Simon N. Foley
Dieter Gollmann
Einar Snekkenes (Eds.)

Computer Security -
ESORICS 2017

22nd European Symposium
on Research in Computer Security
Oslo, Norway, September 11-15, 2017, Proceedings, Part |

LNCS 10492

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

10492

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Simon N. Foley - Dieter Gollmann
Einar Snekkenes (Eds.)

Computer Security —
ESORICS 2017

22nd European Symposium on Research in Computer Security
Oslo, Norway, September 11-15, 2017
Proceedings, Part 1

@ Springer

Editors

Simon N. Foley Einar Snekkenes
IMT Atlantique NTNU

Rennes Gjovik

France Norway

Dieter Gollmann
Hamburg University of Technology

Hamburg

Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-66401-9 ISBN 978-3-319-66402-6 (eBook)

DOI 10.1007/978-3-319-66402-6
Library of Congress Control Number: 2017949525
LNCS Sublibrary: SL4 — Security and Cryptology

© Springer International Publishing AG 2017, corrected publication 2018

Chapter 3 was created within the capacity of an US governmental employment. US copyright protection does
not apply.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book contains the papers that were selected for presentation and publication at the
22nd European Symposium on Research in Computer Security, ESORICS 2017, which
was held in Oslo, Norway, September 11-15, 2017. The aim of ESORICS is to further
the progress of research in computer security by bringing together researchers in the
area, by promoting the exchange of ideas with system developers and by encouraging
links with researchers in related areas.

The Program Committee accepted 54 papers out of a total of 338 papers that were
submitted from 51 different countries, resulting in an acceptance rate of 16%. The
accepted papers are drawn from a wide range of topics, including data protection,
security protocols, systems, web and network security, privacy, threat modelling and
detection, information flow and security in emerging applications such as cryptocur-
rencies, the Internet of Things, and automotive. The 120-member Program Committee,
assisted by a further 334 external reviewers, reviewed and discussed the papers online
over a period of 8 weeks, writing a total of 1015 reviews for authors.

ESORICS 2017 would not have been possible without the contributions of the many
volunteers who freely gave their time and expertise. We would like to thank the
members of the Program Committee and the external reviewers for their substantial
work in evaluating the papers. We would also like to thank the ESORICS Steering
Committee and its Chair Pierangela Samarati; the Organisation Chair Laura Georg; the
Publicity Chair Cristina Alcaraz; the Workshop Chair Sokratis Katsikas and all
workshop co-chairs, who organized the workshops co-located with ESORICS. We
would like to especially thank the sponsors of this year’s ESORICS conference: the
Center for Cyber and Information Security, COINS Research School, KPMG, the
Norwegian University of Science and Technology NTNU, Oxford University Press,
and the Research Council of Norway.

Finally, we would like to express our thanks to the authors who submitted papers to
ESORICS. They, more than anyone else, are what makes this conference possible.

July 2017 Simon Foley
Dieter Gollmann
Einar Snekkenes

Program Committee

Gail-Joon Ahn
Alessandro Armando
Frederik Armknecht
Michael Backes
Giampaolo Bella
Zinaida Benenson
Elisa Bertino

Carlo Blundo

Rainer Boehme
Colin Boyd

Stefan Brunthaler

Chris Brzuska

Tom Chothia

Sherman S.M. Chow

Mauro Conti

Cas Cremers

Frédéric Cuppens

Nora Cuppens-Boulahia

Mads Dam

Sabrina De Capitani
di Vimercati

Hervé Debar

Roberto Di Pietro

Josep Domingo-Ferrer

Wenliang Du

Pavlos Efraimidis

Hannes Federrath

Simone Fischer-Hiibner

Riccardo Focardi

Simon Foley

Sara Foresti

Felix Freiling

Sibylle Froeschle
Lenzini Gabriele
Joaquin Garcia-Alfaro
Dieter Gollmann

Organization

Arizona State University, USA

University of Genoa and Fondazione Bruno Kessler, Italy

Universitdt Mannheim, Germany

CISPA, Saarland University, Germany

Universita di Catania, Italy

University of Erlangen-Nuremberg, Germany

Purdue University, USA

Universita degli Studi di Salerno, Italy

University of Innsbruck, Austria

Norwegian University of Science and Technology
(NTNU), Norway

Paderborn University, Germany

TU Hamburg, Germany

University of Birmingham, UK

Chinese University of Hong Kong, Hong Kong, China

University of Padua, Italy

University of Oxford, UK

IMT Atlantique, France

IMT Atlantique, France

KTH, Sweden

Universita degli Studi di Milano, Italy

Télécom SudParis, France

Bell Labs, France

Universitat Rovira i Virgili, Spain

Syracuse University, USA

Democritus University of Thrace, Greece

University of Hamburg, Germany

Karlstad University, Sweden

Universita Ca’ Foscari, Venice, Italy

IMT Atlantique, France

DI - Universita degli Studi di Milano, Italy

Friedrich-Alexander-Universitit Erlangen-Niirnberg
(FAU), Germany

University of Oldenburg, Germany

SnT/University of Luxembourg, Luxembourg

Télécom SudParis, France

TU Hamburg, Germany

VI Organization

Dimitris Gritzalis
Stefanos Gritzalis
Joshua Guttman
Gerhard Hancke
Marit Hansen

Rene Rydhof Hansen
Feng Hao
Cormac Herley
Xinyi Huang
Michael Huth
Aaron D. Jaggard
Sushil Jajodia
Limin Jia

Wouter Joosen
Vasilis Katos
Sokratis Katsikas

Florian Kerschbaum
Dogan Kesdogan
Kwangjo Kim

Steve Kremer
Marina Krotofil

Ralf Kiisters

Junzuo Lai

Kwok Yan Lam
Costas Lambrinoudakis
Peeter Laud

Adam J. Lee

Yingjiu Li

Antonio Lioy

Peng Liu

Javier Lopez
Pratyusa K. Manadhata
Luigi Mancini

Heiko Mantel
Olivier Markowitch
Fabio Martinelli
Sjouke Mauw
Antonio Mana
Catherine Meadows
John Mitchell
Aikaterini Mitrokotsa
Refik Molva

Charles Morisset
Rolf Oppliger

Athens University of Economics and Business, Greece

University of the Aegean, Greece

Worcester Polytechnic Institute, USA

City University of Hong Kong, Hong Kong, China

Unabhéngiges Landeszentrum fiir Datenschutz
Schleswig-Holstein, Germany

Aalborg University, Denmark

Newcastle University, UK

Microsoft Research, USA

Fujian Normal University, China

Imperial College London, UK

U.S. Naval Research Laboratory, USA

George Mason University, USA

Carnegie Mellon University, USA

Katholieke Universiteit Leuven, Belgium

Bournemouth University, UK

Center for Cyber and Information Security,
NTNU, Norway

University of Waterloo, Canada

Universitdt Regensburg, Germany

KAIST, South Korea

Inria Nancy - Grand Est, France

Honeywell Industrial Cyber Security Lab, USA

University of Stuttgart, Germany

Singapore Management University, Singapore

Nanyang Technological University, Singapore

University of Piracus, Greece

Cybernetica AS, Estonia

University of Pittsburgh, USA

Singapore Management University, Singapore

Politecnico di Torino, Italy

The Pennsylvania State University, USA

University of Malaga, Spain

Hewlett-Packard Laboratories, USA

Universita di Roma La Sapienza, Italy

TU Darmstadt, Germany

Université Libre de Bruxelles (ULB), Belgium

IIT-CNR, Italy

University of Luxembourg, Luxembourg

University of Malaga, Spain

NRL, USA

Stanford University, USA

Chalmers University of Technology, Sweden

EURECOM, France

Newcastle University, UK

eSECURITY Technologies, Switzerland

Stefano Paraboschi
Dusko Pavlovic
Giinther Pernul
David Pichardie
Frank Piessens
Wolter Pieters
Michalis Polychronakis
Joachim Posegga
Christian W. Probst
Christina Popper

Kai Rannenberg
Awais Rashid
Indrajit Ray

Kui Ren

Mark Ryan

Peter Y.A. Ryan
Andrei Sabelfeld
Reyhaneh Safavi-Naini
Pierangela Samarati
Ravi Sandhu

Ralf Sasse

Nitesh Saxena
Andreas Schaad
Steve Schneider
Joerg Schwenk

Basit Shafiq

Ben Smyth

Einar Snekkenes
Willy Susilo
Krzysztof Szczypiorski
Bjorn Tackmann
Qiang Tang

Nils Ole Tippenhauer

Aggeliki Tsohou
Jaideep Vaidya

Vijay Varadharajan
Luca Vigano

Michael Waidner
Cong Wang

Lingyu Wang

Edgar Weippl

Stephen D. Wolthusen

Christos Xenakis

Organization

Universita di Bergamo, Italy

University of Hawaii, USA

Universitdt Regensburg, Germany

ENS Rennes/IRISA/Inria, France

Katholieke Universiteit Leuven, Belgium

Delft University of Technology, The Netherlands

Stony Brook University, USA

University of Passau, Germany

Technical University of Denmark, Denmark

New York University Abu Dhabi, UAE

Goethe University Frankfurt, Germany

Lancaster University, UK

Colorado State University, USA

State University of New York at Buffalo, USA

University of Birmingham, UK

University of Luxembourg, Luxembourg

Chalmers University of Technology, Sweden

University of Calgary, Canada

Universita degli Studi di Milano, Italy

University of Texas at San Antonio, USA

ETH Ziirich, Switzerland

University of Alabama at Birmingham, USA

Huawei European Research Center, Germany

University of Surrey, UK

Ruhr-Universitidt Bochum, Germany

Lahore University of Management Sciences, Pakistan

Verified IO Limited

NTNU, Norway

University of Wollongong, Australia

Warsaw University of Technology, Poland

IBM Research, Switzerland

Cornell University, USA

Singapore University of Technology and Design,
Singapore

Ionian University, Greece

Rutgers University, USA

The University of Newcastle, UK

King’s College London, UK

Fraunhofer SIT, Germany

City University of Hong Kong, Hong Kong, China

Concordia University, USA

SBA Research, Austria

Royal Holloway, University of London, UK and
Norwegian University of Science and Technology,
Norway

