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Abstract. Attack trees are a popular way to represent and evaluate
potential security threats on systems or infrastructures. The goal of this
work is to provide a framework allowing to express and check whether
an attack tree is consistent with the analyzed system. We model real
systems using transition systems and introduce attack trees with for-
mally specified node labels. We formulate the correctness properties of
an attack tree with respect to a system and study the complexity of the
corresponding decision problems. The proposed framework can be used
in practice to assist security experts in manual creation of attack trees
and enhance development of tools for automated generation of attack
trees.

1 Introduction

An attack tree is a graphical model allowing a security expert to illustrate and
analyze potential security threats. Thanks to their intuitiveness, attack trees
gained a lot of popularity in the industrial sector [15], and organizations such as
NATO [24] and OWASP [20] recommend their use in threat assessment processes.
The root of an attack tree represents an attack objective, i.e., an attacker’s goal,
and the rest of the tree decomposes this goal into sub-goals that the attacker
may need to reach in order to perform his attack [26]. In this paper, we develop a
formal framework to evaluate how well an attack tree describes the attacker’s goal
with respect to the system that is being analyzed. This work has been motivated
by the two following practical problems.

First, in the industrial context, attack trees are created manually by security
experts who haustive knowledge about all the facets (technical, social, physical)
of the analyzed system. This process is often supported by the use of libraries
containing generic models for standard security threats. Although using libraries
provides a good starting point, the resulting attack tree may not always be
fully consistent with the system that is being analyzed. This problem might
be reinforced by the fact that the node names in attack trees are often very
short, and may thus lack precision or be inaccurate and misleading. If the tree is
incomplete or imprecise, the results of its analysis (e.g., estimation of the attack’s
cost or its probability) might be inaccurate. If the tree contains branches that
are irrelevant for the considered system, the time of its analysis might be longer
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than necessary. This implies that a manually created tree needs to be validated
against a system to be analyzed before it can be used as a formal model on which
the security of the system will be evaluated.

Second, to limit the burden of their manual creation, several academic pro-
posals for automated generation of attack trees have recently been made [11,
23,30]. In particular, we are currently developing the ATSyRA tool for assisted
generation of attack trees from system models [23]. Our experience shows that,
due to the complexity and scalability issues, a fully automated generation is
impossible. Some generation steps must thus be supported by humans. Such a
semi-automated approach gives the expert a possibility of manually decompos-
ing a goal, in such a way that an automated generation of the subtrees can be
performed. This work provides formal foundations for the next version of our
tool which will assist the expert in producing trees that, by design, are correct
with respect to the underlying system.

Contribution. To address the problems identified above, we introduce a mathe-
matical framework allowing us to formalize the notion of attack trees and to
define as well as verify their practically-relevant correctness properties with
respect to a given system. We model real-life systems using finite transition
systems. The attack tree nodes are labeled with formally specified goals formu-
lated in terms of preconditions and postconditions over the possible states of
the transition system. Formalizing the labels of the attack tree nodes allows
us to overcome the problem of imprecise or misleading text-based node names
and makes formal treatment of attack trees possible. We define the notion of
Admissibility of an attack tree with respect to a given system and introduce the
correctness properties for attack trees, called Meet, Under-Match, Over-Match,
and Match. These properties express the precision with which a given goal is
refined into sub-goals with respect to a given system. We then establish the
complexity of verifying the correctness properties to apprehend the nature of
potential algorithmic solutions to be implemented.

Related work. In order to use any modeling framework in practice, formal foun-
dations are necessary. Previous research on formalization of attack trees focused
mainly on mathematical semantics for attack tree-based models [10,12–14,19],
and various algorithms for their quantitative analysis [1,16,25]. However, all
these formalizations rely on an action-based approach, where the attacker’s goals
represented by the labels of the attack tree nodes are expressed using actions
that the attacker needs to perform to achieve his/her objective. In this work, we
pioneer a state-based approach to attack trees, where the attacker’s goals relate
to the states of the modeled system. The advantage of such a state-based app-
roach is that it may benefit from verification and model checking techniques, in
a natural way, as this has already been done in the case of attack graphs [21,28].
In our framework, the label of each node of an attack tree is formulated in terms
of preconditions and postconditions over the states of the modeled system: intu-
itively speaking, the goal of the attacker is to start from any state in the system
that satisfies the preconditions and reach a state where the postconditions are
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met. The idea of formalizing the labels of attack tree nodes in terms of precon-
ditions and postconditions has already been explored in [22]. However there, the
postcondition (i.e., consequence) of an action is represented by a parent node
and its children model the preconditions and the action itself.

Model checking of attack trees, especially using tools such as PRISM or
UPPAAL, has already been successfully employed, in particular to support their
quantitative analysis, as in [2,8,17]. Such techniques provide an effective way
of handling a multi-parameter evaluation of attack scenarios, e.g., identifying
the resources needed for a successful attack or checking whether there exists an
attack whose cost is lower than a given value and whose probability of success
is greater than a certain threshold. However, these approaches either do not
consider any particular system beforehand, or they rely on a model of the system
that features explicit quantitative aspects.

The link between the analyzed system and the corresponding attack tree
is made explicit in works dealing with automated generation of attack trees
from system models [11,23]. The systems considered in [11] capture locations,
assets, processes, policies, and actors. The goal of the attacker is to reach a
given location or obtain an asset, and the attack tree generation algorithm relies
on invalidation of policies that forbid him to do so. In the case of [23], the
ATSyRA tool is used to effectively generate a transition system for a real-life
system: starting from a domain-specific language describing the original system,
ATSyRA compiles this description into a symbolic transition system specified in
the guarded action language GAL [29]. ATSyRA can already handle the physical
layer of a system (locations and connections/accesses between them) and we are
currently working on extending it with the digital layer. Since our experience
shows that generating a transition system from a description in a domain-specific
language is possible and efficient, in this paper we suppose that the transition
system for a real system has been previously created and is available.

Finally, to the best of our knowledge, the problem of defining and verifying
the correctness of an attack tree with respect to the analyzed system has only
been considered in [3] which has been the starting point for the work presented
in this paper.

