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Abstract. In our earlier work in statistical parametric speech synthesis, we
proposed a vocoder using continuous F0 in combination with Maximum Voiced
Frequency (MVF), which was successfully used with a feed-forward deep neural
network (DNN). The advantage of a continuous vocoder in this scenario is that
vocoder parameters are simpler to model than traditional vocoders with dis-
continuous F0. However, DNNs have a lack of sequence modeling which might
degrade the quality of synthesized speech. In order to avoid this problem, we
propose the use of sequence-to-sequence modeling with recurrent neural net-
works (RNNs). In this paper, four neural network architectures (long short-term
memory (LSTM), bidirectional LSTM (BLSTM), gated recurrent network
(GRU), and standard RNN) are investigated and applied using this continuous
vocoder to model F0, MVF, and Mel-Generalized Cepstrum (MGC) for more
natural sounding speech synthesis. Experimental results from objective and
subjective evaluations have shown that the proposed framework converges
faster and gives state-of-the-art speech synthesis performance while outper-
forming the conventional feed-forward DNN.
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1 Introduction

Statistical parametric speech synthesis (SPSS) based text-to-speech (TTS) systems have
steadily advanced in terms of naturalness during the last two decades. Even though the
quality of synthetic speech is still unsatisfying, the benefits offlexibility, robustness, and
control denote that SPSS stays as an attractive proposition. One of the most important
factors that degrade the naturalness of the synthesized speech is known as the limited
capabilities of the acoustic model which captures the complex and nonlinear relationship
between linguistic and acoustic features [1]. Although there have been many attempts to
create a more accurate acoustic model for SPSS (such as [2]), the hidden Markov model
(HMM) has been the most popular attempt for a long time [3]. Even though this model
can enhance accuracy and synthesis performance, it usually increases the amount of
computational complexity with higher number of model parameters [4].
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Recently, deep learning algorithms have shown their ability to extract high-level,
complex abstractions and data representations from large volumes of supervised and
unsupervised data [5], and achieve significant improvements in various machine
learning areas. Neural approaches have been also used in SPSS as deep feed-forward
neural networks (DNNs) with more than one layer of hidden units between its input and
output layers. By mapping directly linguistic features to vocoder parameters, DNNs can
be viewed as a replacement for the decision tree used in HMM-TTS systems [6]. DNNs
have also other advantages, including the ability to model high-dimensional acoustic
parameters [7], and the availability of multi-task learning [8]. However, Zen, et al. [9]
comprehensively listed the limitations of the conventional DNN-based acoustic mod-
eling for speech synthesis, e.g. its lack of ability to predict variances, unimodal nature
of its objective function, and the sequential nature of speech is ignored because it
assumes that each frame is sampled independently. In other words, the mapping is
performed frame by frame without considering contextual constraints between statics
and deltas during training.

To overcome these problems, recurrent neural networks (inserting cyclical con-
nections in feed-forward DNNs) have proven to have an advantage in modeling
sequences whose activation at each time is dependent on that of the previous time to
shape prediction output. Although it is difficult to train RNNs to capture long term
dependencies [10], successful approaches were used to reduce the negative impacts of
this limitation. It was suggested in [11] to store information over long or short time
intervals to include contextual constraints called as a long short-term memory (LSTM).
In [12] a bidirectional LSTM based RNN was employed in which there is a feedback to
retain previous states. In [13], gated recurrent unit (GRU) based RNN was proposed to
adaptively capture dependencies of different time scales. In this paper, four variants of
neural networks are investigated in the speech synthesis scenario and implemented
using a continuous vocoder.

In our earlier work, we proposed a computationally feasible residual-based vocoder
[14], using a continuous F0 model [15], and Maximum Voiced Frequency (MVF) [16].
In this method, the voiced excitation consisting of pitch synchronous PCA residual
frames is low-pass filtered and the unvoiced part is high-pass filtered according to the
MVF contour as a cutoff frequency. The approach was especially successful for
modelling speech sounds with mixed excitation. However, we noted that the unvoiced
sounds are sometimes poor due to the combination of continuous F0 and MVF. In [17],
we removed the post-processing step in the estimation of the MVF parameter and thus
successfully modelled the unvoiced sounds with our continuous vocoder, which was
integrated into a HMM-TTS system. In [18], we successfully modelled all vocoder
parameters (continuous F0, MVF, and MGC) with feed-forward DNNs. The goal of
this paper is to extend modeling of our continuous vocoder parameters using RNN,
LSTM, BLSTM, and GRU models. Besides, noise components in voiced sounds are
parameterized and modeled to meet the requirements of high sound quality.