University of Piraeus, Greece

IX

X Organization

Jeff Yan
Meng Yu
Ben Zhao
Jianying Zhou

Haojin Zhu

Additional Reviewers

Abdullah, Lamya
Abramova, Svetlana
Agudo, Isaac

Ah-Fat, Patrick
Ahlawat, Amit
Akowuah, Francis
Albanese, Massimiliano

Alimohammadifar, Amir

Alpirez Bock, Estuardo
Alrabaee, Saed
Ambrosin, Moreno

Aminanto, Muhamad Erza

Anand, S Abhishek
Angles-Tafalla, Carles
Aonzo, Simone
Arlitt, Martin
Arriaga, Afonso
Assaf, Mounir
Atzeni, Andrea
Auerbach, Benedikt
Avizheh, Sepideh
Bacis, Enrico

Bag, Samiran
Bajramovic, Edita
Ban Kirigin, Tajana
Barber, Simon
Bardin, Sebastien
Bastys, Iulia

Basu, Hridam
Baumann, Christoph
Belgacem, Boutheyna
Berbecaru, Diana
Besson, Frédéric
Bilzhause, Arne
Biondi, Fabrizio
Bkakria, Anis

Lancaster University, UK

University of Texas at San Antonio, USA

University of Chicago, USA

Singapore University of Technology and Design,
Singapore

Shanghai Jiao Tong University, China

Blanc, Gregory
Blanco-Justicia, Alberto
Blochberger, Maximilian
Bogaerts, Jasper
Boschini, Cecilia
Bossen, Jannek Alexander Westerhof
Boureanu, Ioana
Bours, Patrick
Brandt, Markus
Brooks, Tyson

Bruni, Alessandro
Buhov, Damjan
Bullee, Jan-Willem
Burkert, Christian
Bursuc, Sergiu
Busch, Marcel

Butin, Denis

Bo6hm, Fabian
Calzavara, Stefano
Carmichael, Peter
Ceccato, Mariano
Chen, Jie

Chen, Long

Chen, Rongmao
Cheng, Peng

Cheval, Vincent
Choi, Rakyong
Ciampi, Michele
Clark, Daniel
Cohn-Gordon, Katriel
Costa, Gabriele
Costache, Anamaria
Costantino, Gianpiero
Courtois, Nicolas
Dai, Tianxiang
Dantas, Yuri Gil

Davies, Gareth T.
De Benedictis, Marco
De Gaspari, Fabio
De Meo, Federico
Dehnel-Wild, Martin
Del Pino, Rafaél
Desmet, Lieven
Drogkaris, Prokopios
Drosatos, George
Duman, Onur
Duong, Tuyet

Fan, Xiong

Farras, Oriol
Fernandez, Carmen
Ferrari, Stefano

Fett, Daniel
Fleischhacker, Nils
Freeman, Kevin
Frey, Sylvain
Gadyatskaya, Olga
Garratt, Luke
Gazeau, Ivan

Genc, Ziya A.
Geneiatakis, Dimitris
Georgiopoulou, Zafeiroula
Gervais, Arthur
Giustolisi, Rosario
Gogioso, Stefano
Gonzalez-Burguefio, Antonio
Gritti, Clémentine
Groll, Sebastian
Grosz, Akos

Guan, Le

Guanciale, Roberto
Gunasinghe, Hasini
Gyftopoulos, Sotirios
Gérard, Frangois
Gotzfried, Johannes
Hallgren, Per
Hamann, Tobias
Hammann, Sven
Han, Jinguang
Harborth, David
Hartmann, Lukas
Hassan, Sabri
Hatamian, Majid

Organization

Haupert, Vincent
Hausknecht, Daniel
Herrera, Jordi

Hils, Maximilian
Huang, Yi
Hummer, Matthias
Ilia, Panagiotis
Tovino, Vincenzo
Islam, Morshed
Issel, Katharina
Iwaya, Leonardo
Jackson, Dennis
Jansen, Kai

Jansen, Rob
Jhawar, Ravi
Joensen, Olavur Debes
Johannes, Schickel
Jonker, Hugo
Jourdan, Jacques-Henri
Jaschke, Angela
Kalloniatis, Christos
Kandias, Miltiadis
Katz, Jonathan
Kerstan, Henning
Kersten, Rody
Kintis, Panagiotis
Kohls, Katharina
Kokolakis, Spyros
Kountouras, Athanasios
Kuchta, Veronika
Kilber, Sven
Kostler, Johannes
Labunets, Katsiaryna
Lacoste, Marc
Lagorio, Giovanni
Lai, Russell W.F.
Lain, Daniele

Lal, Chhagan
Laperdrix, Pierre
Laporte, Vincent
Latzo, Tobias
Lazrig, Ibrahim
Learney, Robert
Lehmann, Anja
Leontiadis, Iraklis
Li, Hanyi

XI

XII Organization

Li, Ximeng

Liang, Kaitai

Lin, Fuchun

Liu, Ximeng

Liu, Ximing
Lochbihler, Andreas
Lopez, Jose M.

Lu, Yuan

Lyvas, Christos

Ma, Jack P.K.

Mace, John

Madi, Taous

Magkos, Emmanouil
Mahgoub Yahia Mohamed, Muzamil
Majumdar, Suryadipta
Maragoudakis, Manolis
Marino, Francesco
Marktscheffel, Tobias
Martinez, Sergio
Marx, Matthias
Mateus, Paulo
McEvoy, Richard
Mehnaz, Shagufta
Melicher, William
Mercaldo, Francesco
Meyer, Maxime
Mizera, Andrzej
Momeni, Sadaf
Moore, Nicholas
Muehlberg, Jan Tobias
Miieller, Johannes
Mukherjee, Subhojeet
Mulamba, Dieudonne
Mylonas, Alexios
Navarro-Arribas, Guillermo
Nemati, Hamed
Neupane, Ajaya
Neven, Gregory
Nieto, Ana

Ntouskas, Teo

Nuiiez, David

Olesen, Anders Trier
Oqaily, Momen
Ordean, Mihai

Onen, Melek
Palmarini, Francesco

Pang, Jun

Panico, Agostino
Parra-Arnau, Javier
Pasquini, Cecilia
Patachi, Stefan
Pelosi, Gerardo

Petit, Christophe
Petrovic, Slobodan
Pham, Vinh
Pitropakis, Nikolaos
Preuveneers, Davy
Prid6hl, Henning
Puchta, Alexander
Pulls, Tobias
Pérez-Sola, Cristina
Rafnsson, Willard
Rajagopalan, Siva
Rakotondravony, Noelle
Rao, Fang-Yu
Rausch, Daniel
Rekleitis, Evangelos
Reuben, Jenni
Ribes-Gonzalez, Jordi
Ricci, Sara
Richthammer, Hartmut
Rios, Ruben

Rosa, Marco

Roth, Christian
Roux-Langlois, Adeline
Rupprecht, David
Saracino, Andrea
Satvat, Kiavash
Saxena, Neetesh
Schiffman, Joshua
Schmid, Lara
Schmitz, Christopher
Schmitz, Guido
Schneider, David
Schnitzler, Theodor
Schoepe, Daniel
Schoettle, Pascal
Schroeder, Dominique
Schwarz, Oliver
Sciarretta, Giada
Senf, Daniel
Sgandurra, Daniele

Shah, Ankit
Shahandashti, Siamak
Sheikhalishahi, Mina
Shen, Jian

Shirani, Paria
Shirvanian, Maliheh
Shrestha, Prakash
Shulman, Haya
Simo, Hervais
Siniscalchi, Luisa
Sjosten, Alexander
Skrobot, Marjan
Smith, Geoffrey
Soria-Comas, Jordi
Soska, Kyle

Spolaor, Riccardo
Stamatelatos, Giorgos
Stergiopoulos, George
Strackx, Raoul
Stiibs, Marius

Su, Tao

Sy, Erik

Sénger, Johannes
Tai, Raymond K.H.
Tasch, Markus
Tasidou, Aimilia
Taubmann, Benjamin
Taylor, Gareth
Tesfay, Welderufael
Tolomei, Gabriele
Truderung, Tomasz
Trujillo, Rolando
Tsalis, Nikolaos
Tupakula, Uday
Vallini, Marco

Van Acker, Steven
Van Bulck, Jo

van Ginkel, Neline
Van Rompay, Cédric
Vanbrabant, Bart
Vasilopoulos, Dimitrios

Organization

Vazquez Sandoval, Itzel
Venkatesan, Sridhar
Venturi, Daniele
Veseli, Fatbardh
Vielberth, Manfred
Virvilis, Nick
Vissers, Thomas
Volkamer, Melanie
Wang, Jiafan
Wang, Mingian
Wang, Qinglong
Wang, Wei

Wang, Xiuhua
Weber, Alexandra
Weber, Michael
Wikstrom, Douglas
Wolter, Katinka
Wong, Harry W.H.
Woo, Maverick
Xu, Jun

Xu, Ke

Xu, Peng

Yaich, Reda

Yang, S.J.
Yautsiukhin, Artsiom
Yesuf, Ahmed Seid
Ying, Kailiang

Yu, Jiangshan

Yu, Xingjie
Zamyatin, Alexei
Zavatteri, Matteo
Zhang, Liang Feng
Zhang, Mengyuan
Zhang, Yuqing
Zhao, Yongjun
Zhao, Yunwei
Zhou, Lan

Zhu, Fei

Ziener, Daniel
Zimmer, Ephraim

XIII

Contents — Part 1

From Intrusion Detection to Software Design 1
Sandro Etalle

Justifying Security Measures — a Position Paper 11
Cormac Herley

The Once and Future Onion. 18
Paul Syverson

Tightly Secure Ring-LWE Based Key Encapsulation

with Short Ciphertexts. e 29
Martin R. Albrecht, Emmanuela Orsini, Kenneth G. Paterson,
Guy Peer, and Nigel P. Smart

Tree-Based Cryptographic Access Control 47
James Alderman, Naomi Farley, and Jason Crampton

Source Code Authorship Attribution Using Long Short-Term Memory

Based Networks e 65
Bander Alsulami, Edwin Dauber, Richard Harang, Spiros Mancoridis,
and Rachel Greenstadt

Is My Attack Tree Correct? i 83
Maxime Audinot, Sophie Pinchinat, and Barbara Kordy

Server-Aided Secure Computation with Off-line Parties 103
Foteini Baldimtsi, Dimitrios Papadopoulos, Stavros Papadopoulos,
Alessandra Scafuro, and Nikos Triandopoulos

We Are Family: Relating Information-Flow Trackers. 124
Musard Balliu, Daniel Schoepe, and Andrei Sabelfeld

Labeled Homomorphic Encryption: Scalable and Privacy-Preserving
Processing of Outsourced Data 146
Manuel Barbosa, Dario Catalano, and Dario Fiore