2 Motivating Example

Before presenting our framework, we first introduce a motivating example on
which we will illustrate the notions and concepts employed in this paper.

The system modeled in our running example is a building containing a safe
holding a confidential document. The goal of the attacker is to reach the safe
without being detected. We purposely keep this example small and intuitive to
ease the understanding of the proposed framework. The floor plan of the building
is depicted in Fig. 1a. It contains two rooms, denoted by Room1 and Room2,
two doors – Door1 allowing to move from outside of the building to Room1 and
Door2 connecting Room1 and Room2 – as well as one window in Room2. Both
doors are initially locked and it is left unspecified whether the window is open
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or not. Such unspecified information expresses that the analyst cannot predict
whether the window will be open or closed in the case of a potential attack or
that he has a limited knowledge about the system. In both cases, this lack of
information needs to be taken into account during the analysis process. The two
doors can be unlocked by means of Key1 and Key2, respectively. We assume
that a camera that monitors Door2 is located in Room1. The camera is initially
on but it can be switched off manually. The safe is in Room2.

Fig. 1. Running example building

The attacker is located outside
of the building and his goal is to
reach the safe without being detected
by the camera. In Fig. 1b, we have
depicted three scenarios (that we
will call paths) allowing the attacker
to reach his goal. In the first scenario
(depicted using dotted line), the
attacker goes straight through the
window, if it is open. In the remain-
ing two scenarios, the attacker gath-
ers the necessary keys and goes
through the two doors, switching off
the camera on his way. These two
scenarios differ only in the order
in which the concurrent actions are
sequentially performed. Since col-
lecting Key2 and switching off the
camera are independent actions, the
attacker can first collect Key2 and
then switch the camera off (dashed line), or switch the camera off before collect-
ing Key2 (solid line).

The system in our example consists of the building and the attacker. It is
modeled using state variables whose values determine possible configurations of
the system.

– Position – variable describing the attacker’s position, ranging over {Outside,
Room1, Room2};

– WOpen – Boolean variable describing whether the window is open (tt) or not
(ff);

– Locked1 and Locked2 – Boolean variables to describe whether the respective
doors are locked or not;

– Key1 and Key2 – Boolean variables to describe whether the attacker possesses
the respective key;

– CamOn – Boolean variable describing if the camera is on;
– Detected – Boolean variable to describe if the camera detected the attacker,
i.e., whether the attacker has crossed the area monitored by the camera while
it was on.



Is My Attack Tree Correct? 87

Given a set of state variables, we express possible configurations of a
system using propositions. Propositions are either equalities of the form
state variable=value or Boolean combinations of such equalities. Intuitively, a
proposition expresses a constraint on the possible configurations. A configuration
in which all the variables are left unspecified is called the empty configuration.
We denote it by �.

In order to analyze the security of a system, security experts often use the
model of attack trees. An attack tree is a tree in which each node represents an
attacker objective, and the children of a node represent a decomposition of this
objective into sub-objectives. In this work, we consider attack trees with three
types of nodes:

– OR nodes representing alternative choices – to achieve the goal of the node,
the attacker needs to achieve the goal of at least one child;

– AND nodes representing conjunctive decomposition – to achieve the goal of the
node, the attacker needs to achieve all of the goals represented by its children
(the children of an AND node are connected with an arc);

– SAND nodes representing sequential decomposition – to achieve the goal of the
node, the attacker needs to achieve all of the goals represented by its children
in the given order (the children of a SAND node are connected with an arrow).

Reach Room2

undetected

Go through

the window

Go through

the door

Deactivate

the camera

Reach

Room2

Unlock

Door1

Unlock

Door2

Enter

Room2

Fig. 2. Attack tree with infor-
mal, text-based node names

The attack tree given in Fig. 2 illustrates that
in order to enter Room2 undetected (root node of
type OR), the attacker can either enter through the
window or through the doors. In order to use the
second alternative (node of type AND), he needs
to make sure that the camera is deactivated and
that he reaches Room2. To achieve the last objec-
tive (node of type SAND), he first needs to unlock
Room1, then unlock Room2, and finally enter to
Room2.

One of the most problematic aspects of attack
trees are the informal, text-based names of their
nodes. These names are often very short and thus
do not express all the information that the tree
author had in mind while creating the tree. In
particular, the textual names relate to the objective that the attacker should
reach, however, they usually do not capture the information about the initial
situation from which he starts.

To overcome the weakness of text-based node names, we propose to formal-
ize the attacker’s goal using two configurations: the initial configuration, usually
denoted by ι, is the configuration before the attack starts, i.e., represents pre-
conditions; and the final configuration, usually denoted by γ, represents post-
conditions, i.e., the state to be reached to succeed in the attack. The goal with
initial configuration ι and final configuration γ is written 〈ι, γ〉.

In our running example, the initial configuration is ι := (Position =
Outside) ∧ (Key1 = ff) ∧ (Key2 = ff) ∧ (Locked1 = tt) ∧ (Locked2 = tt) ∧
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(CamOn = tt). It describes that the attacker is originally outside of the building,
he does not have any of the keys, the two doors are locked, and the camera is
on. The final configuration is γ := (Position = Room2) ∧ (Detected = ff), i.e.,
the attacker reached Room2 without being detected.

Figure 3 illustrates how such formally specified goals are used to label the
nodes of attack trees. The goal 〈ι, γ〉 introduced above is the label of the root
node of the tree. It is then refined into sub-goals 〈ιi, γi〉, where i reflects the
position of the node in the tree.

Sub-goal 〈ι1, γ1〉: The attacker, who wants to reach the safe in Room2 without
being detected, is located outside of the building and the window is initially open.
We let ι1 := (Position = Outside) ∧ (Key1 = ff) ∧ (Key2 = ff) ∧ (Locked1 =
tt) ∧ (Locked2 = tt) ∧ (CamOn = tt) ∧ (WOpen = tt) and γ1 := γ.