The rest of this paper is structured as follows: Sect. 2 describes the novel methods
we used for speech synthesis. Then, experimental conditions are showed in Sect. 3.
Evaluation and discussion are presented in Sect. 4. Finally, Sect. 5 concludes the
contributions of this paper.

Deep Recurrent Neural Networks in Speech Synthesis 283



2 Methodology

2.1 Continuous Vocoder

For the current RNN-TTS experiments, the improved version of our continuous
vocoder was used [17]. During the analysis phase, F0 is calculated on the input
waveforms by the open-source implementation1 of a simple continuous pitch tracker
[15]. In regions of creaky voice and in case of unvoiced sounds or silences, this pitch
tracker interpolates F0 based on a linear dynamic system and Kalman smoothing. Next,
MVF is calculated from the speech signal using the MVF_Toolkit2, resulting in the
MVF parameter [16]. In the next step 60-order Mel-Generalized Cepstral analysis
(MGC) [19] is performed on the speech signal with alpha = 0.58 and gamma = 0. In
all steps, 5 ms frame shift is used. The results are the F0cont, MVF and the MGC
parameter streams. Finally, we perform Principal Component Analysis (PCA) on the
pitch synchronous residuals [14].

During the synthesis phase, voiced excitation is composed of PCA residuals
overlap-added pitch synchronously, depending on the continuous F0. After that, this
voiced excitation is lowpass filtered frame by frame at the frequency given by the MVF
parameter. In the frequencies higher than the actual value of MVF, white noise is used.
Voiced and unvoiced excitation is added together. Finally, an MGLSA filter is used to
synthesize speech [20].

2.1.1 Improved Version of Continuous Vocoder
In the standard continuous vocoder, there is a lack of voiced components in higher
frequencies. However, it was shown that in natural speech, the high-frequency noise
component is time-aligned with the pitch periods. For this reason, in a recent study, we
applied several time envelopes to shape the high-frequency noise excitation component
[21]. From the several envelopes investigated, the True envelope was found to be the
best. Therefore, this will be used in the current study.

The True Envelope (TE) algorithm starts with estimating the cepstrum and updating
it in such a way that the original spectrum signal and the current cepstral representation
is maximized [22]. To have an efficient real time implementation, [23] proposed a
concept of a discrete cepstrum which consists of a least mean square approximation,
and [24] added a regularization technique that aims to improve the smoothness of the
envelope. Here, the procedure for estimating the TE is shown in Fig. 1 in which the
cepstrum can be calculated as the inverse Fourier transform of the log magnitude
spectrum of the voiced frame. Moreover, TE with weighting factor will bring us a
unique time envelope which makes the convergence closer to natural speech. In
practice, the weight factor which was found to be the most successful is 10.

1 https://github.com/idiap/ssp.
2 http://tcts.fpms.ac.be/*drugman/files/MVF.zip.
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2.2 Acoustic Modeling

Figure 2 conceptually illustrates the main components of the continuous vocoder when
applied in RNN-based training. Textual and phonetic parameters are first converted to a
sequence of linguistic features as input, and neural networks are employed to predict
acoustic features as output for synthesizing speech. Because standard RNNs with
sigmoid activation function suffer from both vanishing gradients and exploding [10],
our goal is to present and evaluate the performance of recently proposed recurrent units
on sequence modeling for improved training of the continuous vocoder parameters.

2.2.1 Feedforward DNN (Baseline)
DNNs have become increasingly a common method for deep learning to achieve
state-of-the-art performance in real-world tasks [6, 8]. Simply, the input is used to
predict the output with multiple layers of hidden units, each of which performs a
non-linear function of the previous layer’s representation, and a linear activation
function is used at the output layer. In this paper, we use our baseline model [18] as a
DNN with feed-forward multilayer perceptron architecture. We applied a hyperbolic
tangent activation function whose outputs lie in the range (−1 to 1) which can yield
lower error rates and faster convergence than a logistic sigmoid function (0 to 1).