MTD CBITS: Moving Target Defense for Cloud-Based IT Systems 167
Alexandru G. Bardas, Sathya Chandran Sundaramurthy,
Xinming Ou, and Scott A. DeLoach

Modular Verification of Protocol Equivalence in the Presence
of Randommness.ot e 187
Matthew S. Bauer, Rohit Chadha, and Mahesh Viswanathan

http://dx.doi.org/10.1007/978-3-319-66402-6_1
http://dx.doi.org/10.1007/978-3-319-66402-6_2
http://dx.doi.org/10.1007/978-3-319-66402-6_3
http://dx.doi.org/10.1007/978-3-319-66402-6_4
http://dx.doi.org/10.1007/978-3-319-66402-6_4
http://dx.doi.org/10.1007/978-3-319-66402-6_5
http://dx.doi.org/10.1007/978-3-319-66402-6_6
http://dx.doi.org/10.1007/978-3-319-66402-6_6
http://dx.doi.org/10.1007/978-3-319-66402-6_7
http://dx.doi.org/10.1007/978-3-319-66402-6_8
http://dx.doi.org/10.1007/978-3-319-66402-6_9
http://dx.doi.org/10.1007/978-3-319-66402-6_10
http://dx.doi.org/10.1007/978-3-319-66402-6_10
http://dx.doi.org/10.1007/978-3-319-66402-6_11
http://dx.doi.org/10.1007/978-3-319-66402-6_12
http://dx.doi.org/10.1007/978-3-319-66402-6_12

XVI Contents — Part 1

Non-interactive Provably Secure Attestations for Arbitrary RSA Prime

Generation Algorithms. 206
Fabrice Benhamouda, Houda Ferradi, Remi Géraud,
and David Naccache

Reusing Nonces in Schnorr Signatures: (and Keeping It Secure...). 224
Marc Beunardeau, Aisling Connolly, Houda Ferradi, Rémi Géraud,
David Naccache, and Damien Vergnaud

WebPol: Fine-Grained Information Flow Policies for Web Browsers 242
Abhishek Bichhawat, Vineet Rajani, Jinank Jain, Deepak Garg,
and Christian Hammer

Verifying Constant-Time Implementations by Abstract Interpretation. 260
Sandrine Blazy, David Pichardie, and Alix Trieu

Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox
for Android 278
Lorenzo Bordoni, Mauro Conti, and Riccardo Spolaor

Zero Round-Trip Time for the Extended Access Control Protocol 297
Jacqueline Brendel and Marc Fischlin

Server-Supported RSA Signatures for Mobile Devices. 315
Ahto Buldas, Aivo Kalu, Peeter Laud, and Mart Oruaas

Verifiable Document Redacting. 334
Hervé Chabanne, Rodolphe Hugel, and Julien Keuffer

Securing Data Analytics on SGX with Randomization. 352
Swarup Chandra, Vishal Karande, Zhigiang Lin, Latifur Khan,
Murat Kantarcioglu, and Bhavani Thuraisingham

DeltaPhish: Detecting Phishing Webpages in Compromised Websites 370
Igino Corona, Battista Biggio, Matteo Contini, Luca Piras,
Roberto Corda, Mauro Mereu, Guido Mureddu, Davide Ariu,
and Fabio Roli

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 389
Cas Cremers, Martin Dehnel-Wild, and Kevin Milner

Per-Session Security: Password-Based Cryptography Revisited 408
Grégory Demay, Peter Gazi, Ueli Maurer, and Bjorn Tackmann

AVR Processors as a Platform for Language-Based Security 427
Florian Dewald, Heiko Mantel, and Alexandra Weber

http://dx.doi.org/10.1007/978-3-319-66402-6_13
http://dx.doi.org/10.1007/978-3-319-66402-6_13
http://dx.doi.org/10.1007/978-3-319-66402-6_14
http://dx.doi.org/10.1007/978-3-319-66402-6_15
http://dx.doi.org/10.1007/978-3-319-66402-6_16
http://dx.doi.org/10.1007/978-3-319-66402-6_17
http://dx.doi.org/10.1007/978-3-319-66402-6_17
http://dx.doi.org/10.1007/978-3-319-66402-6_18
http://dx.doi.org/10.1007/978-3-319-66402-6_19
http://dx.doi.org/10.1007/978-3-319-66402-6_20
http://dx.doi.org/10.1007/978-3-319-66402-6_21
http://dx.doi.org/10.1007/978-3-319-66402-6_22
http://dx.doi.org/10.1007/978-3-319-66402-6_23
http://dx.doi.org/10.1007/978-3-319-66402-6_24
http://dx.doi.org/10.1007/978-3-319-66402-6_25

Contents — Part 1 XVII

A Better Composition Operator for Quantitative Information
Flow Analyses 446
Kai Engelhardt

Analyzing the Capabilities of the CAN Attacker. 464
Sibylle Froschle and Alexander Stiihring

Erratum to: Per-Session Security: Password-Based
Cryptography Revisited El
Grégory Demay, Peter Gazi, Ueli Maurer, and Bjorn Tackmann

Author Index e 483

http://dx.doi.org/10.1007/978-3-319-66402-6_26
http://dx.doi.org/10.1007/978-3-319-66402-6_26
http://dx.doi.org/10.1007/978-3-319-66402-6_27

Contents — Part 11

Automated Analysis of Equivalence Properties for Security Protocols
Using Else Branches 1
Ivan Gazeau and Steve Kremer

Quantifying Web Adblocker Privacy 21
Arthur Gervais, Alexandros Filios, Vincent Lenders, and Srdjan Capkun

More Efficient Structure-Preserving Signatures - Or: Bypassing
the Type-IIl Lower Bounds 43
Essam Ghadafi

Adversarial Examples for Malware Detection 62
Kathrin Grosse, Nicolas Papernot, Praveen Manoharan,
Michael Backes, and Patrick McDaniel

PerfWeb: How to Violate Web Privacy with Hardware
Performance Events. 80
Berk Gulmezoglu, Andreas Zankl, Thomas Eisenbarth, and Berk Sunar

Acoustic Data Exfiltration from Speakerless Air-Gapped Computers
via Covert Hard-Drive Noise (‘DiskFiltration’) 98
Mordechai Guri, Yosef Solewicz, Andrey Daidakulov, and Yuval Elovici

DOMPurify: Client-Side Protection Against XSS and Markup Injection. 116
Mario Heiderich, Christopher Spdth, and Jorg Schwenk

Preventing DNS Amplification Attacks Using the History

of DNS Queries with SDN. 135
Soyoung Kim, Sora Lee, Geumhwan Cho, Muhammad Ejaz Ahmed,
Jaehoon (Paul) Jeong, and Hyoungshick Kim

A Traceability Analysis of Monero’s Blockchain. 153
Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena

Multi-rate Threshold FlipThem 174
David Leslie, Chris Sherfield, and Nigel P. Smart

Practical Keystroke Timing Attacks in Sandboxed JavaScript. 191
Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner,
Clémentine Maurice, and Stefan Mangard

On-Demand Time Blurring to Support Side-Channel Defense. 210
Weijie Liu, Debin Gao, and Michael K. Reiter

http://dx.doi.org/10.1007/978-3-319-66399-9_1
http://dx.doi.org/10.1007/978-3-319-66399-9_1
http://dx.doi.org/10.1007/978-3-319-66399-9_2
http://dx.doi.org/10.1007/978-3-319-66399-9_3
http://dx.doi.org/10.1007/978-3-319-66399-9_3
http://dx.doi.org/10.1007/978-3-319-66399-9_4
http://dx.doi.org/10.1007/978-3-319-66399-9_5
http://dx.doi.org/10.1007/978-3-319-66399-9_5
http://dx.doi.org/10.1007/978-3-319-66399-9_6
http://dx.doi.org/10.1007/978-3-319-66399-9_6
http://dx.doi.org/10.1007/978-3-319-66399-9_7
http://dx.doi.org/10.1007/978-3-319-66399-9_8
http://dx.doi.org/10.1007/978-3-319-66399-9_8
http://dx.doi.org/10.1007/978-3-319-66399-9_9
http://dx.doi.org/10.1007/978-3-319-66399-9_10
http://dx.doi.org/10.1007/978-3-319-66399-9_11
http://dx.doi.org/10.1007/978-3-319-66399-9_12

XX Contents — Part 11

VuRLE: Automatic Vulnerability Detection and Repair by Learning
from Examples 229
Siqi Ma, Ferdian Thung, David Lo, Cong Sun, and Robert H. Deng

Link-Layer Device Type Classification on Encrypted Wireless Traffic

with COTS Radios 247
Rajib Ranjan Maiti, Sandra Siby, Ragav Sridharan,
and Nils Ole Tippenhauer

LeaPS: Learning-Based Proactive Security Auditing for Clouds 265
Suryadipta Majumdar, Yosr Jarraya, Momen Oqaily,
Amir Alimohammadifar, Makan Pourzandi, Lingyu Wang,
and Mourad Debbabi

Identifying Multiple Authors in a Binary Program. 286
Xiaozhu Meng, Barton P. Miller, and Kwang-Sung Jun

Secure IDS Offloading with Nested Virtualization
and Deep VM Introspection i 305
Shohei Miyama and Kenichi Kourai

Privacy Implications of Room Climate Data. 324
Philipp Morgner, Christian Miiller, Matthias Ring, Bjorn Eskofier,
Christian Riess, Frederik Armknecht, and Zinaida Benenson

Network Intrusion Detection Based on Semi-supervised
Variational Auto-Encoder. 344
Genki Osada, Kazumasa Omote, and Takashi Nishide

No Sugar but All the Taste! Memory Encryption

Without Architectural Support 362
Panagiotis Papadopoulos, Giorgos Vasiliadis, Giorgos Christou,
Evangelos Markatos, and Sotiris loannidis

Inference-Proof Updating of a Weakened View Under the Modification
of Input Parameters. 381
Joachim Biskup and Marcel Preufs

Preventing Advanced Persistent Threats in Complex Control Networks 402
Juan E. Rubio, Cristina Alcaraz, and Javier Lopez

Shortfall-Based Optimal Placement of Security Resources
for Mobile IoT Scenarios. e 419
Antonino Rullo, Edoardo Serra, Elisa Bertino, and Jorge Lobo

http://dx.doi.org/10.1007/978-3-319-66399-9_13
http://dx.doi.org/10.1007/978-3-319-66399-9_13
http://dx.doi.org/10.1007/978-3-319-66399-9_14
http://dx.doi.org/10.1007/978-3-319-66399-9_14
http://dx.doi.org/10.1007/978-3-319-66399-9_15
http://dx.doi.org/10.1007/978-3-319-66399-9_16
http://dx.doi.org/10.1007/978-3-319-66399-9_17
http://dx.doi.org/10.1007/978-3-319-66399-9_17
http://dx.doi.org/10.1007/978-3-319-66399-9_18
http://dx.doi.org/10.1007/978-3-319-66399-9_19
http://dx.doi.org/10.1007/978-3-319-66399-9_19
http://dx.doi.org/10.1007/978-3-319-66399-9_20
http://dx.doi.org/10.1007/978-3-319-66399-9_20
http://dx.doi.org/10.1007/978-3-319-66399-9_21
http://dx.doi.org/10.1007/978-3-319-66399-9_21
http://dx.doi.org/10.1007/978-3-319-66399-9_22
http://dx.doi.org/10.1007/978-3-319-66399-9_23
http://dx.doi.org/10.1007/978-3-319-66399-9_23

Contents — Part II

Boot Attestation: Secure Remote Reporting with Off-The-Shelf

ToT Sensors e

Steffen Schulz, André Schaller, Florian Kohnhduser,
and Stefan Katzenbeisser

RingCT 2.0: A Compact Accumulator-Based (Linkable Ring Signature)

Protocol for Blockchain Cryptocurrency Monero.