Sub-goal 〈ι2, γ2〉: This sub-goal is similar to the previous one, but the window
is originally closed. We let ι2 := (Position = Outside)∧ (Key1 = ff)∧ (Key2 =
ff) ∧ (Locked1 = tt) ∧ (Locked2 = tt) ∧ (CamOn = tt) ∧ (WOpen = ff) and
γ2 := γ.

Sub-goal 〈ι21, γ21〉: The attacker, who might be in any initial configuration,
wants to deactivate the camera. We then let ι21 := � and γ21 := (CamOn = ff).

(ι, γ)

(ι1, γ1) (ι2, γ2)

(ι21, γ21) (ι22, γ22)

(ι221, γ221) (ι222, γ222) (ι223, γ223)

Fig. 3. Attack tree with formal labels

Sub-goal 〈ι22, γ22〉: Similar to sub-goal
〈ι2, γ2〉, with the difference that we do
not care whether the camera is ini-
tially on and we no longer require that
the attacker remains undetected. We let
ι22 := (Position = Outside) ∧ (Key1 =
ff) ∧ (Key2 = ff) ∧ (Locked1 = tt) ∧
(Locked2 = tt) ∧ (WOpen = ff) and
γ22 := (Position = Room2).

Sub-goal 〈ι221, γ221〉: The initial situ-
ation is the same as in the sub-goal
〈ι22, γ22〉, but we require that the attacker
unlocks Door1 but not Door2: ι221 := ι22
and γ221 := (Locked1 = ff)∧(Locked2 =
tt).

Sub-goal 〈ι222, γ222〉: Now, the objective is to go from a state where Door1 is
unlocked and Door2 is locked (like in the configuration γ221) to a state where
both doors are unlocked. We let ι222 := γ221 and γ222 := (Locked1 = ff) ∧
(Locked2 = ff).

Sub-goal 〈ι223, γ223〉: Finally, the last sub-goal is for the attacker, starting in a
state where both doors are unlocked, to reach Room2. We let ι223 := γ222 and
γ223 := γ22.
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3 Formal Modeling

We now provide formal notations and definitions of transition systems and attack
trees that we have informally described in Sect. 2.

3.1 Transition Systems

We model real-life systems using finite transition systems. Transition system is
a simple, yet powerful formal tool to represent a dynamic behavior of a system
by listing all its possible states and transitions between them. The finiteness of
the state transition system is a reasonable and realistic assumption. A formal
model can either be finite because the real-life underlying system is intrinsically
finite, or it can have a finite representation obtained by standard abstraction
techniques, as used in verification, static analysis, and model-checking.

We fix the set Prop of propositions that we use to formalize possible configu-
rations of the real system. In the rest of the paper, we suppose that Prop contains
propositions of the form ι, γ, to denote preconditions (ι) and postconditions (γ)
of the goals.

Definition 1 (Transition system). A transition system over Prop is a tuple
S = (S,→, λ), where S is a finite set of states (elements of S are denoted by
s, si for i ∈ N), →⊆ S × S is the transition relation of the system (which is
assumed left-total), and λ : Prop → 2S is the labeling function. We say that a
state s is labeled by p when s ∈ λ(p). The size of S is |S| = |S| + |→|.
For the rest of this paper, we assume that we are given a transition system S over
Prop. A path in S is a non-empty sequence of states. We use typical elements
π, π′, π1, . . . , ρ, . . . to denote paths. The size of a path π, denoted by |π|, is its
number of transitions, and π(i) is the element at position i in π, for 0 ≤ i ≤ |π|.
An empty path1 is a path of size 0. We write Π(S) for the set of all paths in S. For
ι, γ ∈ Prop, we shortly say that a path π “goes from ι to γ” whenever π(0) ∈ λ(ι)
and π(|π|) ∈ λ(γ). The set of direct successors of a set of states S′ ⊆ S is
PostS(S′) = {s ∈ S | ∃s′ ∈ S′ such that (s′, s) ∈→}. The set of successors of a
set of states S′ ⊆ S is Post∗S(S′) = {s ∈ S | ∃π with π(0) ∈ S′ and π(|π|) = s},
and the set of predecessors of S′ ⊆ S is Pre∗

S(S′) = {s ∈ S | ∃π with π(0) =
s and π(|π|) ∈ S′}.

A factor of a path π is a subsequence composed of consecutive elements of π.
Formally, a factor of a path π is a path π′, such that there exists 0 ≤ k ≤ |π|−|π′|,
where π(i + k) = π′(i), for 0 ≤ i ≤ |π′|. An anchoring of π′ in π is an interval
[k, l] ⊆ [0, |π|] where for all i ∈ [k, l], π′(i−k) = π(i) and l−k = |π′|. Notice that
we may have |π′| = 0. We denote by π[k, l] the factor of π of anchoring [k, l].
In other words, the anchorings of π′ in π are the intervals [k, l] of positions in π
such that π[k, l] = π′.

1 Since a path is a non-empty sequence of states, the empty path contains exactly one
state.
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We now introduce concatenation and parallel decomposition of paths – two
notions that will serve us to define the semantics of sequential and conjunctive
refinements in attack trees, respectively.

Definition 2 (Concatenation of paths). Let π1, π2, . . . , πn ∈ Π(S) be
paths, such that πi(|πi|) = πi+1(0) for 1 ≤ i ≤ n − 1. The con-
catenation of π1, π2, . . . , πn, denoted by π1.π2. . . . .πn, is the path π, where
π[

∑i−1
k=1 |πk| ,

∑i−1
k=1 |πk| + |πi|] = πi

2. We generalize the concatenation to sets
of paths by letting Π.Π ′ = {π ∈ Π(S) | ∃i, 0 ≤ i ≤ |π| and π[0, i] ∈
Π and π[i, |π|] ∈ Π ′}.
Definition 3 (Parallel decomposition of paths). A set {π1, . . . , πn} ⊆
Π(S) is a parallel decomposition of π ∈ Π(S) if for every 1 ≤ i ≤ n the path πi is
a factor of π for some anchoring [ki, li], such that every interval [j, j+1] ⊆ [0, |π|]
is contained in [ki, li] for some i ∈ {1, . . . , n} (which trivially holds if |π| = 0).
We then say that the sequence π1, . . . , πn is a parallel decomposition of π for
the anchorings [k1, l1], . . . , [kn, ln].

