ onto time axis, it is
possible next cases:

(a) Tg\Twmin. In this case (14) is senseless.
(b) Twmin � Tg � Twmax. In this case fw!gðtÞ is defined as (16), range of definition is

0� arg fw!g tð Þ
 �� Tg � Twmin; and
R1
0
tfw!g tð Þdt� Tg.

(c) Tg [ Twmax. In this case fw!gðtÞ ¼ wðTg � tÞ, Tg � Twmax � arg fw!g tð Þ
 �
� Tg � Twmin, and

R1
0
tfw!g tð Þdt� Tg.

For this case density of waiting time by Dirac function when transaction occurs is
as follows:
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fd!g tð Þ ¼ g tð Þ � g tþ Tg
� �

R1
T
g tð Þdt

: ð17Þ

Expectation of fd!g tð Þ is as follows:

Td!g ¼
Z1

0

t
g tþ Tg
� �
R1
T
g tð Þdt

dt: ð18Þ

So, the criterion, based on “competition” analysis, is as follows:

ew ¼ Tg � Td!g

Tg

� �2

; ð19Þ

where Tg – is the expectation of density g tð Þ ¼ d t � Tg
� �

; Td!g – is the expectation of
density fd!g tð Þ. For the exponential law:

ew ¼ T � Td!g

T

� �2

¼ T � T
T

� �2

¼ 0: ð20Þ

Let us investigate behavior of Td!g. For that let us expectation of g tð Þ as (Fig. 2):

Z1

0

tg tð Þdt ¼
ZT

0

tg tð Þdtþ
Z1

0

tg tþ Tg
� �

dtþ Tg

Z1

0

g tþ Tg
� �

dt

¼ p1gT1g þ p2gTd!g þ p2gTg ¼ Tg;

ð21Þ

0                0.5           1      1.5        2 time

prob
time

1

0,5

f(t)

g(t)

t t - Tg

T

p2f fδ→f (t)

p2g fδ→g(t)

Fig. 2. To calculate of expectation
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where p1g ¼
RT
0
g tð Þdt; p2g ¼

R1
T
g tð Þdt.

If g tð Þ ¼ f tð Þ, then p1f ¼ e�1
e ; p2f ¼ 1

e ; T1f ¼ T e�2
e�1 and from equation:

p1f T1f þ p2f Td!f þ p2f T ¼ T ; ð22Þ

follows that:

Td!f ¼ T: ð23Þ

If g tð Þ 6¼ f tð Þ then from (21) follows that:

Td!g ¼
p1g T � T1g

� �
1� p1g

: ð24Þ

4 Example

As an example let us consider the case, when transaction flow is formed as a result of
competition inside the swarm of robots, when common quantity of robots is equal to K.
Time from the start of observation and transaction, formed by k-th robot, 1� k�K, is
defined with identical uniform lows. Forming the flow of transactions may be simulate
with K-parallel semi-Markov process:

MK ¼ AK ; hK tð Þ
 �
; ð25Þ

where AK ¼ a11; . . .; ak1; . . .; aK1; a12; . . .; ak2; . . .; aK2f g – is the set of states;
a11; . . .; ak1; . . .; aK1 – is the subset of starting states; a12; . . .; ak2; . . .; aK2 – is the
subset of absorbing states; hK tð Þ – semi-Markov matrix, kk-th elements of the main

diagonal of which is equal to
0 vk tð Þ
0 0

� �
, and other elements are equal to zeros

(Fig. 3):

a11 ak1 aK1... ...

a12 ak2 aK2... ...

Fig. 3. Forming a flow of transactions in swarm of K robots
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v1 tð Þ ¼ . . . ¼ vk tð Þ ¼ . . .vK tð Þ ¼ v tð Þ ¼ 1; when 0� t� 1;
0 in all other cases:

�
ð26Þ

K-parallel process starts from all states of subset a11; . . .; ak1; . . .; aK1 contem-
poraneously. Transaction is generated when one of ordinary semi-Markov processes
gets the state from the subset a12; . . .; ak2; . . .; aK2: In accordance with theorem by
Grigelionis [18] when K ! 1 flow of transactions approaches to Poisson one.

Density of time when at least one of robot of swarm generates transaction is as
follows:

gK tð Þ ¼ d 1� 1� V tð Þ½ �K	 

dt

; ð27Þ

where:

V tð Þ ¼
Z t

0

v sð Þds ¼ 2t; when 0� t� 1;
0 in all other cases:

�

For this case:

gK ¼ K 1� tð ÞK�1; when 0� t� 1;
0 in all other cases:

�
ð28Þ

Expectation of (27) is as follows:

TK ¼
Z1

0

tK 1� tð ÞK�1dt ¼ 1
Kþ 1

½time�: ð29Þ

Exponential law, which define Poisson flow of transactions is as follows:

fK tð Þ ¼ Kþ 1ð Þ exp � Kþ 1ð Þt½ � prob
time

� �
: ð30Þ

For waiting function:

~TK ¼ K

Kþ 1ð Þ2 ½time�; ð31Þ

lim
K!1

eKlg ¼ lim
K!1

TK � ~TK
TK

� �2

¼ lim
K!1

1

K þ 1ð Þ2 ¼ 0: ð32Þ
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I.e. with increasing K law approaches to exponential, in accordance with B.
Grigelionis theorem. Densities are shown on the Fig. 4. Already at K = 0,012 what can
be considered as a good approximation.

5 Conclusion

In such a way criteria with which may be estimated degree of approach of transaction
flow in robotic system to Poisson flow were investigated. Criterion, based on calcu-
lation of the waiting time, is proposed, as one, which gives good representation about
properties of flow of transactions, and have respectively low runtime when estimation.

Further investigation in the domain may be directed to description of method of
calculations when processing statistics of time interval in a flow. Other research may
concern the errors, to which leads the modeling of robot with non-Poisson character of
transactions flows, when Poisson flows conception was laid into the base of simulation.
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