Shi-Feng Sun, Man Ho Au, Joseph K. Liu, and Tsz Hon Yuen

SePCAR: A Secure and Privacy-Enhancing Protocol

for Car Access Provision e

Iraklis Symeonidis, Abdelrahaman Aly, Mustafa Asan Mustafa,
Bart Mennink, Siemen Dhooghe, and Bart Preneel

Privacy-Preserving Decision Trees Evaluation via Linear Functions.

Raymond K.H. Tai, Jack P.K. Ma, Yongjun Zhao,
and Sherman S.M. Chow

Stringer: Measuring the Importance of Static Data Comparisons

to Detect Backdoors and Undocumented Functionality.

Sam L. Thomas, Tom Chothia, and Flavio D. Garcia

Generic Constructions for Fully Secure Revocable

Attribute-Based Encryption. L

Kotoko Yamada, Nuttapong Attrapadung, Keita Emura,
Goichiro Hanaoka, and Keisuke Tanaka

Enforcing Input Correctness via Certification in Garbled

Circuit Evaluation.

Yihua Zhang, Marina Blanton, and Fattaneh Bayatbabolghani

Author Index e

XXI

http://dx.doi.org/10.1007/978-3-319-66399-9_24
http://dx.doi.org/10.1007/978-3-319-66399-9_24
http://dx.doi.org/10.1007/978-3-319-66399-9_25
http://dx.doi.org/10.1007/978-3-319-66399-9_25
http://dx.doi.org/10.1007/978-3-319-66399-9_26
http://dx.doi.org/10.1007/978-3-319-66399-9_26
http://dx.doi.org/10.1007/978-3-319-66399-9_27
http://dx.doi.org/10.1007/978-3-319-66399-9_28
http://dx.doi.org/10.1007/978-3-319-66399-9_28
http://dx.doi.org/10.1007/978-3-319-66399-9_29
http://dx.doi.org/10.1007/978-3-319-66399-9_29
http://dx.doi.org/10.1007/978-3-319-66399-9_30
http://dx.doi.org/10.1007/978-3-319-66399-9_30

From Intrusion Detection to Software Design

Sandro Etalle(®)

Eindhoven University of Technology, University of Twente
and SecurityMatters BV, Eindhoven, The Netherlands
s.etalle@tue.nl

Abstract. I believe the single most important reason why we are so
helpless against cyber-attackers is that present systems are not supervis-
able. This opinion is developed in years spent working on network intru-
sion detection, both as academic and entrepreneur. I believe we need
to start writing software and systems that are supervisable by design;
in particular, we should do this for embedded devices. In this paper, 1
present a personal view on the field of intrusion detection, and conclude
with some consideration on software design.

1 Preamble

Allow me to start with a personal note: it is useful to understand where my com-
ments come from. I landed on the field of intrusion detection in 2004, after years
of moving from rather theoretical to increasingly more practical research topics.
We dove into the intrusion detection field with the declared intent of setting
up a company afterwards. After years of trying many useless ideas, we focused
on a couple of promising technologies. In 2009, my 2 PhD students Damiano
Bolzoni and Emmanuele Zambon and I started SecurityMatters. As of May 2017,
SecurityMatters is doing well, and there are some very demanding customers
who are very happy with its network monitoring system, so in-between the fail-
ures we must have done a couple of things right. While I need to clarify that
SecurityMatters appliance is now much more than a network intrusion detec-
tion system and certainly way more than an anomaly-based intrusion detection
system, SecurityMatters has been a tremendous learning experience regarding
intrusion detection. In what follows I would like to share with you some of the
lessons learned.

2 A Journey in Intrusion Detection

Network intrusion detection is the art of detecting when something goes wrong
simply by monitoring network traffic. This can be done at different places in
a system. In an industrial system, you can monitor the networks of the web

© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 1-10, 2017.
DOI: 10.1007/978-3-319-66402-6_1

2 S. Etalle

applications, the back office (Windows), the SCADA! system and the PLC?
(I have used an industrial control system as reference, but this is immaterial).
Depending where you look, you have different observables. Regardless of where
you do the monitoring, there are two ways to detect when something goes wrong
in a system: either you recognize the wrong behaviour or you are able to recognize
the correct behaviour and you alert when something deviates from it. So you
either have a model of the malicious behaviour or you have a model of the
legitimate behaviour. There is no third way, even though you can intermix the
two approaches.

This is reflected in the notation used in the intrusion detection community
[1,2], where knowledge based intrusion detection (a.k.a., misuse based?®) is the
kind of intrusion detection that relies on a model of the attack, and behaviour
based intrusion detection the one that relies on the model of the legitimate behav-
iour. In turn, behaviour based NIDS are usually subdivided in anomaly based
NIDS and specification based intrusion detection [3], with the distinction that in
anomaly based NIDS the model of the target system is built more or less auto-
matically during a “learning phase”, while in specification-based NIDS models
are “manually developed specifications that capture legitimate (rather than pre-
viously seen) system behaviors” [4]. The common perception about knowledge-
based vs. anomaly-based and specification-based NIDS is that

P1 Knowledge-based NIDSs work well in practical deployments, but they are
“ineffective”

P2 Anomaly-based NIDS are effective (only) in benchmarks, but do not work
well in practical deployments.

P3 Specification-based NIDS are effective (only) in benchmarks and for very
specific — small — systems, but cannot be applied to practical large systems
(next to being too expensive to build and maintain).

In what follows, I will touch on what I think are the reasons behind this
“perception”, and I will particularly focus on anomaly detection systems because
our experience with them is instrumental to the goal of this paper. Where 1
want to get to in the end is to argue that the true reason of the shortcomings
of acceptance-based systems (P2 and P3) are more rooted in the way we design
software than in the actual limitations of those approaches.

But first, we need to agree on the parameters we refer to, when we evaluate
the detection systems. Intuitively, IDSs need to be effective on real systems

! Supervisory control and data acquisition (SCADA). For the purpose of this paper it
is a control (computer) system used e.g., in industrial control systems. Intuitively,
SCADA systems control e.g., PLCs.

Programmable Logic Controller (PLC). Typically small computer systems used in
e.g., manufacturing to connect to sensors and actuators.

The notation in the literature is unfortunately confusing: misuse based systems
are often narrowly associated with the use of signatures; similarly, anomaly based
systems are usually associated with the use of machine-learning techniques like neural
networks, while their scope is much broader.

M

From Intrusion Detection to Software Design 3

and cost-effective to operate, and in my opinion this translates in the following
partially unusual list of desiderata:

D1 High detection rate (effectiveness), also w.r.t. attacks that have not been
witnessed yet (e.g., 0-days).

D2 Low false positive rate (FPR). The FPR is one of the important factors
in determining the total cost of ownership of the intrusion detection system.

D3 Actionability. When the IDS raises an alert, someone needs to act upon
it. The more information the IDS can provide over the alert raised that can
be useful to determine the reaction strategy, the better it is. While often
forgotten in the benchmarks, actionability is always an important factor in
the operational cost of an IDS.

D4 Adaptability. Most I'T systems change continuously (even SCADA system,
for that matter), therefore the IDS has to be able to cope with that. In
our experience, adaptability is another primary factor in the total cost of
ownership of an IDS, because changes can raise false alerts, that need to be
acted upon.

D5 Scalability. One of the obvious challenges ahead is monitoring increasingly
complex, heterogeneous and open systems of systems. Not all IDS technolo-
gies scale up that well.

For the sake of clarity, we need to unclutter the terminology used in the
sequel, because the word “system” is overloaded and it is used to indicate both
the monitoring and the monitored system. To distinguish the two uses of “sys-
tem” I will use the following notation

— the “target system” (or “underlying system”) is the system being monitored,
— the “system” is usually the monitoring system (the NIDS).

We can now discuss P1 ...P3, starting with knowledge-based detection.

Knowledge-Based Systems. That knowledge-based NIDS systems “work”
is demonstrated by the fact that basically all network intrusion detection and
prevention systems commercially available are knowledge-based (typically based
on signatures). There are probably millions of knowledge-based NIDS in use
around the globe. In particular, knowledge-based systems score very well on
actionability (they recognize the kind of attack, so they can immediately refer to
the appropriate mitigation strategy), scalability (when you recognize the attacks
it does not matter if you are looking at one target system or at a hundred of
them, provided that the FPR is reasonably low).

However, they are ineffective because it is very easy for attackers to evade
them [5,6]. Knowledge-based systems (in particular, signature-based) catch
mainstream, well-established attacks, but they are always a few steps behind,
and are actually helpless against skilful and targeted attackers. Knowledge-based
detection is (and I believe will always be) extremely useful, because it handles
efficiently the low-key attacks, but will never be the key technology that will
defend us from the prepared attacker.

So let us move to behavior-based NIDS.