2.2.2 Recurrent NN
A more popular and effective acoustic model architecture is a version of the recurrent
neural networks (RNNs) which can process sequences of inputs and produces sequences
of outputs [13]. In particular, the RNN model is different from the DNN the following
way: the RNN operates not only on inputs (like the DNN) but also on network internal
states that are updated as a function of the entire input history. In this case, the recurrent
connections are able to map and remember information in the acoustic sequence, which
is important for speech signal processing to enhance prediction outputs.

2.2.3 Long Short-Term Memory
As originally proposed in and recently used for speech synthesis [25], long short-term
memory networks (LSTM) are a class of recurrent networks composed of units with a
particular structure to cope better with the vanishing gradient problems during training
and maintain potential long-distance dependencies [11]. This makes LSTM applicable
to learn from history in order to classify, process and predict time series. Unlike the
conventional recurrent unit which overwrites its content at each time step, LSTM have
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Fig. 1. Procedures for estimating the true envelope
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a special memory cell with self-connections in the recurrent hidden layer to maintain its
states over time, and three gating units (input, forget, and output gates) which are used
to control the information flows in and out of the layer as well as when to forget and
recollect previous states.

2.2.4 Bidirectional LSTM
In a unidirectional RNN (URNN) only contextual information from past time instances
are taken into account, whereas a bidirectional RNN (BRNN) can access past and future
contexts by processing data in both directions [26]. BRNN can do this by separating
hidden layers into forward state sequence and backward state sequence. Combin-
ing BRNN with LSTM gives a bidirectional-LSTM (BLSTM) which can access long
range context in both input directions, and can be defined generally as in [12].

2.2.5 Gated Recurrent Unit
A slightly more simplified variation of the LSTM, the gated recurrent unit (GRU) ar-
chitecture was recently defined and found to achieve a better performance than LSTM
in some cases [13]. GRU has two gating units (update and reset gates) to modulate the
flow of data inside the unit but without having separate memory cells. The update gate
supports the GRU to capture long term dependencies like that of the forget gate in
LSTM. Moreover, because an output gate is not used in GRU, the total size of GRU
parameters is less than that of LSTM, which allow that GRU networks converge faster
and avoid overfitting.
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Fig. 2. A general schematic diagram of the proposed method based on recurrent networks
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3 Experimental Conditions

3.1 Data

To measure the performance of the obtained model, the US English female
(SLT) speaker was chosen for the experiment from the CMU-ARCTIC database [27],
which consists of 1132 sentences. 90% of the sentences were used for training and the
rest was used for testing.

3.2 Network Topology and Training Settings

Neural network models used in this research were implemented in the Merlin open
source speech toolkit3 [25]. For simplicity, the same architecture is used in both
duration and acoustic models. Weights and biases were prepared with small nonzero
values, and optimized with stochastic gradient descent to minimize the mean squared
error between its predictions and acoustic features of the training set. The Speech
Signal Processing Toolkit [28] was used to apply the spectral enhancement. Delta and
delta-delta features were calculated for all the features. The input linguistic features
have min-max normalization, while output acoustic features have mean-variance nor-
malization. In general, the design configuration of current neural network model is
similar to those we have given in [18]. The training procedures were conducted on a
high performance NVidia Titan X GPU.

We trained a baseline DNN and four different recurrent neural network architec-
tures, each having either LSTM, BLSTM, GRU, or RNN. Each model has fairly the
same number of parameters, because the objective of these experiments is to compare
all four units equally in order to find out the best unit to model our continuous vocoder.
The systems we implemented are as follows:

• DNN: This system is our baseline approach [18] which uses 6 feed-forward hidden
layers; each one has 1024 hyperbolic tangent units.

• LSTM: 4 feed-forward hidden lower layers of 1024 hyperbolic tangent units each,
followed by a single LSTM hidden top layer with 512 units. This recurrent output
layer makes smooth transitions between sequential frames while the 4 bottom
feed-forward layers intended to act as feature extraction layers.

