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Preface

The Speech and Computer International Conference (SPECOM) has become a regular
event since the first SPECOM, which was held in St. Petersburg, Russian Federation, in
1996. Twenty one years ago, SPECOM was established by the St. Petersburg Institute
for Informatics and Automation of the Russian Academy of Sciences and State
Pedagogical University of Russia thanks to the efforts of Prof. Yuri Kosarev and
Prof. Rajmund Piotrowski.

SPECOM is a conference with a long tradition that attracts researchers in the area of
computer speech processing (recognition, synthesis, understanding, etc.) and related
domains (including signal processing, language and text processing, computational
paralinguistics, multi-modal speech processing, and human–computer interaction).
The SPECOM International Conference is an ideal platform for know-how exchange –
especially for experts working on Slavic and other highly inflectional languages –

including both under-resourced and regular well-resourced languages.
In its long history, the SPECOM conference has been organized alternately by the

St. Petersburg Institute for Informatics and Automation of the Russian Academy of
Sciences (SPIIRAS) and by the Moscow State Linguistic University (MSLU) in their
home cities. Furthermore, in 1997 it was organized by the Cluj-Napoca Subsidiary
of the Research Institute for Computer Technique (Romania), in 2005 by the University
of Patras (in Patras, Greece), in 2011 by the Kazan Federal University (Russian Fed-
eration, Republic of Tatarstan), in 2013 by the University of West Bohemia (in Pilsen,
Czech Republic), and in 2014 by the University of Novi Sad (Serbia), in 2015 by the
University of Patras (in Athens, Greece), and in 2016 by the Budapest University of
Technology and Economics (in Budapest, Hungary).

SPECOM 2017 was the 19th event in the series and this time it was organized by the
University of Hertfordshire, in cooperation with the St. Petersburg Institute for Infor-
matics and Automation of the Russian Academy of Sciences (SPIIRAS), Moscow State
Linguistic University (MSLU), and St. Petersburg National Research University of
Information Technologies, Mechanics and Optics (ITMO University). The conference
was held jointly with the Second International Conference on Interactive Collaborative
Robotics (ICR) – where problems and modern solutions of human–robot interaction
were discussed – during September 12–16, 2017 at the College Lane campus of the
University of Hertfordshire, which is located in Hatfield, UK 20 miles (30 kilometres)
north of London, just 20 minutes by train from London’s King’s Cross station.

During the conference two invited talks were given by Prof. Mark J.F. Gales
(Engineering Department, University of Cambridge, UK) and Prof. Björn W. Schuller
(University of Passau, Germany and Imperial College London, UK) on the latest
achievements in speech technology, automatic speech recognition, keyword spotting
speaker analysis and computational paralinguistics. The invited papers are published as
a first part of the SPECOM 2017 proceedings.



This volume contains a collection of submitted papers presented at the conference,
which were thoroughly reviewed by members of the Program Committee consisting of
above 100 top specialists in the conference topic areas. A total of 80 accepted papers
out of 150 submitted for SPECOM and ICR were selected by the Program Committee
for presentation at the conference and for inclusion in this book. Theoretical and more
general contributions were presented in common (plenary) sessions. Problem-oriented
sessions as well as panel discussions brought together specialists in limited problem
areas with the aim of exchanging knowledge and skills resulting from research projects
of all kinds. This year, except the regular technical sessions, three special sessions were
organized on (i) Natural Language Processing for Social Media Analysis, (ii) Multilingual
and Low-Resourced Languages Speech Processing in Human-Computer Interaction, and
(iii) Real-Life Challenges in Voice and Multimodal Biometrics.

We would like to express our gratitude to the authors for providing their papers on
time, to the members of the conference Program Committee and the organizers of the
special sessions for their careful reviews and paper selection, and to the editors and
correctors for their hard work in preparing this volume. Special thanks are due to the
members of the Organizing Committee for their tireless effort and enthusiasm during
the conference organization.

September 2017 Alexey Karpov
Rodmonga Potapova

Iosif Mporas
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Abstract. The IARPA Babel program ran from March 2012 to
November 2016. The aim of the program was to develop agile and robust
speech technology that can be rapidly applied to any human language
in order to provide effective search capability on large quantities of real
world data. This paper will describe some of the developments in speech
recognition and keyword-spotting during the lifetime of the project. Two
technical areas will be briefly discussed with a focus on techniques devel-
oped at Cambridge University: the application of deep learning for low-
resource speech recognition; and efficient approaches for keyword spot-
ting. Finally a brief analysis of the Babel speech language characteristics
and language performance will be presented.

Keywords: Prosody perception · Narrow versus broad focus · Japanese
learners of English · L2 acquisition

1 Introduction

In recent years there has been an increasing interest in Automatic Speech Recog-
nition (ASR) and Key Word Spotting (KWS) for low resource languages. One of
the driving forces for this research direction was the IARPA Babel project [13]
which ran from March 2012 until November 2016. To quote from the BAA:

“The Babel Program will develop agile and robust speech recognition tech-
nology that can be rapidly applied to any human language in order to pro-
vide effective search capability for analysts to efficiently process massive
amounts of real-world recorded speech.”

The particular form of speech technology assessed as a realisation of this aim
was Key Word, or phrase, Spotting (KWS). The funding for, and evaluations
of, the project was split into four phases, a base period (BP) followed by three
“option” periods (OP1, OP2 and OP3). During the project 25 languages were
released spanning a wide range of language groups, writing schemes, and linguis-
tic attributes. Conversational telephone speech data was recorded either directly,
or using a microphone. Each side of the conversation was recorded separately.

Language packs were released for each language with various quantities of
data:
c© Springer International Publishing AG 2017
A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 3–19, 2017.
DOI: 10.1007/978-3-319-66429-3 1
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– Full Language Pack (FLP): 40–80 h of transcribed audio data;
– Limited Language Pack (LLP): 10 h of transcribed audio data, selected

from a subset of conversation sides in the FLP;
– Very Limited Language Pack (VLLP): 3 h of transcribed audio data,

selected from all sides in the FLP. This was a baseline for active learning
approaches.

In addition untranscribed audio data was made available, yielding approximately
100–150 h of audio data in total per language. For each phase of the programme
the evaluation concentrated on different configurations: BP FLP; OP1 LLP; OP2
VLLP; and OP3 FLP. The results presented in this paper are based on the FLP
configuration as this was the focus in the final phase of the project.

SIL

SIL

TO

TO

TO

IT

IT

IT

IT IT

IN

AN
AN

A

A

BUT

BUT

DIDN'T

DIDN'T

ELABORATE
SIL

IN

Time (s)
0.00 58.252.205.100.105.0

Lattice

Query

Recognition
 Speech

Search
Keyword

 Speech Keyword
Hits

Fig. 1. Key word, or phrase, spotting pipeline

The vast majority of systems developed followed the pipeline shown in Fig. 1.
An Automatic Speech Recognition (ASR) system is initially run to generate
lattices, with nodes at phone, morph or word level. Using lattices to propagate
information from the ASR system to the KWS stage makes the system less
sensitive to errors; words and phrases can be found even if they do not appear
in the 1-best ASR output. Given the quantities of data available in these low
resource scenarios the Word Error Rates (WERs) can be very high, 30% to 70%,
which means that very rich deep lattices are required for high performance KWS.

Error mitigation between the ASR and search module is only one of the
problems that must be dealt with. Current state of the art speech recognition
systems are based around deep learning [16]. These approaches operate best
when there are large quantities of training data, the opposite of the situation in
the Babel project. To address this problem approaches have been developed for
both the acoustic and language models used in the majority of ASR systems;
examples of these will be discussed in Sect. 2. Another factor that impacts the
development of low-resource systems is the lack of linguistic resources. Unlike
more frequently investigated languages, there are unlikely to be well defined
lexicons, morphological analysers or parts of speech taggers. To address this the
impact of using purely graphemic systems [17,18] on a range of languages using
both Latin and non-Latin scripts is discussed. In addition, approaches for system
combination for both ASR [6,8,27] and KWS [19,22,28,30] and their impact in
a low-resource scenario will be described.
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One of the interesting aspects of the Babel data is that there are 25 languages
with a wide range of attributes, with all the data collected and annotated in a
consistent fashion on a highly challenging task. The final part of this paper
discusses the performance over a number of these languages in a consistent con-
figuration.

For the Babel project the performance of the system was evaluated in two
ways. The primary metric reflected KWS performance. The Term Weighted
Value (TWV) [9] is defined as

TWV (θ) = 1 − [Pmiss(θ) + βPfa(θ)] (1)

where Pmiss(θ) and Pfa(θ) denote the probability of miss and false alarm, respec-
tively, and β is 999.9. For the evaluation a single threshold was required to be
specified. To avoid the impact of threshold selection, in this paper the Maximum
TWV (MTWV) score is given which is the maximum TWV achievable for that
system. The second metric used is related to the WER for ASR. As the speci-
fication of a word can be poorly defined for some languages, the metric used is
the Token Error Rate (TER). This is defined in the same way as the WER, but
with the generalisation of handling tokens rather than words. For most languages
TER and WER are the same.

2 Low-Resource Speech Recognition

Speech recognition for low-resource languages has followed the same directions
as more general speech technology. Deep learning is a central aspect of all com-
ponents of these systems: feature extraction [12,15]; acoustic modelling [16]; and
language modelling [21]. To address the lack of training data, however, a num-
ber of modifications have been made to the standard pipeline. These approaches
include data augmentation [5,14,23]; the use of web data [20]; extensive system
combination [31]; and the use of multiple languages [4,24]. Furthermore the con-
cept of low resource can be applied beyond the availability of training data to
include linguistic resources such as an accurate lexicon.

This section briefly describes some of the approaches adopted for imple-
menting the lexicon, acoustic and language models in those low-resource scenar-
ios at CUED to support the evaluation systems developed over the Babel pro-
gramme [11,25,26]. For the sake of brevity the baseline ASR system will not be
described in detail. For details of the systems used see the associated references.

2.1 Graphemic Lexicon

For the OP2 and OP3 evaluations no phonetic lexicon was supplied. To address
this a graphemic lexicon was used. Here, the spelling of the word is used
to directly determine the sub-word units. Prior to the Babel program, most
graphemic systems have been built either for Latin script languages or the script
has been converted to Romanised form before creation of the graphemic lexicon,
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e.g. [17,18]. One of the challenges was to examine whether a graphemic system
could be applied to a wide range of languages with minimal, or preferably no
knowledge of phonology of the language.

The approach adopted at CUED to constructing graphemic systems was to
use the attributes of unicode [1] to define the attributes of each of the graphemes.
These attributes are then used to map the character into a root grapheme and
associated attributes [10]. For example, for Kazakh, which is a mixture of Cyrillic
and Latin scripts, a subset of the graphemes associated with the letter “I” are

where the following attributes are defined

All graphemes are thus mapped into a set of core graphemes, and attributes
associated with the set of graphemes. This mimics the set of attributes associated
with phones that can be obtained for all phones using, for example, X-SAMPA
phonetic look-up tables.

The above scheme has assumed that all unicode characters have a distinct
acoustic realisation. Unicode characters that do not have an acoustic realisation,
or alter the realisation of an adjoining grapheme, can be split into two distinct
groups. The first set are language-dependent graphemes, and are related to dia-
critics, but written as separate unicode characters, denoted by the word sign in
the character descriptor. Note vowel sign characters in for example Abugida
written languages are kept as separate symbols with acoustic realisations. In
addition to the unicode attributes additional markers indicating the position of
the grapheme in the word (beginning/middle/end) was added.

Table 1. Babel FLP Tandem-SAT Performance: with confusion network (CN) decod-
ing and CNC CN-combination

Language Id Script TER (%)

Phon Grph CNC

Tok Pisin 207 Latin 40.6 41.1 39.4

Kazakh 302 Cyrillic/Latin 53.5 52.7 51.5

Telugu 303 Telugu 69.1 69.5 67.5

Table 1 contrasts the performance of three OP2 languages with scripts rang-
ing from Latin (Tok Pisin) mixed Latin and Cyrillic (Kazakh) to Telugu (Tel-
ugu). The performance of the graphemic and the phonetic system is comparable
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even though no phonetic information was used for the graphemic system. Addi-
tionally the combination of the phonetic and graphemic systems using Confusion
Network Combination (CNC) [7] shows consistent gains.

2.2 Stimulated Training of Neural Networks

One of the issues with the standard training of neural networks is that the
nodes are not interpretable. This lack of interpretability can cause issues for
speaker adaptation and network generalisation as it is difficult to relate weights
from the network to each other. To address this problem stimulated network
training has been proposed [25,29,32]. The aim of stimulated training is to train
networks where nodes with similar activation functions are grouped together.
The Babel program, requiring low resources systems, should be suited to this
form of training.

In stimulated training a phone (or grapheme) dependent prior distribution
is defined over the normalised activation function outputs for each of the layers.
The nodes in each layer are reorganised into a grid, so that each node, i, of a
layer is represented as a point in a two dimensional network-grid space, si. A
point in this network-grid space is also associated with each phone sp. It is then
possible to define a normalised distance from every node to the correct phone
position. These normalised distances are used as a prior over the distribution
of the activation function values for a layer. This prior encourages activation
functions in the same locality to have the same normalised output.

To implement stimulated training, a regularisation term, R(λ), is added to
the training criterion

F(λ) = L(λ) + αR(λ)

where L(λ) is the standard training criterion for parameters λ, for an L hidden-
layer network λ = {W(1), . . . ,W(L)}, α determines the contribution of the prior,
R(λ). Here R(λ) is based on the KL-divergence of the prior distribution over
the normalised activation, g(si, ŝpt

) and the current distribution, h
(l)

ti . Thus

R(λ) =
∑

t

∑

l

∑

i

g(si, ŝpt
) log

(
g(si, ŝpt

)

h
(l)

ti

)

where the two distributions are defined as:

1. phone-specific activation distribution prior: g(si, ŝpt
) is the normalised dis-

tance of a node and the current active-phone position. For these experiments:

g(si, ŝpt
) =

exp
(
− 1

2 ||si − ŝpt
||2

)

∑
j exp

(
− 1

2 ||sj − ŝpt
||2

)

where si the position in the network-grid space of node i, ŝpt
the position

in the network-grid space of the “correct” phone at time t. The denominator
summation is over all nodes in network layer l.
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2. network activation distribution: h
(l)

ti is the normalised activation function out-
put for node i of layer l at time instance t

h
(l)

ti =
β
(l)
i h

(l)
ti∑

j β
(l)
j h

(l)
tj

; β
(l)
i =

√∑

k

w
(l+1)2
ik

h
(l)
ti is the output activation function value for node i of layer l at time instance

t and w
(l)
ik is the weight connection from node i of layer l to node k of layer

l + 1. β
(l)
i is used to reflect the impact that the activation function has on

the following layer, l + 1 and has been found to be important for stimulated
training.

This form of prior can be applied to any form of network. To generate the position
of the correct grapheme, t-SNE was applied [32].

Fig. 2. Example of the impact of stimulated training for a particular instance of the
phone /ay/. The left plot is the position of the stimulation points (/ay/ circled), the
center plot standard, unstimulated, training, the right plot stimulated training

Figure 2 shows the impact of stimulated training using phone stimulation
points on network training. The stimulation points, left figure, were obtained
using t-SNE projections of phone feature means. The center plot shows the
(scaled) network activation functions for hidden layer 3 (of 5) with standard
training and has no structure in the node activation function values. This is
expected for a randomly initialised distributed representation. The right plot
shows the impact of stimulated training. Structure is clearly visible in the form
of the activation functions1.

Table 2 shows the impact of stimulated training on both ASR and KWS per-
formance. For these results both Tandem and Hybrid systems were combined
using joint decoding with stimulated training only being applied to the Hybrid
systems. See [25] for additional system configurations and results. For all lan-
guage investigated stimulated training gave performance gains for both ASR and
KWS.

1 For a complete movie of the activation functions for stimulated training see: http://
mi.eng.cam.ac.uk/∼mjfg/bneStimu.avi.

http://mi.eng.cam.ac.uk/~mjfg/bneStimu.avi
http://mi.eng.cam.ac.uk/~mjfg/bneStimu.avi
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Table 2. Impact of stimulated training on ASR and KWS performance for the OP3
languages

Language Id Stimulated Training TER (%) MTWV

iv oov tot

Amharic 307 ✗ 41.1 0.6500 0.5828 0.6402

� 40.8 0.6619 0.5935 0.6521

Javanese 402 ✗ 50.9 0.4991 0.4448 0.4924

� 50.7 0.5024 0.4679 0.4993

2.3 Web Data and RNN Language Models

One of the major issues associated with low-resource languages is the lack of
appropriate language model training data. This has two immediate impacts.
First if only 40–80 h of transcriptions are available the resulting vocabulary will
be very small resulting in high OOV rates for both ASR and KWS. Second the
robustness of the estimates of the language model probabilities will be poor.
To address this problem the web was “scraped” for data of the target lan-
guage [20,34]. This allows large amounts of training data to be collected for
many languages, with some exceptions such as Dholou. For example for Pashto
the amount of data available from the FLP was 535 K words, but 105M words
could be collected from the web.

Unfortunately the availability of large amounts of data introduces two addi-
tional problems. Current state-of-the-art language models are built using Recur-
rent Neural Networks (RNNs) [21]. These models can take a significant amount
of time to train on large amounts of data. To enable rapid deployment of systems
it is necessary to improve the training time. Second the data collected from the
web is typically poorly matched to the target domain, CTS. To address these
problems modified training criteria were examined and “fine-tuning” to the FLP
data used [3].

The standard training criterion for training neural network language mod-
els, including RNN LMs is based on cross-entropy. For word sequence ω1:L =
ω1, . . . , ωL, the following criterion is optimised.

Fce = − 1
L

L∑

i=1

log
(
P (ωi|h̃i−1)

)

Though this can be efficiently implemented using GPUs if the output layer, the
prediction vocabulary size, is not large. As the size of the output vocabulary
increases the computational cost is dominated the softmax normalisation term
Z(h̃i−1)

P (ωi|h̃i−1) =
1

Z(h̃i−1)
exp

(
wT

f(ωi)
h̃i−1

)
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This impacts both the training and decoding. For the word-based systems the
vocabulary associated when including the web-data, was very large, for Pashto
273 K words. Training the RNNLM using CE, the standard criterion, and then
fine-tuning to the FLP data, is impractical for the surprise language evaluation as
both training and recognition is very slow. To address this problem two different
training criteria were investigated:

– variance regularisation (VR): this ensures that the normalisation term (in the
prediction) is approximately constant for all word histories. An additional
regularisation term is added to the standard cross-entropy (CE) criterion,
Fce. The following criterion is optimised

Fvr = Fce +
γ

2
1
L

L∑

i=1

(
log(Z(h̃i−1)) − log(Z)

)2

If all the normalisation terms for all histories are constrained to be the same,
it is therefore not necessary to compute it during recognition time, improving
decoding time significantly;

– noise contrastive estimation (NCE): this trains a discriminative model
between classifying the word sequences and noise samples often generated
by a unigram language model. Here the following discriminative criterion is
optimised

Fnce = − 1
L

L∑

i=1

⎛

⎝log(P (yi = T|ωi, h̃i−1) +
k∑

j=1

log(P (yi = F|ω̂ij , h̃i−1)

⎞

⎠

where ω̂ij are noise samples for ωi, often generated by a uni-gram language-
model. In this model it is not necessary to estimate the normalisation term
during training or recognition.

Table 3 shows the impact of web-data on the ASR and KWS systems. For
details of the system configurations see [3]. The first line is the performance when
only using the FLP data to train an tri-gram language model. Comparing the first
and second lines, where a language model component trained on the web-data was
used, shows that the use of the web-data had little impact on ASR performance.

Table 3. Impact of web RNN LMs on KWS performance on Pashto. The RNN-
Criterion is either used for initial training (Trn) or fine-tuning (F-T)

Language Id Vocab RNN Crit Time (hrs) TER (%) MTWV

Trn F-T Train Rescore iv oov tot

Pashto 104 14.4K — — 44.1 0.4808 0.2412 0.4541

— — 43.8 0.4828 0.4083 0.4750

376.3K CE CE 125.0 23.0 42.8 0.4975 0.4048 0.4871

NCE VR 10.7 2.0 43.0 0.4975 0.3953 0.4862
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However the KWS performance is significantly better. The main reason for this is
the performance on OOV KWS terms (as defined by the FLP), as the increased
vocabulary reduces the need to use “phone” search for the KWS system.

Table 3 also shows the impact of including an RNNLM in the system. For both
configurations the RNNLM was initially trained on all the data and then fine-
tuned to the FLP data. Line three of the table shows the performance when CE
is used for both stages. Gains can be see for both ASR and KWS performance.
However examining both the training and lattice rescoring times shows that it
takes over 5 days to train the system. Using NCE for initial training, and then
VR to fine-tune, reduced this training time by more than an order-of-magnitude,
and similarly for the deciding time.

3 Improved ASR and KWS Efficiency Research at CUED

As previously discussed to minimise the impact of error propagation from the
ASR system to the KWS very large lattices are created. Additionally to max-
imise performance multiple systems need to be combined together to yield the
final result. The combination of the two can result in significant computational
cost when handling large quantities of data. This section briefly describes two
approaches that were used at CUED to reduce the computational cost: unique
arc-per-second pruning to reduce the size of the lattices; and model-merging to
reduce the number of ASR and KWS runs.

3.1 Unique-Arcs Per-Second Pruning

There are two contradictory requirements for the lattices that are used for KWS.
First they should be large and diverse, containing multiple competing paths.
Second, they should be compact so that the speed of KWS is fast. There have
been a number of approaches adopted to balance these two, including confusion
network based KWS and ensuring that all words in the best path for all word
sequences are kept. An alternative approach that is to control the distribution
of the number of unique arcs at each time instance. It is possible to apply this
process during decoding, or on lattices. The basic process is:

For each selected time instance:

– for each word (unique arc) rank order all arcs by score for that word;
– rank order all words by the best arc score for that word;
– prune arcs so that the selected distribution over words (unique arcs) is sat-

isfied, ensuring that connections to all arcs in the previous pruning time
instance are maintained.

This approach is highly flexible as it is possible to control the size of lattice
by varying the target unique-arcs-per-second distribution. Figure 3 shows the
impact of UAPS pruning. The top figure shows the total number of arcs in a
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Fig. 3. Illustration of unique-arcs-per-second pruning for a sentence

lattice. The lower figure shows the number of unique arcs. The standard beam-
pruning and UAPS pruning are configured to yield the same lattice size for
the utterance. It is clear from the diagram that UAPS pruning maintains the
number of unique arcs of the original unpruned system, but at a significantly
smaller lattice size.

All the CUED evaluation systems for OP2 and OP3 were based on UAPS
pruning. Typically the size of lattices was reduced by an order of magnitude,
with no impact on KWS performance.

Table 4. Example lattice size (arcs/second) of the original lattices and after unique-
arcs per-second pruning

Language Id Arcs/Sec

Decode UAPS

Mongolian 401 88,479 17,623

Javanese 402 41,880 11,109

Table 4 shows the sizes of lattice generated from the decoding process and
after UAPS for two of the OP3 languages. For these systems the number
of unique arcs is approximately the same. The size of lattices after UAPS
are approximately an order of magnitude smaller, dramatically improving
time/memory requirements for KWS.
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3.2 Model Merging or Posting-List Merging

As previously discussed one important approach to improve the performance
of both ASR and KWS is to perform system combination. Here multiple,
preferably complementary systems, are combined together to yield the final
result. An important consideration for these approaches is the computational
load. The simplest approach is to run all the systems separately and combine
the final outputs together. This is the approach adopted with ROVER [8] and
CNC [7] for ASR, and posting-list merging for KWS [19]. If four systems were
to be combined this would requiter four ASR decodes, followed by four KWS
runs.

To reduce the computational load it is possible to combine the multiple sys-
tems together. The approach adopted at CUED for the Babel programme was
log-linear model-combination [2,33]. Here the log-likelihood of a particular obser-
vation ot for state s is given by

log(p(ot|s)) =
1

Z(ot)
exp

(
M∑

m=1

αm log(p(ot|s;λ(m)))

)

where log(p(ot|s;λ(m))) is the log-likelihood from model m and αm is the related
weight. Only a single decode and lattice generation, and KWS search are per-
formed. As the normalisation term, Z(ot), is only a function of the observation it
does not impact the rank ordering in decoding. Thus the weight for each model
αm can be hand selected and used for decoding. This was the approach adopted
here [31].

An interesting question is the nature of the systems to combine. For OP2
evaluation systems Tandem and Hybrid systems were combined. For OP3 mul-
tiple multi-lingual bottleneck features (BN) were made available from Aachen
(A28) and IBM (I28), see [4] for details. Two configurations were compared.
First the use of joint decoding between Tandem and Hybrid systems for each
of the BN features (labelled A28 and I28) and then output combination (CNC
for ASR and posting-list merging for KWS), or joint decoding using all fours
models was investigated. The weights for the models were empirically selected,
but consistent for all languages.

The performance of various configurations is shown in Table 5. Though per-
forming two separate runs and then two KW searches yielded better performance
(for KWS) for all languages the differences were not large compared to the mem-
ory and computational loads. For the final evaluation joint decoding over all four
systems was used for efficiency.

4 Language Analysis and Prediction

There is a wide range of performance over the languages distributed in the BP,
OP1, OP2 and OP3. One of the interesting aspects of these language packs is
that they are consistently annotated and are associated with challenging data,
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Fig. 4. Summary plot (MTWV vs TER) for FLP systems in a single graphemic system
OP2 configuration

CTS. An interesting question is whether it is possible to predict the performance
for a particular language without having to build a full system.

As a starting point for the analysis a sub-set of languages were all built
using a consistent, relatively advanced graphemic lexicon configuration that was
used for the OP2 FLP evaluation [31]. The subset was selected to give a spread
over the language groups and interesting language pairs for analysis. For exam-
ple: the Dravidian Languages, Tamil and Telugu generally performed poorly;
members of the Niger-Kongo languages, Swahili, Zulu and Igbo, were selected
as there was a large performance difference (ASR/KWS) between Swahili and
Zulu, and the opportunity to predict Igbo. Figure 4 shows the plot of MTWV
against TER for all these languages. It can be seen that MTWV and TER are
negatively correlated, with some outliers: Tok Pisin has a worse than expected
KWS performance given the TER; Zulu, Lithuanian and Georgian have a better

Table 5. Performance of the OP2 joint decoding configuration using the Aachen BN
features (A28) and the IBM BN features (I28), ⊕ indicates CNC/posting-list merging,
⊗ indicated joint decoding

Language Id System comb. TER (%) MTWV

iv oov tot

Javanese 402 A28 52.5 0.4787 0.4379 0.4736

I28 52.1 0.4763 0.4283 0.4712

A28⊕I28 50.9 0.4991 0.4448 0.4924

A28⊗I28 50.9 0.4979 0.4843 0.4970
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KWS performance than expected. What is also interesting is the wide spread of
performance ranging from 65% to 40% TER for ASR, and 0.30 to 0.60 MTWV
for KWS.

Fig. 5. Summary plot (MTWV vs Graphemic Error Rate (GER)) for FLP systems in
an OP2 graphemic system configuration. Blue indicates Latin script alphabet. Best fit
line computed using the 7 dev Latin script languages (Color figure online)

A range of attributes (including SNR, number of words/phones, OOV, LM per-
plexity) from the languages were evaluated to see whether performance could be
predicted using language attributes rather than building systems. Unfortunately
none of these showed strong correlations with the final performance. One issue
that impacts this form of analysis is the level of inter-annotator dis-agreement
(WER), which can vary considerably over languages: Tamil ≈ 25%; Lithuanian
≈ 10%. Rather than looking at general language attributes, the ability to predict
final ASR and KWS performance from a simple initial ASR build was investigated.
The most informative attribute was Graphemic Error Rate (GER)2 calculated
from a simple maximum likelihood PLP-based, speaker-independent, graphemic
system on the training data. The system is relatively fast to train, and no held-
out data is required. Additionally inter-annotator inconsistencies are implicitly
handled. Figure 5 shows MTWV against GER. For all the Latin script languages
there is a strong correlation between GER and MTWV. The previous outlier Latin
script languages, Tok Pisin, Zulu and Lithuanian, are now in-line with predictions.
2 All markers such as accents are stripped from the grapheme to yield the root

grapheme. Thus Latin scripts have 26 graphemes. These accuracies include silence
at the beginning and end of sentences, and between all words.
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As the grapheme accuracy will depend on the number of graphemes the non-Latin
script languages marked in red (Kazakh, Tamil, Telugu and Pashto) are not con-
sidered. These are expected to have a higher grapheme error rate as there are more
graphemes present (Kazakh is an exception).

Table 6. Predictions of OP2 configuration ASR and KWS performance for OP3 lan-
guages, including OP3 evaluation language Georgian (404)

Language Id Script %TER MTWV

pred obs pred obs

Dholuo 403 Latin 45.4 46.0 0.561 0.549

Guarani 305 49.5 51.1 0.490 0.496

Igbo 306 60.2 61.7 0.304 0.286

Javanese 402 54.2 59.8 0.408 0.362

Amharic 307 Ethiopic 50.5 48.5 0.473 0.528

Mongolian 401 Cyrillic 61.1 55.9 0.288 0.414

Georgian 404 Mkhedruli 43.3 49.2 0.599 0.596

It is also interesting to examine the ability to predict performance using
held-out data. the OP3 languages were treated as the held-out data, and all the
remaining Latin script languages used to generator a predictor. For MTWV this
is the dotted line in Fig. 5. Similarly a linear predictor for TER was generated.
Table 6 shows the resulting predictions, and actual observed values. For the Latin
script it can be seen that GER is a good predictor for MTWV and indicative
for TER.

5 Conclusions

This paper has briefly outlined some of the approaches developed at Cam-
bridge University to handle low-resource keyword-spotting and speech recogni-
tion under the Babel programme. Two distinct areas are discussed low-resource
speech recognition and efficient low-resource keyword-spotting. The final section
of the paper briefly examines the performance on a wide-range of languages in
a consistent configuration and how to predict performance.

Though significant advances were made during the Babel programme on low-
resource speech processing, it still remains a highly challenging area. The current
ability to leverage data across languages is limited despite the fact that there
is a common acoustic generation process for all languages, human physiology.
Additionally many languages have common syntactic and semantic structure.
Extracting these, and leveraging connections is still not addressed.
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Abstract. With two years, one has roughly heard a thousand hours
of speech – with ten years, around ten thousand. Similarly, an auto-
matic speech recogniser’s data hunger these days is often fed in these
dimensions. In stark contrast, however, only few databases to train a
speaker analysis system contain more than ten hours of speech. Yet,
these systems are ideally expected to recognise the states and traits of
speakers independent of the person, spoken content, language, cultural
background, and acoustic disturbances at human parity or even super-
human levels. While this is not reached at the time for many tasks such
as speaker emotion recognition, deep learning – often described to lead to
‘dramatic improvements’ – in combination with sufficient learning data
satisfying the ‘deep data cravings’ holds the promise to get us there.
Luckily, every second, more than five hours of video are uploaded to the
web and several hundreds of hours of audio and video communication in
most languages of the world take place. If only a fraction of these data
would be shared and labelled reliably, ‘x-ray’-alike automatic speaker
analysis could be around the corner for next gen human-computer inter-
action, mobile health applications, and many further benefits to society.
In this light, first, a solution towards utmost efficient exploitation of the
‘big’ (unlabelled) data available is presented. Small-world modelling in
combination with unsupervised learning help to rapidly identify potential
target data of interest. Then, gamified dynamic cooperative crowdsourc-
ing turn its labelling into an entertaining experience, while reducing the
amount of required labels to a minimum by learning alongside the target
task also the labellers’ behaviour and reliability. Further, increasingly
autonomous deep holistic end-to-end learning solutions are presented for
the task at hand. Benchmarks are given from the nine research challenges
co-organised by the author over the years at the annual Interspeech con-
ference since 2009. The concluding discussion will contain some crystal
ball gazing alongside practical hints not missing out on ethical aspects.
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1 Introduction

X-radiation – here in the sense of Röntgen radiation is composed of x-rays, which
have largely become synonymous of enabling seeing usually hidden aspects via
empowering technology. The field of automatic speaker analysis or ‘Computa-
tional Paralinguistics’ dealing with the automatic characterisation of speakers
(or authors of written text) such as by assessing states and traits from the voice
acoustics and textual cues of an individual is hardly connotated with such ‘see-
through’ abilities in a figurative sense, yet. This comes, as even those tasks which
are directly accessible to a human listener can still pose problems to a machine
such as when aiming at recognition of human emotion. However, largely unno-
ticed by the broad public, computers can indeed already provide ‘x-ray alike’
speaker analysis empowering humans beyond their natural skill-set in terms of
listening such as when automatically estimating height or weight of a speaker
[3,33] down to a few centimetres or kilograms of error, despite such tasks clearly
being challenging [21] also for humans [52].

To be fair, however, humans have an impressive amount of data available to
learn on speech and speaker characteristics contained in the signal – simply, as
they are constantly exposed to it. Likewise, at the age of just two years, we roughly
heard already as much as some thousand hours of speech. At the age of ten years,
this has already increased to around ten thousand hours of speech heard [29].
Obviously, these do not come with ‘labels’ – rather, we learn reinforced and from
the situational context on ‘recognising’, understanding, and analysing the speaker
characteristics as conveyed in the speech signal. At the same time, we synthesise
speech and learn also from coupling analysis and synthesis efforts.

In terms of sheer amount of data, an automatic speech recogniser’s data
hunger is these days often fed in similar dimensions. And in fact, also speech
recognition engines increasingly learn in weakly supervised ways, exploiting also
unlabelled speech data to go from some one or two thousand hours of training
material to the order of tens of thousands [53].

This is in stark contrast to the situation in Computational Paralinguistics.
There, only few databases allow to train a speaker analysis system based on more
than ten hours of speech – ten hours of speech vs several thousand. Yet, expecta-
tions are high as to what these systems ideally should be able to recognise: The
tasks are often ambiguous such as automatic recognition of emotion or likability
or the perceived personality of a speaker – all subjective and therefore ambiguous
tasks. At the same time, recognition should be reliable independent of the per-
son, i. e., work also for unknown speakers. Then, such automatic assessment of
speaker characteristics should also work independent of the spoken content and
by that ideally also independent of the spoken language, i. e., as for the acoustic
analysis, there should be no requirement for prompted speech. A potentially even
higher depending on the type of information that shall be extracted from spo-
ken language is the desired indifference to varying cultural backgrounds. Then,
acoustic disturbances including severe cases such as multiple speakers speaking
overlapping should not be in the way of reliable assessment – best at human par-
ity or even super-human levels such as when attempting automatic recognition



22 B.W. Schuller

of heart-beat down to a few beats of error [19], or recognition of diverse health
conditions which at best a trained human could hear from the voice, or even
earlier on in terms of age of the affected individual than a human could [32].

Likewise, having only a few hours of learning material at hand, it is not sur-
prising that some automatic recognition tasks have not yet reached or surpassed
human parity – an example being the above named emotion recognition from
voice acoustics [40,57]. However, the recent advances in processing power, and
machine learning methods – most notably deep learning which is often described
to lead to ‘dramatic improvements’ [10] – in combination with sufficient amounts
of learning data that can satisfy the ‘deep data cravings’ [6] that come with deep
neural network approaches hold the promise to reach the point of super-human
level on most or even all Computational Paralinguistics tasks likely already in
the near future.

As to the amount of data available, luckily, every second, more than five hours
of video are uploaded to the web. YouTube alone reached 70 million hours of video
material by March 20151. This is added by several hundreds of hours of audio and
video communication in most languages of the world taking place. If only a frac-
tion of these data would be shared and labelled reliably, ‘x-ray’-alike automatic
speaker analysis could be around the corner for next gen human-computer inter-
action, mobile health applications, and many further benefits to society.

In this context, the remainder of this paper is laid out as follows: first, a solu-
tion towards utmost efficient exploitation of the ‘big’ (unlabelled) data available
is presented in Sect. 2. Small-world modelling in combination with unsupervised
learning help to rapidly identify potential target data of interest. Then, gam-
ified dynamic cooperative crowdsourcing aim at turning its labelling into an
entertaining experience, while reducing the amount of required labels to a min-
imum by learning alongside the target task also the labellers’ behaviour and
reliability. Subsequently, Sect. 3 introduces increasingly autonomous deep holis-
tic end-to-end learning solutions for the rich speaker analysis. Demonstrating
the performance of today’s engines, benchmarks are then given in Sect. 4. These
stem from the nine research challenges dealing with Computational Paralinguis-
tics held over the years at Interspeech. The concluding discussion will contain
some crystal ball gazing alongside practical hints not missing out on ethical
aspects.

2 Big Data, Little Labels – Efficiency Matters

While it was outlined above that there is sufficient data for most tasks of interest
in Computational Paralinguistics owing to the rich amounts of videos available
on social media, it is mostly the labels that lack. Certainly, some tasks of speaker
analysis will be hard to find on social media or in conversations of millions of
users, such as those dealing with rare diseases or disorders. For others, it may
be hard to obtain a ‘ground truth’ such as accurate height of speakers, accu-
rate heart rate of speakers, etc., from social media and human labelling alone.
1 https://www.youtube.com/yt/press/de/statistics.html – accessed 1 June 2017.

https://www.youtube.com/yt/press/de/statistics.html
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However, for practically any task dealing with perceived speaker characteris-
tics and some more, exploiting the data in combination with efficient human
labelling mechanisms seems a promising avenue. For the remaining tasks, purely
semi-supervised or unsupervised learning approaches may still benefit from sheer
endless amounts of speech available [36]. In the ongoing, different ways of reach-
ing utmost efficiency in exploiting big speech data are laid out.

2.1 Network Analysis for Pre-selection of Social Media Data

It seems obvious that labelling social multimedia needs some efficient pre-
selection on ‘where to start’ looking at, e. g., the above named more than 70
million hours of video material available on YouTube alone. At the age of 80,
we roughly lived 700 000 hours, i. e., around 1 % of the available video time on
YouTube in March 2015. Entering a search term such as ‘joy’ in a social multime-
dia platform is unfortunately insufficient to quickly lead to a selection of suited
videos (or directly audio streams such as by services as SoundCloud) containing
joyful speech, as the retrieved videos may deal with anything related to joy such
as movies, songs, etc. that somehow related to joy. This makes it evident that
some smart pre-filtering is needed. Such smart pre-filtering could be realised
by a ‘complex network analysis’ to quickly retrieve related videos from social
multimedia platforms. Such platforms usually have their own suggestion on the
next best related videos to watch, which could be exploited to identify next best
options for more data. Unfortunately, the algorithms behind these recommenda-
tions are usually unknown, but they are mostly based on the title and description
as well as more general (textual) meta-data as well as ‘social’ data including the
viewing statistics including demographic aspects, number of likes/dislikes given
by viewers, and related search queries of the users [7]. In particular, the social
aspects can be unrelated or even counter-productive if establishing a database
for machine learning, as they will likely lead to a biased set of data. Based on
existing recommendations, one can aim to reach more suited candidates of videos
by providing one’s own network analysis to identify relevant videos for database
establishment. This can, for example, be based on the assumption of high simi-
larity of videos. An option is then to use interconnections of videos as generated
by the social media platform’s recommendations such as by small-world models
and graph-based analysis finding cliques in the graph. Ideally, some content-
based verification check is additionally implemented verifying coarsely that the
found videos at least likely contain the desired speech samples. This can contain
a speech activity detection engine or even some comparison against an initial or
several initial exemplary audio streams.

2.2 Game’s On! – Making Crowdsourcing Fun – Seriously

Whether freshly recorded or retrieved from social media, the speech and audio
or language data next has to be annotated. Crowdsourcing can be a highly
efficient way to label data, but it has also been questioned in terms of ethical
aspects [1]. Such concerns touch upon whether the crowd workers are potentially



24 B.W. Schuller

exploited [11], or “ethical norms of privacy” could be violated – potentially even
knowingly by the crowd workers [18]. In addition, unreliable raters can be a
severe problem adding noise to the labels [48]. In rather subjective tasks such
as observed emotion or perceived personality, it can be particularly difficult to
estimate the reliability of raters. Likewise, motivating the crowd worker seems
an interesting option for example by gamification of the labour to turn it into
fun aiming at lowering the risks of exploitation and unreliable labelling [30]. This
may include social elements such as competing against other crowd workers on a
leaderboard or in one vs one challenges, a point system and ‘badges’ or levels such
as ‘master rater’, ‘grand master’, etc. An exemplary existing platform in the field
is given by the iHEARu-PLAY platform [16]. More interestingly, crowd workers
could experience how their work empowers Artificial Intelligence by having a
gamified crowd-sourcing platform train models exclusively from their labels (or
by improving existing systems with their labels) and have these compete against
other crowd-workers’ engines trained on their respective labels. In automatic
speaker analysis, this would mean training engines based on different crowd-
workers’ labels and having them compete, e. g., on well-defined test-beds such
as the challenges introduced in Sect. 4.

2.3 Cooperative Learning: The Matrix Needs Us

Aiming to reduce human labelling effort has long since led to the idea of self-
learning by machines such as by unsupervised, semi-supervised, or reinforcement
learning. This could be shown successful in Computational Paralinguistics tasks
starting with the recognition of emotion [64] or the confidence estimation in
emotion recognition results [9] exploiting unlabelled data and even earlier on in
textual cues’ exploitation [14] in sentiment analysis. Purely self-learning hardly
seems unsuited, as the risk to run into stagnation of improvement despite adding
exponentially more unlabelled data can be high. Furthermore, models could of
course also become corrupted by purely semi-supervised learning, if no proper
control mechanisms of model performance are in place to monitor the develop-
ment of the models when adding increasingly more machine-labelled data for
model training. Thus, even when aiming at ‘never-ending learning’ [27], it seems
wise to keep the human in the loop by combining semi-supervised learning with
active learning – an idea which has been considered early on in general machine
learning [66], but only more recently in Computational Paralinguistics [63]. Like-
wise, rather than to harvest energy from us human beings – a sinister view on
future Artificial Intelligence (AI) exploiting mankind taken in Hollywood’s “The
Matrix” trilogy at the last turn of millennium – AI will indeed profit from
human labels.

Active learning, i. e., pre-selecting most informative instances for labelling by
humans, has thereby mostly been shown to work well in simulations with ‘oracle’
labels. This means, experiments were carried out on fully labelled databases
blinding part of the labels and revealing them only if the data has been selected
for active learning. This may be overly optimistic, as the data likewise has been
labelled under comparably controlled conditions, i. e., by the same individuals
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on a small dataset in a short time window. However, recently it has been shown
that the idea also works well in a crowdsourcing framework for Computational
Paralinguistics tasks [17]. In future solutions, learning the labellers, i. e., ‘being
careful whom to trust when’ [48] can play an increasingly important role when it
comes to crowdsourcing-based annotation in an active learning manner [58]. This
can also help increase efficiency when learning profiles of cross-labeller reliability
to get to know optimal patterns of which combination of crowd-workers best to
ask to reduce labelling efforts required.

3 Deep Learning, Broad Tasks – Holism Matters

A state-of-the-art (group of) approach(es) to best exploit ‘big’ data is given by
the family of deep learning algorithms that provide a sufficient number of free
parameters to be learnt to model complex arbitrary functions for classification
or regression of highly non-linear problems [6] in efficient ways. Further, going
‘broad’ in the sense of widening up of the speaker characteristics targeted –
ideally in full parallel – becomes possible with sufficient data. Below, it is argued
that this will be beneficial even if interested in only one aspect of the speaker to
reduce confusion with effects that other characteristics of the speaker may have
on speech acoustics or the choice of words.

3.1 Deep Learning in Computational Paralinguistics

Deep learning has a long tradition in the field of Computational Paralinguistics:
the first paper using long-short term memory (LSTM) recurrent neural networks
(RNNs) for speech emotion recognition dates back some almost ten years [54],
the first to use a deep architecture based on restricted Boltzmann machines –
again for speech emotion recognition – appeared some three years later [45].
More recently appeared first works on convolutional neural networks (CNNs)
for – speech emotion recognition [26]. However, only last year, the first true end-
to-end Computational Paralinguistics system using convolutional layers ahead
of LSTM layers [50] appeared. Also there, the task was emotion recognition from
speech, making emotion recognition the pioneering task when it comes to deep
learning in Computational Paralinguistics. This seems to hold also for one of the
latest trends in deep learning – the use of generative adversarial networks [4].

In fact, largely independent of this development in deep learning exploiting
acoustic information in Computational Paralinguistics, deep learning is increas-
ingly used in the analysis of textual cues.

LSTM RNNs are for example used in sentiment analysis from textual cues
[38,65]. Alternatively, gated recurrent units have been considered to the same
task in [47].

CNNs are for example applied for personality analysis [25,35], computa-
tion of sentiment [35,46,65], and emotion features [35], or dialect and variety
recognition [15].

Adversarial network inspirations can be found on sentiment tasks as well in
[22,28].



26 B.W. Schuller

3.2 Learning End-to-End

The learning of feature representations from the data seems attractive in a field
that has been coined by huge efforts put into the design of acoustic features
over the years. Indeed, as outlined above, last year first efforts in doing so were
successfully reported [50]. In the work, the authors train an emotion recogniser
to learn directly from the raw audio signal waveform. Furthermore, via corre-
lation analysis, they show that the network seems to learn features that relate
to the ‘traditional’ ones extracted by experts such as functionals of the funda-
mental frequency or energy contours. In [39], this is broadened up to three more
paralinguistic tasks providing a benchmark of a challenge event by end-to-end
learning among other ways of establishing a benchmark. While the approach is
not always superior to traditional methods in these works, it shows that indeed,
meaningful feature representations can be learnt from the data. One can assume
that given the above named small size of corpora is the major bottleneck when
it comes to reaching much more competitive results.

3.3 Borrowing Pre-trained Models from Computer Vision

This bottleneck of little data for pre-training is yet overcome in computer vision,
where large pre-trained netowrks such as AlexNet [20] or VGG19 [43] exist. In [2],
these are for the first time exploited for Computational Paralinguistics showing
the power of the approach on the Interspeech 2017 Computational Paralinguistic
Challenge’s [39] snoring sub-challenge: image classification CNN descriptors are
extracted from audio spectrograms called “deep spectrum features” in the paper.
They are extracted by forwarding the audio spectrograms through the very deep
task-independent pre-trained CNNs named previously to build up feature vec-
tors. In this first paper, the authors evaluate the use of different spectrogram
colour maps and different CNN topologies. They beat the conventionally estab-
lished baseline in the challenge by a large margin, which the authors can further
increase by suited feature selection by competitive swarm optimisation in [13],
rendering this approach highly promising and likely supporting the claim that
it is mostly about the amounts of data needed to fully exploit deep learning in
Computational Paralinguistics.

3.4 Going Broad – Holistic Speaker Analysis

As the characteristics of a speaker are usually ‘all present’ or ‘all on’ more or less
at the same time, it appears crucial to address them in parallel rather than one
by one in isolation ignorant to potential other ones. This seems relevant even if
one is only interested in one speaker characteristic, e. g., emotion of the speaker,
to avoid confusion by interfering other speaker states or traits such as being
tired, intoxicated by alcohol, being under a certain cognitive load, or simply
with one’s personality type. There are only a few approaches, yet, considering
this mutual dependency of speaker characteristics, mostly based on multi-task
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learning with neural networks. Examples in acoustic speech information exploita-
tion include simultaneous assessment of age, gender, height, and race recognition
[41], age, height, weight, and smoking habits recognition at the same time [34],
emotion, likability, and personality assessment in one pass [62], commonly target-
ing deception and sincerity [60] or drowsiness and alcohol intoxication [61] in the
recognition, as well as assessment of several emotion dimensions or representa-
tions in parallel [12,55,56,59], and aiming at speaker verification [5] co-learning
other aspects.

Similar approaches can be found in text-based information exploitation [22].

4 Where Are We on Automatic Speaker Analysis?

The above sections laid out options for future improvement of Computational
Paralinguistics, mainly by collection of more data and training deeper and
‘broader’ models to best exploit these data. But what are current performances?
To provide an impression of what today’s speaker analysis systems can reach in
a nutshell, Table 1 shows the baseline results of the Interspeech challenges cen-
tred on Computational Paralinguistics. Since 2013, these are running under the
unified name of Interspeech Computational Paralinguistics Challenge or Inter-
speech ComParE for short. Previous events were the 2009 Emotion Challenge,
the 2010 Paralinguistic Challenge, and the 2011 and 2012 Speaker State and
Speaker Trait Challenges2.

In these challenges, weight is put on realism in the sense of assessing the
speaker from a short snippet of audio only (usually around one to a few seconds),
independent of the speaker, in mostly real-world conditions such as telephone or
broadcast speech. Different measures were used over the different tasks in the
‘sub-challenges’ per year respecting the different type of representation or task
such as classification, regression, or detection. Explanations on these are given
in the caption.

The baselines have been established under somewhat similar conditions over
the years based on the openSMILE toolkit3 for large-scale acoustic feature space
brute forcing with standardised feature sets (which, however, grew over the years
from 384 features (2009) over 1 582 (2010), 3 996 (2011), 6 125 (2012), to 6 373
(since 2013) features on ‘functional’ level – partially, however, also directly (lower
numbers of) low-level-descriptors on frame level were used), and WEKA4 (mostly
using Support Vector Machines). In 2017, openXBOW5 and end-to-end learning
based on TensorFlow6, were used in addition in a fusion of methods.

From the table, one can mainly see two things: an astonishing range of speaker
characteristics can be automatically extracted significantly above chance level –

2 See http://compare.openaudio.eu/ for details on these events.
3 http://audeering.com/technology/opensmile/.
4 http://www.cs.waikato.ac.nz/ml/weka/.
5 http://github.com/openXBOW/openXBOW/.
6 http://www.tensorflow.org/.

http://compare.openaudio.eu/
http://audeering.com/technology/opensmile/
http://www.cs.waikato.ac.nz/ml/weka/
http://github.com/openXBOW/openXBOW/
http://www.tensorflow.org/
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Table 1. Interspeech Computational Paralinguistics Challange series (ComParE) base-
line results over the years following similar brute-force open-source focussed computa-
tion by openSMILE and WEKA (in 2017, openXBOW and end-to-end deep learning
have been used in addition) as seen in the challenge by sub-challenge. Given are the year
the challenge was held, the name of the sub-challenge usually clearly representing the
task targeted (“Pathology”, however, deals with intelligibility of head and neck cancer
patients before and after chemo-radiation treatment), the modelling (column “Model”)
of the task either naming the number of distinct classes to recognise, or the interval
(marked by [· · · ]) in case of a regression task, or “x” in case several (classification) tasks
had to be addressed, and the baseline results (column “Base”). Different evaluation mea-
sures were used for competition depending on the type of task and modelling of it as
classification (result given in terms of percentage of unweighted accuracy (% UA), i. e.,
added recall per class divided by the number of classes to cope with imbalance across
classes in the sense of chance-normalisation), regression (shown is the correlation coef-
ficient (CC (2010)/ρ (else)) – marked by +) or detection task (given is the percentage of
unweighted average area under the curve (% UAAUC) – marked by ∗)

Year Sub-challenge Model Base

2017 Addressee 2 70.2

Cold 2 71.0

Snoring 4 58.5

2016 Deception 2 68.3

Sincerity [0,1] .602+

Native Language 11 47.5

2015 Degree of Nativeness [0,1] .425+

Parkinson’s Condition [0,100] .390+

Eating Condition 7 65.9

2014 Cognitive Load 3 61.6

Physical Load 2 71.9

2013 Social Signals 2× 2 83.3∗

Conflict 2 80.8

Emotion 12 40.9

Autism 4 67.1

2012 Personality 5× 2 68.3

Likability 2 59.0

Pathology 2 68.9

2011 Intoxication 2 65.9

Sleepiness 2 70.3

2010 Age 4 48.91

Gender 3 81.21

Interest [−1,1] .421+

2009 Emotion 5 38.2

2 67.7
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sometimes already at super-human level such as in the case of intoxication or some
pathologies –, yet leaving head room for improvement for several others if not all.

Note that in this series, both, acoustic and textual cues can mostly be
exploited unless – in rare cases – the data of a sub-challenge features prompted
speech. However, other challenges exist focussing on textual cues such as the
annual author profiling task at PAN within the CLEF framework (cf. e. g., [37]
for the latest edition), or the affective text [44], sentiment analysis [31], and other
tasks in SemEval.

5 Conclusions and Perspectives

Concluding this contribution, a short summary is given followed by some per-
spectives.

5.1 Conclusions

Current-state performances based on the Interspeech challenge series on Compu-
tational Paralinguistics over nine years have been shown that demonstrated the
richness of speaker characteristics that can be automatically accessed already
by today. At the same time, these results showed the room left over for future
improvements. To address this issue, an argument was made to go ‘broader’ in
automatic speaker analysis in terms of assessment of multiple characteristics of
a speaker in full parallel to avoid confusion due to co-influence of these. Further,
deep learning has been named as current promising solution for modelling in
terms of machine learning. As particular advantage, this allows the learning of
the feature representation directly from the data – an interesting and valuable
aspect in a field that is ever-since marked by major efforts going into the design
of optimal feature representations. As such going ‘deep and broad’ requires ‘big’
training data, avenues towards efficient exploitation of ‘big’ social multimedia
data in combination with gamified crowd-sourcing were shown. These included
efficiency-optimising measures by smart pre-selection of instances and combined
active and semi-supervised learning mechanisms to avoid human involvement in
labelling as much as possible. Alternatively, exploitation of pre-trained networks
on ‘big’ image data was named to analyse speech data based on image-related
representations such as spectograms or scalograms and alike in potential future
efforts. However, for some under-resourced special types of data, such as of vul-
nerable parts of the population [24], ‘conventional’ collection of data will still be
required.

5.2 Some Crystal-Ball Gazing

Putting the above together in a ‘life-long learning’ [42] Computational Paralin-
guistics system supported by the crowd during 24/7 learning efforts based on
big social media and contributed data, we may soon witness passing the ‘edge’
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of ‘x-ray speaker analysis’, i. e., soon see super-human level automatic speaker
analysis for an astonishingly broad range of speaker characteristics.

Further supporting approaches not mentioned here include transfer learning
[23], reinforcement learning [49], and tighter coupling of generative and discrim-
inative approaches [51] or synthesis and analysis of speaker states and traits, to
name but three of the most promising aspects.

Once reaching such abilities, ethical, legal, and societal implications (ELSI)
will play an important role [8] if such technology is increasingly used in human-
decision support such as in automatic job interviews, tele-diagnosis in health
care, or monitoring of customers, and employees, to name again but three use-
cases. It will be of crucial importance to invest efforts into privacy protection,
reliable and meaningful automatic confidence measure provision to explain the
certainty and trust one should have in the automatic assessments, and account-
able communication of the ‘possible’ to the general public such as in down-toning
trust in deception recognition, if it only works at – say – some 70 % accuracy as
shown in the table above. This will require organisation of future challenges in
the research community as well as ensuring widest possible spread of the word.

May we soon experience powerful and reliable automatic speaker analysis and
Computational Paralinguistics applied in the best possible ways only to benefit
society at large in everyday problem solving and increase of wellbeing.
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Abstract. The paper presents results of an evaluation of covariance matrix and
i-vector based speaker identification methods on Serbian S70W100s120 data-
base. Open set speaker identification evaluation scheme was adopted. The
number of target speakers and the number of impostors were 20 and 60
respectively. Additional utterances from 41 speakers were used for training.
Amount of data for modeling a target speaker was limited to about 4 s of speech.
In this study, the i-vector base approach showed significantly better performance
(equal error rate EER *5%) than the covariance matrix based approach
(EER *16%). This small EER for the i-vector based approach was obtained
after substantial reduction of the number of the parameters in universal back-
ground model, i-vector transformation matrix and Gaussian probabilistic linear
discriminant analysis that is typically reported in the papers. Additionally, these
experiments showed that cepstral mean and variance normalization can deteri-
orate EER in case of a single channel.

Keywords: Speaker identification � i-vector � G-PLDA � Covariance matrix �
S70W100s120

1 Introduction

Automatic speaker identification (ASI) is a task to discover a speaker identity from its
voice. It provides medium accuracy comparing to other biometrics [1], but it has a few
advantages that allow its widespread usage. The first one is the fact that speech is a
natural gesture and user acceptance is high. The hardware costs are low and in many
cases microphone and sound-card are built-in devices. Finally, there is no physical
contact to record the biometric sample and the rate of failure to enroll is low [1].

To compare different automatic speaker recognition systems National Institute of
Standards and Technology (NIST) has organized their evaluations every 2 years since
1996. In each evaluation the task was different, and with years it became more com-
plicated and closer to the real conditions [2]. The systems showed high performance
(equal error rate EER is below 2% [3]) since they were trained on a lot of data in
conditions close to the evaluation data. It is interesting to test behaviors of these
well-proven systems when little training and development data is available in new
unknown conditions (language, speaking style, etc.) [2]. An evaluation on database
containing different acoustic conditions was organized by Speech Technology and
Research Laboratory (SRI). The best system has achieved EER close to 6% [4].
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The aim of this study is to evaluate one of the well-performed systems in NIST
challenges [5] in case of limited training dataset (total duration of speech is about
36 min) and to compare it with the algorithm that was developed at the University of
Novi Sad [6]. In the last decade systems based on i-vectors extracted from
mel-frequency cepstral coefficients (MFCCs) or perceptual linear prediction (PLP) or
bottle neck (BN) features in combination with linear discriminant analysis (LDA) or
near discriminant analysis (NDA) and probabilistic linear discriminant analysis
(PLDA) [3, 7–10]. Deep neural networks did not take into consideration since the
amount of training data was insufficient for good parameter estimation.

Detailed descriptions of analyzed methods are presented in Sect. 2. Information
about used corpus is given in Sect. 3, and appropriate evaluation results of examined
systems are shown in Sect. 4. The conclusion contains the most prominent remarks,
and directions for the future research.

2 Algorithms

2.1 Covariance Matrix Based Speaker Identification

This approach is relative simple and computationally efficient. Each target speaker is
modeled by the covariance matrix of MFCCs estimated on its training data [6]. For an
unknown (test) utterance the same covariance matrix is estimated and normalized l1
distances between it and covariance matrices of target speakers are calculated. If the
smallest distance between covariance matrices is less than a given threshold, algorithm
assigns the utterance to the closest target speaker, otherwise it assigns to an imposter.

The first step is MFCCs extraction on short overlapped windowed segments of the
speech signal. During the extraction, the spectrum of a signal is divided into Nb

overlapped bands being equally spaced in mel scale. The shape of the band pass filters
being used in this spectrum division is piece-wise exponential, defined by following
equation:

An kð Þ ¼ ea k�kc;nð Þ; kl;n � k� kc;n ;

e�a k�kc;nð Þ; kc;n\k� ku;n ;

(
ð1Þ

where: kl,n and ku,n are lower and upper cutoff frequencies of n-th filter, kc,n = 0.5 (kl,n +
ku,n),a is steepness factor, and k is discrete frequency [11]. In [6] is reported that the system
used this shape of band-pass filters showed better recognition accuracy than the system
used typical triangular shaped filters.

MFCC are determined by

cm ¼
XNb

n¼1

log Enð Þ � cos m � n� 1
2

� �� �
; m ¼ 1; 2; . . .; M; ð2Þ

where: En is energy in the n-th band, and M is the number of cepstral coefficients.
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A speaker is modeled by its covariance matrix which is defined as:

Rs ¼ 1
T � 1

XT
t¼1

ðcs;t � lsÞðcs;t � lsÞT ; ð3Þ

where: cs,t is t-th feature vectors belonging to the speaker s, T is the total number of the
feature vectors for the speaker s and:

ls ¼ 1
T

XT
t¼1

cs;t; ð4Þ

For a test utterance covariance matrix Rtest is calculated using (3) and (4) where cs,t
represents speech feature vectors in the test utterance. The distance between a target
speaker s and test utterance is calculated by:

dðtest; sÞ ¼ 1
M2

XM
i¼1

XM
j¼1

Rtest;i; j � Rs;i; j

�� ��; ð5Þ

If the smallest distance d(test,s) over all target speakers is less than the given
threshold algorithm assigns the test utterance to the closest target speaker, otherwise it
assigns to an imposter.

2.2 i-vector Based Speaker Identification

The-state-of-the-art approach in speaker identification is i-vectors [12]. In this
approach, high-dimensional feature vector in Gaussian mixture model (GMM) space is
reduced to low-dimensional feature space preserving most of relevant information for
speaker recognition. The extraction of relevant information is based on joint factor
analysis [13].

The first step is extraction of MFCCs from an utterance. Usually, the silent seg-
ments are rejected from further processing, and cepstral mean and variance normal-
ization (CMVN) are applied to remove convolutional distortions caused by channel.

The MFCCs (with their first and second time derivatives) are aligned with com-
ponents of GMM of the universal background model (UBM) to form a super-vector
fs = [fs

(1)T,fs
(2)T,…,fs

(C)T]T using following equation:

fðcÞs ¼ RðcÞ
� ��1XT

t¼1

cðcÞt ðct � lðcÞÞ; c ¼ 1; 2; . . .;C; ð6Þ

where: ct is the feature vector at time t, c cð Þ
t is occupation probability that feature vector

ct belongs to the c-th Gaussian component described by mean l(c) and covariance R(c),
and C is the number of the components in the GMM of UBM.
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The i-vector for given feature sequence can be obtained using following equation:

w ¼ IL�L þ
XC
c¼1

NðcÞTðcÞT RðcÞ
� ��1

TðcÞ
 !�1

TT fs; ð7Þ

where: T = [T(1)T,T(2)T,…,T(C)T]T is a low-rank matrix representing L bases that span
subspace with important variability in super-vector space, and

NðcÞ ¼
XT
t¼1

cðcÞt ; c ¼ 1; 2; . . .;C; ð8Þ

Additionally, LDA can be applied to remove correlations between features in the
i-vector w [5, 12], and Gaussian probabilistic linear discriminant analysis (G-PLDA)
[10] to eliminate variations caused by channel.

In this paper two type of scores were evaluated. The first type of score was defined
for G-PLDA as following:

SCR1 ¼ vTtestQvtest þ vTs Qvs þ 2vTtestPvs; ð9Þ

with

Q ¼ R�1
tot � Rtot � RacR

�1
tot Rac

	 
�1
; ð10Þ

P ¼ R�1
tot Rac Rtot � RacR

�1
tot Rac

	 
�1
; ð11Þ

Rtot ¼ UUT þRe; ð12Þ

Rac ¼ UUT ; ð13Þ

where: vtest and vs are zero centered i-vectors after LDA transformation for test
sequence and a target speaker s respectively, U is a low-rank matrix representing
J bases that spans speaker-specific subspace, and Re is covariance describing residual
term in modified G-PLDA model [10]. Typically, the J is the same as the dimension of
input vector v.

The second type of score was defined as cosine distance [5] between i-vectors
transformed by LDA i.e.:

SCR2 ¼ vTtestvs
vtestk k vsk k ; ð14Þ

We used MSR Identity toolbox [14] in combination with voicebox speech pro-
cessing toolbox [15] as a starting point in the experiments with i-vectors.
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3 Speech Database

This study is based on the S70W100s120 full-spectrum speech database recorded in the
studio conditions [16]. It contains utterances spoken by 121 Serbian native speakers
with total duration of about 110 min of speech (without pauses). Each speaker spoken
his/her name, 60 words related to military terminology (e.g.: group, understand,
direction, reception, weather etc.) and 10 digits. The database is relatively small and to
reduce variability in performance estimation 3 different partitions were used for training
and evaluation. In each of these partitions, 20 speakers (10 male and 10 female) were
randomly chosen to be target speakers and 60 to be impostors. To train the model of a
target speaker about 4.5 s of speech were used. The word sequence used for training of
a target speaker model was the same for all target speakers. Utterances of the imposters
were used only in the test phase. Total duration of the test set in each partition was
about 64 min (13 utterances per target speaker and 14 utterances per impostor). The
word content in the 13 test utterances for target speakers and impostors were the same,
and impostors had additional utterance containing words that were used in training of
target speaker models. To increase the number of training samples for estimation of the
parameters of universal background model and i-vector transformations, utterances of
41 speakers were used as additional data. The total duration of the training set in each
partition was about 36 min.

4 Results

An exhaustive research of the method based on covariance matrix is presented in [6]. In
this study, only the parameters of the model that showed the highest accuracy (about
93.4%) in [6] were examined. Extraction of MFCCs was done every 10 ms on 25 ms
frame using Hamming window. During the extraction, the spectrum was divided into
N = 20 bands. Bands were 300 mel wide, and adjacent bands were overlapped by
150 mel. Bandpass filters used for spectrum division were piece-wise exponential with
a steepest factor a = 2. The number of MFCCs was 18. It should be noted that in this
evaluation, the test set was open (it included the impostors), and to model target
speakers only single utterance (about 4.5 s of speech) were used. The equal error
rate (EER) of this speaker recognition system in this study was 16.0%, which repre-
sents serious degradation comparing to the results presented in [6]. It can be explained
by difficulty of the problem presented here – lack of training data and open test set.

As a starting point for experiments with i-vector we used parameters proposed in
[5]. Initial feature vectors were 19 MFCCs, log energy and their delta and delta-delta
features. Features vectors were extracted every 10 ms on the 25 ms frame using full
spectrum (up to 11025 Hz) divided into 57 mel equidistant and overlapped bands. To
calculate delta and delta-delta features 5 frame long window were used. To extract only
speech frames Sohn [17] voice activity detector was used. CMVN were used only on
the speech frames as it was suggested in [5]. The number of the components in UBM in
[5] was 2048 and the volume of the training set was about 300 h. In this study, the
volume of the training set was significantly smaller (36 min), thus the number of the
components was significantly lower. The number of the components of UBM (C) were
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varied from 16 up to 512, and the dimension of i-vector (L) varied from 100 to 400.
Dimension of the vector after LDA and G-PLDA (J) was 40 or 60, since the number of
different speakers (classes) in our train set was 61.

The obtained EERs for different parameters were presented in Fig. 1 (variation in
L and J are coded by different colors). One can see that the best results (EER about
11%) were obtained for C equal to 32 or 64, L equal to 100 and J equal to 40. This can
be explained by significantly smaller training set than in [5] and insufficient amount of
data for robust parameter estimation. The obtained results with number of parameters
close to those in [5] shows higher EER than covariance based algorithm (EER over
22% compared to 16%). However, reduction of the number of parameters leads to
decrease of EER below 16%.

All records in our database were done with the same equipment, thus the channel
effects are the same in all utterances. To explore the effects of CMVN, previous tests
were repeated without CMVN. The obtained results are presented in Fig. 2 (the labels
are the same as in Fig. 1). Elimination of CMVN resulted in significant decrease of
EER for each configuration. As in the previous case, when the number of the
parameters is close to those described in [5] EER is greater than EER of covariance
based system, but the difference is not so significant. If the number of parameters is
significantly lower, than the smallest EER is between 6 and 7%. It should be noted that
the smallest EER was obtained for the same configuration as in the previous case.

Experiments with models based on covariance matrix presented in [6] showed that
static MFCCs are sufficient for speaker recognition. This was a motivation for the third
set of experiments, where feature vectors contained only 18 and 19 MFCCs (without

Fig. 1. EERs of different systems based on i-vectors. Input features are 19 MFCC, log energy,
and theirs first and second time derivatives which are normalized by CMVN. Dimensions of an
i-vector (L) and a vector after LDA and PLDA (J) are coded by colors (L/J). Horizontal black line
represents EER level for covariance matrix based approach
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energy). Dimensions of i-vector and its transformed version (L and J) were fixed to 100
and 40 respectively. These values were chosen, since in the previous two experiments
they gave the smallest EER. The obtained EERs are presented in Fig. 3 along with the
EERs for the best systems in the second set of experiments, for an easier comparison.
One can see that in i-vector approach static features are sufficient for speaker recog-
nition. The additional decrease of EER in this case can be explained by robust feature
extraction in reduced feature space.

Fig. 2. EERs of different systems based on i-vectors but input features are not normalized by
CMVN. Input features are 19 MFCC, log energy, and theirs first and second time derivatives.
Dimensions of an i-vector (L) and a vector after LDA and PLDA (J) are coded by colors (L/J).
Horizontal black line represents EER level for covariance matrix based approach

Fig. 3. EERs of different systems based on i-vectors where the input features are 19 MFCC, log
energy, and theirs first and second time derivatives, only 19 MFCC and 18 MFCC. In the all
cases CMVN is not applied
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The goal of the last set of experiments was to explore the gain obtained by
G-PLDA. The performance of the best systems in the previous two set of experiments
were evaluated, using cosine distance between features instead of the G-PLDA score.
The results were presented in Table 1. One can see that G-PLDA gives significant
decrease of EER. Currently, we have not had experimentally proved explanation for
this. We assume that in the case of cosine distance, only information about closest
target speaker is used, and G-PLDA score exploits information about other target
speakers indirectly through U and Re matrices.

5 Conclusions and Further Research

In this paper, we presented results of speaker recognition in case of small amount of
training data (about 4 s to train model, and 36 min to estimate parameters of UBM,
i-vector transformation matrix, LDA and G-PLDA). We have shown that the number of
parameters being typical in NIST challenges is high and these models have modest
accuracy (their EERs are greater than the EER of the simpler one system based on
covariance matrix). Reduction of the number of parameters of i-vectors decrease EERs,
and these i-vector based systems outperform the system based on covariance matrix.

Additionally, the experiments showed that CMVN is not good approach in case of
single channel, since it significantly deteriorates system performance. Furthermore, this
study shows that MFCCs (without their delta and delta-delta features) contain all
information about speaker, and it is a good approach to reduce dimensionality in case
of scarce training data.

The experiments proof that G-PLDA outperforms the systems with score based on
cosine distance. We assume that inclusion of the relative score to the other target
speaker can improve the performance of cosine distance.

We plan to extend these tests to other publicly available databases, with more
speakers and in different languages, to make the results of the study more relevant.
Additionally, the extension to new databases mean more data for the training of UBM
and estimation of transformation matrices, as well as application of algorithms based on
deep neural networks.
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part of the research project TR 32035 and EUREKA project DANSPLAT (project ID 9944).

Table 1. EERs of different systems based on i-vectors that use different input features and
different score criteria

Feature Score Number of component in UBM
16 32 64 128 256 512

18 MFCC G-PLDA 6.08 4.87 5.49 7.10 9.26 12.41
Cosine 12.73 11.55 9.57 10.88 10.17 10.31

19MFCC_E_D_A G-PLDA 7.33 6.54 6.79 9.21 13.18 20.29
Cosine 13.43 10.71 8.90 10.25 11.21 13.63
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Abstract. Efficient methods for the similarity search in word databases
play a significant role in various applications such as the robust search or
indexing of names and addresses, spell-checking algorithms or the mon-
itoring of trademark rights. The underlying distance measures are asso-
ciated with similarity criteria of the users, and phonetic-based search
algorithms are well-established since decades. Nonetheless, rule-based
phonetic algorithms exhibit some weak points, e.g. their strong language
dependency, the search overhead by tolerance or the risk of missing valid
matches vice versa, which causes a pseudo-phonetic functionality in some
cases. In contrast, we suggest a novel, adaptive method for similarity
search in words, which is based on a trainable grapheme-to-phoneme
(G2P) converter that generates most likely and widely correct pronun-
ciations. Only as a second step, the similarity search in the phonemic
reference data is performed by involving a conventional string metric
such as the Levenshtein distance (LD). The G2P algorithm achieves a
string accuracy of up to 99.5% in a German pronunciation lexicon and
can be trained for different languages or specific domains such as proper
names. The similarity tolerance can be easily adjusted by parameters
like the admissible number or likability of pronunciation variants as well
as by the phonemic or graphemic LD. As a proof of concept, we compare
the G2P-based search method on a German surname database and a
telephone book including first name, surname and street name to simi-
larity matches by the conventional Cologne phonetic (Kölner Phonetik,
KP) algorithm.

Keywords: Phonetic similarity search · Trainable G2P · Levenshtein
distance

1 Introduction and Previous Studies

Similarity search is a well-established discipline in information retrieval, includ-
ing phonetic or pseudo-phonetic similarity search in name databases [6]. The
practical use of rule-based methods such as Soundex [9], its derivatives or similar
methods like Cologne phonetics [15] e.g. in the Automated Information Process
c© Springer International Publishing AG 2017
A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 46–55, 2017.
DOI: 10.1007/978-3-319-66429-3 4
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(Automatisiertes Auskunftsverfahren, AAV) [16,17] between German authorities
and telecommunication providers poses some challenges – the similarity search
is highly language and domain dependent, does not necessarily match the sub-
jective distance metric of professional users and involves false-positive and false-
negative matches, i.e. overhead or lack of relevant data. As an example within
a matching list of German surnames, “Meier”, “Maier” and “Meyer” would be
relevant (true-positives), whereas “Müller” is a false-positive. Vice versa, in a
rejection list, “Maler” would be a true-negative, “Mayer” a false-negative, and
the categorization of the surname “Mai” is depending on the users’ metric.

Beside phonetic techniques, further approaches for similarity search can be
used, such as regular expressions or distance measures between letter sequences.
A collection of algorithms can be found in different projects, e.g. Stringmetric [8],
clj-fuzzy [14] or Talisman [20]. Qualitative aspects of such methods are recently
discussed in comparative studies, e.g. for Slavic languages or Hindi [10,18,19],
but only a few studies deal with the quantitative comparison and appropriateness
of the distance metric [11,24]. In [11], a small test set of 25 words showed success
rates of 0.88 for Soundex and 0.72 for Metaphone [12]. Sophisticated experiments
on five methods in a large database [24] resulted in precisions (level of usability)
from 0.36 (Soundex-6) to 0.47 (MidEPhone-6) and in recalls (level of complete-
ness) from 0.56 (Soundex-6) to 0.81 (MidEPhone-6), underlining the mentioned
challenges. Additionally, widely rule-based similarity search paradigms contrast
the success of learning methods in language and speech processing. In [3], Double
Metaphone [13] was used for pre-processing in a speech recognizer, demonstrat-
ing the potential of phonetic similarity indexing in trainable systems.

Addressing the precision problem, we propose a novel method starting with
a more adequate grapheme-to-phoneme (G2P) conversion known from speech
synthesis. Although G2P algorithms were also rule-based initially, meanwhile
trainable, e.g. neural network-based algorithms as in [5] have been established.
To enable variance in the search strings and to achieve necessary recall rates,
we then suggest an edit-distance measure such as the Levenshtein one [7] in
a second stage. Section 2 presents the databases, phonetic algorithms, distance
measures and our experimental setup. In Sect. 3, we summarize and discuss the
experimental results, followed by the conclusion and outlook in Sect. 4.

2 Methods

2.1 Data

For legal and commercial reasons, we could not use real-world data e.g. from
telecommunication providers and thus analyzed following accessible databases:

– Pronunciation lexicon CELEX-2 [1] with 51,728 German lemmas and 365,530
inflected forms as a phonetic reference and to train the G2P algorithm,

– Family names from a Web collection of 69,170 death certificates (in German
“Totenzettel”, TZ) [22] for a variance analysis in proper names,
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– Subsets of the telephone book 2016–2017 (TB) [21] from the four German
municipalities Hesseneck, Breisach, Spremberg and Berlin-Neukölln with min-
imal 194 and a maximum of 8,042 entries including regional and loanword
peculiarities for proper name statistics.

The name databases TZ and TB do not include any phonetic transcription
for analysis, training or testing of similarity search. To avoid both, inaccurate
automatic or elaborate manual annotations within the reported survey, the stan-
dard pronunciation lexicon CELEX-2 for German is used, which is also available
in other major languages, facilitating a multilingual transfer of our findings. The
TB subsets are random in the following intention:

– Hesseneck, smallest municipality in Hessen as a village in German’s center,
– Breisach, city in the border area with France including French names,
– Spremberg, Sorbian settlement close to Poland with Slavic loanwords,
– Berlin-Neukölln, multicultural neighborhood e.g. including Turkish names.

2.2 Search Principle and Algorithms

Cologne Phonetics (in German Kölner Phonetik, KP) was suggested by Pos-
tel [15] to index phonetically similar words during the search in German personal
data. KP works alike Soundex, whereby the graphemes are coded into digits from
0 to 8 with regard to their context. The maximal context is 1 (neighbored letter).
Contrary to Soundex, the KP code does not have a limited length. Repeated sym-
bols (code digits) and vowels (code 0) are deleted in a second step. With regard
to minor shortcomings in the original version and existing implementations, we
use a slightly modified version of KP, shown in Table 1.

Considering the 23 rules, the calculation effort is low but the indexing involves
a weak causality which comes along with a significant overhead of potential
similarity matches like in Soundex. The KP code for the example name “Müller-
Lüdenscheidt” results to: 60550750206880022 → 6050750206802 → 65752682.

Trainable Grapheme-to-Phoneme Converter. In text-to-speech synthesis,
training-based algorithms for grapheme-to-phoneme (G2P) conversion such as
[4,5] are meanwhile well-studied, and they are simplifying the adaptation to
new languages or application domains. Subsequently, we intend to use G2P in
the optimization of phonetic similarity search and indexing. G2P algorithms
are aiming at the generation of the most likely phoneme sequence for a given
grapheme (letter) sequence including additional information (language, lexicon,
syllable limiters, real-world knowledge), usually based on the Speech Assessment
Methods Phonetic Alphabet (SAMPA) or its derivatives [23]. Many languages
like German involve a mapping from m letters to n phonemes, i.e. there is no 1:1
mapping, cf. the German words ”Schutz” → [S U ts] versus ”Axt” → [a ks t].

In this study, we use the trainable Sequitur G2P system from Bisani and
Ney 2008 [2]. With appropriate training data – usually a few 10,000 phonetically
annotated lexicon entries – a high transcription quality with word error rates
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Table 1. Kölner Phonetik (KP) – slightly modified version, based on [15]

Grapheme Context Code
A, E, I, J, O, U, Y

0
H

without context (isolated word ”‘H”’)
any context (non-empty) –

B
1

P not before H
D, T not before C, S, Z 2
F, V, W

3
P before H
G, K, Q

4
C

in initial sound before A, H, K, L, O, Q, R, U, X
before A, H, K, O, Q, U, X except after S, Z

X not after C, K, Q 48
L 5
M, N 6
R 7
S, Z

8
C

after S, Z
in initial sound, except before A, H, K, L, O, Q, R, U, X
not before A, H, K, O, Q, U, Y

D, T before C, S, Z
X after C, K, Q

(WER) of less than 1% can be achieved. We trainined the Sequitur G2P with
the pronunciation lexicon CELEX2 and reached an acceptable WER <0.5%
in the test probe, which enables an alternative baseline technology for a really
sound-related indexing versus pseudo-phonetic methods like Soundex or KP. The
challenges in this approach are posed by:

– Coding errors in proper names with deviation from standard pronunciation
(e.g. by cross-lingual effects),

– Obtaining the appropriate amount of training data for a new application
domain or language including manual corrections,

– The higher calculation complexity in both, training and working phases, com-
pared to rule-based methods like Soundex or KP.

Table 2 demonstrates typical G2P transcription examples extended by the Eng-
lish name “Britney Spears” for comparison and sorted by their probabilities P
that serve as our confidence measure for the concerning phoneme sequence. The
obviously optimal transcription results are marked green.

For the names “Meier” and “Maier” only a single SAMPA result is generated
[m aI 6], also reflected by the high confidence (probability P0,meier=0.9987 and
P0,maier=0.9587 respectively). Regarding “Mayer” the phonetically preferred
variant [m aI 6] ranks only at 2, but [m aI @ r] at rank 1 and the following
variants are also acceptable. The name “Meyer” leads to 25 transcription propos-
als. The best variant also reaches rank 1 but with a low probability of P0,meyer

= 0.1381. This result corresponds with the fact that the regarding grapheme
sequence “Meyer” is rather untypical in standard German and not part of the
training data. Although the English name “Britney Spears” was not included in
the training data, our trained G2P converter produces logical output with regard
to German rules such as [b r I t n aI] or [b r I t n i:] as well as [S p e: a: r s].
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Table 2. Selected G2P results including the probability of the variants

Name Variant Probability G2P result

Meier 1 0.9987 m aI 6
Maier 1 0.9587 m aI 6
Mayer 1 0.4502 m aI @ r

2 0.3560 m aI 6
3 0.0422 m aI e: r

Meyer 1 0.1381 m aI 6
2 0.1157 m i: 6
.. .. ..
25 0.0065 m E Y e: r

Britney 1 0.2783 b r I t n aI
2 0.2331 b r I t n i:
3 0.0731 b r I t n e: Y

Spears 1 0.9384 S p e: a: r s

Levenshtein Distance. The names “Meier” and “Maier” have an identical KP
code of 67. The most probable G2P result [m aI 6] is identical too, which leads to
a similarity decision in both pathways. In contrast, “Mayer” and “Neuer” (also
generating KP codes of 67) result in the different phoneme sequences [m aI @ r]
(most probable G2P result) and [n OY 6]. In this example, KP is covering three
name variants correctly. The match “Neuer” can be considered as false-positive
in the similarity search. G2P works phonetically correct and does not generate
this overhead but finds only the first two variants. Thus it requires a certain tol-
erance scheme by an appropriate distance metric to ignore slight variations in
the phoneme string if necessary (like the listeners’ tolerance with regard to the
speakers’ pronunciation). In literature, several distance measures are proposed.
For this study, we selected the robust and demonstrative Levenshtein distance
(LD) [7] – the minimal number of insertions, deletions or substitutions to con-
vert a string into another. Identical strings lead to a LD of zero. The LD can be
calculated recursively, whereby u and v denominate the strings:

m = |u|, n = |v|
D0,0 = 0, Di,0 = i, D0,j = j

Di,j = min

⎧
⎪⎪⎨

⎪⎪⎩

Di−1,j−1 +0 if ui = vi
Di−1,j−1 +1 substitution
Di,j−1 +1 insertion
Di−1,j +1 deletion

1 ≤ i ≤ m, 1 ≤ j ≤ n.

If we accept in our previous example a Levenshtein distance LD ≤ 2 among the
three phoneme strings [m aI 6], [m aI @ r] and [n OY 6], all four names “Meier”,
“Maier”, “Mayer” und “Neuer” would be considered similar (i.e. receiving the
same index), and KP and G2P-based results were identical. On graphemic string
level (letter sequence) the distance measure leads to LD = 1 . . . 3 however.
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A combination of the described G2P algorithm from m most likely phoneme
outputs with a phonemic LD of n is named G2P[m][n] method in the following
e. g. G2P10, G2P11 or G2P32.

3 Experimental Results and Discussion

3.1 Case Examples from TZ Data

The rule-based KP algorithms delivers the code 04767 for the random sur-
name “Achorner”, which implies 11 matches across the 69,170 entries in the TZ
database: ”Achhorner”, ”Achrainer”, ”Achreiner”, ”Aigriner”, ”Eckkramer”,
”Hochgerner”, ”Hochrainer”,”Hochreiner”, ”Jackermeier”, ”Jägermayr” and
”Jägermeier”.

A subjective assessment would claim three similarity matches (27.3%, marked
green) as true-positive in a narrow sense. Two further matches show an eventu-
ally acceptable similarity (18.2%), and six names (54.5%, marked red) are clearly
false-positive with a significant deviation, unseen their identical KP code.

Another random, one-syllable surname “Münz” shows even 66 KP matches
in TZ with an estimated false-positive overhead of 78.8%. The corresponding
low precision hints at the weak causality of the KP method. In this context,
the completeness of the matches (recall rate) is also questionable, but a manual
recall measure over the whole TZ database would be elaborate.

3.2 Influence of Phonetic Variants and Phonemic Metric

KP and Soundex (as reference for non-appropriate German indexing) are tested
versus different G2P[m][n] variants on the phonemic side. KP produces numerous
matches in the TZ data with a maximum of 310 – a remarkable portion of 27.2%
names has 50 or more matches, in Soundex even 35.1%. G2P31 generates far less
matches (5.2% with ≥50 matches). The most intolerant G2P10 method finds no
match for 88.7% of the names, which seems not functional for a typical user
metric or application. The frequency distributions are reflected in Fig. 1.

3.3 Experiments on Graphemic Metric

Beside phonemic measures, the similarity metric can be also considered on the
side of the letter sequence (grapheme string). The G2P10 variant without phone-
mic tolerance (LD = 0) creates a maximal graphemic LD of 5 over all matches
in the TZ data, e.g. between the matching names “Cox” and “Koksch”. G2P11
allows graphemic distances up to 6 like in “Berthel” versus “Schärtel”, while KP
matches reach a maximal distance of 12 as in “Einzinger” versus “Handschuh-
macher” with almost no similarity. Figure 2 illustrates the absolute frequency
of matches over all TZ entries as a function of the graphemic Levenshtein dis-
tance and the search method. In KP and Soundex, the maximum of matches is
corresponding with a graphemic LD = 4, while G2P31 achieves the maximum
at LD = 2.
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Fig. 2. Absolute frequency of matches in the TZ data as a function of the graphemic
Levenshtein distance in the selected interval 1. . . 10

Depending on users’ metric and typical word lengths, we expect a distribution
optimum in between (LD = 2 . . . 4), which characterizes a large proportion of the
KP and Soundex results as potential overhead. Both, phonemic and graphemic
plots support the concept of our proposed G2P-based method with regard to
a specific training and the adaptivity. For an optimization, further G2P[m][n]
variants need to be analyzed, which has not been the target of the current study.

3.4 Case Examples from TB Data

Table 3 demonstrates the search of two frequent first names in the TB sub-
set Berlin-Neukölln. For the examples “’Klaus” or “Jürgen” and contrary to
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Table 3. Examples of similarity search in first names of the TB subset Berlin-Neukölln

Name Method Precision Matches

klaus KP 0.500 claus selekhaslügsellig klaus klaus o
G2P10 1.000 claus klaus
G2P11 1.000 claus klaus klaus o
G2P12 0.600 blas claus keles klaus klaus o

nemücrenacre005.0PKnegrüj negrüjnegröj
G2P10 1.000 negrüj
G2P11 1.000 negrüjnegröj
G2P12 1.000 negrüjnegröj

negahlesrügnakrügnetlügnedrogneguenemrac590.031P2G
jochen julien negröj nröj negrüj karen maren ..

the G2P1[0..2] variants, the KP method delivers confusions with other foreign
(e.g. Turkish) names. G2P13 also creates matching overhead, although some vari-
ants appear plausible, such as “Gürkan” versus “Jürgen”. Table 4 presents two

Table 4. Examples of similarity search in surnames of the TB subset Spremberg

Name Method Precision Matches

nowotnik KP 1.000 nowothnick nowotnig nowotnik
G2P10 1.000 nowothnick nowotnik
G2P11 1.000 nowothnick nowotnig nowotnik
G2P12 0.600 nothnick nothnik nowothnick nowotnig nowotnik
G2P13 0.571 nowotnick nothnick nothnik nowothnick

nowotnig nowotnik sarodnik
noack KP 0.143 maak macha mank manka manke mikucki moch

ekcümginnömahcumkcom noack nohke nuck
G2P10 1.000 noack
G2P11 1.000 noack noatschk
G2P12 0.222 back bork flack koal koall koark koßack nath noack

noatschk noel nohke nowak nowka nuck roick ..

Table 5. Street name matches by G2P12 in TB subsets (graphemic LD in parenthesis)

Street name Matches

am werd am wald(2), werd(3)
amselweg angelweg(2)

)1(neträgnednineträgnedna
birkenweg finkenweg(2), kirchenweg(3)
breisacher straße neu-breisacher-straße(5)
buckower weg muckrower weg(2)
burgstraße bergstraße(1), erkstraße(3), turnstraße(2), werkstraße(3)
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further examples for Slavic surnames. All methods deliver reasonable matches
but the G2P-based variants outperform KP in terms of precision and recall.
Beyond the true-positive matches (marked bold), further variants are plausible
and can be considered also true, depending on the assumed similarity metric.
Complementary, Table 5 shows some examples of matching street names in the
TB subsets including the resulting graphemic LD in parenthesis.

4 Conclusions and Outlook

We achieved a comparable performance in both, unstructured surname data (TZ)
and selected telephone book entries (TB). The rule-based KP method has a
good benefit-cost ratio. Nevertheless, it can not be adjusted and creates more
false-positive matches, i.e. overhead e.g. in loanwords. The proposed G2P-based
method involves extensive training data and calculation complexity in the work-
ing phase, but the variants enable flexibility regarding a given distance met-
ric. The completeness of the matches (recall measure) was not surveyed in this
contribution.

The further research should be mainly dedicated to an objective, user-
oriented or application-driven, similarity metric, which might combine amongst
others phonemic, graphemic or even perceptive features, bearing in mind differ-
ent e.g. weighted-distance measures.

Acknowledgements. We would like to thank Haya Hadidi and Tristan Münz
from the Federal Network Agency of Germany (Bundesnetzagentur) for initiating
this research and their practical hints on AAV procedures. Further thanks goes to
Viktor Iaroshenko from HfT Leipzig and to Gabor Pintér from Kobe University in
Japan for their project support and advice.

References

1. Baayen, R., Piepenbrock, R., Gulikers, L.: CELEX2 lexical database of German
(Version 2.0). Linguistic Data Consortium Philadelphia (1995). https://catalog.
ldc.upenn.edu/ldc96l14. Accessed 12 Oct 2016

2. Bisani, M., Ney, H.: Joint-sequence models for grapheme-to-phoneme conver-
sion. Speech Commun. 50(5), 434–451 (2008). https://www-i6.informatik.rwth-
aachen.de/web/Software/g2p.html, gPL software

3. D’Haro, L.F., Banchs, R.E.: Automatic correction of ASR outputs by using
machine translation. In: Interspeech 2016, San Francisco, pp. 3469–3473 (2016).
http://dx.doi.org/10.21437/Interspeech.2016-299

4. Hain, H.-U.: Graphem-Phonem-Konvertierung, Patent DE 100 42 944 C2 (2003).
(in German)

5. Hain, H.-U.: Phonetische Transkription für ein multilinguales Sprachsynthesesys-
tem. PhD thesis, TU Dresden (2004). (in German)

6. Kessler, B.: Phonetic comparison algorithms. Trans. Philol. Soc. 103(2), 243–260
(2005)

7. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Dokl. Akad. Nauk SSSR 163(4), 845–848 (1965). (in Russian)

https://catalog.ldc.upenn.edu/ldc96l14
https://catalog.ldc.upenn.edu/ldc96l14
https://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
https://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
http://dx.doi.org/10.21437/Interspeech.2016-299


A Trainable Method for the Phonetic Similarity Search 55

8. Madden, R.: (2013). https://github.com/rockymadden/stringmetric/. Accessed 03
Apr 2017

9. Odell, M.K., Russell, R.C.: US patents 1 261 167 and 1 435 683 (1918, 1922).
https://en.wikipedia.org/wiki/Soundex

10. Pardeshi, J.B., Nandwalkar, B.R.: Survey on rule based phonetic search for slavic
surnames. J. Comput. Technol. Appl. 7(1), 65–68 (2016)

11. Parmar, V.P., Kumbharana, C.K.: Study existing various phonetic algorithms and
designing and development of a working model for the new developed algorithm
and comparison by implementing it with existing algorithms. J. Comput. Appl.
98(19), 45–49 (2014)

12. Philips, L.: Hanging on the metaphone. J. Comput. Lang. 7(12), 39–44 (1990)
13. Philips, L.: The double metaphone search algorithm. C/C++ Users J. 18(6), 38–43

(2000)
14. Plique, G.: (2014). http://yomguithereal.github.io/clj-fuzzy/. Accessed 03 Apr

2017
15. Postel, H.J.: Die Kölner Phonetik. Ein Verfahren zur Identifizierung von Perso-

nennamen auf der Grundlage der Gestaltanalyse. IBM-Nachrichten 19, 925–931
(1969). (in German)

16. Interface for data exchange in automated information process according to §112
TKG between Federal Network Agency and beneficiary (SBS, in German). Version
1.0, 27 October (2015). https://www.bundesnetzagentur.de/DE/Sachgebiete/
Telekommunikation/Unternehmen Institutionen/Anbieterpflichten/Oeffentliche
Sicherheit/AutomatisiertesAuskunftsverfahren/Automatisiertesauskunftsverfahren
-node.html. Accessed 10 Dec 2016

17. Interface for data exchange in automated information process according to Section
112 TKG between Federal Network Agency and obligor (SBV, in German).
Version 1.1 (Draft), 04 January (2016). https://www.bundesnetzagentur.de/DE/
Sachgebiete/Telekommunikation/Unternehmen Institutionen/Anbieterpflichten/
OeffentlicheSicherheit/AutomatisiertesAuskunftsverfahren/Automatisiertesaus
kunftsverfahren-node.html. Accessed 10 Dec 2016

18. Shah, R., Singh, D.K.: Analysis and comparative study on phonetic matching tech-
niques. Int. J. Comput. Appl. 87(9), 14–17 (2014)

19. Shah, R., Singh, D.K.: Improvement of Soundex algorithm for Indian language
based on phonetic matching. Int. J. Comput. Sci. Eng. Appl. (IJCSEA) 4(3), 31–39
(2014)

20. http://yomguithereal.github.io/talisman/phonetics/. Accessed 03 Apr 2017
21. Das Telefonbuch Deutschland. https://www.telefoncd.de/DasTelefonbuch-CD-

mit-Rueckwaertssuche.html (2016). German phone book DVD 2016–17, data sta-
tus 01 September 2016

22. Supraregional collection of German family names from death certificates. Verein
für Computergenealogie, Erkrath (2016). www.familienanzeigen.org/totzfanamen.
php. Accessed 12 Oct 2016

23. Wells, J.: SAMPA - computer readable phonetic alphabet (1997). http://www.
phon.ucl.ac.uk/home/sampa/. Accessed 10 Jan 2017
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Abstract. This pilot study investigates the added acoustic and per-
ceptual effect of cognitive impairment on vowel articulation precision in
individuals with Parkinson’s Disease (PD). We compared PD patients
with and without Mild Cognitive Impairments (MCI) to elderly healthy
controls on various acoustic measurements of the first and second for-
mants of the vowels /i, u, a:, I, U, a/, extracted from spontaneous speech
recordings. In addition, 15 näıve listeners performed intelligibility ratings
on segments of the spontaneous speech. Results show a centralization of
vowel formant frequencies, an increased formant frequency variability
and reduced intelligibility in individuals with PD compared to controls.
Acoustic and perceptual effects of cognitive impairments on vowel artic-
ulation precision were only found for the male speakers.

Keywords: Parkinson’s Disease · Hypokinetic dysarthria · Mild cog-
nitive impairments · Vowel articulation · Acoustic analysis · Speech
intelligibility

1 Introduction

Parkinson’s Disease (PD) is a complex neurodegenerative disease that is char-
acterized by motor impairments [1,5]. However, a growing body of research
shows that non-motor symptoms are common and clinically significant features
in PD as well. These non-motor symptoms include first and foremost Mild Cog-
nitive Impairment (MCI) and dementia. Cognitive impairments are prevalent in
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approximately 30% of the individuals with PD [1,12] and have been found to sig-
nificantly contribute to disability and reduced quality of life in PD patients. The
pattern of cognitive deteriorations in PD is heterogeneous but typically comprises
memory-based impairments, executive dysfunctions, visual-spatial impairments
and attentional deficits [10]. Although there is evidence indicating a positive cor-
relation between motor and cognitive symptoms [11], to the best of our knowl-
edge no study has yet investigated which effect (if any) cognitive impairments
have on speech motor disorders in PD.

Up to 90% of the individuals with PD manifest the speech motor disorder
referred to as hypokinetic dysarthria. Apart from respiratory, phonatory and
prosodic abnormalities a common feature of dysarthria in PD is imprecise vowel
articulation. Individuals with PD are limited in the execution of articulatory
movements. Accordingly, voluntary motions of lips, jaw and tongue tend to be
smaller and slower than that of healthy controls [3]. A typical consequence is
articulatory “undershooting” [3], i.e. the reduced ability to achieve a certain
vowel target. As a result, vowels are produced more centralized and become less
distinct from each other. This contributes to reduced speech intelligibility [8].
A common method to represent this phenomenon is with the vowel space area
(VSA) based on F1/F2 values of the corner vowels. However, findings on the
VSA have been inconsistent. While the VSA separated dysarthric from non-
pathological speech in some studies [7], it yielded no significant differences in
other studies [17,20]. Ratio based vowel measurements such as the F2 ratio of
the vowels /i/ and /u/ or the vowel articulation index (VAI) [14,16] have been
found to be more sensitive towards speech impairments and less sensitive towards
interspeaker variability than the VSA [16,18]. Apart from vowel space metrics,
measurements of formant frequency overlap and a speaker’s relative stability of
reaching a vowel target seem to account for speech intelligibility as well [8].

Speech motor control requires more attention in individuals with PD than
in healthy individuals and it is more likely to deteriorate as the complexity of
a verbal task increases [4,19]. Consequently, the characteristics of dysarthria
differ depending on the type of verbal task that is performed [13,15]. In particu-
lar spontaneous speech shows significantly different phonetic features compared
to non-spontaneous speech in individuals with PD [6]. Presumably due to the
attention devoted to cognitive and linguistic processing, the control of articula-
tory movements decreases during spontaneous speech. A recent study by Rusz
et al. [15] suggests that spontaneous speech is preferable to other speech tasks in
detecting imprecise vowel articulation in Czech speakers with PD. Since acoustic
studies on articulatory performance of PD during spontaneous speech are scarce
we aimed to replicate Rusz et al.’s findings for German speakers. In addition, we
were interested in whether cognitive impairments would influence vowel articu-
lation precision in PD. One of the features of cognitive impairments in PD is a
reduced attention capacity. We therefore hypothesize that the control of articu-
latory precision during spontaneous speech is more compromised in individuals
with PD and additional cognitive impairments than in individuals with PD only.
We expect this pattern to be reflected by acoustic vowel measurements.
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This study addresses three research questions: (1) Are the results from Rusz.
et al. replicable for German, i.e. is spontaneous speech sensitive enough to
acoustically detect vowel articulation imprecision in PD? (2) Which acoustic
measurement is the most efficient in separating dysarthric from non-pathological
speech? (3) Does MCI in PD have an additional acoustic and/or auditory per-
ceivable effect on vowel articulation precision in spontaneous speech?

2 Methods

2.1 Participants

A total of 23 German native speakers participated in this study. The participants
were split into three groups. The first group included 8 individuals who were
clinically diagnosed with idiopathic PD (hereafter PD group). None of these
individuals exhibited cognitive impairments as assessed with the Minimal Mental
State Examination (MMSE). The second group was comprised of 6 individuals
clinically diagnosed with idiopathic PD and MCI (hereafter MCI group). The
third group was made up of 9 elderly healthy controls (hereafter HC group)
without a history of neurological disorders. Table 1 summarizes the demographic
data of each group.

All participants gave their written informed consent to the speech task and
the recording procedure.

Table 1. Summary of group demographics. Age and duration of disease are given in
years

PD MCI HC

Male: Female 5:3 4:2 5:4

Age M 76 81.8 74

SD 6 2.5 5.9

Duration of disease M 12 5.7 -

SD 4.1 2.4 -

MMSE M 29 24.5 29.8

SD 1 1.9 0.4

2.2 Speech Task and Recording Procedure

Participant monologues were audio-recorded during a conversational interview
with open-ended questions on a familiar topic such as hobbies, daily routines,
family or prior jobs. Recordings were made with a Zoom H2 Recorder with
16-bit quantization and a sampling frequency of 44.1 kHz. The recordings were
administered in an identical manner for each participant.
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2.3 Annotation

For each monologue the occurrence of the three corner vowels /a:, i, u/ and
their respectively short or lax counterparts /a, I, U/ was manually segmented
and annotated based on visual observation of the waveform and the wideband
spectrogram in Praat [2]. All annotation work was done by the same trained Ger-
man native speaker to keep segmentations and annotation consistent. Given the
characteristics of continuous speech we established criteria according to which
suitable vowels were selected:

1. Only vowels occurring in intelligible, phonated words were annotated.
2. Only vowels with a stable part of at least 40 ms were selected. This stable

part was the central part of each vowel, starting at least one period after
vowel onset and ending one period before vowel offset.

3. Vowels preceded by a voiced sound were only selected if that sound matched
the respective vowel’s place of articulation, to ensure that formant transitions
and co-articulation did not affect the vowel.

4. Vowels immediately following nasals, glides or other vowels were not selected.

2.4 Acoustic Analysis

Acoustic measures were obtained with the speech-analysis software Praat [2].
Automatic scripts were run to determine the formant frequencies of F1 and F2
in Hertz (Hz) from the entire duration of the stable part of each selected vowel.

With the obtained formant frequencies we computed the following five vowel
measurements: (1) vowel formant contrasts for each speaker, (2) F1 and F2
variability within each speaker, (3) the vowel space area (VSA), (4) the vowel
articulation index (VAI) and (5) the F2 ratio of the vowels /i, I/ and /u, U/.

To measure the vowel contrast for each speaker individually, we run ANOVAs
and subsequent post hoc comparisons with the dependent variables F1 and F2
frequencies and vowel as independent variable. This measurement serves as an
index of whether the formant frequencies of different vowels are distinct or not.
We expected F1 frequencies to differ between the vowels /a, a:/ and /i, I, u, U/
and F2 frequencies between /i, I/ and /a, a:, u, U/. Accordingly, we expressed
this measurement as a ratio of expected contrasts to observed contrasts, with a
ratio of 1.0 indicating full contrasts between vowels and a lower ratio indicating
reduced vowel contrasts.

The F1 and F2 variabilities were computed for each speaker individually as
the mean standard deviation of each vowel respectively. According to Kim et
al. [8] this measurement reflects a speaker’s relative stability of achieving vowel
targets. For VSA, VAI and the F2 ratio the formant frequencies were averaged
over vowel and speaker. VSA is expressed as the following formula [9]:

V SA = 0.5×|F1i×(F2a−F2u)+F1a×(F2u−F2i)+F1u×(F2i−F2a)|. (1)

The VAI calculation was based on that of Roy et al. [14]:

V AI =
F1a + F2i

F1i + F1u + F2a + F2u
. (2)



60 M. Strinzel et al.

2.5 Intelligibility Rating

As a rough measure of speech impairment severity, the intelligibility of each
participant’s speech was rated by 15 näıve listeners. The listeners were German
native speakers, between 20 and 40 years of age who had no training in phonetics
or background related to speech pathologies.

For the intelligibility ratings two words and two short phrases were randomly
selected from each monologue resulting in 46 words and 46 phrases in total. Both
words and phrases included at least one of the selected vowels. The listeners were
instructed to rate the intelligibility of each word and phrase on a scale from 1
(very poor intelligibility) to 6 (very high intelligibility). No time restrictions were
imposed on the rating tasks and listeners were allowed to listen to the words and
phrases as many times as needed.

3 Results

Table 2 summarizes the results of the vowel measurements and averaged intel-
ligibility rating scores for each group divided by gender. For the male groups
we found the predicted pattern of vowel articulation precision: the MCI group
yielded lower values for VSA, VAI, F2 ratio and formant frequency contrasts
than the PD and the HC group. As expected, higher values were found in the
formant frequency variabilities for the MCI group compared to the PD and HC
group. The vowel measurement results of the female groups are more ambigu-
ous: the female MCI group scored lowest only in the VAI. In all other measures,
except for the F2-Contrast, the PD group performed poorest among the female
participants.

Kruskal-Wallis rank sum tests for non-parametric data were conducted to
determine group differences across the data. The overall comparison of individ-
uals with PD (including both PD group and MCI group) and healthy controls
yielded significant differences for the measurements VAI (H(2) = 4.6, p < .05)
and F1-Contrast (H(2), p < .05). When MCI was included as a factor subse-
quent post hoc tests showed a significant difference between the F2-Variability
values of the MCI group and the healthy controls. To assess how this finding was
related to gender differences, we ran separate analyses for the male and female
participants.

All male participants’ vowel measurements (except for the F1-Variability
measures) confirm the expected pattern of decrease of vowel space, formant
contrasts and stability of achieving vowel targets in the MCI group compared to
the PD and HC group (see Fig. 1). This finding is further reflected by a lower
intelligibility score for the MCI group. Kruskal-Wallis tests were run to assess
the significance of the observed trend. Significant differences were found for the
vowel measurements VAI (H(2) = 6.2, p < .05), F1-Contrast (H(2) = 6, p < .05)
and F2-Variability (H(2) = 8, p < .05). Subsequent post hoc analyses revealed
that differences between the MCI group and the HC group accounted for the
significance. The PD group did not differ from the MCI or the HC group.
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Table 2. Summary of vowel measurements for each group divided by gender, where
F2-ratio is ratio of /i/ and /u/, F1-cntr and F2-cntr are F1 and F2 contrasts (as ratios),
F1-var and F2-var are F1 and F2 variabilities (mean(sd)), I-scores is intelligibility scores

Vowel measurements I-Scores

Group VSA VAI F2-ratio F1-cntr F2-cntr F1-var F2-var

Male HC M 105105 0.86 1.76 1 0.93 50 162 5.2

SD 63348 0.09 0.42 0 0.15 4.5 41

PD M 60707 0.74 1.43 0.83 0.7 48 139 4.1

SD 76967 0.09 0.46 0.24 0.33 12 29

MCI M 42742 0.72 1.35 0.38 0.56 118 297 3.2

SD 19217 0.04 0.12 0.49 0.36 116 95

Female HC M 246025 1.00 2.42 1 1 42 130 5.3

SD 30710 0.04 0.23 0 0 5.5 31

PD M 194988 0.96 2.13 0.79 1 68 227 4.3

SD 97948 0.11 0.57 0.36 0 36 44

MCI M 221496 0.94 2.39 1 1 48 167 4.1

SD 89311 0.02 0.33 0 0 7.4 31
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Fig. 1. Male vowel space areas. VSAs with dotted lines reflect the PD group, VSAs
with scattered lines reflect the MCI group and solid lined VSAs the HC group

For the female participants, however, the pattern of vowel measurement
results was less consistent (see Fig. 2). Although the intelligibility scores for
the three female groups show the expected trend, with the MCI group being
the least intelligible one, the PD group performed poorest in almost all vowel
measurements (expect for VAI and F2-Contrast). Accordingly, the significant
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Fig. 2. Female vowel space areas. VSAs with dotted lines reflect the PD group, VSAs
with scattered lines reflect the MCI group and solid lined VSAs the HC group

difference found for F2-Variability (H(2) = 6.2, p < .05) was between the PD
group and the HC group. No difference was found for the MCI group.

Intelligibility ratings between groups differed as expected: the intelligibility
of MCI group was rated lowest and the intelligibility of control participants
highest. Kruskal-Wallis tests and subsequent post hoc tests showed significant
differences (p < .05) between the HC and MCI group and between the HC and
PD group. No correlation was found between intelligibility and vowel measures.

4 Discussion

The purposes of this pilot study were threefold: (1) we aimed to assess the util-
ity of spontaneous speech as a task to detect imprecise vowel articulation often
attested in PD-induced dysarthria, (2) we evaluated the sensitivity of different
vowel measurement in detecting imprecise vowel articulation and (3) we inves-
tigated whether cognitive impairments affect vowel articulation in Parkinson’s
Disease.

The results are in line with a previous study by Rusz et al. [15], indicat-
ing that acoustic analysis of spontaneous speech is sensitive enough to separate
impaired from non-pathological speech at the group level. Even with a small sam-
ple size as in this study, we were able to acoustically detect imprecise vowel artic-
ulation. Vowel measurements that proved to be most sensitive in this study were
the vowel articulation index (VAI) and the F1-Contrast. While the first mea-
surement is related to vowel space, the F1-Contrast is an index of how distinct a
speaker’s formant frequencies between different vowels are. Moreover, the sepa-
rate analyses for men and women yielded significant effects of the F2-Variability
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measurement, which reflects a speaker’s steadiness in achieving vowel targets [8].
The effects of cognitive impairments on Parkinsonian speech, however, remain
inconclusive. As speech motor control requires more attention capacity in indi-
viduals with PD than in healthy individuals, we expected individuals with PD
and additional cognitive impairments to exhibit less precise vowel articulation
than individuals with PD only, because of their reduced attention capacity. While
vowel measurements and intelligibility rating showed the expected trend for male
participants, the pattern of vowel measurements and intelligibility rating was less
clear for the female speakers.

The lack of clarity could be attributable to in-group variation relative to
the scarcity of data, especially among the female speakers. Although this study
focused on vowel articulation precision, we stress that metrics of vowel artic-
ulation should not be treated as single parameter to differentiate dysarthric
from healthy speech and to investigate the effects of cognitive decline. Thus,
future research should include a larger sample size, more balanced sets of groups
and further acoustic measurements to better understand the effects of cognitive
impairment on speech motor control in PD.

5 Conclusion

With this pilot study we demonstrated the adequacy of acoustic analysis as a
methodological approach to detect cognitive decline in PD. The main contribu-
tion of this study are primary data that indicate a potential, negative effect of
cognitive impairment on the speech impairment dysarthria in individuals with
PD. This effect is acoustically measurable and auditory perceivable.
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Abstract. Speech and audio codecs are implemented in a variety of mul-
timedia applications, and multichannel sound is offered by first stream-
ing or cloud-based services. Beside the objective of perceptual quality,
coding-related research is focused on low bitrate and minimal latency.
The IETF-standardized Opus codec provides a high perceptual qual-
ity, low latency and the capability of coding multiple channels in vari-
ous audio bandwidths up to Fullband (20 kHz). In a previous percep-
tual study on Opus-processed 5.1 surround sound, uncompressed and
degraded stimuli were rated on a five-point degradation category scale
(DMOS) for six channels at total bitrates between 96 and 192 kbit/s.
This study revealed that the perceived quality depends on the music char-
acteristics. In the current study we analyze spectral and music-feature
differences between those five music stimuli at three coding bitrates and
uncompressed sound to identify objective causes for perceptual differ-
ences. The results show that samples with annoying audible degrada-
tions involve higher spectral differences within the LFE channel as well
as highly uncorrelated LSPs.

Keywords: Opus · Music coding · Surround sound · Spectral features ·
Perception

1 Introduction

The increase in different kinds of multimedia applications necessitates speech
and audio codecs with different profiles. Recently, the demand for low delay and
high quality audio applications, such as remote cloud gaming, has been strongly
increasing, as well as the interest in codecs providing high audio quality, low
bitrates and minimum latency. Furthermore, several streaming and cloud-based
applications already use or would like to offer multichannel sound [22].

c© Springer International Publishing AG 2017
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Opus [21] represents an audio codec that fulfills such demands and offers high
quality and low delay together with the capability of incorporating multiple
channels. It supports several audio-frequency bandwidths and is suitable for
various real-time audio signals including speech and music [15].

In [15], the usability of the Opus codec for real world scenarios was con-
firmed. Among other applications, this makes it possible for Video on Demand
(VoD) services, like Netflix or Amazon Prime Video, to offer surround sound
using the web browser embedded Opus audio codec. Using surround sound, the
available bitrate has to be divided by the number of audio channels needed.
In a previous study [19], we analyzed the perceived quality of degraded sur-
round sound coded with Opus at different bitrates. The current contribution
extends this investigation by analyzing quantifiable parameters that can explain
observed differences in the perceived quality. Therefore, the spectral difference
measured by the Compression Error Rate (CER) and the identified degraded fea-
tures showing the greatest degradation from the original audio using statistical
analyzes are investigated.

Our study is structured as follows: Sect. 2 presents related research. In Sect. 3,
we summarize the test samples and the perception test setup used in [19].
Section 4 describes the methods for calculating spectral differences and the iden-
tification of feature modifications. Subsequently, our results are presented in
Sect. 5. Section 6 concludes the paper and presents an outlook.

2 Previous Studies

Although the demand of multichannel sound is increasing, only few research is
dedicated to this field. For interactive applications, cloud gaming and multimedia
streaming, a good Quality of Experience (QoE) has to be guaranteed. Hence
codecs have to be used that offer low transmission time, good compression quality
and supporting multichannel audio.

A perceptual evaluation of cloud gaming under different network conditions
showed that a Round Trip Time (RTT) of more than 160 ms leads to a noticeable
degradation of the user’s QoE [10]. One aspect, contributing to the RTT, is
the algorithmic delay of involved compression algorithms. In several studies the
amount of delay introduced by audio codecs is investigated [11,13] stating that
well-known codecs like AAC or MP3 are not suitable for real-time scenarios,
although they support multichannel audio.

Furthermore, the QoE is influenced by the overall listening impression. In
several listening tests, the quality of different speech and audio codecs is com-
pared [7,16,20]. The performance of Opus surpassed the performance of all other
audio codecs in these tests, especially in the higher bands if applicable. Stud-
ies including the Enhanced Voice Services (EVS) codec, showed that both, Opus
and EVS, provide equal coding abilities [14] with a slight advantage for EVS [17].
Nonetheless, EVS does not support multichannel sound [1]. Another study, ana-
lyzing the representation of prosodic aspects and tonal features, illustrated only
small perceptual assessment differences between original and Opus-compressed
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speech stimuli – also hinting at a good applicability of Opus to further tonal
structures [2]. Summarizing the initial requirements for interactive applications
and the reported results so far, only Opus seems to fulfill all demands. Opus
was designed as an all-purpose interactive speech and audio codec, standardized
in RFC 6716 by the Internet Engineering Task Force (IETF) [21]. It has a very
short coding latency between 5 and 66.5 ms – depending on the framesize – and
variable bitrates in the range of 6 to 510 kbit/s. Additionally, Opus supports a
maximum of 255 audio channels which makes it is suitable for multiple scenarios
like Voice over IP, video conferencing, streaming multichannel music or providing
surround sound in movies as well as for interactive multichannel audio scenarios
like remote real-time jamming and cloud gaming. All mentioned studies, except
for the preceding one [19], included just mono or stereo samples. Consequently,
assessments on the multichannel or surround coding quality, especially reasons
which explain the perceived differences, are missing.

3 Experimental Design

3.1 Test Data

The experimental design follows the description in [19]. Five surround sound
samples coded with Opus (libopus 1.1.3) at different bitrates are utilized in order
to survey the multichannel quality of Opus. Four samples are taken from [12]
having a bit depth of 24 bit and a sample rate of 96 kHz, originally encoded with
Free Lossless Audio Codec (FLAC). The fifth sample was featured on [3] as Dolby
True HD (lossless) at 24 bit and 48 kHz. Further sample details are described
in Table 1. We are aware that the selected test samples mostly cover classical
music, but due to the limited availability of free to use surround sound samples,
we chose these samples to guarantee reproducibility. In order to replicate the
listening evaluations of [19], the same excerpts of about 15 seconds length from
the samples were used. In total, our test set comprises 20 audio samples and
includes three different coding bitrates as well as the Fullband reference.

Table 1. Overview of utilized surround music samples

ID Title Artist Composer Source

1 Soprano Recitative from
Cantata RV 679

T. Wik and
Barokkanerne

A. Vivaldi Period instr.

2 Piano Living J.G. Hoff J.G. Hoff piano

3 Quartet String Quart. in D,
Op. 76, No. 5
Finale, Preston

Engeg̊ard Quartet J. Haydn string instr.

4 Ensemble Frank bridge
variations - romance

Trondheim-Solistene B. Britten String instr.

5 Unfold Dolby Atmos unfold Unknown Unknown Synthetic
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3.2 Perception Experiment

To evaluate the QoE, we selected the Degradation Category Rating (DCR)
method as described in [9]. Listeners rate the degradation of an audio sample
compared to a quality reference on a five point scale. The results are displayed
on a five point Degradation Mean Opinion Score (DMOS) scale ranging from
1 Degradation is very annoying to 5 Degradation is inaudible. We opted for DCR
because it can detect small impairments and minimizes the influence of personal
taste in music or loudspeaker characteristics. The loudspeakers were placed as
described in [8,19].

A maximum of five subjects participated in the listening test at the same
time. The assessment study included 27 naive students from Leipzig University of
Telecommunications, 6 female and 21 male students, aged between 18 and 30 years
(mean of 23.1 years). Before each session, participants were trained with four audio
examples. During the assessment an additional hidden reference was used.

4 Analysis Methods

4.1 Spectral Difference

To qualitatively analyze changes in the spectral domain, we calculated the CER,
introduced in [18]. The CER uses spectrograms with a window size of 200 sam-
ples and an overlap of 80 samples to express the samples’ variations. The mean
squared error of the absolute error for each window of the standardized spectro-
grams is determined. The CER is then computed by calculating its mean over
all windows. To produce comparable results across all used test samples, three
different CER measures are reported regarding different channel combinations.
First, to compare the overall differences, the CER is normalized by the averaged
maximum error over all samples and channels. Second, the CER is normalized
by the averaged maximum error using only the samples of the Low Frequency
Effects (LFE) channel to identify the LFE’s influence on the CER. Finally, to
eliminate the influence of the LFE channel on the CER, it is normalized by
the averaged maximum error using samples of all channels excluding the LFE
channel. In all cases, the CER values range from 1 (“no difference”) to 0 (“max.
difference”).

4.2 Identification of Degraded Acoustic Features

To determine features responsible for the perceived degradation, we first con-
ducted a feature extraction using openSMILE [4]. As features we applied 28 Low-
Level Descriptors (LLDs) that have been used successfully for music classification
[5]. These 28 LLDs comprise loudness, Zero-Crossing Rate (ZCR), pitch envelope
(F0env), linear Harmonics to Noise Ratio (HMR), auditory spectrum, eight Line
Spectral Pairs (LSPs), 95% spectral Roll-Off point, spectral centroid, spectral
entropy, spectral variance and Mel-Frequency Cepstral Coefficients (MFCCs) 0
to 12. For reproducibility, we used the feature names supplied by openSMILE in
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the results section. To identify the feature degradation, we compared all features
of the compressed samples with their uncompressed counterparts by applying a
Pearson correlation to each LLD. This correlation was performed for each chan-
nel of a sample independently. Afterwards, a majority voting of the identified
features was applied over all channels, only over the LFE channel or over all
channels excluding LFE, within each sample. The threshold for the correlation
was varied between 0.75 and 0.95. Features with a correlation coefficient below
a chosen threshold in the majority of the selected channels of a sample were
labeled as “degraded”.

5 Results

5.1 Perceptual Assessment

Figure 1 shows the averaged quality scores over all music samples for the bitrates
96, 128 and 192 kbit/s as well as the subjective quality for each audio sample at
all bitrates. As reference, the mean ratings of all uncompressed audio files are also
shown. The rating of the reference with an average DMOS of 4.33 illustrates the
challenging test conditions and the critical absolute ratings of our subjects. From
the reference to the highest compressed bitrate (192 kbit/s), a significant drop
of 0.4 for the average DMOS can be observed. The graph proceeds to decrease
almost linearly and the DMOS reaches its lowest value of 3.37 at 96 kbit/s.
On average, the degradation ranges from slightly annoying to not annoying but
audible. Hence, the audio quality is at least acceptable at all tested bitrates.

96 128 192 Reference
1

2

3

4

5

Bitrate [kbit/s]

D
M

O
S

Fig. 1. Perceived overall averaged quality ( ) and perceived quality depending on
music characteristics ( Soprano, Piano, Quartet, Ensemble, and

Unfold)

Regarding the subjective quality for each audio sample, it is apparent that
Soprano and Quartet are remarkably lower than the results of the three other
samples as well as the average DMOS. For 96 and 128 kbit/s both are evaluated
as (slightly) annoying. The samples for Unfold, Ensemble, and Piano are nearly
constantly assessed over all considered bitrates. With only one exception for
Ensemble at 128 kbit/s, the DMOS is always above 4, which means an audible
but not annoying degradation.
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Since the music examples represent different styles, it can be assumed that
the compression affected them differently, which should be measurable within
the spectral quality as well as in the acoustic characteristics. We further assume
that if we identify peculiarities only observable within Soprano and Quartet,
these characteristics are responsible for the perceived lower QoE.

5.2 Spectral Difference

As first measure to identify quantifiable parameters, we analyzed the CER as
described in Sect. 4.1. The results incorporating different channels for each test
sample are depicted in Fig. 2. Analyzing the average CER over all channels
(Fig. 2a), it can be seen that although a large compression has been conducted,
the overall CER is very close to 1 and thus only a small spectral difference is
present. But the CER for the two samples with a perceived slightly annoying
degradation is marginally below the other three test samples, and it has a very
high standard deviation in comparison to the three other samples. Thus, we can
assume that the CER values between the different channels diverge significantly.
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b) LFE only

1 2 3 4 5
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c) Without LFE

Fig. 2. Mean and standard deviation of the CER values for the different music charac-
teristics ( Soprano, Piano, Quartet, Ensemble, and Unfold)
averaged over all bitrates

Analyzing the channels’ individual CER, we identified the LFE channel as
the cause. This can be seen in (Fig. 2b). For Soprano and Quartet, the LFE
channels’ CER values are significantly below those of the three remaining test
samples. It has to be remarked that all samples except Quartet have a noticeable
standard deviation.

To substantiate this statement, we also depicted the average CER for each
test sample using all channels except the LFE channel (Fig. 2c). It can be seen
that for this case, the CER values are very similar with a slightly higher standard
deviation. Thus, for both samples evaluated with a low QoE, the LFE channel
is significantly deviant.

The LFE channel is used to transmit deep, low-pitched sounds ranging
between 3 and 120 Hz. After coding, the acoustic parts transmitted over the LFE
were perceived as more flatten and synthetic. We assume that for the Soprano
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and Quartet, where distinct easy separable sound sources are present, changes
in the LFE channel are more distracting. The acoustic impression of the Unfold
and Ensemble samples is wider and fuller. Therefore, the degradation of the
LFE channel is of less consequence. With the Piano sample, high tones are more
dominant, and only a few are present in the LFE channel.

5.3 Identified Degraded Acoustic Features

The identification of degraded acoustic features used the statistical analysis
described in Sect. 4.2. We investigated both, the number of identified degraded
features depending on the chosen threshold and the specific identified degraded
features. According to our findings in the previous section, we analyzed the
influence of the LFE channel. Therefore, we conducted the analysis in three con-
ditions: (1) by using all channels, (2) only the LFE channel, and (3) all channels
except for LFE. Regarding the last analysis, using only the LFE channel, we
can state that for all samples nearly all features are identified as degraded. This
means no statements regarding the perceived quality can be derived.

Ensemble
δ\b 96 128 192
0.95 8 8 8
0.9 7 7 6
0.85 6 6 5
0.80 5 5 4
0.75 4 3 3

Soprano
96 128 192
13 13 13
11 11 11
8 8 8
7 7 7
6 6 6

Piano
96 128 192
8 8 8
7 5 5
5 4 4
2 2 1
1 1 1

Quartet
96 128 192
19 16 14
11 11 11
9 9 9
9 9 9
8 8 8

Unfold
96 128 192
17 16 16
12 11 10
10 9 5
8 5 3
3 3 3

Fig. 3. Number of identified degraded features for each sample using all channels for
different correlation thresholds (δ) and bitrates (b in kbit/s)

Ensemble
δ\b 96 128 192
0.95 6 6 6
0.9 6 6 4
0.85 3 3 2
0.80 2 2 2
0.75 2 2 2

Soprano
96 128 192
12 12 12
11 11 11
9 9 9
6 6 6
5 5 5

Piano
96 128 192
6 6 5
3 3 3
3 3 3
2 2 1
1 1 1

Quartet
96 128 192
14 14 14
12 12 11
7 7 7
4 4 4
3 3 3

Unfold
96 128 192
21 19 14
7 5 5
3 2 2
2 2 2
2 2 2

Fig. 4. Number of identified degraded features for each sample using all channels except
LFE for different correlation thresholds (δ) and bitrates (b in kbit/s)

Figure 3 depicts the number of identified features below the given correlation
threshold per sample over all channels. Figure 4 depicts the number of identi-
fied features below the given correlation threshold per sample over all channels
excluding LFE. It can be seen that in both cases, the average number of iden-
tified degraded features for Soprano and Quartet is remarkably higher than for
the other three samples. Especially, if excluding the LFE channel, this obser-
vation becomes evident. Although, the Unfold sample has the highest absolute
number of identified degraded features, this number is decreasing very fast for
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(a) Ensemble (b) Soprano (c) Piano

(d) Quartet (e) Unfold

Fig. 5. Word clouds of identified modified acoustic features for each sample combined
over all bitrates and correlation coefficients. Features frequently occurring in Soprano
and Quartet are highlighted

declining correlation thresholds. Thus, beside the influence of the LFE channel
on the perceived quality, we can also find an influence in the number of degraded
features.

Additionally, we analyzed the degraded acoustic characteristics in detail.
Figure 5 depicts the degraded features identified for each sample over all bitrates
and correlation coefficients in individual word clouds. For this, we used all chan-
nels except LFE, see Fig. 4. It can bee seen that features related to the overall
acoustic brightness, like spectral centroid, spectral variance and spectral roll-off,
as well as the pitch contour and HMR, are identified as degraded for all samples.
Thus, it can be assumed that the acoustic impression is narrowed, which is to
some extent compensated by the surround sound setting and furthermore does
not influence the DMOS assessment.

Regarding the two examples where the listening evaluation identified an
annoying degradation, also the feature assessment found abnormalities that are
unique. Only for Soprano and Quartet, LSPs are identified as degraded for all
bitrates (and all correlation coefficients). Interestingly, the MFCCs were not
degraded. Reasons for that have to be analyzed in further research. LSPs repre-
sent Linear Predictive Coding Coefficient (LPCC) and have a smaller sensitivity
to quantization noise than direct LPCCs and therefore are often used in speech
coding, such as the SILK mode of the Opus codec. We assume that the degra-
dation of LSPs causes changes in the tonal representation of the music pieces
and lead to audible dissonances. These dissonances are perceived as distractive.
Noticeably, in the Unfold sample both, LSPs and MFCCs are also degraded,
but only for correlation coefficients of 0.9 and above or for the sample coded at
96 kbit/s (not indicated within the plot). Since all coded samples of Unfold are
not perceived with the same good quality, we assume that these slight changes
might be beyond the auditory resolution of human listeners [6].



Acoustic Cues for the Perceptual Assessment of Surround Sound 73

6 Conclusion and Outlook

We surveyed various spectral and music features in compressed 5.1 surround
sound to explain perceptual assessment differences discovered in a previous study
[19]. The same surround sound samples with varying bitrates between 96 and
192 kbit/s as in the previous study were used. Our extensive spectral and music-
feature analysis shows a remarkable correlation with perceptual findings, in par-
ticular concerning the results for slightly annoying audible degradations (DMOS
rating of 3.0 and below) in the music stimuli.

We detected a strong correlation between spectral differences in the LFE
channel and the subjective quality assessments. The two samples having a sig-
nificant higher difference within the LFE channel, were previously assessed with
an annoying audible degradation. Therefore, it can be assumed that higher dif-
ferences within the LFE channel are accounting for the QoE degradation.

Furthermore, these two samples also showed peculiarities regarding the
degraded music-related LLDs. First of all, a higher number of LLDs is degraded
in the two samples regardless of the bitrate. Moreover, also the type of degraded
LLDs is remarkably different. Especially in those samples, the LSPs are iden-
tified as degraded. Therefore, we suggest that degradations within the LSPs
contribute to the perceived slightly annoying audible degradation. As these pecu-
liarities are observed in two different samples perceived as slightly annoying, it
can be assumed that they are responsible for the audible degradation, but further
listening evaluations are needed to confirm this assumption.

The future research will be dedicated to common metrics to cover both, the
subjective perceptual assessment and corresponding objective signal features
such as spectral or music-feature measures. Therefore, listener evaluations with
additional stimuli, also comprising non classical samples, will be conducted. The
selection of samples will also take into account the observed spectral differences.
On top of that, we will evaluate further high-quality multi-channel music codecs
without a low-latency capability like AC3, DTS and Dolby True HD to obtain
an overall impression in the multimedia-streaming domain.
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Abstract. This paper describes in detail the acoustic modeling part
of the keyword search system developed in the Speech Technology Cen-
ter (STC) for the OpenKWS 2016 evaluation. The key idea was to utilize
diversity of both sound representations and acoustic model architectures
in the system. For the former, we extended speaker-dependent bottle-
neck (SDBN) approach to the multilingual case, which is the main con-
tribution of the paper. Two types of multilingual SDBN features were
applied in addition to conventional spectral and cepstral features. The
acoustic model architectures employed in the final system are based on
deep feedforward and recurrent neural networks. We also applied speaker
adaptation of acoustic models using multilingual i-vectors, speed per-
turbation based data augmentation and semi-supervised training. Final
STC system comprised 9 acoustic models, which allowed it to achieve
strong performance and to be among the top three systems in the
evaluation.

Keywords: Acoustic models · Low-resource speech recognition · Mul-
tilingual speaker-dependent bottleneck features · OpenKWS 2016

1 Introduction

In recent years a lot of effort in the automatic speech recognition (ASR) area have
been devoted to creating ASR systems for low-resource languages. One of such
efforts is the annual OpenKWS evaluation organized as a part of IARPA Babel
program [1] to assess progress in rapid developing of keyword search (KWS)
systems for new languages with limited amount of training data. STC team
participated in the OpenKWS 2016 evaluation [2] dealing with Georgian as a
“surprise” language.
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The acoustic modeling part is one of the most important components of
modern automatic speech recognition systems. Building a strong and robust
acoustic model for a low-resource language is a very challenging task. This paper
details the acoustic modeling part of the STC keyword search system for the
OpenKWS 2016 evaluation. The other parts of the system are described in [3,4].

Recent works on low-resource ASR and KWS have shown great success of
the approach based on combination of many different acoustic models in the
system [5–7]. This motivated us to utilize diversity of both sound representations
and acoustic model architectures in our system.

Multilingual bottleneck features are widely used in modern low-resource
speech recognition systems because it is the way to increase training dataset and
thus to improve system robustness. In our previous papers [8–11] we proposed
speaker-dependent bottleneck (SDBN) features. These features are extracted
from the Deep Neural Network (DNN) adapted to speaker using i-vectors [13].
In [12], SDBN approach have been applied with Deep Maxout Networks (DMN).
It was shown that SDBN features allow to achieve strong results in terms of Word
Error Rate (WER) for Russian and English conversational telephone speech
recognition. In this paper we extend SDBN approach to the multilingual case
with the use of multilingual i-vectors.

Our system employs 2 types of multilingual SDBN features in addi-
tion to conventional perceptual linear prediction (PLP) features, mel fre-
quency cepstral coefficients (MFCC) and log mel filterbank energy (FBANK)
features. The applied acoustic model architectures included DNN, DMN
trained using annealed dropout regularization [14], Time-Delay Neural Net-
work (TDNN) [15] and Bidirectional Long Short-Term Memory Recurrent
Neural Network (BLSTM) with projection layers [16]. In addition, the following
acoustic modeling techniques were applied: speaker adaptation of acoustic mod-
els using multilingual i-vectors [13], speed perturbation based data augmenta-
tion [17] and semi-supervised training of acoustic model [18] using untranscribed
data.

The rest of the paper is organized as follows. Section 2 presents multilingual
speaker-dependent bottleneck features. Experiments on building SDBN features
and training of acoustic models on Georgian language are described in Sect. 3.
Finally, Sect. 4 summarizes our results.

2 Multilingual Speaker-Dependent Bottleneck Features

In this section we present an extension of SDBN approach [8–11] to the multi-
task case. Our goal is to construct robust speaker-adapted features with the use
of several speech datasets which differ in their nature, e.g. language or record-
ing conditions. The presented approach is described in detail in the context of
the multilingual training. However, it can be easily applied to other multi-task
training setups. The scheme of the multilingual SDBN approach is presented in
Fig. 1.

The first stage is building the multilingual i-vectors [19]—low-dimensional
vectors containing information about the speaker and the acoustic environment
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on the recording. I-vectors are widely used in speaker and language recognition
tasks [19–21]. Universal Background Model (UBM) based i-vectors extractors
trained using cepstral features are commonly used. However, recently it was
shown that i-vectors extracted using high-level bottleneck features significantly
outperform traditional MFCC based i-vectors in language recognition tasks [21].
Thus we suppose that multilingual speaker-independent bottleneck (SIBN) fea-
tures will be more suitable for i-vectors extractor training than MFCC. The
procedure of multilingual SIBN features extraction is almost the same as for
multilingual SDBN features which is described below. The only difference is
that the network retraining with i-vectors is not performed for SIBN features.

Fig. 1. The scheme of multilingual SDBN approach

Prior to bottleneck extractor training, it is necessary to train the acoustic
models for each dataset and generate phone or senone alignment of each dataset
with a corresponding acoustic model. We propose the multilingual SDBN extrac-
tor training scheme consisting of the following steps:

1. Training of speaker-independent neural network in a multi-task manner [22]
with 5–7 layers in shared part and one language-specific part per language.
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Each language-specific part of the network consists of softmax layer with cor-
responding language phones or senones as labels. We recommend to perform
greedy layer-wise pretraining of the DNN based extractor. On the other hand,
the DMN based extractor training with annealed dropout regularization [14]
does not require any pretraining.

2. Retraining of the network from the first step using input feature vector con-
catenated with the corresponding i-vector. The regularizing term

R = λ

L∑

l=1

Nl∑

i=1

Nl−1∑

j=1

(Wl
ij − W̄l

ij)
2 (1)

is added to the Cross-Entropy (CE) loss function for penalizing parameters
deviation from the source model values. Here Wl and W̄l are weight matrices
of l-th layer (1 ≤ l ≤ L) of the current and the source neural networks, Nl is
the size of l-th layer, and N0 is the dimension of the input feature vector.

3. Transformation of the last hidden layer of the shared part of the speaker-
dependent neural network obtained on the previous step into two layers. The
first one is a bottleneck layer with the weight matrix Wbn, a zero bias vector
and the linear activation function. The second one is a non-linear layer with
the dimension equal of that of the source layer, with the weight matrix Wout,
the original bias vector b, activation function f and the dimension of the
source layer.

y = f(Wx + b) ≈ f(Wout(Wbnx + 0) + b). (2)

These layers are formed by applying Singular Value Decomposition (SVD) to
the weight matrix W of the source layer:

W = USVT ≈ ŨbnṼT
bn = WoutWbn, (3)

where bn denotes the reduced dimension.
4. Retraining the network formed at the previous step using the penalty (1) for

parameters deviation from the original values.
5. Extracting multilingual SDBN features from the bottleneck layer of the shared

part of the resulting neural network.

The training procedure listed above is performed using the CE criterion. Each
minibatch consists of training examples for one language only. The language cor-
responding to the current minibatch is chosen with the probability determined as
number of unprocessed minibatches for this language divided by the total num-
ber of unprocessed minibatches. We also recommend to apply global per-frame
input features normalization to zero mean and unit variance with normalizing
coefficients computed over all languages data.

The proposed multilingual SDBN features can be used in both Gaussian
Mixture Model (GMM) and DNN/DMN based acoustic models.
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3 Experiments

3.1 Experimental Setup

All experiments were performed using the Kaldi ASR Toolkit [23] as well as our
proprietary training tools. Extractors of multilingual i-vectors and bottleneck
features were trained using build datasets for 18 languages from the IARPA
Babel Program language collection with the total amount of 860 h. Acoustic
models for Georgian language were trained on 40 h of transcribed and 40 h of
untranscribed data from the Georgian language pack (IARPA-babel404b-v1.0a).

Speech recognition of the 10-hour Georgian development set was carried out
with the 3-gram language model (LM). This model was obtained as a linear
interpolation of 3 models: the first one was trained on the transcriptions of the
40 h acoustic training data; the second one was built on text data artificially
generated by a character-based recurrent neural network LM [24]; the third one
was trained on 380 Mb of Web texts (BBN part) provided by the organizers.
Interpolation weights of these models were 0.6, 0.1 and 0.3 respectively. The
resulting LM contained 4M n-grams and 260 K words, out-of-vocabulary words
rate on the development set was 4.4%. Detailed description of the language
models used in our system can be found in [3]. The produced word lattices were
used for proxies-based keyword search which is implemented in Kaldi [25].

The used speech recognition and keyword search performance metrics are
Word Error Rate (WER) and Actual Term Weighted Value (ATWV) respec-
tively. The details on the metrics can be found in the OpenKWS 2016 evalu-
ation plan [2]. ATWV scores are reported for in-vocabulary part of the official
development keywords list.

3.2 Extractors Training

In this subsection we describe our experiments on building the multilingual
SDBN features extractors according to the approach presented in Sect. 2.

In order to obtain senone alignments for each of the 18 languages, we trained
an acoustic models based on Gaussian Mixture Model and Hidden Markov Model
(GMM-HMM) for each of them using Kaldi babel/s5c recipe. 13-dimensional Per-
ceptual Linear Prediction (PLP) coefficients combined with 3 pitch values were
used in these models. Each of these acoustic models was trained using feature-
space Maximum Likelihood Linear Regression (fMLLR) [26] speaker adaptation
and had about 5 K senones and 75 K Gaussians.

The DNN-based extractor of multilingual SIBN features was trained using
PLP + pitch features, appended with first and second order derivatives, spliced
with a temporal context of 11 frames. The shared part of the network had
6× 1024 hidden layers with sigmoid activation function and 80-dimensional lin-
ear bottleneck layer placed before the last hidden layer. The training was ini-
tialized with greedy layer-wise pretraining.

The constructed multilingual SIBN features were applied to train the extrac-
tor of 200-dimensional i-vectors, which was based on the Universal Background
Model (UBM) with 2048 Gaussians.



Acoustic Modeling in the STC Keyword Search System 81

Then, 2 extractors of multilingual SDBN features were trained. The first
one used the same features and topology as the SIBN extractor, with the only
difference in the presence of i-vectors as part of the input vectors.

The second SDBN extractor based on DMN was trained using 40-dimensional
log mel filterbank energy (FBANK) features combined with 3 pitch values,
spliced with a temporal context of 11 frames. The shared part consisted of
10× 1024 maxout hidden layers with group size of 2. The training was car-
ried out without pretraining using the annealed dropout regularization [14]. The
dropout rate decreased uniformly from the starting value (0.5 for step 1, 0.25 for
steps 2 and 4 of the training scheme described in Sect. 2) during the first epoch
to the final value of 0.05 at the 25-th epoch.

All bottleneck extractors were trained using Nesterov Accelerated Gradient
algorithm [27] with the momentum value of 0.7. Initial learning rate was 0.5 for
speaker-independent training (step 1) and 0.1 for the retraining with i-vectors
(step 2) and bottleneck layer (step 4). Per-speaker mean normalization followed
by the global per-frame zero mean and unit variance normalization of the input
features was applied.

The described extraction scheme of the multilingual bottleneck features and
i-vectors is illustrated in Fig. 2.

Fig. 2. Bottleneck features and i-vectors extraction scheme

Table 1 demonstrates the performance of the extractors in terms of Frame
Error Rate (FER) on 10-hour development datasets for 6 of 18 languages used
in the multilingual training. It should be noted that DMN-based extractor input
features do not contain time derivatives, thus it cannot be fairly compared with
the DNN-based extractors in terms of FER. In order to perform fair extractors
comparison as well as to analyze the impact of the training data amount, we
also trained the DNN and DMN based extractors on the same features using the
subset of 6 languages with the total amount of 300 h.

The results of the comparison show that increasing data amount from 300 to
860 h improves FER only slightly. On the other hand, the DNN-SDBN extractor
significantly outperforms the DNN-SIBN one.

3.3 Acoustic Models Training

Experiments on Georgian language were started with building of grapheme based
ASR system using the Kaldi babel/s5c recipe. GMM-HMM acoustic model with
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Table 1. Extractors comparison in terms of Frame Error Rate

Extractor Languages Features Amharic Haitian Igbo Kazakh Lao Zulu

DNN-SIBN 6 PLP 54.24 54.96 58.52 52.20 48.29 57.42

DMN-SIBN 6 PLP 53.43 53.92 57.71 51.34 47.33 56.70

DNN-SIBN 18 PLP 53.86 54.81 58.32 51.66 47.84 57.20

DNN-SDBN 18 PLP+ i-vec 51.90 51.96 56.83 50.38 46.09 56.24

DMN-SDBN 18 FBANK+ i-vec 54.85 55.96 59.37 53.15 49.30 59.17

5 K senones and 75 K Gaussians trained using fMLLR based speaker adaptation
on PLP + pitch features was considered as a baseline.

In order to evaluate the multilingual bottleneck features constructed in Sub-
sect. 3.2, we trained GMM-HMM acoustic models without fMLLR adaptation
and with it on DNN-SIBN, DNN-SDBN and DMN-SDBN features. The num-
bers of Gaussians and senones were the same as for the baseline GMM. We
also trained Subspace GMM acoustic model [28] on DNN-SDBN features with
fMLLR speaker adaptation.

Furthermore, we trained 9 acoustic models based on neural networks:

1. DNN1: DNN with 6× 1024 sigmoid layers; 11 × fMLLR-adapted LDA-MLLT
transformed PLP + pitch features; sequence training with state-level Mini-
mum Bayes Risk (sMBR) criterion [29].

2. DNN2: DNN with 4× 2048 sigmoid layers; 31 × fMLLR-adapted DNN-SDBN
features taking every 5th frame; sMBR sequence training.

3. DMN3: DMN with 6× 1536 maxout layers with group size of 2; 31×DMN-
SDBN features taking every 5th frame; cross-entropy training with annealed
dropout regularization followed by sMBR sequence training.

4. DMN4: the same as DMN3, but training was initialized with the shared
part of multilingual DMN (18 langs). This multilingual DMN was trained on
31×DMN-SDBN features taking every 5th frame using the first step of the
multilingual SDBN extractor training scheme described in Sect. 2.

5. TDNN5: Time Delay Neural Network (TDNN) [15] with 4× 1024 ReLU
layers trained using the Kaldi swbd/s5c recipe; 5×MFCC + pitch features
concatenated with i-vector; CE criterion.

6. BLSTM6: Bidirectional Long Short-Term Memory recurrent neural network
(BLSTM) with projection layers [16]; 3× 512(cell,hidden)× 128(recurrent
proj.,non-recurrent proj.) hidden layers; 5×FBANK + pitch features concate-
nated with i-vector; CE criterion.

7. DNN7: DNN with 6× 1024 sigmoid layers; 11 × PLP + pitch features con-
catenated with i-vector; training initialization with the shared part of multi-
lingual DNN (18 langs); CE criterion.

8. DMN8: DMN with 10× 1024 maxout layers with group size of 2;
11×FBANK + pitch features concatenated with i-vector; training initializa-
tion with the shared part of multilingual DMN (18 langs); CE training with
annealed dropout regularization.



Acoustic Modeling in the STC Keyword Search System 83

9. DMN9: DMN with semi-supervised learning. 40 h of untranscribed train-
ing data were recognized using the best acoustic model in terms of WER
(DMN3). Training utterances were constructed using the following proce-
dure. The next word was added to the existing word sequence if the average
confidence score of the resulting sequence was higher than the threshold.
Otherwise, the existing word sequence had been finalized and the construc-
tion of the next word sequence was started from the first following word
with confidence score higher than the threshold. Time boundaries of word
sequences were taken from the recognition result. Following this procedure,
around 55% of untranscribed data with automatically generated transcrip-
tions were included into the training set. Training procedure was the same as
for DMN8 model.

All these models except the first one were trained with the use of speed
perturbed data [17] (two additional copies of the training data were created by
adjusting the speed by +−10% of the original value). The DNN1 model was
trained using senone alignments generated by the baseline GMM; The DNN2,
DMN3 and DMN4 models were trained on senone alignments generated by the
best of GMM on SDBN features; senone alignments for the other models were
prepared using the DNN2 model.

The performance of the acoustic models and of their keywords lists level
combination is reported in Table 2. The combination was carried out using the
Kaldi implementation which performs weighted combination of non-normalized
keywords lists produced by different systems. Our results were obtained with
equal combination weights. Detailed explanation of the combining procedure
can be found in [30].

Table 2. Performance of acoustic models and their keywords lists level combination
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4 Discussion and Conclusions

The results given in Table 2 show that the multilingual SDBN features
clearly outperformed speaker-independent multilingual bottleneck features for
GMM-HMM acoustic models. Moreover, fMLLR speaker adaptation performed
well for SDBN features, despite their inherent speaker-adapted nature. It is
interesting that, for both DNN and DMN model types, SDBN features shown
significantly better WER than for the raw features, while ATWV scores were
comparable or worse.

The combination of the models outperformed any single model by a big mar-
gin. DMN based models showed the best performance, although DNN, TDNN
and BLSTM based ones also provided significant contribution into the final com-
bination result. On the other hand, GMM and SGMM demonstrated poor results
in comparison with neural networks based models, and did not improve the result
of the combination.

Thus, final system included 9 neural network based acoustic models which
were combined on the level of keywords lists. Largely due to strong acoustic
modeling part, our system achieved high ATWV score of 0.821 and was among
the top three systems in the OpenKWS 2016 evaluation.
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Abstract. In Computer Assisted Language Learning systems, pronun-
ciation scoring consists in providing a score grading the overall pronun-
ciation quality of the speech uttered by a student. In this work, a log-
likelihood ratio obtained with respect to two automatic speech recog-
nition (ASR) models was used as score. One model represents native
pronunciation while the other one captures non-native pronunciation.
Different approaches to obtain each model and different amounts of train-
ing data were analyzed. The best results were obtained training an ASR
system using a separate large corpus without pronunciation quality anno-
tations and then adapting it to the native and non-native data, sequen-
tially. Nevertheless, when models are trained directly on the native and
non-native data, pronunciation scoring performance is similar. This is
a surprising result considering that word error rates for these models
are significantly worse, indicating that ASR performance is not a good
predictor of pronunciation scoring performance on this system.

Keywords: Computer-assisted language learning · Pronunciation scor-
ing · Log-likelihood ratio · MAP adaptation

1 Introduction

Computer Assisted Language Learning (CALL) systems allow students of second
languages to develop different abilities. In this work we focus our attention on
the pronunciation scoring task, which consists in providing a score grading the
overall pronunciation quality of speech uttered by a student.

Although many programs offer evaluation of the pronunciation independently
of the native language of the learner, different pronunciation errors are produced
by students with different native language (L1) and target language (L2) pairs.
In this work we focus on a pronunciation scoring system that takes into account
c© Springer International Publishing AG 2017
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the native language of the learner, allowing for more accurate models than those
that are independent of the L1. However, this accuracy is possible at the expense
of having enough data annotated for pronunciation quality for the specific target
population. Since this kind of data is scarcely available and expensive to collect,
we focus on techniques to optimize system performance under data sparsity
constraints.

Some of the best systems for pronunciation assessment have been based on
automatic speech recognition (ASR) technology, using as score the log-likelihood
ratio (LLR) between an ASR model representing native pronunciations and
another model representing non-native pronunciation [3,5,6]. This approach was
successfully used for the first time in [3] for pronunciation scoring, where the
native model was obtained using a pronunciation network consisting of native
phones for each word and the non-native model using a pronunciation network
consisting of non-native phones. The LLR approach was later successfully used
for the task of mispronunciation detection in [5] at phone level and [6] at word
level. In these two works, different gaussian mixture models (GMM) were trained
for the native and non-native pronunciation for each phone. These models were
obtained adapting a base GMM model trained with both native and non-native
pronunciations to native and non-native pronunciations, respectively. This app-
roach for obtaining the models produced better results than obtaining the native
and non-native models by training them from scratch.

In this work we used the LLR between two ASR models as in [3], capturing
the native and non-native pronunciations through adaptation as in [5]. Consid-
ering that annotated data for a certain L1 population speaking a specific L2 is
usually sparse, we investigate different approaches for obtaining the native and
non-native ASR models through adaptation, which we postulate should result on
more robust models in this scenario. We further assume that the transcriptions
are available at scoring time and that a separate large dataset without pronun-
ciation quality annotations is available for training a base ASR model to which
to adapt. We evaluated different adaptation schemes: a parallel approach where
native and nonnative models are obtained simultaneously from a base model
as in [5], and a sequential approach where the non-native model is obtained by
adapting the native model to the non-native speakers. We considered three dif-
ferent base models: one trained with both native and non-native speakers, one
trained with the separate large corpus, and one trained with the separate corpus
and adapted to native and non-native speakers. We also considered training the
two models from scratch without a base model to adapt to.

Our experiments showed that the best results are obtained with the sequen-
tial adaptation approach using an ASR base model trained with a separate large
corpus. However, the advantage of this approach on pronunciation scoring perfor-
mance over training the models from scratch is small compared to the advantage
it gives on word error rate when the models are used for ASR.
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2 Method

The pronunciation scoring system in this work computes the score as the log-
likelihood ratio between a native and a non-native ASR model (Fig. 1). Each log-
likelihood is given by the logarithm of the probability of the features given the
optimal path over the HMM states obtained when forced-aligning the features
extracted from the signal to the transcription of the speech in the utterance.
When subtracting the log-likelihood obtained with the native model from the
log-likelihood obtained using the non-native model we obtain the LLR (Fig. 1).

Fig. 1. LLR-based pronunciation scoring system

In this work we evaluated different approaches for obtaining the native and
non-native models using adaptation, since this approach was shown in [5] to
give better results than training the models from scratch. We compared three
approaches to obtain an ASR base model from which to obtain the native and
non-native models through MAP adaptation. Then, two different adaptation
schemes and two approaches that do not rely on a base model were evaluated.

We assumed two datasets are available, one relatively small set acoustically
matched to the testing data with transcriptions and pronunciation quality labels,
and a larger set acoustically mismatched to the testing data with transcriptions
but no pronunciation quality labels. This is an usual scenario for pronunciation
scoring, since large sets are available for ASR training in many languages, while
large datasets labelled for pronunciation quality are much harder to obtain,
specially when targeting a specific L1 population.

2.1 ASR-Based Models

In [5], GMM base models were trained first using all samples ignoring the class
(native or non-native) they belonged to. In this work we used this approach
(which we call Matched, Fig. 2a) to obtain an ASR base model. The second app-
roach (Mismatched, Fig. 2b), used a separate but larger acoustically mismatched
corpus. Finally, the third approach (AdaptedToMatched, Fig. 2c) adapted the
model obtained as in the Mismatched approach using both native and non-
native speakers in the matched dataset in order to obtain a model acoustically
matched to the test data.
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(a) Matched
(b)

Mismatched (c) AdaptedToMatched

Fig. 2. Approaches to obtain the ASR base models

2.2 Adaptation

The ASR models in this work were based on Hidden Markov Models (HMM) with
GMM-based states. The adaptation of the models was done using the maximum
a posteriori approach on the GMM means (MAP, [2]). The adapted mean of the
GMM component k of state i in the HMM, is given by

μ̃ik =
τμik +

∑

t ciktxt

τ +
∑

t cikt
, (1)

where τ is a hyperparameter that measures the “strength” of belief in the prior,
cikt is the probability of the mixture component k in state i given observation xt

and μik is the mean of the base model. The second term in the numerator corre-
sponds to the “new” mean, obtained as the weighted mean of the samples found
to belong to the kth Gaussian with a non-zero probability. The level of belief in
the prior model is given by the hyperparameter τ . Lower values of τ correspond
to more aggressive adaptations (higher belief in new data) while higher values
correspond to less aggressive adaptation (higher belief in the previous model).
In preliminar experiments, different values for τ were evaluated and the best
results were obtained with τ = 10. We use this value in all our experiments.

2.3 Adaptation Schemes

In [5], the native model was obtained adapting the GMM base model using
the data from the native speakers and, analogously, the non-native model was
obtained adapting the GMM base model using the data from the non-native
speakers. We call this training scheme “parallel” (Fig. 3b), where we also consider
the option where no base model is available and both models are trained from
scratch. We propose an alternative scheme which we call “sequential” (Fig. 3a) in
which the non-native model is obtained adapting the native model to non-native
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(a) Sequential (Seq.) scheme (b) Parallel (Par.) scheme

Fig. 3. Schemes to define native and non-native models with and without using an ASR
base model. The “Training” option is used for the no base model (None) approach and
the “Adaptation” option is used together with the ASR base model in the adaptation
(Matched, Mismatched and AdaptedToMatched) approaches

speakers. Given the three approaches to obtain the ASR based model (Fig. 2)
plus the no-base-model option, and the two adaptation schemes (Fig. 3), eight
possibilities to obtain the native and non-native models are defined.

2.4 LLR Scoring

Pronunciation scores are computed using the native and non-native models
(Fig. 1). Log-likelihoods from the most likely path obtained by forced alignment
are given at frame level (i.e. every 10 ms). In this work, phone-level log-likelihoods
are obtained by averaging the frame-level log-likelihoods. The average is used
because we assume that all phones should have, a priori, the same influence,
regardless of their length. Finally, speaker-level scores are computed as the aver-
age of phone-level log-likelihoods over all the speech available for the speaker
in the conversation. This average implicitly assumes that all phones contribute
equally to pronunciation quality perception, which is not necessarily the case.
Taking the importance of each phone into account when computing the speaker-
level score is part of our future work. The speaker-level log-likelihoods for the
native and non-native models are finally subtracted to obtain the LLR.

3 Experimental Setup

Two corpora were used for this work, both of them comprised by telephone con-
versations collected in the USA. The first one (Fisher, [4]) was used to obtain the
native and non-native models as well as for testing and only two subsets were
used. Although some speakers participated in more than one conversation, we
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tested each conversation independently. One subset contained 299 conversation-
sides uttered by native speakers (around 25 hours of speech). The other subset
was comprised by 249 conversations-sides uttered by Spanish native speakers
(around 21 hours of speech). Although non-native speakers had some mispro-
nunciations, their abilities when speaking English were in most cases excellent
since they were able to hold conversations about different topics with strangers
through the telephone. The second corpus (Switchboard, [1]) contained mainly
American English speakers and was used to train the initial ASR model in those
approaches using a separate larger corpus (around 518 hours of speech).

Non-native speakers were rated into three groups according to their quality
of pronunciation: Score-1 (best pronunciation), Score-2 and Score-3 (worse pro-
nunciation). Speakers of the native subset were regarded as Score-0. Since Fisher
non-native speakers are fluent in English and generally perfectly intelligible, the
scores were assigned based on the perceived accentedness (pronunciation differ-
ences with respect to native speakers) rather than on fluency or intelligibility.
Around 30% of the speakers in each class were separated in order to obtain
a held-out set for a final evaluation of the system. The speakers in this held-
out set were selected in order to maximize the number of conversations left for
development. Tables 1 and 2 show the number of conversations in each group.

Table 1. Conversation-sides for develop-
ment and held-out sets per Score class

0 1 2 3

Development 234 120 40 51

Held-out 65 24 6 8

Table 2. Speakers for development
and held-out sets per Score class

0 1 2 3

Development 200 46 16 20

Held-out 65 24 6 8

Cross-validation with 20 folds was used to generate different train and test
sets in the development phase. Many speakers in the four classes were engaged
in more than one conversation. In order to avoid optimistic results, the definition
of the held-out and cross validation sets was carried out at speaker level.

We evaluated the use of three different sets to create the non-native models:
a set composed only of Score-3 speakers, a set with both Score-2 and Score-3 and
a set with all non-native speakers. The best results were obtained using Score-3
speakers only or both Score-2 and Score-3. For the following experiments we use
only Score-3 speakers to create the non-native model.

3.1 ASR System Characteristics

The senone-based HMM-GMM ASR models in this work were created using the
Switchboard recipe of the Kaldi toolkit [10]. The features used were MFCCs,
computed in 25 ms time windows every 10 ms. Monophone ASR models were
trained in a first phase and a triphone model trained in a second phase limiting
the number of senones and number of gaussians to 3200 and 30000 respectively.
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Finally, a second triphone model was trained to obtain the final model limiting
the number of senones and number of gaussians to 4000 and 70000 respectively.

3.2 Performance Measures

In order to compare different parameters in the system, receiver operating char-
acteristic (ROC) curves were used to measure the performance of a binary classi-
fier for the Score-0 and Score-3 samples. The area under the ROC curve (AUC)
was used as performance metric and 95% confidence intervals were computed
using the bootstrap method ([9]). One thousand random samplings of the speak-
ers were created and, for each sample, the corresponding scores used to compute
an AUC. The confidence interval was given by the 2.5 and 97.5 percentiles in
the distribution of the obtained AUCs. In a final phase, all speakers were used
to evaluate the performance of the best model. Normalized histograms of the
distributions of the four speaker classes were generated and Pearson correlation
computed between the labels (0, 1, 2, 3) and the score values.

4 Results

The conversation sides uttered by native and non-native speakers in the Fisher
corpus had on average 295 seconds of speech. In order to simulate smaller
amounts of data available for training or adaptation, smaller regions of each
conversation sides were used including 20, 40, 80 and 160 s per conversation-
side. Figure 4 shows the AUCs for each approach as a function of this duration.

The figure shows that when the base model is trained with mismatched data,
the sequential modeling approach is significantly superior to the parallel app-
roach, specially when smaller amounts of data are available for adaptation. This
implies that it is better to address the mismatch due to acoustic conditions first,
by adapting the mismatched model, which was trained with mostly native speak-
ers, to the matched native speakers, obtaining a native model that is acoustically
matched to the test conditions. Adapting this model to the non-native popula-
tion is then easier (less change is required in the parameters) than adapting
the original mismatched model, which is mismatched to the non-native speakers
both acoustically and in terms of pronunciation.

The sequential scheme is also better than the parallel one when the mis-
matched model is adapted to the full matched data and when no base model is
used, though the difference between the two adaptation methods is much smaller
in these cases than when using the mismatched base model. This is probably
because there is less acoustic mismatch to make up for in these two cases, giving
less advantage to the sequential approach.

When the base model is trained with all the matched data, the best adapta-
tion method is the parallel one, with the sequential one being significantly worse
than all other methods. In this case, there is no acoustic mismatch to compensate
for, hence, the advantages described above for the sequential method no longer
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hold. It is then sufficient to adapt the base model directly to the two populations
of speakers, which were already well represented in the base model.

Overall, Fig. 4 shows that the best approaches are those based on the sequen-
tial adaptation method with base models trained with the mismatched data
(adapted or not to the matched data) or without a base model. In fact, the
advantage from using a base model is quite limited, even when a very small
amount of matched data is available. This is particularly surprising because the
models that are obtained by adaptation to a base model trained with the large
mismatched data are significantly better than those that do not rely on this addi-
tional data in terms of word error rate (WER). For example, the mismatched
model adapted to 40 s per conversation of the matched native speakers gives a
WER of 43.78 on the native held-out speakers, while the native model trained
directly to 40 s per conversation of the matched native speakers gives a WER
of 62.19. This means that the model that uses the mismatched data as a base
model for adaptation is significantly better for ASR. Yet, this difference does not
carry over to the pronunciation scoring task. We hypothesize that this is due to
the nature of the LLR, where only the differences between models influence the
score. Hence, even in models trained with very sparse data (only about 0.5 h of
non-native data and 2 h of native data for the 40 s per conversation case), the
LLR is a robust measure of the pronunciation quality, despite the fact that the
models are significantly worse for ASR than those trained using a robust base
model trained on a much larger amount of data.

Figure 5 shows two selected approaches along with the corresponding confi-
dence intervals. Although both of them have similar patterns when more data
is available, when only 20 seconds of speech per conversation are available the
confidence interval is narrower and higher for the Mismatched approach showing
some advantage for this approach in a scenario of extreme data scarcity.

Fig. 4. AUC values for the eight different approaches. Solid lines correspond to the
sequential approach, dashed lines correspond to the parallel approach for each base
model
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Fig. 5. AUC confidence intervals for two approaches. Solid lines correspond to the AUC
(as in Fig. 4), dashed lines correspond to confidence intervals limits

4.1 Multiclass Classification Results

The best approach from the previous section (the Mismatched Sequential models
adapted to all available matched data) was finally evaluated on all speaker classes
and normalized distribution histograms for the development set are presented
in Fig. 6. In spite of adapting models using only Score-0 and Score-3 instances,
the scores given for the other two classes show the expected pattern with better
pronunciation classes with lower scores and worse pronunciation classes with
higher scores. The Pearson correlation on the development set was 0.74.

Fig. 6. Normalized distribution histogram with all classes using development set

In order to confirm that the development choices did not result in mod-
els overfitting the development data, we evaluated a model adapted to all the
development data on the held-out set. The Pearson correlation on the held-out
set was 0.81, which implies that the obtained models generalize quite well to
unseen speakers. Furthermore, these results are comparable to those reported in
previous works using datasets with relatively unclean speech, as is the case of
the Fisher dataset. Hönig et al. [8] used read web-collected data using headsets
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and reported a correlation of 0.57 using around 10 min of speech per speaker.
Cucchiarini et al. [7] reported a correlation of 0.75 on speech read over the tele-
phone and 0.5 when evaluating the answers of students on an exam with around
1 min of speech per speaker in both cases. In our case, we use an average of
5 min of speech per speaker in testing. To obtain a result comparable to those in
Cucchiarini’s work, we run our system using only 1 min of speech per speaker,
which gave us a correlation of 0.37, a value significantly lower than the one they
obtained. However, it should be noted that we used spontaneous speech while
Cucchiarini et al. used read speech and considered not only advanced speakers,
as in our work, but also beginner and intermediate speakers, which are much
easier to separate from native speakers than advanced learners.

5 Conclusion

We study a pronunciation scoring system based on the log-likelihood ratio
between an ASR model trained with native speakers and an ASR model trained
with non-native speakers. We compared results using different approaches for
generating the native and non-native models using two sets of data: a large
corpus acoustically mismatched to the test data, and a smaller acoustically-
matched corpus. Different ways of using these sets for training and adapting the
ASR models were explored.

The best results were produced when the native model was obtained by
adapting an ASR model previously trained on the large mismatched corpus to
matched data from native speakers, and the non-native model was obtained
by adapting this native model to the matched data from non-native speakers.
Nevertheless, we show that the advantage of using a large mismatched corpus for
training a base model to which to adapt is quite limited. This is despite the fact
that the model obtained by adaptation to the mismatched model is significantly
better than the one trained from scratch in terms of WER. It appears that the
LLR used for pronunciation scoring is quite robust, allowing us to train models
with very sparse data without large degradations in performance with respect
to generating the model by adaptation to a robust base model. This indicates
that we should not rely on our intuitions built from our experience on ASR to
decide how to train models for pronunciation scoring. Rather, we should revisit
decisions made about the models. This might include, as in this work, the best
way to use available data, as well as other issues like the choice of features, the
size of the models, and so on. These are issues we plan to explore in future work.
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Abstract. Automatic detection and demarcation of non-speech sounds
in speech is critical for developing sophisticated human-machine inter-
action systems. The main objective of this study is to develop acoustic
features capturing the production differences between speech and breath
sounds in terms of both, excitation source and vocal tract system based
characteristics. Using these features, a rule-based algorithm is proposed
for automatic detection of breath sounds in spontaneous speech. The
proposed algorithm outperforms the previous methods for detection of
breath sounds in spontaneous speech. Further, the importance of breath
detection for speaker recognition is analyzed by considering an i-vector-
based speaker recognition system. Experimental results show that the
detection of breath sounds, prior to i-vector extraction, is essential to
nullify the effect of breath sounds occurring in test samples on speaker
recognition, which otherwise will degrade the performance of i-vector-
based speaker recognition systems.

Keywords: Non-speech sounds · Breath sounds · Excitation source ·
Vocal tract system · i-Vector · Speaker recognition

1 Introduction

In natural conversations, non-speech sounds occur very frequently along with
regular speech (sounds). Though, speech and non-speech sounds are produced
by the human speech production system, non-speech sounds may not carry any
linguistic information like speech but will provide important cues about the emo-
tional and physical state of the speaker. Non-speech sounds include vocalizations
such as breath, laughter, cough, etc., [1–4]. Effective detection and classification
of these sounds is necessary for applications such as speech and speaker recog-
nition, emotion classification and emotive speech synthesis, etc.

Breath is one such non-speech sound which occurs very frequently in natural
conversations including high quality recordings of singers and professional nar-
rators [5]. Breath sounds are produced by pushing air out of the lungs through
c© Springer International Publishing AG 2017
A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 98–108, 2017.
DOI: 10.1007/978-3-319-66429-3 9
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the vocal tract system with no strong constriction [6]. Generally, there is no
presence of significant glottal activity during the production of breath sounds
making them unvoiced [5]. Breath sounds are generally produced by speakers
when under stress or strain, and also to signify pause or punctuation in con-
versations [7,8]. Detection of audible breath sounds is useful for enhancing the
quality of audio recordings and to specify the instants of pause and punctua-
tion in both read and spontaneous speech [5,7,9,10]. Breath sound detection
is also found to be useful for cognitive analysis of speech and to improve the
performance of speech and speaker recognition systems [6,11,12].

Owing to their importance in speech-based applications, different approaches
were proposed for breath detection [5,7,9]. Template matching based methods
were mainly considered for detection of breath sounds in audio signals [5,7].
In template matching based approach, breath templates were generated using
spectral features such as mel frequency cepstral coefficients (MFCCs) and dis-
crete wavelet transform coefficients. These templates were then considered for
searching in the audio signals using dynamic time warping algorithm. Other
methods such as usage of hidden Markov models trained with spectral features
were also proposed for detection of breath sounds in singing recordings [9]. Most
of the previous methods were developed for processing recordings of high qual-
ity collected from singers and professional narrators in a controlled environment
[7,9]. These methods were found to be very sensitive, and may not be directly
adapted for processing spontaneous speech [11]. Only a few studies have consid-
ered detection of breath sounds in spontaneous speech [7]. But the performance
of these methods is low, emphasizing the need for further analysis to detect
breath sounds. Furthermore, in most studies, only spectral features were consid-
ered for analysis but not excitation source based features, which might provide
complementary information to discriminate breath sounds from speech (partic-
ularly, voiced speech sounds).

The main contributions of this paper are (a) to analyze both, excitation
source and vocal tract system based characteristics of breath sounds in compar-
ison to speech, (b) to propose a rule-based algorithm, using acoustic features
capturing the excitation source and vocal tract system based variations between
breath and speech, for automatic detection of breath sounds in spontaneous
speech and (c) to illustrate the importance of breath detection on the perfor-
mance of an i-vector-based speaker recognition system. The paper is organized
as follows. Section 2 explains the database used for analysis. Section 3 provides
the analysis of the breath sound. Algorithm proposed for breath detection is
given in Sect. 4. Performance evaluation of the proposed algorithm is discussed
in Sect. 5. Analysis of the effect of breath detection on speaker recognition is
given in Sect. 6. Summary along with conclusions are given in Sect. 7.

2 Database

The Buckeye corpus of conversational speech which contains several hours of
spontaneous speech recordings is considered for this study [13]. This database
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consists of speech data collected from 40 speakers (20 male and 20 female)
in the form of informal interactions between the speaker and an interviewer.
These recordings contain several occurrences of various non-speech sounds
such as breath, laughter, cough, etc. These non-speech sounds were tagged as
“VOCNOISE” in the database. We (a group of 3 persons) have manually lis-
tened to all the “VOCNOISE” segments, and have segregated the breath sounds
for use in this study. A subset of 40 speech utterances collected from 6 speakers
(3 male and 3 female) containing 30 breath sound segments is considered for
analysis. A separate test set of 500 speech utterances consisting of 405 breath
segments collected from 30 speakers (15 male and 15 female), not considered for
analysis, is considered to evaluate the performance of the proposed algorithm. In
the test set, some utterances do not contain even a single breath segment while
some utterances consists of more than one breath segment.

Fig. 1. Spectrogram of a speech signal with breath sound (marked as Breath), whose
bounds are denoted by vertical dotted lines

3 Analysis of Breath Sounds

The excitation source and vocal tract system based characteristics of breath
sounds are analyzed to define the feature set for breath detection. Generally,
most of the breath sounds are unvoiced [5], signifying the absence of significant
glottal activity during their production. This can also be observed from the
spectrogram (shown in Fig. 1), where the overall spectral energy is very low in
breath regions (see between 0.8 sec–1.2 sec, marked as breath), particularly in the
frequency range of 0 Hz–1000 Hz, compared to voiced speech regions (see between
1.2 sec–1.6 sec in Fig. 1). This characteristic of breath sounds is captured using
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the excitation source based features i.e., zero frequency filtered signal energy
(α), and strength of excitation at epochs (β). α values are computed as the
energy of the zero frequency filtered (ZFF) signal using a window of length
2 msec centered at epoch locations, and the β values are computed as the slope of
the ZFF signal around epoch locations (more details in [14,15]). The ZFF signal
and the epoch locations are extracted directly from the speech signal using the
zero frequency filtering method [16]. It can be observed from Fig. 2(a) and (b),
respectively, that the α and β values are very low in breath segments compared
to speech segments (particularly in voiced regions). Hence, these features can be
used to distinguish breath sounds from voiced speech sounds.

Fig. 2. Figure shows the features considered for breath sound detection. The features
are (a) α, (b) β (c) FD values in frequency (Hz), (d) SD, (e) ER, (f) SV . Segments
highlighted with red (dotted) line represents breath sounds as per ground truth (Color
figure online)

It can be observed from the spectrogram (Fig. 1) that the breath segments has
a higher concentration of spectral energy in the mid-frequency range (1000 Hz–
3500 Hz) followed by lower-frequency range (0 Hz–1000 Hz) and then by higher-
frequency range (3500 Hz–8000 Hz) [5]. In case of speech, the spectral energy is
concentrated relatively more in the lower frequency range for voiced sounds (see
between 1.2 sec–1.6 sec, and between 0.2 sec–0.8 sec in Fig. 1), and in the higher
frequency range for unvoiced sounds (see between 0 sec and 0.2 sec, and at
1.8 sec in Fig. 1). These spectral variations between breath and speech sounds
are captured using features extracted from the Hilbert envelope of the numerator
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group delay (HNGD) spectrum obtained using the zero time windowing method
[17]. The spectral features considered for this analysis are dominant resonance
frequency (FD), dominant resonance strength (SD), mid-to-low frequency energy
ratio (ER) and spectral variance (SV ).

FD refers to the frequency of the dominant peaks in the HNGD spectrum, and
SD is measured as the magnitude of the HNGD spectrum at FD. In this work,
FD and SD values are obtained at epoch locations as explained in [14]. It can be
observed from Fig. 2(c) that the FD values are in the lower and mid frequency
ranges for breath sounds, whereas most of the FD values are in the higher and
mid frequency ranges for voiced and unvoiced speech sounds, respectively. It can
be observed from Fig. 2(d) that the SD values are very low in breath segments
compared to most of the speech sounds (both voiced and unvoiced).

ER refers to the ratio of the mean energy of the HNGD spectrum in the
mid-frequency range (1000 Hz–3500 Hz) to that of in the lower-frequency range
(0 Hz–1000 Hz). As shown in Fig. 2(e), the ER values are higher for breath sounds
compared to most of the voiced and unvoiced speech sounds. SV at a particular
time instant is computed as the variance of the magnitude across all frequencies
in the HNGD spectrum at that time instant [15]. As shown in Fig. 2(f), SV values
are lower in breath segments compared to speech segments.