4 S. Etalle

Behavior-Based Systems. As argued before, here I will focus in partic-
ular on anomaly detection systems. In a nutshell, the art of anomaly-based
intrusion detection is finding a suitable abstraction function AF such that if
AF (present_state) & AF(model_of-target_system) then the system raises an alert.
In the anomaly-based systems the model of the system is built using machine
learning techniques. A hard to break misunderstanding is that the machine learn-
ing in use must be general-purpose and domain agnostic, like e.g., neural net-
works. This is not so, and nowadays the machine learning (and the AF) used
is often tailored for the specific protocol and the specific domain of the target
system. We will further elaborate on that in the section about whiteboxr anom-
aly detection. On the other hand, since we are talking about behavior-based
detection, the AF should in theory be attack-agnostic. In practice, however, this
cannot be completely so, in the sense that the possibly interesting anomalies
(the attacks) must not be lost in the abstraction (***). So to build a good AF
you do need to have some idea of the possible attacker vectors and the kind of
events you are interested in observing. If you don’t know what you are looking
for, you are probably not going to find it.

Getting back to the statement P2, that “anomaly-based systems do not work
in practice” It is now interesting to take a look at it in the light of the experiences
we had in making anomaly detection systems actually work. Let us look at D1
... D5 and how anomaly detection copes with them. Allow me to keep D1 and
D2 (detection rate and false positives) as last.

Actionability. By definition, anomaly-based network intrusion detection sys-
tems (ABNIDSs) do not recognize the attack (otherwise, you would have used
a knowledge-based detection, with less headaches), the only thing they can rely
on is their knowledge of the target system. But if you have completely lost the
semantics of the target system when you applied the abstraction function AF,
then you have also lost an important source of information, that can be very
useful in deciding how to act upon an alerts. This is the reason why I like to
distinguish two kind of ABNIDS, which I call blackbox and whitebox. - We call
blackboxr those ABNIDs that use abstraction function unrelated to the system’s
semantics, like n-gram analysis, neural networks, and alike. - We call whiteboz
systems those ABNIDS in which the abstraction function AF retains something
of the high-level semantics of the target system. I would call whitebox IDS
an IDS that would distinguish between read and write file access, and would
be able to report an alert like “the substation Alpha is giving instructions to
PLC Beta: this is an anomalous action as Alpha normally only reads data from
Beta”. (Aside: we started using the notation “whitebox ABNIDS” in [7], there
is another reference to whitebox anomaly detection in [8], but that is about
host-based detection, and is unrelated).

To start with an unprofessional statement:

Personal Opinion 1. [believe that blackbox anomaly-based intrusion detection
systems are of very limited use for security.

This was noticed back in 2010 by Sommer and Paxson, [9], who wrote “We argue
that when evaluating an anomaly detection system, understanding the target

From Intrusion Detection to Software Design 5

system’s semantic properties is much more valuable than identifying a concrete
set of parameters for which the system happens to work best for a particular
input”. To this, we added some evidence in [10]. In our hands-on experience, the
problem with blackbox (say n-gram-based) ABNIDS is that their actionability
is zero: you get an alert and to find out what is going on you need to have a
very skilled someone take a look with Wireshark. Is it interesting? What should
be done about it? The information given with the ABNIDS warning was “the
frequency distribution of this packet is abnormal”. Whitebox detection here
has a tremendous advantage: it tells you something about the semantics of the
anomaly and what the target system was doing at the time of the alert, and the
insight in the alert can be much more detailed, like “there is a doctor breaking
the glass 10 times in a day, the observed limit is 5”.

In our search for usable anomaly-detection, we came to the conclusion that

Personal Opinion 2. “Useful” anomaly-based intrusion detection is not quite
about intrusion detection; it is about being able to understand what happens in
the target system and being able to monitor its integrity.

In our opinion, good anomaly detection starts by a good representation of the
target system. A representation people can understand. You do not concentrate
so much on the attack you need to discover (even though (***) has to be sat-
isfied), but on explaining what happens. This brings it closer to specification
based systems and to monitoring/forensics. By doing so, you’ll have less difficul-
ties (a) getting the IDS accepted at the stakeholder (it appears “familiar”) (b)
providing actionable security when something goes wrong.

To give a concrete example: this is the recurring pattern of what typically
happens in real-life deployments of a whitebox ABNIDS (based on the experience
we have when deploying SilentDefense): the first thing we make is the model of
the target system. This usually takes a couple of days of passive listening to
the network traffic, and the application of our whitebox AF. Then we present
the customer with the results. We haven’t started doing anomaly detection yet,
we have just learned the model. And by only producing a good model of the
target system we have identified at least a dozen issues in the network that need
to be solved and can be acted upon (notice that a blackbox model would not
produce the same results). When this happens, we believe we are in presence
of an anomaly detection system that (a) is “good”, and (b) fits well the target
system.

The downside of this approach is that anomaly-detection systems need to
specialize to a particular domain, which is not only a particular network protocol
but a particular set of applications of it. In addition, things might work well in
a certain domain (e.g., Industrial Control Systems — ICS) but they might not
work at all in another domain (e.g., IT). For instance, because the changes and
intrinsic dynamism of a domain make a certain model obsolete too quickly. Our
experience with SecurityMatters taught us that domain knowledge is crucial to
success, in that for instance we “understand” very well domains such as energy
distribution, oil and gas, etc. We have also learned how to approach a new
domain, but each new domain requires adjustments and understanding.

6 S. Etalle

Adaptability. Behaviour-based systems - regardless of whether they are anomaly-
based or specification based - need by definition to be adjusted every time there
is a change in the underlying system. This is a problem, even in a closed, rel-
atively static setting like ICSs. There is a common misunderstanding that the
network traffic (and the underlying settings) of Industrial Control Systems does
not change much in time. This is not true: there are continuous changes due to
maintenance, replacement of parts, new functionalities, etc.; if a behavior-based
system is connected, then it should have the ability of adjusting itself to these
changes without raising a myriad of alerts. This requires providing facilities to
the people who are in charge of the monitoring to distinguish the typical benign
cases from the possibly malicious ones. Again, it comes down to understanding
the application domain, and building some actionability into the system. This is
yet another reason why — given how software is written today —

Personal Opinion 3. There cannot be a one-size-fits-all anomaly-based net-
work intrusion detection system that works equally well on all domains.

Examples of “domains” are backoffice, webapplication, IoT, but also more specif-
ically: Oil and Gas, Banking, Water companies. In short: ABNIDSs are always
tailored to the target system.

This brings up the point of Scalability. Since ABNIDS are tailored to the
target system, scalability is by definition an issue. To monitor 1000 networks,
you need a thousand different models, that need to be trimmed when things
change, etc. To monitor a smart city you have to monitor every single building,
every single room etc.: there is no fixed recipe that fits all of them (as in the case
of knowledge-based detection). The obvious conclusion is that this technology
scales only up to a point, but areas like IoT, with thousands and thousands of
different networks, will need a leap forward in our approach to monitoring.

Detection rate and false positives. FPs are the nightmare of researchers and
practitioners alike because a high false positive rate (FPR) means that the IDS
will not be looked at. Our experience in ICS confirms that it is usually possi-
ble to tune the system to find the “best” compromise between DR and FPR,
though in our experience, in the case of whitebox anomaly detection this is
done more by focusing on what is monitorable and disregarding what is “not
monitorable”, which are the parts for which it is simply impossible to make a
reasonable model of the observables. In ICS, the “monitorable” part dominates,
and we took advantage of that to engineer an effective NIDS; but if we look at
e.g. a standard laptop, there is no way we could make a reasonable whitebox
model of what happens in there. I want to address this in the next section, but
before I do so it is time to touch on specification-based systems.

Specification Based Intrusion Detection Systems. Here I need to say that
I do not have enough first-hand experience about them to have a bold opinion,
but it seems to me that they share with ABNIDS a lot of the pro’s and the
con’s, with the added problem that producing the specification is usually very
costly. I believe that one of the root problems with this technology is that — to

From Intrusion Detection to Software Design 7

be effective — the specification should take into consideration the environment:
the same system (say a PLC) can behave very differently when used in different
contexts, and having the specification of the PLC in isolation is of little use
for intrusion detection. On the other hand, providing a specification for each
implementation is prohibitively expensive. Here ABNIDSs have a tremendous
advantage over specification-based systems, because they learn the behaviour of
the target system in the appropriate context. Additional (obvious) difficulties
include dealing with changes in the systems and actionability. While I believe
that specification-based NIDS form a very promising area, my personal opinion
is that for the moment their applicability is limited to very specific domains,
that are even more narrow that those to which we can apply anomaly-detection
profitably.

Some Considerations on Intrusion Detection. While we cannot say (yet)
that whitebox ABNIDSs are successful in general, we have seen that they can be
successful in monitoring specific systems and in particular we have experienced
that when they are successful, the reason is usually that they manage to lift
the understanding to the application level: by analysing the network trace they
understand what the application is doing. That is where anomaly detection
can be effective. In our specific case, achieving this required putting together a
massive knowledge of the domain, and was possible because our target systems
(ICS) are less confusing than e.g., standard computers. In fact, there is little
hope that our method could be (economically) applied to e.g. the applications
running in a modern laptop. This is because the network observables they exhibit
are so complex, limited and confusing that you simply can’t understand what
is going on, let alone make a usable whitebox model of it (not to mention, deal
with changes, which are the rule, rather than the exception).

3 Writing Supervisable Software

I now want to step away from the topic of intrusion detection and build on
the above considerations to talk about software design. Giving for granted that
software and systems will never be secure, as statistics and trends amply demon-
strate, we have to focus on engineering resilient systems, and a large part of this
resiliency lies in early understanding of when things go wrong. This is what an
intrusion detection is supposed to do. Unfortunately, as the journey above indi-
cates, I believe that there is little hope that intrusion detection will work on a
global scale; it will always work on some sectors, some target areas, but there
are large areas where they are ineffective or too expensive.

This is not surprising, if we consider that ICT systems are largely built as
black boxes, and after building them we pretend that the monitoring system is
able to detect when something goes awry. For some of those black boxes (the
“simpler” ones) IDSs are able to do so, but when the black box is too complex
inside or when there are too many of them connected together we lose control,
and IDSs can only pick some meaningful indicators here and there and hope to

8 S. Etalle

make the best of them. The global picture is then lost and in my opinion this is
when IDSs stop being effective.

It also appears that complexity this is only going to get worse: on one hand
the scale of the target systems is exploding (see IoT), on the other hand, we
tend to try to make things “more secure” by making systems more unintelligible
(e.g., by obfuscating and encrypting the observables), therefore making it harder
to reconstruct the global picture.