Lemma 1. Given a path π ∈ Π(S), and a sequence k1, l1, . . . , kn, ln ∈ [0, |π|],
deciding whether π[k1, l1], . . . , π[kn, ln] is a parallel decomposition of π for the
anchorings [k1, l1], . . . , [kn, ln] can be done in time O(n |π|).
Proof. Verifying that π[k1, l1], . . . , π[kn, ln] is a parallel decomposition of π for
the anchorings [k1, l1], . . . , [kn, ln] amounts to checking that for every interval
[j, j + 1] ⊆ [0, |π|], there is an i ∈ [1, n] such that [j, j + 1] ⊆ [ki, li]. This can
clearly be done in time O(n |π|) by a naive approach.

An example of a parallel decomposition is illustrated in Fig. 4, where π1 =
π[0, 2], π2 = π[3, 5], and π3 = π[1, 4].

Fig. 4. Parallel decomposition of π into {π1, π2, π3}.

A cycle in a path π ∈ Π(S) is a factor π′ of π such that π′(0) = π′(|π′|).
An elementary path is a path with no cycle. Remark that an elementary path π
does not contain any state more than once, so |π| ≤ |S|. Removing a cycle π′ of
anchoring [k, l] from a path π yields the path π[0, k].π[l, |π|]. Removing all the
cycles from π consists in iteratively removing cycles until the resulting path is
2 We use the convention that

∑0
k=1 |πk| = 0.



Is My Attack Tree Correct? 91

elementary. Note that the resulting path may depend on the order in which the
cycles are removed.

We illustrate the notions defined in this section on our running example.

Example 1. We use the state variables introduced in Sect. 2 to describe the states
of a part of our building system. By z0 we denote the state where Position =
Outside (the attacker is outside); WOpen = ff (the window is closed); Locked1 =
Locked2 = tt (both doors are locked); Key1 = Key2 = ff (the attacker does
not have any key); CamOn = tt (the camera is on); Detected = ff (the attacker
has not been detected). Furthermore, we consider seven additional states zi, such
that, for every 1 ≤ i ≤ 7, the specification of zi is the same as the specification of
zi−1, except one variable: state z1 is as z0 but Key1 = tt (the attacker has Key1);
state z2 is as z1 but Locked1 = ff (Door1 is unlocked); state z3 is as z2 but
Position = Room1 (the attacker is in Room1); z4 is as z3 but CamOn = ff (the
camera is off); z5 is as z4 but Key2 = tt (the attacker has Key2); state z6 is as z5
but Locked2 = ff (Door2 is unlocked); state z7 is as z6 but Position = Room2
(the attacker is in Room2).

To model the dynamic behavior of the system, we set (zi−1, zi) ∈→, for
all 1 ≤ i ≤ 7. Given p = (Position = Outside) ∧ (Locked1 = tt) and p′ =
(Position = Room1)∨(Position = Room2), we have z0, z1 ∈ λ(p) and zi ∈ λ(p′),
for 3 ≤ i ≤ 7.

The path ρ = z0z1z2z3z4z5z6z7, corresponds to the scenario depicted using
solid line in Fig. 1b. The set {z0z1z2z3z4, z3z4z5z6z7} is an example of parallel
decomposition of ρ. To show that while being in Room1 the attacker can turn
off but also turn on the camera, we could add the transition (z4, z3) to →. In
this case, the attacker could also take the path ρ′ = z0z1z2z3z4z3z4z5z6z7 which
is not elementary because it contains the cycle z3z4z3.

3.2 Attack Trees

To evaluate the security of systems, we use attack trees. An attack tree does not
replace the state-transition system model – it complements it with additional
information on how the corresponding real-life system could be attacked. There
exist a plethora of methods and algorithms for quantitative and qualitative rea-
soning about security using attack trees [15]. However, accurate results can only
be obtained if the attack tree is in some sense consistent with the analyzed sys-
tem. Our goal is thus to validate the relevance of an attack tree with respect
to a given system. To make this validation possible, we need a model capturing
more information than just text-based names of the nodes. In this section, we
therefore introduce a formal definition of attack trees, where the difference with
the classical definition is the presence of a goal of the form 〈ι, γ〉 at each node.

Definition 4 (Attack tree). An attack tree T over the set of propositions
Prop is either a leaf 〈ι, γ〉, where ι, γ ∈ Prop, or a composed tree of the form
(〈ι, γ〉, OP)(T1, T2, . . . , Tn), where ι, γ ∈ Prop, OP ∈ {OR, AND, SAND} has arity
n ≥ 2, and T1, T2, . . . , Tn are attack trees. The main goal of an attack tree
T = (〈ι, γ〉, OP)(T1, T2, . . . , Tn) is 〈ι, γ〉 and its operator is OP.
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The size of an attack tree |T | is the number of the nodes in T . Formally,
|〈ι, γ〉| = 1 and |(〈ι, γ〉, OP)(T1, T2, . . . , Tn)| = 1 + Σn

i=1 |Ti|.
As an example, the tree in Fig. 3 is T = (〈ι, γ〉, OR)(T1, T2). The subtree T1 =

〈ι1, γ1〉 is a leaf and T2 = (〈ι2, γ2〉, AND)(〈ι21, γ21〉, T22) is a composed tree with
T22 = (〈ι22, γ22〉, SAND)(〈ι221, γ221〉, 〈ι222, γ222〉, 〈ι223, γ223〉).

Before introducing properties that address correctness of an attack tree,
we need to define the path semantics of goal expressions that arise from
tree descriptions. A goal expression is either a mere atomic goal of the form
〈ι, γ〉 or a composed goal of the form OP(〈ι1, γ1〉, 〈ι2, γ2〉, . . . , 〈ιn, γn〉), where
OP ∈ {OR, SAND, AND}. The path semantics of a goal expression is defined as
follows.