4 Proposed Algorithm

The steps in the rule-based algorithm developed for detecting breath sounds
(refer Fig. 3), using the analyzed acoustic features, are as follows:

1. For a given speech signal (sampled at 16 kHz frequency), compute α and β
values at the epoch locations.

2. Select epochs with α ≤ Tα and β ≤ Tβ . The regions between the selected
epochs, as shown in Fig. 3(b), are considered as initial potential segments for
occurrence of breath sounds.

3. Compute FD and SD at epoch locations retained after step 2.
4. Select regions between epochs with FD within the range TFmin

≤ FD ≤ TFmax
,

and that of SD within the range TSmin
≤ SD ≤ TSmax

as in Fig. 3(c).
5. For the segments retained after Step 4, Compute ER and SV for every 1 msec

using a window length of 2 msec.
6. Thresholds used for ER and SV are TR and TV , respectively. Select segments

with ER values above the threshold and SV values below the threshold as
shown in Fig. 3(d).

7. For the segments retained after Step 6, combine segments separated by less
than 20 msec to form a single segment. Then, eliminate segments with dura-
tion less than 30 msec to obtain the final segments, considered as breath
sounds, as shown in Fig. 3(d).

In the algorithm, Tα, Tβ , TE and TV refer to the thresholds used for the
features α, β,ER and SV , respectively. TFmin

, TFmax
, TSmin

and TSmax
refer to

the lower and upper thresholds used for the features FD and FS , respectively.
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Fig. 3. Figure illustrates the steps in the proposed breath detection algorithm.
(a) Speech signal marked with breath regions as in ground truth (red line), (b) speech
signal marked with potential breath segments detected (blue line) using (b) α and β
i.e., D1, (c) FD and SD combined with D1 i.e., D2, (d) ER and SV combined with D2

i.e., D3, respectively. (e) Final breath regions (blue line) as detected by the algorithm.
(Color figure online)

Thresholds Tα and Tβ are chosen such that no breath segments are eliminated
at the preliminary level, even at the cost of few false alarms. Further, thresholds
TE , TV , TFmin

, TFmax
, TSmin

and TSmax
are chosen such that the initially detected

false detections are eliminated apart from refining the detected breath sound
boundaries as shown in Fig. 3. Thresholds used in the algorithm (as shown in
Table 1) for experiments are selected based on the empirical analysis of the 40
speech utterances (containing 30 breath segments) considered for analysis.

Table 1. Thresholds used for features

Features Tα Tβ TFmin TFmax TSmin TSmax TE TV

Thresholds 0.015 0.03 50 2800 0.0001 0.012 6 × 10−5 1.3 × 10−4
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5 Evaluation of Proposed Algorithm

Table 2 shows the performance evaluation of the proposed algorithm in terms
of recall, precision and F-measure. It can be observed from Table 2 that the
proposed algorithm detects most of the breath sounds (as precision is high i.e.,
97.29%) but produces a few false alarms (as recall is 78.17%). The performance of
the proposed algorithm achieved a significant improvement over the performance
metrics reported in [7] (i.e., Recall = 94.7%, Precision = 40.0% and F-measure =
56.1%), which is also tested on spontaneous speech. The performance of the
two methods may not be directly compared as the databases considered are
different, but still both databases are collected in a similar scenario. Analysis
of the detected breath segments show that most of the false alarms are caused
by short breath sounds occurring within words, particularly in breathy speech
segments (segments where speech co-occurs with breath sounds [18]), which are
not annotated as “breath” sounds in the ground truth labels.

Table 2. Evaluation of the proposed algorithm

Recall Precision F-measure

97.29 78.17 86.69

6 Breath Detection for Speaker Recognition

In this Section, the importance of detecting breath sounds in spontaneous speech
is illustrated by considering the task of speaker recognition. The effect of breath
sounds, occurring in spontaneous speech, on the performance of an i-vector-
based speaker recognition system is analyzed, where the enrollment i-vectors for
each speaker are obtained by considering only neutral speech of the speaker. Fur-
ther, the speaker recognition performance is evaluated by including the proposed
breath detection module (BDM) in the front-end of the speaker recognition sys-
tem. The complete approach followed for analysis is depicted in Fig. 4. It can
be observed from Fig. 4 that the test sample is passed through the BDM (used
to detect the breath sounds in the test sample) prior to voice activity detection
(VAD) and extraction of i-vectors from the test sample. The regions in the test
sample detected as breath sounds by the BDM are eliminated, and then VAD
and i-vector extraction is performed on this modified test sample (test sample
obtained after removing breath regions).

As shown in Fig. 4, the test sample consists of both, speech and breath sounds
produced by the same speaker. BDM uses the algorithm proposed in Sect. 4
to detect breath sounds in the test sample, and eliminate them. VAD, used to
remove silence and low signal-to-noise ratio regions, is performed using Voicebox
toolkit [19]. State-of-the-art GMM-UBM-based (Gaussian mixture model with
universal background model) i-vector framework provided by the Voice biome-
try standardization (VBS) is used for the speaker recognition system considered
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Fig. 4. Block diagram of the proposed speaker recognition system

in this analysis [20]. In VBS, the gender-independent 2048-component univer-
sal background model (UBM) was trained using NIST SRE 2004 − 2008 data
(≈ 1156.03 hours of data) and the total variability space ‘T’ of 600-dimension was
trained using Fisher English (Part 1 and 2), NIST SRE 2004−2008, Switchboard
(Phase 2, Phase 3, cellular part 1 and cellular part 2), which totals to ≈ 9010.23
hours of data. Further, the linear discriminant analysis (LDA) matrix of 200-
dimensions and the within-class covariance matrix of 200-dimensions, which are
used in the post-processing of the i-vectors, were also trained using the same
data used for training the T matrix.

The test i-vectors (obtained from test samples) are scored against the
speaker-specific enrollment i-vectors using probabilistic linear discriminant
analysis (PLDA), and the resulting scores are used to evaluate the overall system
performance. The system performance is evaluated in terms of equal error rate
(EER).

Standard databases such as NIST SRE, which are used in speaker recognition
experiments do not provide transcriptions, especially for non-speech sounds such
as breath, which are required for this analysis. Hence, for the speaker recognition
experiments in this analysis, we considered 32 speakers (16 male and 16 female)
from the Buckeye corpus, whose audio recordings have significant presence of
breath sounds. A total of 50 utterances (each of 2.5 sec to 3 sec in duration, con-
taining only neutral speech) per speaker are considered to extract the enrollment
i-vector for each speaker. To test this speaker recognition system, 10 utterances
(each of 2.5 sec to 3 sec in duration) per speaker, containing both neutral speech
and breath sounds produced by speaker, are considered. The amount of breath
sound was about 20% to 30% (in duration) in the considered test utterances.
Further, the performance of the system is also evaluated by considering 20 utter-
ances (containing only neutral speech) per speaker, which are used to obtain the
baseline performance of the speaker recognition system.

For the speaker recognition experiments, all utterances (both train and test)
are down-sampled to 8 kHz, and the frames retained after VAD are represented
using MFCCs. 60-dimensional MFCC vectors (first 19 static coefficients along
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with the 0th coefficient, and their corresponding delta and delta-delta coeffi-
cients) are extracted using 25 msec Hamming window with a 10 msec forward
shift. Prior to computation of delta and delta-delta, the 20-dimensional feature
vectors are mean and variance normalized using a 2 sec sliding window.

Table 3. EER (in %) obtained for the speaker recognition system trained on neutral
speech of the speakers

Test case EER (in %)

Only Neutral (without BDM) i.e., Baseline 2.62

Only Neutral (with BDM) 2.68

Neutral + Breath (without BDM) 5.36

Neutral + Breath (with BDM) 3.29

6.1 Results

The EER values obtained for the speaker recognition system, with and with-
out the breath detection module, are provided in Table 3. As shown in Table 3,
there is a significant degradation in performance (EER = 5.36%) compared to
the baseline performance (EER = 2.62%), when the test samples containing
breath sounds are provided directly to the speaker recognition system (without
including the breath detection module). When the breath detection module is
included in the front-end of the speaker recognition system, a relative improve-
ment of about 38% in terms of EER (EER improved to 3.29% from 5.36%).
This improvement in performance of the speaker recognition system obtained by
including BDM highlights the importance of breath sound detection for speaker
recognition. A slight degradation in performance of the system with BDM when
tested with utterances containing both neutral speech and breath sounds (EER
of 3.29%) compared to the baseline performance (EER = 2.62%) is observed.
This may be due to the influence of the breath sounds on subsequent speech
resulting in breathy speech segments, which are also found to degrade the per-
formance of speaker recognition systems trained on neutral speech [21]. It can
also be observed that the inclusion of BDM in the front-end of the speaker recog-
nition system have no (little) effect on the performance of the system, when only
neutral speech is provided as input to the system (EER = 2.68% with BDM,
and EER = 2.62% without BDM).

7 Summary and Conclusions

In this paper, a rule-based algorithm, using acoustic features representing excita-
tion source and vocal tract system based differences between speech and breath
sounds, is proposed for detection of breath sounds in spontaneous speech. The
proposed algorithm outperforms the previous algorithms proposed for detec-
tion of breath sounds in spontaneous speech, and is found to detect most of
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the breath sounds in spontaneous speech. Further, the significance of detecting
breath sounds is illustrated for the task of i-vector-based speaker recognition.
Experimental results show that the performance of the speaker recognition sys-
tem (trained on neutral speech of the speakers) degrades when breath sounds
occur during the testing phase. It is also experimentally shown that the inclu-
sion of the breath detection module in the front-end of the speaker recognition
system will compensate for the effect of breath sounds on the performance of an
i-vector-based speaker recognition system.

Acknowledgments. The authors would like to thank Dr. Sunil Kumar Kopparapu,
of TCS Innovation Labs - Mumbai, for providing his critical comments and suggestions
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Abstract. Exploring the content of a video is typically inefficient due
to the linear streamed nature of its media. Video may be seen as a
combination of a set of features, the visual track, the audio track and
transcription of the spoken words, etc. These features may be viewed
as a set of temporally bounded parallel modalities. It is our contention
that together these modalities and derived features have the potential
to be presented individually or in discrete combination, to allow deeper
and more effective content exploration within different parts of a video.
This paper presents a novel system for videos’ exploration and reports
a recent user study conducted to learn usage patterns by offering video
content as an alternative representation. The learned usage patterns may
be utilized to build a template driven representation engine that uses the
features to offer a multimodal synopsis of video that may lead to more
efficient exploration of video content.

Keywords: Multimedia analysis · Video representation

1 Introduction

Content consumption is increasingly becoming video oriented. Due to its lin-
ear nature as media, it might take longer to evaluate the context of a video
than a textual document [13]. It is because, different modalities within a video
are tightly bonded together. It is our contention that exploring a video can be
made more efficient by representing it in a multimodal and configurable manner,
i.e. breaking the tight bond between the parallel modalities can open up new
opportunities to explore a video.

By multimodality, we mean that videos are composed of a set of features,
namely the moving video track, the audio track and other derived features, such
as transcriptions of the spoken word. Together these modalities can give an effec-
tive way of communicating information. The content value of these modalities
as a whole far exceeds their values separately i.e. the whole exceeds the sum of
its part. Richness both in terms of modalities and the amount of available video
content create a challenge. Videos can vary in length as some videos could be
several hours in length. It is very difficult if not impossible for users to fully view
every piece of video, which could be useful or important to them.
c© Springer International Publishing AG 2017
A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 109–118, 2017.
DOI: 10.1007/978-3-319-66429-3 10
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Thus there is a need for more effective means to explore video content, to
enable the user to find the desired content as quickly and conveniently as possible.
While there has been a lot of progress in this area, current technology is still
limited in this regard. It is still quite cumbersome to quickly get the gist of all
the available content in order to consume only the desired. Current commercial
offerings do not fully harness the multimodal potential of video content.

Currently researchers, approach video exploration by enhancing video selec-
tion capability from a large collection, either by listing search query results based
on indexing of multimodal attributes [17,28] or by listing video recommendations
[27]. But once a short list of videos is identified or even when users have a sin-
gle video to begin with, the process of getting the desired information within
the video or assessing if the video is useful or not, is still quite cumbersome.
To solve that problem researchers have proposed different techniques, e.g. video
navigation [25], hyper videos [18] or video summarization [8]. However, as it will
be elaborated in Sect. 2, current approaches while providing useful and inter-
esting outcomes, are still quite limited in empowering users to get the desired
content within a video effectively. Thus there is a need to look at video content
differently.

It is our aim to devise an approach which opens up new opportunities to
explore a video by breaking the tight bond between the different modalities of a
video through feature extraction. The proposed approach will utilize a template
driven representation engine to represent the video as a multimedia web page. In
order to streamline the design of the template engine, a user study was conducted
by utilizing a novel system prototype developed to learn the usage pattern of
participants. It involved extracting multimodal features from TED presentation
videos and representing them to 29 users.

This paper reports the results of the user study. Multimodal features were
extracted automatically using different tools and represented to users in order
to enable them to explore video effectively. The usage patterns are not only
useful for designing our proposed representation engine, but they also give new
insights regarding user preference while exploring the content of an informational
video. A novel aspect of the current study compared to [9,20] is, that all of
the features extracted and shown to users were automatically extracted using
already available tools. Therefore any lessons learned from the study can be
readily applied to video content exploration tools.

2 State of the Art

Current techniques allow users to explore the content within a video either by
providing the ability to search for something particular or by giving an overall
synopsis of a video i.e. video summarization. It would not be unfair to say that
in video summarization, importance is usually attributed to visual features [2,5].
However multimodal features are also getting considerable attention due to the
added value they bring in terms of identifying important segments [8,12] both
in produced videos and in recordings of natural interaction where the interplay
among multiple modalities is often core to understanding the content [3,4].
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Searching for a piece of information within video assets is still text based
as far as commercial offerings (such as YouTube, etc.) are concerned. However,
researchers have worked a great deal on multimodal methods to extract informa-
tion from videos. In [10] authors use face recognition along with name tags to find
footage of certain people in videos, while [19] use text recognition techniques to
see if there is any textual information appearing in videos. [17] facilitate search-
ing for relevant sections in baseball videos based on metadata attributes, while
[25] facilitate navigation and searching within a video through visualizing low-
level features and frame surrogates. In order to enhance the efficiency of search
within video and [7] uses ontologies. [28] extends this idea of semantic-based
search by using linked data to provide a time-based video index, which allows
search within the video content. [22] devise a framework for retrieving informa-
tion using multimedia queries. Another interesting example of multimodal video
search is [29], in this work authors devise a cross-media retrieval approach to
search for video by giving audio samples and vice versa.

As described above, current approaches to searching within video utilize the
multimodal features of video in their processing but underutilized the potential
of multimodal features in the representation. With the use of key-frames and
other textual information, such as keywords, these approaches allow the user
to search a particular item and to jump to a particular position in the video,
but they lack the ability to provide an overall synopsis. Video summarization
techniques provide the overall synopsis of the video, but the ability to get some-
thing particular is limited by the overall visual focus of the representation. It is
our contention that exploration can be made more efficient by combining both
the ability to search for specific information in a video and a synopsis of its
different segments. It can by achieved by representing the original video, using
combinations of multimodal features in a configurable manner.

3 Proposed Approach

This research hypothesizes that multimodal features extracted from parallel
modalities of video content can be presented to viewers to enhance their explo-
ration experience. To validate this, the proposed approach extracts multimodal
features from parallel modalities along with their temporal information and
stores them in a repository. To offer multimodal synopsis for exploration, the
approach aims to utilize a template-based representation engine, which repre-
sents the modalities of the video by presenting the extracted features in a con-
figurable manner. In this work, we focused on TED-style presentation videos.

TED-Style Presentation Videos: Because of their general and storytelling
nature, TED talks appeal to a wider and more diverse audience and therefore are
an ideal candidate for our research. While our experiment is performed on TED
videos, it is our assumption that the approach will be extendable to other con-
tent types such as life-logging videos, product launches and video messages, etc.
Due to its information seeking focus, the proposed approach is not expected to be
effective for video type such as movies, songs or entertainment oriented videos.
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3.1 Prototype Design

The objective is to enable users to explore the content of video efficiently in a
multimodal manner. To achieve this, we have to divide the video into different
segments and provide the user ability to explore each segment using multimodal
features of their choice.

Video Segmentation: A video can be segmented in many ways utilizing dif-
ferent modalities (Sect. 2). The choice of modalities is often domain dependent
(Sect. 2). For the current study, we segmented the video utilizing the textual
modality i.e. transcript of TED video was first split into sentences using Stan-
fordNLP toolkit [15] and was fed into text segmentation algorithm C99 [6] to get
segments for the video. Once segments are identified, to facilitate exploration,
they can be represented to users in different ways. Users can not only choose
which segments they want to explore but also what extracted features or their
combination they would use to explore a chosen segment.

A representation is composed of features extracted from the different modali-
ties of the video. A particular representation of a segment can have different capa-
bilities in terms of its consumption potential. Some extracted features, expose
content within the segment deeply which require more time for a user to con-
sume, while others expose much less information but are quicker to consume. For
the experiment, a prototype was developed for users to consume the segments
for their choice using the extracted features of their choice to facilitate their
video exploration.

Prototype Details: Figure 1 shows a screen shot of the prototype showed to
the study participants. The prototype was built using HTML5 and JavaScript
and designed to work with both traditional and touchscreen interfaces. Figure 1
shows the representation of the TED talk by Thomas Piketty [21], C99 algorithm
[6] divided the transcript of this video in 10 segments. Figure 1 shows the first
four segments; the users can swipe or scroll to the right to see the rest of the
segments. Highlighted in yellow are the segments where the term users searched
for occurred. Each segment has five tabs, and each tab contains a rendering of
extracted features. Following is a description of each tab.

Fig. 1. Screen shot of video representation, showing four out of ten segments
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Visual: The Visual tab shows the key frames of a segment. A custom tool
was developed using openCV to detect camera shot changes. From those scene
changes, one frame from each shot was selected. From those selected frames,
frames with and without a face were identified using Haar cascade [14]. Speak-
ers often use visual aids, such as presentation slides in a TED presentation. The
heuristic was that shot without a face after a shot with a face might contain some
images of visual aid used by the presenter which could contain useful informa-
tion. Users can tap or click on the frame to see all the selected frames to get a
visual synopsis of a particular segment.

Summary: The Summary tab shows the automatic text summary generated
from the transcript of the segment. An online summarization tool for generating
text summaries [1] was utilized. Terms: The Terms Tab shows the word cloud
generated from the transcript of the segment. We used the tool TagCrowd [26]
for the word cloud generation. NE: The Named Entity tab shows the list of
extracted named entities from the transcript of the segment. This prototype
used the Named Entity Recognizer tool by [23]. Video: Video tab shows the
video snippet of a segment. The text in transcript comes with timestamps. Once
the segmenter segmented the text, timestamps were used to determine the start
and end time of a particular segment and its video snippet was offered to users
to watch.

4 Experiment

Exploratory Search Task: The study is based on a simulated task scenario
[11]. 29 users (21 male and 8 females) were asked to perform an exploratory
search task to explore a video using the prototype (Sect. 3.1). Exploratory search
is defined as a complex search task in which the user has to retrieve some facts
first, which enable further search queries solving the overall search problem.
Often the user is not sure about his/her search goal and sometimes, he/she is
not very familiar with the topic of the search [16,28].

Users were asked to perform an exploratory search query. For this study, the
query was pre-selected to be “Income inequality in the United States”. The result
of their query was a TED video. But instead of watching the video, users explored
the video using our custom representation (Sect. 3.1). Each user performed the
query twice i.e. each user explored two TED talks using the prototype one by
one. It was left to the user’s discretion to choose the combination of segments
and tabs they thought sufficient to have the overall synopsis of the video in
regards to the query.

4.1 Feedback Capturing

While consuming the representation, users were encouraged to think out loud
to describe their actions, while their interaction with the representation was
recorded via screen capturing and audio recording. By analyzing their recordings,



114 F.A. Salim et al.

we identified the potential benefits as perceived by users in this alternative form
of video consumption.

User Satisfaction Questionnaire: After the experiment, users were asked to
complete a questionnaire to provide their feedback on the different aspects of
the representation. The questionnaire contained 10 questions containing 5 points
Likert scale(5 being strong agreement). First 3 were regarding the ease of use
with the prototype. Question 4 to 6 were regarding the segmentation of video
while question 7 to 10 were about user’s perception of efficiency in consuming
the video by the representation compared to watching the video.

User Interactions with Tabs: Both audio recording and screen capture
footage were analyzed and annotated manually by the researchers. To record the
feedback, following scheme was used. The heuristic was, the more users select
a particular tab for a segment, the more interested they are in consuming the
information using that particular feature rendering. Therefore, each interaction
with tabs was noted down e.g. when a user chose to view “Terms” of a particular
segment, it is counted as a user interaction with the representation.

Think Aloud: We employed a think aloud protocol [24] approach to elicit and
analyze user feedback. In order to learn exploration pattern, in analyzing the
recorded data, the following procedure was followed. By encouraging users to
think out loud, it was intended to record their thought process in exploring the
content of the represented video. We were interested in user comments on the
effectiveness of different features in terms of efficiency and usability for exploring
the video. Feedback like “the speaker is talking about the 70 s here” is not as
important as “I find this summary more useful than the last one” or “I find short
summaries useful” etc. Feedback like the latter two examples was noted down.

5 Statistical Analysis

Figure 2 shows the average score given to each question by participants. As
it can be seen, users liked the representation in general, as the lowest average
score is 3.5 out of 5. Female participants gave higher scores to the representation
compared to their male counterparts but it is not statistical significance (p > 0.05
obtained using Kruskal-Wallis analysis). It can be seen in Fig. 2 that while the
overall ease of use and perceived efficiency was scored quite positively by the
users, their satisfaction with the segmentation is lower than the rest as question
4 to 6 have lower average score than the rest.

We performed Pearson Correlation Test with user interactions with tabs
(Sect. 4.1) with the hypothesis that there is no relationship between the usage
of tabs (where usage of tabs is defined as number of clicks on tabs) while using
the proposed system. From the results depicted in Fig. 3, we can see that the
usage of the tabs is correlated with each other, and this correlation is statisti-
cally significant (p < 0.05) in 4 out of 10 cases. For example, usage of ‘Sum tab’
is correlated with usage of ‘NE tab’ and this correlation (r = 0.57) is statistical
significance(p < 0.05).
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Fig. 2. Mean and standard deviation values of feedback by 29 users

Fig. 3. Pearson correlation between usage of tabs (representation)

We rank the tabs for each user by counting the number of times a user clicked
on a tab. Sometimes the users have the same number of click for two tabs. To
rank in that case, we calculate an aggregated response from other users who
have a different number of clicks for those tabs. This response is calculated, how
many users rank one of two tabs as higher/lower than other tab. In case the most
users rank a tab (t1) higher than other tab (t2) then the tab (t1) is assigned a
higher rank than the other tab (t2). We have a ranked data based on user clicks.
As we know that there are in total 5 tabs and number of possible permutation
elements are 120. Let’s say tabs are (visual, summary, term, NE, video) then
the most chosen ranking is (4, 1, 2, 3, 5) that is chosen by 6 users. We employed
the Mallows-Bradley-Terry (MBT) model to calculate the estimated parameter
for the ranked data. The parameters are as follow (0.11071, 0.46184, 0.26687,
0.09943, 0.06115). Based on the parameters, the estimated order of ranking is
(3,1,2,4,5) it means that users prefer the most is the summary tab, then term
tab, then visual tab, then NE tab and the last one is the video tab.
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6 Discussion and Future Work

Statistical analysis of the questionnaire revealed that while users found the rep-
resentation easy to use and efficient to comprehend the content within a video.
They did not always agree with the segmentation performed by the chosen algo-
rithm. They particularly did not like the fact that some segments were either too
short or too long. In the verbal feedback, they often express their desire for more
balanced segments of the video. However, the lack of balancing of segmentation
length was compensated with the flexibility of choosing the representation of
their choice users rated other aspects higher (see Fig. 2).

Analysis of user interaction revealed that most users preferred textual rep-
resentation compared to visual representation. The MBT model parameters
showed that the summary and word clouds were the most chosen representa-
tions by the users while watching the video snippet was the last. Analysis of ver-
bal feedback backed it up. Many users self-reported themselves as a fast reader
and hence found textual representations more useful. The ranking model (MBT)
gives user preference ranking patterns which can be used to further streamline
the design of system. Pearson correlation test results show that the usage of
visual tab is less correlated with the other tabs usage while the other four tabs
usage are correlated with each other (statistically significant (p < 0.05) 4 our
of 6 cases). It means that one may improve a system design by not eliminating
less correlated tabs. In the recorded feedback users unanimously reported that
they were missing the information regarding the length of each segment versus
the length of the whole video. They considered this information as an important
factor in their choice. Informing them about the length of a particular segment
influenced their choice of tabs for that segment. For example, for a long segment,
they prefer a rendering such as a word cloud of key terms to quickly get the info
while for a shorter segment they might read the summary or watch the video
snippet.

Time versus Depth Decisions: One subject analyzed the verbal and obser-
vational (Sect. 4.1) feedback of the users using grounded theory [24]. While the
details of our use of this method go beyond the scope of this paper, we briefly
summarize the results here. The analysis revealed an overall tendency of users
to make time versus depth decisions. Different renderings (tabs) (Sect. 3.1) have
different capabilities in terms of efficiency and effectiveness. Consider the ren-
dering like word cloud of key terms. It is very efficient to consume as it can be
glanced very quickly to get an idea of what a segment might be about, compared
to a textual summary which would require more time to read but would give a
deeper synopsis of the segment. While watching the video snippet of a particular
segment would be the most effective way to consume a segment. However, it may
also be the most time-consuming. Users not only chose certain tabs because of
the length of the segment, but they also chose them according to their personal
preferences. Users who self-reported themselves to be detail oriented opted for
more detail oriented tabs such as video snippets etc. while others opted more for
word clouds. It shows the personalization potential of the representation.
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Future Work: Our aim is to reduce the number of choices for the user while
exploring the video by multimodal representation. Based on the results of the
user study we have learned some usage patterns. We aim to utilize these usage
patterns to develop some representation templates for video exploration. Those
templates will be used to develop representation engine which will offer an auto-
matically generated multimodal synopsis of video to the user for efficient explo-
ration. As seen in Fig. 2 some user did not like the segmentation of the video
using the current technique. We will also experiment using different segmentation
techniques by utilizing semantic uplifting of the topics discussed in the video.
Although current experiment was performed as a query based search scenario,
we believe that our proposed approach for video’s exploration can be applied to
other scenarios. For example, where the user has to consume content within video
recordings such as a quick synopsis of meeting recorded by a smart conferencing
system or getting a key point in a technical tutorial video.
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L., Sébillot, P.: Shaping-up multimedia analytics: needs and expectations of media
professionals. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.)
MMM 2016, Part II. LNCS, vol. 9517, pp. 303–314. Springer, Cham (2016). doi:10.
1007/978-3-319-27674-8 27. https://hal.inria.fr/hal-01214829

http://autosummarizer.com/
http://dx.doi.org/10.1007/978-3-319-27674-8_27
http://dx.doi.org/10.1007/978-3-319-27674-8_27
https://hal.inria.fr/hal-01214829


118 F.A. Salim et al.

10. Haesen, M., Meskens, J., Luyten, K., Coninx, K., Becker, J., Tuytelaars, T.,
Poulisse, G., Pham, T., Moens, M.: Finding a needle in a haystack: an interactive
video archive explorer for professional video searchers. Multimedia Tools Appl.
63(2), 331–356 (2011)

11. Halvey, M., Vallet, D., Hannah, D., Jose, J.M.: Supporting exploratory video
retrieval tasks with grouping and recommendation. Inf. Process. Manag. 50(6),
876–898 (2014)

12. Hosseini, M.S., Eftekhari-Moghadam, A.M.: Fuzzy rule-based reasoning approach
for event detection and annotation of broadcast soccer video. Appl. Soft Comput.
13(2), 846–866 (2013)

13. Lei, P., Sun, C., Lin, S., Huang, T.: Effect of metacognitive strategies and verbal-
imagery cognitive style on biology-based video search and learning performance.
Comput. Educ. 87, 326–339 (2015)

14. Lienhart, R., Kuranov, A., Pisarevsky, V.: Empirical analysis of detection cascades
of boosted classifiers for rapid object detection. In: Michaelis, B., Krell, G. (eds.)
DAGM 2003. LNCS, vol. 2781, pp. 297–304. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-45243-0 39

15. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The
stanford CoreNLP natural language processing toolkit. In: ACL System Demos,
pp. 55–60 (2014)

16. Marchionini, G.: Exploratory search: from finding to understanding. Commun.
ACM 49(4), 41–46 (2006)

17. Matejka, J., Grossman, T., Fitzmaurice, G.: Video lens: rapid playback and explo-
ration of large video collections and associated metadata. In: Proceedings of UIST
2014, pp. 541–550 (2014)

18. Mujacic, S., Debevc, M., Kosec, P., Bloice, M., Holzinger, A.: Modeling, design,
development and evaluation of a hypervideo presentation for digital systems teach-
ing and learning. Multimedia Tools Appl. 58(2), 435–452 (2012)

19. Nautiyal, A., Kenny, E., Dawson-Howe, K.: Video adaptation for the creation of
advanced intelligent content for conferences. In: Irish Machine Vision and Image
Processing Conference, pp. 122–127 (2014)

20. Pavel, A., Reed, C., orn Hartmann, B., Agrawala, M.: Video digests: a brows-
able, skimmable format for informational lecture videos. In: Symposium on User
Interface Software and Technology, USA, pp. 573–582 (2014)

21. Piketty, T.: New thoughts on capital in the twenty-first century (2014)
22. Rafailidis, D., Manolopoulou, S., Daras, P.: A unified framework for multimodal

retrieval. Pattern Recogn. 46(12), 3358–3370 (2013)
23. Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recog-

nition. In: Proceedings of the CoNLL 2009, pp. 147–155. ACL, Stroudsburg (2009)
24. Rogers, Y.: HCI Theory: Classical, Modern, and Contemporary, vol. 5. Morgan &

Claypool Publishers, San Francisco (2012)
25. Schoeffmann, K., Taschwer, M., Boeszoermenyi, L.: The video explorer a tool for

navigation and searching within a single video based on fast content analysis. In:
Proceedings of the ACM Conference on Multimedia Systems, pp. 247–258 (2010)

26. Steinbock, D.: (2016). http://tagcrowd.com/
27. Tan, S., Bu, J., Qin, X., Chen, C., Cai, D.: Cross domain recommendation based

on multi-type media fusion. Neurocomputing 127, 124–134 (2014)
28. Waitelonis, J., Sack, H.: Towards exploratory video search using linked data. Mul-

timedia Tools Appl. 59(2), 645–672 (2012)
29. Zhang, H., Liu, Y., Ma, Z.: Fusing inherent and external knowledge with nonlinear

learning for cross-media retrieval. Neurocomputing 119, 10–16 (2013)

http://dx.doi.org/10.1007/978-3-540-45243-0_39
http://dx.doi.org/10.1007/978-3-540-45243-0_39
http://tagcrowd.com/


An Analysis of the RNN-Based
Spoken Term Detection Training
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Abstract. This paper studies the training process of the recurrent
neural networks used in the spoken term detection (STD) task. The
method used in the paper employ two jointly trained Siamese networks
using unsupervised data. The grapheme representation of a searched
term and the phoneme realization of a putative hit are projected into
the pronunciation embedding space using such networks. The score is
estimated as relative distance of these embeddings. The paper studies
the influence of different loss functions, amount of unsupervised data
and the meta-parameters on the performance of the STD system.

Keywords: Spoken term detection · Recurrent neural networks ·
Siamese neural networks

1 Introduction

A spoken term detection (STD) task is currently one of the most studied appli-
cations of the speech recognition. It is partly due to the IARPA supported Babel
research programme. Moreover STD is applicable in many other domains such
as analysis of conversations in call-centres or searching through the large spoken
archives.

In this paper, we will cope with a term relevance score estimation in the STD
task. The term relevance score is a confidence assigned by the STD system to a
putative hit so that the resulting list of hits could be filtered using a predeter-
mined threshold. We adopt the evaluation approach from the Babel programme
which uses the actual term weighted value (ATWV) metric to score the resulting
system. The ATWV metric was thoroughly studied in [17]. Its value is heavily
sensitive to the following phenomenons:

– Score normalizations – i.e. all scores generated by a STD must be on the
same scale and a particular threshold must produce a false positives and false
negatives with similar probabilities for all searched terms.

– Sensitivity to less frequent terms – because the resulting ATWV value is
computed as an arithmetic average of ATWV values for all searched terms,
the weights are the same for each searched term regardless its absolute number
of occurrences in the reference.

c© Springer International Publishing AG 2017
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– Out-of-vocabulary (OOV) terms – this is a specific case of a less frequent
term. Due to the nature of ATWV (arithmetic average of per-term TWV
values) the OOV terms have the same weight as e.g. frequent in-vocabulary
(IV) terms and therefore it is important to have the possibility to search for
OOV terms, either by using sub-word units [13] or proxy words [1].

The state-of-the-art methods tackle with all these phenomenons, examples
are the query length normalization method [8], sum-to-one normalization [9] or
the regression-based normalization [7]. The presented method uses the machine-
learning based approach which employs recurrent neural networks to estimate
the score of putative hits based on the pre-indexed sub-word units and the
grapheme representation of the searched term.

The work was inspired by the work of Kamper et al. [5] for the query-by-
example search. They used the Siamese convolutional neural networks trained
to distinguish between similar and different examples of the searched audio
sequence. He et al. [4] further generalized this approach to include the multi-
view aspect, where the searched phrase was represented as character sequences.
Subsequently, the bidirectional long-short term memory (LSTM) Siamese models
were jointly trained to extract pronunciation embeddings from the corresponding
audio and character sequences. The work [4] is focused on the word discrimina-
tion task and does not solve the problem of determining the list of putative hits.
The work of Naaman et al. [10] used Siamese RNNs to automatically learn a
similarity function between two pronunciations.

Our approach described in [16] uses the jointly trained RNN models to deter-
mine the pronunciation embeddings. We project the input grapheme sequence
of the searched term into the space of pronunciation embeddings using the
grapheme RNN. Similarly, we use the phoneme recognizer to obtain the sub-
word index and to construct the list of putative hits. Then, for each putative
hit, the corresponding phoneme confusion network (phoneme sausage) was pro-
jected using the phoneme RNN into the space of pronunciation embeddings. The
score of the putative is then estimated as the relative distance of the reference
and putative pronunciation embeddings. We use the margin-based hinge loss to
express the relative distance of the two embeddings compared to other pairs [5].

The paper extends the work [16], it studies the influence of the amount of
training data needed to train the RNNs and justifies other design decisions. It
is organized as follows: Sect. 2 recapitulates the theoretical background of the
Siamese network architecture, Sect. 3 shows the application of Siamese RNNs to
the STD task, Sect. 4 describes the experimental framework used in the work,
Sect. 5 discusses the experimental results and finally Sect. 6 concludes the paper.

2 A Siamese Network Architecture

The Siamese architecture of neural networks is beneficial in tasks, where the goal
is to compute similarity of two input samples. In this case, it is not necessary to
train the network in fully supervised manner. It is sufficient to train the network
with samples labelled as the same or the different. In the original application
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Fig. 1. Illustration of the loss function. Excluding the white node results in the original
Siamese loss (Eq. 3), including it represents the symmetrized loss (Eq. 4)

of Siamese architecture to the query-by-example task [15], each training sample
consisted of the triplet (xa, xs, xd), where xa is a reference input for word w (an
anchor), xs is an input containing different realisation of the same word w (a
positive example) and xd is an input for a word different from w (a negative
example). During the network training, the RNN is applied to xa and produces
an output embedding ya. The same network could be applied to xs to obtain ys
and xd to obtain yd. The goal of network training is to minimize the “relative
distance” between output embeddings ya and ys and maximize the “relative
distance” between ya and yd. This could be formulated as minimizing the hinge
loss [5] in the form:

l(ya, ys, yd) = max{0,m + d(ya, ys) − d(ya, yd)} (1)

where d(y1, y2) is a distance function computing relative distance of y1 and y2.
The meta-parameter m represents the margin between positive and negative
examples. The Kamper et al. in [5] propose to use the distance function based
on cosine similarity:

d(y1, y2) = 1 − cos(y1, y2) = 1 − y1 · y2
||y1|| · ||y2|| (2)

The training process is only lightly supervised, it requires just the correct
sample pairs. Common stochastic gradient descent (SGD) algorithms could be
used to optimize RNN parameters (Fig. 1).

Previous applications of Siamese networks suppose, that all inputs (the
anchor, the positive and the negative example) are from the same domain, e.g.
the sequences of MFCC coefficients in the query-by-example task [5]. For the
use as scoring algorithm, we changed this paradigm. The output embeddings are
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computed from two different representations of the same word w – the grapheme
sequence xw and the phoneme confusion network x̂w. Then, the first RNN f(xw)
computes the output embedding yw from the graphemes and the second RNN
g(x̂w) computes the output embedding from the phonemes ŷw of the word w.
The loss has the same structure as Eq. 1:

l(w, w̄) = max{0,m + d(f(xw), g(x̂w)) − d(f(xw), g(x̂w̄)} (3)

where x̂w̄ is a phoneme confusion network of word w̄ which is different from
word w. Note that the grapheme RNN f(·) occur in the equation only once for
each w, but the phoneme RNN g(·) obtains gradient updates from two different
words – w and ŵ – and therefore the learning rate of phoneme RNN is twice as
large as the learning rate of grapheme RNN. We could therefore symmetrize the
hinge loss to include both f(xw) and f(xw̄):

l(w, w̄) =
1
2
· (max{0,m + d(f(xw), g(x̂w)) − d(f(xw), g(x̂w̄)} (4)

+ max{0,m + d(f(xw̄), g(x̂w̄)) − d(f(xw̄), g(x̂w))})

The symmetrized criterion is an arithmetic average of two instances of Eq. 3,
one for xw selected as the anchor and one for xw̄. The idea is not new, the exten-
sions of the basic same-different loss function were studied in [4] and the findings
were similar to the results presented in this paper. The RNN networks could use
gated-recurrent units (GRU) or long-short term memory units (LSTM).

3 RNN-based Spoken Term Detection

To apply the approach of Siamese neural networks in the spoken term detection
task, it is necessary to solve two subtasks: (1) Given a query term (input as
sequence of characters) determine the set of putative hits using a pre-indexed
sub-word units. (2) For each putative hit (occurrence candidate) compute the
associated term relevance score.

3.1 Term Occurrence Candidates

In current implementation, the algorithm to determine the list of putative hits
is very similar to the algorithm used in [13]. The only difference is that the
original term relevance estimation is replaced with the RNN-based counterpart.
The algorithm is built around the sub-word index where the sub-word units are
triplets of consecutive phonemes. These triplets are extracted from the phoneme
lattice generated by a phoneme recognizer.

In the search phase, the searched term is first transcribed into a sequence
of phonemes using grapheme-to-phoneme mapping. Then, this sequence is con-
verted into a sequence of overlapping phoneme triplets and these triplets are
looked up in the index. The found triplets are then sorted according to the time
of the occurrence and clustered so that the clusters are separated by at least
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0.3 s. Then, each such cluster is declared as a putative hit. It must be noted that
this part of the RNN-based STD still relies on the explicit grapheme-to-phoneme
mapping. Elimination of the grapheme-to-phoneme mapping is a subject of fur-
ther research.

3.2 Term Relevance Estimation

The goal of the relevance score estimation is to assign a relevance score to some
segment of the input audio (represented by corresponding part of the phoneme
sausage x̂w) given a searched term w (represented by grapheme sequence xw).

The training data for the neural network consists of a set of pairs (xw, x̂w)
extracted from the input data that were recognized in the unsupervised fashion.
The xw is the recognized word and x̂w the corresponding phoneme sausage.
We use the word xw only if its word confidence is higher than a threshold.
During training the Siamese neural network, first the pair of two different words
(w, w̄) must be sampled from the training data. To model the variations in
pronunciation of words, the corresponding phoneme sausages x̂w and x̂w̄ are
sampled from the training set of pairs. Then, the neural network is trained to
optimize the criterion given by Eq. 4 using (xw, x̂w, xw̄, x̂w̄) as the input data.

Both the grapheme-to-embedding mapping f(·) and phoneme-to-embedding
mapping g(·) is implemented in a straightforward way as a one layer bidirectional
RNN with one maxout layer [3]. The graphemes are represented as one-hot
vectors and grapheme embedding layer is used to represent them in a continuous
space. To project the segments of phoneme sausages into the continuous space
we used another RNN as a trainable feature extractor (for detail, see [16]).

Finally, the relevance score is estimated as a cosine similarity of the pro-
nunciation embedding f(x) obtained from the graphemes of the query x and
the pronunciation embedding g(x̂) computed from the phoneme sausage of the
occurrence candidate x̂, formally as cos(f(x), g(x̂)).

4 Experimental Framework

The presented method was evaluated on the data from a USC-SFI MALACH
archive in two languages – English [14] and Czech [12]. The archive for each
language was recognized using the word- and phoneme-level recognizers. For
experiments with unsupervised learning, we used different amount of data up
the unsupervised data length. The number of (xw, x̂w) pairs extracted for the
full unsupervised data and the number of distinct words are summarized in
Table 1. The unsupervised training data were generated using large vocabulary
speech recognizer (LVCSR) with vocabulary size of quarter of millions for each
language.

The RNNs trained in the experiments had constant structure and number of
neurons: grapheme and phoneme embedding width, number of recurrent units
and number of maxout neurons were 256, the width of the posterior embedding
was 32. During training, we generated 100k quadruplets (xw, x̂w, xw̄, x̂w̄) for each
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Table 1. Statistics of datasets

English Czech

LVCSR vocabulary 243,699 252,082

Unsupervised data length [hours] 2,037 997

Number of (xw, x̂w) pairs 277 k 672k

#distinct words w 21 k 83 k

Dev Test Dev Test

LVCSR WER 24.10 19.66 23.98 19.11

#searched terms 628 607 2825 2621

Dataset length [hours] 11.1 11.3 20.4 19.4

training epoch. If not specified in a given experiment, the network parameters
were trained using 30 epochs of the ADAM optimization [6]. We used dropout
probability 0.2 and the default margin width m = 0.5 (metaparameter of Eq. 4).

4.1 LVCSR Speech Recognition

We followed a typical Kaldi [5] training recipe for a deep neural network
(DNN) acoustic model training. This recipe supports layer-wise RBM pre-
training, stochastic gradient descent training supported by GPUs and sequence-
discriminative training optimizing sMBR criterion. We applied the standard 6
layers topology (5 hidden layers, each with 2048 neurons) with a softmax layer.
The output dimension was equal to the number of context-dependent states
(4521 for English, 4557 for Czech). We used features based on standard 12-
dimensional Cepstral Mean Normalized (CMN) PLP coefficients with first and
second derivatives. In total, the English acoustic model was trained from 217 h
and the Czech from 84 h of signal. We used our in-house real-time decoder both
for the word- and phoneme recognition with trigram word- and 5-gram phoneme
language model.

4.2 Evaluation Metrics

To evaluate the experiments, we used mainly the development set (Table 1). The
list of searched terms was generated automatically, a term set for development
data was generally different from a term set for testing data. We used a set
of all words in the transcription and then we filtered it to satisfy the condi-
tions: (1) Each term has more than three phonemes, because the method for
generating putative hits cannot search for shorter phoneme sequences; (2) The
phonetic transcription of the term differs at least in two phonemes from any
other phoneme subsequence in any other transcription.

We report ATWV and MTWV values, the difference is that MTWV uses
an oracle threshold estimated on the reference data [2]. The ATWV/MTWV
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values were computed using Kaldi tools [11,17]. The ATWV values were reported
on test data using MTWV oracle thresholds on development data. To analyse
the RNN-based term relevance estimation, only the phoneme-based search was
performed without the use of LVCSR lattices.

5 Results

The experiments conducted in this paper were prepared to give a deeper insight
in the behavior of the Siamese RNNs in the STD task. We wanted to clarify the
following questions:

– Is there any difference between the symmetrized and the original Siamese loss
(Eq. 3 vs. Eq. 4) and between GRU and LSTM RNN units?

– Does the training loss value correlate with the ATWV of the STD system?
– How much unsupervised data do we need to train the system?
– How does the performance of the trained system depend on the value of hinge

loss margin m (Eq. 4)?

5.1 Comparison of Different Training Approaches

In this experiment, we trained three different RNN systems, the GRU-based
with symmetric loss (Eq. 4), GRU-based with asymmetric loss (Eq. 3) and

Fig. 2. Comparison of different training approaches
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LSTM-based with symmetric loss. We recorded the loss values during train-
ing. After each epoch, we also ran the STD search and evaluated the MTWV
metric to obtain the dependency of the system’s performance on the number of
training epochs. The resulting learning curves are shown on Fig. 2.

The training with symmetric loss function finishes with lower values than
the training with asymmetric loss. Also the system performance expressed as
MTWV values is lower for the asymmetric loss, especially for English data where
the phonetics is much more complicated in comparison with Czech data. The
oscillations of MTWV during the first half of the training are interesting and
are probably caused by the symmetrized loss. It could be further examined if
lowering the learning rate will eliminate this behavior. The learning curves also
show no clear preference between GRU and LSTM. In the following experiments,
we used the GRU since they have a lower number of parameters (3 M vs. 3.7 M).

5.2 Amount of UnsuperVised Training Data

Another question not answered in [16] is how much training data is sufficient to
an unsupervised training method described above. For this experiment we grad-
ually increased the number of training data and for each such subset, we trained
the GRU RNN from scratch. Each subsequent subset contained all data of the
previous smaller subset, i.e. subset generated from 20 h contained also the subset

Fig. 3. Amount of unsupervised training data (x-axis is log-scaled)
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generated from 10 h etc. We used at most the whole available archive, see Table 1.
In this experiment we evaluated the MTWV on development data and also the
ATWV on test data with the decision threshold estimated on development data.

The dependency of ATWV/MTWV on the amount of unsupervised training
data is shown on Fig. 3. The most important observation is that the procedure of
estimating the optimal decision threshold on development data is not affected by
the amount of training data, i.e. the relative offset between development MTWV
and test ATWV is almost constant.

If we accept the decrease in MTWV of 0.02, we could train the STD term
relevance estimation for English on 200 h and for Czech on only 20 h. The differ-
ence is again caused by the relative complex phonetics of English (especially in
the Holocaust testimonies contained in MALACH archive) compared to Czech.
Both curves do not clearly show any saturation, it would be interesting to use
even more training data to see the ATWV limits.

5.3 Effect of Hinge Loss Margin m

In the last set of experiments, we gradually changed the value of hinge loss margin
m used to train the RNNs. The values of MTWV as a function of margin values
m are depicted on Fig. 4. Although the margin value m seems to be important for
the resulting STD system, by using the tolerance of MTWV decrease 0.01 from

Fig. 4. Effect of hinge loss margin m
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the highest value, we could select the margin from a relatively broad interval
between 0.2 and 0.7. Only the extreme values below 0.2 and above 0.7 cause
substantial changes in the system’s performance. That is the reason, why we
used the default value m = 0.5 in other experiments. Another important fact
is that GRU and LSTM units behave similar with only slightly different peak
MTWV values.

6 Conclusion

In this paper, we studied the training process of Siamese neural networks based
on recurrent units for the STD task. The learnings curves as the functions of the
amount of unsupervised training data and the number of training epochs were
described. Also the influence of the Siamese loss function and type of recurrent
units (GRU/LSTM) was studied. We also experimented with different values of
the hinge loss margin. All experiments are thoroughly described in Sect. 5.
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Abstract. Estimation of the dialogue quality, especially the quality of
interaction, is an essential part for improving the quality of spoken dia-
logue systems (SDSs) or call centres. The Interaction Quality (IQ) metric
is one of such approaches. Originally, it was designed for SDSs to esti-
mate an ongoing human-computer spoken interaction (HCSI). Due to a
similarity between task-oriented human-human conversation (HHC) and
HCSI, this approach was adapted to HHC. As for HCSI, for HHC the IQ
model is based on features from three interaction parameter levels: an
exchange, a window, and a dialogue level. We determine the significance
of different levels for IQ modelling for HHC. Moreover, for the window
level we try to find an optimal window size. Our study was aimed to sim-
plify the IQ model for HHC, as well as to find differences and similarities
between IQ models for HHC and HCSI.

Keywords: Human-human interaction · Task-oriented dialogues ·
Performance

1 Introduction

One of the ways for improving SDSs is to use some indicators, which may assess
the quality of interaction in HCSI. The IQ metric can be considered as a such
indicator, which may reflect the problematic situations during an ongoing inter-
action. This expert-based approach was proposed in [1,2]. Due to a resemblance
between task-oriented HHC and HCSI, this metric may be used for further ser-
vice improvement in call centres [3].

As for HCSI, the IQ model for HHC is based on features from the following
parameter levels: the exchange, the window, and the dialogue level [2,4]. In
contrast to approximately 50 features for IQ modelling for HCSI, the IQ model
for HHC is relied on more than 1200 features, which have been extracted from
an agent’s/ customer’s/ overlapping speech and a dialogue itself [4].
c© Springer International Publishing AG 2017
A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 130–140, 2017.
DOI: 10.1007/978-3-319-66429-3 12
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To study a contribution of each level for IQ modelling for HHC, we have
performed computations using several classification algorithms on different data
sets, which include features from the different combinations of the interaction
parameter levels. As a result, this study could help to reduce the computa-
tional complexity for modelling IQ by reducing the number of required features.
Besides, an optimal window size (for window level) remains an open question.
To find an answer, we have conducted some computations varying the window
size. All achieved results may be useful in designing the most accurate IQ model.
In turn, it can lead to understanding similarities and differences between HHC
and HCSI and makes SDSs more human-like.

The remainder of this paper is structured as follows: significant related work
on an analysis of parameter levels for IQ modelling for HCSI is given in Sect. 2.
An overview of corpus, which was used for conducting all computations, is pro-
vided in Sect. 3. Thereafter, a description of the formulated classification prob-
lems and applied classification algorithms is states in Sect. 4. Section 5 presents
the achieved results, which are then discussed in Sect. 6. Finally, we summarise
the results and outline future work in Sect. 7.

2 Related Work

The IQ metric is a modification of the concept of User/Customer Satisfaction
(CS), which is widely used in the field of call centres and SDSs. The idea of IQ
was introduced in [1,2]. In contrast to CS, which is mostly manually assessed at
the end of the calls, the IQ metric allows to evaluate SDS performance at any
point during an ongoing interaction. As it was mentioned before, the IQ model
for HCSI is based on 53 features [5], which are described in [2,6]. All features
belong to one of the levels: the exchange, the window, and the dialogue. The
first of them consists of information about the current system-user-exchange.
The next one includes the features from the n last exchanges. The last one
describes the complete dialogue up to the current exchange [2].

An analysis of the levels’ contribution to the overall performance of IQ mod-
elling is presented in [5]. The results of the analysis showed that in terms of
Unweighted Average Recall (UAR) [7], Cohen’s Kappa [8] linearly weighted [9],
and Spearman’s Rho [10] the best result was obtained using all features (from the
all parameter levels) [5]. But nevertheless, the study revealed an important role
of the window level features in the overall performance. Concerning the question
about the window size: although the main computations were performed with
the window size of 3, according to [5], the best performance was achieved for a
windows size of 9.

3 Corpus Description

All experiments for our study have been performed based on the spoken cor-
pus [4], which consists of 53 task-oriented dialogues between employees and cus-
tomers. In particular, this corpus contains dialogues between 4 employees and
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53 customers. Subsequently, after the manual diarization almost 1,800 speech
fragments were obtained, which then were split into 1,165 agent-customer-
exchanges. Each exchange consists of agent’s, customer’s turn and possible
overlaps.

Each exchange is described by more than 1,200 features, which belong to
the different interaction parameter levels: the exchange, window, and dialogue
levels [4]. The features from the exchange level include acoustic attributes,
extracted by OpenSMILE [11] (a feature vector contains 384 attributes [12],
which were used in Interspeech 2009 Emotion Challenge) for agent/customer
speech and overlaps, information about the duration of speech and pauses
(between exchanges and between turns), manually annotated emotions and
others.

In turn, the features from the two remaining levels describe the information
about:

– exchange itself (the total/mean duration, statistical information about who
speaks first in an exchange),

– agent’s/customer’s speech (the total/mean duration and percentage of dura-
tion),

– pauses (duration/percentage of duration between turns, the total duration
between exchanges),

– overlaps (the total/mean number of the fragments, the total/mean duration,
and percentage of duration).

The window level covers in this corpus the three last exchanges with respect
to the current exchange.

3.1 Interaction Quality

Each exchange in the corpus was accompanied with two IQ score labels, which
are based on the different IQ-labeling guidelines. The rules for both annotation
approaches were presented in [3].

It was done due to a drawback of the first approach which is based on an
absolute scale and is similar to the IQ score annotation guideline for HCSI [6].
Thereby this scale consists of five classes (1-bad, 2-poor, 3-fair, 4-good, 5-
excellent). According to the annotation guideline [6] all dialogues should start
with the IQ score “5”. In call centres there are a number of reasons why a dia-
logue can not start with the IQ label “5”: the long waiting time or customer
claims against a company with the customer aggressive behaviour due to which
IQ initially can not be good. Also the use of this approach for HHC can lead
to possible loss of information in the modelling process, because an agent can
increase a customer loyalty that may lead to IQ improvements (the IQ score can
be more than “5”). Such an example is presented in Fig. 1.

As we mentioned above, the first approach, which we will denote as IQ1,
is based on the scale which consists of five classes, but not all classes are pre-
sented in the corpus: there are only classes with the IQ scores “3”, “4”, “5”.
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Fig. 1. IQ scores (ordinate) during the dialoge (the number of the exchange - abscissa)
according to the different approaches: IQ1 - the first approach, IQ2 change - the sec-
ond approach with the scale of changes, and IQ2 abs - the second approach with the
transformed absolute scale

Moreover, the number of observations with the high IQ score “5” is 96.39% of
all exchanges, the smallest class (the IQ score “3”) covers only four observations.

The second annotation approach, in contrast to the first, is based on a scale
of changes which then is transformed into an absolute scale with the assumption
that all dialogues start with the IQ score “5” (as for IQ1). The scale of changes
is represented by the following scores: “-2”, “-1”, “0”, “1”, “2”, “1 abs” (the
last score is in the absolute scale). Thus, for the second approach, which we will
specify as IQ2, we have received the following scores: “6”, “5”, “4”, “3”. Similar
to the first approach, the classes are also unbalanced: the most frequent class
“5”occurs in 88.24% of all samples, while the second biggest class “6”comprises
8.24% of all data. Regarding to the smallest class “3”, it also contains four
exchanges, as for the first approach.

3.2 Emotions

Each agent/customer speech fragment was manually annotated using three dif-
ferent emotion sets, which were chosen from [13] and adapted for our study. The
first of them (em1) covers such emotion categories as: angry, sad, neutral, and
happy. The following set em2 was derived from em1 by adding such categories
as: disgust/irritation and boredom. The third emotion set em3 consists of anger,
sadness, disgust/irritation, neutral, surprise, and happiness.

For better understanding of the required emotion sets complexity for IQ
modelling, the sets em{1,2,3} were subdivided into neutral and other emotions
(denote them as em{1,2,3}2) and into negative, neutral, and positive emotions
(em{1,2,3}3).

4 Experimental Setup

The IQ estimation task can be represented as a classification problem with the
classes corresponding to the IQ scores. In our case there are three classes for



134 A. Spirina et al.

IQ1 and four classes for IQ2. For our research the total number of different sets
is eighteen, where each set is a combination of an IQ label (IQ1 or IQ2) and an
emotion set (nine sets). Denote it tasks.

In contrast to [5], we have conducted our computations only on the following
sets:

– the exchange level,
– the exchange and window levels,
– the exchange and dialogue levels,
– the exchange, window, dialogue levels.

We can not completely remove the features from the exchange level, because
the features from the window and dialogue levels do not contain enough infor-
mation to describe the interaction in HHC. In contrast to the experiments in [5],
where the window size were changed from 1 to 20, to find an optimal window
size we have varied it from 1 to 10.

For our study we have relied on the following classification algorithms, which
are implementedin in Rapidminer1 and WEKA [14]: Kernel Naive Bayes classifier
(NBK) [15], k-Nearest Neighbours algorithm (kNN) [16], L2 Regularised Logistic
Regression (LR) [17], Support Vector Machines [18,19] trained by Sequential
Minimal Optimisation (SVM) [20].

To obtain statistically reliable results we have carried out 10-fold cross-
validation. Thus, all data were split on the training and testing sets, where
we have introduced one more inner 10-fold cross-validation on the training sets.
This inner 10-fold cross-validation have been accomplished for the grid parameter
optimisation of the classification algorithms, where F1-score [21] was maximized.

Regarding dimensionality reduction we have employed a data transformation
technique Principal Component Analysis (PCA) [22] with the fixed cumulative
variance value 0.99, what allowed to reduce the number of features approximately
by factor of 2.5 (approx. from 1200 to 470). What is more, the data were pre-
processed using statistical normalization for each column (attribute values). As
a result, the mean of each column is equal to 0 and the variance is equal to 1.
Moreover, for all non-numeric features we have performed dummy coding, which
is commonly used to transform non-numeric attributes into numeric type.

5 Results

To assess the obtained results we have relied on such classification performance
measures as accuracy, Unweighted Average Recall [7], F1-score. All these perfor-
mance measures are macro-average (they were averaged over ten computations
on different train-test splits). However, F1-score is the main performance measure
for this study, that is why we provide results almost only for this performance
measure.

The results for the different combinations of the interaction parameter levels
are depicted in Fig. 2. The results presented in Figs. 2 and 3 were achieved with
the kNN algorithm.



Analysis of Interaction Parameter Levels 135

0.500

0.525

0.550

0.575

0.600

0.625

em1 em12em13 em2 em22em23 em3 em32em33

F1
−s

co
re

IQ1

0.500

0.525

0.550

0.575

0.600

0.625

em1 em12em13 em2 em22em23 em3 em32em33

F1
−s

co
re

IQ2

all no dialogue no window only exchange

Fig. 2. kNN performance in F1-score for different combinations of the parameter levels
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Regarding to the evaluations in terms of accuracy, the best results were
obtained with kNN and LR.

The results of IQ modelling for different types of IQ on the sets including all
parameter levels (exchange, window, dialogue) were published in [23].

Pertaining the results of the window size problem, the best results were also
achieved with the kNN algorithm in terms of F1-score. In this paper we provide
results for tasks with em13 and em31 sets (see Fig. 4). It should be mentioned
that in the corpus there are four dialogues with the length less (or equal) than
10 exchanges (length: 5, 8, 9, and 10). Hence, for these dialogues the maximum
possible length was used.

6 Discussion

Using the one-way analysis of variance (one-way ANOVA) [24] and the Tukey’s
honest significant difference (HSD) test [25] with the default settings, imple-
mented in R programming language1, we have found out that the differences
between means of the achieved results (within the study of the parameter levels
importance) are statistically significant for IQ2 through all classification perfor-
mance measures and all classification tasks. Regarding to IQ1, the statistically
significant differences were determined only in terms of accuracy for all tasks,
excepting em31 and em33. To find out what results are statistically significant
differ from other results, we have applied the Tukey’s HSD test. This test has
revealed that in all the cases there are statistically significant differences between
the results of NBK (the worst results) and other algorithms.

If we speak about the results in general, almost in all classification per-
formance measures for all tasks the obtained results outperform the baselines
(a baseline is a performance metric value of classifier which always predicts the
majority class). However, for some algorithms the results do not outperform the
baseline in terms of accuracy, which is 0.964 for IQ1 and 0.882 for IQ2.

It is noteworthy that the best results in terms of F1-score were achieved in
all the cases with kNN algorithm. Regarding to the results in terms of accuracy,
not only kNN, but also LR has outperformed the other algorithms. To define a
statistical significance of the obtained results (with kNN and LR) in terms of
accuracy in comparison with the baseline, the Student’s t-test [26] was employed.
In the case of IQ2 for all tasks and for both algorithms p-value is less than 0.007.
Regarding the kNN model for IQ1 p-value exceeds 0.15. It should be noted
that concerning the LR-based model results for IQ1, for some tasks p-values
outperform 0.05. The results, where p-value of the Student’s t-test for LR-based
IQ1 model is more than 0.05, are marked with asterisk sign in Table 1.

Hence, from the results presented above for IQ1 we have concluded that the
statistically significant results have been achieved with LR, but not for all tasks.
In turn, for all classification problems the obtained results in terms of accuracy
statistically significantly outperform the baseline for both algorithms, namely
1 http://rapidminer.com/
1 http://r-project.org/

http://rapidminer.com/
http://r-project.org/
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Table 1. Accuracy for the classification algorithms based on the different combinations
of the parameter levels for IQ1

Algorithm Emotion sets

em1 em12 em13 em2 em22 em23 em3 em32 em33

exchange + window + dialogue levels

kNN 0.968 0.96 0.968 0.962 0.962 0.961 0.966 0.963 0.966

LR 0.97 0.97 0.97 0.973 0.969* 0.973 0.97* 0.967* 0.973

exchange + window levels

kNN 0.970 0.964 0.970 0.965 0.964 0.969 0.968 0.967 0.965

LR 0.969 0.963* 0.969 0.972 0.966* 0.971 0.970 0.966* 0.971

exchange + dialogue levels

kNN 0.965 0.960 0.965 0.957 0.961 0.965 0.964 0.961 0.967

LR 0.970 0.967* 0.970 0.971 0.967* 0.972 0.971 0.967* 0.971

exchange

kNN 0.967 0.964 0.967 0.968 0.965 0.966 0.964 0.962 0.965

LR 0.969 0.967* 0.969 0.969* 0.966* 0.966* 0.970* 0.966* 0.972

kNN and LR for IQ2. Furthermore, we have performed statistical significance
tests to the results which have been obtained with kNN algorithm among all
combinations of the interaction parameter levels. The one-way ANOVA test has
revealed that there are no any statistically significant differences between the
results.

From Fig. 3 for IQ2 we can conclude that the most consistently high results
were achieved using the features from all interaction parameter levels. In turn,
the use of only exchange level has led to the worst results. It is similar to the
results, obtained for HCSI [5]. But in contrast to IQ2, for IQ1 the use of only
two levels (the exchange and window levels) has shown the most stable results in
Fig. 3 among all sets. Concerning to IQ1 the obtained results have contradiction
with the results obtained in [5].

In addition to the analysis of the impact of the different interaction parame-
ter levels on the overall performance, we have performed the experiments with
the different window size to understand its influence on the estimation perfor-
mance. Thus, for the experiments we have varied the window size from 1 (no
window) upto 10. The best results in all the cases were achieved on the kNN-
based model. On Fig. 4 we have depicted the results obtained on tasks with em13
and em31. As we can see for the different IQ approaches and tasks the better
results were reached with the different window size values. So, for the task with
em13 they are 6 and 9 for IQ1 and IQ2, respectively, while for the task with
em31: 4 and 2, correspondingly. According to the results gained in [5] for HCSI,
the best result was achieved with the window size of 9. As authors in [5] sug-
gested, it can be a system dependent parameter which “related to the minimum
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number of system-user-exchange necessary to perform a successful dialogue” [5].
Experiments presented in this paper for HHC showed that the window size can
be a corpus-dependent parameter.

7 Conclusions and Future Work

In this work, we have analysed the different aspects of interaction parameter lev-
els for IQ modelling in HHC. We have performed experiments for two different
IQ approaches: IQ1 and its modification IQ2. According to the results of our
study, we have concluded that the most consistently high results for IQ1 were
achieved without using features from the dialogue level, while for the second
approach it was done with utilizing all levels together. Also, it should be men-
tioned for IQ2 that the consistently low results were obtained based only on the
features from the exchange level. Concerning the optimal window size, we could
not find a unique value for all tasks. It looks like a corpus-dependent parameter.

Besides, during the research we have found out that the obtained results
for IQ2 are almost similar to the results from [5]. But nevertheless, through the
results for IQ1 we have become some contradictions with the results for HCSI [5].
On the one hand, it means that the IQ models for HHC and HCSI are similar
and do not depend on the feature set (the corpora for IQ modelling for HCSI
and HHC have different features). But on the other hand, it may mean that the
results are corpus dependent. That is why the further research in this field with
different corpora is important.

As a future direction we plan to extend the list of classification algorithms
for predicting an IQ score. Taking into account a rather high dimensionality
of the feature space, other dimensionality reduction methods might be helpful.
Moreover, the techniques for unbalanced data should be performed.
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Abstract. We compare two approaches to automatic detection of anno-
tation errors in single-speaker read-speech corpora used for speech
synthesis: anomaly- and classification-based detection. Both approaches
principally differ in that the classification-based approach needs to use
both correctly annotated and misannotated words for training. On the
other hand, the anomaly-based detection approach needs only the cor-
rectly annotated words for training (plus a few misannotated words for
validation). We show that both approaches lead to statistically compa-
rable results when all available misannotated words are utilized during
detector/classifier development. However, when a smaller number of mis-
annotated words are used, the anomaly detection framework clearly out-
performs the classification-based approach. A final listening test showed
the effectiveness of the annotation error detection for improving the qual-
ity of synthetic speech.

Keywords: Annotation error detection · Anomaly detection ·
Classification · Speech synthesis

1 Introduction

Word-level annotation of speech data is still one of the most important processes
for many speech-processing tasks. In particular, concatenative speech synthesis
methods including popular unit selection assume the word-level (textual) anno-
tation to be correct, i.e. that textual annotation literally matches the correspond-
ing speech signal. Such an assumption could hardly be guaranteed for corpus-
based speech synthesis in which large speech corpora are typically exploited.
Manual annotation of the corpora is time-consuming and costly, but, given the
large amount of data, still not errorless process [6]. Automatic or semi-automatic
annotation approaches could be a solution but they are still far from perfect,
see, e.g. [1,12,15]. Let us note that any mismatch between speech data and its
annotation may inherently result in audible glitches in synthetic speech [11].

As shown in our previous work [8], word-level annotation errors in read-
speech corpora for text-to-speech (TTS) synthesis could be detected automati-
cally using anomaly detection techniques. In this paper, we compare the anomaly
c© Springer International Publishing AG 2017
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detection with a “classical” classification approach. The data used in our exper-
iments are described in Sect. 2. In Sects. 3 and 4 the anomaly- and classification-
based approaches to annotation error detection are presented. The comparison of
both approaches is discussed in Sect. 5. The effectiveness of the proposed anno-
tation error detection framework for improving the quality of synthetic speech
is discussed in Sect. 6. Conclusions are drawn in Sect. 7.

2 Experimental Data

We used a Czech read-speech corpus of a single-speaker male voice, recorded for
the purposes of unit-selection speech synthesis [5]. The voice talent was instructed
to speak in a “news-broadcasting style” and to avoid any spontaneous expres-
sions. The full corpus consisted of 12242 utterances (approx. 18.5 h of speech)
segmented to phone-like units using HMM-based forced alignment (carried out
by the HTK toolkit [16]) with acoustic models trained on the speaker’s data [7].
From this corpus we selected Nn = 1124 words which were annotated correctly
(hereafter denoted as correctly annotated words), and Na = 273 words (213 of
them being different), which contained some annotation error (misannotated
words). The decision whether the annotation was correct or not was made by a
human expert who analyzed the phonetic alignment.

Various word-level feature sets were proposed to describe the annotated
words [8]. The sets incorporated various acoustic, spectral, phonetic, positional,
durational, and other features. To emphasize anomalies in the feature values, his-
tograms and deviations from their expected values were also used. More details
about the feature sets can be found in [8].

3 Anomaly-Based Annotation Error Detection

The problem of the automatic detection of misannotated words could be viewed
as a problem of anomaly detection (also called novelty detection, one-class
classification, or outlier detection), an unsupervised detection technique under
the assumption that the vast majority of the examples in the unlabeled data set
are normal. By just providing the “normal” training data (the correctly anno-
tated words in our case), an algorithm creates a representational model of this
data. If newly encountered data is too different from this model, it is labeled as
“anomalous” (i.e. misannotated words in our case) [2]. This could be perceived
as an advantage over a standard classification approach in which substantial
number of both “negative” (correctly annotated) and “positive” (misannotated)
examples is needed. Nevertheless, if some misannotated words are given in the
anomaly detection framework, they can be used to tune the detector and to
evaluate its performance.

For the purposes of the comparison with a classification-based approach
(described further in Sect. 4), Grubbs’ test (GT) based anomaly detector
(ADET) both with the optimal hand-crafted set of features (ADET∗) [10] and
with a set of features reduced by the singular value decomposition technique
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(ADET(dim)) was used [10]. The reason for choosing the GT-based detector was
that it statistically outperformed other detectors when evaluated over multiple
development/evaluation data splits [10]. It also performed well on both reduced
and all feature sets and also showed a consistent performance on data sets with
a lower number of misannotated words [9].

For the purposes of the development of an anomaly detection model (i.e., for
anomaly model training and selection), correctly annotated words were divided
into training and validation examples using 10-fold cross validation with 60% of
the correctly annotated words used for training and 20% used for validation in
each cross-validation fold. The remaining 20% of the correctly annotated words
were held out for the final evaluation of the model. As for the misannotated
words, 50% of them were used in cross validation when selecting the best model
parameters (i.e., for the validation of an anomaly detection model), and the
remaining 50% were used for the final evaluation.

The standard training procedure was utilized to train the ADET model.
The model hyper-parameters, n (the number of features detected as outlying)
and α (significance level) [10], were optimized during model selection, i.e. by
selecting their values that yielded the best results (in terms of F1 score, see
Sect. 5) applying a grid search over relevant values of the parameters with 10-
fold cross validation. In the case of GT, the parameter n was varied in the interval
[1,min(30, Nf)] (with Nf being the total number of features), and the parameter
α was searched in the range [0.01, 0.05].

The training and evaluation is shown in Fig. 1a and could be summarized in
the following steps:

1. Correctly annotated words were split into development/evaluation partitions
(with the development data being further split into training and validation
parts). The ratio of development/evaluation partitions was 80/20.

2. Misannotated words were split into validation/evaluation partitions in a
50/50 ratio.

3. Correctly annotated words used for the development were split into train-
ing/validation partitions using 10-fold cross validation with 60% of the orig-
inal correctly annotated words used for training and 20% used for validation
in each cross-validation fold. The training data was standardized to have zero
mean and unity variance.

4. A detector was trained and its hyper-parameters were optimized using a grid
search and the 10-fold cross validation scheme.

5. The best detector with the best hyper-parameters was re-trained on all cor-
rectly annotated words available for the development.

6. The same standardization method as for the training data was applied to the
evaluation data.

7. The performance of the resulting anomaly detector was evaluated on the
evaluation data set with the metrics described in Sect. 5.

The Scikit-learn toolkit [13] was employed in our experiments.
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Fig. 1. Schemes of training and evaluation of the anomaly-based (a) and classification-
based (b) annotation error detection

4 Classification-Based Annotation Error Detection

The problem of annotation error detection can also be viewed as a two-class
classification problem: whether a word is misannotated or not. Being a super-
vised learning model, the main difference from the anomaly detector is that
misannotated words must be used both during the training and the validation
of a classifier.

For the classification experiment, the development data described in Sect. 2
(both correctly annotated and misannotated words) were split into training and
validation sets using stratified 10-fold cross-validation. Stratified splits were used
to keep the class proportions the same across all of the folds, which is impor-
tant for maintaining a representative subset of our data set. To enable a correct
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comparison with the anomaly-detection approach, the evaluation data for the
classification experiment were kept the same as for the anomaly-detection app-
roach. The training and evaluation is illustrated in Fig. 1b and could be summa-
rized in the following steps:

1. 50% of misannotated words and 20% of correctly annotated words were left
for evaluation (the same examples as in the case of anomaly detection, see
Sect. 3).

2. Remaining examples (both correctly annotated and misannotated words)
were used for the development of a classifier.

3. Stratified 10-fold cross-validation scheme with 80% of examples (standardized
to have zero mean and unity variance) used for training and 20% of examples
used for validation in each fold together with a grid search to find optimal
hyper-parameters of the classifier was employed to train the classifier.

4. The same standardization method as for the training data was applied to the
evaluation data.

5. The performance of the resulting classifier was evaluated on the evaluation
data set with the metrics described in Sect. 5.

We used support vector machine (SVM) classifier with Gaussian radial basis
function (RBF) kernel which have proven to be successful in various classification
tasks. The SVM classifier was trained using a similar scheme as the one used
to train an anomaly detector in Sect. 3 with the exception that both correctly
annotated and misannotated words were used during training in this case. The
hyper-parameters of the SVM RBF classifier, the penalty parameter C of the
error term and the kernel parameter γ, were optimized using a grid search over
relevant values of the hyper-parameters (C ∈ [

2−5, 215
]
, γ ∈ [

2−15, 23
]
) [3] with

the 10-fold cross-validation.
As for the features, we used recursive feature elimination [4] with cross-

validation (RFECV) technique to select optimal features. Given an external
estimator that assigns weights to features (support vector machine with linear
kernel was used in our case), features whose weights are the smallest are pruned
from the feature set. The procedure is recursively repeated until the desired num-
ber of features is reached. To find the optimal number of features, 5-fold cross-
validation was employed—in our case, the optimal number of features was 81.
Such a classifier is hereinafter referred to as CLF(dim). For comparison, we also
used all features (denoted as CLF(all)).

5 Results

Due to the unbalanced number of correctly annotated and misannotated words,
F1 score was used to evaluate the performance of the annotation error detection
models

F1 =
2 ∗ P ∗ R

P + R
, P =

tp
pp

, R =
tp
ap

(1)
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where P is precision, the ability of a model not to detect as misannotated a
word that is annotated correctly, R is recall, the ability of a model to detect
all misannotated words, tp means “true positives” (i.e., the number of words
correctly detected as misannotated), pp stands for “predicted positives” (i.e., the
number of all words detected as misannotated), and ap means “actual positives”
(i.e., the number of actual misannotated words). F1 score was also used to
optimize parameters during the model selection process. McNemar’s test [8,14]
was employed to interpret statistical significance of the obtained results.

Table 1. Comparison of classification (CLF) and anomaly-detection (ADET) based
approaches to annotation error detection on the evaluation data set. CLF(dim) and
ADET(dim) stand for the models with reduced feature sets, CLF(all) denotes the clas-
sifier with all features employed, and ADET∗ denotes the anomaly-detector with opti-
mal hand-crafted features [10]. Random detection (RAND) generating predictions by
respecting the distribution of misannotated words in our development data set was also
included in the comparison

Model ID P [%] R[%] F1[%] MCC

CLF(dim) 97.20 75.91 85.25 0.7927

CLF(all) 98.04 72.99 83.68 0.7774

ADET(dim) 92.50 81.02 86.38 0.7935

ADET∗ 86.62 89.78 88.17 0.8079

RAND 36.96 12.41 18.58 −0.0070

The comparison of the detection accuracy of both the anomaly-detection
based and classification-based approaches is provided in Table 1. As can be seen,
similar results were achieved. The differences in detection accuracies were not
proved to be statistically significant (McNemar’s test, α = 0.05). This is a good
finding because, unlike the classification-based detection, we do not need any
misannotated words to train an anomaly-based detector (with the exception of
several misannotated words used for validation but the number of misannotated
words could be kept very low [9]); thus, the process of training data collection
should be easier. The similar detection accuracy also suggests that there is no
benefit in explicit training and modeling of misannotated words. We assume that
this is caused by a variety of annotation errors.

Moreover, as can be seen in Fig. 2, the classification approach is more sen-
sitive to the number of misannotated words used during the classifier’s devel-
opment. As already shown in [9], a significantly lower number of misannotated
words could be used to develop an anomaly detector with statistically the same
performance as when all misannotated words are used (in the case of the GT
detector, 27 misannotated words could be used during validation without any
drop in detection performance). On the other hand, using fewer than 75 misan-
notated words to develop a classifier results in a statistically significant drop in
detection performance when compared to an anomaly detector developed with
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Fig. 2. The influence of the number of misannotated words used during classifier (CLF)
and anomaly-detector (ADET) development on detection accuracy on the evaluation
data set. The vertical dashed line indicates the number of misannotated words for
which the results are statistically significant

the same low number of misannotated words (McNemar’s test, α = 0.05). On
top of that, after the number of misannotated words falls below 30, the classifier
fails to detect any misannotated word.

6 Listening Test Based Evaluation

Although the methods compared in this paper could be used for the detection
of annotation errors in virtually any corpus, we focused on read-speech corpora
typically utilized for speech synthesis. Therefore, we carried out a final listening
test to show the effectiveness of the proposed method for improving the quality
of synthetic speech.

For the listening test based evaluation, Grubbs’ test based anomaly detector
with the optimal set of features (GT∗), as being the one outperforming the other
detectors, was used to detect annotation errors in the original speech corpus
designed for unit-selection speech synthesis. The annotation errors detected by
the GT-based detector were then revised by an annotator who checked whether
the detected words were really annotation errors or not. For the purposes of
the listening test based evaluation, however, only the part of the speech corpus
corresponding to the evaluation sets was processed [10]. The real annotation
errors were corrected but the falsely detected words were left unchanged. Using
this scenario, the annotation process accompanying the development of a new
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voice could be reduced only to the correction of words detected as misannotated.
As a result, a corrected speech corpus was obtained.

Consequently, a speech synthesis experiment was carried out. The steps of
the experiment can be summarized as follows:

1. The following two versions of the Czech unit-selection speech-synthesis system
[5] were built:
(a) One system (S1) was built from the original speech corpus with the anno-

tation errors.
(b) The other system (S2) was built from the corrected speech corpus.
The systems differed only in the source speech corpora; other parts of the
text-to-speech system were identical.

2. A large number of utterances were synthesized by the system S1, and the
utterances which contained any speech segment from a word detected as mis-
annotated were stored.

3. 60 utterances were selected so as to contain both major (multiple consecutive
speech segments from a word detected as misannotated) and minor (just one
segment from a misannotated word) errors.

4. The selected utterances were then synthesized by system S2.

A listening test was then carried out to compare the selected utterances
synthesized by both S1 and S2 systems. The aim of the test was to show whether
it is worth detecting and fixing annotation errors with respect to the quality of
the resulting (unit-selection based) synthetic speech. 37 listeners (7 of them
being experts in speech synthesis) participated in the listening test. All of them
were native speakers of Czech aged 25 to 50 and had no hearing impairments.
A listener listened to a pair of synthetic utterances synthesized from the same
text (with one utterance synthesized by the S1 system and the other by the S2
system). The listener was asked to answer two queries:

1. The first query (Q1) aimed at the intelligibility of the synthetic utterance.
Each listener was given a correct textual word-level transcript of the utter-
ance and he/she had to indicate whether the synthetic utterances literally
correspond to the transcript. Since Q1 expresses the essential requirement for
a TTS system to work properly, it was prioritized further in the evaluation.

2. The second query (Q2) focused on the overall acoustic (and prosodic) quality
of the synthetic utterances. This was realized as a three-point preference
listening test in which the listener was instructed to compare the two synthetic
versions of each utterance regardless of the utterance text. The three-point
evaluation consisted in selecting from the following choices:

– “the synthetic sample A sounds better than the synthetic sample B”,
– “the synthetic sample A sounds worse than the synthetic sample B”,
– “both synthetic samples sound the same”.

All listeners evaluated the same 60 pairs of utterances. The order of S1- and
S2-generated utterances was set at random in each pair. The listening test was
organized over the web and the listeners were instructed to use head-phones.
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In order to obtain a single measurement of the improvement provided by
the proposed anomaly-based annotation error detection, we combined answers
to both queries (Q1+Q2) in the following way and in the following order:

1. If the synthetic utterance A corresponded to the given transcript and the
synthetic utterance B did not, A was evaluated as better than B. The result
of the comparison in Q2 was not taken into account in this case.

2. Likewise, if the synthetic utterance B corresponded to the given transcript
and the synthetic utterance A did not, B was evaluated as better than A.
Again, Q2 comparison was ignored.

3. Whether or not both utterances corresponded to the transcript, the result of
the comparison in Q2 was used to evaluate the utterances.

The results of this evaluation are shown in the row “Combination (Q1+Q2)”
of Table 2. As can be seen, there was a clear preference for speech synthesis based
on the speech corpus with the corrected annotation (S2).

Table 2. Comparison of synthetic speech synthesized by the system based on the
original speech corpus with annotation errors (S1) and by the system based on the
corrected speech corpus (S2). The preferences for each comparison are in percentage.
“S2 > S1” stands for “S2-generated synthetic utterance is better than S1-generated
synthetic utterance”, “S2 < S1” stands for “S2 is worse than S1”, and “S2 = S1” means
that “both systems generated comparable synthetic utterances”

S2 > S1 S2 < S1 S2 = S1

Intelligibility (Q1) 62.07 0.32 37.30

Acoust. quality (Q2) 41.49 9.32 49.19

Combination (Q1+Q2) 71.17 6.22 22.61

Looking at the other observed phenomena separately, the row “Intelligibility
(Q1)” in Table 2 shows the intelligibility results (related to the Q1 queries),
and the row “Acoust. quality” in Table 2 shows the results of the comparison
in terms of overall acoustic (and prosodic) quality regardless of whether or not
the synthetic speech corresponded to the given transcript (related to the Q2
queries). As for the intelligibility, a preference for the synthetic speech based on
the corrected speech corpus was evident again. Also, in the case of the comparison
of the acoustic quality, listeners either tended to prefer the corrected speech
corpus or they assessed both synthetic versions as sounding the same.

7 Conclusions

We compared anomaly-based detection and classification-based approaches to
detect word-level annotation errors in a speech corpus intended for unit-selection
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speech synthesis. The classification approach differs mainly in that it needs mis-
annotated words also for training (and not only for validation as in the case of
anomaly detection). We showed that both approaches led to statistically com-
parable results when all the available misannotated words were utilized during
detector/classifier development. However, when a lower number of misannotated
words were used, the anomaly detection framework clearly outperformed the
classification-based approach.

Regarding the impact of annotation error detection framework on the qual-
ity of synthetic speech synthesized by a unit-selection speech-synthesis system,
a preference listening test was carried out. The results of the listening test con-
firmed the effectiveness of the proposed annotation error detection for improving
the quality of synthetic speech. It was shown that annotation errors are worth
detecting in speech corpora designed for unit-selection-based speech synthesis.

Acknowledgments. This research was supported by the Czech Science Foundation
(GA CR), project No. GA16-04420S. The access to the MetaCentrum clusters provided
under the programme LM2015042 is highly appreciated.

References

1. Boeffard, O., Charonnat, L., Maguer, S.L., Lolive, D., Vidal, G.: Towards fully
automatic annotation of audiobooks for TTS. In: Language Resources and Evalu-
ation Conference, Istanbul, Turkey, pp. 975–980 (2012)

2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. 41(3), 1–58 (2009)

3. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)

4. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Mach. Learn. 46(1/3), 389–422 (2002)
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Abstract. The goal of addressee detection is to answer the question ‘Are you
addressing me?’ In order to participate in multiparty conversations, a spoken
dialogue system is supposed to determine whether a user is addressing the
system or another human. The present paper describes three levels of speech and
text analysis (acoustical, lexical, and syntactical) for multimodal addressee
detection and reveals the connection between them and the classification per-
formance for different categories of speech. We propose several classification
models and compare their performance with the results of the original research
performed by the authors of the Smart Video Corpus which we use in our
computations. Our most effective meta-classifier working with acoustical, syn-
tactical, and lexical features provides an unweighted average recall equal to
0.917, showing a nine percent advantage over the best baseline model, though
the baseline classifier additionally uses head orientation data. We also propose
an LSTM neural network for text classification which replaces the lexical and
the syntactical classifier by a single model reaching the same performance as the
most effective meta-classifier does, despite the fact that this meta-model addi-
tionally analyses acoustical data.

Keywords: Off-Talk � Speaking style � Text classification � Long Short-Term
memory � Data fusion � Multimodal interaction � Spoken dialogue system

1 Introduction

Spoken dialogue systems (SDSs) have become significantly more complex and flexible
over recent years and are now capable of solving a wide range of tasks. The require-
ments for SDSs depend on a particular application area; e.g., personal assistants in
smartphones are meant to interact with a single user – the owner. Theoretically, the
interaction between a user and such a system may be considered as a pure
human-computer (H-C) dialogue. However, there is the possibility that the user is
solving a cooperative task that requires some interaction with other people nearby, e.g.,
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interlocutors may be negotiating how they will spend this evening, asking the system to
show information about cafes or cinema and discussing alternatives. In this case, the
system deals with a multiparty conversation which may include human-addressed
utterances as well as machine-addressed ones, leading to the problem of addressee
detection (AD) in human-human-computer (H-H-C) conversations [1]. Solving this
problem, the system is supposed to determine whether it is being addressed or not in
order to decide how to process the input utterance: respond or ignore.

Traditionally, user interfaces have been engineered to avoid addressee ambiguity by
using a push-to-talk button, key words, or by assuming that all potential input utter-
ances are system-addressed and rejecting those which cause a failure-to-recognize or a
failure-to-interpret [2, 3]. Such straightforward approaches are no longer applicable,
since modern SDSs support essentially unlimited spoken input. Therefore, more
sophisticated classification methods are required for AD.

The present paper is a continuation of our previous study on text-based AD [4] and
includes three main contributions. The first contribution is an attempt to extract as
much useful information from audio signal as possible. Relying on other modalities,
e.g., on visual information, is not reasonable in certain applications in which users have
no visual contact with the object they are talking to, e.g., while driving a car. The
second contribution is to define the connection between different levels of speech and
text analysis and the classification performance for different categories of speech. The
third contribution is to update the results of an existing study. We analyse the Smart
Video Corpus (SVC) and compare our results on AD with the results obtained by the
authors of the corpus. In their original research, the term “Off-Talk detection” is used
instead of AD [5].

2 Related Work

There exist several studies investigating the separate roles of acoustical [6], textual [7],
and visual [8] information towards the AD problem. It was determined that people
combine prosodic, lexical, and gaze cues to specify desirable addressees [1]. Other
works report that the way users talk to an SDS essentially depends on the overall
system performance [5] and how people see the system (as a human-like robot or as an
information kiosk) [9]. Modern SDSs are still far from perfection, and users tend to
change their normal manner of speech and talk to the system as if they were talking to a
child [10], making it easier to understand, and, therefore, prosodic information plays a
significant role in AD. The fact that prosodic features use no lexical, context, or speaker
information makes prosody a universal modality for applications nowadays [6].
Simultaneously with future SDS improvement, prosodic features will become less
representative, and future systems will thus rely more on textual and gaze information.
It was shown that addressee and response selection in multiparty conversations
between humans can be successfully performed by analysing lexical content and
conversational context with recurrent neural networks [11].

The following features are representative for AD in existing SDSs (according to
their relative contribution in descending order): acoustical, automatic speech

Are You Addressing Me? Multimodal Addressee Detection 153



recognition (recognized text and recognition confidence), dialogue state, gaze direction,
and beamforming [1].

3 Experimental Data

The SVC data (part of the Smart Web Project) has been collected within large-scaled
Wizard-of-Oz experiments and models the H-H-C conversation in German between
two users and a multimodal SDS. The corpus includes queries in the context of a visit
to a Football World Cup stadium in 2006. A user was carrying a mobile phone, asking
questions of certain categories (transport, sights, sport statistics, and also open-domain
questions) and discussing the obtained information with another human whose speech
is not presented in the corpus. The data comprises 3.5 h of audio and video, 99
dialogues (one unique speaker per dialogue), 2193 automatically segmented utterances
with manual transcripts, and 25 073 words in total. The manual labelling of addressees
was carried out for each word; four word classes were specified: On-Talk (NOT) –
computer-addressed speech, 11 556 words, read Off-Talk (ROT) – reading information
aloud from the system display, 3 222 words, paraphrased Off-Talk (POT) – retelling the
information obtained from the system in arbitrary form, 4 674 words, and spontaneous
Off-Talk (SOT) – other human-addressed speech (including self-talk), 5 621 words.
The video data was captured with the frontal camera of the mobile phone. The manual
labelling of video is frame-based (7.5 frames per second), two classes were specified:
On-View – a user is looking at the camera (79% of the corpus duration), and Off-View
– a user is not looking at the camera or out of view of the camera. No requirements
regarding Off-Talk were given to obtain a realistic H-H-C interaction.

In our research, features are extracted at the utterance level for all the implemented
models except an LSTM neural network in contrast to the original study in which the
authors analysed word-level features initially. An utterance label is calculated as the
mode of word labels in the current utterance. After performing the word-to-utterance
label transformation, we obtain 1087 NOT, 474 SOT, 323 POT and 309 ROT utter-
ances which may look as follows: < NOT >: “When was Berlin founded? Can you tell
me that?” < ROT >: “Berlin was founded in 1237.” < POT >: “Oh, it’s quite old. The
system reports that the foundation year is 1237.” < SOT >: “Cool! I didn’t know that.”
We consider a two-class task only (On-Talk vs. the three Off-Talk classes), since it is
equivalent to the AD problem. Experiments with a four-class task may be found in the
original paper [5]. After merging the three Off-Talk classes into one and performing the
word-to-utterance label transformation, we obtain 1078 On-Talk and 1115 Off-Talk
utterances.

4 Classification

4.1 Speech Analysis

The underlying idea of using acoustical information for AD is the fact that people make
their speech louder, more rhythmical, and easier to understand in general once they
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start talking to an SDS. There is no standard feature set for acoustical AD. Several
research groups analysed different sets [1, 5], and therefore, we decided to use a highly
redundant paralinguistic attribute set to perform feature selection afterwards. We
extract 6373 acoustical attributes for each utterance by applying the openSMILE toolkit
and the feature configuration of the INTERSPEECH 2013 Computational Paralin-
guistics Challenge (ComParE) [12]. After that, we calculate the coefficients of the
normal vector of a linear Support Vector Machine (SVM) for each fold and set them as
attribute weights. We sort the attributes according to their weights and carry out
recursive feature elimination removing the 50 attributes with the lowest weights per
step. As a classifier, we apply a liner SVM implemented in RapidMiner Studio 7.3 [13].
It turned out that the optimal number of attributes was approximately 1000 in each fold,
therefore, it was decided to use the first 1000 attributes with the highest weights. The
selected features are speaker-dependent, however, they are much less sensitive to a
specific domain in comparison with lexical attributes.

4.2 Text Analysis

The text obtained with automatic speech recognition (ASR) allows us to carry out
syntactical and lexical analysis. In this paper, most text-based computations are per-
formed by using manual transcripts (it is assumed that our recognizer has word
recognition accuracy close to 100%). We also test our system in conjunction with a
state-of-the-art recognizer (Google Cloud Speech API) with word recognition accuracy
of around 80% and analyse three additional ASR-based features besides text: recog-
nition confidence, number of recognized words and utterance length. The underlying
idea is that computer-addressed speech matches the ASR pattern better than
human-addressed speech does. For these three attributes, we apply the same classifier
as for the acoustical features.

We carry out two stages of text analysis. The first stage is syntactical analysis which
allows us to determine differences in the structure of human- and computer-addressed
sentences. The main idea is that the syntax of machine-addressed speech possesses more
structured patterns in comparison with the syntax of human-addressed speech. As a
representation of syntactical structure, we apply part-of-speech (POS) n-gram. Firstly,
we perform POS tagging by using spaCy 1.8 [14] and obtain utterances in which each
word is replaced by one of 15 universal POS tags. After that, we extract uni- bi-, tri-,
tetra-, and pentagrams and weight them by using the following term weighting methods:
Inverse Document Frequency (IDF), Gain Ratio (GR), Confident Weights (CW), Sec-
ond Moment of a Term (TM2), Relevance Frequency (RF), Term Relevance Ratio
(TRR), and Novel Term Weighting (NTW) [15]. The obtained syntactical attributes are
language-dependent, however, they are much less sensitive to a specific domain in
comparison with lexical features. We apply three classification algorithms which
demonstrated high performance for other text classification tasks [15]: k Nearest
Neighbours (KNN) [16], Fast Large Margin (Liner SVM-based classifier – SVM-FLM)
[17], and Rocchio classifier (Centroid classifier) [18]. The first two classifiers were
implemented in RapidMiner Studio 7.3, the third one was developed in C++.

The second stage of text analysis is lexical analysis which allows us to determine
typical lexical units for each class. In other words, this kind of analysis shows what has
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been said, while acoustical and syntactical analysis indicate how it has been said. We
perform the same procedure of text classification as it was shown for syntactical
analysis with a single distinction: we deal with real words instead of POS tags. Firstly,
we apply two linguistic filters implemented in tm (R package for text mining): stem-
ming and stop-word filtering. Then, we extract uni-, bi-, and trigrams, weight them by
using the seven term weighting methods and apply the three classification algorithms
mentioned above.

4.3 Data Fusion

In order to get benefits from all the levels of speech and text analysis, we carry out data
fusion. Combining the ASR additional information and the acoustical attributes, we
perform feature-level fusion, while a meta-classifier based on a linear SVM is applied
for various combinations of the acoustical, syntactical and lexical models. As input
features, each meta-classifier receives the classification confidence scores of the models
included in it. In order to train meta-models, we split each training set into two sets in a
proportion of eight to two. The first set is used for training single models, and the
second one provides unique information for training the corresponding meta-model. In
the original research, a linear discriminant classifier was applied for single models as
well as at the meta-level [19].

4.4 LSTM Neural Network for Text Classification

Taking into account the initial word-based labelling for text, an application of deep
neural networks seems to be natural for our task. The study [7] describes several
applications of a recurrent (RNN), a Long Short-Term Memory (LSTM), and a feed-
forward net for a text-based addressee detection task. The LSTM model demonstrated
the highest performance for long utterances with a length of 10 words and more. The
average utterance length for the SVC data is 11 words, therefore, it was decided to
apply such a model for our task as well.

LSTM nets allow us to resolve three problems of text-based addressee detection
which were impossible to solve by using classical machine learning models. One of
them is the problem of mixed word labels during the utterance-based classification.
This problem arises due to segmentation errors at the stage of automatic utterance
detection and means that one utterance may contain words with various labels. Our
multimodal classifier works at the utterance level, therefore, it may miss some
important information regarding how word labels change within the utterance. LSTM
nets can easily track these changes, since sequence prediction is one of the tasks they
are designed for. Another problem is the necessity of additional pre-processing before
applying classical machine learning models that leads to an information loss. The
lexical and the syntactical text representation may be combined into one taking into
account the semantical meaning of words. The third problem is the limited context
coverage of n-grams [7]. An n-gram-based language model fails to determine the
relations between words standing far from each other within one sentence. Due to Long
Short-Term Memory, LSTM networks find such relations without any difficulties.
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As input features for our LSTM net, we use word embedding vectors extracted by
using a pretrained word2vec model for German which is a part of spaCy 1.8 [14]. The
underlying word2vec method is GloVe [20] representing each word as a vector of 300
real values. After feature extraction, an utterance may be processed as a sequence of
words (time steps). In order to simplify the model architecture, we design it for
sequences of a fixed length. Each sequence is aligned to the length of the longest
utterance in the corpus by using null padding and masking to inform the net that empty
time steps should be ignored. Padded sequences are feed to the net implemented by
using Keras 2.0 [21] with the following architecture: the first layer consists of 30 default
LSTM cells, the next layer is the output one and includes two neurons with the softmax
activation function. For each utterance, the net is supposed to return a sequence of word
labels. For weight optimization, the RMSprop algorithm is applied with a learning rate
of 0.01. The entire model is trained for 20 epochs with a batch size of 128.

During the training process, we noticed that the net was very sensitive to null
vectors which appeared in the case of an unknown word. Their occurrence affects
LSTM nets even more than classical n-gram representations, since the absence of one
word leads to information losses only in the three neighbouring word combinations in
the case of a trigram model, while the same fact causes the wrong recognition of the
following subsequence in the case of an LSTM model [7]. Two word categories have
this problem: proper names and long German compounds. To resolve the problem, we
apply dictionary search to split compounds into several single words which are known
to the word2vec model. Unknown proper names are replaced by popular names.

5 Experimental Results

For statistical analysis, we carry out leave-one-group-out cross validation splitting the
entire corpus into 14 folds (7 speakers for each and one more speaker to the fold with
the least number of utterances) so that the proportion of classes remains equal in each
fold. All statistical comparisons are drawn by using a t-test with a confidential prob-
ability of 0.95. Unweighted average recall has been chosen as the main performance
criterion in order to make a correct comparison with the original research.

An average performance value and a standard deviation are calculated for each
model and depicted in Fig. 1. The ASR additional information (ASR info) and the
acoustical attributes (ac) demonstrate a significant dependence on speakers and also
show the lowest performance of 0.668 and 0.822 respectively which becomes signif-
icantly higher up to 0.828 after their feature-level fusion. The most effective models for
syntactical and lexical analysis include POS tagging + trigrams + RF term weight-
ing + SVM-FLM classifier and stemming + unigrams + RF term weighting + SVM-
FLM classifier respectively. There is no significant difference between the acoustical
and the syntactical model (synt) which demonstrates a performance of 0.836. Stem-
ming (lex s) reduces the dimensionality of the text classification task by 20% (the
average dictionary size falls from 1381 to 1108) keeping the AD performance at the
level of the lexical model without linguistic filtering (lex) which demonstrates the
highest result among single classifiers of 0.911, while stop-word filtering (lex f) sig-
nificantly decreases the performance to 0.883.
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The most effective meta-classifier analysing the information at all three levels
reaches a performance of 0.929 and demonstrates a statistically significant advantage
over the other models. The performance of another meta-classifier working with
acoustical and syntactical information is significantly lower and equal to 0.886.
However, the main advantage of this meta-model is domain-independence and a higher
degree of universality in comparison with the most effective meta-model involving
lexical analysis.

There is no significant difference between the most effective meta-classifier using
the textual information obtained from the manual transcripts and the analogical
meta-model working with the real ASR and showing a performance of 0.917.

We tried to reproduce the original experiment [5] as precisely as possible. Four
speakers which had technical problems were excluded, then we randomly split the
remaining speakers into a training (58 speakers) and a test set (37 speakers) until we
obtained approximately the same number of utterances in the respective sets as they
were in the original research. Table 1 demonstrates that all the proposed models out-
perform the corresponding baselines analysing related groups of features, particularly,
our most effective meta-classifier reaches a performance of 0.917 showing almost a
nine percent advantage over the best baseline classifier, though this baseline model
additionally uses head orientation data.

We carry out the same experiment for the LSTM-based text classifier. The model
receives a sequence of word embedding vectors and returns a sequence of word labels,
however, we need an utterance-based prediction to perform a correct comparison with
the other classifiers. Therefore, we carry out the word-to-utterance label transformation

Fig. 1. Classification performance of different models

Table 1. Comparison with the results of the original research

Baseline Proposed

Acoustical 0.766 0.800
Syntactical 0.760 0.830
Acoustical + Syntactical(meta) 0.808 0.857
Best 0.845 0.917
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described above and calculate unweighted average recall. Using the same training and
test sets, we train the model 10 times in order to estimate the influence of the initial
weight distribution and calculate an average performance score. Using only text, the
LSTM net demonstrates an average performance of 0.918 that is comparable with the
result of the most effective multimodal meta-classifier.

6 Discussion

The obtained meta-model analysing acoustical and syntactical features may be theo-
retically applied in various domains, since it uses the attributes containing no lexical
information. The most effective meta-classifier considers also lexical content. The
text-based models are less speaker-dependent in comparison with the acoustical model
but also language-dependent (syntactical model) and even domain-dependent (lexical
model). The lexical models demonstrate the highest results among single models for
the particular domain. The following groups of lexical terms have the highest RF
weights and are therefore considered to be important: question words and polite
requests for On-Talk, pronouns (particularly, second person), indirect speech, collo-
quial words and interjections for Off-Talk. Lexical AD is not sensitive to various word
forms, since stemming does not influence the classification performance, while
stop-word filtering decreases the performance removing some important terms, e.g.,
pronouns.

Solving the two-class task and comparing the classification performance for sep-
arate categories of speech in Fig. 2, we see that the text-based classifiers have the
strongest confusion between NOT and SOT and significant confusion between NOT
and POT that leads us to the conclusion that the more spontaneous the speech is, the
worse the text-based models work. The acoustical and the ASR-info-based classifier
possess the strongest confusion between NOT and ROT and significant confusion
between NOT and POT, meaning that the more limited the speech is, the worse results
these models demonstrate.
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Fig. 2. Classification performance for different categories of speech
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7 Conclusions and Future Work

The meta-fusion of several classical machine learning models working with different
modalities in combination with a lot of data pre-processing is able to demonstrate
effective results for the AD problem. However, the classification performance of the
LSTM-based text classifier in conjunction with the pretrained word2vec model is
almost the same as the performance of the most effective multimodal meta-classifier.

We are planning to integrate head orientation data into the present research to
perform a more complete comparison with the baseline [5]. Let us imagine that our
system has a camera near the display. We assume that if a user is not looking at the
camera or out of view of the camera, then his or her speech is not addressed to the
system at that moment. Our classifier is thus supposed to distinguish On-View from
any other frames. A video-based prediction is not enough for accurate AD, however, it
is able to increase the overall AD performance within a meta-model [1, 5]. We expect
the confusion between NOT and POT and between NOT and SOT (except self-talk) to
be lower, since people tend to look at the object they are talking to [22]. It is evident,
though, that the confusion between NOT and ROT will not change significantly.

It is necessary to keep in mind that the more advanced the SDS turns out to be, the
more naturally users behave, and the less it should rely on acoustical information while
detecting addressees. Text and dialogue state will remain reliable, and therefore, we are
planning to focus on conversational context-based AD for multiparty SDSs in our
future work [11].
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Abstract. Assessment of usability and user experience of spoken dialog ser-
vices is a rather complex task, which remains difficult to achieve with real
end-users. In this work a three-fold evaluation approach is introduced, which
supports reliable assessment of usability and user experience. The approach
combines interaction log data based assessment (at dialog, task and node level)
with an optimized questionnaire-based end-users evaluation and a controlled
stress test performed by an IVR system. The 3-fold evaluation approach was
used for the assessment of usability and user experience of the pilot deployment
of a voice banking systems. The proposed assessment approach provides suf-
ficient evidence for the business informed decision-making with respect to
perceived user quality of the interaction and offered services and allows for
investigation of potential improvement areas.

Keywords: Spoken dialog service � System usability � User experience �
Perceived interaction quality

1 Introduction

The economic constraints of the last decade resulted in a large-scale adoption of
Interactive Voice Response (IVR) systems as cost-efficient replacements of call-centres
and support services. In many cases, the replacement is only partial, providing auto-
mated service for certain business cases which can be easier served by machines, or
only for certain tasks to shorten the time a human operator needs to handle a call. From
the interaction point of view, the traditional IVR systems used to employ voice output
(pre-recorded messages) and Dual-Tone Multi-Frequency Signalling (DTMF) tones
input via the phone keypad. Such IVRs are considered a cheap automation option, as
the technology is currently a built-in feature of most telephony switches [1]. While easy
to configure and cheap, these IVRs are offering very limited capabilities when com-
pared to increasingly sophisticated speech and language processing features of
emerging IVRs, implementing Spoken Dialog Services (SDSs). SDSs are currently
used in many domains, including timetable information services (e.g. train, ferry,
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cinema), order management for personal use (e.g. food) or business-to-business ser-
vices (e.g. wholesale orders), tourist services (e.g. car rental, hotel booking), smart
interactive environments (e.g. in-car, smart house command and control, serious
games), and other customer support services (e.g. banking) [2–4]. The interactive
functionality supported by such systems is highly variable, depending on the com-
plexity of business scenarios implemented and on the selected dialog management
strategy [5, 6]. Furthermore, the end-user perceived quality of the delivered services is
highly affected by many other factors, such as: (i) technical specifications of the speech
recognition and understanding engine; (ii) technology used for system messages gen-
eration; (iii) quality of back-end support services (e.g. database server response);
(iv) error handling and recovery strategies implemented. As such, the assessment of
usability of and user experience with SDSs remains a complex task, making it difficult
to decide which system is best even when pilot implementations are based on the same
business scenarios and are using the same dialog management strategy.

Interaction parameters, established at dialogue and task level, are usually auto-
matically collected by SDSs in order to provide performance insights of the individual
modules and of the system as a whole [7]. However, such parameters alone do not
quantify the interaction quality from the user’s point of view and existing frameworks
for interactive system usability assessment [8] are usually too generic, thus must be
adapted to the specific system evaluation task. The SUXES evaluation procedure
suggests differentiating between user expectations, experience and opinion when
evaluating user interaction experience with speech-based and multimodal interaction
systems [9], but does not accounts contextual usability factors encountered in real-life
usage of SDSs (e.g. environmental noise). While real-life usage of dialog systems can
reach thousands of calls per day, the questionnaire-based evaluation techniques are
usually limited to only a small sample of users, which are not always statistically
representative for the actual user population. Crowdsourcing technology has been used
to recruit large groups of test users, but it remains biased, as one user usually makes
many calls and it is not clear to what degree the test users represent the actual user
population [10]. While questionnaire-based evaluation is important in establishing
interaction quality from user’s point of view, user sample and test scenarios selection
must be optimized to best represent actual user population and usage scenarios.

In this work we introduce a 3-fold evaluation approach which supports reliable
assessment of usability and user experience, for informed business decision-making in
SDSs selection, especially when implementation technical details are unknown. In a
first step, interaction log data (automatically collected interaction parameters and user
speech records) are annotated and processed to establish key performance parameters
(KPIs) at dialog, task and node level. The results of the first step are used to guide an
optimized questionnaire-based end-users evaluation along with a controlled stress test
performed by an IVR system. The 3-fold evaluation approach was used for the
assessment of usability and user experience of the pilot deployment of a voice banking
systems.
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2 Methods

In this section the details of the 3-fold evaluation approach are presented. In Sect. 2.1
the KPIs established at dialog, task and node level, along with the annotation procedure
of the interaction logs from real end-users is presented. Section 2.2 provides details on
the procedure followed to implement the questionnaire-based assessment of end-user
experience. In Sect. 2.3 the implementation details of the IVR application used to
perform the controlled stress test of the voice banking system are presented.

2.1 Interaction Logs Based Assessment

The interaction logs from real end-users (bank clients) were recorded during an usual
working day, in a pilot running in parallel with the bank’s call centre system, by
randomly routing *10% of the calls to the SDS. A total of 1024 calls were recorded
and annotated, from which 159 calls were removed due to extremely high noise
conditions, extremely low voice intensity levels or user’s hang-up for reasons unrelated
to the performance of the system (e.g. answering another phone call, speaking to
another person, etc.). For the audio transcription and semantic annotation a dedicated
software was used (a screenshot of the interface is shown in Fig. 1). The remaining 865
calls were used for further analysis to establish task and node frequencies, and a set of
KPIs defined as follows.

Fig. 1. Annotation software interface
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Node Recognition Confidence (NRC), with a range between 0 and 100, was
automatically recorded by the voice banking system.

Node Recognition Rate (NRR), with a range between 0 and 5 for node recogni-
tion, was estimated by the annotators by comparing the word-level recognition (au-
tomatically recorded) with the actual user speech.

Node Understanding Rate (NUR), with discrete values 0 or 1 for node under-
standing, was estimated by the annotators comparing the interpretation results (filled
slots) to the actual user speech.

Node Iteration Rate (NIR), recorded automatically by the system as the total
iterations needed to fill the slots of a node.

Node Speaker Mood (NSM), estimated by the annotator as Neutral, Angry,
Happy, Sad.

Task Understanding Rate (TUR), with discrete values 0 or 1 for task under-
standing, established by the annotators, based on the correct understanding of user
intention by filling all necessary slots.

Task Completion Rate (TCR), with discrete values 0 or 1 for task completion,
established by the annotators, based on the successful completion of a task.

Dialog Completion Rate (DCR), with discrete values 0 or 1 dialog completion,
established by the annotators, by assessing either the user received the correct service
before ending the call or being routed to human operator. In the latter case, either it was
routed to the correct operator was assessed.

Dialog Mean Duration (DMD), was automatically calculated from the start and
end timestamps of the interaction log.

2.2 Questionnaire-Based User Experience

The questionnaire developed for system usability assessment for the second step of the
evaluation, included:

(1) One section dedicated to gather demographic user data: gender, age group, edu-
cation level, employment information, overall technology usage level, and pre-
vious experience with IVRs. A total of 32 users were recruited for the
questionnaire-based assessment, of which 60% were male and 40% were female.
The age distribution covered all age groups and all education levels, with sample
distribution being guided by the corresponding distributions of actual end-users
(derived from the interaction logs analysis).

(2) A second section dedicated to guide the user through the test process, including
the selected scenarios to be test, the target they should try to achieve for each
scenario, but avoiding to indicate specific wording usage or step-by-step indica-
tions. Each user was handled 3 scenarios, which were selected according to the
task frequency established by the analysis of real users annotated interaction logs.

(3) The third section was dedicated to collect the feedback from the user after the
completion of all 3 scenarios. In a first subsection, the usability of the voice
banking system was assessed with a 5-level Likert scale (5 points – excellent, 4
points – good, 3 points – acceptable, 2 points – poor, 1 point – very poor) with
respect to: system understanding capability, system guidance appropriateness,

Assessing Spoken Dialog Services from the End-User Perspective 165



system response to requests, provided information quality, speed, perceived
efficiency, and perceived quality of system speaker. In a second subsection, the
opinion of the users was further explored through multiple-answer questions or
agree-disagree statements, with respect to various facets of the SDS assessed,
including their intention and preference to use the system in the future. In the last
section, the users provided an overall mark for the system, between 0 and 10,
along with their freely-expressed positive and negative comments.

2.3 Controlled Stress Test

The third step of the overall assessment was dedicated to test the system for a series of
important scenarios (ranked by usage frequency and business-driven) for various
controlled environmental conditions. A dedicated application was implemented to
place outgoing calls using another IVR, and provide timed answers to the tested pilot
voice banking system. Each call was testing a different scenario or other context
condition (e.g. level of noise, type of noise), including:

• credit card number recognition: 10 visa and 10 MasterCard numbers were con-
sidered, as these are the most frequent card types emitted by the specific bank;

• 6 different wordings (the most frequently encountered in the annotation of real-users
interactions) for the same task was tested for 15 tasks;

• 5 tasks were tested in varying noise conditions, by adding 5 different noises (road,
metro, in-car engine noise, dogs, and music) with 3 levels.

3 Results

The voice banking system tested in this work, was based on an architecture imple-
menting 18 banking business scenarios (e.g. account balance, change card pin, activate
POS, etc.) through 33 user-initiated or system-initiated tasks. In the annotated inter-
action log files, a total of 165 different nodes were encountered, including clarification
or confirmation nodes.

3.1 Interaction Logs Based Assessment Results

At dialog level, the system achieved a DCR of 97% and a DMD of 61.36 s, for the 865
calls considered for the analysis.

At task level, the average TUR achieved was 92% for the total of 1288 tasks
encountered in the valid calls. The variability between tasks was high, ranging from as
low as 42% and as high as 100%, demonstrating that insufficient attention was given
during implementation to certain business scenarios. Although the overall task
understanding is high, the achieved TCR is 87%, with a range between 39% and 100%.

At node level, it is observed that although the number of implemented nodes is rather
large, their frequency is largely unbalanced. As expected, the node corresponding to the
first question of the system has the highest frequency (26%), followed by a frequency of
2 to 4% of*15 nodes related to card and bank account tasks, while the vast majority of
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the nodes had very small frequencies. With respect to NRC, the overall distribution of all
nodes recognition per confidence intervals is presented in Fig. 2.

When assessing the NRC for specific nodes, the distribution changes, such as in the
case of the nodes corresponding to the first question of the system (see Fig. 3) where
the percentage of low NRC is much higher, while in the case of the node corresponding
to the card expiration date the frequency of nodes with high NRC is much increased
(see Fig. 4).

Fig. 2. Distribution of all nodes per NRC achieved

Fig. 3. Distribution of nodes per NRC intervals achieved

Fig. 4. Distribution of nodes per NRC intervals achieved
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The achieved NRR for all nodes are presented in Fig. 5 and show a good
word-level recognition capability of the system, as the user input was very well rec-
ognized in 64% of the cases. Furthermore, the input of the user was correctly inter-
preted, even when not very well recognized, as the NUR reaches an average of 75% for
all nodes (see Fig. 6) excluding confirmations ones (YES/NO questions).

With respect to NIR, a total of 86% of the nodes was passed with one iteration,
*8% of the nodes requested an additional repeat, and 6% were repeated 3 and 4 times
for the dialogue to move on.

3.2 Questionnaire-Based User Experience Results

The total usability score of the system, calculated as the total points corresponding to
the individually rated system functions (e.g. understanding capability, speed, etc.), was
between 26–35 points for 20% of the users, between 16–25 points for 50% of the users
and between 5–15 points for 30% of the users. No users evaluated with less than 5
points in total the system.

The vast majority of the users (96%) perceived the voice banking system’s speaker
and voice as being appropriate and pleasant, and only 4% found it as being unpleasant,
annoying, of poor quality or sounding robot-like.

Fig. 5. NRR distribution

Fig. 6. NUR distribution
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A larger percentage of users (57%) indicated their positive intention in future use of
the system compared to those who opted for not or rather not using in the future the
system.

With respect to the user perceived overall performance of the system, *44%
considered they system is of average quality, marking it with the grade of 6 or 7, 30%
considered the system provided poor quality services (marks < 5), and only 26%
perceived the offered services as of good-excellent quality (see Fig. 7).

3.3 Controlled Stress Test Results

The average NRC of the system for the credit card number recognition node was high,
with over 75% of the cases achieving recognition confidence between 80 and 100%,
and the remaining 25% of the cases achieving recognition confidence between 60 and
80%. As a result, the NUR for the credit card number recognition node was very high,
with only 1 wrong understanding for the 20 tested numbers.

With respect to the NRR, 55% of the 90 phrase variations were recognized with
very good accuracy, while the NUR reached 76% of nodes with correct understanding.

The varying nose tests indicated that at L1, although the NRR was decreased, the
NUR remained similar to that of no noise conditions. L2 and L3 of noise resulted in a
higher decrease of the NRR, which was also visible in the NUR results.

4 Discussion and Conclusion

The 3-fold assessment approach for the usability of the voice banking system provided
sufficient evidence for the business informed decision-making with respect to perceived
user quality of the interaction and offered services, and at the same time allowed for
investigation of potential improvement areas. Enhancement of SDSs with real-time
user modelling and adaptation components has the potential to increase perceived user
quality, even in the case that very simple user models are considered, based on char-
acteristics such as age group, gender and emotional speech [11]. One of the missing
features noticed by annotators were the navigation commands, such as providing help

Fig. 7. Distribution of overall user perceived quality of services
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to the user in cases of specific expected input, allowing him to go back, allowing to
listen again to certain question/information or to go directly to human operator when
unsatisfied with the quality of the service.

The controlled stress test results indicate that the tested voice banking system could
benefit of a denoising pre-processing step, which although has reached very good
results with noise-adapted schemes [2], it is not currently adopted at large by com-
mercial system developers. As shown in Sect. 3.3, noise variance can result in extre-
mely poor performance of systems, thus it should be considered by IVR implementers
either by adequately training the recognizers or by using adequate pre-processing
methods before performing speech recognition.

The proposed approach, combining interaction log data based assessment with an
optimized questionnaire-based end-users evaluation and a controlled stress test per-
formed by an IVR system, allows for a simple an efficient spherical evaluation of
interaction quality, with potential applicability across domains.
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Abstract. This paper presents the Speech Technology Center (STC)
replay attack detection systems proposed for Automatic Speaker Verifi-
cation Spoofing and Countermeasures Challenge 2017. In this study we
focused on comparison of different spoofing detection approaches. These
were GMM based methods, high level features extraction with simple
classifier and deep learning frameworks. Experiments performed on the
development and evaluation parts of the challenge dataset demonstrated
stable efficiency of deep learning approaches in case of changing acoustic
conditions. At the same time SVM classifier with high level features pro-
vided a substantial input in the efficiency of the resulting STC systems
according to the fusion systems results.

Keywords: Spoofing · Anti-spoofing · Speaker recognition · Replay
attack detection · ASVspoof

1 Introduction

In recent years, due to increasing security concerns in all aspects of our daily lives,
the need for convenient and non-intrusive authentication methods has grown.
Automatic speaker verification (ASV) offers a low-cost and reliable solution
for identification problem when voice services are provided. It is already used
in social security entitlement, immigration control and election management.
Speaker recognition systems are widely used in customer identification during
call to a call center, Internet-banking systems and other fields of e-commerce.
However, despite the fact that it has reached the point of mass market adoption
this technology is acknowledged to be vulnerable to spoofing attacks [1,2].

According to the [3] ASV spoofing are classified into direct and indirect
attacks according to the stage they are applied to. Indirect ones attack inner
modules (feature extraction module, voice models, classification results). In
opposite, direct attacks use the recording stage or transmission level and is
focused on the substitution of the input data. Since speaker verification is mostly
used in automatic systems without face-to-face contact, direct attacks are more
c© Springer International Publishing AG 2017
A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 171–181, 2017.
DOI: 10.1007/978-3-319-66429-3 16
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likely to be used by criminals due to implementation simplicity. The most well-
known spoofing attacks are impersonation, replay attack (RA), voice conversion
(VC) attack and text-to-speech (TTS) attack [4,5].

Unlike other spoofing types, impersonation does not leave any traces of the
recording, playback devices or signal processing, as it is genuine speech. It can
be detected by reliable speaker verification system [5]. TTS and VC detection
methods were the topic of Automatic Speaker Verification Spoofing (ASVspoof)
2015 Challenge [6]. Results of ASVspoof 2015 confirmed the great potential in
detection of VC and TTS. Compared to these spoofing types RA is much more
simpler as it does not require specific audio signal processing knowledges. In RA
fraudster uses pre-recorded speech samples of the target speaker that can be
easily prepared via low-cost recording devices or smartphones. Due to this RA
is the most available and therefore critical spoofing technique.

For today there is a small number of studies addressed to the RA detection.
The most part of solutions presented for text-dependent ASV are based on the
comparison of the test utterance with the stored utterance recorded during the
registration. Vulnerability of text-independent ASV to RA was considered in
[4,7]. These papers show the serious increase in false acceptance rate of ASV
system in case of RA presence. RA detection methods for text-independent case
are mostly based on additional noise detection, specific for acoustic conditions.

The ASVspoof Challenge conducted in 2017 was aimed to promote the devel-
opment of RA countermeasures reliable to both known and unknown conditions
[8] which can vary greatly. ASVspoof 2017 was focused on a standalone RA
detection task for text-dependent case considered without ASV system and any
pre-recorded enroll data.

In this paper we described Speech Technology Center (STC) RA detection
systems proposed for ASVspoof 2017. Here we investigated and compared dif-
ferent approaches for spoofing detection. These were Gaussian Mixture Model
(GMM) based systems, systems based on high level features with simple classifier
and deep learning approaches.

2 Automatic Speaker Verification Spoofing Detection
Challenge 2017

ASVspoof Challenge was organized in order to assess the potential to detect
RA “in the wild”, specifically in varying acoustic conditions. For this purpose
the spoofing database was collected using text-dependent RedDots data [9]. Red-
Dots corpus was replayed and recaptured in heterogeneous acoustic environment
(open lab space, balcony, etc.). For spoofing trials 15 different playback and 16
recording devices were used, including smartphones and high-quality speakers.
The original RedDots records were used as genuine speech trials. This dataset
was divided into training, development and evaluation parts. The evaluation part
contained no information about spoofing trials, devices and recording conditions.
Spoofing trials from evaluation part were prepared with the use of devices that
were not used in the recording process of the training or development data. In
this way they presented previously unforeseen spoofing attacks.
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3 GMM Approach

Authors of [10] insist that spoofing detection methods should be more focused
on the feature engineering rather than on models complication. They proposed
the system based on constant Q transform cepstral coefficients (CQCC) and
simple GMM. This approach showed impressive results on the ASVspoof 2015
dataset and achieved the 72% improvement over the best system participated
in the challenge. That is why the reference implementation of this system was
provided as a Baseline system by organisers of ASVspoof 2017.

3.1 Baseline

Constant Q transform (CQT) is widely used in music signal processing. By
using geometrically spaced frequency bins it overcomes the lack of frequency
resolution at lower frequencies and time resolution at higher frequencies that can
be produced by Fourier transform with regular space frequency bins. Figure 1
demonstrates the example of CQT spectrum. CQCC estimated according to the
scheme in Fig. 2 were used as input features in the Baseline system.

In the Back-End the Baseline system used standard 2-class GMM clas-
sifier. 512-component models were trained with an expectation-maximisation
(EM) algorithm with random initialisation for genuine and spoofed speech,
respectively. For each utterance the log-likelihood score was obtained from
GMM models and the final score was computed as the log-likelihood ratio:
Λ(X) = log L(X|θg) − log L(X|θs), where X is a sequence of test utterance
feature vectors, L denotes the likelihood function, and θg and θs represent the
GMM for genuine and spoofed speech.

Fig. 1. Log power magnitude CQT spectrum
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Fig. 2. CQCC features extraction

3.2 Baseline Modifications

The first modifications we tried were normalization techniques for acoustic fea-
tures. We considered mean and variance normalization on the log power spec-
trum (mvn) and cepstral coefficients (cmvn) in different combinations. We have
also tried acoustic features that were effective for VC and TTS detection. These
were Mel Wavelet Packet Coefficients (MWPC), based on applying the multires-
olution wavelet transform and phase-based features CosPhasePC [11].

Experiments results obtained on the development part (Table 1) confirm the
efficiency of normalization for CQCC based systems. Systems with other Front-
End features did not outperform these results.

Table 1. Experimental results for GMM-based systems obtained on the train and
development parts of ASVspoof 2017 database (EER %)

Features CQCC MWPC MWPC CosPhasePC

Normalization - mvn cmvn mvn+cmvn - cmvn -

train EER (%) 0.03 1.81 1.25 1.1 0.4 0.23 0.43

dev EER (%) 10.35 8.74 11.86 9.85 8.81 19.17 24.64

4 I-Vector Based System

4.1 SVMi-vector

The most efficient spoofing detection systems on ASVspoof 2015 were based on
high level features modelling by standard i-vector approach [12]. Inspired by
its success for VC ans TTS spoofing detection we proposed similar approach for
RA detection. We experimented with variety of acoustic features from ASVspoof
2015, such as MFCC, CosPhasePC and MWPC features. According to our obser-
vations the best system was the system based on the Linear Prediction Cepstral
Coefficients (LPCC).

78 LPCC coefficients were obtained using the Hanning window function
with a 0.128 s window size and a 0.016 s step for FFT power spectrum esti-
mation [13]. I-vectors of the Total Variability space were extracted from the
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whole speaker utterances. Here we used the 128-component Gaussian mixture
model of the described features for diagonal covariance UBM (Universal Back-
ground Model), and the dimension of the T-matrix was 200. After centering and
length-normalization i-vectors were used as an input for a linear kernel SVM
classifier. For SVM training the efficient LIBLINEAR [14] library was used.

4.2 Phrase-Dependent System

During our investigations we suggested that phrase-dependent system can per-
form a higher accuracy than text-independent system. We compared i-vector
based system with the similar systems trained for several different phrases inde-
pendently. Our experiments presented in Table 2 showed reduction in spoofing
detection in comparison with the common systems trained on the whole training
dataset. This effect can be explained by the insufficient size of the training data
in a phrase-dependent case which leads to fast overfitting.

Table 2. Experimental results for the i-vector based system obtained on the train and
development parts of ASVspoof 2017 database (EER %)

UBM Phrase-
dependent

Common Common Common

T-matrix Phrase-
dependent

Phrase-
dependent

Common Common

SVM Phrase-
dependent

Phrase-
dependent

Phrase-
dependent

Common

train EER (%) 0.398 0.133 0.401 1.459

dev EER (%) 11.702 12.368 11.447 9.95

5 Deep Learning Approaches

Deep learning approaches have already achieved remarkable performance in
many classification and recognition tasks. The success of CNN in video classifi-
cation [15], image classification [16,17], face recognition [18] prompts to apply
such approaches for ASV anti-spoofing tasks. The idea of employing CNN for
spoofing detection is not new and was used in face spoofing detection [19,20].

Several experimental results confirm the efficiency of CNN based approaches
for synthetic speech detection. For example in [21] authors demonstrated high
efficiency of deep neural network (DNN), CNN and recurrent neural network
(RNN) architectures for VC and TTS spoofing detection on the base of ASVspoof
2015 dataset. They also proposed a stacked CNN+RNN architecture and demon-
strated its state-of-the-art performance. It is particularly important to note
that CNN architecture showed similar to CNN+RNN results and their fusion
outperformed the best individual system twice in terms of detection quality.
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In [22] temporal CNN architectures were proposed for VC and TTS detection.
This approach also achieved notable results on the ASVspoof 2015 corpora.

In this section we describe several systems based on CNN frameworks for
RA spoofing detection. Such problem can be reduced to the detection of local
spectral artifacts presented in the reproduced replay attack that distinguish it
from the genuine speech. For this purpose the CNN was used as a robust feature
extractor from the input signal representation in a time-frequency domain.

5.1 Unified Shape Time-Frequency Features

In our research we chose 2 types of features based on spectrum estimation of the
utterance. To prepare CNN input acoustic features we used the normalized log
power magnitude spectrum obtained via:

– constant Q transform (CQT) [10]
– Fast Fourier Transform (FFT)
– Discrete wavelet Transform (DWT), obtained by Daubechies wavelets db4

Special attention should be paid here to the fact that CNN input data should
have a unified form. We considered two techniques for obtaining a unified time-
frequency (T-F) shape of features. First one truncates the spectrum along the
time axis with a fixed size. During this procedure short files are extended by
repeating their contents if necessary to match the required length. The other
technique uses a sliding window approach with a fixed window size.

5.2 Deep Learning Architectures

It is known from image processing that the choice of convolutional neural network
architecture is a critical task and greatly affects learning result. In this research
we investigated several deep neural network architectures, demonstrated the best
results in RA detection.

Inception CNN Based System ICNNSW
CQT: The first proposed neural net-

work architecture was CNN with inception modules (ICNN) ([23]). The proposed
architecture was the reduced version of GoogLeNet and contained 3 inception
modules. Inception module acts as multiple convolution filter inputs, that are
processed on the same input in parallel. It also does pooling at the same time. All
resulting feature maps are then concatenated before going to the next layer. This
allows the model to pick the best convolutions and take advantages of multi-level
feature extraction by recovering both local feature via smaller convolutions and
high abstracted features with larger convolutions.

The ICNN was applied for high level feature extraction from the log power
magnitude CQT spectrum. The last fully-connected (FC) layer with softmax
activation function was used to discriminate between genuine and spoofing
classes during the training process. And a low-dimensional high-level audio rep-
resentation was extracted from the penultimate FC layer.
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To obtain unified time-frequency representation of the audio-signal we used
sliding window technique with 864× 200 × 1 window size and 90% overlapping.
For ICNN input we applied mean variance normalization.

Since in this space of high level features genuine and replay spoofing classes
are well separated, it was enough to use the simplest one-component models for
each class distribution modelling. We used the standard 2-class GMM classifier
(1 GMM for genuine speech and 1 for spoofed speech) trained on the training
part of the ASVspoof 2017 database with EM algorithm. The score for an input
signal was computed as the loglikelihood ratio. In this scenario we extracted high-
level features independently for each sliding window and all high-level features
corresponding to one utterance were used to estimate GMM likelihood. However,
it should be mentioned that such deep neural approach can be used for End-To-
End solution without additional classifier.

Light CNN. The second CNN we explored was the reduced version of the
LCNN proposed in [24] with a smaller number of filters in each layer. LCNN
consisted of 5 convolution layers, 4 Network in Network (NIN) layers [25], 10
Max-Feature-Map layers, 4 max-pooling layers and 2 fully connected layers [26].
The proposed LCNN used Max-Feature-Map activation function that allows to
reduce CNN architecture. In contrast to commonly used Rectified Linear Unit
function that suppresses a neuron by a threshold (or bias), MFM suppresses a
neuron by a competitive relationship. In this way being applied in particular
MFM selects more informative features. Each convolution layer was a combina-
tion of two independent convolutional parts calculated for layer’s input. MFM
activation function was used then to calculate element-wise maximum of these
parts. Max-Pooling layers with kernel of size 2 × 2 and stride of size 2 × 2 were
used for time and frequency dimensions reduction. Described CNN was used to
obtain high-level audio features similar to the ICNN based system and simple
GMM classifier was used at the evaluation stage.

We proposed a number of systems based on LCNN high-level features extrac-
tor with different acoustic features. LCNNCQT used truncated features obtained
from the normalized CQT spectrograms with 864×400×1 size. Additionally we
explored FFT based features instead of CQT: LCNNFFT system used truncated
features of size 864 × 400 × 1 and LCNNSW

FFT was based on the sliding window
features extraction with 864 × 200 × 1 window and 90% overlapping along time
axis. Alternative system LCNNSW

DWT was based on DWT implementation with
sliding window of 256 × 200 × 1 size and 83.4% overlapping.

Stacking CNN and RNN. We also probed the combined CNN+RNN archi-
tecture from [21] for RA spoofing detection. In this stacked architecture CNN
was used as a feature extractor and RNN modeled the long-term dependencies
of a speech sequence. Both CNN and RNN were optimized jointly through the
back-propagation algorithm. In this implementation CNN+RNN was used as
End-to-End solution.
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CNN was a reduced version of LCNN, but unlike the previous systems max-
pooling was applied with the stride 2 along the frequency axis to compress fre-
quency information and stride 1 along the time axis to save time dimensionality.

The RNN part consists of two gated recurrent units [27] forming the bidi-
rectional gated recurrent unit (BGRU). The first GRU was responsible for the
forward pass, while the second GRU performed the backward pass. The last out-
put vectors of both forward and backward passes were taken further to obtain
two 16-dimensional vectors. Such BGRU unit was applied to each channel of
CNN’s output resulting in 16× 2× 8 tensor. Weights were shared between each
channel’s unit to prevent overfitting. The flattened output of RNN was used as
an input to the fully-connected layers with MFM activations resulting in prob-
ability of the utterance being spoofed.

System based on this architecture, CNNFFT+RNN, used truncated features
extracted from log magnitude power FFT spectrum. But due to the limited
computational resources we reduced the input data dimension to 256× 400× 1.

Alternatively we used CNN+RNN architecture for CNNΔEEMD+RNN sys-
tem based on the ensemble empirical mode decomposition (EEMD) features.
These features were obtained with the use of libEEMD library [28] as follows:

1. Let So be the FFT spectrogram of the original signal x(t)
2. Get the first empirical mode c1(t) of the signal x(t) using the EEMD with

ensemble size of 50 and noise strength equals to 0.1
√

Var(x(t))
3. Compute Sr as the FFT spectrogram of the signal c1(t)
4. SΔ = |So − Sr|

6 Evaluation Results and Discussion

The experimental results of all described individual systems on development and
evaluation parts of ASVspoof 2017 corpus are presented in Table 3.

The best result for development and evaluation sets was demonstrated by
LCNN system with FFT truncated features. Similar system with CQT features
showed poor stability on the evaluation set. This is explained by the poor robust-
ness of CQT features, which is also approved by results of the baseline system.

The sliding window technique demonstrated worse results compared to the
truncated approach on the evaluation set. A possible reason for this is that using
spectrograms of the whole utterances (in most cases) as CNN input leads to more
accurate text-dependent deep model.

Our CNN+RNN combination also performed worse RA detection quality
than single LCNN. We explain performance degradation by the reduced fre-
quency resolution in the spectrum estimation.

Summarizing all results of our individual systems we prepared two solutions
that use fusion of individual systems on the score levelwithBosaris toolkit [29].Our
primary system used fusion of LCNNFFT, SVMi−vect and CNNFFT+RNN systems
scores. And our contrastive system combined SVMi−vec, ICNNSW

CQT, LCNNFFT,
LCNNSW

FFT, LCNNSW
DWT, CNNFFT + RNN and CNNΔEEMD + RNN systems.
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Table 3. Evaluation results

Individual system EER (%)

Dev set Eval set

Baseline 10.35 30.6

BaselineMVN+CMVN 9.85 17.31

SVMi−vec 9.80 12.54

ICNNSW
CQT 10.74 15.11

LCNNFFT 4.53 7.37

LCNNSW
FFT 5.25 11.81

LCNNCQT 4.80 16.54

LCNNDWT 8.71 16.08

CNNFFT + RNN 7.51 10.69

CNNΔEEMD + RNN 9.94 18.90

Fusion system

Primary: LCNNFFT, SVMi−vec, CNNFFT+RNN 3.95 6.73

Contrastive: SVMi−vec, ICNNSW
CQT, LCNNFFT,

LCNNSW
FFT, LCNNSW

DWT, CNNFFT+RNN,
CNNΔEEMD+RNN

2.77 7.56

Comparing two fusion systems on the development and evaluation parts we can see
that complicated fusion of 7 systems have less performance than simpler fusion of
three systems which are completely different in architectures, features and presum-
ably detect different artifacts. Despite the noticeable quality reduction for some
individual systems on the eval part, the difference in 1% of EER for fusion systems
is explained by the impressive result of LCNNFFT. According to Bosaris fusion
model, this system has the biggest weight in both fusion solutions. However, we
suppose that complex system will better detect RA spoofing with more various
conditions.

7 Conlusions

In this paper we explored the applicability of several different approaches for
replay attack spoofing detection. We investigated state-of-the-art methods from
VC and TTS spoofing detection and deep learning approaches. Our experiments
conducted on the ASVspoof 2017 dataset confirmed high efficiency of deep learn-
ing frameworks for spoofing detection “in the wild”. EER of the best individual
CNN system was 7.34%. At the same time SVM classifier with high level fea-
tures provides a substantial input into the efficiency of the resulting STC systems
according to the fusion systems results. Our primary system based on systems
score fusion provided 6.73% EER on the evaluation set.
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27. Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. CoRR abs/1412.3555 (2014)

28. Luukko, P., Helske, J., Rsnen, E.: libeemd library. https://bitbucket.org/luukko/
libeemd

29. Brmmer, N., de Villiers, E.: Bosaris toolkit. https://sites.google.com/site/
bosaristoolkit

http://arxiv.org/abs/1408.5601
https://bitbucket.org/luukko/libeemd
https://bitbucket.org/luukko/libeemd
https://sites.google.com/site/bosaristoolkit
https://sites.google.com/site/bosaristoolkit


Automatic Estimation of Presentation Skills
Using Speech, Slides and Gestures

Abualsoud Hanani(&), Mohammad Al-Amleh, Waseem Bazbus,
and Saleem Salameh

Birzeit University, Birzeit, Palestine
ahanani@birzeit.edu

Abstract. This paper proposes an automatic system which uses multimodal
techniques for automatically estimating oral presentation skills. It is based on a
set of features from three sources; audio, gesture and power-point slides.
Machine learning techniques are used to classify each presentation into two
classes (high vs. low) and into three classes; low, average, and high-quality
presentation. Around 448 Multimodal recordings of the MLA’14 dataset were
used for training and evaluating three different 2-class and 3-class classifiers.
Classifiers were evaluated for each feature type independently and for all fea-
tures combined together. The best accuracy of the 2-class systems is 90.1%
achieved by SVM trained on audio features and 75% for 3-class systems
achieved by random forest trained on slides features. Combining three feature
types into one vector improves all systems accuracy by around 5%.

Keywords: Presentation skills � Audio features � Gesture � Slides features �
Multi-Modality

1 Introduction

Performing a good presentation in front of a crowd is an essential skill that every
successful and professional person should master. This is one of the student outcomes
most undergraduate programs aim to develop in their study journey and after that in
their work life. Throughout courses, people obtain such skill and nourish it. But what
remains an issue is judging how well a person is performing or how better he/she has
become since last time. Watching presentations is both time consuming and harder than
it seems for evaluators to judge and provide feedback. Without feedback none can get
better. In most cases, presenters do not receive objective feedback after their presen-
tations since this requires tremendous amount of effort and time from the evaluators.
Usually, presentation performance assessment is done by focusing on multi-modality,
speech cues, gesture and slides. Speech cues include way of speaking, volume, into-
nation, speaking rate, etc. whereas, gesture cues include facial expressions, eye contact,
head poses, hand gesture and body posture.

Most of the current rubrics for presentation performance assessment rely on both
verbal and non-verbal aspects, and it is mainly done by humans. Doing this process
automatically and providing instants feedback is highly desirable.
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In this work, we are proposing an automatic system which uses multi-modality,
namely speech, gesture and slides content and formatting, for presentation performance
assessment. Most of the previous studies in this field used one or two modalities, and to
our knowledge, this is the first work which combines cues from three modalities for
assessing presentation performance.

2 Previous Work

In [1] prosodic audio features and personality assessment provided by humans were
used (each alone and combined) to classify speakers as professional and
non-professional (2-classes). The audio features they used are: pitch, energy, first and
second formants, length of voiced and unvoiced segments and their respective statistics
(minimum, maximum, mean and entropy of feature variation). In personality assess-
ment by humans, the score for each audio clip is the average of 10 judges’ assessment
(the BFI-10 questionnaire). They obtained an accuracy of 87.2%, 75.5% and 90.0%
when they used prosodic features, personality assessments and when prosodic features
and personality assessments were combined together, respectively.

The liveliness of a voice is defined as the degree to which a voice varies in
intonation, rhythm and loudness [2]. In [2], the Pitch Dynamism Quotient (PDQ) was
used to analyze the liveliness of speech and it was hypothesized that monotonous
speech has PDQ values around 0.10 and lively speech has PDQ values around 0.25. In
[3], “high-dimensional acoustic feature extractions” approach was employed to develop
a system to assess the oral presentations skills of pre-service principals. Their approach
incorporates multimodal behavioral data (audio and video) to classify pre-service
principal’s presentations into low and high presentations.

In [4], The level of the cognitive load that a person is experiencing was classified to
low, moderate and high cognitive load based on some speech features, namely,
articulation rate, pause rate and pause duration.

In [5], features extracted form audio and slides were used to classify students’
performance in presentations into two classes, high and low. From audio, they used
some prosodic features namely, Minimum Pitch value (MINP), Maximum pitch value
(MAXP), Average Pitch value (AVGP) and Pitch Standard Deviation value (STDP).
They used also the speech rate, articulation rate and The Average Syllable duration. For
slides, they used the total number of images, minimum and maximum font size,
maximum number of different font sizes per slide, total number of words, total number
of chart and total number of tables. Also, they processed each slide as a gray JPGE
image to calculate its entropy and they computed the following features: maximum
entropy value, minimum entropy value, average of entropy values and standard
deviation of entropy values. It is worth mentioning that we will use the dataset that they
used in their work and to build on what they have done.

Many researchers tried to automate the way in which presentation slides are
assessed. They have chosen numbers as their reference starting with simple count of
images or tables inside a presentation slide and ending with whether a footer exists at
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the bottom of the slide or not. According to Seongchan Kim et al. in [6], with the huge
increase in PowerPoint slides count and their hosting sites, an efficient way to estimate
the quality of slides without any human intervention is required [6]. They extracted a
set of useful features from slides.

Gestures and body movements can alter how people conceptualize abstract con-
cepts [7] and even their sense of their own dominance [8]. Despite the fact that gestures
are a substantial aspect in a presentation, studies do not seem to give it much attention.
However, there is some research done that uses gestures to predict the emotions of the
speakers. This is helpful for our work in terms of how to capture and use gestures
information for presentation assessment.

Burgoon et al. [9] proposed an approach for analyzing cues from multiple body
regions for the automated identification of emotions displayed in videos, focusing on
hands and arms movement, facial pleasantness and head movement. This work does
not have clear results. All what they conclude is that “this research has already shown
great promise and is setting the stage for real-world relevance”. In addition, S. Kopf
et al. in [10] developed a software tool using Microsoft’s Kinect and captured gestures,
eye-contact, movement, speech, and the speed of slide changes to provide real time
feedback for presentation skills. Speaker movement and body gestures were detected
well while not all spoken words and slide changes could be recognized.

3 Dataset

3.1 MLA’14 Data Set

In all of reported experiments in this paper, we have used a dataset that was collected
by international Multimodal Learning Analytics workshop and challenges (MLA 2014)
which seeks to answer questions like how multimodal techniques can help the
assessment of presentation skills? And how to integrate between individual perfor-
mance (audio, video and posture) and the quality of the slides used, in determining how
good a presentation is.

This dataset is composed of 448 multimodal recordings on 86 oral presentations
of undergraduate students’ groups. Each group consists of a varied number of students
(1–6). It is important to note that each PowerPoint file is shared for each students’
group, where, audio and gestures are recorded for each student individually.

Human coded information about the quality of the presentation was included, six
aspects was taken into consideration in determining the quality of presentation. The
coding process was done by four individuals, taking the average as the final rate for each
criteria. The human coding was recorded with a rubric that measured: speech organi-
zation, volume and voice quality, use of language, slides presentation quality, body
language and level of confidence during the presentation. Table 1 shows all evaluation
criteria used to assess the quality of the presentation. The score goes from 1 (low) to
4 (high). The students of each group were evaluated individually using these metrics.
The evaluation of the metrics related to the slides was the same for all group members.
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As shown in Table 1, there are three classification aspects human experts used in
the presentations evaluation; one is related to the voice of the presenter, one is related
to the slides of the presentation and one is related to the gestures and body language of
the presenter. In order to build an automatic system for presentation evaluation,
this system should consider features extracted from these three aspects; voice, slides
and gestures. To do so, we built three sub-systems, each uses one of these features, i.e.
one system uses features extracted from voice, one uses features extracted from slides
and one uses features extracted from gestures.

3.2 Two-Class Labeling

For building voice based system, the dataset was divided into two classes; high per-
formance (average voice-related scores > 2.5) and low performance (average
voice-related scores � 2.5). By applying this criteria, 331 audio files were labeled as
high performance and 117 were labeled as low performance. Similarly, the dataset was
re-divided into two classes (High and Low), but this time, according to the average rate
of the slides-related evaluation criteria, and one time according to the gestures based
scores for the gesture based system. By Appling this criteria, 45 PowerPoint files were
labeled as class ‘High’ and 41 files as class ‘Low’. Similarly, 231 Kinect csv files were
labeled as class ‘High’ and 217 as class ‘Low’.

3.3 Three-Class Labeling

To have more details of the presentation quality, all students in the dataset were
re-divided into three classes; High (rating range 1–2), Average (rating range 2–3) and
Low (rating greater than 3) for our three sub-systems. Table 2 shows the number of
data files of each class after applying the above criteria, for each sub-system.

Table 1. Evaluation criteria used for scoring the student oral presentations

Metric Description

Speech organization Structure and connection of ideas
Volume/voice Presents relevant information with good pronunciation

Maintains an adequate voice volume for the audience
Language Language used in presentation according to audience
Slides presentation Grammar

Readability
Impact of the visual design of the presentation

Body language Posture and Body language
Eye contact

Confidence during the presentation Self-confidence and enthusiasm
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4 Feature Extraction

4.1 Audio Features

To build an automatic assessment system based on voice, audio recordings were used
to extract representative features from speech signal. The following subsections
describe the audio features used in our experiments.

• Short frame energy: Speech signal is divided into 50% overlapped 20 ms frames.
Each frame is multiplied by Hamming window and then the energy, in decibel, is
calculated for each frame and used as an audio feature for our system.

• Short frame Zero-Crossing Rate (ZCR): After subtracting average (dc) of speech
signal from each sample, the number of zero-axis crossings is calculated for each
short frame. These counts are then divided by the total number of zero-crossings of
the whole utterance.

• Mel Frequency Cepstral Coefficients (MFCCs): MFCC features are the most
commonly used in the speech processing applications. They represent the general
shape of power spectrum for each frame with low dimensional feature vectors
(typically 12). More details about MFCC technique can be found in [11]. The first
12 MFCCs of each frame are appended to the audio feature vectors of our
audio-based system.

• Short frame pitch: Pitch refers to the fundamental frequency of the voiced speech.
Pitch is an important feature that contains speaker-specific information. It is a
property of vocal folds in the larynx and is independent of vocal tract. A single pitch
value is determined from every windowed frame of speech. There is a number of
algorithms for estimating pitch form speech signal. Among these, one of the most
popular algorithms is the Robust Algorithm for Pitch Tracking (RAPT) proposed by
Talkin [12]. This algorithm was used to extract pitch for use in all experiments
reported in this paper.

• Formant Frequencies: The general shape of the vocal tract is characterized by the
first few formant frequencies. Praat toolkit [13] was used to estimate the first three
formants and their gains and appended to the acoustic feature vectors.

Table 2. Three-class data division

Model Class No. of instances

Audio High 195
Average 191
Low 62

Slides High 32
Average 26
Low 28

Gesture High 102
Average 246
Low 100
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• Speaking rate: Speaking rate has been used as a feature in numerous speech pro-
cessing applications. In this work, speaking rate was estimated from the number of
syllables divided by the total duration in seconds of each participant presentation.

• Articulation Rate: The number of syllables divided by the speaking time.
• The Average Syllable duration: The ratio of the speaking time over the number of

syllables. The number of syllables in each audio recording is found by counting the
detected syllables nuclei using Praat script by Nivja de Jong [14].

• Pauses: There are two types of pauses; presence of silent intervals (empty pauses)
and vocalizations (filled pauses) which do not have a lexical meaning. Usually,
non-confident presenters need time for selecting proper words and making mean-
ingful sentences while speaking. These times are longer than the natural pauses
confident presenters usually make while they are speaking. Therefore, the length
and number of occurrences of pauses may carry a useful information about the
presenter skills. A simple algorithm based on the short frame energy and
zero-crossing rates has been developed for estimating length and number of
occurrences of pauses in each utterance. Frames with low energy and high
zero-crossing are usually resemble pauses, whereas, frames with high energy and
relatively low zero crossings resemble speech frames. If a number of successive
pause frames exceeds a practically specified threshold, they are considered as a
pause. So, if it exceeds certain duration time or if it is repeated many times while
talking, this may indicate that the presenter has a low presentation skills.

• Rhythm Patterns (RP), Statistical SpectrumDescriptor (SSD) and RhythmHistogram
(RH): Rhythm Patterns are features sets derived from content-based analysis of
audio, particularly music, and reflect the rhythmical structure in the audio recording.
According to the occurrence of beats or other rhythmic variation of energy on a
specific critical band, statistical measures (e.g. mean, median, variance, skewness,
kurtosis, min- and max-value) are able to describe the audio content. The Rhythm
Histogram features are a descriptor for general Rhythmic in an audio segment.
Contrary to the RP and SSD, information is not stored per critical band. Rather, the
magnitudes of each modulation frequency bin of all critical bands are summed up,
to form a histogram of “rhythmic energy” per modulation frequency. 1440 RP
features, 1500 RH and 168 SSD are computed using open-source Musical Infor-
mation Retrieval toolkit1.

4.2 Slides Features

Each students group has one PowerPoint presentation file. Therefore, unlike audio and
gesture features, features extracted from slides are the same for each group member.

A macro was created to automatically compute a set of features from each slide of
the presentation files to be used for presentation assessment, as shown in Table 3.

1 http://www.ifs.tuwien.ac.at/mir/downloads.html.
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4.3 Gesture Features

In the dataset, each student has a Kinect recording (csv format) which includes XYZ
coordinates of 20 joint body positions in a rate of 120 frames per second. We extracted a
set of features from Kinect motion traces for each presenter, as shown in Table 4 below.

5 Experiments and Results

5.1 Experiments Setup

In all reported experiments in this paper, 10-fold cross validation technique was used
for training and validation of each system. In order to investigate the usefulness of each
feature type (audio, slides and gesture) for estimating presentation skills, we conducted
one experiment for each feature type alone and then combined all together. As men-
tioned earlier, presentation skill of each participant in the dataset was classified into two
classes (high vs. low), one time, and into three classes (high, average and low) another
time. This classification was done based on the human ratings. Therefore, for each
feature type, there are two classification experiments, one with two classes and one
with three classes. In all experiments, three different classifiers implemented in Weka
toolkit were used, namely, Support Vector Machines (SVM), Simple Logistic (SL) and
Random Forest (RF).

The above mentioned audio features are computed for each audio file and con-
catenated together to form feature vectors of a dimension 3140 (energy, ZCR, 12
MFCCs, pitch, 6 formant frequencies with their gains, speaking rate, articulation rate,
average Syllable duration, average pauses length, number of pauses, 1440 Rhythm
Patterns, 168 Statistical Spectrum Descriptor and 1500 Rhythm Histogram features).

Table 3. Set of features extracted from slides

Slide features

Words count per slide Unique font mean per slide
Total number of images per slide Entropy of a slide
Font sizes per slide Delta Entropy of two consecutive slides
Unique font sizes per slide Word to image ratio per slide
Minimum font size per slide Mean font per slide
Maximum font size per slide Font difference per slide

Table 4. Gesture features extracted from Kinect csv files

Gesture feature

Position of the 20 points of the skeleton Contraction index
Position of the 7 points related to the head, shoulders and arms Energy and power
Speed of movement Overall activity
Acceleration of the movement Shape of movement
Fluency and smoothness
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5.2 Results

For each experiment, accuracy, precision, recall, F-measure and ROC area were used as
evaluation measures. The results of the three classifiers when trained and tested on
audio features, slides features and gesture features are presented in Table 5 (two-class)
and Table 6 (three-class).

As expected, treating presentation skills estimation as a two-class problem gives
better results than a three-class problem for all systems and all classifiers. All of the
systems which use audio features outperform the systems that use slides and gesture
features. As shown from the results, SVM system outperforms RF and SL when using
audio features with an accuracy of 90.1% and 67.5% for 2-class and 3-class
experiments, respectively. Random forest worked the best for the slides features,

Table 5. Two-class (high vs low) experiments results of the three systems

System Classifier Accuracy Precision Recall F-Measure ROC Area

Audio SVM 0.901 0.901 0.901 0.903 0.909
Simple logistic 0.869 0.872 0.869 0.87 0.907
Random forest 0.809 0.804 0.809 0.802 0.894

Slides SVM 0.701 0.69 0.701 0.69 0.646
Simple logistic 0.694 0.68 0.694 0.677 0.739
Random forest 0.83 0.829 0.83 0.829 0.908

Gesture SVM 0.635 0.694 0.305 0.421 0.602
Simple logistic 0.714 0.689 0.632 0.618 0.704
Random forest 0.668 0.612 0.598 0.586 0.653

Combined SVM 0.953 0.952 0.951 0.952 0.919
Simple logistic 0.912 0.906 0.911 0.911 0.914
Random forest 0.871 0.864 0.866 0.861 0.903

Table 6. Three-class (high, average, low) experiments results of the three systems

System Classifier Accuracy Precision Recall F-Measure ROC Area

Audio SVM 0.675 0.667 0.675 0.67 0.784
Simple logistic 0.559 0.56 0.559 0.56 0.692
Random forest 0.492 0.506 0.492 0.495 0.653

Slides SVM 0.465 0.457 0.465 0.449 0.587
Simple logistic 0.475 0.468 0.475 0.467 0.647
Random forest 0.753 0.752 0.753 0.752 0.902

Gesture SVM 0.383 0.352 0.346 0.343 0.497
Simple logistic 0.433 0.428 0.429 0.432 0.551
Random forest 0.381 0.371 0.368 0.364 0.489

Combined SVM 0.722 0.714 0.721 0.693 0.825
Simple logistic 0.653 0.635 0.646 0.623 0.782
Random forest 0.812 0.817 0.812 0.813 0.911
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with accuracies of 83.0% and 75.3% for 2-class and 3-class experiments, respectively.
Simple logistic classifier worked the best for the body language features (gesture) with
accuracies of 66.8% and 43.3% for 2-class and 3-class respectively.

Combining the three feature types into one feature vector, then train and evaluate the
three classifiers on the resulting vectors, improves all systems accuracy by around 5%.
Combining three systems by fusing their output scores is considered in the future work.

6 Conclusion

In this paper, we presented a comprehensive framework for automatically estimating
presentation skills by extracting features from presenter voice, slides and body lan-
guage. MLA’14 dataset was used for training and testing (10-fold cross validation) in
all of reported experiments. Presentation skills prediction was treated as a 2-class and
3-class classification problems. In each case, three different classifiers were built on
audio features, slides features and gesture features, independently. SVM worked the
best for the audio features, whereas, Random forest and simple logistic worked better
for the slides features and gesture features respectively.

The best accuracy of the 2-class systems is 90.1% achieved by SVM trained on audio
features, and 75% for 3-class systems achieved by Random forest classifier. Combining
three feature types into one vector improves all systems accuracy by around 5%.
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Abstract. At the moment more advanced approaches to phonetic tran-
scription are required for different speech technology tasks such as
TTS or ASR. All subtle differences in phonetic characteristics of sound
sequences inside the words and in the word boundaries need more accu-
rate and variable transcription rules. Moreover, there is a need to take
into account not only the normal rules of phonetic transcription. it is
important to include the information about speech variability in regional
and social dialects, popular speech and colloquial variants of the high
frequency lexis. In this paper a reliable method for automatic phonetic
transcription of Russian text is presented. The system is used for making
not only an ideal transcription for the Russian text but also takes into
account the complex processes of sound change and variation within the
Russian standard pronunciation. Our transcribing system is reliable and
could be used not only for the TTS systems but also in ASR tasks that
require more flexible approach to phonetic transcription of the text.

Keywords: Automatic phonetic transcription · Russian · Phonetics ·
Speech processing · Speech transcription · Speech variability modeling

1 Introduction

For the last 30 years various large speech corpora have been developed through the
world [1]. Well-known examples are TIMIT [2], Switchboard [3], Verbmobil [4],
the Spoken Dutch Corpus [5] and the Corpus of Spontaneous Japanese [6]. At the
moment a number of medium and large size Russian speech corpora are available.
The largest published corpus of the Russian speech is ORD (One Day of Speech)
corpus that is still under development [7]. It contains more than 1000 h of every-
day speech. It has partial annotation and transcription. However, this corpus is
not publicly available. The most annotated publicly available corpus nowadays
is PrACS-Russ (Prosodically Annotated Corpus of Spoken Russian) that con-
tains over 4 h of monologue speech [8]. It is available as part of Russian National
Corpus [9]. The corpora containing well-annotated high-quality recordings are
not publicly available. One of them is Corpus of Professionally Read Speech
(CORPRES) contains over 30 h of speech recorded in a professional studio [10].
c© Springer International Publishing AG 2017
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The corpus of monologues RuSpeech contains about 50 h of transcribed recordings
produced by 220 speakers [11]. CoRuSS (Corpus of Russian Spontaneous Speech)
is designed as a publicly available resource containing high-quality recordings
of spontaneous speech with detailed prosodic transcription [12]. The recordings
include dialogues between native Russian speakers, with a part of it - at least 14 h
of speech from 60 speakers - annotated by expert linguists at lexical and prosodic
levels.

One of the main reasons that provide the usability of large speech corpora is
the availability and accuracy of annotations. For example, the TIMIT corpus is
very popular for the phonetic and speech technology studies because of the very
accurate phonetic transcriptions. The broad phonetic transcriptions are often
used and sometimes even required for different tasks such as lexical pronunci-
ation variation modelling for automatic speech recognition, unit selection for
speech synthesis [10,11,13], automatic pronunciation training and assessment
in Computer Assisted Language Learning [14] and general research on pronun-
ciation variation [15]. Contemporary speech corpora are usually provided with
a broad phonetic transcription of at least part of their material. In addition,
time and money permitting, contemporary speech corpora are at least partially
enriched with broad phonetic transcription with the help of expert phoneticians
in order to ensure a more accurate representation of the material. The employ-
ment of experts is known to be exceedingly time-consuming and expensive when
they have to transcribe speech from scratch. That is why, it is common practice
to provide people with an example transcription they have to verify on the basis
of their own perception of the speech signal [1].

Among the numerous approaches to providing text-to-speech transcription,
the simplest is to use a small set of letter-to-sound rules to guess the pronunci-
ation of any word. Each rule specifies a phonetic correspondence of sounds and
letters. In some cases the letter’s context is used to determine which rule should
be applied. However, any language has great variation in the pronunciation. The
transcription made for the TTS systems usually have one ideal variant for the
text. It could be predicted and changed according to the acoustic and phonetic
quality of the sounds, speaker characteristics and so on. In the speech recogni-
tion tasks it is more important to have the correct information not only about
the phonemes but also about the exact acoustic characteristics and their varia-
tion. Those characteristics that can be predicted by the context beforehand. The
grapheme-to-phoneme transcriber can use a dictionary-lookup approach but it
tells nothing about the sound changes between the words and phrase bound-
aries. Therefore the rules of transcribing should use all the knowledge about
the context variations of the sounds in the standard pronunciation, the phonetic
changes and their frequencies of occurency in speech.

In this paper we present a reliable method for automatic phonetic transcrip-
tion of Russian text into phonetic symbols. The system was used for modelling
phonetic transcription for the Speech Corpus of spontaneous speech CoRuSS for
Russian Language [12].
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This paper is organised as follows. In Sect. 2, we introduce the automatic
transcriber design and main principles. Section 3 sketches the problems of rules
extensions. Section 4 presents the inclusion of the speech variability rules. In
Sect. 5 we formulate our conclusions.

2 Design of the Automatic Phonetic Transcriber

The program was developed in java jdk 1.8. Each rule specifies a phonetic corre-
spondence of phonetic symbols to letters. The letter’s context is used to deter-
mine which rule should be applied. We implemented these processes as context-
dependent rule modelling both within-word and cross-word contexts in which
phones could be deleted, inserted or substituted with other phones.

The set of phonological and phonetic rules that differs according to condi-
tions has been based on the phonetic knowledge obtained in experimental study
of the great amount of the Russian speech corpora since the beginning of the pre-
vious century. There are 6 vowel phonemes and 36 consonant phonemes in the
Russian literary speech [16–18]. The transcriber has been developed following
the principles proposed by S. Stepanova [19] and K. Shalonova [20,21]. Besides,
the coarticulation and sound change processes for Russian standard language (as
for any other language) constantly modify. In order to include all the variation
we decided to work not with separate letter-to-phoneme assosiations but use the
characteristics of sound classes and the processes of assimilation, dissimilation,
insertion or deletion of sounds. It gives us opportunity to model different allo-
phone variations that are not usually provided by other phonetic transcription
systems. Besides, all the exclusion are taken into account.

For example, the Russian phoneme “c̆” has no voiced pair in the system.
Among the allophones of “c̆” there are voiced and unvoiced variants. Therefore
it is important for the transcriber to model correctly the exact variant which
should be used in the transcription using the preceding and following letters.

The quality of the vowel phonemes in Russian varies according to the word
stress, position in a phrase and the quality of the neighboring sounds consonants
before and after the vowel. For the correct result the transcriber needs informa-
tion about the place of the word stress. It could process the words with primary
and secondary stress. The signs for these are “1” for primary word stress and “0”
for secondary stress. The numbers should be put after the vowel in the ortho-
graphic text. Our transcriber does not include the automatic stress detection in
the orthographic text.

There are more than 200 rules for the vowel transformations that include all
this information. Also the exclusions are taken into account for vowel transfor-
mation by inserting them into the rules (Fig. 1).

The consonant variation depends upon the quality of the neighboring sounds.
There are different kinds of consonant assimilation in Russian which is usually
regressive one. The consonants became similar or different in the palataliza-
tion, voiced/unvoiced characteristic, place of articulation, manner of articula-
tion. The consonant insertions and deletion processes are also taken into account.
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There more than 200 rules for consonant transformation including the consonant
special sequences inside words (Fig. 2).

The resulting rule set comprised phonological and phonetic rules describing
progressive and regressive voice assimilation, palatalisation and more specific
rules modelling pronunciation variation in high-frequency words. We tried to take
into account all the possible modifications and sound change that can happen
within the word and on the word borders. Besides, the transcriber processes the
pause signs and modifies the resulted transcription according to the place of the
pause in the text and the pause type. There are several types of pauses: the
end of phrase, the inhale sign, the sudden speech hesitation etc. According to
the sound type the transcriber decides if the last consonant should be voiced or
unvoiced for noise consonants (Fig. 3).

The processes in the word boundaries in the connected speech and the sound
transformations in the end of the phrase are also included in the program. If
the processed text has the phrase boundary markers and information about the
pauses, speech breaks and intakes of breath it will process them automatically
and decide about the phonetic quality of the sounds in the borders according to
the Russian pronunciation (Figs. 4 and 5).

Fig. 1. Example of the grapheme-to phoneme rules for vowels

Fig. 2. Example of the grapheme-to phoneme rules for consonants

Fig. 3. Example of the grapheme-to phoneme rules for consonants sequencies
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Fig. 4. Example of the Russian orthographic text for processing. ‘1’ is put after vowels
to show the primary stress, ‘2’ is written after the vowels to show the secondary stress.
The intonation markers are also included in the orthographic text. They show the
intonation phrase borders and type of intonation

Fig. 5. Example of transcription. ‘0’ is put after vowels to show the primary stress, ‘8’
is written after the vowels to show the secondary stress

3 Rules Extensions and Refinements

At first we aimed at approximating transcription that were made with a limited
rules and symbol set. Then we included the rules for pronunciation exclusions
from the dictionary. The transcriber was developed to make transcriptions for
the corpus CoRuSS [12] containing 30 h of high quality recorded spontaneous
Russian speech. The recordings consist of dialogues between two speakers, mono-
logues (speakers self-presentations) and reading of a short phonetically balanced
text. Since the corpus is labeled for a wide range of linguistic-phonetic and
prosodic information, it provides basis for empirical studies of various sponta-
neous speech phenomena. Besides, it allows comparing those phenomena with
the ones we observe in prepared read speech. The corpus has orthographic and
prosodic annotation for the part of the material. The orthographic decoding of
the recording was made using no capital letters or punctuation marks; the only
exception was a question mark to denote question phrases. Each word was writ-
ten using standard spelling no matter whether it was pronounced in a proper
way, mispronounced, or produced in a contracted form. Orthographic annota-
tion also contained information about lexical stress: strong (primary) stress was
marked with 1 after the vowel. Symbol 2 was used for vowels carrying secondary
or weak stress, for vowels /o/, /e/ with no qualitative reduction. The Russian
grapheme ‘İe’ in this corpus was never replaced by ‘e’.

The transcriber was properly tested manually. At first different texts from
the CoRuSS corpus [12] were processed and checked by expert phoneticians. The
manually verified phonetic transcriptions were required to tune the transcription
procedures and to evaluate their performance. We took into account very special
cases of Russian pronunciation that occur in the connected speech and cannot
be known from the orthographic dictionary containing only word transcriptions.
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In order to ensure the applicability of the transcription procedures in contexts
we optimised our procedures with limited resources and minimal human effort
using the statistics of the sound change in standard pronunciation from the real
speech corpus CORPRES. Further additions and refinements to the rules could
reduce the error rate still further.

4 Modeling Speech Variation

The resulting transcription were updated using the results of the manual real
speech segmentation and labelling that was made by expert phoneticians for the
CORPRES speech corpus [10]. The material contains two types of transcription:
manual phonetic transcription (the sounds actually pronounced by the speakers)
and the level of rule-based phonetic transcription (automatically generated by
another text transcriber for TTS and partially corrected by the experts). The
ideal transcription in the CORPRES corpus did not contain phonetic variants
within pronunciation standard.

We counted the occurrence rate of different phonetic sequences in the same
contexts for ideal transcriptions in CORPRES corpus and improved the rules
using several variants of transcription or the most frequent one.

For example in Russian the word /pagul’a0j/ has different variants of pho-
netic transcriptions that could be met in standard pronunciation (Fig. 6):

[p@gul’a0i] - that variant was met 0 times in corpus (the dictionary standard).
[pogul’ai] - that variant was met 3 times in corpus.
[pugul’ai] - that variant was met 5 times in corpus.

Fig. 6. Example of transcription including the results of speech variability from the
CORPRES. ‘0’ is put after vowels to show the primary stress, ‘8’ is written after the
vowels to show the secondary stress

The example shows the variants of standard pronunciation and their fre-
quency of occurrence in the phonetic transcription.
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5 Conclusions

The results have shown that our transcriber is reliable and it could be used for the
speech technology tasks that require the phonetic transcriptions of the text for
speech segmentation, text-to-speech systems, and automatic speech recognition
systems.

The transcriber could be adapted to the speaker as long as we know his/her
speech peculiarities.

The automatic transcription can serve as an example for the human
transcribers.

The ASR system and speech alignment system can be provided by a precise
phonetic transcription if it has the text that has to be recognised.

Acknowledgments. The authors would like to thank the Saint Petersburg State
University. This work has been carried out in the framework of SPbSU project
n. 31.37.353.2015.
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Abstract. This paper proposes an automatic smoking habit detection
from spontaneous telephone speech signals. In this method, each utter-
ance is modeled using i-vector and non-negative factor analysis (NFA)
frameworks, which yield low-dimensional representation of utterances by
applying factor analysis on Gaussian mixture model means and weights
respectively. Each framework is evaluated using different classification
algorithms to detect the smoker speakers. Finally, score-level fusion
of the i-vector-based and the NFA-based recognizers is considered to
improve the classification accuracy. The proposed method is evaluated
on telephone speech signals of speakers whose smoking habits are known
drawn from the National Institute of Standards and Technology (NIST)
2008 and 2010 Speaker Recognition Evaluation databases. Experimen-
tal results over 1194 utterances show the effectiveness of the proposed
approach for the automatic smoking habit detection task.

Keywords: Smoker detection · i-Vector · Non-negative factor analysis ·
Score fusion · Logistic regression

1 Introduction

Speech signals carry speaker’s important information such as age, gender, body
size, language, accent and emotional/psychological state [1–5]. Automatic iden-
tification of speaker characteristics has a wide range of commercial, medical
and forensic applications such as interactive voice response systems, service cus-
tomization, natural human-machine interaction, recognizing the type of pathol-
ogy of the speakers, and directing the forensic investigation process. In this
research, we focus on speaker’s smoking habit detection, which is an ingredient
c© Springer International Publishing AG 2017
A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 200–210, 2017.
DOI: 10.1007/978-3-319-66429-3 19



Automatic Smoker Detection from Telephone Speech Signals 201

of speaker profiling systems and behavioral informatics. The effect of smoking
habits also on different speech analysis systems such as speaker gender detection,
age estimation, intoxication-level recognition and emotional state identification
shows the importance of an automatic smoking habits detection system and
motivates the analysis of the smoking habit effects of speech signals. Experi-
mental studies show that many acoustic features of the speech signal such as
fundamental frequency, jitter and shimmer are influenced by cigarette smok-
ing [6,7]. Although experimental studies reveal the effect of smoking on different
acoustic characteristics of speech, the relation of these acoustic cues with speaker
smoking habits is usually complex and affected by many other factors such as
speaker age, gender, emotional condition and drinking habits [3]. Furthermore,
technical factors such as speech duration, recording device and channel condi-
tions also influence the estimation accuracy and make smoking habit detection
very challenging for both humans and machines.

In this paper, we propose an automatic smoker detection from the telephone
speech signals. To our knowledge, this is the first work on this condition and thus
the result of no baseline system is reported in this paper. However, we adopt
and apply state-of-the-art techniques developed within speaker and language
recognition fields.

Modeling speech recordings with Gaussian mixture model (GMM) mean
supervectors is considered as an effective approach to convert variable duration
signals into fixed dimensional vectors to be used as features in support vector
machines (SVM) [8]. This technique has been successfully applied to different
speech processing tasks such as speaker’s age estimation [9]. While effective,
GMM mean supervectors are of a high dimensionality resulting in high compu-
tational cost and difficulty in obtaining a robust model in the context of limited
data. Consequently, dimension reduction through PCA-based methods has been
found to improve performance in age estimation from GMM mean supervec-
tors [9]. In the field of speaker and language recognition, recent advances using
i-vector framework [10], which provide a compact representation of an utterance
in the form of a low-dimensional feature vector, have considerably increased the
classification accuracy [10,11]. I-vectors successfully replaced GMM mean super-
vectors in speaker age estimation too [12]. We have recently introduced a new
framework for adaptation and decomposition of GMM weights based on a factor
analysis similar to that of the i-vector framework [13]. In this method, namely
non-negative factor analysis (NFA), the applied factor analysis is constrained
such that the adapted GMM weights are non-negative and sum to unity. This
method, which yields new low-dimensional utterance representation approach,
was applied to speaker and language/dialect recognition successfully [13,14]. In
this paper, we propose a hybrid architecture of NFA and i-vector frameworks for
smoker habit detection. This architecture consists of two subsystems based on i-
vectors and NFA vectors and score-level fusion of i-vector-based and NFA-based
recognizers is considered to improve the classification accuracy. The performance
of the proposed method is evaluated on a spontaneous telephone speech sig-
nals of National Institute of Standards and Technology (NIST) 2008 and 2010
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Speaker Recognition Evaluation (SRE) databases. Experimental results confirm
the effectiveness of the proposed approach.

2 System Description

2.1 Problem Formulation

In the smoking habit estimation problem, we are given a set of training data
D = {νi, yi}N

i=1, where νi ∈ R
d denotes the ith utterance and yi denotes the cor-

responding smoking habits. The goal is to approximate a classifier function g,
such that for an utterance of an unseen speaker, νtst, the probability of the esti-
mated output classified in the correct class get maximum. That is, the estimated
label, ŷ = g(νtst), is as close as the true label.

2.2 Utterance Modeling

First, we convert variable-duration speech signals into fixed-dimensional vec-
tors, which is performed by fitting a GMM to acoustic features extracted from
each speech signal. The parameters of the obtained GMMs characterize the cor-
responding utterance. Due to lack of data, fitting a separate GMM for a short
utterance can not be performed accurately, specially in the case of GMMs with a
high number of Gaussians. Therefore, parametric utterance adaptation methods
are usually applied to adapt a universal background model (UBM) to charac-
teristics of utterances in training and testing databases. In this paper, i-vector
framework for adapting UBM means and NFA framework for adapting UBM
weights are applied.