To build resilient systems, I believe we need to change drastically the way we
actually write software. Next to “security by design”, we need something else:

Personal Opinion 4. We should develop a discipline of writing software that
is supervisable (and privacy-preserving) by design.

I do not have (yet) a precise definition of what supervisable is. What I am
advocating is a discipline more than a science, a discipline I believe we need to
develop; with a lot of practical, hands-on work.

In general, T think that programs and systems should be designed to pro-
vide meaningful observables (including meaningful network observables), which
should be sufficient for the instructed observer to understand:

(a) what the underlying applications are actually doing,
(b) if the system is actually doing what it is pretending to do,

and, ideally,

(¢) what the system is failing to do,
(d) whether there is something wrong with the system, and how to react to it.

Privacy and data confidentiality are obviously very important concerns, and
these points seem to oppose them. This is the reason why privacy is explicitly
mentioned in the opinion above: supervisability and privacy/confidentiality can-
not be considered as separate issues and need to be addressed together at design
time. This can be done by separating the information regarding the working
of the application from the information that needs to be kept confidential, and
adopt different encryption strategies for them.

Personal Opinion 5. Trying to achieve privacy by making the software not
supervisable is in my opinion as wrong as trying to achieve security by obscurity.

This is — I am afraid — a common engineering mistake: encrypting “everything”
to stay on the safe side. Unfortunately, this often makes the system less super-
visable, less manageable, it makes troubleshooting harder and in several cases it
does not help security [11].

It is better to consider everything public, except for the confidential and
the private information. In addition, I am not saying that everything should be
monitored by everyone, but everything should be supervisable by something, and
there should be something monitoring on it. Something trusted. Communication
can be encrypted, when needed, and supervisors need to be able to decrypt the
non-confidential parts to monitor the functioning of the system.

From Intrusion Detection to Software Design 9

Getting back to the points above, point (a) advocates the use of observables
with a clear semantics. This is a necessary condition to obtain (b), which is the
key element. It states that the observables (and the communication) should be
designed in such a way that it is difficult for a hypothetical attacker who has
managed to subvert the target system to do anything without being noticed. 1
realize that in many cases this is impossible: televisions, servers etc. will always
deal with gigabits binary data in which it is by definition easy for an attacker
to embed his own payload. But there are other cases in which this is possi-
ble. I am thinking in particular at how we should deal with the software of
smaller embedded systems and IoT devices. Point (c) goes a step further and
encourages the engineering of systems with predictable behaviour and provid-
ing sufficient observables to allow one to determine whether they are actually
operating correctly. As it happens, while point (b) argues for a minimization of
the communication, point (c¢) makes a case for the opposite: that the number of
observables should be sufficient to understand also when something is not hap-
pening. Finally, (d) touches on the idea that we should start thinking about how
to do incident response right from the moment that we design the systems. It is
very much “wishful thinking”, but in the long run, it is probably unavoidable.
It should be clear that what I called supervisable is reminiscent of but is very
different from the concepts of monitorability as defined in runtime verification
(e.g., [12,13]), and the concepts of observability and diagnosability [14].

It may seem that I am advocating writing software for which it is possi-
ble to do specification-based intrusion detection. This is not quite true, for the
same reason I mentioned earlier when discussing specification-based NIDS: the
same artefact behaves (rightly) very differently when put in different contexts
and I don’t believe this variability can be captured by a specification (not a
cost-effective one). I would happy to be contradicted. What I am advocating is
writing software that allows to do monitoring it, possibly using a combination of
techniques like those in anomaly-based detection, specification-based detection
and correlation as is done in present SIM-SITEMS.

In this ideal world, software artefacts should be self-explanatory in their
behaviour, and it should be straightforward to for the instructed observer to
be able to understand what the system is actually doing by simply observing
its network behaviour. Unfortunately, this is not the direction we are following,
and despite the adoption of “standard protocols” when possible, confusion is
the rule and clarity is the exception. Scalability remains an issue, which in my
opinion can only be dealt with in the obvious way by breaking down a system
into monitorable subsystems, etc.

I think this discipline is going to be indispensable in systems where solutions
of different vendors and providers are combined together. Like it is happening in
ToT. Liabilities in case of failure are probably going to play an interesting role
in how systems will be shaped, and in my opinion a form of supervisability will
be a necessary instrument to identify actual responsibilities and actions to be
taken when things go wrong.

10

S. Etalle

Acknowledgements. Many, many thanks to those who have given comments to this
paper, including: Luca Allodi, Elisa Costante, Marc Dacier, Guillaume Dupont, Davide
Fauri, Dieter Gollmann, Alexios Lekidis, Daniel Ricardo dos Santos, Boris Skoric,
Nicola Zannone.

This work has been funded by SpySpot, a project under Cyber Security programme

by NWO, Dutch Organization for Scientific Research. It was also partly funded by
IDEA-ICS project by NWO and U.S. Department of Homeland Security.

References

1.

2.

10.

11.

12.

13.

14.

Debar, H., Dacier, M., Wespi, A.: A revised taxonomy for intrusion-detection sys-
tems. Ann. Telecommun. 55(7), 361-378 (2000)

Mitchell, R., Chen, I.LR.: A survey of intrusion detection techniques for cyber-
physical systems. ACM Comput. Surv. (CSUR) 46(4), 55 (2014)

Ko, C., Ruschitzka, M., Levitt, K.: Execution monitoring of security-critical pro-
grams in distributed systems: a specification-based approach. In: Proceedings of the
1997 IEEE Symposium on Security and Privacy, 1997, pp. 175-187. IEEE (1997)
Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H., Zhou, S.:
Specification-based anomaly detection: a new approach for detecting network intru-
sions. In: Proceedings of the 9th ACM Conference on Computer and Communica-
tions Security, pp. 265-274. ACM (2002)

Ptacek, T.H., Newsham, T.N.: Insertion, evasion, and denial of service: eluding
network intrusion detection. Technical report, DTIC Document (1998)
Siddharth, S.: Evading nids, revisited. Symantec Connect Community, pp. 1-5
2005

(Costau)nte7 E., Hartog, J., Petkovi¢, M., Etalle, S., Pechenizkiy, M.: Hunting the
unknown - white-box database leakage detection. In: Atluri, V., Pernul, G. (eds.)
DBSec 2014. LNCS, vol. 8566, pp. 243-259. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-43936-4_16

Shu, X., Yao, D.D., Ryder, B.G.: A formal framework for program anomaly detec-
tion. In: Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404, pp.
270-292. Springer, Cham (2015). doi:10.1007/978-3-319-26362-5_13

Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for
network intrusion detection. In: 2010 IEEE Symposium on Security and Privacy
(SP), pp. 305-316. IEEE (2010)

Hadziosmanovi¢, D., Simionato, L., Bolzoni, D., Zambon, E., Etalle, S.: N-Gram
against the machine: on the feasibility of the N-Gram network analysis for binary
protocols. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS, vol.
7462, pp. 354-373. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33338-5_18
Fauri, D., de Wijs, B., den Hartog, J., Costante, E., Etalle, S., Zambon, E.: Encryp-
tion in ICS networks: a blessing or a curse? Technical report, Eindhoven Technical
University (2017 to appear)

Viswanathan, M., Kim, M.: Foundations for the run-time monitoring of reactive
systems — Fundamentals of the MaC Language. In: Liu, Z., Araki, K. (eds.) ICTAC
2004. LNCS, vol. 3407, pp. 543-556. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-31862-0-38

Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573-586.
Springer, Heidelberg (2006). doi:10.1007/11813040-38

Bittner, B., Bozzano, M., Cimatti, A., Olive, X.: Symbolic synthesis of observability
requirements for diagnosability. In: AAAT (2012)

http://dx.doi.org/10.1007/978-3-662-43936-4_16
http://dx.doi.org/10.1007/978-3-662-43936-4_16
http://dx.doi.org/10.1007/978-3-319-26362-5_13
http://dx.doi.org/10.1007/978-3-642-33338-5_18
http://dx.doi.org/10.1007/978-3-540-31862-0_38
http://dx.doi.org/10.1007/978-3-540-31862-0_38
http://dx.doi.org/10.1007/11813040_38

Justifying Security Measures — a Position Paper

Cormac Herley ™9
Microsoft Research, Redmond, WA, USA

cormac@microsoft.com

Abstract. There is a problem with the way we reason about problems
in security. The justifications that we offer for many security measures
reduce to unfalsifiable claims or circular statements. This position paper
argues that reliance on less-than-solid arguments acts as a brake on
progress in security.

1 Introduction

A great deal of computer security involves deciding how we should protect infor-
mation, resources and assets. Folk theorems and slogans often emphasize the risk
in neglecting any defense; e.g., “security is only as strong as the weakest link”
and “there is no such thing as partial security.” Unfortunately, we can’t pos-
sibly do everything. Defensive measures generally involve cost in time, money,
or effort, so defending everything against all possible attacks is neither possible
nor appropriate. This leaves us with hard decisions. Which measures should we
choose and which should we neglect? What constitutes a compelling argument
in favor of defensive action?

Consider the defense appropriate for high-value assets. The laptop of the
CFO of a large company might contain unreleased information about earnings,
government systems might contain citizens’ tax returns and health records. In
the documentary movie ‘Citizen Four’ Edward Snowden asks all visitors to place
their phones in the fridge and places a blanket over his head before typing his
password. Clearly, as the target of the national security agencies of multiple
countries (and with his liberty at risk in the event of failure) extraordinary
measures are appropriate for Snowden. However, for most assets and most people
this level of defensive effort is obviously excessive. If the level of caution that
Snowden exhibits was necessary before checking email, Twitter, or Netflix, most
of us would simply close our accounts. We might enjoy these services, but the
benefit we receive limits how much effort we’re willing to put in.

How then should we decide? We have no difficulty acknowledging that the
measures needed to protect a high-value asset is inappropriate and excessive for a
low-value asset, such as an ordinary email, social networking, or even bank asset.
Thus, while we may occasionally repeat slogans about absolute security, few
would argue that all assets should be treated as high-assurance ones. However,
this acknowledgement is not helpful unless we can say which measures we can
neglect.

© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 11-17, 2017.
DOI: 10.1007/978-3-319-66402-6 2

12 C. Herley

2 Heads I'm Right, Tails You’ve Just Been Lucky so Far

The austrian philosopher Wittgenstein once contested that the cycle of night
and day should ever have been viewed as evidence that the sun revolved around
the earth: “and how would it look if instead the earth was rotating?” he asked.
That is, the cycle of night and day does nothing to distinguish between these
two competing theories. What looked a reasonable argument actually wasn’t
even evidence.