– [[〈ι, γ〉]]S = {π ∈ Π(S) | π goes from ι to γ}
– [[OR(〈ι1, γ1〉, 〈ι2, γ2〉, . . . , 〈ιn, γn〉)]]S = [[〈ι1, γ1〉]]S ∪ [[〈ι2, γ2〉]]S ∪ . . .∪ [[〈ιn, γn〉]]S
– [[SAND(〈ι1, γ1〉, 〈ι2, γ2〉, . . . , 〈ιn, γn〉)]]S = [[〈ι1, γ1〉]]S .[[〈ι2, γ2〉]]S . . . . .[[〈ιn, γn〉]]S
– [[AND(〈ι1, γ1〉, 〈ι2, γ2〉, . . . , 〈ιn, γn〉)]]S = {π ∈ Π(S) | ∀i ∈ {1, . . . , n} ∃πi ∈

[[〈ιi, γi〉]]S , s.t. {π1, π2, . . . , πn} is a parallel decomposition of π}.

Consider the goal 〈ι, γ〉 of our running example, and let Z be the system
introduced in Example 1. We have [[〈ι, γ〉]]S = {z0z1z2(z3z4)kz5z6z7 | k ≥ 1},
where (z3z4)k is the path composed of k executions of z3z4.

4 Correctness Properties of Attack Trees

We now define four correctness properties for attack trees, illustrate them on
our running example, and discuss their relevance for real-life security analysis.

4.1 Definitions

Before formalizing the correctness properties for attack trees, we wish to discard
attack trees with “useless” nodes. To achieve this, we define the admissibility of
an attack tree T w.r.t. the system S.

The property that an attack tree T is admissible w.r.t. a system S is induc-
tively defined as follows. A leaf tree 〈ι, γ〉 is admissible whenever [[〈ι, γ〉]]S �= ∅.
A composed tree (〈ι, γ〉, OP)(T1, . . . , Tn) is admissible whenever three conditions
hold: (a) [[〈ι, γ〉]]S �= ∅, (b) [[OP(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅, where 〈ιi, γi〉 is the
main goal of Ti (1 ≤ i ≤ n), and (c) every subtree Ti is admissible.

We now propose four notions of correctness, that provide various formal
meanings to the local refinement of a goal in an admissible tree.

Definition 5 (Correctness properties). Let T be a composed admissible
attack tree of the form (〈ι, γ〉, OP)(T1, T2 . . . , Tn), and assume 〈ιi, γi〉 is the main
goal of Ti, for i ∈ {1, . . . , n}. The tree T has the

1. Meet property if [[OP(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ∩ [[〈ι, γ〉]]S �= ∅.
2. Under-Match property if [[OP(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ⊆ [[〈ι, γ〉]]S .
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3. Over-Match property if [[OP(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ⊇ [[〈ι, γ〉]]S .
4. Match property if [[OP(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S = [[〈ι, γ〉]]S .

Clearly the Match property implies all other properties, whereas Under- and
Over-Match properties are incomparable – as illustrated in Sect. 4.2 – and they
both imply the Meet property. Note that a tree T has the Match property if, and
only if, it has both the Under-Match property and the Over-Match property.

The correctness properties of Definition 5 are local (at the root of the sub-
tree), but they can easily be made global by propagating their requirement to
all of the subtrees. As there are |T | many subtrees, the complexity of globally
deciding these properties has the same order of magnitude as in the local case.

4.2 Illustration on the Running Example

In the system Z defined in Example 1 and composed of the states z0, . . . , z7, we
add two states. First, the state z′

0 that is similar to z0 except that we assume that
the window is open, i.e., WOpen = tt, and second, the state z′

7 that is similar to
z′
0 except that we assume that the attacker is in Room2, i.e., Position = Room2.

As a consequence the transitions of the system Z become z′
0 → z0 → z1 → z2 →

z3 ↔ z4 → z5 → z6 → z7 and z′
0 → z′

7, where the latter models that if the
window is open, the attacker can reach Room2 undetected by entering through
the window.

Let us consider the attack tree T (〈ι, γ〉, OR)(〈ι1, γ1〉, T2) from Fig. 3, where
the main goal of T2 is 〈ι2, γ2〉. Since in system Z, the set of paths [[〈ι, γ〉]]S
is exactly the union of [[〈ι1, γ1〉]]S and [[〈ι2, γ2〉]]S , the tree T has the Match
property w.r.t. Z. This means that in order to achieve goal 〈ι, γ〉, it is necessary
and sufficient to achieve goal 〈ι1, γ1〉 or goal 〈ι2, γ2〉.

We now consider the sub-tree T2 of T rooted at the node labeled by 〈ι2, γ2〉
in Fig. 3. The tree T2 is of the form (〈ι2, γ2〉, AND)(〈ι21, γ21〉, T ′

2) where the main
goal of T ′

2 is 〈ι22, γ22〉. Our objective is to analyze the relationship between
the main goal 〈ι2, γ2〉 of T2 and the composed goal AND(〈ι21, γ21〉, 〈ι22, γ22〉).
In other words, we ask how does the aim of reaching Room2 undetected via
building relates with turning off the camera (〈ι21, γ21〉) and reaching Room2
(〈ι22, γ22〉). A quick analysis of system Z shows that indeed achieving both sub-
goals 〈ι21, γ21〉 and 〈ι22, γ22〉 is necessary to achieve goal 〈ι2, γ2〉, but actually it is
not sufficient. Consider the path δ = z′

0z0z1z2z3z4z5z6z7. This path achieves goal
AND(〈ι21, γ21〉, 〈ι22, γ22〉), as it can be decomposed into δ21 = z′

0z0z1z2z3z4 and
δ22 = z0z1z2z3z4z5z6z7, achieving 〈ι21, γ21〉 and 〈ι22, γ22〉, respectively. However,
δ /∈ [[〈ι2, γ2〉]]S , since z′

0 �∈ λ(ι2) (recall that ι2 requires the window to be closed
which is not the case in z′

0). This is what the Over-Match property reflects. As a
consequence, the main tree T does not have the global Match property w.r.t. Z.