Universal Background Model and Adaptation: Consider a UBM with the
following likelihood function of data X = {x1, . . . ,xt, . . . ,xτ}.

p(xt|λ) =
C∑

c=1

bcp(xt|μc,Σc)

λ = {bc,μc,Σc}, c = 1, . . . C, (1)

where xt is the acoustic vector at time t, bc is the mixture weight for the cth

mixture component, p(xt|μc,Σc) is a Gaussian probability density function with
mean μc and covariance matrix Σc, and C is the total number of Gaussians in
the mixture. The parameters of the UBM –λ– are estimated on a large amount
of training data from smoking and non-smoking speakers.

i-vector Framework: One effective method for speaker age estimation involves
adapting UBM means to the speech characteristics of the utterance. Then the
adapted GMM means are extracted and concatenated to form Gaussain mean
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supervectors. This method have been shown to provide a good level of perfor-
mance [9]. Recent progress in this field, however, has found an alternate method
of modeling the class dependent GMM mean supervectors that provides supe-
rior recognition performance [3]. This technique referred to as total variability
modeling [10], assumes the GMM mean supervector, M, can be decomposed as:

M = u + Tv, (2)

where u is the mean supervector of the UBM, T spans a low-dimensional sub-
space (400 dimensions in this work) and v are the factors that best describe the
utterance-dependent mean offset Tv. The vector v is treated as a latent variable
with the standard normal prior and i-vector is its maximum-a-posteriori (MAP)
point estimate. The subspace matrix T is estimated via maximum likelihood
in a large training dataset. An efficient procedure for training T and for MAP
adaptation of i-vectors can be found in [15]. In the total variability modeling
approach, i-vectors are the low-dimensional representation of an audio recording
that can be used for classification and estimation purposes.

The NFA Framework: The NFA is a new framework for adaptation and
decomposition of GMM weights based on a constrained factor analysis [14]. This
new low-dimensional utterance representation approach was applied to speaker
and language/dialect recognition tasks successfully [13,14]. The basic assump-
tion of this method is that for a given utterance, the adapted GMM weight
supervector can be decomposed as:

w = b + Lr, (3)

where b is the UBM weight supervector (2048 dimensional vector in this paper).
L is a matrix of dimension C × ρ spanning a low-dimensional subspace. r is
a low-dimensional vector that best describes the utterance-dependent weight
offset Lr. In this framework, neither subspace matrix L nor subspace vector r
are constrained to be non-negative. However, unlike the i-vector framework, the
applied factor analysis for estimating the subspace matrix L and the subspace
vector r is constrained such that the adapted GMM weights are non-negative
and sum up to one. The procedure of calculating L and r involves a two-stage
algorithm similar to EM. In the first stage, L is assumed to be known, and we
try to update r. Similarly in the second stage, r is assumed to be known and
we try to update L. The subspace matrix L is estimated over a large training
dataset and is used to extract a subspace vector r for each utterance in train
and test datasets. The obtained subspace vectors representing the utterances in
train and test datasets are used to estimate the smoking habits of speakers in
this paper.
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2.3 Classifiers

Logistic Regression (LR): Logistic regression (LR) is a widely used classifi-
cation method [16], which assumes that

yi ∼ Bernoulli(f(θ
�
νi + θ0)) (4)

where � represents a transpose, yis are independent, θ is a vector with the same
dimension of ν, θ0 is a constant and f(·) is a logistic function and defined as:

f(·) =
1

1 + e−(·) (5)

The output of the logistic function, is a value between zero and one. In the
problem of smoker detection, we intend to model the probability of a smoker
speaker given his/her speech. That is, P (Smoker|νi) = f(θ

�
νi + θ0), where νi

is the feature vector corresponding to the ith utterance. Vector θ and constant
θ0 are the model parameters, which are found through the maximum likelihood
estimation (MLE).

Naive Bayesian Classifier (NBC): Bayesian classifiers are probabilistic clas-
sifiers working based on Bayes’ theorem and the maximum posteriori hypothesis.
They predict class membership probabilities, i.e., the probability that a given
test sample belongs to a particular class. The Naive Bayesian classifier (NBC) is
a special case of Bayesian classifiers, which assumes class conditional indepen-
dence to decrease the computational cost and training data requirement [17]. In
this paper, class distributions are assumed to be Gaussian.

Gaussian Scoring (GS): This classification approach, labeled as GS in this
paper, assumes that each category has a Gaussian distribution and full covari-
ance matrix is shared across all categories [18]. In this method, GS score of the
test vector νtest for the l th class is calculated as:

sl = ν�
testΨ

−1ν̄l − 1
2
ν̄�
l Ψ−1ν̄l , (6)

where ν̄l is the mean of the vectors for the l th class in the training dataset and
Ψ is the common covariance matrix shared across all categories.

Von-Mises-Fisher Scoring (VMF): This classification approach, labeled as
VMF in this paper, works based on simplified VMF distribution [19]. In this
method, VMF score of the test vector νtest for the l th class is calculated as:

sl = ν�
testν̄l , (7)
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2.4 Training and Testing

The proposed smoking habit detection approach is depicted in Fig. 1. During the
training phase, each utterance is mapped onto a high dimensional vector using
one of the mentioned utterance modeling approaches described in Sect. 2.2. The
obtained vectors of the training set are then used as features with their corre-
sponding smoking habit labels to train a classifier. During the testing phase, the
utterance modeling approaches are applied to extract high dimensional vectors
from an unseen test utterance and the smoking habit is recognized using the
trained classifier.

Fig. 1. Block-diagram of the proposed smoker detection approach in training and test-
ing phases

3 Experimental Setup

3.1 Database

The National Institute for Standard and Technology (NIST) have held annual or
biannual speaker recognition evaluations (SRE) for the past two decades. With
each SRE, a large corpus of telephone (and more recently microphone) conver-
sations are released along with an evaluation protocol. These conversations typi-
cally last 5 min and originate from a large number of participants for whom addi-
tional meta data is recorded including age, height, language and smoking habits.
The NIST databases were chosen for this work due to the large number of speak-
ers and because the total variability subspace requires a considerable amount of
development data for training. The development data set used to train the total
variability subspace and UBM includes more than 30,000 speech recordings and
is sourced from the NIST 2004–2006 SRE databases, LDC releases of Switch-
board 2 phase III and Switchboard Cellular (parts 1 and 2). For the purpose of
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smoker detection, telephone recordings from the common protocols of the recent
NIST 2008 and 2010 SRE databases are used. Speakers of NIST 2008 and 2010
SRE databases are divided into three disjoint parts such that 60%, 20% and 20%
of all speakers are used for training, development and testing, respectively. The
smoking habits histogram of male and female utterances (there might be multi-
ple utterances from each speaker) of training, development and testing databases
are depicted in Fig. 2. As depicted in the figure, the problem is dealing with an
unbalanced datasets which can make the problem of classification more difficult.
The effect of unbalancing in the database can be slightly alleviated by consid-
ering the distribution of each class of the training set into consideration during
the training phase.

Fig. 2. The smoking habit histograms of the male and female speakers in training,
development and test datasets

3.2 Performance Metric

Two performance metrics, namely minimum log-likelihood-ratio cost Cllr,min and
area under the receiver operating characteristic curve are considered. In this
section, the applied performance measure methods are described briefly.

Log-Likelihood Ratio Cost: Log-Likelihood Ratio Cost (Cllr,min) is a perfor-
mance measure for classifiers with soft, probabilistic decisions output in the form
of log-likelihood-ratios. This performance measure is an application-independent
since it is independent of the prior distribution of the classes [20]. Cllr,min

represents the minimum possible Cllr which can be achieved for an optimally
calibrated system [20]. In this study, in order to calculate Cllr,min, the FoCal
Multiclass Toolkit [21] is utilized.

Area Under the ROC Curve (AURC): Receiver operating characteristic
(ROC) curve is a widely used approach to measure the efficiency of classifiers. In
a ROC curve the true positive rate (sensitivity) is plotted versus the false positive
rate (1-specificity) for different operating points. Each point on the ROC curve
represents a sensitivity/specificity pair corresponding to a particular decision
threshold. A classifier with perfect discrimination has a ROC curve that passes
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through the upper left corner (100% sensitivity, 100% specificity). Therefore the
closer the ROC curve is to the upper left corner, the higher the overall accuracy
of the test [22]. Therefore, classifiers can be evaluated by comparing their area
under the ROC curves (AURCs). The AURC takes a value between 0 and 1. This
value for a perfect classifier is 1, and for a useless classifier, which its posterior
is equal to its prior, is 0.5.

4 Results and Discussion

This section presents the results of the proposed smoking habit detection app-
roach. The acoustic feature consists of 20 Mel-frequency cepstrum coefficients
(MFCCs) [23] including energy appended with their first and second order deriv-
atives, forming a 60 dimensional acoustic feature vector. This type of feature is
very common in state-of-the-art i-vector based speaker and language recogni-
tion systems [24]. To have more reliable features, Wiener filtering, speech activ-
ity detection [25] and feature warping [26] have been considered in front-end
processing. The obtained Cllr,min and AURC of applying different classifiers over
the i-vector based and the NFA based classifiers are reported in Table 1.

Table 1. The Cllr,min and AURC of applying different classifiers over the i-vector and
NFA frameworks

Utterance modeling Cllr,min AURC

LR VMF GS NN NBC LR VMF GS NN NBC

i-vector 0.86 0.90 0.98 0.90 0.93 0.74 0.51 0.56 0.70 0.66

NFA-vector 0.90 0.91 0.97 0.93 0.98 0.68 0.65 0.59 0.66 0.56

We can observe that LR yields more accurate results compared to other
applied classifiers. Thus, this classifier is used in the rest of experiments in this
paper. It is also shown that i-vector framework, which works based on Gaussian
means, is more accurate than NFA framework working based on Gaussian
weights. Different studies show that GMM weights, which entail a lower dimen-
sion compared to Gaussian mean supervectors, carry less, yet complimentary,
information to GMM means [5,27]. For example, Zang et al. applied GMM weight
adaptation in conjunction with mean adaptation for a large vocabulary speech
recognition system to improve the word error rate [27]. In [5], a feature-level
fusion of i-vectors, GMM mean supervectors, and GMM weight supervectors is
applied to improve the accuracy of accent recognition. To enhance the smoking
habit detection accuracy we apply a score-level fusion of the i-vector and the
NFA classifiers. The fusion is performed by training a logistic regression on the
outputs of the classifiers using the development data. The Cllr,min and AURC
of obtained results after fusion are 0.845 and 0.754, respectively. The relative
improvements of Cllr,min obtained by the proposed fusion scheme compared to
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Fig. 3. The ROC curve of the proposed method for female and male speakers

the i-vector and the NFA frameworks are 1.8% and 6.5%, respectively. The rel-
ative improvements of AURC after fusion compared to the i-vector-based and
the NFA-based systems are 1.9% and 11%, respectively. The ROC curves of the
proposed fusion for male and female speakers are illustrated in Fig. 3.

5 Conclusions

In this paper, we proposed a new approach for automatic smoking habit detection
from telephone speech signals. In this method, utterances were modeled using
the i-vector and the NFA frameworks, which are based on the factor analysis on
GMM means and weights, respectively. Then, several classifier were employed to
discriminate smokers and non-smokers. To improve the performance, the score-
level fusion of the i-vector-based and the NFA-based systems was considered. The
proposed method was evaluated on telephone speech signals of NIST 2008 and
2010 SRE databases. Experimental results over 1194 utterances demonstrated
the effectiveness of the proposed approach in automatic smoker detection.
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Abstract. Multi-modal biometric verification systems are in active
development and show impressive performance nowadays. However, such
systems need additional protection from spoofing attacks. In our paper
we present full pipeline of anti-spoofing method (based on our previous
work) for bimodal audiovisual verification system. This method allows
to evaluate parameters of quality for a sequence of face images during a
verification process. Based on this parameters it’s decided whether the
data is suitable for processing by the standard method (fiducial points
based audiovisual liveness detection, FALD). If the quality of data is
not sufficient, then our system switches to a new algorithm (svm-based
audiovisual liveness detection, SALD), which provides less protection
quality, but is able to operate when FALD is unsuitable. To improve
the quality of the FALD algorithm we have collected the special dataset.
This dataset allows to get better reliability of the algorithm for search-
ing of fiducial points on the user’s face image. Tests show that developed
system can significantly improve the quality of anti-spoofing protection
versus our previous work.

Keywords: Bimodal · Liveness detection · Anti-Spoofing · Voice fea-
tures · Facial features

1 Introduction

In context of increasing advance of biometric security systems the importance of
their spoofing attacks reflection is very high. In this paper we are continuing the
work from our previous work [1]. Here two biometric modalities are considered:
face and voice. Such systems are susceptible to spoofing attacks that involve user
photo or video. There are a large number of works devoted to the detection of
such spoofing attacks [2]. It uses a variety of methods: frequency and texture
based [3–6], variable focusing based [7,8], movement of the eyes based [9], optical
flow based [10–12], blinking based [13], 3D face shape based [14,15], binary clas-
sification based [16,17], scenic clues based [18,19], lip movement based [20,21],
context based [22].
c© Springer International Publishing AG 2017
A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 211–220, 2017.
DOI: 10.1007/978-3-319-66429-3 20
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Development of voice verification systems vulnerability to spoofing attacks
has greatly increased recently. A lot of works [23–26] examine effects of voice
synthesis and voice conversion to speaker recognition performance as well as
propose countermeasures to these attacks [27–29].

There are a few works devoted to the bimodal liveness detection. In paper [20]
authors determine lip region and mouth fiducial points via color segmentation.
MFCC features are extracted from the speech signal. The resulting audiovisual
features are classified using GMM. Method requires model parameters optimiza-
tion for each individual user.

Research of [30] present algorithm that finds the degree of synchronization
between the audio and image recordings of a human speaker. However anti-
spoofing is out of scope of this paper and authors were not provided tests of
described algorithm in sense of ability to determine face spoofing attacks.

In [31] authors combine mouth fiducial points with PCA eigenlips features.
Authors of [32] describe the bimodal system for user verification. The similar
approach is described in [33].

Here we develop a new anti-spoofing system based on markup of voice signal
and lips movements described in our previous work [1]. The main difference from
previous work is that we automatically detect and handle cases when FALD
algorithm can’t provide good results. We create new SALD algorithm, which
provides less protection quality, but is able to operate when FALD is unsuitable.

The remainder of this paper is organized as follows. Section 2 shortly
describes FALD algorithm. Overall anti-spoofing system is described in Sect. 3.
Finally, our results are presented in Sect. 4.

2 Audio-Visual Liveness Detection

In our previous work [1] a bimodal liveness detector based on audio-visual syn-
chronization estimation was proposed. For this task we considered passphrases
containing 5 English digits without repetition, that are generated dynamically at
the time of user verification. This section provides a brief overview of proposed
liveness detector algorithm as well as its main drawbacks.

2.1 Algorithm Overview

Audio-visual synchronization estimation algorithm consists of three steps:

– Audio segmentation
– Visual features extraction
– Visual features classification

A workflow of proposed algorithm is presented on Fig. 1.
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Fig. 1. Algorithm workflow

Audio Segmentation. The audio segmentation task consists of automatic
determination of time position of pronounced phrase words. We used Hidden
Markov Models (HMM) to solve this task. Each word of the target phrase was
represented as a sequence of hidden states. Each state had 0.04 sec. average
length and was defined by single diagonal Gaussian. The 12 first MFCC without
energy were used for signal parametrization. Also we used two additional hidden
states, “pause” and “mean speech”, to represent audio segments which are not a
part of the target phrase. The Viterbi algorithm was used to decode and define
words hidden states time positions.

Visual Features. For visual modeling of words it is useful to parameterize
the lips shape. A method based on Constrained Local Model (CLM) is used for
anthropometric face points detection (landmark detection). CLM mainly consists
of three components: points distribution model (PDM), Patch Experts (PE) and
algorithm for PDM parameters fitting. PDM describes non-rigid shape variations
and global rigid transformation. After parameters of PDM are estimated it’s
possible to compute location x = [xi, yi] of each facial landmark:

x = sR(m + Φq) + t,

where s, R and t terms are rigid parameters responsible for global shape scaling,
rotation and translation accordingly and a set of non-rigid parameters q which
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are responsible for deformation of mean-shape (points m). For details about
CLM implementation please refer to [34].

Using face landmarks positions it is easy to compute distance between corners
of the mouth and distance between the upper and lower lip. Given a sequence of
video frames, distances defined above are computed for each frame and then lin-
ear interpolated for each words states time position. Thus each word of utterance
is represented by fixed-length vector of floating point values of these distances
corresponding to word states. After mean and variance normalization such vector
are used as visual features for further classification.

Classification. Given visual features of utterance, it is necessary to classify
them to one of two classes: target (synchrony) or impostor (asynchrony). For
this purposes a neural network was used. Such neural network classifier distin-
guishes visual word for a specific digit from the rest. The result score obtained
as weighted sum of classificator outputs for each utterance word.

2.2 Algorithm Drawbacks

After the algorithm was implemented and used in real-world application it was
shown that proposed system has one main drawback. Classification performance
depends on visual features quality which in turn depends on correctness of land-
marks detection. For most cases CLM works well, but for some persons the false
reject rate (FRR) can reach 80%. This issue is caused by differences in train and
real-world usage conditions. Particularly, next conditions are different:

– Skin color. CLM Patch Experts was trained mostly on white-skinned persons
and it leads to mismatch on dark-skinned users.

– The presence of facial hair. Because the CLM was trained mostly on clean-
shaven persons, the presence of facial hair leads to dramatical performance
reduction. In this case mouth landmarks are shifted to mustache.

Fig. 2. CLM drawbacks examples
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– Camera distance. In our application we used frontal camera of mobile
device to record video. It leads to the effect of “fish eye” and correspond-
ing face shape deformation.

The most illustrative cases of CLM drawbacks are presented on Fig. 2.
In these cases it is necessary to use an alternative algorithm, SALD.

3 System Description

3.1 SVM-based Visual Liveness Detection

In case when FALD can’t work, it is necessary to use another method. We
try to estimate lips movements by alternative algorithm when CLM fails to
localize fiducial points. As can be seen from the title, SALD method is based on
SVM classifier. This classifier estimates openness of the mouth. HOG descriptors
(Fig. 3) are used as input features for SVM classifier.

Fig. 3. HOG features for mouth image

First, it is required to estimate right position of the mouth. This step
is needed because sometimes CLM strongly fails at fiducial points detection
(Fig. 4).

CLM points are used as mouth initial position. Then we select the most
probable position of the mouth near the initial one using Viola-Jones cascade
mouth detector. This technique allows to reduce search area for cascade detector
and improve detection speed.

Next step is to train SVM classifier for binary classification problem: whether
the mouth closed or not. This classifier allows us to determine the degree of
openness of the mouth. Then openness is passed to neural network classifiers
like in FALD algorithm.

This workaround has significantly higher error rate than FALD (section 4),
but it provides better result than FALD on complicated sessions like on Fig. 4.



216 E. Luckyanets et al.

Fig. 4. Bad fiducial points localization and mouth detector result

3.2 CLM Improving

To minimize mismatch between training and real-world conditions (see Sect. 2.2)
we have collected special training dataset. This dataset consists of

– 1450 facial photos from frontal camera of mobile device;
– 750 internet images which contains facial photos of dark-skined and/or

bearded persons.

To adapt CLM model to the required properties we have performed manual
markup of the collected dataset. Also we have prepared additional test dataset
composed of 400 facial photos of dark-skined and bearded persons from frontal
camera of mobile device. Previous CLM model provides gross error at mouth
region on more than 30% of mentioned test dataset. New CLM trained on our
dataset reduces number of such gross errors more than twice. CLM training
process includes Patch Experts parameters update as well as PDM mean-shape
re-estimation. Also we adapt sigmas of PDM model for better flexibility at the
mouth area. These steps provides better accuracy of the facial landmarks detec-
tion on the target conditions.

3.3 Overall System Description

Complete liveness detection system consists of two parts: real-time part and post-
processing part. During real-time part algorithm acquires images from camera.
For each frame, several quality parameters of the face image are estimated:

– Face position (face must be in the center of image)
– Face orientation (face must have frontal pose)
– Face sharpness (image must be sharp enough)
– Landmarks likelihood in mouth area (CLM likelihoods are used to decide

which algorithm should be used)
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– Jerky movements (jerky face movements are not allowed)
– Grayscale density (image must be color)
– Openness of the mouth (estimated by CLM and SVM-based algorithms)

Based on these characteristics, we may reject the current session recording.

Result: Liveness score
for images in session do

landmarks ← detect(image) ; /* detect landmarks */
quality ← estimateQuality(landmarks, image) ; /* quality of the
face image and landmarks localization */
if quality is poor then

break, reject this session ;
CLMopenness(i) ← get(landmarks) ; /* obtained by CLM */
SVMopenness(i) ← get(landmarks, image) ; /* obtained by SVM
classifier */

end
if quality is enough for FALD algorithm then

livenessScore ← FALD(CLMopenness) ;
else

livenessScore ← SALD(SVMopenness) ;
end

Algorithm 1. Overall system schema

After the whole session is processed we need to make a decision which algo-
rithm should be used. This decision is based mainly on CLM likelihood values in
mouth area. If likelihood is low, then we are likely to misjudge the position of the
mouth, so SALD algorithm is used. Full system schema is shown at algorithm 1.

4 Results

In this section we present experimental results produced for GRID corpus dataset
[35]. This dataset consists of 34 speakers, 1000 sessions for each. However, one
speaker has no video sessions, so we did not use them. Digits from ‘zero’ to ‘nine’
were chosen from dataset to evaluate algorithm. Dataset was split into train and
test parts by speakers. In order to increase train dataset size we chose only one
speaker for testing at each time. So, we provide 33 train-test cycles with 32
speakers for training and 1 for testing. All results were averaged to obtain final
EER result.

In Table 1 EER results for different passphrase lengths obtained by concate-
nation of several speaker sessions are shown. It can be seen that EER decreases
with increased number of digits in passphrase.

In Table 2 distribution of session from GRID dataset over algorithms is
shown. It can be seen that 16% of sessions have insufficient quality for FALD
algorithm. Error of the SALD algorithm is approximately twice as high than
FALD error.
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Table 1. EER results for system on digits, %

Num. of digits 2 3 4 5

Res. from [1] 12.37 8.29 5.82 4.38

New system 10.24 6.69 4.31 3.51

Table 2. Dataset distribution via FALD and SALD algorithms

Algorithm Part of dataset 5 digits EER on this part, %

FALD 84% 3.02

SALD 16% 6.23

Our implementation of the algorithm allows to achieve necessary perfor-
mance and use proposed system on modern smartphones with hi-end chipsets in
real-time.

5 Conclusion

In this paper we have introduced the improved system for liveness detection.
Schema of the algorithm is robust for cases when CLM detector fails to locate
landmarks on the face properly. Error reduction on GRID dataset is shown.
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Abstract. Canadian English (CE) word stress, apart from sharing stress pat-
terns with either the American or the British norms, reveals nationally specific
rhythm-based features. The evidence was collected by working through the
English Pronouncing Dictionary (EPD) and the Canadian Oxford Dictionary
(COD). The next step was comparing frequencies of words with varying stress
patterns in three national written and spoken speech corpora: the British
National Corpus (BNC), the Corpus of Contemporary American English
(COCA) and the Corpus of Canadian English (CCE). The words under analysis
displayed nearly identical frequencies in the three sources; 89 most frequent
polysyllabic words were selected for online express-survey. Canadian subjects
(30) representing the diversity of CE linguistic identities (anglophones, fran-
cophones, allophones) which affected their decisions on word stress locations
demonstrated their preferences for either the Canadian, the British or the
American stress patterns, accordingly. The viability of the Canadian stress
patterns was supported by the data from two more Canadian natural speech
corpora: International Dialects of English Archive (IDEA) and Voices of the
International Corpus of English (VOICE). Acoustic and perceptual analyses
based on production and perception processing performed by native (anglo-
phone) CE speakers demonstrated the significance of secondary stress in CE
stress patterns.

Keywords: Canadian English � Word stress � Speech corpora � National
identity-Multilingual community

1 Introduction

Canadian English (CE), according to contemporary linguistic sources, remains “one of
the least empirically documented major varieties of English. Frequently depicted as a
composite of British and American English speech patterns owing to the formative
influence of these varieties on its development, it is now viewed as an autonomous
national variety engaged in its own trajectory of evolution” [24].

The pronunciation base of CE is described as showing convergence on the
American norms, while the British component is more clearly manifested in vocabulary
and spelling practices [6, 7, 29]. However, the growth of a distinct Canadian identity in
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pronunciation can be evidenced by at least two uniquely CE features in vowels:
Canadian Raising, i.e. the pronunciation of /ai/ and /aw/ with a raised central onset
before voiceless consonants in bite, out, and also Canadian Vowel Shift which was
triggered by cot/caught merging [3].

In the current study we will show another CE feature in pronunciation which,
although it is not unique in its origin, might be a diagnostic feature of CE identity due to
its distribution and relative frequency. The feature is concerned with the phenomenon of
word stress, an area insufficiently explored in a CE distinctive aspect, to say the least of it,
in comparison with what has been found about stress patterning in many world lan-
guages. The English language stress is classified as quantity-sensitive, edge-sensitive,
bounded, with a tendency for a trochaic rhythm [18, 20, 21]. Most of the rules apply to
nouns only, in which case the stress is termed lexical stress [8, 11, 12]. The differences
between stress patterns in British and American varieties of English based on pronun-
ciation dictionaries cover around 1.7% of the total amount of words, or 2.4% of the
polysyllabic words registered in the 18th ed. of the English Pronouncing Dictionary
(EPD) by D. Jones (around 80 000 words) [2, 5]. Word stress appears to be the least
variable part of English phonology [3, 5, 23]. Stress convergence in contact languages is
considered as a possibility for CE and First Nations languages of Canada [28].

Starting from the prevalent assumption about the conflicting norms of American
impact and the British legacy in CE pronunciation, we will first have a look at
American/British differences in word stress, and then see if they are reflected in CE
norm and usage. Our hypothesis is that CE word stress, apart from sharing stress
patterns common with either the American or the British norm, may reveal nationally
specific features of a rhythmic nature.

The study of phonetic variation in CE ought to consider the CE speakers’ attitudes
to other varieties of English, American and British ones, in particular. Charles Boberg
reported on the opinion survey among students “all around Canada”, in which 80
percent of the respondents chose to emphasize the distinctness rather than the similarity
of CE and American English; British English came on top as ‘more correct’ and
“nice-sounding” [34, 35]. The data suggest that a sense of identity is quite acute there,
with American influence tempered in reality by attitudinal obstacles.

Another prevalent (and controversial) assumption is concerned with linguistic
homogeneity of middle class urban population in Canada. Here we have to introduce
the socio-demographic dimension which presents Canada as a multicultural country,
with two official languages and diversity of others promoted by language policy [19,
25]. The population of Canada is divided into three large groups by reported mother
tongues: English-speaking (58%), French-speaking (22%), other languages (20%),
including First Nations languages. The most widely-spread immigrant languages are
those of the Romance group (Spanish, Portuguese, Italian), of the Indo-Iranian group
(Punjabi, Hindi), and dialects of the Chinese language (Cantonese, Mandarin). The
diversity of languages that coexist on the territory of Canada form a unique linguistic
situation which affects the CE variety of the language. The heterogeneous character of
the CE linguistic landscape is obvious.

The goal of the current multidimensional study is to explore CE distinctness in
stress patterns occurrence based on the norms codified in the pronunciation dic-
tionaries; on the frequency of words with varying stress patterns based on national
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corpora; on the cognitive representations in the minds of CE speakers with diverse
linguistic backgrounds based on express survey; and on the actual stress patterns usage
based on national sound corpora. The phonetic reality of the extracted stress patterns is
further tested by perceptual and acoustic analyses.

2 Methodology

Corpora-based analysis proceeded in a number of steps:
Comparison of stress patterns norms codified in pronunciation dictionaries: EPD

[23], COD [1].
Comparison of frequencies of the words with varying stress patterns based on BNC

[4], COCA [10] and CCE [9] corpora; selection of a body of most frequent words for
further analysis.

Express-survey (online questionnaire) of 30 Canadian subjects with diverse lin-
guistic backgrounds and complex national identities: Anglophone (English is the first
language), Francophone (balanced bilingual, self-reported as mother tongue is
French/English), Allophone (speakers of other languages, English is the second lan-
guage; the term is borrowed from [27]). The differences in linguistic background
affected their decisions on stress locations in the 89 selected most frequent polysyllabic
English words. The online survey was created and shared via Google Forms; it
included an instruction for participants, a personal-data form (age, country of the
origin, mother tongue, other languages the participant can speak), and the list of words
divided into syllables. The participants (random choice, volunteers) were instructed to
mark the location of primary and secondary (if any) stresses.

Auditory (perceptual) analysis. The sound corpora of CE authentic recorded speech
were investigated with the purpose of testing the viability of previously established CE
stress patterns. In other words, we wanted to see if the non-primary stresses were
present in actual speech, in the speech signal, not only in the minds of the speakers. The
original set of 89 words turned into a short list of 35 words (64 tokens) found in the
corpora. The narrow corpus of 64 tokens was composed of 39 tokens (25 words) from
the prepared public speeches in VOICE [30] and 25 tokens (10 words) from the
unprepared speech (interviews) in IDEA [22]. 22 CE speakers (12 men and 10 women)
were found to use the stress patterns with secondary stresses.

Another set of participants (10 Anglophone, all native speakers of CE with no
special training) volunteered to be labelers of 64 tokens cut out from the Canadian
natural speech sound corpora, VOICE and IDEA, sampling prepared and unprepared
talks, spoken by 22 CE speakers. The instruction to labelers included a few examples
for practising stress marking as primary or secondary. The list of words was arranged in
the order the words appeared in the spoken material to avoid marking similar words by
analogy. The list of isolated words was followed by the list of the same words in the
context (sentences). Thus each token was first presented and annotated in isolation and
then in the context of the sentence. The time interval between the words for taking a
decision on stress placement was 3 s. The primary and the secondary (if any) stresses
were annotated by hand, the lists of words and their contexts were scanned and sent to
the researchers by email.
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Acoustic analysis of the narrow CE sound corpus which consisted of the 64
samples annotated by native speakers of CE was aimed at looking at the prosodic
(pitch, duration, intensity) nature of secondary stresses, as distinct from primary
stresses. In search of nationally-specific prosodic cues to syllable prominence the
following measurements were taken for each syllable: F0max, F0min in fundamental
frequency, Intmax, Intmin in intensity, and Tsyll in duration. Acoustic measurements
were computed by PRAAT (Boersma and Weenik, v.6.0.14). Dispersion was statisti-
cally tested by one-way ANOVA.

3 Results

3.1 Stress Patterns Norms Codified in Pronunciation Dictionaries

Comparison of pronunciations of polysyllabic words, namely their stress patterns, in
British and American variants according to the EPD, 18th ed. [23] reflected in previous
research [5] yielded a list of 1390 words. Checking the data on Br/Am word stress
differences, item by item, in the Canadian Oxford Dictionary (COD) provided evidence
for the variability of Canadian stress patterns. The initial list of 1390 polysyllabic
words can be grouped according to COD as follows:

1. fall together with American stress patterns 22.8%
2. fall together with British stress pattern 20.1%
3. are different from both 13.7%
4. are not transcribed in COD 20.7%
5. are not included in COD 22.7%

The data testifies to a slight dominance of American stress patterns (22.8%) over
the British ones (20.1%), as well as the presence of specifically Canadian stress patterns
(13.7%) characterized by secondary stress occurrence. Regrettably, quite a few words
are not transcribed in COD for lack of space, as the editors explained (in personal
correspondence). Another group of words is not included into COD on account of their
low frequency, as previous research suggested (geographical names, proper names,
recent loan words) [5].

By looking closer at the nature of differences in the words which possess varying
stress patterns in the three national dictionaries we found that specific CE patterns
constitute one fourth (25.5%) of the total amount of words (750) for which COD
supplied transcription. The most salient features to characterize the CE word stress are:

(a) differences in primary stress location in relation to either the British (65.8%) or
the American variant (45.8%);

(b) differences in either the presence or location of secondary stress (73.7%) which is
the major CE differentiating feature.
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3.2 Frequency of Words with Varying Stress Patterns in National Speech
Corpora

In order to establish frequencies of words with varying stress patterns in the three
national corpora (BNC, COCA, CCE) and select the most frequent ones, the original
body of selected 1390 items were checked for their frequency.

Given the different number of words in the three sources, the frequencies were
calculated per 1 million words. The basic results consist in the following:
(1) Stress-different words are less frequent than words with common stress patterns.
(2) The frequencies of stress-different words are nearly identical in the three national
corpora. (3) The list of selected polysyllabic words amounts to 89 most frequent, at 50
tokens per 1 million, in the three national corpora. The selected set was grouped
according to the number of syllables: two-syllable words (58.4%), three-syllable words
(27%), four-syllable words (4.5%), five-syllable words (6.8%), six-syllable words
(2.2%), seven-syllable words (1.1%).

3.3 Express-Survey Data

This stage of the analysis involved an express-survey (online questionnaire created and
shared via Google Forms) of 30 Canadian subjects’ preferences for the location of
stress, both primary and secondary, in the 89 most frequent polysyllabic English words.
According to the self-reported personal data the participants (30) were grouped as
follows:

1. Anglophones (16 participants, English is the first language).
2. Francophones (5 participants, balanced bilinguals, mother tongue French/English).
3. Allophones (9 participants, speakers of other languages, English is the second

language).

The results of the express-survey demonstrate the choice of stress patterns
depending on the linguistic background of the speakers. They reveal stress patterns
associated with certain words in the mental representations of CE speakers’ lexicon.
The diversity of linguistic experience and education norms affected the most frequent
stress pattern found in two-syllable, three-syllable, four-syllable and five-syllable
words. We will comment on the patterns which scored highest for a particular group of
population. For the Anglophone group the typical CE patterns with secondary stresses
are most common in the first three types of word structure (Figs. 1, 2 and 3).

The most amazing pattern on the Anglophone preferences list is the stress pattern in
a two-syllable word with a primary stress on the first syllable and a secondary stress on
the second syllable: ballet, detail, fragment. The frequency of this pattern (65.4%) is
impressive (Fig. 1, Pattern 3). The stress pattern in a three-syllable word also contains a
post-tonic (placed after the primary stress) secondary stress, and it is close to a half of
the cases (45.8%): contractor, gasoline, partisan (Fig. 2, Pattern 3). The pre-tonic
(preceding the primary stress) secondary stress in a four-syllable word, with a lower
percentage (25%), still follows the CE way of adding a secondary stress alternating
with the primary one: electronic (Fig. 3, Pattern 4).
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Fig. 2. Three-syllable accentual patterns

Fig. 3. Four-syllable accentual patterns
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Canadian bilingual Francophones demonstrate a different tendency: they tend to
choose only a single primary stress for the initial syllable in two- and three-syllable
words: address, dictate; Amsterdam, composite (Fig. 1, Pattern 1; Fig. 2, Pattern 1),
which corresponds with the typical British variants. They also tend to ignore secondary
stresses in long four-syllable words: predecessor (Fig. 3, Pattern 3) and five-syllable
words: disciplinary (Fig. 4, Patterns 1, 2, 3, 5), which will be against the rules of
English stress placement in any national variant.

The responses of the Allophone group participants do not coincide with any of the
two main groups of Canadian speakers. The location of the primary stress on the
second syllable in two-syllable and three-syllable words corresponds with the Amer-
ican variant of English stress placement: debut, dictate, garage; adulthood (Fig. 1,
Patterns 1, 2; Fig. 2, Patterns 1, 2). The four-syllable pattern is close to the Franco-
phone group variant: mathematics (Fig. 3, Pattern 3), while the five-syllable cases are
equally distributed: laboratory (Fig. 4). The overall impression is definitely in favour
of the American stress patterns.

By way of summing up the results at this stage we may conclude that the most
common stress pattern of a polysyllabic word with a secondary stress, first established
as a CE distinctive feature and as a national norm in COD, was also chosen by the
Anglophone majority of the respondents. The Francophone participants marked the
stresses according to the British patterns, and the Allophones bore more resemblance to
the American patterns. Noteworthy is the fact that Francophone and Allophone
respondents avoid the CE identifying feature of secondary stress location. We will
discuss the possible reasons for their choices in the Conclusions and Discussion
section.

3.4 Auditory Analysis

The labelers, 10 CE speakers for whom English is L1, volunteered to annotate the 64
tokens of English words extracted from natural CE speech corpora, from both prepared
(VOICE) and unprepared (IDEA) speech samples. The samples were presented as a

Fig. 4. Five-syllable accentual patterns
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recording of the words first in isolation and then in context, with 3 s. intervals between
the words. The coincidence level of stress patterns for isolated words and the same
words presented in context was very high: 98%. The labelers’ agreement on the stress
pattern choice was 69%.

The results of the labelers’ marking gave support to the presence of secondary
stresses, both in the post-tonic and pre-tonic positions, with the former position
dominating. The total of 40.8% of CE tokens were marked as possessing a secondary
stress, a feature not found in other varieties of English in such proportions.

3.5 Acoustic Data: Prominence Patterns in F0, Intensity and Duration

Based on the CE labelers’ choice of stress patterns was the acoustic analysis of the 64
CE tokens representing 35 English words spoken by 21 CE speakers. The acoustic
analysis was aimed at testing the prosodic (pitch, intensity and duration) reality of the
stress prominence pattern with a secondary stress. Stress, as is well known, is a syn-
tagmatic phenomenon, based on contrast between the stressed syllable and the
unstressed ones [18, 20, 21]. In the current study we investigate prominence relations
between the primary stress and the secondary stress, as well as between the secondary
stress and the unstressed one.

The following measurements were taken for each syllable: F0max, F0 min in
fundamental frequency, Int max, Int min in intensity, and Tsyll in duration. Acoustic
measurements were computed by PRAAT (Boersma and Weenik, v.6.0.14). Dispersion
was statistically tested by one-way ANOVA.

By looking at F0 max parameter we find that in female speech the
primary/secondary contrast is non-significant (p = .530), while secondary/unstressed
distinction is significant (p = .027) (Fig. 5). In male speech neither distinction proved
to be significant. Intensity parameter did not supply any significant distinctions
either (Fig. 6).

Prosodic prominence data on duration was particularly informative in both gender
groups: in female speech secondary/unstressed distinction is significant at p = .015,
while in male speech both primary/unstressed (p = .001) and secondary/unstressed
distinctions (p = .029) are significant (Fig. 7).

Fig. 5. F0 max (male and female speakers)
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Thus it was found that secondary stress prominence was invariably supported by
duration which provides for the stress pattern with a secondary stress. In addition to
that women’s speech is marked by higher pitch (F0 max) to provide for greater
prominence of secondary stress in running speech. None of the speakers made sig-
nificant enough distinction between the primary and the secondary stresses (accents in
the flow of speech). Alternating stress patterns that bring out either the initial or the
second syllable into a primary position in a two-syllable word like detail, defence,
research suggest that these stress locations are competing in modern English, as EPD
data on American and British English showed [23]; CE is no exception.

4 Conclusions and Discussion

Although English word stress system is assumed to be less susceptible to change than
other parts of English phonology, the present corpora-based study has found enough
evidence to demonstrate its variance. Given the lack of data on specific CE word stress,
we felt there was a pressing need for well-documented research in the area.

Comparisons made across national pronunciation dictionaries suggest that there is a
unique combination of American, British and specific Canadian English features in the
codified CE stress norm; the latter constitute one fourth of the total amount of patterns.

Fig. 6. Intensity (male and female speakers)

Fig. 7. Duration (male and female speakers)
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Specifically, COD prescribes stress patterns which consist of a primary stress followed
by a secondary stress. This pattern, the study has revealed, stands high among the
preferences of the Anglophone citizens of Canada. French bilinguals, however, know
the British pattern to be the exact opposite to the French rule, and they select the most
common English pattern with word-initial stress, which happens to be the British
pattern. However, they cannot cope with longer words and tend to ignore the alter-
nating English rhythm pattern. Canadian citizens for whom English is the second
language follow the American patterns in more common word types. The diversity of
opinions expressed by CE citizens with their complex identities reflects the multilin-
gual situation in Canada.

To account for stress divergence we could make reference to cross-linguistic studies
of stress “deafness” in French, for instance, to prove that stress is encoded in lexical
representations by speakers of a variety of languages, and the perception of relevant
acoustic cues ought to start at the acquisition period. Previous research has shown that in
French stress does not carry word-differentiating lexical information: it predictably falls
on the word’s final vowel. Speakers of French do not need to process stress, at least not
in the same way speakers of Spanish do. Dupoux et al. found that French listeners are
“deaf” to stress. French listeners – as opposed to Spanish listeners – exhibit great
difficulties in discriminating non-words that differ only in the location of stress [15, 16].
Compared to French monolinguals, the Francophone bilinguals in the current study did
fairly well by showing awareness of the most common stress pattern in English.

“Deafness” to foreign prosodic contrasts is typical of speakers whose first language
relies on entirely different acoustic cues and rules of stress placement. Native-language
listening procedures are applied to foreign-language input. French listeners are known
to apply syllabic segmentation to English, while Japanese listeners apply moraic seg-
mentation to English, French and Spanish [8]. Native listeners of English, according to
laboratory research data, employ a ‘metrical segmentation strategy’ which exploits the
fact that around 90% of content words in connected English speech are either mono-
syllabic or bear lexical stress on their first syllable: listeners work on the assumption
that each stressed syllable marks the onset of a new word [12]. There is also evidence
that information from two syllables is more effective than information from one syl-
lable [8], the condition which was facilitating for the recognition of stress patterns in
the present study. Both perception and production of English stress patterns appear to
be affected by the first language habits. Bilinguals, however, are reported to demon-
strate monolingual nature of speech segmentation [14]. Balanced Francophone bilin-
gualism, as our results suggest, is still more complex in perception and output.

Anglophone majority was the source of more data on selected most frequent words
in the Canadian corpus which was found to be nearly identical with the British and the
American core of most frequent words. In Canadian sound corpora only 22 speakers
actually used the words we were after, yielding 64 tokens of 35 words in their prepared
and unprepared talks. 40% of the words were pronounced with the stress patterns that
included a secondary stress, as the untrained CE labelers annotated them. The specific
CE preference for the pattern was viable.

The results of the acoustic analysis, although preliminary at the present stage of the
research, may be considered symptomatic. The secondary stress was made acoustically
prominent from the unstressed ones due to at least one prosodic cue in naturally
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produced connected speech. The basic prosodic cue which enhanced the secondary
stress turned out to be duration, not pitch which had been ranked highest in most
American and British studies. Higher pitch values were observed in the female real-
izations only on account of their wider pitch range.

The distinction between the primary and the secondary (non-primary) stresses
proved to be non-significant, as the statistic analysis indicated.

Another specific feature consisted in the distribution of the pattern: not only
rhythm-based post-tonic position was secured for a secondary stress in polysyllabic
three-syllable and four-syllable words but two-syllable words were also marked by
Canadian speakers with that feature. In actual speech the two positions, the initial and
the final one in a two-syllable word, could be made more prominent, with the primary
and the secondary stresses being in trading relations.

Typical CE stress patterns with a secondary stress in polysyllabic words may not be
impeding speech intelligibility in the way previous laboratory experiments found for
the two-syllable stress misplacements [17], but they do possess a potential for CE
national identification.
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Abstract. Here, we introduce a classification method for distinguish-
ing between formal and informal dialogues using feature sets based on
prosodic data. One such feature set is the raw fundamental frequency val-
ues paired with speaker information (i.e. turn-taking). The other feature
set we examine is the prosodic labels extracted from the raw F0 values
via the ProsoTool algorithm, which is also complemented by turn-taking.
We evaluated the two feature sets by comparing the accuracy scores our
classification method got, which uses them to classify dialogue-excerpts
taken from the HuComTech corpus. With the ProsoTool features we
achieved an average accuracy score of 85.2%, which meant a relative
error rate reduction of 24% compared to the accuracy scores attained
using F0 features. Regardless of the feature set applied, however, our
method yields better accuracy scores than those got by human listeners,
who only managed to distinguish between formal and informal dialogue
to an accuracy level of 56.5%.

Keywords: Turn-taking · Intonation · HuComTech · ProsoTool · Deep
neural networks

1 Introduction

In the area of speech processing, spontaneous speech can be characterised in
various ways. Many previous studies focused on the correlations of formal, mea-
surable features and the underlying communicative or linguistic phenomena such
as speech acts [15], topic structure [16,21] and some paralinguistically relevant
properties like age, gender and expressed emotions of the speakers [17]. Beyond
the theoretical questions, the main practical challenge of these studies is how we
can make the content – which is readily accessible for humans – machine-readable
(detectable or predictable) based on physically measurable acoustic parameters.

The principle of our study is to characterise the situational context of
dialogues by making a binary decision about the origin of topic units using
c© Springer International Publishing AG 2017
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neural nets and two kinds of dataset, namely formal and informal conversations
taken from the HuComTech corpus [10]. Our assumption was that the different
sequences of turn-taking (including overlapping speech and silence) and – based
on the contextualizing function of prosody [7] – intonation movements described
with normalised, discrete categories can provide sufficient information for a fairly
successful classification of dialogue types. Following the approach of a previous
study [11], the preprocessed annotation labels of turn-taking and intonation were
used as training material instead of direct acoustic measurements, but for the
sake of comparison, an experiment was also performed with the raw F0 data.

2 Research Material

The HuComTech multimodal corpus was designed within the framework of the
HuComTech project [10] and used to analyse the underlying structure of human–
human communication [9]. The corpus contains 50 h of spontaneous speech in
Hungarian recorded from 111 native speakers between the ages of 19 and 30.
The speakers were asked to participate in a simulated job interview, and an
informal conversation, discussing such topics as their happiest/saddest memories,
friendship and jokes. Both scenarios were performed spontaneously and were
directed by the same agent. Although it was only a simulation, the speakers were
more polite and careful in their speech production during the job interview, than
during the subsequent informal conversation. Because of the agent’s directive
role and the resulting unmotivated topic shifts, the two scenarios are very similar
(making the classification more complicated), but based on the above-mentioned
differences in behaviour and conversation topics, we were able to divide them
into categorically different (formal and informal) subsets.

2.1 Annotation of Turn-Taking

In the HuComTech corpus, the speech of participants was transcribed manually
in two separate annotation tiers, then the transcriptions were automatically con-
verted to a simplified, acoustic representation of turn-taking that was divided
into four levels: isolated speech segments of the agent and the speaker, segments
of overlapping speech, and silences. As Fig. 1 shows, the verbal interaction can
be characterised by various patterns of consecutive events, using just these four
categories of segmentation. In the absence of the original, manually created tran-
scription, speaker diarisation algorithms are also available [8] to perform the task
by means of automatic methods.

Information concerning the average occurrence (per minute) and average
duration (in seconds) of various segments is displayed in Table 1. As can be
seen, utterances of the agent are more frequent in the informal conversations
than in the formal job interviews. This might be due to the fact that unlike
in the job interviews, where the role of the agent was mostly limited to pos-
ing the initial questions and providing feedback to the interviewee (speaker), in
the informal scenario the agent is more active and involved in the conversation.



Classification of Formal and Informal Dialogues 235

Fig. 1. Annotation of turn-taking. A sample taken from the HuComTech corpus

Table 1. Average occurrences (per minute) and durations (in seconds) of speech seg-
ments (agent, speaker, overlapping speech) and silences

Subset Speaker Agent Overlap Silence

Occurrence Formal 9.25 5.59 2.48 10.43

Informal 9.88 8.52 6.32 8.99

Duration Formal 4.77 s 3.02 s 0.53 s 0.77 s

Informal 3.09 s 2.55 s 0.76 s 0.67 s

In Table 1, we can see a more significant difference regarding the frequency of
overlapping speech. On average, overlapping speech is approximately 2.5 times
more frequent in the informal conversations than it is in the formal job inter-
views. Although a higher frequency of overlapping speech would be expected
with the increased activity of the agent, the increase in the frequency of overlap-
ping speech is much bigger than the increase in the frequency of agent utterances.
This means that the increased overlap in speech is probably a good indicator of
the difference in the speaker behaviour in the two scenarios.

2.2 Annotation of Intonation

The annotation of intonation was performed by a rule-based algorithm called
ProsoTool, which was implemented in the scripting language of the Praat speech
processing program [1]. The development was inspired by the work of Piet
Mertens [14] using similar objectives along with the psychoacoustic model of
tonal perception. The main principle of ProsoTool was to transform the series
of raw F0 values into smoothed, perceptually relevant, stylised trends of pitch
modulation which can be classified as discrete contours of the evolving intona-
tion structure. The script has a preprocessing module to isolate the voices of
every speaker using the acoustic representation of turn-taking. Based on the F0
distribution, the algorithm divides the individual vocal range of speakers into
five levels (see Fig. 2), which were treated as normalised categories to locate the
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Fig. 2. Calculating individual pitch ranges of the speaker based on the F0 distribution:
L2 < L1 < M < H1 < H2

relative position of the resulting intonation trends. In Fig. 3, the final output can
be seen with the segmented and labeled F0 plots using five possible categories of
intonation contour (rise, fall, ascending, descending and level), depending on the
amplitude and the duration of the modulation. Further details on the method

Fig. 3. Output for a Hungarian yes-no question: “Te is ott voltál? [Were you there, too?]”
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are described in [18]. The same algorithm is available at the official website1 of
the e-magyar project under the name of emPros (in accordance with the naming
guideline of the project).

3 Methodology

3.1 Representation of Data

Preparation and Conversion. As a first preprocessing step, the annotations
of conversations were divided into smaller units of dialogue topics. Some filtering
criteria were also applied, namely pieces without any topic (e.g. the very begin-
ning of conversations) or appreciable topic elaboration (when the total duration
is less than 30 s) were excluded from the analysis. The annotation of turn-taking
was converted to a sequential representation without any information on timing,
but keeping the original order and marking the duration of each segment. In the
case of ProsoTool’s output, it was supplemented with the sequence of intonation
trends describing the duration, the contour and the relative height of each trend
(e.g. agent, 0.34, rise, M, H2). Unvoiced speech segments were also included
to preserve the structure of turn-taking. In the third experiment, F0 values
were measured everywhere using the default settings of the Praat “To Pitch...”
function [1]. This resulted in sequences of 10-millisecond-long frames containing
speaker information and the measured fundamental frequency in Hertz.

Feature Extraction. The last step for converting our data into a format suit-
able for machine learning was feature extraction. Here, various different data
types had to be handled, such as categorical data (speaker information and the
F0 contour category), ordinal data (F0 level), and numerical data (the duration
for each segment and raw F0 measurements). Categorical data was handled by
1 of N dummy coding (N being the number of categories), where silence was
not considered as an independent category, but a lack of categorical informa-
tion. It meant that turn-taking for example was coded as three binary features,
corresponding to the three possible categories of speakers (speaker, agent, and
overlapping speech), while all three binary features having the value of zero
signified silence. The same method was used to encode the contour of the fun-
damental frequency (coding it as six binary features - corresponding to the five
contour-types, and unvoiced intervals), as well as the ordinal data (also coded
as six binary features). The only transformation applied on the numerical data
was a standardisation to a zero mean and unit variance.

Train/Development/Test Partitioning. To create separate sets to train our
models, to tune the corresponding hyper-parameters, and also to evaluate the
models trained, the speakers (and also the dialogue excerpts associated with the
speakers) were partitioned into a train, development and test set. This partitioning

1 http://e-magyar.hu/en/speechmodules/empros.

http://e-magyar.hu/en/speechmodules/empros
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was used in our auditory experiments as well, but this also meant that the poten-
tial size of the test set was limited by the workload we could realistically expect to
be taken on by the volunteers in our experiments. In the end, similar to our ear-
lier study on the HuComTech corpus [11], the partitioning was carried out with a
75/10/15 ratio. Thus from the 111 speakers, 17 were selected for the test set, 11
were selected for the development set, and the remaining 83 speakers were put into
the train set. Both the test set and the development set were separated from the full
set in such a way that they represented it as closely as possible. Meaning that from
our candidate sets, we selected those whose parameters most closely resembled the
full set. These parameters were the ratio of female/male speakers, the mean and
deviation of the speakers’ age, and the mean and deviation of formal and infor-
mal dialogue lengths. We also required that the number of formal and informal
dialogues be equal in both the development set and the test set. This requirement
helped to remove any unambiguity of the evaluation. And more importantly, the
relative frequencies of informal and formal dialogues (the former slightly outnum-
bering the latter) in the full set of suitable dialogue-candidates of the HuComTech
corpus did not necessarily reflect the real-life relative frequencies of such dialogues.
As a consequence of our requirements, thepartitioning resulted in a train set of 1058
dialogues, a development set of 136 dialogues, and a test set of 216 dialogues.

3.2 Machine Learning

Not only were there slightly more informal dialogues in the HuComTech corpus
among dialogues suitable for our experiments, but they were also approximately
twice as long on average as their formal counterparts. We did not expect that this
would be representative of formal and informal dialogues in general. Moreover,
we sought to ensure that the classification should work regardless of the length
of the dialogue, and regardless of whether the full dialogue was available for
the classifier or not. For this, we decided to use a method that could not make
use of the information of dialogue length. We applied a similar method to that
used by Gosztolya [4] in the classification of laughter. For each segment with
its context of a given size, a neural net estimated the probability of the given
segment having been derived from an informal/formal dialogue, after which the
classification was carried out based on the average of the resulting probability
values.

Probabilistic Sampling. The difference between the average length of formal
and informal dialogues also means that even though the number of formal and
informal dialogues is roughly the same, at the segmental level there is a significant
imbalance in the class distribution. This may cause a bias towards the more
common (informal) class, and result in a worse classification performance of the
rarer (formal) class [12]. One possible way of overcoming this problem is to omit
entire informal dialogues, or just use smaller pieces of certain informal dialogues.
This, however, would lead to the loss of important training data [2]. We might
also try adding extra samples from the more rare class, or with the lack of extra
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examples, simulate this by using the same sample n times. In the probabilistic
sampling method this can be achieved by first selecting a class at random, and
then drawing a random sample from the selected class [20]. The first step can be
viewed as sampling from a multinomial distribution, given that each class has a
probability P (ci) [6]. That is,

P (ci) = λ(1/N) + (1 − λ)Prior(ci) (1 ≤ i, j ≤ N ;λ ∈ [0, 1]), (1)

where N is the number of classes, and λ controls the uniformity of the distrib-
ution. Here, λ = 0 leads to the original distribution, while λ = 1 (a setting also
referred to as “uniform class sampling” [20]) leads to a uniform distribution. In
the second step, we take a random sample from the selected class.

Deep Rectifier Neural Nets. Here, probability estimates for segments are
provided by deep rectifier neural nets (DRNs). These are artificial neural nets
that contain more than one hidden layer with neurons using the rectifier acti-
vation function (rectifier(x) = max(0, x)) instead of the traditional sigmoid
function. As this architecture not only leads to more sparse neural nets, but
also alleviates the problem of vanishing gradients even with multiple layers, it
has gained popularity in recent years, not just in speech technology [5,13,19],
but elsewhere as well [3,6,11]. The neural nets applied here had three hidden
layers each containing 250 neurons, and an output layer containing two neurons,
with a softmax nonlinearity. The training of the neural net was performed using
the train set, while the development set was applied in the learn-rate scheduler,
using Unweighted Average Recall (UAR) for validation.

4 Results and Discussion

4.1 Experiments Using Speaker Information

In this study, one of our aims was to discover what classification accuracy could
be attained using raw F0 measurements, and using information derived from
these measurements with the ProsoTool algorithm. To make our feature sets
more useful, both F0 measurements and ProsoTool labels were supplemented
with turn-taking information (i.e. information on whether the current measure-
ments correspond to an utterance of the speaker, the agent, both, or neither – if
a measurement is taken during a period of silence). This raises the question of
just how useful this information is in itself for classification purposes. We exam-
ined this question in our first set of experiments. Here, for each context size from
0 to 10 we trained three independent neural nets for λ ∈ [0, 1]. Figure 4 shows
the average accuracy scores we got using the classifier with different neural nets.
For each context size, the accuracy score of the best performing λ setting is
shown. As can be seen in the figure, we achieved the best accuracy scores on the
development set, when using 4-4 neighbours to estimate the probability values
corresponding to a given segment. With this setting, using λ = 0.9, we obtained
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Fig. 4. Dialogue level accuracy scores got on the development set as a function of
neighbouring segments used (the average of three independently trained classifiers)

an accuracy score of 81.5% on the test set. This tells us that a reasonable clas-
sification performance can be achieved by just using turn-taking information as
features.

4.2 Experiments Using Intonation

The same set of experiments was repeated using the feature set derived directly
from the raw F0 data, as well as using the feature set derived from the output
of ProsoTool algorithm. Figure 5 shows some results got from these experiments
on the development set. As in the F0 feature set, one segment represents a much
smaller context (10 ms); hence when using this filter set, more neighbouring
segments were utilised in estimating the probability values of a segment derived
from an informal/formal dialogue. Figure 5 shows that we get the best results
using the raw F0 features, with a context of 400-400 neighbouring segments,
while in the case of ProsoTool features, 7-7 neighbouring segments were used to
obtain the best accuracy scores.

Table 2 shows the average accuracy scores got using the raw F0 and the
ProsoTool feature sets, along with the average accuracy scores obtained using
just the turn-taking information. As can be seen, utilising the F0 feature set
(containing both the turn-taking information and the raw F0 measurements)
not only failed to increase the accuracy scores compared to those obtained using
just the turn-taking information, but even led to a slightly lower performance.
This might seem counterintuitive, but the way the turn-taking information is
represented within the F0 feature set (speaker information is given for every
10 ms along with the fundamental frequency measurements), might be the rea-
son it proved to be less efficient for the classifier. We also see that using the
features from the ProsoTool algorithm did increase the performance of the clas-
sifier, leading to a relative error rate reduction of more than 24% compared to
the accuracy scores got using the raw F0 feature set, and a relative error rate
reduction of 20% compared to the classifier using just turn-taking information.
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Fig. 5. Dialogue level accuracy scores got on the development set as a function of
neighbouring segments used (the average of three independently trained classifiers)

Table 2. Accuracy scores attained on the development set and test set using different
feature sets (reported scores are the average of three independently trained classifiers)

Feature set λ No. of neighbouring Accuracy

segments used Development Test

Raw F0 1.0 400 82.6% 80.4%

Turn-taking 0.9 4 86.3% 81.5%

ProsoTool 1.0 7 86.0% 85.2%

To facilitate a comparison with the auditory experiments (see below), we
created a classification based on the majority vote of the classifiers using the
ProsoTool features. This resulted in an improved accuracy score of 85.6%.

4.3 Auditory Experiments

Along with our machine learning experiments, an auditory experiment was
devised to test the classification capability of human listeners based on the same
information that was given to our automatic classification method, namely into-
nation and turn-taking. Hence, in this experiment, the original audio record-
ings (taken from the test set) were regenerated and presented as stereo chan-
nels (agent and speaker) of sine waves with varying frequency to represent only
the intonation of communicative partners. The subjects had to listen to these
samples through a Web-based interface and decide whether the dialogue was
“formal” or “informal”. Participants also had the chance to mark a dialogue as
undecidable if they were unable to make a decision. The test set of 216 recordings
was divided into three parts and three decisions were made about each recording
by three different subjects. The final decision for each recording was made by a
majority vote, resulting in an accuracy score of 56, 5%. It should be mentioned
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here that the only training the human listeners received was an opportunity to
familiarise themselves with the Web-based interface. Of course their performance
could have been better if they had undergone a short training period where the
correct answer was revealed after their decision made. However, as the aim of
the experiment here was to determine their performance without any external
assistance, this was not done.

5 Conclusions and Future Work

Here, we presented an algorithm for the classification of formal and informal
dialogues based on intonation and turn-taking information. Despite the fact
that the performance of human listeners on this task was generally not much
better than what one would expect from a random decision, with our automatic
classification method we achieved good accuracy scores. Furthermore, our results
seem to confirm the utility of ProsoTool, as we achieved our best accuracy scores
using the features provided by this algorithm.

In the future we would like to extend the dataset with the annotation of
other prosodic features of speech rate and intensity using the upcoming, new
modules of ProsoTool. And as the HuComTech is a multimodally annotated
corpus, information from other modalities (such as facial expressions or deixis)
could also be incorporated into the dataset. Besides this, it would be a good
idea to examine more sophisticated methods for the aggregation of probability
values. Here, this aggregation was carried out by a simple averaging, but it
is not strictly necessary that every part of the dialogue should have the same
importance regarding the final decision. We also intend to investigate different
neural net architectures for this task, like Long-Short Term Memory (LSTM)
neural networks and other recurrent networks.

Acknowledgments. The research reported in the paper was conducted with the
support of the Hungarian Scientific Research Fund (OTKA) grant #K116938 and
#K116402.
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18. Szekrényes, I.: ProsoTool, a method for automatic annotation of fundamental fre-
quency. In: Proceedings of CogInfoCom, pp. 291–296 (2015)
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Abstract. The ability of the speaker’s voice model to reproduce detailed
parameterization of individual speech features is an important property
for its use in solving different biometric problems. In general case one of
the main reasons of performance degradation in voice biometric systems
is the voice variability that occurs when speaker’s state (emotional, phys-
iological, etc.) or channel conditions are changing. Therefore, accurate
modeling of the intra-speaker voice variability leads to a more accurate
voice model. This can be achieved by collecting multiple speech samples
of the same speaker recorded in diverse conditions to create so-called
multi-session model. We consider the case when speech data is repre-
sented by dialogues recorded in a single channel. This setup raises the
problem of grouping the segments of a target speaker from the set of dia-
logues. We propose a clustering algorithm to solve this problem, which
is based on the probabilistic linear discriminant analysis (PLDA). Our
experiments demonstrate effectiveness of the proposed approach com-
pared to solutions based on exhaustive search.

Keywords: Speaker recognition · Voice model · Clusterization

1 Introduction

Voice biometrics is an advanced biometric technology that is widely used in
different areas, such as forensics [1,2], fraud detection [3] and secure financial
transactions [4]. It can be also applied for structuring speech data by collecting
the speech segments or utterances of the same speakers. This task is called target
speaker clustering. It is important for speaker recognition on summed channel
speech data and multi-session enrollment.

The target speaker clustering task mainly occurs in the speaker recognition
field in cases of multi-session voice models implementation. It is also used in
database storage optimization for systematization and structuring speech data.
Different approaches of diarization and clustering are known to resolve this prob-
lem [5–7,16]. These approaches based on joint factor analysis (JFA) [8] demon-
strate high performance in speaker labeling of the speech data. In recent years
c© Springer International Publishing AG 2017
A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 244–252, 2017.
DOI: 10.1007/978-3-319-66429-3 23



Clustering Target Speaker on a Set of Telephone Dialogs 245

i -vector representation of the voice models has dominated in the speaker recog-
nition technology [9,10,17]. Probabilistic linear discriminant analysis (PLDA)
is a probabilistic extension of linear discriminant analysis (LDA) and is closely
related to JFA [10,11,18,19]. PLDA performed on the i -vectors yields state-of-
the-art speaker recognition results and provides a probabilistic interpretation.
Results obtained in [12] confirm the effectiveness of this approach for clustering
the target speaker involved in multiple summed channel enrolling conversations.
Authors of this study applied a probability perspective to specify log likelihood as
an objective function, which allows to define a combination of i -vectors belong-
ing to the target speaker. As shown in [12], the best results of clustering in terms
of the low error rate are obtained due to using the log likelihood objective func-
tions. The application of this approach leads to the best clustering results but
requires considerable computational costs. Since one correct combination needs
to be found among all possible combinations (in case of dialogs, 2R combinations,
R - number of conversations).

In this study we investigate the target speaker clustering problem under
conditions similar to those ones described in [12]. We consider the set of dialogue
conversations in the telephone channel as an input speech data. The speech
segments of the target speaker have to be found among non-target ones and
combined in the cluster. It is assumed that all non target speakers in the set of
conversations for multi-session enrollment are different. In this paper, we develop
the PLDA clustering approach presented in [12]. Instead of searching through all
combinations, we propose an iterative decision procedure that allows to define
the labels of the target speaker speech segments without the performance loss
and excessive computational costs.

The clustering algorithm proposed in this paper is generative and has the
following properties:

– It doesn’t use mutual comparisons between speech segments, that is why there
is no need in knowledge about the threshold parameters.

– The probabilistic model takes into account a priori information about the
structure of a given speech data, which allows to produce the decision much
easier.

The paper is organized as follows. In Sect. 2 we give a general information
about i -vector representation of the speech utterances and PLDA modeling. The
description of the problem formulation, a reference approach and the proposed
decision procedure for the target speaker clustering task are presented in Sect. 3.
Section 4 describes experimental setup and results. Finally, we give the conclu-
sion in Sect. 5.

2 Preliminary Information

In this section, a brief overview of the i -vector PLDA framework utilized in our
investigation is given.
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2.1 The I-vector Presentation

The i -vector is an effective representation of speech utterances which includes
voice biometric characteristics of a speaker and inter session variability. It is
supposed that a GMM supervector μ (stacked means of the Gaussian mixture
model), corresponding to an utterance is modeled as:

μ = μ̄ + Tω (1)

where ω is a random vector called as an i -vector that follows standard normal
distribution, T is a basis for the total variability space of a much lower dimension
(typically 400–600) than the supervector space, μ̄ is a Universal Background
Model (UBM) supervector.

2.2 PLDA Modeling

In recent years, the PLDA is successfully used in speaker recognition to specify
a generative model of the i -vector presentation. Accordingly, the PLDA it is
assumed that an i -vector can be modeled as:

x = m + Vy + ε (2)

where m is a mean of i -vectors, y denotes speaker dependent latent variable
with standard normal prior and residual noise ε is normally distributed with
a zero mean and precision Λ. The expectation-maximization (EM) algorithm
is used to estimate the parameters of the PLDA model (V, Λ) as presented in
[11]. The trained PLDA model on the development set can be used for speaker
recognition or speaker clustering. The use of marginal log likelihood given by the
PLDA model allows to obtain the decision of the clustering problem in terms of
maximum probability.

3 Target Speaker Clustering

3.1 Problem Formulation

In this study it is assumed that the collection of enrolling conversations for
target speakers has a certain structure. Each conversation from the set contains
speech of the target and non-target speaker. All non target speakers are different
between these conversations. To obtain speaker-dependent speech segments the
conversations are processed by the speaker diarization system. Then these seg-
ments are transformed into i -vectors which are used in the target speaker cluster-
ing procedure. For a collection of N enrolling conversations the corresponding D
dimensional i -vectors can be denoted by X = {xn,k ∈ R

D, n = 1..N, k = 1..2}.
Where k is the index that enumerates i -vectors xn,k belonging to the speech
segments on the n-th conversation. To resolve the problem it is required to find
the binary sequence z = {z1, z2, ...., zN} ∈ {0, 1}N which defines the speech
segments of the target speaker on the set of the enrolling conversations. If the
target speaker is found on the speech segment xn,1 then the binary index zn = 0
otherwise zn = 1.
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3.2 Reference Approach

We consider the reference approach presented in [12]. This approach is based on
the probabilistic perspective that uses the PLDA generative model and demon-
strates the best results in the target speaker clustering. The methods proposed in
[12] use two objective functions to find the binary sequence z that indexes speech
segments of the target speaker. The optimal solution ẑ is found by maximizing
an objective function with respect to all possible binary sequences:

ẑ = arg max
z

F (z,X) (3)

The first method based on the log likelihood takes into account only i -vectors
of the same speaker and can be calculated as presented in [10]. In this case, the
objective function has a following form:

Flike(z,X|M) =
∫ N∏

n=1

P (xn,zn |y)P (y)dy (4)

where M is a PLDA model, z is an N dimensional binary sequence, X is a set
of i -vectors.

The second method is related to the previous one but additionally considers
non-target speaker speech segments in the objective function. It allows to use
information about all speech segments belonging both the target and non-target
speakers. So Eq. (4) can be modified as follows:

Flike(z,X|M) = Flike +
∫ N∏

n=1

P (xn,z̄n |yn)P (yn)dyn (5)

where z̄ is an N dimensional binary sequence to choose i -vectors of the non-
target speakers from the input set X. It is clearly that z and z̄ binary sequences
satisfy the following condition zn ⊕ z̄n = 1, n = 1...N , ⊕ is an exclusive OR
operator. Conditional probabilities and prior distributions in Eqs. (4) and (5)
are defined according to the PLDA model as follows:

x|y ∼ N (x|m + Vy,Λ), y ∼ N (y|0, I) (6)

3.3 Proposed Scheme

In our investigation we propose the solution of the target speaker clustering
problem based on i -vector representation and PLDA modeling. Unlike [12] we
do not perform exhaustive search on all possible binary sequences. We propose
an iterative procedure that gives an approximate solution for the problem by
using the variational Bayes approach [13].

The experimental set consists of conversations which include speech segments
of two speakers. There are both target and non-target speakers in all conversa-
tions. Given a recording n, a binary index of the target speaker zn and two
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i -vectors xn,1 xn,2 of speech segments belonging to the speakers, the joint den-
sity using PLDA modeling can be written as:

P (X,y,y1...yn, z) =
N∏

n=1

[P (xn,1|yn)P (xn,2|y))]zn [P (xn,2|y)P (xn,1|yn))]1−zn

× P (yn)P (y)P (zn)
(7)

where the speaker dependent factors of the target and non-target speakers are
denoted by y and yn respectively. A prior distribution for zn is a Bernoulli
distribution that has a form z ∼ πz(1−π)1−z. We supposed π = 0.5, since prior
probabilities of the target speaker on two speech segments are equal to each
other. In order to reduce an excessive number of unknown variables and simplify
the calculations, the non-target speaker factors yn can be omitted from Eq. (7)
by using marginalization. Thus, we obtain a new form of the probabilistic model
that can be presented as follows:

Pn(X,y, z) =
N∏

n=1

[P (xn,1)P (xn,2|y))]zn [P (xn,1|y)P (xn,2))]1−zn

× P (y)P (zn)

(8)

where the marginal probability density function of x is obtained from the
Gaussian distribution x ∼ N (x|m,VVT + Λ−1). Graphical representation of
the probabilistic conditional dependencies for our clustering model before and
after marginalization is shown in Fig. 1.

Fig. 1. Probabilistic graphical models for our clustering model: (a) complete latent
variables presentation, (b) after marginalization on the local speaker factors
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It is computationally intractable to evaluate the latent variables y and zn
using the maximum likelihood condition. We used variational Bayes estimation
to estimate parameters of the posterior distributions of the latent variables y and
zn. It can be done on the set of observed variables xn,1 and xn,2 by maximizing a
lower bound [13] instead of the marginal likelihood. In a general case the marginal
likelihood P (X) and a lower bound L on visible X and latent ψ variables satisfy
inequality:

ln P (X) ≥ L = Eq(ψ)[lnP (X,ψ)/q(ψ)] (9)

where q(ψ) - approximating distribution defined on ψ. If q(ψ) exactly coincides
with posterior distribution p(ψ|X) then the inequality (9) becomes an equality
as shown in [13]. We need to find the approximating distribution q(y, z) that
satisfies condition arg maxq(y,z) L(q(y, z)). In our case, L is a lower bound that
can be expressed as:

L = Eq(y,z)

[
N∑

n=1

log P (xn,1,xn,2,y, zn)

]
− Eq(y,z)[q(y, z)] (10)

We assume a distribution for q(y, z) to be factorized over all hidden variables
q(y, z) = q(y)

∏N
n=1 q(zn). It allows to suppose that posterior and prior distribu-

tions have an identical form: q(y) = N (y|my,Λy) and q(zn) = θznn (1 − θn)1−zn .
The q(.) that maximize the low bound (10) are:

log q(y) = Eq(z)

[
N∑

n=1

log P (xn,1,xn,2,y, zn)

]
+ const

log q(z) = Eq(y)

[
N∑

n=1

log P (xn,1,xn,2,y, zn)

]
+ const

(11)

By taking into account x′
n,1(2) = xn,1(2)−m and Λy = NVTΛV+I, the update

equations we obtain using variational inference are provided as follows:

my = Λ−1
y VTΛ

N∑
n=1

([1 − θn]x′
n,1 + θnx′

n,2)

αn = log(P (xn,1)P (xn,2|y)) − log(P (xn,2)P (xn,1|y)), n = 1...N

〈zn〉 =
1

1 + exp(−αn)

(12)

Finally, elements of a z binary sequence can be sampled from the Bernoulli
distribution as zn ∼ θznn (1 − θn)1−zn , where θn = 〈zn〉.

4 Experimental Setup

4.1 System Configuration

In our experiments we used the clustering system based on a text indepen-
dent speaker recognition system that represents utterances as i -vectors in a
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low dimension space. To extract features from the speech signal we used 20 ms
analysis windows with a 10 ms shifting step by calculating 13 MFCC parame-
ters. Then we combined the parameters with their first and second derivatives
to form a 39-dimensional feature vector. Voice activity detection is performed by
using speech energy based on the algorithm as described in [14]. Finally, a gen-
der independent UBM of 2048 components was applied. The UBM was trained
on the NIST SRE-2004, 2005, 2006, Switchboard II and Switchboard Cellular
1, 2 databases. In this paper, we used a gender-independent 600-dimensional
i -vector space which was trained on the same data as the UBM. Modeling of
i -vectors distribution was performed by using PLDA. We trained the parameters
of the PLDA model by the maximum likelihood criteria. We used two gender-
dependent PLDA models and a gender-independent PLDA model that were
trained on the telephone speech data in English. The number of speakers for
training the gender-dependent PLDA models was 1616 and 2269 for male and
female, respectively. The dimension of the latent space was set to 500 in these
PLDA models.

4.2 Evaluation Database

We experimented with the speech database provided by the National Institute of
Standard and Technology (NIST). All evaluation speech data in our experiments
were from telephone conversations in English. To evaluate the performance of
our clustering system we conducted experiments using the data drawn from the
8conv training condition of the NIST SRE 2010. There are eight two-channel
telephone conversations involving the target speaker on their sides [15] in this
training condition. The total duration of the each conversation is approximately
five minutes. The number of the target speakers to be clustered is 115 and 152
for male and female, respectively.

4.3 Results

We investigated approaches for the target speaker clustering based on PLDA. In
this section, we compare performance of the proposed clustering procedure with
approaches using objective functions that are described in Sect. 3.2. To estimate
clustering performance we counted the false clustered speech segments of the
target speaker. The evaluation set contained 115 * 8 and 152 * 8 male and female
speech segments. Since we focused on the clustering problem, we considered two
channel speech data to avoid using the speaker diarization. The next focus of our
investigation is the mismatched environment conditions between the train and
test data. It occurs in realistic scenarios when we do not have a prior information
about the test conditions. In our experiments, we investigated the dependence
of the clustering performance on gender conditions of PLDA training and target
speaker clustering.

The results of our experiments are presented in Table 1. As can be seen from
the table, the proposed approach demonstrates similar performance for matched
training and testing conditions.
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Table 1. Counts of false clustered speech segments under different approaches

Gender condition Flike Flike Proposed

Male PLDA

Male 2 1 1

Female 208 6 132

Female PLDA

Male 71 0 12

Female 15 3 11

Mix PLDA

Male 5 1 2

Female 8 3 11

In the case of mismatched conditions the performance may degrade signifi-
cantly (especially male PLDA training and female clustering). It should be noted
that approach based on the Flike objective function demonstrates the best results
but requires more computations than the proposed procedure. It can be noted that
the gender independent PLDA model (mixPLDA) is the most preferable among
other ones when it is not known a priori knowledge about gender in the test.

It is interesting that applicability of our algorithm can be extended to poly-
logue conversations. In this case instead of the Bernoulli distribution it is nec-
essary to apply a multinomial distribution zn ∼ ∏N

n=1 θ
zn,k

n,k , where zn is a K
dimensional binary random variable in which a particular element is equal to 1
and all other elements are equal to 0, K is a number of speakers on the n-th
polylogue.

5 Conclusion

In this paper we present the target speaker clustering method based on PLDA.
We compare our clustering procedure with existing approaches which use two
kinds of the objective functions. The objective functions are based on likelihoods
that can be obtained from the PLDA model. Experimental results demonstrate
effectiveness of our approach in clustering performance and reducing computa-
tional cost.

Acknowledgements. This work was financially supported by the Ministry of
Education and Science of the Russian Federation, Contract 14.578.21.0126 (ID
RFMEFI57815X0126).
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Abstract. The paper deals with the phenomenon of perceptual-auditory
divergence in the evaluation of the foreign language communication partner’s
emotional-modal state. The problem of “human – human” interaction (vice versa
“man – machine”) is characterized by a very complex phenomenon associated
with the communication “native language – foreign language” taking into
account the idiosyncrasy of speech production and speech perception. The
idiosyncrasy can be determined from the positions of the individual mixing of
various types of below-specified information (e.g., biological, psychological,
social, cognitive, etc.). All these factors affect the process of recognizing the
communication partner’s emotional-modal state. Therefore, one can assume that
the idiosyncratic features of the perceiver (in this case, the listener) affect, in
turn, the evaluation of the emotional-modal state, primarily that of a foreign
language communication partner. In our pilot study special emphasis is laid on
this problem considered on the basis of Russian-German and German-Russian
matches. The obtained data suggest a new model of perceptual-auditory pro-
cessing of verbal stimuli including such components as perceptual-auditory
idiosyncrasy and auditory-perceptual cognitive entropy.

Keywords: Emotional-modal state � Divergence � Foreign language incentive �
Perceptual-auditory evaluation � Spoken language communication �
Iidiosyncrasy � Cognitive entropy

1 Introduction

In the communication process it is important not only to understand the communication
partner’s verbal content, but (to a greater degree) also to recognize their emotional-
modal state. An additional difficulty is found in searching a solution of a similar problem
in the case of communication with foreign language and foreign-culture partner. The
complexity of solving this problem is escalated in distant mediated communication (for
example, mobile communications, social-network communication on the Internet,
Voice over IP (VoIP), Skype, WhatsApp, Viber, Google Hangouts, etc.).
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In the course of the study a hypothesis was formulated that in the communication act
not only the principle of speech signal generation idiosyncrasy (stimulus) is imple-
mented, but also the principle of signal auditory perception (reaction) idiosyncrasy.

2 Theoretical Background of the Research

It is known that a common unified theory of emotions does not exist. In particular, P.V.
Simonov’s need-information theory is widespread [22: 320–328]. According to this
theory, the emergence of emotions is determined by certain needs and evaluation of the
possibility to satisfy and meet these needs, which are formally expressed as follows:

�E ¼ f �N Ir � Iað Þ½ �;

where E is the emotion intensity and its sign; N is needs degree; Ir – Ia is an evaluation
of the possibility to satisfy this need considering of the available experience; Ir is
information of the means objectively required to satisfy the need; Ia is information of
the means available to a person.

According to this theory, if there is an excess of information on the possibility to
satisfy the need, then a positive emotion emerges; if there is a lack of information, then
a negative emotion is produced. It is believed that the variety of emotions is determined
by the variety of needs. This view coincides with the concept of deprivation [4], which
is developing successfully nowadays and provides the possibility to “outreach” the
solution of problems found in studying the nature of destructive actions, aggression and
terror reflected on a significant scale in the information and communication media (e.g.,
in the social-network discourse) [21].

The classification is based on binary principle: every key set includes some sub-
sets (e.g. situational subsets). Division may be, for example, into primary and situa-
tional subsets. Primary subsets include unsatisfied needs correlated with search of the
target object. Situational emotions emerge as a result of evaluations made for steps of
behavior and encourage either action in the same direction or modification of the
behavior [24, 25]. Emotions are also divided by the nature of actions including
overcoming, protection, and attack [23]. Emotions can be the result of two or more
overlapping emotions.

To describe emotions W. Wundt [26] identified three features:

• Hedonic tone or emotion sign (positive–negative),
• Readiness for action (relaxation–tension),
• Activation level (tranquility–excitement).

H. Schlossberg developed Wundt’s theory and introduced a feature including the
opposition “acceptance-rejection” [5: 40].

In addition to the above approaches to the analysis of emotions worthy of mention
is the concept that takes into account the ratio of an emotion and an event. In this case,
anticipatory (before the event associated with the achievement/failure to reach the
target) and summative (after the event associated with the achievement/failure to reach
the target) emotions are distinguished. A significant factor is the orientation of
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emotions: to or away from oneself. The primary function of emotions is the body
mobilization for rapid reaction to the situation in most appropriate manner [3].

The above points of view relate primarily to interpretation of the concept of
“emotion”. As for the emotional-modal state, the linguistic literature considers three
aspects of modality: subjective, objective and secondary [8]. The subjective modality
includes evaluative attitude of the speaker to the degree of cognition of these objective
relations [6]: for example, doubt, certainty/uncertainty, presupposability. In other
words, the subjective modality is understood as the modality of credibility degree.

Thus, the subjective modality expresses the speaker’s attitude to the verbal and
non-verbal behavior of the percipient: emotional-expressive attitude, self-evaluation,
evaluation derived from features of the content, etc. (e.g., confidence, diffidence, belief,
presupposability, etc.).

As in the classification of emotions, all emotional-modal states (EMSs) are dis-
tributed in the following basic types: positive/negative; subjective/objective; primary/
secondary; single-factor (uniform)/multifactor (mixed); strong/weak.

In our opinion, for any EMS classification, first of all, an evaluative criterion is
common: evaluative; communicative-evaluative; situationally evaluative; socio-
evaluative; ethnocultural-evaluative one.

3 Auditory Idiosyncratic Classification Features

Speech features that characterize the speaker and their psychophysiological features
(idiosyncratic features) contain, as a rule, various types of information: verbal content
(information-communicative content of the message); paraverbal content (pronunciation
features of speech production “woven” into the prosodic and spectral-temporal substance
of sound matter of any utterance); non-verbal content (facial expressions, gestures,
proxemics, etc.); extraverbal content (gender, age, place of birth, places of long-term
residence, upbringing, education, social status, situation, hairstyle, clothes, etc.).

The following classification of idiosyncratic information contained in the speech
signal is proposed [1, 2, 7, 9, 10, 14, 15, 19]:

• Biological: anatomical, physiological, physical, psycho-emotional, psychomental,
gender, age, sexual-genetic.

• Psychological: mental characteristic of the person as a single integrated functional
system of behavior and activity regulation (consciousness, attention, memory).

• Sociobiological: sociobehavioral (signs indicating belonging to a certain group of
people (for example, ethnic, cultural, regional and social one)).

• Socio-humanitarian: evolutionary-genetic, ethnic, interethnic, cultural-historical,
general psychological, differential-psychological, psychogenetic.

• Multifactor: intellectual, verbal, cognitive, factor-analytical.

In describing the speaker’s “profile” by voice and speech (i.e., for example, indi-
vidual attributes in forensics), three types of norms are distinguished: universal, group
and idiosyncratic ones. The special role belongs to the voice information decoded at the
level of auditory perception as follows [13, 14, 16, 17]:

Cognitive Entropy in the Perceptual-Auditory Evaluation 255



• description that relates to the speaker’s profile and their place in the perceiver’s real
existence;

• associative correlation with the speaker’s name;
• speaker’s psychophysical, psychophysiological and psychopathological forms (

general constitution, face, gestures, manner of walking, etc.);
• speaker’s voice, manner of phonation, articulation, coarticulation with regard to

speech manner (“trophotropica” – “ergotropica”) determined by distinct (acoustic,
perceptual) features.

Speech features of the speaker are divided into controlled (external) and uncon-
trolled (internal) ones. Some experts mention potentially controlled features. The
degree of control depends on two factors:

• speaker’s ability to use auditory and proprioceptive feedback forms in the process
of articulation program implementation;

• speaker’s perceptual ability to use auditory forms of information to detect sound
differences [2, 7].

Both of the above factors are part of the “control skills” concept. Factors beyond
any control are conditioned by speaker’s organic-genetic features: the structure of the
speech apparatus including the length of the vocal tract, sizes of their tongue, soft
palate, throat, jaw and mouth cavity; form (configuration) of the laryngeal tract and
nasal cavity. This also may include so-called structural defects (e.g., presence of cleft in
the hard palate (“cleft palate”), missing teeth, etc.) [7].

Controlled factors are not related (“derived”) with organic-genetic constraints and
include changes in the voice dynamics and all potentially controllable muscle articu-
latory gestures that characterize the manipulation components of the voice quality.

Uncontrolled features are considered as permanent and at the same time
non-permanent organic basis for the speaker’s features based on their anatomy and
physiology and correlated with the invariant-norm of the physical state characteristic
for the speaker’s voice features.

Permanence and non-permanence of uncontrolled features is related to the differ-
entiation of long-term and short-term features (the principle of identifying short-term
uncontrolled features is speech production with sore throat, after running, fast ascent up
the stairs, etc.). The short-term features cannot include, for example, features of voice
break (puberty). Both controlled and uncontrolled features can be grouped on the basis
of intraspeaker and interspeaker similarities and differences [9, 14]. Information on the
speaker is hidden in the speech signal that relates to their anatomical features and
muscular voice samples stored at the neuronal level that correlate, for example, with the
speaker’s constitution.

In addition to these special features, the study of emotions and emotional-modal
states by voice and speech is especially complex, in particular, the problem of their
perceptual-auditory identification [12, 13, 16–19].
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4 Method, Experimental Results

In the preliminary research devoted to the study of emotions involving various groups
of subjects (actors, subjects in a state of hypnosis and subjects with manic-depressive
disorders (n = 540)), it was concluded that a fundamental distinction between “emo-
tion” and “emotional-modal state” is needed, which allows classification of peoples’
emotive behavior considering the following [14]:

• basic, so-called primal unconscious emotions (e.g., anger, rage and fear/fear as
unconscious or conscious reaction of neurons to stimuli of any kind, in particular, to
danger (with active and passive (stupor) forms)/horror, joy, admiration);

• unconscious and conscious reactions to stimuli forming complex social emotional
and cognitive systems correlated with the concept of “feeling” (e.g., love, hate,
happiness, etc.);

• complementary emotional-modal states, reflecting a subjective self-estimate of a
person, their communication partner, the current situation, reality, etc. (e.g., con-
fidence, diffidence, doubt, indifference, contentment, compassion, credulity,
depression, hopelessness, anxiety, dissatisfaction, satisfaction, disgust, contempt,
shame, resentment, malice, etc.) [17–21].

This concept provides a comprehensive description and analysis of the multifaceted
role that speech parameters play regarding basic (so-called primal) emotions, the latter,
social emotions (feelings) and concrete situated emotional-modal states [11].

The results of the longitudinal experiment conducted in Russia and Germany for
ten years with the different authentic materials (TV Talk-Shows of Russia and Ger-
many; volume of 227 h) and for three years with authentic Skype dialogues (volume of
120 h) provided for evaluation of emotionally charged Russian and German speech by
listeners native Russian and native German speakers without visual imagery (studies
with visual imageries have also been carried out) revealed that auditory perception of
the same emotional-modal stimuli is evaluated by representatives of the above-
mentioned cultural and verbal communities in different ways [15–17].

The data used in this paper derive from two sources. The first source of data comes
from the investigation on the basis of Russian Television Talk-Shows and the second
source of data was Russian Skype dialogues. 120 native listeners of Russian (60
females, 60 males) were selected from the student population of Moscow State Lin-
guistic University (Russia) and 120 native listeners of German (60 females, 60 males)
from University Halle-Wittenberg (Germany) were used for this experiment.

The discursive presentation of focusing on different emotional-modal states
regarding speech communication in Russian dialogues and polylogues on the bases of
Talk-Shows and later Skype communication gave possibility to define peculiarities of
perceptual-auditory divergence regarding evaluation of the foreign language emotional-
modal state interpretation.

The task of Russian and German experiment participants was to listen every speech
fragment without visual channel, time limitation and to answer all questions of a special
questionnaire. The data base of emotional-modal states included positive and negative
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lexemes (n = 55) (e.g. neutral, natural, wistful worry, depressed, disappointed,
aggressive, joyful etc.)

Listeners were requested to analyse the audio fragments and instructed to determine
prosodic features of speech samples (pitch, speech rate, timbre, dynamics).

It was found out that the auditory-perceptual evaluation of emotional-modal state of
foreign-language and foreign-culture communicants by their speech features is sig-
nificantly different from innate and genetically structured neuro-emotional mechanisms
of perceptual-auditory evaluation of the emotional-modal behavior of native speakers.
During the experiments we also were able to establish statistically reliable specifics of
the German-Russian and Russian-German speech tactics and speech strategies used in
the decision-making process to evaluate the emotional-modal state of foreign language
and foreign-culture partners in communication.

The data of the perceptual-auditory analysis of recognition of emotions and
emotional-modal states were subjected to the subsequent statistical processing using
signed rank tests with two-sided alternative hypothesis H0 with a 5% significance
value, as well as to two-factor analysis of variance, which allowed to obtain reliable
and significant differences.

In the experiments on the perceptual auditory evaluation of the emotional-modal
states of foreign-language and foreign-culture communicants special questionnaires
were developed including such parameters as the melodic range with a certain gra-
dation system; melodic register and its change stages; voice pitch; voice tone dynamics,
tone with inclusion of a number of varied forms; dynamic and temporal features of
speech production, etc.

Studying the same material with the inclusion of verbalics (parameters were sep-
arated as a special research provided knowledge of the languages) and non-verbalics
(e.g. facial expressions, gestures, etc.) accompanying communication act.

Key findings related to the auditory evaluation of the verbal representations of
foreign-language and foreign-culture communicants’ EMSs can be reduced to the
following.

The majority of German listeners perceive emotional-modal state of the Russian
speech as “neutral” (66%), as “agitated” (27%) and as “aggressive” (7%); for speakers
of Russian listeners it is typical to some extent to perceive emotional-modal state of
German speaking communicants also as “neutral” (40%). Other emotional-modal states
are evaluated with a high degree of variability. However, the same Russian speech
stimuli-utterances evaluated by German listeners as “agitated” are, in most cases,
perceived by Russian speaking subjects as “joyful” (27%). The evaluation “aggressive”
falls into one connotative-emotional zone with the inclusion of other states, such as
“agitated”, “joyful”, etc. (33%). The most significant is the presence of divergence in
evaluating emotional-modal states “agitated” for German speaking subjects and “joy-
ful” for Russian speakers [15].

All participants listeners (Russian and German native speakers) completed special
questionnaires during the longitudinal experiment. Average results are presented in
Fig. 1.
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Comparing the prosodic means used by the listeners to evaluate emotional-modal
states also revealed a number of divergent features:

• perceptual auditory evaluation by Russian listeners of emotional-modal states of
German speaking subjects is based on evaluation of the perceived voice timbre
(73%), melodic variation (20%) and temporal features (7%);

• perceptual auditory evaluation by German listeners of emotional-modal of Russian
speaking subjects is based on the use of melodic features (60%), temporal features
(20%), volume levels (13%), pausation features (7%).

5 Conclusion

The obtained results show primarily the functioning of the language categoriality
mechanism with regard to foreign language stimulus auditory perception in the com-
munication process that imposes specific restrictions on the interpretation of the results,
in this case on the auditory analysis of foreign language spoken material.

Thus, idiosyncrasy on the example of spoken language communication can be of
two types: not only at the level of speech production, as it is commonly believed, but
also at the speech perception level. Regarding dialogic communication (in this case
with regard to emotional-modal states reaction of the listener to spoken stimuli of the
speaker due to the divergence process), reactions to stimuli can be of two main types:
non-unisonant (S 6¼ R) and approximately unisonant (S � R). For foreign-language
communicants the degree of non-unisonant perceptual auditory reactions increases.

It should be emphasized that perceptual-auditory idiosyncrasy, in our view, is
compounded by the fact that it includes such components of the hearing, as physiological;

Fig. 1. Divergence in the perceptual auditory evaluation of emotional modal states of foreign
language communication partners (data differ significantly (p – value <5%))
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musical; emotional; subject-voice-identifying; associative; aesthetic; cognitive-
individual; cognitive-social; cognitive-ethnic, etc.

During the speech communication with the participation of foreign-language and
foreign-culture partners, idiosyncratic nuances of emotional-modal states, which are
stimuli, may cause and usually cause the above-described reactions of non-unisonant or
approximately unisonant type (S 6¼ R, S � R).

If we consider that the response is influenced by other individual factors (e.g., the
physical state of the percipient, the general emotional background of communication,
gender, age etc.), then the emotional-modal states reaction “acquires” a number of other
connotations leading, in our opinion, to the emergence of the phenomenon which we
propose to designate as “cognitive entropy”. At that, the measure of cognitive entropy
uncertainty increases with the number of idiosyncratic individual-personal components
of the person’s auditory perceptual-system, and their cognitive “equipment”.

The zone nature of cognitive entropy – in this case, in perceptual-auditory recog-
nition of emotional-modal states – may relate, in our opinion, to other components of
the human sensory system as well (e.g., non-verbalics), particularly in communication
between foreign-language and foreign-culture participants of the communicative act.

The next stage of this researchwill include: (a) perceptual visual, (b) perceptual visual
and perceptual auditory evaluation and analysis of emotional-modal state of non-verbal
stimuli by native and non-native subjects without analysis of verbal speech signals.

Cross-language comparison of these data sets will give us the opportunity to define
facts of divergences between reactions on the same emotional-modal stimuli and the
peculiarities of the cognitive entropy regarding cognitive reactions on the same stimuli
by aural and visual channels for native and non-native subjects. The data obtained and
expected to be obtained in the future stages of the research may prove useful for
fine-tuning voice and multimodal biometric analysis systems with regard to different
languages possessing of different predominant distinctive parameters correlating to
emotional-modal states and speaker-specific features in real communication, including
both language- and culture-dependent phenomena.
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Abstract. The paper considers the solution of aligning syllables in time
problem. This kind of normalization allows to compare different imple-
mentations of the same syllable. This allows us to talk about a compar-
ative evaluation of the syllables pronunciation quality in the event that
one of the syllables is a reference implementation. If a patient’s record
before the operative treatment of oral cancer is used as such a syllable,
a comparative assessment of the quality of pronunciation of syllables in
the process of speech rehabilitation can be made. In the process of nor-
malization, an approach aimed at maximizing the correlation between
individual fragments of the syllable is applied. Then, as a measure of
similarity between the reference and the estimated syllable, the corre-
lation coefficient is used. The work demonstrates the validity of such
a decision based on the processing of records from healthy people and
patients before and after surgical treatment. The results of this work
allow us to approach the implementation of an automated software sys-
tem for assessing the quality of pronunciation of syllables and proceed
to implement its working prototype.

Keywords: Time normalization · Correlation · Cancer of the oral cavity
and oropharynx · Speech quality criteria

1 Introduction

This paper discuss the speech rehabilitation of patients after surgical treatment
of cancer of the oral cavity and oropharynx. Process of rehabilitation can be
accelerated using biological feedback, but this requires the automated estima-
tion of pronunciation quality. The relevance of this problem is confirmed by the
higher incidence of these diseases. In 2014 in Russia the incidence of cancer of the
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oral cavity and pharynx was 5.6 per 100 thousand (diagnostic of new affected).
The prevalence (total count of affected) −36.5 per 100 thousand. Thus, each
year near 13,000 new cancers with oropharyngeal localization are diagnosed in
the country, and the total number of patients suffering from this disease is esti-
mated at over 53,000 people [1,2]. The partial or complete surgical removal of
the tongue or some other organs of speech production is one of the main prob-
lems in the treatment. After this patients have need in speech learning. But we
should to estimate the quality of the patient’s speech for solving of this prob-
lem. Current rehabilitation use only subjective evaluation of speech quality. In
previous studies we have proposed a method based on the use of GOST R-50840-
95 “Speech transmission over various communication channels. Techniques for
measurements of speech quality, intelligibility and voice identification” [3]. In the
[4], an objective approach to measurement of the syllables pronunciation quality
was created. But for its implementation, syllables should be normalized by time.
This paper presents solution of this problem, which is last step before creation
of the first version of automated prototype for speech quality estimation during
the process of speech rehabilitation.

2 Description of the Procedure for the Comparative
Evaluation of the Syllables Pronunciation Quality

2.1 Algorithm of the Comparative Evaluation of the Syllables
Pronunciation Quality

Let us consider the integrated sequence of actions at a comparative estimation
of syllables pronunciation quality.

1. Working with the reference signal
(a) Recording of the speech signal −3 syllables with problem phonemes, for

5 repetitions of each, then - according to the table of syllables with the
phonemes most affected by the change, 90 phonemes by 1 utterance, total-
ing 105 syllables per session. A list of phonemes that are most affected by
changes after tongue surgery ([s], [t], [k] and their soft implementations)
was compiled based on early research stages detailed in [5]. It corresponds
to the previously obtained classical results presented in [6].

(b) Direct detection of pronounced syllables in the recorded signal. This stage
in the software will have to be implemented in real time by stream process-
ing of the incoming signal. This is necessary for the automatic presenta-
tion of the syllables to the patient for utterance. Syllables are presented
on 2 channels: visual - the syllable is recorded using the notation of the
Russian alphabet - and audial - the syllable is played back in the head-
phones to eliminate possible variations of utterances. The use of syllable
transcription to solve this problem does not seem to be practical, since
not all patients have the skills to correctly read it. The implementation of
this stage is simplified due to the wellknown range of the duration of the
spoken syllables and pauses, which helps to effectively eliminate possible
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errors in the voice activity detector. Certainly, impossible use automated
correction of errors related with possible inaccuracies or extraneous noise
(for example, coughing), it is possible only to manually correct them
by returning to the previous syllable. It is impossible to exclude a person
from the execution of this stage and this does not allow us to speak about
the complete automaticity of the approach (on the other hand, there is
a sufficiently high degree of automation with control over the recorded
information).

(c) Recording the detected syllables as separate files on the disk for subse-
quent processing. Additionally, a continuous audio file is also saved for
identification and elimination of possible problems in the operation of the
algorithm.

(d) Time normalization of three groups with identical syllables (three groups
of five records). For normalization, the correlation approach is used, which
detail is presented in Sect. 4 of this article.

(e) The correlation criterion of received realizations proximity is calculated.
It is calculated as the average of the values of the linear correlation coef-
ficient for each group. For 5 realizations of the syllable, 20 values of the
correlation coefficient can be calculated (taking into account the specifics
of the procedure for time normalization, it is not strictly symmetric,
although the variation is small). This value is taken as the reference for
further evaluation of the quality of phonemes.

(f) The allocation of problematic phonemes from the remaining records and
steps (d) and (e) for the problem phonemes is carried out. This stage
seems more problematic due to the need to detect the boundaries of
phonemes and possible accumulation of errors at various stages of process-
ing. The task is facilitated by the fact that it is precisely known which
syllable was pronounced and which phoneme is to be allocated.

2. Working with the estimated signal
(a) Steps (a)-(d) are performed, but already for the estimated signal, which

is a record after the operation.
(b) The correlation criterion of the proximity between previous syllable

records and records after the operations is calculated. It is found as the
average of the values of the linear correlation coefficient for each group
of syllables. For 5 realizations of the syllable, 50 values of the correlation
coefficient can be calculated (2 · 25, it is not strictly symmetric, taking
into account the specific procedure of the time normalization, although
the variation is small). Then the ratio of this mean to the mean value
found for the reference signals is calculated. The closer this value is to 1,
the higher the quality of the pronunciation of the syllable is.

(c) A similar procedure is performed for pairs of other syllables before and
after the operation. The average correlation value between groups of syl-
lables containing problematic phonemes and not containing them is con-
sidered. The ratio of these means is calculated. The closer this value is to
1, the higher the quality of the pronunciation of the syllable is.
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(d) The allocation of problematic phonemes from the remaining records is
carried out and stages (d) and (e) for the same problem phonemes are con-
ducted. A similar comparison procedure is performed for various imple-
mentations of individual phonemes and a comparative criterion for the
quality of phoneme pronunciation is determined.

The obtained estimates can be used independently or as part of a com-
plex criterion of pronunciation quality as separate components along with others
developed earlier [4].

2.2 Implemented Modules of the Algorithm

In previous research studies, variants for obtaining estimates of syllables pro-
nunciation quality based on Fourier spectra [4,7] have been realized. In addition,
the applicability of other characteristics such as linear prediction coefficients [8],
mfcc [9], autocorrelation function [10] has been revealed. As algorithms for voice
activity detection algorithms G.729 Voice Activity Detection [11], and [12] for
the detection of individual syllables within the records obtained in the previous
stages of using earlier version of the complex are used. The main drawback of this
version is the high degree of user involvement and the subjectivity of the eval-
uations, which does not allow to speak about the possibility of its exploitation
beyond the scope of research. However, its use has made it possible to compile
a database of sound recordings that are used in this work.

In addition, based on the results of this work, prototypes (d)-(e) for the
reference signal and (a)-(c) for the estimated signal are realized. Due to their
implementation, the problem of the need for manual time-based normalization,
which was used in the testing of the previous criteria [4], was partially solved.
This allows us to talk about the possibility of developing prototype software
for comparative assessments of the syllables pronunciation quality. On the other
hand, there remains the possibility for its further fundamental improvement due
to the allocation of individual phonemes and their separate comparison [13].

3 Approaches to Detecting of Speech Signals

Consider more detail used approaches to solving the problem of the detection
of speech signals, to show which of the speech signal characteristics are already
allocated and are used for further processing. The G.729 Voice Activity Detection
algorithm uses the following characteristics:

1. A spectral distortion.
2. An energy difference.
3. A low-band energy difference.
4. A zero-crossing difference.

A detailed description of the algorithm can be found in [11].
The second algorithm is based on applying only two of these characteristics:
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1. An energy difference
2. A zero-crossing difference

Detailed description of the algorithm can be found in [12].
Comparison of algorithms reveals that due to adaptation at work on long

signals during stream processing the first algorithm makes it possible to receive
the best results and it will be used in the final implementation. However, with
the correct selection of parameters based on the results of testing for individual
syllables (short recordings), the second algorithm makes it possible to achieve
results that are at least not the worst. When using the G.729 Voice Activity
Detection algorithm in the absence of significant areas of silence for adaptation
(which is typical for the records of individual syllables), some problems were
revealed, which manifested in the fact that almost the whole signal was marked
as speech (including silence). This, in turn, led to problems with normalization
by time. That is why the second algorithm was used to process the already
existing records of individual syllables, which allowed achieving better results.

4 Time Normalization of the Speech Signal

For normalization by time, an approach based on maximizing the correlation
between individual fragments of the signals was realized [14]. This algorithm
can be represented as a step-by-step sequence as follows:

1. Bringing the first signal to the reference length t.
2. Select the number of subintervals for nomalization - n.
3. Search the end for the i-th subinterval of the second signal, providing the

maximum correlation with the i-th fixed interval of the first signal.
4. Bringing the found i-th subinterval to the length of the i-th sub-interval of

the first signal, adding it to the end of the final normalized second signal.
5. Repeat steps 3 and 4 for i = 1..n-1.
6. Bringing the last remaining n-th subinterval to the length of the n-th sub-

interval of the first signal, adding it to the end of the final normalized second
signal.

In the process of the implementation of the algorithm, the following values
were used: the standard duration of the syllable is t = 1 second (has nothing
to do with the actual duration, specifies the number of points in the normalized
signals), the number of subintervals of the partition n = 10. A more detailed
justification of these (or other) values choice and their impact on the result will
be carried out in the future. At this moment, these values make it possible to
obtain the values of pronunciation quality criteria, albeit not optimal in the
accuracy of the normalization.

Examples of three normalized signals are presented in Fig. 1.
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Fig. 1. Examples of three normalized signal pairs

5 Testing the Implemented Approach for the
Comparative Evaluation of the Syllables Pronunciation
Quality

5.1 Comparative Analysis for Healthy Speakers

The recording of syllables containing problematic phonemes with and without
the use of the tongue was carried out by healthy speakers. This approach made
it possible to obtain missing materials at this stage, since multiple record of the
same syllable was not used in the previous stages of work. A single recording
did not allow us to calculate the correlation for signal before the operation for
comparison with correlation after surgery. At the first stage the proposed app-
roach made it possible to obtain this estimate and draw conclusions about the
applicability of such solution. The values of the correlation coefficient between
time-normalized signals, and, to be more precise, their mean value acted as such
criterion. In this case, attention should be paid to the fact that, unlike directly
the correlation coefficient having the commutativity property, the proposed cri-
terion does not possess this property, since the signal pairs normalized by the
first and second signals, respectively, will differ from each other. In accordance
with this, we obtain the matrix n × n without the main diagonal, filled with
values of the correlation coefficients, where n is the number of reference signals.
When evaluating the quality, we perform the same operation for the signal pairs
with and without the use of language. The same thing again, swap the signals,
we get 2 matrices n×m, where m is the number of estimated signals. Examples
of matrices for the syllable [sit] for one user are presented in Tables 1, 2 and 3,
in 1 - pair reference - reference signals, in 2 - pair reference - estimated signals,
in 3 - pair estimated - reference signals. Estimated signals have a line, reference
- without. m = n = 5.
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Table 1. Examples of matrices for the syllable [sit] for one user. Pair reference -
reference signals. n = 5

- R1 R2 R3 R4 R5

R1 - 0.6849 0.5186 0.7326 0.579

R2 0.6416 - 0.5388 0.6542 0.6304

R3 0.5147 0.6539 - 0.5331 0.4456

R4 0.6696 0.3247 0.3986 - 0.2819

R5 0.5768 0.64 00 0.2982 0.3151 - R= 0.5316

Table 2. Examples of matrices for the syllable [sit] for one user. Pair reference -
estimated signals. Estimated signals have a line, reference - without. m = 7, n= 5

- R1’ R2’ R3’ R4’ R5’ R6’ R7’

R1 0.2967 0.4878 0.2461 0.1792 0.1795 0.1416 0.2409

R2 0.1913 0.312 0.2062 0.1809 0.1051 0.0835 0.1042

R3 0.0763 0.2078 0.0887 0.1115 0.1195 0.2254 0.1305

R4 0.1891 0.4461 0.2428 0.3695 0.2842 0.1618 0.1960

R5 0.1105 0.5822 0.1569 0.1633 0.3033 0.1226 0.1280 R1’ = 0.2106

Table 3. Examples of matrices for the syllable [sit] for one user. Pair estimated -
reference signals. Estimated signals have a line, reference - without. m = 7, n = 5

- R1’ R2’ R3’ R4’ R5’ R6’ R7’

R1’ 0.2487 0.6067 0.0766 0.5811 0.1497 0.0684 0.0823

R2’ 0.0843 0.2712 0.1223 0.4191 0.0507 0.0279 0.0662

R3’ 0.0746 0.109 0.1084 0.0774 0.0191 0.0284 0.0375

R4’ 0.179 0.3511 0.246 0.2585 0.1595 0.0512 0.3222

R5’ 0.2273 0.1126 0.3309 0.2559 0.0537 0.0344 0.0827 R2’ = 0.1707

The average values of the correlation coefficients R and R’ and they ratio a =
R’/R, which is essentially the criterion of the syllables pronunciation quality for
four speakers, are shown in Table 4. The average value of the quality criterion
a, that estimate the pronunciation of a syllable with a problematic phoneme
without using a tongue is also presented.

Table 4. The average values of the correlation coefficients R and R’ and they ratio a
= R’/R for four speakers

U1 U2 U3 U4

R 0.5316 0.2973 0.3605 0.4216

R’ 0.1906 0.1943 0.2700 0.2182

a 0.3586 0.6535 0.7490 0.5176 a = 0.5697
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Based on the obtained values, we can say about the revealing of explicit
differences between signals with and without the use of tongue, and on the
applicability of the proposed criterion a for evaluating the comparative syllables
pronunciation quality.

5.2 Comparison of Real Patients Speech Signals Before and After
Surgery

Due to the lack of multiple entries of one syllable before the operation from one
patient (it seemed inadvisable before this stage), it is not possible to make a
similar comparison according to the available data from real patients. However,
in this case, it is possible to measure the correlation for a group of syllables
containing the phonemes most susceptible to change (R’) and for a group of
syllables that do not contain them and evaluated by the expert as being said
qualitatively (R”). This average correlation coefficients values and their ratio for
four users is presented in Table 5. It was based on 20 syllables before surgery
and 20 after.

Table 5. Average correlation coefficients values and their ratio for four users

U1 U2 U3 U4

R” 0.3193 0.2630 0.3712 0.3318

R’ 0.2114 0.2262 0.1823 0.1632

a 0.6621 0.8601 0.4911 0.4919 a= 0.6263

Analyzing the results obtained, we can preliminarily talk about the applica-
bility of the proposed approach to real records, since the obtained value signif-
icantly differs from 1. However, to confirm this fact more accurately, it will be
necessary to make a comparison similar to that described in paragraph 5.1. This
is due to the fact that the version about comparability of the obtained values for
different syllables (with and without problem phonemes) seems plausible, but
not proven.

6 Conclusion

The presented work discusses the approach to the automated comparative esti-
mation of syllables pronunciation quality. The applicability of the correlation
normalization by time for syllables and the correlation criterion for comparison
estimating the syllables pronunciation quality are shown. This fact is confirmed
for signals received from healthy speakers (with and without the use of tongue),
as well as on the signals of real speakers (with a modification of the estimation
technique for single pairs of syllables). The modification consisted of comparing
the syllables containing phonemes prone to change and qualitatively pronounced
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syllables without them. At the next stage, it is planned to develop a single pro-
totype of a software package that implements an automated comparative assess-
ment of the quality of phoneme pronunciation. This prototype will be used in
the implementation of a software package that will shorten the term and verbal
rehabilitation of patients after surgical treatment of oral cancer, and it will be
based on biofeedback.
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Foundation (project 16-15-00038).
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Abstract. The paper compares different approaches in the phrase
boundary detection issue, based on the data gained from speech cor-
pora recorded for the purpose of the text-to-speech (TTS) system. It is
showed that conditional random fields model can outperform basic deter-
ministic and classification-based algorithms both in speaker-dependent
and speaker independent phrasing. The results on manually annotated
sentences with phrase breaks are presented here as well.

Keywords: Phrasing · Classification · Conditional random fields ·
Speech corpora

1 Introduction

The term phrasing is used to describe the tendency of grouping words within
a sentence when speaking [15]. And it should be emphasized, that the phasing
is both style and speaker specific [17], and thus there is not only one correct
sequence of break/non-break placements for almost all sentences.

The phrasing issue is closely related to the syntax structure of the sentence
and also to the positions of sentence punctuation, especially commas [15,23]. In
Czech texts, the commas are much more frequent compared e.g. to English texts,
so it is a good indicator for the phrase boundary detection. However, phrasing
based only on commas can produce extremely long phrases, for example in the
case of a long compound sentence containing several simple sentences joined with
a coordinate conjunction (e.g. a, EN: and) where no comma is written in Czech.

The main role of phrasing consists in logical division of a thoughts flow and
contributes to the intelligibility and naturalness. The phrase break insertion in
speech (often accompanied with a pause) also relates to human physical limita-
tions since people need to take a breath when talking. Although the TTS sys-
tems do not need to breathe, frequent phrase breaks with pauses and appropriate
phrase-ending prosody influence positively the overall quality of the synthesized
samples. Long sentences are, when synthesized, unnatural and also much more
demanding on listeners’ attention. In addition, there may be a higher probability
of a disturbing speech artefact appearance.

c© Springer International Publishing AG 2017
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The current version of the TTS system ARTIC [12], developed at the author’s
department, implements only a simple punctuation-based rule-driven determin-
istic algorithm for the phrase boundary detection suffering from the problems
mentioned above. This paper is the extension of the former study [6]. Different
approaches are used to test the phrase boundary detection, including a tech-
nique based on conditional random fields (CRF) [8], being a sequence modeling
framework well suited for sequential data flows – which the phrasing really is. As
described in [23,24], the phrase break in a read sentence is inserted in specified
intervals and it also depends on the neighbouring boundaries. Phrases contains
usually only a few words (as follows from the histograms of phrase lengths for
English in the aforementioned publications). This leads to the usage of Hidden
Markov Models (HMM) [22,24], CRF models [10] and different neural networks
for phrase boundary detection task, as they can take the positions of other
boundaries into consideration.

In addition, to confirm the fact that, similarly to English, the phrase lengths
usually range between 3 and 6 words [23] in Czech speech data, one of the
large speech Czech corpora [13], recorded for the purposes of TTS systems and
containing about 10,000 sentences, was explored – the pauses detected in the
segmentation process were considered to be phrase breaks, as well as the commas
in the text (see Sect. 2.2). The histogram of phrase and sentence lengths is shown
in Fig. 1. The other speech corpora used the experiments described in following
sections evince similar tendencies.

Fig. 1. A histogram of phrase and sentence lengths in the Czech speech corpus (marked
as corpus1 in Sect. 3.1)
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2 Phrasing as a Classification Problem

The main goal of this paper is to test different approaches on the task of phrase
boundary detection from text. As the phrasing model is supposed to be used on
the input sentences of the TTS system, all the features must be easily extracted
from the text. In addition, the detected phrase breaks should be consistent with
the phrasing speaker’s style of the TTS voice used, which might lead to more
natural synthesized outputs – the system would copy the speaker’s manners.

2.1 Source Data

The classification problem needs a sufficient amount of data for training. To
obtain enough data to train a classifier used to detect phrase boundaries, it
would take a lot of time and manual work to prepare that – moreover, these
annotations should be gained from more annotators since people differ in phrase
breaks insertions [18]. To avoid this, the data for classification training were
prepared in a different way – the author utilizes large speech corpora recorded
for the purposes of the TTS system [13], as did e.g. the authors of [10,16,20].
The data were extracted automatically, which brings a great advantage – since
no manually annotated breaks are required, the process of data gaining can be
easily and quickly applied on another speech corpus. Moreover, a single speech
corpus, containing in the case of TTS system ARTIC about 10,000 sentences,
represents a sufficient amount of data needed for training a phrase model which
will be, in addition, speaker-dependent.

In addition, the corpora had been already automatically segmented on phones
level [9,11] for the purposes of speech synthesis, and thus they also contain
special units breath and pause which indicate the positions in the speech where
the speaker has made a break. And since the speakers were professionals or
semi-professionals, the speech breaks (pauses/breaths) are expected to occure
in reasonable positions of read sentences. More detailed investigation of pauses
in corpora showed that not all pauses were related to a comma, which means
that the information about a pause (or a breath) presense in speech can help to
improve the phrasing of a sentence.

2.2 Features

Now, let us describe the phrasing issue as a 2-class classification problem. Every
sentence of N words w0, w1, . . . , wN−1, taken from the speech corpora mentioned,
with Czech morphological tags t0, t1, . . . , tN−1 (determined using our n-gram
tagger) can be represented as follows, with speech breaks bi set to 1 if the word
wi was followed by a breath or a pause, and bi set to 0 otherwise:1

words+tags (w0,t0) (w1,t1) (w2,t2) . . . (wN−1,tN−1)
speech breaks b0 b1 b2 . . . bN−2

juncture j0 j1 j2 . . . jN−2

1 The term ‘juncture’ was adopted from [23] and refers to required phrase breaks.
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Contrary e.g. to [16], where only speech pauses were considered to be phrase
boundaries, it was decided to consider both commas and speech pauses/breaths
to be phrase breaks in this study. First, making a phrase boundary at a punctua-
tion seems to be reasonable in Czech, and second, extra speech pauses, which do
not correspond to any comma, represent a “value added” and, hopefully, ensure
more accurate phrasing compared to the phrasing just at commas. To formally
summarize, the true “gold data” answers were extracted from the speech corpus
based on the following rules:

– ji = 1 if wi is followed by a comma,
– ji = 1 if bi = 1,
– ji = 0 otherwise.

Inspired by other classification-based approaches to phrase boundary detec-
tion, e.g. [3,22], the following feature set was used for every juncture ji:

– word wi,
– word wi has or has not a comma,
– following word wi+1,
– morphological tag ti of the word wi,
– morphological tag ti+1 of the word wi+1,
– bigram ti + ti+1,
– trigram ti−1 + ti + ti+1,
– sentence lenght N ,
– position of the word wi in the sentence i

N ,
– distance from the preceding word followed by a comma i − iLC

(iLC ≤ i; iLC = 0 if none of words w0. . .wi−1 has a comma),
– distance to the next word followed by a comma iNC − i

(iNC ≥ i; iNC = N − 1 if none of words wi+1. . .wN−1 has a comma).

3 Phrase Boundary Detection Experiments

The presented paper compares the results on speaker-dependent and speaker-
independent phrasing of several deterministic (rule-based) and non-derministic
approaches. Besides two representatives of simple classification-based method,
used e.g. in [3,14] and also in the author’s former study [6], the CRF model
(used for sequential training e.g. in [8,10]) is tested, since the positions of phrase
boundaries depend on other neighbourring boundaries (as mentioned in Sect. 1).

The complete list of all tested algorithms is stated below:

– NoBreaks – does not set any phrase boundary,
– Comma – sets the boundary after every comma (this algorithm is performed

in the current version of the TTS system ARTIC [12]),
– CommaAnd – sets the boundary after every comma and before every a (EN:
and) conjunction (this one should, in theory, improve the phrasing of com-
pound sentences compared to previous),

– LogReg – Logistic Regression classifier
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– SVC-lin – Support Vector Machines with linear kernel
– CRF – Conditional Random Fields

Note that no cross-validation results for classifier’s parameters are presented in
this paper since they were a part of the previous study in [6], and the parame-
ters were set according to the best results shown in the aforementioned paper.
Also no other rule-based deterministic algorithms were used (using e.g. more
conjunctions) as it was proved that they considerably decreased the precision
value. The listed classifiers LogReg and SVC-lin were chosen as providing better
results compared to the other classification-based approaches tested in [6].

3.1 Speaker-Dependent Phrasing

As mentioned in Sect. 1 and showed e.g. in [17], the phrasing of read sentences
highly depends on the particular speaker. Therefore, the experiments were, at
first, performed on each speech corpus independently. As usual, 80% of available
data were always used for training and 20% for testing. It is actually a speaker-
dependent phrasing issue. The results for 6 different corpora (each containing
10,000 sentences) and all phrasing approaches defined above are presented in
Table 1 using 4 standard evaluation measures – accuracy (A), precision (P),
recall (R) and F1-score (F1).

The results clearly show that the classification-based approaches significantly
outperformed the deterministic algorithms in F1-score and recall – it means that
more “real” phrase boundaries are detected, which results in finer phrasing and
prevents from the creation of very long phrases. Furthermore, the results of CRF
are even better then LogReg and SVC-lin classifiers for all corpora, which points
out the advantage of this method used on the phrasing issue. Moreover, the
CRF model is characterized by higher precision value (contrary to LogReg and
SVC-lin), and thus fewer “false alarms” (i.e. nonsense boundary placements) are
detected, which is more important for this task than the lower number of missed
boundaries (related to lower recall value).

The numbers in Table 1 also show that the results differ across the corpora
used. The reasons for the different success rates is probably the consistency (or
inconsistency) of the phrasing style of particular speakers, and also the different
frequency of pauses in their speech – e.g. the speakers who recorded the corpus2
and corpus4 made almost all pauses at comma punctuation and not many others.
And it should be emphasized that not all “false alarms” and “miss-detections”
are true errors [6,20] since the “gold data” were extracted automatically from
speech corpora, and thus they represent only one of possible breaks/non-breaks
sequences. Manual check also revealed that the pauses sometimes appeared from
another reason than a phrase boundary – there were caused by an inappropriate
reading of the sentence (some pauses appeared before long difficult words and
some other were caused by a lack of breath before the sentence end which should
not be considered to be phrase boundaries).
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Table 1. Speaker-dependent phrase boundary detection for all 6 Czech speech corpora
– classifiers comparison (nan values are caused by 0/0 divisions)

Classifier A P R F1 Classifier A P R F1

corpus1 NoBreaks 0.830 nan 0.000 nan corpus4 NoBreaks 0.830 nan 0.000 nan

Comma 0.954 1.000 0.743 0.852 Comma 0.990 1.000 0.938 0.968

CommaAnd 0.965 0.956 0.838 0.893 CommaAnd 0.975 0.889 0.955 0.921

LogReg 0.972 0.870 0.960 0.912 LogReg 0.991 0.947 0.995 0.970

SVC-lin 0.971 0.873 0.954 0.912 SVC-lin 0.991 0.947 0.991 0.969

CRF 0.973 0.895 0.944 0.919 CRF 0.991 0.949 0.994 0.971

corpus2 NoBreaks 0.847 nan 0.000 nan corpus5 NoBreaks 0.882 nan 0.000 nan

Comma 0.993 1.000 0.954 0.976 Comma 0.967 1.000 0.801 0.889

CommaAnd 0.974 0.886 0.962 0.922 CommaAnd 0.958 0.902 0.838 0.868

LogReg 0.994 0.959 1.000 0.979 LogReg 0.972 0.860 0.960 0.907

SVC-lin 0.994 0.964 0.997 0.980 SVC-lin 0.972 0.862 0.957 0.907

CRF 0.995 0.965 0.999 0.982 CRF 0.973 0.880 0.947 0.912

corpus3 NoBreaks 0.761 nan 0.000 nan corpus6 NoBreaks 0.838 nan 0.000 nan

Comma 0.893 1.000 0.541 0.703 Comma 0.966 1.000 0.794 0.885

CommaAnd 0.884 0.899 0.568 0.696 CommaAnd 0.954 0.883 0.828 0.855

LogReg 0.892 0.650 0.867 0.743 LogReg 0.968 0.809 0.989 0.890

SVC-lin 0.892 0.658 0.855 0.744 SVC-lin 0.967 0.818 0.974 0.889

CRF 0.895 0.700 0.835 0.762 CRF 0.968 0.834 0.956 0.891

3.2 Speaker-Independent Phrasing

The results in the previous section show that all three classification-based
approaches, especially CRF, outperform the baseline algorithms in phrase
boundary detection from text, when used in a speaker-dependent mode. How-
ever, the utilization of phrasing in TTS systems often requires generalization
since there are many synthetic voices built upon a small corpora, e.g. those from
voice conservation process of people facing voice loss due to fatal diseases [4,5,7].
The speakers who have recorded these voices were unprofessionals with speaking
problems and the recorded data are rather (sometimes even very) inconsistent.
As those (small) corpora can not be used for training, a general phrasing model
may be better to be used.

In order to that, all 6 Czech large available speech corpora used in Sect. 3.1
were joined and the same experiment was performed on that. Table 2 shows
the results of all deterministic and classification-based approaches when using
80 % of randomly selected sentences from the joined corpus for training and the
remaining 20 % for testing, and the corpora were approximately equally covered
by the testing and training data.

Again, the CRF model provides better results on testing data compared to
other approaches. And McNemar tests [21] proved that these results are statis-
tically significant at the significance level α = 0.01 compared to LogReg ’ results,
and LogReg is significantly better than SVC-lin at the same signicifance level.
The increasing and decreasing trends of the evaluation measures evinces similar
course across the tested approaches as in speaker-dependent phrasing.
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Table 2. Speaker-independent phrase boundary detection (trained and tested on the
joined corpus) – classifiers comparison

Classifier A P R F1

NoBreaks 0.826 nan 0.000 nan

Comma 0.959 1.000 0.767 0.868

CommaAnd 0.951 0.906 0.803 0.851

LogReg 0.960 0.813 0.953 0.877

SVC-lin 0.959 0.809 0.946 0.872

CRF 0.963 0.829 0.953 0.887

3.3 Speaker-Independent Phrasing Tested on Manual Annotated
Data

Up to now, a part of the data gained from speech corpora was used for testing.
Nevertheless, these data could contain some miss-placed pauses (as mentioned
in Sect. 3.1) and also the speaking styles of the speakers have a great impact on
the resulting phrasing since the tested approaches learn to imitate that.

To test the trained models on different, “real” data, the author decided to
collect a small amount of sentences manually annotated with phrase boundaries.
And since the phrasing problem is ambiguous and particular phrasing depends
a lot on the speaker or the annotator, two annotators were invited to provide
the manual boundary detection. The annotators were marking phrase bound-
aries in 20 sentences, the annotator1 marked 65 boundaries and annotator2 71
boundaries, while they agreed on 58 of them. The inter-annotator agreement was
calculated using Cohen’s kappa [1] which is, for the particular set of sentences,
equal to 0.83. This number is surprisingly quite high (compared to results on
inter-annotator agreement presented in [19]), but it could be caused by a small
number of annotated sentences.

The results of phrase boundary detection on manually-annotated testing data
are shown in Table 3. Since the annotators differ in several detected boundaries,
the results are presented both for all boundaries marked by at least one of the
annotators (all boundaries column in Table 3) and for boundaries where the
annotators agreed (agreed boundaries; boundaries detected only by one annota-
tor were considered to be a non-break). Note that all the models for phrasing
were trained on the whole joined speech corpus created from all available Czech
TTS voices. In both cases, the recall values of all approaches are low, which
means that not all phrase boundaries were detected, but, on the other hand, the
precision value is quite high and so only a few “false alarms” occurred.

Similarly to the experiments presented in Sects. 3.1 and 3.2, the CRF model
outperformed both classification-based approaches and simple deterministic
algorithms, namely in accuracy, recall and F1-score. The precision values are
equal or close to 1.000 for Comma, since the phrasing at commas does not make
many “false alarms” in Czech. It can be seen from the table that the results are
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Table 3. Speaker-independent phrase boundary detection – classifiers comparison on
manually annotated data

All boundaries Agreed boundaries

Classifier A P R F1 Classifier A P R F1

NoBreaks 0.840 nan 0.000 nan NoBreaks 0.879 nan 0.000 nan

Comma 0.897 1.000 0.359 0.528 Comma 0.940 0.964 0.466 0.628

CommaAnd 0.907 0.870 0.483 0.621 CommaAnd 0.940 0.805 0.611 0.695

LogReg 0.909 0.905 0.487 0.633 LogReg 0.944 0.881 0.627 0.733

SVC-lin 0.907 0.902 0.474 0.622 SVC-lin 0.942 0.878 0.610 0.720

CRF 0.924 0.956 0.551 0.699 CRF 0.951 0.889 0.678 0.769

much lower compared to the results on testing data extracted from the same
joined speech corpus as the training data (presented in Table 2) – maybe due
to different annotation style of the addressed annotators when compared to the
speaking style of the professional speakers who recorded the corpora used.

It is also good to emphasize that the precision of CRF, when applied at
all boundaries data, is very high, thus, there are hardly any nonsense detected
boundaries. And this fact is very crucial for the phrasing problem, since the most
important is not to make a phrase boundary at completely wrong position in
the sentence.

4 Conclusion

The presented paper showed that the speech corpora data could be used for train-
ing of different phrasing models, which prevents from time-consuming manual
phrase breaks annotations and enables to extract a large amount of data easily
and quickly from different corpora. Using this data, it was proved that the CRF
model can outperform the other tested classifiers and its results are even better
compared to the simple rule-based algorithm based on punctuation (which has
been used in our TTS system ARTIC up to now).

The results presented in Sect. 3.1 show that it is possible to train a speaker-
dependent phrasing model which, when used on the same speech corpus as
used for the training, is in consistency with the phrasing style of the partic-
ular speaker. However, a generalized phrasing model might be better to be used
for “small” TTS voices, and thus the experiment on speaker-independent model
training was performed in Sect. 3.2. The results of the model used in a speaker-
independent mode clearly prove the advantages of CRF sequence model com-
pared to other approaches.

The results obtained on a small number of manually annotated sentences also
confirm the presented conclusion concerning the CRF being the best choice. The
high precision values ensure that almost no “false alarms”, representing nonsense
phrase boundaries in this issue, are detected – and it is exactly what is expected
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from a good phrasing model. Furthermore, although the recall values are not
very high on manually annotated breaks, these computed by CRF are, again,
higher compared to the deterministic Comma algorithm – CRF detects more
true phrase boundaries, which should, hopefully, lead to the improvement of
naturalness and intelligibility of synthesized sentences if the trained model was
implemented in the TTS system.

In any case, the contribution to the overall quality of speech synthesis pro-
duced by the TTS system extended with the proposed trained CRF phrasing
models, both speaker-dependent and speaker-independent, is planned to be ver-
ified by large-scale listening tests [2,25] before releasing this modification into
the publicly available version of the system.
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25. Tihelka, D., Gr̊uber, M., Hanzĺıček, Z.: Robust methodology for TTS enhancement
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Abstract. In our earlier work in statistical parametric speech synthesis, we
proposed a vocoder using continuous F0 in combination with Maximum Voiced
Frequency (MVF), which was successfully used with a feed-forward deep neural
network (DNN). The advantage of a continuous vocoder in this scenario is that
vocoder parameters are simpler to model than traditional vocoders with dis-
continuous F0. However, DNNs have a lack of sequence modeling which might
degrade the quality of synthesized speech. In order to avoid this problem, we
propose the use of sequence-to-sequence modeling with recurrent neural net-
works (RNNs). In this paper, four neural network architectures (long short-term
memory (LSTM), bidirectional LSTM (BLSTM), gated recurrent network
(GRU), and standard RNN) are investigated and applied using this continuous
vocoder to model F0, MVF, and Mel-Generalized Cepstrum (MGC) for more
natural sounding speech synthesis. Experimental results from objective and
subjective evaluations have shown that the proposed framework converges
faster and gives state-of-the-art speech synthesis performance while outper-
forming the conventional feed-forward DNN.

Keywords: Deep learning � LSTM � BLSTM � GRU � RNN

1 Introduction

Statistical parametric speech synthesis (SPSS) based text-to-speech (TTS) systems have
steadily advanced in terms of naturalness during the last two decades. Even though the
quality of synthetic speech is still unsatisfying, the benefits offlexibility, robustness, and
control denote that SPSS stays as an attractive proposition. One of the most important
factors that degrade the naturalness of the synthesized speech is known as the limited
capabilities of the acoustic model which captures the complex and nonlinear relationship
between linguistic and acoustic features [1]. Although there have been many attempts to
create a more accurate acoustic model for SPSS (such as [2]), the hidden Markov model
(HMM) has been the most popular attempt for a long time [3]. Even though this model
can enhance accuracy and synthesis performance, it usually increases the amount of
computational complexity with higher number of model parameters [4].
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Recently, deep learning algorithms have shown their ability to extract high-level,
complex abstractions and data representations from large volumes of supervised and
unsupervised data [5], and achieve significant improvements in various machine
learning areas. Neural approaches have been also used in SPSS as deep feed-forward
neural networks (DNNs) with more than one layer of hidden units between its input and
output layers. By mapping directly linguistic features to vocoder parameters, DNNs can
be viewed as a replacement for the decision tree used in HMM-TTS systems [6]. DNNs
have also other advantages, including the ability to model high-dimensional acoustic
parameters [7], and the availability of multi-task learning [8]. However, Zen, et al. [9]
comprehensively listed the limitations of the conventional DNN-based acoustic mod-
eling for speech synthesis, e.g. its lack of ability to predict variances, unimodal nature
of its objective function, and the sequential nature of speech is ignored because it
assumes that each frame is sampled independently. In other words, the mapping is
performed frame by frame without considering contextual constraints between statics
and deltas during training.

To overcome these problems, recurrent neural networks (inserting cyclical con-
nections in feed-forward DNNs) have proven to have an advantage in modeling
sequences whose activation at each time is dependent on that of the previous time to
shape prediction output. Although it is difficult to train RNNs to capture long term
dependencies [10], successful approaches were used to reduce the negative impacts of
this limitation. It was suggested in [11] to store information over long or short time
intervals to include contextual constraints called as a long short-term memory (LSTM).
In [12] a bidirectional LSTM based RNN was employed in which there is a feedback to
retain previous states. In [13], gated recurrent unit (GRU) based RNN was proposed to
adaptively capture dependencies of different time scales. In this paper, four variants of
neural networks are investigated in the speech synthesis scenario and implemented
using a continuous vocoder.

In our earlier work, we proposed a computationally feasible residual-based vocoder
[14], using a continuous F0 model [15], and Maximum Voiced Frequency (MVF) [16].
In this method, the voiced excitation consisting of pitch synchronous PCA residual
frames is low-pass filtered and the unvoiced part is high-pass filtered according to the
MVF contour as a cutoff frequency. The approach was especially successful for
modelling speech sounds with mixed excitation. However, we noted that the unvoiced
sounds are sometimes poor due to the combination of continuous F0 and MVF. In [17],
we removed the post-processing step in the estimation of the MVF parameter and thus
successfully modelled the unvoiced sounds with our continuous vocoder, which was
integrated into a HMM-TTS system. In [18], we successfully modelled all vocoder
parameters (continuous F0, MVF, and MGC) with feed-forward DNNs. The goal of
this paper is to extend modeling of our continuous vocoder parameters using RNN,
LSTM, BLSTM, and GRU models. Besides, noise components in voiced sounds are
parameterized and modeled to meet the requirements of high sound quality.

The rest of this paper is structured as follows: Sect. 2 describes the novel methods
we used for speech synthesis. Then, experimental conditions are showed in Sect. 3.
Evaluation and discussion are presented in Sect. 4. Finally, Sect. 5 concludes the
contributions of this paper.
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2 Methodology

2.1 Continuous Vocoder

For the current RNN-TTS experiments, the improved version of our continuous
vocoder was used [17]. During the analysis phase, F0 is calculated on the input
waveforms by the open-source implementation1 of a simple continuous pitch tracker
[15]. In regions of creaky voice and in case of unvoiced sounds or silences, this pitch
tracker interpolates F0 based on a linear dynamic system and Kalman smoothing. Next,
MVF is calculated from the speech signal using the MVF_Toolkit2, resulting in the
MVF parameter [16]. In the next step 60-order Mel-Generalized Cepstral analysis
(MGC) [19] is performed on the speech signal with alpha = 0.58 and gamma = 0. In
all steps, 5 ms frame shift is used. The results are the F0cont, MVF and the MGC
parameter streams. Finally, we perform Principal Component Analysis (PCA) on the
pitch synchronous residuals [14].

During the synthesis phase, voiced excitation is composed of PCA residuals
overlap-added pitch synchronously, depending on the continuous F0. After that, this
voiced excitation is lowpass filtered frame by frame at the frequency given by the MVF
parameter. In the frequencies higher than the actual value of MVF, white noise is used.
Voiced and unvoiced excitation is added together. Finally, an MGLSA filter is used to
synthesize speech [20].

2.1.1 Improved Version of Continuous Vocoder
In the standard continuous vocoder, there is a lack of voiced components in higher
frequencies. However, it was shown that in natural speech, the high-frequency noise
component is time-aligned with the pitch periods. For this reason, in a recent study, we
applied several time envelopes to shape the high-frequency noise excitation component
[21]. From the several envelopes investigated, the True envelope was found to be the
best. Therefore, this will be used in the current study.

The True Envelope (TE) algorithm starts with estimating the cepstrum and updating
it in such a way that the original spectrum signal and the current cepstral representation
is maximized [22]. To have an efficient real time implementation, [23] proposed a
concept of a discrete cepstrum which consists of a least mean square approximation,
and [24] added a regularization technique that aims to improve the smoothness of the
envelope. Here, the procedure for estimating the TE is shown in Fig. 1 in which the
cepstrum can be calculated as the inverse Fourier transform of the log magnitude
spectrum of the voiced frame. Moreover, TE with weighting factor will bring us a
unique time envelope which makes the convergence closer to natural speech. In
practice, the weight factor which was found to be the most successful is 10.

1 https://github.com/idiap/ssp.
2 http://tcts.fpms.ac.be/*drugman/files/MVF.zip.
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2.2 Acoustic Modeling

Figure 2 conceptually illustrates the main components of the continuous vocoder when
applied in RNN-based training. Textual and phonetic parameters are first converted to a
sequence of linguistic features as input, and neural networks are employed to predict
acoustic features as output for synthesizing speech. Because standard RNNs with
sigmoid activation function suffer from both vanishing gradients and exploding [10],
our goal is to present and evaluate the performance of recently proposed recurrent units
on sequence modeling for improved training of the continuous vocoder parameters.

2.2.1 Feedforward DNN (Baseline)
DNNs have become increasingly a common method for deep learning to achieve
state-of-the-art performance in real-world tasks [6, 8]. Simply, the input is used to
predict the output with multiple layers of hidden units, each of which performs a
non-linear function of the previous layer’s representation, and a linear activation
function is used at the output layer. In this paper, we use our baseline model [18] as a
DNN with feed-forward multilayer perceptron architecture. We applied a hyperbolic
tangent activation function whose outputs lie in the range (−1 to 1) which can yield
lower error rates and faster convergence than a logistic sigmoid function (0 to 1).

2.2.2 Recurrent NN
A more popular and effective acoustic model architecture is a version of the recurrent
neural networks (RNNs) which can process sequences of inputs and produces sequences
of outputs [13]. In particular, the RNN model is different from the DNN the following
way: the RNN operates not only on inputs (like the DNN) but also on network internal
states that are updated as a function of the entire input history. In this case, the recurrent
connections are able to map and remember information in the acoustic sequence, which
is important for speech signal processing to enhance prediction outputs.

2.2.3 Long Short-Term Memory
As originally proposed in and recently used for speech synthesis [25], long short-term
memory networks (LSTM) are a class of recurrent networks composed of units with a
particular structure to cope better with the vanishing gradient problems during training
and maintain potential long-distance dependencies [11]. This makes LSTM applicable
to learn from history in order to classify, process and predict time series. Unlike the
conventional recurrent unit which overwrites its content at each time step, LSTM have
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frame
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Spectrum

Weight IDFT True Envelope

update

Fig. 1. Procedures for estimating the true envelope
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a special memory cell with self-connections in the recurrent hidden layer to maintain its
states over time, and three gating units (input, forget, and output gates) which are used
to control the information flows in and out of the layer as well as when to forget and
recollect previous states.

2.2.4 Bidirectional LSTM
In a unidirectional RNN (URNN) only contextual information from past time instances
are taken into account, whereas a bidirectional RNN (BRNN) can access past and future
contexts by processing data in both directions [26]. BRNN can do this by separating
hidden layers into forward state sequence and backward state sequence. Combin-
ing BRNN with LSTM gives a bidirectional-LSTM (BLSTM) which can access long
range context in both input directions, and can be defined generally as in [12].

2.2.5 Gated Recurrent Unit
A slightly more simplified variation of the LSTM, the gated recurrent unit (GRU) ar-
chitecture was recently defined and found to achieve a better performance than LSTM
in some cases [13]. GRU has two gating units (update and reset gates) to modulate the
flow of data inside the unit but without having separate memory cells. The update gate
supports the GRU to capture long term dependencies like that of the forget gate in
LSTM. Moreover, because an output gate is not used in GRU, the total size of GRU
parameters is less than that of LSTM, which allow that GRU networks converge faster
and avoid overfitting.
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3 Experimental Conditions

3.1 Data

To measure the performance of the obtained model, the US English female
(SLT) speaker was chosen for the experiment from the CMU-ARCTIC database [27],
which consists of 1132 sentences. 90% of the sentences were used for training and the
rest was used for testing.

3.2 Network Topology and Training Settings

Neural network models used in this research were implemented in the Merlin open
source speech toolkit3 [25]. For simplicity, the same architecture is used in both
duration and acoustic models. Weights and biases were prepared with small nonzero
values, and optimized with stochastic gradient descent to minimize the mean squared
error between its predictions and acoustic features of the training set. The Speech
Signal Processing Toolkit [28] was used to apply the spectral enhancement. Delta and
delta-delta features were calculated for all the features. The input linguistic features
have min-max normalization, while output acoustic features have mean-variance nor-
malization. In general, the design configuration of current neural network model is
similar to those we have given in [18]. The training procedures were conducted on a
high performance NVidia Titan X GPU.

We trained a baseline DNN and four different recurrent neural network architec-
tures, each having either LSTM, BLSTM, GRU, or RNN. Each model has fairly the
same number of parameters, because the objective of these experiments is to compare
all four units equally in order to find out the best unit to model our continuous vocoder.
The systems we implemented are as follows:

• DNN: This system is our baseline approach [18] which uses 6 feed-forward hidden
layers; each one has 1024 hyperbolic tangent units.

• LSTM: 4 feed-forward hidden lower layers of 1024 hyperbolic tangent units each,
followed by a single LSTM hidden top layer with 512 units. This recurrent output
layer makes smooth transitions between sequential frames while the 4 bottom
feed-forward layers intended to act as feature extraction layers.

• BLSTM: Similar to the LSTM, but replacing the LSTM top layer with a BLSTM
layer of 512 units.

• GRU: Similar to the LSTM architecture, but replacing the top hidden layer with a
GRU layer of 512 units.

• RNN: Similar to the LSTM architecture, but replacing the top hidden layer with a
RNN layer of 512 units.

3 https://github.com/CSTR-Edinburgh/merlin.
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4 Evaluation and Discussion

In order to achieve our goals and to verify the effectiveness of the proposed method,
objective and subjective evaluations were carried out. We conducted two kinds of
experimental evaluations. In the first evaluation, we experimentally modeled our
continuous vocoder parameters in deep recurrent neural networks by systems given in
Sect. 3, and objectively verified. In the second evaluation, we tested them using a
subjective listening experiment.

4.1 Objective Evaluation

To get an objective picture of how these four RNN systems evaluate against the DNN
baseline using the continuous vocoder, the performance of these systems is evaluated
by calculating the overall validation error (as mean square error between valid and train
values per each iteration) for every training model. The test results for the baseline
DNN and the proposed recurrent networks are listed in Table 1. It is confirmed that all
parameters generated by the proposed systems presented smaller prediction errors than
those generated by the baseline system. More specifically, the BLSTM model can
achieve the best results and outperforms other network topologies.

4.2 Subjective Evaluation

In order to evaluate the perceptual quality of the proposed systems, we conducted a
web-based MUSHRA (MUlti-Stimulus test with Hidden Reference and Anchor) lis-
tening test [29]. We compared natural sentences with the synthesized sentences from the
baseline (DNN), proposed (RNN and BLSTM), and a benchmark system. From the four
proposed systems, we only included RNN and BLSTM, because in informal listening
we perceived only minor differences between the four variants of the sentences. The
benchmark type was the re-synthesis of the sentences with a standard pulse-noise
excitation vocoder. In the test, the listeners had to rate the naturalness of each stimulus
relative to the reference (which was the natural sentence), from 0 (highly unnatural) to
100 (highly natural). The utterances were presented in a randomized order.

11 participants (7 males, 4 females) with a mean age of 35 years, mostly with
engineering background were asked to conduct the online listening test. We evaluated
twelve sentences. On average, the test took 11 min to fill. The MUSHRA scores for all
the systems are showed in Fig. 3. According to the results, both recurrent networks

Table 1. The objective experimental results for the synthesized speech signal using continuous
vocoder

Systems Training validation error

DNN (baseline) 1.54
RNN 1.53
LSTM 1.53
BLSTM 1.52
GRU 1.53
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outperformed the DNN system (Mann-Whitney-Wilcoxon ranksum test, p < 0.05). It is
also found that the BLSTM system reached the best naturalness scores in the listening
test, consistent with objective errors reported above. However, the difference between
RNN and BLSTM is not statistically significant.

5 Conclusion

The goal of the work reported in this paper was to apply a Continuous vocoder in
recurrent neural network based speech synthesis to enhance the modeling of acoustic
features extracted from speech data. We have implemented four deep recurrent
architectures: LSTM, BLSTM, GRU, and RNN. Our evaluation focused on the task of
sequence modeling which was ignored in the conventional DNN. From both objective
and subjective evaluation metrics, experimental results demonstrated that our proposed
RNN models can improve the naturalness of the speech synthesized significantly over
our DNN baseline. These experimental results showed the potential of the recurrent
networks based approaches for SPSS. In particular, the BLSTM network achieves
better performance than others.

For future work, the authors plan to investigate other recurrent network architec-
tures to train and refine our continuous parameters. In addition, we will try to imple-
ment firstly a mixture density recurrent network and then combining this with
BLSTM-RNN based TTS.

Acknowledgements. The research was partly supported by the VUK (AAL-2014-1-183) and
the EUREKA/DANSPLAT projects. The Titan X GPU used for this research was donated by
NVIDIA Corporation. We would like to thank the subjects for participating in the listening test.

Fig. 3. Results of the MUSHRA listening test for the naturalness question. Error bars show the
bootstrapped 95% confidence intervals. The score for the reference (natural speech) is not
included
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Abstract. A new online echo canceller system was developed that per-
fectly works in the duplex mode and shows a good performance in the
conventional half-duplex mode. The near speech signal is not corrupted
in the duplex mode by the linear compensation procedures but degrades
significantly by nonlinear suppression. The conventional linear compen-
sation system is based on the LMS adaptation or its modifications that
do not provide a necessary high accuracy of a big number of the impulse
response coefficients. We have implemented the LS method for online
estimation of the full impulse response using the superfast Schur algo-
rithm for Toeplitz matrix inversion. Implementation details are impor-
tant. They include numerical accuracy, initialization, update criteria,
packet control. Good results of an echo compensation are shown on the
data from the Matlab Audio System Toolbox.

Keywords: Echo canceller · Numerical methods · LMS estimates ·
Superfast Schur algorithm

1 Introduction

The standard approach of the acoustic echo cancellation system design is based on
the least mean square algorithm (LMS) [1–3] and it’s modifications. It is a gradi-
ent type algorithm of estimation of the echo impulse response. This sequence can
be long and the convergence speed and accuracy appeared to be critical. They
essentially depend on the step of the numerical procedure. The normalized least
mean square algorithm (NLMS) determines the maximum value of this step.

The class of the affine projection (AP) algorithms has faster convergence rate,
especially for speech signals [4]. Similarly to the NLMS algorithm AP contains
the step-size parameter. But the weight vector update in the AP algorithms is
made by expanded data, by multiple, most recent input vectors. This increases
the convergence rate.

Another approach of adaptive-filtering algorithms for convergence accelera-
tion is presented by the class of the subband adaptive filtering (SAF) algorithms
[5–10]. In adaptive filtering in subbands, the input signal and the system out-
put signal are split into adjacent frequency subbands by analysis filter banks.
Then each subband signal is subsampled and the adaptive filtering algorithm is
applied. The subsampling leads to a greater computational efficiency than the
c© Springer International Publishing AG 2017
A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 292–301, 2017.
DOI: 10.1007/978-3-319-66429-3 28
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conventional full-band scheme. Also processing in separate subbands provides
better convergence speed than the LMS algorithm, since in each subband the
adaptation step size can be matched to the energy of the input signal in that
band. The early SAF algorithms suffer from structural problem, such as aliasing
and band-edge effects, because of the subsampling. Solutions to this problem
have been proposed, including spectral gaps between subbands, oversampling of
the filter banks, and adaptive cross-terms between the subbands. Today SAF
has a lot of modifications, such as NSAF algorithm, which was presented in
[9]. It improves the convergence speed but has almost the same computational
complexity as the NLMS algorithm. Also the set-membership NSAF algorithm
proposed in [4] which achieves fast convergence, low steady-state misalignment
and reduced computational complexity simultaneously.

A nonlinear system identification method for echo cancellation was presented
in [11]. Adaptation of the system was made using the Normalized Least Mean
Square algorithm. Algorithm combined the adaptive linear, Volterra and power
filters. Nonlinear models with adaptive Volterra kernels were implemented in
[12] using a new updating technique for unknown feedback paths identification
of a nonlinear echo reverberation system. A combination of adaptive linear,
Volterra and power filters was used and compared in [12] for Echo Return Loss
Enhancement in the second-order Volterra filter Normalized Least-Mean-Square
algorithm for kernel adaptation. The implemented system gives a superior con-
vergence speed.

The concept of stereophonic acoustic echo suppression (SAES) method with-
out preprocessing in a open-loop teleconferencing systems was proposed in [13]
where the Wiener filter in the short-time Fourier transform (STFT) domain is
used. Algorithm estimates the echo spectra from the stereo signals using two
weighting functions. The spectral modification technique originally proposed for
noise reduction is adopted to remove the echo from the microphone signal.

A framework for the echo canceller design of full-duplex communication sys-
tems was presented in [14] for the case of discrete multi-tone (DMT) modulation
system in an arbitrary mixed domain. This is achieved by introducing a generic
decomposition of the Toeplitz data matrix at the transmitter in terms of arbi-
trary unitary matrices. It is shown that this canceller has a faster convergence
rate than other cancellers with similar complexity and is more robust.

The well known lack of the open audio communication systems like Skype or
Web RTC is their failure in the full duplex mode. In fact, they support the half-
duplex mode only. This means the following. If two persons talk and at each time
instant only one or nobody is speaking (half-duplex) then communication does
not meet problems. But if they speak simultaneously then the system decides
which voice will be transmitted. One of the speakers “captures” the channel.
His voice is transmitted normally but the voice of his partner will be blocked.
This situation can be lasted until pause of the transmitted speech signal, and
after that the talkers can change the roles. Everybody can verify this effect by
putting a talk experiment as it is described in [15]. We have done it and our
simultaneous talk together failed as it was expected.
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The reason of the duplex failure is the strong nonlinear echo suppression after
the standard linear compensation.

Let (xt) be the far signal which is received from the network and goes to
the loudspeaker. Let h = (hk)L−1

k=0 be the echo impulse response and (zt) be the
sound signal of a speaker near the computer. Then the microphone receives the
signal

yt = zt + ye
t + nt, ye

t =
L−1∑

k=0

hkxt−k

where ye
t is echo, nt is the noise. Both signals xt and yt are known. If ĥ = (ĥk)L−1

k=0

is the estimate of the echo impulse response then the result of the linear echo
canceller is

z�
t = yt − ŷe

t , ŷe
t =

L−1∑

k=0

ĥkxt−k.

The echo compensation error is δt = ye
t − ŷe

t .
With a fixed ĥ there is no difference in accuracy |δt| between the full duplex

and half-duplex mode (with zt = 0).
If linear compensation does not provide necessary level of residual echo then

further nonlinear suppression of the signal z�
t is implemented in the frequency

domain. The details can be found, for instance, in the description of the Web
RTC echo canceller system [16]. The duplex mode is actually rejected at this
step. Thus, the crucial condition for the duplex audio communication is the high
performance of the linear echo compensation.

2 Estimation of the Echo Impulse Response

Assume a time interval t ∈ [1, T ] is chosen where there is no near speech, zt = 0.
For any time instant t denote the current estimate of the echo impulse response
by ĥt = (ĥk,t)L−1

k=0 . The current output error is

δt = yt −
L−1∑

k=0

ĥk,txt−k, 1 ≤ t ≤ T.

In accordance with the standard LMS method the update procedure is

ĥk,t+1 = ĥk,t + αδtxt−k, 0 ≤ k ≤ L − 1, 1 ≤ t ≤ T.

where the step α > 0 is the important parameter of the algorithm.
The main problem of this simple estimator is a very slow convergence. The

estimator quickly answers to any change of the reverberation conditions. But it
takes too many steps to obtain perfect accuracy of coefficients ĥk,t ≈ hk. The
reason is a high dimension of the estimated array and the actual independence
of its components. An example of the echo impulse response measured to a high
accuracy in a small room is shown in Fig. 1.
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Fig. 1. An example of the real echo impulse response. The sample rate is 16 kHz

We propose an another procedure of the impulse response estimation based
on the global LS.

Define the cost function

J(ĥ) =
1
T

T∑

t=1

∣∣∣∣∣yt −
L−1∑

k=0

ĥkxt−k

∣∣∣∣∣

2

→ min
̂h

The main problem of this approach is the numerical inversion of the square
matrix of a big dimension in real time:

ĥopt = R−1Y

where R = (Ri,j)L−1
i,j=0, Y = (Yi)L−1

i=0 ,

Ri,j =
T∑

t=1

xt−ixt−j , Yi =
T∑

t=1

xt−iyt.

The matrix R is symmetric and Toeplitz. We have implemented the superfast
Schur algorithm for its inversion [17]. A benefit of this approach is a direct and
exact calculation of a full impulse response at once.

In our room test experiments the echo impulse response updates 5–10 times
per second in average. The estimates obtained from completely different input
data appeared to be similar. Figure 2 shows the estimates of the impulse response
during 3 s and the standard deviations of each coefficient. Accuracy of the LS esti-
mator is much better than accuracy of any gradient procedure. No convergence
problem occurs, the problems move to algorithm details and implementation.
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Fig. 2. Estimates of the impulse response obtained during 3 s (left) and their standard
deviations (right)

3 Implementation Details

The impulse response estimation procedure ignores time intervals with a near
speech. Hence, it must detect time intervals with the far speech only for the
impulse response estimation. This is done by the value of the function J(ĥ) with
the current estimate ĥ which is small when there is no near speech signal and
the estimate ĥ is sufficiently good.

The matrix R and the vector Y are calculated online before the decision
about the near speech is made. Since their elements are convolutions this does
not take many resources.

An initialization procedure is a special task. At the beginning no estimate
ĥ is available and a detection of the first interval without near speech is made
separately.

Any estimate of an impulse response is constructed by a far speech signal
on some time interval. The spectral content of the signal reflects an accuracy of
the estimate. Therefore, a number of the last successful estimates are averaged.
An new estimate ĥopt is determined to be successful by the value of the same
cost function J(ĥopt). If reverberation conditions essentially change then the
estimates become unsuccessful and the initialization procedure starts.

An accuracy of both the estimate ĥ and the cost function J(ĥ) is very impor-
tant for a correct work of the system. It is well known that the superfast Schur
algorithm may be numerically unstable. We implement a regularization with the
3% increase of the diagonal element of the inverted Toeplitz matrix. This does
not degrade significantly an estimate but prevents a singularity. The advanced
methods of a regularization are based on the preconditioning [19,20].

A synchronization of the stream (xt) that is sent to the loudspeaker and the
stream (yt) received by the microphone is crucial at the stage of the impulse
response estimation. This requires a very accurate interaction with the buffers
of the loudspeaker and the microphone. If an overflow or an underflow appears
then it is detected and delays are corrected.

Finally, the developed AEC system contains both linear and nonlinear com-
pensation parts. The nonlinear processing is based on a slight suppression by
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smoothed residuals in the frequency domain. The nonlinear part is optional and
is expected to be adaptive in the future since the linear compensation is strong.

4 Evaluation

The input data for the test described on this Section were taken from the Matlab
Audio System Toolbox [18].

The far speech signal and the near speech signal are shown in Fig. 3. Obvi-
ously, there is a full duplex in the end of the talk. There are also a couple of
pauses.
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Fig. 3. Far speech (up) and near speech (bottom) signals. Time is graduated in samples.
The sample rate is 16 kHz

The echo impulse response is fixed in the Toolbox [18] and is shown in Fig. 4.
The microphone input is a sum of the near speech signal and the filtered far
speech signal. It is shown in Fig. 5. The task of the AEC system is a suppression
of the part of this signal which is the filtered far speech signal.

This microphone input signal was processed by our echo canceller system.
First, the nonlinear part was switched off and the linear compensation was work-
ing only.
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Fig. 4. The room impulse response

The result of the work of the linear part of our echo compensation system is
shown in Fig. 6. The near speech signal is marked by “near”, the system output
is marked by “out”. Their difference marked by “err” is the system error that
includes the residual echo signal and a partially suppressed near speech signal.

The initial estimate of the full impulse response was obtained at the first
suitable time interval around the sample 104. The far speech signal on this
interval is short and its spectrum may not be rich. The initial estimate was
used to suppress the echo from the far signal until the sample 260000 when the
first update of the impulse response estimate was made. There are many voiced
intervals of the far speech signal that can be seen in Fig. 3 (up).
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Fig. 5. The microphone input

Totally 8 updates of the full impulse response were made. The last one was
obtained on the interval [501120, 506088] samples. The estimates were averaged.

The near speech signal is not corrupted because it the linear compensation
algorithm is completely not sensitive to them.
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The last part of the sample 520000 is the full duplex conversation. The near
speech signal did not change as it should be. The error is equal exactly to the
residual echo. It is relatively small with respect to the speech intelligibility.
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Fig. 6. Result of the linear compensation. Near speech (“near”), EC output (“out”),
their difference(“err”)

The result of the work of the full echo compensation system including the
nonlinear part is shown in Fig. 7. The near speech signal is marked by “near”,
the system output is marked by “out”, and their difference is marked by “err”.
As it was expected a compensation of the far signal in pauses is better but the
near speech signal is partially corrupted especially in the duplex mode.
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Fig. 7. Result of the nonlinear compensation. Near speech (“near”), EC output (“out”),
their difference(“err”)
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5 Conclusion

The conventional echo canceller systems do not work properly in the duplex mode
but in the half-duplex only. Duplex is not corrupted by the linear compensation
procedures but it is very sensitive to nonlinear suppression. The conventional
linear compensation system is based on the LMS adaptation or its modifications.
These gradient type algorithm require a long time interval to provide a necessary
high accuracy of a big number of the impulse response coefficients. In practice,
the accuracy is not achieved that requires an aggressive nonlinear postfilter with
a strong suppression. We have implemented the LS method for online estimation
of the full impulse response. It is well known that the LS estimates are much more
precise than estimates from gradient algorithms. The numerical problem of a very
high dimension matrix inversion was solved by the superfast Schur algorithm for
Toeplitz matrix inversion. Then the main problems moved to other sensitive
parts of the algorithm and to the interaction with buffers of the microphone
and of the loudspeaker. The initialization procedure and the update criteria
for the impulse response estimate were implemented on the basis of the same
LS approach. The developed echo canceller has shown good performance in the
standard half-duplex mode and it perfectly works in the duplex mode.

In the future, the spectral content of the input signal should be taken into
account to obtain a uniform spectral accuracy of the reverberation transfer func-
tion during averaging particular estimates.
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Abstract. The automatic detection of seven types of modifiers was
studied: Certainty, Uncertainty, Hypotheticality, Prediction, Recommen-
dation, Concession/Contrast and Source. A classifier aimed at detect-
ing local cue words that signal the categories was the most successful
method for five of the categories. For Prediction and Hypotheticality,
however, better results were obtained with a classifier trained on tokens
and bigrams present in the entire sentence. Unsupervised cluster fea-
tures were shown useful for the categories Source and Uncertainty, when
a subset of the training data available was used. However, when all of
the 2,095 sentences that had been actively selected and manually anno-
tated were used as training data, the cluster features had a very limited
effect. Some of the classification errors made by the models would be
possible to avoid by extending the training data set, while other features
and feature representations, as well as the incorporation of pragmatic
knowledge, would be required for other error types.

Keywords: Stance modifiers · Sentiment modifiers · Active learning ·
Unsupervised features · Sesource-aware natural language processing

1 Introduction

Stance detection and sentiment analysis are typically modelled as binary classi-
fication tasks within the field of natural language processing. That is, authors
express stance by positioning themselves as for or against a given target or topic,
or sentiment by giving a positive or negative opinion [11]. It has, however, been
argued that this simple, binary model does not capture the full complexity of the
language used for expressing stance and opinions [6]. Instead, authors employ
a wide range of modifiers in their opinionated language. The first aim of this
study is to investigate the automatic detection of seven types of such modifiers.

Many classification tasks within natural language processing rely on a large
set of manually annotated training samples. However, in the cases when large
training sets are not available, resource-aware methods must instead be relied
upon. Active learning is one such resource-aware method that has previously
c© Springer International Publishing AG 2017
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been shown successful for detecting language modifiers. The method is built on
the idea to reduce the number of training samples required by actively selecting
useful samples. Using a previously applied active learning approach as a baseline,
the second aim of this study is to investigate two methods with a potential to
improve this approach: (i) to provide annotations with a higher granularity and
(ii) to incorporate machine learning features derived in an unsupervised fashion.1

2 Background

Based on previous research [6], we study seven types of possible ways in which
the categories positive/negative sentiment or stance for/against can be modified.

Certainty and Uncertainty are epistemic modifiers, which in the context of
sentiment and stance taking might also give information about the strength
with which an opinion is expressed. The following three evaluations would all
be classified as positive: “The arguments are irrefutable and readers will defi-
nitely enjoy the trip back in time”, “The arguments are accurate and readers
will enjoy the trip back in time”, and “The arguments seem accurate and readers
might enjoy the trip back in time”. Still, given their different values on the Cer-
tainty/Neutral/Uncertainty scale, they all convey a slightly different message.

The modifiers Hypotheticality, Recommendation and Prediction indicate that
an expression is not necessarily true at the moment at which it is expressed. For
instance, the Hypotheticality in “If it had been less complicated, it would have
been good” makes it into an expression of negative sentiment, despite containing
“good”. “A good film should never be too complicated” could, on the surface,
be a positive or neutral expression. However, since it is a Recommendation, it is
likely to rather have been primed by a negative opinion. Finally, “Her next film
will be the best ever made”, expresses positive sentiment without any indications
of uncertainty, but since it is a Prediction, the author is likely to be less certain
of this opinion, than had it been about a film that already had been made.

That an expression contains Concession/Contrast typically indicates that
opinions of different polarities are expressed, e.g., “I enjoyed reading this book,
but parts of it were boring”. The occurrence of a contrast affects the overall
opinion conveyed, i.e., the overall opinion is not likely to be unequivocally posi-
tive or negative. Finally, if an expression contains a statement of its Source, this
also modifies how an opinion should be interpreted. That is, the existence of a
source indicates that the opinion expressed is not necessarily the opinion of the
author, e.g., “According to the guide book, this is the best restaurant in town”.

We are only aware of one previous study in which resource-aware approaches
have been applied for detecting stance and sentiment modifiers [14]. By sim-
ulating active learning, that study showed that active sampling outperformed
random sampling of training data for categories that closely resemble Uncer-
tainty, Hypotheticality and Concession/Contrast. We therefore here apply the
1 We are very grateful to the Swedish Research Council (framework grant “the Dig-

itized Society – Past, Present, and Future” with No. 2012-5659), to Tom Sköld for
data annotation and to Kostiantyn Kucher for annotation tool construction.
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same successful active learning method as our baseline method. In contrast to
the previous study, we do not simulate active learning, but use it as the real
sampling method for creating our training corpus. We also apply the method to
a wider range of modifier categories than in the previous study, and we evaluate
the effect of extending the method with additional resource-aware techniques.

3 Method

The baseline active learning method was compared to two extensions (i) to add
more granular annotations and (ii) to use features from unlabelled data. A pre-
viously constructed gold standard corpus, in which the seven categories studied
here had been (doubly) annotated [6] was used as evaluation data. This gold
standard corpus consisted of opinionated texts in the form of political blogs on
the topic of Brexit. The same procedure that had been used for creating this
gold standard corpus was applied to create a large pool of data to use in the
process of active selection of the training samples that were annotated in the
present study. That is, documents from URL:s that started with the word blog
and that contained expressions related to Brexit were downloaded. Boilerplate
text, non-English text and HTML code were then removed using jusText, and
the text was segmented into sentences with the standard sentence segmentation
technique included in NLTK [2]. It was also ensured that no duplicates from the
gold standard were included in the pool of unlabelled data. The annotation of
the actively selected sentences was performed with an annotation tool [9] specif-
ically designed for this task. Sentences selected for annotation were presented to
the annotator, who classified them according to the seven modifying categories
included in the study. Annotation was conducted on the basis of a sentence, with
respect to whether the sentence included a modifier (one or more) or not. One
sentence at a time, without context, was presented for annotation. The annota-
tor could also mark a sentence as irrelevant if it was a result of a pre-processing
error (e.g., boiler plate texts or incomplete sentences). All annotations were per-
formed in an entirely topic-independent fashion. That is, a sentence was, for
instance, classified as Uncertain if it contained uncertainty in general, regardless
of whether this uncertainty was targeted towards a statement related to Brexit.

The active sampling of training data was performed according to the active
learning method that had previously been shown successful for modifiers [14].
That is, the training samples that were estimated to be most useful for a support
vector machine classifier were actively selected for annotation from the pool of
unlabelled data. The estimation was based on the standard method of select-
ing the unlabelled sample closest to the separating hyperplane of the classifier
[16]. The Scikit-learn [12] SVC class with a linear kernel was used for imple-
menting the data selection. A separate binary SVM model was trained for each
of the seven categories, using unigrams and bigrams as features and the same
classifier settings that had previously been shown successful for detecting mod-
ifiers [14]. A previously constructed vocabulary with 20 terms signalling each of
the modifying categories studied was used for creating the seed set required to
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start the active learning process. Three corpus sentences containing each one of
these vocabulary terms were selected from the pool of unlabelled data to form a
seed set. The annotator first annotated the sentences in the seed set. Thereafter,
active learning was applied to select the five most useful unlabelled sentences for
each one of the seven categories. These sentences were then manually annotated,
and, thereafter, the models were retrained, also including these newly annotated
sentences. This process was then repeated, until 2,095 actively selected sentences
had been annotated to form the training set. Results achieved when evaluating
the SVM classifier on the gold standard corpus were used as the baseline results.

3.1 Adding Annotations with a Higher Granularity

We hypothesised that the categories studied are mainly expressed by local cue
words, and that it would therefore not be optimal to model the task as the text
classification task based on sentence-level occurrences of unigrams and bigrams
that was used in the training data selection process. Instead, we hypothesised
that the task would be more suitable to model as a chunk detection task, with
the aim of detecting chunks that function as cue words for the categories stud-
ied. A second round of annotation was therefore performed on the training data,
in which annotations on a more granular level were provided, on a token-level
instead of on a sentence-level. That is, the tokens signalling the modifying cat-
egories were marked, using the Brat annotation tool [15].

A classifier was, thereafter, trained to detect tokens/chunks signalling the
modifying category in question. For evaluation, the detected chunks were, how-
ever, transformed back to a text classification format, in order to match the
format of the sentence-level annotations of the gold standard. That is, if the
classifier marked a token/text chunk as signalling a modifier category, the sen-
tence containing the token/chunk was classified as belonging to that category.
As classifier, Scikit-learn’s LogisticRegression classifier was used. The choice was
based on an external requirement to provide classifications with easily inter-
pretable confidence estimates, which would not be provided by, e.g., an SVM
or a rule/lexicon-based classifier. The token to be classified, as well as the two
tokens immediately preceding and the one following it were used as features. To
limit the dimensionality of the feature vectors created, a minimum of three occur-
rences in the training data was required for a neighbouring token to be included
as a feature, while a minimum of three occurrences in the entire pool of unla-
belled data was required for the current token. A suitable value for the logistic
regression regularisation parameter was determined by 30-fold cross-validation
on the training data.

Similar to previous studies [10], information derived from a large, unlabelled
corpus was also incorporated as features. This was achieved by applying the Gen-
sim library [13], through which semantic vectors in the form of word embeddings
from an out-of-the-box word2vec model trained on Google news2 are provided.

2 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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Semantic vectors corresponding to the words in the training corpus were clus-
tered using dbscan clustering [5], and each of the n clusters created were given a
unique representation in the form of a cluster representation vector of length n.
That is, all vector elements were set to 0, except the one element that represented
the cluster, which was set to 1. The cluster information was incorporated in the
feature representation for a token by (i) determining which cluster was closest
to the semantic vector that corresponds to the token (measured through the
Euclidean distance between the semantic vector and the cluster centroids), and
(ii) concatenating the cluster representation vector of this cluster to the feature
representation for the token. A maximum Euclidean distance of 0.8 between two
semantic vectors in the same cluster was allowed when performing the dbscan
clustering. This distance was determined by manually inspecting the semantic
coherence in a subset of created clusters, for different distances.

4 Results and Discussion

Models using the three methods investigated were trained on two versions of
the training corpus, after 1,525 actively selected sentences had been annotated
and after 2,095 actively selected sentences had been annotated. F-scores obtained
when evaluating these models against the gold standard are presented in Table 1,
and precision and recall are presented in Fig. 1.

The hypothesis that a chunk detection model would be most suitable seems
to hold for five of the categories. For Hypotheticality and Prediction, however, the
sentence-level classifiers performed better. The general trend (with the exception
of Certainty) was that the baseline method resulted in a better recall, while
better precision was shown by the other two methods investigated. When only
1,525 training data samples were used, the cluster features had (i) a relatively
large positive effect on the Source category and (ii) a small positive effect on the
Uncertainty category. The effects of incorporating cluster features were, however,
very limited when all data available was used.

Regardless of which method was used, only the results for the best-performing
classifier, Concession/Contrast, were close to the annotator agreement. Results
for the best performing chunk-level models were, therefore, analysed to identify
frequent reasons for false negatives, i.e., when the classifier failed to detect the
category in question, and false positives, i.e., sentences incorrectly classified as
belonging to the category in question. Table 2 lists typical challenges to the
classifiers (referred to as Ex. 1.1–16.5 in the following paragraphs).

In sentences annotated according to the category Uncertainty, there
were eight frequently used words, including “think”, “should” and “would”
that caused classification problems (Ex. 1.1–8.2). These words occurred in
76%/75%/59% of the true positives/false negatives/false positives, respectively.
Whether these words function as cues for uncertainty can, sometimes, be deter-
mined by the words in their context. As many of the examples illustrate, how-
ever, pragmatic knowledge is often required to determine what they indicate, i.e.,
knowledge that is not possible to capture without using vast resources of anno-
tated data. Some of these words were also frequently used in sentences classified



Detection of Stance and Sentiment Modifiers in Political Blogs 307

0  0.2  0.4  0.6  0.8  1

Concession/Contrast

0  0.2  0.4  0.6  0.8  1

Concession/Contrast

0  0.2  0.4  0.6  0.8  1

Prediction

0  0.2  0.4  0.6  0.8  1

Prediction
0  0.2  0.4  0.6  0.8  1

Certainty

0  0.2  0.4  0.6  0.8  1

Certainty

0  0.2  0.4  0.6  0.8  1

Recommendation

0  0.2  0.4  0.6  0.8  1

Recommendation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Uncertainty

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Uncertainty

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Hypotheticality

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Hypotheticality

Pr
ec

is
io

n
Pr

ec
is

io
n

RecallRecall

Pr
ec

is
io

n
Pr

ec
is

io
n

RecallRecall

Pr
ec

is
io

n
Pr

ec
is

io
n

RecallRecall

Pr
ec

is
io

n
Pr

ec
is

io
n

RecallRecall
Pr

ec
is

io
n

Pr
ec

is
io

n

RecallRecall

Pr
ec

is
io

n
Pr

ec
is

io
n

RecallRecall

Granular

Baseline

Clustering

0  0.2  0.4  0.6  0.8  1

Source

0  0.2  0.4  0.6  0.8  1

Source

Pr
ec

is
io

n
Pr

ec
is

io
n

RecallRecall

Fig. 1. Precision and recall when using a training set of 2,095 sentences. The error bars
show the 95% confidence interval for the results [3, pp. 91–92, 94–96]

Table 1. F-scores for the three methods investigated, when using 1,525 sentences and
2,095 sentences to train the classifiers, respectively. Best results for each data size
are shown in bold. F-scores for the intra-annotator agreement are provided with a
relatively low confidence (as they were calculated on half of the gold standard corpus)
and no point estimates are, therefore, given. Instead, confidence intervals (95%) were
computed with a bootstrap resampling approach [7], using the 2.5/97.5 percentiles
of 10,000 bootstrapping folds. Category frequency is the percentage of sentences that
contain the category in question (in the gold standard/after 1,525 training sentences
had been annotated/after 2,095 training sentences had been annotated)

F-score

1,525 training instances
F-score

2,095 training instances
F-score

intra-annotator
Category
frequency

Baseline Granular Cluster Baseline Granular Cluster (Min – Max) (%)

Uncertainty 0.53 0.59 0.63 0.56 0.61 0.60 0.74 – 0.87 10/14/14

Certainty 0.29 0.50 0.52 0.36 0.48 0.48 0.55 – 0.78 4/7/6

Conc./Contrast 0.52 0.66 0.65 0.54 0.67 0.65 0.71 – 0.81 17/21/20

Hypotheticality 0.65 0.60 0.59 0.66 0.60 0.61 0.72 – 0.86 8/13/13

Recommend 0.48 0.60 0.57 0.51 0.55 0.57 0.72 – 0.85 10/14/13

Prediction 0.50 0.44 0.48 0.54 0.44 0.46 0.73 – 0.84 12/14/15

Source 0.35 0.34 0.42 0.35 0.37 0.39 0.66 – 0.79 14/14/17

F-score, previous studies

Speculation 0.92 (10-fold cross validation on 17,263 sentences [4])

Speculation 0.89 (500 actively selected sentences [14])

Conc./Contrast 0.56 (500 actively selected sentences [14])

Hypotheticality 0.73 (500 actively selected sentences [14])

(Speculation corresponds to Uncertainty ∪ Hypotheticality)
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Table 2. Examples of sentences that might be challenging to a classifier. B (for Brexit)
means annotated in this study and K means annotated by Konstantinova et al. [8]

Sentences containing difficult expressions (and their classifications)

B 1.1 “I think you are from a well to do family ...” (Uncertainty)

B 1.2 “I think it’s a slap in the face to anyone who has experienced ...” (opinion)

K 1.3 “I don’t think it’s too bad for a cordless phone.”(Speculation in [8], but opinion here)

K 1.4 “I think it makes the phone look less modern.”(Speculation in [8], but opinion here)

B 2.1 “... events should make it difficult for Camerlot ...” (Uncertainty/Prediction)

B 2.2 “Should they not win a constituency vote I don’t want to risk ... ” (Hypotheticality)

B 2.3 “People should vote on the basis of a citizen’s duty ... ” (Recommendation)

K 2.4 “P. should really consider adding this ... ” (Speculation in [8], Recommendation here)

B 3.1 “This could provide Washington with more flexibility ... ” (Uncertainty)

B 3.2 “If an officer was on parade such language could not be used. (Hypotheticality)

B 3.3 “... because it was during a campaign they could not ignore it. ” (past tense of can)

K 3.4 “It went by so fast you could barely tell what he was saying.” (Speculation in [8])

B 4.1 “... even these pro - EU industries might see benefits from exit ... ” (Uncertainty)

B 4.2 “Brexit might be another turning point ...” (Prediction/Uncertainty)

B 4.3 “... If the dates are extended sufficiently then it might be worth it.” (Hypotheticality)

B 5.1 “... it looked like Iain Gray would be FM.” (Uncertainty)

B 5.2 “... more integrated capital markets would tie things together better.” (Hypotheticality)

B 6.1 “Be that as it may, we finally did join the European Union in January 1973.”