• BLSTM: Similar to the LSTM, but replacing the LSTM top layer with a BLSTM
layer of 512 units.

• GRU: Similar to the LSTM architecture, but replacing the top hidden layer with a
GRU layer of 512 units.

• RNN: Similar to the LSTM architecture, but replacing the top hidden layer with a
RNN layer of 512 units.

3 https://github.com/CSTR-Edinburgh/merlin.
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4 Evaluation and Discussion

In order to achieve our goals and to verify the effectiveness of the proposed method,
objective and subjective evaluations were carried out. We conducted two kinds of
experimental evaluations. In the first evaluation, we experimentally modeled our
continuous vocoder parameters in deep recurrent neural networks by systems given in
Sect. 3, and objectively verified. In the second evaluation, we tested them using a
subjective listening experiment.

4.1 Objective Evaluation

To get an objective picture of how these four RNN systems evaluate against the DNN
baseline using the continuous vocoder, the performance of these systems is evaluated
by calculating the overall validation error (as mean square error between valid and train
values per each iteration) for every training model. The test results for the baseline
DNN and the proposed recurrent networks are listed in Table 1. It is confirmed that all
parameters generated by the proposed systems presented smaller prediction errors than
those generated by the baseline system. More specifically, the BLSTM model can
achieve the best results and outperforms other network topologies.

4.2 Subjective Evaluation

In order to evaluate the perceptual quality of the proposed systems, we conducted a
web-based MUSHRA (MUlti-Stimulus test with Hidden Reference and Anchor) lis-
tening test [29]. We compared natural sentences with the synthesized sentences from the
baseline (DNN), proposed (RNN and BLSTM), and a benchmark system. From the four
proposed systems, we only included RNN and BLSTM, because in informal listening
we perceived only minor differences between the four variants of the sentences. The
benchmark type was the re-synthesis of the sentences with a standard pulse-noise
excitation vocoder. In the test, the listeners had to rate the naturalness of each stimulus
relative to the reference (which was the natural sentence), from 0 (highly unnatural) to
100 (highly natural). The utterances were presented in a randomized order.

11 participants (7 males, 4 females) with a mean age of 35 years, mostly with
engineering background were asked to conduct the online listening test. We evaluated
twelve sentences. On average, the test took 11 min to fill. The MUSHRA scores for all
the systems are showed in Fig. 3. According to the results, both recurrent networks

Table 1. The objective experimental results for the synthesized speech signal using continuous
vocoder

Systems Training validation error

DNN (baseline) 1.54
RNN 1.53
LSTM 1.53
BLSTM 1.52
GRU 1.53
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outperformed the DNN system (Mann-Whitney-Wilcoxon ranksum test, p < 0.05). It is
also found that the BLSTM system reached the best naturalness scores in the listening
test, consistent with objective errors reported above. However, the difference between
RNN and BLSTM is not statistically significant.

5 Conclusion

The goal of the work reported in this paper was to apply a Continuous vocoder in
recurrent neural network based speech synthesis to enhance the modeling of acoustic
features extracted from speech data. We have implemented four deep recurrent
architectures: LSTM, BLSTM, GRU, and RNN. Our evaluation focused on the task of
sequence modeling which was ignored in the conventional DNN. From both objective
and subjective evaluation metrics, experimental results demonstrated that our proposed
RNN models can improve the naturalness of the speech synthesized significantly over
our DNN baseline. These experimental results showed the potential of the recurrent
networks based approaches for SPSS. In particular, the BLSTM network achieves
better performance than others.

For future work, the authors plan to investigate other recurrent network architec-
tures to train and refine our continuous parameters. In addition, we will try to imple-
ment firstly a mixture density recurrent network and then combining this with
BLSTM-RNN based TTS.

Acknowledgements. The research was partly supported by the VUK (AAL-2014-1-183) and
the EUREKA/DANSPLAT projects. The Titan X GPU used for this research was donated by
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Fig. 3. Results of the MUSHRA listening test for the naturalness question. Error bars show the
bootstrapped 95% confidence intervals. The score for the reference (natural speech) is not
included
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