It can be hard to see the flaws in arguments, especially when the conclusions
have been believed for a long time. I wish to argue that a similar phenomenon
is at work in security, where we have many long-held conclusions supported by
arguments that do not withstand elementary scrutiny. I'm leaning heavily on
a recent paper [1]. The basic result is that claims of necessary conditions for
security are unfalsifiable. To falsify the claim “you must do X to be secure” we
would have to find something secure that doesn’t do X. That this isn’t possible
is a direct consequence of the fact that we can’t ever observe that something is
secure.

Obvious though it is, my experience has been that this result is not embraced
willingly. People who are fond of saying that “the only secure system is
unplugged, encased in concrete, and buried at sea” are reluctant to think through
the immediate implications of that statement. If security is out of reach then
claims of necessary conditions to achieve it are unfalsifiable. This is just elemen-
tary logic; you can’t have it both ways.

When confronted with this fact people often suspect sophistry; they need a
lot of convincing that there’s actually a problem here and not just verbal trickery.
Hence, it’s worth going into detail to show that the common approaches to get
out of this go nowhere. For example, the idea that security is defined relative to
a set of security goals or a threat model doesn’t help: it merely adds a layer of
indirection (i.e., one more turtle) since the necessity of achieving any of the goals
is in turn unfalsifiable. The idea that security is a property to be proved rather
than observed doesn’t help, since proof applies to mathematical rather than
empirical properties; something can be proved secure only if the term “security”
is emptied of all reference to observable outcomes (e.g., Einstein: “As far as the
laws of mathematics refer to reality, they are not certain, and as far as they are
certain, they do not refer to reality”). The idea that security is a scalar quality
to be improved rather than a binary one to be achieved doesn’t help, since the
claim that the security of X is better than the security of X is also unfalsifiable.
See [1] for an expanded treatment of these arguments.

So to summarize, the logical consequences of being unable to observe that
something is secure (or more secure, or that something will not happen, or cannot
happen) are that the following claims are unfalsifiable:

“If you don’t do X you are not secure”

“If you don’t do X a bad outcome will occur”
“If you don’t do X a bad outcome can occur”
“Doing X is more secure than not doing X.”

=W

Justifying Security Measures — a Position Paper 13

Thus, for example, we can’t test the truth of the statement “if you don’t use
a strong password you are not secure.” It rules nothing out, and is consistent
with every possible observation, past and future. Equally, if I say “if you don’t
run anti-virus you will be hacked” I am impervious to contradiction: the only
possibilities are that, heads, I'm proved right, or, tails, you’ve just been lucky
so far.

2.1 The Importance of Being Literal

So what should we make of this? Is computer security no better than pseudo-
science? Is it on a par with homeopathy, astrology and belief in paranormal
phenomena? Despite the negative connotations of “unfalsifiable” we should resist
jumping to conclusions. Horoscope predictions are unfalsifiably vague because
they have no basis at all in reality. In contrast, the unfalsifiable statements 1-4
above are usually used as substitutes for claims that have some real basis, and
may indeed be very defensible. For example, when we talk about security being
improved (e.g., #4 above):

Security(X) > Security(X) (1)
we actually generally mean, e.g.,
Outcome(X |ABCD) > Outcome(X|ABCD). (2)

That is, while the security claim is unfalsifiable it is actually meant as a (fal-
sifiable) statement about outcomes under certain assumptions A, B, C and D.
Details have been omitted in (1), but there’s a huge difference between omitting
details and outright pseudo-scientific claims. So is the answer then simply “don’t
take things so literally?” Statements 1-4 are unfalsifiable, but is it just a case
of omitting details in the interest of simplicity? Unfortunately, it’s more serious
than that; the omission of detail does not have innocent effects.

First, it is precisely when they are intended literally that claims are most
useful. A wobble in the orbit of Uranus led to the discovery of Neptune only
because Newton’s laws were taken literally. When taken literally, anything not
explained by measurement error is a discovery. By contrast, the less literal a
claim the more things it’s consistent with; and with enough wiggle room it can
be made consistent with anything. The history of science finding and resolving
inconsistencies [2—4]. Insofar as they make this task harder, vagueness and wiggle
room in claims are barriers to progress.

Second, the errors are directional. Going from (2) to (1) isn’t just a
simplification, it always expands rather than contracts the claim. When
A OR B OR C OR D is true, then (2) makes no claim at all about outcomes.
This fact is entirely lost when we substitute (1) for (2). The restrictions implied
by A, B, C and D can be severe, in which case (2) is making a very narrow claim
while (1) is making a very big one (see examples in Sect.3). Thus we end up
claiming that X is doing far more than is actually the case.

14 C. Herley

Finally, simplified versions of claims are understandable if, when challenged,
we are prepared to restate with greater precision. However, it’s easy to show that
this is often not the case in security. That is, (2) says that outcomes improve
under certain assumptions, while (1) drops all mention of the assumptions. If
we have a clear understanding of what the assumptions are, we should have no
difficulty falsifying a security claim: just show that what it promised to prevent
can happen anyway. For example, to falsify (2) we would just demonstrate that
X makes no difference to outcomes even when conditions A, B, C and D hold.
If we continue to insist that X is worthwhile when no difference in outcomes is
discernible then we must acknowledge that the list of assumptions is incomplete
(e.g., perhaps X improves outcomes only when E in addition to A, B, C, and D
hold). By contrast (1) rules nothing out: it asks that we do X, but it offers no
justification.

So, if we don’t know what would falsify the justification, then we don’t know
exactly what the measure claims to do. If nothing falsifies our justification then
either it’s a tautology or we’re not actually claiming the measure does anything
observable. Note that this is not the same as saying that it doesn’t do anything.

3 Never Waste a Good Crisis: Passwords

There’s been significant evolution in our thinking about passwords in the last
decade or so. Users used to be advised against writing passwords down, but now
most experts seem to think it acceptable or advisable. Re-using passwords was
considered unacceptable, we now know it is unavoidable [5]. Mandated password
expiration (e.g., every 90 days) used to be considered necessary, we now know
it accomplishes little [6]. Three decades after Morris and Thompson [7] recom-
mended composition constraints (i.e., inclusion of special characters) as a path
to password strength we know that they don’t have the desired effect [8]. That
stronger passwords improve outcomes, in any but very narrow circumstances, is
itself very questionable [5]. Even national standards organizations in the US and
UK have revised long-standing guidance to reverse many recommendations.

It doesn’t seem harsh to say that the history of thinking, advice and instruc-
tions on passwords appears a catalog of error. Things proclaimed with great
confidence have turned out to be simply untrue. Much of the advice directed
at billions of Internet users has turned out to be mis-guided or even harmful.
Passwords might seem an uninteresting research area. We might imagine that
they will soon be a thing of the past (although those advancing this claim have
a history of being optimistic), or that password managers can eliminate many
of the difficulties, etc. However, I claim that, moving on without learning from
mistakes wastes a significant opportunity. The litany of errors points to pro-
found problems in the way we reason about security measures. Unless we can be
confident that the errors in reasoning that generated such a mess in the domain
of passwords have not happened elsewhere it is worth carefully examining what
went wrong.

Justifying Security Measures — a Position Paper 15

3.1 What Constitutes a Compelling Argument
for a Security Measure?

Consider the common recommendation of using a unique password for each
account. Some form like this is explicitly offered by Ives et al. [9] and CERT [10].
I would like to focus, not on whether we believe this measure is sensible, but on
the arguments that we can make in its favor. Justification for avoiding password
re-use usually is as follows:

If you don’t use a unique password for each account, a bad guy
who gets access to one can compromise your other accounts.

3)

This is a true statement; there’s no question that re-use does open an avenue to
compromise. It is not, however, on its own, a convincing argument in favor of
using a unique password per account. Observe that (3) is a tautology. It can be
rewritten:

If you don’t do X then a bad guy can do something that X would (4)
have blocked.

The argument (3) is simply (4) substituting X for “use a unique password for
each account.” However, if we’re going to argue that (4) offers a compelling
argument for any X we should be prepared to argue that it does so for all X.
Clearly it does not. For example, the claim

If you don’t use a Faraday cage a bad guy can get your private
keys using electro-magnetic emanations.

()

can also be expressed as in (4). If (3) is a persuasive argument against password
re-use, (5) is a persuasive argument for Faraday cages. The problem with (4)
(and hence (3) and (5)) is that the argument is circular. It simply says if X
blocks something, then that thing is no longer a risk if you do X. This says
nothing at all about likelihood and applies equally to threats that are very real,
and ones that are completely far-fetched for most of us (e.g., the necessity of
placing a blanket over our head as we type passwords).

Tautologies are simply one example of unfalsifiable justification statements.
Next consider the claim that choosing a strong password is better than a mod-
erately weak one (e.g. strong enough to withstand online guessing but no more).
Does the fact that many users ignore this instruction without incident falsify this
claim? If not then (following Sect. 2.1) there are implicit assumptions unstated in
the original claim. For example, there’s clearly no difference in outcomes unless
(A) the password file leaks. There’s also no difference if the password file is
stored (B) plaintext or (C) reversibly encrypted. Even then we’re far from done;
the chain of assumptions actually becomes quite long [5]. We have to flush out
all of the assumptions to produce a falsifiable statement like (2) from the vague
starting point (1). So, it’s not the case that the unfalsifiable claim is a simplified
stand-in for a falsifiable one that we actually intend literally. The fact that we
have to resort to reverse engineering to figure out what falsifies the claim means
we just don’t know under what assumptions it will improve outcomes.

16 C. Herley

3.2 What Evidence Would Prove Us Wrong?

Thus, falsifying the justification forces us to be explicit and exhaustive in docu-
menting restrictions on what a measure claims to do. Difficulty doing this reveals
that implicit or vaguely-stated assumptions lurk. If we are convinced of some-
thing, but can’t describe the evidence that would change our minds, our belief
is not well-founded.

Unfortunately, this seems to be the rule rather than the exception with pass-
word recommendations. Consider for example the advice to:

1. Change passwords regularly

2. Avoid password re-use

3. Choose strong passwords

4. Choose passwords of a certain format.

What evidence would falsify the claim that any of these are worthwhile? If we
had empirical evidence indicating that those who comply fared better than those
who do not then falsification would be simple: a measurement can always be
superseded by a better, more thorough measurement. However, the justification
for these measures does not rest on empirical evidence. Instead, it would appear
to rest on the argument that the recommended measures improve outcomes in
certain circumstances. Since the circumstances are not stated, they are defended
by an argument like (1) rather than (2).