B 6.2 “Granted, his party may commit regicide in the process.” (Uncertainty)

B 7.1 “ ... being elected seems to be about reconciling the unreconcilable. (Source)

B 7.2 “ ... international cooperation seems to have lost its way ... ” (Uncertainty)

B 8.1 “In this fall he appeared to hurt his leg ... (Source)

B 8.2 “Capitalism doesn’t appear to work without someone losing out.” (Uncertainty)

B 9.1 “It is vanishingly unlikely ... ”/“It is inconceivable that ...” (Certainty)

B 10.1 “I asked a man if he knew the way.” (indirect question)

B 10.2 “There will be no going back if we decide to leave” (Hypotheticality)

B 10.3 “There’d be no residue of benefit – even if that were possible.” (Hypotheticality)

B 10.4 “I listen carefully to what is being said even if I don’t agree.” (Conc./Contrast)

B 11.1 “The referendum has triggered the eurogroups need for additional safeguards”

B 11.2 “What we actually need is a manifesto that provides detail” (Recommendation)

B 12.1 “I can’t see him winning by putting his foot in his mouth.” (Prediction)

B 12.2 “I could see that many of the trees in his orchard bore the scars ...” (Source)

B 13.1 “But it is not the funding side of Greek banks that is the real problem.” (no contrast)

Sentences containing antithesis without a contrast marker

B 14.1 “Public schools in Barcelona teach in Catalan, not Spanish.” (Conc./Contrast)

B 14.2 “Germany has not searched our mails as have the British.” (Conc./Contrast)

B 14.3 “... any other author, alive or deceased” (Conc./Contrast)

B 14.4 “Having heavily lost the referendum, their vote soared to over 49% ...” (Conc./Contrast)

Sentences categorised as Source (the source in italics and the marker in bold)

B 15.1 “Nigel Farage, the ’Saviour of British Sovereignty’, whilst knowing this, insists that ..”

B 15.2 “Statistics also show, that despite or because of the NHS, no one gets out of here alive!”

B 15.3 ”Most opinion polls have Ukip, which has 11 MEPs ..“

Sentences using a number of isolated markers to express Prediction (markers in bold)

B 16.1 “... the possibility that the Government’s policies could harm growth ...”

B 16.2 “The situation is moving too fast now for a controllable outcome.”

B 16.3 “Greece may experience rapidly accelerating inflation.”

B 16.4 “I think the early 2020s are the best bet.”

B 16.5 “I don’t think this can last.”
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into Hypotheticality (“could”, “would”, “should” or “might” occurred in 89% of
the false negatives and 66% of the false positives for Hypotheticality). This might
have caused additional difficulties for the classifiers, and might be the reason why
the baseline classifier, which used cues from the entire sentence, outperformed
the chunk-based one for the category Hypotheticality. Many previous studies (for
instance [4,8,14], but not [17]) have (i) grouped Hypotheticality and Uncertainty
into one category, and (ii) treated, e.g., “think”/“should”/“could” as markers
for Uncertainty regardless of the pragmatics (Ex. 1.3/1.4/2.4/3.4), which might
explain why lower results were achieved here than in previous studies (Table 1).

For the category Certainty, 24% of the false negatives included either one of
the words “clear” or “sure”, and there were also other expressions, for which it is
dependent on the context whether they signal Certainty, e.g., “of course”. The
classifier, however, also failed to detect many evident cues for Certainty, e.g.,
“definitely” and some (but not all) modified uncertainty cues, e.g., “without
doubt” and “too plausible”. There were also confusions between Certainty and
Uncertainty, for cases that might be equally challenging for a human (Ex. 9.1).

For 13% of the false negatives for Concession/Contrast, an expression of
contrast started the sentence. This might be explained by that contrast mark-
ers often start a sentence without signalling contrast (Ex. 13.1). The expressions
“even if”, “yet”, “and then” caused another 10% of the false negatives (Ex. 10.3,
10.4), while 20% contained more univocal contrast markers, e.g., “compared
with”. Most false negatives did, however, not contain an explicit contrast marker,
but expressed antithesis [1], e.g., by applying negations or antonyms (Ex. 14.1–
14.4). These constructions are impossible to detect by the models applied here,
but more complex approaches would be required, e.g., approaches built on exter-
nal semantic resources that model semantic relations between words.

For Source, 17% of the false negatives and 26% of the false positives contained
versions of the ambiguous expressions “appear”, “seem” or “see” (Ex. 7.1–8.2).
75% of the remaining false negatives contained a clear cue that indicated the
existence of a source, e.g., “show” or “insists” (Ex. 15.1,15.2). In only a few cases
was the source mentioned without a marker (Ex. 15.3). There was, however, a
large variation in what cues were used, which might explain the low results.
Sometimes there was also a distance of many tokens between the cue and the
actual source (Ex. 15.1), which indicates that information from a parser might
be useful for constructing features for this category. As the source of information
often consists of names, the output from a named entity recogniser might also be
useful. Among false positives, there were many examples where the model had
learnt to detect typical cues for a source, but had not learnt in which contexts
it functions as a cue for Source. For instance, “report” in “The IMF is leaking
a report ...”. This indicates that more training data, which would allow more
examples of context, would be required in order to improve the Source-classifier.

Modifiers expressed by someone else than the author were not counted as
belonging to that modifying category. E.g., “The US suspect Iran of ...” should
not be classified as Uncertainty, since the uncertainty is expressed by someone
else than the author. This was a general source of false positives, which shows the
need for a high-performing Source-classifier for improving the other classifiers.
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The model learnt for Recommendation did not reflect the complexity with
which the category was expressed. 79% of the true positives and 61% of the
false positives contained versions of “should”/“must”/“need”/“have to” (Ex. 2.3,
11.1–11.2). These expressions were, however, only present in 30% of the false
negatives. Among the rest of the false negatives, around half contained specific
expressions that mark recommendation, e.g., “let’s”, “I urge” and “I suggest”,
while the rest were recommendations expressed by an imperative verb, e.g., “Stop
using it” and “Count me out”. Using the same features and a larger training
data set might lead to that more of the recommendation-specific expressions
will be detected. Features that include part-of-speech tagging might, however,
be required for detecting recommendations expressed by an imperative verb.

The model learnt for Prediction seems to be even less complex, with 86% of the
true positives and 56% of false positives that contained versions of “will”/“going
to”. There is, however, a potential for a large complexity of a good model, since
the same frequency among false negatives was 33%, and there was a large variety
in how predictions were expressed. Contrary to the other categories that were typ-
ically expressed by isolated chunks in the sentence, Prediction was often expressed
using several different cues that would all be required for the reader (and thereby
the model) to understand that the sentence contained a prediction. This difference
(Ex. 16.1–16.5) is likely to be the reason why the sentence-level baseline classifier
outperformed the chunk-based one for Prediction.

Future work includes an incorporation of some of the types of features sug-
gested here, as well as a further expansion of the training data. It would also be
possible to combine the two approaches evaluated here, by applying the output
of a chunk-based classifier as features for training the sentence-level classifier.

5 Conclusion

We hypothesised that stance and sentiment modifiers are mainly expressed by
local cue words, and that detection of such modifiers therefore is most suitable
to model as a chunk detection task, with the aim of detecting these cue words.
This hypothesis held true for five of the categories studied, but for Prediction
and Hypotheticality, better results were obtained with a sentence-level classifier
trained on tokens and bigrams present in the entire sentence. Cluster features
derived in an unsupervised fashion were useful for the categories Source and
Uncertainty when a subset of the training data available was used. When all
data available (2,095 actively selected sentences) was used, however, the effects
of incorporating cluster features were very limited. The analysis showed that
some types of classifier errors might be avoided by providing more training data,
and thereby more examples of cue words and contexts that could determine
whether potential cue words signal the categories investigated. For other types
of errors, however, other features and feature representations than the ones used
here might be required. Yet other types of errors would only be possible to avoid
by taking on the difficult task of incorporating pragmatic knowledge.
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Abstract. In this paper, a system for digits to words conversion for
almost all Slavic languages is proposed. This system was developed for
improvement of text corpora which we are using for building of a lexicon
or for training of language models and acoustic models in the task of
Large Vocabulary Continuous Speech Recognition (LVCSR). Strings of
digits, some other special characters (%, e, $, . . . ) or abbreviations of
physical units (km, m, cm, kg, l, ◦C, etc.) occur very often in our text
corpora. It is in about 5% cases. The strings of digits or special characters
are usually omitted if a lexicon is being built or if the language model is
being trained. The task of digits to words conversion in non-inflected lan-
guages (e.g. English) is solved by relatively simple conversion or lookup
table. The problem is more complex in inflected Slavic languages. The
string of digits can be converted into several different word combinations.
It depends on the context and resulting words are inflected by gender or
cases. The main goal of this research was to find the rules (patterns) for
conversion of string of digits into words for Slavic languages. The second
goal was to unify this patterns over Slavic languages and to integrate
them to the universal system for digits to words conversion.

Keywords: Digits to words converter · LVCSR · Text processing

1 Introduction

Systems of automatic processing, recognition and synthesis of audio speech sig-
nal are practically used in many research areas at the present (2017) [1,2]. They
are mainly systems for voice dictation to PC, voice controlled PC tools, voice-
interactive dialogue systems, automatic broadcast programs transcription sys-
tems, text-to-speech synthesis systems, etc. There has been noticeable progress
also while recognizing the speech of inflected languages, where the form or
ending of some words changes because of nouns’ declination, verbs’ conjuga-
tion and adjectives’ or adverbs’ escalation. Slavic languages belong among these
inflectional languages and they are used approximately by 293 millions people
worldwide. Because of inflection much bigger lexicons have to be used during
recognition of continuous speech than in uninflected languages (e.g. English).

c© Springer International Publishing AG 2017
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Also the speech models are much more extensive and therefore more difficult as
for computational complexity.

In our laboratory of computer speech processing we have developed sys-
tems for automatic large vocabulary continuous speech recognition (LVCSR)
that work in real time with lexicons containing more than 500 000 words [3].
These systems we originally developed for the Czech language (CZ) [4]. During
the last ten years they were however adapted for Slovak (SK) [5], Polish (PL)
[6], Russian (RU), Belorussian (BY), Ukrainian (UA), Serbian (RS), Croatian
(HR), Slovenian (SL), Bulgarian (BG) and Macedonian languages (MK) [7]. For
each language, there was created a Language Model (LM), lexicon and hybrid
Acoustic Model (AM) based on triphones. Triphones are presented by combi-
nation of Hidden Markov Models (HMM) and Deep Neural Networks (DNN)
[8]. A higher Word Recognition Rate (WRR) was achieved with HMM-DNN
models during all our Automatic Speech Recognition (ASR) experiments than
while using traditional models HMM-GMM (Gaussian Mixture Models). Aver-
age WRR in task of Voice Dictation to PC is higher than 98% and it is about 86%
in task of broadcast programs transcription for all mentioned Slavic Languages.

To train a LM and create a lexicon, huge text corpora is necessary. We have
used mainly internet resources from major newspapers to adapt our LVCSR
system to a new Slavic language. However there is a problem with numbers that
appear in text as strings of digits and not as strings of words. The second more-
less similar problem is if we would like to train or to adapt new AM from audio
database. Speech in audio signals is manually or semi-automatically transcribed
into text by human annotators. The numbers occur again as strings of digits
very often in text part of the audio databases.

A large number of Digits-to-Words converter tools exist e.g. for English at
present but almost non for Slavic languages. The main problem is that there isn’t
any clear way how to create them. The task to create a Digit-to-Words converter
tool for Slavic languages isn’t unambiguous because Slavic languages are inflected
according to case or gender and text forms of numbers can get many different
inflected forms. A few studies exist but they aren’t mostly described in English
literature or it is relatively hard to find them. As the case may be these studies
cannot be easily practically realized. Moreover these strings of digits can often be
accompanied by abbreviations (mostly of physical units) and their pronunciation
(transcription) depends on the previous number or the transcription of digits to
words can depend on another word, e.g. the name of a month.

The first goal of this work was to create a tool for digits to words conversion.
This tool should be able to translate strings of digits (and possible abbreviations)
into text word form. In case that the transcription is not clear, the tool should
not transcribe the text. The second goal was to create a generator for word
strings and related abbreviations, alternatively also the names of months that
exist (with possible alternatives and their probabilities). This generator should
be used especially to train the language model - for example randomly generated
decimal numbers and randomly generated main or minor patterns (if there are
more possibilities). Both tools (systems) should be universally used for any Slavic
language.
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2 Patterns for Digits to Words Converter

Study of rules how to convert digits to words had to be made in the beginning
of this research work. String of digits can be translated as cardinal, ordinal or
decimal number. These strings can be part of a date. The converter was designed
also for translation of abbreviations of physical units or special characters which
are pre-connected with strings of digits. The translation of abbreviations or
special characters depends on previous number. The study was performed for
all examined Slavic languages. Universal patterns for conversion were searched
in this study.

2.1 Cardinal Number Patterns

A string of digits is converted as a cardinal number if it does not contain character
dot and if name of month, special character or abbreviations does not follow this
string. The words for numbers 1 and 2 (or 3, 4 in SK) are inflected by gender
in almost all Slavic languages. The converter does not translate these numbers
because it is a very difficult task and we cannot solve this task at present.
Numbers from 3 (5) to 20 are translated by XML–translation table (XMLtab).
It isn’t a good idea to generate numbers from 11 to 19 as units (1–9) plus ‘teen’
because there exist several exceptions in different Slavic languages.

Numbers from 21 to 99 are generated from connection words for Units (U)
and Decades (D). There exist several patterns how to make it in Slavic languages,
see Table 1. There are only main patterns, other (minor) patterns are used in
several Slavic languages, e.g. U & D in CZ. Words for decades (20, 30, . . . ) and
hundreds (100, 200, 300, . . . ) are again saved in XMLtab. There exist again
several exceptions here therefore decades and hundreds are not generated.

Table 1. Cardinal number patterns for numbers 21–99
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The conversion of numbers higher than 999 is once again specific. Being
gendered, all the higher scale names (thousands, millions, milliards, . . . ) follow
the declension rules in different Slavic languages. They are most often 3 word
forms of higher scale names (HSN). First is for one HSN, second from two to four
HSN and third for more than four HSN, see example in Table 2. BG and MK
have only two word forms (as in English) – one HSN and more than one HSN.
The reason is that BG and MK have relatively simple declension rules and they
don’t have cases. Word forms are saved in XMLtab. The same word is saved for
second and third word form in case of BG and MK.

Table 2. Example of three (CZ) and two word forms (BG)

The interesting thing is that two different large-number naming systems are
used for different Slavic languages. They are long and short scale systems. Every
new word-term higher than million is one million times larger than the previous
term in long scale system and every new word-term higher than million is one
thousand times larger than the previous term in short scale system. The long
scale system is used in CZ, SK, PL, HR, RS and the short scale system in RU,
UA, BY, BG and MK. There is one exception in the Slavic short scale system:
The word for billion is replaced by word milliard.

2.2 Decimal Number Patterns

The string of digits is converted as decimal number if it contains character dot
or comma (decimal separator) inside a string. The string is separated into two
parts (Integer (I) and Fractional (F)) according to decimal separator. These two
strings are translated as cardinal numbers and they are connected with a word
depending on Slavic language, see Table 4. The words comma (c), and (&) or
‘whole’ (w) are used in different Slavic languages.

Table 3. Word ‘whole’ in decimal numbers - SK

Digits Words

0,5 nula celých päť desátin

1,5 jedna celá päť desátin

2,5–4,5 dve, tri, Štyri celé pět desetin

5,5 päť celých päť desátin
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The word ‘whole’ is inflected according to previous integer part, see Table 3.
There exist several exceptions in different Slavic languages therefore different
word forms are saved in XMLtab for I–numbers (0, 1, 2, 3, 4 and more than 4).

The name of the last digit’s place value (DN) can be used in decimal number
conversion in several Slavic languages (e.g. tenths, hundredths, thousandths,
ten-thousandths, hundred-thousandth, millionth). DN can be again inflected
depending on resulting decimal number and different word forms are in XMLtab.
Reading of decimal number, where integer part is zero, is specific in some Slavic
languages, see example in Table 5. Third pattern is the most common in the CZ.

Table 4. Decimal number patterns - example for 8.25

Table 5. Different patterns for 0.25 - CZ

No. Pattern Words English translation

1 I w F(DN) nula celá dvacet pět setin zero point twenty five hundredths

2 I w F nula celá dvacet pět zero point twenty five

3 F(DN) dvacet pět setin twenty five hundredths

2.3 Ordinal Number Patterns

The string of digits can be an ordinal number if the last character is dot or
if it precedes or follows other ordinal number (it can be date expression) or it
precedes name of a month. There exist two patterns for string of digits to word
conversion for different Slavic languages.

All words are Ordinal (AO) numbers or only Last word is Ordinal number
(LO), see Table 6. Combination of digit(s) and abbreviation is used in some
Slavic languages, e.g. in RU - 1- ( - first). This isn’t solved in our
converter but it is solved by a look-up table in our other text pre-processing
tool.
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Table 6. Ordinal number patterns - example for 48

2.4 Date Expression

The date can occur in the text in form of strings of digits (e.g. 14. 4. 2017) or
as combination of string of digits with the name of month (e.g. CZ: 14. dubna
2017 or RU: 1 2017 ). We solve separately day together with month
and year. Latin-derived names (in SK, RU, RS, SL, BG and MK) or older Slavic
names (in CZ, PL, UA, BY and HR) are used as names of months in Slavic
languages.

String of digits, which represented day or month, are always ordinal numbers
in all Slavic languages and the ordinal numbers are inflected by case. Day is an
ordinal number in genitive and month is ordinal number in nominative in CZ
and SK. Both day and month are ordinals number in nominative in PL and both
are genitive in HR.

Name of month instead of string of digits is more common in date expression
in all other Slavic languages. The string of digits is detected as year if:

1. The name of the month precedes the string of digits.
2. Two short strings of digits precede the string of digits.
3. Word ‘year’ or its abbreviation precedes or follows the string of digits. The

year expression is cardinal number in CZ, SK and SL or it is an ordinal
number in all other mentioned Slavic languages.

2.5 Abbreviation to Words Conversion

Some special characters or mainly abbreviations of physical units which follow
cardinal or decimal number are translated in our conversion system. There are
integrated following special characters: ‘%’ percent, ‘ e’ euro, ‘$’ dollar, and
abbreviations of physical units: ‘mm’ millimeter, ‘cm’ centimeter, ‘m’ meter,
‘dm’ decimeter, ‘km’ kilometer, ‘km/h’ kilometer per hour, ‘m/h’ meter per
hour, ‘km/s’ kilometer per second, ‘km/h’ kilometer per hour, ‘m/s’ meter per
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Table 7. Example of three (CZ) and two word forms (BG)

second, ‘m/h’ meter per hour, ‘g’ gram, ‘dg(dkg)’ decagram, ‘kg’ kilogram, ‘ml’
milliliter, ‘cl’ centiliter, ‘l’ liter, ‘◦C’ degree Celsius.

There exist three or two word forms for transcription of abbreviations or
special characters into words, see Table 7. The word form depends on previous
number. First word form is for previous cardinal number one, second for previous
cardinal numbers from two to four and third form for previous cardinal numbers
higher than four or if the previous number is decimal.

3 Digits to Words Converter - System Overview

Designed system for digits to words conversion is relatively complex, see Fig. 1.
The input to the system is string of text, conversion patterns (described above)
for selected Slavic language and XML script where translation table for cardinal,
ordinal or decimal numbers, date and abbreviations is saved. The input text
string is tokenized to short strings (words, strings of digits, abbreviations, etc.).
In the first step, it is investigated if single short string (ShS) contains character
dot (‘.’). The system decides that ShS is decimal number if ShS contains dot,
all other characters are digits and last character isn’t dot. The string of digits
is separated to fractional and integer part according to dot. These two parts
are translated as cardinal numbers and they are connected with word(s) which
expresses separator – decimal mark (‘whole’, ‘comma’, etc.). A name of last
digit place is added to the end of resulting word string if it is usual in the
particular Slavic language. The subsystem for conversion of abbreviation is used
if abbreviations follow the decimal number. Third word form of abbreviation is
used always in such case, see Sect. 2.5.

The ShS is ordinal number if it contains dot as last character and all other
characters are digits. This step is valid only for Slavic languages where ordinal
numbers are written as strings of digits with dot in the end. It is specified in
the set of patterns. The ordinal number is determined as part of date if name of
month follows the ordinal number or if some other ordinal number follows the
first ordinal number.

The ShS is assessed afterwards if any dot character doesn’t exist in it and all
characters are digits. A problem is that string of digits can be translated into
several different word combinations. It depends on the context:
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Fig. 1. The principle of digits to words converter

1. It could be part of date if the name of month follows.
2. It is verbal expression of year if word ‘year’ or its abbreviation precedes or

follows the string of digits or if name of month precedes the string of digits.
The string of digits is converted as cardinal or decimal number depending on
Slavic language and selected (year) pattern.

3. The subsystem for abbreviation conversion is used if abbreviation of physical
unit or some special character follows the string of digits. The string of digits
is converted as cardinal number and abbreviation (or special character) is
converted to word form according to (abbreviation) pattern.

4. The string of digits is translated as cardinal number if all previously men-
tioned cases don’t occurr.

Typical adjustment of main patterns for digits to words conversion system in
e.g. CZ is:

D U, GD 2, AO, I w F, DN Yes, ZERO Yes, Year 11 CN

where D U: pattern for cardinal numbers – first Decades, second Units, con-
nected by space. GD 2: digits 1 and 2 are not transcribed. AO: pattern for
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ordinal numbers – All Ordinal. I w F: pattern for decimal numbers – Integer
part connected with Fractional part by Czech word ‘whole’. DN Yes: parameter
for decimal numbers – the name of the last digit’s place value is used. ZERO
Yes: parameter for decimal numbers – first word is zero if Integer part is zero.
Year 11 CN: year is cardinal number (CN) and 11 indicates that years above
1000 and below 2000 are read as multiples of the word one hundred.

Simplified digits to words conversion system is presented on web pages:
http://kvap.tul.cz/slavic symbols.php. It is possible to convert only short strings
in this simplified system and only main patterns are used here but the function-
ality of the system is maintained here.

4 Conclusion and Future Work

The complex system for digits to words conversion has been designed and created
in this research work. This system is usable for almost all Slavic languages. The
system is developed as a universal tool where only XML-like conversion table
and pattern parameters are set for specific Slavic language. It is easy to change
pattern parameters and set main or minor patterns which occurs in selected
Slavic language. It is possible to enhance text corpora for training of the language
model and to enhance text annotation of speech data for acoustic model training
in LVCSR systems by adding translated forms from digits to words converter
which is described above. The system for digits to words conversion is still being
developed and improved with the help of native speakers.

Second function of the converter is to generate words connections from ran-
domly chosen string of digits. This function can enhance and extend text corpora
but it is necessary to find a probability of frequency occurrence of main and
minor patterns firstly. We plan to investigate this probability for every single
Slavic language from our audio databases in the near feature.
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Abstract. The task of Speaker Discrimination (SD) consists in checking
whether two speech segments belong to the same speaker or not. In this research
field, it is often difficult to decide what could be the best classifier in terms of
accuracy and robustness. For that purpose, we have implemented 9 classifiers:
Support Vector Machines, Linear Discriminant Analysis, Multi-Layer Percep-
tron, Generalized Linear Model, Self Organizing Map, Adaboost, Second Order
Statistical Measures, Linear Regression and Gaussian Mixture Models. Fur-
thermore, a new fusion approach is proposed and experimented in speaker
discrimination. Several experiments of speaker discrimination were conducted
on Hub4 Broadcast-News with relatively short segments. The obtained results
have shown that the best classifier is the SVM and that the proposed fusion
approach is quite interesting since it provided the best performances at all.

Keywords: Speaker discrimination � Speaker identification � Discriminative
classification � Fusion

1 Introduction

Speaker discrimination consists in checking whether two different pronuncia-
tions (speech signals) are uttered by the same speaker or by two different speakers [1].
This research domain has several applications such as automatic speaker verification
[2], speech segmentation [3] or speaker based clustering (Meignier, 2002). All these
tasks can be performed either by generative classifiers or by discriminative ones.

However, existing approaches are not robust enough in noisy environment or in
telephonic speech. Any new model must therefore improve the reliability of existing
discriminative systems, without altering their architectures.

To address the above issue, we implemented 9 different classifiers and applied a
PCA reduction with these different classifiers. Furthermore, a new relativistic charac-
teristic is proposed: we called it “Relativistic Speaker Characteristic” [4]. Basically, the
introduction of the relative notion in speaker modelization allows getting a flexible
relative speaker template, more suitable for the task of speaker discrimination in dif-
ficult environments. Moreover, to further intensify the feature reduction, a PCA
reduction is applied to reduce again the RSC feature. For that purpose, several speaker
discrimination experiments are conducted on a subset of Broadcast-News dataset.
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The overall structure of this paper is organized as follows: In Sect. 2, we describe
some related works and explain the motivation of this investigation. Section 3 defines
the nine used classifiers. Section 4 describes the RSC notion employed for the task of
speaker discrimination and feature reduction. Experiments of speaker discrimination
are presented in Sect. 5 and finally a general conclusion is presented at the end of this
manuscript.

2 Some Related Works of Feature Reduction in Speaker
Recognition

Speaker discrimination is the ability to check whether two utterances come from the
same speaker or from different speakers, but in a broader sense, speaker recognition is
the task of recognizing the true speaker of a given speech signal. Hence, in this section,
we will shortly quote some recent works of speaker recognition using feture reduction
(such as PCA for instance).

In 2008, Li et al. [5] proposed a novel hierarchical speaker verification method
based on PCA and Kernel Fisher Discriminant (KFD) classifier. Later on, Zhao et al.
[6] presented a new method which takes full advantage of both vector quantization and
PCA. Also in 2009, Jayakurnar et al. [7] presented an effective and robust method for
speaker identification based on discrete stationary wavelet transform (DSWT) and
principal component analysis techniques. Ingeniously, Zhou et al. [8] proposed a
method to reduce feature dimension based on Canonical Correlation Analysis
(CCA) and PCA. In the same period, Mehra et al. [9] presented a detailed comparative
analysis for speaker identification by using lip features, PCA, and neural network
classifiers: it was a multimodal feature combination. Then, Xiao-chun et al. [10] pro-
posed a text-independent (TI) speaker identification method that suppresses the pho-
netic information by a subspace method: a Probabilistic Principle Component Analysis
(PPCA) is utilized to construct these subspaces. Recently, Jing et al. [11] introduced a
new method of extracting mixed characteristic parameters using PCA techniques. This
speaker recognition approach is based on the performance of the PCA on the Linear
Prediction Cepstral Coefficients (LPCC) and Mel Frequency Cepstral Coefficients
(MFCC). All of these works (or at least most of them) used the principal component
analysis to reduce the feature space dimensionality without altering the recognition
performances.

In this investigation, we not only propose a completely different feature reduction
technique (i.e. relativistic approach), but we also combine it with PCA reduction to
further enhance both the memory size and recognition precision. Moreover, we eval-
uate our relativistic approach efficiency in real environment (Broadcast News), with 9
different classifiers and with 2 new fusion techniques.
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3 Description of the Classifiers and Classification Process

The choice of the optimal classifier is crucial before any application of pattern
recognition that is why we have decided to implement 9 classifiers and evaluate them in
the same experimental conditions.

The different classification methods are described in the following sub-sections.
However, since we are limited by the pages number of the article, we will only give the
general definitions of the different classifiers; the details could be found in the cited
references.

3.1 LDA: Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a method used in statistics, pattern recognition
and machine learning to find a linear combination of features which characterizes or
separates two or more classes of objects or events.

Consider a set of observations ~x (also called features, attributes, variables or
measurements) for each sample of an object or event with known class y. This set of
samples is called the training set. The classification problem is then to find a good
predictor for the class y of any sample of the same distribution (not necessarily from the
training set) given only an observation~x [12].

3.2 AdaBoost: Adaptive Boosting

AdaBoost, short for “Adaptive Boosting”, is a machine learning meta-algorithm. It can
be used in conjunction with many other types of learning algorithms to improve their
performance [13]. The output of the other learning algorithms (‘weak learners’) is
combined into a weighted sum that represents the final output of the boosted classifier.
AdaBoost is adaptive in the sense that subsequent weak learners are tweaked in favor
of those instances misclassified by previous classifiers.

AdaBoost refers to a particular method of training a boosted classifier. A boost
classifier is a classifier in the form

FT xð Þ ¼
XT

t¼1
f1ðxÞ: ð1Þ

3.3 SVM: Support Vector Machines

The basic SVM takes a set of input data and predicts, for each given input, which of
two possible classes forms the output, making it a non-probabilistic binary linear
classifier. A SVM model is a representation of the examples as points in space, mapped
so that the examples of the separate categories are divided by a clear gap that is as wide
as possible. New examples are then mapped into that same space and predicted to
belong to a category based on which side of the gap they fall on [14]. The SMO
algorithm is used to speed up the training of the SVM [15].
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3.4 MLP: Multi Layer Perceptron

MLP is a feed-forward neural network classifier that uses the errors of the output to
train the neural network: it is the “training step” [16].

MLP is organized in layers, one input layer of distribution points, one or more hidden
layers of artificial neurons (nodes) and one output layer of artificial neurons (nodes).

3.5 LR: Linear Regression

Linear regression is the oldest and most widely used predictive model. The method of
minimizing the sum of the squared errors to fit a straight line to a set of data points was
published by Legendre in 1805 and by Gauss in 1809. Linear regression models are
often fitted using the least squares approach, but they may also be fitted in other ways,
such as by minimizing the “lack of fit” in some other norms (as with least absolute
deviations regression), or by minimizing a penalized version of the least squares loss
function as in ridge regression [17, 18].

3.6 GLM: Generalized Linear Model

In statistics, the Generalized Linear Model or GLM [19] is widely utilized. It is a
flexible generalization of ordinary linear regression that allows for response variables
that have error distribution models other than a normal distribution. The GLM gen-
eralizes linear regression by allowing the linear model to be related to the response
variable via a link function and by allowing the magnitude of the variance of each
measurement to be a function of its predicted value.

3.7 SOM: Self Organizing Map

A self-organizing map (SOM) is a type of artificial neural network that is trained using
unsupervised learning to produce a low-dimensional, discretized representation of the
input space of the training samples, called a map. Self-organizing maps are different
from other artificial neural networks in the sense that they use a neighborhood function
to preserve the topological properties of the input space.

This makes SOMs useful for visualizing low-dimensional views of high-
dimensional data. The model was first described as an artificial neural network by
Kohonen, and is sometimes called a Kohonen map. A Self-organizing Map is a data
visualization technique developed by Kohonen in the early 1980’s [20, 21].

3.8 SOSM: Second Order Statistical Measure

We recall bellow the most important properties of this approach [4].
Let xtf g1� t�M be a sequence of M vectors resulting from the P-dimensional

acoustic analysis of a speech signal uttered by speaker x. These vectors are summarized
by the mean vector x and the covariance matrix X.
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Similarly, for a speech signal uttered by speaker y, a sequence of N vectors
ytf g1� t�N can be extracted. These vectors are summarized by the mean vector y and

the covariance matrix Y.
The Gaussian likelihood based measure µG is defined by:

lGðx; yÞ ¼
1
P

� logðdetðYÞ
detðXÞÞþ trðYX�1Þþ ðy� xÞTX�1ðy� xÞ

� �
� 1; ð2Þ

we have:

Argmax
x

GxðyN1 Þ ¼ Argmin
x

lGðx; yÞ: ð3Þ

3.9 GMM: Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a parametric probability density function rep-
resented as a weighted sum of Gaussian component densities [22, 23]. GMMs are
commonly used as a parametric model of the probability distribution of continuous
measurements or features in a biometric system, such as vocal spectral features in a
speaker recognition system. GMM parameters are estimated from training data using
the iterative Expectation-Maximization algorithm or Maximum A Posteriori estimation
from a well-trained prior model.

A Gaussian mixture model is a weighted sum of M component Gaussian densities
as given by the equation,

p
X
k

� �
¼

XM
i¼1

xig X=li;Rið Þ; ð4Þ

where x is a D-dimensional continuous-valued data vector, wi, i = 1,…, M, are the
mixture weights, and g(x|li,_i), i = 1,…, M, are the component Gaussian densities.
Each component density is a D-variate Gaussian function of the form,

g X=li;Rið Þ ¼ 1

ð2pÞD=2 Rij j1=2
exp � 1

2
X � lið Þ0

X�1

i

ðX � liÞ
( )

; ð5Þ

with mean vector li and covariance matrix
P

i. The complete Gaussian mixture model
is parameterized by the mean vectors, covariance matrices and mixture weights from all
component densities.

3.10 PCA Feature Reduction

PCA provides an interesting way to reduce a complex data set to a lower dimension to
reveal the sometimes hidden, simplified dynamics that often underlie it [24, 25]. PCA is
mathematically defined as an orthogonal linear transformation that transforms the data
to a new coordinate system such that the greatest variance by some projection of the
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data comes to lie on the first coordinate (i.e. the first principal component), the second
greatest variance on the second coordinate, and so on.

In our investigation, PCA has been intensively used to further reduce the dimen-
sionality of the features of our relative characteristic RSC.

4 New Fusion Approach

The fusion in the broad sense can be performed at different hierarchical levels or
processing stages. A very commonly encountered taxonomy of data fusion is given by
the following three-stage hierarchy [18, 26–28]: Feature level, Score (matching) level
and Decision level.

In our case, we have proposed a new fusion technique, based on a dynamic
scheme (Fig. 1): we call it “Dynamic Score-Based Fusion” or DSBF.

Fig. 1. Principle of the Dynamic Fusion
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In this new method, an estimation of the DSB score is first computed (as we can see
in Fig. 2), and then, according to the retrieved score (1 or 2), a new fusion is performed
thanks to O1f formula if the estimated score is equal to 1 or thanks to O2f formula if the
estimated score is equal to 2 (see Fig. 1). Note that there are only two possible deci-
sions: 1 if the two speech segments belong to different speakers and 2 if they come
from the same speaker. Consequently, if the speakers seem to be different (case 1), the
dynamic method proposes the use of the O1f formula, which gives more importance to
some specific classifiers that are more appropriate for inter-variability discrimination.
On the other hand, if the speakers appear to be the same (case 2), the proposed method
will use the O2f formula, which gives more importance to some specific classifiers that
are more appropriate for intra-variability discrimination. Mathematically speaking, this
dynamic process consists in tuning the weighting coefficients C1i and C2i.

In this new approach, an estimation of the discrimination decision Ôf is evaluated
first, and then a comparison test is performed (see Fig. 1).

5 Experiments of Speaker Discrimination on Hub4 Broadcast
News

Several speech segments are extracted from “Hub4 Broadcast-News 96” dataset,
containing some recordings from “CNN early edition” and composed of clean speech,
music, telephonic calls, noises, etc. The sampling frequency is 16 kHz. The general
experimental protocol is described as follows (Fig. 2):

Speech signal 1 Speech signal 2 

Spectral analysis Spectral analysis

Statistical analysis
37x37=1369 variables

Statistical analysis
37x37=1369 variables

DRSC
Feature Reduction

37+37 = 74 variables 

Decision

Classifier

PCA Reduction
N variables (N < 40)

1st Feature 
Reduction 
Technique 

2nd Feature 
Reduction 
Technique

Fig. 2. The general experimental classification protocol
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The different results obtained during these experiments are summarized in Table 1.

We can see that the 4 last classifiers, namely: LDA, Linear regression, GLM
regression and SVM are the most accurate classifiers with a score about 90% of good
classification.

The SVM is the best classifier at all by providing a score of 91.28% of good
classification.

The 3 classifiers located in the middle, namely: Adaboost, MLP and GMM are
relatively less accurate with a score of about 85%. Although those 3 classifiers are
known to be quite robust, the lack of training data makes them not very efficient. Also,
as explained in a previous section, although the GMMs are known to be very efficient
in speaker identification, their performances in discrimination are not so convincing.

Finally, for the 2 remaining classifiers, namely: SOM and SOSM, the performances
noticed during the discrimination experiments, show that those classifiers are not very
suitable for the task of speaker discrimination, since the score of good classification is
about only 81%. However, one must note that the SOSM approach remains quite
interesting since it doesn’t require any training (i.e. it is a distance measure). Moreover,
in the present experiments, no PCA reduction was applied for the SOSM (i.e. not
possible technically). That is, if we observe the results of speaker discrimination
without PCA, we do notice that the SVM and SOSM provide the best performances.

Finally, the third observation we can make is that the proposed fusion technique has
efficiently improved the classification performances, where the discrimination accuracy
has reached the score of 93.33% of good classification, which is considered as abso-
lutely the best score obtained during all the experiments.

Table 1. Scores of good speaker discrimination in %

Method Accuracy

SOMap 80.51
SOSM-muGc 82.56
Adaboost 84.62
MLP 85.64
GMM 87.18
LDA 89.23
Lin regress 89.74
GLM regress 90.26
SVM 91.28
Dynamic fusion 93.33
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6 Discussion

In this new research work, nine different classifiers were employed for the task of
speaker discrimination: Linear Discriminant Analysis, Adaboost, Support Vector
Machines, Multi-Layer Perceptron, Linear Regression, Generalized Linear Model, Self
Organizing Map, Second Order Statistical Measures and Gaussian Mixture Models.

Moreover, a new technique of fusion is proposed and applied between the different
classifiers, and the experiments have shown that this fusion has further improved the
performances.

This investigation has allowed comparing the performances of the different clas-
sifiers on the same experimental conditions. Hence, the best score, about 91.3%, was
reached by using the SVM classifier, followed by the GLM regression, Linear
regression, LDA etc.

Furthermore the proposed fusion approach has appreciably enhanced the score of
speaker discrimination with an accuracy of 93.33%. This score is considered as
absolutely the best score obtained during this investigation.

In perspectives we think to apply this approach in text processing and especially for
the task of author discrimination.
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Abstract. In this article we describe a new system for the automatic
creation of poetry in Basque that not only generates novel poems, but
also creates them conveying a certain attitude or state of mind. A poem
is a text structured according to predefined formal rules, whose parts are
semantically related and with an intended message, aiming to elicit an
emotional response. The proposed system receives as an input the topic of
the poem and the affective state (positive, neutral or negative) and tries
to give as output a novel poem that: (1) satisfies formal constraints of
rhyme and metric, (2) shows coherent content related to the given topic,
and (3) expresses them through the predetermined mood. Although the
presented system creates poems in Basque, it is highly modular and easily
extendable to new languages.

Keywords: Poetry generation · Sentiment analysis · Basque language ·
Affective computing

1 Introduction

Writing poetry requires both creativity to construct a meaningful message and
lyrical skills to produce rhyme patterns and follow metrical constraints. Further-
more, oral poetry, poetry constructed without the aid of writing [1], implies that
a work has to be composed and performed at the moment, with no prior prepa-
ration. Nowadays many improvisational oral practices exists around the world,
such as Serbo-Croatian guslars [1], freestyle rap [2] and Basque bertsolaritza. It
is obvious that improvising novel poems under challenging formal constraints,
transmitting an intended message and all that at once, in front of an audience
requires both high technical skills and creativity.

That is exactly our main goal: to develop a system that is able to generate
Basque poetry under the constraints of bertsolaritza, a form of oral and impro-
vised poetry.

Basque, euskara, is the language of the inhabitants of the Basque Country.
And bertsolaritza, Basque improvised contest poetry, is one of the manifestations
c© Springer International Publishing AG 2017
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of traditional Basque culture that is still very much alive. In the book The Art
of Bertsolaritza [3], it is described as a sung, rhymed and metered discourse.
The bertsolari performs without the help of any musical instrument; but the
bertsolari ’s discourse is always sung.

The Basque bertso follows strict constraints on meter and rhyme. In the case
of a metric structure of verses known as Zortziko Txikia, the poem is composed
of 4 verses, called puntuak. Each verse has 13 syllables and must rhyme with
others.

Rhyme is the formal quid of the bertso; without the rhyme there is no bertso.
If we rhyme (although its quality may not be the best), we are creating a bertso. If
the two rhymed words in the same verse turn out to be the same, the bertsolari is
considered to have committed a poto. It is simply the act of repeating a rhyming
word but is undoubtedly the most penalized mistake both for a judging panel
and for the public.

Although technical aspect of a bertso are highly demanding, the quality of the
bertso is reflected in its force of reasoning and in its poetical-rhetorical value [4].

Our proposed system, based on a corpus-based poetry generation approach,
uses two methods to construct poems according to given constraints on rhyme,
meter, semantic similarity and sentiment. Thus, the system can be asked to view
a topic (e.g. spring)from a particular affective stance (eg. negative). In doing so,
the goal is to not only convey a message in a form of a poem but also to respond
to an affective target and/or to create an affective response in the audience.
That is, creating a poem in an intentional way.

The rest of the paper is organized as follows: in Sect. 2 related work is sur-
veyed, while Sect. 3 is devoted to present the developed tools and resources. The
proposed verse-maker module is presented in Sect. 4, and results are drawn in 5.
Finally the conclusions are summarized in Sect. 6.

2 Related Work

Computational modeling for poetry generation has become a topic in the artifi-
cial intelligence community in the last years. Before the computer science com-
munity took an interest in the area, people with a background closer to human-
ities made early efforts in systematic generation of poetry. We could mention
works related to generating variations over a predetermined set of verses [5], or
to select a template to produce poems from it [6].

According to Gervás [7], nowadays two main strategies can be outlined in the
field of computer generation of poetry: corpus-based approach and composition
from scratch.

In the corpus-based approach the computer is used to harvest and reuse text
already formatted into poem-like structure of lines. This approach can be formu-
lated as an information retrieval task, where the objective is to extract and select
existing lines to compose new poems. Many computer-based systems rely nowa-
days in this method. Most relevant include PoeTryMe [8], the poetry generation
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platform used for Portuguese; an approach using text mining methods, mor-
phological analysis, and morphological synthesis to produce poetry in Finnish
presented in [9]; constraint programming for poetry composition explored in
[10]; WASP [11,12], a Spanish verse-generation system developed following the
generate-and-test strategy; and [13], in which an approach of poetry generation
based in POS-tag is presented. This corpus-based procedure is also adopted in
our previous works [14,15] where two methods to ensure internal coherence of
poems were presented.

On the other hand, the composition from scratch approach relies on building
a stream of text from scratch, character by character or word by word, and estab-
lishing a distribution of the resulting text into poem lines by some additional
procedure. An example of this procedure is the evolutionary system presented
by Manurung in [16]. Poetry generation in Chinese language based on recurrent
neural networks has also been analyzed in [17,18].

A popular -and rather simple- method to generate text from scratch is the
N-gram model, which is the simplest Markov model. N-grams assign probabili-
ties to sequences of words and the generated model can be used to stochastically
generate sequences of words based on the generated distributions [19,20]. An
N-gram probability is the conditional probability of a word given the previous
N-1 words. Markov chains have been widely used as the basis of poetry genera-
tion systems as they provide a clear ans simple way to model some syntactic and
semantic characteristics of language [21]. Popular and recent examples of N-gram
poem generators are [7,22,23]. But text poetry hold non-local properties such as
rhyme and metric that cannot be modeled by an ordinary N-gram model. There-
fore, the above mentioned methods need additional procedures for distributing
the resulting text into poem lines with metrical and rhyming constraints.

Poetry tries to convey messages and to evoke emotions in an aesthetic way.
The sentiment conveyed in a text is a line of research within the Natural Lan-
guage Processing (NLP) area that has drawn a lot of interest recently. The goal
of text sentiment analysis is to extract the affective information or writer’s atti-
tude from the source text [24]. Basically the sentiments may be considered within
the polarity classification (positive, negative or neutral) [25].

The computational methods for sentiment analysis are usually based either
on machine learning techniques such as naive Bayes classifiers trained on labeled
dataset, or use lists of words associated with the emotional value (positive-
negative evaluation or sentiment score values). A survey of current techniques is
presented in [26].

It is a challenging task for a system intended to interact with people, to
combine in a single system the above reviewed automatic poetry generation and
sentiment analysis capabilities. That is, the development of a system not only
capable of creating meaningful poems, but also of creating them with emotional
personality.

An overview of works that incorporate emotional affects in creation process
must include Full face poetry system [27], a corpus based poetry generator that
creates poems according to days mood estimated from the news of the day.
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Another example would be the Stereotrope system [28] which generates emo-
tional and witty metaphors for given topic based on corpus analysis. An inter-
esting approach is also described in [29], in which a system capable of expressing
feelings in the form of a poem is presented. The emotional state is extracted from
text. Finally, MASTER [30] is a computer-aided tool for poetry generation. In
this approach, a society of agents with initial moods and words influences each
other to create the final poem.

Our approach also tries to combine both approaches: detecting specific emo-
tions and transmitting them through the poem.

3 Resources

Several linguistic tools and resources have been developed and used in the verse-
maker project.

3.1 Corpora

It has been shown already that the use of human generated corpora (oral or text)
is of common use in computational poetry. It has the advantage of avoiding the
generation of text that is un-interpretable. However, it may be interpreted as
plagiarism. Hence, we have chosen initially to work with phrases mined from a
newpaper alongside sentences extracted from the work of well-known bertsolaris.
The later reflects the desire to maintain the language-model of the bertsolaritza,
and the former tends to increase quality while not appropriating text intended
for poems.

– Mixed-corpus: 18913 lines and 94314 words, of which them 21411 are
unique. This corpus is a compilation of sentences mined from Basque newspa-
per Egunkaria1 (85%) alongside poetry sung in bertsolari contests by different
performers2 (15%).

3.2 Text Applications

– Rhyme search: Finding words that rhyme with a given word is an essential
task that the verse-generation system must perform. Basque rhyme schemes
are mainly consonant. The widely consulted rhyming dictionary Hiztegi Erri-
matua [31] contains a number of documented phonological alternations that
are acceptable as off-rhymes. These alternations have been implemented using
regular expressions.

– Syllable counter: Counts the number of syllables present in the given text.
For the syllabification itself, the approach describing the principal elements
of Basque language structure [32] has been implemented.

1 https://en.wikipedia.org/wiki/Egunkaria.
2 http://bdb.bertsozale.eus/en.

https://en.wikipedia.org/wiki/Egunkaria
http://bdb.bertsozale.eus/en
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– Similarity measure: The main purpose of this module is to measure the
semantic relationship between pairs of words and sentences. The module com-
putes for each pair of words/sentences a score that evaluates how similar they
are. Latent Semantic Analysis (LSA) method [33,34] has been implemented
to capture the semantic relatedness. This semantic model has been generated
with news mined from Egunkaria, a Basque-language newspaper.

– Sentiment analysis: To extract the sentiment evaluation, we use the EliXa
tool, a supervised Sentiment Analysis system [35]. It estimates the negative,
neutral and positive sentiment values in short texts. The polarity classification
is addressed by means of a multiclass SVM algorithm which includes lexical
based features such as the polarity values obtained from domain and open
polarity lexicons.

4 Verse-Maker Module

The aforementioned modules have been integrated into a verse-maker architec-
ture for automatic poem generation. In the basic scenario, a topic and a sen-
timent to be expressed (positive, negative or neutral) is given by the user and
the system then aims to give as output a novel poem that satisfies the formal
constraints, conveys a predetermined sentiment and also shows coherent content
related to the given topic.

For our particular challenge, the selected stanza will be Zortziko Txikia, a
poem consisting of four lines, each 13 syllables long and all of them sharing a
common rhyme.

The general problem of poem generation can be split up into two subprob-
lems: the generation of content and the combination of fragments into the final
poem.

4.1 Sentence Generator

The Sentence Generator module is used to compose meaningful and metrically
correct natural language sentences. Two corpus-based methods are used towards
this end:

– Harvesting a corpus to retrieve sentences that fulfill the constraints.
The basics of this method is to extract sentences from the corpus that meet
rhyme and metric constraints. All the sentences created in this way will come
from the corpus verbatim. This approach is useful as a way to test the corpus
potential to bring meaningful poems without further processing and, there-
fore, as a benchmarking for other approaches.

– Generating sentences from scratch using an N-gram model. Starting
from the rhyming word, the verse is built backwards using the selected N-
gram model; extending at each step the sequence of words with new ones
that have a non-zero probability of appearing after the last word. When this
approach is used, it is assured that the final sentence is different from the
existing ones in the original corpus.
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4.2 Poem Generator

This module organizes sentences such that they suit a target template of a poetic
form (Zortziko Txikia). After that, according to some heuristics, sentences are
selected to form the final poem. The following criteria is used to select candidate
sentences:

– Semantic similarity with respect to the given theme. It is measured
according to the cosine distance of the sentence and the theme when both are
represented as vectors in the space generated by a LSA model.

– Sentiment value of the text. It is assured that the sentiment conveyed by
the poem is the desired one. Currently we demand that all the verses in the
poem share the same sentiment, but it could be possible to easily adapt the
system to evaluate the poem as a whole, or analyze it by chunks and tolerate
some percentage of them to differ.

– Rhyme. The sentences that are part of a poem have to comply with some
rhyming constraints, that have to be enforced.

The overall architecture, depicted in Fig. 1, is modular and provides a high
level of customization, depending on the needs of the user.

Fig. 1. System architecture

The procedure to create a poem involves prompting the user for a theme, a
sentiment to be expressed, a metric and a background corpus. This is captured
by the Algorithm 1.

With this process it is possible that in some step no valid sentence is found
(in case of rarely occurring bigrams) or that a combinatorial explosion occurs (in
the case of bigger corpus or longer number of syllables). In our case the latter
situation is prevented imposing a maximum number of generated sentences. If
the former problem arises, the system keeps trying another last words till the
list is exhausted. An additional check ensures that no solution copies verbatim
lines in the original corpus. In our experiments always a minimum of five poems
have been generated.
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Data: topic, sentiment, corpus, numPoems
Result: poems related to the topic with conveying sentiment

wordList ← ExtractSentenceEndingWords(corpus);
simList ← OrderBySimilarity(wordList, topic);
while not generated numPoems do

rhymeBase ← pop(simList);
createBertso(rhymeBase);

end
Procedure createBertso(rhymeBase)

rhymeList ← getRhymes(rhymeBase);
while bertso not generated do

if NgramGenerate(rhymeList) has sentiment then
add line to bertso;

end

end
return ;

Algorithm 1. General procedure for bertso generation

5 Results

In order to test the capabilities of the above described approach, a series of
experiments have been carried out. We have tested 2-gram and 3-gram models
and the preliminary results have shown that the 3-gram model tended to replicate
the corpus almost verbatim. Therefore we have used 2-grams, because we wanted
our system to produce tentative solutions somewhat different to the original lines,
and this is more likely with low order N-grams.

In order to compare the generated poems with the original lines in the corpus,
another variant of the algorithm has been tested, where instead of creating verses
backwards with an N-gram model, the original verses are the candidates. From
those verses poems are created following the previously explained procedure.

In Tables 1 and 2 we show four poems composed by the automated system,
in its original form and in an approximate English translation. Two are made
with sentences mined from the original corpus and the other two produced from
scratch with the 2-gram model. Some general conclusions can be drawn:

– The emotional affect of the poems can be clearly appreciated.
– The generated poems are related to the subject. This relationship is not only

appreciated through the repetition of the key word or theme, but also through
the incursion in the poem of words semantically similar to the theme (e.g.
with the theme music, the terms tone, classic, concert and public appear).

– With respect to the content generator methods, corpus-harvesting and N-
gram model, the corpus-harvesting method ensures the internal coherence
of the sentences (since it extracts entire phrases from the corpus) but, on
the other hand, creates more rigid poems. It can be seen sentences related
to everyday news (due to the influence of the corpus used) that are hardly
related to the proposed theme.
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Table 1. Two poems created by the system with the theme ‘music’ and with lines
from the original corpus. On the left with negative sentiment and on the right with
positive sentiment

B
as
qu

e

Gutxien ezagutzen zen musikaria
hak bertsotan aurkeztu zuen jaialdia
haiengandik aldendu hori nire nahia
Bolibarko Txikito puntista ohia

E
ng

lis
h

The least known of the musicians
he introduced the festival improvising verses
get away from them, that’s my goal
Txikito de Bolivar, ex pelotari

B
as
qu

e

Atzo eskaini zuten lehen kontzertua
eta bertsolariok antza talentua
Gorrotxategirena dugu sonatua
proposizioaren bigarren puntua

E
ng

lis
h

Yesterday they offered the first concert
and the bertsolaris, it seems to be, talent
Gorrotxategi is well known
the second point of the proposition

Table 2. Two poems created by the system with the theme ‘music’ and with lines
created from scratch with 2-grams. On the left with negative sentiment and on the
right with positive sentiment

B
as
qu

e

Ez har ta ez det lortu nahi dute tonua
klasiko bat da ta ez dezu zuk lekua
eta beste bat izan zen denen patua
jo ta orain ezin da bere sekretua

E
ng

lis
h

Don’t pick up, I haven’t got their tone
It’s a classic and you have no room
and the destiny of all was another
and now also you can not your secret

B
as
qu

e

Zaintzen nahiko lan daukat emanaldiekin
eta libre izan nahi dut entzuleekin
zorion gehiago gaur ez gaude ezberdin
nere musika ez al duzu zuk atsegin

E
ng

lis
h

I’ve enough taking care of myself in concerts
and I want to be free with the listeners
more happiness, today we are not different
Don’t you like my music?

– The N-gram method is more flexible, malleable, and seems to get closer to the
given topic. But, the toll to be paid is that flexibility is sometimes translated
into unintelligible phrases.

6 Conclusions and Further Work

In this paper we have presented an automated system to generate poetry in
Basque language. The proposed method not only generates novel poems, but
also creates them conveying a certain attitude or state of mind. The system
receives as an input the topic of the poem and the affective state (positive,
neutral or negative) and tries to give as output a novel poem that satisfies
formal constraints of rhyme and metric, shows coherent content related to the
given topic and expresses them through the predetermined mood.

Two methods has been tested for creating content: on the one hand com-
posing verses from scratch and putting together phrases already made by the
other. The performed experiments have served as a basis for better insight of
the proposed methods as well as to mark the way and future lines of work. We
are already working on further enhancements to each of the processes involved,
including:
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1. We are trying to test another ways to assert the sentiment of a whole poem.
That is, capturing the general sentiment conveying of the poem, instead of
calculating it line by line. The main message of a bertso goes always at the
end. Therefore, perhaps we could only take into account the sentiment of the
last line, leaving free the sentiment of the others.

2. Exploring new models to measure the semantic coherence of the poem. We
are currently experimenting with a word embedding approach to measure
semantic similarity between sentences.

3. Implementing improved methods to generate phrases for templates and work-
ing with other corpora. To generate the Markov chain, the use of other bigger
or more diverse corpus would also be interesting.

4. Improving the performance of the algorithm to create verses in real-time (as
real bertsolaris do) and use it in live performances.
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Abstract. This paper presents the results of a large vocabulary speech recog-
nition for the Serbian language, developed by using Eesen end-to-end frame-
work. Eesen involves training a single deep recurrent neural network, containing
a number of bidirectional long short-term memory layers, modeling the con-
nection between the speech and a set of context-independent lexicon units. This
approach reduces the amount of expert knowledge needed in order to develop
other competitive speech recognition systems. The training is based on a con-
nectionist temporal classification, while decoding allows the usage of weighted
finite-state transducers. This provides much faster and more efficient decoding in
comparison to other similar systems. A corpus of approximately 215 h of audio
data (about 171 h of speech and 44 h of silence, or 243 male and 239 female
speakers) was employed for the training (about 90%) and testing (about 10%)
purposes. On a set of more than 120000 words, the word error rate of 14.68%
and the character error rate of 3.68% is achieved.

Keywords: Eesen � End-to-end � LSTM � Speech recognition � Serbian

1 Introduction

Serbian is a highly inflected language. A large number of parameters have to be set
according to some previous expert knowledge. A number of different architectures have
been examined in the last few years, and most of them were based on Kaldi speech
recognition toolkit [1].

The results for the HMM-GMM system and a trigram-based language model, on a
test vocabulary of more than 14000 words, are presented in [2]. Other than preparing
the transcriptions, a number of different settings had to be optimized, e.g. the topology
of the HMM states, selected type of features, training recipe, the number of regression
tree leaves and the number of Gaussians per each stage. A number of different training
configurations have also been examined, including various training stages, such as
training of monophone models, progressive step-by-step training of triphone models,
another triphone pass using linear discriminant analysis and maximum likelihood linear
transform, maximum mutual information and boosted maximum mutual information
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[3] on top of the previous stage, minimum phone error [4], speaker adaptive training
[5], as well as various combinations of the above mentioned transforms. More than 200
clustering questions have been created according to the acoustic similarity between the
phones and the expert knowledge. Different phonetic segmentation (alignment) pro-
cedures have been examined in [6].

A deep neural network (DNN) based continuous speech recognition system is
presented in [7]. Stacked restricted Boltzmann machines, trained in a greedy layer-wise
fashion, were used to initialize the DNNs. Individual frames were classified into
triphone-states according to the cross-entropy criterion. However, the described pro-
cedure was built upon the previous HMM-GMM framework.

Unlike previously described systems, Eesen [8] is an end-to-end framework that
discards most of the above mentioned elements, such as HMM-GMM state topologies,
decision tree questions and other complicated features. On the other hand, it provides
highly efficient and a reasonably accurate decoding procedure, based on weighted
finite-state transducers (WFSTs) [9], and allows parallel GPU training using the con-
nectionist temporal classification (CTC) as the objective function [10].

In Sect. 2, experimental setup, including training and decoding particularities, are
discussed. In Sect. 3, the database used for the experiments is thoroughly described. In
Sect. 4, experimental results are presented. Conclusions and the directions for future
research are presented in Sect. 5.

2 Experimental Setup

2.1 Training

Training of acoustic models in Eesen presumes learning a single deep bidirectional
recurrent neural network (RNN) in a sequence-to-sequence manner, over pairs of
speech and context-independent label sequences (phonemes or characters) [8]. The
alignments between speech frames representing an utterance X ¼ x1; . . .; xTð Þ and a
label sequence Z ¼ Z1; . . .ZUð Þ;U� T ; Zu 2 1; . . .Kf g; K is the number of unique
labels (blanks are denoted as 0), are inferred using the connectionist temporal classi-
fication (CTC) objective function [10]. The RNNs are trained using back-propagation
through time for 3 or 4 (see Sect. 4) bidirectional long short-term memory lay-
ers (LSTM). Each LSTM unit represents a memory block storing temporal states of the
network. The structure of the LSTM units is illustrated in [8].

The training was conducted using a single CUDA GPU (GeForce GTX 980).
40-dimensional filterbank features together with 3 additional features representing pitch
(optional) with their first and second-order derivatives, normalized via mean subtrac-
tion and variance normalization per speaker are used in the experiments. Therefore, 120
or 129-dimensional feature vectors were used as inputs of the RNNs. Each LSTM layer
(both the forward and the backward sublayers) contains 320 or 1024 memory cells
(considering the number of layers and the number of memory cells, 4 different con-
figurations were examined, 3/320, 3/1024, 4/320 and 4/1024).

Eesen allows multiple utterances to be processed in parallel in order to speed up the
computation, by replacing matrix-vector multiplication over single frames with
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matrix-matrix multiplication over multiple frames. Each utterance is padded to the
length of the longest utterance in the group, but those frames are of course excluded
from gradients computation. Utterances from the training set are sorted by length. In
order to prevent running out of GPU memory, the number of frames to be processed in
parallel has to be limited. The maximum number of training samples could be deter-
mined based on the number of parallel sequences and the number of parallel frames,
whatever is reached first. The number of sequences in the experiments presented in
Sect. 4 ranged between 128 and 256, and the number of frames was set in a range from
20000 to 40000, which depends on the RNN structure, in order to achieve the optimal
usage of GPU capacity, i.e., the maximum available acceleration.

The learning rate was set to 0.00004. The proposed rate decreases after the accuracy
improvement falls below 0.5, by half at each subsequent epoch. The training terminates
as soon as the accuracy improvement falls below 0.1 between any 2 successive epochs.
Other values (0.001, 0.0001 and 0.00001) and other learning rate parameters were also
explored. However, the value 0.001 lead to the explosion of gradients, 0.0001 was too
unstable, leading to unexpected jumps in accuracy between consecutive epochs, and
therefore providing suboptimal solution, while 0.00001 converged extremely slowly.
Therefore, the value 0.00004 was used as a starting value for all the experiments
presented in Sect. 4.

2.2 Decoding

In order to decode CTC-trained models, Eesen employs a generalized decoding method
based on weighted finite-state transducers (WFSTs) [9]. Individual components, i.e.,
CTC labels (T), lexicon (L) and language model (G), are encoded into a single search
graph, following the expression

TLG ¼ T � min det L � Gð Þð Þ ð1Þ

TLG provides the mapping between a sequence of CTC labels and a sequence of
words (min denotes minimization, det denotes determinization and � denotes compo-
sition). This allows highly efficient search using the OpenFst library [11] or other
highly-optimized FST libraries.

A grammar WFST is composed from a set of permissible word sequences, given in
a form of an ARPA language model. Trigram language models are used in this paper
for the purpose of the experiments. The Kneser-Ney smoothing method [12] is applied
in order to calculate the probability distribution of n-grams. The probabilities are
pruned according to the minimum entropy increase criterion (10−7 and 10−6) to reduce
the size of a language model. The optimal performance in terms of the recognition
accuracy was achieved by using a pruning threshold of 10−7. Therefore, this value was
used for all the experiments presented in Sect. 4. The final language model contains
121197 unigrams, 1279389 bigrams and 357721 trigrams. It was built based on the
training corpus described in Sect. 3 and the additional 442000 sentences from the
Serbian journalistic corpus (this corpus contains newspaper articles, books, etc.).

A lexicon WFST defines the mapping between sequences of words and sequences
of lexicon units. It contains words from both training and testing sets (there are no
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out-of-vocabulary words) and the additional words from the Serbian journalistic cor-
pus, together with their pronunciations. Two sets of lexicon units have been employed.
The first one (labeled as “phn” in Table 2) contains a set of 77 lexicon units, including
silence, damaged versions of all the phones (denoting all noised, shortened, or other-
wise damaged phones), as well as stressed versions of all the vowels in the database.
This is a standard set of phones that was previously used in Kaldi. However, bearing in
mind that Eesen does not provide any mechanism that would allow tying of acoustical
states according to some expert knowledge (e.g., tying of A, Ad, As and Asd into A, s is
for stressed, d is for damaged, tying of vowels, etc.), the second set (labeled as “gph” in
Table 2) contains 31 lexicon units, including silence and 30 phonemes from the Ser-
bian alphabet. Serbian orthography is largely phonemic. Therefore, the second set
could also be observed as the set of graphemes (the Cyrillic and Latin letters are treated
the same), plus the silence.

A token WFST provides the mapping from a sequence of frame-level CTC labels
(allows occurrences of the blank label, as well as repetitions of non-blank labels) into a single
lexicon unit. The final RNN layer is a softmax layer containingK þ 1 nodes, corresponding
to Kþ 1 labels (including the additional blank label), K 2 77; 31f g. Finally,
the acoustic model scores are scaled by a factor f 2 0:5; 0:6; 0:7; 0:8; 0:9; 1:0f g,
that corresponds to the acoustic model weight (ACWT) from 5 to 10, given Sect. 4.

3 Data Preparation

The database used for the experiments presented in Sect. 4 represents a combination of
two different data sets. The first one is a set of audio books (AB). It contains a list of
longer and more complex utterances, e.g. “Glas joj je bio isti kao i pre šesnaest godina
kad smo se poslednji put videle, bio je čist, zvonak, veseo, čak senzacionalan na svoj
način.”/ “Her voice was the same as sixteen years ago when we met for the last time, it
was clear, resonant, cheerful, even sensational in its own way”. The second one is a set
of utterances recorded by using different mobile phone devices (MOB). It contains a list
of somewhat less complicated utterances, such as user commands, inputs or queries,
e.g. “Trebala bi mi informacija o vremenu dolaska voza iz Ciriha.”/ “I need an
information about the time of arrival of the train from Zurich.”, but also “Milano važi
za centar mode i dizajna, i jedan od središta svetske mode.”/ “Milano is considered as a
center of fashion and design, and one of the world fashion capitals.”. Database duration
(per segments) is presented in Table 1.

Table 1. Database duration (per segments)

Set Train Test Total
Duration Num. spk. Duration Num. spk. Duration Num. spk.

AB 139 h 15 m 69 M, 54 F 14 h 48 m 5 M, 4 F 154 h 3 m 74 M, 58 F
MOB 57 h 45 m 161 M, 172 F 3 h 12 m 8 M, 9 F 60 h 57 m 169 M, 181 F
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The second set was added not only to increase the total amount of training and
testing data, but also to improve the recognition accuracy in voice assistant applica-
tions. 95% of the training data was used for the actual training, while another 5% was
used for the cross-validation (as a development set).

4 Experimental Results

In Table 2, the results are presented in terms of the word error rate (WER) and character
error rate (CER, reflecting the number of inserted, deleted or substituted characters) for
the network with 3 or 4 layers and 320 or 1024 memory cells per each LSTM forward
and backward sublayer. For the configurations 1 to 4, the filterbank fea-
tures (120-dimensional feature vectors) were employed in combination with the stan-
dard dictionary (77 lexicon units, including silence, damaged versions of all the phones,
and the stressed versions of all the vowels in the database). WER for the configurations
with 320 memory cells was generally better than the WER for the configurations with
1024 memory cells. These results were expected, bearing in mind that Essen is an
end-to-end framework which does not take expert knowledge into account. Therefore, it
was harder for the system to infer such a large number of parameters.

For the configurations 5 to 8, 320 memory cells per each LSTM layer were
employed, based on the previous results. In order to reduce the number of substitutions,
instead of the standard dictionary with 77 lexicon units, the set of 31 lexicon units,
including silence and 30 phonemes, i.e. graphemes from the Serbian alphabet, was
employed. In the case of configurations 6 and 8, 3 additional features representing pitch
with their first and second order derivatives were added to the set of 40 filterbank
features with their derivatives, finally giving 129-dimensional feature vectors. The best
configuration was the one with 4 LSTM layers and 129-dimensional feature vectors,
i.e. the configuration number 8. The number of substitutions was reduced by several
thousand instances (the total number of words in the test set was 158653).

In Table 3, more detailed results are given for the configuration number 8. Different
blank scale values 1:0; 0:75; 0:5; 0:25f g were explored, which further reduced the

Table 2. The results in terms of WER and CER

# Num.
layers

Cell
dim.

Lexicon Features ACWT WER
[%]

CER
[%]

Ins. Del. Sub.

1 3 320 phn fbank 8 16.41 5.58 2532 4587 18922
2 1024 6 20.93 11.09 2566 6073 24568
3 4 320 7 16.96 7.00 2295 4761 19849
4 1024 7 17.56 7.52 2493 4667 20693
5 3 320 gph fbank 8 15.08 3.80 2148 5199 16585
6 fbank + pitch 9 16.26 4.13 2377 5546 17871
7 4 fbank 9 15.23 3.82 2367 4915 16878
8 fbank + pitch 9 14.73 3.69 2374 4810 16183
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number of substitutions and insertions, probably by giving larger probability to the
word endings, allowing the system to recognize the real word. The best WER (14.68%)
was achieved for the blank scale value 0.75. It was much better than the baseline
HMM-GMM configuration (WER 18.5%), but worse than nnet2 configuration
implemented in Kaldi (WER 12.01%, note that Kaldi allows the usage of expert
knowledge [1]). The configuration with 4 bidirectional LSTM layers and 320 memory
cells was also the best one reported in [8].

In Fig. 1, the list of top 20 insertions is presented in the graph form for the
configuration number 8 and the blank scale value 0.75. Short, single syllable words,
such as proposals, particles and conjunctions, recognized instead of noise or falsely
recognized in-between words constitute a very significant portion of the total number of
insertions.

In Fig. 2, the list of top 20 deletions is presented in the same manner. Again, short
words and vowels, badly pronounced or poorly covered by the language model con-
tribute significantly to the total number of deletions (top 20 deletions given in Fig. 2
constitute more than 50% of all the deletions in the system).

Table 3. The results for the best configuration (#8) and different blank scale values

Blank scale WER [%] CER [%] Ins. Del. Sub.

1.00 14.73 3.69 2374 4810 16183
0.75 14.68 3.68 2237 4959 16101
0.50 14.76 3.71 2076 5256 16084
0.25 15.15 3.84 1893 5876 16260

Fig. 1. Top 20 insertions chart for the configuration number 8 (blank scale 0.75)
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In Fig. 3, the list of top 20 substitutions is presented. The number of substitutions
per each pair of words is given in the figure. Other than short words, most of the
substitutions are produced by different gender or plural identifiers, inappropriate case,
missing prefixes or suffixes, etc. Most of those cases could be successfully corrected by
providing a more suitable language model.

Fig. 2. Top 20 deletions chart for the configuration number 8 (blank scale 0.75)

Fig. 3. Top 20 substitutions for the configuration number 8 (blank scale 0.75)
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Detailed (per-speaker) results are given in Figs. 4 and 5, showing the error rates for
the set of audio books (Fig. 4) and the mobile database (Fig. 5). Higher error rates were
obtained for the set of audio books, in comparison to the mobile database (13.61%
WER and 3.27% CER vs. 3.90% WER and 0.95% CER). This was expected, bearing
in mind the diversity of the content, the sentence length, and the language model
coverage.

Significant inter-speaker variability can be observed for both datasets. Due to the
random selection of the test sets, female speakers usually perform better than male
speakers (male utterances contained more background noise and speech artifacts).

Fig. 4. Per-speaker results for the set of audio books

Fig. 5. Per-speaker results for the mobile database
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5 Conclusion

According to the results presented in the previous sections, Eesen provides a reason-
ably accurate and highly efficient alternative for the automatic speech recognition in the
case of Serbian. The best system configuration was achieved for the network with 4
LSTM layers and 320 memory cells per each LSTM forward and backward layer.
Limited set of lexicon units provided higher accuracy in comparison to the previously
used “standard” set of units, due to the high number of substitutions. Tonal charac-
teristics of the language (Serbian vowels can be distinguished by their tone and length)
captured inside the additional features helped reducing the word error rate by an
additional percentage. Although the best system WER was relatively high - 14.68%,
the character error rate was only 3.68%. This parameter is important, bearing in mind
that the number of substitutions was highly influenced by the language infectivity and
the obvious lack of the proper language model. On the other hand, short words and
noises highly contributed to the total number of insertions and deletions.

In the future, other LSTM configurations will be explored. Tonal characteristics of
the language will be additionally exploited, by using the morphological dictionary for
the Serbian language and the part-of-speech tagging (accentuation of the lexicon the
corpus, phoneme types - shorter/ longer, opened/ closed, etc.). Wider context for
feature extraction will also be explored in order to detect the endings and the begin-
nings of a sentence (border phonemes have somewhat different acoustics). In order to
reduce the need for greater database, (wider) class n-grams instead of the ordinary
trigrams will be examined.
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Abstract. Sentiment analysis identifies the attitude that a person has towards a
service, a topic or an event and it is very useful for companies which receive
many written opinions. Research studies have shown that the determination of
sentiment in written text can be accurately determined through text and part of
speech features. In this paper, we present an approach to recognize opinions in
Greek language and we examine the impact of feature selection on the analysis
of opinions and the performance of the classifiers. We analyze a large number of
feedback and comments from teachers towards e-learning, life-long courses that
have attended with the aim to specify their opinions. A number of text-based and
part of speech based features from textual data are extracted and a generic
approach to analyze text and determine opinion is presented. Evaluation results
indicate that the approach illustrated is accurate in specifying opinions in Greek
text and also sheds light on the effect that various features have on the classi-
fication performance.

Keywords: Sentiment analysis � Feature selection � Text mining � Machine
learning

1 Introduction

In recent years, sentiment analysis is becoming an emerging topic mainly due to the
vast amount of people opinions and user generated comment on the web [4]. In order to
identify and extract opinion and subjective information in text, natural language pro-
cessing methods, text analytics and machine learning approaches are widely used [5,
15, 18]. An important stage in sentiment analysis concerns the extraction and the
utilization of appropriate and meaningful features that will be indicative and assistive in
the classification process.

Sentiment analysis methods are applied mainly on three different levels:
document/text level, sentence level and entity/feature level [8]. Document/text level
considers the whole document a basic information unit and expresses a specific
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sentiment for a product-service. In sentence-level, each sentence is considered to express
a different opinion or emotion without being influenced by the content of adjacent
sentences. So, sentences are identified as positive, negative or neutral. The entity and
feature level, aims to classify the sentiment with respect to the specific aspects. The issue
of extracting and classifying opinions from text can roughly be divided in two main
approaches, namely the machine learning and the lexicon-based [9]. The first approach
considers opinion mining as a text classification problem using machine learning
algorithms for classification and syntactic and/or linguistic features. The second
approach relies on opinion lexicons using the prior polarity of words or phrases.

According to the degree of human intervention in the learning process, the machine
learning approach is divided into two major categories: supervised and unsupervised.
Pang and Lee have made extensive research regarding sentiment analysis and opinion
mining, In one of them [11], they proposed an approach to classify movie reviews in
two classes, positive and negative. They experimented with features like unigrams,
bigrams, term frequency, term presence and position, and parts-of speech. In a fol-
lowing approach, they [10] suggested to remove objective sentences by extracting
subjective ones. They proposed a text-categorization technique that is able to identify
subjective content using minimum cut. Regarding unsupervised methods, the
researchers presented the classification of reviews as recommended (thumbs up) or not
recommended (thumbs down) [17]. This categorization of reviews based on adjectives
and adverbs, which were contained in words, phrases and proposals and parts of
speech, determined the emotional orientation of each review. With the assistance of
two given seed words, i.e., “poor” and “excellent”, the algorithm calculated the
emotional load of the candidate word for semantic orientation. The algorithm depended
on patterns of two constant words where first word is an adverb or adjective used for
orientation and the second word is used to represent the context. On the other hand the
lexicon-based approaches can be distinguished into two main categories: the
dictionary-based and the corpus-based. In corpus-based approaches, Hatzivassiloglou
and McKeown [7] proposed an algorithm to determine the polarity of adjectives. They
hypothesize that pairs of conjoined adjectives by “and” have the same polarity, while
those separated by “but” have opposite orientation.

A difficulty that supervised machine learning approaches have to address concerns
the high formal dimensionally of the feature space [2]. Since text feature space is vast,
it is highly desirable to reduce it by selecting proper and meaningful features without
however, sacrificing the performance of the classification process [3]. Feature selection,
refers to the stage of selecting a subset of the features available for describing the data
before applying a learning algorithm and is a common technique for addressing the
challenges rising from the high dimensionality of the data [6].

Implementing sentiment analysis for Greek language is a quite challenging task.
What is more, there are few available tools for the analysis of Greek text and also
resources and annotated corpora for Greek language are limited. In this paper, we
present an approach to recognize opinions in Greek language and we examine the
impact of feature selection on the analysis of opinions. In our work, feature ranking and
successive selection of features is performed in order to improve the accuracy of
sentiment classification on Greek text. The data used in the work concern the teachers’
reviews towards lifelong learning courses that they attended and which were conducted
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by the Greek School Network. The reviews were used to train machine learning
algorithms and their performance was studied under various feature selection approa-
ches and on different number of features. A number of text-based and part-of speech
based features from textual data are extracted and a generic approach to analyze text
and determined opinion in is presented.

The rest of the paper is organized as follows: Sect. 2 presents the research design
and the methodology. Section 3 describes the experimental study conducted and the
results collected. Finally, conclusions and directions for future work are presented in
Sect. 4.

2 Research Design and Methodology

2.1 Data and Features Description

In our paper, we present a multi-level sentiment analysis of Greek texts conducted by
various machine learning algorithms and examine their performance under different
number of features. The data used in our work, are set of reviews of teachers that
participated in lifelong learning courses which were conducted by the Greek School
Network [13]. More specifically, the reviews were made by over 2600 of teachers who
participated in e-Learning courses on computer science [19] which were offered
through teleconference services [14] and the teachers expressed their opinions and
experiences by answering multiple choice and open-ended questions [1]. The dataset of
teachers opinions, initially were manually annotated by experts on a five level scale (1–
5). In the annotation process, “1” was used to denote a very negative opinion towards
the learning process, while “5” was used to express a very positive opinion respec-
tively. We follow an entity and feature- level approach, reviews that bear multiple
meanings, were divided into concrete parts according to the content carrying and their
opinion was assessed on the 1 to 5 polarity scale. Example reviews along with the
corresponding annotation are illustrated in Fig. 1.

After that, a corpus of 11.156 annotated reviews was created and it is used to train
machine learning algorithms. The average length of the reviews was 10.4 words. In the
dataset, 133 reviews were annotated by the experts with score 1, and they belonged to

Fig. 1. Example of an opinion evaluation and classification in a class label
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the very negative opinion class, 584 reviews were annotated with score 2 and belonged
to the negative opinion class, 3737 with score 3 in the neutral opinion class, 3217 with
score 4 in the positive opinion class and 3485 were annotated with score 5 and
belonged to the very positive opinion class. In Fig. 2, the rate of the annotated reviews
is illustrated.

In the context of our work, a supervised machine learning approach was followed
and the workflow is illustrated in the next figure (Fig. 3).

Initially, the reviews are analyzed and two types of features are extracted, which are
the text-based and the Part of Speech (POS) based. Specifically, the text-based features
concern the number of (i) characters, (ii) words, (iii) capital letters, (iv) small letters,
(v) special characters, (vi) average word length, (vii) sentences and (viii) digits which
appear in a review. On the other hand the POS based features concern the number of
(i) nouns, (ii) adjectives, (iii) verbs, (iv) proper nouns, (v) articles, (vi) pronouns,
(vii) adverbs, (viii) prepositions and (ix) interjections. POS based features are extracted
with the use of POS tagger of Xerox [12], a wide used tool for the morphosyntactic
analysis of text which also supports Greek language. Furthermore, we extract

Fig. 2. Distribution of the annotated reviews

Fig. 3. Workflow of the methodology for the classification of Greek text reviews
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additional features such as the number of (i) punctuations, (ii) verb tenses, (iii) foreign
words (Fig. 4).

2.2 Sentiment Identification Methodology

The recognition of the opinion is performed in two stages. Firstly, machine learning
algorithms are trained with a large number of instances that are characterized from the
text/POS based features and the class. The classification algorithms are trained using a
large plurality of data. In the second stage (prediction), the classifiers have the ability to
classify new reviews represented as feature vectors in the appropriate class. For the
classification stage, a number of machine learning algorithms were investigated. In
particular, we experimented with multilayer perceptron neural network (MLP), deci-
sion tree namely C4.5 algorithm (J48), lazy algorithm (IBK) and SVM classifier based
on the RBF kernel. The experiments of the sentiment classification models were
conducted using the WEKA toolkit. This provides implementations of state-of-the-art
data mining and machine learning algorithms. It contains modules for data prepro-
cessing, classification, clustering and association rule extraction. We examined the
performance and the reliability of classifiers according to different feature sets specified
by Relief feature selection algorithm, which is heuristics-independent, noise-tolerant
algorithm. Our dataset was processed by the ReliefF algorithm, implemented using the
WEKA machine learning toolkit, and feature ranking scores were estimated. The
feature ranking results are presented in Table 1.

3 Experimental Results

For the performance of above algorithms, we used the 10-fold cross validation
approach. The dataset was divided into ten folds by random selection and then for each
of the folds, the classifier model was trained on the nine instances and tested on the
control fold. In previous approach, we examined the performance of classifiers training
them with all text and POS features [16]. The sum of features was 43, where 14 of them
were text-based feature and 29 of them were part-of-speech features. The aim of the
study was to examine the performance of each classifier based on different feature sets

Fig. 4. Feature extraction process
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like the 5-best features, the 10-best features and 15-better features and test how the
n-best features is able to affect the performance of each classifier. As shown in Table 1,
after using ReliefF, little deviation in the degree of fluctuation of characteristics is
presented which demonstrates the lack of significant influence of the best features on
the performance of classifiers. The ranking of the classification features indicates the
importance and efficacy both of the text and POS features. Among the 15 first ranked
characteristics, 4 of them belong to the text-based method and 11of them to
part-of-speech method. Two of the characteristics of text-based hold the highest rank.
Specifically, the best rating score was achieved by the average length of words
(0.00917), while the fifteenth feature gave rating score 0.00314. The comparison of
scores demonstrates our above finding, little typical deviation between first and fif-
teenth ranked feature as a result little influence on the performance of classifiers.

Series of experiments were conducted in order to determine whether a feature
selection approach would produce the same, or better improvements. For each feature,
we computed its information gain and then selected the N features with the highest
scores. In a parallel set of experiments, we reduced the size of the feature set, and then
selected the best N features using information gain. Table 2 and Fig. 5 show the results
of the experiments for the J48, IBK, MLP and RBFkernel classifiers.

Table 1. ReliefF ranking scores for the top-15 features

ReliefF score Feature description Feature class

1 0.00917 # average length of words Text based
2 0.00860 # maximum length of words Text based
3 0.00765 # number of nouns in a review Part of speech
4 0.00730 # total number of possessive pronouns in a review Part of speech
5 0.00687 # total number of adjectives in a review Part of speech
6 0.00630 # total number of subjective in a review Part of speech
7 0.00557 # total number of words contains refusal Text based
8 0.00517 # total number of articles in a review Part of speech
9 0.00486 # total number of pronouns in a review Part of speech
10 0.00462 # total number of adjectives in a review Part of speech
11 0.00406 # total number of verbs in active voice Part of speech
12 0.00333 # total number of letters in a review Text based
13 0.00318 # total number of verbs in a review Part of speech
14 0.00316 # total number of preposition in a review Part of speech
15 0.00314 # total number of small letters in a review Text based

Table 2. Correct classified instances for different set of features

Algorithms 5-best features 10-best features 15-best features All features

J48 54 .2% 56% 56.1% 56.9%
IBK 50.7% 53.9% 55.3% 54.9%
MLP 48.3% 51.3% 53.8% 53.7%
RBFkernel 45.1% 43.7% 43.9% 45.7%
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As illustrated in the table, lower accuracy appears when the algorithms are trained
with small sets of features. In contrast, the highest performance is achieved when the
algorithms are trained with the best-15 or more features. Specifically the performance
of J48, IBK and MLP is increased approximately 3% when the classifiers use the
10-best features compared to their performance when trained with the 5-best features.

It was also observed that when the 15-best features were used, the performance of
these three classifiers was improved. Namely, the performance of J48 was only slightly
increased by 0.1%, the performance of IBK was increased by 1.4% and the accuracy of
MLP was improved by 2.5% compared to 10-best features. IBK and MLP achieved the
best of their performance on the set of 15-best features. In addition, results indicate that
among all the classifiers, J48 algorithm achieved the best performance for each set of
features, 5-best, 10-best, 15-best and all 44 features achieving the best accuracy 56.9%
for the set of all features. On the other hand, RBFkernel had the best score for the set of
all feature and was very close with the set of 5-best features, while for the middle
number of characteristics had decreased performance.

4 Concussions and Future Work

The vast amount of user generated content necessitates accurate methods to analyze
and specify opinions and attitudes. In this work we examine the impact of feature
selection in sentiment analysis of Greek comments. A number of text-based and part of
speech based features are extracted from textual data and a generic approach to analyze
text and determined opinion is presented. The evaluation results indicate that the
approach has very good performance in specifying opinions in Greek text and also
sheds light on the effect that various features have on the classification performance.

There are various directions for future work. A main direction concerns the uti-
lization of aspect based methods to specify user opinions towards specific aspects they
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address. Moreover, in future work we intend to apply this with techniques for the
analysis of different types of textual data in Greek language ranging from blogs, news
articles and different customer opinions on sites. Finally, another direction for future
work concerns the examination of additional classification schemas, deep learning
approaches and also the study of techniques for handling imbalanced data.
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Abstract. In this paper, we study an application of time delay neural networks
(TDNNs) in acoustic modeling for large vocabulary continuous Russian speech
recognition. We created TDNNs with various numbers of hidden layers and
units in the hidden layers with p-norm nonlinearity. Training of acoustic models
was carried out on our own Russian speech corpus containing phonetically
balanced phrases. Duration of the speech corpus is more than 30 h. Testing of
TDNN-based acoustic models was performed in the very large vocabulary
continuous Russian speech recognition task. Conducted experiments showed
that TDNN models outperformed baseline deep neural network models in terms
of the word error rate.

Keywords: Time delay neural networks � Acoustic models � Automatic speech
recognition � Russian speech

1 Introduction

In recent years, artificial neural networks (NNs) have become very popular in automatic
speech recognition (ASR). Developers of ASR system use NNs for both acoustic and
language modeling. For acoustic modeling, NNs are often combined with Hidden
Markov Models (HMMs) [1]. In many scientific papers (for example, [2]) it was shown
that hybrid NN/HMM acoustic models allow increasing speech recognition accuracy
with HMMs supporting long-term dependencies and deep NN (DNN) providing dis-
criminative training. In a hybrid NN/HMM system, the NN is trained to predict
a-posteriori probabilities of each context-dependent state with given acoustic obser-
vations. During decoding the output probabilities are divided by the prior probability of
each state forming a “pseudo-likelihood” that is used in place of the state emission
probabilities in the HMM [1].

Different types of NNs are used for acoustic modeling: feed-forward deep neural
networks (DNNs), convolutional neural networks (CNN), deep belief networks (DBN),
time delay neural networks (TDNN), Long Short-Term Memory (LSTM) [3].
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Investigations on combination of NNs and HMMs started at the end of the 1980s [1].
Recently, the number of such investigations increases with increasing computation
capabilities of computers [4]. For example, context-dependent DNNs/HMMs
(CD-DNN-HMMs) are described in [5]. CNN for acoustic modeling was used in [6].
In that paper, context adaptive DNNs for acoustic models based on CNNs are
researched. Context adaptation showed up to 6% improvement over a baseline CNN
model. DNNs and CNNs with feedback connection was explored in [7], where the
input features were augmented with the features obtained from the output of the last
hidden layer and it improved the performance of speech recognition. The usage of
LSTM in a hybrid DNN/HMM system was presented in [8]. LSTM allowed the authors
to reduce word error rate (WER) comparing to the DNN-based system. TDNN-based
acoustic models were presented in [9], where introduction of time delays allowed
obtaining relative WER reduction of 2.6%. There are a few researches on application of
DNNs in Russian speech recognition systems. Samples of Russian speech recognition
systems with DNN-based acoustic models are presented in [10–12].

In this paper, we study and compare DNNs and TDNNs for acoustic modeling in
Russian ASR. The paper is organized as follows: in Sect. 2 we give a description of
DNN-based acoustic models, in Sect. 3 we present our language model and vocabu-
lary, Sect. 4 describes our training and testing speech corpora, experiments on speech
recognition using DNN-based acoustic models are presented in Sect. 5.

2 Acoustic Modeling with DNNs

2.1 Hybrid DNN/HMM Acoustic Models

We have tried two types of NNs for acoustic modeling: feed-forward DNN and TDNN.
Acoustic models were trained using the open-source Kaldi toolkit [13]. Mel-frequency
cepstral coefficients (MFCCs) were used as input to the NNs. For speaker adaptation,
100-dimensional i-Vector [14] was appended to the 40-dimensional MFCC input.

We used Dan’s implementation [15] of DNN training realized in Kaldi and
experimented with DNNs having p-norm activation function [16]. The output was a
softmax layer with the dimension equal to the number of context-dependent states
(1609 in our case). We created DNNs with diverse number of hidden layers: from 3
till 5. For the p-norm DNNs, there is no parameter of hidden layer dimension; instead,
there are two other parameters: (1) p-norm output dimension and (2) p-norm input
dimension. The input dimension needs to be an exact integer multiple of the output
dimension; normally a ratio of 5 or 10 is used [16]. We have tried p-norm DNNs with
input/output dimensions of 1000/100 and 2000/200 respectively. The system was
trained for 15 epochs with the learning rate varying from 0.02 to 0.004 and then for
5 epochs with a constant final learning rate (0.004). Our hybrid DNN/HMM system is
described in [12] in more detail.
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2.2 Time-Delay Neural Network-Based Acoustic Models

TDNN is a feed-forward DNN with nodes modified by the introduction of time delays
[17]. An example of a node with delays is presented in Fig. 1, where U1…UJ are inputs
of the node; each of J inputs is multiplied by a corresponding weight w; D1…DN are
time delays; F is an activation function [18]. Thereby, a short-term memory is inte-
grated in the NN.

TDNNs are efficient for modeling temporal dynamics in speech allowing capturing
long term dependencies between acoustic events. In [9], a subsampling technique for
TDNN was proposed, which speeds up training and makes training time comparable to
the standard feed-forward DNN training. According to this technique, hidden activa-
tions are computed only on a few time steps instead of computing at all time steps. In
this approach, instead of splicing together neighboring temporal windows of frames at
each layer, it is proposed to splice together no more than two frames.

We created TDNNs with diverse number of hidden layers, different temporal con-
texts and splice indexes. p-norm non-linearity was also used for hidden layers. An
example of the architecture for TDNN with time context [−7, 4] (the interval consists of
integer numbers corresponding to the time steps) using sub-sampling is presented in
Fig. 2. The input layer splices together frames at a context {−1, 0, 1} (or we can write it
more compact as [−1, 1]). For the hidden layer, the sub-sampling {−2, 1} is performed;
it means that the input at the current frame minus 2 and the current frame plus 1 are
spliced together. Then at 2nd hidden layer, the sub-sampling {−4, 2} is applied.

For TDNN training we also used Kaldi toolkit. Parameters of several created
TDNNs are summarized in Table 1.

Fig. 1. An example of neural network’s node with time delays [18]
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3 Language Model and Pronunciation Vocabulary

For the language model creation, we collected and automatically processed a Russian
text corpus consisting of a number of Russian on-line newspapers. The procedure of
preliminary text processing and normalization is described in [19]. At first, the texts
were divided into sentences. Then, a text written in any brackets was deleted, and
sentences consisting of less than six words were also removed. Uppercase letters were
replaced by the lowercase ones, if a word started with an uppercase letter. If a whole
word was written by the uppercase letters, then such change was made, when this word
was in the vocabulary only. The size of the corpus after text normalization is over
350M words, and it has above 1M unique word-forms.

For the statistical text analysis, we used SRI Language Modeling Toolkit (SRILM)
[20]. During language model creation, we used the Kneser-Ney discounting method,
and did not apply any n-gram cutoff. We created various 3-gram language models with
different vocabulary sizes, and in our recent experiments the best speech recognition

Output layer

t+2t-4

t-6 t-3 t t+3

t-7 t+4

+2-4

-2
+1 -2 +1

-1 +1 -1 +1 -1 +1 +1-1
Input layer

1st hidden layer

2nd hidden layer

Fig. 2. An example of TDNN architecture with sub-sampling for network context [−7, 4]

Table 1. Parameters of created TDNNs

Model Network context Layerwise context
1 2 3 4 5 6

TDNN1 [−7, 4] [−1, 1] {−2, 1} {−4, 2} {0} – –

TDNN2 [−8, 8] [−2, 2] {−1, 1} {−2, 2} {−3, 3} {0} –

TDNN3 [−13, 10] [−2, 2] {−1, 2} {−3, 4} {−7, 2} {0} –

TDNN4 [−15, 11] [−2, 2] {−2, 1} {−4, 3} {−7, 5} {0} –

TDNN5 [−15, 15] [−2, 2] {−1, 1} {−2, 2} {−3, 3} {−7, 7} {0}
TDNN6 [−18, 15] [−2, 2] {−1, 1} {−2, 2} {−4, 3} {−9, 7} {0}
TDNN7 [−13, 13] [−2, 2] {−1, 1} {−2, 2} {−3, 3} {−5, 5} {0}
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results were obtained with 150K vocabulary [21]. The perplexity measure of this
language model was 553.

Phonetic transcriptions for the vocabulary word-forms were generated automati-
cally. At first, stress vowels in word-forms were defined using a dictionary, which was
a fusion of two different morphological databases: AOT (www.aot.ru) and Starling
(http://starling.rinet.ru/morpho.php). Then transcriptions were generated by application
of transcription rules to the list of word-forms with denoted stress vowels [22].

4 Russian Speech Corpora

For training and testing the Russian ASR system we used our own different speech
corpora recorded in SPIIRAS. The training speech corpus consists of three parts. The
first part is the speech database developed within the framework of the EuroNounce
project [23]. The database consists of 16,350 utterances pronounced by 50 native
Russian speakers (25 men and 25 women). Each speaker pronounced a set of 327
phonetically rich and meaningful phrases and texts. The second part of the corpus
consists of recordings of other 55 native Russian speakers. Each speaker pronounced
105 phrases: 50 phrases were taken from the Appendix G to the Russian State Standard
P 50840–95 [24] (these phrases were different for each speaker), and 55 common
phrases were taken from a phonetically representative text, presented in [25]. The third
part is an audio part of the audio-visual speech corpus HAVRUS [26]. 20 native Russian
speakers (10 male and 10 female speakers) with no language or hearing problems
participated in the recordings. Each of them pronounced 200 Russian phrases: (a) 130
phrases for training are two phonetically rich texts common for all speakers, and
(b) 70 phrases for testing are different for every speaker: 20 phrases were commands for
the MIDAS information kiosk [27] and 50 phrases are 7-digits telephone numbers
(connected digits). The total duration of the entire speech data is more than 30 h.

To test the system we used another speech dataset consisting of 500 phrases pro-
nounced by 5 native Russian speakers (3 male and 2 female speakers) [19]. The phrases
were taken from the materials of one Russian on-line newspaper (Fontanka.ru) that was
not presented in the training speech and text data.

The recording of speech data was carried out with the help of two professional
condenser microphones Oktava MK-012. The speech data were collected in clean
acoustic conditions, with 44.1 kHz sampling rate, 16 bit per sample. The
signal-to-noise ratio (SNR) was about 35 dB. For the recognition experiments, all the
audio data were down-sampled to 16 kHz. Each phrase was stored in a separate wav
file. Also a text file containing orthographical representation (transcription) of utter-
ances was provided.

5 Results of Experiments on LVCSR for Russian

Firstly, we have made experiments on Russian speech recognition using the
DNN-based acoustic models. The speech recognition results obtained with p-norm
DNNs are presented in Table 2. The obtained results show that the number of layers
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has only slight influence on speech recognition results. The best result (WER =
20.82%) was obtained, when the DNN had 5 hidden layers and input/output dimen-
sion of 1000/100. Increasing the number of hidden layers and units led to increasing the
WER, it can be caused by the limited amount of the training data and overtraining.

Then, we have made experiments with TDNN acoustic models. Table 3 presents
obtained results.

The lowest WER was 19.04% and it was achieved by the TDNN with 5 hidden
layers and time context [−8, 8] (TDNN2). The usage of the models with larger tem-
poral time led to increasing of WER that also can be caused by overtraining.

6 Conclusions and Future Work

We have studied hybrid TDNN/HMM acoustic models for large vocabulary continuous
Russian speech recognition. We created several TDNNs with diverse number of hidden
layers, different temporal contexts and splice indexes. The experiments on continuous
Russian speech recognition with the very large vocabulary showed that TDNN allows
decreasing WER with respect to the DNN-based acoustic models. We have obtained
the relative WER reduction of 9% comparing to the best DNN/HMM acoustic model.
In further research, we plan to investigate other types of DNNs, such as CNN, LSTM,
and bidirectional LSTM for acoustic modeling, to try deep learning software tools

Table 2. WERs obtained with p-norm DNN/HMM models (%)

Number of hidden layers Input/output
dimension
1000/100 2000/200

3 23.48 25.09
4 21.63 23.86
5 20.82 22.58
6 21.52 25.07

Table 3. WERs with p-norm DNN/HMM models (%)

Model Input/output
dimension
1000/100 2000/200

TDNN1 20.64 21.03
TDNN2 19.04 20.26
TDNN3 19.06 20.73
TDNN4 20.56 21.61
TDNN5 20.84 21.50
TDNN6 21.76 21.54
TDNN7 19.89 20.43
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(for example, CNTK) for training of NNs, and to apply NN-based Russian language
model [28] for lattice rescoring.
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dation for Basic Research (project No. 15–07–04322).

References

1. Yu, D., Deng, L.: Automatic Speech Recognition. A Deep Learning Approach. Springer,
London (2015)

2. Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V.,
Nguyen, P., Sainath, T., Kingsbury, B.: Deep neural networks for acoustic modeling in
speech recognition: the shared views of four research groups. IEEE Sign. Process. Mag.
29(6), 82–97 (2012)

3. Kipyatkova I., Karpov, A.: Variants of deep artificial neural networks for speech recognition
systems. In: SPIIRAS Proceedings, vol. 6(49), pp. 80–103 (2016). (in Russian) doi:http://dx.
doi.org/10.15622/sp.49.5

4. Deng, L.: Deep learning: from speech recognition to language and multimodal processing.
APSIPA Trans. Sign. Inf. Process. 5, 1–15 (2016)

5. Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-dependent deep
neural networks. In: INTERSPEECH 2011, pp. 437– 440 (2011)

6. Delcroix, M., Kinoshita, K., Ogawa, A., Yoshioka, T., Tran, D., Nakatani, T.: Context
adaptive neural network for rapid adaptation of deep CNN based acoustic models. In:
INTERSPEECH 2016, pp. 1573–1577 (2016)

7. Tran, D.T., Delcroix, M., Ogawa, A., Huemmer, C., Nakatani, T.: Feedback connection for
deep neural network-based acoustic modeling. In: IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 2017), pp. 5240–5244 (2017)

8. Geiger, J.T., Zhang, Z., Weninger, F., Schuller, B., Rigoll, G.: Robust speech recognition
using long short-term memory recurrent neural networks for hybrid acoustic modelling. In:
INTERSPEECH 2014, pp. 631–635 (2014)

9. Peddini, V., Povey, D., Khundanpur, S.: A time delay neural network architecture for
efficient modeling of long temporal contexts. In: INTERSPEECH 2015, pp. 3214–3218
(2015)

10. Tomashenko, N., Khokhlov, Y.: Speaker adaptation of context dependent deep neural
networks based on MAP-adaptation and GMM-derived feature processing. In: INTER-
SPEECH 2014, pp. 2997–3001 (2014)

11. Prudnikov, A., Medennikov, I., Mendelev, V., Korenevsky, M., Khokhlov, Y.: Improving
acoustic models for Russian spontaneous speech recognition. In: Ronzhin, A., Potapova, R.,
Fakotakis, N. (eds.) SPECOM 2015. LNCS(LNAI), vol. 9319, pp. 234–242. Springer, Cham
(2015). doi:10.1007/978-3-319-23132-7_29

12. Kipyatkova, I., Karpov, A.: DNN-based acoustic modeling for Russian speech recognition
using kaldi. In: Ronzhin, A., Potapova, R., Németh, G. (eds.) SPECOM 2016. LNCS, vol.
9811, pp. 246–253. Springer, Cham (2016). doi:10.1007/978-3-319-43958-7_29

13. Povey, D., et al.: The Kaldi speech recognition toolkit. In: IEEE Workshop on Automatic
Speech Recognition and Understanding ASRU (2011)

368 I. Kipyatkova

http://dx.doi.org/10.15622/sp.49.5
http://dx.doi.org/10.15622/sp.49.5
http://dx.doi.org/10.1007/978-3-319-23132-7_29
http://dx.doi.org/10.1007/978-3-319-43958-7_29


14. Saon, G., Soltau, H., Nahamoo, D., Picheny, M.: Speaker adaptation of neural network
acoustic models using i-Vectors. In: IEEE Automatic Speech Recognition and Understand-
ing Workshop (ASRU), pp. 55–59 (2013)

15. Povey, D., Zhang, X., Khudanpur, S.: Parallel training of DNNs with natural gradient and
parameter averaging (2014). Preprint: arXiv:1410.7455, http://arxiv.org/pdf/1410.7455v8.
pdf

16. Zhang X., Trmal J., Povey D., Khudanpur S.: Improving deep neural network acoustic
models using generalized maxout networks. In: IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 215–219 (2014)

17. Gapochkin, A.V.: Neural networks in speech recognition systems. Sci. Time 1(1), 29–36
(2014). (in Russian)

18. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.: Phoneme recognition using
time-delay neural networks. IEEE Trans. Acoust. Speech Sign. Process. 37(3), 328–339
(1989)

19. Karpov, A., Markov, K., Kipyatkova, I., Vazhenina, D., Ronzhin, A.: Large vocabulary
Russian speech recognition using syntactico-statistical language modeling. Speech Com-
mun. 56, 213–228 (2014)

20. Stolcke, A., Zheng, J., Wang, W., Abrash, V.: SRILM at sixteen: update and outlook. In:
Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop ASRU
2011 (2011)

21. Kipyatkova, I., Karpov, A.: Lexicon size and language model order optimization for
Russian LVCSR. In: Železný, M., Habernal, I., Ronzhin, A. (eds.) SPECOM 2013. LNCS
(LNAI), vol. 8113, pp. 219–226. Springer, Cham (2013). doi:10.1007/978-3-319-01931-4_
29

22. Kipyatkova, I., Karpov, A., Verkhodanova, V., Zelezny, M.: Modeling of pronunciation,
language and nonverbal units at conversational russian speech recognition. Int. J. Comput.
Sci. Appl. 10(1), 11–30 (2013)

23. Jokisch, O., Wagner, A., Sabo, R., Jaeckel, R., Cylwik, N., Rusko, M., Ronzhin A.,
Hoffmann, R.: Multilingual speech data collection for the assessment of pronunciation and
prosody in a language learning system. In: Proceedings of SPECOM 2009, pp. 515–520
(2009)

24. State Standard P 50840–95. Speech transmission by communication paths. Evaluation
methods of quality, intelligibility and recognizability, p. 230. Standartov Publ., Moscow
(1996). (in Russian)

25. Stepanova, S.B.: Phonetic features of Russian speech: realization and transcription, Ph.D.
thesis (1988). (in Russian)

26. Verkhodanova, V., Ronzhin, A., Kipyatkova, I., Ivanko, D., Karpov, A., Železný, M.:
HAVRUS corpus: high-speed recordings of audio-visual Russian speech. In: Ronzhin, A.,
Potapova, R., Németh, G. (eds.) SPECOM 2016. LNCS, vol. 9811, pp. 338–345. Springer,
Cham (2016). doi:10.1007/978-3-319-43958-7_40

27. Karpov, A.A., Ronzhin, A.L.: Information enquiry kiosk with multimodal user interface.
Pattern Recogn. Image Anal. 19(3), 546–558 (2009)

28. Kipyatkova, I., Karpov, A.: A study of neural network Russian language models for
automatic continuous speech recognition systems. Autom. Remote Control 78(5), 858–867
(2017). Springer

Experimenting with Hybrid TDNN/HMM Acoustic Models 369

http://arxiv.org/abs/1410.7455
http://arxiv.org/pdf/1410.7455v8.pdf
http://arxiv.org/pdf/1410.7455v8.pdf
http://dx.doi.org/10.1007/978-3-319-01931-4_29
http://dx.doi.org/10.1007/978-3-319-01931-4_29
http://dx.doi.org/10.1007/978-3-319-43958-7_40


Exploring Multiparty Casual Talk for Social
Human-Machine Dialogue

Emer Gilmartin(B), Benjamin R. Cowan, Carl Vogel, and Nick Campbell

Trinity College, Dublin, Ireland
{gilmare,vogel,nick}@tcd.ie, benjamin.cowan@ucd.ie

Abstract. Much talk between humans is casual and multiparty. It facil-
itates social bonding and mutual co-presence rather than strictly being
used to exchange information in order to complete well-defined practical
tasks. Artificial partners that are capable of participating as a speaker or
listener in such talk would be useful for companionship, educational, and
social contexts. However, such applications require dialogue structure
beyond simple question/answer routines. While there is body of theory
on multiparty casual talk, there is a lack of work quantifying such phe-
nomena. This is critical if we are to manage and generate human machine
multiparty casual talk. We outline the current knowledge on the struc-
ture of casual talk, describe our investigations in this domain, summarise
our findings on timing, laughter, and disfluency in this domain, and dis-
cuss how they can inform the design and implementation of truly social
machine dialogue partners.

Keywords: Speech interfaces · Dialogue modelling · Casual social talk

1 Introduction

Human talk is a fundamentally social activity, and casual conversation is
inevitable whenever humans gather together. It forms a fundamental part of
human communication. With the growth of interest in the development of avatars
and robots as social companions, it is important to understand the nature of
such talk in situations where there is more than one conversational actor so as
to endow machines with the ability to converse appropriately in such contexts.
Currently, much of the speech interface research is focused on task based dia-
logue interactions. Early dialogue system researchers recognised the complexity
of dealing with social talk [1], and initial prototypes concentrated on practical
tasks such as travel bookings and the logistics of moving boxcars of oranges. In
these tasks, the lexical content of utterances was enough to drive successful com-
pletion of the task. Task-based systems have proven invaluable in many practical
domains. However the desire to develop more social companions (be it robot or
avatar based) in a number of domains such as healthcare and education means
that social talk must become a significant strand of research and the nature of
dialogue as a multi-party activity needs to be addressed. We argue that the field
c© Springer International Publishing AG 2017
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now needs to move towards understanding and incorporating casual multiparty
conversation so as to create more natural dialogue interactions between machine
and human partners. In this paper we highlight work in the area of social talk
and summarise recent research conducted by the authors in this domain.

2 What Is Social Talk?

Social talk, rather than following Gricean maxims of efficient communication of
information, seems rather to be based on avoidance of silence and engagement
in unthreatening but entertaining verbal display and interaction [32]. In casual
talk, all participants can contribute at any time, unlike the more restricted roles
found in more formal situations [14,34]. Rather than following a question and
answer format of the type which drives task based dialogues, casual conversation
has been described as occurring in stages - chat and chunk [17]. In chat phases,
participants contribute utterances more or less equally with many questions and
short comments. Chat is often used to ‘break the ice’ among strangers involved
in casual talk [28]. Chat phases are also interspersed with chunk phases – longer
contributions from one participant – often in the form of narrative anecdotes
and recounts, opinion or discussion. The ‘ownership’ of chunks seems to pass
around the participants in the talk, with chat linking one chunk to the next
[17]. The structure of casual conversation has also been described as a more
detailed sequence of structural elements or phases [33]. These phases include
opening and closing Greeting, Address, Leavetaking and Goodbye sequences.
The main content of the conversation is described as a sequence of Approach
and Centring stages, similar to chat and chunk, with added subtypes for the
Approach phases depending on social distance between participants. Approach
phases can be indirect - dealing with topics such as the weather, or direct -
involving more personal subject matter. Figure 1 shows a schematic of the phases
described by Ventola, while Fig. 2 shows examples drawn from our data of typical
chat and chunk phases in a 5-party conversation.

The design of more social speech interfaces and companion applications
depends on knowledge of the type of talk being modelled. Below we outline our
work in this area, focussing on corpus analysis to determine the characteristics
of longer form multiparty casual talk.

3 Corpora Used for Casual Conversation Research

Relevant corpora of human interaction are essential to understanding different
genres of spoken dialogue. Interestingly, the design of systems and the production
of corpora has often followed the path taken in the development of pragmatic
theories of talk. Early task-based systems were based on a literal view of speech
as transmission of text. Many of the multimodal corpora and indeed several
earlier audio corpora created in laboratory and ‘real-world’ conditions have been
collections of performances of the same spoken task by different subjects, or of
interactions specific to particular domains where lexical content was fundamental
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Fig. 1. The phases of casual talk described by Ventola - greeting, approach, centre,
and leavetaking. Note that approach and centre phases may freely recur

Fig. 2. Examples of chat (top) and chunk (bottom) phases in two stretches from a
5-party conversation in the D64 corpus. each row denotes the activity of one speaker
across 120 s. Speech is green, and laughter is yellow on a grey background (silence).
The chat frame, taken at the beginning of the conversation, can be seen to involve
shorter contributions from all participants with frequent laughter. The chunk frame
shows longer single speaker stretches (Color figure online)

to acheivment of a practical goal - such corpora include collections of information
gap activities such as the HCRC MapTask corpus of dyadic information gap task-
based conversations [3]. Other corpora have focussed on collecting recordings of
real or staged meetings, such as the ICSI and AMI multiparty meeting corpora
[25,29], or recordings of particular genres of interaction, such as televised political
interviews [6]. All of these corpora have contributed greatly to understanding of
different facets of spoken interaction such as timing, turntaking, and dialogue
architecture. However, the speech in these resources, while spontaneous and
conversational, cannot be considered casual talk, and the results obtained from
their analysis may not transfer to casual conversation.

In terms of non-task interaction, there have been audio collections made of
casual talk, including telephonic corpora such as SWITCHBOARD [22] and the
ESP-C collection of Japanese telephone conversations [13], and corpora com-
prising recordings of face-to-face talk as in the Santa Barbara Corpus [15],
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and sections of the ICE corpora [23] and of the British National Corpus [8].
These corpora are audio only and thus cannot be used to inform research on facial
expression, gestural or postural research. The Gothenburg Corpus of recordings
of different types of human activity contains both audio and video recordings
including casual or small talk [2], leading a trend toward multimodal recordings
which can be used to study more aspects of conversation.

Increasing interest in social talk among dialogue system designers has resulted
in systems which engage users in ‘chat’ similar to the smalltalk described at the
margins of more serious practical talk in the pragmatics literature [7,36]. In the
recent years, researchers have started to produce corpora of mostly dyadic ‘first
encounters’ where strangers were recorded engaged in casual conversation for
periods of 5 to 20 min or so [4,16,31]. These corpora have appeared in several
languages including Swedish, Danish, Finnish, and English. These corpora are
very valuable for the study of dyadic interaction, particularly at the opening and
early stages of interaction. For a fuller review of available corpora and the chal-
lenges of genre in conversation, see [18]. However, pragmatic work has described
the substance of longer casual conversation beyond these first encounters, and it
is this area which interests us, informing the design of systems which can take
the user into a longitudinal series of conversations beyond the first chat phases.

We focus on multiparty casual conversation, and have created a dataset of
six informal conversations with three to five participants, each around an hour
long. The conversations were drawn from three multimodal corpora, d64, DANS,
and TableTalk [12,24,30], to allow for comparison of our results from analysis
of the audio data with results of video analysis at a later date. Recordings of
this type are not easily found with those corpora being the most popular for
such work. Our data was manually segmented and transcribed using Praat [9]
and Elan [35]. Details of the dataset can be seen in Table 1, and further details
of the annotation process can be found in [20]. In the next section, we give an
overview of recent work on this dataset.

Table 1. Source corpora and details for the conversations used in dataset

Corpus Participants Gender Duration (s)

D64 5 2F/3M 4164

DANS 3 1F/2M 4672

DANS 4 1F/3M 4378

DANS 3 2F/1M 3004

TableTalk 4 2F/2M 2072

TableTalk 5 3F/2M 4740

In each of the corpora used, participants were recorded in casual conversation
in a living room setting or around a table, with no instructions on topic of type
of conversation to be carried out - participants were also clearly informed that
they could speak or stay silent as the mood took them.
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4 Overview of Recent Work

Our analysis of social talk focuses on a number of dimensions; chat and chunk
duration, laughter distribution, disfluency distribution, and the patterning of
utterances by different speakers in different phases, as these elements are largely
independent of the lexical content of the conversations, and have been analysed
in meeting corpora [5,11,27]. Thus, our analyses of casual multiparty talk can be
contrasted with existing analyses of task-based multiparty talk. Timing informa-
tion in multiparty meeting corpora, in particular, has been shown to be amenable
to stochastic modelling of the distribution of talk and laughter [26], which is a
longer term goal of the work described here.

4.1 Chat and Chunk Duration and Chat Positioning

From our analysis of data from the corpora highlighted we have found that the
distributions of durations of chat and chunk phases are different, with chat phases
durations varying more while chunk durations have a more consistent cluster-
ing around the mean. Chat phase durations (Mean = 28 s) tend to be shorter
than chunk durations (Mean = 34 s). These findings are not speaker specific in
our preliminary experiments and seem to indicate a natural limit for the time
one speaker should dominate a conversation. The dimensions of chat and chunk
durations observed would indicate that social talk should ‘dose’ or package infor-
mation to fit chat and chunk segments of roughly these lengths. In particular,
the tendency towards chunks of around half a minute could help in the design of
narrative or education-delivering speech applications, by allowing designers to
partition content optimally.

We also observed more chat at conversation beginnings, with chat predomi-
nating for the first 8–10 min of conversations. Although our sample size is small,
this observation conforms to descriptions of casual talk in the literature, and
reflects the structure of ‘first encounter’ recordings. However, as the conversa-
tion develops, chunks start to occur much more frequently, and the structure is
an alternation of single-speaker chunks interleaved with shorter chat segments.
While the initial extended chat segments can be used to model ‘getting to know
you’ sessions, and will therefore be useful for familiarisation with a digital com-
panion, it is clear that we need to model the chunk heavy central segments of
conversation if we want to create systems which form a longer-term dialogic
relationship with users.

4.2 Laughter and Disfluency Distribution

We have also been investigating the frequency and distribution of laughter and
disfluencies in multiparty casual talk. Early experiments showed that laugh-
ter, and particularly shared laughter, appears more common in social talk than
in meeting data, and that laughter happens more around topic endings/topic
changes [10,19]. This is consistent with our current work on chat and chunk
phases, as we are seeing that laughter is more common in chat phases – which
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provide a ‘buffer’ between single speaker and topic chunks. In the current dataset
we have found that laughter accounts for approximately 10% of vocal time in
chat phases while it only accounts for 4% of chunk phases. For disfluencies, a
pilot study has shown differences in the occurrence and distribution of disflu-
ency types for chunk owners in chunks and all other speakers [21]. In the chunk
modality one speaker holds the floor for an extended period and this behaviour
is different to that of all other speakers in chunks, to that of all speakers in chat,
and indeed to that of the chunk owner when in somebody else’s chunk.

Fig. 3. Distribution of disfluency types (deletion, filled pause, repetition, substitution)
in chunk owner versus all other speech. Frequencies are shown proportionally in per-
centages with grey denoting chunk owner speech.

Figure 3 shows the distribution of disfluency types (deletion, filled pause,
repetition, substitution) in two modalities – where the speaker is the? owner? of a
chunk versus all other speech. It can be seen that filled pauses are proportionally
less frequent in chunk owner speech than in general speech – 31% vs 50%, while
repetition is proportionately more common in chunk owner speech – 37% vs
23%. In view of the very small sample of speakers, we checked the distributions
for each speaker, although the proportions varied. For individual speakers, in all
cases, filled pauses were also proportionately lower in chunk owner speech versus
other speech, and repetitions were also proportionally higher in chunk owner
speech for each speaker.

4.3 Speaker Contribution

We are studying the patterning of speaker contributions in both phases, partic-
ularly the length of gap or overlap in the vicinity of speaker and phase changes.
We are performing prosodic analysis of the utterance final pitch movements in
different contexts, and believe the results of this work will provide information
helpful in developing more finegrained ‘endpointing’ systems to determine when
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the system should speak; with knowledge of how turntaking occurs in different
phases of talk we can work towards providing systems with turntaking behaviour
appropriate to the current conversational phase.

5 Systems Developed for Casual Talk

Based on our analysis we have built a number of prototype ‘first encounter’ sys-
tems whose purpose is to chat engagingly with users. The HERME robot, based
on casual talk structure, successfully chatted with several hundred members of
the public in Trinity College’s Science Gallery. Our more recent system, CARA,
has been used in Wizard of Oz experiments to investigate timing by humans
versus automatic machine timing in first encounter dialogues. We are currently
developing CARA as a system which will incorporate our growing knowledge of
how longer form casual talk actually works.

6 Conclusions

There is increasing interest in academic circles, business, and from the gen-
eral public in spoken dialogue systems that act naturally and perform functions
beyond information search and narrow task-based exchanges. The design of these
new systems needs to be informed by relevant data and analysis of human spo-
ken interaction in the domains of interest. Many of the available multiparty data
are based on meetings or first encounters. While first encounters are very rele-
vant to the design of human machine first encounters, there is a lack of data on
longer human conversations. We hope that the encouraging results of our analy-
sis of casual social talk will help make the case for the creation and analysis of
corpora of longer social dialogues. We believe that the exponential growth in
speech technology and companion systems means that data and scientific inves-
tigation around this type of talk is urgently needed so as to design more effective
automated dialogue partners.
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Abstract. This paper presents the design of an anomaly detector based
on three different sets of features, one corresponding to some prosodic
descriptors and two extracted from Big Five traits. Big Five traits cor-
respond to a simple but efficient representation of a human personal-
ity. They are extracted from a manual annotation while prosodic fea-
tures are extracted directly from the speech signal. We evaluate two
different anomaly detection methods: One-Class SVM (OC-SVM) and
iForest, each one combined with a threshold classification to decide the
“normality” of a sample. The different combinations of models and fea-
ture sets are evaluated on the SSPNET-Personality corpus which has
already been used in several experiments, including a previous work on
separating two types of personality profiles in a supervised way. In this
work, we propose the above mentioned unsupervised methods, and dis-
cuss their performance, to detect particular audio-clips produced by a
speaker with an abnormal personality. Results show that using automat-
ically extracted prosodic features competes with the Big Five traits. In
our case, OC-SVM seems to get better results than iForest.

Keywords: Anomaly detection · Isolation Forest · Isolation Tree · One
Class – Support Vector Machine · Threshold classification · Social signal ·
Big Five · Prosody · SSPNET-Personality

1 Introduction

According to Chandola et al. [6], “an anomaly is defined as a pattern that does
not conform to an expected normal behavior”. The main objective of any anom-
aly detection system is to identify abnormal states from normal state distribu-
tions. The feature sets that describe these states are related to the nature of the
input data (continuous, categorical, spatial, or spatio-temporal data), but also
to the nature of the anomalies that we aim to track (point-wise, contextual or
collective anomalies). Finally, to choose an adequate anomaly detection model,
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we also need to consider the desired output (score or label) and the availability
of labeled data (supervised or unsupervised techniques).

In the literature, anomaly detection techniques are applied to intrusion detec-
tion [3], fraud detection [1], sensor network [15], monitoring flight safety [12], etc.
As far as we know, the use of anomaly detection with the speech signal is more
focused on speech pathology or disorder [2], or on the deduction of another type
of pathology or disease (e.g. cancer) [7]. The speech signal is also used for detect-
ing stress or depression [10,20], that could be seen as an anomaly detection in
the way that it can be considered as an abnormal mental state.

Handling audio, video or biological signal to infer social information such as
personality is part of a field called Personality Computing [21].

The Big Five model has been proposed to describe the speaker personality
through the five following personality traits: openness, conscientiousness, extra-
version, agreeableness and neuroticism [11]. Different tests with adaptation to a
local context have been conducted on different languages and cultures, and the big
five model seems to be generalizable to them [8,9]. SSPNET-Personality corpus
was built to experiment the prediction of the big five scale over audio features [14].
It is composed of French audio clips extracted from the “Radio Suisse Romande”.
These clips are records of professional (journalists) and guest speakers.

In [19], Schuller et al. offers a good overview of the different systems using
this corpus. A lot of experiments have already been conducted on this corpus
and most of them try to predict the value of the big five scales using different
audio representations. In addition, some experiments done by Mohammadi and
Vinciarelli [14] suggest that the big five representation could be a good predictor
of the role of a speaker. The authors propose a supervised SVM method that
learns to recognize if a speaker is a professional one or a guest. The feature set
used in this work is the psychological evaluation of a sample given by annotators
using Big five traits. Their predictor reaches an accuracy of about 75%.

The purpose of our work is to compare the use of the big five features to
the use of prosodic features to design a personality predictor able to separate
professional speakers from non-professional guests. To this end, we consider a
professional speaker as belonging to a normal personality class and a guest to an
abnormal one. Contrary to [14], we propose to work in the unsupervised anomaly
detection framework and we propose to evaluate two unsupervised strategies.
Three sets of features are evaluated. Results show that prosodic features perform
well and are less costly compared to manually annotated Big Five traits, even if
those last features may provide better detection accuracy.

The remainder of the paper is structured as follows. The proposed anomaly
detection method is described in Sect. 2. In Sect. 3, the feature sets that we
compare are detailed before describing the experimental setup in Sect. 4. Finally,
the results are presented and discussed in Sect. 5.

2 Method

This work aims at determining if a sample is normal (professional speaker) or
abnormal (guest speaker) based on a train set containing only normal audio clips.
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Each audio clip is described by a feature vector summarizing the time evolution
of the features as described in Sect. 3.

In this section, we describe the two methods that we have used to perform
the anomaly detection: an Isolation Forest approach (referred to as iForest in
the paper) and a One-Class Support Vector Machine approach (referred to as
OC-SVM in the paper). The OC-SVM has been used to ensure a comparison
baseline with the SVM method used in [14].

2.1 Isolation Forest (iForest)

Isolation Forest is an ensemble learning method designed to detect anomaly. The
particularity of this method is that it explicitly isolates anomalies rather than
learns a model for normal instances [13]. The main assumption behind iForest is
that a normal sample is hard to isolate from other samples, and on the contrary,
an anomaly is more easily isolated from other samples. iForest is composed of
T iTrees, each one built on a random selection of ψ samples drawn from the
training set. From this subset of samples, an iTree is constructed by a random
recursive partitioning, until all the samples are isolated or until a stop criterion is
reached (a depth limit for example). The partitioning is realized by the random
selection of an attribute (feature) and the random choice of a pivot value in the
range of the selected attribute. For an iTree, the sample score is computed as
the path length between the leaf node containing the sample and the root node
of the tree.

Let x be a sample, n the number of samples on which the iTrees are built.
Let f be the iForest, with f = {t1, t2, ...tT }. Let h(t, x) be the number of edges
of the t iTree between the root and the leaf which contains (or isolates) x. Let
c(n) be the average path length of unsuccessful search in a Binary Search Tree.
c(n) estimates the average path length of an iTree.

The anomaly score s of an instance x estimated with the f iForest is
given Eq. 1.

s(x, f ,n) = 2
−∑T

k=1 h(fk,x)
T∗c(n) (1)

2.2 One-Class SVM (OC-SVM)

In short, a SVM classifier learns a boundary which maximizes the margin
between classes. This well-known approach has been shown to be very effec-
tive on many classification problems. OC-SVM is an adaptation of SVM to the
one-class problem. After transforming the feature space via a kernel, OC-SVM
considers as a starting point, all the available data as member of a single class
Cinliers and the origin in the space defined by the nonlinear kernel as the only
member of a class Coutliers [18].

During the training, the hyper-parameter ν corresponds to a penalizing
term which represents a trade-off between inliers and outliers. With the SVM
approaches, the choice of the kernel is important to improve the results. The most
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widely used kernels are linear (inner product), polynomial, RBF and sigmoid.
Related to the kernel used (RBF, polynomial, sigmoid) we have to determine its
parametric coefficients.For instance, one can take the sigmoidkernel given inEq. 2.

k(x,y) = tanh(γxTy + c0) (2)

where x and y are input vectors and γ (slope) and c0 (intercept) are parametric
values related to the kernel.

We choose to use the distance between a new sample and the learned bound-
ary as an anomaly score, instead of directly deciding which class the samples
belong to. We then use a classification threshold based on this anomaly score
to decide if a sample is normal or abnormal. This two steps strategy introduces
some adjustable fuzziness around the boundary.

3 Materials

The experiments are conducted over the SSPNET-Personality Corpus [14]. The
corpus contains 640 audio clips divided into 307 audio clips of professional speak-
ers and 333 audio clips of guests in French language. The duration of each audio
clip is about 10 s, based on the assumption that it takes short time to get an
opinion about others personality.

3.1 Big Five Features

For each sample, 11 non-native French speakers evaluate the BFI-10 Question-
naire [17] from which a score is computed for each Big Five’s scale. Consequently,
11 evaluations of the big five features are available. For our experiment, we con-
sider two sets of features based on the big five model:

– BigFive5 : for each sample and for each Big Five scale, we compute the mean
of the 11 evaluations which leads to 5 features.

– BigFive55 : for each sample, we concatenate the 11 evaluations given for each
sample which leads to 55 features.

The purpose of this last set of features is to verify if the information contained
in several distinct annotations is complementary or can simply be aggregated in
a lower dimension feature vector, as in BigFive5 feature vector. The main draw-
back of these two feature sets is that they are the result of manual annotation,
which is furthermore difficult to predict from the speech signal only.

3.2 Prosodic Features

Prosodic features are commonly used to capture affect cues in a speech signal.
Contrary to the Big Five traits, a large number of prosodic features are much
easier to extract automatically from the speech signal. In this study, we adopt
the 6 dimensional prosodic feature set as described in [14]. Using the PRAAT



First Experiments to Detect Anomaly 383

software [4], we extract the pitch, the first two formants, the energy and the
duration of voiced/unvoiced segments with a sliding analysis window size of
40 ms with a step of 10 ms. From these low-level features, resulting from the
extraction, we derive the final features that summarize their time evolution by
computing mean, maximum, minimum and entropy values for each of the 6 fea-
tures. Consequently, the final Prosodic feature set is composed with 24 features
for each audio clip.

3.3 Pre-processing

Normalizing the features is an important preprocessing step before using the
OC-SVM approach. Features that do not share the same range of values and the
same variations could affect the quality of the OC-SVM model. Therefore this
step is really important in the case of Prosodic features, which are composed of
different types of features. We choose to perform a standardization (zero mean
and unit variance) on all types of features.

4 Experimental Setup

The different experiments described in this section are carried out by following
the same procedure and use python 3.5 and scikit-learn [16]. From the corpus,
we build three sets (train, test, and validation sets), as described below. To
increase the statistical confidence of our results, we run each experiment 60 times
by distributing randomly the samples on the three sets. For each experiment,
we compute the mean and the standard-deviation divided by the mean of the
different runs. The data is thus split into three folds as follows:

– Train set: 207 clips of professional speakers and a variation from 0 to 103
guest clips.

– Test set: 50 clips of professional speakers and 50 clips of guests.
– Validation set: 50 clips of professional speakers and a variation from 0 to 50

of guest clips.

4.1 Hyper-parameters Tuning

According to the available data, since 207 samples are available in the training
set, we need to be careful about the number of parameters in our model to avoid
over-fitting.

In the case of the OC-SVM approach, after testing different types of kernel in
our experiments, we have chosen to present the results with the sigmoid kernel
which gives the best results (on the train data). With the sigmoid kernel, we need
to determine three hyper-parameters ν, γ and c0. For the rest of the paper, we
choose to fix c0 at 0. Without considering the fuzzy boundary, the OC-SVM gives
a first classification of the sample. By using it, we compute a classification score
[5] which can be used to evaluate the classification quality and consecutively the
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Table 1. Hyper-parameters chosen for each AD

iForest OC-SVM

T ψ γ ν

BigFive5 17 0.29 0.016 0.7

BigFive55 77 0.31 0.007 0.6

Prosodic 59 0.26 0.009 0.57

quality of the hyper-parameters. An exhaustive grid search is used to determine
the values of the two hyper-parameters. For ν, we considered a range between
0.001 and 1 with a step of 0.025. For γ, the range is between 0.0001 and 1
with a step of 0.0001. The classification score is used to elect the best couple of
hyper-parameters.

In the case of the iForest approach, we need to find two hyper-parameters: ψ
(sub-sampling size given as a percentage of the available data) and t (number of
sub-estimators i.e iTrees). When using an iForest, each sample is associated to
an anomaly score. We consider 10 percents of the samples as abnormal samples,
those with the highest probability to be abnormal. With this assumption, we
can use a classification score as we did previously, and then, use an exhaustive
grid search to get the two hyper-parameters. The range for ψ is between 0.1 and
0.9 with a step of 0.01, and for t between 10 and 200 with a step of 10.

For each set of features, we considered a training set with all the available
normal samples to determine the hyper-parameters (Table 1) with respect to the
aforementioned methods.

4.2 Experiments

To compare the different sets of features according to the chosen approach,
we carry out the following steps: for each set of values (BigFive5, BigFive55,
Prosodic), we test each anomaly detection model after tuning hyper-parameters
as explained before (Sect. 4.1). Then, we compare the different models by using a
ROC (Receiver Operating Characteristic) curve. It means that for a given FPR
(False Positive Rate), we search the associated TPR (True Positive Rate). This
sampled association is obtained by testing a range of possible threshold values.
The ROC curve gives an information about the detector quality as a function of
the threshold value.

The second step consists in estimating the robustness of each detector to a
degradation of the training set. In this purpose, we introduce a certain percentage
of abnormal samples into the training set (0% to 50%). We keep the different
hyper-parameter values unchanged.

The last step consists in observing anomaly scores obtained for the differ-
ent sets of features with both approaches. Considering the hyper-parameters
obtained previously, we train the predictor with all the available normal samples.
Then, we compute anomaly scores for normal and abnormal samples separately.
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Table 2. Mean area under ROC curve (ROC-AUC score) and standard deviations, for
the two approaches combined with the three feature sets

BigFive5 BigFive55 Prosodic

OC-SVM 0.857 ± 0.030 0.918 ± 0.024 0.876 ± 0.036

iForest 0.762 ± 0.031 0.890 ± 0.032 0.801 ± 0.037

Fig. 1. Models Robustness to the introduction of abnormal samples in the training set

5 Results

Our first experiment step (Table 2) consists in evaluating the quality of each fea-
ture set. With our data, the BigFive55 feature vector, regardless of the method
used, performs better than the others. If we consider the OC-SVM approach, the
Prosodic and BigFive5 feature vectors get comparable results. For the iForest
approach, BigFive5 feature vector achieves a worst performance than the others.
Moreover, the BigFive5 feature vector has the lowest results for both methods,
thus showing that the aggregation of the individual annotations induces a sig-
nificant information loss.

Our second experiment step (Fig. 1) consists in evaluating the quality of each
AD model when the training set is degraded, i.e. by including a certain percent-
age of abnormal samples in it. The results show that the iForest and OC-SVM
approaches have different responses to degradation. The OC-SVM approaches
have a degradation in two steps: before a certain percentage of contamination,
they are robust to degradation and after this limit their scores decrease down to
around 0.5 (random detector) for 50% of degradation. The iForest approaches
have a kind of linear degradation along the degradation axis. For the OC-SVM
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Fig. 2. Anomaly scores for normal samples (blue curve, left curve) and for abnormal
samples (red curve, right curve) obtained for each feature set BigFive5 (left), BigFive55
(middle), Prosodic (right) with the two approaches iForest (top) and OC-SVM (bot-
tom)

approach, the BigFive55 feature vector seems to keep stable results for approxi-
mately 25 percents of degradation. The other two feature vectors start to have a
decrease of their quality for less than 15 percent of degradation. For the iForest
approach, the Prosodic feature vector seems to be more robust to degradation
than the BigFive5. In any case, the BigFive55 feature vector gives a more robust
separation between normal and abnormal samples.

In our final experiment step (Fig. 2), we analyze the anomaly score obtained
for all the available samples in the corpus. We draw one curve for normal sam-
ples and another one for abnormal samples. For both approaches, the intersec-
tion area between abnormal and normal curves is greater for BigFive5 than
for Prosodic, and greater for Prosodic than for BigFive55. By comparing the
curves for BigFive5 and BigFive55 with both approaches, we notice that the
distributions of anomaly scores for abnormal and normal samples are more dif-
ferent for BigFive55 than for BigFive5. Indeed, by aggregating the annotators
of BigFive55 to get BigFive5, we diminish the ability to discriminate between
normal and abnormal samples. It is noticeable that the iForest achieves a lower
performance than the OC-SVM. It suggests that, in our context, modeling the
normality class is better than considering anomalies as isolated points.
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6 Conclusion

The main objective of this paper was to compare the use of prosodic cues and
the Big Five annotation traits as feature sets for anomaly detection. We have
conducted some experiments with the SSPNET-Personality Corpus using pro-
fessional speakers as normal samples and guest as abnormal samples. This choice
was motivated by Mohammadi et al. work [14] that demonstrates the effective-
ness of using the Big Five features to train a supervised classifier able to sepa-
rate these two categories of speakers. We built three sets of features (BigFive5 ,
BigFive55 and Prosodic) based on the speech signal and a psychological eval-
uation (Big Five model) available on the data set. We have used two different
unsupervised machine learning methods (iForest, OC-SVM) to build our anom-
aly predictors. Based on the results, the good performance of the BigFive55
feature set compared to the Prosodic feature set indicates that features based
on psychological information can bring more information than audio features
only. However, the prosodic features are easy to extract from the speech signal
and thus seem to be the best compromise between ease of extraction and per-
formance. The better results obtained with OC-SVM compared to iForest seem
to indicate that an anomaly in our context is more related to learning a single
specific cluster in the data than searching for samples which are really different
from the others. A natural follow-up is to test other feature sets: for instance
one can increase the number of features to reach a size similar to the BigFive55
feature vector. Finally, conducting these experiments on other audio corpora, or
trying to generalize our results on multimedia data are part of our future work.
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4. Boersma, P., Weenink, D.: Praat: doing phonetics by computer, http://www.praat.
org/

5. Caliski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-
Theory Methods 3(1), 1–27 (1974)

6. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. (CSUR) 41(3), 15 (2009)

http://www.praat.org/
http://www.praat.org/


388 C. Fayet et al.

7. Clapham, R.P., van der Molen, L., van Son, R.J.J.H., van den Brekel, M.W.M.,
Hilgers, F.J.M.: NKI-CCRT corpus - speech intelligibility before and after advanced
head and neck cancer treated with concomitant chemoradiotherapy. In: Proceed-
ings of the 8th International Conference on Language Resources and Evaluation
(LREC) (2012)

8. Goldberg, L.R.: Language and individual differences: the search for universals in
personality lexicons. Rev. Pers. Soc. Psychol. 2(1), 141–165 (1981)

9. Gurven, M., von Rueden, C., Massenkoff, M., Kaplan, H., Lero Vie, M.: How
universal is the big five? testing the five-factor model of personality variation among
forager farmers in the bolivian amazon. J. Pers. Soc. Psychol. 104(2), 354–370
(2013)

10. He, L., Lech, M., Maddage, N.C., Allen, N.: Stress detection using speech spectro-
grams and sigma-pi neuron units. In: Fifth International Conference on Natural
Computation, ICNC 2009. vol. 2, pp. 260–264. IEEE (2009)

11. John, O.P., Srivastava, S.: The big five trait taxonomy: history, measurement, and
theoretical perspectives, vol. 2, pp. 102–138. Guilford (1999)

12. Li, L., Gariel, M., Hansman, R.J., Palacios, R.: Anomaly detection in onboard-
recorded flight data using cluster analysis. In: IEEE/AIAA 30th Digital Avionics
Systems Conference, p. 4A4-1–4A4-11. IEEE (2011)

13. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Eighth IEEE International
Conference on Data Mining, pp. 413–422 (2008)

14. Mohammadi, G., Vinciarelli, A.: Automatic personality perception: prediction of
trait attribution based on prosodic features. IEEE Trans. Affect. Comput. 3(3),
273–284 (2012)

15. Park, K., Lin, Y., Metsis, V., Le, Z., Makedon, F.: Abnormal human behavioral
pattern detection in assisted living environments. In: Proceedings of the 3rd Inter-
national Conference on PErvasive Technologies Related to Assistive Environments,
p. 9 (2010)

16. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

17. Rammstedt, B., John, O.P.: Measuring personality in one minute or less: a 10-item
short version of the big five inventory in english and german. J. Res. Pers. 41(1),
203–212 (2007)

18. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high-dimensional distribution. Neural Comput. 13(7),
1443–1471 (2001)

19. Schuller, B., Steidl, S., Batliner, A., Nth, E., Vinciarelli, A., Burkhardt, F., van Son,
R., Weninger, F., Eyben, F., Bocklet, T., Mohammadi, G., Weiss, B.: A survey on
perceived speaker traits: Personality, likability, pathology, and the first challenge.
Comput. Speech Lang. 29(1), 100–131 (2015)

20. Valstar, M., Gratch, J., Schuller, B., Ringeval, F., Lalanne, D., Torres Torres, M.,
Scherer, S., Stratou, G., Cowie, R., Pantic, M.: AVEC 2016: Depression, mood,
and emotion recognition workshop and challenge. In: Proceedings of the 6th Inter-
national Workshop on Audio/Visual Emotion Challenge, pp. 3–10. ACM (2016)

21. Vinciarelli, A., Mohammadi, G.: A survey of personality computing. IEEE Trans.
Affect. Comput. 5(3), 273–291 (2014)



Fusion of a Novel Volterra-Wiener Filter Based
Nonlinear Residual Phase and MFCC

for Speaker Verification

Purvi Agrawal1(B) and Hemant A. Patil2

1 Indian Institute of Science, Bengaluru, Karnataka, India
purvi agrawal@ee.iisc.ernet.in

2 Dhirubhai Ambani Institute of Information and Communication Technology,
Gandhinagar, Gujarat, India
hemant patil@daiict.ac.in

Abstract. This paper investigates the complementary nature of the
speaker-specific information present in the Volterra-Wiener filter resid-
ual (VWFR) phase of speech signal in comparison with the information
present in conventional Mel Frequency Cepstral Coefficients (MFCC) and
Teager Energy Operator (TEO) phase. The feature set is derived from
residual phase extracted from the output of nonlinear filter designed
using Volterra-Weiner series exploiting higher order linear as well as non-
linear relationships hidden in the sequence of samples of speech signal.
The proposed feature set is being used to conduct Speaker Verification
(SV) experiments on NIST SRE 2002 database using state-of-the-art
GMM-UBM system. The score-level fusion of proposed feature set with
MFCC gives an EER of 6.05% as compared to EER of 8.9% with MFCC
alone. EER of 8.83% is obtained for TEO phase in fusion with MFCC,
indicating that residual phase from proposed nonlinear filtering approach
contain complementary speaker-specific information.

Keywords: Volterra-Wiener filter residual (VWFR) · Volterra-Weiner
series · Nonlinear filter · GMM-UBM · MFCC · TEO phase

1 Introduction

The speech production mechanism is assumed to be a linear system according
to the acoustic theory of speech production. Speech analysis and speech syn-
thesis finds effective application of Linear Prediction (LP) analysis [1]. The fre-
quency response of the time-varying vocal tract area function is indeed captured
implicitly by the LP analysis. Hence, speech production process can be modeled
approximately as linear system with a major source of excitation to vocal tract
system as airflow through the glottis, and hence the speaker-specific features
are either termed as source or system features. Based on the characteristics one
tries to capture, most commonly being used vocal tract (i.e., acoustic system)
features are linear prediction cepstral coefficients (LPCC) and Mel frequency
cepstral coefficients (MFCC) [2].
c© Springer International Publishing AG 2017
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Significant efforts have been made for improved speaker recognition perfor-
mance, by exploiting the excitation source-related features. However, a landmark
work on Linear Prediction (LP) residual [3] demonstrated that the excitation
source component of speech contains speaker-specific information captured by
the higher-order relations hidden in the sequence of speech samples. In [4], LP
residual phase was introduced for speaker recognition defined by the cosine of
the instantaneous phase function of the analytic signal (derived from the LP
residual of the speech signal). This work exploits regions around Glottal Closure
Instants (GCIs) for extracting residual phase features, (which are known to con-
vey speaker-specific source information due to high signal-to-noise ratio (SNR)
regions because of impulse-like excitation). Recently, Teager Energy Operator
(TEO) phase (i.e., cosine of the instantaneous phase function of the analytic
signal derived from the TEO profile of the speech signal) has been proposed
for speaker recognition task [5–7]. It also exploits the regions around GCIs for
extracting TEO phase features because of significantly high SNR at GCIs. This
research work was basically motivated by the landmark work presented in [8].

The present paper is an extension of work reported in [5,6]. In particular,
the application of TEO in [5,6] tries to capture the lower-order nonlinear rela-
tions (relation present among adjacent speech samples), while studies have shown
the presence of speaker-specific information present in the higher-order relations
(such as relations present among the distant speech samples) [4,8]. In this paper,
we have used nonlinear filter designed using Volterra-Weiner-Korenberg series
[9] such that its residual phase captures the higher-order relations hidden in
the sequence of speech samples. Results are reported on 330 speakers of stan-
dard and statistically meaningful NIST SRE 2002 database [10]. In addition,
for feature extraction around GCIs, we have used recently developed Zero Fre-
quency Resonator (ZFR) method [11] to detect GCI and state-of-the-art Gaussian
MixtureModel-UniversalBackgroundModel (GMM-UBM)-based SV system [12].

The rest of the paper is organized as follows: Sect. 2 describes the nonlin-
ear filtering approach in detail, the generalization of Teager’s algorithm and its
usefulness from speech analysis perspective. Section 3 explains the extraction of
proposed Volterra-Wiener filter residual (VWFR) phase features for SV task.
Section 4 gives the details of experimental setup with results obtained on stan-
dard NIST SRE 2002 database. Section 5 concludes the paper along with future
research directions.

2 Nonlinear Filtering Approach

This section presents the effectiveness of capturing higher-order relations hidden in
the sequence of samples of speech signal through nonlinear filter residual approach.
The nonlinear filtering method discussed is based on exploiting relation between
TEO [7] and the Volterra-Wiener-Korenberg (VWK) series approximation [9].
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2.1 Teager Energy Operator (TEO)

Airflow propagation in the vocal tract is assumed to be linear planar wave accord-
ing to linear speech production model. However, the airflow is separate and con-
comitant vortices are distributed throughout the vocal tract [13,14]. Thus, the
nonlinear vortex-flow interactions have been proved to be the true source of
sound production. A nonlinear model has been suggested based on the energy
of airflow by using a nonlinear energy-tracking TEO for signal analysis with the
supporting observation that hearing is the process of detecting energy embedded
in various subbands of speech spectrum [7,14]. TEO for discrete-time signal s(n)
is defined as [7]:

ψd{s(n)} = TEO{s(n)} = s2(n) − s(n + 1)s(n − 1) = ψ(n) (1)

In [5], it has been observed that TEO profile gives high energy pulses around
GCIs for a speech segment, similar to the LP residual profile [4]. Studies reported
in [5] have used instantaneous phase of the analytic signal derived from TEO
profile with the help of Hilbert transform, shown in Fig. 1 (primarily motivated
by the landmark work on LP residual phase for speaker recognition task [4,8]).
The analytic signal corresponding to TEO profile is given by

ψa(n) = ψ(n) + jψh(n); Ψa(ejω) = 0; −π ≤ ω < 0, (2)

ψh(n) = F−1[Ψh(ejω)], Ψa(ejω) = Ψ(ejω) + jΨh(ejω), (3)

where ψh(n) is the Hilbert transform of TEO profile ψ(n), F−1{·} indicates
the inverse Fourier transform and Ψa(ejω) is the discrete-time Fourier transform
(DTFT) of ψa(n). The magnitude of the analytic signal, i.e., Hilbert envelope
(HE), he(n) is given by he(n) = |ψa(n)|, and the cosine of the instantaneous
phase of the analytic signal ψa(n) is called as TEO phase (denoted by θψ(n))
given by [5]

θψ(n) = cos[θ(n)] =
Re[ψa(n)]

he(n)
(4)

In Fig. 1(b), bumps observed between the TEO pulses indicate the presence
of nonlinearities associated with the speech production [15]. If the speech pro-
duction mechanism (which can be modeled as convolution of excitation source
with impulse response of vocal tract; which in turn is a cascade of several 2nd

order digital resonators each corresponding to a particular formant and having
impulse response as damped sinusoid) would have been linear, then the TEO
profile would have been exponentially decaying signal [5]. The presence of bumps
within every GCI gives the evidence of associated nonlinearity in speech produc-
tion mechanism.

2.2 A Generalization of Teager Algorithm-Volterra-Weiner (VW)
Series

A generalization of the Weinerstrass-Stone theorem states that the set of Volterra
functionals is complete (i.e., every Cauchy sequence converges to a limit point
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which belongs to the same function space). It implies that every continuous
functional of a signal s(t) can be approximated as a sum of a finite number of
Volterra functions in s(t) with arbitrary precision [16,17]. In order to perform
the nonlinear prediction (NLP) of speech, consider a system with input data
series s(n) and the output y(n), n = 1, 2, · · · , N, with sampling interval τ . A
power series expansion may be used to describe the system as [9]:

y(n) =
∞∑

p=0

cps
p(n) (5)

Equation (5) can be extended and used to represent a nonlinear system with
k memory terms, extension being termed as the Volterra-Wiener (VW) series
expansion. Studies have shown that for a dynamical system, the Volterra series
can be transformed into a closed-loop in which the output y(n) feeds back as a
delayed input (i.e., s(n) ≡ y(n)). Therefore, we analyze the above time series by
using a discrete VW series of degree d and predictor memory k to calculate the
predicted time series, ŷ(n) given by:

ŷ(n) = g0 + g1y(n − 1) + g2y(n − 2) + · · · + gky(n − k) + gk+1y
2(n − 1)

+ gk+2y(n − 1) × y(n − 2) + · · · + gM−1y
d(n − k), (6)

with a total dimension M = (k+d)!/(k!d!) [9]. Thus, the predictor memory k and
the degree d of nonlinearity parameterizes the model. The coefficients gms in (6)
are termed as kernel values and are estimated through Korenbergs fast algorithm
using Gram-Schmidt procedure from linear and nonlinear autocorrelation of the
data-series itself [9].

The Teager Energy Operator (TEO) as a Volterra system. The discrete
version of Teagers algorithm is a Volterra-Wiener filter defined by [18]:

ŷ[n] = s[n]s[n] − s[n − 1]s[n + 1], (7)

which contains two non-zero kernel values and thus, will capture lower-order
nonlinear relations only.

Volterra-Wiener filter residual (VWFR). Therefore, in the light of above
discussion, for the NLP model, nonlinear prediction error which may be termed
as Volterra-Wiener filter residual (VWFR), viz., eV WFR is given by [17]

eV WFR(n) = s(n) − ŷ(n). (8)

Figure 2(b) shows the VWFR profile of the speech signal (shown in Fig. 2(a)).
The vocal tract contribution may get removed from the speech signal during its
inverse filtering and the resultant signal is known as NLP residual or VWFR
(Table 1).

Hence, it can be observed that TEO captures the lower-order nonlinear rela-
tions hidden in the sequence of speech signal whereas proposed VWFR tries to
capture the higher-order both linear and nonlinear relations hidden in sequence
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Fig. 1. (a) Voiced speech segment, (b) its TEO profile, (c) Hilbert transform,
(d) Hilbert envelope and (e) TEO Phase (After [5]). Bumps can be observed in (b)

Fig. 2. (a) Voiced speech segment, (b) its VWFR profile (for d = 2, k = 5), (c) Hilbert
transform, (d) Hilbert envelope and (e) VWFR Phase
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Table 1. Characteristic feature of speech signal, TEO filtered, Volterra-Wiener filtered,
and hence Volterra-Wiener filtered residual signal encapsulating the properties related
to possible speaker-specific information (present in the sequence of speech samples)

Type of signal Characteristics features

Speech signal s[n] Lower-order relations + higher-order relations
hidden in samples (linear + nonlinear)

TEO filter
ŷ[n] = s2[n] − s[n + 1]s[n − 1]

Captures lower-order nonlinear relations only

Volterra-Wiener filter (Eq. (6)) Captures lower-order linear + nonlinear
relations

Volterra-Wiener filter’s residual signal
eV WFR = s[n] − ŷ[n]

Captures higher-order linear + nonlinear
relations

of speech samples. VWFR phase has been computed from VWFR profile by simi-
lar procedure as TEO phase from TEO profile. VWFR phase has been proved by
experimental results to contain better speaker-specific information in the Sect. 4.

3 VWFR Phase as Feature Set

In this Section, the algorithm has been discussed for extraction of proposed
VWFR phase features, to be used for SV task. The samples of VWFR phase
around GCI forms the feature vector. In this paper, in order to extract
VWFR features around GCI, recently proposed Zero-Frequency Resonator
(ZFR) method for GCI detection [11] has been used. To obtain accuracy,
voiced/unvoiced separation algorithm has also been used by using function avail-
able in GLOAT (GLOttal Analysis Toolbox [19]). The seven blocks of 12 samples
of VWFR Phase around each GCI with shift of 6 samples (i.e., 50% overlap)
form the proposed feature vector. Similar procedure was followed in [5,6,8].
Figure 3 shows the procedure to extract proposed VWFR phase features of a
speech signal. The cosine of the instantaneous phase of analytic signal around
GCIs forms the VWFR phase features for possible use in SV task.

Fig. 3. Block diagram for extraction of VWFR phase features
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4 Experimental Results

In this paper, the experiments for the SV system have been conducted on NIST
SRE 2002 database with 139 male and 191 female speakers’ utterances used
for training the GMM-UBM system [10,12]. The modeling has been done with
M=256 component Gaussian models. In first stage of training, a GMM-UBM sys-
tem consisting of model parameters, a gender-independent UBM is constructed
from collection of non-target speakers’ feature vector. In the second stage of
training, feature vectors are extracted from target speakers’ utterances, which
in turn, are used to maximum a-posteriori (MAP) - adapt only the mean vectors
of the GMM-UBM to form speaker-dependent models [12]. During testing, the
log-likelihood ratio, also termed as score, is calculated and the claimant speaker
is accepted if score is greater than a decision threshold.

Fig. 4. Detection Error Tradeoff (DET) curve

The testing is done for 3654 utterances, each being tested with 11 claimants,
where the true or genuine speaker may or may not be present and rest being
impostors, respectively. The performance of the SV system is estimated using
VWFR phase features, MFCC feature vectors and their score-level fusion. The
results are compared with the performance of TEO phase [6]. The Detection
Error Tradeoff (DET) curve for the three feature sets are shown in Fig. 4 [20].
The score-level fusion of MFCC with VWFR phase is done as follows:

Sfusion = αSMFCC + (1 − α)SV WFRphase; 0 ≤ α ≤ 1, (9)
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where α is the weight of fusion. In addition, SMFCC , SV WFRphase and Sfusion

are the score for MFCC, proposed VWFR phase and their score-level fusion,
respectively. The values of Cmiss = 1, Cfalse = 1 and Ptarget = 0.5 have been
used to compute optimum Detection Cost Function (DCF) [20].

Figure 4 illustrates that the speaker detection performance of the
GMM-UBM SV system has got improved by 2.78% reduction in EER, i.e.,
from ‘8.83% EER of MFCC-TEO Phase fusion to 6.05% EER of proposed
MFCC-VWFR Phase which indicates that proposed VWFR phase features carry
complementary speaker-specific information (Table 2).

Table 2. % EER, optimum DCF and 95% confidence interval (shown in brackets) for
SV system trained using GMM-UBM system for MFCC, TEO phase, VWFR phase
and their score-level fusion with MFCC on NIST SRE-2002 database, respectively

Feature set EER (in%) Optimum
DCF (x 10−2)

%Identification Rate
(95% Confidence
interval)

MFCC [6] 8.90 8.65 74.55 (74.11–74.98)

TEO Phase [6] 49.78 49.75 10.66 (10.35–10.96)

MFCC-TEO Phase fusion
(score-level)(α =0.66) [6]

8.83 8.87 77.65 (77.23–78.06)

VWFR Phase 44.79 44.56 33.15 (32.86–33.79)

MFCC-VWFR Phase (proposed)
fusion (score-level) (α =0.71)

6.05 6.12 82.88 (82.50–83.25)

5 Summary and Conclusions

In this paper, a nonlinear filtering approach and hence its residual phase feature
extraction has been proposed. Its one of the limitations could be larger absolute
EER for VWFR phase features alone. However, its fusion with MFCC feature
at score-level marked an improvement in the speaker detection performance of
the overall system. In future, further analysis of SV system based on combining
evidences of other relevant source and system features will be explored. In addi-
tion, robustness of proposed feature will be evaluated under signal degradation
conditions.
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Abstract. Spontaneous speech is different from any other type of speech
in many ways, with speech disfluencies being the prominent feature.
These phenomena both play an important role in communication, and
also cause problems for automatic speech processing. In this study we
present the results of acoustic analysis of the most frequent disfluencies -
voiced hesitations (filled pauses and lengthenings) across different speak-
ing styles in spontaneous Russian speech, as well as results of experiments
on their detection using SVM classifier on a joint Russian and English
spontaneous speech corpus. Results of acoustic analysis showed signifi-
cant differences in fundamental frequency and energy distribution ratios
of hesitations and their contexts across speaking styles in Russian: com-
paring to the dialogues, in monologues speakers exhibit more prosodic
cues for the adjacent context and hesitations. Experiments on detection
of voiced hesitations on a mixed language and style corpus with SVM
resulted in achieving F1–score = 0.48 (With F1–score = 0.55 for only
Russian data).

Keywords: Speech disfluencies · Hesitations · Filled pauses ·
Lengthenings · Speech processing · Support vector machines

1 Introduction

Speech disfluencies are common in spontaneous speech: hesitations, self-repairs,
repetitions, deletions, substitutions, insertions, etc. In the literature there are
two main perspectives to describe speech disfluencies: (a) as speech errors,
disrupting fluent speech, and (b) as fluent linguistic devices used to manage
speech [17,18]. Speech disfluencies may be critical for successful turn-taking or
may express the speaker’s thinking process of formulating the upcoming utter-
ance fragment [6,20]. Disfluencies also play a major role in speech structuring [5]
and may be used to introduce new information [3] or serve as cues to the com-
plexity of upcoming phrases for native and non-native listeners [34].

Disfluencies occur very often in the everyday speech. About 6 per 100 words
are disfluent in conversational speech in American English [25]. In Japanese,
fillers alone consist of about 6% of the total words in presentations [34]. Evi-
dence on speech disfluencies differs across languages, genres, and speakers, how-
ever, on average there are several disfluencies per 100 syllables, filled pauses and
c© Springer International Publishing AG 2017
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lengthenings (later on jointly referred as FPs) being the most frequently ocurring
disfluency type [19]. According to [29] in the conversational Switchboard data-
base [10], about 39.7% of the all disfluencies contain a filled pause. In the corpus
of Portuguese lectures LECTRA filled pauses are the most frequent disfluency
type in the corpus: they correspond to 1.8% of all the words and to 22.9% of all
disfluency types [15]. In Russian speech, FPs occur at a rate of about 4 times
per 100 words and approximately at the same rate inside clauses and at the
discourse boundaries [14].

FPs have universal as well as linguistic and genre specific features. They
are represented mainly by vocalizations with rare cases of prolonged consonants
(which was shown to be a peculiarity of Armenian hesitation phenomena [13]).
Due to the articulatory economy FPs are pronounced with minimal movements
of the articulatory organs, thus they are phonetically different from other lexical
items [28]. However, it was also shown that phonological system of the language
may influence the quality of FPs vocalizations [9]. Even universal characteristics
of FPs, such as lengthenings being accompanied by creaky voice, may operate
differently in different languages: e.g. in Finnish it was proposed that creaky
voice may indicate turn-transitional locations [20], which is not the case for
English [26].

However, disfluencies are one of the factors that makes the spontaneous
speech processing challenging [22]. Disfluencies have an impact on automatic
speech recognition results, they can occur at any point of spontaneous speech as
well as can be easily confused with functional words, thus leading to misrecog-
nition or incorrect classification of adjacent words, what results in fragment-like
structures. Therefore, handling speech disfluencies is crucial for the development
of robust speech recognition and transcription systems.

2 Related Work

During last years, there has been a great deal of research devoted to speech
disfluencies. Disfluencies have been shown to characterize social and emotional
behavior [24]. They also have been used to draw inferences about processing
difficulties: e.g. comparison of children with specific language impairment and
children with normal language development [30].

However, speech disfluencies have received more attention in the field of
speech processing due to speech recognition tasks. And within works on auto-
matic disfluency detection filled pauses are likely to be the most studied type of
disfluency [16,21].

It has been shown that along with the duration, prominent characteristic of
FPs is a gradual fall of fundamental frequency (F0) [21]: FPs tend to be low in
F0 and display a gradual, roughly linear F0 fall. In [27] it was shown that for fair
detection of FPs these two characteristics and distance to a pause are enough.
In [32] authors used duration and statistical characteristics of F0, first three
formants and energy for the experiments based on gradient decent optimizing
parameters for maximization of F1–score; achieved result was F1–score = 0.46.
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In [16] authors focused on detection of filled pauses basing on acoustic and
prosodic features as well as on some lexical features. Experiments with sev-
eral machine learning methods on a speech corpus of university lectures in
European Portuguese Lectra showed best results for Classification and Regres-
sion Trees algorithm. Further experiments on filled pauses detection in European
Portuguese using prosodic and lexical features showed best results when using
J48, corresponding to about 61% F-measure [15].

In [23] authors presented a method for filled pauses detection using an SVM
classifier, applying a Gaussian filter to infer temporal context information and
performing a morphological opening to filter false alarms. For the feature set
authors used the same as was proposed for [12], extracted with the openSMILE
toolkit [8]. Experiments were carried out on the LAST MINUTE corpus of nat-
uralistic multimodal recordings of 133 German speaking subjects in a so called
Wizard-of-Oz (WoZ) experiment. The obtained results were recall of 70%, pre-
cision of 55%, and AUC of 0.94.

3 Material

The material we have used in this study consists of the several parts. The part
with Russian speech is represented by dialogues and monologues, collected in
different conditions and in different periods of time.

The corpus of task-based dialogues collected at SPIIRAS in St. Petersburg
in the end of 2012 - beginning of 2013 [31] consists of 18 dialogues from 1.5 to
5 min, where people in pairs fulfilled map and appointment tasks. Recording was
performed in the sound isolated room. Participants were students: 6 women and
6 men from 17 to 23 years old with technical and humanitarian specialization.
The recorded speech is informal, unrehearsed and is the result of direct dialogue
communication, what makes it extremely close to the spontaneous conversational
speech. Recordings were annotated manually into different types of disfluencies,
the quantity of FPs is 492 phenomena (222 filled pauses and 270 lengthenings). In
addition to this corpus, we used task-based dialogues collected at the same time
that were not part of the previous corpus since these recordings are unbalanced by
gender and specialization. This part is represented by 39 dialogues between stu-
dents: 24 men and 2 women speakers with technical background. The length of this
part is 1.8 h, with 211 filled pauses and 201 sound lengthenings (total 412 FPs).

The monologues part is represented by three subcorpora. First is Russian
casual conversations from Multi-Language Audio Database [35]. This database
consists of approximately 30 h of sometimes low quality, varied and noisy speech
in each of three languages, English, Mandarin Chinese, and Russian. Recordings
were collected from public web sites, such as http://youtube.com. All record-
ings have been orthographically transcribed at the sentence/phrase level by
human listeners. The Russian part of this database consists of 300 recordings
of 158 speakers (approximately 35 h). The casual conversations part consists of
91 recordings (10.3 h) of 53 speakers [35]. From this Russian part we have taken
the random 6 recordings of casual conversations (3 female speakers and 3 male

http://youtube.com
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speakers) that were manually annotated into FPs. The quantity of annotated
phenomena is 284 (188 filled pauses and 96 sound lengthenings).

Second is the corpus of scientific reports from seminar on analysis of conver-
sational speech held at SPIIRAS in 2011. Recordings of reports of 6 people (3
female and 3 male speakers) were manually annotated into speech disfluencies.
Since speakers didn’t base their reports on a written text, these recordings are
semi-spontaneous speech and contain considerable amount of speech disfluencies.
951 FPs were manually annotated: 741 filled pauses and 210 lengthenings.

Third is the the records from the appendix No5 to the phonetic journal “Bul-
letin of the Phonetic Fund” belonging to the Department of Phonetics of Saint-
Petersburg University [1]. The 12 recorded reports concerned different scientific
topics (linguistics, logic, psychology, etc.). They were all recorded in 70 s–80 s
in Moscow except one that was recorded in Prague. All speakers (6 men and 6
women) were native Russian speakers, and were recorded while presenting on
conferences and seminars. The quantity of manually annotated FPs is 285 (225
filled pauses and 60 lengthenings).

In total, the Russian data set we used is about 4.5 h and comprises 2214
hesitations.

In addition to Russian material we included several recordings of English
spontaneous speech to make our corpus more quality and situation diverse for
the experiments on automatic detection and classification. This part is repre-
sented by 6 dialogues approximately 6 min each from SwitchBoard corpus [10]
and 2 dialogues approximately 20 min each from SantaBarbara corpus [7]. Total
duration of English dialogues recordings is about 1 h. The quantity of manually
annotated FPs in SwitchBoard part is 113 (67 filled pauses and 46 lengthen-
ings) and 87 FPs (59 filled pauses and 28 lengthenings) in SantaBarbara part.
Distribution of FP duration over the whole mixed corpus is shown on Fig. 1.
The duration of a single FP lies between 6 ms and 2.3 s, the average duration is
380 ms.

Fig. 1. The distribution of FPs duration
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4 Acoustic Analysis Across Speaking Styles

There are many studies on acoustic features of FPs, with all authors agreeing
on long duration and gradual fall of fundamental frequency [14,21,25,28]. How-
ever, there is not much on differences of acoustical features of FPs in different
speaking styles or comparison between languages. In [17] authors showed that
distribution of disfluency types is different for different speaking styles, as well
as strategies of prosodic contrast markings for disfluencies vary across differ-
ent speaking styles. Dialogues are more dynamic than reports or lectures, they
have more sentence-like units with fewer words and the information is delivered
faster [17]. For different measurements and comparisons (such as speech rate,
duration of sentences and disfluent sequences, average number of words, sylla-
bles and phones within fluent and disfluent sequences, etc.) between map-task
dialogues and university lectures in European Portuguese see [17].

Following them, we have checked if there are any acoustic/prosodic variability
in the context of only FPs across different speaking styles in Russian. Pitch and
energy are two important sources of prosodic information that can be extracted
directly from the speech signal. Thus, we have compared fundamental frequency
and energy for the following pairs: preceding context and FPs, following context
and FPs. For dialogues we used annotated words as the context. For monologues
the context was found around the hesitation by checking presence of fundamental
frequency in a window of 400 ms.

Our findings showed that there are statistically significant differences between
distribution ratios of fundamental frequency in FPs and their context (both
precededing and following) in monologues and dialogues (see Figs. 2 and 3). As
for energy, the significant difference has been found for the ratios of FPs and
their following context in monologues and dialogues (Fig. 4).

These findings comply with [17]: the highest pitch reset from disfluency to
the repair region for European Portuguese was found for filled pauses. It is also
matches the overall trend for different disfluencies found for the European Por-
tuguese [17]: in monologues speakers exhibit more prosodic cues for the adjacent

Fig. 2. Fundamental frequency differences between FPs and their following context for
dialogues and for monologues in Russian
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Fig. 3. Fundamental frequencys differences between FPs and their preceding context
for dialogues and for monologues in Russian

Fig. 4. Energy differences between FPs and their following context for dialogues and
for monologues in Russian

context and FPs than in dialogues, whereas in dialogues there are less obvious
differences in ratios. However, the energy distribution in our material is in agree-
ment with the overall trend of monologues exhibiting more explicit strategies of
prosodic context marking, what was not the case in [17]. This result is possibly
due to the fact that we calculated not the mean fundamental frequency and
energy but distribution estimation to account for the possible noises.

5 Experiments on Detection

This study is continuation of [33], where we followed [23], basing our experiments
on support vector machine (SVM) classifier. The scikit-learn Python library [2]
implementation of SVM with polynomial kernel was used, it enables the prob-
ability estimates by means of C-Support Vector Classification, the implemen-
tation is build upon libsvm [4]. Features were extracted with the openSMILE
toolkit [8] on the frame-level basis (25 ms window, 10 ms shift), the whole fea-
ture set being based on the set used for the INTERSPEECH 2013 Social Signals
Sub-Challenge [12]. This resulted in 162 values per frame.
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For the experiments, data has been separated into two classes: “FPs” and
“Other”. First one consists of FPs only, while the other comprises the rest of the
frames. Each 10th file was selected for train set, then again each 10th - for devel-
opment set, and the rest was used as the test set. This operation was performed
10 times producing 10 different triplets of train, development and test sets. The
train set was then downsampled to avoid the bias towards the class “Other” [23].

As the post-processing step the Gaussian filter and morphological opening [11,
23] were applied, since it improving both precision and recall rates due to the usage
of contextual information, which was also the case for Russian data [33]. The para-
meters for Gaussian and morphological opening, as well as the decision threshold
were determined using grid search on the development set.

We performed experiments on both only Russian data and mixed Russian
and English data. For the results evaluation we used the F1–score, the harmonic
mean of precision and recall:

F1score =
2 · true positive

2 · true positive + false negative + false positive
(1)

We obtained F1–score around 0.55 for only Russian data. For mixed Russian
and English data the F1–score was around 0.48. The results showed that adding
another language deteriorate the F1–score, but not crucially, suggesting that
the machine learning techniques such as SVM can be successfully used for cross-
linguistic hesitation detection.

6 Conclusion

In this paper we presented the results of acoustic analysis of voiced hesitations
and their context across monologues and dialogues in Russian, confirming that
there are differences in fundamental frequency and energy distribution across
speaking styles in Russian. Comparing to the dialogues, in monologues speakers
exhibit more prosodic cues for the adjacent context and FPs. Whereas in dia-
logues there are less obvious differences in hesitations and their context ratios.
We have also reported results of the experiments on detection of voiced hesita-
tions on a mixed language and style corpus with SVM, achieving F1–score = 0.48
(With F1–score = 0.55 for only Russian data). Future research will tackle both
the impact of speaking styles and different languages in automatic hesitation
detection.
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Abstract. The main aim of the project is to study development of the acmeo-
logical approach to modeling the characteristics of the speech activity of com-
municants in the social network discourse (SND), taking into account the degree
of “maturation” of the destructive features of the personality considering the fact
that formerly some material was used, which includes features of the personality
structure for the “subjects” based on samples of their written and spoken speech
in the electronic media environment for the purpose of constructing an acmeo-
logical matrix that will enable experimental “measurement” of the acmeological
difference in the potentials of an individual. Scientific novelty and significance of
this research are determined by the modern social network situation with regard
to a lot of negative information communication utterances.

Keywords: Acmeology � Destructive dynamics � Cognitive image
diagnostics � Speech activity � Social-network discourse

1 Introduction

It is widely known that speech (spoken language and written language) contains
speaker-specific information that includes personal deprivation features with regard to
intellectual, social, economic, confessional, political, geopolitical etc. factors. This
article considers for the first time the role of the investigation of author profiling and
personality attribution on the basis of acmeological entity analysis. The motivation of
this research was an attempt to analyze all personal features (verbal, paraverbal and
non-verbal) of communicants in the Internet, focusing on social network discourse
(SND). The fundamental conception of this approach was acmeology regarding, first of
all, the negative dynamics of personal attributes of “electronic” communicants.

Acmeology is a science the main task of which is to study the potential of the full
development of the human personality considered as a subject of any activity (intel-
lectual, social, spiritual, etc.). Acmeological identity of a human is one of the basic
concepts of acmeology, which relate both to positive and negative person identity. In
the first case, one can talk about a person who aspires to positive solutions of various
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problems, and in the second case about a person whose actions are aimed at
achievement of his/her goals, even if there is a conflict with the social macro- and
micro-environment. In acmeology, as a rule, one talks only about the positive qualities
of a person that have reached their heights in positive personality dynamics [1–4, 6, 7,
17]. We propose, for the purpose of a comprehensive analysis of the individual’s
attributes, to extend this definition to negative dynamics as well.

It is a novel and not observed field. Given the inclusion of deprivation factors into
the model of the personality functioning in the virtual space, it is logical to assume that
the attributes of a person (“portrait”) can be fuller not only from the positions of the
positive, but also from the positions of the negative, which has developed as a con-
sequence of deprivation [8, 9].

The acmeological concept of individuality is currently considered taking into
account the following factors:

• personality identity factor as a result of its purely individual formation on the basis
of ontogenetic development, where the properties of the individual, personality and
subject of activity are focused.

• factor of the personality identity formation under the influence of the surrounding
society with the inclusion of energy, information and field exchange of meanings
and values;

• factor of the spiritual and practical activities of a person associated with joint
actions within the micro- and macro-community;

• factor of the formation of individual acmeological identity of the human, that is,
individual identity in the highest degree of its development with a positive or
negative self-assessment.