Symmetrically to the Over-Match property, Under-Match reflects a sufficient
but not necessary condition. Under-Match is illustrated in the extended version
of this work [4]. Regarding the Meet property, we invite the reader to consider
the following discussion on the relevance of the correctness properties we have
proposed.
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4.3 Relevance of the Correctness Properties

The main objective of introducing the four correctness properties is to be able to
validate an attack tree with respect to a system S, i.e., verify how faithfully the
tree represents potential threats on S. This is of special importance for the trees
that are created manually or which are borrowed from an attack tree library.

In the perfect world, we would expect to work with attack trees having the
(global) Match property, i.e., where the refinement of every (sub-)goal covers
perfectly all possible ways of reaching the (sub-)goal in the system. However, a
tree created by a human will rarely have this property. The experts usually do not
have perfect knowledge about the system and might lack information about some
relevant data. Trees that have been created for similar systems are often reused
but they might actually be incomplete or inaccurate with respect to the current
system. Finally, requiring the (global) Match property might also be unrealistic
for goals expressed only with a couple 〈precondition, postcondition〉. There-
fore, Match is often too strong to be the property expected by default.

In practice, experts base their trees on some example scenarios, which implies
that they obtain trees having the (global) Meet property. The Meet property –
which ensures that there is at least one path in the system satisfying both the
parent goal and its refinement – is the minimum that we expect from an attack
tree so that we can consider that it is (in some sense) correct and so that we can
start reasoning about the security of the underlying system.

However, in order to be able to perform a thorough and accurate analysis of
security, one needs stronger properties to hold. One of the purposes of attack
trees is to provide a summary of possible individual attack scenarios in order to
quantify the security-relevant parameters, such as their cost, their time or their
probability. This helps the security experts to compare and rank the different
scenarios, to be able to deduce the most probable ones and propose suitable
countermeasures. The classical bottom-up algorithm for quantification of attack
trees, described for instance in [19], assigns the parameter values to the leaf
nodes and then propagates them up to the root, using functions that depend on
the type of the refinement used (in our case OR, AND, SAND). This means that the
value of the parent node depends solely on the values of its children. To make
such a bottom-up quantification meaningful from the attacker’s perspective, we
need to require at least the (global) Under-Match property. Indeed, this property
stipulates that all the paths satisfying a refinement of a node’s goal also satisfy
the goal itself. Under-Match corresponds thus to an under-approximation of the
set of scenarios and it is enough to consider it for the purpose of finding a
vulnerability in the system.

To make the analysis meaningful from the point of view of the defender, we will
rather require the Over-Match property. This property means that all the paths
satisfying the parent goal also satisfy its decomposition into sub-goals. Since the
Over-Match property corresponds to an over-approximation of the set of scenar-
ios, it is enough to consider it for the purpose of designing countermeasures.

Our method to evaluate the correctness of an attack tree is to check Admis-
sibility and the (global) Meet property. If it holds, then we say that the attack
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tree construction is correct w.r.t. to the analyzed system. We then look at the
stronger properties. Depending on the situation, the expert might want to ensure
either the (global) Under-Match or the (global) Over-Match property. If the tree
fails to verify the desired property with respect to a given system S, then it
needs to be reshaped before it can be employed for the security analysis of the
real system modeled by S.

5 Complexity Issues

In this section, we address the complexity of deciding our four correctness proper-
ties introduced in Definition 5. For full proofs, we refer the reader to the extended
version of this work [4]. Table 1 gives an overview of the obtained results. In the
case of the OR and the SAND operators, all the correctness properties are decided in
polynomial time, which is promising in practice. However, for the AND operator,
checking the Admissibility property and the Meet property is NP-complete, and
checking the Under-Match property is co-NP-complete. These last two problems
are therefore intractable [9], but recall that their complexity in practice might
be lower thanks to much favorable kinds of instances (see for example [18]).

Table 1. Complexities of the correctness properties.

Admissibility Meet Under-Match Over-Match Match

OR P P P P P

SAND P P P P P

AND NP-c NP-c co-NP-c co-NP co-NP

We first state two lemmas that will be useful for our complexity analysis.
Lemma 2 provides a bound to the size of paths we need to consider in the system
for the verification of correctness properties. Lemma 3 provides the complexity
of checking if a path reflects a particular combination of subgoals.

Lemma 2. Let S be a transition system, OP ∈ {OR, AND, SAND}, and
ι1, γ1, . . . ιn, γn ∈ Prop. For every path π in [[OP(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ,
there exists a path π′ of linear size in |S| and n that is also in
[[OP(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S and which preserves the ends of π, i.e., π′(0) = π(0)
and π′(|π′|) = π(|π|). More precisely, |π′| ∈ O((2n − 1) |S|).
Lemma 3. Let S be a transition system, ι1, γ1, . . . ιn, γn be propositions in Prop,
and let π ∈ Π(S). Determining whether π ∈ [[OP(〈ι1, γ1〉, 〈ι2, γ2〉, . . . , 〈ιn, γn〉)]]S
can be done in time O(|π|+n), if OP = SAND, and in time O(|π|n), if OP = AND.

The proofs of the two lemmas are provided in [4].
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5.1 Checking Admissibility (Column 1 of Table 1)

We now investigate the complexity of deciding the admissibility of an attack
tree.

Proposition 1. Given a system S and ι1, γ1, . . . ιn, γn ∈ Prop, decid-
ing [[〈ι, γ〉]]S �= ∅, deciding [[OR(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅, and deciding
[[SAND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅ are decision problems in P.

Proof.

1. Determining if [[〈ι, γ〉]]S is not empty amounts to performing a standard reach-
ability analysis in S, which can be done in polynomial time.

2. By the path semantics of the OR operator, [[OR(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅ if
and only if there is i ∈ [1, n], such that [[〈ιj , γj〉]]S �= ∅, which by the case 1 of
this proof, yields a polynomial time algorithm.

3. Checking that [[SAND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅ can be done by a forward
analysis: for 1 ≤ i ≤ n, we define a sequence of state sets Si by induction
over i as follows: we let S1 = λ(ι1). Next, for 2 ≤ i < n, Si+1 = λ(ιi+1) ∩
λ(γi) ∩ Post∗S(Si). Clearly, [[SAND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅ if, and only if
Sn �= ∅. Moreover, computing Sn takes at most n |S| steps, since each Si+1 is
computed from Si in at most |S| steps.