When analyzing the emotional-modal behavior of a person in conditions of inter-
personal, socio-economic, interethnic, confessional, political and geopolitical depri-
vation, including value expectations and value capabilities, the analysis of the personal,
individual “portrait” of communicants participating in the social-network discourse
becomes especially important [10–16].

2 Approaches to Research, Material, Method

The research is based on the mental, moral and ethical development of the subjects in
terms of social network discourse. The proposed acmeological approach to the study of
attributes, that is, individual “portraits” of participants in the social-network discourse
will later selectively identify and determine the following:

• degree of depth (taking into account the positive or negative) of “immersion” into
the development of one or another idea explicated by the author in the process of
virtual communication;

• degree of dynamics of the individual and personal evaluation in time.

To solve this problem, it is proposed to develop a method for constructing acme-
ological matrices, which will allow for a multidimensional study of the structure of
personality features based on the speech discourse product.
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The acmeological matrix shall include various features that the subject (author of
the text (in our study – a fragment of the discourse)) assign to described personalities,
objects, events, processes, phenomena, etc. N texts (fragments of the text) of a certain
participant of the social-network discourse shall be included in this analysis.

In the course of the analysis, various types of links between the nominations of
personalities, objects, events, processes, phenomena, etc. should be pointed out:

• strong, medium, weak;
• positive, negative, neutral;
• unilateral, bilateral, multilateral;
• conscious, unconscious;
• repeating, non-repeating;
• semantically explicable, semantically not explicable (allusions, indirect speech acts,

etc.);
• synsemantic, autosemantic;
• monothematic, polythematic;
• informationally saturated (high contextual), information-unsaturated (low

contextual);
• provoking debates (specific actions, acts of destructive nature), not provoking

debates (specific actions, deeds of destructive nature).

Thus, using the method of establishing the acmeological identity of a person used, for
example, in psychology, valeology, pedagogy, in our study, for the first time it is pro-
posed to develop a special method for constructing an acmeological matrix with a number
of new re-interpreted positions and further corrective additions, taking into account the
verbal characteristics of the analyzed material and tasks, among which the task of
building an individual social and virtual “portrait” of communicants plays a special role.

When constructing an acmeological matrix of a particular person using verbal and
paraverbal data, it is suggested to rely on information about the main ways of
“personality personalization”:

• personality and his/her relationship with particular members of community (“inti-
mate, close, distant”, etc.);

• personality and his/her attitude to the temporary factor (by “yesterday – today –

tomorrow” type);
• personality and his/her understanding of the social distance “me and the power”;
• personality and his/her existential status (“I’m in a team”, “I’m outside the team”,

“I’m on my own”);
• personality and his/her attitude to the abrupt change of social paradigms (“change of

power”, “change of goals”, etc.);
• personality and his/her idea of their values (material, spiritual, aesthetic ones, etc.).

The conflict between the above features of the personality’s personalization and the
degree of the aim attainability causes an effect of deprivation, which in ontogenesis
generates a negative dynamics in the development of the personality and can lead to an
acmeological peak of a negative nature with the resulting most manifested conse-
quences (destructive actions, terror, etc.). The development of the method of acmeo-
logical description of the personality in a negative way has a direct relation to the
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cognitive approach based on the theory of imprinting, which are an integral part of a
person’s individuality.

For the first time in solving the problems posed in the study, we propose a method
for constructing an acmeological matrix based on verbal and paraverbal characteristics
of the verbal and paraverbal product of the personality reflecting the relationship
between a certain degree of frustration and the effect of deprivation.

As a result, we expect to obtain individual attributes of a person analyzed and the
possibility of establishing the presence or absence of deprivation of a certain type.
Further research will allow establishing groups of deprived individuals, that is, an
integrative picture correlated with the task of establishing a typology of verbal and
paraverbal determinants of the emotional-modal behavior of communicants under
conditions of the multi-factor deprivation regarding electronic media sources, social
networks and IP Internet telephony. In the future, the simulation will be carried out
taking into account individual acmeological matrices correlated with individual fea-
tures of the acmeological dynamics with reference to each analyzed person. An indi-
vidual acmeological matrix pattern is presented below (Table 1):

A representative annotated corpus of Russian electronic media discourse has been
created. The corpus includes samples of written and spoken monologues, dialogues,
and macropolylogues classified with respect to their form, content, function, influence
types, emotional and modal colouring etc. One excerpt from the corpus with all types
of annotation is provided here as an example (Table 2). Each item of the annotated
corpus includes the headline, name of the resource, a link to the SND fragment, date of
“publication”, main topic of the verbal item, number of communicants, type of com-
munication (monologue, dialogue, polylogue), gender and approximate age of

Table 1. Individual acmeological matrix as the personality attribution of acmeological
dynamics (on the basis of annotated database analysis)
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communicants, their social and economic status and nationality, communication means
(verbalics, paraverbalics, non-verbalics).

The existing annotated linguistic data corpus (created during the previous year of
the research) was significantly expanded to include new subcorpora representing
socioeconomic and ecological topic areas. The written language part of the corpus
comprises 40 Mb of social network communication sample texts (which makes about 7
million tokens) by at least 4000 authors. The spoken language corpus (including both

Table 2. An example from annotated corpus of Russian electronic media discourse
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audio and video recordings representing multimodal communication) contains 50 h of
speech by at least 300 speakers. The size of the spoken language corpus is 35 GB.

All the data collected are classified according to their predominant topic areas
mapping to respective predominant types of deprivations. The topic areas include
politics, geopolitics, ecology, economy, interethnic and interreligious conflicts, and
interpersonal relationships.

On the basis of the results of lexical-semantic, perceptual auditory and acoustic
types of analysis an inventory of verbal (for written and spoken discourse) and par-
averbal (for spoken discourse) descriptors was defined characterizing various types of
deprivations with respect to their correlation with different axiological categories (such
as prosperity, power, influence, social standing, personal fulfillment, security, eco-
nomic competition, political and geopolitical ambitions, authoritarian orientation).
Groups of features were developed allowing for partial automatization of the analysis of
the language corpus. Lists of lexical markers corresponding to the abovementioned
features were defined. Various speech acts were classified in accordance with the
defined feature groups.

At this stage, a model was developed for searching the negative acmeological
component characterizing the dynamics of speech behavior of the SND communicants.
The principle of cognitive dissonance (according to L. Festinger [5]) is significantly
manifested in the individual negative acmeological model (based on the material of our
observations with reference to the social-network discourse), when SND users knowing
of the indecency of any judgments (for example, in terms of “outrages”) violate all laws
of ethics and act verbally (in the format of a locutionary act) against the common sense
and established ethical norms well-known in the given community (Fig. 1).

The development of each of the deprivation constituents in time can be accom-
panied by such complementary verbal determinants of human speech behavior as
aggression, hostility, resentment, etc., without any indication of consensus and com-
promise. The formation of the acmeological attributes of an individual (at least by the
SND data) is directly related to the subject on which the memory of the Internet user is
focused: on the past (for example, nostalgia), the present (surrounding reality) or the
future (vision in time dynamics), see Figs. 2, 3, 4 and 5.

Fig. 1. The model (No. 1) of cognitive dissonance implemented in the SND in the presence of a
deprivation factor regarding individual negative acmeological dynamics in case the user’s
background knowledge and verbal means of a specific communicative act do not match

412 R. Potapova and V. Potapov



Further in the course of the study, it was necessary to establish a functional rela-
tionship between the two variables, their ratio on the graph of the functional depen-
dence based on two abscissae (according to the Cartesian system): (a) for negative
acmeological dynamics; and (b) for positive acmeological dynamics (Fig. 6). The
dynamics can be recorded: (a) for individual SND users, (b) for groups of SND users;
as applied to the time quantization, taking into account days of a week, weeks of a
month, months of a year, etc.

It is proposed to introduce two abscissae (from 0 to N: for NA+ and NA–) and two
ordinates (from 0 to N: for NA0 at NA+ and NA–) for constructing the dynamics of the
acmeological matrix DA�, where

A– is negative acmeological dynamics;
A + is positive acmeological dynamics;
NA– is neutral dynamics with A–;
NA+ is neutral dynamics with A +.

This approach made it possible to obtain two hemispheres (semi-spheres), each
containing: a) a negative acmeological curve with A– (along the abscissa) and a neutral
curve with A– (along the ordinate), and b) a positive curve with A + (along the
abscissa) and a neutral curve with A + (along the ordinate).

Fig. 2. The case of “orientation to the
past” (for example, nostalgia for the past)

Fig. 3. The case of “orientation to the pre-
sent” (for example, criticism of current events)

Fig. 5. The case of “disorientation in
responses to external stimuli” (for example,
depression, disappointment, indifference to
all events discussed in the SND)

Fig. 4. The case of “orientation to the
future” (for example, an optimistic perspec-
tive of development for certain events)
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Thus, it became possible to reflect the change (dynamics) of two (or three) types of
establishing acmeological attributes of the “electronic personality” on the same graph
of the combined functional dependence: the negative in combination with the neutral
and the positive in combination with the neutral, which makes it possible to establish
the presence or absence of the deprivation component in the cognitive portrait of the
virtual (“electronic”) individual.

The above functional relationship between the negative acmeological dynamics of
the “electronic personality’s” deprivation state (DA–) and his/her verbal (V), par-
averbal (PV) and nonverbal (NV) content in the SND can be expressed by the fol-
lowing formula:

Fig. 6. The acmeological dynamics of a varied type (positive/negative/neutral) depicted with
two hemispheres: a hemisphere (on the left), which includes values of negative acmeological
dynamics and neutral indicators that make up the negative acmeological dynamics, and a
hemisphere (on the right) including values of positive acmeological dynamics and neutral
indicators that make up the positive acmeological dynamics
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DA� tð Þ ¼ f n V tð Þ;PV tð Þ;NV tð Þð Þ; tð Þ, where DA–(t) is the dynamics of negative
acmeological attributes of the individual; V(t) are values of the verbal content in time;
PV(t) are values of the paraverbal content in time (prosody, etc.); NV(t) are values of
the non-verbal content in time (facial expressions, gestures, etc.).

Using the proposed approach, depending on the problem solved in the course of the
study, it is possible to distinguish:

• only verbal one-component means (V(t)) of transmitting a negative attitude of the
individual to events, personalities, objects, etc. considered in time;

• two-component mixed verbal (V(t)) and paraverbal (PV(t)) means of the same
negative modality considered in time;

• three-component mixed verbal, paraverbal and non-verbal means (V(t)/PV(t)/NV
(t)) of the negative acmeological attributes of the “electronic” individual considered
in time.

3 Conclusion

The proposed model of qualitative and quantitative evaluation of the acmeological
attributes of the “electronic” individual on the material generated during the study
conducted within the framework of this project appears to be unique and promising and
can be used in the development of a software product which helps establish individual
and group specificities for achieving the acmeological peak (particularly of a negative
nature) to solve the main task of the study.

The acmeological method is very perspective in forensic linguistics and phonetic
too in the domain of personality identification and attribution. The acmeological fea-
tures can be not SND-user-specific, but can characterize a group of SND users by
determining users’ intellectual, social, material, spiritual, aesthetic etc. parameters.

This approach to acmeological analysis can be realized, first of all, with regard to
legal communication in international community in a range of national and interna-
tional semiotic, sociolinguistic, psychological, philosophical, sociopolitical, institu-
tional etc. contexts [18, 19].
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Abstract. This paper investigates how deep bottleneck neural networks
can be used to combine the benefits of both i-vectors and speaker-adaptive
feature transformations. We show how a GMM-based speech recognizer
can be greatly improved by applying feature-space maximum likelihood
linear regression (fMLLR) transformation to outputs of a deep bottleneck
neural network trained on a concatenation of regular Mel filterbank fea-
tures and speaker i-vectors. The addition of the i-vectors reduces word
error rate of the GMM system by 3–7% compared to an identical system
without i-vectors. We also examine Deep Neural Network (DNN) systems
trained on various combinations of i-vectors, fMLLR-transformed bottle-
neck features and other feature space transformations. The best approach
results speaker-adapted DNNs which showed 15–19% relative improve-
ment over a strong speaker-independent DNN baseline.

Keywords: DNN · fMLLR · I-vector · Bottleneck extraction

1 Introduction

In statistical speech recognition, speaker adaptation techniques can fall into two
categories: Model adaptation involves modifying the parameters of the acoustic
model to fit the actual speech data from a target speaker. Maximum Likeli-
hood Linear Regression (MLLR) [5] and Maximum A Posteriori (MAP) [7] are
the powerful model adaptation techniques that improve Gaussian Mixture Mod-
els (GMMs). However, there is no similar technique for Deep Neural Network
(DNN) models which have become prominent in recent years. Due to their many
large hidden layers, DNNs have a significantly higher number of parameters. It is
therefore hard to adapt DNNs with only a small amount of data. Several studies
[11,19] have shown that DNN models have greater invariance to speaker varia-
tions resulting in model adaptation being less effective than for GMMs. Further,
model adaptation usually results in new models for individual speakers, signifi-
cantly increasing complexity and required storage space.

Unlike model adaptation, feature adaptation techniques use regular acoustic
features and adaptation data to provide new features which better fit the trained
c© Springer International Publishing AG 2017
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acoustic model, thus improving recognition accuracy without the need to change
the model. Feature adaptation is attractive for dealing with the limitations of
model adaptation, especially for DNNs. Feature-space MLLR (fMLLR) [5] is a
well-known adaptation technique which makes better inputs for GMMs. How-
ever, providing good fMLLR features for DNNs is challenging: Due to the huge
difference between DNN and GMM models, fMLLR features which are opti-
mized for GMMs are not guaranteed to be better for DNNs than other regular
features. Recently, identity vectors (i-vectors) for speaker representation have
been introduced [3], and have been successfully used in speaker verification and
speaker recognition. Further research [18,20] proved that i-vectors can be used
in conjunction with regular features to improve DNN performance.

In this paper we examine how i-vectors and fMLLR transformations can
be combined in order to improve both GMM and DNN systems. In particu-
lar we analyse speaker-adaptive bottleneck features (SA-BNF), where log scale
Mel filterbank (FBANK) features are concatenated with i-vectors to form their
input features and investigate how both speaker-adaptive bottleneck features
and speaker-independent bottleneck features can be further transformed and
augmented before being used as DNN or GMM input features.

The paper is organized as follows: Sect. 2 reviews speaker adaptation using
fMLLR and i-vector techniques. In Sect. 3, the hierarchical combination of
fMLLR and i-vectors is presented. The experiments and results are explained
in Sects. 4 and 5. In Sect. 6, we conclude and discuss future work.

2 Speaker Adaptation Using fMLLR and I-vector

fMLLR is a commonly used adaptation technique for ASR systems. When a
small amount of adaptation data for an individual speaker is available, fMLLR
can be applied with a trained GMM to employ an affine transformation which
transforms acoustic features for speaker normalization. The transformed fea-
tures are well-known to be better inputs for the GMM system. [16] showed DNN
systems can also be improved when using fMLLR features. In their study, the
best input features for DNN system are obtained using a sequence of transforma-
tions including Linear Discriminate Analysis (LDA), global Semi-tied covariance
(STC) and fMLLR. The authors presented 3% absolute improvement of the pro-
posed DNN over a very good adapted GMM. In [14], the authors proposed to
estimate fMLLR transforms using simple target models (STM) and combine
with FBANK features to improve DNN performance.

I-vectors describes a speaker’s identity and are successfully used in speaker
verification and speaker recognition tasks. This powerful technique is also useful
for speech recognition since i-vectors encapsulate the speaker relevant informa-
tion in a low-dimensional representation. Applied to speech recognition, [18,20]
augment regular acoustic features with i-vectors as a speaker adaptation for their
DNNs. Both works showed that i-vectors possibly provide additional information
allowing for an improving recognition performance. Saon et al. presented 10% rel-
ative improvement on 300 h of Switchboard data, while Senior et al. just showed
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4% relative improvement on 1700 h of Google Voice data. [12] introduced speaker
adaptive training for DNN (SAT-DNN) which learns an adaptation neural net-
work to convert i-vectors to speaker-specific linear feature shifts. The original
features (e.g. MFCC) are then speaker-normalized by adding theses shifts. Their
SAT-DNN model achieved 13.5% relative improvement on 118 h of TED talks.
In [1] i-vectors are incorporated with a bottleneck extraction architecture to
improve low-resource ASR systems.

Recently, Tan et al. [22] have investigated to use i-vectors at different layers
of a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) to nor-
malise speaker variability. They reduced word error rates by 6.5% relative when
using FMLLR features which are transformed from MFCC with LDA and STC.
Tomashenko et al. [23] proposed to use bottleneck features for GMM-derived
feature extraction and combine with fMLLR features to be DNN input.

In terms of speaker adaptation, fMLLR tries to remove speaker variabil-
ity while i-vector provides more speaker information. Both techniques help to
improve feature processing in different ways. The aforementioned study [18] also
proposed to simply augment their fMLLR features with i-vectors to further
improve their recognition results. Our study is motivated by that paper and
investigates how to best combine fMLLR and i-vectors.

3 Combining I-vector and fMLLR

Deep bottleneck network (DBNF) has been shown to extract effective speaker-
independent bottleneck features (SI-BNF) to both GMM and DNN models. In
this study, we use DBNF to perform several combinations of i-vector and fMLLR
adaptations. These combinations yield improved speaker-adapted features for
GMMs and DNNs. An overview of our proposed feature extraction process is
shown in Fig. 1. We propose to use i-vectors as additional features to a DBNF
for extracting speaker-adapted bottleneck features, then perform fMLLR and
other linear transformations before feeding them to GMM systems. To build
speaker-adapted features for DNNs, we combine i-vectors and fMLLR features
that are estimated on top of the bottleneck features.

Fig. 1. Hierarchical combination of bottleneck, fMLLR and i-vector features for either
early or late combinations
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In Sects. 3.1 and 3.3 we discuss two different approaches of integrating
i-vectors. Section 3.2 explains how fMLLR and other transformations can be
used in our feature extraction pipeline.

3.1 Early I-vectors

Having a similar architecture to DNNs, DBNFs are also capable of modeling
high-dimensional correlated input features. We investigate the ability of incor-
porating acoustic features and i-vectors to train DBNFs. In our approach, regular
acoustic features (e.g. FBANK) are spliced for 11 consecutive frames and then
concatenated with i-vector features to be fed into DBNFs. After the training, we
are able to build speaker-adapted bottleneck neural networks which can extract
speaker-adapted bottleneck features (SA-BNF).

3.2 fMLLR

LDA can be used to extract the most useful features for the classification from
many consecutive acoustic frames while STC transformation is applied to de-
correlate the input features. These techniques are popularly adopted to transform
Mel-frequency cepstral coefficients (MFCC) [16] or bottleneck features [8,25] to
become effective input for GMM models. Then, fMLLR transformation is further
estimated and applied to make the acoustic data of individual speakers more accu-
rately modeled by the trained GMMs. We also perform these transformations on
top of SA-BNF to build speaker-adapted features for the GMMs. However, to keep
the same temporal context of frames fed into the DNNs (i.e., wider context reduces
the classification performance), we do not use LDA for feature-dimensionality
reduction from concatenated features. Instead, we propose to either estimate
fMLLR transformation directly on SI-BNF or SA-BNF without using LDA and
STC transformations, or use them without applying context-window. So that, we
can later splice 11 frames of fMLLR features as the input to the DNNs.

3.3 Late I-vectors

After applying fMLLR transformation, new transformed features are supposed to
have less speaker variability. Providing again speaker information with i-vectors
can lead to improvement as suggested from [18]. We also concatenate the trans-
formed SI-BNF or SA-BNF with i-vectors for different DNN input features.

4 Experimental Setup

4.1 Overall Setup

In the experiments, we used a big training dataset of 460 h from 12000 English
talks. This dataset includes the TED-LIUM [17], Quaero [21] and Broadcast
News [9] corpora. We used the tst2013 and the tst2014 sets from the IWSLT
evaluation campaign [2] which sequentially contains 27 and 15 talks.



Improved Speaker Adaptation by Combining I-vector and fMLLR 421

The DBNFs were constructed with 5 hidden layers containing 2000 units,
followed by a 42 units bottleneck layer and the final classification layer, using
input as 11 stacked frames of 40-dimensional mel scale filterbank coefficients
with or without concatenating i-vector features. All the DNN models also share
the same architecture which has 6 hidden layers with 2000 units per layer. The
input of the DNNs is 11 stacked frames of 42-dimensional transformed SI-BNF
or SA-BNF, with or without combining i-vector features. We used sigmoid acti-
vation for hidden layers and soft-max for output layer.

DNN and DBNF systems were trained using cross-entropy loss function to
predict 8000 context-dependent states. The same training method is applied for
all DNNs and DBNFs, which includes pre-training with denoising auto-encoders
and followed by fine-tuning with back-propagation. We used an exponential
schedule for all of the trainings. The GMM models were trained using incre-
mental splitting of Gaussians (MAS) [10] and followed by optimal space training
(OFS) (a variant of STC [6]) if LDA features are used.

The systems were decoded using Janus Recognition Toolkit (JRTK) [4] with
the Cantab 4-gram language model [24] from more than 150k words.

4.2 I-vector Extraction

To extract i-vectors, a full universal background model (UBM) with 2048 mix-
tures was trained on the training dataset using 20 Mel-frequency cepstral coeffi-
cients with delta and delta-delta features appended. The total variability matri-
ces were estimated for extracting 100-dimensional i-vector which was observed
to give the optimal recognition performance in [18,20]. The UBM model train-
ing and i-vector extraction were performed by using the sre08 module from the
Kaldi toolkit [15].

4.3 fMLLR Estimation

The GMMs trained with SI-BNF and SA-BNF were used to compute fMLLR
transformations. The process of fMLLR estimation were performed as the tradi-
tional approach. During the training, we used the adaptation data of the same
speaker and the reference transcriptions to do the alignment, while the same
GMMs were used as first-pass systems to generate transcriptions in the testing.

5 Experimental Results

5.1 Baseline Systems

In our experiments, we used a DNN system with FBANK features as the speaker
independent baseline (SI-DNN). This is a strong baseline since DNNs training
with mel scale filterbank is known to outperform other regular features [13].
The other baseline is a speaker-adapted DNN (SA-DNN) using i-vectors. This
baseline is similar to the speaker-adapted DNNs presented in [20] except our
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Table 1. Word error rate of baseline systems

Baseline tst2013 (tst2014)

SI-DNN 16.2 (12.9)

SA-DNN 15.1 (12.4)

i-vectors are extracted for speaker-level instead of utterance-level. The results
of the baselines on two test sets are shown in Table 1. In our setup, we are able
to reproduce the improvement when using i-vector adaptation for DNN systems
in both the test sets. The improvement is not large as reported in [18], but is
comparable to [20] since we used a similar baseline setup.

5.2 Results from GMM Systems

Table 2 presents the results of our evaluated GMM systems. The first three
columns show the possible techniques applied to make inputs to the GMMs.
The techniques include Early I-vector for extracting speaker-adapted bottle-
neck features, followed by splicing and LDA+STC transformations, and fMLLR
transformation at the last step. The last column presents word error rates (WER)
on the both test sets.

By using discriminative bottleneck features, the GMM systems can achieve
good recognition performance which is close to the DNN baseline. This also
explains the smaller gains of applying LDA+STC and fMLLR transformations
than performing on regular acoustic features such as MFCC. However, these
techniques have still been effective when producing constant improvements over
different test sets.

The results of the GMMs using SA-BNF are consistently better than using
SI-BNF with identical constructions. The regular bottleneck GMM (with full
transformation techniques) is 3–7% less effective than the adapted bottleneck
GMM. This shows that DBNF can explore the adapted input with the addition
of i-vectors to provide better discriminative features.

Table 2. Comparison of word error rate for GMM systems using context-window of
462 bottleneck features

Early I-vector Splice+LDA+STC fMLLR tst2013 (tst2014)

✗ ✗ ✗ 16.7 (13.1)

✗ ✓ ✗ 15.9 (12.5)

✗ ✓ ✓ 15.4 (12.3)

✓ ✗ ✗ 15.7 (12.7)

✓ ✓ ✗ 14.9 (12.4)

✓ ✓ ✓ 14.4 (11.9)
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In Table 3, we present the performance of different GMMs that were used
to estimate fMLLR features for DNN systems. Without using context-window
of bottleneck features, the combination of LDA+STC transformations shows
less effective. However, using fMLLR and Early I-vector still presents achievable
improvements.

It is worth noting that while the trained GMM systems have good perfor-
mance, the best speaker-adapted GMM is even better than SA-DNN baseline.
This indicates that feeding their input features to DNNs may improve systems
due to the better capacity of DNNs in classification task.

Table 3. Comparison of word error rate for GMM systems using 42 bottleneck features

Early I-vector LDA+STC fMLLR tst2013 (tst2014)

✗ ✓ ✗ 16.5 (12.9)

✗ ✗ ✓ 16.1 (12.5)

✗ ✓ ✓ 15.8 (12.3)

✓ ✓ ✗ 15.5 (12.7)

✓ ✗ ✓ 15.0 (12.0)

✓ ✓ ✓ 15.1 (12.2)

5.3 Results from DNN Systems

In Table 4, we compare the results of the examined DNNs using transformed
SI-BNF with or without the addition of Late I-vector. Again, the last column
shows the results in word error rates, while the other columns indicates the usage
of our proposed adaptation techniques.

Table 4. Comparison of word error rate for DNN systems

LDA+STC fMLLR Late I-vector tst2013 (tst2014)

✗ ✗ ✗ 15.3 (12.4)

✓ ✗ ✗ 15.4 (12.5)

✗ ✓ ✗ 14.5 (11.8)

✓ ✓ ✗ 14.8 (12.1)

✗ ✗ ✓ 14.1 (11.5)

✓ ✗ ✓ 14.8 (12.7)

✗ ✓ ✓ 13.1 (11.1)

✓ ✓ ✓ 13.7 (11.3)

Interestingly, LDA+STC transformations which usually produce better input
to GMM modeling show a negative effect when applying to DNN inputs. How-
ever, performing fMLLR and Late I-vector adaptations on bottleneck features
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individually show effectiveness. When concatenating fMLLR transformed fea-
tures with i-vectors, we found the best features combination. The best DNN
system with fMLLR and Late I-vector gives 15–19% relative improvement over
SI-DNN baseline and 11–13% over SA-DNN baseline.

Since SA-BNF features have been effective to GMM modeling, we also inves-
tigate to see if the DNNs can be also benefited from it. Table 5 compares the
DNNs with SA-BNF against SI-BNF. Using fMLLR transformation on top of
SA-BNF can improve the performance up to 8% relative. We could not how-
ever achieve further improvement with the DNNs by Late I-vector together with
Early I-vector and fMLLR. That may be due to either fMLLR transformation
not being able to completely remove speaker variability, or our used DNN archi-
tecture not being able to exploit this combined structure.

Table 5. Comparison of DNN systems with SA-BNF against SI-BNF

Early I-vector fMLLR Late I-vector tst2013 (tst2014)

✗ ✗ ✗ 15.3 (12.4)

✓ ✗ ✗ 14.6 (12.6)

✗ ✓ ✗ 14.8 (12.1)

✓ ✓ ✗ 14.1 (11.5)

✗ ✓ ✓ 13.1 (11.1)

✓ ✓ ✓ 13.7 (11.2)

6 Conclusion and Future Work

We have presented an effective way of combining deep bottleneck network with
i-vectors and fMLLR to produce speaker-adapted features for ASR systems. In
our experiments, a GMM system with speaker-adapted bottleneck features out-
performs a regular bottleneck GMM system with 3–7% relative improvement,
while a DNN system even achieves higher improvements of 15–19% over a strong
DNN baseline. Since the used deep bottlenecks network is open to modeling
a variety of different input features, the replacement of Late I-vector or Late
I-vector with other speaker codes, or FBANK with other single or multiple reg-
ular features can be done without changing the feature extraction pipeline. A
further study can go in this direction to better explore speaker-adapted bottle-
necks features.
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Abstract. The paper presents the design of Czech casual speech recog-
nition which is a part of the wider research focused on understanding very
informal speaking styles. The study was carried out using the NCCCz
corpus and the contributions of optimized acoustic and language mod-
els as well as pronunciation lexicon optimization were analyzed. Special
attention was paid to the impact of publicly available corpora suitable for
language model (LM) creation. Our final DNN-HMM system achieved in
the task of casual speech recognition WER of 30–60% depending on LM
used. The results of recognition for other speaking styles are presented
as well for the comparison purposes. The system was built using KALDI
toolkit and created recipes are available for the research community.

Keywords: Speech recognition · LVCSR · Spontaneous speech · Casual
speech · Czech · NCCCz · KALDI

1 Introduction

Nowadays, Large Vocabulary Continuous Speech Recognition (LVCSR) is very
well developed for all major world languages as well as for the majority of
other languages, spoken mostly by smaller amount of native speakers. The main
research in the field of automatic speech recognition (ASR) is focused on the
development of systems for low resources languages and improvements to the
existing systems deployed under adverse conditions [1,2]. The recognition of
spontaneous speech is a typical example of an ASR system intended for real-life
environments. It represents a very challenging task, mainly because the accu-
racy of spontaneous speech recognition is still rather low in comparison with
generally high accuracy of standard LVCSR systems [3–7]. Spontaneous or col-
loquial speech recognition deals with problems similar across all languages, the
most typical ones being: strong variability in the pronunciation (mainly strong
pronunciation reduction), changes in word morphology, free word order in the
sentence, sentence breaks, etc. [8,9].

Many authors have presented solutions for the above mentioned tasks and
achieved results different for various languages, speaking styles, or recording
c© Springer International Publishing AG 2017
A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 427–437, 2017.
DOI: 10.1007/978-3-319-66429-3 42
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conditions, e.g. the authors in [10] worked with transcriptions of oral interviews
of survivors and witnesses of the Holocaust and they reported 39.60% Word Error
Rate (WER) for English and 39.40% for Czech. However, when the level of speech
spontaneity is higher, typically for very informal speaking style, the accuracy of
speech recognition falls. Authors in [3] worked with the recordings of telephone
conversations and reported 48% WER for the Czech language. Similarly in [6],
authors presented results around 31–56% WER for the case of very informal
speech recognition task.

The purpose of this paper is to present the results of very informal speech
recognition performed on Nijmegen Corpus of Casual Czech (NCCCz) using
the current state-of-the-art setup of LVCSR and publicly available language
resources. It is a part of the research focused on understanding very informal
speaking styles. The paper is organized as follows. In Sect. 2, we summarize the
current state-of-the art of Czech LVCSR and we describe our approach applied to
Czech casual speech recognition. Section 3 describes the setup of our experiments
realized on casual speech data from NCCCz. In Sect. 4, the results of particular
experiments are discussed in the context of other results obtained also for other
speaking styles. The paper is concluded with the summary of achieved results
and the information about the availability of used tools and recipes is presented.

2 Casual Speech Recognition for Czech

Due to the intensive studies of several research groups in the Czech Republic
during last decades, available LVCSR systems for Czech language reach results
similar to other languages spoken by a significantly higher number of native
speakers. Concerning spontaneous speech recognition, several systems were pre-
sented e.g. in [3,6,9] or [7] and achieved accuracy is significantly lower then for
LVCSR working under standard conditions.

Casual speech is defined as a way of talking used within a conversation among
close people. Our investigation of casual speech recognition is done for the Czech
language and it is based on exploiting the data from the Nijmegen Corpus of
Casual Czech (NCCCz) [11] which consists of 30 h of spontaneous conversations
of 60 speakers (30 males and 30 females recorded always in groups of 3 speakers
of the same gender). The amount of available data is huge, since every group
of three speakers was conversing for approximately 90 min. Also the recording
procedure of NCCCz (the same one as used for the collection of similar Dutch,
French, or Spanish corpora [12]) and the first analysis presented in [11] guarantee
that NCCCZ contains highly casual speech. A lot of pronunciation reduction,
extremely fast speed of talking, free grammar, word cutting, sentence restarts,
etc. can be observed within speech data in NCCCz. Consequently, the recognition
results using LVCSR with standard setup failed significantly [13].

2.1 LVCSR Architecture

The solution for improving the accuracy of casual speech recognition for Czech
language is based on LVCSR based on Hidden Markov Models (HMM) and
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Deep Neural Networks (DNN). Especially, the DNN-HMM based approach has
been recently shown to increase the performance of LVCSR systems significantly
[14,15]. Encouraged by these results, we compared both the conventional GMM-
HMM system and the modern DNN-HMM hybrid approach. For both architec-
tures, we used a rather standard training procedure without any special modi-
fications related to the spontaneous speech because the conversations available
in NCCCz were recorded in the quiet environment.

2.2 Front-End Processing

As basic features, the Mel-frequency cepstral coefficients (MFCC) with the stan-
dard setup are used in our system. Standardly, pre-emphasis with the coefficient
of 0.97 is applied, short-time frame has the length of 25 ms and is moved with the
step of 10 ms. Mel-filter bank contains 30 bands in the frequency range 100–7940
Hz and 12 cepstral coefficients with additional c[0] are computed. Cepstral mean
normalization (CMN) over the speaker is applied and these features with delta
and delta-delta parameters are used for the creation of initial acoustic models.

In the next steps only static and normalized MFCC features are extended
with the both-side context of 5 frames to a higher dimension vector which is
then reduced and decorrelated by LDA+MLLT transforms. This target feature
vector of the size 40 is further speaker-adapted using feature-space Maximum
Likelihood Linear Regression (fMLLR) and these features are used in designed
LVCSR with GMM-HMM architecture as standard setup used nowadays in mod-
ern advanced LVCSR systems.

System based on DNN-HMM hybrid architecture works with above described
features used for GMM-HMM system but for the purpose of an application
at the input of DNN mean and variance normalization (MVN) is applied and
further both-side context of 5 frames is used again. We obtain 440 dimension
vector which is directly applied to the input of DNN. Illustrative block scheme
of feature extraction procedure is in Fig. 1.
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sig
+ CMN
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13 143 40 40
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Fig. 1. Feature extraction used in GMM-HMM and DNN-HMM LVCSR
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2.3 Acoustic Modeling

Acoustic models are also built using standardly used approach in modern ASR sys-
tems.The set of 45Czechphones expanded to the context-dependent crossword tri-
phones is used. Concerning GMM-HMM approach, the basic conventional GMM-
HMM system is created first using the above mentioned LDA+MLLT features. It is
followed by feature-space maximum likelihood linear regression (fMLLR) per each
speaker (speaker adaptive training - SAT). Next iteration is based on UBM (Uni-
versal Background Model) in the combination with SGMM (Subspace GMM) and
the system is finally retrained discriminatively using bMMI.

Concerning DNN-HMM hybrid approach, DNN topology consisted of input
layer with 440 units (the context of 5 frames with 40 dimensional fMLLR fea-
tures with MVN) followed by 6 hidden layers with 2048 neurons per layer and
the sigmoid activation function. The process of building of DNN-HMM system
started with the initialization of hidden layers of used network by Restricted
Boltzmann Machines (RBMs) and then the output layer was added. The process
continued by the frame cross-entropy training and ending with sMBR sequence-
discriminative training.

Both AMs were trained using the utterances from SPEECON database [16]
and CZKCC (private database of car speech).

2.4 Language Models for Casual Czech

Concerning language modeling, we work with standard n-gram-based statistical
language models (LMs). According to the preliminary assumptions and also on
the basis of experimental evaluations, Witten-Bell discounting was used for the
smoothing of created LMs. This procedure is rather standard, the significant
problem which had to be solved was in the choice of suitable resource for coverage
casual nature of speech which should have been recognized.

We have analyzed the suitability of five general LMs collected from three dif-
ferent publicly available resources, i.e. from Czech National Corpus (CNC) [17],
Google n-grams distributed by Linguistic Data Consortium (WEB1T) [18], and
from the corpora ORAL 2006, ORAL 2008, and ORAL 2013. While the corpora
CNC same as WEB1T contain general text, corpora of ORAL family contain
spontaneous conversations and they were produced also by the Institute of Czech
National Corpus [19].

General LMs from CNC and WEB1T corpora were built for 340 k word forms
and the steps of their creation were described in [18]. These models should cover
general nature of Czech language. Similarly, we built ORAL n-gram LMs which
should cover spontaneous nature of recognized conversations. The number of
word forms obtained from spontaneous conversations was 162 k for ORAL corpus
and 29 k for NCCCz which maent a contribution of 73 k specific words from
ORAL and 9 k words from NCCCz approximately.

Finally, to cover the maximum vocabulary for our task we have also created
LMs from NCCCz, first, from defined training part of NCCCz containing the
transcription of 60% utterances per each recorded session which were not used
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the for the evaluations later. It represents slightly more realistic scenario as the
content of recognized utterances has not been seen before. Second, we created
also for comparison purposes optimum LM for causal speech from all available
NCCCz transcriptions.

2.5 Modeling of Pronunciation Variation

Finally, the modeling of pronunciation variation in casual speech (mainly its
reduction) was taken into account. We apply particular rules, some of them
known from other works, e.g. [9] or [20], others obtained on the basis of results
of realized psycholinguistic study of pronunciation reduction in NCCCz [21]. In
the end, we have used approximately 6700 additional pronunciation variants.
The illustrative examples of several rules are

“v[sSzZ]→[sSzZ]” - e.g. “vždyt’, vstát” (“but, to stand up”),
“[td]J→ [cJ\J]” - e.g. “letńı” (“adj. summer”),
“cons 1-t-cons 2→ cons 1-cons 2” - e.g. “jestli” (“if”),
“js → s” - e.g. “jsem” (“I am”),
“j[eai] → [eai]” - e.g. “jestli, jinam” (“if, elsewhere”),
“zj → z” - e.g. “zjist́ı̌s” (“You will find”),
“t-S → t S” - e.g. “věťsina” (“majority”),
“nsk → nt sk” - e.g. “č]́ınský” (“Chinesse”),
“vZd → vd” - e.g. “vždycky” (“always”).

3 Experimental Part

Within the experimental part of this study, the behavior of designed systems on
the principal task of spontaneous and casual speech recognition was analyzed.
For the comparison purposes the results obtained for standard read speech recog-
nition are also presented in the paper.

3.1 Used Speech Corpora

Experiments were performed on utterances from the following Czech databases:
SPEECON (Czech database from SPEECON family which contains mainly stan-
dard read speech), CtuTest (private database of read journal sentences of various
topics), CzLecDSP (recording of technical lectures from the field of DSP, these
data have spontaneous nature but they are more formal [22]), and finally with
NCCCz with strongly informal (casual) utterances. For the training of AMs also
CZKCCC database was used (car-speech data). The following particular setups
were used:

– TA1 - read speech recognition
(a) read sentences, phonetically rich (SPEECON database),
(b) journal sentences (CtuTest database),
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– TA2 - spontaneous speech recognition recordings of lectures (CzLecDSP data-
base),

– TA3 - casual speech recognition
recordings of highly informal conversations (NCCCz database).

Signals from all used databases were available at 16 kHz sampling frequency in
16-bit PCM format and final amounts of data in particular train and test subsets
are summarized in Table 1.

Table 1. Evaluation data subsets for training and testing

Training subsets Testing subsets

Database Speakers Utterances Hours Database Speakers Utterances Hours

SPEECON 225 60877 53.6 SPEECON 24 699 1.1

CZKCC 302 12771 20.6 CtuTest 40 577 1.1

NCCCz 40 10975 21.0 CzLecDSP 8 1417 1.7

Total 567 84623 95.2 NCCCz 20 890 1.1

3.2 Used Tools

Designed LVCSR systems were built using KALDI toolkit [23], while SRILM
toolkit was used for the creation of particular LMs. The process of feature extrac-
tion was performed by our internal tool CtuCopy [24]. In comparison to compute-
mfcc-feats available in KALDI, CtuCopy enables to extract features as MFCC,
PLP, DCT-TRAP, and also to apply frequency-domain noise reduction, various
cepstral normalizations. Recently, the compatibility with KALDI tools has been
also added [25]. All recipes created for described experiments with Czech casual
speech recognition using KALDI toolkit are publicly available under APACHE
2.0 license in “Download” section at “http://noel.feld.cvut.cz/speechlab”.

3.3 Results and Discussion

The achieved results for previously established recognition tasks are presented
from the following points of view: the optimization of acoustic modeling, the
impact of language modeling and pronunciation variation.
I. The impact of AM
The first results describe the quality of used AM, i.e. from basic GMM-HMM
approach to the best AM based on DNN-HMM architecture. General bigram
LM from CNC with 340 k words was used for all these experiments with results
in Table 2. Particular acronyms represent the following systems:

- “tri2” - triphone GMM-HMM with LDA+MLLT features,
- “tri3” - triphone GMM-HMM with LDA+MLLT followed by SAT,
- “SGMM” - subspace GMM,

http://noel.feld.cvut.cz/speechlab
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- “bMMI” - discriminatively trained models,
- “DNN” - DNN-HMM system.

Achieved results show that our target DNN-HMM LVCSR system works with
the accuracy comparable to the current state-of-the art, i.e. 15.2% of WER for
standard read speech. For spontaneous speech we received WER of 37.4% for
the transcription of lectures (i.e. with slightly more formal speaking style) and
72.0% for very informal speech from NCCCz.

Table 2. WERs of LVCSR in the phase of AM optimization

Tasks tri2 tri3 SGMM bMMI DNN

TA1a 29.8 23.4 22.2 21.8 21.1

TA1b 24.0 17.0 15.9 15.3 15.2

TA2 49.9 41.3 39.9 38.0 37.4

TA3 82.5 76.1 74.9 74.2 72.0

II. The impact of LM
The results shown in Table 3 present the influence on used various LMs in ana-
lyzed tasks. The first part summarizes the results of recognition for all speaking
styles using general CNC and WEB1T LMs where the strong decrease for the
case of casual speech is clearly shown. The second part of Table 3 presents the
results for TA3 task (casual speech) and LMs from ORAL a NCCCz (transcribed
spontaneous speech corpora). The reduction of out-of-vocabulary (OOV) con-
firmed better modeling of casual speech and led to results around 60–70% WER.
An exceptional case is LM NCCCzAll created from all available data including
the test set so that it had OOV of 0%. We present these results for this non-
realistic situation as a limit case which can be achieved using ideal setup.

The next experiments were focused on minimization OOV and WER in the
TA3 task by merging of various bigram LMs. The results for merged LMs with
uniform interpolation weight are summarized in Table 4. Using various merged
LMs reduced the level of OOV significantly but the WER decreased just a little
as the setup of the interpolation weights (λ) was not optimal. Therefore, we
optimized the value of λ for particular LMs and the best result was obtained with
the following setup: 0.2 weight for ORAL LM, 0.15 for CNC 0.15 for WEB1T
and 0.5 for NCCCz achieving WER about 59.7%. The final investigation was
based on merging various LMs with the NCCCz-based LM. The contributions
of various interpolation weights λ to the final WER are summarized in Table 5.
The best results were achieved for the setup with λ = 0.75.

In the end, the combination of all LMs brought an improvement in target
OOV but the decrease of WER was smaller. The results proved that general
LMs (CNC and WEB1T) did not contain proper information describing the
causal speech in NCCCz, however, LMs ORAL corpus covered casual speech
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Table 3. WERs of LVCSR with various 2-gram a 3-gram LMs on particular tasks

Tasks LM OOV PPL 2-gram 3-gram

TA1a CNC 1.6 3572 21.1 21.8

TA1b CNC 1.8 2034 15.2 14.7

TA2 CNC 4.8 2937 37.4 37.2

TA3 CNC 4.6 2065 72.0 72.2

WEB1T 4.5 4427 68.9 -

TA3 ORAL06 6.5 389 67.1 66.4

ORAL08 6.7 445 66.8 66.3

ORAL13 4.7 475 66.1 65.4

ORALall 4.0 426 63.6 62.5

NCCCz60 7.2 248 61.4 61.2

NCCCzAll 0 69 41.3 28.4

Table 4. DNN-HMM casual speech recognition (TA3) with merged bigram LMs

Bigram LMs OOV WER

CNC+WEB1T 4.3 69.8

CNC+WEB1T+ORALall 2.8 64.7

CNC+WEB1T+ORALall+NCCCz60 1.5 61.2

Table 5. DNN-HMM with various weights of NCCCz in merged LMs on TA3 task

LMs OOV NCCCz weight λ

0.0 0.25 0.50 0.75 1

CNK340+NCCCz60 2.2 72.0 62.8 60.8 59.4 61.4

ORALall+NCCCz60 2.5 63.6 60.9 59.8 58.9 61.4

WEB1T+NCCCz60 2.1 68.9 62.3 60.6 60.0 61.4

very similarly as LM created directly from NCCCz, of course, except the case
when used LM NCCCzAll was created also using the test data.

III. The impact of pronunciation reduction
The final results describe the achieved WER for three approaches of pro-

nunciation modeling in casual speech. Firstly, we used automatically generated
pronunciation for all words in analyzed LMs (which is used always for any new
word not present in a available dictionary). Secondly, we used approved canonic
pronunciation of all words from NCCCz which was created by manual checks by
two independent experts. Thirdly, the dictionary with the additional pronunci-
ation variants with phone reductions on the basis of rules described in Sect. 2
was used and obtained results are in Table 6. According to the assumptions, the
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Table 6. Impact of pronunciation variation in DNN-HMM system

LM Lexicon WER

0.25 ORALall + 0.75 NCCCz60 Automatic 59.8

Canonic checked 58.9

Reduction variants 58.4

recognition accuracy has improved for the most proper case taking into account
the reduced pronunciation, however, its decrease was only about 1.4%

4 Conclusions

In this paper, we described an optimization of DNN-HMM based LVCSR for
casual speech recognition in Czech and its performance on speech from the
Nijmegen Corpus of Casual Speech (NCCCz). Achieved results proved possi-
ble usage of these systems for casual speech recognition, however, the results
are significantly worse than for the recognition of more formal speech. It was
also demonstrated that publicly available corpora ORAL with transcriptions of
spontaneous conversations commonly with available corpora of formal Czech can
be used for the creation of basic LMs for the task of casual speech recognition.

Concerning obtained results, the best setup of DNN-HMM system with
merged language model and pronunciation variation modeling achieved 58.4%
WER, which is comparable to results of other authors. The built system was also
tested on other spontaneous data (lecture recordings which were slightly more
formal) where it achieved better WER of 37.2%, similarly in the task of formal
read speech recognition where WER of 14.7% was achieved. The observed mar-
gin between the casual and formal speech recognition illustrated the challenge
for the research in the field of more informal speech recognition.

Finally, created KALDI recipes for the recognition of Czech casual speech
from NCCCz are publicly available in the Download section at the WEB-page
“http://noel.feld.cvut.cz/speechlab”. These scripts can be easily modified espe-
cially for the data from the family of Nijmegen casual speech corpora and
SPEECON databases for other languages.
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Abstract. In this paper we present a score level fusion methodology for
improving the performance of closed-set speaker identification. The fusion is
performed on scores which are extracted from GMM-UBM text-dependent and
text-independent speaker identification engines. The experimental results indi-
cated that the score level fusion improves the speaker identification performance
compared with the best performing single operation mode of speaker
identification.

Keywords: Speaker identification � Fusion � Machine � Learning

1 Introduction

Speaker identification uses voice as a unique characteristic to identify a person’s
identify. This task is also classified into closed and open set speaker identification. In
the closed set speaker identification task, an unknown utterance will be assigned to the
known speaker reference template with the highest level of similarity. So the initial
assumption is that the unknown utterance is from one of the given set of speakers and
system makes a forced decision by choosing the best matching speaker from the
speaker database. In the open-set speaker identification reference template for an
unknown speaker may not exist, therefore, when the highest matching score is lower
than a pre-set threshold. Speaker identification task can be further divided into
text-dependent and text-independent task [1, 2]. Unlike text-independent speaker
verification system [3–6], which is a process of verifying the identity without constraint
on the speech content, text-dependent speaker verification requires the speaker pro-
nouncing pre-determined pass-phrase [7–9]. These pass-phrases may be unique (cho-
sen by user or system), or prompted by the system.

The concurrent technology in speaker identification is based on short-time speech
signal analysis followed by machine learning based modeling. The most commonly
used features for speaker recognition are the Mel frequency cepstral coefficients
(MFCCs) [10, 11]. In terms of speaker modeling, the Gaussian Mixture Models
(GMMs) introduced in the mid-1990s [12] is widely considered to be a benchmark for
modern text-independent Speaker Recognition. GMM technology has proved to per-
form well using universal background models (UBMs) trained from a large number of
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background speakers and maximum a-posteriori (MAP) adaptation or means-only
adaptation of the UBM to speaker specific data. Discriminative approaches, such as
support vector machines (SVMs) have also successfully been used in the task of
speaker recognition [13]. As a stand-alone method as well as in combination with
GMMs by concatenating the means of the Gaussian components of the GMMs to
super-vectors and applying discriminative classification on them [13]. The recently
developed paradigm of i-vector extraction [14, 22] provides an elegant way to obtain a
low dimensional fixed length representation of a speech utterance that preserves the
speaker-specific information. A Factor Analysis (FA) model is used to learn a
low-dimensional subspace from a large collection of data. A speech utterance is then
projected into this subspace and its coordinates vector is denoted as i-vector [14].
Although in specific setups subspace methods have proved to outperform probabilistic
models, the GMM-UBM approach in general offers more stable results, especially
when not enough training and development data are available. For this reason, in the
present evaluation we relied in this technology.

In this work, we present a methodology for fusing the speaker identification scores
produced by two different modes of operation, namely the text-dependent and the
text-independent. The exploitation of the advantages of each of the two modes of
operation is achieved using a machine learning based scheme for fusion, in order to get
a final speaker identification decision.

The rest of the article is organized as follows. Section 2 presents the proposed
fusion methodology for combining prompted text-dependent and text-independent
speaker verification modes. Section 3 describes our experimental setup and Sect. 4
presents and analyses the experimental results. Finally Sect. 5 draws the conclusions of
this work.

2 Fusion of Speaker Identification Operation Modes

Different modes of operation in speaker identification can offer complementary infor-
mation about the identity of a speaker. We present a machine learning based method-
ology for speaker identification which fuses the information and extends the selection of
the speaker from simple maximum selection to data-driven model based selection.

The user is providing the system with one voice response to a prompted
text-independent message and one voice response to a prompted text-dependent mes-
sage. Each of the two inputs is processed by mode-specific models and for each mode a
score vector against each speaker model is estimated. The two score vectors are fused by
a machine learning algorithm in order to make a final identification decision. The pro-
posed methodology for score fusion based speaker identification is illustrated in Fig. 1.

Let us denote as X the input test utterance after pre-processing and parameteriza-
tion. A number of speaker models, N, is used in order to estimate not only scores for
the text-dependent input, STD 2 R

N , but also scores for the text-independent input,
STI 2 R

N . Instead of selecting the maximum (or minimum) score per mode, we con-
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catenate the estimated scores into a single feature vector, V 2 R
2N , which is then used

as input to a fusion classifier as:

d ¼ f Vð Þ; ð1Þ

where f denotes the fusion classification model and d is the decision, i.e. the detected
speaker identity.

We deem the fusion classification model will capture the underlying information
between the scores of the text-dependent and text-independent mode of operation, as
well as between the scores of the speaker-specific models.

3 Experimental Setup

The experimental setup for evaluating the fusion methodology described in Sect. 2 is
presented here. Specifically, we describe the dataset used in the evaluation, the setup of
the single-mode speaker identification engines and the setup of the fusion stage.

3.1 Speech Corpus

In this evaluation RSR2015 speech corpus [9] is used. RSR2015 consists of recordings
from 300 speakers (157 males, 143 females). For each speaker, there are 3 enrollment
sessions of 73 utterances each and 6 verification sessions of 73 utterances each. In total
there are 657 utterances distributed in 9 sessions per speaker. The sampling frequency
of the speech recordings is 16 kHz and the speech samples are stored with analysis
equal to 16 bits per sample.

Fig. 1. Block diagram of the proposed methodology for fusion of prompted text-dependent and
text-independent modes of speaker identification operation
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In addition to RSR2015, we used TIMIT [15] for training a universal background
model. TIMIT consists of recordings of 630 speakers, sampled at 16 kHz with reso-
lution analysis equal to 16 bits per sample.

3.2 Single-Mode Speaker Identification Engines

Each of the two single-mode speaker identification engines, i.e. the text-dependent and
the text-independent ones, were based on the well-known GMM-UBM technique [13].
Each voice input was initially pre-processed and parameterized. During pre-processing
an energy-based speech activity detector was applied to retain the speech only parts.
The speech input was frame blocked using a time shifting Hamming window of 20 ms
length with10 ms overlap between successive frames. For each frame the first 19 Mel
frequency cepstral coefficients (MFCCs) were estimated, which were further expanded
to their first and second derivatives, thus resulting to a feature vector of length equal to
57. In order to reduce the effect of handset mismatch and make the features more robust
relative spectra (RASTA) [16] and cepstral mean and variance normalization (CMVN)
processing were applied to the MFCC features.

The universal background model (UBM) was built by a mixture of 128 Gaussian
distributions and was trained using all utterances from 630 speakers in TIMIT. For each
of the speakers of the RSR2015 database we applied MAP adaptation (means only
adaptation) on the UBM model, using the speaker-specific enrollment.

3.3 Setup for the Score Level Fusion of Speaker Identification Modes

This research provides a tentative set of results on the recent RSR2015 corpus intended
for benchmarking different modes of automatic speaker identification and their fusion.
In particular, training and trial lists (definition of speaker pairs) are designed to simulate
system evaluation of two different configurations concerning speech content,
(a) text-prompted phrases and (b) text-independent engines. The first protocol refers to
a scenario whereby a system prompts a randomly selected phrase out of a close subset
of pass-phrases. The second scenario is essentially a text-independent scenario with
arbitrary enrollment and test phrases. Each single mode biometric engine is evaluated
for the two different circumstances, (a) and (b), respectively.

To assess the performance for the two protocols, different enrollment and trial lists
were designed. The experiments are conducted on a subset of male section of recently
released RSR2015 dataset. For both protocols, 43 identical speakers are used. In the
protocol (a), speakers are enrolled with 15 different pass-phrases. For each speaker, the
15 pass-phrases are sentences 01 to 05 taken from session 04, 06 to 10 from session 01
and 11 to 15 from session 07. One out of the 15 sentences used in the enrollment is
randomly selected and prompted during testing.

For protocol (b), the enrollment is done in a similar way as in protocol (a). But the
test data is exclusively different from the enrollment data. Here, the remaining 15
sentences (from 16 to 30) are used in testing.

The identification scores produced by the text-dependent and the text-independent
speaker identification engines were concatenated into 2-dimensional feature vectors as
described in Sect. 2.
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For the classification stage, each pair of text-dependent and text-independent scores
was processed by a classification model, implemented by several machine learning
algorithms for classification. Specifically, the following algorithms were used:
(I) support vector machines (SVM) [17] using the sequential minimal optimization
implementation, (II) multilayer perceptron neural networks (MLP) [18], (III) C4.5
decision trees (C4.5) [19]. For the implementation of these machine learning algorithms
for classification we used the WEKA toolkit [20, 21].

4 Experimental Results

The proposed fusion methodology for speaker identification presented in Sect. 2 was
evaluated based on the experimental setup described in Sect. 3. For all evaluations a
5-folds cross validation protocol were applied. The performance of the proposed
methodology was evaluated in terms of identification rate.

Operation mode (a) offers an identification rate equals to approximately 87%, while
operation mode (b) offers an identification rate of nearly 74%. However, since oper-
ation mode (a) is sensitive to replay attacks, text independent operation is widely used
in real-life identification applications. In order to exploit the high identification rate of
operation mode (a), while retaining the robustness of operation mode (b) we further
examined the score level fusion of these operation modes (as described in Sect. 2).

The experimental results for the single-mode text-dependent and text-independent
speaker identification engines as well as their fusion using several classification
algorithms is tabulated in Table 1.

As can be seen in Table 1, the best performing single mode operation is
text-dependent (a). This is in agreement with the literature and is owed to the fact that
the acoustic model’s parameters are more precisely fit to the acoustic characteristics of
the target speaker for known utterance, as in the protocol of text-dependent.

As shown in Table 1, the fusion of the two modes of operation using different types
of classification algorithm outperformed both single modes and in case of C4.5 deci-
sion trees only operation mode (b). The best performance has been achieved by fusion
of scores using MLP, which offered absolute improvement of 10.09% compare to the
best performing single mode speaker identification system, text-dependent (a). This is
due to the fact that the fusion methodology is able to exploit the complementary
underlying information from each single mode of speaker identification and thus lead to
an overall more robust identification performance.

Table 1. Speaker identification, in terms of percentages correctly identified speakers, for single
mode of operation and their fusion

Single mode Identification rate (%) Fusion Identification rate (%)

Text-independent (b) 73.93 C4.5 76.05
Text-dependent (a) 86.77 SVM 90.88

MLP 96.86
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5 Conclusions

Speaker identification accuracy when using clean speech is in general high, especially in
text-dependent scenario. However, such scenario is vulnerable to the replay attacks. In
this paper we presented a fusion approach, which combines the two common single
operation modes of speaker identification, i.e. the prompted text-dependent and
text-independent. The speaker identification scores produced by each mode of operation
are used as an input to fusion algorithm. Our experimental results using the proposed
fusion approach indicated an absolute improvement of 10.09% in terms of identification
rate comparing to the best performing single mode of operation (text-dependent). We
deem the proposed fusion approach is not only improving the performance of identi-
fication process but also improve the robustness against replay attacks.
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Abstract. Most technical communication systems use speech compres-
sion codecs to save transmission bandwidth. A lot of development was
made to guarantee a high speech intelligibility resulting in different com-
pression techniques: Analysis-by-Synthesis, psychoacoustic modeling and
a hybrid mode of both. Our first assumption is that the hybrid mode
improves the speech intelligibility. But, enabling a natural spoken con-
versation also requires affective, namely emotional, information, con-
tained in spoken language, to be intelligibly transmitted. Usually, com-
pression methods are avoided for emotion recognition problems, as it
is feared that compression degrades the acoustic characteristics needed
for an accurate recognition [1]. By contrast, in our second assumption
we state that the combination of psychoacoustic modeling and Analysis-
by-Synthesis codecs could actually improve speech-based emotion recog-
nition by removing certain parts of the acoustic signal that are consid-
ered “unnecessary”, while still containing the full emotional information.
To test both assumptions, we conducted an ITU-recommended POLQA
measuring as well as several emotion recognition experiments employing
two different datasets to verify the generality of this assumption. We
compared our results on the hybrid mode with Analysis-by-Synthesis-
only and psychoacoustic modeling-only codecs. The hybrid mode does
not show remarkable differences regarding the speech intelligibility, but
it outperforms all other compression settings in the multi-class emotion
recognition experiments and achieves even an ∼3.3% absolute higher
performance than the uncompressed samples.

Keywords: Automatic emotion recognition · Speech compression ·
Intelligibility of affective speech

1 Introduction

Human-computer interaction recently received increased attention while the dis-
semination of technical systems is growing. In this context, one main research
c© Springer International Publishing AG 2017
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goal is to enable a natural (human-like) spoken conversation with technical sys-
tems [2]. Therefore, besides the pure content, also the affective information trans-
mitted by spoken language has to be evaluated, as it contains further information
needed to successfully accomplish the conversation. Up to date approaches for
an automatic speech-based affect recognition utilize high-quality mostly uncom-
pressed speech [30], although speech compression techniques have shown a sig-
nificant impact on acoustic characteristics [5,22]. This issue gains more impor-
tance, since the analyses started to use natural emotions [24,28] and go “in the
wild” [6], often interpreted as using data from non-laboratory conditions having
noises, echoes etc. In our understanding “in the wild” conditions have more con-
sequences and investigations in this field should also incorporate transmission
techniques as needed for mobile applications.

For signal transmission, speech compression is heavily used within modern
(mobile) systems. Compression allows to reduce the transmission bandwidth,
while retaining the speech intelligibility [1]. For acoustic signals, two differ-
ent compression approaches have been developed. One approach, psychoacoustic
modeling (PsyMo), is mainly used for transparent music compression aiming to
simultaneously reduce the file size and preserve all audible acoustic information.
The other approach, Analysis-by-Synthesis (AbS), is used for real-time speech
conversation aiming to work with limited bandwidth and to obtain an accept-
able speech intelligibility also for very low bitrates. Several codecs have been
developed implementing both approaches separately and offering various com-
putational and intelligibility improvements [20]. The Opus codec, standardized
in 2012, additionally offers a hybrid mode combining both approaches, aiming
to further improve the speech intelligibility at low bitrates. But, as compression
approaches do not incorporate the retention of affective information during com-
pression it is still unclear how they behave in the context of emotional speech.

We hypothesize that Opus’s hybrid mode outperforms the AbS and the
PhyMo modes/codecs in terms of both, speech intelligibility for emotional speech
as well as automatic emotion recognition performance. The explanation for
this hypothesis is that the hybrid mode, in contrast to the pure AbS mode,
enriches the synthesized signal with further characteristics represented by a psy-
choacoustic model. To prove this assumption, we conducted speech intelligi-
bility assessments utilizing Perceptual Objective Listening Quality Assessment
(POLQA) and state-of-the-art speech-based emotion classification experiments.
To this avail, we used two well-known benchmark corpora and compared Opus’s
hybrid mode with its AbS and PsyMo mode. To exclude possible side-effects
caused by the bitrate, we also employed an AbS-only codec (AMR-WB) and a
PsyMo-only codec (MP3).

The remainder of the paper is structured as follows: Sect. 2 presents related
research. In Sect. 3 the used codecs are described and in Sect. 4 the utilized
datasets are presented. Section 5 introduces the experimental design and meth-
ods. Our results are then presented in Sect. 6. Finally, Sect. 7 concludes the paper
and presents an outlook.
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2 Related Research

Several intelligibility tests are reported in the literature for the Opus codec. In
[20], all three modes of Opus are evaluated by subjective listening tests and
compared to three well-known AbS codecs. The authors stated that Opus is a
good alternative, and especially the hybrid mode was experienced with excellent
voice quality. Another study summarized the various listening tests conducted
with Opus in comparison to several speech and audio codecs [11]. They concluded
that Opus performs better at higher bitrates, especially for wider bandwidths.

Unfortunately, all of these studies utilized read speech or music samples
without taking into account emotional variations in speech. Only a few stud-
ies analyzed speech intelligibility and recognisability of emotional speech. They
concluded that Mean Opinion Score (MOS-LQO) values of emotional samples
are significantly lower than for clean and neutral speech or music [16] but that
the recognisability is not correlated to the intelligibility assessment [23]. But
these studies either focused only on Opus’s PsyMo mode or investigated other
codecs.

Regardless of all the efforts made so far to preserve the speech intelligibility
of compressed speech, the effects of speech compression on speech-based emotion
recognition have only been rarely addressed. The authors of [29] analyzed the
effect of an AbS codec (FR GSM 06.10) on the detection of acted negative emo-
tions for voiced and unvoiced frames sampled from the emoDB database. They
noticed a decreased recognition performance in comparison to the uncompressed
samples. Also the authors of [1] used the voiced frames of all seven types of emo-
tions of emoDB. As codecs they also concentrated on AbS codecs (AMR-NB,
AMR-WB, and AMR-WB+) and could confirm the general expectation that, in
most cases, lower bitrates imply lower accuracies for emotion recognition. The
authors of [9] utilized the same database and emotion samples but with a broader
selection of AbS codecs as well as Opus. For some codecs, including Opus, an
improvement was observed for voiced segments, but for unvoiced segments always
a decreased performance was observed. In [17], all samples of emoDB were coded
using codecs of both techniques. The recognition performance of both, a state-
of-the-art automatic recognition system and human labeling as well as spectral
error and the speech intelligibility was analyzed. Again, the recognition worked
best on uncompressed samples, but there are indications that lower bitrates not
always imply lower emotion recognition performance.

3 Description of Utilized Codecs

This study focuses on the Opus codec and its three different operation modes.
For comparison purposes, a pure AbS (AMR-WB) and a pure PsyMo codec
(MP3) was used. As reference format the standard Waveform Audio File (WAV)
[12] is used. Table 2 gives an overview on the chosen codecs and selected bitrates.

Opus is an open source lossy audio codec standardized by the IETF [26]
and can be used for both speech and music signals, as it has a very short coding
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latency (default 26.5 ms) and variable bitrates in the range of 6 to 510 kbit/s. It
is a hybrid codec combined from the speech-oriented SILK and a full-bandwidth
CELT [27]. SILK is based on Linear predictive coding (LPC) with an optional
Long-Term Prediction filter to model speech signals. CELT uses, as most music
codecs, a modified discrete cosine transform. Opus uses three different operating
modes, dependent on sampling frequency, bitrate and acoustic characteristics of
the analyzed sample: SILK, hybrid and CELT. We secured that Opus uses the
desired mode by checking the range file which indicates the mode for each frame.
Only bitrates where all frames are encoded with the desired mode were used.

Adaptive Multirate Wideband (AMR-WB), described in the ITU-T
Recommendation G722.2 [14], was developed by 3GPP and ETSI for 3G systems
[14] and uses an AbS compression algorithm. Based on algebraic Code-excited
Linear Prediction on the pre-processed and down-sampled signal, the LPC para-
meters together with algebraic codebook parameters describing the excitation
are transmitted for decoding. To reconstruct the speech signal a synthesis based
on these parameters is performed. The AMR-WB codec operates with bitrates
from 6.6 to 23.85 kbit/s.

MPEG-1/MPEG-2 Audio Layer III (MP3) is a popular lossy audio
codec, developed by Fraunhofer Institute and released in 1993 [3]. MP3 uses
perceptual coding for audio compression: certain parts of the original sound
signal, considered to be beyond the auditory resolution ability, are discarded.
Afterwards, the remaining information is stored in an efficient manner using
Huffman-coding. The bitrates range from 8 to 320 kbit/s.

4 Datasets

To verify our assumption that Opus’s hybrid mode improves both speech intelli-
gibility and automatic emotion recognition performance, we used two prominent
benchmark corpora, DES and emoDB [21]. Both feature emotion categories and
comprise different languages, and sampling rates, see Table 1 and the following
database descriptions. Due to the lack of suitable emotional speech databases in
terms of having both, a sample-bandwidth above 14 kHz and a category based
annotation, we decided to use emoDB and applied an upsampling beforehand1.
Selected bitrates for each codec regarding the two datasets are given in Table 2.

The Danish Emotional Speech (DES) corpus is a studio-recorded data-
base containing perceptually selected acted emotions of Danish sentences, words
and chunks spoken by four professional actors (two female) in five emotional
states: anger, happiness, neutral, sadness, and surprise [7].

The Berlin Emotional Speech Database (emoDB) is a studio-recorded
corpus, for which ten (five female) professional actors spoke ten German sen-
tences with emotionally neutral content in seven emotion states: anger, boredom,
1 We upsampled emoDB from 16 kHz to 20 kHz. Hence, also the bitrate increased from

256 kbit/s to 320 kbit/s. This does not add missing information in the high frequency
range but forces Opus to use the hybrid mode, as this mode is only available for
super-wideband and fullband signals.
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Table 1. Differing properties of DES and emoDB. Both have fixed content with acted
emotions recorded in a studio environment.

Bitrate Sample Language Speaker # Classes # Samples

[kbit/s] rate [kHz]

DES 320 20 Danish 4 (2f) 5 419

emoDB 320 (256)1 20 (16)1 German 10 (5f) 7 494

Table 2. Selected audio codecs and used bitrates. Codecs using AbS , PsyMo or a

hybrid mode are highlighted accordingly.

Codec Bitrates [kbit/s]

MP3 16.00 20.00 24.00
AMR-WB 15.85 19.85 23.85
Opus (emoDB) 16.00 19.00 24.00
Opus (DES) 16.00 20.00 24.00

disgust, fear, joy, neutral, and sadness. The final phrases entering the corpus were
selected using a perception test [4]. To be able to use the hybrid mode of Opus,
an upsampling to 20 kHz was conducted.

5 Experimental Design

5.1 Mean Opinion Score

To measure the speech intelligibility, a POLQA with regard to the ITU-T rec-
ommendation P.863 is carried out using SwissQual’s SQuadAnalyzer. POLQA
is an objective method to predict the overall listening speech quality as per-
ceived by humans in an ITU-T P.800 Absolute Category Rating listening-only
test, [13,15] without performing these human listening tests. We decided against
human perceptions tests, as these tests are quite time consuming. We utilized
POLQA in super-wideband mode. The prediction algorithm reaches a saturation
level at a certain MOS-LQO value, which is 4.75 for super wide-band (SWB)
samples. We reported mean and standard deviation of the MOS-LQO values for
each codec and bitrate per dataset. For the interpretation of the values, given in
Table 3, we used the evaluation scheme of [18]. The author analyzed quality of
Experience Models for high-definition VoIP signals. The evaluation scheme was
obtained from a series of subjective auditory tests, enabling the derivation of a
ratio between the objective PESQ and the subjective MOS-LQO assessments.

5.2 Recognition Experiments

To analyze the automatic emotion recognition performance, we conducted state-
of-the-art experiments comparable to [17]. For feature extraction, we used the
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Table 3. Interpretation values for MOS-LQO according to [18].

Interpretation MOS-LQO

Maximum for SWB codec 4.75

Very Good 4.64

Good 4.35

Fair 3.28

Moderate 2.01

Bad 1.04

“emobase” feature set provided by openSMILE [8]. It comprises 988 features
derived from 19 functionals calculated for 54 Low-Level-Descriptor (LLDs) and
has been successfully used for various classification experiments (cf. [19,25]).
Afterwards, we normalized the values to eliminate differences between the data
samples by using standardization [31]. As recognition system, a Support Vector
Machine (SVM) with linear kernel and a cost factor of 1 was utilized with WEKA
[10]. This setup has been proven to generally achieve high recognition perfor-
mances. As validation scheme, we applied a Leave-One-Speaker-Out (LOSO)
validation. As performance measure, the Unweighted Average Recall (UAR)
was calculated for each validation step over all emotion classes available for
one speaker. Finally, the mean and standard deviation of the UAR was reported
over all speakers.

6 Results

6.1 Mean Opinion Score

In Fig. 1, it can be seen that only Opus’ AbS and hybrid mode achieves MOS-
LQO values above or near good values (>4.35). Values for Opus’s PsyMo mode
are in the upper range of the fair sector (4.05) and how an overall tendency
to decrease. This can be attributed to the low bitrate of 24 kbit/s, driving
the PsyMo modeling to its limit. For AMR-WB fair values, slightly rising
with increasing bitrates are achieved (3.71–3.80). For AMW-WB, this can be
explained by the highly optimized codec, designed to work with low bitrates.
MP3 at 16 and 20 kbits/s achieves just moderate values. But the distinct
improvement from 20 to 24 kbit/s for MP3 illustrates that MP3 is optimized for
higher bitrates. Comparing the bitrate and the speech intelligibility for AMR-
WB and MP3, a direct connection is present: higher bitrates achieve higher MOS-
LQO values. In contrast, the uncompressed samples of the databases achieve very
good (emoDB) or just marginally below very good MOS-LQO-values (∼4.64) for
DES.

The remarkable best MOS-LQO values for all bitrates are achieved by Opus.
Its AbS mode and PsyMo mode significantly outperform the corresponding intel-
ligibility results on both datasets using AMR-WB and MP3. But no significant
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Fig. 1. Mean and standard deviation of the MOS-LQO values for the different codecs,

AMR-WB ( ), MP3 ( ), and Opus ( ), with different bitrates for both
datasets. The mean MOS-LQO of the uncompressed WAV-samples is marked as hor-

izontal line ( ). The utilized compression technique is highlighted according to
Table 2.

differences between Opus’s hybrid mode and its AbS mode could be observed.
For DES, the hybrid mode of Opus outperforms the AbS mode just by 0.036,
which is within the standard deviation. For emoDB the AbS mode outperforms
the hybrid mode by 0.14. This can be caused by the upsampling of emoDB, which
influences the MOS-LQO calculation. But for both datasets, the best MOS-LQO
values of the compressed samples are still below the speech intelligibility values
of the uncompressed dataset. Our first assumption that Opus’s hybrid mode
increases the speech intelligibility can neither be approved nor disproved.

6.2 Automatic Recognition Results

The results of our multi-class emotion recognition experiments are depicted in
Fig. 2. Analyzing the recognition results per codec, it is apparent that AMR-
WB, optimized for lower bitrates, significantly outperforms MP3 for 16 and
20 kbit/s for both databases. These results reflect the calculated speech intel-
ligibility, which was also better for AMR-WB. But, comparing the recognition
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Fig. 2. Mean and standard deviation of the UAR for the different codecs, AMR-WB
( ), MP3 ( ), and Opus ( ), with different bitrates for both datasets. The

mean UAR of the uncompressed WAV-samples is marked as horizontal line ( ).
The utilized compression technique is highlighted according to Table 2.
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performance for both codecs on the two databases, remarkable differences are
apparent. For DES, the results are increasing for higher bitrates independently
of the codecs. On AMR-WB the recognition performance at 20 and 24 kbit/s is
similar to the performance for uncompressed samples (∼48.02%), whereas the
best recognition result for MP3, achieved at 24 kbit/s, is 2.5% absolute below the
uncompressed value. On emoDB, a contrary recognition behavior can be seen:
the performance of AMR-WB is decreasing from its best result similar to the
uncompressed samples at 16 kbit/s. MP3 shows a slight performance decrease
from 16 to 20 kbit/s and a distinct performance increase towards 24 kbit/s
outperforming AMR-WB. But also on emoDB, MP3’s best result is still 1.6%
absolute below the performance on the uncompressed samples.

The recognition performance of Opus outperforms the performance of AMR-
WB and MP3 for all bitrates. Although in some cases, AMR-WB with 16 kBit/s
on DES as well as AMR-WB and MP3 with 24 kbit/s on emoDB, Opus’ per-
formance is just slightly better. Furthermore, the hybrid mode achieves the best
result, which is even significantly higher than the recognition results on the
uncompressed samples. The UAR rises from 48.02% for uncompressed samples
to 51.47% for DES and from 79.61% to 82.95% for emoDB, compared to uncom-
pressed samples. Thus, our second assumption that Opus’s hybrid mode increases
the performance of speech-based emotion recognition is confirmed.

7 Conclusion and Future Work

Our hypotheses for this investigation were that Opus’s hybrid mode achieves
both, a better speech intelligibility and a better emotion recognition performance
than its AbS or PsyMo mode. We furthermore tested Opus against an AbS-only
codec (AMR-WB) and a PsyMo-only codec (MP3).

To prove our assumptions, we utilized two well-known benchmark corpora,
DES and emoDB comprising different languages and types of emotions. We con-
ducted instrumental quality assessment using POLQA as well as speech-based
emotion recognition experiments utilizing openSMILE for feature extraction and
WEKA’s SVM implementation for training and testing.

Regarding our assumption that Opus’s hybrid mode improves the speech
intelligibility, we could find an improvement regarding the PsyMo mode of Opus
for both databases, but no significant difference between the hybrid mode and the
AbS mode could be revealed. But, in comparison to AMR-WB and MP3, Opus
achieved the best MOS-LQO assessment. Thus, our assumption that the hybrid
mode improves the speech intelligibility could neither be approved nor disproved.
We assume that the upsampling, which could not be avoided due to the lack of
suitable emotional speech databases (SWB with emotional categories), influences
this analysis, and future experiments to analyze the effects of the sampling rate
have to be conducted.

In the multi-class emotion recognition experiments, we achieved a significant
performance increase (3.34%–3.45% absolute) for Opus’s hybrid mode for both
datasets, DES and emoDB. Thus, our assumption that the hybrid mode leads



Improving Speech-Based Emotion Recognition 453

to an increased recognition performance is approved. The identification of the
affective acoustic characteristics that are preserved due to the combination of
AbS and PsyMo is part of ongoing investigations.

Our findings imply that for emotion recognition, it is best to opt for the
hybrid mode of the Opus codec – if the bandwidth and bitrate can be parame-
terized to match it. In future experiments, we want to investigate which acoustic
characteristics are responsible for the significant recognition improvement and
whether this behavior can be generalized to other emotional databases with dif-
ferent types of emotions and content. Furthermore, we want to investigate, if
this can be generally applied for the “affective enhancing” of speech signals.

The open question here is how to deal with samples of lower bandwidth,
where the hybrid mode is not directly applicable.
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Abstract. Oral text is certainly discrete. It is built of “small bricks”, units of not
only lexical but also the higher syntactical level. Common syntagmatic pauses,
hesitative pauses such as physical (unfilled ones including breaks of clauses),
sound pauses (e-e, m-m), and verbal (vot, kak eto, nu, znachit etc.) are markers
of this discreetness. However, that reveals neither syntagma nor sentence as a
unit to describe a syntactic structure of an oral text. Any type of pauses may
occur in any place of an audio sequence. Thus, the search of sentences in
spontaneous speech is quite complicated. In order to obtain such units a me-
thodic of coercive punctuation that was used for marking the spontaneous
monologues from the collection of oral texts named «Balanced Annotated
Textotec» could be offered. The testee (philology experts) were asked to mark
ends of the sentences by putting a period in the transcripts where neither pauses
nor punctuation had been marked. The testee could only rely on the syntactic
structure of the text and the connection between words and predicate centers.
Involving more than twenty experts in an experiment provides more statistically
accurate results. In this work we describe the results of our experiment and
discuss further perspectives how those results can be used for automatic search
of sentence boundaries in spontaneous speech.

Keywords: Speech corpus � Spontaneous monologue � Phrase boundary �
Syntagma � Sentence � Discreetness of the oral text

1 Introduction

The oral speech has attracted acute attention of linguists of various fields and has
provided a rich data for examination, research and conclusions. But at the same time it
has appeared quite challenging to convert to the text form, to describe and to process and
annotate automatically. One of the challenges is finding units of the spoken discourse on
different levels – phonetic, morpheme, lexical, morphological and syntactical [1], par-
ticularly clause boundaries and markers. The current paper discusses means of
describing the oral monologue and introduces a methodic of coercive punctuation, that
was used for marking the spontaneous monologues from the collection of oral texts,
named “Balanced Annotated Textotec” (corpus SAT) [2, 3]. It is important to notice that
as a material for the investigation is used the spontaneous monologue, which has not
been before an object of the oral speech researchers’ attention. The majority of works
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[4–6] concentrated on a dialogue that do not raise the problem of sentence boundaries in
general, or this problem is solved simply as a sentence matches to a remark.

2 Syntactical Units of Oral Spontaneous Text

It was discovered long ago by oral discourse students that it is impossible to describe
such a text in the usual terms of sentence. Different minimal units for the analysis of
syntax have been proposed. For example, W. Chafe’s syntagma [7]; V. I. Podlesskaya
and A. A. Kibrik’s elementary discourse unit (EDU) [8]; S. V. Andreeva’s constitutive
syntactical unit (CSU) [9, 10]; N. S. Philippova’s structural syntactical unit (SSU)
[2, 11]. Although many of the approaches are valid, a full syntactical account for the
text srill requires a unit correlating with the traditional sentence, for a variety of speech
competence level (SCL) diagnostic features are based on sentence characteristics
(simple – complex, one-member – two-member, types of one-member, parenthetical
clauses, etc.) [12]. Average sentence length is a bright feature: the longer it is the higher
the SCL. The very dividedness of a text would be sociolinguistically significant [13].

Dividing spontaneous text by intonation has also given no satisfactory result,
because, as a research has found, intonational and syntactical fragmentation correlate in
less than 54% of cases [14] (the research was carried out under the author’s supervi-
sion). An endeavour to divide the text into syntagmas by instrumental and hearing
analysis has demonstrated the same 50/50 effectiveness [15]. That is why in this
investigation the search of sentence boundaries was realized not with the hearing
analysis (audio, perceptive analysis), but using the experimental punctuating.

One of the last attempts at finding a useable unit was the idea of structural
syntactical unit (SSU), which is a predicate with linked words [11] (the research was
carried out under the author’s supervision). Dividing the text into such complexes
(notional sections), unlike sentences, usually causes no difficulty. But though it’s a
good way to avoid major difficulties of syntactical division and describe the structure it
doesn’t resolve the questions that arise when we are trying to interpret some pieces of
the monologues, and that are caused by their spontaneous nature.

In order to preserve sentence as the main unit of analysis the expert punctuating
experimental method can be used, in which way the SAT corpus was annotated.

3 Methodology of Data Collection

The SAT corpus is a collection of monologues having been collected in the Saint
Petersburg State University for 25 years and known as a module of the Sound Corpus
of the Russian Language [3, 16, 17]. The SAT is collected using the method introduced
by the author (N. V. Bogdanova-Beglaryan) that implies an exact experimental pro-
cedure. The corpus was from the very beginning balanced sociologically, psycholog-
ically and linguistically.

That the corpus is linguistically balancedmeans that all themonologues fit into one of
the communicative scenarios: reading and retelling (a narrative and a non-narrative text);
description of a picture (narrative and non-narrative); free narration on a given topic.
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Sociolinguistic balance means account of the speakers’ social characteristics such
as gender, age, profession, professional or not professional attitude towards speech,
level of speech competence, etc.

Psycholinguistic balance means that psychological characteristics are taken into
account, first of all extroversion/introversion (the differentiation is based on the
G. Eysenck’s psychological test).

Presently the corpus contains monologues collected from five professional groups
(medical; law; computer, professionals; philologists, teachers of Russian as a foreign
language; and philosophy lecturers), several blocks consisting of student’s monologues
(philologists and not), and four blocks of foreigner’s interfered speech: Americans, the
Chinese, the French and the Dutch. Sum total is about 800 texts and 50 h of audio
recordings [3].

All audio recordings were transcribed, phonetically annotated (intonation and
paralinguistic data) and, partially, syntactically (experimental punctuating), as well as
provided with information about the type of communicative situation (speech scenario),
social and psychological characteristics of the speakers.

4 Expert Punctuating Method

The punctuating experiment goes as follows. The monologues are transcribed in the
orthographic form without any punctuation marks (“finding the stop” is the goal of the
experiment) or intonational division. Such “mute” texts are offered to 20 experts for
placing full stops. The testees have only the syntactical structure of the monologue,
bonds between the words and the predicates, as much as they are apparent in a material
represented this way, to rely on. Having no less than 20 philologists as testees to some
extent ensures statistical value of the result. A period put by no less than 60% of the
testees (no less than 12 out of 20 periods must coincide; one may speak about
“hard-and-fast rule zones”, if use T. M. Nikolayeva’s term [18, 19]) is considered the
true boundary between the sentences. This method has been used in spontaneous
monologue studies for a rather long time, but it’s very application that spots the many
problems of such division.

4.1 Problem Zones on Sentence Boundaries. Coordinating and Asyndetic
Connection

The most problematic (and interesting to study) are those zones of the text that were
punctuated by 10 or 11 testees (50–55% was called the “free choice zone” by
T. M. Nikolayeva [18, 19]). By the conditions of the experiment these periods are
neither recognized as boundaries nor taken into account, although it is highly possible
that the text could be divided in those places, hence they are noteworthy. For example,
it may be predicates bonded with coordinate conjunctions or without any (the number
of periods put by experts in the respective place is in the brackets; periods that occurred
less than 10 times were left unmarked):
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• vam neobhodimo otdoxnut’ (11) // sjezdite v gory / pokatajtes’ na lyzhax / u vas vs’o
projd’ot (20);

• i dejstvitel’no kogda nastroenie horoshee / vs’o ladits’a / vs’o vokrug chudesno / i
solnce svetit jarche / i pticy pojut horosho / i na dushe radostno i vs’o kazhets’a
udasts’a (11) // i dazhe te mechty kotorye kazalos’ by sovsem / nereal’ny oni
ob’azatel’no ispoln’ats’a (20).

Such constructions may be interpreted either as a unite conjunctionless complex
sentence or as a sequence of independent clauses. The choice in this case is determined
solely by the expert’s will and does not depend on the sentence structure itself (see:
[20]). The punctuating method strictly applied gives no reliable solution here.

4.2 Problematic Zones on Sentence Boundaries. Discourse Markers
Between Sentences

Another kind of difficult situations are those where the boundary is filled with
a meaningless word (discourse marker), forming a hesitation pause – vot, znachit, nu
vot, and such (hereafter we are going to call the units by the word vot for convenience).
A. A. Stepikhov called the position “a kind of a “buffer zone” between two clauses”,
equally likely to be ascribed to either the left or the right structural unit [14]. Mean-
ingful components, most often circumstantial modifiers, might happen is such zones:

• i vdrug slyshysh’ rychanie medved’a / gde-to tam vot / vot / vot / vot / vot i ne
znaesh’ / to li bezhat’ / to li hvatat’ bol’shushchij / neskol’ko belyh gribov (17);

• i on nachal katat’s’a val’at’ po polu // katat’s’a i val’at’s’a po polu // nu vot (11) nu
on znachit byl gr’aznyj / ryzhyj;

• sobirajut vsem selom // ot mala do velika / to jest’ sobirajuts’a i devushki molodye /
i uzhe zhenshchiny / kak govorit’s’a i / samye razlichnye i s kosami na golove (11) /
nu vot (4) muzhyki / m-m s… / mal’chishki / nu i zdes’ konechno i domashnie
zhyvotnye / sobaki / tozhe sdes’ priv’azannye k derevu prisutstvujut (10) // pri etom
(8) dl’a togo chtoby sobrat’s’a i chtoby eto bylo / a-a / udobnee / m-m ispol’zujut
shalashy / zaranee zagotovlennye (18);

• nashli cheloveka i pon’ali chelovek ne mog peshkom daleko-to ujti / znachit gde-to
ne tak daleko / i zhyljo (9) mozhet byt’ (7) / eto spaslo i / novos’olkovskih muzhykov.

The experts feel the boundary very well and, as a rule, place a period in it, but –
differently. Three variations can occur: a full-stop after vot (it comes to be the last in the
sentence), a full-stop before vot (it “opens” a new sentence) and two full-stops around
vot (it forms its own syntactical unit). It’s probable that a testee would choose any of
the variants, but it also might happen that none of the three possibilities is fulfilled full
12 times. In other words, an evident sentence boundary if left unmarked according to
the experimental requirements. It seems that naming the word vot the boundary
between the sentences, considering only the amount of periods around it, regardless of
where they are placed, would be a reasonable solution. Yet it will eliminate a con-
siderable amount of one-word indivisible sentences, into which class vot can be sorted
out and which are altogether peculiar to oral spontaneous speech.
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4.3 Other Problematic Zones of Spoken Text

There are other challenges to stating boundaries between sentences in a spontaneous
text – say, qualification of broken or inconsistent clauses, repeats and self-corrections
that are inherent to oral speech:

• i hoteli oni vy… / oni tol’ko znali chto on byl jarko-ryzhego cveta (12);
• nu sushchestvuet eshcho r’ad ochen’ / bolee / pro prirodu mne konechno slozhno

ochen’ / m-m ochen’ slozhnyx / primet (13) // naprimer kogda tam gorizont / chto-to
/ sluchaets’a tam / jesli oblaka / vysoko v nebe to mozhet byt’ / s….v… veter / nu
vs’o takoe (13);

• na etoj kartinke priroda v obshchem-to / ne raduet glaz men’a // potomu chto ona
kakaja-to ochen’ / temno i sumrachno v lesu // net cvetov / kotorye ja l’ubl’u (18) //
ne ochen’ zhyzneradostnaja takaja kartinka (18).

It is such difficulties of syntactical division that make students of oral speech
abandon the term “sentence”. In addition to the units mentioned above we note the term
utterance, maintained by A. A. Stepikhov. The author sees utterance as a “a speech
sequence as it was perceived by experts during linguistic (punctuating. – N. B.–B.)
experiment, that is <…> a reflection of the speech in the testees’ minds” [14], p. 11.
This approach indeed follows the tradition of oral speech studies, although it doesn’t
resolve the problems of dividing the speech into any kind of structural units.

5 Prospects of Linguistic Account on Spoken Monologue
Based on “Sentence”, Elicited with the Punctuating
Experiment

Many interesting data about the spoken monologue syntax were collected using the
expert punctuating method with the SAT material.

5.1 To What Extent an Oral Text Can Be Divided into “Sentences”

An analysis of medical worker’s texts from the SAT revealed that the very divisibility
into sentences during the experiment can be a feature of a speech competence level
(SCL) or a type of text. The higher the SCL, the more full-stops coincide and the less
the dispersion (the difference between the minimal and the maximal number of
“sentences” in a text) in the experts’ responses. In other words better divisibility
corresponds with the high SCL, and bad divisibility – with the low SCL (assuming that
difficulties with dividing a spontaneous text into “sentences” is itself a feature of
unprepared speech) (see Table 1).

The table shows that this factor has an equally strong correlation both with the
speech competence level and the type of monologue: easier division (which is the
higher number) marks not only the high SCL texts, but also retellings as the most given
text-oriented and the least spontaneous in our data (comp. the figures in bold). All
narrative monologues turned out to be marked in this matter to the same extent
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(narrative text retellings and narrative picture descriptions): they demonstrate a better
divisibility than the respective non-narrative monologues [2].

5.2 Average “Sentence” Length in Words and Text Length
in “Sentences”

Both features show a clear correlation with the speech competence level: the higher the
SCL, the longer and larger in number are the “sentences”. For instance, texts of medical
workers with the low SCL count in average 13.2 words per ‘sentence’; in text of the
high SCL it is 16.8. Also, the higher the SCL, the more extensive the monologues
(from the overall 511 ‘sentences’ in the low SCL monologues to 894 in the high) [2].

5.3 More About Syntactical Peculiarities of Oral Monologues

Another feature bonded to the SCL appeared to be syntactical construction
(“sentence”) diversity. It turned out that diversity of structure (impersonal, compound,
infinitive) and also the number of clauses in a ‘sentence’ agrees with the high SCL [2].

6 Conclusions

All said above convincingly demonstrates, on one hand, that syntactical (just as any
other, it seems) account of the oral spontaneous monologue, and, subsequently, cre-
ating a speech grammar book offers a significant challenge to scholars, but, on the other
hand, that there is a broad spectrum of possibilities to overcome the difficulties and
reach the goal. The punctuating experiment allows to find a “sentence” in the spon-
taneous monologue structure and carry out a full syntactic analysis.

Table 1. Factors contributing to difficulty of division of different types of monologues (in %)

Monologue type Speech competence
level of speakers
High SCL Low SCL

Retelling Narrative text 90,8 84,2
Non-narrative text 89,7 81,1
Total 90,2 82,6

Description Narrative picture 86,6 79,3
Non-narrative picture 84,7 72,7
Total 85,7 76,0

Free narration 77,4 74,8
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Abstract. This work is an addition to the relatively short line of
research concerning second language prosody perception. Using a promi-
nence marking experiment, the study demonstrates that Japanese learn-
ers of English can perceptually discriminate between different focus
scopes. Perceptual score profiles imply that narrowly focused words are
identified and discriminated relatively easily, while differentiation of dif-
ferent scopes of broad focus presents a greater challenge. An analysis of
a range of acoustic cues indicates that perceptual scores correlate most
strongly with F0-based features. While this result is in contradiction with
previous research results, it is shown that the divergence is attributable
to the particular acoustic characteristics of the stimulus.

Keywords: Prosody perception · Narrow versus broad focus · Japanese
learners of English · L2 acquisition

1 Introduction

The term focus generally refers to the part of the sentence that introduces novel
information to the discourse [5,7]. Although novel information can usually be
easily identified based on semantic or pragmatic context, languages often provide
extra information about the focus in the form of synthetic (e.g., word order),
morphological (e.g., particles), or prosodic cues. Breen et al. [3] demonstrated
that native speakers of English tend to mark focus prosodically, using greater
intensity, longer duration, and higher mean and maximum F0. In a range of
experiments Jennifer Cole and her colleagues discovered that prosodic promi-
nence is consistently detected in natural speech by non-trained native listeners
[4,8,10]. In co-operation with Cole, Pintér and his colleagues [12,13] revealed
that Japanese speakers of English can also detect prosodic prominence in natural
speech to a certain level, but with much less consistency than native speakers. A
research study by Yamane et al. [14] seems to contradict these findings claiming
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that focus perception of Japanese speakers closely approximates that of native
speakers of English.

As Pinter & Kihara [11] and Miziguchi et al. [9] point out, these seemingly
contradicting findings about L2 prominence perception are both maintainable,
if differences in focus types are taken into consideration. Novel information in an
utterance can range from a single word to a whole sentence (cf. thetic sentences
by Kuroda [6]). Narrow focus refers to cases when a single word receives focus;
the term broad focus encompasses cases with focus scopes being broader than
a single word (see Halliday 1967 [5]). As for prosodic marking, it is believed
that cue intensity is inversely proportional to focus scope [1,3]. The broader the
focus scopes are, the less prominent acoustic cues they carry. Since the stimuli in
Yamane’s research consisted of narrowly focused elements, they presented per-
ceptually salient, easily identifiable targets—even for foreign learners of English.
The natural utterances in experiments in the other set of experiments were, how-
ever, dominated by sentences with broad focus. The less consistent performance
of L2 listeners in this case, can be explained by the less salient acoustic marking
of broad focus types. Findings in [9,11] confirm the validity of this hypothesis.

The goal of this article is to re-analyze data presented in [11] and provide a
more thorough analysis that statistically confirms that L2 listeners are capable
of perceptually distinguishing focus types within and across categories of narrow
and broad foci. The perceptual findings are augmented with an acoustic analysis
demonstrating that prominence ratings show the greatest correlation—contrary
to previous findings—with pitch-based cues. This result, however, is believed
to be affected by the acoustically skewed stimuli, which was collected from a
single native speaker. While this interpretation prevents generalizations about
L2 prominence perception, it demonstrates aptly how acoustic characteristics of
the input can influence perceptual strategies, and calls for more careful selection
and more thorough analysis of stimuli in prosody perception studies.

2 Experiment Materials and Design

The prosody perception experiment reported in this article follows the design
outlined in Bishop (2012) [2], with some modification. The experiment was car-
ried out in August 2015, at Kobe University.

2.1 Participants

Twenty-two Japanese undergraduate students of Kobe University participated
in the experiment. Their English proficiency was not assessed for this research,
but most of them were at high-intermediate level, with the average of 641 points
at the TOEIC-IP test—out of the possible 990.

2.2 Stimuli

The audio stimuli for the experiment were extracted from controlled mini-
dialogues with a native adult female speaker of North-American English, South-
ern Californian dialect. The single question-and-answer type of dialogues were
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Table 1. Stimuli sentences with different focus scopes: s1–s4

(s1) Verb Phrase Q: What did you do yesterday?
A: I [ saw a bad film ]VP yesterday

(s2) Object Q: What did you see yesterday?
A: I saw [ a bad film ]NP yesterday

(s3) Modifier Q: What film did you see yesterday?
A: I saw a [ bad ]Adj film yesterday

(s4) Adjunct Q: When did you see a bad film?
A: I saw a bad film [ yesterday ]Adjunct.

designed in a way that the questions elicited answers with four different focus
scopes: verb phrase (s1), object noun phrase (s2), modifier (s3), and adjunct (s4)
scopes. The different focus scopes are represented by square brackets in Table 1.

The same dialogue pattern was used with 5 different sentences (see Table 2).
The recordings took place in a quiet room using a Tascam DF-5 audio recorder.
The response parts from the mini-dialogues were extracted and saved into sep-
arate audio files in 44.1 kHz, mono, PCM format. The stimuli set consisted of 4
(focus types) × 5 (sentence types) = 20 utterances.

Table 2. Stimuli sentences types

Subject Verb Modifier Object Adjunct

(a) I saw a bad film yesterday

(b) bought pink hat

(c) found large book

(d) made sweet cake

(e) learned mean trick

2.3 Experiment Design

The response parts from the mini-dialogues were printed on a sheet of paper and
handed out to participants as response sheets. The audio stimuli were presented
to them over a classroom loudspeaker in a previously fixed, randomized order.
One sentence from the stimuli set was used for practice; otherwise, each stimuli
was presented only once, with sufficient time between them to mark responses

Table 3. Sample response with prominence marks over some words

2 5

I saw a bad film yesterday
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at a slow pace. The participants were asked to mark the level of strength of the
most prominent words in the sentences on a scale of 1 to 5 (see Table 3).

The participants were encouraged to evaluate only those words that they felt
were prominent. This is a deviation from Bishop’s experiment in which all target
words had to be scored.

2.4 Results

Each sentence received at least 1, at most 4, on average 1.89 prominence scores
from each participant. There were 22 (participants) × 4 (focus conditions) × 5
(sentence types) × 5 (words per sentence) = 2200 data points collected, 62.2%
of which did not receive a score mark (see Fig. 1). Intermediate marks of 1s and
2s were relatively rare.

Fig. 1. Responses: (a) average mark per sentence; (b) score distribution

Figure 2 summarizes the responses over sentence constituents in the 4 differ-
ent focus conditions. Each sub-plot in the figure summarizes responses over all
participants and all of the 5 sentence variants. It is apparent from the figures
that narrowly focused words (i.e., s3: modifier, s4: adjunct) were perceived as
most salient. Also, these narrow focus peaks stood out more prominently from
their context than broadly focused elements in s1 and s2. The perceptual peaks
in broad focus conditions were lower and less contrastive. Interestingly, the s1
focus condition with the broadest scope elicited higher scores than the narrower
NP focus s2. A one-tailed, paired Wilcoxon test confirmed that the sentence
objects in s1 condition got higher scores than in s2 (p =< 0.01). This result is
contrary to our expectations, since utterances with wider focus scopes (here: s1)
are reported to be acoustically less prominent and consequently also expected
to be perceptually less salient.
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Fig. 2. Averaged responses per focus type: mean responses laid over boxplots

3 Analysis

The following two subsections address the two main questions of the article. First,
a statistical analysis of the perceptual data is presented. Second, the acoustic
correlates of prominence scores are investigated.

3.1 Perception of Focus Scopes

Table 4 represents p-values from pairwise, two-tailed Wilcoxon tests iterating
over each pair of focus conditions and each sentence constituent. The figures jus-
tify the preliminary observation in the previous section: narrow focus conditions
s3 and s4 are clearly different from broad focus utterances and from each other.
Differences over the narrowly focused adjunct and modifier can separate s3 and
s4 conditions from broad focus cases of s1 and s2, and from each other. Posi-
tioned between the modifier and the adjunct, objects also seem to play an impor-
tant role in differentiating narrow and broad focus types. Differences between
the two broad focus conditions (s1 and s2) are the least salient. Although dif-
ferences between s1 and s2 over sentence subjects and verbs were statistically
significant, the levels of significance (p < 0.05) are remarkably smaller than in
the cases involving narrow foci (p < 0.0001).

These observations confirm the hypothesis that Japanese speakers of English
can relatively easily identify narrowly focused words, while their perception of
different broad focus types are less reliable, but still bears statistical significance.
This finding is compatible with [9,11].
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Table 4. P -values from paired Wilcoxon tests

Subj s2 s3 s4

s1 *0.041 0.598 0.670
s2 *0.025 *0.013
s3 0.987

Verb s2 s3 s4

s1 *0.017 0.671 0.883
s2 **0.003 *0.017
s3 0.908

Mod s2 s3 s4

s1 0.125 **** ****
s2 **** ****
s3 ****

Obj s2 s3 s4

s1 0.010 **** ****
s2 **0.004 ****
s3 *0.011

Adjunct s2 s3 s4

s1 0.381 0.637 ****
s2 0.868 ****
s3 ****

3.2 Acoustic Correlates of Prosodic Focus

For each stimuli a word and phoneme level label transcription was created and
aligned manually with the audio. Acoustic measures were taken only for the
stressed vowels in the words, so measurements for article ‘a’ and the last two
syllables of ‘yesterday’ were excluded from the data set. A Praat script was used
to extract vowel timestamps, F0 and RMS measurements from the audio.

Fig. 3. Distance from overall F0 trend (F0 dist) and micro-intonation slope (F0 msl)

F0-based measurements included: F0 minimum, median, maximum values,
and a special feature (F0 dist) that was calculated by taking the median dis-
tance of vowels from the general F0 trend in the utterance (see Fig. 3). The F0
tendency was calculated as a regression line fitted against F0 values over the vow-
els. Micro-intonation slopes (F0 msl), that is local F0 trends were also calculated
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over each vowel. Amplitude measures involved mean and maximum values over
vowels. Vowel durations were z-score normalized at utterance level (dur).

Two types of correlation estimates, Kendall’s tau and Pearson’s rho, were
used to test the relation between acoustic features and perceptual scores. Kendall
correlation appears in numerous previous prosody perception studies, but Pear-
son is more robust against skewed data. As shown in Table 5, in both correlation
types F0 based features produced the strongest correlation estimates. Amplitude
came second, duration third. All of the correlations were statistically significant.

Table 5. Kendall’s and Pearson’s correlation of scores to acoustic features

Feature τ ρ

F0 dist 0.330 0.451
F0 max 0.328 0.432

OME 0.327 0.431
F0 0.322 0.430

ΔF0 dist 0.309 0.391
ΔOME 0.305 0.374

Feature τ ρ

ΔF0 0.303 0.391
Amp max 0.298 0.375

Amp mean 0.278 0.344
F0 min 0.264 0.338
F0 msl 0.207 0.262

dur 0.176 0.290

Fig. 4. Acoustic features over focused and non-focused words

Since Japanese is a pitch-accent language, it should not be surprising that F0-
based features were the strongest correlates of perceived prosodic prominence.
However, this result is in contrast with previous studies [9,12], which found vowel
duration to be the strongest correlate of prosodic prominence perception in L2.
Duration may be a reliable acoustic cue for prominence; however, there is always
a possibility that a speaker prefers other means of prosody marking. Figure 4 dis-
plays the distribution of acoustic features over stressed and unstressed words—
provided by a single speaker. It can be seen that prominence is cued most promi-
nently along dimensions of F0 and intensity. All focused words are in the upper
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right quarter of the amplitude versus F0 distance plot. The subplot on the right
shows that durational cues do not add much to the separation of focused and
non-focused elements. These results imply that the high correlation scores for
F0 based cues in perception is motivated by the acoustic characteristics of the
audio stimuli.

4 Conclusion

The purpose of this study was twofold. First, it aimed to prove that Japanese
speakers of English perceive various narrow and broad focus type utterances
differently. Re-analyzing the results of a prosody labeling experiment from [11],
this study confirmed that Japanese listeners perceive and discriminate narrow
focus types relatively easily, while being less consistent with broad focus types.

This finding not only explains the seemingly contradictory findings of previ-
ous L2 prosody research, but also implies that studies investigating focus need
to carefully consider the scope of focus they refer to.

The other goal of the study was to investigate the acoustic correlates of focus
perception. F0-based features (e.g., F0 dist, F0 max, F0) were found to correlate
the strongest with prosody scores. This result diverges from findings of previous
research, but due to limitation in the size of the audio set, the discrepancy
does not allow for far-fetching conclusions. Nevertheless, it highlights a potential
problem in perceptual studies: perceptual profiles of responses are affected by
acoustic characteristics of the stimuli. If the stimuli is acoustically skewed, the
listeners can learn these characteristics, just like adapting in perception to an
L2 dialect, and the responses eventually reflect the characteristics of the input
stimuli, and not necessarily the listeners original preferences for acoustic cues.
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Abstract. Recently, it has been demonstrated that speech recognition
systems are able to achieve human parity. While much research is done
for resource-rich languages like English, there exists a long tail of lan-
guages for which no speech recognition systems do yet exist. The major
obstacle in building systems for new languages is the lack of available
resources. In the past, several methods have been proposed to build sys-
tems in low-resource conditions by using data from additional source lan-
guages during training. While it has been shown that DNN/HMM hybrid
setups trained in low-resource conditions benefit from additional data,
we are proposing a similar technique using sequence based neural net-
work acoustic models with Connectionist Temporal Classification (CTC)
loss function. We demonstrate that setups with multilingual phone sets
benefit from the addition of Language Feature Vectors (LFVs).

Keywords: Speech recognition · Low-resource · Multilingual training ·
Connectionist temporal classification

1 Introduction

In recent years, the use of artificial neural networks (ANNs) has lead to dra-
matic improvements in the field of automatic speech recognition (ASR), lately
achieving human parity [27,42]. ANNs are being used as part of the pre-processing
pipeline, e.g., for dimensionality reduction [13], or as part of the acoustic model
in DNN/HMM hybrid systems. Latest developments include sequence based ANN
based setups with Connectionist Temporal Classification (CTC) [9] loss function.
Such systems do not require certain types of resources traditional model do, like
time-aligned labels, HMMs and cluster trees. Popular network topologies to use in
such setups are bi-directional Long-Short Term Memory (LSTM) networks [14].

While proposed back in 2006, this method has gained popularity quite
recently, due to the availability of increased computing power that enabled using
large amounts of training data. One of the main advantages of CTC based
systems over conventional speech recognition systems is that they are able to

c© Springer International Publishing AG 2017
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capture temporal dependencies by themselves. While HMM based systems use
context-dependent states to mitigate the error made by the Markov assump-
tion (the current state only depends upon the previous state), CTC based sys-
tems learn to model context implicitly by the use of Recurrent Neural Networks
(RNNs).

But CTC based models are more sensitive to the amount of available training
data. This is especially problematic if only a limited amount of data is available
during training. In this work, we are proposing a method for adding data from
additional source languages. Similar to methods proposed for DNN/HMM based
systems, we use data from multiple languages during training. To train our setup
truly multilingual, we use a global phone set combining the phone sets of all
source languages. In addition, we demonstrate that the recognition performance
can be improved by the addition of Language Feature Vectors (LFVs) [23]. By
applying this proposed method, multilingual systems outperform monolingual
systems trained on the target language only.

This paper is organized as follows: In the next Section, we provide an overview
of related work in the field. We describe our approach in Sect. 3, followed by the
description of the experimental setup in Sect. 4. Section 5 contains the results and
we conclude this paper in Sect. 6, where we also provide an outlook to future work.

2 Related Work

2.1 GMM Based Multi- and Crosslingual Systems

Prior to using neural networks as part of speech recognition systems, the use
of GMM/HMM based systems was common. The problem of training systems
multi- and crosslingually has been addressed in the past to handle data sparsity
[32,41]. Techniques for adapting the cluster tree were proposed [33], but methods
for crosslingual adaptation exist as well [36].

2.2 Multilingual DBNFs

Building DNN-based systems in low resource conditions is challenging, especially
because DNNs are a data-driven method with many parameters to be trained.
Hence, a large amount of data is required for the model to generalize. Several
methods have been proposed to use data from additional source languages. The
first step is to pre-train models unsupervised, which is language independent
[38]. For fine-tuning, several approaches exist to incorporate multilingual data.
One possibility is to share the hidden layers between languages, but use language
specific output layers [8,12,29,39]. Instead of having independent output layers,
block softmax can also be applied [11]. By partitioning the output layer or using
language specific output layers, the systems use separate phone sets for each
language instead of a global phone set. In general, training DNNs using data
from multiple languages in parallel can be considered as a form of multi-task
learning [5,22].
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2.3 Neural Network Adaptation

A common method to adapt neural networks to different speakers is the use of
i-Vectors [28] or Bottleneck Speaker Vectors (BSVs) [15]. By using such vec-
tors, speaker adaptive neural networks [21] can be built. These low dimensional
vectors encode speaker peculiarities which enable the network to adapt to dif-
ferent speaker characteristics. These methods demonstrate that neural networks
benefit from additional input modalities.

Similar to BSVs, we have shown that feature augmentation can also be used
to adapt ANNs to different languages when trained multilingually. Providing
the language identity information using one-hot encoding leads to improvements
[25], but does not provide any language characteristics to the network. Language
Feature Vectors (LFVs) [23,24] have shown to encode such language peculiarities,
even if the LFV net was not trained on the target language.

2.4 CTC Based Systems

While originally proposed in 2006 [9], CTC-based systems are becoming more
popular these days. Systems can be trained using either phones or graphemes as
labels, or jointly together [6]. Recently, a setup being trained directly on words
has been proposed [34]. The notion of multi-task learning can also be applied to
CTC-based setups [16,18,26].

3 Language Adaptive Multilingual CTC

We aimed at training our setup multilingually, opting for using phones over
characters. By merging pronunciation dictionaries from multiple languages, we
created a global phone set. While there are many approaches of training CTC
systems directly on characters and omitting the pronunciation dictionary, we
used phones as targets in this first approach because characters or groups of
characters are pronounced very differently between languages, e.g., “th” in Eng-
lish or “sch” in German. Being language independent, phones are always pro-
nounced in the same way, but eventually with a language specific twang. This
might introduce classification errors as the network might have difficulties iden-
tifying the correct phone independent of the language. Another issue might have
been language dependent phone contexts. While HMM-based systems in general
suffer in performance when using a multilingual phone set, special techniques
have been proposed to adapt the set of context-dependent states (see Sect. 2.1).
CTC-based systems potentially do not suffer as much from this problem because
all phone contexts are learned implicitly by the network. In order to compen-
sate for language dependent peculiarities, we used LFVs which have shown to
improve the performance of multilingual HMM-based systems.

We based our setup on Baidu’s Deepspeech 2 architecture [4]. The network
topology is shown in Fig. 1. The input features were first processed by 2 2D con-
volution layers. Convolutional Neural Networks (CNNs) are based on the idea
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of Time-delay Neural Networks (TDNNs) [40]. By applying 2D convolution on
the spectrogram, these 2D TDNN layers learn filters to extract features in both
the frequency and time dimension. We added LFVs to the output of the convo-
lution layers as input to the bi-directional LSTM [14] layers by appending them
to the feature vector. The output layer was a fully connected feed-forward layer
with softmax activations. In a series of experiments, we evaluated different hid-
den layer sizes and different amounts of hidden layers to determine the optimal
hyper parameter configuration.

During decoding / testing, we did not apply any advanced techniques like
WFST decoding [20] or incorporated an external language model. Instead, we
used a naive argmax decoding and computed the label error rate (LER), which
is similar to the phone error rate (PER), but also accounts for incorrect word
separations.

2D CNN /
TDNN Layer

Bi-directional LSTM Layer
Output
Layer

LFV

Fig. 1. Network layout, based on Deepspeech2 configuration. LFVs are being added
after final convolution layer

4 Experimental Setup

We based our experiments on the Euronews corpus [10]. It features TV broadcast
news recordings from 10 languages. For each language, 70 h of data is available,
as shown in Table 1. We filtered utterances being shorter than 1 s and removed
utterances with long phonetic transcripts, because the CUDA implementation
supported a maximum label length of 639 symbols1. We used only half of the
available data per language (approx. 35 h) to simulate a resource-constraint task
and set aside 10% for testing. We trained systems for both English and German,
as well as a system trained jointly on data from both languages.
1 see: https://github.com/baidu-research/warp-ctc,accessed2017-04-13.

https://github.com/baidu-research/warp-ctc, accessed 2017-04-13
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Table 1. Overview Euronews Corpus

Language Audio data # Recordings

Arabic 72.1 h 4,342

English 72.8 h 4,511

French 68.1 h 4,434

German 73.2 h 4,436

Italian 77.2 h 4,464

Polish 70.8 h 4,576

Portuguese 68.3 h 4,456

Russian 72.2 h 4,418

Spanish 70.5 h 4,231

Turkish 70.4 h 4,385

Total 715.6 h 44,253

We used MaryTTS [30] to create pronunciations for words contained in the
transcriptions. MaryTTS supports multiple languages, with each language hav-
ing their own set of symbols representing phones. While most of the symbols rep-
resent the same phones across languages, we manually mapped symbols which
did not match to ensure same phones shared the same symbol. For matching the
symbols, we used the definitions of articulatory features embedded in MaryTTS’
language definition files. This allowed us to derive a global phone set. Addi-
tionally, MaryTTS used special marks to indicate long vowels. As preliminary
experiments indicated, the network had difficulties distinguishing between short
and long instances of the same vowel. Hence, we discarded marks indicating long
vowels. The phone count after and prior to mapping is shown in Table 2. Merging
the sound inventory of both languages resulted on a set of 56 phones.

Table 2. Size of different phone sets

Language Phone set Size

English MaryTTS 42

Mapped 39

German MaryTTS 59

Mapped 48

Combined Merged 56

To extract acoustic input features, we used the Janus Recognition Toolkit
(JRTk) [3], which features the IBIS single-pass decoder [35]. We used our stan-
dard pre-processing pipeline consisting of 40 dimensional log Mel scaled coef-
ficients, as well as 14 dimensional tonal features (FFV [17] and pitch [31]).
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Adding tonal features even for non-tonal languages has shown improvements
[19]. We extracted the features using a window size of 32ms and a frame shift
of 10ms. To train the networks, we used PyTorch [1], which provided Python
bindings to Torch [7], as well as warp-ctc [2] for computing the CTC loss during
network training. The networks were trained using stochastic gradient descent
(SGD) with Nesterov momentum [37], a learning rate of 0.0003 and momentum
of 0.9. Mini-batch updates with a batch size of 20 and batch normalization were
used. Annealing was applied to the learning rate every epoch with a value of
1.1. To prevent gradients from exploding, a max norm constraint of 400 was
enforced. During the first epoch, the network was trained with utterances sorted
ascending by length.

5 Results

In this section, we first present monolingual results as baseline, followed by the
evaluation of different hyper parameter configurations. We then combine data
from multiple languages to train a multilingual system and also evaluate adding
LFVs to our setup.

5.1 Baseline

As baseline experiment, we trained monolingual systems on English and German
using 4 LSTM layers with 400 neurons each. We evaluated the mapping of phones
from MaryTTS to actual phone targets of our system. Table 3 shows the results.
Using the original phone set from MaryTTS does result in the highest LER, for
both English and German.

Table 3. Monolingual results on test set showing the label error rate (LER)

System Phone Set LER

English MaryTTS 20.4%

English Mapped 19.0%

German MaryTTS 16.0%

German Mapped 15.5%

5.2 Multilingual Experiments

Next, we trained networks multilingually and also evaluated different network
hyper parameters. While we kept the configuration of the 2 2D CNN / TDNN
layers identical, we varied the parameters of the LSTM layers. For reference,
we also included corresponding results of a monolingual system trained on Eng-
lish. As shown in Table 4, we observed gains from increasing the layer size. But
we could not increase the size of the LSTM layers beyond 1,000 neurons per
layer because of limitations in GPU memory. Adding an additional layer did not
improve the LER.
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Table 4. Multilingual results showing the label error rate (LER) for different network
configurations

LSTM layer size # LSTM layers LER ML LER EN

350 5 19.6% –

400 4 20.0% 19.0%

400 5 19.6% –

600 4 17.3% –

800 4 16.9% 17.8%

800 5 17.0% –

1000 4 16.3% 17.7%

5.3 Language Adaptive Networks

Based on the best network configuration (1,000 nodes per layers, 4 LSTM layers),
we added LFVs after the CNN / TDNN layers and evaluated the performance
of the network for both English and German, as well as multilingually. The
results are shown in Table 5. Adding LFVs lowered the LER in all cases. After
7 epochs, the gain over the baseline was bigger on English (8% rel.), compared
to German (6% rel.). Training the nets for 70 epochs results in a slight decrease
in performance multilingual over monolingual.

Table 5. Multilingual results showing the label error rate (LER)

System Monolingual Multilingual LFV LER (7 ep.) LER (70 ep.)

English x – – 17.7% 13.1%

– x – 18.7% 14.8%

– x x 16.4% 13.5%

German x – – 14.6% 10.8%

– x – 14.0% 11.8%

– x x 13.8% 11.0%

Combined – x – 16.3% 12.9%

– x x 15.7% 12.4%

6 Conclusion

We have presented a method for training CTC based speech recognition sys-
tems multilingually. By using LFVs in addition to acoustic input features, we
could improve the recognition performance of our multilingual systems. Future
work includes the evaluation of additional language combinations and different
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mixtures of training data. We also intent to use additional adaptation methods
like i-Vectors to adapt the networks to different speakers, as well as to further
optimize the network architecture and the training process.
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Abstract. This paper presents the results obtained using several variants of
trigram language models in a large vocabulary continuous speech recognition
(LVCSR) system for the Serbian language, based on the deep neural network
(DNN) framework implemented within the Kaldi speech recognition toolkit.
This training approach allows parallelization using several threads on either
multiple GPUs or multiple CPUs, and provides a natural-gradient modification
to the stochastic gradient descent (SGD) optimization method. Acoustic models
are trained over a fixed number of training epochs with parameter averaging in
the end. This paper discusses recognition using different language models
trained with Kneser-Ney or Good-Turing smoothing methods, as well as several
pruning parameter values. The results on a test set containing more than 120000
words and different utterance types are explored and compared to the referent
results with GMM-HMM speaker-adapted models for the same speech database.
Online and offline recognition results are compared to each other as well.
Finally, the effect of additional discriminative training using a language model
prior to the DNN stage is explored.

Keywords: Deep neural networks � Kaldi � Serbian � Language modeling �
MMI

1 Introduction

Several architectures have been examined for speech recognition on large vocabularies
for Serbian in the last years. The newer ones were all based on the widely used open
source Kaldi toolkit. Acoustic model training for Serbian involves a few specifics –

specially designed phone topologies and context dependency questions for regression
tree creation for HMM state tying, input feature selection, model and tree complexity,
training type and more.

Some of the previously designed systems are described in [1] and [2]. They are
trained on a smaller speech database consisting of telephone recordings (with poorer
spectral content) of specific type, such as personal advertisements and similar.
Therefore, they are more fit for usage on smaller vocabularies – such as ones they were
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tested on (around 14000 words). In this paper, a larger speech database with more
variability is utilized to train a much more robust system.

Kaldi recipes allow for different types of pre-DNN training stages to provide good
input alignments for DNNs. These include context-dependent triphone GMM-HMM
model training, speaker adaptive training (SAT) [3], maximum mutual information
(MMI) discriminative training [4], minimum phone error (MPE) discriminative training
[5], and many more. Several DNN training procedures exist as well, like the one
described in [2], based on stacked restricted Boltzman machines and the cross-entropy
classification criterion, or the one in this paper, based on modified SGD optimization
and parameter averaging. Like already mentioned, these procedures require an input
GMM-HMM framework and per-frame alignments. There are other types of DNN
training, but those are not the topic of this paper. Here, the optimal language model for
the given procedure is chosen, based on several parameters.

In the following section, the used LVCSR speech database for Serbian is described
in more detail. Section 3 explains language modeling, parameters and their optimiza-
tion. Section 4 describes the performed training and experimental setups for different
language models, while in the next section the results are presented and discussed.
Finally, the last section is about conclusions and future research directions.

2 Speech Database for LVCSR for Serbian

Two different speech databases for Serbian were used for training and testing of DNN
acoustic models. The first and larger one is a part of the database described in detail in
[6]. It consists of audio books in Serbian, mostly read by professional speakers in
studio environment, as well as several other freely available audio books. The quality
of speech data is generally high, with only a small amount of background noises and a
very high percentage of correctly pronounced words and phones. All the materials were
manually reviewed during preparation, before any training. This part of the database
accounts for around 154 h of data, out of which approximately 129 h is pure speech,
and the rest (25 h) is made of silence segments. The data is divided into more than
87000 separate utterances, which are quite long – with around 15 words each on
average. There are 21 identified male speakers and 27 identified female speakers, as
well as 10–15 different unidentified speakers (in total, overlaps are possible). The
narrative functional style naturally dominates here.

The second part of the database consists of more domain-oriented utterances
recorded on mobile phones. These are mostly shorter sentences (around 4–5 words on
average), and include various utterance types such as commands (for tasks on the
mobile device), questions, spellings, numbers, proper nouns (names, cities, etc.), as
well as regular declarative sentences. This set makes up around 61 h of total audio
material, out of which 42 h is speech, and 19 h is silence. It has 170 male and 181
female speakers. Each one of them recorded a set of all mentioned utterance types.
There are around 74000 utterances in this set. Recording quality is usually good, but
certain speakers had a significant amount of background noise as well.

Both database parts are sampled at 16 kHz, 16 bits per sample, mono PCM. The
described composition of the speech database is chosen so that acoustic models can be
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well trained on both regular, carefully pronounced utterances (like in audio books) and
more spontaneous and more specific, domain-based speech (like in the so-called mobile
database). They were tested on both of these types of speech.

Around 10% of the diverse audio book set was extracted randomly to create the test
set (5 male speakers, 4 female speakers, 15 h, 9000 utterances, 140000 words), as well
as around 5% of the more-uniform mobile database (3 h, 8 male speakers, 9 female
speakers, 4000 utterances, 20000 words).

3 Language Modeling

Language modeling is, alongside acoustic modeling, the other very important part of
automatic speech recognition (ASR), especially on larger vocabularies. For experi-
ments presented in this paper, all language models (LMs) were trained on a Serbian
textual corpus consisting of the training transcriptions – which by themselves contain
around 1.5 million words, out of which just about 121000 different ones – supple-
mented by a part of the Serbian journalistic textual corpus for better estimation of
probabilities. This part accounted for around 60% of the LM-training database, and
included around 442000 additional sentences mostly from newspaper articles and
similar sources, but used in such a way that it did not supply additional words, so all the
final LMs still consist of around 121000 words (this may have affected the number of
bigrams and trigrams taken into account, but we did not want to raise the vocabulary
size higher than it already was). All language models are trigram-based and created
using the SRILM toolkit [7]. What was varied was the smoothing method, as well as
pruning. For smoothing, either the Kneser-Ney method [8] was used, or the
Good-Turing method [9]. As for pruning, the pruning parameter value was chosen
between 10−6, 10−7 or no pruning. The test set was not included in LM training to
simulate real situations, where a speaker may utter something that the system does not
support, no matter the given situation or domain of interest. The pronunciation dic-
tionary contained all the used words, of course, with possible multiple pronunciations
for each word. Total number of unigrams, bigrams and trigrams for mentioned LMs are
shown in Table 1, and respective perplexity values on the used test set in Table 2.

Table 1. Number of certain entries in used language models

Pruning 10−6 Pruning 10−7 No pruning

Unigrams Bigrams Trigrams Unigrams Bigrams Trigrams Unigrams Bigrams Trigrams
121 k 205 k 63 k 121 k 1.3 M 358 k 121 k 2.3 M 843 k

Table 2. Perplexity of used language models on the test set

Pruning 10−6 Pruning 10−7 No pruning

Kneser-Ney Good-Turing Kneser-Ney Good-Turing Kneser-Ney Good-Turing
1124.2 1226.4 768.8 1080.2 – 1043.8
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4 Training and Experimental Setup

Several trainings and tests were performed. All the DNN trainings were run on a single
GPU (NVIDIA Tesla K40C). Up to the DNN stage, one training variant directly
performed fMLLR speaker adaptive training on top of triphones (obtained by the
so-called “tri2a” stage), and the other one first performed boosted maximum mutual
information (bMMI) [10] based discriminative training on top of triphones (to provide
even better input alignments for SAT), then SAT, and finally bMMI again on top of
SAT to produce final alignments. The language model used for the extra discriminative
training stages was either an unigram LM with probabilities calculated using the
training set transcriptions, or the trigram LM which was also used for decoding.

The following DNN training itself was performed using the “nnet2” Kaldi recipe
originally developed by Dan Povey [11], over 8 epochs, with 6 hidden layers and an
architecture for efficient modeling of long temporal contexts [12], while keeping most of
other parameters at their default values (see more in depth training description in ref-
erenced papers). Finally, for decoding, for each given LM, 4 variants were performed –

online decoding with i-vectors (per speaker, i.e., with carrying information forward from
previous utterances of the same speaker), online decoding per utterance, (without car-
rying forward speaker information), offline decoding (per speaker, but computing
i-vectors when all available speaker data is acquired), and offline decoding per utterance
(looking to the end of each utterance while computing i-vectors).

As mentioned before, to find the optimal LM configuration, the smoothing method
and the pruning parameter value were varied. The following tests were performed –

LM with Kneser-Ney smoothing with pruning parameter 10−6 versus pruning param-
eter 10−7, and LM with Good-Turing smoothing with pruning parameter 10−7 versus
no pruning at all. These tests were mutually compared to determine the optimal LM
configuration out of the ones we had at hand. Afterwards, the optimal LM was used for
the training variant with added bMMI steps. All the results are presented below.

5 Results and Discussion

First, let us mention the baseline results (GMM-HMM SAT system). Considering the
previously described training variants, there are 3 results here – without additional
discriminative training, with additional bMMI training based on a unigram LM, and
same based on the optimal trigram LM, after it has been chosen (this test was obviously
performed last). These results are shown in Fig. 1. As seen there, pure tri-
phone (GMM-HMM) models give a word error rate (WER) of 27.13%, SAT without
bMMI improves that to 21.82%, and SAT after bMMI to a slightly better 21.48%
(trigram LM) or 21.6% (unigram LM). Final pre-DNN models – which are estimated
using bMMI after SAT – lower the WER down to 18.45% (unigram LM) or 19.2%
(trigram LM). The error rate here flips, as unigrams give better results than trigrams,
most likely because the unigram probabilities were tied directly to the training set, and
no additional corpus. Also, these results are with fMLLR transformations calculated per
each utterance instead of per speaker (because those are consistently better).
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Now let us take a look at DNN decoding results with language models using
Kneser-Ney smoothing. The more strict pruning value of 10−6 results in a WER of
13.99% for offline decoding per utterance. Meanwhile, offline decoding per speaker
gives a slightly worse WER of 14.48%, while online decoding gives 14.22% per
speaker, and 14.56% per utterance. The last result can be called WER for true online
decoding, as it simulates a real interaction (speaker utters one sentence at a time, e.g.
using a microphone). This result is important for ASR systems in practice, as most of
the time online decoding is required to satisfy the recognition speed requirements (as it
is helpful to start the recognition before the speaker completed the utterance). However,
the best result is 13.99% and it will be used for further comparison – other results tend
to follow a similar pattern anyway. Results with the more relaxed pruning parameter
10−7 are the following: the best result 12.36% for offline decoding per utterance and
12.88% per speaker, while online decoding results in WER of 12.62% per speaker, and
12.91% per utterance. All the results for LMs with Kneser-Ney smoothing are given in
Fig. 2. The stricter pruning parameter seems to be a bit too strict, as the more relaxed
one provides significantly better results (12% relative improvement).

For Good-Turing smoothing tests, pruning parameter value of 10−7 was compared
to no pruning at all. Results are also given within Fig. 2, and they are as follows. With
pruning, WER of 13.59% is obtained for offline per-utterance decoding. Other results
are slightly worse, similarly like in Kneser-Ney tests. On the other hand, no pruning
produces WER of 13.33% as the best result. Therefore, no pruning gives just slightly
better results, but at the cost of using more disk space (about twice as much just for the
so-called “grammar FST”, or “G FST”), a bit more time and disk space for decoding
preparation (mostly “HCLG FST” graph creation and storing), as well as slightly

Fig. 1. WER results for pre-DNN training stages
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slower decoding. Even though better results were obtained without pruning (naturally),
a small pruning value also proves to be quite fair, especially if mentioned benefits are
taken into account.

Out of the tested LMs, the one with Kneser-Ney smoothing with a small pruning
parameter is the best, so it was chosen for the last training with an extra bMMI stage.
But first, a similar training with an on-the-fly created unigram LM based on training
transcriptions was performed, and the best result (offline per utterance) is 12.01%. For
completeness sake, the other results are: 12.48% (offline per speaker), 12.18% (online
per speaker) and 12.61% (true online). Therefore, an approximately 3% relative
improvement is obtained.

Finally, for the SAT+bMMI+DNN training with the optimal chosen trigram LM,
no further improvement was obtained. More precisely, the best WER was 12.04%.
Others were also very close and mostly just a bit worse compared to the same training
with unigram LM. It does not seem to be necessary to use the more complicated LM for
MMI training. The bMMI stage, both with unigram LM and trigram LM, takes a lot of
additional time, but only once during training, so it is still justified to use it for the
additional improvement. All mentioned results can be seen in Fig. 3.

In Figs. 4 and 5 the best configuration is analysed in more detail. Besides WER, the
character error rate (CER) is shown, as well as a breakdown for genders and test
database parts (audio books and mobile set). The CER value is especially interesting,
because Serbian is a highly inflective language, meaning that small changes in words
are used to express different grammatical categories, like tense, case, number and
gender.

Fig. 2. WER results for DNN with different LMs (KN – Kneser-Ney, GT – Good-Turing; 1e-6,
1e-7, 0 – pruning parameter values)
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The really low obtained value for CER – 3.11%, especially on such a vocabulary as
the given one (over 120000 words), means that the trained acoustic models are actually
really good, and assuming the usage of this training configuration (including phone
topology, etc.), it means that better suited LMs are probably the path to further
improvement of accuracies for more specific tasks, as most errors are on only 1–2
characters of the whole word (e.g. the wrong case or tense was recognized). Other
numerous word errors include splitting one word into two or more parts – here, all
characters are recognized well, yet the word error is counted (even more than once).
Another proposed ASR system estimation metric for highly inflective languages is
inflectional WER (IWER) which assignes a lower-than-one weight to “weak” substi-
tutions, where the lemma of the recognized word-form is correct [13]. Using a weight
of 0.5, best IWER of 10.76% is obtained, with a lot of other small recognition errors
still persisting. Looking at different test sets, the larger set – audio books – holds the
most errors (13.54% WER, 3.45% CER), which is expected, as those sentences are
long and not task-specific (basically very random), which generally makes them harder
to be consistently recognized well. On the other hand, errors on the mobile test set are
very rare – the WER of 1.05% is more than excellent, and CER of 0.44% is even better.
This database is task-oriented, with a lot of repeating phrases, but it still includes a lot
of variability, and the results are just another proof of the quality of trained acoustic
models. As for gender, results on the female parts of the test database are a lot better on
audio books, and a bit better on the mobile set, but that is due to random selection of
the test set – for audio books, male utterances happened to be longer and more
problematic (more background noise and speech artifacts in selected speakers).

Fig. 3. Effects of additional bMMI training before DNN on WER results
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Finally, in Table 3 a list of several words that were substituted, inserted and deleted
the most is given. It can be seen again that the main problems are very short words that
occur often in Serbian (related to insertion and deletion) and the high language
inflectivity (related to substitution).

Fig. 4. WER results breakdown for test database types and genders

Fig. 5. CER results breakdown for test database types and genders
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6 Conclusion

In this paper, a DNN-based LVCSR system for Serbian in described, and an optimal
language model is chosen based on several configuration parameters. It was shown that
a LM trained with Kneser-Ney smoothing and a small pruning value works very well
for a vocabulary of over 120000 words. Discriminative training step with on-the-fly
created unigram-based LM can be added to regular SAT training to provide better input
alignments for the DNN training stage, which leads to further improvements in final
WER. Results on a more specific task-oriented database are excellent, but for more
general purposes a better suited LM can be used (trained on a different type of textual
corpus), even though the results are already good. Further research will include training
on more specific models of certain phones, i.e., creation of different models for different
variations of pitch, accent, duration and other phone-related features in Serbian for
vowels, as well as inclusion of different language models, such as class n-grams, which
might amplify the good acoustic modeling with better language modeling as well, by
preventing recognition errors like seen in these experiments (e.g. wrong case). Taking
wider contexts into consideration during feature extraction will be tested as well.
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Table 3. Lists of most substituted, inserted and deleted words during recognition

#Substitutions (From ! To) #Insertions #Deletions

je ! i
i ! je
je ! koje
bilo ! bila
koja ! koje
joj ! je
koje ! koji
sa ! se
koju ! koji
su ! se
ili ! i
Nina ! na
samo ! sam
revolucija ! revolucije

i
na
u
je
da
ni
sa
mu
od
ne
po
a
s
ih

je
i
u
a
da
on
na
o
ona
se
joj
me
su
pa
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Abstract. The article analyzes the social network discourse (SND) with ele-
ments of speech aggression actualized by communicants, whose emotional state
is caused by various deprivation factors. The analysis of 398 statements from
men and women revealed the frequency use of these statements the stylistic
modality of which relates to the aggressive type, while actualizing topics in the
speech communication associated with facts of social-cognitive deprivation. The
dominant type of speech activity in the analyzed SNDs is an aggressive speech
response of the SND-communicant (SND-addressee) to the speech provocation
of another communicant (SND-sender). Previously it was revealed that, as a
rule, a major role is played by the gender factor: compared to women, men feel
more at ease in using statements of the aggressive type, both for speech
provocation and for aggressive speech response.

Keywords: Quasi-spontaneous written speech � Aggressive speech provocation �
Aggressive speech response � Russian language � Social-cognitive deprivation �
Gender

1 Introduction

Traditionally, the concept of “deprivation” refers to the area of study of macro-level
social processes (see, e.g. [1, 4, 7, 9, 14, 26, 28]): biologists consider deprivation as a
factor of disorganization and adaptation of a living organism; economists are interested
in finding a deprivation threshold that enables to keep society on the level of sus-
tainable development; sociologists focus on deprivation factors that promote social
changes and protest movements; political scientists are interested in the effect of
deprivation on political processes, etc. In this work, we rely on Gurr’s concept, in
which, by analyzing the social and psychological acts of destructiveness that encourage
individuals to political violence, the author develops the concept of “relative depri-
vation” [8]. According to this concept, relative deprivation is felt by an individual as a
result of perception and is characterized by a divergence between value expectations
and value capabilities of the perceiving subject (individual, group, mass). “Value
expectations are goods and living conditions, which, as people believe, they can
rightfully claim. Value capabilities are goods and conditions that people, in their
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opinion, could achieve and hold” [8]. Relative deprivation (RD) is the judgment that
one or one’s group is worse off compared to some standard accompanied by feelings of
anger and resentment [27]. The above mentioned concept was first developed in respect
to the speech activity in “dialogue – polylogue format” in general and in social network
discourse on the informational and communicational network of the Internet, in par-
ticular, by R.K. Potapova [17]1.

The negative effects of deprivation are described in various studies. For example,
the effects of living under long-term bombardment in Israel revealed that “students
from a low socioeconomic status (SES) and girls presented more negative symptoms
than high SES students and boys, while concomitantly exhibiting greater posttraumatic
growth” [29]. Many authors investigate negative outcomes correlated with deprivation
experienced in childhood. Galán Ch.A. et al. mention, that “efforts to identify and test
mediating mechanisms by which neighborhood deprivation confers increased risk for
behavioral problems have predominantly focused on peer relationships and
community-level social processes. Less attention has been dedicated to potential
cognitive mediators of this relationship, such as aggressive response generation, which
refers to the tendency to generate aggressive solutions to ambiguous social stimuli with
negative outcomes” [5]. Cummings E.M. and colleagues are sure, that “politically-
motivated community violence has distinctive effects on children’s externalizing and
internalizing problems through the mechanism of increasing children’s emotional
insecurity about community” [2]. Other authors indicate that “social capital deprivation
in the form of peer pressure and verbal victimization and anti-social capital deprivation
in the form of delinquent friends, bullying perpetration, verbal perpetration, and
physical perpetration are significantly associated with an increased likelihood of
engaging in negative bystander behavior” [3]. The studies clearly indicate that one of
the possible forms of response to various conditions of deprivation in real life is
aggression including speech aggression [6, 10–13, 15, 16, 19, 25].

The deprivation being the object of study in linguistics, traditionally includes
sensory (visual, auditory, tactile) and emotional types of deprivation. At the same time,
“social and cognitive types of deprivation associated with the external factors of the
social environment and society in the whole, playing an important role in the devel-
opment of a full-fledged individual, as well as conditioning the periods of social unrest,
economic crises and revolutionary changes are often not covered” [12].

While in the case of short-term effects of deprivation factors there are constructive
ways to respond to external stimuli, the long-term deprivation leads to such negative
consequences as feelings of anxiety, undue fear, depression and associated cognitive
disorders, as well as existential problems of personality, acceptance of illegitimate
patterns of behavior. Thus, long-term inability to cope with the difficulties (frustration)
and deprivation leads to a decrease in the total activity of an individual and the
formation of a negative view on the world – the attitude that surrounding reality is a
priori hostile [10]. Another way of coping with emotional and psychological stress
caused by deprivation is immersion into a virtual reality.

1 See the concept details in [15, 16, 18].
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2 Method and Procedure

The purpose of this study is to determine the features of the destructive speech behavior
of the message sender, whose speech production is affected by deprivation fac-
tors (external information blockade of the country, domestic policy coup d’etat, eco-
nomic crisis, general social instability) and provokes emotional and psychological
stress and “infects” other communication participants (Russian-speaking users of the
social network “VKontakte”) with aggressive attitudes.

The analyzed speech material, Internet-communication of social network
users (polylogues, topics of which are included in the semantic field “aggression”)
should be considered within the social network discourse concept (by R.K. Potapova).
According to this concept, social network discourse (SND) is a “special electronic
macropolylogue considered as the result of a combination of spoken and written versions
of a particular language” [18]. In [15–19] the following characteristics distinguishing
social network discourse were revealed: irreversibility; situationality; dynamics; viola-
tion of social relationships hierarchy (democratism/pseudodemocratism); combinatorics
of monochronosity and polychronicity due to the high speed (tempo) of information
dissemination; combinatorics of statements of low context and high context cultures
representatives; increased interpersonal space; topics diversity; casual conditionality;
manipulation of the recipient’s consciousness; emotional-modal saturation [15–19].

The studied SND-polylogues were selected for analysis by continuous sampling
from the author database2 “Russian-language agressogen discourse of social networks
(including specific annotation parameters)©” [23]. The topic of these SNDs was the
discussion of political and geopolitical events.

The SND-participants (the total number of statements3 n = 398) were 103 males
and 31 females. In those SNDs the participants communicated in Russian, very rarely
using remarks in other languages. Changing the language code was caused probably by
the participant’s (communicant’s) desire to dramatically change the discussion subtopic,
to draw attention to their statements and clearly divide the group into “us” and “them”.

In creating the speech profile of each SND-communicants the following indicators
of his/her speech activity were considered: the total number of statements of all
SND-communicants; the total number of statements of each SND-communicant; the
number of statements of each SND-communicant, which served as a speech provo-
cation for an aggressive speech response from other communicant(s); stylistic modality
of provoking statements; the number of statements implementing an aggressive speech
response of other SND-communicants to provocative statement of each SND-
communicant; the number of statements of each SND-communicant implementing
an aggressive speech response of this particular SND-communicant to provoking
statements of other communicants; stylistic modality of statements in aggressive speech
responses.

2 More on the principles of database on semantic field “aggression” formation and development of
annotated corpuses on this subject, see in [20–22, 24].

3 One statement equals to one publication of a particular SND-communicant.
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The provoking statements and the statements in form of aggressive speech
responses included in the analysis represented semantic component within the semantic
field “aggression”. The SND-communicant’s gender also was taken into account. The
speech activity of each individual communicant in the social network discourse is
evidenced by the ratio of their statements to the total number of statements from all
SND-communicants. The speech profile of SND-communicant was formed on the base
of semantic indicators of general speech activity of each communicant, their
provocative speech activity, their responsive aggressive speech activity, the ratio of
provoking and responsive aggressive speech activities of this particular communicant,
and the indicator of speech aggression for each SND-communicant.

3 Results and Discussion

Communicants identifying themselves from the position of the Russian linguaculture
tended to a more open position in the analyzed SNDs, they formulated their opinions
more confidently and in a more civil manner as compared to the representatives of other
linguacultures. This can be explained primarily by the fact that the social network
“VKontakte” is a Russian resource that gives its participants the right to identify
themselves with the “host party”.

Tables 1, 2, 3 and 4 and Fig. 1 show the results obtained during the analysis of
SND-communicants’ speech activity from a gender perspective.

The analyzed SND-content can be described as an aggressive type of communi-
cation: the sum of the statements provoking speech aggression and the statements in the
form of aggressive speech responses in the structure of the analyzed SNDs comes to
49.5% (Table 1). The dominant type of aggressive speech activity in the analyzed
SNDs is aggressive speech responses to speech provocation from another communicant
(36.4%).

Despite the fact that the number of female communicants is considerably less than
the number of male communicants (Table 2), women in the analyzed SNDs are more
active regarding their speech activity (3.65). The index of their speech activity exceeds
the speech activity index of male communicants (2.77), which affects the increase in
the index of the total group (2.97).

From Table 3 it can be seen that within the aggressive speech activity of the
SND-communicants, a group of provocative statements and a group of aggressive

Table 1. Quantitative indicators of the analyzed SNDs (in %)

Analyzed
statements,
total

Statements with positive and
neutral semantic content

Statements of aggressive type

49.5 of these
Statements provoking
speech aggression

Aggressive
speech
responses

100 50.5 13.1 36.4
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speech responses can be distinguished. Both for men (75.5%) and women (69.8%) the
main type of the aggressive speech activity is aggressive speech responses.

Any statement in the social network discourse is implicitly addressed to all com-
municants. Because of this publicity it is not always possible to determine exactly to
whom the specific sender directs a provocative statement, but it is possible to keep
track of the communicants who respond to the speech provocation in different forms
including the form of speech aggression.

According to the preliminary findings (Table 4), in the analyzed SNDs women tend
to speech activity provoking speech aggression (0.30) more than men; while compared
to women, men are tend more to speech provocations and are more likely to respond to
provocations in the form of speech aggression (0.48). According to the index of speech
aggression in the analyzed SNDs women (0.74) can be ranged in a group of more
proagressive communicants in comparison with men (0.73), although the differences in
these indices are negligible.

The index of aggressive stimuli triggered (the ratio of the normalized number of
statements provoking speech aggression and the normalized number of statements in
the form of aggressive speech responses to this speech provocation) for the analyzed

Table 2. Speech activity of SND-communicants from a gender perspective

Number of
communicants

Number of
communicants’
statements

Speech activity index of
SND-communicants

Total 134 398 2.97
Males 103 285 2.77
Females 31 113 3.65

Table 3. Aggressive speech activity of the SND-communicants from a gender perspective
(in %)

Provoking
statements

Aggressive speech
responses

Statements of aggressive
type

Total 26.4 73.6 100
Males 24.5 75.5 100
Females 30.2 69.8 100

Table 4. Profile of the SND-communicants’ speech aggressiveness from a gender perspective

Index of
provoking
speech activity

Index of responsive
aggressive speech
activity

Index of
speech
aggression

Index of
aggressive
stimuli triggered

Midpoint 0.26 0.46 0.72 1.06
Males 0.24 0.48 0.73 1.12
Females 0.30 0.43 0.74 0.88
Difference
(M–F)

0.06 (23%) 0.05 (10.9%) 0.01 (1.4%) 0.24 (22.6%)
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SNDs is 1.06, that means that there is one aggressive speech response per one
provocative statement in average. In the analyzed SNDs men’s provoking state-
ments (1.12) are more productive (have more feedbacks in form of aggressive speech
responses) compared to provoking statements made by women (0.88). The consistency
and reliability of the obtained data is planned to be tested for larger samples.

The responsive aggressive speech is more likely to be aimed at the “provocateur” of
the same gender as the sender (Fig. 1): men are more likely to manifest speech
aggression in response to speech provocation from male communicants; and women,
respectively to speech provocation from female communicants.

The qualitative analysis of the SND semantics allowed classification of aggressive
statements regarding their negative modal stylistic coloring (Figs. 2 and 3).

The analysis of the statements in the SNDs revealed that the most frequent state-
ments with negative stylistic modality provoking aggressive speech responses are the
statements expressing and perceived by the communicants as some form of accusation,
insult, causticity4 (Fig. 2). As compared to women men use more diverse stylistically
negatively charged statements. The range of women’s statements provoking speech
aggression, unlike men’s ones, misses statements perceived as mockery. In men’s
speech there are no statements perceived as provocative questions and negations. There
is no menace and sneering in the statements provoking aggressive speech response.

The analysis of the aggressive speech responses revealed that the most frequent
statements of responsive speech aggression with negative stylistic modality are those
expressing and perceived by communicants as an insult, causticity and accusa-
tion (Fig. 3). As compared to men, women implement responsive speech aggression
even less diversely, also in women’s speech there are no statements in response to

Fig. 1. Correlation between provocative speech activity and responsive aggressive speech
activity of communicants in the analyzed SNDs from a gender perspective

4 See details in [10].
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speech provocations that are perceived as a mockery, flipping off, sneering and neg-
ative forecast. There is no name calling, depreciation, provocative questioning in the
analyzed aggressive speech responses.

When comparing statements of various negative modalities of the provocative type
and aggressive speech responses (Figs. 2 and 3) it was revealed that in the analyzed
SNDs menace and sneering do not belong to provocative statements, and name calling,
communicant depreciation and provocative questions do not belong to aggressive
speech responses.

Fig. 2. Stylistic modality of statements provoking aggressive speech responses

Fig. 3. Stylistic modality of statements expressing aggressive speech responses
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4 Conclusions

On the basis of data obtained in the course of the study it can be concluded that in the
process of speech communication among the indicators of social and cognitive
deprivation in written speech of individuals, whose actual life situation is determined
by long-term multi-factor deprivation (deprivation in social, economic, political, cog-
nitive, emotional and psychological aspects of life) [17] there are frequently used
statements transmitting a negative stylistically marked attitude of defamatory content
towards the addressee (recipient), while actualizing topics associated with deprivation.

As compared to female communicants, male communicants feel more at ease to use
statements of negative modality both for speech provocations and for aggressive speech
responses. This tendency manifests itself in the range of statements with negative
stylistic modality, and in the frequency of their actualization in the communication
process. However, for female communicants of the analyzed SNDs higher provocative
speech activity is typical. It should be noted that for provoking speech aggression and
aggressive speech responses men and women use similar types of statements with
negative stylistic modalities. Statements most frequently used in SNDs are those
expressing and perceived as insult, accusation and causticity.

5 Prospects of Investigation

Further development of the research is deemed in the study of the correlation, on the
one hand, of the deprivation factor and, on the other hand, the speech behavior of an
aggressive type in social network discourses involving representatives of various lin-
guacultures and societies, as well as the subsequent comparison of the research results
regarding the gender and age factors.
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typology of verbal and paraverbal determinants of emotional and modal behavior of commu-
nicants in conditions of multi-factor deprivation (with respect to electronic media sources, social
networks and Internet telephony Skype)” at Moscow State Linguistic University.

References

1. Canache, D.: Looking out my back door: the neighborhood context and perceptions of
relative deprivation. Polit. Res. Q. 49(3), 547–583 (1996)

2. Cummings, E.M., Merrilees, Ch.E., Schermerhorn, A.C., Goeke-Morey, M.C., Ed Cairns, P.
Sh.: Longitudinal pathways between political violence and child adjustment: the role of
emotional security about the community in Northern Ireland. J. Abnorm. Child Psychol. 39(2),
213–224 (2011). doi:10.1007/s10802-010-9457-3

3. Evans, C.B.R., Smokowski, P.R.: Negative bystander behavior in bullying dynamics:
assessing the impact of social capital deprivation and anti-social capital. Child Psychiatry
Hum. Dev. 47, 1–16 (2016). doi:10.1007/s10578-016-0657-0

500 R. Potapova and L. Komalova

http://dx.doi.org/10.1007/s10802-010-9457-3
http://dx.doi.org/10.1007/s10578-016-0657-0


4. Field, T.: Violence and touch deprivation in adolescents. Adolescence 31(148), 735–749
(2002)

5. Galán, Ch.A., Shaw, D.S., Dishion, Th.J., Wilson, M.N.: Neighborhood deprivation during
early childhood and conduct problems in middle childhood: Mediation by aggressive
response generation. J. Abnorm. Child Psychol., 1–12 (2016) doi:10.1007/s10802-016-
0209-x

6. Gordeev, D.: Detecting state of aggression in sentences using CNN. In: Ronzhin, A.,
Potapova, R., Németh, G. (eds.) SPECOM 2016. LNCS, vol. 9811, pp. 240–245. Springer,
Cham (2016). doi:10.1007/978-3-319-43958-7_28

7. Grant, P.R., Brown, R.: From ethnocentrism to collective protest: responses to relative
deprivation and threats to social identity. Soc. Psychol. Q. 58(3), 195–237 (1995)

8. Gurr, T.R.: Why men rebel. Piter, Saint-Petersburg (2005). (in Russian)
9. Heldt, B.: Domestic politics, absolute deprivation, and use of armed force in interstate

territorial disputes, 1950-1990. J. Conflict Resolut. 43(4), 451–478 (1999)
10. Komalova, L.R.: Aggressogen Discourse: The Multilingual Aggression Verbalization

Typology. Sputnik+, Moscow (2017). (in Russian)
11. Komalova, L.R.: Interpersonal communication: From conflict to consensus. INION RAS,

Moscow (2016). (in Russian)
12. Komalova, L.R.: Verbalization of aggression as a fruit of social-cognitive deprivation.

J. Psycholinguistics 4(30), 103–115 (2016). http://iling-ran.ru/library/voprosy/30.pdf. (in
Russian)

13. Komalova, L.R.: Verbalization of aggression in speech communication of social network
users. In: 4th Conference-School Language Issues: Young Scientists’ Perspective, pp. 115–
126. Kanzler, Moscow (2016). http://iling-ran.ru/library/sborniki/problemy_jazyka_4.pdf.
(in Russian)

14. Pereira, M., Negrão, M., Soares, I., Mesman, J.: Predicting harsh discipline in at-risk mothers:
the moderating effect of socioeconomic deprivation severity. J. Child Fam. Stud. 24(3),
725–733 (2015)

15. Potapova, R.K.: Deprivation as basic a mechanism of verbal and paraverbal behavior of a
human being (on basics of social network communication). In: Speech communication in
information space, pp. 17–36. Lenand, Moscow (2017). (in Russian)

16. Potapova, R.: From deprivation to aggression: verbal and non-verbal social network
communication. In: VIth International Scientific Conference “Global Science and Innova-
tion”, Chicago, pp. 129–137 (2015)

17. Potapova, R.K.: Scientific research project “Basic research of the typology of verbal and
paraverbal determinants of emotional and modal behavior of communicants in conditions of
multi-factor deprivation (with respect to electronic media sources, social networks and
Internet telephony Skype)”, grant № 14-18-01059, Moscow (2014-2016). (in Russian)

18. Potapova, R.K.: Social network discourse as the object of interdisciplinary research. In: 2nd
International Scientific Conference “Discourse as the Social Activity: Priorities and
Perspectives”, Rema, Moscow, pp. 20–22 (2014). (in Russian)

19. Potapova, R.K. (ed.): Speech Communication in Information Space. Lenand, Moscow
(2017). (in Russian)

20. Potapova, R.K., Komalova, L.R.: Database of Russian texts containing items of the semantic
field “aggression”. Vestnik of Moscow State Linguistic University 19(705), 112–121 (2014).
http://www.vestnik-mslu.ru/Vest-2014/Vest-19z.pdf. (in Russian)

21. Potapova, R., Komalova, L.: Lingua-cognitive survey of the semantic field “aggression” in
multicultural communication: typed text. In: Železný, M., Habernal, I., Ronzhin, A. (eds.)
SPECOM 2013. LNCS(LNAI), vol. 8113, pp. 227–232. Springer, Cham (2013). doi:10.
1007/978-3-319-01931-4_30

Lexico-Semantical Indices of “Deprivation – Aggression” Modality Correlation 501

http://dx.doi.org/10.1007/s10802-016-0209-x
http://dx.doi.org/10.1007/s10802-016-0209-x
http://dx.doi.org/10.1007/978-3-319-43958-7_28
http://iling-ran.ru/library/voprosy/30.pdf
http://iling-ran.ru/library/sborniki/problemy_jazyka_4.pdf
http://www.vestnik-mslu.ru/Vest-2014/Vest-19z.pdf
http://dx.doi.org/10.1007/978-3-319-01931-4_30
http://dx.doi.org/10.1007/978-3-319-01931-4_30


22. Potapova, R., Komalova, L.: On principles of annotated databases of the semantic field
“aggression”. In: Ronzhin, A., Potapova, R., Delic, V. (eds.) SPECOM 2014. LNCS(LNAI),
vol. 8773, pp. 322–328. Springer, Cham (2014). doi:10.1007/978-3-319-11581-8_40

23. Potapova, R.K., Komalova, L.R.: Russian aggressive-gen discourse of social network (with
the special parameters of annotation©. Database, 28 Mb., 277 000 word forms, 208
polylogues (2015). (in Russian)

24. Potapova, R.K., Komalova, L.R.: Verbal structure of communicative act of aggression:
thematic explanatory dictionary, edn. 1. INION RAS, Moscow (2015). (in Russian)

25. Potapova, R., Potapov, V.: Auditory and visual recognition of emotional behaviour of
foreign language subjects (by native and non-native speakers). In: Železný, M., Habernal, I.,
Ronzhin, A. (eds.) SPECOM 2013. LNCS(LNAI), vol. 8113, pp. 62–69. Springer, Cham
(2013). doi:10.1007/978-3-319-01931-4_9

26. Sen, Ja., Pal, D.P.: Changes in relative deprivation and social well-being. Int. J. Soc. Econ.
40(6), 528–536 (2013)

27. Smith, H.J., Pettigrew, Th.F.: Advances in relative deprivation theory and research. Soc.
Justice Res. 28(1), 1–6 (2015) doi:10.1007/s11211-014-0231-5

28. van den Bos, K., van Veldhuizen, T.S., Au, Al.K.S.: Counter cross-cultural priming and
relative deprivation: the role of individualism-collectivism. Soc. Justice Res. 28(1), 52–75
(2015)

29. Yablon, Ya.B., Pagorek-Eshel, Ha.I.Sh.: Positive and negative effects of long-term
bombardment among Israeli adolescents: the role of gender and social environment. Child
Adolesc. Soc. Work J. 28(3), 189–202 (2011) doi:10.1007/s10560-011-0227-z

502 R. Potapova and L. Komalova

http://dx.doi.org/10.1007/978-3-319-11581-8_40
http://dx.doi.org/10.1007/978-3-319-01931-4_9
http://dx.doi.org/10.1007/s11211-014-0231-5
http://dx.doi.org/10.1007/s10560-011-0227-z


Linguistic Features and Sociolinguistic
Variability in Everyday Spoken Russian

Natalia Bogdanova-Beglarian, Tatiana Sherstinova(&),
Olga Blinova, and Gregory Martynenko

Saint Petersburg State University,
11 Universitetskaya nab., St. Petersburg 199034, Russia
{n.bogdanova,t.sherstinova,o.blinova,

g.martynenko}@spbu.ru

Abstract. The paper reviews the results of the project aimed at describing
everyday Russian language and analyzing the special characteristics of its usage
by different social groups. The presented study was made on the material of
125,000 words annotated subcorpus of the ORD corpus, which contains speech
fragments of 256 people representing different gender, age, professional and
status groups. The linguistic features from different linguistic levels, which
could be considered as diagnostic for different social groups, have been ana-
lyzed. It turned out that in terms of sociolinguistic variability all features under
investigation may be divided into three categories: (1) the diagnostic features,
which display statistically significant differences between certain social groups;
(2) the linguistic features, which could be considered as common for all soci-
olects and referring to some permanent, universal properties of everyday lan-
guage; and (3) the potentially diagnostic features, which have shown some
quantitative difference between the considered groups, but the extent of this
difference does not allow to regard them as statistically significant at the
moment. The last group of features is the most extensive and requires additional
studies on a larger amount of speech data.

Keywords: Russian speech corpus � Everyday speech � Sociolinguistics �
Social groups � Multilevel linguistic analysis � Diagnostic features � Phonetics �
Vocabulary � Morphology � Syntax

1 Introduction

The paper reviews the results of the project aimed at describing everyday Russian
language and analyzing the special characteristics of its usage by different social
groups. Speech of the major social groups of modern Russian city (age-, gender-,
professional-related etc.) was analyzed on phonetic, lexical, morphological and syn-
tactic levels in regard to social information about the speakers [1].

The research data were taken from the most representative Russian everyday speech
corpus known as “One Day of Speech” (the ORD corpus), collected by using the
long-term speech monitoring method. This implies that everything a volunteer-respondent
says through the day is saved on a recorder that is literally hanging on his/her neck [2].
The first recordings were made in Saint Petersburg in 2007.
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In the framework of the project referred to here, the significant extension of the
ORD corpus was achieved (as compared to data as at early 2014) [3]. Nowadays the
corpus contains more than 1250 h of audio recordings, collected from 128 respondents
and more than 1000 of their interlocutors, representing different social groups (soci-
olects) of the modern Russian city. The recordings relate to 2800 macroepisodes of
speech communication [4]. Text transcripts are made for about 15% of audio files, and
there are 1M words in transcripts.

Earlier, several preliminary sociolinguistic studies were conducted on the ORD data
(see, for example [5–7]. In this paper, we will describe the results of the research made
on the material of 125,000 words annotated subcorpus of the ORD corpus.

2 The Research Methodology

First of all, let us introduce the list of sociolects, which are recognized in the ORD
database.

2.1 The Social Groups Under Investigation

Sociological data on the respondents recorded for the corpus are taken from the
Sociological questionnaire for the volunteers and their main interlocutors [3]. Only a
part of these data was involved in the current research, in which the linguistic features
of the following 20 social groups were investigated [1]:

I. Gender groups:
1 MUZ – men;
2 ZEN – women.
II. Age groups:
3 A1 – youth group (18–30 years old);
4 A2 – middle-aged group (31–54 years old);
5 A3 – senior group (55 + years old).
III. Status Groups:
6 UCH – students;
7 SPEC – employees and specialists;
8 RUK – executive employees or senior officials;
9 BUS – businessmen and private entrepreneurs;

10 NOR – non-working or retired people.
IV. Professional groups:
11 RAB – blue-collar workers;
12 ENG – engineers;
13 SIL – men of arms and other power forces;
14 EST – representatives of natural sciences;
15 HUM – representatives of the humanities;
16 OBR – workers of education;
17 CO – representatives of the service sector;
18 IT – IT specialists and programmers;
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19 OF – office employees;
20 TVOR – creative professionals.

Obviously, each respondent (or interlocutor) can be referred to one category from
the 1st or 2nd group, and to no less than one category from the 3rd and the 4th groups.

2.2 The Annotated Subcorpus of 100 Macroepisodes

An exploratory subcorpus, consisting of 100 communicative macroepisodes, and
containing speech of 100 respondents, who are representatives of the above-mentioned
20 social groups, was compiled. Besides speech of 100 respondents balanced from
sociolinguistic point of view, the subcorpus contains additionally that of their 156
interlocutors. It is necessary to recognize that it was impossible to balance interlocutors
sociologically, and hence this has resulted in some disproportion between the number
of people representing certain social groups. This is particularly noticeable in relation
to professional and status groups, which – being consisted of a larger number of
subgroups than gender or age groups – are inevitably represented in the subcorpus by
fewer respondents.

The absolute majority of macroepisodes in the annotated subcorpus refer to private,
non-working settings. It was made intentionally to facilitate comparison between
sociolects and individual respondents. We tried to select macroepisodes of about the
same duration, however, the number of words for each sociolect that finally was found
in the subcorpus differs (and sometimes to a considerable degree) (see Table 1). Total
amount of words in the research subcorpus equals to 125,437 words.

Table 1. The number of words for different social groups in the subcorpus

N I. Gender groups: Words N IV. Professional groups: Words
1* MUZ (men) 47,135 11 RAB (blue-collar workers) 3,516
2* ZEN (women) 78,302 12 ENG (engineers) 8,987

II. Age groups: 13 SIL (men of arms) 7,067
3* A1 (youth group) 46,328 14 EST (natural sciences) 9,552
4* A2 (middle-aged) 51,431 15* HUM (humanities) 14,465
5* A3 (seniors) 23,475 16* OBR (education) 12,512

A0 (kids) 4,203 17* CO (service sector) 18,744
III. Status Groups: 18 IT (IT specialists) 4,048

6* UCH (students) 13,689 19* OF (office employees) 15,161
7* SPEC (specialists) 68,960 20 TVOR (creative professionals) 6,940
8 RUK (executive employees) 5,958
9 BUS (businessmen) 10,531
10 NOR (non-working) 7,635 In total 125,437
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Since for each parameter under study, referring to different linguistic levels, dif-
ferent sample sizes are required in order to obtain reliable results, it was necessary to
find a compromise that would satisfy most of these parameters. In this research, a
threshold value of 10,000 words was chosen as the minimum sample size. From this
point of view, not all social groups are presented in the subcorpus in sufficient numbers.
Here, we consider that only sociolects marked in Table 1 by asterisks have enough data
for reliable conclusions.

Table 1 shows that the compiled subcorpus is sufficient enough for studying gender
and age variation. Besides speech of adults, some amount of children’s speech was
provided by kids-interlocutors, though its research was not initially planned. As regards
status and professional variation, only some of these groups have enough data and
therefore substantial grounds for quantitative analysis. Thus, the largest number of
words in subcorpus is provided by the group of employees and specialists. The sets of
words exceeding 10,000 was also obtained by the student group, as well as by four
professional groups (listed in decreasing order): (1) representatives of the service
sector; (2) office employees; (3) representatives of the humanities; and (4) workers of
education.

Probably, the prone to “wordiness” may be also considered as a factor distin-
guishing different social groups. Thus, it was already noticed that men in general speak
less than women (see, in particular, [8]). Our data shows that seniors speak less than
young and middle-aged people, and some professional groups of people (e.g.,
blue-collar workers, IT specialists, soldiers, policemen, and even creative profession-
als) on the average speak less than people from other professional groups. However,
this hypothesis should be tested on the larger volumes of spoken data.

2.3 Linguistic Annotation of the Subcorpus

The annotation of the exploratory subcorpus on different linguistic levels has been
carried out. The annotation of speech material has been made on the phonetic, lexical,
morphological and syntactic levels in the following aspects (linguistic features) [7]:

On phonetic level: (1) the distribution of phonemes; (2) the distribution of allophones;
(3) speech rate; (4) intonation characteristics (the dynamics of pitch frequency); (5) the
usage of reduced forms.

On lexical level: (1) functional activity of lexical units, which was obtained from the
frequency word lists; (2) stylistically marked words, professional words, slang words,
neologisms, individual derivational forms, etc.; (3) the index of lexical diversity (the
lexical richness); (4) pragmatic markers and pragmatemes.

On morphological level: (1) the distribution of parts of speech; (2) occasional
grammatical forms; (3) agrammatical and deviant forms, the phenomenon of a lan-
guage game; (4) “complicated” forms and pragmatically marked forms.

On syntactic level: (1) linear structures of verb phrases; (2) the amount of the left- and
right-branching verb phrases; (3) nonprojective syntactic structures; (4) linear struc-
tures of noun phrases; (5) cases of parcellation, ellipsis, incomplete utterances, and
self-correction.
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As it was already mentioned, the volume of the annotated speech subcorpus has
125,437 words on lexical and morphological levels. There are 13,200 structures
annotated on syntactic level, and 172,000 allophones were analyzed on phonetic level.

The frequency of each linguistic feature was measured for subcorpus in general and
for the individual social groups, and the comparison of sociolects was made by means
of the standard statistical criteria (Student’s t-test, Chi-squared test, etc.).

3 Linguistic Features and Sociolinguistic Variability

It turned out that in terms of sociolinguistic variability all analyzed linguistic features
fall into three following categories: (1) the diagnostic features, which Display Statis-
tically Significant Differences between Certain social groups; (2) the linguistic features,
which could be considered as common for all sociolects and referring to some per-
manent, universal properties of everyday language; and (3) the potentially diagnostic
features, which have shown some quantitative difference between the considered
groups, but the extent of this difference does not allow to regard them as statistically
significant at the moment.

3.1 Diagnostic Features, which Display Statistically Significant
Differences between Certain Social Groups

There is a limited number of diagnostic features which have shown statistically sig-
nificant differences between social groups under consideration. Most of these features
were already described in earlier papers by both Russian and Western scientists, see
e.g. [9–13]. In particular, they are the following:

The diagnostic features on phonetic level are rather predictable:

• speech rate is diagnostic for different age groups (the average speech rate slows
down with age) [5];

• average pitch frequency usually distinguishes male and female voices (135 Hz
(SD = 43 Hz) vs. 228 Hz (SD = 60 Hz) on the average).

On lexical level, the diagnostic features seen in our data are as follows:

• the use of neologisms tends to decrease with age;
• obscene language is much more common for male speech than for the female one

[8]. The use of lexical hedges and intensifiers is different in male and female speech;
• the use of professional words in everyday conversations is much more common for

speech of natural-science specialties compared to that of specialists in humanities.

No significant diagnostic features were revealed on morphological and syntactic
levels in the framework of this project. Probably, it may mean that from grammatical
point of view spoken Russian is homogeneous, despite its spontaneity and its seem-
ingly irregularities. However, the potentially diagnostic features (see below Sect. 3.3)
should be taken into account and further investigated.
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3.2 Universal Features, which Seem to Be Common for All Social Groups

The project revealed the set of linguistic parameters in respect of which all sociolects
behave roughly the same. It looks like that these parameters reflect some permanent,
universal properties of everyday Russian. They are the following:

On phonetic level:

• the distributions of high frequency allophones and phonemes are similar for all
sociolects. In speech of all social groups, the phonemes /a/ (18%), /i/ (9%), /t/ (6%),
/o/ (5%), /u/ (4%), /n/ (4%), /j/ (3,8%), /e/ (3,6%), and /k/ (3,4%), are the most
frequent. These results are the same with those obtained from the ORD data earlier
[7]. As for allophones, the most frequent sounds for all social groups are the
following: stressed [a0] (6,7%), [t] (6%), stressed [o0] (5,4%), 1st pre-stressed [a1]
(5,3%), post-stressed [a4] (4.4%), and [n] (4,4%).

On lexical level:

• high frequency of discourse markers and other fillers is observed in private con-
versations of all social groups. For example, “nu” (2,84%), “vot” (2,13%), etc.

On morphological level:

• the distribution of parts of speech seems to be rather universal for spoken Russian as
a whole. Here, the most frequent are verbs (17%), nouns (15%), personal pronouns
(14%), particles including discourse markers (13%), and conjunctions (9%). The
similar distribution is observed in speech of all social groups.

On syntactic level:

• the most frequent syntactic structures of utterances are the simpliest ones for all
sociolects. They are the following: (1) D – an isolated discourse marker (3–4%),
(2) {D} – a group of discourse markers (2%), (3) V – a verb (appr. 1,9%), (4) S – a
noun (appr. 2%), and 5) SV – noun + verb (1%).

• left-branching verb phrases prevail in spoken Russian [14].

3.3 The Potentially Diagnostic Features

The majority of the investigated linguistic features fall into the category of “potentially
diagnostic parameters”, because they have shown some quantitative difference between
the considered groups, but the extent of this difference does not allow to regard them as
statistically significant at the moment. This is the most extensive group of linguistic
features. They are, inter alia, the following:

• the use of reduced forms;
• the use of pragmatic markers/pragmatemes [15];
• other lexical features of professional and status groups [1];
• the percentage of grammatical mistakes;
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• the use of a language game;
• the syntactic irregularities of speech [1].

With regard to these parameters, it is necessary to conduct additional studies on a
larger amount of speech data. Intrapersonal variation should be also taken into con-
sideration [16].

4 Conclusion

In the presented research, the linguistic features were analyzed at different linguistic
levels, which could be considered as diagnostic for different social groups. They are the
following: (1) the distribution of phonemes; (2) the distribution of allophones; (3) speech
rate; (4) the dynamics of pitch frequency; (5) the usage of reduced forms; (6) functional
activity of lexical units; (7) stylistically marked words, professional words, slang words,
neologisms, individual derivational forms, etc.; (8) lexical diversity; (9) pragmatic
markers and pragmatemes; (10) the distribution of parts of speech; (11) occasional
grammatical forms; agrammatical and deviant forms, the phenomenon of a language
game; (12) “complicated” forms and pragmatically marked forms; (13) linear structures
of verb phrases; (14) the amount of the left- and right-branching verb phrases;
(15) nonprojective syntactic structures; (16) linear structures of noun phrases; and
(17) cases of parcellation, ellipsis, incomplete utterances, and self-correction.

It turned out that in terms of sociolinguistic variability these linguistic features may
be divided into three categories: (1) the diagnostic features, which display statistically
significant differences between certain social groups (in particular, speech rate, average
speech frequency, obscene language, the use of neologisms, professional words, etc.);
(2) the linguistic features, which could be considered as common for all sociolects and
referring to some permanent, universal properties of everyday language (the distribu-
tions of frequent allophones and phonemes; the distribution of parts of speech; the high
share of discourse markers; the prevailing of left-branching verb phrases; etc.); and
(3) the potentially diagnostic features, which have shown some quantitative difference
between the considered groups, but the extent of this difference does not allow to
regard them as statistically significant at the moment (in particular, the use of reduced
forms, pragmatic markers/pragmatemes, the percentage of grammatical mistakes, the
syntactic irregularities of speech, etc.). The last group of features is the most extensive
and requires additional studies on a larger amount of speech data.

However, the research revealed that in many aspects (primarily prosodic, lexical
and syntactic) the variability of colloquial language is very high, including that inside
sociolects. This factor significantly increases the data volume requirements. Therefore,
for making a statistically reliable conclusion on social variation of language and
proving the developed hypotheses it is necessary to study a more representational
amount of spoken material.

Furthermore, it is necessary to study how previously unconsidered sociological
factors (such as education, social background, place of birth and history of residence, etc.)
influence everyday speech. It is also important to estimate the influence that the psy-
chological constitution brings on the entropy of speech characteristics in social groups.
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Another major conclusion is that a speaker’s language characteristics can signifi-
cantly change in different communicative settings. The most significant factors in this
aspect are the social role in a scenario (the same person may play various roles in
different scenarios: for example, son/daughter, parent, friend, colleague, superior/
subordinate) and social integrity of interlocutors (cf. men’s vs. women’s talk). These
factors are also need to be examined.

Acknowledgements. The presented research was supported by the Russian Science Foundation,
project No. 14–18–02070 “Everyday Russian Language in Different Social Groups”.

References

1. Bogdanova-Beglarjan, N.V., Sherstinova, T.J., Baeva, E.M., Blinova, O.V., Martynenko,
G.J., Ermolova, O.B., Ryko, A.I.: Russian everyday language in different social groups.
Commun. Stud. 2(8), 81–92 (2016)

2. Asinovsky, A., Bogdanova, N., Rusakova, M., Ryko, A., Stepanova, S., Sherstinova, T.:
The ORD speech corpus of Russian everyday communication “One Speaker’s Day”:
creation principles and annotation. In: Matoušek, V., Mautner, P. (eds.) TSD 2009. LNCS,
vol. 5729, pp. 250–257. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04208-9_36

3. Bogdanova-Beglarian, N., Sherstinova, T., Blinova, O., Ermolova, O., Baeva, E.,
Martynenko, G., Ryko, A.: Sociolinguistic extension of the ORD corpus of Russian
everyday speech. In: Ronzhin, A., Potapova, R., Németh, G. (eds.) SPECOM 2016. LNCS,
vol. 9811, pp. 659–666. Springer, Cham (2016). doi:10.1007/978-3-319-43958-7_80

4. Sherstinova, T.: Macro episodes of Russian everyday oral communication: towards pragmatic
annotation of the ORD speech corpus. In: Ronzhin, A., Potapova, R., Fakotakis, N. (eds.)
17th International Conference on Speech and Computer, SPECOM-2015, Athens, Greece,
20–24 September 2015, Proceedings, pp. 268–276 (2015)

5. Stepanova, S.: Speech rate as reflection of speaker’s social characteristics. In: Thielemann, N.,
Kosta, P. (eds.), Approaches to Slavic Interaction. Dialogue Studies, 20, pp. 117–129. John
Benjamins Publishing Company, Amsterdam/Philadelphia (2013)

6. Bogdanova-Beglarian, N., Martynenko, G., Sherstinova, T.: The “One Day of Speech”
corpus: phonetic and syntactic studies of everyday spoken Russian. In: Ronzhin, A.,
Potapova, R., Fakotakis, N. (eds.) SPECOM 2015. LNCS, vol. 9319, pp. 429–437. Springer,
Cham (2015). doi:10.1007/978-3-319-23132-7_53

7. Bogdanova-Beglarian, N., Sherstinova, T., Blinova, O., Martynenko, G.: An exploratory
study on sociolinguistic variation of Russian everyday speech. In: Ronzhin, A.,
Potapova, R., Németh, G. (eds.) SPECOM 2016. LNCS, vol. 9811, pp. 100–107. Springer,
Cham (2016). doi:10.1007/978-3-319-43958-7_11

8. Sherstinova, T.: The most frequent words in everyday spoken Russian (in the gender
dimension and depending on communication settings). Komp'juternaja Lingvistika i
Intellektual'nye Tehnologii, Proc. of the Int. Scient. Conference “Dialogue”, 15(22), 616–
631 (2016)

9. Kendall, T.: Speech Rate, Pause and Sociolinguistic Variation. Studies in Corpus
Sociophonetics. Palgrave Macmillan UK, Basingstoke (2013)

10. Cheshire, J.: Sex and gender in variationist research. In: Chambers, J.K., Trudgill, P.,
Schilling-Estes, N. (Ed.). The Handbook of Language Variation and Change. Blackwell,
Malden, Oxford (2004)

510 N. Bogdanova-Beglarian et al.

http://dx.doi.org/10.1007/978-3-642-04208-9_36
http://dx.doi.org/10.1007/978-3-319-43958-7_80
http://dx.doi.org/10.1007/978-3-319-23132-7_53
http://dx.doi.org/10.1007/978-3-319-43958-7_11


11. Krysin, L.P., (ed.): Modern Russian: actual processes at the turn of the XX–XXI centuries.
Languages of Slavic Cultures (2008)

12. Eckert, P., Rickford, J.R. (eds.): Style and Sociolinguistic Variation, vol. 14(2), pp. 302–304.
Cambridge University Press, Cambridge (2004)

13. Holmes, J., Meyerhoff, M. (eds.): The Handbook of Language and Gender. Blackwell,
Oxford (2003)

14. Martynenko, G.: Syntax of live spontaneous speech: the symmetry of linear orders. In:
Zakharov, V.P., Mitrofanova, O.A., Khokhlova, M.V. (eds.) Proceedings of the International
Conference “Corpus linguistics-2015”, pp. 371–378 (2015)

15. Bogdanova-Beglarian, N.V.: Pragmatic items functions in Russian everyday speech of
different social groups. Perm University Herald. Russian Foreign Philol. 2(34), 38–49 (2016)

16. Potapova, R.K., Potapov, V.V.: Language, Speech, Personality. Languages of Slavic
Cultures (2006). (In Russian)

Linguistic Features and Sociolinguistic Variability 511



Medical Speech Recognition:
Reaching Parity with Humans

Erik Edwards, Wael Salloum, Greg P. Finley, James Fone, Greg Cardiff,
Mark Miller, and David Suendermann-Oeft(B)

EMR.AI Inc., San Francisco, CA, USA
david@emr.ai

http://emr.ai

Abstract. We present a speech recognition system for the medical
domain whose architecture is based on a state-of-the-art stack trained
on over 270 h of medical speech data and 30 million tokens of text from
clinical episodes. Despite the acoustic challenges and linguistic complex-
ity of the domain, we were able to reduce the system’s word error rate
to below 16% in a realistic clinical use case. To further benchmark our
system, we determined the human word error rate on a corpus covering
a wide variety of speakers, working with multiple medical transcription-
ists, and found that our speech recognition system performs on a par
with humans.

Keywords: Medical speech recognition ·Human word error rate · Parity

1 Introduction

There are several unique challenges in medical-domain automatic speech recogni-
tion (ASR). Acoustically, there is often significant background noise during med-
ical dictations, for example, ranging from sirens to office noises to competing talk-
ers and background conversations. This is a challenge not only because of the
lower signal-to-noise ratio, but also because of the diversity of acoustic environ-
ments and noise sources which may affect a given recording. This is different than,
say, a system designed to work with car noise or other known noise sources. Sec-
ond, a large number of microphones and dictation devices are used, e.g. Dicta-
phone, SpeechMike, Digital Voice Recorders, or regular telephone handsets, many
of which use special lossy codecs of varying sound quality. Also, the speakers do
not maintain any consistent distance or orientation to the microphone, such that
even a single utterance can vary widely in quality and absolute volume.

Speech in medical dictations differs from normal (conversational) speech in
several ways, although the presence and magnitude of these differences varies
from one recording to another. Thus, dictations are often spoken very rapidly,
but other files are found with slower speech and lengthy hesitations. Many voiced
hesitations are also present, as are repeated words and restarted sentences. Sen-
tences often lack clear juncture, boundaries, or formatting commands. Even item-
ized lists are sometimes spoken in rapid succession that is unrevealing of bound-
aries. One often gets the impression that the speech is spoken without a sense
c© Springer International Publishing AG 2017
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of a human listener, or even the intention of being understood, but rather only
for required cataloging purposes. On the other hand, some dictations are spoken
with excellent quality by certain physicians or their professional assistants.

Finally, and perhaps most importantly, is the challenge of highly complex,
domain-specific medical terminology, including thousands of drug names. This
presents a significant out-of-vocabulary challenge and is perhaps why most exist-
ing medical ASR work has only taken on a single domain (usually radiology).

Although medical-domain ASR has been reported in some form since the
1980s [1–3], all work prior to 1999 used single-word as opposed to continuous
ASR, with a single early exception for German [4]. Early works on continuous
medical ASR [5–7] immediately recognized the importance of including med-
ical domain-specific terminology in the statistical language model. However, the
physicians (usually radiologists) were themselves enlisted to provide manual cor-
rections to update the ASR lexicon. Only gradually in the 21st century have a
handful of studies begun to use non-physician transcriptions for language model
training. Most reports come from the single domain of radiology (e.g. [8,9]),
although a smaller number of restricted-domain systems have been reported
elsewhere (dermatology: [10]; temporomandibular disorder: [11]). We are devel-
oping language model methodology that scales to larger volumes of data from
multiple subspecialties.

We found 45 studies since 1999 that assess the quality of medical ASR, e.g.
those covered in reviews by Hodgson et al. [12] and Hammana et al. [13]. Among
the few publications on speech recognition on medical corpora reporting results
in terms of Word Error Rate (WER) is the work by [14,15] on clinical ques-
tion answering. The latter focuses on spontaneously spoken medical questions
and reports 29.3% for the SRI Decipher system and 37.3% for Nuance Dragon,
Medical version. Both systems were adapted to the specific study domain by
language model adaptation. Nuance Dragon also underwent profile training to
enhance performance. Luu et al. [16] covers nursing handover and reports a
WER of 24.6%. Paats et al. [17] and Alumäe [18] both cover radiology reports
in Estonian and report WERs of 18.4% and 13.7%, respectively.

We found ten studies since 1999 that compare ASR quality with human
transcription (HT) in healthcare. All 10 report more errors with ASR than HT,
often substantially more [12,19–21]. Where categorized, serious errors were also
greater with ASR than HT. For example du Toit et al. [22] report 9.6% of ASR’d
and 2.3% of HT’d charts having ‘clinically significant’ errors, and Basma et al.
[23] conclude that ‘major’ errors were 8 times more likely with ASR than HT.

We report here on our current progress in developing a medical ASR system
whose initial version was discussed in [24]. As indicated in the abstract, our sys-
tem approaches human WER in the medical transcription domain covered by
the corpus described in Sect. 2. Details on how we determined human transcrip-
tion performance on this corpus are provided in Sect. 3. Reaching performance
parity in this work was not due to novelty in one particular part of the ASR
methodology, but rather to the accumulation of advances in all stages of the ASR
training and decoding. Therefore, this paper presents an overview of our system
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with commentary on each of the stages in Sect. 4. Results are being discussed in
Sect. 5 followed by conclusion and future outlook in Sect. 6.

2 Corpus of Medical Dictation

The studies described in this paper were carried out using a massive collection
of English dictated out-patient reports covering a variety of different medical
specializations. To perform the experiments whose details are provided in the
sections following, three different types of corpora were required:

– The first corpus, (M1), contains both audio recordings and textual transcrip-
tions of a small number of prototypical speakers covering the whole spectrum
of difficulty levels of clinical dictation. We selected a total of nine speakers
reaching from excellent, almost professional speakers dictating in clean office
conditions, providing grammatically accurate sentences and punctuation com-
mands, all the way to ones who dictated in an extreme rush, mumbling with
no natural pauses, flat intonation, and extreme background noise and rever-
beration.

– The second corpus, (M2), features a random sample of audio and transcrip-
tions of over 200 speakers in a hospital network representing the natural
distribution of users in an operational scenario.

– The third corpus, (M30), consists of dictations of over 30 thousand outpatient
letters used to build the language model for the clinical speech recognizer.

Detailed statistics of these corpora are provided in Table 1.

Table 1. Corpus statistics

M1 M2 M30

Train Episodes 1 818 4 574 33 684

Speakers 9 233

Duration/h 67 204

Tokens 620 926 1 629 469 29 846 087

Types 9 872 20 203 68 369

Singletons 3 451 (35%) 5 968 (30%) 15 613 (23%)

Test Episodes 30 88 500

Speakers 6 60

Duration/h 1.0 3.7

Tokens 10 077 28 696 138 792
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3 Human Baseline Performance

Multiple methods to determine human baseline performance on transcription
tasks of differing complexity have been discussed in literature. [25] had several
expert transcribers transcribe long spontaneous utterances of English language
learners and compared their transcriptions with respect to word error rate. In a
second phase, transcribers were allowed to choose preferred transcriptions from
the set of available ones and correct them, and in a third phase, a gold standard
transcription was picked by majority vote among all transcribers. Human word
error rates varied between 20.5% in Phase 1 and 5.1% in Phase 3. More recently,
[26] used a two-pass transcription approach comparing a first draft transcription
with a second pass corrected version of another listener. Resulting human word
error rates were reported on two standard research corpora, 5.9% on Switchboard
and 11.3% on CallHome. [27] also measured the human error rate on these stan-
dard corpora by coupling three junior transcribers with a senior listener who
performed error correction. The best resulting error rates were 5.1% on Switch-
board and 6.8% on CallHome. Especially the discrepancy of the reported results
on CallHome indicates that the measurement of human baseline performance on
speech recognition is not a straightforward task.

In the present work, we followed a similar approach to these recent publica-
tions in that we compared a single pass transcription with one that went through
multiple rounds of quality improvements. These rounds included: First draft of the
medical report, quality assurance of the report to the level that it could be deliv-
ered as out-patient letter, and, finally, assuring that transcription guidelines were
properly followed, e.g. that every uttered word is spelled out. The transcribers
used in this study were professionally trained medical transcriptionists embedded
in a private crowd [28], as described in further detail in [29].

In order to cover the full spectrum of difficulty levels of human and auto-
matic transcription, we chose the M1 test set for this study. It contains a variety
of different recording and speaking conditions, and has a size of over ten thou-
sand tokens to reliably test for statistical significance of performance differences.
The human word error rate achieved for this set following the above described
methodology was 17.4%.

4 Acoustic and Language Model Training

At the time of decoding, the ASR system requires a language model (LM) and an
acoustic model (AM). The former represents N-gram statistics of words, obtained
from text processing. The latter represents a mapping from an audio file to
phonology, which provides the link to the LM via the lexicon. The lexicon is an a
priori mapping from words to phonological representation (pronunciations). The
AM training proceeds in three global stages (Fig. 1): (a) feature extraction; (b)
alignments; (c) DNN training. During decoding, only (a) and (c) are used; i.e.,
the features are extracted from test data, and the final DNN model provides the
nonlinear mapping to phonology. The linguistic probabilities are represented by
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Fig. 1. Overview of acoustic model (AM) training for ASR. The deep neural network
(DNN) training takes LM input, alignments (between phonemes and features time-
line), and iVectors (iVecs) that are extracted from the audio features

finite-state transducers (FSTs) [30,31], which are implemented e.g. in Sphinx-4
[32], the OpenFST library [33,34], and Kaldi [35].

(a) Feature extraction. This stage transforms the raw acoustic waveform,
w(n), sampled at 8–48 kHz, into a multivariate time-series of C features, sam-
pled at 100 Hz frame rate. As it turns out, the raw waveform in medical dic-
tations presents with widely-varying dynamic range. Some recording systems
use spectral subtraction [36] or other speech enhancement [37], which can result
in sections of near-absolute silence in some audio files; other sections include
strong background noises (e.g. sirens) and loud speech; and a typical medical-
dictation audio file includes more variability in speech volume and orienta-
tion w.r.t. the microphone than typical in standard speech corpora. Therefore,
we have carefully considered waveform root-mean-square (RMS) normalization,
power-normalization of the spectrogram, and mean/variance normalization of
the final features. First, contiguous sections of near-silence (below 0.1% of max
level) are clipped out (Fig. 2). Second, the RMS (squared signal smoothed with
200-ms time-constant) is normalized such that all audio files are scaled to a
common 70 dB sound-pressure level in units of pressure (Pascals), where 70
dB is chosen as the typical normal-to-loud conversational range [38]. Whereas
perceptual loudness correlates to recent amplitude maxima [39], the use of max-
ima for amplitude normalization is unstable, as extrema are always subject to
greater statistical variation. We chose the RMS 90-percentile for each audio file
as the normalization point, which we found to be more homogeneous across
files. Third, we considered three methods of power-normalization following the
short-term Fourier transform (STFT) log compression (standard), the nonlinear
power-normalization (PN) method of Kim and Stern [40,41], and their simple
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PN (sPN) method, which is first-order running-mean normalization. Prelimi-
nary results indicate PN as the preferred method, but these studies are ongoing
and all results reported here use traditional log compression. Finally, the feature
time-series are subjected to per-utterance mean and variance normalization (z-
score method of Fig. 2), or per-speaker mean and variance normalization, as in
[35]. We are currently exploring the options shown in Fig. 2 with very promis-
ing results, but all results presented in this paper use traditional mel-frequency
cepstral coefficients (MFCCs) [42] utilizing the following options: 25-ms Ham-
ming window, mel-frequency scale [43], no spectral transformations by PLP [44]
or MVDR [45,46], log compression, cepstral coefficients (CCs), and the typi-
cal “lifter” (cepstral-domain weighting) used in speech processing (as given by
Juang et al. [47]). For DNN training, we use 40-dim MFCCs, as suggested by the
study of Rath et al. [48], but for alignments we use 13-dim MFCCs with deltas
and delta-deltas.

Fig. 2. Overview of acoustic feature extraction for a single utterance. The raw sampled
waveform, w(n), corresponding to a single wav file, is clipped of silent sections, and
then RMS scaled into units of pressure in Pascals, p(n). This is subjected to standard
1st-order pre-emphasis, before the windowed STFT. Note that n indexes samples at 8
to 48 kHz, whereas t indexes frames at 100Hz. The subsequent stages are listed with
options as described in the text

(b) Alignments. Transcribed medical dictations provide the correct word
sequences for training, but no temporal information. Alignment to the audio
file requires learning a model to map from acoustic features to phonological
sequences, along with the lexicon to map from phonology to words. Several
toolboxes can be used to obtain alignments, for example Praat [49], HTK [50],
Julius [51], Kaldi [35], or RASR [52]. We do not conceive of alignment as a
generic pipeline which is run on the data set at large. Rather, a best align-
ment can be obtained for each utterance and retained in the database, with
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each potentially derived from independent sources. The results reported here are
based on triphone models [53], implementing a pipeline of speaker-independent
Gaussian mixture models (GMMs) and linear discriminant analysis + maximum-
likelihood linear transformation (LDA+MLLT), followed by speaker-adaptive
training (SAT) using LDA+MLLT and feature-space maximum-likelihood lin-
ear regression (fMLLR).

(c) Deep neural network (DNN) training. Although artificial neural networks
have been attempted since the late 1980s in ASR [54], and steadily advanced
over the ensuing decades [55,56], they have only become the most widely used
state-of-the-art method in ASR in the last five years, joining other fields in the
deep learning revolution. For example, the initial publication of the Kaldi toolkit
[35] does not mention DNNs, and the recent theses of Plátek [57] and Gil [58] use
Kaldi for ASR, but no DNNs. Kaldi introduced two DNN methods circa 2013
[48,59], which we explored along with several other general machine learning
toolboxes (Theano, etc.) for DNN training. For example, Miao [60] developed a
hybrid Kaldi-Theano ASR system.

Another important part of current state-of-the-art ASR practice is the use of
i-Vectors (iVecs) for training the DNN (Fig. 1). These are derived by passing the
features through a GMM-based universal background model (UBM), previously
trained on the whole corpus [61,62]. iVecs were introduced in 2009 for speaker
recognition [63], brought into ASR work in 2011 [64,65], and just recently used
with DNNs for ASR model training [62,66,67]. We specify these dates to reinforce
our general point that: although medical ASR was somewhat negatively viewed
one decade ago, it is understandable that newer reports and reviews become
increasingly optimistic. The field of medical ASR is likely only at the beginning
of the change-over to DNN methods and the possibilities implied by near-human
performance levels.

The language model used in this work is a conventional trigram model with
Kneser-Ney smoothing. Discounting parameters were optimized by minimizing
perplexity on a held-out set from the M1 training set. Training data comprised
both the manual transcriptions in M1 and M2, and the outpatient letters in
M30. The latter differ from transcriptions in that they contain case distinctions,
formatting, punctuations, and numerals that are either absent or spelled out
in transcriptions—e.g., a spoken ‘colon’ in transcriptions versus ‘:’ in letters,
‘twenty-three’ in transcriptions versus ‘23’ in letters. Prior to LM training, we
processed M30 to remove formatting and spell out those characters and numerals
that are typically spelled out in transcriptions.

Investigations into more sophisticated language modeling techniques are cur-
rently carried out, examples of which are given in Sect. 6. They will be subject
to a future review publication.

5 Experimental Results and Discussion

As indicated in Sect. 2, in this study, we carried out two major experiments.
The first one was dedicated to comparing human transcription performance on
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medical dictation to the performance of our speech recognition system on a range
of difficulty levels. The second one was to investigate how the presented speech
recognition system performs on a comprehensive selection of speakers, following
the distribution in a realistic clinical use case. In the following, we will present
and discuss results of these two experiments.

5.1 Comparing Human and ASR Performance

We trained the recognition models according to the pipeline described in Sect. 4
using all available speech data (M1 and M2 training sets) for the acoustic model
and the transcriptions of the very same data for the language model. For evalua-
tion, we used the M1 test set as motivated in Sect. 2. Table 2 shows the results of
this experiment and compares them to the human baseline performance estab-
lished in Sect. 3. The achieved performance of our speech recognizer in this task
was 18.3% WER which is less than one percentage point higher than the human
baseline. To test whether this performance difference is of statistical significance,
we carried out a two-proportion z-test. The resulting p-value is 0.10 which sug-
gests that the difference observed in this experiment was not statistically sig-
nificant at the p < 0.05 level, despite the rather large test set comprising over
ten thousand tokens. While increasing the size of the test set will eventually
reveal which of the two, human or machine, outperforms the other, this exper-
iment shows that the accuracy of the speech recognizer we constructed is only
marginally different from that of a professional medical transcriptionist, and is,
hence, reaching parity.

Table 2. Comparing human and ASR performance

Errors Tokens WER

ASR 1 850 10 115 18.3%

Human baseline 1 760 10 115 17.4%

5.2 ASR Performance in a Realistic Clinical Use Case

For the second experiment, we used the same acoustic model as before, trained
on the M1 and M2 training sets, i.e. a total of 271 h of speech. In order to prepare
for a deployment in a realistic clinical use case, we substantially increased the size
of the language model training corpus by including another 30 million tokens of
medical reports (the training set of M30). This time, the experiment was carried
out on the M2 test set which matches the target distribution in a realistic clinical
setting. The results are shown in Table 3. The error rate, 15.4% is statistically
significantly lower than that reported in the first experiment and establishes a
strong baseline performance for a realistic clinical use case.
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Table 3. ASR Performance in a Realistic Clinical Use Case

Errors Tokens WER

4 413 28 696 15.4%

6 Conclusion and Future Directions

We have shown that a carefully tuned state-of-the-art speech recognizer, whose
acoustic and language models were trained on moderate size speech and lan-
guage corpora covering speech and relevant report samples of a set of over 270
physicians, is able to perform on a par with professional human medical tran-
scribers. The human performance was measured in a single pass scenario, i.e.,
with no additional quality assurance or automated assistance (apart from a spell
checker). Following previous work on measuring and optimizing human perfor-
mance, e.g., in multi-pass or quality control scenarios, indicates that the human
word error rate can be further improved. However, as it stands, the presented
speech recognizer could be capable of serving as an automated first-pass tran-
scriptionist. Furthermore, the authors are currently working on a number of
enhancements to the speech recognizer which should result in substantial fur-
ther improvements to the error rate, including

– optimizing the feature extraction configuration—the graph in Fig. 2 shows our
feature extraction pipeline and the diverse algorithms which we can choose
from

– optimizing speaker clustering—we have seen significant performance gains by
splitting speakers into specific speaker groups by certain criteria (e.g. region,
gender, native language); our goal is to find the optimal split to optimize
overall word error rate

– unsupervised acoustic model adaptation—making use of tens of thousands of
hours untranscribed speech

– enhancing the language model by (a) adding substantially more data (several
million episodes), (b) using sophisticated interpolation techniques, and (c)
rescoring with RNN-based, skip, or class language models.
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CIAA 2007. LNCS, vol. 4783, pp. 11–23. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-76336-9 3

34. Gorman, K.: Openfst library (2016). http://openfst.org
35. Povey, D., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M.,
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Abstract. We propose a novel computationally efficient real-time
microphone array speech enhancement postfilter with a small delay that
takes into account features of speech signal and recognition algorithms.
The algorithm is efficient for small microphone arrays. The filter is based
on applying a binary classification model to the Log Short-Term Spec-
tral Amplitude (Log-STSA). The proposed algorithm allows substan-
tial improvement of recognition accuracy with minor increase in com-
plexity compared to Wiener post-filter and lower complexity compared
to existing voice model based approaches. Objective tests using dual
microphone array, ETSI binaural noise database, TIDIGITS database,
and CMU Sphinx 4 speech recognizer demonstrate overall 41% Error
Rate reduction for SNR from 15 dB to 0 dB. Subjective evaluation also
demonstrates substantial noise reduction and intelligibility improvement
without musical noise artifacts common for Wiener and Spectral Sub-
traction based methods. Testing with SiSEC10 four microphone linear
equispaced array database shows that recognition accuracy is improved
with increased base and/or number of microphones in array.

Keywords: Beamforming · Postfilter · Noise reduction · Speech
recognition

1 Introduction

Using multiple microphones for speech recognition is a common technique in
consumer electronics, wearables etc. The problem is extensively studied by host-
ing regular machine learning challenges and benchmarks e.g. CHiME [4]. Most
of the proposed solutions which demonstrate noticeable improvement in recogni-
tion accuracy are based on deep learning and other high complexity techniques
which are not suitable for low-power devices without Internet connectivity.

We were particularly interested in improving speech recognition word error
rate (WER) in small-vocabulary voice command task for low-power wearable
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devices. The basic beamformer algorithm is delay-and-sum. Many works are
aimed to improve the directivity of a beamformer such as a generalized sidelobe
canceler (GSC) [6]. This approach works well for point sources of interference
but does not suppress reverberant noise, as it arrives from all directions.

Reverberant noise causes major degradation of recognition accuracy in prac-
tical applications. The common technique for reverberant noise suppression is
SNR driven adaptive filtering by multiplication with real-valued filters in fre-
quency domain called postfilters. This includes families of spectral subtraction,
Wiener, Log-STSA optimal, etc. filters, which differ by the gain function and
the SNR estimation method. In this approach microphone array is used mainly
for SNR estimation. Postfilters can be combined with directivity improvement
techniques such as a superdirective beamformer [12].

Zelinski [17] proposes a time domain postfilter for the microphone array based
on Wiener filter. The postfilter provides substantial noise reduction for the spa-
tially uncorrelated e.g. thermal noise.

In many applications the noise in the microphones is characterized by noise
signals of equal power at all locations, propagating with equal probability in
all directions. This spatially isotropic or diffuse noise is studied by McCowan
et al. [11] who generalize the Zelinski’s results. Typical filtering techniques due
to inaccuracies in estimated SNR exhibit musical-noise artifacts as they over-
suppress low-magnitude spectral components of noise unmasking noise spectral
peaks. For single microphone noise suppression these artifacts were studied by
Plapous et al. [13]. To prevent this, the common engineering practice is to limit
attenuation by some margin [15].

The Wiener filter provides MSE optimal estimate of time domain signal for
Gaussian processes while most of speech recognizers use Mel-frequency cepstrum
coefficients (MFCC) as primary features of speech. The set of logarithms of
the short time spectral amplitudes (Log-STSA) defines the main part of the
MFCC for a voiced speech signal. Ephraim and Malah [5] propose an optimal
estimator of Log-STSA for Gaussian processes. It provides weaker attenuation
than Wiener (Lefkimmiatis MSE) and McCowan Wiener filters for the same
method of estimating SNR. Log-STSA (Ephraim Malah γ = ∞) behaves in log
domain similarly to Spectral Subtraction.

Lefkimmiatis and Maragos [9] notice that the Zelinsky and the McCowan fil-
ters are not actually postfilters but prefilters, as they overestimate noise ignoring
attenuation by the beamformer. They propose a family of true postfilters. Dur-
ing evaluation we have noticed that despite inadequate statistical model Wiener
prefilter provides better recognition accuracy compared to to Log-STSA pre-
filter, Wiener postfilter and Log-STSA postfilter, due to stronger attenuation
which is caused by lower filter gain and overestimation of noise.

All the above methods are generic and do not account for properties of human
voice. We empirically measured mean Log-STSA optimal filter gain for TIDIG-
ITS database [10] corrupted by a synthetically added white noise with SNR mea-
sured at the input of the beamformer. TIDIGITS was selected as an example of
a small-vocabulary dataset for local real-time speech recognition on a low-power
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device. Figure 1 shows gains for different methods, Lefkimmiatis gains are shown
for 2 microphone setup. SNR on the figure X-axis is shown on the output of the
beamformer according to Lefkimmiatis.

The resulting gain function is significantly lower than that of the McCowan
filter in high-to-medium SNR range and constant for low SNR. Also the optimal
filter gain strongly depends on overall SNR (i.e. speech loudness) which suggests
that the multiplicative model is inaccurate, and better noise suppression model
accounting for speech signal properties is possible.

Yoshioka and Nakatani [16] propose an off-line postfilter using GMM based
statistical model of speech and demonstrate substantial improvement of speech
recognition compared to McCowan at the cost of substantial complexity increase
and off-line usage. Raj and Stern [14] propose a binary classification based noise
suppression for speech recognition. Their approach requires substantial modifi-
cation of the recognizer and cannot be used for speech enhancement for listening.

We propose a novel simple real-time microphone array speech enhancement
postfilter with a small delay that takes into account features of speech signal and
recognition algorithms. The algorithm is efficient for small microphone arrays.
The filter is based on applying binary classification model to the Log Short-Term
Spectral Amplitude. The algorithm uses gain function accounting for expected
speech loudness model, which prevents musical noise while keeping high atten-
uation in loud noise. The proposed algorithm allows substantial improvement of
recognition accuracy with minor increase in complexity compared to Wiener post-
filter and lower complexity compared to existing voice model based approaches.
In practice the complexity is comparable to a typical MFCC based ASR frontend.

The algorithm output can be restored to time domain for listening by com-
bining it with phases of beamformer output. Our implementation uses simple
delay-and-sum rule. Similiarly to other postfilters the proposed approach can be
combined with various beamformer directivity improvement techniques.

Objective tests using dual microphone array, TIDIGITS with synthetically
added noises from ETSI binaural noise database [1], and CMU Sphinx 4 [8]
speech recognizer with supplied TIDIGITS recipe demonstrate overall 41% error
rate reduction for SNR from 15 dB to 0 dB. Listening also demonstrate sub-
stantial reduction of musical noise artifacts common to Wiener and Spectral
Subtraction based methods. Testing with SiSEC10 four microphone linear equi-
spaced array database [2] (distance between adjacent microphones is 8.6 cm)
shows that recognition accuracy is improved with increased base and/or number
of microphones in array.

2 Gains and Noises

The McCowan filter without attenuation limit produces musical noises in the
frequency bands with low SNR, which causes substantial degradation of ASR
recognition performance compared to the beamformer output without a post-
filter. The transfer function of the Wiener filter is W (f) = ξ/(1 + ξ) where
ξ = ξ(f) = E|S|2/E|V |2 is calculated by the spectrum of the speech signal S(f)
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and the spectrum of the noise V (f). Here and further E stands for the expecta-
tion. E|S|2 and E|V |2 are the signal and noise PSD. The on-line filter contains
a random variable ̂ξ as an estimate of the ideal value of ξ. Assume the SNR ξ
is small on a wide frequency band. Then the main part of the spectrum of the
measured signal in this band is the noise V and it is suppressed by the ideal
Wiener filter. The estimate ̂ξ is expected to be close to ξ in average. Therefore
output of the on-line filter is also essentially small in average. But both ̂ξ and |V |
are random and they may have common frequency peaks which become isolated
spectral peaks of the filter output. The spectral peaks are perceived as musical
noises [13].

To prevent the well-known effect of musical noises, the ideal Wiener filter is
usually corrected so that W (f) is bounded from below by a fixed threshold ε > 0.
If ε is relatively big then a big noise is not attenuated when ξ is small. Thus, a
choice of ε is a trade-off between musical noises and noise attenuation [15].

We empirically measured mean Log-STSA optimal filter gain for speech as
a function of ξ. We synthetically added the white noise to the TIDIGITS data-
base [10] with SNR level set at the input of the beamformer. At the sample
rate of 16 kHz for half-overlapped frames of the length of 20 ms the following
values are calculated: S(f), V (f), ξ(f) = |S(f)|2/|V (f)|2 and the log-optimal
gain G(f) = log |S(f)| − log |(S(f) + V (f))|. Then for any fixed ξ0 the gains
G(f) with ξ(f) = ξ0 are averaged over all frames and over all frequencies f
in the speech band from 200 Hz to 4800 Hz. The averaged optimal gain in the
logarithmic scale is shown in Fig. 2 by the dashed lines for several values of the
input SNR values. The averaged gain G as a function of ξ for any postfilter can
be calculated directly in a similar way. Figure 2 shows gains of spectral subtrac-
tion, Log-STSA, Wiener (Lefkimmiatis MSE) filter [9] for 2 microphone setup
and the McCowan filter [11]. ξ on the figure X-axis is shown on the output of
the beamformer according to Lefkimmiatis.

The resulting optimal gain functions are significantly lower than that of the
McCowan filter in high-to-medium ξ range and constant for low ξ. Also the
optimal filter gain strongly depends on overall SNR (i.e. speech loudness) which
suggests that the multiplicative model depending only on ξ is inaccurate, and
better noise suppression model accounting for speech signal properties is possible.

The musical noise appear in the frequency bands with small ξ. Since the
speech signal is less than the noise in these bands, a small comfort noise can be
added to the filter output that can mask the spectral peaks after the Wiener filter
and neglect the musical noises which is a common engineering practice [15]. In
the next algorithm, separation of ”small” and ”big” values of ξ leads to a simple
classifier that can be considered as a soft decision in the trade-off between musical
noises and noise attenuation. Then the classifier is followed by the Bayes rule
for the gain estimation.

3 Algorithm Description

Assume a beam is fixed and steering has been implemented if needed. Voice and
noises are uncorrelated and voice is not reverberated. Noise is assumed to be
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Fig. 2. Algorithm diagram

isotropic with spatial correlation in the frequency domain Γij between the micro-
phones i and j. Γij is estimated from observations. For a spherically isotropic
acoustic field and free standing microphones Γij(f) = sinc((2πfdij)/c), sinc(x) =
sin(x)/x, here f is a frequency, dij is the distance between microphones, and c is
the sound speed. For embedded microphones the diffraction on the device should
also be accounted for. Let n be the number of microphones in the array.

Assume t is a time instant when a frame of input samples is formed. The
speech signal and the noises also form the frames of the same size. The FFT is
calculated for all these frames. Fix a frequency bin f from the basis of FFT.

Consider the following model of the spectra in each frequency bin f :

Xi = hiS + Ni, E(SNi) = 0,
E(NiNi) = |N |2, E(NiNj) = Γij |N |2, i �= j,
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where i is the microphone number, S is the STFT of the voice signal, the complex
number hi represents the phase/amplitude shift of speech signal of microphone
i in the frequency bin f , Ni is the the STFT of the noise in the microphone i.
The f is omitted, as frequency bins are modeled independently from each other.

The algorithm (Fig. 2) consists of the following steps:

1. Calculate the STFT frames {Xi} for each beamformer input i = 1..n.
2. Calculate the the filter-and-sum beamformer Y =

∑n
i=1 wiXi, wi =

(nhi)−1.
3. Calculate the pairwise noise estimates Vij = wiXi − wjXj , i < j.
4. Calculate the PSD |Y |2 and |Vij |2.
5. Calculate the overall input noise PSD estimate and the overall beamformer

output noise PSD estimate |V |2 = E|Y − S|2,

|Nij |2 =
( |Vij |2

|wi|2 + |wj |2 − 2Re(wiwj)Γij

)

,

|N |2 =
2

(n − 1)n

n−1
∑

i=1

n
∑

j=i+1

|Nij |2,

|V |2 =

⎛

⎝

n
∑

i=1

|wi|2 + 2
n−1
∑

i=1

n
∑

j=i+1

Re(wiwj)Γij

⎞

⎠ |N |2.

6. Calculate the smoothed values of |˜Y |2 and |˜V |2 with 1 frame looking ahead:

|˜Yt|2 = 0.9|˜Yt−1|2 + 0.1
(

1
2
|Yt|2 +

1
4
(|Yt−1|2 + |Yt+1|2)

)

,

|˜Vt|2 = 0.9|˜Vt−1|2 + 0.1
(

1
2
|Vt|2 +

1
4
(|Vt−1|2 + |Vt+1|2)

)

.

7. Calculate the Wiener filter gain and the SNR

G = max(ε,
|˜Y |2 − |˜V |2)

|˜Y |2 , ξ = (G−1 − 1)−1.

8. Calculate the optimal estimate for log-spectral power of harmonic voice com-
ponents, integral summand can be removed for simplification with minor
negative impact on final result

MH = ln |Y |2 + 2 ln G +
∫ ∞

ξ

e−x

x
dx.

9. Calculate the comfort noise model, here σ2
0 is the expected variance of the

breath noise, which is dependent on the expected loudness of voice.

MN = α ln |V |2 + (1 − α) ln σ2
0 .
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10. Calculate the signal/noise classifier PH(ξ) =
(

1 + e−(β0+β1 ln ξ)
)−1

.
11. Calculate the output Log-PSD ln |S|2 = PH(ξ)(MH − MN ) + MN .

Steps 1–5 and 7 correspond to the Lefkimmiatis MSE [9] filter. The amplitude
estimator in step 8 is derived from Ephraim and Malah [5] with γ = ∞. Similarly
to Aleinik [3] to save computations and memory the smoothing in step 6 is
performed on nominator and denominator of gain estimate instead of individual
correlations.

The algorithm parameters α, β0, β1, σ
2
0 are optimized for best recognition

accuracy by coordinate gradient descent beforehand using a representative data-
base of speech and noise samples. For this purpose we used 100 male and 100
female sentences from TIDIGITS train data corrupted with random segments of
ETSI noise data.

4 Evaluation

For the evaluation we used CMU Sphinx 4 [8] ASR with supplied TIDIGITS
recipe on TIDIGITS database with baseline WER accuracy is 99.6%. We used
McCowan [11] as a baseline, as our preliminary experiments showed, that other
post-filters with higher gains provide lower recognition accuracy. Noise was syn-
thetically added to the clean speech signal. The signal was corrupted by random
segments of each environment noise with SNR from 0 to 15 dB, using the mean
multiplier between channels. SNR was calculated only on segments of speech
with active voice, pauses were ignored. Noise was filtered using high-pass filter
at 150 Hz. We used ETSI binaural noise database [1]. Noise coherence for binau-
ral noise was estimated as for spherical isotropic noise with increased microphone
base, same as Kamkar-Parsi et al. [7]. The effective microphone base used was
36 cm. Recognition accuracy is shown in Table 1. For comparison we used our
own implementation of McCowan postfilter denoted MC in the table.

The algorithm substantially improves the recognition accuracy over
McCowan post-filter with overall 10% absolute improvement, which is especially
noticeable on non-stationary noises such as babble noise. At the same time com-
plexity of the proposed algorithm is almost the same as that of McCowan.

To better understand the reason of improvement we calculated mean Log-
STSA model to Ground Truth ratio (Fig. 3). For an ideal model it should be 1
(0 dB). As expected for the proposed algorithm it is closer to 1 than McCowan.
The plateau on the McCowan ratio plot is due to attenuation limit at 13 dB SNR
at beamformer output. It should be noticed that it is possible to choose model
parameters providing overall ratio closer to 1. But the recognition accuracy for
such parameters is slightly worse than for recognition wise optimal parameters.
This observation suggests that Log-STSA metric does not fully correspond to
recognition accuracy.

To evaluate the algorithm operations with more than 2 microphones we used
4 microphone linearly spaced array noise database SiSEC10 [2]. The distance
between adjacent microphones is 8.6 cm. The coherence function was calculated
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for spherical isotropic noise based on the array geometry. Results for different
microphones sets are shown in Table 2. We can conclude that larger base and
more microphones increases recognition accuracy.

To validate our results we used commercially available Car Voice Control
ASR toolkit with embedded single microphone noise suppression. We observed
noticeable improvement over one channel recognition on non-stationary noises
such as babble but very small or no improvement on stationary noises such
as Aircraft with even 0.5% absolute degradation on Car noise at SNR 0 dB.
Overall recognition accuracy in stationary noises was also substantially better
than that of Sphinx 4. This suggests that the proposed noise suppression model
can be improved for stationary noises. It also should be noted that recognition-
wise optimal parameters for the second ASR were slightly different from Sphinx
4 parameters and σ2

0 was substantially higher. This suggests that some of the
model parameters describe not the fundamental parameters of speech signal but
internal parameters of the ASR.

Table 1. Sphinx 4 recognition accuracy for different NR methods on TIDIGITS with
ETSI binaural noise. W/O - single channel, BF - delay-and-sum beamformer, MC -
McCowan postfilter

SNR 0 SNR 5 SNR 10 SNR 15

Noise W/O BF MC New W/O BF MC New W/O BF MC New W/O BF MC New

Aircraft 3.7 9.7 47.1 73.4 23.7 35.1 78.3 90.3 61.3 69.2 91.8 95.6 87.5 88.9 95.6 98

Bus 15 21.1 53.6 74.9 43 50.7 79.4 89.6 74.2 78.2 91.5 95.5 91.6 91.7 96.1 97.5

Cafe 16.1 19.1 44.2 64.8 38.1 43.1 68.9 82.1 66.7 69.8 86.3 91.7 87.2 87.7 93.8 95.9

Car 43.9 39.7 75 88.2 75 70.6 90.4 95.3 91.7 88.5 95.6 97.7 97.2 95.3 97.6 98.5

K-garten 21.5 26.6 50.7 70.5 47.9 52.5 75.1 85.6 75.9 77.3 89.3 93.5 91.4 90.7 95.5 97

Outside 7.3 13.3 33.1 60.9 26.2 36.7 65.9 81 58.2 67.9 85.7 91.4 83.8 87.7 94.4 96

Pub 9.2 10.1 36 61.2 27.3 28 68.8 84 61.3 59.6 87 92.6 86.7 83.5 94.6 96.9

Shop 12.2 17.5 38 57 34.9 43.3 64.7 77.3 66.7 71.3 82.2 89.1 87 87.7 92.1 94.9

Soccer 46.6 49.5 62 77 72.3 72.9 81.3 88.7 88 87.3 91.9 95 95.6 94.7 96.6 97.3

Station 7.3 11.8 29.4 55.5 19.9 27.7 59.8 78.4 42.7 54.9 82.5 89.8 72.5 79.8 93.1 95.6

Train 16.6 20.3 41.8 64.5 47.4 50.6 73 84.4 78.9 78.7 89.1 93.9 93.5 92 95.3 97.3

MEAN 18.1 21.7 46.4 68 41.4 46.5 73.2 85.2 69.6 73 88.4 93.3 88.5 89.1 95 96.8

Table 2. Sphinx 4 recognition accuracy for different microphone configurations on
TIDIGITS with SiSEC10 4 microphone noise

SNR 0 SNR 5 SNR 10 SNR 15

Noise M2,3 M1,4 M1–4 M2,3 M1,4 M1–4 M2,3 Mic1,4 M1–4 M2,3 M1,4 M1–4

Cafe 63.8 67.2 73.1 83.0 84.9 88.5 93.4 94.1 95.2 96.6 96.9 97.3

Square 48.7 55.1 62.8 74.8 76.9 82.4 87.6 89.5 92.2 94.8 95.2 96.5

Subway 56.0 64.9 71.4 78.4 83.4 86.8 91.3 92.1 93.9 95.7 96.6 97

MEAN 56.2 62.4 69.1 78.7 81.7 85.9 90.8 91.9 93.8 95.7 96.2 96.9
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5 Conclusions

A new speech enhancement algorithm was proposed that is based on a sim-
ple classifier by statistics of the frequency-by frequency SNR versus the filter
gain. The proposed algorithm demonstrates good noise suppression in different
environments. The algorithm complexity is small compared to typical wideband
beamformer design and dominated by STFFT for each input channel.

Minor degradation in recognition accuracy on car noise with 0 dB SNR using
commercial Car Voice Control Toolkit suggests the signal model can be improved
for stationary noises. The expected voice loudness and noise field coherency are
the external parameters of the model. It would be natural to estimate them from
the observed signal. The classifier currently takes into account only the data in
one frequency bin, more complex classifier using data from other frequency bins
may be beneficial. These are the topics of further research.
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Abstract. A novel framework for searching keywords in multilingual
and mixlingual speech corpus is proposed. This framework is capable of
searching spoken as well as text queries. The capability of spoken search
enables it to search out-of-vocabulary (OOV) words. The capability of
searching text queries enables it to perform semantic search. An advanced
application of searching keyword translations in mixlingual speech cor-
pus is also possible within posteriorgram framework with this system. It
is shown that the performance of text queries is comparable or better
than the performance of spoken queries if the language of the keyword is
included in the training languages. Also, a technique for combining infor-
mation from text and spoken queries is proposed which further enhances
the search performance. This system is based on multiple posteriorgrams
based on articulatory classes trained with multiple languages.

Keywords: Keyword search · Spoken term detection · Multilingual
posteriorgrams · Mixlingual search

1 Introduction

Two types of frameworks have dominated the research area of keyword search
in speech corpus.

Posteriorgram based algorithms aim at aligning posteriorgrams of spoken
queries to the posteriorgrams of speech corpus by Dynamic Time Warping
(DTW). Gaussian posteriorgrams [7,14] and phonemic posteriorgrams [5,6] are
widely used for representing spoken queries and evaluation speech. This frame-
work is useful for developing Query-by-Example Spoken Term Detection (QbE-
STD) for languages which have less resources. It also enables a language indepen-
dent audio search. However, it has some major limitations. Only spoken queries
can be searched with this algorithm. The user would like to detect similar mean-
ing words of the query for most of the applications. Moreover, the performance
of query search in case of posteriorgram based methods is dependent on detect-
ing proper boundaries of the spoken query. The performance of the search also
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depends on the quality of the spoken query [13]. It has been shown that multiple
instances of independent pronunciations can enhance performance but it might
be inconvenient for the user to speak the same query multiple times. Speaking
the queries in noisy background may affect the performance of the spoken query
search. One limitation of phonemic posteriorgrams is that their performance is
language dependent.

The second class of algorithms is based on acoustic keyword search and lat-
tice search based methods [8,11]. A large volume of transcribed speech data is
required to train HMMs in an LVCSR (Large Vocabulary Continuous Speech
Recognition System). Lattices of speech can be generated by HMMs. Lattices
can be used for searching sub-word sequences but sub-word units like phonemes
and syllables are language dependent. Therefore, the use of this system is limited
to a single language (training language) only. However, the speech corpus which
is to be searched may contain multiple languages. For example, the news cor-
pus in linguistically diverse regions like Indian subcontinent consists of multiple
languages. The proper nouns (names of local places and people) are pronounced
with phonemes of the regional language while the news may be in English or vice
versa. Therefore any useful keyword spotting system should represent a larger
set of phonemes.

The limitations mentioned above can be addressed by posteriorgrams based
on articulatory features. The posteriorgrams used in this work are similar to
low dimensional articulatory motivated (LDAM) posteriorgrams [9]. Some alter-
ations were made in the LDAM mapping given in [9] so that joint training with
data from multiple languages can be done [10]. A detailed study was carried out
to show that the posteriorgrams generated from the jointly trained MLPs can
represent multilingual phonemes uniquely [10]. The LDAM posteriorgrams were
applied to spoken query based system only.

One of the key contributions to the present work is a text query search
algorithm based on articulatory classes (LDAM framework). Some of the issues
associated with spoken queries mentioned above e.g. improper boundaries, noisy
environment and pronunciation variations are not relevant in a text query search.
The novelty of the present approach is that text queries of multiple languages
can be searched in a mix-lingual speech corpus which is not possible in lattice
based approaches. Text query based search is integrated into posteriorgram based
spoken query search without affecting its performance. A combined query mode
(combination of text and spoken queries) is also presented in this work. This
multimodal framework (consisting of spoken, text and combined query modes)
will have far reaching implications discussed in the later part of this work.

Results are reported for 4 Indian languages in this work. Only two of them are
used for training. English and Bangla data is used for joint training of Multi Layer
Perceptrons (MLPs). The details of training are given in Sects. 2 and 3. English
belongs to Indo-European group of languages. The languages Hindi and Bangla
belong to Indo-Aryan group which is a branch of the Indo-European languages.
Telugu belongs to the Dravidian group. Indian languages are chosen for this work
but this work may be applicable to many languages across the world.
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Rest of the paper is organized as follows: A brief review of LDAM mapping
is given in Sect. 2. The data and its usage is described in Sect. 3. Three modes of
query generation are explained in Sect. 4. The experiments are described along
with the results in the same section. Conclusions are presented in Sect. 5. Impli-
cations of this work are listed in Sect. 6.

2 LDAM Posteriorgrams and DTW Framework

Phonemes are mapped to LDAM classes as shown in Table 1. The procedure of
arriving at this mapping is described in [9,10]. The key design principle behind
this arrangement is that large number of multilingual phonemes should have a
unique representation with this mapping. The class name vow refers to vowel-like
phonemes, while cpos and cman refer to the position of articulation and manner
of articulation of consonants. These three classes correspond to the three MLPs
which are trained independently. These MLPs are used to generate three posteri-
orgrams from acoustic feature vectors (MFCC, delta and delta-delta coefficients
of total dimension 39). The elements of the vow, cpos and cman posteriorgrams
correspond to the probabilities of subclasses listed in Table 1. The vowels which
differ only in duration e.g. /ih/ and /iy/ are clubbed in the same subclass. Other
vowels are assigned one subclass each.

Table 1. LDAM classes, subclasses and dimensions of the LDAM posteriorgrams

MLP/ Class Constituent subclasses (label) Dimension

vow front upper (fup), front bottom (fbo), back bottom (bbo),
back middle (bmi), back upper (bup), phoneme /ey/ (fey),
phoneme /eh/ (feh), schwa vowel (cen), phoneme /w/
(www) , phoneme /v/ (vvv), lateral (lll), rhotics (rrr),
aspiration (asp), approximant (apx), diphthong /ay/ (day),
diphthong /aw/ (daw), diphthong (doy), not-a-vowel (nvo),
silence (sil)

19

cpos velar stops (vel), retroflex stops (ret), palatal stops (pal),
palatal fricatives (pfr), dental stops (den), dental fricatives
(dfr), labial stops (lab), labiodental fricatives (ldn), glottal
(glo), silence (sil), rej (reject all vowels)

10

cman vowel-like (vol), voiced stops (vos), unvoiced stops (unv),
voiced fricatives (vof), unvoiced fricatives (unf) ,nasals
(nas), silence(sil)

7

The version of DTW used in this work is similar to the one in [5]. Several
measures can be used to compute the cost of traversing a point in the DTW
matrix. The symmetric KL distance between two posterior vectors x and y is
defined in eqn. 1. The Symmetric KL distance will be referred to as KL distance
in this work.
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klsym(x||y) =
∑

i

[
xilog

(
xi

yi

)
+ yilog

(
yi

xi

)]
(1)

The Dot product measure between two posteriorgrams x and y is defined as:

dot(x||y) = − log (x · y) (2)

KL distance is known to be useful in speech processing applications for deter-
mining distance between two distributions [1]. Spoken query search involves
computation of distance between two posterior vectors (belonging to evalua-
tion speech and keyword speech) which represent two distributions. KL dis-
tance seems appropriate for this task. The relevance of Dot product measure is
explained in Sect. 5 with the help of results.

3 MLP Training and Data Used in This Work

5,000 time aligned sentences of WSJ0 [3] corpus (English Data) and 7,000 time
aligned sentences from Shruti corpus [2] (Bangla data) are used to train pre-
initialized vow, cpos and cman MLPs. The MLPs used for initialization are
trained with 30,000 sentences of WSJ0 corpus (English data). The English and
Bangla phonemic MLPs used in this work (Sect. 4.1) are trained with 30000
English and 7000 Bangla sentences respectively.

The queries and test utterances for English and Bangla are taken from WSJ1
[4] and Shruti corpus [2] respectively. It is ensured that the training data, the
test utterances and the queries are taken from disjoint portions of the corpus.
The queries and test utterances for Telugu and Hindi are also picked from dis-
joint portions of databases of these languages. The number of queries and test
utterances used in these languages are given in Table 2. It may be noted that
trainable speech corpus of all these languages is not available in public domain.

Table 2. Data used for Spoken Term Detection

Hindi Bangla Telugu English

15 queries 29 queries 25 queries 36 queries

789 utterances 2000 utterances 2400 utterances 3000 utterances

4 Modes of Query Generation

The schema of multi-modal keyword search is shown in Fig. 1.
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Fig. 1. Three modes of Keyword Search

Three modes of queries viz. spoken queries, text queries and combined queries
are shown in Fig. 1. LDAM posteriorgrams for the three modes of queries are
generated by the algorithms described in the following subsections. The LDAM
posteriorgrams of test utterances are generated by LDAM MLPs for all three
modes of queries. DTW is used to match LDAM posteriorgrams of queries and
test utterances in all the cases as shown in Fig. 1.

The results of keyword search are presented in average P@N (percentage)
for all the languages. Other evaluation measures like ATWV are not used since
development data is not available in these languages. P@N is the proportion of
hits in the top N utterances returned by the system.

4.1 Spoken Queries

In this mode, posteriorgrams of spoken queries are generated by LDAM MLPs
(like posteriorgrams of test utterances). The boundaries of spoken queries are
chosen manually by analysing the phonemic transcription generated by posteri-
orgrams of the sentences containing queries. Dynamic Time Warping (DTW) is
used to rank the test utterances. The result of spoken query search is shown in
Table 3. It may be noted that KL distance scores are better than Dot product
measure scores for spoken queries.

Table 3. Spoken query search results for different languages in LDAM framework

Languages English Bangla Hindi Telugu

Dot product measure 61.35 42.11 49.06 33.98

KL distance 71.97 51.89 64.36 42.19
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Table 4. Results with the state-of-the-art phonemic posteriorgrams of English and
Bangla (KL distance used for DTW)

Phonemic posteriorgram English Bangla Hindi Telugu

English 78.46 45.33 48.04 35.33

Bangla 40.18 56.06 57.62 31.89

Results are also shown with English and Bangla phonemic posteriorgrams for
each language in Table 4. It may be observed that the phonemic posteriorgrams
generated by English and Bangla phonemic MLPs perform poorly when used for
other languages. Jointly trained LDAM posteriorgrams are better if the language
of test utterances is not known priori.

4.2 Text Queries

The following steps are implemented for converting text queries to LDAM pos-
teriorgrams:

1. Text queries are first mapped to phoneme sequences. This mapping is done as
per the dictionary used in corresponding language datasets in case of English
and Bangla. In case of Hindi and Telugu, words are already represented in
terms of phonemes in the datasets. In case of Hindi, schwa deletion rule was
applied while converting text queries into phonemic sequences. This rule says
that a schwa vowel is deleted in the pronunciation of words if it is preceded
by a consonant and it is succeeded by a consonant that is further followed by
a vowel [12]. It is noted that this rule significantly improves the performance
of query search.

2. The phonemes are mapped to three LDAM subclasses initially as shown for
the word ‘business’ in Fig. 2. The abbreviations of the subclasses are given
in Table 1. For English and Bangla, the phoneme to LDAM mapping is kept
exactly same as the phoneme to LDAM mapping used in training of LDAM
MLPs. As mentioned earlier all Hindi and Telugu phonemes can also be
uniquely represented by this mapping.

3. The three LDAM subclasses for each phoneme are then expanded into 36
dimensional posteriorgrams (Fig. 2) in the following manner. Three matrices
consisting of zeros corresponding to LDAM posteriorgrams are generated.
The zeros are replaced with ones in the indices of the present subclasses in
the LDAM posteriorgrams. Instead of zeros, small positive random numbers
are found useful for representing probabilities of the absent subclasses. This
is because metrics like symmetric KL distance involve log function. The prob-
abilities of all subclasses are smoothed by mean filters of length lfilt along
time frames of all subclasses of the posteriorgram. It is ensured that the three
LDAM posteriorgrams sum up to 1 by normalization.
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Fig. 2. Posteriorgram generation for the text keyword ‘business’

The length of each phoneme (in terms of the number of frames) in the pos-
teriorgrams can be either fixed for all phonemes or it can be phoneme-specific.
We have experimented with both these configurations as explained below. Let
the number of phonemes in the text queries be denoted by n.

Fixed Phoneme Length. In this case the phoneme length is fixed. Let us
denote it as lfix. Therefore, dimensions of query posteriorgrams are (n× lfix)×
(dim(vow) + dim(cpos) + dim(cman)). The fixed phoneme length lfix is varied
from 5 to 11 in case of English to determine the optimum fixed length query.
The queries thus generated are used for Spoken Term Detection. The results are
shown in Table 5 for both the KL distance and the Dot product measure.

Table 5. Text query search results for English. Each phoneme has a fixed frame length
lfix

lfilt KL distance Dot product measure

lfix lfix

5 7 9 11 5 7 9 11

3 54.18 67.55 62.74 56.26 57.82 71.42 71.73 68.20

5 54.29 67.87 62.76 56.26 58.47 70.95 71.61 68.69

7 54.51 67.71 62.91 56.08 58.54 71.34 71.53 68.19

The observations are:

(a) The values 7 and 9 for lfix yield best results.
(b) The Dot product measure performs much better than KL distance.
(c) The mean filter length lfilt does not have any impact on the performance of

query search.

It was observed that the best lfix in case of different languages are different.
This observation may be explained by the hypothesis that phoneme durations
are language-dependent. We assume that the language of the queries is known



542 A. Popli and A. Kumar

Table 6. Text query search results in the case of fixed phoneme length are shown.
The results are shown with the best lfix (in parenthesis) in each language. The Dot
product measure is used for calculating cost in DTW algorithm

Language (best lfix) English(9) Bangla(7) Hindi(9) Telugu(7)

P@N(%) 71.61 62.10 61.24 31.36

priori. Therefore, P@N scores in case of fixed phoneme length are presented with
optimum lfix values for all the languages in Table 6. Since lfilt does not affect
the performance of text query search, it is randomly set to 5 for all experiments
involving text queries.

Variable Phoneme Length. In this case, the phoneme specific length lph of
each phoneme is determined from the training databases of English and Bangla.
The most commonly occurring phoneme length is extracted for each phoneme by
computing histogram of lengths of that phoneme. The minimum of the phoneme
lengths is used if the phoneme is common in the two languages. The phoneme
lengths from two languages are mostly similar with some exceptions. In case the
duration of the common phonemes is more than 3 frames, different phoneme
lengths are used for Bangla and English queries. In the case of variable phoneme
length, dimensions of posteriorgram are (

∑n
i=1 lph(i))×(dim(vow)+dim(cpos)+

dim(cman)), where lph(i) is the length of the ith phoneme in a query of n
phonemes.

Table 7. Text query search results in the case of phoneme specific length. Dot product
measure is used for calculating cost in DTW algorithm

Language English Bangla Hindi Telugu

P@N 73.07 61.17 53.24 31.32

Although the scores obtained by this method (Table 7) are close to the scores
in the best score performances in fixed phoneme length method, there are some
shortcomings of this method. First, the phonemes may have different lengths in
different queries due to co-articulation. Second, the lengths of common phonemes
may be different in different languages. These issues are addressed in the next
mode of query generation.

4.3 Combination of the Text Queries and the Spoken Queries

The technique presented here does not require the user to utter a query for
improving performance. The user may first use a text query to search the speech
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corpus. Any spoken version of the query may be chosen by the user from the
results returned from the system. To simulate experiments with this method, we
have utilized the spoken queries from Sect. 4.1. The text queries corresponding
to the best fixed length lfix are chosen for all the languages for the experiment
reported here. Posteriorgrams generated by text queries are aligned with the pos-
teriorgrams of sentences containing spoken queries. The aligned frames of pos-
teriorgrams of spoken and text queries are averaged to get new queries referred
to as combined queries in this work. The P@N scores of combined queries are
presented in Table 8. It may be noted that KL distance scores are better than
Dot product measure scores.

Table 8. Combined query search results for Indian languages in LDAM framework

Languages English Bangla Hindi Telugu

Dot product measure 66.73 53.67 57.62 37.41

KL distance 80.78 56.48 65.55 46.34

5 Discussion and Conclusion

The P@N scores of the spoken queries, the text queries and the combined queries
are presented in Table 9. The results are shown for the better measure (among
Dot product measure and KL distance) for computing DTW cost for each mode.

Table 9. Comparison of different modes of query generation for Indian languages in
LDAM framework

Query mode DTW cost measure English Bangla Hindi Telugu

Spoken KL distance 71.97 51.89 64.36 42.19

Text Dot product measure 71.61 62.10 61.24 31.32

Combined KL distance 80.78 56.48 65.55 46.34

Following conclusions can be drawn from the results:

1. The Dot product measure is better than the KL distance for text queries.
The KL distance works better for spoken queries and combined queries. This
is expected since probabilities in text queries are impulsive whereas the prob-
abilities in spoken queries are more distributed. The problem of text query
search boils down to sampling the probabilities of ideal subclasses in the eval-
uation speech. The ideal subclasses for a keyword are known a priori from
text query posteriorgram. The results indicate that Dot product measure is
better suited for sampling the probabilities of ideal subclasses.
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2. The LDAM posteriorgrams perform better than the phonemic posteriorgrams
(considered to be the state-of-the-art) for spoken query search if the language
of evaluation speech is different than training speech (Sect. 4.1).

3. Since we are not aware of any state-of-the-art text query search system in
multilingual posteriorgrams, the results of text queries are compared with
spoken queries in the LDAM system in Table 9. Surprisingly, text queries
perform much better than spoken queries in case of Bangla. In English the
scores are similar. Text queries perform slightly worse than spoken queries
in case of Hindi. The system is not trained with Hindi but it is trained with
Bangla which belongs to the same language family. Text queries perform worse
than spoken queries in Telugu probably because the LDAM posteriorgrams
are not trained with any Dravidian language.

4. Combined queries perform better than spoken queries for all the languages.
They are also better than text queries except Bangla language. Text posteri-
orgrams represent ideal phoneme sequence of a text query. The results imply
that increasing the probability of the ideal articulatory subclasses in spoken
query posteriorgrams increases the performance of query search.

6 Implications

There are several implications of this work in multilingual scenario:

1. To the best of our knowledge, this is the first study on searching text queries
in the posteriorgrams of multilingual speech. This will enable a search of
translations of the text queries in a mixlingual speech corpus. For example, if
a user wants to search ‘tree’, the text ‘tree’ can be mapped to the text query

by an English to Hindi dictionary. Phoneme sequence of ‘tree’ as well
as its translation (phoneme sequence : /p/ /ey/ /dxz/) can be searched.
This is possible because LDAM posteriorgrams uniquely represent phonemes
of English as well as Hindi phonemes like /dxz/ (rhotic version of /d/).

2. Out-of-vocabulary words can either be searched by spoken or by text queries.
Here it is worthwhile to mention that there is a one-to-one grapheme to
phoneme mapping in most of the Indian languages. Therefore, text queries
can be directly converted from text written in regional scripts to phoneme
sequences without using any word to phoneme dictionary.

3. Mispronunciations can often be modelled by rules in case of non-native speak-
ers, e.g., /sh/ is often pronounced as /s/ by Indian speakers. These mispro-
nunciations can be accommodated by generating different text queries for
different pronunciations. This provision is not possible with systems taking
only spoken queries.

4. The present framework also enables fusion of text and spoken queries which
leads to better results in majority of the languages.
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Abstract. The article covers approaches to automated sentiment analysis task.
Under the supervised learning method a new program was created with the help
of Doc2vec – a module of Gensim that is one of Python’s libraries. The program
specialization is short informal texts of ecology domain which are parts of
macropolylogues in social network discourse.

Keywords: Automated sentiment analysis � Social network discourse �
Deprivation � Supervised learning � Word embeddings � Russian

1 Introduction

The automated sentiment classification task is very relevant for opinion mining. Senti-
ment analysis is rapidly developing nowadays. Researchers need new instruments to put
automated text processing on a large scale. There are such methods developed by now as:
(a) rules- and lexicon-based analysis, (b) supervised learning, (c) unsupervised learning.

Lexicon-based sentiment classification is very popular at present. It forms the basis of
many massmedia monitoring systems which work upon positive and negative lists of
words – tonality dictionaries. The machine calculates representatives of which group
prevail. Lexicon-based analysis is usually rules-based: n-grams are processed in a dif-
ferent way, syntagmatic boundaries marked with punctuation characters are taken into
account as well as diminutives, augmentatives and negation. Beyond that a variation of
this method was developed according to which words play different role in text sentiment
formation (graph-theoretical models for Norwegian [2], for Russian [19]). Such algo-
rithms construct text graphs, rank nodes and compute word weights based on the senti-
ment dictionary and the word rank. The mentioned method found its practical application
in online Russian media monitoring systems such as Integrum1, Mediaology2, IQBuzz3,
SemanticForce4, PalitrumLab5 (for a review of the latter system see [12]).

1 www.integrum.ru/.
2 www.mlg.ru/.
3 www.iqbuzz.pro/.
4 www.semanticforce.net/.
5 www.palitrumlab.ru/.
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Nevertheless, lexicon-based sentiment analysis has its own weaknesses. First, a
word gets its expressive meaning only when it becomes a part of an utterance [1, 20].
Before this moment, while the word is only a part of the language system it cannot have
an expressive meaning even if it belongs to the emotive lexicon. Second, this method
gets stuck with polysemy, homonymy and idioms. Third, it ignores nonce words which
occur quite often in unofficial texts. Then, such systems are very vulnerable to errors
and misprints (though Thelwall et co. [18] made a smart effort to work it around). Last,
sentiment dictionary creation involves a lot of human resources, deep linguistic work.
That is why other algorithms of media monitoring should be developed.

POS-labelling and word recognition were confronted with a lot of pitfalls such as
polysemy, homonymy, idioms and their modifications, word coinage. A new step was
made in big text data processing with the creation of neural networkmodules (also known
as word embeddings or neural language models) Word2vec and Doc2vec by T. Mikolov
[9]. These modules were developed on the basis of R. Rehurek’s library Gensim [15]. No
labels, minimum preprocessing, a big scale of analyzed data – these are the advantages of
neural networks. Word2vec models work fine on micro-texts such as posts on Tweeter
[10, 17]. However, the results are not so encouraging on longer texts due to theword order
ignorance. Word2vec is an example of a popular bag-of-words method [16].

Baroni et al. compare the new method with the classic distribution semantic
models, or context-predicting with context-counting models, and gets empirical
demonstration of the former’s excellence [3]. Levy and Goldberg used dependency-
based contexts “as an alternative to the linear bag-of-words approach”. With the help of
parsing technologies they derived contexts based on the syntactic relations the word
participates in [8]. Because of the sentiment analysis popularity a lot of forums are
created to discuss this problem, for example [5, 21]. The program code described there
got development in our software solution.

Social network discourse (SND) has been under the spotlight of internet linguistics
since the end of the XX-th century [4]. For example, [7] suggested the term “massive
polylogue” under which “a multilingual and global comment thread following some
video” was meant. We make use of Potapova’s SND definition: “It is a special elec-
tronic macropolylogue, considering the relevant categories of its form, content and
functional weight” [12]. The mentioned categories include the following:

(1) The passport of the utterance (URL, data and time, the trigger article and its data,
the author of the utterance);

(2) The form type of SND (“distant, indirect, real-time (on-line) and put off-time
(off-line), single-vector – polyvector, monochronic – polychronic”);

(3) The function type of SND (“monothematic – polythematic, high contextual – low
contextual, action- or polemic-provoking – not action- or polemic-provoking”);

(4) The content type of SND (“informative with the sender’s point of view,
influencing, containing certain verbal means which can produce influence on
recipient of the message, provoking with a certain aim to commit specific actions
(particularly destructive, realized according to the “stimulus ! pragmatic reac-
tion in a form of specific destructive action” scheme), recipient’s consciousness
manipulation, aimed at a limited target group of users – aimed at an infinite
number of users”);
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The SND parameter system has been applied to the written as well as spoken
Russian language [13].

It is the linguistic manifestation of human deprivation that stands in the current
research‘s spotlight. The problem of deprivation study is broader than aggression
analysis as aggression is an instance (though a frequent one) of deprivation manifes-
tation. The notion was introduced into the sociology by T. R. Gurr [6]: it “is the
discrepancy between what people think they deserve, and what they actually think they
can get”. Meanwhile R. K. Potapova [12] was first to pronounce its influence on
“speech production and speech perception of written and spoken language”. Its role in
speech behavior lays in the following. The subsystems of human beings (such as
biological, physiological, sociopsychological, biomechanical, anthropophonical, cog-
nitological and cogitological subsystems) get into deprivated condition under internal
and external factors. They react to external stimuli and these reactions serve as stimuli
for the system of verbal, extraverbal and paraverbal behavior. That is, they influence
“speech production and speech perception of written and spoken language” [12].

2 Methods

Under our scrutiny was Russian ecology-focused social network discourse. Its main
feature is informality which leads to high level of word coinage and colloquial
grammar. This makes lexicon- and rules-based method of sentiment classification
ineffective. Besides, the macropolylogue (Potapova’s term, [11]) discourse structure
makes users to write short utterances as if creating a big shared text. Due to this fact
unsupervised learning cannot work either. Thus, the empiric material characteristics
dictate conditions on our research instrument.

The empiric material was online discussions of Russian ecologic problems. Being a
preliminary project, the sample is rather small (about 1,5 thousand utterances, each
containing 1-5 sentences). Our goal is to test the innovative classification algorithm
while the sample enlargement is the task of future research. Each utterance was
described according to Potapova’s SND parameters system [11]. Thus was formed the
annotated database. The Doc2vec model constructs word- and utterance-vectors which
are put into a SGD-classifier. Each word has the same word-vector in different texts of
the database while the utterance-vectors are unique. The annotated database is divided
into the training and testing subsets at the ratio 4:1. The model builds word-vectors for
the training subset and then tries them on the testing subset. In such manner supervised
learning is implemented. As one can see, neural networks are not attached to words’
dictionary definitions that is why neither homonymy nor polysemy problems arise.

The main difference of the developed product is the ability to maintain not only
binary classification (positive – negative) but also several levels of classification. This
allows to investigate the influence of Potapova’s SND parameters system [11] on the
classification accuracy. For example, the deprivation type role is under examination
(see further for the term elaboration). On the training stage each utterance gets a label
of either positive or negative tonality according to the annotated database. Then the
same utterance gets another label of either private or stratified deprivation type. The
vectors are built and applied to the testing subset. After that the classification accuracy
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is counted and the results are visualized with the help of a confusion matrix. The
classification was run this way with every SND system parameter on the same empiric
material and the resulting accuracies were compared.

In this research Potapova’s SND parameter system is amplified with another
content type of SND, namely, deprivation type. We declare that there are two types of
deprivation: private and stratifying. Private deprivation arises when a person sees the
cause of their problem in their own abilities/disabilities, action/inaction etc. Stratifying
deprivation exists if a person believes that the cause of their problem lies in the society
structure or some social circumstances – in other words, because of the place that
person has in the society. An example of private deprivation happens when someone
can be dissatisfied with their salary because their neighbor has a similar job and earns
more. If a person is dissatisfied with their salary because (to the best of their knowl-
edge) everyone of this profession has inadequate salary in this region – then we meet a
case of stratifying deprivation. This SND parameter is significant for sentiment clas-
sification task because it has a pronounced impact on human verbal behavior. A person
suffering stratifying deprivation is very likely not only to share their feelings with
others but also to try to organize (or participate in) collective actions aimed at the
settlement of the problem. This implies a distinguishing type of discourse with certain
vocabulary and syntactic structures.

3 Experiments

As was written above, neural networks can process colossal amounts of texts without
misprints and error corrections usual for lexicon- and rules-based methods. No doubt,
one need an annotated database to run supervised learning first. But as far as the word
vectors are built unannotated data can be processed in disregard for size. The text
volume growth stimulates classification accuracy though the dependency is not linear
what is demonstrated on Fig. 1.

Fig. 1. The influence of utterances number upon classification quality
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Two different classifiers were compared: logistic regression and k mean. The best
result (98%) was achieved with logistic regression. On the other hand, k mean
neighbors could not surpass 70%. Furthermore, the first classifier works better for
negative utterances of stratifying deprivation (SD) while the other one – for utterances
of private deprivation (PD). As we are more interested in stratifying deprivation the
logistic regression classifier was chosen for this research. The confusion matrix was
applied for visualization of classifiers efficiency (for illustration see Table 1) because
its representation of rightly and wrongly classified cases is the most clear.

In the manner described in the previous section the classification was run with
every SND system parameter on the same empiric material and the resulting accuracies
were compared. As the parameters are grouped in a binary opposition, one half of them
is called active parameters while the other – inactive. The analysis shows that the
parameters have different influence on sentiment classification accuracy. Figure 2
shows cases of classification which were successful under active parameters. Corre-
spondingly, Fig. 3 shows cases of classification which were effective under inactive
parameters. There are two of them with most promising results: monochronic/
polychronic (91%), private/stratifying deprivation (92%).

The best parameters for negative test recognition are monothematic/polythematic
and private/stratifying deprivation. This fact serves as a validity evidence of depriva-
tion type emphasizing. The confusion matrix for the deprivation type classification is
shown below (Fig. 4). Table 2 gives precision, recall and F-measure for the best
parameters (not the classifier in whole).

Table 1. The comparison of two classifiers

Logistic regression, % k mean, %
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Pos. 25 75 0 25 75 0
Neg. PD 0 0 100 43 43 14

SD 2 1 98 16 14 70

Fig. 2. Successful classification under active SND parameters
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These results can be compared to the F-measure for negative sentences achieved by
Thelwall [18] – 72,8%, in [10] 88,93, in [17] – 86,58. On the other hand, it should be
admitted that there are groups that are poorly recognized by our classifier. This makes
the classifier whole accuracy not so satisfying (54%).

Fig. 3. Successful classification under inactive SND parameters

negprivate

negstratified

positive

True labels:

Predicted labels:

negprivate negstratified positive

Fig. 4. Confusion matrix for deprivation type classification
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4 Conclusion

This research has confirmed that neural network models are quite advantageous for
language processing in the framework of supervised learning because they do not
demand POS-tagging and error correction as preprocessing.

There is no SND parameter which improves results for positive utterances as well
as for negative. Some of them are better for positive utterances detection (such as
auditory and provocative) and the others – for negative (contextuality, functions,
monothematic, deprivation type). However, this experiment showed that word
embeddings are suitable for sentiment classification of flexional languages, for exam-
ple, Russian.

The SND parameter system elaborated by Potapova [11–14] makes a profound step
in the social network discourse study. It reflects such key characteristics of SND as the
contents (what is said), form (how it is said) and function (why it is said). This enables
the SND formalization for automated processing and harnesses the achievements of
semantics, stylistics and pragmatics.

The amplification of this system with the deprivation type parameter allows to filter
a certain kind of discourse due to the fact that people try to find the collective solution
to society problems. This kind of discourse is relevant for opinion mining systems.
Thus, a new, more effective and flexible method is suggested for this task instead of
lexicon- and rules-based monitoring systems.

5 Prospects of Investigation

As neural networks are not bound to dictionaries they are crossdomain (that was
confirmed in [15–21]). Further investigation can be related with various domains, such
as discussions of confessional, political, economic problems etc. Besides, the volume
of empiric material will be increased. Methodological concepts of the project are
described in [11–14].

Acknowledgement. This research is supported by Russian Science Foundation, Project
№ 14-18-01059. The head of the project – Potapova Rodmonga Kondratjevna.

Table 2. Precision, Recall and F-measure for optimal parameters

Parameter Precision Recall F1

Stratified deprivation 96,85 92,67 95,96
Monothematic discourse 99,09 91,29 94,83
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Abstract. In this paper, we have been investigating an approach to a
speaker representation for a diarization system that clusters short tele-
phone conversation segments (produced by the same speaker). The pro-
posed approach applies a neural-network-based descriptor that replaces
a usual i-vector descriptor in the state-of-the-art diarization systems.
The comparison of these two techniques was done on the English part
of the CallHome corpus. The final results indicate the superiority of the
i-vector’s approach although our proposed descriptor brings an addi-
tive information. Thus, the combined descriptor represents a speaker in
a segment for diarization purpose with lower diarization error (almost
20% relative improvement compared with only i-vector application).

Keywords: Neural network · Speaker diarization · i-Vector

1 Introduction

For a majority of speech processing tasks is convenient to work with a sig-
nal containing only one voice. In the real world, this condition is very difficult
to fulfill. So, the Speaker Diarization (SD) system is necessary to determining
“Who spoke when” without any prior information about the number of speak-
ers and their identities. The process of diarization divides an input signal and
merges these segments into clusters corresponding to individual speakers [23,24].
Another approach (not used in this paper) combines the segmentation and the
clustering step [6,28].

The main problem in SD is how to describe the segments of the signal for
subsequent clustering. Ideally, each segment consists of only one speaker. In
recent years, i-vector approach has gained popularity in the Speaker Verification
(SV) task [4,8] as well as in SD [9,35].

For many years, Neural Networks (NNs) have been successfully used in the
field of speech recognition generally [7], and nowadays NNs are used extensively
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also in SD systems: in the segmentation task [13,15] or in the clustering process
[14,20]. In paper [25], NNs are adopted to replace unsupervised Universal Back-
ground Model (UBM) for an accumulation of statistics in the i-vector generation
process.

In this paper, we propose the NN-based descriptor as a representation of a
speaker in an acoustics data segment. Similar approaches using NN were adopted
to the representation of the speaker for the SD task in [30,31], where the NN
is used for replacing the Mel Frequency Cepstral Coefficients (MFCCs) features
or very recently in [2], where the triplet loss paradigm was used for training the
NN descriptor with extremely short speech turn. This speaker representation
must be closer to the representations of the segments containing a speech of
the same speaker than to the other segments. In the spontaneous conversation,
the continuous speech of one speaker (one segment) could by very short, i.e.
much less than ten seconds [35]. Our proposed NN-based descriptor creates his
own features and accumulates the statistics from very short speech segments
(appearing in the telephone speech diarization task).

2 Diarization System

Our SD system consists of four modules (see Fig. 1). These are described in detail
in the following subsections.

Fig. 1. The schema of the diarization system

2.1 Segmentation

The input conversation (audio signal) is divided into short segments. The dura-
tion of the segments should be long enough to represent the contained speaker
and simultaneously to avoid the risk of a speaker change being present within
the segment, as may happen in longer segments. Usually, the Speaker Change
Detection (SCD) that allows obtaining segments with only one speaker is applied
for this purpose [1,23]. However, in a spontaneous telephone conversation con-
taining obstacles as very short speaker turns and frequent overlapping speech,
diarization systems often omit the SCD process and use a simple constant length
window segmentation of speech [24,26]. This two principles of segmentation (con-
stant length window and SCD based on GLR distances or Convolutional NN) is
compared in our papers [15,32]. The results of both these approaches are very
similar. Thus, only the segmentation with constant window length is applied in
this work.
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2.2 Segment Description

After a recording is segmented, a speaker representation is computed for each
segment. For this purpose, the i-vectors representation of the speaker in the
acoustics data borrowed from SV is used in recent SD systems [24,35]. The i-
vector representation can handle relatively short speaker utterances. For each
conversation segment the supervector of statistics is accumulated [33] and sub-
sequently, the i-vector is extracted from this supervector. For the i-vector extrac-
tion, the Factor Analysis (FA) approach [17,18] (or extended Joint Factor Analy-
sis (JFA) [16] to handle more sessions of each speaker) is used for dimensionality
reduction of the supervector of statistics. In Sect. 3 our proposed approach to
segment description based on NN is described.

When segment representation computation works perfectly, a representation
is closer to the segments which contain the same voice than to the segments which
contain some other voice, i.e. the representation makes clusters. But the low
amount of speaker’s data in the segments disturbes this presumption. Because
of the differences among all conversations (and the similarity inside one conversa-
tion), we also compute a conversation dependent Principal Component Analysis
(PCA) transformation, which further reduces the dimensionality of the i-vector.
The dimension of the PCA latent space is dependent on the parameter p, the
ratio of eigenvalue mass [27].

2.3 Clustering and Resegmentation

The segments representations are clustered in order to determine which segments
are produced by the same speaker. Since the homogeneity of one segment can
not be ensured, it is convenient to refine the final diarization by resegmentation
based on a smaller unit then segments. The system iteratively performs the reseg-
mentation applying a Gaussian Mixture Model (GMM) representation of each
cluster and redistributing of the whole conversation frame by frame according
to the likelihood of the GMMs.

3 Neural Network Descriptor

In order to verificate the speaker or to resolve another similar task such as our
main problem, special statistics that describe relevant speaker are computed
from a recording. A recurrent NN could be employed to compute such statistics.
But, because a recurrent NN training has some issues (especially it has high
computation demands), a standard feed-forward NN was used. A similar system
for SV task was introduced in our paper [34].

Naturally, a standard feed-forward NN gives exactly the same number of vec-
tors as it has on its input. To compute one single vector of speaker statistics,
an average of all vectors was computed. All parts of a recording are not equally
relevant. In particular, parts where is no activity of speakers vocal tract are
certainly not relevant at all. Furthermore, for one speaker statistics are relevant
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another parts than for another speaker statistics. Therefore, instead of a sim-
ple average, a weighted average where each statistic has own series of weights
was computed. The weights could be computed as means of separated NNs. But
in this case, some information could be surely computed redundantly. To pre-
vent this redundancy, one single NN with two output layers was trained instead
training of two separated NN.

Our speaker descriptor computes the square of the euclidian distance between
two vectors of speaker statistics (i.e. results of the weighted average) and then
a sigmoid function is applied. The resultant metric range is obviously in the inter-
val between zero and one. In the training process, an inclination of the sigmoid
function was fixed. Only a bias have been trained by means of backpropagation
in the same way as all other parameters.

No part of the descriptor is trained separately. Naturally, targets in the train-
ing process were ones (for matching pairs of recordings) and zeros (otherwise).
The used criterion was modified mean square error. The modification lies in
different weights for different types of errors. The criterion ε is given by the fol-
lowing equation

ε =
∑

i

wi(yi − ti)2, (1)

where yi denotes i-th output, ti denotes i-th target, wi = 100 when ti = 1 and
yi < 0.5 or ti = 0 and yi > 0.5. Otherwise, wi = 1. This approach emphasizes
errors which lead to a classification error.

As we found in our preliminary experiments, using weighted average brings
one serious risk. This risk is a collapse of training algorithm. In such collapse,
weights choose only one or very small number of feature vectors to compute
statistics. These statistics are nearly irrelevant then. To prevent the training
process from these collapsing, two systems with tied parameters were trained.
The first one with the plain averaging and the second with the weighted averag-
ing. The first one has been deviating the second one from collapsing. A schema
of the resultant speaker descriptor is displayed in Fig. 2.

The mentioned NN computes the speaker statistics from features vectors.
The standard feature extraction methods such as Linear/Mel Frequency Cepstral
Coefficients (LFCCs/MFCCs) might lose a lot of information about speaker iden-
tity. Hence, another NN-based feature extraction method was applied. An input
of an NN for feature extraction is the absolute spectrum that is very close to
the raw signal. The layers used in the described NN-based feature extraction
method were not trained to make an LFCCs approximator, but all layers in
the whole system for speaker description were randomly initialized and trained
simultaneously after the initialization. For testing purposes, only one part of the
trained NN was used. The output y is considered to by the vector describing the
speaker used in SD system.

The delta and the delta-delta coefficient computation is likely beneficial.
However, mean or even variance normalization could be inappropriate in the case
of speaker verification. Thus, the original features were not replaced with a nor-
malization but were joined together with delta and delta-delta coefficients, mean
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Fig. 2. The neural-network-based speaker verification system. After the feature extrac-
tion, the statistics (y) are accumulated and in the case of the training process two
different decisions (D and D′) about the similarity between recording A and B are
made. For the testing purpose, only y is used as a speaker descriptor (speaker vector)

normalization (MN), variance normalization (VN) with new delta and delta-
delta coefficients into a new larger feature vector. Moreover, splicing that makes
long-temporal-feature vectors was applied. The resultant number of features is
too high. Hence, the last fully connected layer was applied to reduce the feature
dimension. The NN-based feature vector computation is shown in Fig. 3.

Fig. 3. The neural-network-based feature vectors extraction

The difference between our approach and the one introduced in [2,10] lies
in the fact that we using these DNN features instead of precomputed MFCCs.
Meanwhile in [30,31], the DNN features are used with MFCCs as a stream in an
GMM/HMM diarization model.
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3.1 Comparison NN vs. i-Vector Approach

The NN approach to the speaker descriptor has significantly lower computa-
tional and memory demands in comparison with the i-vector extraction process
(parametrization, statistics accumulation, FA application).

Both processes produce a vector describing the speaker. Thus, it is possible
to combine both descriptors by simple concatenating two vectors into one final
vector describing the speaker.

4 Experiments and Results

In our experiment, two described approaches to representing the speaker in each
segment of conversation for clustering these segments for diarisation are exam-
ined. We compared the state-of-the-art SD system that uses the i-vector based
descriptor and SD system that uses our proposed approach applying the NN-
based descriptor. The result of the combination of these two principles is also
given.

The experiment was carried out on telephone conversations from the English
part of CallHome corpus [3] (two channels have been mixed into one), where
only two speaker conversations were selected (so the clustering can be limited to
two clusters), this is 77 conversation each with about 10 min duration in a single
telephone channel sampled at 8 kHz.

The SD system that is the same as in our papers [15,32] uses the feature
extraction based on Linear Frequency Cepstral Coefficients (LFCCs), Hamming
window of length 25 ms with 10 ms shift of the window. There are 25 triangu-
lar filter banks that are spread linearly across the frequency spectrum and 20
LFCCs were extracted. Added delta coefficients extend the feature vector to a
40-dimensional feature vector. Instead of the voice activity detector, the refer-
ence annotation about missed speech was used. For segmentation, only 2-second
window with 1-second of overlap was used. The i-vector extraction system was
trained using the following corpora: NIST SRE 2004, NIST SRE 2005, NIST SRE
2006 speaker recognition evaluations [19,21,22] and the Switchboard 1 Release
2 and Switchboard 2 Phase 3 [11,12]. The number of Gaussians in the UBM
was set to 512. The latent dimension (dimension of i-vectors) in the FA total
variability space matrix in the i-vector extraction was set to 400. Finally, the
dimension of the final i-vector was reduced by conversation dependent PCA
with the ratio of eigenvalue mass p = 0.5. Since we have limited the problem to
conversations with only two speakers, we applied for segments clustering only
K-means algorithm with cosine distance.

For the NN training, the NIST-04,05,06 corpora were used and all recordings
were cut up to 2-seconds long pieces. All pieces with too low energy (i.e. pieces
which included a significant amount of silence) were excluded from the training
process. The dimension of the NN input is 128, hidden layers have 1024 neurones
and the dimension of the NN output is 64. The dimension of the feature vector
is 40. Training process was implemented utilizing The Theano toolbox [29] that
allows complicated gradient propagations and a GPU usage with almost no effort.
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For evaluation of our approach, the Diarization Error Rate (DER) was used
as described by NIST in the RT evaluations [5], with 250 ms tolerance around the
reference boundaries. DER combines all types of error (missed speech, mislabeled
non-speech, incorrect speaker cluster). In our experiments, a correct information
about the silence from the reference annotation were used and so our results
represent only the error in speaker cluster. The comparison of the examined
systems is shown in Table 1. The experimental results of the two approaches
to the speaker description indicate that the proposed approach using the NN-
based descriptor brings some new information about the speaker in the short
segment in addition to the i-vector. The result of the NN-based approach do
not overcome the result of the i-vector descriptor, but the combination gets
significant improvement in DER.

Table 1. DER [%] for SD system with the i-vector speaker representation, the NN
speaker representation and the combination of these two representations

Descriptor DER [%]

i-vector 9.59

NN 11.20

i-vector + NN 7.72

5 Conclusions

In this work, our goal was to propose and investigate a novel technique to rep-
resent speaker information available in the short segment (of the conversation
provided to the diarisation system) for further clustering. The NN were trained
to gain a small vector (the essence of the speaker) from the short acoustics data
presented to the net. The final vector representation must be as similar as pos-
sible to the representations of another segment containing a speech of the same
speaker and most diverse to the others. This method of the speaker description
was compared with the i-vector descriptor and both methods were tested in
the speaker diarization system. The test results of these two approaches show
that the i-vector approach leaded to a better performance, but the NN brings
new useful information about the speaker that i-vector approach did not obtain.
Hence, the combination of both these descriptors outperforms i-vector approach.

Acknowledgments. This research was supported by the Ministry of Culture Czech
Republic, project No. DG16P02B048.
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Abstract. This paper proposes novel features based on linear prediction of
temporal phase (LPTP) for speaker recognition task. The proposed LPTC fea-
ture vector represents Discrete Cosine Transform (DCT) (for energy compaction
and decorrelation) coefficients of LP spectrum derived from temporal phase of
speech signal. The results are shown on standard NIST 2002 SRE and
GMM-UBM (Gaussian Mixture Modeling-Universal Background Modeling)
approach. A recently proposed supervised score-level fusion method is used for
combining evidences of Mel Frequency Cepstral Coefficients (MFCC) and
proposed feature set. Performance of proposed feature set is compared with
state-of-the-art MFCC features. It is evident from the results that proposed
features gives 4% improvement in % identification rate and 2% decrement in %
EER than that of standard MFCC alone. In addition, when the supervised
score-level fusion is used, identification rate improves 8% and EER is decreased
by 2% indicating that proposed feature captures complimentary information than
MFCC alone.

Keywords: Linear prediction (LP) spectrum � Temporal phase � Speaker
recognition � Score-level fusion

1 Introduction

Speaker recognition is a biometric system used to define a person’s identity from their
speech data [1]. Application of the speaker recognition system includes security and
verification services, banking, forensics etc. In order to implement effective speaker
recognition system, it is necessary to capture speaker-specific information from the
speech signal. Various types of features are proposed to extract the information from
speech signal. Features are divided mainly in four types viz. (i) short-time spectral
features like MFCC (Mel Frequency Cepstral Coefficients) [2], LPCC (Linear Pre-
diction Cepstral Coefficients) [3] and CFCC (Cochlear Filter Cepstral Coefficients) [4].
These features are easy to extract and very short amount of data is required to extract
the features from it. Therefore, short-time spectral features are most commonly used in
many speaker recognition systems. (ii) voice source features derived from Glottal
Closure Instants (GCIs) or epoch locations to represents the source characteristics from
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speech signal. (iii) spectro-temporal and prosodic features, which are derived from
rhythm, pitch, duration and other segmental or superasegmental-level information.
These features are extracted from much longer duration segment to characterize the
speaking style of speaker. (iv) high-level features are derived from phonetic, semantics
and lexical part of speech signal. These features requires very complex front-end for
computing the features from the speech signal [1].

Because of simplicity of extraction and good efficiency, short-time features are
most commonly used. From short segments of speech signal, most features are
extracted using magnitude spectrum of speech signal. However, phase spectrum is also
having equal importance in perception of speech signal. The importance of phase in
speech signal is briefly described in [5]. Several approaches are developed to extract the
features through phase of speech signal. In [6], modified group delay function is
calculated from speech signal for speaker recognition task. However, an assumption of
minimum-phase nature of speech signal is made, which limits the results. Feature
extraction from analytic phase of speech signal is reported in [7] for speaker recog-
nition. Features from LP residual phase are combined with MFCC in [8] for improved
speaker recognition system. Features from TEO phase is combined with MFCC for
speaker verification task in [9].

In [10], features based on temporal phase are extracted. Temporal phase of speech
signal is modeled with all pass modeling and can be used to extract feature known as
All Pass Cepstral Coefficients (APCC) which are then used for speaker verification
task. Epoch locations are extracted from APCC in [11], which gives an idea of ability
of temporal phase for capturing source-based information. In [12], LPC of temporal
phase is used for building the speaker recognition system. This paper gives further
modification on the features proposed in [12].

Rest of the paper is organized as follows: Sect. 2 presents details of proposed
feature extraction algorithm and effectiveness of proposed feature extraction method.
Section 3 gives details about experimental setup and results. Finally, Sect. 4 concludes
the paper along with future research directions.

2 Linear Prediction of Temporal Phase (LPTP) Features

Figure 1 shows the basic block diagram for proposed Linear Prediction of Temporal
Phase (LPTP)-based feature extraction algorithm.

Fig. 1. Basic block diagram for extracting LPTP feature set
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Feature extraction component in any speaker recognition system is the main
building block. The efficiency of the entire system mostly dependent upon the effec-
tiveness of speaker-specific feature extracted from speech signal. To extract the tem-
poral phase from speech signal, it is necessary to know the Fourier representation of
speech signal x n½ �: In a Fourier-domain:

X jxð Þ ¼
X1
n¼�1

x n½ �e�jxn: ð1Þ

Magnitude and phase representation can be written from Eq. (1) as:

X jxð Þ ¼ XðjxÞj jej] XðjxÞj j: ð2Þ

Temporal phase now can be given as magnitude suppressed phase spectrum, which
can be written as:

y n½ � ¼ IFT
XðjxÞ
XðjxÞj j

� �
: ð3Þ

Note that, the above equation is valid only for XðjxÞj j 6¼ 0. This temporal phase is
totally different from Fourier phase and it represents the value of phase with respect to
time. Temporal phase is free from phase unwrapping problem unlike Fourier phase
[11]. Thus, it requires less complex computations.

To extract the LPTP features, speech signal is first divided into 25 ms duration
segment with 10 ms overlap. This is because non-stationary nature of speech signals.
The temporal phase of speech signal is then calculated using Eq. (3) for each segment.
As represented in Fig. 1, the Linear Prediction Coefficients is extracted from each this
temporal phase. In earlier research, the LPC of temporal phase is taken into account as
a feature vector. Database used in this experiment contains the sampling frequency of
8000 Hz, LPC of 12-dimensions are calculated from temporal phase. These LPC
coefficients can be written as {a1; a2; . . .:a12g. from these coefficients, transfer function
HðzÞ for all-pole model can be written as:

H zð Þ ¼ 1
1� a1z�1 � a2z�2 � a3z�3 � . . .a12z�12 : ð4Þ

The frequency response of this transfer function is calculated for each frame, which
captures the speaker-specific information from the speech signal. In order to do energy
compaction and decorrelation, the DCT of frequency response is taken. After taking the
DCT the LPTP coefficients can be written as:

LPTP kð Þ ¼
XN
n¼1

H x nð Þð Þcos kðn� 0:5Þ
N

p

� �
: ð5Þ
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Here, N is number of DCT coefficients and H xð Þ is the frequency response of HðzÞ.
From Eq. (5), 12-D feature vectors of LPTP are calculated which then can be given as
input of modeling system.

Figure 2 shows the effectiveness of proposed feature set for capturing
speaker-specific information. From Fig. 2(b) and (c), it can be seen that frequency
response of T-Phase LPC for two different speakers gives different characteristics
(indicated by doted curves) and that is captured through proposed feature.

3 Experimental Results

3.1 Experimental Setup

Speaker recognition system is built using NIST 2002 SRE cellular database with one
speaker detection test conditions [12]. It contains 330 training speech segments, each of
2 min duration and 3564 test segments with 15 to 45 s duration. 12-D feature vectors
for each training and test segments are calculated and feature vectors of training data
are given to the input of modeling algorithm. Standard adaptive Gaussian Mixture
Modeling- Universal Background Modeling (GMM-UBM) is used to model each train
speaker [13]. UBM is developed using feature vectors of all training data. The training
mean vectors are adapted from UBM using MAP (Maximum a Priory) adaptation.
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Fig. 2. (a) Original speech signal, (b) frequency response of T-Phase LPC for word “zero” of
speaker 1, (c) frequency response of T-Phase LPC for word “zero” of speaker 2
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Finally, log-likelihood ratio is calculated and true and false scores are computed for
each trial. Each test segment is tested against 11 different training models out of which
only one model is genuine. Some cases may contain none of genuine training model.
Total 39204 trials are performed, out of which 2977 are genuine and 36227 are
imposter trials.

3.2 Performance Measures

In this paper, performance of speaker recognition system is measured mainly from %
EER (Equal Error Rate), % IR (Identification Rate) and optimum DCF (Detection Cost
Function). To state the statistical importance of performed experiment, 95% confidence
interval is also calculated. Miss probability and false alarm probability can be calcu-
lated first to calculate EER:

Pfa hð Þ ¼ #fImposture trials with score[ hg
#ftotal imposture trialsg ; ð6Þ

Pmiss hð Þ ¼ #fgenuine trials with scores� hg
#ftotal genuine trialsg : ð7Þ

% EER is given from the point where miss probability and false alarm probability
becomes equal. It defines the threshold values for speaker verification system. Iden-
tification rate can be given as:

% IR ¼ #Number of truly identified speakers
#Total number of speakers

� 100: ð8Þ

For NIST 2002 SRE, Cmiss ¼ 10, Cfa ¼ 1 and Ptarget ¼ 0:01 are taken to calculate
optimum DCF. The value for opt. DCF is calculated as:

CDet ¼ CMiss � PMissjTarget � PTarget þCFA � PFAjNonTarget � 1� PTarget
� �

: ð9Þ

95% confidence interval gives statistical significance of experimental results [15]. It
defines the range where the accuracy of experiment is likely to come most probably.
The smaller range of confidence interval gives more better and accurate results of
identification rate. The range of interval can be given as [P + IR, P − IR], where P can
be written as:

P ¼ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IRð100� IRÞ

NðTotal Number of TrialsÞ

s
: ð10Þ

3.3 Results

Table 1 shows the experimental results obtained from LPTP and MFCC features. In
addition, it shows result of T-phase features which are derived recently from LPC of
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temporal speech and reported in [12]. It can be seen from the Table 1 that % IR for
LPTP is very low compared to MFCC individually, however, when proposed LPTP
feature set is fused with MFCC, the identification rate increases by 4%. Furthermore,
95% confidence interval deviation is much lesser in fused feature set. Table 1 also
shows the effectiveness of proposed LPTP features over T-Phase feature proposed in
[12] with % IR and % EER.

Here, the fusion of feature is done with generalized score-level fusion given by:

kfused ¼ akMFCC þ 1� að ÞkLPTP: ð11Þ

The value of a is taken as 0.7, which gives maximum results. Though, this gives
more weights to MFCC features, proposed LPTP features also captures
speaker-specific information from speech signal which MFCC cannot capture. Thus,
fusion gives better result than standard MFCC alone. Result from the Table 1 shows
that fusion done with supervised score-level fusion method gives 8% more identifi-
cation accuracy than that of MFCC feature alone. However, it does not decrease the %
EER and optimum DCF value, but significant improvement over % identification rate
improves the recognition ability of speaker recognition system.

Figure 3 shows Detection Error Tradeoff (DET) curve for all three performed
experiments [16]. It can be seen from the graph as well as from Table 1 that. % EER of
MFCC is 17.77, whereas fusion gives EER of 15.89 which is 2% lesser than that of
MFCC alone. This shows the effectiveness of proposed LPTP feature over standard
MFCC features. Optimum DCF values are also reported and that also gives results
specifying the more efficiency of fused features. 95% confidence interval is also
reported and it gives lesser deviation for fusion of MFCC and LPTP than MFCC alone.
It can be seen that the range of 95% confidence interval is very small, which gives
statistical significance of experimental results. Results also report that the proposed
fusion gives more % IR and less % EER than fusion of MFCC and T-Phase feature set.

Table 1. Effectiveness of LPTP features for NIST 2002 SRE database

Feature set % IR 95% conf. interval % EER Opt. DCF

T-Phase [12] 56.16 (55.67–56.65) 39.74 0.1000
Proposed LPTP 58.45 (57.96–58.93) 21.93 0.0893
MFCC 72.62 (72.18–73.06) 17.77 0.0683
MFCC + T-Phase [12] 76.18 (75.76–76.60) 16.09 0.0627
MFCC + LPTP* 76.28 (75.86–76.70) 15.89 0.0652
MFCC + LPTP# 80.82 (80.43–81.20) 17.33 0.0753

* With linear opinion pool method
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4 Summary and Conclusions

The speaker recognition studies represented in this paper gives effectiveness of pro-
posed LPTP features over standard MFCC. It can be concluded from this study that
proposed LPTP features are able to capture speaker-specific characteristics which is
complementary to the MFCC and hence combining evidences of MFCC and LPTP
gives more efficient speaker recognition system. Score-level fusion of MFCC and
LPTP features gives more better results than fusion of MFCC and T-Phase features in
terms of both % IR and % EER. It can be also observed from this study that LPC of
temporal phase is more effective than LPC of speech and thus shows the effectiveness
of temporal phase to capture speaker-specific information. Future research of this work
will be directed toward robustness evaluation of proposed LPTP feature set under
various noise or signal degradation conditions. Various score normalization technique
such as Z-norm and T-norm will be explored for much better performance.
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Abstract. In this paper, we propose novel phase encoded Mel cepstral
coefficients (PEMCC) features for Automatic Speaker Verification (ASV)
task. This is motivated by recently proposed phase encoding scheme that
uses causal delta dominance condition (CDD). In particular, we got on an
average of 80% reduction in log-spectral distortion (LSD) for reconstruc-
tion error compared to its magnitude spectrum counterpart, using CDD
scheme. This result indicates that phase encoded magnitude spectrum
is having better reconstruction capability. The experiments of proposed
PEMCC features are carried out on standard statistically meaningful
NIST 2002 SRE database and the performance is compared with base-
line MFCC features. Furthermore, score-level fusion of MFCC+PEMCC
features gave better results for GMM-UBM-based system, i-vector prob-
abilistic linear discriminant analysis (PLDA)-based system and i-vector
Cosine Distance Scoring (CDS)-based system over MFCC and PEMCC
features alone. This illustrates, the proposed PEMCC features capture
complementary speaker-specific information.

Keywords: Speaker verification · Causal delta dominance · Phase
encoding · i-Vector · Cosine distance scoring · Probiblistic linear
discriminant analysis

1 Introduction

Automatic Speaker Verification (ASV) is a task in which machine is used to ver-
ify a speaker’s claimed identity from his or her speech sample [3]. Every speaker
is having some unique characteristic traits in his or her voice and these charac-
teristic traits are known as features. These features play very important role in
Automatic Speaker Verification (ASV). Now-a-days most of the ASV systems
use features extracted from magnitude spectrum of speech signal such as mel
frequency cepstral coefficients (MFCC), linear prediction cepstral coefficients
(LPCC). However, both magnitude and phase spectra characteristics are impor-
tant for speaker verification. Recently, Shenoy et al. have proposed the idea of
exact phase retrieval in principal shift-invariant spaces [12,13]. They have iden-
tified a class of continuous-time signals that are neither causal nor minimum
c© Springer International Publishing AG 2017
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phase and yet guarantee the retrieval of exact phase. In [11], a new technique to
encode a phase of a signal in magnitude spectrogram by satisfying the condition
of delta dominance was proposed. Motivated by this phase encoding technique,
we proposed novel phase-based features called as Phase Encoded Mel Cepstral
Coefficients (PEMCC) that can be used to verify a claimed speaker’s identity
from a speech signal.

In [10], we have proposed these features for the classification of natural vs.
Spoofed speech in the context of speaker verification problem, i.e.,as a possible
countermeasure for voice biometric attacks. In particular, we got very encour-
aging results using proposed PEMCC features and its score-level fusion with
state-of-the-art MFCC features (approximately 14.54% reduction in EER w.r.t
MFCC alone). This encouraging results motivated us to investigate possible
discrimination capability of proposed features for actual ASV task. Hence, in
this paper, we attempt suitability of these novel countermeasures as features
in generic ASV system on statistically meaningful NIST SRE 2002 corpus [6].
In our earlier work, GMM-based classifier was used in spoofed speech detection
task. In this paper, we have explored the effectiveness of proposed feature set
on three ASV systems: classical GMM-UBM-based ASV system, state-of-the-art
i-vector-based ASV system with CDS and PLDA as classifier. Performance eval-
uation of PEMCC features is done on NIST SRE 2002 database [6] for all three
ASV systems and the results were compared with the baseline MFCC features.

The rest of the paper is organized as follows: Sect. 2 describes phase-encoded
speech spectrogram. Section 3 presents the details of PEMCC feature extraction
scheme. Section 4 describes briefly the speaker verification system. The experi-
ments and results are presented in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Phase-Encoded Speech Spectrogram

Fourier transform (FT)-based phase information is important to generate an
intelligible speech. In general, the speech signal is a mixed phase [8]. Hence, if
the speech signal is reconstructed using only from the magnitude spectrum, only
the minimum-phase component of the speech signal can be recovered [7]. Since
the magnitude spectrum does not contain phase information, phase spectrum
does not contain magnitude information of the signal, magnitude and phase
spectra are independent functions [4]. A minimum-phase system that has its
poles and zeros inside the unit circle, can be completely specified by either mag-
nitude or phase spectrum. In a very recent study [11], an algorithm is developed
for new class of signals known as Causal Delta Dominant (CDD) signal, which
can be reconstructed back from its magnitude spectrum alone. An interesting
aspect of this work is that, there are no constraints on the signal, i.e., it is not
necessary for signal to be minimum-phase or need not to have rational system
function . To make the signal CDD, a Kronecker impulse delta of right ampli-
tude is added at the origin of the signal, i.e., at s(0) This condition of CDD
allows encoding the phase in spectrogram, which is known as phase encoded
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spectrogram [11]. Figure 1 shows the block diagram of phase encoded spectro-
gram and the capability of signal reconstruction. Consider a causal finite-length
sequence, {s[n]}nε[1,N ], by adding a Kronecker impulse of amplitude β to s[n],
and we get,

Fig. 1. Block diagram of phase encoded spectrogram and signal reconstruction. After
[11]

s̃[n] = s[n] + βδ[n]. (1)

Discrete-Time Fourier Transform (DTFT) of causal sequence is

S(ejω) =
N∑

n=1

s[n]e−jωn, (2)

which is a 2π-periodic function in ω i.e., S(ej(ω+2π)) = S(ejω). As in Eq. (1), a
sequence s̃[n] = β δ[n]+s[n] is reconstructed, which differs from s[n] only at the
origin n = 0. Thus, the DTFT of s̃[n] can be given as:

S̃(ejω) =
N∑

n=0

s̃[n]e−jωn = β + S(ejω), (3)

It is observed from Eq. (3), that a DC-shift is introduced across all the frequencies
in the STFT spectrum of the signal s[n], where β is positive real-valued constant.
Applying logarithm on both sides of Eq. (3) gives,

log |S̃(ejω)|2 = log S̃(ejω) + log S̃�(ejω)

= log (β + S(ejω)) + log (β + S�(ejω)). (4)

The first term in the R.H.S of the Eq. (4) is given by:

log (β + S(ejω)) = log(β) + log(1 +
1
β

S(ejω)), (5)

Here, we consider β >|S(ejω)|. Therefore, using Taylor series:

log(1 +
1
β

S(ejω)) =
∞∑

m=1

(−1)m−1

m

Sm(ejω)
βm

. (6)
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Larger the value of β, faster is the decay of terms in the expansion [11]. Since
s[n] is the causal signal, convolution of s[n] with itself will also be causal. Hence,
log (β + S(ejω)) is the DTFT of a causal sequence. Similarly, for the second term
of Eq. (4), log (β + S�(ejω)) will be DTFT of anti-causal sequence. Therefore, the
inverse DTFT of log |S̃(ejω)|2 is the cepstrum that contains two components,
namely, causal sequence and anti-causal sequence. If we retain only with the
causal part of the cepstrum, we can reconstruct the signal [11]. Hence, we have
seen that by adding a Kronecker impulse of sufficient strength, phase encoding is
possible in the magnitude spectrum and we can get back our signal using (phase
encoded) magnitude spectrum only. Using this concept, we propose PEMCC
features discussed in next Section.

3 Proposed PEMCC Feature Set

To use the phase-encoded approach for speech-related applications, it is nec-
essary to derive a set of features. It is possible that feature extraction can be
done from point B in Fig. 1, which is a representation of the phase-encoded
spectrogram. However, the dynamic range of phase-encoded spectrogram is not
suitable for feature extraction. Therefore, to use the concept of phase-encoded
spectrogram as features, we propose following modifications shown in Fig. 2.

Fig. 2. Block diagram of proposed PEMCC feature extraction scheme. After [10]

As shown in Fig. 2, a Kronecker impulse delta of β amplitude at the origin in
each frame of a signal. Next, we take DTFT of every frame and apply the normal-
ization on each FFT-bins. Then, calculate the power spectrum of frames. This
identifies which frequencies are present in the frames. Mel filterbank is applied
to the power spectra, which gives the total energy present in each subband filter.
Once we have the subband energies, we take the logarithm followed by Discrete
Cosine Transform (DCT) of log-energies to get the proposed PEMCC feature
set. There is a practical issue that, we cannot calculate the DTFT of a signal.
However, we can compute the DFT, which is the sampled version of DTFT [11].
We set number of FFT-bins as total number of samples per frame. The pro-
posed algorithm to extract PEMCC feature from the speech signal is given in
Algorithm 1.
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3.1 Choice of β

For phase encoding, we are adding a Kronecker impulse, such that the amplitude
of the signal at n = 0 should be greater than the absolute sum of all amplitudes
points except at the origin. We segment the speech signal and reconstructed
every frame using approach given in Fig. 1. Thus, each frame has its own β value
that is given by Eq. (7). Here βi gives value of β for ith frame. Instead of this,
we have calculated the β as per Eq. (8).

βi = k

N∑

n=1

|si[n]|, k >> 1, (7)

β = k

N∑

n=1

|s[n]|, k >> 1, (8)

where s[n] is the speech signal. In general, the l1-norm of a frame of a speech
signal is always less than l1-norm of entire utterance. Hence, instead of defining
the β for every frame, we have taken only one β value for all the speech frames.
Experimentally, we have found that Log Spectral Distortion (LSD) for both the
β are almost the same. Hence, to reduce the time computation and complexity,
we have used Eq. (8) for our proposed method. The key idea of encoding phase
in the magnitude spectrum depends on the β. To justify the importance of β, an
experiment was carried out on 1500 utterances of natural, VC and SS randomly
selected from ASV spoof 2015 challenge database, for each of the utterance and
reconstructed back using the approach shown in Fig. 1 for β = 0 and β �= 0.
The LSD is calculated for β = 0 and β �= 0, and compared the LSD values for
natural, VC and SS speech signals.

From Table 1, it is observed that with β = 0, (i.e., with the only magnitude-
based approach) the distortion is higher as compared to distortion with β �= 0
(i.e., magnitude-phase-based reconstruction). The result of relative difference
between LSD values for β = 0 and β �= 0 is found to be approximately 80%.
Thus, it indicates encoding of phase in the magnitude spectrum captures better
reconstruction capability (i.e., synthesis) of the speech pattern.

Table 1. Mean LSD values of 1500 utterances for various β values from ASVspoof
2015 database1

Speakers β = 0 β �= 0 Relative difference (%)

Natural 1.97 0.39 80.11

VC 2.04 0.36 82.36

SS 2.10 0.39 81.23
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Algorithm 1 Proposed PEMCC Feature Extraction Algorithm
1: Take a speech signal s[n].
2: Apply framing on the signal, let (st)tε[1,T ] is the tth frame with 20 ms window size

and 10 ms window shift.
3: Add Kronecker impulse delta of β amplitude to each speech frame at the origin,

s̃t[n] = st[n] + βδ[n].

4: Take DFT of each frame, such as S̃i
t(e

jω) = β + Si
t(e

jω), where Si
t(e

jω) indicates
ith FFT-bin, ∀ tε[1, T ].

5: Perform the normalization on each FFT-bin.

Y i
t (ejω) =

S̃i
t(e

jω) − mean(S̃i
t(e

jω))

std(S̃i
t(e

jω))

6: Perform absolute squaring that results in power spectra.
7: Apply Mel filterbank on power spectra.
8: Apply DCT on Mel spectrum and retain first few coefficients of PEMCC.
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Fig. 3. Effect of normalization on power spectrum (a) without normalization, (b) with
normalization

The important aspect of Figs. 1 and 2 is the normalization block between
points A and B. It is observed in Fig. 3 that the dynamic range of power spectrum
is better after using normalization as compared to without normalization. How-
ever, with normalization, formants and harmonics are more visible as compared
to without normalization as shown in Fig. 3(b). Hence, normalization increases
the energy variations. Features was extracted on both normalized and with-
out normalized and found that performance of normalized features were much
effective.

4 Speaker Verification System

The classical method in ASV is the Gaussian mixture model-Universal back-
ground model (GMM-UBM) [9]. In this method, speaker models are adapted
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from the UBM using maximum a-posteriori (MAP) adaptation. The disadvan-
tage of this method is, it is very slow during verification of target vs. test trials
and it fails to capture the channel variability information. Combination of sup-
port vector machine (SVM) with GMM was also a successful method for ASV
[1]. Mean vectors of the adapted GMM are concatenated to form a GMM super-
vector, which are then modeled by the SVM classifier. The advantage of this
method is that it combines the effectiveness of adapted GMM model and dis-
criminating capability of SVM. Most recent state-of-the-art method in speaker
verification is i-vector-based system that uses cosine distance scoring (CDS) [2]
and probabilistic linear discriminant analysis (PLDA) [5] as a pattern classi-
fier. This method captures both speaker and channel variability effectively in
low-dimensional subspace (Total variability space) [2]. i-vector effectively sum-
marizes utterance that is nothing but low-dimensional representation of GMM
supervector. In this paper, we extracted i-vectors from MFCC as well as PEMCC
features. Then, these i-vectors are used as features for PLDA and CDS classifier.

5 Experiments

5.1 Experimental Setup

In this paper, all the experiments were carried out on NIST 2002 SRE data-
base [2]. It consists of conversational telephone speech utterances of about 139
male speakers and 191 female speakers. There are 3564 test utterances, each
of 1 min duration. Each test segment is evaluated against 11 different hypoth-
esized speaker model, out of which 2977 are genuine trials whereas 36227 are
impostor trials. MFCC features were extracted using 40 subband filters in Mel
filterbank and a 25-ms Hamming window. For every 10 ms, 13 MFCCs were cal-
culated. Delta and delta-delta coefficients were then calculated to produce a 39-
dimensional feature vector. PEMCC features were extracted using the procedure
described in Sect. 3, which resulted in 13 static coefficients. Then delta and delta-
delta coefficients were appended to produce a 39-dimensional PEMCC feature
vector. The feature vectors obtained from the development data was then used to
train 256 as well as 512 Gaussian mixture component gender-independent UBM,
400-dimensional T-matrix and 200-dimensional PLDA models. These trained
models are used to calculate the scores in terms of log-likelihood ratio (LLR) for
GMM-UBM-based ASV system and i-vector-PLDA-based ASV system. On the
other hand, scores are directly calculated using cosine kernel in i-vector-CDS-
based ASV system given the UBM and Total variability matrix (T). In practice,
the MSR Identity Toolbox [3] was used to implement the ASV systems.

5.2 Experimental Results

The performance of ASV system is given in terms of equal error rate (EER)
and Detection error trade-off (DET) curve. Table 2 shows the performance of
the three different ASV systems. The results obtained for the proposed PEMCC
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Table 2. Equal Error Rates (%) for GMM-UBM system, i-vector-PLDA system and
i-vector-CDS system on NIST SRE 2002 database

Gaussian
components

Feature set GMM-UBM i-vector

EER (%) PLDA EER (%) CDS EER (%)

256 MFCC 18.6021 14.9971 14.7017

PEMCC 19.9866 18.3742 16.6312

MFCC+PEMCC 17.1585 13.1559 13.4028

(α = 0.58) (α = 0.5) (α = 0.5)

512 MFCC 17.6967 14.3769 14.3567

PEMCC 18.8781 18.4414 17.1985

MFCC+PEMCC 16.8626 13.2348 13.3692

(α = 0.8) (α = 0.53) (α = 0.53)

features are comparable with the baseline MFCC features for all the three ASV
systems. These results clearly show the speaker-specific nature of the proposed
PEMCC features.

The results also show that our proposed PEMCC features perform better
with i-vector-based systems over GMM-UBM-based system. Our proposed fea-
tures encode the phase information in it, which motivated us to find the possi-
bility of presence of complementary speaker-related information in MFCC and
PEMCC. For exploring this, we have done the score-level fusion. The results
obtained for score-level fusion is better in terms of EER (%) than obtained with
individual features. This clearly shows the presence of complementary informa-
tion in MFCC and PEMCC features. The relative performance improvement of
ASV systems after score-level fusion is 20–25% in i-vector-based system over
GMM-UBM-based system, 5–8% improvement over MFCC features alone and
10–14% improvement over PEMCC features alone. Figures 4(a), (b) and 5(a)
shows the DET curves for i-vector PLDA-based, i-vector CDS-based and GMM-
UBM-based systems, respectively, for 512 Gaussian components. DET curves for
MFCC+PEMCC fusion are moving towards origin, which shows the improve-
ment in performance as compared to the baseline MFCC features. Figure 4(b)
shows the DET curves for the comparison of GMM-UBM-based system, i-vector
PLDA-based system and i-vector CDS-based system. It clearly shows that two
state-of-the-art systems perform better than the GMM-UBM-based system.

Figure 6 shows the effect of score level fusion weight (α) for different ASV sys-
tems, namely, i-vector PLDA-based system, i-vector CDS-based system, GMM-
UBM-based system. Score-level fusion of MFCC+PEMCC works better for
i-vector-based system over GMM-UBM-based system using optimum value of
α(0 ≤ α ≤ 1).
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Fig. 4. DET curves for NIST SRE 2002 database for (a) i-vector PLDA-based system,
(b) i-vector CDS-based system
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Fig. 5. DET curves for NIST SRE 2002 database for (a)GMM-UBM-based system,
(b)comparison of GMM-UBM-based and i-vector-based system
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6 Summary and Conclusions

In this paper, we proposed a novel PEMCC feature set that exploit the contri-
bution of encoded phase for speaker verification task. Performance evaluation of
proposed feature set was carried out on standard NIST SRE 2002 database. Per-
formance of PEMCC features found to be comparable with the baseline MFCC
feature set. The i-vector CDS-based ASV system found to be the best among
all three system when MFCC and PEMCC features were used alone. The score-
level fusion of magnitude and phase based-features show lower EER as com-
pared to the individual feature set. The complementary information is observed
on an almost equal contribution of magnitude and phase-based features. This is
observed for GMM-UBM-based ASV system, i-vector CDS-based ASV system
and i-vector PLDA-based ASV system.
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Abstract. Presented in the paper is a software system designed to train learners
in producing a variety of recurring intonation patterns of speech. The system is
based on comparing the melodic (tonal) portraits of a reference phrase and a
phrase spoken by the learner and involves active learner-system interaction.
Since parametric representation of intonation features of the speech signal faces
fundamental difficulties, the paper intends to show how these difficulties can be
overcome. The main algorithms used in the training system proposed for ana-
lyzing and comparing intonation features are considered. A set of reference
sentences is given which represents the basic intonation patterns of English
speech and their main varieties. The system’s interface is presented and the
results of the system operation are illustrated.

Keywords: Speech intonation � Melodic/tonal portrait � Intonation analysis �
Computer system for teaching � Intonation training

1 Introduction

Intonation plays a significant role in speech communication. It shows the general aim of
an utterance and points out its information centre (nucleus) as well as giving prominence
to the nonnuclear semantically relevant elements and deaccenting those lacking in
novelty or semantic weight; it splits an utterance into phrases (clauses) and
intonation-units (groups), each presenting a syntactically organized parcel of informa-
tion, and integrates these parts into an utterance, distinguishing thereby between more
and less closely connected ‘chunks’ of the speech flow. Intonation is widely recognized
as an important aspect of speech that provides both linguistic and socio-cultural infor-
mation. Therefore, prosodic aspects of speech should be explicitly introduced to lan-
guage learners to help them communicate effectively in a foreign language.

A current linguistic idea is that a foreign accent is more evident and stable in
intonation than in segmental sounds. A foreign accent in intonation emerges mainly as
a result of prosodic interference, an inevitable ‘by-product’ of bilingualism and, par-
ticularly, under the influence of the prosodic patterns of the learner’s native language
on those of the target language. Considering the variety of functions of intonation in
speech and its potential socio-cultural effects, deviations in this area can lead to serious
semantic losses in communication. It is a well-known fact that it is incorrect intonation
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that is often the cause of the wrong impression a non-native language speaker might
produce [1]. Native speakers of American English, e.g., made the following observa-
tion concerning the Russian accent in English: “Ask an average American what they
think about the Russian accent, and the answer will be as follows: “Russians don’t
sound very friendly. I feel like they don’t like me at all. I am not sure whether it comes
from their language or from their culture?” (See also: https://www.youtube.com/
watch?v=e0MZW3AbzxI).” One of the reasons many Russian speakers of English
sound unfriendly is the so called “flat” tone associated in American English with the
above mentioned negative connotations. Obviously, many Russian speakers fail to
capture the language-specific phonetic-phonological features of American/British
English intonation and, moreover, are unaware of the drastic socio-cultural effects of
the deviations from the prosodic form of an utterance. Helping nonnative learners
eliminate such errors presupposes ensuring their familiarity and acquisition of the
prosodic patterns of the foreign language being studied.

Accuracy of reproducing the foreign intonation patterns in the process of speaking
as well as adequacy of identifying the patterns on the level of perception present
considerable difficulty for the learners, particularly related to their ability to control
their performance and perception (especially for those who have no ear for music). The
linguaphone courses and equipment available at present provide only “a hearing”
feedback for intonation accuracy control, which is obviously insufficient.

The present paper is concerned with the progress achieved in developing a com-
puter trainer providing an additional visual feedback as well as a quantitative assess-
ment of the learners’ intonation accuracy in the foreign language teaching process.

In the course of creating the speech intonation training systems we faced a number
of difficulties connected with the necessity of solving a number of technical problems,
namely:

1. An adequate comparison of the pattern signal and a spoken one which is usually
characterized by a non-linear time deformation and its beginning and end are not
known beforehand.
The solution of this problem has become possible thanks to the application of the
modified method of a continuous dynamic time warping (CDTW) of two signals,
developed by the author earlier [2]. The use of this method ensures automatic
recognition of the end and beginning of a phrase being uttered simultaneously with
its comparison with the pattern phrase.

2. Automatic segmentation of the signal being analyzed into areas for which the
notion of F0 is relevant as far as the formation of the tonal contour of the phrase is
concerned (the segments of vowels and most of the sonorants).
This problem is being solved by means of a non-linear transfer of segment markers
from the preliminarily marked pattern-phrase onto the phrase being uttered with the
help of the author’s earlier suggested technology of cloning the prosodic charac-
teristics of speech [3].

3. Precise calculation of F0 of the pattern speech signal and of that produced by the
learner within a very wide voice range {30–1000 Hz}, for male and female voices
pooled.
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The task is solved by using the traditional methods of singling F0 out of a speech
signal. Seeking a solution to the given problem has been the subject matter of a
large number of publications (see e.g. [4]).

4. Automatic interpolation of current values F0 on the segments for which measuring
F0 is invalid, i.e. on most of the consonants.
This task is solved by using well-known interpolation mathematical formulas
determining the way of finding intermediate values on the basis of an available
discrete set of given values.

5. An adequate calculation of a similarity measure between the pattern signal and the
uttered one under the condition of their differences in duration and F0 voice-
ranges.

This task is solved by using a representation of an intonation curve in the form of a
unified melodic portrait (UMP) described below in the next section of the paper.
Calculation of the similarity measure of two UMPs is carried out with the help of
traditional formulas either by means of calculating a samples correlation coefficient or
through determining the vector distance between the curves.

In dealing with these problems, we relied on the results of earlier research in the
field of developing automatic intonation assessment systems for computer aided lan-
guage learning [5–8] as well as the results of our earlier research in the area of speech
intonation analysis and synthesis [9–11].

2 Intonation Stylization Model and Acoustic Database

The present work is a follow up study to the previously introduced model of universal
melodic portraits (UMP) of accentual units (AU) for the representation of phrase
intonations in text-to-speech synthesis [9]. According to this model, a phrase is rep-
resented by one or more AUs (Accent Unit is often referred to as Accent Group). Each
unit, in turn, can be composed of one or more words. In the latter case, only one word
bears full stress while the other words carry partial stress. Each AU consists of
pre-nucleus (all phonemes preceding the main stressed vowel), nucleus (the main
stressed vowel) and post-nucleus (all phonemes following the main stressed vowel).

The UMP model assumes that typological features of an AU pitch movement for a
particular type of intonation do not depend either on the number or quality of segments
in the phonemic content of the pre-nucleus, nucleus or post-nucleus, or on the fun-
damental frequency range specific for a given speaker. The model allows of repre-
senting the intonation constructions of a given language as a set of melodic patterns in
normalized space {Time – Frequency}. Time normalization is performed by bringing
pre-nucleus, nucleus and post-nucleus elements of AU to standard time lengths. This
sort of normalization levels out the differences in melodic contours caused by the
number of words and phonemes in an AU.

For fundamental frequency normalization F0 min and F0 max are determined within
the ensemble of melodic contours produced by a certain speaker. This sort of nor-
malization cancels out the differences of melodic contours caused by the speaker’s
voice register and range.
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The normalization is calculated by the formula:

FN0 ¼ F0 � F0minð Þ = F0max � F0minð Þ: ð1Þ

We note that the value:

R ¼ ½ F0max=F0minð Þ� � 1 ð2Þ

expressed in an octave scale, can be used to estimate the range of the F0 change (wide-
medium-narrow).

In certain cases it may be beneficial to use statistical normalization instead of (1):

FN0 ¼ ðF0 �MÞ =f; ð3Þ

where M is mathematical expectation, f is standard deviation. Note that M can be
interpreted as a register and f – as a range of the speaker’s voice.

Therefore, the normalized space for UMP may be presented as a rectangle with
axes (TN, F0

N) as schematically shown in Fig. 1, while the interval [0–1/3] on the
abscess TN is a pre-nucleus, [1/3 – 2/3] is a nucleus, and [2/3 – 1] is a post- nucleus.
The intervals on the ordinate F0

N: [0–1/3] – low level, [1/3 – 2/3] – mid-level, [2/3 – 1]
– high level.

UMP representation focuses on the peculiarities of the shape of the F0 curve on the
nucleus with less attention to the quantitative and qualitative composition of the pre-
and post-nucleus. Within the framework of the UMP it is possible to describe the
melodic curve minutely, using well-known terms, such as:

• “low-medium-high” – for the pitch level;
• “falling-level-rising” – for the direction of the pitch change;
• “wide-medium-narrow” – for the range of the pitch change.

In [10] the positive experience of creating melodic portraits of complex narrative
sentences of Russian speech with the use of the PAE model and UMP is described, and
in [11] it was shown that the representation of intonation in the form of UMP allows to
reveal the characteristic differences when comparing melodic portraits of English and
Russian phrases of dialogue speech.

Fig. 1. The UMP model
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3 Acoustic Database

The developed prototype of the system is realized in 2 variants for implementation in
multimedia course-books for advanced learners of English [12] and Russian [13]
intonation. Application of this system makes it possible for the students not only to
listen to phrases pronounced with standard intonation but also observe the model F0(t)
и A0(t) curves on display, reproduce these phrases, compare their F0(t) и A0(t) curves
with the original ones and obtain a numerical evaluation of their similarity. Used as
models are male-and-female-spoken sample phrases from the above-mentioned mul-
timedia course-books.

In practice of teaching English intonation 10 tonal patterns are used which represent
the pitch varieties of the four basic types of pitch change in English (see: Table 1). The
principle of selecting the varieties is both structural and functional: on the one hand -
perceptible discrimination and identification, and, on the other hand - a tendency
towards association with a particular modal-pragmatic type of utterance (statements,
general questions, requests, implications, apologies, etc.). In Table 1 the [+] sign
indicates the position of the nuclear vowel of the phrase.

Table 1. The basic types of English tonal patterns

Type of tone
pattern

No Pitch
varieties

Types of utterances. Common
usage.

Typical
examples

Rising 1 Mid Wide General, Elliptical questions, Tags Is it
di + fficult?

2 Low
Wide

General questions, Tags, Non
finality

Can I speak
to Ma + ry?

3 High
Narrow

Interrogative repetitions Na + tive?

4 Low
Narrow

Statements, Tags Ye + sterday.

Falling 5 High
Wide

Statements, Imperatives, Special
questions

Li + sten to
me, please!

6 Mid Wide Statements, Imperatives, Tags,
Special questions

Whe + re is
she?

7 Low
Narrow

Statements, Imperatives, Tags It’s in the
So + uth.

Falling-Rising 8 Undivided Imperatives, Questions, Statements,
Non-finality, Conversational
formulas

They are
re + ady.

9 Divided No + t
no + w.

Rising-Falling 10 Undivided Statements, Special questions It’s
wo + nderful.
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The acoustic signals realizing each of the given phrases are marked for the
boundaries of each of the vowels contained as well as for indicating the functional
status of the vowel: pre-nucleus, nucleus, post-nucleus of an accentual unit.
In the database used, there are 4 to 5 commonly used samples for each of the 10 tonal
patterns of the phrases, as well as several samples of conversational speech and a piece
of narrative prose. In addition to the most commonly used samples, the database
includes examples of different types of utterances (see Table 1) for each of the 10 tonal
patterns, read by a professional British English speaker.

As far as computer training is concerned, we proceed from the model of intonation
patterns (IP) by Elena Bryzgunova [14], which is widely used in teaching Russian
speech intonation. This model includes seven patterns: IP1 (the falling tone), IP2 (the
falling tone with some prosodic emphasis), IP3 (the rising tone with a subsequent fall),
IP4 (the falling-rising tone). IP5 (combination of the rising, level and falling tones), IP6
(combination of the rising and level tones), IP7 (combination of the rising tone with a
glottal stop).

In the database used, there are 5 samples of common types of utterances for each
intonation pattern as well as several samples of conversational speech and a piece of
narrative prose.

4 Block Diagram of the Intonation Training System

Figure 2 contains a block diagram illustrating a sequence of algorithms for the analysis
and evaluation of speech intonation within the computer system developed. The main
goal of the system is to provide a student with a compact and easily interpretable pitch
image of the results obtained in the course of analyzing the pitch and energy contours
of the phrases carrying different intonation patterns. The system will also provide an
auditory, visual and numerical evaluation of a student’s performance in the intonation
of a foreign language.

Block 1 contains the database of sample phrases (teacher’s phrases) with different
intonation patterns, compiled from multimedia course-books (see, e.g. [12] for the
English language, or [13] – for Russian). Every sample phrase is preliminarily marked
for the perceptible prosodic phrase boundaries and the location of its nucleus (Fig. 3).

Depending on the concrete goal of intonation training, the student selects the
sample phrase needed, listens to it and pronounces it. The student’s phrase is recorded
on the buffer in block 2.

In block 3, the signals from both the sample and the student-spoken phrase are
spectrum analyzed and compared using the algorithm of continuous dynamic time
warping (CDTW). This is accompanied by the transfer of prosodic marks and labeling
of a pronounced phrase (Fig. 3).

In block 4, prosodic phrase parameters, such as the fundamental frequency of the
tone F0 and energy of the signal A0 are calculated. These parameters are further
interpolated on the non-vocal areas, median-smoothed and normalized (Fig. 4).

In block 5, an estimation and comparison of F0 trajectories first in real time
space (Figs. 5 and 7) and then in normalized UMP-space (Figs. 6 and 8) are produced.
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At the top of Figs. 5, 6, 7 and 8, numerical estimates are presented as a percentage
of the proximity of the teacher’s and student’s phrases: for the F0 shape of curves –
(Ps) curves and for their ranges – (Pr). The measure of proximity is defined as the
vector distance between them.

On the left side of Figs. 6 and 8, light and dark columns are shown. They expresses
the values R in an octave scale calculated by using Formula (2). Value R is used to
show the difference range of F0 change between the teacher’s and student’s phrases.

Select training sample 
phrase

Pronounce phrase by a 
student 

(3) Spectral analysis, CDTW– comparison and prosodic marking 
of the pronounced phrase 

(1) Database of the marked 
sample phrases 

(2) Detector and buffer of 
the speech signals 

(4) Calculation of prosodic parameters, interpolation, median-
smoothing and normalization

(5) Estimation, mapping and comparison of unified melodic 
portraits (UMPs) 

Screen presentation of the analysis results.
Visual, auditory and numerical estimation of the quality of study

Fig. 2. Block diagram of the computer intonation training system

Fig. 3. Illustration of speech signals marking: the phrase “It’s Saturday” pronounced by the
teacher (above) and by a learner (below)
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Fig. 4. Illustration of F0 trajectory processing for the teacher’s phrase “It’s Saturday”:
original (light curve line) and interpolated, median-smoothed and normalized (dark curve line)
tracks

Fig. 5. Illustration of F0 curve comparison in real time space between the teacher’s (light curve
line) and a student’s (dark curve line) phrase “It’s Saturday” (correct pronunciation)

Fig. 6. Illustration of F0 range and curve comparison in UMP-space between the teacher’s (left
column, light curve line) and a student’s (right column, dark curve line) phrase “It’s Saturday”
(correct pronunciation)
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5 Software Realization of the System

Software realization of the system named “IntonTrainer” is written on C++ pro-
gramming code by using Qt framework. It can be compiled under Windows platform
(from XP to 10 versions), as well as under Linux platform.

The application core is divided into several modules that implement standalone
functions. Such modules can implement audio signal recording, voice detection,
CDTW processing, etc. As these modules are independent from each other, we can
easily build different applications by substituting these modules for other ones or
integrating them in external systems.

For building the main user interface a built-in web engine is used. The user
interface is built on html5, css3 and js (ReactJs js frame-work). The “Developer mode”
user interface is built on standard Qt forms.

The main user interface is independent from the application core and can be
modified or even replaced by another one. The use of html/css/js standard allows an
easy change of application front-end for different purposes. For the interaction with
application core there exist a number of special links formats processed by application

Fig. 7. Illustration of F0 curve comparison in real time space between the teacher’s (light curve
line) and a student’s (dark curve line) phrase “It’s Saturday” (wrong pronunciation)

Fig. 8. Illustration of F0 range and curve comparison in UMP-space between the teacher’s (left
column, light curve line) and a student’s (right column, dark curve line) phrase “It’s Saturday”
(wrong pronunciation)
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core. Such links can open different applications dialogues (like settings, developer
mode and so on), process input audio signals and play audio files.

Thus we can easily build in different training systems by replacing the front-end
and training data files.

The starting page of the User Interface is shown in Fig. 9.

6 Conclusions

At present, using the IntonTrainer system, experiments are conducted to learn by
students the intonation of Russian and English. Preliminary results indicate a significant
effectiveness of its use.

To date, there are demo versions of the “IntonTrainer” system, focused on learning
the intonation of Russian and English. For those who want to test the system, a site
https://intontrainer.by/ is open.

A working version of the prototype system will be demonstrated to the conference
participants.
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On Residual CNN in Text-Dependent Speaker
Verification Task
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Abstract. Deep learning approaches are still not very common in the
speaker verification field. We investigate the possibility of using deep resid-
ual convolutional neural network with spectrograms as an input features
in the text-dependent speaker verification task. Despite the fact that we
were not able to surpass the baseline system in quality, we achieved a
quite good results for such a new approach getting an 5.23% ERR on the
RSR2015 evaluation part. Fusion of the baseline and proposed systems
outperformed the best individual system by 18% relatively.

Keywords: Speaker verification · Residual learning · CNN · FFT

1 Introduction

I-vector systems are well-known for being state-of-the-art solutions to the text-
independent speaker verification task [1–3,21]. Recently, the solution of this
task has increasingly been considered from the perspective of deep learning
approaches. For instance, ASR deep neural network (DNN) model [3,22] divides
the acoustic space into senone classes and discriminates the speakers in this space
using the classic total variability (TV) model [1]. In such phonetic discriminative
DNN based systems two main approaches can be distinguished. The first is to
use DNN posteriors to calculate Baum-Welch statistics, and the second is to use
the bottleneck features in combination with speaker specific features (MFCC)
for training the full TV-UBM system. The second approach is considered the
most robust to varying conditions [4].

As demonstrated by recent publications [6,8–10,23,24], substantial success
of the state-of-the-art text-dependent verification systems is mainly due to the
progress in text-independent speaker recognition task. Thus, the success of the
phonetic discriminative DNN in such a task leads to attempts to use similar
approach in text-dependent systems [5,11,16].

In parallel, there are several studies on the use of Deep-Learning approaches
aiming to create an end-to-end solutions for discriminating speakers directly in
a text-dependent task [13,14]. Such approaches are easily applicable when the
duration of the considered utterances is small, since they can be fed as an input
of a deep architecture entirely, for example as a spectrogram.
c© Springer International Publishing AG 2017
A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 593–601, 2017.
DOI: 10.1007/978-3-319-66429-3 59
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A speaker discriminative approach is the most natural way for speaker veri-
fication. [12] describes a DNN for extracting a small speaker footprint which can
be used to discriminate between speakers.

In this paper we investigate the deep residual CNN [15] for direct speaker
discrimination. Unlike [14] we focus on the use of spectrograms instead of MFCC
as the input features and deep but light residual architecture instead of VGG-like
network as the mapping.

2 Baseline

A standard i-vector system is used as the baseline in our experiments. The i-
vector system models a speech utterance as a low dimensional vector of channel-
and speaker-dependent factors using total variability approach, as follows:

s = μ + Tw,

where s is the mean supervector, μ is the mean supervector of an Universal
Background Model (UBM), T is a low rank matrix and w is the i-vector estimated
using the Factor Analysis method [1].

We used implementation of the back-end from [16]. All i-vectors are length
normalized and further regularized using the phrase-dependent Within-class
Covariance Normalization (WCCN). A simple cosine distance scoring is used
followed by phrase-dependent s-norm score normalization [10].

19 Mel-Frequency Cepstral Coefficients (MFCC) + log energy is used as the
baseline features. They are normalized by mean and variance and augmented
with Δ and ΔΔ. For this system we did not apply voice activity detection.

3 CNN

3.1 Features

We use the normalized log power magnitude spectrum obtained via Fast Fourier
Transform (FFT) as the input acoustic features for this system. Spectrograms
are extracted with the following parameters: window size is 256, step size is 64
and Blackman window function is used. Example of such spectrogram is shown
in Fig. 1.

The length of the spectrogram along the frequency axis is fixed, but the
length along the time axis varies depending on the utterance. However, CNN
requires a constant-size image as the input. In order to satisfy this requirement
we use the following technique. Images longer than 800 pixels wide are cropped.
Images shorter than 800 pixels wide are complimented to the right by their own
copy. Such cropping and padding technique is illustrated in Fig. 2.
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Fig. 1. Log power magnitude spectrum of an utterance corresponding to the phrase
“Birthday parties have cupcakes and ice cream”

Fig. 2. Spectrogram preprocessing for short (a) and long (b) utterances

3.2 Residual Architecture

Spectrograms, being two-dimensional tensors, can be considered as images and
can be processed by methods used for image processing. Currently, the best
convolutional architecture for solving image processing tasks is a Residual CNN
[15]. Residual architecture is described in [15,20] as a stack of several residual
units. Residual unit is a mapping

xl+1 = xl + F(xl,Wl),

where xl and xl+1 are the unit’s input and output. F consists of two 3 × 3
convolutions with weights Wl. Additive “shortcut connection” allows the network
to satisfy the basic property: adding more layers does not lead to a degradation
of the network. Thus, it becomes possible to train very deep networks with a
size of 152 or more layers, as shown in the [15]. For this study, a network with
18 layers from [15] with modifications from [20] was used. Network architecture
is shown in Table 1. The structure of basic residual block is presented in Fig. 3.
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Fig. 3. Residual block

4 Experimental Setup

4.1 RSR2015 Corpus

In our experiments we use the RSR2015 database [7]. The RSR2015 provides
data for three main use-case verification scenarios:

– unique pass-phrase: each client pronounces the same pass-phrase,
– user-dependent pass-phrase: each client pronounces his or her own pass-

phrase,
– prompted text: each client pronounces a sentence prompted by the system.

In this paper, our focus is on the first use-case where each speaker pronounces
a particular sentence. The RSR2015 database contains audio recordings from 300
speakers (143 female and 157 male). There are 9 sessions for each of the partic-
ipants. Each session consists of 30 short sentences. The database is collected in
the office environment using six different portable recording devices (four smart-
phones and two tablets). Each speaker was recorded using three random different
devices out of the six.

The database is randomly split into three non-overlapping groups of speakers,
one for background training, one for development stage and one for evaluation
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Table 1. Residual CNN architecture

Layer Kernel/stride Output #parameters

Input − 257 × 800 × 1 0

Conv+BN+ReLU 7 × 7/2 × 2 129 × 400 × 64 3.2K

Maximum pooling 3 × 3/2 × 2 65 × 200 × 64 0

Residual block 3 × 3/1 × 1 65 × 200 × 64 74.1K

3 × 3/1 × 1

Residual block 3 × 3/1 × 1 65 × 200 × 64 74.1K

3 × 3/1 × 1

Residual block 3 × 3/2 × 2 33 × 100 × 128 230.1K

3 × 3/1 × 1

Residual block 3 × 3/1 × 1 33 × 100 × 128 296.2K

3 × 3/1 × 1

Residual block 3 × 3/2 × 2 17 × 50 × 256 919.8K

3 × 3/1 × 1

Residual block 3 × 3/1 × 1 17 × 50 × 256 1 182.2K

3 × 3/1 × 1

Residual block 3 × 3/2 × 2 9 × 25 × 512 3 674.7K

3 × 3/1 × 1

Residual block 3 × 3/1 × 1 9 × 25 × 512 4 723.7K

3 × 3/1 × 1

Average pooling − 512 0

SoftMax − 97 50K

Total 11 228.0K

stage. The number of male/female speakers is balanced for each group: 50/47 in
the background set, 50/47 in the development set and 57/49 in the evaluation
set.

We use the background set only for training our speaker verification systems.
The development set is used to estimate calibration and fusion parameters. All
test trials are performed on the evaluation set.

We focuse only on the scenario where the speaker pronounces correct pass-
phrase. All experiments are conducted according to the part 1 protocols of the
RSR2015 database. We consider pooled male and female trials for system per-
formance measure.

Extended training set which contains the background and development sets
is used in additional experiment.
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4.2 Baseline

Parameters of WCCN matrix and i-vector extractor are estimated using the
background subset of the RSR2015 corpus only. As described in [16], we use the
following representation of the WCCN matrix:

W = W +
1
2
E,

where E is the unit matrix of appropriate dimensionality. This trick helps to
prevent an overfitting despite the small number of speakers in the background
subset.

4.3 CNN

CNN is implemented using the Keras framework [17] on top of the TensorFlow
[18] backend. ADAM optimizer [19] with learning rate set at 10−4 is used for
training

Network is trained to discriminate between all speakers in training set using
the softmax layer and categorical cross-entropy loss function. In the evaluation
phase an output from the 512-dimensional (same as i-vector) penultimate layer
is used as the embedding corresponding to the input utterance.
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Fig. 4. DET curves for the RSR2015 evaluation part
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5 Results and Discussion

The result of our research is presented in Table 2 in terms of the Equal Error Rate
(EER) and the minimum detection cost function (minDCF) with Ptar = 10−3.
Baseline system demonstrated a very good result with an EER of less than 1%
which is comparable with the result from [16]. Deep CNN system achieved an
EER of 6.02%. Fusion of this two systems shows 18% relative improvement over
the baseline system which is the evidence of the fact that classic i-vector systems
and deep learning systems results in decorrelated embeddings and thus can be
used together.

Relatively poor performance of the system under investigation can be
explained by the small size of the training set (97 speakers). Such conditions leads
to overfitting of discriminative model. The hypothesis is that the deep residual
CNN requires much more data for training and expanding training set will lead
to a significant increase in accuracy. Experiments on the extended training set
(194 speakers) sustains it resulting in an 5.23% EER. We hope that deep learning
approaches will be able to outperform the i-vector based systems in the future.

Figure 5 illustrates the projection of CNN embeddings of the 9 randomly
chosen speakers on two principal axis using the Principal Component Analysis.
DET-curves of the all considered methods are shown in Fig. 4.

Table 2. Evaluation results in terms of EER [%] and minDCF

System EER minDCF

Baseline 0.79 0.23

Deep CNN 6.02 0.94

Deep CNN (ext) 5.23 0.92

Fusion 0.64 0.18

Fig. 5. Projection of embeddings to two main principal axis for 9 speakers
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6 Conclusion

In this paper, we presented studies of deep residual CNN architecture in the task
of text-dependent verification. Raw normalized spectrograms of speech signals
is used as the input features. Experiments conducted on Part 1 of the RSR2015
database showed that despite the small amount of training data, it is possible to
train a deep speaker embeddings extractor, which makes it possible to separate
the speaker classes fairly well. Best achieved result of the individual system is
an 5.23% EER.

We also showed that increasing the amount of training data leads to the
expected strengthening of the extractor and improvement of the results. Our
future work will be focused on the improving the quality of deep CNN based
systems and bringing them to the level of baseline i-vector systems. It can be
noted already that fusion of the deep CNN and i-vector extractors gives a good
performance gain of 18% relative improvement.

Acknowledgements. This work was financially supported by the Ministry of
Education and Science of the Russian Federation, contract 14.578.21.0126 (ID
RFMEFI57815X0126).
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Abstract. The goal of our study is to reveal verbal and non-verbal information
in speech features of children with autism spectrum disorders (ASD). 30 chil-
dren with ASD aged 5–14 years and 160 typically developing (TD) coevals
were participants in the study. ASD participants were divided into groups
according to the presence of development reversals (ASD-1) and developmental
risk diagnosed at the birth (ASD-2). The listeners (n = 220 adults) recognized
the word’s meaning, correspondence of the repetition word’s meaning and
intonation contour to the sample, age, and gender of ASD child’s speech with
less probability vs. TD children. Perception data are confirmed by acoustic
features. We found significant differences in pitch values, vowels formants
frequency and energy between ASD groups and between ASD and TD in
spontaneous speech and repetition words. Pitch values of stress vowels were
significantly higher in spontaneous speech vs. repetition words for ASD-1
children, ASD-2, and TD children aged 7–12 years. Pitch values in the spon-
taneous speech of the ASD-1 were higher than in the ASD-2 children. The
coarticulation effect was shown for ASD and TD repetition words. Age dynamic
of ASD children acoustic features indicated mastering of clear articulation.

Keywords: Acoustic features � Children � Typically developing � Autism
spectrum disorders �Repetition speech � Spontaneous speech � Speech perception

1 Introduction

The study of speech of child with autism spectrum disorders (ASD) includes two main
problems. On the one hand, disruption of ASD child’s communication makes it difficult
to obtain speech material [1], on the other, the acoustic features widely used for speech
analysis of typically developing (TD) children [2] do not completely reflect the
specificity of ASD child speech. ASD is associated with differences in prosody pro-
duction from monotonous machine-like to variable, exaggerated [3] and abnormal
speech spectrum [4]. In some works, the differences between ASD and TD children in
average spectra [4], formant frequencies and their energy [5] were revealed. We assume
that some of the noted features of ASD child speech are associated with recording
situations, language environment, methods of teaching. In our pilot study [5] we
indicated clearer articulation and lower pitch values of repetition words vs. words in
spontaneous speech in ASD children. At present we use repetition task as model for
ASD children speech research. The purpose of our study is to reveal verbal and
non-verbal information in speech features of ASD children.
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2 Method

2.1 Data Collection

Participants in the study were 30 children with ASD (F84 according to ICD-10),
biologically aged 5–14 years, mental aged 4–7 years and 160 TD coevals (control). For
this study the ASD participants were divided into groups according to developmental
features: presence of development reversals at the age 1.5–3.0 years (first group –

ASD-1) and developmental risk diagnosed at the infant birth (second group – ASD-2).
For these children, the ASD is a symptom of neurological diseases associated with
brain damage. The ASD groups don’t differ significantly on the base of Child Autism
Rating Scale [6] scores and psychophysiological tests on the stage divided child into
groups. Places of recording were at home, in the laboratory, kindergarten and school.
The situations of speech recording were the play with the standard set of toys, dia-
logues with parents (for ASD child) and the experimenter, word repetition after
experimenter. The recordings were made by the “Marantz PMD222” recorder with a
“SENNHEIZER e835S” external microphone.

2.2 Data Analysis

Two types of experimental methods of speech analysis were performed: perceptual (by
listeners) and spectrographic.

The aim of the perceptual study is the review of listeners’ (Russian native speakers,
adults) recognition of the correspondence of the word repeated by the child to the sample
by the meaning and intonation contour, child age and gender on the base of speech
samples. The test sequences included words from spontaneous speech (n = 4 tests, for
21 samples of ASD test, and for 30 samples of TD test) and repetition words (n = 14
tests, “adult sample – child response” for 35 samples). Repetition tests contained the
words with stress vowels /a/, /i/, and /u/. We used two types of test sequences: the first
type (tests 1, 3) included words with minimum coarticulation effect for stress vowels; the
second type (tests 2, 4) – words with maximum coarticulation effect. The test sequences
were presented to listeners (n = 220, age – 18–46, 23.7 ± 6.8y) for perceptual analysis.
The factor of the adult’s experience of interaction with children (at the household level)
was not significant, so all data are presented together.

A special experiment included the listening of two tests (ASD and TD with min-
imum coarticulation effect) for the group of adults (programmer students). For this
control group of listeners (n = 12, age – 24.4 ± 12.6 y; 21–44 y) the phonemic
hearing, hearing thresholds, and lateral asymmetry profile were determined. This
information was needed to determine individual characteristics of an adult (gender, age,
experience with children, hearing, phonemic hearing, the leading hemisphere by ear),
which have the greatest impact on their recognition of the speech of children with ASD.

Spectrographic analysis of speech was carried out in the Cool Edit (Syntril. Soft.
Corp. USA) sound editor. We analyzed and compared pitch values, max and min
values of pitch, pitch range, formants frequency (F1, F2, F3), energy and duration for
vowels and stationary part of vowels. The same parameters were compared using the
Mann-Whitney U criterion in /a/, /i/ and /u/ after the following consonants: /k/ and /d/
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for /a/, /b/ and /g/ for /u/, and /t’/ for /i/. Formant triangles were plotted for vowels with
apexes corresponding to the vowels /a/, /u/, and /i/ in F1, F2 coordinates and their areas
were compared. Vowel formant triangle areas were calculated [7]. The values of the
amplitudes (energy) of pitch and the first three formants of vowels by the dynamic
spectrogram were determined. The normalized values of formants amplitude con-
cerning to the amplitude of the pitch (E0/En, where E0 is the amplitude of pitch, En is
the amplitude of Fn, (n = 1, 2, 3) were calculated [5]. The intonation contour corre-
spondence in “adult sample – child response” was analyzed in Praat program v.6.20.

All procedures were approved by the Health and Human Research Ethics Com-
mittee (HHS, IRB 00003875, St. Petersburg State University) and written informed
consent was obtained from parents of the child participant.

3 Result

3.1 Perceptual Data

Word’s meaning and intonation contour: Comparative data showed that the majority of
listeners (range 0.75–1.0) recognized the meaning of 67% of words of 5–7 years old
TD children, 73% of words of TD children aged 7–12 years, 43% of the words of
ASD-1 children and 40% of words of ASD-2 children in the test sequences containing
the words from spontaneous speech. For those TD children, gender was associated F
(6,734) = 19.333 p < 0.000, R2 = 0.1359 with F0 values (Beta = 0.2163) and E2/E0
(Beta = −0.6819); age correlated F(6,737) = 95.256, p < 0.000, R2 = 0.4368 with F1
values (Beta = −0.2122), F0 values (Beta = −0.1132), and E2/E0 (Beta = 0.1394) –
Multiple Regression analysis.

Determining the correspondence of the intonation contour of the child’s repeated
word to the sample caused greater difficulty for the listeners than determining the
meaning of the word. The meaning of TD child words in all tests was recognized by
listeners better than intonation contour (Fig. 1A, B).
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Fig. 1. Correspondence of the word repeated by the child to the sample by the meaning (A) and
intonation contour (B)
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The coarticulation context (tests 1, 3 and tests 2, 4) doesn’t have influence on the
recognition of the word’s meaning and intonation contour. The exception is the data of
test 2 for the correspondence of the word meaning recognition of ASD child (61.8%)
vs. the words from test 1 (72.2%), test 3 (72.7%), and test 4 (72.2%).

Gender and age: The second task for listeners in repetition tests was to recognize
the child age and gender. In the TD tests the speech of boys and girls is presented
equally. Adults identified correctly the gender of the TD children. Exclusion was the
test of TD children aged 7–12 years in which 11% of the speech samples belonging to
girls were attributed to boys. In the tests of ASD children the number of samples of the
speech of boys is greater than that of girls, but listeners indicate a greater number of
speech patterns as belonging to girls (Fig. 2A).

The age of TD children was determined by adults almost correctly, listeners recog-
nized age of ASD children as below the real age (Fig. 2B). These data are confirmed by
the results of the control perceptual experiment (Table 1). Two tests were presented to the
listeners, each test contained repetition speech of 5–12 years old TD and ASD children.

Child age was associated with average pitch values F(4,272) = 4.077 p < 0.000
(Beta = −0.5712, R2 = 0.043) – Multiple Regression analysis. The predictors for child
gender F(5,271) = 11.2, p < 0.0000 were pitch values (Beta = 0.3081, R2 = 0.1712,
p < 0.000), values of F1 (Beta = −0.2087, p < 0.0004), F2 (Beta = −0.2573,
p < 0.0011), F3 (Beta = 0.1920, p < 0.02).
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Fig. 2. A – Percentages of boy’s and girl’s speech samples in test sequences and perceived by
listeners as male and female. B – Age of TD children and ASD children recognized by listeners.
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Table 1. The boy’s and girl’s speech samples in control tests sequences and perceived by
listeners as male and female, percentages

Analysis Test –
(ASD + TD
− 1)

Test –
(ASD + TD
− 2)

TD ASD TD ASD
m f m f m f m f

Test 50 50 89 11 50 50 78 22
Answer 52 48 87 13 55 45 83 17
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The result of the special experiment showed that listeners hearing thresholds (the
left ear) influenced on the recognition of the correspondence of word meaning of ASD
child to the sample F(4,7) = 2.3752, p < 0.1499 (Beta = 0.732 R2 = 0.5758 –Multiple
Regression analysis). Correlations (Spearman p < 0.5) between the adult’s phonemic
hearing (the repetition of triples of the syllables) and the recognition of the corre-
spondence of the intonation contour of ASD child words to the sample (r = 0.673,
p < 0.5), the child age determination (r = 0.632, p < 0.5) were revealed. The listeners’
experience of interaction with children influenced (r = 0.657, p < 0.5) the determina-
tion of TD children age. The results of this perceptual experiment correspond to data
obtained by other listeners.

The larger amount of control listeners (75–100%) attributed the words of TD
children to the category of corresponding by word meaning (95.8%) and intonation
contour (70.7%) than words of ASD children (75% and 62.6% - meaning, intonation
contour). The predictors for listeners recognition of the correspondence of ASD child
word’s meaning to the sample F(1,33) = 9.1548 p < 0.004 (Beta = −0.4660
R2 = 0.21717) were values of F1 for stress vowels /a/, /i/, /u/ in the words.

15 words of ASD children from different tests recognized by all listeners (proba-
bility 1.0) are included in the new test sequence. This test was listened by 20 adults
aged 22 to 81 years (group-1 – n = 6, 22–28 years, group-2 – n = 7, 37–64 years,
group-3 – n = 7, 71–81 years). The best recognition (range 0.75–1.0) of the meaning of
the words of children listening to the second age group was found, compared with the
third one F(1,12) = 10.348 p < 0.007 (Beta = −0.6804, R2 = 0.4182 – Multiple
Regression analysis). Adult gender and experience of interaction with children did not
have an influence on the recognition of the meaning of ASD child words.
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3.2 Acoustic Features of TD vs. ASD Spontaneous vs. Repetition Child
Speech

Pitch values of stress vowels were significantly higher in spontaneous speech vs. rep-
etition words for ASD-1 children (p < 0.001 Mann-Whitney test), ASD-2 (p < 0.01),
and TD children aged 7–12 years (p < 0.05). Pitch values in the spontaneous speech of
the ASD-1 were higher (p < 0.001) than in the ASD-2 children (Fig. 3A).

Table 2. Correlation between acoustical features of child speech and child gender, and age,
Multiple Regression analysis

Type
of
speech

Statistical data, Multiple regression analysis
Gender Age Group (for ASD

child)

TD
7-12y
spont

F(1,118) = 10.380, p < 0.001;
R2 = 0.0809:
F0 max (Beta = 0.2843)

F(6,113) = 8.6781
p < 0.000,
R2 = 0.3154:
F3 (Beta = −0.4873);
E2/E0
(Beta = −0.3224);
E1/E0 (Beta = 0.2013).

TD
7-12y
repet

F(5,94) = 5.2242, R2 = 0.2175:
F1 (Beta = −0.3065, p < 0.003);
F3 (Beta = 0.2656, p < 0.006)

F(4,95) = 4.5471,
R2 = 0.1669:
F0 (Beta = −0.4044
p < 0.008);
F2 (Beta = −0.2368,
p < 0.02)

ASD
spont

F(6,43) = 10.7; R2 = 0.5983
p < 0.000:
F0 (Beta = −0.5895);
Vowel duration (Beta = 0.4494)

F(2,48) = 15.593;
R2 = 0.3685
E0 (Beta = −0.700,
p < 0.000)

F(5,45) = 11.947,
p < 0.000,
R2 = 0.5703:
Vowel duration
(Beta = 0.4011);
F0 (Beta = −0.5720)

ASD
repet
(test)

F(1,111) = 5.7635 p < 0.01; Vowel
duration - (Beta = 0.2222,
R2 = 0.04936);
F(2,110) = 4.003 p < 0.02 F2
(Beta = 0.1910, R2 = 0.06784)

F(4.103) = 6.2155
p < 0.0001;
R2 = 0.1944:
F0 (Beta = −0.2872);
F(3,107) = 5.9867
p < 0.000,
R2 = 0.1437:
F1 (Beta = −0.2317);
F3 (Beta = −0.2197);
F(2,111) = 4.7826
p < 0.01 R2 = 0.0793:
E2/E0
(Beta = −0.3128);
E1/E0 (Beta = 0.4191)

F(1,109) = 5.2872
p < 0.02;
R2 = 0.0463:
Vowel duration –

(Beta = 0.2151);
F(1,110) = 5.683,
p < 0.01
R2 = 0.0593:
F0
(Beta = −0.2437);
F(1,112) = 5.7625
p < 0.01;
R2 = 0.048:
F2 (Beta = 0.2212)

** Coarticulation effect was revealed for values of F2 (p < 0.01 –Mann-Whitney U test) of stress
vowels /a/ in words.
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The differences (p < 0.01) between TD 7–12 years-old boys and girls on the base
of pitch values of stress vowels in spontaneous speech were revealed. The pitch in
spontaneous speech represented by the ages of all children has high values in ASD-1
and ASD-2 children (Fig. 3B). The first two formant frequencies (acoustic keys for
vowel recognition) are less correlated with the individual characteristics of the child
(gender and age) than their energy (Table 2).

This finding allows comparing data from different types of child speech without
individual age and gender. The formant triangles of vowels for the spontaneous speech
differ from the ones for the repetition words (Fig. 4A, B). The largest square of formant
triangles for the repetition words vs. spontaneous speech were showed (Fig. 4E). The
shifts in the values of the first two formants of vowels, leading to displacement of the
formant triangles into the higher-frequency area, were seen for the vowels of ASD-1
children vs. ASD-2 peers in spontaneous speech (Fig. 4A); ASD-2 vs. ASD-1 in the
repetition words (Fig. 4B). The words with the vowels with maximum coarticulation
effect occupy the large area on the two-coordinate plot (Fig. 4D), the formant triangles
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of these vowels have a larger square (Fig. 4F) than those of the vowels with minimal
coarticulation effect (Fig. 4C, F).

We found the specific features of the dynamic spectrum of the stress vowels from the
ASD child words. The energy of the third formant higher (p < 0.001) of ASD child vs.
TD child. This characteristic more expressed in spontaneous speech vs. repetition words.

3.3 Acoustic Features of the Repetition Words: Longitudinal Data

To confirm the assumption about the clearer articulation in the repetition words and its
positive dynamic in the learning, the acoustic characteristics of stress vowels in the words
repeated by five children twice at the interval of one year were compared. The significant
differences between vowel’s pitch values and values of three formant frequencies from
the same word repetition by every child twice per year were shown (Table 3).

The coarticulation effect for words with the stressed vowel /i/ is absent. Significant
effect (p < 0.002) for the stressed vowel /a/ on the values of F0, for the words with the
stressed vowel /u/ on the values of F0 (p < 0.01) and values of F3 (p < 0.006) were
revealed. All children accurately repeated a larger number of words by their meaning
(p < 0.01) and intonation (p < 0.01) in the second time of repetition. The energy of the
third formant for vowels from repetition words with the minimum and maximum
coarticulation effect differs between the first and second testing (for max. & min.
coarticulation effect). The Fig. 5 presents data for severely autistic child 4 according
CARS score with maximal developmental progress (Fig. 5A) and for mildly autistic
child 3 with minimal developmental progress (Fig. 5B).

Table 3. Differences between correspondence features of vowels from the same word repetition
by child twice per year, Mann-Whitney U test

Child CARS [1, 2] Vowel F0 average F0 st. F1 F2 F3

1 3,5 /a/ 0.000 0.002 0.002 0.000
/u/ 0.01 0.01 0.02 0.001 0.000

2 1 /a/ 0.01 0.000 0.000 0.02 0.000
/u/ 0.002 0.000 0.000 0.01 0.000
/i/ 0.000 0.004

3 0,5* /a/ 0.000 0.000 0.001
/u/ 0.001 0.005 0.01 0.001 0.000
/i/ 0.01

4 6** /a/ 0.000 0.000 0.000
/u/ 0.04 0.009 0.000
/i/ 0.02 0.02 0.02

5 1 /a/ 0.003 0.01 0.01
/u/ 0.02 0.2

[CARS1, CARS 2] – the difference in points between the first and second
testing of the child, numerals indicated the significance level. *, ** – data
are presented in Fig. 5
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4 Discussion

The ability of adults to recognize gender, age, meaning of words, the correspondence of
the word’s meaning and intonation contour of the child’s repeated word to the sample
with less determination of ASD child was shown. Perception data are confirmed by
acoustic features. We found significant differences in pitch values, vowel formant
frequency and energy between ASD groups and between ASD and TD in spontaneous
speech and repetition words.

Adults detected the age of children with ASD lower than the actual age that
correlated with higher pitch values of ASD children. The association between child age
and pitch values was shown in studies [7, 8]. Data on specific non-developmental
phonetic and phonological errors of 5–13 year olds with ASD [9] confirm our results
on worse word meaning recognition of ASD children vs. TD children. The meaning of
the words of TD children was recognized by listeners better than intonation contour.
We revealed the ASD child’s skills to repeat intonation contour. It was surprising
because for emotional speech of our participants with ASD the correlation between
emotional state and intonation contour specific for TD children [10] was not revealed
[11]. Our data are confirmed by the study of prosodic patterns imitation by ASD
children and TD children using more complex task in PEPS-C program [12].

Higher pitch values were described in some studies for the spontaneous speech of
ASD children [3]. In our work high pitch values were shown for spontaneous speech
and repetition words. Repetition task leads to decrease of pitch values and clear
articulation that corresponds with spectral characteristics of ASD children. Repetition
task is relevant for ASD children; it is based on the developmental specificity of speech
– echolalia [1]. Correct repetition needs the motor program for articulation mastering
and using verbal memory that allows use this task for speech training. According to the
opinion [13], echolalia can be used for communication in speech-language interven-
tion. The repetition task is one of the ways to obtain a speech material from children
with ASD for our future studies including speech corpora for automatic recognition.
The finding of our work is the revealing of spectral features, the coarticulation effect
and longitudinal data for speech of ASD children.

-35

-30

-25

-20

-15

-10

-5

0

5

10

F0 F1 F2 F3

E
n/

E
0

Child 3- min-1

Child 3 -max-1

Child 3-min-2

Child3 -max-2

***

B

-35

-30

-25

-20

-15

-10

-5

0

5

10

F0 F1 F2 F3

E
n/

E
0

Child 4- min-1

Child 4 -max-1

Child 4-min-2

Child4 -max-2

**

A

Fig. 5. The distribution of the first three formant amplitudes normalized to the amplitude of the
pitch for vowels /a/ in repetition words for two children (A, B). Vertical axis – En/E0 (normalized
amplitude), horizontal axis – F0 and formants (F1, F2, F3). Min and max coarticulation effect; 1
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5 Conclusions

On the base of perceptual experiment the recognition of ASD and TD child age and
gender, meaning of words and correspondence of the word’s meaning and intonation
contour of the child’s repeated word to the sample with less recognition of ASD child
was revealed. We found significant differences in pitch values, vowel formant fre-
quency and energy between ASD groups and between ASD and TD in spontaneous
speech and repetition words. Pitch values of stress vowels were significantly higher in
spontaneous speech vs. repetition words for ASD and TD children, in the spontaneous
speech of the ASD-1 vs. ASD-2 children. The coarticulation effect was shown for ASD
and TD repetition words. Age dynamic of ASD children acoustic features indicated
mastering of clear articulation.
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Abstract. In this paper we analyze different labeling strategies and
their impact on speaker change detection rates. We explore binary, lin-
ear fuzzy, quadratic and Gaussian labeling functions. We come to the
conclusion that the labeling function is very important and the linear
variant outperforms the rest. We also add phase information from the
spectrum to the input of our convolutional neural network. Experiments
show that even though the phase is informative its benefit is negligi-
ble and may be omitted. In the experiments we use a coverage-purity
measure which is independent on tolerance parameters.

Keywords: Convolutional neural network · Speaker change detection ·
Spectrogram · Labeling · Phase · Coverage-purity measure

1 Introduction

Speaker change detection (SCD) is a relevant task in many applications. It can
be beneficial for the process of speaker diarization [1], speaker identification
[2], voice activity detection, multimodal processing of audio-visual data [3], etc.
A speaker change is an instance in time when the source of the speech signal
changes. In general, we might be interested in changes of sources of any audio
signal. For example when we are trying to learn features describing a person’s
voice we might want to know when a background noise such as music is present
and when not. In this paper we present a general approach of speaker change
detection by the means of Convolutional Neural Network (CNN) that depends on
the labeling strategy and thus can be suitable for more tasks. We present different
labeling functions and their impact on SCD. In our previous papers [1,4] we used
the logarithm of magnitude of a spectrogram of speech as input for the CNN. In
this paper we present experiments with added information about the phase of
the spectrogram. In theory the added information should benefit the detection
process. Also instead of using a DET curve for evaluating our results we use
the approach of coverage and purity [2] which is not dependent on a tolerance
parameter.
c© Springer International Publishing AG 2017
A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 613–622, 2017.
DOI: 10.1007/978-3-319-66429-3 61
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2 Previous Work

This work is an extension of our previous papers [1,4] in which we used CNN for
SCD. The CNN is given a logarithm of the magnitude of the spectrogram of a
1.4 s audio segment and outputs a value in the interval 〈0, 1〉. The value represents
the probability of speaker change in the middle of the analyzed window. In the
first experiments we realized that the reference annotations of speech segments
from human annotators are imprecise and cannot be used reliably as they are.
The imprecisions cause confusions during the training process and the CNN
is unable to minimize the loss as desired. We modeled the imprecision with a
tolerance labeling which we denoted as binary labeling. It has the form

LB(t) =

{
1, if mini (|t − si|) ≤ τ

0, otherwise
, (1)

where si are the annotated speaker change time instances and τ is the tolerance
factor. The tolerance factor models the uncertainty of the labeling. It should be
however less than the length of the audio segment that the CNN sees. In our
case the tolerance factor was chosen to be τ = 0.6.

We then saw that although this labeling strategy is beneficial for the detection
process it can be also confusing for the CNN. This is due to the conflicting nature
of the labeling. Some spectrograms even though very similar in appearance are
sometimes labeled as 0 and sometimes as 1. It mostly happens at the edge of the
tolerance. We found out that relaxing the labeling function in a linear way helps
a lot and the network is able to regress to these values better. We named this
labeling the fuzzy labeling, see Fig. 1. The formula for the labeling function is

LF (t) = max
(

0, 1 − mini (|t − si|)
τ

)
. (2)

With this setup we were able to achieve much better results. They are sum-
marized in Table 1. We also provide Equal Error Rate (EER) for a system based
on Bayesian Information Criterion (BIC). In our previous experiments [4] we
found out the best setting for BIC was to use window size of 0.7 s (BIC-0.7 in
Table 1). To compute the EER we used a tolerance of ±0.2 s.

Table 1. EER values for different systems

System BIC-0.7 CNN-binary CNN-fuzzy

EER 0.3229 0.2482 0.1747

The CNN proved to be a suitable model for SCD from the magnitude of
spectrogram data. Since the fuzzy labeling had such an impact on the detection
rate, we want to test other labeling functions and compare their experimental
results.
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3 Convolutional Neural Network

In this paper we use the same architecture and learning processes of the CNN
as in our previous works. The CNN consists of three triplets of layers and two
fully connected layers. Each triplet of layers is a convolutional layer with ReLU
activation function, followed by a max pooling layer [5] and normalized by a
batch normalization layer [6]. The last two layers are fully connected with 4000
neurons and 1 output neuron both with sigmoidal activation functions. The
architecture is summarized in Table 2.

Table 2. Summary of the architecture of the CNN

Layer Kernels Size Shift

Convolution 50 16× 8 2× 2

Max pooling 2× 2 2× 2

Batch Norm

Convolution 200 4× 4 1× 1

Max pooling 2× 2 2× 2

Batch Norm

Convolution 300 3× 3 1× 1

Max pooling 2× 2 2× 2

Batch Norm

Fully Connected 4000

Fully Connected 1

3.1 Training of the CNN

For the training of the CNN we use the binary cross-entropy loss

loss(ω) = − 1
N

N∑
n=1

[
yn log ŷn + (1 − yn) log(1 − ŷn)

]
, (3)

where yn is the desired output, ŷn is the output of the CNN, and ω are the
parameters of the net - weights and biases. The desired output is a number
between 〈0, 1〉 given by the labeling function L(t). The criterion is minimized

ω∗ = arg min
ω

[loss(ω)], (4)

with the Stochastic Gradient Descent (SGD) on mini-batches of data. The batch
size was set to 64. We used the Nesterov momentum [7] in the gradient updates,
which has been shown to yield good results [8]. Similar to [5] we use momentum
of 0.9, weight decay of 0.0005, and learning rate of 0.01.
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4 Data

For the training and testing purposes we used a fraction of telephone conver-
sation data from CallHome [9] corpus. The data are sampled at 8 kHz and are
in English. We consider only the conversations where two speakers are present.
For all experiments the data are split into 35 conversations for training which is
5 h and 48 min and the remaining 77 conversations for testing which is 11 h and
20 min. The CNN uses 1.4 s long windows of the audio signal. The original input
is the logarithm of the magnitude of the spectrogram of the speech. The spec-
trogram was computed on overlapping Hamming windows and for each window
512 frequencies were computed. We utilize only half of the frequencies since the
spectrum is symmetrical. Thus the input is a matrix with 256 rows (frequencies)
and 134 columns (number of overlapping windows in 1.4 s).

4.1 Phase Information

The phase of the spectrum is omitted in our original experiments. Since there
exist reports [10] that indicate that the phase of the spectrum is important in
speaker identification tasks we wanted to analyze its impact on SCD. In general,
the spectrum is computed as a Fourier transform of the input signal which yields
results in complex numbers. When the magnitude of the spectrum is computed
the phase is not reflected at all. Geometrically speaking, when we imagine the
complex numbers as vectors in a 2D plane, the magnitude is the length of the
vector and the phase is the angle between the real x-axis and the vector. It is
computed as

θ = arctan
Im(x)
Re(x)

, (5)

where θ is the phase, Im(x) is the imaginary part of a complex number x and
Re(x) is the real part. When computing the phase of the spectrogram there is
a problem with the arctan function which outputs the angle in interval 〈−π, π〉.
When presented to other algorithms which rely on the numerical representations
such as CNNs this can result in problems. The most notable one is when we are
computing angle differences. Consider two angles α = π − ε and β = −π + ε,
where ε is a small number. Intuitively the angles are very close (in this case 2ε)
but when computed numerically as an absolute difference then the result will
be |α − β| = |π − ε + π − ε| = 2π − 2ε. That is why the angle directly cannot
be successfully used. There are some approaches that try to handle this issue,
for example group delay or phase delay. However, these approaches are also not
ideal for representing the phase for a CNN.