In the case of the AND operator the reasoning is more complex.

Proposition 2. Given a system S and ι1, γ1, . . . ιn, γn ∈ Prop, deciding the
non-emptiness [[AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅ is NP-complete.

Proof. NP-easy: We can use the algorithm of Lemma 3, with the algorithm
guessing a path of polynomial size according to Lemma 2. NP-hard: We recall
that a set of clauses C over a set of (propositional) variables {p1, . . . , pr} is
composed of elements (the clauses) C ∈ C such that C is a set of literals, that
is either a variable pi or its negation ¬pi. The set C is satisfiable if there exists
a valuation of the variables p1, . . . , pr that renders all the clauses of C true.
The SAT problem is: given a set of clauses C , to decide if it is satisfiable. It is
well-known that SAT is an NP-complete problem [6].

Now, let C = {C1, . . . , Cm} be a set of clauses over variables {p1, . . . , pr}
(ordered by their index) that is an input of the SAT problem. Classically, we let
|C | be the sum of the sizes of all the clauses in C , where the size of a clause is
the number of its literals.

In the following, we let the symbol 
i denote either pi or ¬pi, for every
i ∈ {1, . . . , r}. We define the labeled transition system SC = (SC ,→C , λC ) over
the set of propositions {start, C1, . . . , Cm}, where start is a fresh proposition, as
follows. The set of states is SC =

⋃r
i=1{pi,¬pi}∪{s}, where s is a fresh state; the

transition relation is →C= {(
i, 
i+1) | i ∈ [1, r −1]}∪{(s, 
1)}; and the labeling
of states λC : {start, C1, . . . , Cm} → 2S is such that λC (start) = {s} and
λC (Ci) = {
 ∈ Ci} for 1 ≤ i ≤ m. Note that, by definition, |SC | is polynomial
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Fig. 5. The system S{C1,C2} where C1 = p ∨ ¬q and C2 = p ∨ r.

in |C |. For example, the transition system corresponding to the set formed by
clauses C1 = p ∨ ¬q and C2 = p ∨ r is depicted in Fig. 5.

It is then easy to establish that [[AND(〈start, C1〉, 〈start, C2〉, . . . ,
〈start, Cm〉)]]SC �= ∅ if, and only if C is satisfiable.

According to the formal definition of the statement “T is admissible w.r.t. S”
as defined in Sect. 4, it is easy to combine the results of Propositions 1 and 2, to
conclude that verifying that a tree is admissible is an NP-complete problem.

5.2 Checking the Meet property (Column 2 of Table 1)

Preliminaries on temporal logic. We consider a syntactic fragment of the tempo-
ral logic CTL [5] where the only temporal operator is “eventually”, here denoted
by symbol ♦, and where Boolean operators are conjunction and disjunction. The
syntax of the formulas is ϕ := p | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦ϕ. The semantics of formulas
is given with regard to a labeled transition system S = (S,→, λ): each for-
mula ϕ denotes a subset of states, which we note [ϕ]S , and which is defined by
induction: [p]S = λ(p), [ϕ ∧ ϕ′]S = [ϕ]S ∩ [ϕ′]S , [ϕ ∨ ϕ′]S = [ϕ]S ∪ [ϕ′]S , and
[♦ϕ]S = Pre∗

S([ϕ]S), where Pre∗
S is defined in Sect. 3.1. Recall that s ∈ [♦ϕ]S

if, and only if, there is a path in S starting from s and that reaches a state in
[ϕ]S . It is well-established that computing [ϕ]S can be done in polynomial time
in |S| and |ϕ| (see for example [27]).

We now turn to the complexity of verifying the Meet property.

Proposition 3. Given a system S and ι, γ, ι1, γ1, . . . ιn, γn ∈ Prop, the problem
of deciding [[OR(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S∩[[〈ι, γ〉]]S �= ∅, and the problem of deciding
[[SAND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ∩ [[〈ι, γ〉]]S �= ∅ are in P.

Proof.

1. Let ϕOR :=
n∨

i=1

ι ∧ ιi ∧ ♦(γ ∧ γi). We claim that [[OR(〈ι1, γ1〉, . . . 〈ιn, γn〉)]]S ∩

[[〈ι, γ〉]]S �= ∅ iff [ϕOR]S �= ∅. We easily conclude our proof from the claim and
the fact that computing [ϕOR]S can be done in polynomial time.
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2. Let ϕSAND := ι ∧ ι1 ∧ ♦(γ1 ∧ ι2 ∧ ♦(γ2 ∧ . . . ♦(γn ∧ γ))). We claim that
[[SAND(〈ι1, γ1〉, . . . 〈ιn, γn〉)]]S ∩[[〈ι, γ〉]]S �= ∅ iff [ϕSAND]S �= ∅. We easily conclude
our proof from the claim and the fact that computing [ϕSAND]S can be done
in polynomial time.

The proofs of the two claims can be found in the extended version [4].

Again, the AND operator turns out to be intrinsically more complex to deal
with.

Proposition 4. Given a system S and ι, γ, ι1, γ1, . . . ιn, γn ∈ Prop, deciding
[[AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ∩ [[〈ι, γ〉]]S �= ∅ is an NP-complete problem.

Proof. NP-easy: We can construct a non-deterministic polynomial time algo-
rithm that guesses a path π ∈ Π(S), of polynomial size in |S| and n (this is
justified by Lemma 2), and checks that π ∈ [[AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S , which
can be done in polynomial time in the size of π, which is also in polynomial time
in |S| and n by the choice of π (see Lemma 3). NP-hard: we reduce the problem
of deciding [[AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅ which is NP-hard by Proposition 2.
The details are given in the extended version [4].

As a consequence of Propositions 3 and 4, it is NP-complete to verify that an
attack tree has the Meet property, but if we restrict to attack trees that contain
only OR or SAND operators, the problem becomes P .

5.3 Checking the Under-Match property (Column 3 of Table 1)

The OR and SAND operators do not pose any problem. Due to the lack of space,
we omit the proof which can be found in the extended version [4].