We chose three representations of the phase information as an input for the
CNN. The first approach P1 is the most direct one. We represent the complex
spectrogram as a 2-channel data stream in the form of a matrix 2 × 256 × 134.
In the first channel there is the real part of a complex number and in the sec-
ond channel there is the imaginary part. In this case the filters in the first
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convolutional layer also become 2-channeled. Thus, the channels are handled as
dependent signals. The second approach P2 adds the phase information to the
already present magnitude information. The phase is represented as the cosine
and sine components of the complex number. This enables to compute the phase
difference as euclidean distance which might be more suitable data representa-
tion for the neural network than the original angle θ. The input matrix becomes
3-channeled. In the first channel there is the magnitude and in the second and
third channel there is the cosine and sine component respectively. The third
approach P3 of phase representation is a modification of the second one, where
we put the logarithm of the magnitude into the first channel.

4.2 Labeling of Data

The base for the computation of the labeling functions are the annotations cre-
ated by humans. The annotations are a binary signal in time, where zero indi-
cates no speaker change and one indicates a speaker change. We can represent
this annotations as a set of time points {si}N

i=1 where N is the total number
of speaker changes for the given audio. We design two new non linear labeling
functions to test against the linear fuzzy labeling function. The first one is the
quadratic form of the linear fuzzy labeling function.

LQ(t) = max(0, 1 − mini (|t − si|)2
τ2

). (6)

The second one is a Gaussian form

LG(t) = exp

(
−mini (|t − si|)2

2σ2

)
, (7)

where

σ2 =
−τ2

2 log (ε)
, (8)

and ε is a small constant which represent the desired output of the function
LG(t) at the tolerance distance τ from the nearest annotation si. In our case
ε = 0.09. The labeling functions can be seen in Fig. 1.

5 Experiment

We want to find experimentally the best combination of labeling and phase
representation. For each combination we train a different CNN. The individual
networks have the same architecture except the first layer which is dependent on
the size of the input. The number of filters stays the same but they have different
number of channels. The training data from which different phase representations
are calculated is the same for each CNN and they are tested on the same set of
data. The training and testing data are two disjoint sets. The CNNs are trained
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Fig. 1. Different labeling functions. The functions represent the target values for the
CNN. On the x-axis is the distance from the nearest speaker change

for the same amount of iterations, which is approximately 13 epochs. The hyper-
parameters of the training are fixed. The CNNs output a probability of speaker
change in the given time. We detect local peaks in this signal and then use
a threshold to generate the segments. We measure the coverage and purity of
the CNN generated segmentations against the reference annotations. The larger
the values of both coverage an purity the better results we have achieved. A
perfect result has both coverage and purity equal to one. We compute it for
different thresholds. Given R the set of reference speech segments, and H the
set of hypothesized segments, coverage is:

coverage(R,H) =
∑

r∈R maxh∈H |r ∩ h|∑
r∈R |r| , (9)

where |s| is the duration of segment s and r ∩ h is the intersection of segments
r and h. A segment is a time interval between two subsequent speaker changes.
Purity is the dual metric where the roles of R and H are interchanged. Over-
segmentation (i.e. detecting too many speaker changes) would result in high
purity but low coverage, while missing lots of speaker changes would decrease
purity, which is critical for subsequent speech turn agglomerative clustering [2].

Coverage-purity curve is created by connecting the coverage-purity points.
These points are obtained by varying the value of the threshold used to detect
the speaker change instances. Regularly distributed thresholds produced highly
irregularly distributed coverage-purity points. Because of that we decided to use
a simple threshold choosing algorithm to produce more regularly distributed
coverage-purity points. We assume that the threshold is limited as t ∈ 〈0, 1〉.
First, we compute points for thresholds t = 0 and t = 1. Then, the following
algorithm can be repeated until the required quality of the curve is obtained.
We find two neighboring points, p0 and p1, with the largest euclidean distance
d = |p1 − p0| in the coverage-purity space. We do not know the true projection
t → (c, p). Therefore, using a linear approximation the threshold for the new
point will be t = (tp0 + tp1)/2. At first, the approximation looks raw, but as the
count of points increases, it results in a smooth curve. The process is visualized
in Fig. 2.
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Fig. 2. Visualization of the choosing of the new threshold for the coverage-purity curve
approximation

First we tested the impact of labeling on the CNN trained from the original
input of logarithm of magnitude of the spectrogram (see Fig. 3 on the left) and
from the phase input represented by real and imaginary parts of the spectrum -
P1 (see Fig. 3 on the right).

In Table 3 we show the performance of the systems in the means of equal
coverage and purity and their respective thresholds. It turns out that the non
linear versions of labeling perform notably worse than their linear counterpart.
This is the case in both scenarios with and without the phase information. This
leads to a conclusion that in this format of SCD the labeling function is very
important. The linear version of labeling (denoted as fuzzy) is better by a mar-
gin. Also the thresholds resulting in equal coverage-purity are closer to 0.5 as
expected.

Table 3. C-P equal values for different systems

Labeling Linear Quadratic Gaussian

C-P 0.8 0.745 0.741

threshold 0.4 0.19 0.19

C-P phase 0.79 0.73 0.73

threshold 0.51 0.12 0.18
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Fig. 3. Coverage-purity measure on systems trained with different target labellings. On
the left there is no phase information added. On the right there is phase information P1

In the next experiment we want to investigate the impact of phase informa-
tion on the detection process. As mentioned before we represent the phase in
three ways. The first way denoted P1 is representing the complex spectrogram as
a 2-channel matrix. The second approach P2 uses magnitude and the cosine and
sine components of the complex number resulting into 3-channel matrix. The
last approach P3 is used to investigates the importance of logarithm applied to
the magnitude of the spectrogram in the first channel. We use the fuzzy labeling
function LF as the target.

Table 4. C-P equal values for different phase representations

Phase None P2 P3

C-P 0.8 0.802 0.803

threshold 0.4 0.45 0.36

As can be seen in Fig. 4 and Table 4 the phase information gives a slightly
better results. The improvement is negligible and it seems that the CNN can-
not benefit from the phase information. The logarithm of the magnitude also
improves the results but again not significantly. It may be concluded that in this
setup the phase information is not crucial for the SCD.
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Fig. 4. Coverage-purity measure on systems trained with only magnitude data and
magnitude-phase data represented as P1 and P2. The target is the linear fuzzy labeling
function LF

6 Conclusion

In this paper we have investigated different labeling functions and their impact
on the CNN-based SCD. We also incorporated the phase information from the
spectrogram into the input of the CNN-based SCD system and evaluated its
added value. We have found out that the linear fuzzy labeling function outper-
forms other forms of labeling significantly. Also the threshold used for generating
the speaker change instances is closer to 0.5 leaving more room for fine tuning the
system depending on the usage of the SCD. When a lower threshold is selected
we obtain good purity and a higher threshold results in higher coverage.

The experiments with the phase information showed that even though there
is a slight improvement in the coverage-purity curve, one has to weight the
impact. The load of the CNN rises, more memory is needed to store the weights
of the CNN and the input. The threshold generating equal coverage-purity for
the phase information represented as P2 is closest to 0.5. The experiments with
the phase also showed that the representation of the phase is important. P2 and
P3 representations outperformed the P1 representation. This is highly dependent
on the type of network we used. Other approaches that do not use convolutional
layers may benefit from other representations.
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Abstract. Studying prosody is important for understanding many linguistic,
pragmatic, and discourse phenomena, as well as for solution of many applied
tasks (in particular, in speech technologies). Prosody of everyday speech is
extremely diverse, demonstrating high interpersonal and intrapersonal varia-
tions. Furthermore, natural everyday speech produces a multitude of effects
which are hardly possible to obtain in speech laboratories. Because of this fact, it
is very important to create resources containing representative collections of
everyday speech data. The ORD corpus is a large resource aimed at studying
everyday Russian speech. The paper describes the main stages of speech pro-
cessing in the ORD corpus starting from segmentation of original files into
macroepisodes and up to compiling prosody information into the database. This
prosody database will be further used for building empirical prosody models.
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1 The ORD Corpus and Its Data

Studying prosody is important for understanding many linguistic, pragmatic, and
discourse phenomena [1–8, etc.], as well as for solution of many applied tasks (in
particular, in speech technologies) [9–13]. Prosody of everyday speech is extremely
diverse, demonstrating high interpersonal and intrapersonal variations. At the same
time prosody may be considered to be central in the interpretation of everyday spoken
language [14], as it can completely change the meaning of utterances.

Natural everyday speech produces a multitude of effects which are hardly possible
to obtain in speech laboratories [15]. Because of this fact, it is very important to create
resources containing representative collections of everyday speech data.

The ORD corpus is a large resource aimed at studying everyday Russian speech.
For collecting speech data for the ORD corpus the methodology of longitudinal
recordings is used [16–18], for which the participants-volunteers have to spend a whole
day with turned-on voice recorders that record all their audible communications. This
methodology can be compared with a daily cardio monitoring, which is widely prac-
ticed in medicine.
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The ORD corpus was started in 2007 [19]. Recently it was expanded significantly
due to the support of the Russian Science Foundation in the framework of the project
ʻEveryday Russian Language in Different Social Groupsʼ [20]. Nowadays, the corpus
contains more than 1250 h of recordings which refer to about 2800 communicative
episodes. Those are the recordings of 128 respondents and more than 1000 of their
interlocutors, representing different social strata and different gender, age and profes-
sional groups of residents of a big Russian city.

The recordings were made in St. Petersburg, Russia in 2007–2016. Speech was
recorded in diverse communication settings: the recordings were made at home, in the
offices, outdoors, in service centers, in universities and colleges, in coffee bars and
restaurants, in transport, in shops, in parks, etc. [19]. Text transcripts are made for 480
communicative episodes (17% audio recordings of corpus) and number 1 million of
word usages [21].

All ORD recordings are supplied by sociological information concerning more than
1000 people recorded for the corpus. It allows to make search queries for speech of
people with diverse social characteristics.

The ORD collection provides valuable research data for many other interdisci-
plinary studies like anthropological linguistics, behavioral and communication studies,
studies in pragmatics, discourse analysis, psycholinguistics, and forensic phonetics.

Since ORD recordings are not “laboratory speech”, only a part of gathered audio
data is suitable for phonetic and prosody research. On average, there is only about 1/10
of all macroepisodes, the quality of which allows to conduct phonetic analysis of
speech. The paper describes the main stages of speech processing in the ORD corpus:
segmentation into macroepisodes, audio conversion, transcribing, segmentation onto
words and syllables, obtaining prosody information and its implementation into the
database.

2 The Main Stages of Speech Processing in the ORD Corpus

2.1 Segmentation into Macroepisodes

First of all, having received 8–14 h of recordings from each respondent, we are faced
with the task to segment it into fragments, which are homogeneous in terms of com-
munication settings (united by setting/scene of communication, social roles of parti-
cipants and their general activity). We call such fragments “macroepisodes” [22].

Before segmentation, all files are subjected to audio conversion to the format
adopted in the corpus: PCM, 22050 Hz, 16 bit, mono. The original recordings are kept
in the archive.

The task of segmentation of audio recordings into macroepisodes is performed
manually by linguists, who listen all gathered files, defining at the same time the
boundaries between episodes. Further, the researchers save each macroepisode into a
separate file, make a standardized description for each file in the database, and cut out
all “pauses” (i.e., segments not containing speech which are longer than 5 min) from
each audio file.
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The methodology of macroepisode annotation was described in [22]. Thus, each
macroepisode gets both verbal and standardized descriptions in three aspects:
(1) Where does the situation take place? (2) What are the participants doing? (3) Who
is (are) the main interlocutor(s). In addition, a concise description of the episode may
be given in an auxiliary database field called SceneName. The duration of each file is
indicated in the database, too.

The phonetic quality of each macroepisode is evaluated and measured in a 4-grade
scale: 1 – the best quality, suitable for precise phonetic/prosody analysis, 2 – rather
good quality, which is partially suitable for phonetic analysis, 3 – noisy recordings of
intermediate and low quality, which are not suitable for phonetic analysis but are
suitable enough for other aspects of research, and 4 – unintelligible conversations or
remarks in extreme noise, which could not be understood without noise reduction
techniques [23].

At this stage, macroepisodes, which are to be transcribed, are selected with a
priority indication of their ranks in the database. When choosing files for transcribing,
phonetic quality is usually considered, however, it is not the only factor that is taken
into account (the other important causes may be linguistic, pragmatic or discourse
peculiarities of the recorded data, as well as anthropological issues).

2.2 Speech Transcribing and Primarily Annotation

Selected macroepisodes are further subjected to transcribing and primarily multilevel
annotation both of which are made in ELAN [24]. The main principles for transcribing
and annotating are described in [19].

Besides speech transcripts and the correspondent anonymized codes of speakers,
primarily annotation contains the following information: (1) voice quality (e.g., hoarse,
whisper, scanning, irritated, imitating, ironical, dramatic, etc.); (2) non-language audio
events (dog barking, squeak of a door, phone ring, etc.); and (3) “miniepisodes”, which
are minor communicational units homogeneous either by the topic of conversation or
by its main pragmatic task [25]. Other linguistic, pragmatic or discourse comments are
to be written on layers FraseComment and Notes.

Here, it should be mentioned that in the first transcripts of the corpus, there was
only one level reserved for speech transcription in the annotation template. The mul-
tiple cases of overlapping speech were marked by special symbols # and @ in lin-
earized transcript [ibid.]. This form of transcript is convenient enough for further
linguistic annotation, however it does not reflect the audio reality in fragments with
overlapping speech.

Because of that fact, since 2014 we practice multilevel speech transcribing similar
to that used in Conversational Analysis, when each participant of the recorded con-
versation has his own level for transcription. In order to maintain compatibility with
previous transcripts of the corpus, currently we practice both versions of transcribing:
being initially made in a linear form, speech transcription is later converted into its
multilevel variant.

Transcripts are made manually by linguists in ELAN, each transcript being then
checked and approved by two or three experts. After that, the files are subjected to
automatic processing.
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2.3 Automatic Processing of Transcripts

Further, all annotation files are processed by means of Corrector software utility,
specially developed for the ORD corpus. It was designed to automatically fix possible
technical drawbacks in transcripts (e.g., to remove extra spaces), and to reveal possible
mismatch between the levels of speech and speakers that may occur in cases of
overlapping speech. Such a situation is often encountered in everyday conversations,
making it very difficult to analyze speech. In cases where such discrepancies were
detected, manual expert correction of the corresponding fragments is made followed by
another launch of Corrector utility. This is a necessary step for further processing of
annotation files.

After that, annotation files are processed by another ORD utility – Eafer program –

with the help of which the linear one-level transcript is converted into several layers,
each of which referring to one participant of the conversation. This approach allows to
separate speech from different speakers, no matter how many people are participating
in the conversation and to which social groups they belong.

At the next stage, the boundaries of annotation boxes are to be manually adjusted
on fragments with overlapping speech. This procedure is made directly in ELAN. After
that, the annotation files are ready for phonetic transcribing and segmentation.

2.4 Phonetic Transcribing and Segmentation

Phonetic transcribing of ORD transcripts is made automatically with the use of soft-
ware specially designed for this purpose by Speech Technology Center [26].

The following set of allophones is used:
[a0], [a1], [a2], [a4], [o0], [o1], [o4], [e0], [e1], [y0], [y1], [y4], [u0], [u1], [u4], [i0], [i1],
[i4], [b], [b’], [p], [p’], [d], [d’], [t], [t’], [g], [g’], [k], [k’], [c], [ch], [v], [v’], [f], [f’], [z],
[z’], [s], [s’], [zh], [sh], [sc], [h], [h’], [m], [m’], [n], [n’], [l], [l’], [r], [r’], [j].

The numbers after vowels have the following meanings: 0 – stressed, 1 –

pre-stressed, 4 – post-stressed. For /a/, in addition, the second pre-stressed position [a2]
is distinguished.

For transcribing, the software uses the typical algorithm of conversion of text into
sequence of allophones. Besides, it can distinguish different variants of word pro-
nunciation, which are described in the Lexicon of exceptions.

For example, for the frequentRussianword “sejchas” (“now”), the transcription based
on standard rules will be [s’i1jcha0s], but this full form rarely occurs in spontaneous
speech. Instead, two other variants are usually used: [s’i1cha0s] and [sca0s]. Because of
that, all non-standard forms should be listed in the Lexicon. When a program comes
across any word from this list, its decision on its pronunciation is based on statistical
variability of each variant which is calculated on the base of comparison of audio data
from the corresponding wave segment with the variants described in the Lexicon.

The other important function of this software is to segment audio file into words
and allophones. Actually, it means to define segment boundaries on these two levels.
Technologically, the algorithm is also based on the usage of statistical probabilities
[27], which takes into account three following aspects: acoustic data, speech transcript,
and the Lexicon.
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The program has two files as input: (1) audio file, and (2) ELAN-annotation file
with the level of speech transcript, on which each utterance is referred to correspondent
time segment. The result of the program is the updated ELAN-annotation file, which
has two additional levels – for words and allophone segments (see Fig. 1).

The efficiency of this software depends to a large extent on the phonetic quality of
the recorded signal. Thus, low level of recording, background noise or overlapping
speech significantly worsen the results. As for the accuracy of segment boundaries, it is
typically better on neutral speech fragments rather than on emotional speech, which is
frequently characterized by a significant prolongation of sounds, unforeseen by the
model, and therefore requiring expert correction. Generally, the use of this software
allows to significantly reduce the labor costs for manual speech segmentation.

2.5 Duration, Pitch, and Intensity

The information on the duration of speech segments is easily obtained from segmen-
tation data.

Recently, the new version of the utility described in the previous section has been
developed by Speech Technology Center. Beside graphic interface, it has got new
facilities allowing to automatically get the information concerning the mean values of
F0, F1 and F2 measured in Hz.

Therefore, two prosody parameters – allophone duration and its average pitch –

may be easily calculated for any allophone and further exported into the database.
For illustrative purposes, the example of such information for one phrase – Vit’ka

mne rasskazal vsjo pro jelektronnye sigarety [Vitka told me everything about electronic
cigarettes] – is presented in Table 1.

Fig. 1. Multilevel speech annotation in ELAN with its segmentation into words and allophones
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Table 1. The fragment of the table ALLOPHONES from the ORD Database

Macro-episode SC Phrase Word Allophone Dur (ms) F0 F1 F2

ordS33–15 S33 F32 Vit’ka v’ 70 122 384 1693
ordS33–15 S33 F32 Vit’ka i0 140 185 446 1614
ordS33–15 S33 F32 Vit’ka t’ 40
ordS33–15 S33 F32 Vit’ka k 70
ordS33–15 S33 F32 Vit’ka a4 30 158 446 1401
ordS33–15 S33 F32 mne m 40 145 443 1522
ordS33–15 S33 F32 mne n’ 60 139 458 1755
ordS33–15 S33 F32 mne e0 40 137 493 1579
ordS33–15 S33 F32 rasskazal r 50 131 501 1415
ordS33–15 S33 F32 rasskazal a2 30 128 510 1321
ordS33–15 S33 F32 rasskazal s 60
ordS33–15 S33 F32 rasskazal k 80
ordS33–15 S33 F32 rasskazal a1 50 124 512 1308
ordS33–15 S33 F32 rasskazal z 90
ordS33–15 S33 F32 rasskazal a0 40 117 515 1443
ordS33–15 S33 F32 rasskazal l 70
ordS33–15 S33 F32 vsjo f 60
ordS33–15 S33 F32 vsjo s’ 160
ordS33–15 S33 F32 vsjo o0 120 181 519 1093
ordS33–15 S33 F32 pro p 100
ordS33–15 S33 F32 pro r 50 117 435 1314
ordS33–15 S33 F32 pro a2 30 117 454 1435
ordS33–15 S33 F32 jelektronnye y1 30 113 448 1687
ordS33–15 S33 F32 jelektronnye l’ 70 109 387 1621
ordS33–15 S33 F32 jelektronnye i1 30 107 415 1584
ordS33–15 S33 F32 jelektronnye k 40
ordS33–15 S33 F32 jelektronnye t 70
ordS33–15 S33 F32 jelektronnye r 60 117 471 1168
ordS33–15 S33 F32 jelektronnye o0 80 119 473 1069
ordS33–15 S33 F32 jelektronnye n 60 120 323 1115
ordS33–15 S33 F32 jelektronnye y4 45 117 404 1273
ordS33–15 S33 F32 jelektronnye i4 45 111 472 1462
ordS33–15 S33 F32 sigarety s’ 110
ordS33–15 S33 F32 sigarety i1 30
ordS33–15 S33 F32 sigarety g 77
ordS33–15 S33 F32 sigarety a1 83 97 558 1652
ordS33–15 S33 F32 sigarety r’ 60 91 436 1772
ordS33–15 S33 F32 sigarety e0 80 83 439 1744
ordS33–15 S33 F32 sigarety t 120
ordS33–15 S33 F32 sigarety a4 110
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In particular, it contains data referring to (1) macroepisode (i.e., sound file), which
is a link to the information on communication settings; (2) speaker’s code (SC), which
is a link to sociolinguistic information about speakers; (3) the phrase itself; (4) word;
(5) allophone; (6) correspondent boundaries (not shown in Table 1); (7) allophone
duration; (8) average pitch; (9) average F1; and (10) average F2.

As for the detailed dynamics of pitch and the intensity, they may be analyzed in
Praat [28] after exporting annotation data from ELAN to TextGrid.

3 Conclusion

It this concise review, we have described the main points of preparation of the ORD
audio data to prosody research. In the result of such processing, the prosodic data are
accumulated in the corpus database, where they can be linked with other relevant
information (linguistic, pragmatic and discourse). Therefore, it will be possible to
analyze speech with specified parameters (e.g., recorded in a specific place, under
specific circumstances, by a speaker of specific characteristics, etc.). The compiled
prosody database will be further used for building empirical prosody models. Besides,
it seems particularly perspective to combine prosody information with pragmatic
annotation of speech acts [29].
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Abstract. Emotionally coloured speech recognition is a key technology
toward achieving human-like spoken dialog systems. However, despite
rapid progress in automatic speech recognition (ASR) and emotion
research, much less work has examined ASR systems that recognize the
verbal content of emotionally coloured speech. Approaches that exist
in emotional speech recognition mostly involve adapting standard ASR
models to include information about prosody and emotion. In this study,
instead of adapting a model to handle emotional speech, we focus on
feature transformation methods to solve the mismatch and improve the
ASR performance. In this way, we can train the model with emotionally
coloured speech without any explicit emotional annotation. We investi-
gate the use of two different deep bottleneck network structures: deep
neural networks (DNNs) and convolutional neural networks (CNNs).
We hypothesize that the trained bottleneck features may be able to
extract essential information that represents the verbal content while
abstracting away from superficial differences caused by emotional vari-
ance. We also try various combinations of these two bottleneck features
with feature-space speaker adaptation. Experiments using Japanese and
English emotional speech data reveal that both varieties of bottleneck
features and feature-space speaker adaptation successfully improve the
emotional speech recognition performance.

Keywords: Emotional speech recognition · Feature transformation ·
Deep bottleneck features

1 Introduction

Human communication is naturally coloured by emotion. Developing a nat-
ural spoken dialogue system that mimics human interaction requires a speech-
oriented interface that can handle the various emotions often found in conver-
sations. Researchers have been working on ASR technology for decades. ASR
approaches have progressed from a simple machine that responds to a small set
of sounds to more sophisticated systems that recognize conversational speech.
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On the other hand, research on emotion recognition from text or speech has also
recently gained considerable interest [17]. Numerous official emotion recognition
challenges [17–19] have been held, improving the features and classifiers that
capture the traits of spoken emotion. However, despite rapid progress in ASR
and emotion research, much less work has examined ASR systems that recognize
the verbal content of emotionally coloured speech [3].

Previous studies [10,12,23] reported that emotion largely changes acoustic
realization, including pitch range, speech rate, voice quality, etc. As a result
of this mismatch from neutral speech models, performing such emotion-affected
speech recognition tasks is not trivial, and several studies have shown that recog-
nition rates are in fact quite low [3]. Approaches in emotional speech recognition
generally adapt models that include information about prosody and emotion.
Athanaselis et al. improved recognition rates by including emotional sentences
in their model, including emotionally coloured dictionaries and language models
[2,3]. Polzin et al. also modified the training process to include acoustic pro-
nunciation variations in emotional speech [14]. Schuler et al. handled the prob-
lems by constructing two separate systems, emotion recognition and acoustic
model adaptation [16], and constructed a standard neutral acoustic model that is
adapted to each variety of emotional speech. Although these existing approaches
show significant advantages, they also require deep knowledge of and data regard-
ing every possible emotion that must be covered by the models.

In this study, we take a different direction. Instead of modifying the mod-
els to handle various types of emotional speech, we focus on lightweight feature
transformation methods to solve the mismatch and improve the ASR perfor-
mance with our standard ASR models without modification. In this way, we can
train the model with emotionally coloured speech without any explicit emotional
annotation. We propose using bottleneck features trained by DNNs and CNNs
and hypothesize that bottleneck features, which greatly reduce the dimensions
of the input speech, might be able to extract the essential information that
represents the verbal content while abstracting away from the differences that
result from the speech’s emotional colouring. We also try various combinations
of the two bottleneck features with feature-space speaker adaptation. Although
bottleneck features have been widely used in the ASR community, to the best of
our knowledge, ours is the first attempt to investigate the optimum combination
of DNN-CNN bottleneck features and feature-space adaptation for emotionally
coloured dialogue speech in Japanese and English.

2 Proposed Methods

This section describes our proposed feature transformation methods for emo-
tional speech recognition based on DNN-CNN bottleneck features in combina-
tion with feature-space speaker adaptation.

2.1 DNN-Based Bottleneck Features

Figure 1 illustrates the DNN bottleneck architecture. Bottleneck features are
simply vectors that consist of activations at a bottleneck layer, which has fewer
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hidden units than the other hidden layers in the network. These bottleneck
features represent a nonlinear transformation and a dimensionality reduction of
the acoustic input.

In this paper, we use a stack of denoising auto-encoders (SDAE) [21] for
generative pre-training in a layer-wise, unsupervised manner. After pre-training
is completed, fine-tuning connects the whole network, including both the bottle-
neck and final classification layers, and then the network is trained in a supervised
manner to predict a phonetic target or HMM-states. After the training is com-
pleted, the layers after the bottleneck features are discarded, and the network is
used to generate features that are input to a GMM-HMM model. The generated
bottleneck features are called DBNF.

2.2 CNN-Based Bottleneck Features

Figure 2 illustrates an alternative to the standard DNN-based bottleneck fea-
tures that use a CNN framework1 with a bottleneck hidden layer. Using convolu-
tion and pooling, CNNs have spatial-temporal connectivity and local translation
invariance for the given input and also allow weight sharing, which reduces the
number of free parameters and improves the generalization ability.

For architecture that is compatible with the proposed DNN-based bottleneck
features, in this study, we slightly modify the fully connected hidden layers to
include one bottleneck hidden layer with relatively few hidden units compared
to the other hidden layers in the fully connected parts. The CNN is trained as
usual without pre-training. Similarly to DNNs, after the training is completed,
the layers after the bottleneck features are discarded, and the network is used
to generate bottleneck features for the GMM-HMM model. The generated bot-
tleneck features are called CBNF.

Fig. 1. DNN architecture with bottleneck hidden layer

Fig. 2. CNN architecture with bottleneck hidden layer

1 This framework was originally called a time-delay neural network [22] in speech
recognition.
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2.3 Bottleneck Feature Combination

Because the DNN-based and CNN-based bottleneck features are expected to cap-
ture different information about input acoustic signals, we also propose meth-
ods that combine them in two ways: (1) stack combination and (2) parallel
combination.

Fig. 3. Stack combination of CNN-DNN bottleneck features

Fig. 4. Parallel combination of CNN-DNN bottleneck features

Stack combination. We first combine these transformations one-after-another
in a stacked manner. Since CNN commonly uses two-dimensional input and
DNN uses one-dimensional input, we constructed DNN bottleneck features
on top of the CNN bottleneck features (Fig. 3). Here, the bottleneck features
provided by the CNN framework are not directly fed to the GMM-HMM
model, but instead they are used as input for the DNN. Then the output
of the DNN bottleneck features is used for learning the GMM-HMM model.
Both the CNN and DNN bottleneck features are trained sequentially.

Parallel combination. Figure 4 illustrates the proposed parallel combination
of the CNN-DNN bottleneck features. Here, they are trained entirely inde-
pendently. The bottleneck features that are output from the CNN and DNN
are then combined into one large feature vector. To allow for a fair com-
parison with the other proposed bottleneck features, LDA is used to project
these large feature vectors into smaller dimensions, and then these features
are provided to the GMM-HMM model.

To further improve robustness against emotion variations from different
speakers, we also combined the DNN-CNN bottleneck features with feature-
space maximum likelihood linear regression (fMLLR) [4] for speaker adapta-
tion and investigated various possible combinations such as DBNF+fMLLR,
CBNF+fMLLR, stack combination DBNF-CBNF with fMLLR, and parallel
combination DBNF-CBNF with fMLLR.
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3 Experimental Conditions

We conducted the overall model training procedure as follows:

– Train the standard GMM-HMM model on neutral speech.
– Train the DNN and CNN bottleneck feature transforms on neutral and emo-

tionally coloured speech.
– Run the bottleneck feature extractor on the neutral and emotionally coloured

speech.
– Retrain the GMM parameters on the extracted bottleneck features, while

keeping the same parameters for the HMMs.
– Use the system for speech recognition as in standard GMM-HMMs.

The experiments were performed in both Japanese and English. Details about
the data and the system set-up are described in the following sections.

3.1 Speech Corpora

1. Neutral monologue speech corpus
– Corpus of spontaneous Japanese (CSJ)

The Corpus of Spontaneous Japanese (CSJ)[7] consists of sponta-
neous monologue speech of academic presentations and public speaking.
Approximately 7.5 million words are provided by over 1,400 speakers.
The training part contains about 490k utterances (518 hours of speech).
The speech format is mono-channel with 16-kHz sampling frequency and
16-bit quantization.

– English Wall Street Journal (WSJ)
The Wall Street Journal (WSJ) corpus [11] is a large, well-known vocabu-
lary, a speaker-independent continuous speech corpus for native American
English. Here, we trained models on the SI-84 (WSJ0) training material
that consists of about 40k utterances (16-kHz sampling frequency and
16-bit quantization).

2. Emotionally coloured dialogue speech corpus
– Online gaming voice chat (OGVC)

The OGVC corpus [1] consists of both spontaneous and acted speech for
emotional research. Spontaneous emotional speech data were recorded by
two or three online game players through a voice chat system, resulting in
six dialogs and 9,114 utterances. Emotions are manually annotated based
on the perceptual emotion categories of Plutchik’s model [13], including
acceptance (ACC), anger (ANG), anticipation (ANT), disgust (DIS), fear
(FEA), joy (JOY), sadness (SAD), and surprise (SUR). In addition, four
professional actors (two males, two females) uttered 17 dialog sequences
extracted from the transcriptions of the spontaneous dialogs with various
emotional strengths: calm (level 0), weak (level 1), medium (level 2),
and strong (level 3). There are approximately 664 utterances per actor,
resulting in 2656 acted utterances. In this study, since the effect of various
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emotions and emotion levels are important factors to explore, we used
only the acted speech parts. For eight emotion types and four emotion
levels, we have 32 different test sets with 40 utterances in each test set.

– Sustained emotionally coloured machine-human interaction
using nonverbal expression (SEMAINE)
The SEMAINE material [8] was developed specifically to address the task
of achieving emotion-rich interaction with an automatic agent, called a
sensitive artificial listener, (SAL). Each user interacts with four charac-
ters in a Wizard-of-Oz framework: constantly angry Spike, happy Poppy,
gloomy Obadiah, and sensible Prudence. Emotional annotation involved
full ratings with intervals of 0.02 s for five dimensions: valence, activation,
power, anticipation, and intensity. In this preliminary study, to limit mit-
igating factors regarding the emotional content and acoustic realization,
the speech data from the user side were not used at the moment. So only
conversations derived from the SAL automatic agent were used with 1520
speech utterances for training and 467 speech utterances for the test set.

3.2 Emotionally Coloured Speech Recognition Set-Up

We constructed a speech recognition system with Kaldi [15], a free open-source
toolkit. The front-end provides 39-dimensional MFCCs every 10 ms with a width
of 25 ms. To incorporate the temporal structures and dependencies, 11 adjacent
(center, 5 left, and 5 right) MFCC frames were stacked into one single super
vector, which was projected down to an optimal 40 dimensions by applying LDA.
After that, the resulting features were further de-correlated using a maximum
likelihood linear transformation (MLLT) [6], which is also known as a global
semi-tied covariance (STC) [5] transform. Here, speaker adaptive training was
also performed using a fMLLR [4] transform that was estimated per speaker.

Standard GMM-HMM acoustic models were trained on the above provided
features. Japanese speech recognition was trained with the CSJ corpus, and the
English speech recognition system was trained with the WSJ corpus. All models
are context-dependent, and cross-word triphones with a standard three-state left-
to-right HMM topology were derived from 39 Japanese and English phonemes.
A pronunciation dictionary was constructed with CSJ and WSJ pronunciation
dictionaries for Japanese and English, respectively. We built trigram language
models with the SRILM toolkit [20].

To train the DNN- and CNN-based feature transformations, we used the
Kaldi-PDNN toolkit [9]. Japanese DNNs and CNNs were trained with the OGVC
corpus, while English DNNs and CNNs were trained with the SEMAINE corpus.
The number of nodes in the input layer depends on the dimension size of the
speech feature input. Specific to CNN, the input is two-dimensional. The num-
ber of nodes in the output layer equals the number of HMM phone states in the
GMM-HMM model. The total number of hidden layers is six, in which the stan-
dard hidden layer consists of 1024 nodes, and the bottleneck hidden layer (at the
5th position) consists of 42 nodes. The CNN has two convolutional-pooling layers
with three fully connected hidden layers on top (including a bottleneck hidden
layer in the middle). All other parameters used the default set in Kaldi-PDNN.
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4 Experimental Evaluation

First, we discuss recognition on emotionally coloured speech in Japanese. Table 1
shows the average word error rate (WER) on the Japanese OGVC in eight
emotion types (ACC, ANG, ANT, DIS, FEA, JOY, SAD, and SUR) plus neutral
(NEU), and Fig. 5 illustrates the WER average on the Japanese OGVC in four
emotion levels (calm, weak, medium, and strong).

Table 1. WER(%) on Japanese OGVC for all emotion types

MFCC LDA LDA+

fMLLR

DBNF DBNF+

fMLLR

CBNF CBNF+

fMLLR

StackComb ParComb ParComb+

fMLLR

NEU 12.36 12.29 10.15 11.29 10.07 11.69 11.93 16.60 8.94 7.15

ACC 23.33 25.08 16.83 15.40 14.29 18.73 20.95 17.78 12.86 9.36

ANG 24.02 24.51 16.79 20.34 12.26 20.10 15.69 18.13 11.40 7.48

ANT 15.14 16.88 9.91 16.56 10.13 18.52 13.07 22.98 11.55 10.24

DIS 21.89 27.11 27.11 35.74 22.29 30.32 27.71 28.92 16.87 18.88

FEA 37.34 42.62 31.43 26.79 22.78 25.95 27.43 36.08 26.58 20.89

JOY 23.87 20.12 13.52 17.27 8.11 21.77 17.87 29.13 15.31 13.06

SAD 27.08 27.20 24.27 30.27 17.53 31.50 25.37 28.18 18.38 12.38

SUR 58.43 56.74 33.71 31.27 22.09 38.39 35.77 43.82 28.84 23.22

Avr 27.05 28.06 20.41 22.77 15.50 24.11 21.75 26.84 16.74 13.62

Fig. 5. WER(%) on Japanese OGVC for all emotion levels

Looking at the aggregate results of the DBNF and CBNF bottleneck fea-
tures, both DBNF and CBNF proved advantageous for ASR in comparison with
MFCC and LDA baseline, demonstrating that bottleneck features indeed allow
for abstraction away of the variance caused by emotionally coloured speech. On
average, the ASR performance with DBNF is still better than the performance
with CBNF, but CBNF did outperform DBNF in some emotions, such as disgust
and fear, motivating our feature combination methods.
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In the bottleneck feature combination, the stacked feature combination
method did not provide improvements, perhaps because in the feature extrac-
tion process, CBNF removes some useful information that might be captured
more effectively by DBNF. Since DBNF probably wasn’t able to perform any
further extraction, it could not improve the recognition performance. By com-
bining them in a parallel manner, we got significant improvement.

Utilizing bottleneck features with feature-space speaker adaptation, such as
DBNF+fMLLR, CBNF+fMLLR, stack combination DBNF-CBNF with fMLLR,
and parallel combination DBNF-CBNF with fMLLR, also provided advantages
to ASR. The best proposed method is the parallel combination of bottleneck fea-
tures with feature-space speaker adaptation, which allows for a large improve-
ment of a 6.78% WER absolute over the LDA-fMLLR feature transformation
baseline.

Looking at the effect of emotion levels, we confirmed that the expected results
are more difficult to recognize when the speech has higher emotion levels. Scruti-
nizing the emotion-by-emotion results, the most difficult-to-recognize variety is
speech coloured with fear or surprise, where the MFCC baseline achieved WERs
of 37.34% and 58.43%, and the LDA-fMLLR baseline achieved WERs of 31.43%
and 33.71%. This indicates that emotions with a higher pitch, a faster speech
rate, and short durations are the most difficult to handle. The DBNF-CBNF par-
allel combination with speaker-dependent feature-space adaptation reduced the
fear and surprise WERs to 20.89% and 23.22%. Furthermore, anger, sadness,
and joy/happiness emotions with slightly faster or slightly lower speech rate
and moderate duration provided moderate difficulties to the recognizer. The
LDA-fMLLR baseline achieved WERs of 16.79%, 24.27%, and 13.52%, while the
proposed parallel DBNF-CBNF plus fMLLR combination reduced the WERs to
7.48%, 12.38%, and 13.06% for anger, sadness, and joy/happiness, respectively.

Fig. 6. Summary of WER(%) on English emotional speech SEMAINE
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Next, we confirmed that the improvements afforded by our method are car-
ried over to English speech recognition on emotionally coloured speech. Figure 6
illustrates the WER average on the English SEMAINE in four emotion types
(angry Spike, happy Poppy, gloomy Obadiah, and sensible Prudence). The
results reveal that even with different languages and different neutral speech
styles (used to train the standard ASR), the results have the same tendency.
The best system was also achieved using a parallel combination of bottleneck
features with feature-space adaptation, providing a 3.57% absolute WER from
the LDA-fMLLR feature transformation baseline.

Comparing emotion-by-emotion across two languages, joy/happy in Japanese
acted speech seems to provide similar moderate difficulties with anger and sad,
but in conversational English speech, happy seems difficult to handle. This might
be due to additional non-verbal laughter during the speech, complicating recog-
nition of the verbal content. Nevertheless, the proposed approach still reduced
the absolute joy/happy WER by 3.33% from the LDA-fMLLR feature transfor-
mation baseline.

5 Conclusion

We proposed DNN or CNN bottleneck features as a way to abstract away from
the variability due to emotion coloured speech as well as methods to combine
multiple types of features to further improve robustness. The results reveal that
both single DBNF and CBNF provide advantages for recognizing the verbal
content of emotionally coloured speech. The DBNF and CBNF combination in
a parallel manner also provided significant improvement. The best system per-
formed a parallel combination of bottleneck features with feature-space speaker
adaptation to handle both emotion and speaker variability. With this set-up,
we achieved 6.78% and 3.57% WER absolute reduction from the LDA-fMLLR
feature transformation baseline in Japanese and English emotional speech recog-
nition. In the future, we will investigate further types of feature transformations
for emotionally coloured spontaneous speech recognition.
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Abstract. The cuteness of female voices is especially important in
Japanese pop culture. We investigate the relationship between the per-
ception of cuteness in female voices and the voices’ duration. In our
hypothesis, the perception of cuteness should become more ambiguous
and unstable as the duration becomes shorter. To confirm this hypoth-
esis, we conducted listening tests where participants listened to female
voices with various durations and rated their cuteness on scale of 1 to
5. The results show: (1) the instability of cuteness perception becomes
higher as the duration is lower, (2) for voices rated “4” or higher when
presented fully, their ambiguity of cuteness perception increases (i.e., the
ratings become close to “3 (indeterminable)”) when presented shortly,
and (3) for voices rated “2” or lower when presented fully, the ambiguity
of cuteness perception does not increase even if the durations are short.

Keywords: Cuteness · female voice · duration

1 Introduction

The cuteness of female voices is important especially in Japanese pop culture.
For example, in Japanese anime works, cute voices by female actresses often
play a significant role in increasing the popularity of the work. In maid cafes—
cosplay restaurants popular in Japan— the waitresses dress in maid costumes
and often use characteristic voices that are usually described as cute. Such voices
are also called moe voices where moe is a Japanese Internet slang meaning strong
attachment to a specific object.

This work is part of a larger study, which aims to develop techniques that
make it possible to synthesize cute voices on a computer. Therefore, we investi-
gate the relationship between acoustic features and human perception of cute-
ness. There have been attempts to investigate the relationship between acoustic
features and human perceptions or preferences [1]. Jones et al. found that men
strongly preferred women’s voices when the pitch is raised [2]. Liu et al. argued
that men’s preferences for women’s voices are related to the voices’ breathiness
as well as the pitches [3,4]. Ferdenzi et al. claimed that there were differences of
c© Springer International Publishing AG 2017
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listeners’ impressions when they listened to a single vowel and an actual word
or sentence (such as “Bonjour”) [5]. Babel et al. found that the preferences for
voices have positive correlation between listeners’ genders. They also found that
acoustic features related to the body size contribute to predict vocal attrac-
tiveness [6]. Puts et al. argued that women are sensitive to formant dispersion
that strongly affects men’s preference of the female voice, and conclude that
women use vocal characterstics to track their rival in mating [7]. Takano et al.
investigated the relationship between acoustic features and how strongly the
listeners felt moe in the voices [9,10]. They found that the degree of moe in
voices depends on the speaker’s individual characteristics rather than emotional
expressions controlled by the speaker. They also reported that the degree of moe
could be enhanced by making the mean F0 higher, making the standard devia-
tion of F0 larger, and making the speech rate faster. Kawahara analyzed voices
spoken by maid cafes’ waitresses (maid voices) and showed that the waitresses
use higher and faster voices in maid cafes than their natural voices. In particu-
lar, the temporal increase in the F0 tends to be faster than their natural voices
[11,12]. Moreover Starr argued that the voice quality (e.g., breathy and creaky)
is important to evaluation of characters and actresses who make use of sweet
voice [8].

Here, we focus on the relationship of voice durations and cuteness percep-
tion. In other words, we focus on whether humans can perceive the cuteness of
voices even if the durations are very short. If they can, then cuteness could be
derived from instantaneous features (for example, F0 or spectrum at one frame).
If not, cuteness is related to the temporal evolution of features. We conducted an
experiment in which the participants listened to 75-ms, 150-ms, 300-ms, and 600-
ms excerpts of female voices and rated their cuteness. We hypothesize that the
ratings of cuteness would become ambiguous and unstable as shorter durations.

2 Method

2.1 Speech Stimulus

We used speech samples taken from the Onichan CD [13], which consists of
1200 voices saying “Onichan” (meaning “my (older) brother”). These voices are
spoken under assumptions of 100 different situations by 12 female voice actresses.
This CD was also used in the experiments on moe voices by Takano et al. [9]. For
our experiments, we took voices at the situation of “chotto tanoshii” (meaning
a little fun) because these voices had higher moe than those in Takano et al.’s
experiment [9].

By cutting out each of these 12 voices (one voice by the 12 actresses), we
prepared shortened speech stimuli. The durations are 75 ms, 150 ms, 300 ms,
and 600 ms. Because we chose three different cutout positions at random, there
are 36 voices (3 cutout positions × 12 actresses) for each duration. The resulting
stimuli are listed in Table 1. When the stimulus was cut out, silent part was
excluded in advance.



644 R. Ohno et al.

Table 1. Breakdown of voice stimulus by each actress

Duration Cut-out position For all actors

75 [ms] 3 patterns (random) 36

150 [ms] 3 patterns (random) 36

300 [ms] 3 patterns (random) 36

600 [ms] 3 patterns (random) 36

Full 1 pattern (no cut-out) 12

Sum 156

2.2 Participants

The participants were 14 Japanese university students (7 males and 7 females)
between the age of 21 and 24 (average: 21.43, standard deviation: 0.94).

2.3 Procedure

The experiments were conducted through the following steps:

1. For the 75-ms voice stimulus,
1-1. Listen to each of them in random order.
1-2. After each listening, rate its cuteness within five seconds.

The ratings shall be 1 (never cute), 2 (hardly cute), 3 (indeterminable), 4
(mostly cute), or 5 (definitely cute).
The number of ratings is 108 in total (12 actresses × 3 cutout positions × 3
times).

1-3. Rest after every 54 ratings.
2. Do the same thing for 150-ms, 300-ms, and 600-ms voices.
3. Do the same thing for the full-duration voices. The number of ratings is 36

in total (12 actresses × 3 times). The participants therefore do not rest.

2.4 Method of Analysis

We hypothesize that the perception of cuteness becomes more ambiguous and
unstable as the durations become shorter. The ambiguity of cuteness perception
can be measured by how close the scores are to “3 (indeterminable),” and the
instability can be measured as variations in scores for the same stimulus. Based
on these ideas, we analyze scores as follows:

Analysis of Instability. Within-listener variations in the rating scores for
the same stimulus are analyzed. If the cuteness perception requires a certain
duration for heard voices, then these variations should increase according to the
shortness. We therefore analyze the relationship between the durations and the
ranges (i.e., the difference between the maximum and the minimum) of the scores
for the same stimulus.
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Analysis of Ambiguity. The ambiguity of cuteness perception is analyzed,
but cuteness perception seriously depends on the listeners; they may never feel
the cuteness for a certain voice even if they fully listen. Therefore, we analyze
how close the average of scores are to “3” for only the voices that the same
participant gave scores of “4” or “5” when he/she fully listened. If cuteness
perception requires a certain duration for heard voices, then these ratios should
be lower according to the shortness. We conducted similar analysis for only the
voices rated as “1” or “2” when he/she fully listened.

3 Results

3.1 Instability

The ranges of the scores for the same stimulus are shown in Fig. 1. This figure
shows the following:

– The participants gave the same score to the same stimulus for 46.9% of stimuli
on average.

– The ranges of the scores for the same stimulus tend to become larger according
to the shortness.

– However, even at 75 ms, 66.9% of the stimuli on average had ranges of 1 or
smaller.

Fig. 1. Cumulative probability of ranges of scores given to the same stimulus by the
same listener
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We conducted statistical tests. First, we applied the Kruskal-Wallis H test (KW-
test, α = .05)—a non-parametric version of ANOVA— to confirm whether the
distributions of within-listener score ranges for the five durations have signif-
icant differences between at least one pair. The sample size of each distribu-
tion except for the full duration is 504; the full duration is 168. The result
(H(df = 4) = 39.04, p < .001) shows that they have significant differences
between at least one pair. Next, we applied multiple comparisons using the
Mann-Whitney U test (U-test, α = .05) with the Bonferroni correction to each
pair of the five distributions. The results of the multiple comparisons reveal that
there are significant differences between the mean ranks of the distributions
for 75 ms and 300 ms (z = 3.53, p < .01), for 75 ms and 600 ms (z = 5.25,
p < .001), for 75 ms and full duration (z = 4.33, p < .001), for 150 ms and 600
ms (z = 3.39, p < .01), and for 150 ms and the full duration (z = 3.15, p < .05).
Thus, the instability of cuteness perception becomes higher as the duration is
shorter, although this instability is not so high.

3.2 Ambiguity

Distributions of Scores for Voices Rated Highly in the Full Duration.
We extracted the voices that each participant rated “4” or higher in the full
duration and analyzed the distributions of scores that the same participant gave

Fig. 2. Cumulative probability of median scores for voices rated highly in the full
duration
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to these voices when the duration decreased. These distributions are shown in
Fig. 2. This figure shows the following:

– Low scores increase relatively according to the shortness even though all voices
are rated at “4” or higher when presented fully.

– However, even for the duration of 75 ms, 51.4% of the stimuli on average had
medians of “4” or higher.

To confirm the correlation between the central tendency of scores and the
durations, we conducted statistical tests for distributions. We excluded the dis-
tribution for the full duration because this distribution is the result of excerpt-
ing the scores of “4” or higher, and accordingly, these have scores of “4” or
higher only. The sample size of each distribution is 222. From the result of KW-
test(α = .05), the four distributions have significant differences between at least
one pair (H(df = 3) = 128.01, p < .001). Moreover, the results of multiple com-
parisons show that there are significant differences between the mean ranks of
the distributions for 75 ms and 300 ms (z = −6.12, p < .001), for 75 ms and
600 ms (z = −9.34, p < .001), for 150 ms and 300 ms (z = −5.40, p < .001),
for 150 ms and 600 ms (z = −8.84, p < .001) and for 300 ms and 600 ms
(z = −4.81, p < .001).

Distributions of Scores for Voices Rated Low in the Full Duration. We
extracted the voices that each participant rated “2” or lower in the full duration
and analyzed the distributions of scores that the same participant gave to these
voices when presented with short duration clips. These distributions are shown
in Fig. 3. This figure shows the following:

– Some of the voices (e.g., 9.4% for 600 ms, 27.1% for 300 ms, 24.5% for 150 ms,
23.9% for 75 ms) were rated “3” or higher even though they all were rated
“2” or lower when presented as a the full clip.

– These ratios and the durations did not show clear relationship (at least, not
monotonous) unlike Fig. 2.

– 76.1% of the ratings at 75 ms were consistent with the ratings in the full
duration.

Similar to the last section, we conducted statistical tests for the distributions.
We excluded the distribution for the full duration because this distribution is the
result of excerpting the scores of “2” or lower and accordingly only has scores of
“2” or lower.

The sample size of each distribution is 159. The results of the KW-test (α =
.05) show no significant differences between any pairs of the four distributions
(H(df = 3) = 7.16, p = 0.067).

4 Discussion

4.1 Instantaneous Acoustic Cues vs Dynamic Acoustic Cues

In previous studies, perception of cuteness (including moe) in female voices lies
on temporal variations in acoustic features (such as F0 contour [11,12] and
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Fig. 3. Cumulative probability of median scores for voices rated low in the full duration

temporal standard deviation of F0 [9,10]). These conclusions match our findings
that the cuteness perception becomes unstable when only short pieces of the
voices are presented. On the other hand, 51.4% of the ratings for 75-ms voices
were consistent with those for the corresponding full-duration voices are rated
“4” or higher. This implies that instantaneous cues also play a significant role
in cuteness perception.

4.2 Asymmetry of “Cuteness” and “Uncuteness”

Even though the ambiguity of cuteness perception increased when the partic-
ipants listened to short parts of the voices that they rated highly in the full
duration, this tendency was not shown for the voices that they rated low in the
full duration. This difference may be derived from asymmetry of cuteness and
uncuteness. In typical listening tests, we use a pair of adjectives that have oppo-
site meaning to each other, e.g., bright and dark. However, there is no opposite
word of “cute”(kawaii) in Japanese, so we used negative forms of this word, i.e.,
“never cute” and “hardly cute”. This means that the ratings of “1” and “2” are
not necessarily because the listeners found a negative property in the voices, but
rather because they did not find any cuteness in the voices. This asymmetry
might be one reason for the above-mentioned differences.

4.3 Remaining Issues

There are some important aspects that are not considered here. First, no
stimuli are spontaneous utterances but rather acting utterances by voice
actresses in which the cuteness might be exaggerated. According to Kawahara’s
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study [11,12], acting voices tend to have larger temporal deviations in acoustic
features. The results may therefore change if we use spontaneously uttered voices.
Second, 75-ms voices and 600-ms voices have differences not only in acoustic fea-
tures but also in semantics. From 600-ms voices, listeners may be able to find
out that they are excerpts of voices meaning “Onichan” (my older brother), but
this cannot happen with 75-ms clips. The attractiveness of the voices depends
on the semantic content [2], so the results may change if we use non-meaningful
voices such as /aeaeae/.

5 Conclusions

Here, we investigated the relationship between the perception of cuteness in
female voices and the voices’ durations. The results show that: (1) the score
instability increases as the duration is shorter, (2) for voices rated “4” or higher
when presented fully, the ambiguity of the scores was higher when the duration
becomes shorter, (3) for voices rated “2” or lower when presented fully, the ambi-
guity of scores was not higher even if the duration was short; and (4) however,
even at 75 ms, instability and ambiguity were not so high. We suspect that it
is possible to perceive vocal cuteness partly and also uncuteness more correctly
even if the duration is very short.

In the future, we will investigate the types of acoustic features used in judging
cuteness from very short voices by calculating correlations between the partici-
pants’ ratings and various acoustic features.
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Abstract. The extensive use of video surveillance along with advances in face
recognition has ignited concerns about the privacy of the people identifiable in
the recorded documents. A face de-identification algorithm, named k-Same, has
been proposed by prior research and guarantees to thwart face recognition
software. However, like many previous attempts in face de-identification, k-
Same fails to preserve the utility such as gender and expression of the original
data. To overcome this, a new algorithm is proposed here to preserve data utility
as well as protect privacy. In terms of utility preservation, this new algorithm is
capable of preserving not only the category of the facial expression (e.g., happy
or sad) but also the intensity of the expression. This new algorithm for face
de-identification possesses a great potential especially with real-world images
and videos as each facial expression in real life is a continuous motion con-
sisting of images of the same expression with various degrees of intensity.

Keywords: Privacy protection � Face de-identification � Facial expression
preservation � Linear discriminant analysis � K-Anonymity

1 Introduction

Recent advances in both camera technology and computing hardware have highly
facilitated the effectiveness and efficiency of image and video acquisition. This capa-
bility is now widely used in a variety of scenarios to capture images of people in target
environments, either for immediate inspection or for storage and subsequent
analysis/sharing [1]. These improved recording capabilities, however, has ignited
concerns about the privacy of people identifiable in the scenes. The Council of Europe
Convention of 1950 formally declared privacy protection as a human right. This was
later embodied in the 1995 Data Protection Directive of the European Union (Directive
95/46/EC) and the 2016 General Data Protection Regulation (GDPR Regulation
(EU) 2016/679). Both regulations demand the deployment of appropriate technical and
organizational measures to protect private information in the course of transferring or
processing such data. This legal requirement along with ethical responsibilities has
restricted data sharing and utilization while various organizations may require the use
of such data for research, business, academic, security and many other purposes. To
comply with the regulations, de-identification has become the focus of attention by
many organizations with the ultimate goal of removing all personal identifying
information while protecting the utility of the data.
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A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 651–661, 2017.
DOI: 10.1007/978-3-319-66429-3_65



Various methods have been proposed for the de-identification of faces in still
images. These methods can be put into two categories: the ad hoc methods (such as
masking, pixelation and blurring [2–4]) and the k-anonymity based methods (such as k-
Same [5]). The ad hoc methods are usually simple to implement. However, these
methods significantly distort the integrity of the image data. Imagine the eye area being
blacked out by masking methods or the resolution of the image being sacrificed by
pixelation or blurring. Even worse, ad hoc methods fail to serve their purpose as they
are unable to thwart the existing face recognition software [5, 6]. To achieve privacy
protection, the concept of k-anonymity was introduced by Sweeney in 2002 [7]. All k-
anonymity based methods de-identify a face image by replacing it with the average of
k faces from a gallery and hence achieve privacy protection by guaranteeing a
recognition risk lower than 1/k. Among the k-anonymity methods, the most widely
used method is k-Same [5]. However, k-Same was not designed for preserving data
utility. As a result, the de-identified version of a male face might look feminine (Fig. 1
(a)) and a neutral face might put on a smile (Fig. 1(b)). The work presented in this
paper is an extension to the k-Same method. In addition to privacy protection, con-
sideration has been taken for retaining the facial expression of the original image and
the intensity of the expression.

The next section introduces the benchmark algorithms that support the method
proposed in this work. Section 3 defines our method. Section 4 describes the face
image database used in this work, gives an overview of the approaches used in the
experiments and presents the results. Finally, the findings of this work are concluded in
Sect. 5, with a discussion on the general applicability of this work and some proposals
for further work.
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Fig. 1. Risk of losing data utility with the k-Same algorithm: (a) loss of gender and (b) loss of
expression
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2 Benchmark Methods

2.1 Principal Component Analysis and Face Recognition

Principal Component Analysis (PCA) is a benchmark method for the unsupervised
reduction of dimensionality [8]. It has been widely used in the global approach to face
recognition [9], where D-dimensional pixel-based face images are projected into a d-
dimensional PCA subspace called the facespace (typically d\\D). The goal of PCA is
to reduce the dimensionality of the face images while retaining as much as possible of
the variation present in them. In face recognition, the PCA projection along with the face
space are established through training a set of face images and PCA achieves its goal by
projecting these training images along the directions where they vary the most. Figure 2
presents the general PCA-based training process of a face recognition system. Typically,
the face space is defined based on the eigenvectors of the covariance matrix corre-
sponding to the largest eigenvalues. The magnitude of the eigenvalues corresponds to
the variance of the data along the eigenvector directions. In this work, all eigenvectors
with a nonzero eigenvalue are kept to avoid losing information on data utility.

In face recognition, each PCA eigenvector is a face image. These eigenvectors are
therefore named Eigenfaces. Figure 3 displays the top two and the last two Eigenfaces
used in this work. The image set used for computing/training these Eigenfaces contains
both neutral and smiley faces.

Let be the training set of M face images and every image in be a × 1 vector. 
Perform the following steps:

1) =

2) For each , =
3) Form the matrix = [ ,…, ], then compute the covariance matrix =

(covariance matrix characterizes the scatter of the face images in )
4) Compute the eigenvalues ,…, of such that | | = 0 for = 1,…,
5) Sort eigenvalues in descending order, i.e. for = 1,…,
6) Compute the eigenvectors ,…, of such that = for = 1,…,
7) Select the top ’ eigenvectors such that

0 for = 1,…,

8) Form the matrix = [ ,…, ]. Construct the eigen face space by projecting the 
training images to the PCA subspace defined by :

= ( ) for = 1,…,

Fig. 2. Training process of a PCA-based face recognition system
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PCA-based face recognition, also known as the Eigenfaces technique [9], projects a
probe face image C into the Eigen face space using (1) and matches faces there based
on the Euclidean distance:

projected probe face: X ¼ VT C� C
� �

; ð1Þ

2.2 Linear Discriminant Analysis and Classification of Facial Expression

Face data have multiple attributes and individual face images can be grouped into
classes according to attributes such as age or gender. Although PCA is effective in
terms of maximizing the scatter among individual face images, it ignores the under-
lying class structure. As a result, the projection axes chosen by PCA might not provide
good discrimination power for classification purposes.

To this problem, Linear Discriminant Analysis (LDA) or Fisher Linear Discrimi-
nant (FLD) analysis [10, 11] seems to be the perfect solution as it maximizes the scatter
between image classes while minimizing the scatter within the classes. The steps
involved in the LDA process are presented in Fig. 4. With face data, SW is often
singular since image vectors are of large dimensionality while the size of the data set is
much smaller. To alleviate this problem, typically the original face images are first
projected into the PCA space to reduce dimensionality. LDA is then applied to find the
most discriminative directions. In this work, xi is the PCA projection of face image Ci.
The eigenvectors obtained from LDA are called Fisherfaces. In the cases with two
classes, for example our work, the corresponding eigenvalues will have only one
nonzero value and therefore only the top Fisherface is kept and used for projecting data
into the Fisher face space.

LDA can be used to estimate various attributes of the face, for example expression,
gender, age, identity and race, etc. In this work, LDA has been used to identify the
expression on a face as either ‘neutral’ or ‘smiley’ and evaluate the intensity of the
expression identified. Next section presents more detail on how LDA is utilized in the
proposed algorithm.

2.3 k-Same for Face de-Identification

Introduced for preserving privacy [5], k-Same is based on the k-anonymity framework
of Sweeney’s [7]. It guarantees that each de-identified face image could be represen-
tative of k faces and therefore limit the recognition risk of the de-identified faces to 1=k.

(a) First (b) Second (c) Second last (d) last

Fig. 3. The first two and the last two Eigenfaces used in this work
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In [5], Newton introduced two versions of the k-Same algorithm, namely k-
Same-Pixel and k-Same-Eigen. Both versions find the k closest faces to the probe in the
PCA face space, while the former returns the pixel-wise average of the k closest and the
later performs the averaging in the PCA facespace. Compared to k-Same-Pixel, k-
Same-Eigen brings an extra blurring effect which contributes to the reduction of ghost
artifacts in the de-identified face. Considering this, this 7work follows the approach of
k-Same-Eigen. For more in-depth details of the k-Same algorithm, refer to [5].

3 The New Algorithm–k-SameClass-Eigen

The k-Same algorithms ignores utility features of the face images (such as gender, age,
and expression) and searches for the k closest faces merely based on the appearance. As
displayed in Fig. 1, the utility information are often lost. To address this problem,
consideration has been taken in this work for retaining the utility of the original face.
Although this work focuses merely on facial expressions, the same principal can be
applied to the preservation of other utilities of face images.

Inspired by [12], the algorithm proposed here is an extension to k-Same, where the
k closest faces are selected only among the gallery faces with the same expression to
the probe image. However, unlike [12] where the classification of facial expression is
achieved using a support vector machine, our algorithm uses LDA. One advantage of
LDA is that it is able to not only classify the expression but also evaluate the intensity
of the expression. The work in [12] focused on the preservation of merely the class
label of a given face image (e.g. male or female, young or old). While we aim to
preserve both class label and intensity here. In this work, the LDA Fisher space is
trained to classify two expression classes {neutral, smiley}. As shown in Fig. 5, the
LDA projection of all the gallery neutral faces used in this work has an average of 4.2

1) For × 1 samples { ,…, }, classes { ,…, }, calculate the average 
for each class along with the total average .

2) Calculate the scatter for each class as

= ( )( )

3) Calculate the within-class scatter as

=

4) Calculate the between-class scatter as:

= | | ( )( )

5) Compute the matrix = .
6) Compute the eigenvalues ,…, of such that | | = 0 for = 1,…,
7) Compute the eigenvectors (Fisherfaces) ,…, of such that = for =

1,…, .

Fig. 4. General procedure of LDA
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with a small variance of 0.004; while the average LDA projection of the smiley faces is
–4.2 with a small variance of 0.011. Results in Fig. 5 suggest that the LDA projection
can be used as the classifier of facial expressions and the measure of expression
intensity.

Furthermore, through changing the value of the LDA projection, fine adjustment of
facial expression has been achieved in this work. As mentioned in the previous section,
for a two-class problem only the top Fisherface is available for the LDA projection.
Figure 6 displays the Fisherface used in this work. The number of components in the
Fisherface equals the number of Eigenfaces used in our PCA projection. As the facial
expression might be encoded by the last few Eigenfaces (refer to Fig. 3), all Eigenfaces
with a nonzero Eigenvalue are kept in this work. As shown in Fig. 6, the Fisherface has
a dominant component (the sixth component). In other words, the expression on a face
is mainly determined by the value of this component. For this reason, this dominant
component is named the ‘expression index’. In this work, the expression on a face or
the intensity of the expression is adjusted through changing the value of the expression
index while keeping the value of other Fisherface components unchanged. Given a
target expression intensity d, the value of the expression index vð6Þ is changed to:

v 6ð Þnew¼ d �
XN

i¼1

v ið Þþ v 6ð Þcurrent: ð2Þ

As the algorithm proposed in this work selects the closest faces from a specific class
in the gallery, we name it as k-SameClass-Eigen.

Fig. 5. LDA projection of the gallery images used in this work

Fig. 6. The Fisherface used in this work
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4 Experiments

4.1 Image Database: Binghamton

Our experiments have been carried out with the 95 � 95 gray scale images from the
Binghamton database [13]. The face gallery in our experiments contains 132 Bing-
hamton images (33 images from each of the following four classes: Female Neutral,
Female Smiley, Male Neutral, and Male Smiley. All images in the gallery are used for
training both the PCA and the LDA spaces.

4.2 Evaluation of Privacy

There are two types of probe image sets, ‘seen’ and ‘unseen’, with each set containing
20 images randomly selected from the Binghamton database. The ‘seen’ probe image
set follows the closed universe model meaning that every face image in this probe set is
also a member of the gallery whereas the face images in the ‘unseen’ probe set are
taken from outside the gallery. Visual results of our k-SameClass-Eigen algorithm are
displayed in Fig. 7 for k = 2, 5, 10, and 20 from left to right. Figure 7(I) displays the
results for examples of seen probe faces and Fig. 7(II) displays the results for examples
of unseen probe faces.

original = 2 = 5 = 10 = 20 original = 2 = 5 = 10 = 20

(a) (e) (a) (e)

(b) (f) (b) (f)

(c) (g) (c) (g)

(d) (h) (d) (h)

(I) (II)

Fig. 7. Examples of (I) original seen and (II) original unseen face images as well as their
de-identified faces generated by the method of k-SameClass-Eigen for k = 2, 5, 10, and 20 from
left to right: (a) original female neutral, (b) original male neutral, (c) original female smiley,
(d) original male smiley, and (e)–(h) de-identified results for (a)–(d)
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To evaluate the privacy protection power of the proposed algorithm k-
SameClass-Eigen, the de-identified probe images are matched to the original images in
the gallery. The privacy protetion performance is measured in terms of the average
recognition risk of the de-identified face images. For the seen probe images, the
recognition risk is the percentage at which a de-identified face is recognized as its own
original. For the unseen probe images, it is the percentage of a de-identified face being
recognised as the gallery image that is closest to the original probe. For both probe sets,
close-set identification has been performed, i.e., the closest face from the gallery is
always returned as the best match despite how large the closest distance is. To exam the
impact of k, the level of k has been varied between 1 and 20. Figure 8(a) and (b) show
the recognition risk for the de-identified seen and unseen probe faces, respectively.

In both Fig. 8(a) and (b), the recognition risk decreases with the increase of k-level
and the recognition risk tends to remain lower than the theoretical maximum of 1/k.
The zig-zags presented in Fig. 8(a) and (b) are due to the relatively small size of each
probe set, which can be improved by introducing more probe images. Nevertheless, the
recognition risk converges to a value below 1/k in both Fig. 8(a) and (b) despite the fact
of a small probe set.

4.3 Evaluation of Data Utility

In order to evaluate the algorithm’s power of retaining data utility, this work measures
the rate at which the same expression is measured from a de-identified face image as
from its original image. Again, both seen and unseen probe sets are used in the
experiments with each set containing 20 randomly selected face images from within
and outside the gallery, respectively. The results are presented in Fig. 9. The proposed
face de-identification algorithm k-SameClass-Eigen can always retain the expression on
a seen (or known) probe face and therefore delivers a perfect expression accuracy. For
the unknown probe faces, the accurary is between 80% and 95% with an average of
86%. The lower expression accuracy with the unknown faces is due to the fact that the
LDA has been trained with the known faces in the gallery and the LDA projection

(a) (b)

Fig. 8. PCA recognition risk of the de-identified probe images against the original gallery
images. (a) Probe images are selected from the gallery. (b) Probe images are from outside the
gallery
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obtained in this way may fail to correctly classify an unknown face. When the
expression on a unknown face has been incorrectly classified, the same incorrect
expression with the measured expression intensity will be imposed onto the
de-identified face by the k-SameClass-Eigen method using (2).

4.4 Evaluation of the Ability to Change Expression Intensity

In order to evaluate the algorithm’s ability to adjust expression intensity and the visual
quality of the result images, experiments are conducted in this work where the
expression intensity on the de-identified neutral faces is continuously varied between 5
(completely neutral) and –5 (very happy). The range of the expression intensity is

Fig. 9. Expression accuracy for both of the probe image

(a) (b) (a) (b)
-5 -4 -3 -2 -5 -4 -3 -2

-1 0 1 2 -1 0 1 2

3 4 5 3 4 5

(c) (c)

(I) (II)

Fig. 10. Results of (I) an example male face and (II) an example female face. (a) original,
(b) de-identified, and (c) mutations of (b) for various expression intensities (intensity values are
given above the corresponding face image)
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defined following the results of LDA training (refer to Fig. 5). Figure 10 displays the
visual results for (I) an example male face and (II) an example female face, respec-
tively. As displayed in Fig. 10, the proposed algorithm has the ability to switch
between facial expressions and continuously adjust the intensity of the expression.
Furthermore, the visual quality of the result images remains good across the various
expression intensity values.

5 Discussion and Conclusions

A new face de-identification algorithm k-SameClass-Eigen has been proposed in this
paper with a goal to preserve privacy as well as retain both the facial expression class
and the expression intensity. Experimental results show that it is able to limit the
recognition risk to below 1/k. Furthermore, it can always retains the expression on a
face image as long as the expression has been measured correctly by the LDA clas-
sifier. In practice, the accuracy of the LDA classifier can be enhanced by the use of a
larger training set. Finally, k-SameClass-Eigen is capable of changing the expression
intensity on a face to any value within the valid range. As facial expression is naturally
a continuous motion presenting various degrees of intensity, the proposed algorithm
has a great potential with the de-identification of real-world images and videos.
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Abstract. This paper presents a semi-automatic method for creating
a large scale facial key-point dataset from a small number of annotated
images. The method consists of annotating the facial images by hand,
training Active Appearance Model (AAM) from the annotated images
and then using the AAM to annotate a large number of additional images
for the purpose of training a neural network. The images from the AAM
are then re-annotated by the neural network and used to validate the
precision of the proposed neural network detections. The neural network
architecture is presented including the training parameters.

Keywords: Key-points · Dataset · Annotation · Neural networks ·
Active appearance model · Images · Lips

1 Introduction

Key-points detection is a very important task in multiple fields like audio-visual
speech recognition, lip-reading, face identification and verification, tracking etc.
Key-points represent important features of the observed object. In the process of
speech recognition the key-points are used to measure the geometric and texture
characteristics of the speaker mouth region. The detection of facial key-points
is usually based on statistical methods of modelling the shape variations or in
recent years by the use of deep neural networks.

The process of training a neural network for key-point detection requires a
large number of data. The data are usually obtained by various forms of aug-
mentations of a set of annotated images. The images may be annotated by hand
or by automatic methods. There are many datasets available across the scien-
tific community [8] and for the purpose of key-point detection challenges. The
problem arises when a dataset needs to be created from a set of recorded data
without any annotations.
c© Springer International Publishing AG 2017
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In this article, we present a method of annotating a large number of images
by manually annotating a few images and building an Active Appearance Model
(AAM) [7,11] over the annotated data. The AAM is then used to create a training
set of thousands of images with AAM detections as annotations. This data are
then augmented by methods further discussed in the next section and used to
train a neural network.

In others works [5,6], the authors create audio-visual datasets from TV
shows by using elaborate pipelines and commercial tools. The key-points in those
papers are detected by a simple Kanade-Lukas-Tomasi tracker [15]. This datasets
are usually speaker independent and for the English language only. The use of
neural networks allows for a reliable and fast simultaneous detection of multiple
key-points. In [14] the authors used a cascade of convolutional networks to detect
5 face key-points in various poses.

2 Training Data Creation

The dataset was created for the purpose of speaker specific audio-visual speech
recognition. Hours of video where the speaker reads a phonetically balanced set
were recorded. The individual sessions were one hour long and each of them
was captured under different settings to provide a various light and distance
conditions. The speaker was always facing the camera and the same camera

Fig. 1. Training data for AAM with annotated key-points
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with automatic settings was used for Full HD recording. The image depicting
one frame from a session with manually annotated key-points is shown in Fig. 1.
The points are represented as a polygon to better illustrate the shape and the
actual values are visible on the right side. We created a GUI application in
Matlab for the purpose of annotating the data. The manual annotation can be
sped up by training an AAM model from few annotated images and using it to
create a preliminary fit where each point of the polygon can be manually shifted
to a desired position.

The model is composed of 35 points with two indices (x, y). This gives a
vector of 70 float numbers as a label for each image.

2.1 Active Appearance Model

We have trained an Active Appearance Model [7] from the set of 350 manu-
ally annotated data. The model consists of two Principal Component Analysis
(PCA) over the shape and texture data and then an additional PCA to create
a combined model. The basic formula for creating one instance of the model is
given as follows:

x = x + Qsc, (1)

g = g + Qgc, (2)

where x,g are instances of shape and texture, controlled by model parameters c,
matrices of eigenvectors Qs,Qg, and mean shape and texture x,g learned from
the training data.

The model was then used as a tracker for the recorded videos with manual
initialization on the first frame. This process generated thousands of images with
corresponding shape annotations made by the AAM. The quality of the shape
found by the AAM is evaluated by the error [7] generated during the AAM fitting
process. The error is computed as a per pixel absolute difference between the
generated texture and the overlapped texture in the image. We have chosen only
images with error under a selected threshold value as good fit and used them as
the training data for the neural network.

The data for the network are then randomly chosen from each video and
each session to have enough data representing various lighting conditions. The
original full scale images were used for the purpose of AAM tracking, however
we re-cut the data for the network by creating a bounding box with a fixed
width to height ratio around the detected key-points. Since the original model
includes the nose points with the lowest y values and the chin with the largest y
values, the size of the bounding box is changing during speech and the data in
the bounding box needs to be resized to a constant resolution. The final form of
the images is depicted in Fig. 2.

2.2 Training Data Augmentation

The initial set of AAM annotations consists of 3500 images. These images are
then augmented using Gaussian blur, additive Gaussian noise and various global
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Fig. 2. Augmentations of the training data. Original image, Gaussian blur, augmenta-
tion of brightness, Gaussian noise, flip

intensities changes. The images were also horizontally flipped to produce a mirror
like images. Labels for those images had to be adjusted to represent the flip by
switching the corresponding indices. The augmentations are depicted in Fig. 2.

3 Network Architecture

We have tested various neural network architectures spanning from simple CNN
used by Krizhevsky [10], VGGM [3], and VGG16 [12]. We then devised our
own architecture for the purpose of this research based on experience with the
previously mentioned networks parameters. The final architecture is depicted in
Table 1.

Table 1. Parameters of deep neural network architecture used to detect mouth region
key-points. All strides were set to 1. BN means batch normalization layer. Pooling is
done by max-poling with kernel size 2 × 2. Dropout probability was set to 0.5

conv1 conv2 conv3 conv4 conv5 conv6 dense1 dense2 dense3

64× 3× 3 64× 3× 3 128× 3× 3 128× 3× 3 256× 3× 3 256× 3× 3 4096 4096 70

pool 2× 2 pool 2× 2 drop-out drop-out

BN BN BN BN BN

The network is composed of 6 convolutional layers with kernels 3 and stride
1. After each other convolutional layer there is a max-pooling layer with kernel
size 2 and stride 1, and batch normalization layer [9]. Dense1 and dense2 are
regularised by drop-out [13]. All the layers besides the last use ReLU activa-
tion function, where dense3 uses linear activation to provide suitable output for
regression. The network was trained by Stochastic Gradient Descent(SGD) with
parameters learningrate = 0.01, decay = 10−6,momentum = 0.9. The whole
training was implemented using Keras [4] with Tensor Flow [1] back-end.

4 Experiments

Our network took 100 epochs to train. After this process the error converged to
a value of 0.59. This value is a mean absolute error across all 70 values of the
key-points coordinates. The error is computed on a set of development data.
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300 additional images were manually annotated to provide a basis for com-
parison of AAM and the network performance. These images are then annotated
by AAM and our network, and the results are compared in the Table 2. The per-
formance is also evaluated on the original set of the training data for the AAM,
where it should have clear advantage. Since the images were used for the cre-
ation of the model and all the perturbations for the fitting algorithm [7] were
done on those images, the AAM should provide the best results on these images.
However as can be seen in the first row of the table our network outperformed
the AAM on the previously unseen data. It is notable to say that the accuracies
are all in sub-pixel precisions. By visual analysis of the actual detections we
draw a conclusion that most of the error is caused by the chin key-points where
the boundary is detected accurately but the actual position of the key-points
is not set by any clear markers. This causes a significant variance in the chin
key-points coordinates in both AAM and our network in comparison to manual
annotations where the annotator sticks to a consistent pattern.

Table 2. Accuracy of key-point detection of our NN vs. AAM. Manual annotations is
a set of 300 images not used to train AAM. AAM training is the original set used to
create the model

AAM Network

Manual annotations 0.9843 0.8412

AAM training 0.6712 0.8151

Fig. 3. Results of key-point detection by our network - top row, and AAM - bottom
row. The last column shows examples of wrong detection

The results of key-point detections are also shown in Fig. 3, where in the top
line are detections from our network, the bottom line contains detections from
the AAM. Images of wrong detections are also included as last in the line. These
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images are part of test dataset which does not include the augmentations but
only the real data cut from the original recordings.

5 Conclusion and Future Work

We have presented a semi-automatic method for creating large scale dataset
from a small initial set of manually annotated images. The network was able
to learn the distribution of the key-points and the internal relations between
them to provide a tool for automatic annotation of large scale dataset. We have
also showed that the network was able to outperform the AAM algorithm in
previously unseen data, which was tested in a separated dataset with manual
annotations. Since both methods are able to provide sub-pixel accuracy the main
advantage of the network lies in its speed.

In the future we would like to include the forced aligned annotations for
audio signal to create an audio visual dataset with people speaking using electro-
larynx [2]. This will lead to further research in audio-visual speech recognition
and synthesis for the people after laryngectomy.
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Abstract. Music Emotion Recognition (MER) is an important topic in music
understanding, recommendation and retrieval that has gained great attention in
the last years due to the constantly increasing number of people accessing digital
musical content. In this paper we propose a new song emotion recognition
system that takes into consideration the song’s genre and we investigate the
effect that genre has, on the recognition task of four basic music emotions of the
valence-arousal (VA) plane: happy, angry, sad and peaceful. Experiments on a
database consisting of 1100 songs from four different music genres (blues,
country, pop and rock) using timbral, spectral, dynamical and chroma descrip-
tors of the music, have shown that successful recognition of the song’s genre as
a pre-processing step, can improve the recognition of its emotion by a factor of
10–15%.

Keywords: Music emotion � Music genre � ICA mixture models

1 Introduction

During the last years, there has been a vast flourishing of digital music libraries making
music listening accessible to almost everyone. More and more people nowadays have
gained easy access to digital musical content while being on the road, or in their homes
through their smart phones, tablets, smart TVs, etc. Services like Spotify, Pandora or
Lastfm, offer a wealth of music content that users can browse and categorize based on their
genre, ethnicity, era, emotion, etc. It is therefore a huge need to develop automated systems
that will help search, organize and categorize music content and related data [1, 2].

Among the most encountered search and retrieval criteria when it comes to music
information, is the music genre. This characteristic when compared with others is more
easily quantified to a correct and generally agreed upon answer, and this is the main
reason why it has gained better attention from researchers worldwide [3–6]. On the
other hand, searching for emotions that a song carries, or keeping track of the changes
in a song’s mood, has also been a criterion of people in their search for the right tracks
when they want to build a custom playlist depending on their state, activity they are
engaged into, mood etc. But music emotion, in contrast to music genre or category is
far from being easily quantified and definitely, not only one correct and generally
agreed upon answer exists. This is the main reason automatic recognition of music
emotion is still in early stages but is receiving a great interest in the recent years [7–9].
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Recognizing emotion in songs involves various disciplines that span from the
signal processing area, pattern recognition and machine learning as well as auditory
perception, psychology and theory of music [7, 8]. Music theory and auditory per-
ception are used to extract features and characteristics from the songs that could best
describe the emotional state of a song. Different approaches have been proposed in
music emotion estimation that take into account either the whole music song, or a
representative section of the song (e.g. chorus, verse), a fixed-length clip (e.g. 20–30 s
duration), or a shorter segment (e.g. 1 s) depending on the application under test. In
every situation, a set of features are extracted that represent mood as either a single
multi-dimensional vector, or a time series of vectors that change over the space of
emotions. As opposed to emotion recognition where one can extract features from a
segment or successive segments of a song to track the changes of the song’s mood, in
the task of genre recognition, features are extracted by considering the whole song.

Although there has been a great deal of research during the last years in the area of
music genre recognition, research that studies the relation (if any) between genre and
emotion of songs is still very limited to our knowledge. In this paper we propose a new
song emotion recognition system that takes into consideration the song’s genre and we
investigate the effect that genre has on the recognition of four basic music emotions:
happy, angry, sad, peaceful that span over all four quadrants of the valence-arousal plane.

The structure of this paper is as follows: In the next section we present the proposed
song emotion recognition system. The system consists of a feature extraction module
that calculates the music genre and emotion descriptors, together with a feature
selection algorithm that reduces the dimensionality of the feature descriptors and
estimates the most significant ones depending on the song’s genre. In the same section,
we present the music genre recognition system that is based on the ICA mixture model
classifier and the emotion recognition system that uses SVM classifiers. In Sect. 3 the
experimental setup and results are presented, while in Sect. 4 some conclusions and
remarks are given.

2 Method

In this paper we examine the role of music genre in the automatic song emotion
recognition task. To this end, we propose a system that consists of two main modules:
The first is used to recognize the song’s genre from a list of well-known genres using
ICA mixture model classifiers. The second is used to recognize the song’s emotion,
based on a set of different trained SVM emotion classifiers, one for each music genre.
The feature set that is used in both modules consists of timbral, spectral, dynamical and
chroma descriptors of music. Furthermore, we also examine whether the inclusion of an
extra feature selection step, can find the most representative features that characterize
each music genre effectively, reduce the dimensionality of the feature vector and finally
improve the accuracy of the second module.

The overall system is shown in Fig. 1. In the next sections we present analytically
the parts of the proposed emotion recognition system.
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2.1 Feature Extraction

The purpose of the feature extraction step is to estimate the appropriate set of features
that can differentiate songs according to their music genre and emotion [10]. In Music
Information Retrieval (MIR), these features are discriminated mainly into two cate-
gories: (a) Low Level Descriptors (LLDs) of the timbre and the dynamics of the songs
and (b) Chroma Descriptors (CHROMA) that capture the song’s tonality. The total
features are in most of the cases expanded by applying to them a number of statistical
functionals [10].

In this paper for the music genre and emotion recognition task we have used 18
LLDs: the signal Loudness (F1), the number of Zero Crossings (F2), four spectral
descriptors (F3–F6) (the roll-off point 95%, the spectrum entropy, the spectrum cen-
troid, and the spectrum variance), and the first 12 cepstral coefficients computed at
16-band power Mel-spectrum, MFCC (F7–F18). From the second category, the 12
CHROMA descriptors are computed from the 12 Chroma features (F19–F30).

To all derived features, a temporal smoothing is applied to eliminate possible
artifacts by averaging the estimated descriptors using a moving average filter with
window length 3 (taking the previous, the next and the current window in the
smoothing process).

All above descriptors are estimated independently from successive frames of the
songs and therefore, no information of previous or next frames of the audio is included
into them. In order to include the important temporal information that is present in
music due to its nature, we have also included 30 delta regression coefficients as in
[10]. To the above 60 descriptors in total (18 LLDs, 12 CHROMA, together with their
30 delta regression coefficients), 4 functionals are applied, which include the arithmetic
mean, the standard deviation, the skewness and their kurtosis, resulting to a total set of
240 descriptors for each music excerpt.

Music Genre 
Recognition 

Module
ICA-MM

Emotion recognition 
SVM (BLUES)

Emotion recognition
SVM (COUNTRY)

Emotion recognition
SVM (POP)

Emotion recognition
SVM (ROCK)

BLUES

COUNTRY

POP

ROCK

happy, sad, angry, peaceful

happy, sad, angry, peaceful

happy, sad, angry, peaceful

happy, sad, angry, peaceful

FEATURE EXTRACTION / 
(FEATURE SELECTION)

(LLDs, CHROMA)

MUSIC GENRE RECOGNITION MUSIC EMOTION RECOGNITION

 

Fig. 1. The two level emotion recognition system
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The above set was used in all classification experiments, in the music genre
recognition as well as the emotion recognition module in the final stage.

2.2 Feature Selection

In order to examine the role that the genre plays in song emotion recognition task, we
have also applied a feature selection technique based on the RReliefF algorithm [11] to
the feature set described in the previous section. Feature selection using the RReliefF
algorithm is a well-known technique based on a feature weighting approach that
considers the interrelationship among features. The algorithm results in finding a
weight factor that is highly correlated to the importance of the particular feature in the
classification task. By considering only those features with significant weighting above
a threshold, we achieve dimensionality reduction of the feature set, thus easing the task
of the classifier, while at the same time the selected features with the largest weights
describe the emotion of the song in a better manner, different for each genre.

2.3 Genre Recognition Module

For song genre recognition we have used the ICA mixture model (ICA-MM) based
classifier. Classification based on ICA-MM has been widely used in many situations
that include but are not limited to speech recognition, image processing, biomedical
signal analysis and many others, showing great performance and recognition accuracy.

An ICA-MM based classifier tries to estimate the ICA model parameters for each
class in an unsupervised manner, being presented only with a number of training
samples. The ICA-MM based classifier can work completely in blind as well as in
semi-blind manner. In the first case, the number of different classes of the training data
is completely unknown and the model estimates it together with the parameters for
every class. In the second case, the ICA-MM classifier knows the number of the classes
beforehand, and it only estimates the parameters for each class. In this study, the
number of the different classes is known beforehand and equals to the number of the
different music genre categories the songs fall into.

When a mixture model is used in classification problems [12, 13], the observed data
are categorized into several mutually exclusive classes. The utilized ICA-MM, which is
a generalization of the Gaussian mixture model (GMM), models each class with
independent variables. The main superiority that ICA mixture model presents when
compared to the GMM, is that it allows modeling of classes with non-Gaussian
structure (i.e. leptokyrtic or platykyrtic) something that fits in the case of music
information characterization.

Let assume that the observed data X = {x1,x2,…,xT} (with xi an N-dimensional
vector) are drawn independently and are generated by a mixture density model. The
likelihood of the data is given by:

p ðXjHÞ ¼
YT

t¼1

p ðxtjHÞ; ð1Þ
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and the mixture density is:

pðxtjHÞ ¼
XK

k¼1

pðxtjCk; hkÞpðCkÞ; ð2Þ

where H = {h1, h2,…, hj} are the unknown parameters for each component density p
(x|Ck,hk). By Ck we denote the class k which is known beforehand. The data xt within
each class are considered to be generated by:

xt ¼ Aksk þ bk; ð3Þ

where Ak is a NxN scalar matrix and bk is a vector containing the biases for each class.
The vector sk is called the source vector that generates the observed data xt in each
class.

In order to find the mixture models parameters {Ak, bk} for each class, we process
the training data of each class separately in the following way: Let us assume we want
to find the model parameters for class Ck. The observations Xk are fed into the ICA
network, which results in the independent source data sk for the class Ck:

sk ¼ Wk � Xk: ð4Þ

The matrix Wk is a scalar NxN matrix, called separating matrix. The separating
matrix is learnt adaptively by [14]:

DWk ¼ n � I� f ðskÞ � sTk
� � �Wk; ð5Þ

where the nonlinear function f(.) is directly associated with the probability density
function of the source data sk in each class and plays an important role to the efficacy of
the ICA network’s performance. In our case the non-linear function was chosen to be
the tanh(.) function. The model parameter Ak is the inverse of the separating matrixWk

and can be calculated by Ak ¼ W�1
k .

The bias vector bk is estimated as the mean value of the observations Xk and it’s
role is to allow non-zero-meaned data to be classified as well.

At the end of the learning procedure, we have estimated the K sets of parameters for
our ICA-MM hk = {Ak, bk}. These will be used in the classification procedure, which
consists of the following steps:

• First we compute the log-likelihood of the testing data for each one of the classes
using:

log pðxtjCk; hkÞ ¼ log pðskÞ � logðdet Akj jÞ: ð6Þ

Note that in the above equation sk is calculated by sk ¼ A�1
k � ðxt � bkÞ.
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• Next the probability for each class is computed given the testing vector xt as:

pðCkjxt;HÞ ¼ pðxtjCk; hkÞpðCkÞP
k
pðxtjCk; hkÞpðCkÞ ; ð7Þ

• Finally, the classification of the unknown data xt is performed using the following
decision rule based on the maximum class probability:

xt 2 argmax
Ck

ðpðCkjxt; hkÞÞ: ð8Þ

2.4 Emotion Recognition Module

Russell and Thayer [15] proposed the Arousal – Valence model (Fig. 2) which is
widely accepted and used by researchers in the field of Music Information Retrieval.
The AV model consists of a 2D plane with arousal and valence on its principal axes. In
the horizontal axis is the valence which describes how positive (rightmost values on the
axis) or negative (leftmost values on the axis) the emotion of the song is characterized
by the listener, whereas in the vertical axis is the arousal describing how exiting (upper
values) or calming (lower values) a song is. Both axes range in the [−1:1] with values
closer to 1 denoting higher positive and exciting emotions.
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               Annoying

          Angry
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     Bored

          Sleepy
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Fig. 2. The Valence – Arousal (AV) emotion plane
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The AV plane can be clustered into four distinct areas – four quadrants and due to
the pair values of the valence – arousal, four major categories of music emotion are
constructed: (a) emotions in the first quadrant (Q1): excited, happy, pleased (b) emo-
tions in the second quadrant (Q2): annoying, angry, nervous (c) emotions in the third
quadrant (Q3): sad, bored, sleepy and finally (d) emotions in the fourth quadrant (Q4):
relaxed, peaceful, calm.

Emotion recognition in this work is performed using different Support Vector
Machines [16, 17] with 4 outputs (the number of the quadrant that the song’s emotion
lays) for every music genre category the song under test belongs to. In the case when
the Feature Selection algorithm is used, the SVMs have different inputs that correspond
to the outcome of the RReliefF algorithm for each music genre.

3 Experiments

For our experiments we have used songs taken from the Free Music Archive
(FMA) [18]. The database consists of 1100 unique song excerpts, 30 s long, all with
sampling frequency of 44100 Hz. The 30 s excerpts are extracted from random (uni-
form distribution) starting points for each song.

The songs are categorized in 4 different music genres: Blues, Country, Pop and
Rock. All songs were annotated by human listeners aged between 23–30 years old with
no professional experience in music. The songs were annotated for their arousal and
separately for their valence value. The annotators were asked to mark the song’s
emotion, and not the emotional state they were into at the time of the experiment. As
mentioned in the previous section, the proposed emotion recognition system classifies
each song in one of the four quadrants of the AV plane. To test the performance of the
proposed emotion recognition system, we have taken into account each song’s emotion
ground truth, which is estimated via subjective tests of at least 10 listeners by averaging
their opinions on the valence and the arousal value in the scale of [−1:1] and mark the
quadrant the song’s emotion falls into. In Table 1 we present the distribution of the
database songs used for the testing purposes on the AV plane using four principle
emotions: Happy (Q1), Angry (Q2), Sad (Q3) and Peaceful (Q4).

All songs were re-sampled to the format of 16 kHz, 16bit resolution and mono
channel PCM wave files prior to their processing described in the next section.

Table 1. Number of songs in TS used in the emotion recognition task

Blues Country Pop Rock Total

Q1 25 20 20 25 90
Q2 20 18 19 24 81
Q3 20 16 22 21 79
Q4 19 19 23 19 80
Total 84 73 84 89 330
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4 Results

In our experiments we initially used the song database to form two subsets: the training
set (TR) that contains 60% of the songs (770 songs) and the testing set (TS) containing
the rest of the songs (330 songs). To be fair, when forming the subsets, we have taken
into consideration that all different music genres were equally (as far as this can be
accomplished) represented in both training and testing sets (Table 1).

All features described in the previous section, were extracted using the openSMILE
tool [19] and were normalized using the mean – variance normalization (MVN) tech-
nique [10]. The normalized features of the songs in the training set were used in the
ICA based classifier to estimate the ICA mixture model parameters for each music
genre. For the music genre classification task, the songs of the testing set were clas-
sified by estimating the a-posteriori maximum class probability of the different genre
ICA models given in Eq. 8.

In our genre recognition experiment, the proposed ICA-MM classifier accomplishes
a recognition accuracy of 88.18% (291/330 songs). In Table 2 we present the confusion
matrix of the ICA-MM classifier. It is clear that the proposed classifier works better for
the Country and Pop music genres (over 89% accuracy), while achieves great per-
formance for the remaining genres as well (88% in recognizing the Rock and 85% the
Blues songs). For comparison reasons, instead of the ICA-MM, the 3rd order poly-
nomial kernel SVM classifier was trained using the 770 songs of the training set
(TR) in the same music genre task, however its accuracy on the 330 songs of the testing
set (TS) was measured to be 79.69% (263/330 songs), significantly lower than that of
the ICA-MM classifier. In order to find the best configuration of the SVM classifier,
throughout this paper, a “grid-search” approach was used in a systematic manner with
different values for the classifier parameters (C: soft margin constant, d: degree of the
polynomial) followed by a cross validation to pick the best combination. The poly-
nomial kernel was chosen as it was found to have superior performance when com-
pared to the linear as well as the RBF kernel based SVM in all cases.

In our emotion recognition experiment, where no prior knowledge of the music
genre was taken into account, a 3rd order polynomial kernel SVM recognizer (that was
found to perform better compared to the linear and RBF kernels) was trained using the
240 dimensional feature vectors of the 770 songs in TR, and tested using the 330 songs
in the TS. The emotion classification has reached an accuracy of 69.39% (Q1: 67.77%,
Q2: 72.83%, Q3: 69.62%, Q4: 67.5%).

Table 2. Genre Recognition using ICA-MM classifier

Blues Country Pop Rock

Blues 72/84 5/84 3/84 4/84
Country 2/73 65/73 1/73 5/73
Pop 1/84 3/84 75/84 5/84
Rock 3/89 5/89 2/89 79/89
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To examine the significance of the music genre on song emotion recognition, we
have trained four different SVM classifiers, one for each different genre (Blues,
Country, Pop, Rock) using songs taken from the TR set. Each classifier was trained to
recognize the quadrant (thus the emotion) each song belongs to, using initially the 240
LLD and Chroma descriptors. For all four SVM classifiers, the polynomial kernel
SVMs (3rd order for the Pop and Rock genre, 4th order for Blues and Country) were
found to perform best.

In addition, all extracted features, were analyzed independently for each genre
using the RReliefF algorithm to find the most representative ones for each music genre
category. Then, the emotion of the songs in the TS was recognized, using four different
SVM classifiers with inputs according to the RReliefF outcome. For all four SVM
classifiers, again the polynomial kernel SVMs (3rd order for all genres) were found to
perform at best.

In Table 3 we present the emotion recognition results when using all 240 features
for all songs in TS by taking into account their genre classification from the previous
step and using the appropriate SVM emotion classifier. The four SVM classifiers
present a total recognition accuracy of 77.57% and classify correctly 256 out of 330
songs emotions. The classifiers performance is further analyzed and was found to
categorize 69/90 (76.66%) songs emotion in Q1, 65/81 (80.24%) songs emotion in Q2,
60/79 (75.94%) songs emotion in Q3 and finally 62/80 (77.5%) songs emotion in
quadrant Q4 in the case of the 240-dimension feature vector. The performance of the
classifier is stable across the music genres or the different emotions of the song with a
slight exception of the “sad” emotion (Q3).

In the same Table, we present the emotion recognition results for the songs in the
TS after the application of the RReliefF feature selection algorithm. From the results, it
can be seen that the proposed method works better and manages to recognize the
emotion of the songs up to 85.15% (Q1: 81.11%, Q2: 83.95%, Q3: 87.34% and Q4:
88,75%), taking advantage of the information of their music genre.

Table 3. Emotion recognition results using (a) 240-dimension feature vector and (b) feature
selection technique based on the RReliefF algorithm

Q1 Q2 Q3 Q4

Q1 240 features 69/90 10/90 5/90 6/90
RReliefF 73/90 9/90 3/90 5/90

Q2 240 features 8/81 65/81 4/81 4/81
RReliefF 9/81 68/81 2/81 2/81

Q3 240 features 6/79 5/79 60/79 8/79
RReliefF 1/79 3/79 69/79 6/79

Q4 240 features 6/80 4/80 8/80 62/80
RReliefF 2/80 1/80 6/80 71/80
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5 Conclusion

In this paper we have studied the effect that music genre has on the recognition of a
song’s emotion. We propose a song emotion recognition system that consists of two
modules: A genre recognition module based on the ICA mixture model classifier and
an emotion recognition module that recognizes the emotion of the song based on
different genre SVM classifiers. To find the most representative descriptors for each
genre, we have applied the RReliefF feature selection algorithm on a set of timbral,
spectral, dynamical and chroma features and estimated different feature sets with
reduced dimensionality and differences between music genres. Experiments have
shown the proposed method’s efficacy in the task of four basic music emotions
recognition when genre is taken into account, achieving an overall recognition accu-
racy of 85%, greater than 15% compared to the classification accuracy when music
genre is not taken into account. Further studies should examine the efficacy of the
proposed method on bigger datasets with songs from different music genre categories
as well as different within the same quadrants of the AV plane emotions.
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Abstract. Posts published in the social media are a good source of
feedback to assess the impact of advertising campaigns. Whereas most
of the published corpora of messages in the Sentiment Analysis domain
tag posts with polarity labels, this paper presents a corpus in Spanish
language where tagging has been made using 8 predefined emotions: love-
hate, happiness-sadness, trust-fear, satisfaction-dissatisfaction. In every
post, extracted from Twitter, sentiments have been annotated towards
each specific brand under study. The corpus is published as a collec-
tion of RDF resources with links to external entities. Also a vocabulary
describing this emotion classification along with other relevant aspects
of customer’s opinion is provided.

Keywords: Corpus · Sentiment analysis · NLP · Opinion mining

1 Introduction

Emotions, rather than cognitive thinking, determine our purchase decisions.
Modern marketing campaigns strive to link brands to specific emotions and
the success of these campaigns can be evaluated with more complex instruments
than the mere figures of sales. Emotions aroused by brands can be found in posts
in the social media, and computer algorithms can, to some extent, automatically
evaluate the impact of the marketing campaigns. These messages are important
per se, as a large percent of social media users (up to 70% according to Nielsen
[33]) take into account the product experience published by other users.

Even if Sentiment Analysis has progressed fast in the last few years, there is
not much research on other aspects of the message besides polarity that might
be useful for commercial companies and the image of their brands. One of the
objectives of the LPS BIGGER [25] project is to cover this gap. The intended
analysis goes deeper in more complex aspects and nuances of opinions, such as
the feelings arisen in customers by different brands or the stage in the whole
shopping process the client is in at the moment of giving their opinion. Once
combined, all these analyses result into remarkably rich information that opens
up rich potential exploitation opportunities, such as automatically personalized
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offering generation or immediate reactions to events related to brands. Focusing
mainly on Twitter as source of opinions, at least the following four aspects (see
Fig. 1) are of interest with respect to the brands:

– Sentiment Analysis identifies emotions towards a brand in a post beyond
polarity. Several classification of human sentiments have been proposed in Psy-
chology, such as Plutchik’s [36] or Ekman’s [14]; the one used in the project
is based in the taxonomy stated by the latter in conjunction with those by
Shaver [45] and Richins [39], distinguishing between four non-exclusive senti-
ments and their direct opposite: love and hate, happiness and sadness, trust
and fear, and satisfaction and dissatisfaction. This new taxonomy has been
proposed by industrial partners in the LPS BIGGER project as a response
of an uncovered necessity of an emotion taxonomy thought specifically for
marketing purposes.

– Purchase Funnel places the opinion within a five-staged consumer decision
journey: Awareness, Evaluation, Purchase, Postpurchase and Review.

– Marketing Mix comprises the different marketing strategies the customers
can evaluate, known as the four Ps: product, price, promotion and place [3].

– Meaningful BrandsTM is a metric proposed by Havas Media [23] that mea-
sures the value of the brand, based on the customer’s wellbeing. It is divided
in marketplace (relating the product to performance such as quality and
price), personal wellbeing (such as self-esteem) and collective wellbeing (the
role brands play in communities).

Given that the available corpora, identified in Sect. 2, are only of tangential
interest for classifying Twitter messages related to brands, we have built a simple
vocabulary and a new corpus to fill the gap: the Sentiment Analysis towards
Brands (SAB). Whereas the vocabulary covers the four aspects described above,
our first release covers only the brand and emotional tagging, focusing on the
Sentiment Analysis aspects. This corpus is published both as an spreadsheet and
as linked RDF [41], using vocabulary terms defined by well-known ontologies and
mapping some of the resources with external datasets.

Post
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Brands

Marketing
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Sentiment 
Analysis

Purchase
Funnel

Marketplace
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Collective 
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AwarenessEvaluation
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Hapiness / Sadness
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Fig. 1. The four aspects of interest for each tweet.
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2 Related Work

2.1 Corpora for Sentiment Analysis

Even when most of the available corpora for Sentiment Analysis is English ori-
ented, several Spanish corpora have also been described. Opinions in fields as dif-
ferent as Medicine [35] or Tourism [29] have been collected from diverse sources,
such as social networks [11,26,38] or specialized opinion websites [10,29,35].

The publication style of corpora of tweets varies. Many researchers collect by
themselves a set of tweets and keep it as a private corpus; others share the tweet
IDs and instructions to retrieve them from Twitter, or share them preprocessed
[52]. This behavior often responds to Twitter policies on text dissemination [30].
However, since Twitter periodically deletes tweets from their servers (making the
text eventually irretrievable), the lifetime of a corpus with no text but only ID is
randomly short, hindering its re-usability. Some of the few corpora available with
text are only distributed on demand for private use, such as happens with the
TASS [11] and the COST [26] corpora (see Table 1 for a review of representative
corpora). In addition to this lack of appropriate public Twitter corpora, we also
find that mainstream Opinion Mining annotation provides just the notion of
polarity, determining if an opinion is positive or negative, sometimes expanded
with intensity [11] or a rating scale [10,29,35]. The only available sentiment
corpus the authors are aware of in Spanish is EmIroGeFb [38]; however, since
it does not refer to brands and uses a different sentiment classification, none of
the requirements for the project are fulfilled. The Spanish corpus for Sentiment
Analysis towards Brands (SAB) we present covers therefore a gap in Spanish
Sentiment Analysis, providing emotion tags toward brands, even if it is inevitably
subordinated to Twitter policies1.

2.2 Ontologies for Sentiment Analysis Towards Brands

Not many published ontologies are of use for supporting post classification within
the coordinates of interest for brands. The marketing mix is supported by Sam’s
ontology [42], whereas, up to the authors’ knowledge, there is total lack of vocab-
ulary to represent the stages in the purchase funnel. However, several computer
ontologies have been proposed for supporting the knowledge representation needs
in Sentiment Analysis tasks. We can distinguish among them ontologies about
emotions [17,19–21,34,37,56], usually based in previous emotion classifications
such as those of Plutchik [36], Ekman [14] or Nakamura [32], and ontologies
dealing with opinion representation [43,55]; due to our concrete case, we also
include in this last group those representing Twitter services [50] and Sentiment
Analysis on tweets [9,40].

One of the most referred ontologies in the context of sentiment representa-
tion is Ontoemotion [17], an ontology developed by Universidad Complutense

1 The SAB corpus is available online offering only the ID of the tweets.
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Table 1. Spanish Corpora available for sentiment analysis.

Corpus Sector Source Annotation Amount Access Text

HOPINION [8] Tourism TripAdvisor [51] Rating (1-5) 17934 Registration Yes

COST [26] General Twitter Polarity (0/1) 34634 On request Yes

COPOS [35] Patient opinions MasQueMedicos [27] Rating (0-5) 743 On request Yes

COAH [29] Tourism TripAdvisor Rating (1-5) 1816 Registration Yes

COAR [6] Restaurants TripAdvisor Rating (1-5) 2202 Registration Yes

Spanish Movie

Reviews [10]

Cinema MuchoCine [31] Rating (1-5) 3878 Free Yes

TASS General [11] Personalities Twitter Level of agree-

ment, polarity

(P+,P,NEU,N,

N+,NONE)

>68000* On Request Yes*

TASS Social-TV

[11]

Sports Twitter Polarity

(P,NEU,N),

aspects

2773* On Request Yes*

TASS STOMPOL

[11]

Politics Twitter Polarity

(P,NEU,N),

aspects

1284* On Request Yes*

SFU Spanish

Corpus [46]

Several items Ciao [5] Rating (1-2,4-5) 400 Registration Yes

EmIroGeFb [38] Politics, Football,

Celebrities

Facebook Ekman

emotions,

gender, topic,

presence of irony

1200 Free No(IDs)

(*) As of 2015 [11]. TASS corpora change every year.

de Madrid for Emotional Voice Synthesis and later extended for its use in Ital-
ian texts [2]. In this ontology, emotions are defined in a space of three emo-
tional dimensions (Power, Activation and Evaluation), having as one of the root
classes the concept of Emotion. Also in the media context we find the Ontol-
ogy of Emotional Cues [34], that models emotional cues linking them with the
media properties that reveal them and classifying the different types of cues (e.g.
verbal or psychological); in this ontology, the concrete emotions could both be
expressed as categories or dimensions. For representing emotional responses, the
EmotionsOnto ontology [19] (and its later version [48]) offers an easy integration
both with FrameNet [1] and the DOLCE upper ontology [18]. Another proposal,
the Emotion Ontology [21,22], represents emotions related to mental diseases,
linking to other ontologies of the field but being also usable just for emotional
purposes.

Finally, it must be noted that also cultural differences intervene in emotion
classification. Such is the case of the Chinese ontology [56] built from the Chi-
nese knowledge-base HowNet [13], or the one built from Japanese corpora [37] by
using among others the EmotionML markup language [15] and Nakamura’s emo-
tion classification with only two binary dimensions: Valence (positive or negative)
and Activation (activated or deactivated). In the case of dealing with different
sentiment classifications, the high level Human Emotion Ontology (HEO) [20]
covers different sentiment taxonomies and supports different dimensions, using
as default Arousal, Valence and Dominance but admitting also other emotional
spaces (such as the previously presented for Ontoemotion).
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Related to opinion representation, the Marl [55] and Onyx [43] ontologies
allow to represent opinions in RDF, being the former oriented to polarity and
the latter to emotions. They are aligned with previous efforts and ontologies,
such as WordNet-Affect [47] and linguistic linked data resources. Focusing on
tweet representation, the Twitter API Rest Ontology [50] allows to represent the
whole REST process but can also be used partially for expressing the opinion
text and related information (such as the user and if the tweet is a retweet or
not); other proposals include TwO [53] (Twitter Ontology) or SIOC [4]. Reusing
some of these options we find ontologies directly dealing with Sentiment Analysis
in tweets, such as EmpaTweets [40] and TweetOntoSense [9].

3 Building the Corpus

In existing corpora we find different ways to obtain tweets: some of them are
built from concrete sentiment seeds, looking for polarized hashtags [28] or emoti-
cons [26]. Even when this leads to corpora richer in actual sentiment-expressing
messages, most of posts with just non-explicit emotions are lost in the process.
Since the LPS BIGGER project demands a system capable of detecting also
tweets with no emotions, ambiguous or without a context, we don’t want to lose
in our corpus this kind of messages. What we search are therefore the names of
the brands we want to analyze, just imposing a constraint in the language of the
tweets. Since not all the users directly refer to the brand by its official profile
or the complete name of the brand, we also searched for names commonly used.
The steps in the corpus building process included therefore preprocessing, and
were the following:

1. Selection of the brands to analyze: we need to know the official names but also
the Twitter profiles and the commonly used names for each brand in order
to retrieve related tweets. The final list of analyzed brands (derived from the
LPS BIGGER project) can be found in the website of the corpus.

2. Acquisition of tweets: the data collection took place between the 1st and
the 7th February of 2017, having different capture processes (with different
keywords searched) for each sector. The only filters used were the language
(“es” for Spanish) and the brand keywords; tweets marked as retweets were
not retrieved.

3. Sifting: The collected tweets were screened, searching for repeated tweets.
Also messages where there was no real brand (in case the brand name was
polysemous, or might appear as a part of other words) were deleted; so was
done for tweets in other languages (even with the Twitter language filter,
some messages in different languages managed to pass) and repeated tweets
where the only difference was a URL (since Twitter automatically shortens
them, the message would be in this case exactly the same).

4. Tagging: Three different people intervened in the tagging process, which con-
sisted in determining if each message showed or not each of the emotions
on the taxonomy (being possible several for the same message), or if on the
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contrary it was a neutral tweet. For this task, a document explaining the
criteria to follow was given to the taggers. These criteria (provided with the
corpus) include for instance that a recurrent purchase should be tagged as
trust and that happiness can only be inspired by an already acquired product
or service; also usual combinations of emotions are explained: not finding a
desired product would be for example satisfaction and sadness.

5. Transformation: treatment of the data to link it to other resources. Main
ontologies and resources used, as well as a sample record, can be found in
Sect. 4.

4 Spanish Corpus for Sentiment Analysis Towards
Brands

The corpus comprises 4548 tagged messages, covering 7 sectors and 8 emo-
tions; Table 2 shows percentages of appearance per sector and emotion, becoming
apparent how neutral tweets (e.g. coming from community managers or news)
must be also identified, since they often mention brands and usually contain
emotional words that may mislead classifiers. It must be also noted how the
occurrence of emotions is linked to the sector; fear, for instance, makes sense in
BANKING but not in SPORTS or BEVERAGES.

Table 2. Column ANY shows the percentage of posts with any emotion (non neutral
posts); remaining show the percentage for each emotion among these non neutral posts.

ANY HAT SAD FEA DIS SAT TRU HAP LOV

FOOD 50.68 2.69 2.15 0 15.05 82.26 80.11 26.88 23.66

AUTOMOTIVE 7.80 0 2.33 11.63 25.58 76.74 39.53 13.95 11.63

BANKING 21.21 21.19 3.97 60.93 96.69 5.30 1.99 0 0

BEVERAGES 63.12 3.46 1.85 1.15 30.25 69.75 51.96 11.78 12.24

SPORTS 34.15 7.17 7.62 0.90 39.01 55.16 34.98 14.35 33.18

RETAIL 20.41 9.96 3.69 4.80 36.90 43.91 43.54 11.44 10.33

TELECOM 38.96 32.99 2.06 0.00 75.26 21.65 15.46 8.25 3.09

TOTAL 30.88 9.05 3.42 8.33 41.03 54.06 43.09 12.68 14.74

In order to evidence the subjectivity of emotion tagging, one of the sectors
(BEVERAGES) has been completely tagged by two additional people, as it is the
most expressive one in terms of expressed sentiments. We calculated the inter-
annotator agreement using both the Fleiss’ kappa [16] between the three taggers
(all of them Spanish native speakers) for each emotion and the Cohen’s kappa
[7] for pairwise inter-agreement. As shown in Table 2 for BEVERAGES, several
emotions appear scarcely in the corpus, being therefore statistically insignificant
and leading to unrealistic kappas. Conversely, well-represented emotions such as
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lps:826812979421257730 a sioc:Post ;
sioc:id "826812979421257730" ;
sioc:content "Ya me quede sin credito?? Hace 3 dias tengo
credito nomas... Movistar y la concha de tu hermana"@es ;
marl:describesObject lps:Movistar ;
lps:isInPurchaseFunnel lps:postPurchase;
lps:hasMarketingMix lps:price;
lps:hasMeaningfulBrand lps:marketplace;
onyx:hasEmotion lps:hate, lps:dissatisfaccion ;
marl:hasPolarity marl:negative ;
marl:forDomain "TELCO" .

lps:hate a onyx:Emotion ;
rdfs:label "odio"@es, "hate"@en .

lps:dissatisfaction a onyx:Emotion ;
rdfs:label "insatisfaccion"@es, "dissatisfaction"@en .

lps:Movistar a gr:Brand ;
rdfs:seeAlso <http://dbpedia.org/resource/Movistar> ;
rdfs:label "Movistar" .

lps:1-5000062703 a gr:Business ;
rdfs:label "Telefonica de Espana, S.A.U.";
rdfs:seeAlso <https://opencorporates.com/companies/es/82018474> ;
owl:sameAs permid:1-5000062703 .

Fig. 2. Sample tagged post, and extra information on its brand and company.

dissatisfaction get Fleiss’ kappa of 0.372 and average Cohen’s kappa of 0.354;
detailed results and extensive information on distribution in the corpus can be
found with it.

Pursuing a richer representation, the dataset is published in RDF with exten-
sive links to other datasets. Different vocabularies and ontologies have been used,
such as Marl and Onyx [44], SIOC [4] or GoodRelations [24]. In addition, our
own vocabulary to cover the purchase funnel and the marketing mix has been
published [54]; extended information on the brands and companies, such as links
to external databases like Thomson Reuters’ PermID [49] or DBpedia [12], is
also provided whenever possible. A sample post in RDF referring to a given
brand (Movistar) and tagged as hate and dissatisfaction is shown in Fig. 2.

5 Conclusions and Future Work

The SAB corpus presented in this paper is the first one in Spanish containing
tagged tweets related to brands. The corpus has been published not only as a
spreadsheet but also as an RDF graph linked to external resources like DBpedia
and Thomson Reuters’s PermID. After this first publication, the corpus will be
enlarged in size and tagging labels in forthcoming versions. Results of common
classification algorithms and strategies will follow for each of the categories:
whether a tweet bears an emotion, at which stage of the purchase funnel the
Twitter user is and whether the post is related to the marketing mix or with a
meaningful brands dimension. We dare to make the reasonable guess that using
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the information obtained from external entities (easily retrievable as the corpus
is already linked) will enhance the results when comparing with the information
in the bare text. This will hopefully support the publication of linked corpora,
as it will evidence the advantages of using linked data for classification tasks.
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Abstract. This paper describes the speech denoising system based on
long short-term memory (LSTM) neural networks. The architecture of
the presented network is designed to make speech enhancement in spec-
trogram magnitude domain. The audio resynthesis is performed via the
inverse short-time Fourier transform by maintaining the original phase.
Objective quality is assessed by root mean square error between clean
and denoised audio signals on CHiME corpus and speaker verification
rate by using RSR2015 corpus. Proposed system demonstrates improved
results on both metrics.

Keywords: Noise suppression · Denoising · Speech restoration ·
LSTM · Neural networks · Speaker verification

1 Introduction

It is common that different audio channel distortions like additive noise, rever-
beration and background speech can reduce the performance of automatic speech
and speaker recognition systems. The main reason is that these distortions intro-
duce nonlinear bias in feature space that cannot be properly modeled on the
training phase. The research on automatic noise suppression as a standalone
audio processing task as well as preliminary step for recognition systems has been
studied for many years. Earlier systems were dedicated to suppress stationary
noises with constant spectral characteristics in time [1,2]. Modern approaches
are applied to use neural networks as primary mechanism for eliminating noise
from input signal. Neural networks can gain more benefits from denoisers: non-
stationary impulse noises, background speech, reverberations and others can
be effectively localized in both time and frequency domains and subsequently
suppressed [3]. De-reverberation is an important task in automatic speech recog-
nition (ASR) and good results are shown using deep autoencoders [4]. Recently
various recurrent neural network architectures have shown to greatly boost the
c© Springer International Publishing AG 2017
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performance on various audio and voice processing tasks [5–7]. Recurrent neural
networks (RNN) are used to handle temporal events, and their Long short-
term memory (LSTM) extension increases network’s memory through the gating
mechanism [8]. Both RNN and LSTM units have a big nonlinear capacity and
they are suitable for the dynamically processing sequences like speech and audio
raw samples and features. The good speech enhancer operates like preprocessing
step for the ASR and speaker verification systems and should be robust against
the changes in channel conditions [9].

The main focus of this paper is that the investigation of various network
architectures as well as different feature domains these nets operate on. The
denoising model and network configuration are described first, then the algo-
rithm for audio signal reconstruction is given. Finally, experimental setups and
results are discussed.

2 Denoising and Signal Restoration

2.1 Model

It is supposed to deal with general noise that is assumed to be non-stationary
and not necessarily additive. By using the following general notation

d = f(s) (1)

where s is a clean signal, d is a noisy and corrupted signal by some non-linear
transformation f , the goal of the proposed speech denoiser is to estimate its
inverse g ≈ f−1. As it is unfeasible to do it analytically, artificial neural networks
(NN) help to estimate this mapper in an implicit way by using gradient descent
updates on stochastically generated pairs of noisy and clean audio excerpts. The
loss function is given via the l2 norm:

||g(d, θ) − s||2 → min
θ

(2)

where θ are learned parameters of the specified neural network.

2.2 Configuration and Network Topology

For the experiments we use Keras machine learning framework due to its flexi-
bility [10]. We have found that there are different possible topologies that could
be applicable to solve the initial task. Only finally chosen graph topology is
presented in this paper, and could be inspected from Fig. 1.

We have investigated the following schemes of feature extraction: raw input
(1-dimensional input, sample by sample), raw frames (one short multidimen-
sional time frame as single input), and short time FFT-based extractors: raw
magnitude spectrum, logarithmic magnitude and triangular mel-scaled filter
banks [11].
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Fig. 1. RNN Denoiser Configuration

By designing hidden layers of the mapper g, several stacked topologies were
investigated: fully-connected layers with ReLU activation (DNN) and recurrent
hidden units: vanilla RNN and LSTM layers. Dropout regularization [12] with
probability 0.75 is applied before hidden layers. The batch normalization proce-
dure [13] has been found to be very helpful to overcome audio channel sensitivity
problem.

The first layer is LSTM and it always has the same dimension as dirty fea-
tures. The LSTM gives a benefit in comparison with DNN, Simple RNN because
they have memory and forget gates and can reset their states themselves in a
manner human brain does it [14].

The final fully connected layer above recurrent hidden layer with linear acti-
vation helps to normalize LSTM outputs and squeeze dimension to the output.

2.3 Signal Reconstruction

The target of a denoising system is to reproduce audio signal that exposes as
high SNR rates as possible. It is possible to achieve by the following two steps.
First, the described neural net is used to predict some output short-time signal
representation p with the lowered noise level. The next steps depend on which
signal representation is used to train neural enhancer. The upsampling scheme is
applied to the spectrum envelope in FFT or filter banks (FBanks). The upsam-
pling algorithm consists of reversing any non-linearities given at the preprocess-
ing step (e.g. exponentiate logarithmic magnitude) and optionally applying some
interpolation to get enhanced spectrum pi for every input i − th frequency bin.
Otherwise the network’s output is used as if the target feature was the raw audio.
Assuming that additive noise model is adequate approximation for the general
model given in (1), the pure noise signal is drawn by subtracting pi values from
incoming corrupted input di. Therefore, by using Wiener filtering procedure, the
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unwanted noise is removed for any temporal frame by attenuating corresponding
time-frequency components in the input noisy signal:

ri = ni · pi

di − pi
(3)

where ri – restored complex spectrum at, ni – noisy complex spectrum, pi – pre-
dicted envelope, di – input magnitude spectrum. Note that phase information is
preserved in output complex spectrum, and therefore it is possible to straight-
forwardly apply the inverse Fourier transform and use overlap-add method [15]
for consecutive frames in order to get valid audible signals.

3 Experiment Setup

3.1 Denoiser Parameters

Experimental investigations have been made to find the best network parameters
relative to the input/output features representation. All benchmark comparisons
are reported in term of the root mean square error (RMSE) between denoised and
clean signals on the separate test set. It has been found that increasing frequency
bins number (i.e. FFT size) leads to lesser RMSE values, as depicted in Fig. 2.
This could be explained by the fact that neural net could more effectively model
noise signal if it is occupied the whole time-frequency bin, that is seemed to be
more realistic with smaller bins. Finally the FFT size 0.064 ms with 8000 sample
rate and hope is 0.008 ms have been chosen. For FBanks 52 cepstral coefficients
are used.

It is crucial to remove initial signal bias to increase cross-channel robustness.
The input mean and variance are estimated on the separated development set
and applied to all features. Also we have experimented with different mean and

Fig. 2. Cross validation loss value wrt number of epochs for different FFT sizes
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variance normalization (MVN) transformers for clean and dirty signals. It’s a
good idea to use MVN for each file to increase cross-channel robustness but at
the same time it causes additional difficulties with model training: the network
should be able to predict means and variances for each file.

Stacking multiple LSTM layers brings smearing of the spectrogram and it was
decided to use only one layer but with a higher number of units starting from
1024 Fig. 3. The last dense layer output is 129 that is half plus one of the real
FFT size. The feature splice was set to 5 with step 1 for a DNN-only experiment.
For the recurrent nets splicing is automatically handling by the corresponding
connections.

Fig. 3. Top to down: predicted spectrogram by LSTM+LSTM (very smeared) and
LSTM (clear)

The Adam optimizer [16] has been used to learn neural models. It uses first-
order stochastic gradient descent updates with adaptive estimates of lower-order
moments. Batch size was set to 50 and learning rate was 0.001. The training
convergence has been observed from 10th to 40th epoch and about 100 s elapsed
per 1 epoch on CHiME corpus by using GeForce GTX970.

3.2 Dataset

The first part of the experiments is evaluated on the CHiME corpus and is
devoted to re-enhance the given noisy signals [17]. It consists of audios with
reverberant domestic environments and artificially noised signals within signal-
to-noise (SNR) ranges: 0, 3, 6, −3, −6 dB.

Noisy signals are passed to the input of the denoiser and mapped to clean
signals according to the procedure described in Sect. 2.3. However this straight-
forward approach has one obvious drawback: the network assumes each input
contains some portion of noise and is trained in order to remove this noise part.
But if the input signal is already at a high SNR rate, noise elimination may hurt
the quality. To overcome this limitation, the files with pure clean signal have also
been appended to the training dataset. For the later case the network is mapped
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to the same clean signal and acts like an identity function. It was experimentally
found that this sophisticated procedure can greatly improve results when dealing
with wide noise level variations.

The second experiment has been made on the speaker verification task. For
this setup the Part I male development set of the RSR2015 [18] was taken to learn
a new denoiser model. To create noisy signals from the Part I male development
set recipes from Idiap Research Institute Acoustic Simulator [19] were taken.
A noisy signal was generated for each clean signal from the development set in
three different SNR (0 dB, 3 dB, 6 dB) using randomly chosen background noises.
After augmentation about 20 h of speech were obtained for denoiser training. To
estimate the speaker verification system in different SNR the same procedure
was applied for the Part I male evaluation set of the RSR2015.

3.3 Speaker Verification

Speaker verification system based on i-vector [20] and probabilistic linear dis-
criminant analysis (PLDA) [21] has shown to be state-of-the methods for solv-
ing a text-independent speaker recognition problem. This system consists of the
universal background model (UBM) with 512 Gaussian mixture components,
400-dimensional i-vector extractor trained on Switchboard-1 Telephone Speech
Corpus (SWBD1) (about 250 h of speech) and the PLDA model pre-trained on
the Part I male development set of the RSR2015 database (about 8 h of speech).
20 mel-frequency cepstral coefficients (MFCC) computed on enhanced spectrum
followed by cepstral mean variance normalization (CMVN) are used as input
features. The goal of the evaluations is to test how the performance drops down
when the noise is mixed artificially with RSR2015 and how much gain in term of
speaker identification rate (IR) could be achieved when trying to restore these
noisy signals. Part I male evaluation set (about 9 h of speech) is used for testing
speaker verification. All utterances are resampled to 8 kHz.

The speaker verification system is evaluated in three conditions as described
in the RSR2015. In all three conditions trials are considered positive if a speaker
and a phrase are the same as in enrollment. In condition 1 trial is considered as
negative if a speaker is the same but a phrase is different. In condition 2 trial
is considered as negative if a speaker is different but a phrase is the same. In
condition 3 trial is considered as negative if a speaker and a phrase are different.

4 Results

All the results, scores and other meta information about the experiments are
stored in the Testarium — research tool and experiment repository [22]. This
tool provides efficient parameters grid searching: recurrent unit type, the number
of the hidden units, features parameters, etc.



696 M. Tkachenko et al.

4.1 Denoiser

All audio restoration examples are available to listen on the website [23]. We have
used RMSE between clean and restored audio signals as an objective quality
metric (Table 1).

Table 1. RMSE with different denoiser parameters

Noised 0.01821

DNN 1024

Log FFT 256 0.00831

Log FBank 52 0.00782

LSTM 1024

FFT 256 0.00734

Log FFT 256 0.00667

Log FBank 52 0.00655

Bidirectional LSTM 1024

Log FFT 256 0.00633

Apparently the FBank based spectrum representation is the best on the
proposed metric. This effect takes place due to the more detailed spectrum in
those frequency bands that contain speech signals. On the other hand, the linear
frequency scale spectrum sets equal importance to all frequency bins, there-
fore, restoration is applied also to the high-frequency bands, which are useless
because a speech signal mostly lies in low and mid frequencies. Logarithmic rep-
resentations are also seemed to have a positive effect due to reduce large-scaled
magnitude variations apart from linear MVN transformation.

Also the raw audio signal (without spectrum magnitude transformation) is
subjected to be tested together with LSTM-based denoiser. The RMSE reaches
the value 0.00950 after convergence, but subjective evaluations have exposed
no denoising effect compared with FFT-based approaches. This is explained by
insufficient memory capacity in recurrent units when operating on just single
sample. When dealing with raw frames so that input dimensions are equal to
number of samples in frame, performance grows up, but still it doesn’t sound
well.

Finally, it could be noticed that look-aheading nature of bidirectional LSTM
is helpful to enhance non-stationary noises, but comes at the cost of increasing
training time and ability to utilize denoising in online manner.

The example of denoised spectrograms are visualized in Fig. 4 for CHiME
corpus.



Speech Enhancement for Speaker Recognition Using Deep RNN 697

Fig. 4. Top down: denoised, clean and noisy spectrograms on 2 CHiME examples

Fig. 5. False Alarm and False Rejects (FAFR) plot for RSR2015 speaker verification
in condition 1

Table 2. Equal error rate (EER, %) on evaluation part of RSR2015

Signal/Condition 1 2 3

Clean 4.02 4.01 0.69

SNR 0 dB 18.63 20.17 10.20

SNR 0 dB denoised 13.89 15.62 6.41

SNR 3 dB 14.78 15.74 6.81

SNR 3 dB denoised 11.15 12.27 4.23

SNR 6 dB 11.54 12.14 4.31

SNR 6 dB denoised 8.82 9.69 2.79
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4.2 Speaker Verification

The results of the text-dependent speaker verification on the RSR2015 dataset
for different signals and conditions are depicted in (Table 2). Indeed, as it can be
seen from the results, the denoiser helps to eliminate noise that affects recogni-
tion performance in all three settings. It’s interesting that in the 2nd condition
the performance drop has found to be more sensible to the additive noise com-
pared to the 1st condition. This fact suggests that it is more complicated to
model speaker variations rather than phrase variations in the presence of the
additive noise.

5 Conclusions

The speech enhancer based on recurrent neural network has been developed.
The main contribution of this paper is the presented network architecture is
able to enhance noisy speech following end-to-end paradigm: only final overlap-
and-add based audio synthesis step is needed after spectrogram reconstruction.
It has been experimentally found that high frequency resolution, mel frequency
bands scaling, non-linear magnitude transformation and bidirectional tempo-
ral processing are success keys for doing effective speech enhancement in the
presence of non-stationary noises. Further research will be conducted on more
difficult noise conditions like reverberation and GSM channel corruption (Fig. 5).
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Abstract. The problem of identifying and correctly attributing speaker
stance in human communication is addressed in this paper. The data set
consists of political blogs dealing with the 2016 British referendum. A
cognitive-functional framework is adopted with data annotated for six
notional stance categories:contrariety,hypotheticality,necessity,
prediction, source of knowledge, and uncertainty. We show that
these categories can be implemented in a text classification task and auto-
matically detected. To this end, we propose a large set of lexical and syntac-
tic linguistic features. These features were tested and classification experi-
ments were implemented using different algorithms. We achieved accuracy
of up to 30% for the six-class experiments, which is not fully satisfactory.As
a second step, we calculated the pair-wise combinations of the stance cat-
egories. The contrariety and necessity binary classification achieved
the best results with up to 71% accuracy.

Keywords: Stance-taking ·Text classification ·Political blogs ·BREXIT

1 Introduction

Stance is the performance by humans in communication–actions taken by speak-
ers to express their beliefs, evaluations and attitudes towards objects, events and
propositions [3,4]. The exploitation of the verbal ways in which speakers position
themselves in relation to their addressees and to the information they provide
are useful clues to social science studies and applications. In our case, stance in
political blogs is examined and our findings are conceived to provide a contribu-
tion to opinion analysis studies. Recently, automatic identification of stance has
been the subject of interest in several studies in text mining. For quite a long
time, researchers have investigated beyond the identification of whether speak-
ers express a positive or a negative opinion about a fact/event/idea, and they
explore the speakers’ positioning in discourse, in terms of being for or against
something.

Recent studies in stance classification focus their interest on whether a
speaker supports a fact/event/idea or not, but researchers mostly perform binary
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searches and classify texts into pro or con using these labels as stance categories.
In the present paper, more refined stances based in notional categories, which
are different from the ones used in most stance classification studies, are exam-
ined as classification attributes. Following research in linguistics [3], we define
stance-taking in terms of language users’ positioning, alignment and evaluation
in communication. Our study has a dual purpose:

1. Exploiting the stance classification problem in text data extracted from polit-
ical blogs regarding the 2016 British referendum.

2. Determining the efficacy of lexical and syntactic features using six novel stance
classes.

In our previous work [17], we introduced a cognitive-functional stance frame-
work highlighting ten notional stance categories, and a corpus annotated with
these stances. The categories were manually attributed to utterances extracted
from political blogs on the 2016 British referendum, according to the total seman-
tic information of the utterance. In this paper, a classification methodology based
on six notional stance categories is proposed. Lexical and syntactic features were
extracted and classification experiments were performed in a subset of the anno-
tated corpus. We tested the efficacy of the framework and the feature set by
performing multi-class classification experiments and also binary experiments,
in order to evaluate each stance pairing (15 combinations in total).

2 Related Work

Stance classification is connected to the fields of Subjective Language Identifica-
tion [27], Opinion Mining and Sentiment Analysis [15,23]. The majority of these
studies addresses stance-taking as a binary issue of the pro or con positioning
of the speaker towards a fact/event/idea. In most cases, the data are extracted
from online debates, where controversial opinions and stance-taking is observed.
These data are mainly automatically annotated. In other cases, where the data
are derived from social media such as Twitter, stance-taking can be retrieved
through hashtags (e.g., #NOT, #PRO, #pride, etc.). In Table 1 we present a
number of recent studies of stance classification in the order of best classification
accuracy achieved during their classification experiments.

The identification of stance has also been the topic of interest in other
text mining studies. Sridhar et al. [21] investigated the performance of linguis-
tic and relational features in a subset of the Internet Argument Corpus [26].
They showed that features comprising information about complex interactions
between authors and posts are important in the detection of speaker position-
ing. Rajadesingan and Liu [16] identified different types of stance-taking (for
or against a topic) in a collection of tweets from more than 100,000 different
Twitter users, using their ReLP novel framework. Kucher et al. [13] created the
uVSAT tool for visual stance analysis. This tool contains multiple approaches
for analysing temporal and textual data as well as exporting stance markers in
order to prepare a stance-oriented training data set.
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Table 1. The classification accuracy achieved in recent stance classification studies

Authors Classification accuracy

Walker et al. [24] 88%

Faulkner [5] 82%

Hasan and Ng [9] 75.9%

Hasan and Ng [10] 75.4%

Walker et al. [24] 75%

Hasan and Ng [8] 75%

Ferreira and Vlachos [6] 73%

Anand et al. [1] 69%

Hasan and Ng [11] 69%

Mohammad et al. [14] 69%

Somasundaran and Wiebe [20] 63.93%

3 Data Description and Methodology

3.1 Data Description

As mentioned above, in our previous work [17] we designed and implemented
a cognitive-functional framework about speaker stance consisting of ten core
stance categories. These categories comprise the basic and distinctive stances as
agreement and disagreement, certainty, prediction, hypotheticality, etc. Stance
was detected in more than 76% of randomly extracted utterances from polit-
ical blogs, and in many cases more than one stance category was attributed
by the annotators, a fact that highlights the frequency of the stances in dis-
course. These stances were manually attributed to the utterances by two human
experts, through an annotation process that was based on the overall meaning
of the utterance by using the ALVA system [12].

The annotation process resulted in a gold standard corpus, the Brexit Blog
Corpus (BBC), containing 1,682 utterances (in English, 35,492 words, 169,762
characters without spaces). In this study, an utterance is the chunk between
full stops, question marks or exclamation marks. The size of this corpus cannot
be compared to large data sets extracted from social media sources and used
for text classification purposes. BBC was manually annotated according to the
semantic information of each utterance, a process which is highly resource- and
time-consuming. For this study, we used a subset of this corpus and excluded
the less common stance categories (agreement/disagreement, certainty,
tact/rudeness and volition) in the BBC (about 150 utterances), in order
to perform experiments on a more balanced data set, and we worked with the
utterances annotated with the six stance categories as presented in Table 2.

Table 2 shows the number of the utterances attributed to each stance
category, and the mean F-score of the agreement achieved between the two
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Table 2. The distribution of the stance categories in our data set and the inter-
annotator agreement mean score per category

Stance category Number of utterances Inter-annotator F-score

contrariety 352 0.78

source of knowledge 287 0.53

prediction 252 0.57

necessity 204 0.77

uncertainty 196 0.62

hypotheticality 171 0.78

Total number of utterances 1,462

annotators. The total size of the data set is 1,462 utterances (31,331 words;
150,190 characters). In these stance categories the agreement among the annota-
tors when labels were attributed to the utterances, in terms of inter-annotation
agreement mean F-score, varies from 0.53 to 0.78. The contrariety stance
includes cases where the authors express a compromising or contrastive opin-
ion, e.g., He is always referred to as British, yet was born in Namibia, spent
all his life in Namibia, and speaks with a Namibian ‘English’ accent. In this
example, the annotators detected a contrastive meaning, and the presence of
yet supported their decision. Source of knowledge is attributed when the
authors express the origin of what they say, e.g., As the Dutch foreign minister
admitted last week, the EU was always a journey rather than a goal. In this case,
the Dutch foreign minister is the source providing information and knowledge
about something. Prediction is identified in the cases where the authors make
a guess/conjecture about a future (or future in the past) event, e.g., Today is
the Grexit, tomorrow is the Brexit, and the day after tomorrow it will be the
Frexit. The identification of prediction is supported by the predictive mean-
ing of the whole utterance, and by the items tomorrow and will. The necessity
category includes cases in which the authors express a request, recommendation,
instruction or an obligation. In the following example it can be easily detected
by the presence of need : And at national level, we need to build support in the
UK for the regulations that Cameron is seeking to remove. Annotated utterances
with the uncertainty label contain the authors’ doubt as to the likelihood of
what they are saying, e.g., But I don’t see how they can just mark time on the
constitution for the next five years - that bird has well and truly flown. In this
example, the sequence I don’t see how expresses the speaker’s doubt about a
fact/event/idea. And, finally, hypotheticality contains utterances where the
authors express a possible consequence of a condition, and it is mostly formu-
lated with conditional clauses, e.g., If the people vote the referendum down, then
they leave the euro.

The data are thematically related to the 2016 British referendum and, in
many cases, to broader political topics, extracted from the web from June to



704 V. Simaki et al.

August of 2015. With the Gavagai API [7], the targets were detected using seed
words such as Brexit, EU referendum, etc. The URLs from www.lobbyplanet.eu/
links/eu-blog are retrieved and filtered, and the texts were split into utterances.

3.2 Methodology

In this study, we explore the efficacy of classification algorithms when novel
stance categories are used and linguistic features are extracted. This is a novel
approach in the field, given the fact that these stance categories are used for
the first time in an automatic stance classification task. For the experiments,
we composed a feature set of linguistic features predefined by researchers, as
our baseline. We used a large number of lexical and syntactic features that
are common in previous studies in authorship attribution [29], gender and age
identification [18,19], opinion mining and sentiment analysis [15]:

– Lexical features can be further divided into character- and word-based fea-
tures. The character-based features include the calculation of all characters,
spaces, special characters, upper case characters, alphabetical characters and
digit characters per utterance, the average utterance length in terms of char-
acters, the frequency of each special character and alphabetical letter per
utterance. The word-based lexical features calculate the average word length,
the average utterance length in terms of words, the frequency of short words
(less than four characters), the frequency of different types, of hapax legomena
and hapax dislegomena.

– Syntactic features include the total number of punctuation symbols per
utterance, the frequency of each punctuation symbol, and the frequency of
the Part-of-Speech (POS) tags in the utterances.

The 78, in total, features used in the present study were normalized and extracted
using the NLTK toolkit [2]. The feature set was tested with various classifiers
in different searches. The main goal of this study is to evaluate the proposed
stance framework, and determine whether the stance classes used here show a
robust matching with the corresponding stance concepts, and whether they can
be automatically identified and attributed when a baseline feature set consisted
of simple features is used.

4 Experiments

In this section, we evaluate the methodology using our data set, as described in
Sect. 3. For the classification stage, we relied on several machine learning algo-
rithms, which have been discussed in the literature. We used a Bayesian classifier
(BayesNet), a sequential minimal optimization (SMO) algorithm, three differ-
ent logistic regression models (Logistic, SimpleLogistic, LogiBoost), a boost-
ing algorithm combined with decision trees (AdaBoost), a multilayer percep-
tron neural network (MLP) algorithm, decision tree algorithms (LMT, Decision

www.lobbyplanet.eu/links/eu-blog
www.lobbyplanet.eu/links/eu-blog
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Table 3. The results for the six-class classification experiments. The best result is
highlighted in bold

Classifier Classification accuracy

DecisionTable 26.23 %

BayesNet 25.54 %

REPTree 21.84 %

LMT 29.58 %

LogiBoost 25.13 %

MultiClassClassifier 29.17 %

MLP 20.95 %

SMO 28.90 %

SimpleLogistic 30.00 %

Logistic 28.42 %

Stump, RepTree), two meta-classifiers (MultiClassClassifier, MultiClassClassi-
fierUpdateable) and a default rule-based classifier, the ZeroR. All classifiers
were implemented using WEKA machine learning toolkit [28]. In order to avoid
overlap between training and test subsets a 10-fold cross validation evaluation
protocol was followed.

The performance results in terms of percentages of correctly classified utter-
ances are shown in Table 3. The experimental results for our six-class problem did
not prove to be satisfactory, achieving in the best case 30% of classification accu-
racy with the SimpleLogistic classifier. The large size of the feature set could be
one of the reasons for the low classification accuracy percentages in our experi-
ments. In a future step, methods for the dimensionality reduction of the feature set
could be implemented, and more refined features related to the different stances
(i.e., the most frequent items in each stance) could be added to the lexical and
syntactic features. The size and nature of the data set, and the number of differ-
ent classes could also be responsible for the relatively low accuracy in our experi-
ments. It was a challenging task to perform classification experiments in a data set
in which the utterances were in many cases annotated with more than one stance.
In several cases (595 utterances in total), two or more stance labels are attributed
to the same utterance, which means that these utterances appear in more than one
position in the data. In order to carry out additional investigations on the basis of
these findings, we compared the performance of the classifier for each class in terms
of precision, recall and F-measure (F1), when SimpleLogistic classifier was used.
These metrics, presented in Table 4, highlight the performance of the classifier dur-
ing the classification task. We observed that the order of the classes that achieved
the highest F1 value corresponds to the frequency order of the stance categories in
the data set. This means that the more frequent a stance type is in the data set,
the more correctly the classifier identifies it.
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Table 4. The precision, recall, and F1 scores of the stance classes during the six-class
experiments

Class Precision Recall F1

contrariety 0,298 0,561 0,389

hypotheticality 0,294 0,088 0,135

necessity 0,328 0,191 0,241

prediction 0,287 0,262 0,274

source of knowledge 0,330 0,402 0,363

uncertainty 0,118 0,031 0,049

We then reduced the number of classes used during the classification task, and
we performed binary searches among all possible pairs of the six stance classes
resulting in 15 binary setups. We created 15 different data subsets according
to all stance categories pairings, and we tested the accuracy of the correctly
classified utteranaces. In Table 5 we present the classification results starting
from the best accuracy 71.17% achieved when contrariety and necessity
were tested with SMO, LMT and SimpleLogistic algorithms with all features.

Table 5. The classification accuracy results for each pair of stance categories

Pairs of classes Classification
accuracy

Classifier

Contrariety - Necessity 71.17% SMO, LMT, SimpleLogistic

Hypotheticality - Source of knowledge 69.58% MultiClassClassifierUpdateable

Contrariety - Hypotheticality 68.60% SMO

Contrariety - Uncertainty 66% LMT

Necessity - Source of knowledge 65.10% MultiClassClassifier

Contrariety - Prediction 65% SMO

Prediction - Source of knowledge 64.86% LMT, MultiClassClassifier
Updateable

Source of knowledge - Uncertainty 62.03% SimpleLogistic, LMT

Hypotheticality - Necessity 60.8% SimpleLogistic

Contrariety - Source of knowledge 60.59% SimpleLogistic, SMO

Hypotheticality - Prediction 59.57% SimpleLogistic, LMT, Ababoost,
ZeroR

Necessity - Uncertainty 58.75% SimpleLogistic

Hypotheticality - Uncertainty 58.58% MultiClassClassifierUpdateable

Necessity - Prediction 57.67% RepTree

Prediction - Uncertainty 56.69% LMT



Stance Classification in Texts from Blogs on the 2016 British Referendum 707

5 Discussion

The binary classification results show that multi-class classification problems
cannot be solved easily, and it is difficult to achieve high classification accu-
racy, especially when a baseline feature set is used. As already stated in the
introduction, our approach had a dual purpose and we achieved to:

– Exploit the stance classification problem in text data extracted from political
blogs regarding the 2016 British referendum.

– Determine the efficacy of lexical and syntactic features using six novel stance
classes.

We performed classification experiments using six new core stance categories,
which puts our study a step beyond stance classification studies that use pro
and con as stance labels. We showed that these stance categories (based on the
BBC’s annotation labels) can be applied and used as classification attributes as
differences among them can be automatically identified.

An interesting finding of the binary classification experiments is that some
stance pairs are more discriminative than others, achieving better classification
accuracy scores. This can be explained by the fact that some stance categories are
expressed in similar ways with similar constructions and they tend to co-occur
in many utternaces in our data set. For example, the utterances annotated as
prediction are frequently co-annotated with uncertainty. As a result, this
pair showed the lowest classification accuracy (56.67%) among all other stance
combinations. The hypotheticality–source of knowledge pair on the
other hand, which achieved the second best accuracy (69.58%), does not co-
occur in the data set. These two classes are expressed through different con-
structions. In addition, some stance classes trigger different cognitive functions,
and therefore they do not seem to co-occur in discourse, as for instance the
contrariety and the necessity. These classes also show high inter-annotator
agreement scores, a clue that proves that the utterances annotated as such are
clearly different. As a result, the classifier easily distinguish them, and a higher
percentage of utterances is correctly classified.

In this preliminary study of stance classification, where six novel stance cat-
egories were used, we used simple lexical and syntactic features as our baseline.
These features in the cases where binary classification experiments were per-
formed proved to be efficient. This fact highlights that differences among the
various stance classes can be observed at character-, word- and sentence-level,
and the refinement of this feature list can reveal interesting insights about the
different stances. Based on an annotated data set, and without any refined,
computationally complex or stance-focused features, we showed that basic clues
such as the length of the words and the utterances, different metrics about the
vocabulary richness (i.e., hapax legomena, type ratios, short words, etc.), and
characteristics related to the syntactic structure of stance-annotated utterances
such as punctuation and POS tag frequencies provide important information
about stance differentiation in political blogs, and they deserve to be further
investigated in future studies.
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6 Conclusions

In this paper a stance classification framework using six novel and frequently used
(in discourse) stance classes is presented. The efficacy of lexical and syntactic
features for the identification of the notional stance categories were explored
in a data set of annotated texts extracted from political blogs regarding the
2016 British referendum. The classification experiments showed that multi-class
experiments are challenging and only binary searches outperform the multi-class
ones, achieving accuracy score up to 71.17% for the contrariety–necessity
stance pair.
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Abstract. The paper describes a pilot experiment aimed at revealing the
occurrences of miscommunication between interlocutors in everyday speech
recordings. Here, miscommunication is understood as situations in which the
recipient perceives the meaning of the message in a different way from what was
intended by the speaker. The experiment was based on the methodology of
longitudinal recordings taken during one day, following the approach which is
used for gathering audio data for the ORD speech corpus. But in addition it was
enhanced by audition of the whole recording afterwards by the respondent
himself/herself and his/her simultaneous commenting on some points of com-
municative settings with unobservable features. The task of the respondent was
to note all occurrences of miscommunication, to explain to the researcher all
unclear moments of interaction, to help in interpreting the emotional state of
interlocutors, and to give some hints on pragmatic purposes, revealing those
aspects of spoken interaction that are usually hidden behind the evident facts.
The results of the experiment showed that miscommunication is indeed a rather
frequent phenomenon in everyday face-to-face interaction. Moreover, the ret-
rospective commenting method could significantly broaden the opportunities of
discourse and pragmatic research based on long-term recordings.
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1 Introduction

In recent studies of everyday face-to-face interaction, the concept of miscommunication
is increasingly emerging (e.g., [1–3]). In this paper, following [4], miscommunication
is understood as situations in which the recipient perceives the meaning of the message
in a different way from what was intended by the speaker.

Rather often, miscommunication has a hidden character. For example, if the listener is
not very interested in the current conversation, he can just pretend that he is listening [5].
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Moreover, it turns out that knowing some rules of spoken dialogue, it is possible to teach
an absolutely “deaf” robot to conduct a seemingly successful communication in the form
of normal dialogue flow, in which the human interlocutor may not even realize that his
cues do not reach the addressee [6].

Taking into account the high communication skill of most people, it is usually quite
impossible to understand when miscommunication really occurs without involving the
testimonies of the participants themselves. Therefore, it was decided to conduct an
experiment, the task of which was to make recordings and to get ʻhot-pursuitʼ com-
menting on them by the respondent. This paper describes the methodology and some
results of the experiment.

2 The Methodology of the Experiment

2.1 Longitudinal Recordings of Daily Interaction

For collecting audio data, the method of longitudinal recording during one day was
proposed. This approach for gathering audio data was traditionally used in Japan in
studies of “language life” [7]. It was called the method of “the 24 h survey”, although
in most of the cases the recordings were made from early morning till late evening [8].

Later, this approach was used for collecting data for the JST/CREST Expressive
Speech Processing corpus, which was compiled “to illustrate the wide range of
speaking-styles that can occur in ordinary everyday conversational situations” [9].
A similar methodology of longitudinal recordings had also been used earlier for col-
lecting data for the demographically sampled part of the British National Corpus [10].
In this case “recruits who agreed to take part in the project were asked to record all of
their conversations over a two- to seven-day period” [ibid.].

Recently, this method has been used for collecting data for the ORD corpus of
spoken Russian, which is being created at St. Petersburg State University. The
recordings are gathered from volunteers who agreed to spend a whole day “with a voice
recorder at their neck” which records all their spoken discourse during that day – both
in professional and personal settings [11, 12]. All participants are required to fill in a
sociolinguistic questionnaire and to undergo psychological testing (Hans Eysenck test,
FPI test and Cattell’s test).

The ORD recordings provide unique data for diverse linguistic, sociolinguistic,
[13], discourse and pragmatic studies [14–16]. However, when interpreting the
obtained recordings from a pragmatic point of view, it is sometimes difficult for the
researchers (as well as for anybody who did not take part in the conversation) to
completely reconstruct the situation on the basis of the audio recording alone. The same
is true for miscommunication. We had proposed a hypothesis that many ambiguities
could be clarified through commenting and explanations by the participant himself
(herself) in combination with a researcher’s interview [17, 18]. This was the reason for
conducting this experiment.
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2.2 Selection of Respondents

The main criteria for selecting participants for this experiment was their willingness to
participate in the recording, as well as their readiness to hold a frank discussion
afterwards concerning the details and strategies of their spoken communication.
Respondents had to be more than 18 years of age, have Russian as their native lan-
guage, and be open to introspection. For the first experiment, we aimed at choosing a
participant who would speak enough during the recording day, both in private settings
(either with family members or with friends) and at work. The other important
requirement was a full understanding of the aims of the experiment on the part of the
respondent.

Finally, preference was given to the following candidate: a 40-year-old woman,
with two higher education degrees, currently lecturing on the history of theatre and
cinema at the university and also working part-time as an actress. It seemed to us that
her experience on the theatrical stage and her skills in the emotional sphere would make
it easier for her to look at her own everyday behaviour somehow ʻfrom the outsideʼ,
while her experience in teaching would help her to judge it quite objectively.

Naturally, participation in the experiment was anonymous. However, the respon-
dent had to sign a consent form regarding participation in the project, which was
prepared by the legal service of St. Petersburg University.

2.3 Pre-recording Instructions for the Respondent

Pre-recoding instructions for the respondent were much the same as in the regular
procedure for ORD recordings (for details see [11, 12]). The participant was instructed
to turn on the recorder in the morning and keep it operating until she went to bed in the
evening. She was asked to choose a day for the recording when different commu-
nicative situations would be expected. Further, she should be ready to start analysing
the recordings on the day following its implementation, and it was expected that the
retrospective commenting procedure might take up to three days on average. In
addition, the respondent was asked to note (at least mentally) the situations of mis-
communication during the day of recording.

2.4 Post-recording and Pre-audition Instructions for the Respondent

The participant was told that the following points were of particular interest for the
research:

• Miscommunication situations or any other types of communicative failure, e.g.,
when the recipient understood the speaker in a different way from what was
intended by the speaker. Or when she did not understand anything at all, but
pretended that she did.

• The reasons that prompted a person to use this or that dialogue tactic (e.g.,
I am speaking this way because…). This information is of particular interest for
pragmatics studies. In addition, points concerning “recipient design” [1] should also
be noted: I adapt my speech behaviour, speaking with this interlocutor in such a
way, because…

712 A. Mustajoki and T. Sherstinova



• Explanations of any communication situations that a stranger could not
understand correctly.

Consequently, the task of the respondent was to indicate all such moments when
listening to the recording and to comment on them.

Furthermore, the researcher explained that her role as an interviewer was to get
information from the respondent concerning what was unclear or incomprehensible
from the audio recording. In particular:

• Description/clarification of the context or word meanings: What were you
talking about? It is very often the case in private conversations that some words,
names, notions and even the general idea of the dialogue may be difficult (or even
impossible) to understand by researchers unfamiliar with the interlocutors’ back-
ground. Thus, when the researcher does not understand something in the audition,
he/she would ask the respondent to explain either the situational context or
incomprehensible words, jargon, terms and proper names.

• Attribution of emotions: What was your emotion here? What did you want to
express? Emotionality is inherent in everyday face-to-face interaction [19], but it is
often difficult for the researcher, who does not know the respondents personally, to
determine whether some phrase is neutral or “emotionally coloured”. Therefore, it is
valuable to have attributed samples of emotional speech, including the emotional
meaning of some paralinguistic phenomena.

• Pragmatic functions of individual speech acts:Why did you say it? Of course, it is
impossible to analyse everything in detail, but the important non-obvious moments
should be explained.

• Recognition of humour, irony, or language play. These phenomena, too, are not
always understandable a priori.

• Decoding fragments of illegible or slurred speech. Because they are made in
natural conditions, the recordings often have fragments of simultaneous speech,
background noise, or poor speech articulation, which makes them difficult to
transcribe. Here, it is also possible to resort to the aid of the respondent.

2.5 The Retrospective Commenting Procedure

Both the respondent and the researcher-interviewer listen together to all the sound data
that had been recorded shortly before. While listening, the respondent notes and
comments on the events, referring to points of interest 1–3, mentioned above in
Sect. 2.4. The researcher, on the other hand, monitors the general understandability of
the communicative situation, as far as possible, and asks questions related to points 4–8
from Sect. 2.4. The procedure implies a discussion between the respondent and the
researcher, which is also recorded on a voice recorder.

The method as such is not new. Some versions of it have been used in teacher
training, second language acquisition and intercultural communication research. The
general idea of such studies is to ask informants to comment on their own performances
in audio or video recordings. It is meant to reveal people’s meta-analytic understanding
of their attitudes, feelings and interpretations regarding situations in which they have
been involved.
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Two terms are used to describe this kind of methodology: stimulated recall (e.g.
[20, 21]) and retrospective interview. The latter term has also been applied to research
where recordings are not used as a stimulus for reactions, but informants have been
asked to describe their recollections of incidents or events they have experienced (see,
e.g. [22, 23]). We prefer a more precise name of the method: retrospective commenting
on one’s speech.

In our case, the method is used in a different context from earlier. In research on
communication, the method is seen as a complementary means of obtaining more
detailed evidence on problems in understanding. The other methods and approaches
used include a thorough scrutiny of the dialogue by applying conversational analysis
and study of the backgrounds of the participants [24]. As a rule, the participants know
each other well and the researchers also know them beforehand. In the case of ORD
material, the situation is fundamentally different. During the day there are numerous
encounters with various people, in which they talk about all kinds of themes depending
on the changing circumstances. The heterogeneous nature of the material makes ret-
rospective commenting a very demanding task for both the researcher and the
respondent. The method is at the same time introspective and ethnographic.

3 Some Results of the Experiment

The experiment was held in St. Petersburg in late January, 2017. During her “day of
speech”, the respondent recorded about 14 h of audio data, of which the fragments
containing speech are up to 10 h. They refer to her spoken communication with family
members (daughter, mother, and husband), with colleagues (university lecturers), with
her students, with partners (actors), with friends, acquaintances, health workers and
with herself.

Despite the preliminary agreement, it turned out that the respondent was unable to
undertake commenting the day after recording because of family matters. She was able
to begin the procedure of retrospective commenting only three days later. However, it
seems that this forced delay did not affect the results of the experiment: listening to the
recording, the respondent seemed to be able to recall even minor details of the situation.

The joint work of the respondent and the researcher lasted three days, about 8 h
each day. The first day was started with a discussion on the objectives of the experi-
ment, followed by the rather detailed pilot commenting. As a result, only 2 h of
recordings were analysed on the first day. On the second and third days, the work went
faster.

When it became evident to both participants in the experiment that it would be
impossible to finish commenting within the three days scheduled for the retrospective
commenting if the discussion of each communicative episode continue to be so
detailed, it was decided to speed up the process, skipping some fragments during which
nothing special took place. This included, for example, most of the 12 examination
answers of students taking an exam on the history of theatre.

In general, it turned out that the procedure of retrospective commenting is rather
time consuming and needs constant attention from both the side of the respondent and
the researcher.
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Concerning the primary goal of the experiment, the results are as follows. First, the
experiment showed that miscommunication is indead a rather frequent phenomenon in
everyday face-to-face interaction.

It is interesting, but when asked about miscommunication episodes before listening
to the recording, the respondent could only recall two situations that drew her attention.
Both referred to rather difficult conflict situations, in which there was internal oppo-
sition between the respondent and her interlocutors that had to be resolved during the
conversation (and it really was). The first one took place in a discussion with the doctor
of her daughter, and the second occurred in the university with one of her students that
had earlier behaved strangely and it felt as though he did not respect his lecturers. The
second case relates to miscommunication in the past resulting in current tension in
relationships.

However, in the process of audition the most frequent types of miscommunication
appeared to be the following: (1) talking past each other, which frequently happens in
domestic conversations, and (2) not listening to the interlocutor because of fatigue, lack
of interest and some other reasons. These results were fairly predictable [5].

Our respondent seemed to feel quite free to disclose her communication strategies.
For example, she explained that when speaking with a doctor, in order to obtain a
medical certificate, she pretend to behave like a shy and timid person. Later, she
commented on her conversation with her boss thus: Here I am flattering my directress.
And so on.

Her other comments are also very valuable. Thus, she could explain not only the
reasons for her speaking behaviour, but also for many paralinguistic phenomena, and
even for singing at home to herself (e.g., Here, I am singing this song because I’m
thinking about my mother – it is “her tune”).

In most cases, the respondent easily described the emotions of her speech, although
sometimes it was difficult for her to find the proper words. It should be mentioned that
after the initial training on the first hours of recordings, the researcher-interviewer
became able to better understand the emotions and intentions of the respondent’s
speech. Thus, on the second day of commenting, instead of questions such as What did
you want to express?, the researcher was able to make his own suggestions, such as: It
sounds like irony, does it not? In many cases the respondent agreed with the researcher
(Yes, it’s irony), but could also correct (I would say it’s sarcasm).

The quality of the recording was good enough, so there were not many cases of the
unintelligible speech. However, it turned out that there were some fragments when the
respondent herself was unable to transcribe her own speech, even of fine quality.

4 Conclusion

The methodology of retrospective commenting was proposed in order to reveal mis-
communication situations in everyday dialogues and to clarify some other non-obvious
aspects of real communication situations. Besides miscommunication situations or any
other types of communicative failure, the following points were of particular interest
for the research: the reasons that prompted a person to use this or that dialogue tactic;
explanations of any communication situations that a stranger could not understand
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correctly; description/clarification of the context or word meaning; attribution of
emotions; recognition of humour, irony, or language play; revealing pragmatic func-
tions of individual speech acts; and decoding fragments of illegible or slurred speech.

The experiment on retrospective commenting was successfully conducted and
showed that miscommunication is indead a rather frequent phenomenon in everyday
face-to-face interaction. The most frequent types of miscommunication appeared to be
the following: (1) talking past each other, which frequently happens in domestic
conversations, and (2) not listening to the interlocutor because of fatigue, lack of
interest and some other reasons. The respondent seemed to feel quite free to disclose
her communication strategies, easily described the emotions of her speech and in most
cases she could freely answer questions posed by the researcher-interviewer.

The experiment showed that the retrospective commenting method could signifi-
cantly broaden the opportunities of linguistic and pragmatic research based on longi-
tudinal recordings. Moreover, this method can be applied not only to the analysis of
longitudinal recordings, but also to all kinds of research on authentic human speech and
spoken interaction.

Along with the apparent advantages, this approach also has weaknesses, the major
one of which is that, like many qualitative investigations, it is rather time consuming
and resource intensive. Despite this drawback, the method of retrospective commenting
seems worthwhile and promising, because there are no other possibilities for under-
standing the nuances of spoken conversations between people whom the researchers do
not know personally. For qualitative pragmatic research, it seems worth spending time
with respondents in order to clarify the details of interaction, instead of trying to
imagine what happened.

Our experience also showed that commenting on one’s own linguistic behaviour is
a very demanding task. It is evident that not all people are ready and competent to
analyse their own actions during a speech day.

Even if a person agrees to an experiment, the researchers cannot be entirely con-
fident that he or she is completely sincere when interpreting the discussed situation with
the interviewer (possibly embellishing some details of conversation or concealing
others). And even if the respondent is trying to be sincere, one cannot be sure that he or
she is not mistaken in interpreting the behaviour of his/her interlocutors. However, a
‘sincere informant’ can be expected to correctly identify at least his/her own emotions
and behaviour strategies.

Our next task is to expand the research and to prove to what extent the experiment
is reproducible with participants of diverse social groups and professions. Further, we
plan to carry out similar experiments not only on Russian material, but also on other
languages. Our main goal is to get a deeper and more reliable understanding of what
ultimately takes place in human interaction. Social life in modern society is largely
determined by communication between people. In this regard, it is extremely important
to understand in more detail the mechanisms that rule and influence its course.
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Abstract. In this paper we describe the RWTH Aachen keyword search
(KWS) system developed in the course of the IARPA Babel program. We
put focus on acoustic modeling with neural networks and evaluate the
full pipeline with respect to the KWS performance. At the core of this
study lie multilingual bottleneck features extracted from a deep neural
network trained on all 28 languages available to the project articipants.
We show that in a low-resource scenario, the multilingual features are
crucial for achieving state-of-the-art performance.

Further highlights of this work include comparisons of tandem and
hybrid acoustic models based on feed-forward and recurrent neural net-
works, keyword search pipelines based on lattice and time-marked word
list representation and measuring the effect of adding large amounts of
text data scraped from the web. The evaluation is performed on multiple
languages of the last two project periods.

Keywords: Acoustic modeling · Keyword search · Graphemic · Multi-
lingual · Neural networks · Time-marked word list · Recurrent · LSTM

1 Introduction

In the last decades, the research on automatic speech recognition (ASR) has
mainly focused on languages with large amounts of linguistic resources avail-
able (e.g. English, Spanish or Mandarin). Meanwhile, the demand has increased
for indexing and searching audio documents in languages, for which only a lim-
ited amount of such resources exists. These resources include pronunciation dic-
tionaries, transcribed audio data and large amounts of text data. The IARPA
Babel program aimed at developing robust methods for keyword search in under-
resourced languages that can be rapidly deployed for new languages [2]. One of
its goals was to explore the operating point that minimizes the amount of human
effort required to prepare language specific resources for setting up a KWS sys-
tem in a new language.

Over the course of four years, the participants of the IARPA Babel program
were provided with a gradually increasing number of languages. Table 1 summa-
rizes the 25 languages released by IARPA. Each year, an evaluation campaign
c© Springer International Publishing AG 2017
A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 719–730, 2017.
DOI: 10.1007/978-3-319-66429-3 72



720 P. Golik et al.

Table 1. Language packs released by IARPA to the project participants. Last row in
each of the four period blocks corresponds to the surprise (i.e. evaluation) language

was carried out on a new (“surprise”) language. In an increasingly short evalua-
tion period, the participants were required to train an ASR system from scratch,
extract lattices for approx. 70 hours of audio, search for several thousands key-
words and submit the results for scoring.

Depending on the evaluation conditions, the results were evaluated in one of
several tracks. In the first two years (BP, OP11), the participants were evaluated
on full and limited language packs (FLP and LLP), that differ by the amount
of transcribed training data. In the third year (OP2), the LLP condition was
further restricted and is referred to as “very limited language pack” (VLLP).
In the VLLP track the participants were allowed to make use of approx. 50 h
of untranscribed data. In the final year, the VLLP track had been dropped and
the participants were evaluated on the FLP only. The restricted evaluation con-
ditions for VLLP allowed to use data from other languages’ FLPs for building
multilingual models. Also, the FLP track in the final year (OP3) allowed to use
all 24 language packs released in the course of the project and also publicly avail-
able data in four additional languages (approx. 200 h each of English, Spanish,
Mandarin and Arabic)2. Table 2 shows an overview of the different tracks.

It is worth mentioning that the audio conditions are extremely challenging
across languages, as the recordings of telephone conversations from both mobile
and landline were done in real environments and are of poor quality. Also, the
data sets cover a wide range of dialects and other demographic attributes. How-
ever the high variability across the 28 languages and the restricted evaluation
conditions of the IARPA Babel project have provided an excellent opportunity
to explore the effectiveness of multilingual acoustic modeling for under-resourced
languages. Please note that the ASR performance (measured in word error rate,
WER) has been a secondary objective, since the KWS system is allowed to
operate on all hypotheses, while the WER is calculated from the best path only.

1
BP: base period, OP: option period.

2
see Table 1 in [1] for details on the four additional corpora.
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Table 2. Evaluation conditions in each of the project periods. The entries show the
approximate amount of transcribed training data and whether a pronunciation lexicon
and use of multilingual models was allowed

Period Training data [h] Lexicon Multilingual
FLP LLP VLLP FLP LLP VLLP FLP LLP VLLP

BP 70 10 + + − −
OP1 50 10 + + − −
OP2 30 3 + − − +
OP3 40 − +

In Sect. 2 we define the keyword search task and the evaluation metric and
also describe KWS on lattices. Section 3 introduces the multilingual bottleneck
feature extraction. Section 4 outlines the experimental setup and provides the
results obtained on the development sets in multiple languages. We report the
best results obtained on the languages of the final project period and draw
conclusions in Sect. 5.

2 Keyword Search Task

The goal of a KWS system is to detect occurrences of a keyword in large amounts
of audio data. According to the Babel program conditions, the KWS is performed
on an index built from audio before the keywords are revealed. The index is
usually represented by a word graph (lattice) as a compact structure for multiple
hypotheses provided by the ASR sub-system. This allows the KWS system to
select words that are not necessarily part of the first-best hypothesis. Each query
consists of one or multiple words. A hypothesis is accepted if the score based
on the word posterior probability exceeds a decision threshold. Given a set of
search terms T , a set of hypotheses and the true transcription of the test data,
the performance of a KWS system can be measured in Actual Term Weighted
Value (ATWV), a quantity based on the negative average value lost per term [5].
The value loss is a linear combination of the probabilities of miss and false alarm
errors at a given acceptance threshold θ:

V (θ) = 1 − 1
|T |

∑

t∈T

{
PMiss(t, θ) + βPFA(t, θ)

}
(1)

The threshold is optimized on a development corpus with a development key-
word set by maximizing the term weighted value. In this work we only report the
maximum term weighted value (MTWV) results, which does not require tuning
the decision threshold and allows to evaluate modifications in the ASR compo-
nent easily. It had been stated by the project organizers, that an ATWV of at
least 0.3 is a reasonable operating point. The goal had been further increased



722 P. Golik et al.

from 0.3 to 0.6 ATWV in the final project period. We use a 4-gram count lan-
guage model (LM) for ASR experiments and a bigram LM for KWS lattice
generation, a well-known trick [14] to make the lattice cover more hypotheses.

The queries that contain words unknown to the ASR system at the decoding
time pose a fundamental problem to the KWS system, as there are no word arcs
in the lattice corresponding to the exact query. A common approach to alleviate
this problem is to expand the query and the lattice on the phoneme/grapheme
level and to allow for substitutions and deletions by composing the query with a
phoneme-to-phoneme (P2P) or a grapheme-to-grapheme (G2G) weighted finite
state transducer (WFST) whose weights are estimated from the training data
[17,21]. An alternative approach is to segment the known words automatically
in order to obtain a data-driven morphological decomposition, where the known
words share multiple fragments or sub-words. In the decoder, the vocabulary of
known words then is replaced by a vocabulary of sub-words. Finally, the out-of-
vocabulary (OOV) queries are decomposed in the same manner and the KWS
is carried out on the new lattice.

Once the lattice generation is done, the scores can be improved by lattice
rescoring, e.g. by using a new language model (e.g. LSTM-LM [11]). It is also
possible to combine KWS results obtained from different lattices (e.g. full word
and sub-word graphs) by weighting the scores and merging the hit lists [15]. Var-
ious techniques exist to post-process lists of KWS hypotheses such as smoothing
of the scores and applying term-specific transforms in order to make a global
decision threshold more suitable [17].

3 Multilingual Bottleneck Features

In order to benefit from the large amount of data from many non-target lan-
guages available for acoustic training, we followed the approach outlined in [22].
The idea is to train a deep neural network (DNN) that has multiple language-
specific output layers – one per language. As in conventional ASR systems, the
output labels correspond to the context-dependent HMM states tied by a classifi-
cation and regression tree (CART). All other weights in the network are shared
across the languages. The training on shuffled samples from all available lan-
guages forces the model to learn a hidden representation that is universal for
all classification tasks. Similar to our previous work in [26] we use the output of
a hidden “bottleneck” layer [7] in order to be able to train a hierarchy of two
multilingual (ML) neural networks and to perform feature combination [25].

Our framework consists of a hierarchical topology of two DNNs: the first net-
work is trained on a mix of MRASTA filtered critical band energies (CRBE) [9],
voicedness feature [28] and F0 estimate. The 15-dimensional CRBE features are
obtained from three different filtering pipelines that differ in the way the spectral
analysis is performed (MFCC, PLP and Gammatone [23]), such that the model
performs a feature combination. The input to the second network is similar and
is augmented by the bottleneck features from the first network. Also, the fea-
tures of the first network are spliced such that the second network has an input
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Fig. 1. Topology of a hierarchical bottleneck feature extraction pipeline

context of 9 frames, transformed by LDA. All features are globally normalized
w.r.t. mean and variance. In Sect. 4.1 we will also report results obtained by a
slightly different topology (no hierarchical structure, simple filter bank features).

Both networks have 7 hidden layers of size 2000 with the sixth layer being the
linear bottleneck layer of size 62. The output layer consists of multiple, language
dependent softmax layers connected to the last hidden layer. Figure 1 shows the
topology of this hierarchical arrangement. Each softmax layer models the 1500
tied context-dependent triphone state posteriors of the corresponding language.
Once the training is done, we can fine-tune (FT) the DNN on a target language
by using the target data only.

4 Experimental Results

4.1 Multilingual Features

In order to explore the impact of the number of languages and therefore, the
increased amount of training data, we trained ML features on varying number
of languages. Table 3 shows the ASR performance on Javanese FLP. As the
amount of training data used to derive these features increases, the WER drops
consistently: going from 1 to 28 languages, the relative reduction is 12%. Also,
the results show that fine-tuning on the target language is very important.

In the following experiment, we compare two sets of ML bottleneck features
that differ by the topology of the extraction network and the input features:

– hierarchical sigmoid DNN trained on MRASTA filtered critical band energies
(CRBE) combined from 3 different filter banks (as described in Sect. 3)

– single deep rectified linear units (ReLU) network trained on the output of a
40-dimensional Gammatone filter bank

In order to do this, we evaluate two methods of feature combination: sim-
ple concatenation and merger DNN that is trained on a concatenation of both
bottleneck features. The merger DNN produces a new set of bottleneck features
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Table 3. Effect of number of languages on ASR performance. Results with and without
fine-tuning (FT) of the multilingual bottleneck features and a unilingual baseline on
Javanese FLP (402). Tandem GMM after SAT and MPE training. The OOV rate is
5% with a vocabulary of 16.5k words

Number of languages Training WER [%]
data [h] w/o FT w/FT

1 41 - 62.3
11 601 59.6 -
17 834 57.2 55.4
24 1110 56.5 -
28 1793 56.2 55.1

that is used in the final tandem setup. The new bottleneck features are of same
dimension as each of the input features. Table 4 shows that an additional non-
linear transform of the bottleneck features improves both the ASR and the KWS
performance. Both methods outperform any of the two bottleneck features (not
shown in the table). The merger DNN approach, however, comes at the cost of
additional DNN training. These results encouraged us to train deep feed-forward
and LSTM networks on the first set (sigmoid based) of ML features (cf. Sect. 4.3).

Table 4. Comparison of feature combination strategies: simple concatenation vs. bot-
tleneck features from a merger DNN. Results obtained on FLPs of OP3 with MPE
trained tandem GMM acoustic models that include web data. The KWS pipeline is
based on a morphological decomposition of words

ID Language WER [%] MTWV
concat merge concat merge

401 Mongolian 50.9 49.6 0.5026 0.5105
404 Georgian 42.6 42.3 0.7040 0.7074

4.2 Graphemic Pronunciation Modeling

In RWTH ASR system [20], the tying of context dependent HMM states is done
by a classification and regression tree (CART), that is trained using “phonetic
questions”, i.e. linguistically meaningful subsets of the phoneme set (vowels,
consonants, etc.). In the graphemic scenario adopted by the Babel program in
OP2 and OP3, this clustering is not available. Thus in [6] we developed a method
to generate “graphemic questions” from aligned data. Please note that this is
done for each language in isolation, eventhough some languages share graphemes.
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The set of graphemes was derived from the training transcripts after convert-
ing the text to lower case. Since Amharic has a syllable based writing system, we
manually defined a mapping from each character to the consonant-vowel pair,
reducing the number of modeled units from 282 to 66. For all other languages,
we assumed a one-to-one correspondence between graphemes and phonemes. A
simple graphemic lexicon is used to train an initial context independent acoustic
model and align the training transcripts. Assuming that every grapheme and,
subsequently, each grapheme cluster is modeled by a single Gaussian, we perform
a greedy bottom-up clustering of the mean vectors and keep track of all interme-
diate clusters. This is similar to the approach presented in [3,12]. Each cluster
then serves as a potential binary split of the set of graphemes and therefore
defines a graphemic question for the CART estimation procedure.

4.3 Acoustic Models

Throughout the course of the project, we have been evaluating and compar-
ing tandem [8] and hybrid acoustic models that operate on ML features. The
Gaussian mixture models (GMM) with a tied diagonal covariance matrix are
used to calculate emission probabilities in a context-dependent HMM. The
hybrid models are based on deep feed-forward neural networks (DNNs) or recur-
rent neural networks with long short-term memory (LSTM) cells [10]. We use
RASR [20] and RETURNN [4] toolkits for acoustic training. We found that
sequence discriminative training is absolutely crucial to achieve a high KWS
accuracy.

The 115-dimensional input features consist of LDA and CMLLR transformed
concatenation of Gammatone, voicedness, pitch and ML features trained on 28
languages. The DNNs take a window of 17 frames as input. In contrast, (bidi-
rectional) recurrent models do not require feature splicing to model temporal
dependencies. The output layer corresponds to 1.8k (VLLP) or 4.5k (FLP) tied
HMM states. The initial DNN is trained w.r.t. the cross-entropy (CE) criterion
by stochastic gradient descent. We train the LSTM-RNN model using Adam [13]
for 4–5 epochs. The initial step size is 10−3, the dropout rate is 0.1 and the
momentum factor is 0.9. We also penalize large weights with an L2 regulariza-
tion factor of 0.01 and clip the gradients if their absolute value exceeds 10.

The DNN consists of 6 hidden layers with 2048 rectified linear units each. In
the RNN, we only use 3 layers with 500 bi-directionally connected LSTM units
each. This reduces the number of model parameters from 30M to 18.9M. How-
ever, when training DNNs w.r.t. minimum phone error (MPE) criterion [19], we
only update weights of the output layer (approx. 9.2M parameters), as updating
all layers does not improve the ASR performance. In RNNs, we update all layers.
We train DNNs w.r.t. minimum phone error (MPE) in the full-batch mode using
Rprop, while the RNNs are trained in the mini-batch mode with Adam.

Table 5 shows that the RNNs easily achieve the best word error rates on all
five languages (tandem results not shown in table; on average, the LSTM-RNNs
outperform tandem GMMs by 0.6% WER relative). Yet only on two out of
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Table 5. Comparison of hybrid models trained w.r.t. cross-entropy (CE) or minimum
phone error (MPE) criterion. Results on FLPs of OP3 include web data (except Igbo)

ID Language Acoustic model WER [%] MTWV
CE MPE MPE

104 Pashto DNN 49.3 48.2 0.4719
LSTM-RNN 47.7 47.1 0.4679

306 Igbo DNN 58.9 58.5 0.3715
LSTM-RNN 57.1 56.6 0.3801

401 Mongolian DNN 53.4 51.5 0.5059
LSTM-RNN 49.9 48.8 0.5066

402 Javanese DNN 53.6 52.4 0.4827
LSTM-RNN 51.7 51.3 0.4803

404 Georgian DNN 42.1 41.2 0.7050
LSTM-RNN 44.0 41.1 0.6978

five languages the RNNs achieve higher MTWV than feed-forward DNNs. Also,
Table 8 shows that the best KWS results are often obtained by a GMM.

We repeatedly observed that while LSTM-RNNs clearly achieve a lower WER
compared to other acoustic models, the lattice it generates is not always optimal
for KWS. Presumably, the long temporal context makes the estimates of HMM
state posterior probabilities very sharp, reducing the diversity of hypotheses
represented in the lattice. We verified this hypothesis by calculating the ratio
of unique word ends to total word ends for each time stamp. In regions with
less than 25k total word ends, the tandem GMM had the highest “relative word
coverage”, i.e. the highest diversity compared to hybrid acoustic models. While
other teams have tried to counteract this effect by regularizing the LSTM models
via joint (multi-task) training of a recurrent and a feed-forward model [1], we
found that combination of KWS hypotheses provides reasonable results.

4.4 Web Data

The web data collected by the Columbia University [18] and BBN [27] teams
was made available to all project participants for the VLLP (OP2) as well as
FLP (OP3) tracks to increase the lexicon size and improve the LMs. We have
evaluated the use of the data in terms of both the ASR and KWS performance.
First, a list of 100k to 200k most frequent words is selected and restricted to
words with characters that are already present in the audio training data since
the graphemic acoustic model requires observations for every character. Then
this lexicon is used to estimate and interpolate several separate count-based
Kneser-Ney LMs (one for each data source, e.g. wikipedia, blogposts, tweets, etc.).
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It is worth mentioning that interpolation assigns the original LM estimated on
audio transcripts by far the largest weight (over 0.8).

Table 6 shows the effect of adding web data to the text resources. We report
the perplexities (PPL) for the base and the web lexicon for reference, although
these are not comparable because of differing vocabularies. The web lexica for
Igbo and Dholuo are much smaller than the “target” value of 200k, since the
amount of web data turned out to be much lower than for other languages.
Clearly, in case of VLLP the impact on MTWV can be tremendous, because the
base lexicon is built from the transcripts of approx. 3 h of audio only. Thus adding
more words to the recognition lexicon reduces the OOV rate among keywords
(denoted as “KW OOV” in the table) and improves the KWS performance.

Table 6. Effect of adding web data to the recognition lexicon and LM. WER is mea-
sured on the dev data, the keyword statistics are calculated using dev queries.Results
for VLLP (OP2) and FLP (OP3) tracks

ID Language Lexicon PPL WER [%] MTWV KW OOV [%]
base web base web base web base web base web

205 Kurmanji 3.2k 97k 169 251 70.2 69.6 0.2340 0.2490 29.2 11.9
207 Tok Pisin 1.9k 99k 67 82 44.8 44.3 0.3950 0.4040 23.8 10.9
301 Cebuano 3.7k 100k 107 151 62.1 60.3 0.3210 0.3490 29.3 12.4
302 Kazakh 5.3k 97k 213 359 61.7 59.9 0.3350 0.4090 35.3 10.6
303 Telugu 7.1k 100k 318 519 75.2 74.0 0.2150 0.2900 43.6 19.3
304 Lithuanian 5.5k 98k 161 347 58.4 52.9 0.4150 0.5490 41.6 12.4
202 Swahili 5.1k 196k 175 491 58.6 54.2 0.4090 0.4920 31.5 12.9
104 Pashto 12.5k 203k 148 161 48.2 48.3 0.4275 0.4471 11.4 5.0
305 Guarani 26.2k 211k 157 183 45.2 45.0 0.5663 0.5723 13.8 9.6
306 Igbo 16.9k 53k 109 112 58.8 58.9 0.3441 0.3304 11.9 9.0
307 Amharic 35.0k 186k 208 296 42.3 41.3 0.6146 0.6362 15.4 9.8
401 Mongolian 24.0k 208k 125 141 51.2 50.8 0.4814 0.5071 12.2 3.8
402 Javanese 16.5k 192k 199 236 52.9 52.6 0.4484 0.4545 12.8 4.8
403 Dholuo 17.5k 63k 155 162 39.5 39.6 0.6140 0.6124 12.2 8.8
404 Georgian 34.3k 209k 274 394 44.4 41.2 0.6740 0.6906 14.9 6.2

4.5 Keyword Search with Time-Marked Word Lists

As an alternative to the lattice-based KWS, we implemented the time-marked
word list (TMWL) approach from [16]. The main idea of TMWL is to abandon
the graph structure and store the edges from a lattice in a flat list. We compute
the word posterior probabilities on the lattice before storing them in a TMWL.
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Table 7. Comparison of KWS pipelines on Pashto FLP (OP3) without web data

KWS structure MTWV
G2G Morph

IV OOV Total IV OOV Total

Lattice 0.4032 0.0345 0.4363 0.4023 0.0370 0.4369
TMWL 0.3940 0.0305 0.4244 0.3940 0.0391 0.4323

It is important to note that the TMWL index requires much less space than
a full lattice. Table 7 shows the results obtained by both approaches integrated
into two KWS pipelines that differ in the way they handle OOV keywords (G2G
FST to allow for substitutions of graphemes or morphological decomposition of
words). We report MTWV split by in-vocabulary (IV) and out-of-vocabulary
(OOV) keywords. In this experiment, the TMWL approach lags only slightly
behind lattice based KWS. Interestingly, a combination of the KWS results from
lattice and TMWL pipelines was not able to improve over the lattice system.

4.6 Performance of Evaluation Systems

Finally, we summarize the best single system results w.r.t. MTWV obtained on
the OP3 languages. We report KWS accuracy using dev queries on the dev set.
All lattices have been rescored by LSTM language models [24]. Table 8 indicates
the best acoustic model (hybrid DNN/HMM or tandem GMM) and whether or
not web data and morphological KWS have led to the results.

Table 8. ASR and KWS performance of best single systems on OP3 languages

ID Language AM Web Morph WER [%] MTWV

104 Pashto DNN + − 47.3 0.4719
305 Guarani GMM − + 46.0 0.5903
306 Igbo GMM − + 57.4 0.3806
307 Amharic GMM + + 42.6 0.6501
401 Mongolian DNN + − 50.0 0.5244
402 Javanese GMM + + 52.5 0.4910
403 Dholuo GMM − + 40.5 0.6261
404 Georgian GMM + + 40.2 0.7062
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5 Conclusions

In this work we presented an overview of the highlights developed in the final
years of the IARPA Babel project. We provided a detailed description of the
multilingual feature extraction trained on up to 28 languages and demonstrated
its effectiveness in a low-resource scenario. We described the details of neural net-
work training and evaluated the ASR and KWS performance of tandem GMM,
hybrid DNN and LSTM based acoustic models on multiple languages. Further
on one of the languages we showed that both lattice and time-marked word list
based KWS pipelines achieve very similar results. An evaluation of KWS per-
formance is carried out using large amounts of text data scraped from the web.
As expected, the improvements in OOV rate and MTWV are especially strong
on the very limited language packs.
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Abstract. The paper evaluates the contribution of morphological fac-
tors to the probability of sentence boundaries in Russian unscripted
monologue. The analysis is based on multiple expert manual annotations
of unscripted speech which allow obtaining fine-grained estimates of the
probability of sentence boundary at each word junction. We used linear
regression analysis to explore whether there is a relationship between
sentence boundaries marked by the annotators and the grammatical fea-
tures of the text. We focused on morphological factors related to the
presence or absence of sentence boundaries.

Keywords: Spontaneous speech · Unscripted speech · Speech percep-
tion · Morphology · Sentence boundary detection · Manual annotation ·
Segmentation · Russian language resources

1 Introduction

Sentence boundary detection in spontaneous speech is one of the challenges
in natural language processing [1]. Correct segmentation is crucial for annota-
tion procedures such as, for example, POS tagging, parsing and punctuation
prediction, as well machine translation and further processing of automatically
recognised speech [1,2].

Human segmentation of speech is usually considered the most accurate way
to obtain information about oral discourse structure and therefore it is used as a
starting point for models for automatic sentence boundary detection. In the last
two decades the large variety of models of automatic speech segmentation was
developed. They use different methods and principles of statistical modelling,
such as n-gram language models, Bayesian probability, hidden Markov models,
decision trees, maximum entropy, boosting, linear and logistic regression, condi-
tional random fields, support vector machines, deep neural networks, k-nearest
neighbours etc. [2–6].

Those models are usually based on both textual and prosodic information,
though there are also approaches which only use prosodic or textual cues for
modelling and machine learning [7–9].
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While automatic sentence boundary detection models were extensively devel-
oped for English and some other languages, e.g. Czech [10], Mandarin [2,3],
Japanese [11,12], only some attempts were made for Russian [8,13], and, in
spite of the improvement in modelling results, they are still far from perfect.

Previous studies usually reported results based on the application of a cer-
tain language model or a classifier to a text corpus. Linguistic analysis of the
factors affecting the segmentation was not performed for Russian. This analysis,
however, may be useful, on one hand, for better understanding the grammar of
spontaneous speech and, on the other hand, for enhancing the models of auto-
matic sentence boundary detection.

The paper explores the effects of morphological factors on sentence bound-
aries in Russian spontaneous monologue. We report the statistics concerning
grammatical features of the words at sentence boundaries. We also perform the
regression analysis of the corpus data based on boundary probabilities obtained
after expert manual annotation of unscripted speech. Previous models of sentence
boundary detection for Russian were based on various classification procedures
[8,13]. In this study we use regression rather than classification since multiple
expert annotations of the corpus data can be modelled on a continuous scale
thus providing a more fine-grained information about sentence boundaries in
Russian spontaneous speech than binary classification. For this study we chose
OLS Linear Regression as the main learning algorithm since the primary goal
of this exploratory study is to better understand the contribution of different
morphological factors.

2 Data

2.1 Corpus

Our study is based on the Corpus of Russian spontaneous monologues described
in [14]. It consists of 160 monologues of different types recorded from 32 speakers
(5 texts from each). The total size of the corpus is about 55 k words, 9 h of
recorded speech.

Speakers were asked to read and subsequently retell from memory a story
(Ivan Bunin’s Bast Shoes) and a descriptive text (an extract from Bunin’s
Antonov Apples), to describe a cartoon strip (The Hat by H. Bidstrup) and
a landscape (Van Gogh’s The Cottages), and tell about their leisure time or way
of life.

The corpus is balanced with regard to speakers’ age, gender, educational
level and use of speech in everyday life (regular speakers, teachers or lecturers
non-linguists/students studying linguistics, lecturers-linguists).

2.2 Manual Annotation of Corpus Data

The corpus also includes manual annotations of sentence boundaries. The tran-
scripts of recordings without capitalisation, punctuation and other signs which
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could indicate prosodic or syntactic boundaries were given to the group of 20
annotators with at least 1 year background in linguistics or philology (university
students and professors). The task was to mark sentence boundaries with a full
stop or a slash based on textual information only. There were no time-constraints
(for further detail see [14].

After the annotation, we computed boundary confidence score (BCS) for each
boundary. This is the number of experts who marked the sentence boundary in
a particular position. BCS reflects inter-annotator agreement and ranges from 0
(no boundary was marked by any of the experts) to 20 (the boundary was marked
by all experts). In the range of 1 to 20, 1 means the lowest confidence and inter-
annotator agreement, and 20 means highest agreement and 100% confidence.
Thus, this measure allows for obtaining information about unequal status of
annotated boundaries in spontaneous speech and indicates the probability of
sentence boundary in a certain position (for the distribution of BCS in the
corpus see [15]).

For further analysis, we applied the threshold approach to BCS described in
[15]. A position was considered to be a true boundary if BCS was no less than
12 (60% of all experts).

2.3 POS Tagging in the Corpus

The corpus was annotated using automatic POS tagging system released as a
part of Sketch Engine [16]. The automatic tags were then checked and corrected
manually. Since the main focus of this paper is the analysis of factors that are
linked to sentence boundary rather than a boundary prediction system as such,
further analysis was performed based on manually corrected data.

3 Data Analysis

3.1 How Does the Sentence Start and End? Descriptive Analysis of
the Data

The analysis revealed both lexical and morphological cues to sentence boundaries
in the corpus. Table 1 shows 15 most frequent lemmas which occurred in the
beginning of a sentence. These represent 46% of all lexical tokens that occurred
in the beginning of a sentence in our data. All other lemmas have the frequency
of less than 1%.

Table 1 shows that the most frequent words starting the sentence are seman-
tically weak. Discourse markers and particles (27%), conjunctions (27%), and
prepositions (13%) constitute 67% of the 15 most frequent lemmas starting the
sentence. The share of pronouns within this list is 33%.

Lexical properties of the words which occur in the beginning of a sentence
correspond to morphological statistics. Table 2 shows that the most frequent
POS starting the sentence is particle (discourse markers are tagged as particles,
too). Pronouns and conjunctions also take leading positions.
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Table 1. Most frequent lemmas starting the sentence. Percentage is given for the whole
corpus

Table 2. Most likely parts of speech (POS) in the beginning of a sentence

Part of speech Percentage

1 Particle 21.8

2 Pronoun 14.8

3 Conjunction 14.0

4 Noun 13.0

5 Adverb 9.7

6 Verb 8.5

7 Preposition 8.1

8 Modal word 6.1

9 Adjective 3.1

10 Numeral 0.6

11 Interjection 0.3

The patterns of POS at the end of a sentence are very different (χ2 (8,
N = 5374) = 1570, p < 0.0011). Almost 50% of the words at the sentence end are
nouns (Table 3) followed by verbs. These two parts of speech constitute almost
70% of all words at the sentence end. These are followed by particles including
the discourse markers. Finally, conjunctions and prepositions also often occur

1 Chi-squared statistics was computed without taking into account numerals and inter-
jections.
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Table 3. POS frequency at the end of a sentence

Part of speech Percentage

1 Noun 48.3

2 Verb 19.2

3 Particle 9.8

4 Adverb 7.5

5 Adjective 6.2

6 Pronoun 5.2

7 Modal word 2.1

8 Numeral 0.7

9 Interjection 0.6

10 Conjunction 0.4

11 Preposition 0.04

at the end of a sentence and in most cases indicate disfluencies such as breaks
followed by a boundary mark.

Both pronouns and nouns in Russian take different inflected form depend-
ing on what case they are in. There are six different cases. Therefore we next
looked at the case of pronouns and nouns when they appear in the beginning
of a sentence. These were not the same, even though the pronoun typically sub-
stitutes the noun or is in concord with it (see Tables 4 and 5). For both nouns
and pronouns nominative is the most common case in the beginning of a sen-
tence, but the frequency of nouns in genitive starting the sentence is five times
higher than that of pronouns. The amount of nouns in dative, on the contrary,
is more than twice less than that of pronouns. Even though the share of indi-
rect cases for nouns and pronouns is rather small and does not exceed 8%, the
difference in case frequencies for nouns and pronouns is statistically significant
(χ2 (4, N = 754) = 18.4, p < 0.001).

Table 4. Case frequency of pronouns in the beginning of a sentence

Case Percentage

1 Nominative 87.0

2 Accusative 7.8

3 Dative 3.3

4 Genitive 1.3

5 Instrumental 0.8

6 Locative 0.0
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Table 5. Case frequency of nouns in the beginning of a sentence

Case Percentage

1 Nominative 84.7

2 Genitive 6.5

3 Accusative 5.9

4 Instrumental 1.4

5 Dative 1.4

6 Locative 0.0

The distribution of different case forms at the end of a sentence is also dif-
ferent for nouns and pronouns. While nominative is the most frequent case for
pronouns and its share is almost three times higher than that of accusative, for
nouns accusative takes the leading position. At the same time, the difference in
the share of accusative and nominative for nouns at the end of a sentence is less
than 1% (see Tables 6 and 7). On the whole, the difference in case frequencies
for nouns and pronouns at the end of a sentence is also statistically significant
(χ2 (5, N = 1592) = 25.7, p < 0.001).

Table 6. Case frequency of pronouns in the end of a sentence

Case Percentage

1 Nominative 44.4

2 Genitive 19.4

3 Accusative 16.7

4 Instrumental 7.8

5 Locative 6.7

6 Dative 5.0

POS bigram analysis at sentence boundaries (one word before the boundary
and one word after the boundary) showed high variability of bigrams. Almost
all possible combinations of bigrams (about 100) were present in the corpus.
However, the 14 most frequent bigrams with their amount exceeding 2% cover
almost two thirds (63.5%) of POS bigrams in the corpus (see Table 8).

Table 8 shows that the most frequent combinations of content words at sen-
tence boundaries are the combinations of a noun and a pronoun and two nouns.
The share of these bigrams is almost the same (the difference is less than 1%).
Both bigrams follow similar patterns of the distribution of case forms. Five most
frequent case form combinations are the same for both bigrams (see Table 9) and
account for 80.4% of all possible case forms for “noun + noun” and 87.1% – for
“noun + pronoun”. The difference in the share of these combinations, however,
is not statistically significant (χ2 (4, N = 340) = 6.2, p = 0.184).
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Table 7. Case frequency of nouns in the end of a sentence

Case Percentage

1 Accusative 28.4

2 Nominative 27.5

3 Genitive 22.2

4 Locative 9.1

5 Instrumental 8.6

6 Dative 4.1

Table 8. POS bigram frequency at a sentence boundary (starting from the amount
of 2%)

Case Percentage

1 Noun + Particle 8.5

2 Noun + Pronoun 7.7

3 Noun + Noun 7.3

4 Noun + Conjunction 5.6

5 Noun + Adverb 4.8

6 Noun + Preposition 4.8

7 Verb + Particle 4.7

8 Noun + Verb 4.3

9 Verb + Pronoun 3.1

10 Particle + Particle 2.8

11 Verb + Conjunction 2.6

12 Noun + Modal word 2.6

13 Particle + Conjunction 2.5

14 Verb + Noun 2.2

Table 9. The frequency of case form combinations in POS bigrams noun + noun and
noun + pronoun (with the frequency above 5%)

Combination of case forms Noun + Noun, % Noun + Pronoun, %

Accusative + Nominative 29.3 25.0

Nominative + Nominative 25.3 23.6

Genitive + Nominative 14.6 21.2

Locative + Nominative 6.1 11.5

Instrumental + Nominative 5.1 5.8
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3.2 Linear Regression Modelling

Multiple expert annotations of the corpus data showed unequal status of sentence
boundaries. Using boundary confidence scores (BCS) described earlier in this
paper, we performed linear regression modelling to evaluate whether probabilistic
approach can accurately predict the sentence boundary in new data.

The corpus was split into the training set (75%) and the test set (25%). The
partitions were created by recording so that all annotations for the same record-
ings were always in the same partition. We used BCS at each word junction as a
value of interest to be predicted using the following variables: POS of the word
immediately before the junction, POS of the second word before the junction,
POS of the word immediately after the junction, POS bigram at the junction,
POS bigram before the junction.

We started with the full model which achieved multiple R2 = 0.151, adjusted
R2 = 0.145, F(284,38132) = 23.93, p < 0.0001. For the following models we gradu-
ally reduced the number of variables. Two models appeared most promising when
fitted to the training set. The predictor in the first model was the POS bigram
at the word junction. This model showed the following result on the training
set: multiple R2 = 0.199, adjusted R2 = 0.195, F(158,38508) = 60.43, p < 0.0001,
predicted R2 = 0.16. When applied to the test set, the model revealed moderate
correlation between BCS and predicted BCS (Spearman’s r = 0.390, p < 0.0001).

The second model had two predictors – POS bigram at the junction and
POS bi-gram before the junction. The second model achieved multiple R2 =
0.213, adjusted R2 = 0.206, F(302,38364) = 34.28, p < 0.0001, predicted R2 =
0.18. When applied to the test set, the correlation between BCS and predicted
BCS was comparable to that obtained for the first model (Spearman’s r = 0.395,
p < 0.0001).

Further analysis of model predictions showed that the models can correctly
predict only low values of BCS including 0. Both models regularly underestimate
moderate and high values of BCS. A number of correctly predicted highest values
of BCS cannot be taken into account since they marked a transcript end. To
better understand model predictions, we converted the predicted and observed
BCS to binary values using a threshold of 12 as described above and computed
precision recall and F-score. These were: precision = 100%, recall = 6%, F-score
= 0.11 for both models.

4 Discussion and Conclusions

In this paper we evaluated the connection between the morphological factors
and sentence boundary placement in Russian spontaneous speech. The analysis
focused on parts of speech (POS) at the end and in the beginning of a sentence
and on the case forms of nouns and pronouns which are the most frequent content
words at sentence boundaries.

We found statistically significant difference in POS frequency at the end and
in the beginning of a sentence. The analysis also revealed different distribution of
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case forms of nouns and pronouns at sentence boundaries in spite of the fact that
pronouns often substitute nouns or reflect their grammatical characteristics.

We also explored the frequency of bigrams at sentence boundaries and case
forms of the most frequent combinations of content words at those positions
(nouns and pronouns). The shares of bigrams ‘noun + noun’ and ‘noun + pro-
noun’ were about the same, with both bigrams following similar patterns of the
distribution of case forms.

Examining the frequency of lemmas in the beginning of a sentence showed
that most frequent words in the beginning of a sentence are semantically weak-
ened. Discourse markers, particles, conjunctions, and prepositions constitute two
thirds of the most frequent lemmas at that position.

We used linear regression to predict probabilities of sentence boundaries
based on inter-annotator agreement which was measured using boundary confi-
dence scores (BCS). The models evaluated the effect of POS on the probability
of a sentence boundary (BCS). We also explored how well the model would
generalise to new data.

Weobserved statistically significant correlationbetween initialBCSand its pre-
dicted values (Spearman’s r = 0.4, p < 0.0001). However, the model could correctly
predict only lowvalues ofBCScorresponding to theabsenceof a sentenceboundary.
In spite of the fact that the model precision for boundary identification was 100%,
most of BCS above the threshold established to define sentence boundaries was not
predicted by the model, which led to its low recall (only 6%) and F-score of 0.11.

High precision in boundary identification refers to the positions in the tran-
script end and therefore may be ignored. Low recall shows that morphological
factors such as POS are not sufficient for successful sentence boundary detec-
tion. In real life speakers perform the segmentation based on the complex of
grammatical information of various kind (e.g. prosodic and syntactic structure)
and semantics of the text. Adding information about other linguistic features of
the text could improve the accuracy of the model.
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N.: Entropy based classifier combination for sentence segmentation. In: Proceedings
of the ICASSP 2007, vol. 4, pp. 180–192 (2007)

3. Liu, Y.-F., Tseng, S.-C., Jang, J.-S.R., Chen, C.-H.A.: Coping imbalanced prosodic
unit boundary detection with linguistically motivated prosodic features. In: Pro-
ceedings of the Interspeech 2010, pp. 1417–1420 (2010)



740 A. Stepikhov and A. Loukina

4. Liu, Y., Stolcke, A., Shriberg, E., Harper, M.: Using conditional random fields
for sentence boundary detection in speech. In: Proceedings of the ACL 2005, pp.
451–458 (2005)

5. Ueffing, N., Bisani, M., Vozila, P.: Improved models for automatic punctuation
prediction for spoken and written text. In: Proceedings of the Interspeech 2013,
pp. 3097–3101 (2013)

6. Xu, C., Xie, L., Huang, G., Xiao, X., Chng, E.S., Li, H.: A deep neural network
approach for sentence boundary detection in broadcast news. In: Proceedings of
the Interspeech 2014, pp. 2887–2891 (2014)

7. Liu, Y.-F., Tseng, S.-C., Roger Jang, J.-S., Alvin Chen, C.-H.: Coping imbalanced
prosodic unit boundary detection with linguistically motivated prosodic features.
In: Interspeech 2010, pp. 1417–1420 (2010)

8. Chistikov, P., Khomitsevich, O.: Online automatic sentence boundary detection in
a Russian ASR system. In: Proceedings of the SPECOM 2011, pp. 112–117 (2011)

9. Momtazi, S., Faubel, F., Klakow, D.: Within and across sentence boundary lan-
guage model. In: Proceedings of the Interspeech 2010, pp. 1800–1803 (2010)
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Abstract. One of the most important parts of the synthesis of nat-
ural speech is the correct pause placement. Properly placed pauses in
speech affect the perception of information. In this article, we consider
the method of predicting pause positions for the synthesis of speech. For
this purpose, two speech corpora were prepared in the Kazakh language.
The input parameters were vector representations of words obtained from
the cluster model and from the algorithm of the canonical correlations
analysis. The support vector machine was used to predict the pauses
within the sentence. Our results show F-1 = 0.781 for pause prediction.

Keywords: Speech synthesis · Pause · Prosodic boundaries · Statistical
models

1 Introduction

A high naturalness of speech is required for the successful use of speech syn-
thesis systems. Prosodic processing is a key element of the intonational speech
synthesis systems, the naturalness of the synthesized speech depends entirely
on it. Pauses along with intonation and accent are one of the most important
prosodic characteristics of speech, ensuring its naturalness. Correct pausing is
necessary for a comfortable perception of speech, and in many cases for a correct
understanding of the meaning of the sentence.

An overview of the data available in the literature [1–3] shows that the inter-
action of factors influencing the pause is poorly understood. Tendencies rather
than patterns are revealed, and even for the observed tendencies there are not
sufficiently formalized descriptions of text situations, the characteristics of which
could serve as keys for automatic pause placing.

In this paper, we propose a method of placement of pauses for the Kazakh
language based on the parameters of the lexical representations obtained from
the cluster model of Brown et al. [4] and word embedding obtained by the
canonical correlation analysis (CCA) algorithm of Stratos et al. [5]. The aim
of the research was to simulate the natural style of speakers pausing within
the limits of one sentence (syntagma), the pauses between sentences was not
considered. Also, for comparison, an attempt was made to predict pausing places
for a mixed corpus consisting of records of many speakers.
c© Springer International Publishing AG 2017
A. Karpov et al. (Eds.): SPECOM 2017, LNAI 10458, pp. 741–747, 2017.
DOI: 10.1007/978-3-319-66429-3 74
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The prediction of places of pauses was carried out at the level of bigrams1,
where the input parameters of the bigram were the vector representations of
both of its tokens, their bit string representation in the Brown cluster model,
and the words themselves. For the classification of bigrams, the support vector
machine (SVM) [6] was used.

For the training and testing of the developed method, two speech corpora were
prepared. As a result of this research, a pausing method with an accuracy of F1 =
0.781 is proposed for Kazakh speech synthesis systems in the narrative style.

2 Corpora

The main labeled corpus consists of records of read speech in the neutral tone of
a female speaker. 596 sentences were recorded, on average there are 10.4 tokens
in each sentence. The total number of pauses in the corpus is 757 or 12.09% in
relation to the number of tokens in the corpus. Only pauses within the sentences
(syntagmas) were taken into account.

During the recording process, to preserve a single tone of intonation and style,
the speaker was given time to rest before and after each session. The duration
of each recording session was not more than 2 h.

The second corpus consists of several hours of records of the Kazakh read
speech by 47 speakers of different age groups and different genders. Each speaker
recorded about 140 sentences.

3 Parameters

Traditionally, for such tasks, the parameters of the input data are POS TAG2,
punctuation and emphases [7,8]. In this study we used the parameters extracted
from the context by unsupervised learning.

Brown clustering is a form of hierarchical word clustering based on the dis-
tribution of HMM. An example of such a cluster is shown in Fig. 1. As a result

Fig. 1. Bit string representations under the Brown model (Kazakh words were tran-
scribed to Latin characters)

1 The bigram is two words (tokens), which are adjacent in the text box.
2 POS tagging - automatic morphological marking.
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Fig. 2. CCA vector representation (Kazakh words were transcribed to Latin characters)

of clustering, each word in the cluster receives a bit string representation that
indicates the path to the cluster from the root.

The bit string representation of words was used to solve many problems of
natural language processing, including named entity recognition [9] and depen-
dency parsing [10] (Fig. 2).

Recently Karl Stratos and Michael Collins [11] have shown that deterministic
methods of data clustering are capable of qualitatively extracting part of speech
information with minimally trained data using the combination of word embed-
ding with the bit string representation. This is partly because the algorithm of
CCA computes the statistics of surrounding words, in which the target word
appears, then brings together those words in the space of vectors that have a
high correlation of the context statistics. Thus, the algorithm effectively groups
words in a vector space according to their syntactic behavior.

Considering that the part of speech classifier for the Kazakh language has
not yet been developed, it was decided to use the word embedding and bit string
representations as input parameters for the classifier. A feature of the proposed
method is that the learned parameters were used as input data.

To obtain a word embedding and bit string representation, the textual corpus
of the Kazakh Wikipedia, numbering more than 1.7 million sentences, or 20
million words, was used.

Also, tree-based algorithms such as CART [12] and Random Forests [13]
were often used as classifiers of such problems. This was due to the fact that
the input parameters were pre-processed by various classifiers, including mor-
phological ones. As a consequence, the researcher needed to select an algorithm
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that could effectively handle a limited number of features. Since in our study we
used the vector representation as input parameters, it was decided to use SVM
for classifications.

4 Experiments

To evaluate the model objectively, we used the measure F-1 [14]. The measure
F-1 is the average harmonic value of recall and precision. The better the model,
the closer the value of F-1 is to 1. Since, the ratio of the number of pauses to the
remaining potential places in the sentences is small (see above), only accuracy
of the pause placement was taken into account in the studies.

For comparison, the results of the work Alok Parlikar et al. [8] and Parakrant
Sarkar et al. [7] were taken. In particular, for a similar task [8] used five different
corpora with different styles: ARCTIC-A, Europarl, F2B, Obama and Emma,
while [7] used a corpus consisting of 1960 sentences recorded in Hindi in a nar-
rative style.

The ARCTIC-A corpus consists of 593 sentences, recorded by an Anglo-
Indian speaker. The Europarl corpus contains 595 sentences, also recorded by
an Anglo-Indian speaker. The F2B is composed from Boston University Radio
News Corpus, the corpus contains 464 sentences. The Obama Corpus consists
of two public speeches of the US President Barack Obama. The total number of
sentences in the Obama corpus is 465. The Emma case is taken from an audio
book (Emma, by Jane Austen), the speech was recorded by a female volunteer.
The Emma corpus consists of 9936 sentences.

During the experiments, 80% of the corpus was used for training, and 20%
for testing. To obtain an adequate estimate of the model, 10 experiments were
performed with the same parameters, and in each experiment the sentences for
training and testing were chosen randomly by the program. The final F-1 score is
the average estimate of all 10 experiments. The average value of F-1 is 0.781 for
the Kazakh speech corpus. Table 1 compares the results with the results of [7,8].

Table 1. Comparison of break prediction accuracy

Data set F-1

ARCTIC-A 0.851

Europarl 0.776

F2B 0.736

Obama 0.638

Emma 0.829

Kazakh 0.781

Hindi 0.74
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In addition, a similar problem was solved by Chistakov et al. [15,16] for
the Russian language, using for this purpose a corpus of 38,000 recorded sen-
tences. According to their results, they reached F-1 = 0.76 for pause prediction.
Unfortunately, due to the large difference in the procedure for conducting the
experiments, we did not include their results in the comparison list.

We also noticed that the increase in the training part of the data positively
influenced the results of the classifier. Conversely, a decrease in the training
part of the data worsened the results. Table 2 shows the influence of the ratio of
training and test parts of the corpus on the results of pausing for the proposed
method.

Table 2. Test set performance for different training set sizes

Data set Recall Precision F-1 Training data proportion (%)

Kazakh corpus 0.732 0.824 0.775 70

Kazakh corpus 0.757 0.807 0.781 80

Kazakh corpus 0.770 0.798 0.832 90

Similar studies were conducted on mixed corpus. As expected, the average
value of F-1 was much smaller than for homogeneous corpus. In an experiment
where the proportion of training data was 80%, F-1 showed a result of 0.406.
For more information, see Table 3. Such low results are explained by the styl-
istic difference in speech of the speakers. For example, young female speakers
more often had a tendency to speak quickly, reducing the number of pauses in
sentences. When more adult speakers spoke more slowly, inserting more often
pauses between words.

Table 3. Break prediction accuracy for mixed corpus

Data set Recall Precision F-1

Mixed Kazakh corpus 0.367 0.454 0.406

5 Results

The proposed method of pausing showed the results comparable to the results
of the state of the art systems. For a variety of irregular languages including the
Kazakh language, for which the part of speech taggers are not yet developed,
this approach is quite acceptable.

We also confirm the need to use homogeneous data to solve such problems.
It is important to extract stylistic parameters of speech from one source, in our
case from one speaker. Otherwise, researchers risk obtaining parameters that do
not correspond to the initially planned goals, namely the modeling of natural
human speech.
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6 Conclusion

In the near future we expect to develop the proposed method for predicting the
lengths of pauses and determining the intonational contours of syntagmas. We
hope in the possibility of further use of the vector representation of words and
sentences for solving related problems.

The research group aims to create a final method for modeling natural speech,
using as far as possible unsupervised learning parameters. Such an approach
should open the possibility of creating a high-quality speech synthesis for most
languages of the world.
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Abstract. This article presents a method for pre-processing the fea-
ture vectors representing text documents that are consequently classified
using unsupervised methods. The main goal is to show that state-of-the-
art classification methods can be improved by a certain data preparation
process. The first method is a standard K-means clustering and the sec-
ond Latent Dirichlet allocation (LDA) method. Both are widely used in
text processing. The mentioned algorithms are applied to two data sets
in two different languages. First of them, the 20NewsGroup is a widely
used benchmark for classification of English documents. The second set
was selected from the large body of Czech news articles and was used
mainly to compare the performance of the tested methods also for the
case of less frequently studied language. Furthermore, the unsupervised
methods are also compared with the supervised ones in order to (in some
sense) ascertain the upper-bound of the task.

Keywords: Text pre-processing · Classification · Evaluation · LDA ·
K-means

1 Introduction

This work deals with the preparation of input text data and consequent docu-
ment classification using unsupervised methods.

Since a significant portion of the algorithms used for document classification
internally utilizes some measures of vector similarity, one of the crucial steps
of document pre-processing is the conversion of input text into some kind of
a vector representation. The basic approach to such conversion is a so-called
Bag-of-Words model(BOW) [4] – in such case, each document is represented by
a vector where each element corresponds to a word from a fixed position in the
lexicon. The value of such element is usually directly proportional to the number
of occurrences of the given word in the given document (term frequency – tf)
and indirectly proportional to the number of documents where the given word
occurs (the inverse document frequency – idf). The resulting tf-idf model is very
successful [2,6,7]. However, sometimes the length and sparseness of the resulting
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vector, stemming from the size of the lexicon, may hurt the performance of
the classification algorithms. Several methods for the reduction of the vector
dimension are therefore discussed later and constitute the core of our work.

For the classification itself, we have picked two methods – the “classic” clus-
tering algorithm K-means, which is simple but is known to perform well if we
are able to present it with the suitable feature vectors, and the state-of-the-art
methods for unsupervised topic detection, the Latent Dirichlet allocation (LDA),
adapted for document classification.

2 Datasets

As our basic dataset, we have picked the 20NewsGroups English corpus1 which is
widely used as a benchmark for document classification [7,9,12,13]. It contains 20
000 text documents which are evenly divided into 20 categories that each contain
discussion about a specific topic. The second data set CNO is in Czech language
and contains also approximately 20 000 articles divided into 31 categories2. This
corpus was created so that it is at least in size and partially also in topics
comparable to the English data set.

In order to compare our results with the ones published previously, we have
re-created two subdivisions of the 20NewsGroups corpus. The first one is created
according to [13,14] and consists of the following subsets:

– Set 20NG consists of all 20 original categories but includes only documents
containing at least 10 word tokens (after stop-word removal). This results in
approximately 17 000 documents in total.

– Set 10NG consists of the same documents as the 20NG above but divides
them into 10 categories only – the reduced number of categories was obtained
by merging 5 original comp, 3 religion, 3 politics, 2 sport and 2
transportation categories into one category for each “domain”.

– The next group of subsets contains 9 sets for small-scale experiments – there
are three Binary, three 5Multi and three 10Multi sets, each containing 500
documents only and prepared in the following way:

• Binary subsets (denoted Binary[0/1/2]) are created by randomly choos-
ing 2 categories (from the original 20) and randomly drawing 250 docu-
ments from each of them.

• Analogically, the 5Multi[0/1/2] subsets were created by randomly choos-
ing 5 original categories and randomly drawing 100 documents from each.

• And finally, the 10Multi[0/1/2] subsets were created by randomly choos-
ing 10 original categories and randomly drawing 50 documents from each.

1 This data set can be found at http://qwone.com/∼jason/20Newsgroups/ and it was
originally collected by Ken Lang.

2 It was created from a database of news articles downloaded from the http://www.
ceskenoviny.cz/ at the University of West Bohemia and constitutes only a small
fraction of the entire database – the description of the full database can be found
in [16].

http://qwone.com/~jason/20Newsgroups/
http://www.ceskenoviny.cz/
http://www.ceskenoviny.cz/
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The other subdivision is created in order to compare the results with exper-
iments described in [12]. This set, denoted as Binary20NG, is comprised of 20
bi-classes – each bi-class consists of one class containing all the documents from
one of the original categories (i.e., 1000 documents) and the second class con-
taining 1000 documents randomly drawn from the pool of other 19 categories.
Two-thirds of each such bi-class documents are used as the training data, the
remaining third constitutes the test set.

The CNO set was not subdivided in any such way.

3 Preprocessing

First, we removed all the headers from the 20NewsGroups data, except for the
Subject. Then all uppercase characters were lower-cased and all digits were
replaced by one universal symbol.

As the next processing step, we wanted to conflate different morphological
forms of the given word into one representation. This can be achieved by either
lemmatization or stemming – even though those two procedures have rather
similar outputs, we opted for lemmatization. The MorphoDiTa [15] tool was
picked for the task – it works for both English and Czech and is available as a
Python package.3

Further preprocessing traditionally comprises stop-word removal.4 Probably
the most common approach is to use a pre-defined stoplist, but the stop words
can also be determined on the basis of the input data analysis. We use a simple
method of detecting stop words from input data. We compute for each lemma
its inverse document frequency [6] (idf):

idfl =
N

N(l)
(1)

where N is a total number of documents and N(l) denotes a number of doc-
uments containing the lemma l. Then we set a threshold θ and classify every
lemma l with idfl < θ as a stop word and remove it from further processing.

At this point, we have a suitable data for the LDA analysis as it starts from
the set of preprocessed documents (see the details in Sect. 4.1).

However, more data processing is needed when preparing input for the K-
means algorithm. We need to compute the tf-idf weights wl,d for the lemmas
l ∈ L and documents d ∈ D using the well-known formula:

wl,d = tfl,d ∗ idfl (2)

where tfl,d denotes the number of times the lemma l occurs in document d and
idfl is computed using the Eg. (1).
3 ufal.morphodita at https://pypi.python.org/pypi/ufal.morphodita.
4 The authors of the paper [12] don’t use the stop words at all because their feature

vector consists only of the top T tokens (lemmas or stems) with highest mutual
information (MI).

https://pypi.python.org/pypi/ufal.morphodita
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Besides the basic equations above, there are actually more sophisticated for-
mulas for computing tf and idf available [6]. Many of them are implemented
in the Python package sklearn [10]5 that we extensively use in essentially all
further experiments. The TfidfVectorizer takes the set of input documents
(preprocessed as described above) and (optionally) a dictionary and outputs the
|D| × |M | matrix, where |D| is the number of documents and |M | is the num-
ber of features representing each document (in our case it is of course only the
number of distinct lemmas occurring in all the preprocessed documents – L –
but the feature set can be much richer – e.g. it can include also the higher order
n-grams).

This matrix can be used as input for K-means method directly but it is
usually beneficial to lower the dimension |M | in order to lower the computa-
tional costs of the algorithm. We have decided to reduce the feature vector
dimension using the well-know Latent Semantic Analysis (LSA) [5] which does
not only lower the vector dimension but allegedly also captures some of the
semantics hidden in the documents. The LSA method is again implemented in
the Python package sklearn – the concerned module TruncatedSVD takes the
input |D| × |M | matrix and produced a |D| × |R| matrix (|R| being the desired
lower dimension passed as a function parameter) that can be consequently used
as an input for the K-means method.

4 Classification Methods

4.1 LDA

Latent Dirichlet allocation (LDA) is a generative probabilistic model of a corpus
[1]. Marginally, documents are represented as random mixtures over latent topics
(the latent multinomial variables in the LDA model are referred as topics). Each
topic is then characterised by a distribution over terms (in our case, lemmas).

The LDA model itself and the related data preparation functions are imple-
mented in the Python package gensim [11]. The documents preprocessed as
described in Sect. 3 are first converted to special gensim’s bag-of-words repre-
sentation called corpus using the doc2bow function and the special dictionary
file is also created.

The LDA method itself then uses both the dictionary and the corpus as its
input; the model finds the list of topics (number of topics matches the number
of categories of input data) that fits the input data. We set model to classify
every document into one cluster only, that is, only the topic with highest proba-
bility is a assigned to each document. This model is applied on all prepared cor-
pora (20NG, 10NG, Binary[0/1/2], 5Multi[0/1/2], 10Multi[0/1/2], Binary20NG,
CNO) and results can be found in Sect. 6.

5 More precisely the TfidfVectorizer module from that package.
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4.2 K-Means

The classic K-means clustering method [8] is being used here as a classification
algorithm. It is generally accepted that even such a simple method is quite
powerful for unsupervised data clustering if it is given an appropriate feature
vectors. Since we had good reasons to believe that our feature vectors consisting
of the tf-idf weights capture the content of the document rather well (and the
reduced feature vectors obtained from LSA do it even better), we expected to
find the documents with similar topic often in only one of the clusters discovered
by K-means.

We have used the version of K-means algorithm implemented in our favorite
sklearn package. First, we used the full matrix of tf-idf weights; however, given
the large dimension of such feature vectors, the clustering was feasible only for
a small subset of the documents. The full experiments were performed with the
reduced feature vectors obtained by applying the LSA. Again, we applied this
model on all the date sets described in Sect. 2 and results can be found in Sect. 6.

5 Evaluation

There are quite a few measures for evaluation of the classification algorithms.
In our experiments, we have decided to use accuracy, precision and recall; this
choice was guided mostly by the fact that we wanted to compare the performance
of our algorithms to the previously published results.

The Accuracy measure is applied on Binary20NG data set and represents
the percentage of correctly classified documents (i.e., show what percentage of
the test documents is assigned with the correct topic).

Precision and Recall measures are computed according to [13] and are used
on data sets 20NG, 10NG, Binary[0/1/2], 5Multi[0/1/2], 10Multi[0/1/2] and
CNO.The micro-average type of those measures is applied. One dominant cate-
gory c ∈ C is assigned to all output clusters t ∈ T . This is done by computing
number of documents which are the same in t and c, the highest value then desig-
nate the dominant category c to cluster (output) t. Every c ∈ C can be assigned
only to one t ∈ T . This procedure is done in [13], because of the underlying
assumption that user would not have a problem with assigning a dominant topic
(if the clusters are relatively homogeneous). We can then define the following
quantities: α(c, T ) which defines the number of documents correctly assigned to
c, β(c, T ) defines the number of documents incorrectly assigned to c and γ(c, T )
defines the number of document incorrectly not assigned to c. It is now possi-
ble (from those values) to compute micro-average precision P and recall R as
follows:

P (T ) =
∑

c α(c, T )
∑

c α(c, T ) + β(c, T )
(3)

R(T ) =
∑

c α(c, T )
∑

c α(c, T ) + γ(c, T )
(4)
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Since the original corpus and output from algorithms are uni-labeled data sets
in this scenario, the P (T ) is necessarily equal to R(T ) (number of original cate-
gories in corpus have to be also the same as the number of output clusters from
algorithms) and it is sufficient to report only one of those values. That’s why
there is only Precision reported in Table 2.

6 Results

First, we report the average results achieved on Binary20NG data set in Table 1.
This set of results is compared with results of [12]. The mentioned paper employs
supervised methods, two of them baselines and the others are those baseline
methods improved by semantic smoothing of the kernels. First used method
is K-nearest neighbors (denoted by KNN ) and the corresponding method with
smoothed kernel is denoted by KNN+P. The second method is support vec-
tor machines (SVM ) and the corresponding method with smoothed kernel is
SVM+P.

The results of our methods are listed in the lower part of the table and
denoted as LDA and K-means. The K-means method was applied with both the
full matrix of tf-idf weights and with the matrix reduced by LSA (reduced feature
vectors of size 2). Sice the work reported in [12] concerns supervised training,
the data set in question was designed to consist of training and test portion.
We have preserved the partitioning but naturally did not use the supervisory
information from the training part for our unsupervised methods.

Table 1. Comparison of our results with results achieved in [12]

Method Accuracy [%]

KNN 71.79

KNN+P 80.13

SVM 86.44

SVM+P 88.52

LDA 56.46

K-Means (tf-idf matrix from all lemmas) 72.19

K-Means (matrix form LSA method, number of features is 2) 75.47

Second sets of results are listed in Table 2; these results were achieved on
20NG, 10NG, Binary[0/1/2], 5Multi[0/1/2], 10Multi[0/1/2] data sets. Again, we
are comparing our results with the values reported in the previously published
paper, this time [13]. The authors of the mentioned paper used the (unsuper-
vised) sIB and sK-means methods. The sIB stands for sequential Information
Bottleneck method and the sK-means stands for sequential K-means method
(modification of the K-means). This modification lies in updating the centers of
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the clusters whenever a feature vector is assigned to one of them (not at the
end – after all of the feature vectors are assigned – as in classical K-means algo-
rithm). In our experiments, we run our LDA and K-means algorithms 10 times
over each subset (same approach used in [13]). Averaged results from those runs
are listed in Table 2. The meaning of the K-means experiment labels listed in
the table is the following:

– K-means is the algorithm run with full tf-idf weights
– K-means(LSA) is the algorithm run with feature vectors reduced by LSA to

the dimension equal to the number of original categories (except for sub-set
20NG, where the number of features is set on 2000)

– K-means (LSA n features) states results from K-means method with input
matrix produced by LSA method, which lowers dimension to n = 144 for
large data sets (20NG and 10NG) and to n = 46 for small data sets (the rest
of data sets in Table 2). The values of n for data sets were computed by using
formula listed in [3], which is:

n = n

1

1+
log(nT )

10
T (5)

where nT is number of texts (documents).

Table 2. Comparison of our results with results achieved in [13]

20NewsGroups Precision of methods [%]

sub-sets sIB sK-means LDA K-means K-means
(LSA)

K-means
(LSA n features)

20NG 57.50 54.10 16.97 38.08 35.81

10NG 79.50 76.30 28.72 45.29 51.04

Average
“large”

68.50 65.20 22.84 41.69 43.43

10Multi0 70.20 31.00 30.40 36.68 49.98 51.40

10Multi1 63.80 32.80 23.80 36.72 49.88 52.92

10Multi2 67.00 32.80 32.59 45.22 60.12 63.00

5Multi0 89.40 47.00 43.00 71.76 70.06 76.54

5Multi1 91.20 47.00 46.20 73.50 79.80 84.58

5Multi2 94.20 57.00 36.20 68.64 73.00 79.12

Binary0 91.40 62.40 95.60 94.50 98.80 97.60

Binary1 89.20 54.60 94.00 92.64 93.80 92.90

Binary2 93.00 63.20 93.38 97.48 97.20 97.48

Average
“small”

83.30 47.60 55.02 68.57 74.74 77.28
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Finally, we list some results from CNO data set in Table 3. These are only for
the purpose of testing our methods on data in different language than English.
This result shows that our approach to the preparation of data can be applied
even for the language rather distant from English. We tested different settings
on lowering dimension with LSA method. First was set to 2000 and second to
31 (which corresponds to a number of original categories).

Table 3. Results on CNO data set

Precision of methods [%]

LDA K-means (dim. reduced to 2000) K-means (dim. reduced to 31)

CNO 14.67 42.59 41.72

7 Conclusion

The paper introduced a reasonably effective pipeline for classification of the text
documents according their topic. It concentrated mostly on the preprocessing of
both the raw input text and the extracted feature vectors. It showed that when
applying lemmatization and data-driven stop-word removal to the text docu-
ments and consequently reducing the dimension of resulting tf-idf feature vector
using LSA, we can get decent classification results even with the most rudi-
mentary classification algorithms, such as K-means. The performance of this
unsupervised method was almost on par with some of the simpler supervised
algorithms. This is an important finding of our research, since the training data
annotated with correct document classification – which are necessary for super-
vised learning – are often not available.
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Abstract. The purpose of this study is to develop a robust audio-visual speech
recognition system and to investigate the influence of a high-speed video data on
the recognition accuracy of continuous Russian speech under different noisy
conditions. Developed experimental setup and collected multimodal database
allow us to explore the impact brought by the high-speed video recordings with
various frames per second (fps) starting from standard 25 fps up to high-speed
200 fps. At the moment there is no research objectively reflecting the depen-
dence of the speech recognition accuracy from the video frame rate. Also there
are no relevant audio-visual databases for model training. In this paper, we try to
fill in this gap for continuous Russian speech. Our evaluation experiments show
the increase of absolute recognition accuracy up to 3% and prove that the use of
the high-speed camera JAI Pulnix with 200 fps allows achieving better recog-
nition results under different acoustically noisy conditions.

Keywords: Audio-visual speech recognition � High-speed video camera �
Noisy conditions � Russian speech � Visemes � Multimodal communication

1 Introduction

In recent years, a lot of Audio-Visual (AV) speech recognition technologies have been
developed [1]. Nowadays there is no doubt the audio and visual signals supplement
each other very well and, when combined, they are capable of improving the perfor-
mance (both accuracy and robustness) of automatic speech recognition. Although
natural speech is the very informative signal, other modalities also convey useful
information: the use of video signals makes the system more robust and reliable.
Essential attention is paid to the concept of multimodal speech recognition systems and
to the multimodal fusion techniques [2–4]. Despite the fact that this area of research is
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very active, the significance of the use of high-speed recordings (>50 fps) for visual
speech recognition has not been investigated.

Preliminary studies on this topic for English and Dutch languages, such as [5] or
[6], have reported dependence of speech recognition accuracy to the video frame rate.
However, those works did not have a continuation.

In the field of human-machine interaction, high-speed cameras are already used in
the tasks of micro-expression recognition [7], facial emotion recognition [8], for
medical purposes (e.g. eye blinking detection [9]), etc. But high-speed video cameras
are still considered as resource-costly equipment for speech recognition applications
[10]. However, at present, some modern smartphones are already equipped with
high-speed cameras. For example, Apple iPhone 7 has a camera with the shooting
speed of 240 frames per second (fps) at the resolution of 720 � 480 pixels; announced
in 2017 new Sony Xperia smartphones has a video camera with the recording speed of
960 fps. Continuing technological progress allows us to assume with a high confidence
that in the near future the use of automatic speech recognition systems with high-speed
video cameras will be a new direction for multimodal speech recognition.

Recently there were no high-speed audiovisual speech databases available for the
Russian language. Such data are necessary for training visual and acoustical models in
the scope of statistical methods of speech recognition. In 2016-17, we have collected
the HAVRUS corpus [11] (High-Speed Recordings of Audio–Visual Russian Speech)
that comprises recordings of 20 native Russian speakers (10 male and 10 female). Our
experiments were conducted with an audio-visual Russian speech recognition system
[12, 13], which is based on state asynchronous 2-stream Coupled Hidden Markov
Models (CHMM).

In this paper, we present the results of our evaluation experiments and show the
dependency between the video frame rate and the accuracy of lip-reading and
audio-visual speech recognition and try to find an optimal frame rate for the task of
robust audio-visual speech recognition. In addition, since the high frequency of video
frames allows performing more precise analysis of movements of visible articulation
organs we identify new viseme classes for Russian speech.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the
collected HAVRUS (high-speed recordings of audio-visual Russian speech) corpus and
describe the recording environment; in Sect. 3, we describe a late fusion AV Russian
speech recognizer that relies on CHHMs, audio and visual feature extraction mecha-
nism and the used audio-visual speech units; in Sect. 4, we describe the setup and the
results of the experiments with our Russian AVSR system; some conclusions are given
in Sect. 5.

2 Multimodal Database Collection

Multimodal user interfaces based on audio-visual speech recognition allow organizing
natural interaction between users and smart phones, computers, environments. At the
moment, there are various audio-visual databases that are collected for this purpose
[14–16]. An overview of existing audio-visual speech databases can be found in our
recent paper [11]. However, there are almost no audio-visual speech corpora with
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high-speed recordings. We tried to fill in this gap using developed software-hardware
complex for collecting audio-visual databases.

Figure 1 shows an environments setup for audio-visual speech data recording.
There are some types of the equipment installed: (a) dynamic microphone Oktava
MK-012; (b) high-speed video camera JAI-Pulnix RMC-6740 mounted on a tripod;
(c) screen for displaying graphical user interface; (d) speaker; (e) sound board
M-Audio; (f) background screen of a homogeneous white color. The distance between
a speaker and the camera may be varied base on parameters of lenses installed on the
camera. In our study, we use NAVITAR NMV-25M23 lenses with 3.5 mm focal
length, 66.9° diagonal angle and –0.04% distortion.

20 native Russian speakers (10 male and 10 female speakers) with no language or
hearing problems were attracted for the recording. Each of them pronounced (read from
the screen) 200 Russian phrases: 130 training phrases are phonetically rich sentences
common for all speakers, and 70 test phrases are telephone numbers and are different
for every speaker. The content was chosen to maximize the statistical coverage of
context-dependent Russian phonemes and visemes. The audio data have sampling
frequency of 44 kHz, 16 bits per sample, mono format; the signal to noise ratio
(SNR) is not less than 35 dB. The video data have resolution of 640 � 480 pixels and
the frame rate – 200 frames per second, uncompressed data in RAW format. The
recording session for each speaker lasted about 20–30 min. All the recordings were
organized into a logically structured database, that comprises a file with information
about all the speakers and recording parameters. More complete description of the
framework and characteristics of the collected multimodal corpora can be found in our
preliminary works [11, 17].

Fig. 1. Scheme of an environment for audiovisual speech recording
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3 Methodology and Methods

3.1 Fusion of Audio-Visual Speech Modalities

For this study we have implemented own CHMM-based audio-visual Russian speech
recognition system with weight optimization [13, 17].

Coupled Hidden Markov Model is a set of parallel HMM, where each HMM
corresponds to one data stream [11, 12]. Figure 2 shows the CHMM topology of an
audio-visual speech unit (phoneme/viseme pair) with 3 states for each stream of feature
vectors. The circles – denote CHMM states, which are hidden for observation, and
rectangles show mixtures of normal distributions of observational vectors in states
(GMMs). There are two state variables in the joint AV model, and at any time t, the
state of the model is determined by these multinomial variables. The advantage of such
configuration is that it allows unsynchronized progression of the two chains, while
encouraging the two streams to assert temporal influence on each other. The overall
dynamics of the AV speech is determined by both streams at one time.

Amethod to transform the CHMM to an equivalent multi-streamHMM that keeps all
the properties of the former model was proposed in [18]. In our recognition system, we
used a similar approach, for more detailed explanation see our previous works [12, 13].

3.2 Feature Extraction

For audio signal representation we used 12-dimensional Mel-Frequency Cepstral
Coefficients (MFCC) calculated from 26 channel filter bank analysis of 20 ms long
frames with 10 ms overlap.

The visual features are calculated as a result of the following processing steps:
multi-scale Haar-based face detection in frames of video data with 25–200 fps using a
boosted cascade classifier; mouth region detection with cascade classifiers (for mouth
and mouth with beard) within the lower part of the face; normalization of the detected
mouth images to 32 � 32 pixels; mapping to a 32-dimensional feature vector using a
principal component analysis (PCA).

OV1

A1 A2 A3

V1 V2 V3

OV2 OV3

P1 OA3P1 OA2P1 OA1

Fig. 2. Topology of the coupled HMM of an audio-visual speech unit
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3.3 Audio-Visual Speech Classes

According to our previous studies [12], the best recognition results for AV Russian
speech are achieved using only 10 visual speech units (visemes). This number is a
language-dependent and for Russian there are 10–14 distinguishable speech units in
different works. However, since high-speed recordings much accurately reflect quite
fast dynamics of lips movements, in the current study, we researched various sets of
visemes of Russian speech. The complete viseme list is presented in Table 1 and
recognition results are reported in the experimental section.

In our system, as audio-visual speech models we use 48 CHMMs corresponding to
all the Russian phonemes. After tying states the output densities of corresponding
viseme models according to the mapping in Table 1, we got 60 output densities for the
visual data stream and 144 united output densities for the audio stream.

4 Evaluation Experiments

All the audio-visual data were recorded in acoustically clean office environments with
audio SNR >35 dB. However, in the real life conditions it is difficult to find an ideally
quiet environment. Often, the acoustic environment is mixed with different types of
noises of varying intensity and it is not always possible to make a proper sound
filtration [19, 20]. In this case, many researches see the solution in relying on video
modality that does not deteriorate with acoustic noises [21]. In this context, a more
reliable visual speech component leads to a more robust AV system in general.

Our study shows that the use of high-speed video data makes it possible to expand
the number of visually distinguishable viseme classes of Russian speech to 20.
Experiments carried out with this configuration led to an improvement in the average
word recognition accuracy in about 0.5% for all speakers in comparison with previ-
ously used 10 viseme classes for a regular 25 fps video data. Further increase in the
number of viseme classes did not lead to better recognition results.

Table 1. Viseme classes and phoneme-to-viseme mapping

Viseme class Corresponding phonemes Viseme class Corresponding phonemes

V1 sil (pause) V11 e!
V2 a, a! V12 y, y!
V3 i, i! V13 u, u!
V4 o! V14 e
V5 b, bʹ, p, pʹ V15 s, sʹ, z, zʹ, c
V6 f, fʹ, v, vʹ V16 j
V7 sh, sch V17 h, hʹ
V8 l, lʹ, r, rʹ V18 ch
V9 d, dʹ, t, tʹ, n, nʹ V19 m, mʹ

V10 g, gʹ, k, kʹ V20 zh
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4.1 Experiments with the Visual Speech Modality

In our experiments we use a video data of 5 different frame rates: 25, 50, 100, 150 and
200 fps. Figure 3 presents the average Word Recognition Rate (WRR) among all
speakers for these cases. As can be seen from Fig. 3, the WRR increases significantly
(up to 1.47% absolute) with fps increase from 25 to 50. With a further increase in the
frame rate to 100 fps, the recognition accuracy also increases, however, the speed of its
growth decreases: only 0.91% for the next 50 fps. This trend continues with the
increase to 150 fps and gives only 0.42% gain in the speech accuracy. With the further
increase of the frame rate, the improvement in accuracy is even smaller and is about
0.3% for additional plus 50 fps.

However, for 3 speakers in our database, the obtained results were a bit different.
These results are characterized by the fact that the maximum recognition accuracy was
achieved with 100–150 fps and not with 200 fps for these three speakers. Based on
this, we can assume that an increase in fps is not always leads to an increase in speech
recognition accuracy. There is a certain threshold, after which the information becomes
redundant and leads to distortions in recognition results. Presumably, it depends on
speaker’s speech tempo and this issue deserves more careful study.

There is also an assumption that visual female speech is recognized better than the
male one, due to the number of facts, e.g. women have more contrast and visually
distinguishable lips, mainly due to the use of lipstick and absence of a beard and
moustache on the face, that should allow the system to more accurately detect lips and
pronounced visemes. Since in our database the number of male and female speakers is
equal, we tested this hypothesis and the results are shown in Fig. 4.

According to the obtained results, the average WRR of male and female speakers is
approximately the same and differs by 1–2%, and male speech is recognized even
slightly better. The average gain in WRR due to high-speed recordings was 3.12% for
male and 3.07% for female speakers. Based on our observations there was no signif-
icant correlation between speaker’s gender and WRR. However, a certain dependency
between the speaker’s speech tempo and the resulting accuracy was revealed: speakers
with relatively fast speech tempo usually gain more from using high-speed recordings

Fig. 3. Average WRR with different frame rates
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than the speakers with a calm and steady speech tempo. Some quick-talking speakers
from our database gained an accuracy increase of 7.28% and 5.51%, which is higher
than the average result, while slow-talking speakers only gain WRR improvements of
1.5–2%.

4.2 Experiments with Audio-Visual Speech Modalities

It is known from previous studies [12] that CHMM-based AV speech recognition
system shows better recognition accuracy results in comparison with multi-stream
HMMs due to the ability of CHMMs to process a natural asynchrony between the
auditory and visual speech cues (at least, within the model boundaries). Thus, for
audio-visual experiments we used CHMMs with 60 common output densities for the
visual data stream and 144 common output densities for the acoustical feature stream as
described in Sect. 3. The results obtained by this system for a different fps levels can be
seen in Fig. 5.

Fig. 4. Average WRR for male and female speakers

Fig. 5. Average WRR for audio-visual speech recognition with different fps rates
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The WRR achieves its maximum value of 81.82% with 200 fps of video data. That
is 1.48% higher than using standard 25 fps, which gives the WRR only of 80.34%.

4.3 Experiments Under Acoustically Noise Conditions

Figure 6 shows the results of the speech recognition system under various noisy
conditions. Two types of acoustic noises (babble noise and white noise) with different
signal-to-noise ratios (SNR from 0 to 40 dB) were added to the test audio data. The
audio-only, video-only and joint audio-visual speech recognition systems were tested
in these conditions.

In the audio-only recognition systems the WRR begins to fall rapidly at SNR below
15–20 dB to almost zero at SNR of 0 dB, which is explained by the fact that at the
SNR level of <5 dB it is almost impossible to distinguish a useful signal from a noise.
The visual-only recognition system is not affected by any acoustic noises, so the WRR
remains constant. Therefore, we can assume that the best recognition results can be
achieved combining both audio and visual cues. In severe acoustically noisy conditions
the weight of the audio modality is minimized and the recognition system relies only on
the video modality (SNR <10 dB). However, if SNR >10 dB, the video modality can
no longer provide a significant increase in accuracy and its weight must be reduced.

Given to correct use of these features the audio-visual system becomes more robust
and it is possible to obtain the maximally possible WRR in any acoustic conditions by
modifying the weights of the modalities. To improve performance in real applications
this method can also be combined with noise filtration algorithms.

Fig. 6. WRR vs. SNR for different speech recognition models under two types of noises: babble
noise (bn) and white noise (wn)
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5 Conclusions

In this paper, we presented the results of our evaluation experiments obtained by the
CHMM-based Russian speech recognition system. These experiments have demon-
strated the positive effect of using high-speed video recordings in speech recognition.
In comparison with the regular 25 fps (recording speed used on most devices) using
200 fps high-speed video camera results in an increase of WRR by an average value of
1.48% for all speakers. Experiments with visual-only speech recognizer show an
increase of WRR by an average value of 3.10%. For several individual speakers this
value even reaches 7.28%.

Despite the existing assumption that female visual speech can be recognized better
than male, our study did not reveal such a dependency. According to our observations
the speech tempo has more influence on word recognition rate than gender. Speakers
with a relatively fast speech tempo had a greater increase in the recognition accuracy and
benefit more from using a high-speed camera. The average gain in the recognition
accuracy was 3.12% for males and 3.07% for females with 200 frame rate of video data.

Based on the conducted studies it can be concluded that the use of a high-speed
camera makes it possible to improve the speech recognition accuracy of continuous
Russian speech. Especially under noisy conditions when the accuracy of the audio-only
speech recognition system is degraded by acoustic noise. According to our observa-
tions, white noise worsens recognition accuracy more than the babble noise with equal
SNR values. However, white noise is relatively easy to remove using sound cleaning
techniques. While removing babble noise is still a difficult and not completely unre-
solved task. Since babble noise is quite common in real conditions it is very important
to have reliable speech recognition in this case. In our opinion, this can be achieved
using audio-visual speech recognition system with a high-speed video camera.
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Abstract. Vast majority of current research in the area of audiovi-
sual speech recognition via lipreading from frontal face videos focuses
on simple cases such as isolated phrase recognition or structured speech,
where the vocabulary is limited to several tens of units. In this paper,
we diverge from these traditional applications and investigate the effect
of incorporating the visual information in the task of continuous speech
recognition with vocabulary size ranging from several hundred to half
a million words. To this end, we evaluate various visual speech parame-
trizations, both existing and novel, that are designed to capture different
kind of information in the video signal. The experiments are conducted
on a moderate sized dataset of 54 speakers, each uttering 100 sentences
in Czech language. We show that even for large vocabularies the visual
signal contains enough information to improve the word accuracy up to
15% relatively to the acoustic-only recognition.

Keywords: Audiovisual speech recognition · Lipreading · LVCSR

1 Introduction

It has been well established that visual cues extracted from lip movement can
help the automatic speech recognition process mainly in noisy acoustic con-
ditions. With sufficiently small vocabulary, frontal face videos provide enough
information for reliable recognition even without acoustic data. Large variety of
methods for visual parametrization, feature post-processing and modality inte-
gration have been proposed to date. For a comprehensive overview of recent
advances in lipreading and audiovisual speech recognition see e.g. work by Zhou
et al. [15].

Utilization of automatic lipreading techniques for large vocabulary continu-
ous speech recognition (LVCSR) is rarely explored in the current literature. One
of the main obstacles is the lack of freely available datasets, with AVICAR [8]
probably being the only option. In [7] Lan et al. used proprietary corpus of
12 speakers and 1000 word vocabulary in order to classify individual visemes,
but they did not report the word-level accuracy. Much of the important work on
audiovisual LVCSR via frontal face lipreading was conducted in IBM laboratories
c© Springer International Publishing AG 2017
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during the early 2000s [6,11]. The experiments were performed on IBM’s propri-
etary large audiovisual dataset ViaVoice containing 290 speakers and vocabulary
size of 10403 words and found the integration of visual features beneficial only
for noisy acoustic conditions. Recently, two papers [1,3] using end-to-end trained
deep learning systems improved state of the art in lipreading of sentences. Assael
et al. [1] trained the system to recognize structured sentences of the GRID cor-
pus [5] by optimizing connectionist temporal classification (CTC) criterion and
significantly improved state of the art word error rate (WER) from 13.6% to
4.8% in a multi-speaker split, albeit with still only 51 word vocabulary. Chung
et al. [3] designed a first end-to-end trained truly large vocabulary deep learning
system for lipreading sentences in the wild. To this end, they utilized watch,
listen, attend, and spell framework instead of CTC, and were able to push the
results on GRID even further down to 3.3%. Their system was, however, pre-
trained on a large proprietary dataset of BBC television broadcast with over 100
thousands audiovisual utterances, not available to other researchers.

In this work, we tackle the problem from the traditional feature extraction
and classification paradigm, which allows for easier integration and straightfor-
ward comparison with existing acoustic-only systems based on hidden Markov
Model (HMM) decoding. We evaluate several popular state of the art visual
speech parametrizations in the task of audiovisual LVCSR and experimentally
investigate their impact on the word error rate. To this end, we utilize moderate
sized dataset with 54 speakers and simulate various vocabularies of up to 500 k
words. Moreover somewhat non-traditionally, since our dataset is recorded using
Kinect, we also evaluate the lipreading performance when depth data is incorpo-
rated. Interestingly enough, recognition from the depth stream sometimes yields
better results than from RGB, with the advantage of partial complementarity,
which makes it suitable for integration with RGB.

The rest of the paper is organized as follows. We describe our dataset in
Sect. 2. The visual parametrizations along with our modifications are explained
in Sect. 3. System overview is presented in Sect. 4. Finally, the performed exper-
iments and the discussion are described in Sect. 5.

2 Data

TULAVD is our own dataset recorded at the Technical University of Liberec
containing data from 54 speakers, of which 23 are female and 31 male with age
ranging from 20 to 70 years. Each speaker uttered 50 isolated words and 100
sentences in Czech language, which were automatically selected according to
phonetic balance. The sentences were divided into two groups with the first 50
being common to all speakers and the other 50 speaker-specific. The dataset
also contains 583 manually annotated images of all speakers in various poses,
expressions and face occlusions, which constitute a training dataset for the ESR
detector. The audiovisual utterances were recorded in an office environment using
Genius lavalier microphone, two Logitech C920 FullHD webcams, and Microsoft
Kinect, which also offers depth stream that is fully synchronized with the video.
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Fig. 1. Sample frame of RGB image and corresponding depth map

Only the microphone and Kinect RGBD data with resolution of 640×480 pixels
is used in this work. See Fig. 1 for a sample frame from a frontal face video of a
talking speaker. In order to build the language models, we also collected more
than 60 GB of texts mostly consisting of online journals and manual transcrip-
tions of television and radio broadcast.

3 Visual Speech Parametrization

In audio visual speech literature, discrete cosine transform (DCT) repre-
sents a widely used method for visual speech parametrization, and often the
first choice. The visual speech features are usually selected as a subset of the
full 2D DCT transform computed over the ROI.) Number of feature selection
methods have been proposed to date, e.g. zig-zag ordering or selection by mutual
information. In this work, we treat the coefficient selection as hyperparameter
optimization problem. We sort the DCT coefficients based on an average energy
obtained on a training set and then select their optimal number according to
validation score.

The Active Appearance Model (AAM) is a well-known method for
describing appearance of a deformable object by a hierarchical application of
PCA. The appearance is represented by shape and texture that are both modeled
linearly using PCA. These modality-specific representations are normalized and
concatenated into a single vector, and then subjected to a second-level PCA.
In this work, we extract the AAM features using 46 landmarks from the lower
part of the speakers face, see the AAM-r in Fig. 2. In addition to the standard
AAM, we also evaluate a variant with both video and depth texture included as
a form of early feature integration. We denote this case as DAAM. The number
of AAM coefficients constitutes a hyperparameter that is optimized w.r.t. the
recognition accuracy.

For our experiments we also utilize the popular Spatiotemporal Local
Binary Patterns (LBPTOP) introduced in [14]. Local Binary Pattern (LBP)
describes the texture in terms of a histogram of binary numbers that are formed
by comparing each pixel of the image to its close neighborhood. Zhao et al.
extended the static LBP by considering the neighborhood not only in the spa-
tial domain, but also in the time axis, in order to capture the speech dynamics.
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Fig. 2. Possible landmark configurations. We empirically found out that the second
configuration (AAM-r) performs best in most experiments

Thus, LBPs are effectively extracted from three orthogonal planes (TOP): xy,
xt, and yt. These are then concatenated into a single vector forming the visual
speech parametrization. Contrary to the original work [14], we extract the LBP-
TOP densely for every frame. We cross validate the parameters of the LBP, i.e.
the number of histogram bins and the aggregation method (standard, rotation
invariant, uniform, non-rotation invariant uniform).

The last considered parametrization is the Spatiotemporal Histogram of
Oriented Gradients (HOGTOP). We proposed this parametrization in [10]
inspired by the LBPTOP as a dynamization technique of the standard Histogram
of Oriented Gradients (HOG). Normally, the histograms are formed by counting
and weighting the gradient orientations in the xy plane. Here, we also add orien-
tations from the xt and yt planes, process them independently, concatenate, and
reduce the resulting HOG hypervector by PCA into the final parametrization.
Extraction of the HOGTOP features is illustrated in Fig. 3. The only hyperpa-
rameter to be cross-validated is the final PCA dimension.

Fig. 3. Extraction of spatiotemporal histogram of oriented gradients
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4 System Overview

4.1 Visual Front-end

We pre-process the image in several stages with progressing level of preci-
sion. First, an approximate position of the face is estimated using the well
known Viola-Jones algorithm. We use the pre-trained model that ships with
the OpenCV library. Second, to estimate the facial shape precise positions of 93
facial landmarks are obtained by utilizing the Explicit Shape Regression method
(ESR) [2]. The ESR is a discriminative method that iteratively refines the joint
landmark configuration (i.e. the face shape) based on the value of only few pixel
differences and thus is very efficient (i.e. hundreds of frames per second on regu-
lar PC). However, since there is no objective to be optimized, the final landmark
positions are slightly different in each frame, which introduces an inter-frame
jitter. We reduce it by running the detector from different starting positions 10
times and then taking the median of the fit shapes.

Once the facial landmarks are localized, we define the region of interest (ROI)
as a square area barely covering the mouth and its closest surrounding. In order
to achieve scale invariance we set its size relative to the normalized mean shape.
The geometric transformation for the extraction is estimated by aligning the
normalized mean and the detected shapes. To further reduce the inter-frame
landmark jitter and stabilize the ROI extraction, we average the fitting results
over three neighboring frames in time.

4.2 Feature Extraction and Post-processing

The acoustic channel is parametrized by 39 Mel Frequency Cepstral Coefficients
(MFCC) with a 25 ms window at a 100 Hz rate. The visual parametrizations
described in Sect. 3 are extracted densely for each frame of the input utterance.
Sequences xt−k, . . . , xt+k of 2k + 1 feature vectors xt′ are concatenated into
hypervectors, where k represents the number of left and right adjacent frames,
and then reduced by the linear discriminant analysis (LDA) with phonemes as
class labels. The k is treated as a hyperparameter for each parametrization sep-
arately and therefore is subject to optimization of the validation score. Since
visual features tend to be highly speaker dependent, we also perform feature
mean subtraction (FMS) with the average computed over the whole utterance.
Addition of delta (Δ) features is similarly to k also considered to be a hyperpa-
rameter and thus tuned for each parametrization separately. Finally, the video
features are linearly interpolated from 30 Hz to 100 Hz frequency to match the
acoustic parametrization.

4.3 Acoustic and Visual Models

Due to the limited amount of audiovisual data, we utilize only basic monophone
models without context. There are 40 distinct phonemes of the PAC-CZ phonetic
alphabet [9] and 13 corresponding visemes [4]. In order to obtain frame-level class
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labels, we forced-aligned the audio recordings using a separate robust acoustic
model that was trained on approximately 300 h of spoken data. The viseme labels
were then obtained by a simple phoneme-viseme mapping proposed in [4] and
shifted by approximately 0.023 s to synchronize the streams.

Phonemes and visemes are modeled using 3-state hidden Markov model
(HMM) with Gaussian mixture emission probability. The main advantage of
HMM in our context is that it allows for straightforward weighted combina-
tion of acoustic and visual channels via multi-stream synchronous variant of the
model (MSHMM), in which each state q has an emission probability equal to
the weighted product of the individual streams s = (1, . . . , S):

p
(
x(1), . . . , x(S)|q

)
=

S∏
s=1

p
(
x(s)|q

)λ(s)

. (1)

We treat the stream weights λ(s) as hyperparameters and therefore cross-validate
them w. r. t. the recognition accuracy.

We utilized the HTK 3.4.1 toolkit to train the phoneme and viseme models.
We followed a simplified procedure by first initializing the models with Viterbi
training (HInit) and then reestimating with Baum-Welch in an isolated-unit
manner (HRest). We have empirically found out that the more commonly used
approach of embedded re-estimation using HERest only degrades the results in
our case. This is due to the limited discriminative power of the visual parame-
trization that makes it unsuitable for alignment on the phonetic level, even when
constrained by the acoustic features in the multi-stream model, and as a result,
the re-estimation procedure fails to converge.

4.4 Language Models

We evaluate our audiovisual recognition system for four different bigram lan-
guage models with vocabulary size ranging from 366 up to 500 k words, see
Table 1 for the exact numbers. The smallest vocabulary contains only words from
the corpus of our audiovisual dataset, whereas the other ones also include the
most frequent words in Czech language. The word frequencies and language mod-
els are assessed using the 60 GB text corpus described in Sect. 2. We employed
the SRILM toolkit [13] with Knesser-Nay smoothing for the language model
training.

Table 1. Vocabularies considered in the experiments

LM min 5 k 50 k 500 k

# words 366 5 182 50 056 499 993

# bigrams 48 338 9 865 k 73 905 k 141 670 k
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5 Experiments

Throughout the experiments we follow the k-fold cross validation protocol. The
54 speakers are split into 6 groups of 9, where in each turn of the cross validation
5 groups constitute a training set and 1 is reserved for testing. We then report
the average word accuracy (Wacc) achieved over the 6 different test sets.

The phonetic models are learned on all the available training data from each
respective fold of the cross validation, which amounts to approximately 5 h of
spoken data on average. In order to minimize the number of sources of variability
across different folds and to better control the vocabulary, the test data comprise
only of the first 50 sentences that are common to all speakers instead of the full
set of 100 sentences.

5.1 Isolated Word Recognition

In order to tune the hyperparameters of the visual parametrizations described
in Sect. 3, we followed a slightly different approach. For reasons of efficiency,
these hyperparameters were optimized using 14-state whole-word models with
one or two components per GMM in the task of lipreading of 50 isolated words.
The optimized parametrizations were then used for unimodal recognition of the
50 isolated words using phoneme and viseme models. In these experiments we
employed the HTK HVite decoder. Table 2 summarizes the results of both whole-
word and phonetic models.

Table 2. Word accuracy [%] of isolated word recognition and lipreading

Param Src. Word Phoneme Viseme

Mixtures: 1/2 8 16 8 16

MFCC a 99,8 99,5 99,8 97,4 98,0

DCT v 72,5 42,6 42,8 42,4 43,9

d 74,4 39,3 42,5 38,6 43,1

AAM v 74,1 57,5 58,5 59,0 59,3

d 75,2 54,1 55,0 55,3 56,6

LBPTOP v 74,2 54,6 56,4 54,6 56,3

d 64,3 48,7 47,4 45,3 48,2

HOGTOP v 86,4 59,5 61,0 59,8 60,1

d 84,4 56,6 58,3 56,6 57,7

DAAM v ◦ d 74,9 62,0 64,6 63,0 64,7

The experiment is conducted for both video (a) and depth (d) streams, with
v ◦ d denoting their early integration, i.e. concatenation of the feature vectors.
Note that in the special case of DAAM, the concatenation of video and depth
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textures is also followed by coupling via PCA. One can observe that in this
simpler scenario, video-based and depth-based parametrizations perform roughly
on par, with their combination in the form of DAAM achieving the best results
overall.

While the phoneme and viseme models reach similar word accuracies, they
perform much worse compared to the whole-word approach. This illustrates one
of the issues with the current state of the art in lipreading, where the parame-
trization and classification algorithms mainly target isolated unit recognition,
and the results do not necessarily apply to systems with larger vocabularies.

5.2 Continuous Speech

The results on isolated word recognition show that on average viseme-based
models outperformed the phone-based ones. However, the results are inconsis-
tent and the margin never exceeds 2%. This observation may be attributed to
the viseme context dependency on the surrounding vowels [12]. For instance,
the u-shaped lip protrusion when pronouncing “s” in the word “super” signifi-
cantly differs from the horizontal extension when pronouncing “s” in “see”. As a
result, it seems that phonemes cannot be unambiguously mapped to visemes in
a surjective many-to-one manner. Considering this issue and potential problems
with the score combination, we employed only phone models in the following
experiments on continuous speech recognition.

Table 3 presents the achieved results. Due to performance reasons we switched
from HVite to the Julius1 decoder, which is compatible with HTK model defin-
itions. For example, a + v denotes a middle fusion of audio and video channels
via MSHMM with optimally set weights λ(s) that are cross-validated on a dense
grid of all possible combinations with the step of 0.1 and constraint

∑
s λ(s) = 1.

As expected, with the increasing size of vocabulary, the performance in terms
of accuracy and correctness degrades rather quickly, which is mostly due to the
relatively small amount of training data. On the other hand, in all experiments
the combined audiovisual representations achieved to some improvement over
acoustic-only recognition, showing that the visual cues provide useful informa-
tion even for very large vocabularies with 500 k words. This especially holds for
LBPTOP and HOGTOP, as they manage to exploit some of the speech dynam-
ics, which is crucial for phoneme discrimination. The best results overall were
obtained by our proposed HOGTOP features extracted from both video and
depth, although the difference from video-only LBPTOP is almost negligible.

In contrast to recognition of isolated words, integration of the depth channel
does not seem to improve the word accuracy. The only exception to this rule
was the HOGTOP parametrization, which in most cases achieved slightly better
results in the three modality setting.

For all four vocabularies the highest improvement achieved over audio-only
recognition ranged between 5–7% absolutely, i.e. 7–15% relatively. In most cases
the optimal weight ratio of audio and video (or depth) channels, which indicates

1 https://github.com/julius-speech/julius.

https://github.com/julius-speech/julius
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Table 3. Word accuracy [%] of audiovisual speech recognition by middle fusion of
acoustic and visual parametrizations for different vocabularies

Par. Source Vocabulary

min 5 k 50 k 500 k

MFCC a 74,0 55,9 43,9 36,3

DCT a + v 76,8 59,8 47,1 38,9

a + d 74,3 55,5 43,4 38,3

a + v + d 77,3 59,6 46,8 38,2

AAM a + v 76,7 60,5 48,7 40,2

a + d 76,8 60,0 48,0 39,5

a + v + d 76,9 60,2 48,3 39,9

LBPTOP a + v 79,2 62,7 50,1 41,7

a + d 77,8 60,8 48,5 39,8

a + v + d 79,3 62,6 50,0 41,4

HOGTOP a + v 78,1 60,2 47,8 42,0

a + d 77,2 58,3 46,2 40,7

a + v + d 79,4 62,9 50,1 41,6

DAAM A + v ◦ d 75,2 58,6 48,0 40,7

the relative importance of each modality, was 0.7 : 0.3 or 0.8 : 0.2, with the
former being more common for the 500 k vocabulary. Note that the results hold
for relatively clean data, i.e. without acoustic noise, and one might expect even
higher relative improvement in worse conditions.

6 Conclusion

We have shown that given quality parametrization, the visual cues provided by
the lip movement can improve the recognition accuracy even for very large vocab-
ularies with hundreds of thousand words. The best results were achieved using
the HOGTOP and LBPTOP features that are designed to exploit the speech
dynamics as opposed to static features such as AAM. The relative improvement
of audiovisual over audio-only recognition ranged between 7% and 15% when the
channels were integrated via multi-stream hidden Markov model with optimally
set weights. There might be a potential issue in that improvement observation
could be somewhat influenced by the limited amount of data and it is uncer-
tain if the same results would hold for more robust acoustic models trained
on hundreds of hours data. In order to verify this, transfer learning techniques
could potentially be employed to circumvent the lack of large audiovisual dataset
availability.
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Abstract. The paper deals with speech emotion conversion using Wave-
form Similarity Overlap Add (WSOLA) and subsequent linear predic-
tion analysis for spectral transformation. Duration modification is done
by taking the ratio between segment durations of neutral and target
speech. After performing modification using WSOLA, the duration mod-
ified source speech is time aligned with target and further subjected to
linear prediction analysis to yield the LP coefficients. The target emotion
is re-synthesised by using the prosody manipulated residual and LPCs
from source. The waveform similarity property of WSOLA is exploited
to give output with minimal distortion. The proposed algorithm is sub-
jectively and objectively evaluated along with popular TD-PSOLA algo-
rithm. The correlation between synthesised and real target shows an
average improvement of 60% across all emotions with the proposed tech-
nique.

Keywords: Emotion · WSOLA · Linear prediction · Dynamic time
warping · Comparative mean opinion score · Correlation coefficient

1 Introduction

Vocal expression is one of the vital components in speech communication. Effec-
tive communication enables the intended message to be conveyed effectively by
means of linguistic and paralinguistic cues. Over the past decade, researchers
have been particularly interested in identifying, estimating and incorporating
the vocal features contributing to naturalness in human speech. Naturalness
can be attributed to the degree of expressiveness in vocal dialogues relevant to
the particular context. According to experiments in [1], acoustic features rele-
vant for perceptive quality are mainly supra-segmental ones like pitch, duration,
speech rate along with voice quality parameters like vowel precision. Tao et al. [2]
achieved expressiveness in speech by prosody (pitch and duration) modification
of the neutral speech using Gaussian mixture model (GMM) and Classifica-
tion And Regression Tree (CART) methods. Along with prosody modification,
incorporation of voice quality parameters to enhance expressivity in speech is

c© Springer International Publishing AG 2017
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demonstrated in [3]. The system operates by manipulating prosodic parameters
like pitch, duration and intensity along with characteristics of voice quality like
jitter and shimmer using Pitch Synchronous Time Scaling (PSTS).

Rather than modifying the prosody across the entire utterance, selection
of emotionally significant regions for prosody modification has yielded better
results. A method for dynamically varying prosody at glottal activity regions
was proposed in [4]. A method for non-uniform modification of vowel and pause
duration using Vowel Onset Point detection and excitation instants (epochs)
is described in [5,6]. In emotion conversion, it is important to select regions
which are significant in emoting the state of the speaker. Vydana et al. [7]
proposed a method based on computation of Strength of Excitation (SoE) at
epochs to detect emotionally significant regions in angry speech. PSOLA based
prosody modification is restricted only to those regions which are identified as
emotionally significant. Recently, attempts have been made to synthesize expres-
sive speech by imposition of pitch, duration and intensity patterns of syllable,
word and sentence level segments of neutral speech [8]. Syllable level imposi-
tion yielded better results compared to word and sentence-level modifications. A
linear prosody modification technique which involves marking vowel, pause and
consonant regions in speech by computation of epochs and VOPs and further
selection of modification factors based on vowel positions is described in [9].

Most of the literature on explicit control based expressive speech synthesis
deals with prosodic and voice quality modifications from knowledge of glottal
activity regions. It has been time and again proved that excitation source para-
meters contribute to the perceptional quality of emotions while statistical sim-
ilarity is mainly attributed to prosodic factors [10]. Simultaneously modifying
excitation and vocal tract characteristics is essential in generating good quality
synthesised expression. Also, determination of emotionally significant parame-
ters and segments in speech plays a major role in identifying the positions for
incorporation of prosodic features.

This paper describes a method for prosody modification of neutral speech by
using principles of WSOLA and linear prediction. The paper is organised as fol-
lows: Sect. 2 describes the background theory behind WSOLA analysis. Section 3
illustrates the algorithm in detail while Sect. 4 deals with results obtained using
proposed algorithm and performance evaluation with TD-PSOLA. Section 5 con-
cludes the paper with insights into future work.

2 Theoretical Background

2.1 WSOLA

Waveform Similarity Overlap Add technique (WSOLA) [11] is one of the popular
algorithms for time scaling of speech. It is especially useful for applications such
as voice-mail playback or synchronization of video post dubbing where control
of speaking rate is desirable. The challenge associated in time scaling techniques
is preservation of other speech features like voice quality, pitch and timbre. The
principle of WSOLA is that it should produce a synthetic waveform s(n) with
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maximum similarity to the original waveform x(m) in corresponding neighbour-
hoods of related sample indices specified by a tolerance interval. The overlap
add procedure is carried out by finding a segment with maximum similarity to
the one that followed a previously extracted segment. The synthesis equation for
WSOLA is given as [11]:

s(n) =
∑

k w(n − Lk)x(n + τ−1(Lk) + δk − Lk)∑
k w(n − Lk)

(1)

where Lk are instants used for synthesis given as kL and denominator of Eq. 1
is taken as 1 (symmetric window condition). Figure 1 illustrates the overlap add
procedure based on segment similarity. WSOLA yields high quality speech, is
computationally very efficient and robust to noises for variety of scaling factors
from 0.4–2. Algorithmic complexity is lesser than TD-PSOLA since it involves no
pitch synchronous manipulations or pitch scaling and operates on fixed window
length.

Fig. 1. WSOLA algorithm:Segment ’a’ was the last input segment that was extracted
and added to output at time instant Lk−1, represented as segment 1 in output s(n).
The algorithm will then search for a segment extracted from the input around time
τ−1(Lk) that will overlap-add with input segment 1. WSOLA selects a segment 2
which is within a specified tolerance interval around τ−1(Lk) in the input wave such
that it closely resembles a’. The position of the optimum segment ’b’ is calculated
by maximizing the cross-correlation between the samples corresponding to a’ and the
input x(n) (Figure used with permission from Werner Verhelst)
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3 Proposed Algorithm

In this paper, we implement speech emotion conversion by using a combination
of WSOLA and linear prediction. From literature, it is clear that generating
expressiveness in speech can be accomplished by conversion of both prosodic
and spectral characteristics. Here, only duration is taken as the prosody para-
meter. WSOLA algorithm allows to do time stretching or compression without
affecting the spectral characteristics of the signal. The emotional speech data
used in this work is Indian Institute of Technology Kharagpur Simulated Emo-
tion Speech Corpus (IITKGP-SESC). Speech is recorded using 5 male and 5
female experienced professional artists from All India Radio (AIR) Vijayawada,
India [12]. For the current study, we have considered 4 basic emotions in IITKGP
database viz neutral, anger, happy and fear from both male and female speakers.
In each case, we have considered 150 utterances from each speaker. Since parallel
data is required, linguistically identical utterances are considered for synthesis.
The procedure described below can be illustrated by a block diagram as given
by Fig. 2. The steps involved in the algorithm is depicted as given below.

Fig. 2. Algorithm for emotion conversion

1 Read the source signal X[n] = [x1, x2.....xn] and the target signal Y [n] =
[y1, y2, ...yn]. In the experimentation, we have considered 10 speakers, both
male and female from IITKGP-SESC.

2 For performing WSOLA, calculate the ratio of segment duration between
source and target and take it as time scaling factor, α.

3 Perform WSOLA with the set duration factor as time scaling/stretch. α is
given by Eq. 2:

α =
Total duration of neutral utterance(sec.)
Total duration of target utterance(sec.)

(2)



Vocal Emotion Conversion Using WSOLA and Linear Prediction 781

An α value greater than 1 implies speeding up the speech and that less than
1 refers to slowing down. A 40 ms Hamming window was used for the analysis
with analysis frame shift of 10 ms. Maximum frame offset (δmax) parameter
was set as 5 ms.

4 The time scaled utterance after WSOLA is subjected to Dynamic Time Warp-
ing along with target utterance to time align the two signals. Let the utterance
after WSOLA is represented as S(n). Inter-emotion conversion necessitates
the time alignment between source and target utterance. DTW algorithm
matches the speech patterns, represented by the sequences of vectors (y1, y2,
. . . , yn) and(s1, s2, . . . , sm), where each vector Yi represents target emo-
tional speech pattern and Sj corresponds to the pattern after time scaling by
WSOLA for ith and jth frames, respectively. The two patterns are compared
using inter-vector distance through dynamic programming. The minimum
distance to any (i, j) is given by Eq. 3 [10] as:

Dm(i, j) = d(i, j) + min{d(i − 1, j), d(i − 1, j − 1), d(i, j − 1)} (3)

where d(i, j) is inter-pattern vector distance between target and time scaled
utterances.

5 Dynamic Time Warped utterances are subjected to Linear prediction analysis.
The WSOLA scaled utterance is analysed to yield LP coefficients. The target
pattern is subjected to LP analysis and subsequent inverse filtering to yield
LP residual. Burg’s lattice method is used for finding out the coefficients
corresponding to vocal tract in both cases [13]. A prediction order of 16 is
used, with 25 ms window length and 5 ms window shift. The pre-emphasis
frequency is set at 50 Hz.

6 The target is subjected to LP analysis to yield the residual with pitch infor-
mation embedded in it.

7 Autocorrelation based pitch detection is carried out on both source and target
speech segments and pitch modification factor to be applied on the source
residual is computed by taking ratio between average pitch period.

8 The source residual is re-sampled using pitch factor obtained and target resid-
ual to yield prosody modified residual.

9 Manipulated residual from output signal obtained after WSOLA is sub-
jected to LP synthesis using source LPCs to yield the synthesised emotional
utterance.

4 Results and Discussion

The results obtained in all cases showed a good correlation to original target
perceptually. The pitch contours for each of the expressions were compared after
synthesis using proposed algorithm. The results obtained by using proposed
algorithm is compared with that obtained using TD-PSOLA algorithm for pitch
and time scaling. Figures 3 and 4 give the comparison of pitch contours in both
cases. For evaluating the performance of the proposed algorithm over the existing
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Fig. 3. Comparison of pitch contours for each converted emotion: in each case, dotted
plot represents pitch contour of target and bold line indicates that of synthesised target.
It is seen that the synthesised contour closely follows the target

PSOLA based technique, several objective and subjective metrics were consid-
ered. In each utterance, Mean Square Error was calculated using Eq. 4 for various
combinations of speakers for each emotion.

MSE =
∑

k

|xk − yk|2
N

(4)

where xk represents F0 value of kth target utterance and yk represents the same
for synthesised utterance using proposed algorithm. N represents the number
of elements in the sum matrix. From Fig. 5, it can be seen that the highest
values were obtained for anger emotion while fear yielded maximum sample-
wise similarity to target.

Another useful metric for determining the similarity between two utterances
is correlation coefficient. In our work, we have used Pearson’s correlation coef-
ficient (γx,y)(Eq. 5) as an objective measure for contemplating on the accuracy
of conversion.

γx,y =
covariance(x, y)

σxσy
, covariance(x, y) =

|(xk − μx)(yk − μy)|
N

(5)

where σx, σy, μx, μy denote the standard deviations and means of selected para-
meters of target and synthesised utterances, N is the number of observed values
in each case. The correlation between utterances for each emotion generated
using the proposed algorithm for each speaker has been calculated and plotted
in Fig. 6. It is observed that maximum correlation has been obtained for fear in
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(a) TD-PSOLA:Overlap add at points of
concatenation of unit waveforms is car-
ried out so that spectral mismatch is re-
duced [14]

(b) Anger:Target vs synthesised

(c) Fear: Target vs synthesised (d) Happiness: Target vs synthesised

Fig. 4. An implementation of PSOLA algorithm is carried out as in Fig. 4(a) [14] and
pitch contours have been plotted. PSOLA necessitates pitch marking for analysis using
knowledge of epochs which are instants of glottal closure. Synthesis pitch marks are
derived from analysis pitch marks by using pitch and time scaling factors provided to
the algorithm. Scaling factors are obtained by taking ratio between mean values of F0
and duration of neutral and target utterances. In each case, dotted plot represents pitch
contour of target and bold line indicates that of synthesised target using TD-PSOLA
algorithm

most cases which coincides with the mean square error trend. Also, speakers 1, 2,
3, 5 and 7 are female while the remaining (4, 6, 8, 9, 10) are male. As per the cor-
relation results, male speech yielded better similarity than female ones. This is
because as pitch values are higher in females, extreme variations of modification
factors led to higher distortion in voice quality. Correlation coefficient was calcu-
lated to estimate the similarity between utterances. Table 1 reflects the results.
Fundamental frequency (F0) was chosen as the parameter for comparison.

From Table 1, it can be noted that in all cases, the correlation between fun-
damental frequency values is higher for speech synthesised using proposed algo-
rithm than that using TD-PSOLA. In contrast to the findings above, the corre-
lation with respect to fundamental frequency is found to be higher for anger by
more than 90% as compared to PSOLA. This is due to the fact that the con-
version was based on manipulating the residual with the pitch factor calculated
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Fig. 5. Comparison of Mean Square Error (%) across speakers

Fig. 6. Comparison of correlation coefficients across speakers

using autocorrelation. An average improvement of 60% is obtained across all
three emotions considered.

A better perspective on the perceptual quality of emotional speech syn-
thesis is obtained by conducting a subjective evaluation. For this purpose, 30
speech samples, each of original target, synthesised emotion using proposed algo-
rithm and that using TD-PSOLA were selected for anger, fear and happiness.
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Table 1. Comparison of Correlation Co-efficients using F0 as parameter

Emotion Algorithm Correlation Coefficient (γx,y) Improvement (%)

Anger Proposed 0.79 92.68

TD-PSOLA 0.41

Fear Proposed 0.98 58.06

TD-PSOLA 0.62

Happiness Proposed 0.55 27.91

TD-PSOLA 0.43

Table 2. Ranking scale description for perception test

Perceptual similarity with target Similarity score

Closely similar 5

Some-what similar 4

Sounds little different, little similar 3

some-what different 2

Very much different/no similarity 1

The listening test was conducted in Robotic Research Lab with 11 participants
in the age group of 18–30. Table 2 gives the ranking scale used for judging the
perception quality of utterances. From the perception experiments conducted,
Comparison Mean Opinion Scores (CMOS) were found to be better for proposed
method than PSOLA in all cases as in Fig. 7. Listeners experienced difficulty in
perceiving the target emotion itself from the database in some cases. Anger
showed maximum similarity index as opposed to the objective perception exper-
iments. As anger is associated with higher pitch and intensity, it was easier for
the listeners to associate it to the target. A subjective evaluation of database
revealed an average CMOS of 3.46, 3.5 and 2.6 for original anger, fear and hap-
piness respectively. The results from objective and subjective evaluations show
a promising trend towards generating better expressiveness in speech by using
computationally simple signal processing techniques. The most important chal-
lenge to be addressed here is that the conversion process requires parallel source-
target data and is text dependent. Objective results are better than PSOLA as
spectral characteristics are also modified by analysing the target residual. F0

feature showed highest improvement(evident from Fig. 3 and Table 1) as pitch
factor was incorporated into source residual prior to re-synthesis. Correlation
factors for fear and happiness can be improved if the database used can depict
these emotions with finer details like voice quality.
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Fig. 7. Subjective comparison based on CMOS obtained for each converted emotion

5 Conclusion

A technique for emotion conversion using explicit control is experimented and
evaluated based on both objective and subjective comparison indices. The
strength of the proposed algorithm lies in utilising the waveform similarity aspect
of WSOLA for effective transformation of time scale. The spectral enhancement
is carried out by linear prediction analysis. Here, manipulation of residual is
carried out as it embeds excitation source information critical to the required
expression. The algorithm mandates availability of parallel data for source and
target utterances for linear prediction. Though objective methods give good cor-
relation between emotional samples, subjective results are less convincing. This
points to the possibility of inclusion of perceptual features for distinguishing
each expression and developing generalised models without the need for a par-
allel database.
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Abstract. The paper is devoted to improving the methods of voice conversion
(VC) for developing text-to-speech synthesis systems with capabilities of tuning
on the target speaker. Such system with VC module in acoustic processor,
parametric representation of speech database for concatenative synthesis based
on instantaneous harmonic representation is presented in the paper. Voice con-
version is based on multiple regression mapping function and Gaussian mixture
model (GMM), the method of text-independent learning is based on hidden
Markov models and modified Viterbi algorithm. Experimental evaluation of the
proposed solutions in terms of naturalness and similarity is presented as well.

Keywords: Voice conversion � Multivoiced text-to-speech synthesis � GMM �
GUSLY � Non-parallel corpora training

1 Introduction

The key question in modern text to speech synthesis (TTS) is not about objective
features. It is more about characteristics that are more complex such as the naturalness
of synthesized speech, support for multiple languages or capabilities of tuning on the
specific speaker – multivoiced text to speech synthesis systems (MVTTS). The last
aspect is the most important and interesting to study, especially in the context of
designing “Photoshop for Audio” – a tool which will allow transforming original
speaker voice characteristics online, as well as creating new voices [1].

State of the art in the text-to-speech synthesis systems (“Amazon Polly”, “Ivona”,
“Google TTS”, “Siri”) are unit selection based systems with rich speech corpus [2]. Such
systems often could not be installed locally, due to requirements of permanent Internet
connection, since all language resources used for unit selection procedure take up a large
amount of memory and are stored remotely [3, 4]. This fact makes it difficult to use
corpus based TTS approach in systems with limited computing and memory capabilities:
embedded systems, mobile applications or environments without Internet connection.

From our point of view, for such applications, the relevant considerations are the
compilation methods of TTS, which concatenate speech from basic elements (units) of
small duration and require significantly less memory for storage of linguistic resources.
However, the problem is to achieve an acceptable price/quality ratio. In this
context questions of personalization and tuning on the target speaker become
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particularly important. Various strategies such as multiple databases (for several
speakers) or voice conversion technology are used to solve the problem.

Voice conversion is a signal processing technique, which transform voice char-
acteristics of source speaker (SS), contained in speech signal to characteristics of target
speaker (TS) without changing the meaning of the message [5]. This procedure is
performed using the appropriate conversion function, which maps the feature vectors of
the SS voice to the corresponding vectors of TS. Objects of voice conversion function
are timbre and prosodic parameters.

The paper presents a multivoiced text-to-speech synthesis system with embedded
voice conversion module. The architecture of the system includes speech representation
model, multiple regression conversion function based on Gaussian mixtures model
(GMM) and text-independent algorithm for training.

2 Parameterization of Acoustic Database for MVTTS

The quality of synthesized speech depends on two main factors: speech database itself
and accuracy of compilation (concatenation) procedure. Various audible artifacts can
be observed when the concatenation algorithm does not work satisfactorily, or speech
database does not contain sufficient set of compilation units. The problem is depicted
on Fig. 1, where two adjacent compilation units (phonemes, allophones) are plotted. It
is easy to see that compared to a smooth transition in natural speech signal a gap
(Fig. 1a) occurs between the elements in the range of synthesized signal (Fig. 1b),
which leads to audible artifacts. Such distortions become particularly pronounced while
using compilation algorithms that fail to account these errors. It can be noted that such
phenomenon is difficult to capture, analyze and manage in the time domain.

Fig. 1. Audible effects during speech synthesis compilation: a – smooth transition between units
in natural speech; b – audible artifacts between units in synthetic speech
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In a number of works [6, 7] various approaches are suggested for improving
concatenative and unit selection synthesis processes. The most comprehensive review
is presented in paper [8]. Basically, the authors propose different special cost functions
for solving the problem of choosing the most suitable compilation unit.

In this paper, we focus on the methods of digital signal processing and parametric
representation of units in order to attenuate the artifacts. We assume that it is easier to
perform compilation and interpolation operations in model parameters space, than
implement algorithms that operate in the time domain with raw samples or even doing
smoothing in the frequency domain with Fourier, MFCC or LSF coefficients.

Recently, hybrid models of signal representation have become widespread. Among
the popular models, we can take out harmonic plus noise model (HNM) [9],
STRAIGHT [10], amplitude modulated-frequency modulated speech model with
quadratic phase splines and a super-fast cosine generator (VOCAINE) [11].

We use a model based on GUSLY framework [12], that uses an original model of
voiced speech, which represents each harmonic as a multicomponent function and
provides high quality processing in conditions of partial glottalization.

In GUSLY voiced and mixed excitations are considered as a quasi-periodic process
with constant pitch. The pitch period determines how many harmonics are distin-
guished with the model. The model considers each of them as a multicomponent
function and represents signal (n) as:

s nð Þ ¼
XK

k¼1

GkðnÞ
XC

c¼1

Ac
k nð Þ cos f ck nþuc

k 0ð Þ� � ¼
XK

k¼1

Gk nð ÞekðnÞ; ð1Þ

where GkðnÞ is a gain factor specified by the spectral envelope, C – number of sinu-
soidal components for each harmonic, f ck and uc

k 0ð Þ – frequency and initial phase of c-
th component of k-th harmonic respectively, ekðnÞ – excitation signal of k-th harmonic.
Amplitudes Ac

k nð Þ are normalized in order to set the unit energy to each harmonic’s

excitation: 1
2

PC

c¼1
Ak
c nð Þ� �2¼ 1 for k ¼ 1; . . .;K:

In GUSLY parameters of the model are estimated in warped-time domain that
requires prior estimation of instantaneous pitch. Time warping implies resampling of
the signal using a constant number of samples per pitch period.

Analysis workflow is shown in Fig. 2 and can be briefly summarized in the fol-
lowing way: (1) estimation of instantaneous pitch is made; (2) time warping is applied
that results in a speech signal with constant pitch [13]; (3) the signal is separated into
individual harmonics using a DFT analysis filter bank; (4) subband analytical signals are
decomposed into instantaneous harmonic parameters using modified Prony’s method.

Fig. 2. Speech parameterization with GUSLY framework
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The output signal is synthesized using the same functional blocks applied in reverse
order as shown in Fig. 3: (1) subband signals are synthesized using (1); the sample rate
of the signals varies with target (modified) instantaneous pitch; (2) DFT synthesis filter
bank is applied which performs antialiasing filtering of each harmonic component (the
subband signals are decimated in order to reduce overall computational cost);
(3) inverse time warping is applied to form target pitch contour. Detailed description of
the framework along with performance analysis is given in [14].

3 Voice Conversion with Gaussian Mixture Models
for MVTTS

To configure multivoiced speech synthesizer on the target speaker is necessary to
choose conversion function and training procedure. The most common paradigms in
voice conversion researches now are statistical modeling commonly based on Gaussian
mixtures models (GMM) and artificial neural networks (ANN) [15]. Statistical methods
have relatively less performance than heuristic models like ANN, but for training
procedure they require less computational resources, which is quite important in the
context of the application for embedded systems.

Conversion function, taken as a core in our work [16] is based on a linear
regression model of the first order, using as their coefficients GMM parameters
obtained during the training phase. This function has proven their effectiveness espe-
cially when compared with approaches based on hard clustering parameter space [15].
However, a detailed analysis identifies a number of shortcomings. At first the com-
plexity of choice the relevant order of GMM. Inadequate growth of model complexity
leads to over smoothing problem. Second shortcoming is connected with a very simple
first-order regression function that has limited prediction ability. Statistical relation-
ships are present between only one pair of vectors in each i-th time (Fig. 4a).

Model considers only the spatial correlation between the vectors of parameters,
excluding the fact that the parameters of the speech signal does not change rapidly after
instantaneous analysis, and have some properties of Markov process. Given this
observations we suggest an extended conventional regression function, with multiple
factors obtained from GMM coefficient of parameters space (Fig. 4b).

Fig. 3. Signal synthesis with GUSLY framework
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Let us take into account not only the spatial but also the continual correlation
between adjacent vectors:

yi ¼
XQ

q¼1

pq xi; yi�1; xiþ 1ð Þ½lq þUq�x
q
i þWq�y

q
i�1 þXq�x

q
iþ 1�;

where i – frame number i = 1,…,T, q – number of GMM mixture q = 1,…,Q, x = [x1,
x2, …, xT]

T, y = [y1, y2, …, yT]
T
– the sequence of parameter vectors of the SS and TS

xj, yj 2 ℝ1xp, p – the dimension of the parameter vector, pq(xi, yi–1, xi+1) – posteriori
probability that the input vectors xi and yi–1 and xi+1 belongs to q-th Gaussian com-
ponent, µq = [µ1, µ2,…, µQ]

T
– vector of the expectations for each component of the

mixture of TS µq 2 ℝ1xp, U = [U1, U2,…, UQ]
T
– the matrix of regression coefficients

for all components of the mixture at variable independent variable xi Wj 2 ℝpxp,
W = [W1, W2,…, WQ]

T
– the matrix of regression coefficients for all components of the

mixture of first predictor variable yi–1 Wj 2 ℝpxp, X = [X 1, X 2,…, X Q]
T
– the matrix

of regression coefficients for all components of second predictor variable xi+1 X j 2
ℝpxp. Then the problem of finding the unknown parameters {µ,U,W,X} is formulated
as optimization problem, the solution of which could be found by the least squares
method. The weight of the component can be found from the following expression:

pq xð Þ ¼ aqNðx; lxq;Rxx
q ÞPM

j¼1 ajNðx; lxj ;Rxx
j Þ

;

where x – features vector of the source speaker,M – number of component mixture, lxq –
expectations vector of the q-th component of the mixture, Rxx

q – covariance matrix of the
source speaker of the q-th component, pq xð Þ – posteriori probability vector of x com-
ponent, N – multivariate Gaussian distribution. To determine the coefficients of the
conversion function, we use the expectation maximization (EM) algorithm, which is
based on the iterative calculation of maximum likelihood estimates. To compare the
effectiveness of the proposedmethod, a number of experiments were conducted. Standart
statisitical models from [15] where compered with multifactor regression model.

The results are shown in Table 1, where LRM – linear regression model, GMM –

joint-density GMM, GMM* – multi factor GMM (proposed). The predecessor model

Fig. 4. Types of relationships between pairs of vectors of the training sequence: a – independent
model; b – Markovian process
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shows the best results for a number of mixtures exceeding 64 components. During the
experiment, diagonal covariance matrices were used. The essence of voice conversion
framework in details is considered in work [17].

4 Text-Independent Training Procedure for MVTTS

To find parameters of GMM distribution and conversion function coefficients a training
phase is required. Training can be carried out on the basis of text-independent and
text-dependent approaches [15]. The key advantage of last approach is the convenience

Table 1. Experimental results for determination coefficient (R2) of regression VC models

Voice
conversion
function type

Number of mix. components (diag R) test item
description
16 24 32 64 80 90 100 128

R2 LRM [15] 0,45 0,57 0,68 0,74 0,74 0,77 0,76 0,74
GMM [15] 0,47 0,64 0,67 0,75 0,75 0,79 0,78 0,76
GMM* 0,46 0,62 0,71 0,79 0,78 0,81 0,82 0,79

Fig. 5. Text-independent training process in MVTTS
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and ease of customization of the system with this type of tuning. In our approach it is
not required to record certain corpus of training phrases. The proposed method of
text-independent training is based on HMM and Viterbi algorithm (Fig. 5) [18].

User could use any available phonograms, for example but with transcript that could
be non-synchronized. Such as interviews, podcasts or programs. The only limitation of
the proposed solution is that a text description of the speech material is necessary.
However, it is need not be synchronized with speech, for example as subtitles.

Proposed scheme of training involves extensive use of linguistic units TTS to
undertake the following stages: normalization of the text, its syntax, morphological
processing, phonemic transcription, as well as further accessed synchronization markup
phonemic phonogram target speaker based on data obtained from SS, i.e. speech
synthesizer. This fact gives the opportunity to subsequently convert phonemic recog-
nition task units in the flow of speech audio synchronization task and phonetic markup
and text blocks with a speech synthesizer. A detailed description of the method could
be found in [19].

5 Architecture of MVTTS

The attempt to use this technology for TTS to solve the problem of adding multivoiced
synthesis features is quite obvious [15]. However, the standard solutions in this area,
tend to be a very straightforward approach to the application, and they can be reduced
to a simple piping of two types of systems. In such system, the acoustic processor of the
TTS system and the voice conversion system are completely independent: the output
signal coming from the TTS is used as input signal for the voice conversion module.
The non-interactive approach has some disadvantages that may result in noticeable
quality loss.

The most basic drawback is that reconstructing the waveform and analyzing it again
for converting voices is unessential, taking into account that the same speech model can
be used for synthesis and for voice conversion. It is advisable the voice conversion
system should has an access to the speech model parameters and can operate directly on
them. Other important limitation is related to the prosodic changes of speech: two
different prosodic modifications from TTS prosody generator and VC system are per-
formed instead of one, and the consequence is that the quality degradation is higher than
strictly necessary. Although the unit selection process is optimized for obtaining syn-
thetic speech as natural as possible without significant discontinuities, the fact that the
resulting speech signal is to be transformed by means of certain voice conversion
function should be taken into account in any way. Considering the above nuances system
architecture allows neutralize the influence of these shortcomings was developed.

We can get rid of mistakes by integrating the conversion module in the acoustic
processor unit and rational division of prosody conversion and signal parameters
between the two species of systems. Architecture ofMVTTS is presented in Fig. 6 shows
an interactive system in which all the limitations commented above are not presented.

First, voice conversion aspects are taken into account by the unit selector. Second,
all the modifications (spectral and prosodic) are performed by a single block so that the
signal characteristics are modified only once. Third, the concatenation and
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reconstruction of the synthetic speech signal are performed after having converted the
source voice into the target voice.

6 Experimental Results

To assess the effectiveness of the suggested methods as a part of MVTTS system, series
of tests to characterize the intelligibility and naturalness were performed. For evalua-
tions mean opinion scores method (MOS) was used.

Experiments were conducted on phonetically balanced set of phrases, including 200
audio recordings of the same proposals for four speakers: two men and two women. In
further experiments male speakers conditionally designated as M letter, and female
speakers as F letter, respectively. The average duration of one phrase was 5–6 s. The
audio files were encoded in wav format, 16000 kHz sample rate and bit depth of 16 bit.

The size of the test sample was twenty phrases that are not included in the training
set. Signal analysis and synthesis was produced using GUSLY signal representation

Fig. 6. Architecture of the multivoiced TTS
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model described in Sect. 2. After analyzing the signal was used to parameterize the
spectrum envelope based on linear prediction method by using the filter coefficients in
the form of vector linear spectral frequencies of order 24.

The results of the experiment are presented in the form of Table 2 and histograms for
characteristics of naturalness (Fig. 7-a) and similarity of synthesis speech (Fig. 7-b).
Experimental results suggest that the proposed method (GMM*) enables to improve the
characteristics of naturalness in comparison with the classical method of conversion on
the basis of an average of 10% MOS according to the parameters of naturalness and 5%
according to similarity.

Also according to the similarity parameter, this method comes short of approach
based on frequency warping (FW) and artificial neural networks (ANN) [15]. This fact
can be explained by the fact that proposed method (GMM*) allows to get a stronger,
less than the average (more natural) representation of spectral envelope as a result of
conversion, while classical statistical techniques (GMM) can significantly average this
feature. However, according to degree of similarity, the proposed method exceeds the
standard method based on frequency warping and only is slightly inferior to the method
based on artificial neural networks, the listed methods in the process of achieving great
simplicity in training and fewer resources on preparations. High performance of latest
justified by a nonlinear mapping displaying features, but require a preliminary design
of a neural network and its learning algorithm selection.

Table 2. Experimental results for naturality and similarity of suggested solution

System type Naturality test item Similarity
M-M M-F F-M F-F Mean M-M M-F F-M F-F Mean

MOS GMM 3,2 2,6 2,9 3,3 3,0 3,7 3,5 3,6 3,9 3,7
GMM* 3,5 3,2 3,3 3,4 3,4 3,7 3,6 3,6 3,7 3,7
FW 4,3 3,3 3,7 3,8 3,8 2,7 2,2 2,8 2,6 2,6
ANN 3,6 3,7 3,7 4,1 3,8 3,8 3,4 3,8 4,3 3,8

Fig. 7. Quality marks (MOS): a – naturality; b – similarity
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7 Conclusion

The paper investigates the issues of multivoiced speech synthesis systems implemen-
tation using concatenation approach. The system architecture includes modified
acoustic processor with integrated voice conversion module. To avoid gaps during
compilation phase, reduce errors in time of analysis-synthesis and VC transformation
stages speech representation model GUSLY was applied. Speech units database were
parameterized in the same way. New multifactor regression conversion function with
GMM parameterization allowed to take into account the Markov process in the
sequence of parameters vector of the speech signal. Text-independent training on
HMM and Viterbi algorithm were developed. The proposed solutions have shown their
effectiveness in performance in comparison with the known approaches.
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Abstract. The telephone, whether mobile, landline, or VoIP, is probably the
most widely used form of long-distance communication. The most common use
of voice biometrics is in telephone-based speaker verification, so the ability to
operate effectively over the telephone is crucial. Similarly, access to vocal health
monitoring, and other voice analysis technology, would benefit enormously if it
were available over the telephone, via an automatic system. This paper describes
a set of voice analysis algorithms, designed to be robust against the kinds of
distortion and signal degradation encountered in modern telephone communi-
cation. The basis of the algorithms in traditional analysis is discussed, as are the
design choices made in order to ensure robustness. The utility of these algo-
rithms is demonstrated in a number of target domains.

Keywords: Voice analysis � Robust algorithms � Tele-health voice analysis �
Voice bio-markers � Voice biometrics � Telephone speaker verification

1 Introduction

1.1 Voice Analysis

Many characteristics of a subject’s voice can be measured and quantified. Speech and
Language Therapists (SLTs) tend to rely on subjective measures based around concepts
such as “breathiness” and “hoarseness” [1–3], while biometric systems concentrate on
parameters with a more precisely defined mathematical formulation (most notably
various forms of “Cepstral Coefficients”) [4–6].

Some voice analysis is applied to sustained phonations (saying “aa”, “ee” or “oo”)
to characterise conditions affecting voice production by the vocal folds, while other
sounds, or natural speech, may be used to investigate articulatory or other speech
disorders [7].

Considerable research has been performed on automating acoustic measurements in
a form useful to SLTs, while conversely, there have also been many attempts to
incorporate mathematical correlates of the SLTs’ measurements into biometric appli-
cations. However of these techniques only operate well on high quality recordings.
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1.2 Telephone Speech

When speech is collected over the telephone, whether for voice analysis or speaker
verification purposes, there are many forms of distortion and degradation in signal
quality. There are three main causes:

• Human Factors: subjects rarely hold the handset in the best, or even a constant,
position; they may speak too early or too late; there may be other speakers or noises
in the background; they may have an extreme accent or cognitive issues which
reduce the quality of the recording.

• Hardware Issues: many telephone handsets include quite poor quality analogue
circuitry, causing a loss of some frequencies and distortion of others, while others
may have audio enhancement such as echo suppression, noise cancellation, or
dynamic range compression. All of these can interfere with the correct operation of
voice analysis algorithms.

• Network/Codec Issues: analogue telephone networks suffer from restricted band-
width, hybrid echoes, line noise and other distortions, while digital networks suffer
from packet loss and codec distortion (which can vary dramatically within a single
call if an adaptive codec switches between data rates in response to network con-
gestion, for example). The sample rate used in the public telephone network also
severely limits the bandwidth of the speech signal.

1.3 Sensitivity of Traditional Parameters

To demonstrate the sensitivity of standard algorithms to the nature of the communi-
cation channel, we collected a small database of simultaneous high-quality audio
recordings and genuine telephone calls, including examples of sustained phonation and
spoken sentences1.

High quality recordings were used to define a baseline against which to compare
simulated and real telephone signals. We refer to this type of signal as “hq”. The
bandwidth-limiting effects of an analogue telephone line were then simulated by
resampling the hq signal to 8 kHz, removing frequencies below 250 Hz with a simple
2nd-order filter, and encoding the signal using a-law compression. We refer to this as
the “hq-landline” signal.

To replicate some of the effects of mobile phone transmission, we further processed
the hq-landline signal by encoding it with a simple GSM encoder, giving the
“hq-mobile” signal.

The final signal, that obtained from the simultaneous telephone network recording,
was used unaltered and is referred to as the “pq” (phone quality) signal.

1 The database included 7 speakers, each speaking 2 sustained phonations and a number of sentences
taken from “The Rainbow Passage”, totalling over 5 min of speech. Simultaneous recordings were
made: one using a high quality microphone, sampled at 44.1 kHz and encoded using 16 bit PCM,
and the other over a standard telephone line, with the handset held in a natural position, chosen by
the speaker. The recordings were all processed with an automatic phoneme alignment system, but the
resulting labels were not used in this paper.
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These signals were analysed using the Praat [8] “Voice Report” function. This
yields estimates of many parameters including mean pitch, jitter, shimmer, and
Noise-to-Harmonics Ratio (NHR).

For each parameter, the Pearson R2 correlation (the coefficient of determination)
was calculated with respect to the hq baseline. Pearson R2 values were used in order to
allow for different measurement scales, and thus to allow meaningful comparisons
between different parameterisations and different algorithms. Three obvious “outliers”
were omitted from the analysis: one was the result of an error in the Praat APQ5
shimmer analysis, while the other two were due to the Praat NHR estimate.

The mean pitch was almost identical in all the signals (R2 > 0.9999), but the other
parameters were affected to varying degrees (some of the most widely used Praat
parameters are included in Table 1).

The Praat parameters related to timing (pitch and jitter) are maintained relatively
accurately (R2 > 0.99, except for jitter measured on the hq-mobile signals, R2 = 0.9185),
while those related to signal amplitudes (shimmer and NHR) are more sensitive to
distortion and extraneous noise, especially when a real telephone is used (R2 < 0.8). The
other Praat parameters calculated in the “Voice Report” followed a similar pattern.

1.4 Robust Estimation

For many subjective measures, there have been attempts to find automatic methods to
generate parameters which are correlated with human evaluations of recorded speech,
as reported on scales such as GRBAS and Cape-V. However there has always been
some doubt about the use of human-generated baselines in this respect. Some
researchers have found a strong correlation within and between individual SLTs’
scoring, while others have reported the opposite.

The situation is further complicated by the fact that many SLTs and voice spe-
cialists have developed their own variants of the standard scales and assessment pro-
cedures, in order to find a system which works well for them.

This lack of a reliable baseline has led us to devise a parameter set with a greater
emphasis on the ability to make reliable measurements over the telephone, rather than
precisely emulating a specific SLT’s evaluation.

Thus we have developed a number of voice analysis algorithms so as to provide a set
of measurements which, taken together, will provide a comprehensive parametric
description of the speaker’s voice and speech, and to do so reliably, even in the presence
of distortions due to the use of imperfect telephone channels. These “VoiScan”

Table 1. Pearson R2 values for Praat parameters of sustained phonations, compared with
simultaneous hq (high quality) recordings

Signal type Mean pitch Absolute jitter APQ5 shimmer NHR

hq-landline 1.0000 0.9969 0.8516 0.9378
hq-mobile 1.0000 0.9185 0.9657 0.8483
pq 1.0000 0.9944 0.7914 0.7860
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measurements, or subsets thereof, could be applied in applications ranging from tele-
health to speaker verification and forensics.

2 VoiScan Parameters

It is not possible to describe each individual parameter in detail in this paper, but the
general principles we have followed, are outlined below:

The pitch and related parameters are calculated using an autocorrelation-based pitch
detector, operating on the instantaneous power envelope. By using the power envelope
rather than the waveform itself, sensitivity to wide-band noise is minimised.

Similarly, formants and measures of speech dynamics are estimated from an
unbiased, non-parametric, power spectrum estimator, which is less sensitive to noise
and distortion than (for example) the linear prediction analysis often used for formant
tracking.

The algorithms maintain their robustness by (wherever possible) delaying “hard”
decisions regarding features of the speech signal [9], or avoiding them completely.
Instead, parameter estimates are based on regression curves or weighted averages. The
effects of individual values are reduced by performing the regression or weighted
averaging over as many samples as possible (the whole of an utterance, or the length of
a continuous section of voiced speech, for example).

Weightings are chosen to suit each parameter individually, and to reflect the
likelihood that the value is accurate, and thus improve numerical stability.

The results in Table 2 demonstrate that the respective VoiScan parameters are
robust, with the only R2 value below 0.97 being that for the measurement of shimmer
in the real telephone recording. The other parameters described in Sects. 2.1 to 2.4 are
similar, although obviously there is some variation, especially within the more
experimental Articulatory/Dynamics Parameters of Sect. 2.4.

Nonetheless we have conducted informal experiments which show a Pearson R2

value above 0.9 for the major VoiScan parameters, with respect to the Praat equivalents
(Table 3, below). In the case of the mean pitch, R2 was in excess of 0.9999.

Only the jitter value in Table 3 is lower than the corresponding values in the “pq”
row of Table 1, indicating that the other VoiScan parameters are closer to the
“industry-standard” Praat analysis of the hq recordings, than Praat analysis of the same
signals recorded over a real telephone network.

Table 2. Pearson R2 values for robust VoiScan parameters of sustained phonations, compared
with simultaneous hq (high quality) recordings

Signal Pitch Jitter Shimmer NHR

hq-landline 1.0000 0.9730 0.9828 0.9982
hq-mobile 1.0000 0.9701 0.9848 0.9985
pq 1.0000 0.9722 0.8247 0.9852
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The most informative parameters we have devised thus far, are listed below. They
can be divided into four broad groups: Temporal Parameters, Voice Source Parameters,
Vocal Tract Parameters, and Articulatory/Dynamics Parameters.

2.1 Temporal Parameters

These parameters summarise information about the whole of an utterance, in terms of
the timing of voiced intervals within the utterance.

Response time: The elapsed time between the start of the recording and the start of
detected speech. If this is unusually long, then the speaker may not have heard or
understood any instructions for some reason, or have other cognitive issues.

Active duration: The total duration from the start to the end of detected speech. If
this is very short or very long, the speech may have been mis-detected or the speaker
may not have complied with their instructions.

Total breaks: The number of pitch discontinuities in the voicing of the detected
speech. Too many breaks during sustained phonation may simply indicate a poor
quality mobile phone line, but can also indicate medical issues such as dysphoria.

Analysed interval: The duration of the segment of the signal subjected to detailed
analysis. For sustained phonation this represents the longest continuously voiced
interval. For other analyses, it is the total duration of all the voiced segments.

2.2 Voice Source Parameters

Most of these parameters characterise the voice source (the lungs, the vocal folds and
the other structures within the larynx). They can be indicative of both physiological and
neurological disorders.

Pitch: The mean fundamental frequency of the voiced speech. An unusually low
pitch is often associated with increased levels of Creakiness (below).

Pitch (standard deviation): A measure of the range of fundamental frequencies
observed during the analysed segment. A low value during sustained phonation indi-
cates that the speaker has good control over their vocal folds, whereas a low value
during natural speech indicates that the speech is literally monotonous.

Jitter: The short-term variation in the timing of the vocal folds’ vibrations. High
values indicate irregularity in the vocal folds’ movement which can be due to many
factors, including both physical and neurological conditions. In our case, jitter is not
calculated from individual pitch epochs (which are prone to error, especially at low
sample rates). Instead we take a sample-by-sample estimate of the pitch period, p(t),
take the log, and find the magnitude of its deviation from a local mean. This gives an
instantaneous log relative jitter value, jlog(t):

Table 3. Pearson R2 values for robust VoiScan parameters of high quality recordings of
sustained phonations, compared with values derived using Praat

Pitch Jitter Shimmer NHR

1.0000 0.9027 0.9209 0.9007
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These instantaneous values are then averaged over the interval of interest, and
converted to a relative jitter value, expressed as a percentage:
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Shimmer: The short-term variation in the amplitude of the vocal folds’ vibrations.
High values indicate irregularity in the airflow between the vocal folds, which can be
due to a range of conditions affecting the control of the muscles within the larynx. Our
Shimmer parameter is calculated as for Jitter, above, but on a dB scale.

Noise-to-Harmonics Ratio: The energy in any noise-like components (turbulence)
relative to the periodic components (harmonics) during voiced speech. A clear singing
voice should exhibit a low Noise-to-Harmonics Ratio (NHR). Conversely, a larger
value indicates a roughness to the voice, such as that caused by diseases of the larynx.

Breathiness: An estimate of the perceived breathiness of the voice, calculated
using a telephone-optimised version of the Fukazawa Breathiness Index [10]. This is
also an indicator of laryngeal pathologies, but designed to reflect similar aspects of the
speech to those identified perceptually by clinicians. The original method has been
enhanced using modern techniques for high-resolution time-frequency analysis.

Creakiness: A measure which correlates well with perceived creakiness of the
voice, but which has been optimised for telephone speech. A high value indicates that
there is a periodic irregularity in the voice waveform, such as diplophonia.

Voiced segment amplitude (standard deviation): The standard deviation of the
log amplitude during the longest continuously voiced interval. This is analogous to the
Modulation Index traditionally used to assess telephone line quality.

2.3 Vocal Tract Parameters

These parameters are based on estimates of acoustical characteristics of the vocal tract,
specifically the resonant frequencies (the “formants”) and the trough between the first
two formants.

F1 (normalised): The frequency of the first vocal tract resonance (formant), rel-
ative to that of the third. This normalisation produces values which are relatively
independent of the individual’s vocal tract length, and so allow detection of abnor-
malities in the articulation of steady vowels. An unusually high or low value can
merely indicate an unusual accent, or possibly a medical condition such as Apraxia of
Speech (AoS).

A1 (relative): The energy of the first formant, expressed as a proportion of the first
three formants. An unusual value may indicate a medical condition normally associated
with Breathiness, but it can also be caused by a poorly located microphone, or other
electro-acoustic problem with the telephone.

F1 sharpness: The sharpness of the first formant resonance. This parameter can be
high for trained classical singers who are practised in matching the pitch of their voice
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to the resonant frequencies of the vocal tract. In general, it gives an indication of the
perceived clarity of vowel sounds.

F1 variation: The magnitude of the short-term variation in the first formant fre-
quency. During sustained phonation, this value should be small, indicating a stable
vowel sound, but during fluent speech, significant variation is normal and unusually
small variation can be symptomatic of poor articulation.

A1 variation: The magnitude of variation in the amplitude of the first formant. The
same comments as for F1 variation, above, apply here too.

F2 (normalised), A2 (relative), F2 sharpness: The same as the respective F1 and
A1 parameters, above, but with respect to the second formant.

F2 variation: The magnitude of short-term variation in the second formant’s fre-
quency. As for F1 Variation, this value should be small during sustained phonation,
indicating an unchanging vowel sound. However during normal fluent speech, the
second formant normally covers a very wide range and a small F2 Variation suggests
under-articulation of the vowel sounds.

A2 variation: The magnitude of the short-term variation in the amplitude of the
second formant. The same comments as for A1 Variation, above, apply here too.

F1, F2 trough frequency (normalised): The relative frequency of the trough
between the first two formants. A value of zero corresponds to the trough being
adjacent to F1, while a value of 100% corresponds to it lying next to F2. Most
non-nasalised sounds produce a value in the region of 50%, but a value at either end of
the range can indicate the presence of unusual nasalisation.

F1, F2 prominence: The normalised energy of the first two formants relative to
that of the trough between them. This is related to the F1 and F2 Sharpness measures.

F1, F2 trough sharpness: The sharpness of the trough between the first two
formants. A high value can indicate unusual levels of nasalisation.

F1, F2 trough frequency variation: The magnitude of the short-term variation in
the F1, F2 trough frequency. If this is large then the estimate of F1, F2 Trough
Frequency may have been affected by background noise or other factors.

F1, F2 prominence variation: The magnitude of the short-term variation in the F1,
F2 Prominence. Indicates how smoothly the voiced sounds are articulated.

F3: The absolute frequency of the third formant. This is relatively invariant for any
given speaker, and is used in the normalisation of F1 and F2.

A3 (relative): The energy of the third formant, expressed as a proportion of the first
three formants. This is normally lower than A1 and A2.

2.4 Articulatory/Dynamics Parameters

These parameters describe the articulation and control of the upper vocal tract. They are
calculated without explicit identification of formants or pitch, operating on the broad
time-frequency structure of the speech signal. They can contribute to the automated
analysis of disordered speech, but should be considered experimental at this time, since
they are not yet clinically proven.

Frequency-time uncertainty: A telephone-robust version of the Hirschman
Uncertainty [11]. A large value indicates that the energy is smoothly spread across
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large regions of the spectrogram and the recorded speech is poorly articulated, either
because of damped vocal tract resonance or imprecise voice source transitions.

Frequency-time orientation: The frequency-domain entropy of the spectrogram
relative to the time-domain entropy. If the energy in the spectrogram is spread across a
wide range of frequencies, but concentrated in short time intervals (e.g. stutter-like
sounds: “p-p-p-…”, “t-t-t-…”, or “k-k-k…”) this value will be positive. If the energy is
spread over a long period of time, but concentrated in a small range of frequencies (e.g.
when whistling), it will be negative.

Dynamics: The average short-term direction-change of the frequency components
in the speech. This value is close to zero during sustained phonation, but negative
during natural speech. A more negative value indicates that the formants change
direction less often, which can be associated with a slow rate of speaking. A high value
indicates frequent changes in direction and a fast rate of speaking.

Dynamics (standard deviation): The standard deviation of the Dynamics
parameter over the duration of the speech. Since the Dynamics parameter gives an
indication of speaking rate, this value reflects the variation in speaking rate during an
utterance.

Dynamics (skewness): The sample skewness of the Dynamics parameter over the
duration of the speech. This is derived from the Dynamics parameter. A low negative
value indicates that the Dynamics parameter is generally low with brief periods of
increased activity, i.e. a slow speaking rate with occasional rapid articulation. This may
indicate, for example, a speaker with good motor control and unusually precise speech.

Dynamics (kurtosis): The sample excess kurtosis of the Dynamics parameter over
the duration of the speech. It can indicate the presence of outliers in the Dynamics
parameter.

3 Example Application

To test the capabilities of the VoiScan parameters, systems were constructed to address
the Interspeech 2017 paralinguistic ComParE Cold challenge [12]. This challenge
involved the classification of voice recordings into two classes based on the subjects’
self-assessed severity of upper respiratory tract infection.

To quantify each VoiScan parameter’s ability to indicate the presence of infection,
we performed the Z-test on the two classes. The ten most sensitive parameters are
presented in Table 4. Under the Gaussian assumption inherent in the Z-test, all the
parameters in this table are affected by the severity of URT infection, at a significance
level of p < 0.00001.

The VoiScan parameters, along with standard MFCCs, were then passed to a
Support Vector Machine (SVM) to perform automatic classification, with the results
shown in Table 5.

The Unweighted Average Recall, UAR, of the system was approximately 90%.
This was significantly higher than the baseline UAR set for this task (71.0%). The
baseline system used late fusion of three different classifiers, one based on a recurrent
Deep Neural Network, and two based on SVMs. The superior performance of our
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single system, using VoiScan parameters, confirms that they are indeed able to capture
health-related information from the raw audio.

4 Conclusions and Further Work

The extensive set of parameters outlined in this paper has been shown to be useful in
identifying voice bio-markers for health and biometric applications. Some of the
VoiScan parameters have been shown to be closely correlated with the most widely
used clinical voice analysis parameters. They have also been shown to be more robust
to the distortions inherent in telephone communication than a widely used alternative.

Work is continuing on refining and extending the VoiScan parameter set, and
demonstrating the relevance of each parameter to specific applications in the areas of
speaker recognition, health monitoring, and other linguistic and para-linguistic tasks.
Our aim is to realise the potential of telephone-based speech analysis, allowing it to
provide a complete description of a speaker’s voice and speech characteristics.

Table 4. Z-statistics for top 10 VoiScan parameters using results from the Interspeech 2017
ComParE “Cold” challenge

Parameter Z-statistic

F1 (sharpness) 14.63
F1 (short-term variation) 13.06
Voiced segment amplitude (standard deviation) 11.98
F1, F2 trough frequency (normalised) 11.70
Shimmer 10.01
Dynamics 9.75
Voice break rate 9.21
F1 (normalised) 8.99
F2 (sharpness) 8.51
Pitch 7.82

Table 5. Accuracy (recall rates) for SVM-based classification in the Interspeech 2017 ComParE
“Cold” challenge, using two independent data sets

True class Data set 1 Data set 2

Healthy 95.09% 95.37%
Cold 86.67% 83.64%
Average 90.88% 89.50%
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Abstract. Nowadays, people make frequent use of search engines in
order to find the information they need on the web. The abundance of
available data has rendered the process of obtaining relevant information
challenging in terms of processing and analyzing it. A broad range of
web queries classification techniques have been proposed with the aim of
helping in understanding the actual intent behind a web search. In this
research, we have categorized search queries through introducing Search
Type Syntactical Patterns for automatically identifying and classifying
search engine user queries. Experiments show that our approach has a
good level of accuracy in identifying different search types.

Keywords: Natural language processing · Query classification ·
Machine learning · Text mining · Search engines

1 Introduction

The increasing size and diversity of online information has made the process
of searching and obtaining information relevant to the information needed,
increasingly challenging. Despite being a common fact that search engines have
improved the information retrieval methods by looking at different perspectives
such as the meaning of words, many difficulties are still present because of the
continuous increase in the amount of web content.

Different proposed classifications of web queries have been introduced in sev-
eral works [1,2,5,6,14,16,22]. Broder’s classification of web queries [6] is the
most commonly used classification; according to it, web searches could be classi-
fied into three categories, namely Informational, Navigational and Transactional.
The purpose of informational queries is to find information, merely learn how to
do something or just even answer a question. This information is available on the
web in a static form and no further interaction is necessary. Topics of this type
of queries are commonly broad and general, such as Los Angeles or are specific,
such as the Vietnam war. Usually there is no particular web page containing
c© Springer International Publishing AG 2017
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all the required information needed; users have to gather the information from
multiple web pages.

On the other hand, navigational queries have one right result since the pur-
pose of such is to reach a particular site, e.g. British museum homepage. In this
type of queries, the user usually has a certain website in mind but either does
not know the URL or may think that a particular website exists. Finally, trans-
actional queries have as an objective to find a site, so further interaction may be
required, such as downloading software or buying a certain product online. The
purpose may indeed be to acquire something and not just to find information
about it, e.g. to look at it on the screen, such as song lyrics or recipes.

Many researchers have based their work on Broder’s classification regarding
user query intent [9,11,13,18,19]. Other works like [15] have used informational
and navigational queries only due to lack of consensus on transactional query and
also with the aim of making the classification task more manageable. Concretely,
in our paper, the web queries classification proposed by Broder [6] will be utilized.

Recent studies classified users’ search intent either by analyzing the char-
acteristics of each query types [6,7,11,30], or users’ behavior by thoroughly
studying the query logs [2,5,10,27,29] and clicking through data [4,16,18,19].
Research alike the ones in [3,28] classified users’ intent by analyzing the linguistic
structure of web queries, applying techniques from natural language understand-
ing such as part of speech tagging.

Despite their effectiveness, these methods have the specific drawback that
they do not take into consideration the structure of the queries. Queries submit-
ted to search engines are usually short and ambiguous and an extended number
of them might carry more than one meaning; therefore the use of specific terms
for the identification of search intents is insufficient. In addition, the identifica-
tion of a query could be misleading if depending on users’ behavior or users’
clicks, as two queries might have exactly the same set of terms but may reflect
two totally different intents [29]. Therefore classifying web queries using their
syntactical structure along with terms and characteristics may help in making
their classification more accurate.

In this paper, we propose a solution that automatically identifies and in
following classifies user’s queries using their syntactical patterns. Such patterns
are created after studying different web queries classification proposals and are
based on the examination of various web logs. We have developed a framework
to test the accuracy of our solution and the experimental results show that our
approach has successfully identified different search types. For the remainder
of the paper, we will refer to this new framework as Search Type Syntactical
Patterns (STSP).

The rest of the paper is organized as follows: Sect. 2 highlights the different
query classification approaches and the different analysis methods used in web
query identification. Section 3 presents our proposed STSP method and provides
a detailed explanation of the data set and the different methods employed for
the analysis of each query type, as well as a description of the analysis of queries.
Section 4 covers experiments and results, while Sect. 5 outlines conclusions and
future work.
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2 Related Work

2.1 Search Types

The works in [11,27] extended the classification of Informational, Navigational
and Transactional queries by adding level two and level three sub-categories.
Moreover, in [5], authors classified queries into four classes: Ambiguous, Unam-
biguous but Underspecified, Information Browsing and Miscellaneous. Another
similar work is the one in [16], where two new query intents, Commercial and
Local, were proposed. According to this work, the query is likely to have a Com-
mercial potential like the query: “commercial offering” or the user might search
for information near their current location.

There are also other works like [1,7], which proposed other classification
of queries. Authors in [7] classified user intent into dimensions and facets,
referring to genre, objectivity, specificity, scope, topic, task, authority sensi-
tivity, spatial sensitivity and time sensitivity. Similarly in [1], query intent
is classified into two dimensions; Commercial/Non-Commercial, and Informa-
tional/Navigational. Web informational tasks were classified based on three main
informational goals, which are Information Seeking, Information Exchange and
Information Maintenance [14]. Authors in [2] established three categories for
users’ search goal, which are Informational, Not Informational and Ambiguous.
More specifically, an informational query is triggered when the user’s interest is
to obtain information available on the web; non informational queries include
specific transactions or resources like “buy” and “download”; lastly, ambigu-
ous queries include queries that cannot be directly identified because the user’s
interest is not fully clear.

Finally, another classification has been proposed in [22], where search goals
were classified into Find, Explore, Monitoring and Collect. This classification
focuses on three variables: the purpose of the search, the method used to find
information and the contents of searched information.

2.2 Classification Methods of Web Queries

Different analysis methods and techniques have been used for the identifica-
tion and classification of web queries. In works such as [6,11], authors studied
web search queries based on their features and characteristics. In [9], a solution
that automatically classifies queries based on the features and characteristics
described by [6,11,30], is introduced. Works in [7,8,13] analyzed and character-
ized a variety of query features in order to automatically classify different users’
intent.

Users’ goals can be deduced from looking at user behavior available to the
search engine, such as the query itself and results clicked [27]. Keeping that in
mind, authors created a tool that provides this type of information and ana-
lyzed three sets of approximately 500 queries that were randomly selected from
AltaVista query logs. The limitation of this approach is that the goal inferred
from the query may not be the user’s actual goal.
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Query logs are also used for categorization of the search query [5,10]. More-
over, search logs are introduced for the purpose of enriching a query by mining
the documents clicked by users and the relevant follow up queries in a session
[29]; the authors use a text classifier to map the documents along with the queries
into predefined categories.

Furthermore, similar works used click-through data to identify the user goals
behind their queries [1,4,18,19]. A method that has been used by different studies
to help search engines better understand what users want so that more effective
result ranking could be achieved is discussed in [4]. Query analysis was addressed
by using two types of features, past user click behavior and anchor-link distri-
bution in [15], while authors in [16] analyzed click-through data to determine
commercial and navigational queries, in addition to a crowd-sourcing approach
with the aim to classify a high amount of search queries.

A data-driven methodology is introduced in [10] for disambiguating a query
by suggesting relevant subcategories within a specific domain. This is done by
finding correlations between the user’s search history and the context of the
current search keyword. Neural networks and a Naive Bayes classifier were used
to learn the category of a given query from a training set.

Natural language analysis techniques were used to examine the structure
of web queries by [3,17,28]. For example, in [17], an analysis of the semantic
structure of noun phrase queries is presented. The analysis in [28] showed that
queries have distinct properties and are not some form of text between random
sequences of words and natural language. In [3], analysis of queries was based on
the syntax of part of speech tag sequences. Their analysis results showed that
query part-of-speech tagging can be used for creating significant features as well
as for improving the relevance of web search results and may assist with query
reformulation.

2.3 Machine Learning Algorithms

Decision Tree (DT) and Naive Bayes (NB) were used as machine learning algo-
rithms for the syntactical patterns classification. More specifically, Decision Tree
is considered as one of the most common methods used to create classification
models and build them as a tree structure [20]. ID3 [24] is the core algorithm
for building decision trees. Several variations of the ID3 algorithm have been
proposed over the past decades, such as the C4.5 [25]. In this study, we adopt
the J481 algorithm with a Java implementation of the C4.5 algorithm.

The main idea behind NB is the estimation of the parameters of a multinomial
generative model for instances, while finding the most probable class for a given
instance using the Bayes’ rule and the Naive Bayes assumption that the features
occur independently of each other. In practice, the Naive Bayes learner performs
remarkably well in many text classification problems [20,26] and it is often used
as a baseline in text classification because of its speed and easy implementation.
Less erroneous algorithms tend to be slower and more complex [26].

1 http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/
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3 Search Type Syntactical Patterns

In this section we introduce the Search Type Syntactical Patterns (STSP) frame-
work for query classification. The framework mainly relies on Search Type Syn-
tactical Patterns. Therefore, in the first part of this section we introduce our
syntactical patterns of web queries and in the second part we explain the struc-
ture of the STSP framework.

A total of 712 different Syntactical patterns were constructed and classified
to Informational, Navigational and Transactional; each pattern composed of a
sequence of term categories. The categorization of terms is mainly based on the
seven major word classes in English, which are Noun (N), Verb (V), Determiner
(D), Adjective (Adj), Adverb (Adv), Preposition (P) and Conjunction (Conj).

In addition, we added a category for question words (QW) that contains the
six main question words: “how”, “who”, “when”, “where”, “what” and “which”.
We have further extended this classification by adding two categories, which are
Domain Suffixes (DS) and Prefixes (DP). Some word classes can have subclasses,
like Noun (N) has as subclasses the Common Nouns (CN), Proper Nouns (PN),
Pronouns (Pron) and Numeral Nouns (NN). In addition, Verb (V) has as sub-
classes the Action Verbs (AV), Linking Verbs (LV) and Auxiliary Verbs (AuxV).

3.1 Constructing Search Type Syntactical Patterns

A random set of 80, 000 queries has been selected from AOL 2006 dataset2 for the
analysis to take place. This dataset consists of 20 million web queries collected
from 650, 000 users over a three month period, where UserIDs were anonymized
[23]. The following steps have been taken using pre-developed Java program [21]:

1. Parse the 80, 000 queries and automatically extract terms from the queries.
2. Automatically map terms into their syntactical structure, e.g. “Who is Jane

Austen” is mapped as: (a) “Who −− > QW”, (b) “is −− > LV” and (c)
“Jane Austen −− > PN”.

3. Convert each query to its Syntactical Pattern (SP), which is a representa-
tion of the original query with each term replaced by a word class (PoS).
For example, the query “Free Wallpapers” is converted into the syntactical
pattern [Adj + CN ].

4. Classify each syntactical pattern into one of the Informational, Navigational
and Transactional search types.

Table 1 presents the number of unique syntactical patterns for each of the
aforementioned types. We validated the classification of patterns using a subset
of the original dataset containing 1953 queries from AOL that were manually
classified and used in [19]. In addition, the characteristics of the Informational,
Navigational and Transactional search, which have been introduced in [6,11,27],
were utilized in our work.
2 http://www.researchpipeline.com/mediawiki/index.php?title=AOL Search Query

Logs.

http://www.researchpipeline.com/mediawiki/index.php?title=AOL_Search_Query_Logs
http://www.researchpipeline.com/mediawiki/index.php?title=AOL_Search_Query_Logs
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Table 1. Syntactical patterns

Query search types Total

Informational query 601

Transactional query 108

Navigational query 3

Overall 712

3.2 Proposed Framework

The proposed framework automatically identifies and classifies user’s queries by
utilizing Search Type Syntactical Patterns and the word classes term categories.
The framework consists of three main phases presented in Fig. 1.

Fig. 1. Query classification framework

For illustrating our approach, we introduce the following two examples:
“Mitch Albom Books Order” and “Order Mitch Albom Books”. One might assume
that they have one search intent since both queries have similar terms; but based
on the syntactical pattern of the queries, each query has a different search intent.
These differences occur because each word in each query may belong to different
phrases, reflecting different word classes and subclasses. Hence, word order inside
a phrase is one of the major structural ways in which the queries can differ from
each other. The position of a word depends on its word class, meaning that each
query could formulate a unique pattern. The framework steps are illustrated
below:

1. Query Parsing and Mapping : this step is responsible for extracting the user’s
query terms. The system simply takes as input the corresponding query and
parses it in order to map each term from the query to its terms category.
Query 1: Mitch Albom Books Order

Terms extracted: Mitch Albom, Books, Order
Query 2: Order Mitch Albom Books

Terms extracted: Order, Mitch Albom, Books
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As previously mentioned, terms in each query belong to different phrases.
More to depth, Query 1 consists of Noun Phrases, while Query 2 consists of a
Verb Phrase and a Noun Phrase. As a result, each term in the corresponding
query will be mapped into the following:
Query 1 Terms Mapping: Mitch Albom = [PN], Books = [CN], Order = [CN]
Query 2 Terms Mapping: Order = [AV], Mitch Albom = [PN], Books = [CN]

2. Pattern Formulation: In this step, the syntactical pattern is formulated after
mapping each term in the query.
Query 1 Syntactical Pattern: [PN + CN + CN]
Query 2 Syntactical Pattern: [AV + CN + PN]

3. Query Classification: In this step, the system matches the Query Pattern with
the most appropriate Search Type Syntactical Patterns in order to determine
the Query type. Thus, the Syntactical Patterns will be:
Query 1: Informational
Query 2: Transactional

4 Experimental Evaluation

4.1 Implementation

To test the accuracy of our proposed approach, 10, 000 queries were randomly
selected from AOL 2006 data set. The selected queries are different from those
used in constructing the query Syntactical Patterns.

As previously mentioned, Decision Tree (J48) and Naive Bayes were used as
machine learning algorithms for the automatic classification. Weka is used for
running the algorithms and measuring the classification performance. Since our
motivation stems from the fact that our main interest relies on identifying the
classifier with the highest performance, the effectiveness of the classification was
evaluated based on Precision, Recall and F-Measure, i.e. typical metrics for the
evaluation of classifiers, using 10-fold cross validation.

4.2 Results

Tables 2 and 3 present classification performance details (Precision, Recall and
F-Measure) of the J48 and Naive Bayes classifiers. Results show that J48 identi-
fied correctly (i.e. Recall) 86% of the queries, while Naive Bayes only a percentage
of 80%.

Comparing the effectiveness of the classifiers, J48 outperforms Naive Bayes in
terms of Precision, Recall and the F-Measure metrics for the Informational and
Transactional queries. Regarding the Navigational queries, both J48 and Naive
Bayes classifiers exhibit similar Precision, Recall and F-Measure rates. These
results clearly indicate that using J48 for query classification is more suitable
than Naive Bayes, especially when considering that Naive Bayes does not deal
well with large datasets.
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Table 2. Decision Tree (J48) classifier performance

Query search types Precision Recall F-Measure

Informational query 0.936 0.680 0.787

Navigational query 0.844 1.000 0.916

Transactional query 0.688 0.920 0.787

Overall 0.820 0.860 0.830

Table 3. Naive Bayes classifier performance

Query search types Precision Recall F-Measure

Informational query 0.854 0.549 0.668

Navigational query 0.848 0.994 0.915

Transactional query 0.597 0.859 0.704

Overall 0.766 0.801 0.762

Taking a closer look at where the errors occur when using J48, 16% of the
Informational queries were misclassified as Transactional and less than 1% were
misclassified as Navigational. From the Transactional queries, 2.5% were mis-
classified as Informational and less than 1% were misclassified as Navigational.
Surprisingly enough, Navigational queries were 100% correctly classified. Simi-
larly, the Naive Bayes classifier incorrectly classified 23% of the Informational
queries as Transactional and less than 1% of the Informational queries as Nav-
igational. Approximately 5% of the Transactional queries were misclassified as
Informational and less then 1% as Navigational. From the Navigational queries,
0.05% were classified as Transactional.

In addition, the results validate that using Search Type Syntactical Patterns
helps in the improvement of the query classification accuracy overall, as well as
in the distinction between different search types compared with other methods
used to classify query search types, as outline below.

4.3 Discussion

The method used in [4,15,16] depends solely on past user click behavior and
Anchor-link distribution, which could be misleading in identifying a query, espe-
cially when the user is looking for something new (i.e. not reflected in their past
behavior). In [9], some important linguistic features like verbs and domain suf-
fixes were removed during the identification of user intent, especially for the Nav-
igational queries; in their work these were largely misclassified, i.e. F-Measure
of 0.39 for Naive Bayes and 0 for Support Vector Machine (SVM) classifiers.
Also, the method used in [10], which was based on the categorization of the
search query for medical and travel queries and the time intervals, was not suf-
ficient to be applicable for solving practical query disambiguation problems, i.e.



Web Queries Classification Based on the Syntactical Patterns 817

F-Measure under 0.40. In addition, other studies with similar or higher perfor-
mance rates such as [1,19], used much smaller datasets, i.e. 1.700 and 2.000
queries, respectively, which cast doubts about the generalization of the results.

5 Conclusions

In this research, we have introduced a framework for automatically identify-
ing and classifying search engine user queries. Unlike other solutions, our solu-
tion relies on both query terms as well as the query syntactical structure to
determine user’s intent. We have categorized search queries through introducing
Search Type Syntactical Patterns. Our framework consists of three main steps,
namely parsing and mapping user’s query terms, formulating Query Patterns,
and finally classifying query types. Experiments show that our solution led to a
good performance in classifying queries.

As future work, we aim at examining and analyzing more queries from differ-
ent search engine data sets and extending the analysis of web queries. Another
interesting topic of research would be the transfer of the computation to a cloud
infrastructure utilizing Big Data techniques. In addition, we will investigate how
to support query reformulation strategies [12] to help users gain more relevant
results.
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Abstract. Informative videos (e.g. recorded lectures) are increasingly being
made available online, but they are difficult to use, browse and search. Nowa-
days, popular platforms let users search and navigate videos via a transcript,
which, in order to guarantee a satisfactory level of word accuracy, has typically
been generated using some manual inputs. The goal of our work is to try and take
a step closer to the fully automatic generation of informative video transcripts
based on current automatic speech recognition technology. We present a user
study designed to better understand viewers’ use of video transcripts for
searching a video content, with the aim of estimating what minimum word
recognition accuracy is needed for video captions to be a useful search interface.
We found that transcripts with 70% word recognition accuracy are as effective as
100% accuracy transcripts in supporting video search when using single word
search. We also found that there are large variations in the time it takes to search a
video, independently of the quality of the transcript. With adequate and adapted
search strategies, even low accuracy transcripts can support quick video search.

Keywords: Speech recognition � Word accuracy � Video transcripts � Video
search

1 Introduction

Informative videos (conference talks, seminar presentations and recorded lectures) are
increasingly being made available online. For example, websites such as TED [1], and
Massive Online Open Courses (MOOCs) platforms such as Edx [2] and Coursera [3],
offer thousands of informative videos on a wide range of topics. For distance learning,
videos offer many of the advantages of a classroom-like experience and, in addition,
they enable student’s control over the pace of their learning. In [4], it was observed that
MOOCs learners spend a majority of their time watching videos, and in [5, 6] (for
example), video analytics have been used to understand learner’s use of videos with the
aim of improving video based learning.

However, despite their popularity, informative videos are difficult to browse and
search. Viewers must typically scrub back-and forth through a video to gain an
overview of the content or find passages of interest [7]. In response, smart video
players are being developed, which provide interaction, browsing and search tools,
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and video digests (e.g. [7, 8]). Some of the most popular platforms, such as edX and
TED, let users search and navigate videos via a transcript: clicking a word in the
transcript plays the video at that location [7]. Older technologies, such as Windows
Media Player, QuickTime, and RealPlayer also support captioning.

Captioning has traditionally been intended for those who cannot hear the audio, but
it has also been found to help those who may not be fluent in the language in which the
audio is presented. Video transcripts also contribute to making web multimedia content
accessible. For example, screen reader users often prefer using the video transcript over
the audio because it can be played faster than the time it takes to listen to the actual
audio content [9]. Very importantly, transcripts also allow the video content to be
searchable, both by computers (i.e. search engines) and by end users.

The formats and techniques for authoring and implementing video transcripts vary.
Online services (e.g. [10, 11]) typically accept an audio file as input and return a human
produced verbatim transcript of the audio (usually for a fee). The YouTube platform
[12] combines Google’s Automatic Speech Recognition (ASR) technology [13] with a
caption system to offer automatic captions. To improve the transcripts’ word accuracy
(word accuracy is defined as the number of correct words divided by the total number of
words in the transcript), users can provide a text file with all the words in the video and
ASR is used to determine when the words are spoken and create the video captions.
According to [11], with current ASR technology, the typical word accuracy obtained in
transcripts is approximately 80%, which, according to the United States Federal
Communications Commission (FCC) standard for close captioning is not acceptable. To
guarantee high accuracy (over 99%), a 3-step process is used in [11], which includes a
combination of ASR, human cleanup, and a large database of human-corrected,
near-perfect transcripts to continually improve the recognition accuracy.

Typically, human input is therefore still used in the creation of video transcripts.
Work on how to improve themanual post-processing task of correcting educational video
transcripts has been presented in [14]. It investigates different user interface design
strategies for the post-editing task to discover the best way to incorporate automatic
transcription technologies into large educational video repositories. In [15], lecture
transcripts are generated in two ways: (1) using real-time captioning (RTC) for instant
viewing during class, and (2) using post-lecture transcription (PLT) with greater word
recognition accuracy for download after class. A user study then shows that both RTC and
PLT are effective at supporting students learning, but students felt that RTC improved
teaching and learning in class as long as word recognition was greater than 85%.

The goal of our work is to try and take a step closer to the fully automatic
generation of informative video transcripts based on current ASR technology. In this
paper, we present a user study designed to better understand viewers’ use of video
transcripts for searching a video content, with the aim of estimating what is the min-
imum word recognition accuracy needed for video captions to be a useful search
interface. Our approach has consisted in first developing our own video player (see
Sect. 2), which offers a simple search interface based on the video transcripts. We
created video transcripts of various word recognition accuracy levels using the CMU
Sphinx4 ASR technology [16] (see Sect. 3) and we asked user participants to search a
video in order to answer multiple choice questions (see Sect. 4). By analyzing the
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participants’ answers, we estimate the minimum word recognition accuracy needed in
the transcripts to conduct a successful video search (see Sect. 5).

2 The Video Player

2.1 The Interface

Figure 1 shows the main interface of the video player and the search results table. The
main screen displays the video, and immediately below the video images, a progress bar
and control buttons (with pause and play functions) are provided. Users can click on the
progress bar to jump to a different part of the video. On the right side of the progress bar
is a mute button. The synchronized captions are displayed underneath the progress bar.
The captions are extracted from the automatically generated video transcript.

When the video is playing, the user can input a single word into a search field to
search the video content. If the word is found in the transcript, a search results table is
displayed that shows all the found occurrences of the word, together with their
occurrence time in the video. If the search word cannot be found in the transcript, an
error message is displayed.

As shown in the example of Fig. 1, the word “universe” has been typed in the
search field, and the search results table indicates that it is pronounced twice in the
video, once at time 0:0:16 (this is the video time’s format: hh:mm:ss), and again at time
0:5:12. Each word’s occurrence in the search results table is selectable. If the user
selects the first occurrence, the video player jumps to the frame that corresponds to time
0:0:16 where the word “universe” appears in the captions for the first time.

Fig. 1. The video player interface and the search results table
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2.2 Synchronizing the Video and the Transcripts

We used the CMU Sphinx4 ASR technology [16] to automatically generate the video
transcripts. Sphinx outputs text transcripts in the format shown in Fig. 2.

Once a transcript has been generated, the transcript file is given again as input to
Sphinx so its content can be matched with the audio and a time stamp assigned to every
word in the transcript. Words and their time stamps are saved in a new text file, as
shown in Fig. 3(left). Every line indicates a word and its time stamp in milliseconds.
For example, the word “her” starts at time 1300 ms and finishes at time 1640 ms.

Fig. 2. A Sphynx generated transcript file

Fig. 3. Sphinx generated words and time stamps (left); transcript’s lines timelines (right)
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Using these two files (transcript and individual words with their time stamps), the
synchronization is implemented as follows: every line’s last word of the transcript file
is logged with its accompanying starting time stamp (Fig. 3, right), resulting in every
transcript line to be assigned a “timeline”. For example, the second line’s timeline
(“i am in search of another planet”) starts at 5140 ms, and finishes at 15130 ms.

When the video is played, a thread is created that reads the player’s current
playtime every 100 ms. If the current playtime is within a given transcript’s line
timeline, then this line is displayed as the current captions.

3 Data Preparation

3.1 The Videos

We downloaded five informative videos (four from TED [1] and one from the official
White House website [17]) on various topics: (1) other life in the Universe, (2) teaching
and learning, (3) internet privacy, (4) paying tax, and (5) animals’ internal clock. Each
video is between 4 and 7 min long and the presenters are all native English speakers
with American English accents.

3.2 Generating Transcripts of Varying Word Recognition Accuracies

Using PCM encoded mono sound files with 16 bits per sample and a sampling rate of
16000 Hz, Sphinx can output transcripts for American English native speakers with, on
average, 80% word recognition accuracy. In order to generate transcripts of varying
word recognition accuracies, first we manually create 100% word accuracy transcripts
for each of the five videos. Then, a digital audio editing software is used to generate
16000 Hz sampling rate, 16 bits per sample, and mono sound tracks of white noise of
the same duration as the video audio tracks. The white noise tracks are combined with
the video audio tracks in order to generate, using Sphinx, transcripts of the resulting
noisy audio. The obtained transcript are then compared with the 100% word accuracy
transcripts and their own word recognition accuracy is calculated. The obtained word
accuracy is calculated as follows: the number of correct words in the modified tran-
script divided by the total number of words in the 100% word accuracy transcripts. The
operation is repeated until transcripts of approximately 50% word recognition accuracy
are obtained for each of the five videos.

In a second step, the 50% word accuracy transcripts are manually modified, by
randomly correcting some of the misrecognized words and adding some of the missing
words, in order to increase the transcripts’ word accuracy to 70%, 80% and 90%
respectively. Finally, for each of the five videos, we obtain five transcripts of varying
word accuracy levels (100%, 90%, 80%, 70%, and 50%). Each of these transcripts are
used as input to Sphinx in order to generate the time stamp files needed to synchronize
the transcripts with the corresponding videos in the video player (as explained in
Sect. 2.2 of the paper).
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4 Experimental Design

Twenty participants (15 male, 5 female) with no prior knowledge about the videos’
content were recruited as volunteers. A pre experiment questionnaire confirmed that all
the participants have received higher education, have similar abilities to learn and solve
problems, and have similar English skills (IELTS test score higher than 6.5 and TOEFL
test score higher than 93).

The twenty participants were divided into five groups of four participants each.
Given the five videos and the five word accuracy level transcripts for each video, we
have 25 different video/transcript combinations to show to the participants. Each group
of participants was given to watch five of these combinations following a Latin square
experimental design: each participant watched the 5 different videos (in a random
order) and each of the video they saw was played with a transcript of a different word
recognition accuracy.

Before the start of the experiment, each participant is given time to use the video
player in order to understand its functionalities, including the progress bar, the control
buttons and the search function.

For each of the five videos, the task consists in answering three multiple choice
questions. The participants are shown the questions first and then asked to use the video
search function to find the answers in the video content. Each choice provided is a
sentence pronounced by the video presenter. The task hence consists in selecting the
sentence that answers best the question asked (see Fig. 4 for an example of a multiple
choice question).

Two computers were used during the experiment: one for playing the videos, and
the other for displaying the multiple choice questions. Participants were not allowed to
read the questions or play the video until the start of the experiment. A blank piece of
paper for writing down the answers to the questions was also provided. The participants
were instructed that they had to try and answer the questions as quickly as possible.
They were also instructed to notify us as soon as they had completed answering the
three questions related to one of the videos. The next questions and video were then
prepared for them, and the task was repeated until all five allocated videos had been
used. Watching an entire video and then answering the questions was not allowed:

Q: What conclusion did the speaker reach, after several years of teaching?

A. What we need in education is a much better understanding of students 
and learning from a motivational perspective, from a psychological per-
spective.

B. We need to be gritty about getting our kids grittier.
C. Grit is living life like it's a marathon, not a sprint.

D. Every student could learn the material if they worked hard and long 

Fig. 4. Example of multiple choice question for the teaching and learning video
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the search function had to be used. For each video, the three questions are independent
from each other, and their answers are to be found in different areas of the video.

5 Experimental Results and Discussion

The correctness of the answers, as well as the time it took each participant to answer the
three questions related to one video were recorded (time was counted from the moment
the questions are shown to the participant, until the moment the participant is signaling
that the three questions have been answered).

Table 1 shows the average answer correctness and answer time for each of the five
word accuracy levels. We can see that the time it takes to answer the questions and the
number of correct answers start to increase and decrease respectively when the word
accuracy level reaches 80%. Indeed, a one-way analysis of variance (ANOVA) cal-
culated for the mean answer correctness of the five accuracy levels (from 100% to
50%) shows that the means are statistically different at the p < 0.05 level,
F(4, 95) = 7.58, p = 0.00. However, ANOVA calculated for the mean answer cor-
rectness of the four highest accuracy levels (100%, 90%, 80%, and 70%) shows no
statistical difference at the p < 0.05 level, F(3, 76) = 1.13, p = 0.344. This is an
interesting result as it indicates that a single word search using our video player
interface can be as effective with a word recognition accuracy transcript as low as 70%
than with a higher accuracy transcript.

With regard to answer times, an ANOVA analysis of the mean answer times for the
five accuracy levels (from 100% to 50%) shows no statistical difference at the p < 0.05
level, F(4, 95) = 0.88, p = 0.477; indicating that the time it takes to answer the
questions is independent of word accuracy. This can be explained by the fact that the
answer time depends both on the number of search results returned (a high number
slows down the search and is more frequent with good accuracy transcripts), and the
probability that the search results can lead to the right answer (which quickens the
search and is also more frequent with good accuracy transcripts). For example, the
word “congress” yields 4 search results in the 100% word accuracy transcript, but only
2 results in the 50% word accuracy transcript. If one of the 2 results in the 50% word
accuracy transcript happens to indicate the correct answer, the participants using that
transcript will be led more quickly to the answer than the users of a 100% accuracy

Table 1. Average answer time and correctness for the five word accuracy levels. Standard
deviations are shown in square brackets.

Word accuracy Answer correctness (Maximum is 3 or 100%) Answer time

100% 2.4 (or 80%) [0.6] 318 s [78.02]
90% 2.4 (or 80%) [0.5] 333 s [82.06]
80% 2.2 (or 73%) [0.52] 326 s [91.72]
70% 2.15 (or 72%) [0.59] 336 s [72.14]
50% 1.5 (or 50%) [0.76] 364 s [86.49]
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transcript which requires the testing of 4 search results. At contrary, if none of the 50%
accuracy transcript results are leading to the answer, then the search must be started
again and is likely to take longer overall. T-test analyses to compare answer times for
each pair of accuracy levels show that it is only when comparing the 100% and 50%
accuracy transcripts, that the mean times are found statistically different (two-sample
t(38) = 1.74, p = 0.04), showing that, in average, a search with a 100% accuracy
transcript is a little bit but (marginally) significantly quicker than a search with a 50%
accuracy transcript.

During the experiment, we observed that participants tend to use words they find in
the questions to initiate their search, and they often start by using proper names, such as
people’s names, universities’ names or the scientific names of animals and planets. In
the high accuracy transcripts, this strategy is very effective, as the number of occur-
rences of proper names in the videos is limited and the search table typically displays at
most one or two results, which often and rapidly lead to the correct answer. However,
in transcripts with lower word recognition accuracy, proper names have typically been
misrecognized, and the search fails to return any result. Participants then change their
strategy and start using common words or verbs, such as “atmosphere, right, problem,
week, search, share, control”, sometimes adjectives are also used.

After trying different search words, some participants combine the results they
obtained to improve their chances by analyzing the correlation between different
words’ occurrence times. For example in order to answer the question shown in Fig. 4,
a participant searched two words, “teaching” and “years”. When he found that they
both appear at time 0:1:18, he decided to watch the video at time 0:1:18 and found the
answer to the question there.

When unable to obtain any search results after a few trials, the participants tend to
adopt one of two strategies: some participants start using words not from the question
but from the choices proposed; others abandon the search and randomly select an
answer to the question.

6 Conclusion

We found that transcripts with 70% word recognition accuracy are as effective as
higher accuracy transcripts in supporting video search when using single word search.
We also found that, lower transcript accuracy does not necessarily mean longer search
time. In fact large variations in the time it takes to search a video, independently of the
quality of the transcript, were observed. With adequate and adapted search strategies
(e.g. avoiding proper nouns), even low accuracy transcripts can support quick search.

Further research is now needed to test different video players and search interfaces.
In this study, users were only allowed single word search. We received useful com-
ments on how to improve the video player and the search interface. For example,
participants commented that it would be better if, after selecting a word in the search
results table, the video could jump to the beginning of the sentence that contains the
word (and not just to the word). They also suggested that the results table should
display the sentences that contain the search word (and not just the word occurrences).
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