Proposition 5. Given a system S and ι, γ, ι1, γ1, . . . ιn, γn ∈ Prop, decid-
ing [[OR(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ⊆ [[〈ι, γ〉]]S , and deciding [[SAND(〈ι1, γ1〉, . . . ,
〈ιn, γn〉)]]S ⊆ [[〈ι, γ〉]]S are decision problems in P.

As previously, the AND operator yields a more complex problem to solve.

Proposition 6. Given a system S and ι, γ, ι1, γ1, . . . ιn, γn ∈ Prop, deciding
[[AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ⊆ [[〈ι, γ〉]]S is a co-NP-complete problem.

This proof is given in the extended version [4].

5.4 Checking the Over-Match property (Column 4 of Table 1)

Again, the cases for the OR and AND operators are smooth whereas the case of
the AND operator is more difficult. Full proofs of these results are long and can
be found in [4].
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Proposition 7. Given a system S and ι, γ, ι1, γ1, . . . ιn, γn ∈ Prop, decid-
ing [[OR(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ⊇ [[〈ι, γ〉]]S and deciding [[SAND(〈ι1, γ1〉, . . . ,
〈ιn, γn〉)]]S ⊇ [[〈ι, γ〉]]S are decision problems in P. On the contrary deciding
[[AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ⊇ [[〈ι, γ〉]]S is a decision problem in co-NP.

Finally, we can get an upper bound for column 5 of Table 1 (the Match
property) by taking the maximum between upper bound complexities for Under-
Match and Over-Match, which achieves the filling of Table 1.

6 Conclusion and Future Work

In this work, we have developed and studied a formal setting to assist experts
in the design of attack trees when a particular system is considered. The system
is described by a finite state-transition system that reflects its dynamics and
whose finite paths (sequences of states) denote attack scenarios. The attack tree
nodes are labeled with pairs 〈ι, γ〉 expressing the attacker’s goals in terms of
pre and postconditions. The semantics of attack trees is based on sets of finite
paths in the transition system. Such sets of paths can be characterized as a mere
reachability condition of the form “all paths from condition ι to condition γ”,
or by a combination of those by means of OR, AND, and SAND.

We have exhibited the Admissibility property which allows us to check
whether it makes sense to analyze a given attack tree in the context of a con-
sidered system. We then propose four natural correctness properties on top of
Admissibility, namely

– Meet – the node’s refinement makes sense in a given system;
– Under (resp. Over) Match – the node’s refinement under-approximates (resp.

over-approximates) the goal of the node in a given system; and
– Match – the node’s refinement expresses exactly the node’s goal in a given

system.

While analyzing an attack tree with respect to a system, we propose to start
by checking whether each of its subtrees satisfies the Meet property – this is
the minimum that we require from a correct attack tree. If this is the case, we
can then check how well the tree refines the main attacker’s goal, using (Under-
and Over-) Matching. Our study reveals that the highest complexity in such
analysis is due to conjunctive refinements (i.e., the AND operator), as opposed
to disjunctive and sequential refinements, cf. Table 1. The reason is that the
semantics that we use in our framework relies on paths in a transition system
and thus modeling and verification for paths’ concatenation (used to formalize
the SAND refinements) is much simpler than those for parallel decomposition
(used to formalize the AND refinements). Indeed, the latter requires to analyze
the combinatorics of paths representing children of a conjunctively refined node.

The framework presented in this paper offers numerous possibilities for prac-
tical applications in industrial setting. First, it can be used to estimate the
quality of a refinement of an attack goal, that an expert could borrow from
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an attack pattern library. The correctness properties introduced in this work
allow us to evaluate the relevance of often generic refinements in the context of a
given system. Second, classical attack trees use text-based nodes that represent a
desired configuration to be reached (our postcondition γ) without specifying the
initial configuration (our precondition ι) where the attack will start from. Given
a transition system S describing a real system to be analyzed, the text-based
goals can be straightforwardly translated into formal propositions expressing the
final configurations (i.e., γ) to be reached by the attacker. The expert may also
specify the initial configurations (i.e., ι), but if he does not do so, they can be
automatically generated from the transition system, by simply taking all states
belonging to the set Pre∗

S(λ(γ)) of predecessors of λ(γ) in S.
For pedagogical reasons, we have focused on simple atomic goals (i.e., node

labels) that are definable in terms of a precondition and a postcondition. As one
of the future directions, we would like to enrich the language of atomic goals, for
instance by adding variables with history or invariants. Variables with history
can be used to express properties such as “Once detected, the attacker will always
stay detected”. With invariants, we may add constraints to the goals, as in “Reach
Room2 undetected without ever crossing Room1”. If invariants are added to
atomic goals, for instance using LTL formulas, the complexity of some problems
presented in this paper may increase. In that case, checking that a path satisfies
the semantics of a node might no longer be done in constant time, but in polyno-
mial time, or even in PSPACE-complete, if arbitrary LTL formulas are allowed
[7]. It would then be relevant to study the interplay between the expressiveness
of the atomic goals and the complexity of verifying these correctness properties.

It would also be interesting to extend our framework to capture more com-
plex properties than those defined in Definition 5. Pragmatic examples of such
properties would be validities and tests expressed in an adequate logic. Validi-
ties would be formulas that are true in any system. An example of a validity
would look like AND(〈ι, γ〉〈ι′, γ′〉) � SAND(〈ι, γ〉〈ι′, γ′〉), with the meaning that a
sequential composition is a particular case of parallel composition. Tests would
be formulas which might be true in some systems, but not necessarily in all
cases. For instance, a formula like AND(〈ι, γ〉〈ι′, γ′〉) � SAND(〈ι, γ〉〈ι′, γ′〉) would
mean that, in a given system, it is impossible to realize both 〈ι, γ〉 and 〈ι′, γ′〉
otherwise than sequentially in this particular order.

Finally, we are currently working on integrating the framework developed
in this work to the ATSyRA tool. The ultimate goal is to design software for
generation of attack trees satisfying the correctness properties that we have intro-
duced. The short- term objective is to validate the practicality of the proposed
framework and its usability with respect to the complexity results that we have
proven in this work.
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