The point is not to argue that these measures accomplish nothing, but to
emphasize that uncertainty about falsifying them is possible only if our justifi-
cation is muddled and we don’t have a precise understanding of what is claimed.

Passwords offers a target-rich environment for those seeking tautologies and
unfalsifiable claims. However, the problem is far more general. What falsifies the
claim that anti-virus is necessary? That cyber-crime is large and growing? That
we need something more secure than passwords? That there’s a tradeoff between
security and usability? That a system with a “proof of security” is better than
one without? If we hold these views, but can’t say what would make us abandon
them then our reasons are not solid.

4 Conclusion

Falsifiability is traditionally taken as the line separating Science from non-Science
[2,3,11]. While this is the almost universal practice in the natural sciences, it is
not unreasonable to ask why, and whether it is equally relevant to fields such
computer security?

Falsifiability is not an arbitrary demarcation criterion, and it’s acceptance
by other scientific communities does not rest on Popper’s authority. Falsifiability
represents a constraint: it restricts the kinds of statements we can make, but in
return gives feedback and self-correction. Falsifiability as a criterion is simply an
acknowledgement that some of the statements we make and some of the ideas
we try will be wrong. Popper’s description of Science doesn’t say how to come

Justifying Security Measures — a Position Paper 17

up with laws, what they should describe, or even if there should be laws at all. It
simply describes the feedback mechanism that, over time, filters out the wrong
statements and ideas, so that our ability to describe the world and anticipate
things not-yet-observed steadily improves.

Other feedback mechanisms exist in other domains. Markets provide feed-
back. Good businesses flourish and bad ones fail. Business models that enjoy
economies of scale push out those that don’t. Engineering techniques and arti-
facts compete against alternative techniques and artifacts. Good ways of design-
ing bridges, airplanes and operating systems supplant less-good ways so long
as there is feedback on what is proving useful in practice. In many of these
domains feedback might not be as formal as falsifiable statements, but is still
strong enough to separate the good approaches from the bad.

The absence of feedback has proved a serious barrier to progress in security.
The reason so many arguments about passwords go in circles is that there’s
nowhere else for them to go. Are lower-case pass-phrases better or worse than
passwords with a mix of characters? Should passwords be written down, or
changed regularly? Is defense against shoulder-surfing worthwhile? no progress
is possible on these and other questions if the justifications offered for them are
immune to feedback and shrink from all of the risks associated with being tested
against observation.

References

1. Herley, C.: Unfalsifiability of security claims. Proc. Nat. Acad. Sci. 113(23), 6415—
6420 (2016)

2. Chalmers, A.F.: What Is This Thing Called Science?, 4th edn. Hackett Publishing,
Indianapolis (2013)

3. Godfrey-Smith, P.: Theory And Reality: An Introduction To The Philosophy Of
Science. University of Chicago Press, Chicago (2009)

4. Herley, C., van Oorschot, P.: SoK: science, security, and the elusive goal of security
as a scientific pursuit. In: IEEE Symposium on Security and Privacy (Oakland
2017) (2017)

5. Floréncio, D., Herley, C., Van Oorschot, P.C.: Pushing on string: the“don’t care”
region of password strength. Commun. ACM 59(11), 66-74 (2016)

6. Zhang, Y., Monrose, F., Reiter, M. K.: The security of modern password expiration:
an algorithmic framework and empirical analysis. In: Proceedings ACM CCS, pp.
176-186 (2010)

7. Morris, R., Thompson, K.: Password security: a case history. Commun. ACM
22(11), 594-597 (1979)

8. Weir, M., Aggarwal, S., Collins, M., Stern, H.: Testing metrics for password cre-
ation policies by attacking large sets of revealed passwords. In: Proceedings ACM
CCS, pp. 162-175 (2010)

9. Ives, B., Walsh, K.R., Schneider, H.: The domino effect of password re-use. Com-
mun. ACM 47(4), 75-78 (2004)

10. US-Cyber Emergency Response Readiness Team: CyberSecurity Tips. http://
www.us-cert.gov/cas/tips/

11. Popper, K.: Conjectures and Refutations: The Growth of Scientific Knowledge.
Routledge, London (1959)

http://www.us-cert.gov/cas/tips/
http://www.us-cert.gov/cas/tips/

The Once and Future Onion

Paul Syverson®)

U.S. Naval Research Laboratory, Washington, DC, USA

paul.syverson@nrl.navy.mil

Abstract. Onionsites are Internet sites accessed via protocols offer-
ing security protections beyond those provided by the usual protocols
and infrastructure of the Internet, such as confidentiality of address
lookup, and that significantly strengthen commonly offered protections;
for example, their self-authenticating addresses preclude the kinds of
certificate hijacks that have occurred against registered domain names.
I will sketch the properties and design of onion services, including early
history as well as recent developments. I will also describe integration of
onionsites much more fully into conventional Internet sites in ways that
promote their general widescale adoption.

1 Introduction

Prior to a decade ago, website access via encrypted and authenticated connec-
tions was relatively uncommon. Now this is recognized as fundamental to online
commerce, government, and more generally to functioning in many aspects of
modern life. The mechanisms for secure site access that we will discuss herein
are roughly where certificates and TLS were at the turn of the century. I will
describe combining and extending protections provided by such conventional
mechanisms with the stronger mechanisms of Tor’s onion services in ways that
both further improve the security and usability that is currently provided by
either alone and that promote broad adoption of more secure site access.

1.1 Predecessors to Onion Services

We introduced onion routing in the 1990s “to separate identification from rout-
ing” for networked communication [21]. Primary intended uses were for clients
to connect to Internet sites with publicly discoverable network locations, such
as connecting to ordinary websites, but without revealing to the infrastructure
carrying the connection’s traffic, who is visiting which site. At the same time we
introduced onion routing we also introduced reply onions, which were designed
to allow replies to such connections or to otherwise permit connection to sites
with hidden locations [7]. One application we proposed for reply onions was pri-
vate location tracking: user location was regularly uploaded to a user’s server,
which could then selectively provide access to the user’s location information.
The sensors and routing infrastructure, however, could not tell which user was

© US Government 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 18-28, 2017.
DOI: 10.1007/978-3-319-66402-6_3

The Once and Future Onion 19

sending her location to which server. Another application was a protocol to per-
mit mobile telephony, including per-call billing, without revealing to the local
cell tower what phone number is making the call or, to the account provider,
where the call is being made from [22]. Ross Anderson introduced the design
for a censorship-resistant Eternity Service the same year we introduced onion
routing [1], which featured the location-hiding placement and retrieval of doc-
uments at redundant distributed servers. These were all designs without any
implementation. The first system with at least a research implementation to
permit connections to a service without revealing the service’s network location
was Rewebber [6], followed a few years after by Publius [30]. These were systems
specifically for connecting to a web service, a primary application of Tor’s onion
services half a decade later.

1.2 Basic Overview of Tor Design and Onion Services

I now give a high-level description of Tor and onion service protocols that should
be sufficient to understand what follows. For more detailed descriptions see the
Tor design paper [5] and related documentation at the Tor website [28]. For a
high-level graphical description of onion services see [25]. For a more up to date,
and much more technical, description of onion services protocols see the Tor
Rendezvous Specification [27].

Tor clients randomly select three of the many thousands of relays [26] com-
prising the current Tor network, and create a cryptographic circuit through these
to connect to Internet services. Since only the first relay in the circuit sees the
IP address of the client and only the last (exit) relay sees the IP address of the
destination, this technique separates identification from routing.

To offer an onion service, a web (or other) server creates Tor circuits to
multiple introduction points, Tor relays that await connection attempts from
clients. A user wishing to connect to a particular onion service uses the service’s
onion address to look up these introduction points in a directory system. In a
successful interaction, the client and onionsite then both create Tor circuits to
a client-selected relay, the rendezvous point. The rendezvous point joins their
circuits together, and they can then interact as ordinary client and server of a
web connection over this rendezvous circuit.

Since the onionsite only communicates over Tor circuits it creates, this proto-
col hides its network location, the feature that gives it the name ‘hidden service’.
But, there are other important features to the onion service protocols, notably
self-authentication. The onion address is the hash of the public key of the onion-
site. For example, if one wished to connect to the DuckDuckGo search engine’s
onion service, the address is 3g2upldpqbkufc4dm.onion. If that address is linked
to or entered in the address bar of Tor Browser (a browser based on Firefox
ESR, designed to work with Tor, and bundled in the default Tor download), the
Tor client recognizes this as an onion address and thus knows to use the above
protocol rather than attempting to pass the address through a Tor circuit for
DNS resolution at an exit relay. The public key hashed to produce the address

20 P. Syverson

corresponds to the key that signs the list of introduction points and other ser-
vice descriptor information provided by the directory system. In this way, onion
addresses are self-authenticating, a central point to which we will return.

2 The Alliuminated Web

Users are generally completely in the dark about how their information moves
around the Internet. Though Tor does provide confidentiality of routing meta-
data, it also provides the user with far more routing metadata, indeed authenti-
cated routing metadata, than she would otherwise have, and does so in a highly
usable fashion. A pulldown on the Tor Browser indicates the country and IP
address of the relays in the path of an active Tor circuit.

As noted, we originally called Tor onion services “hidden services” (actually
“location-hidden services” in the first publication [5]). This was perhaps natural
given the above history, but it was misleading terminology in at least two ways.
First, given the varied and nuanced meanings of ‘hidden’ it is easy to insinuate
a general air of exotic mystery and arcane offerings on such sites, rather than
the mundane idea that network location is not revealed merely by making a
site reachable. Calling these “hidden services” did not exactly dissuade those
tech pundits and television drama writers who might be generally inclined to
titillating and frightening stories that boost readership and ad revenue.

More important technically, it calls attention to only one sort of protection
that onion services provide, hiding the network location of the service. This is an
important security property, and researchers and developers continue to work on
strengthening its protection. But putting just that aspect into the name makes it
easy to downplay the other important protections that onion services provide. In
fact, while other properties such as self-authentication remain inherent, location
hiding is now a configuration option since it is not desirable for all settings.
Because ‘hidden services’ was importantly misleading in multiple ways, we now
generally refer to these simply as “onion services”.

3 Evolution of Onion Services

Guards and Vanguards: One of the first design changes to occur after we
introduced onion services in 2004 was to add entry guards. A malicious client
can rapidly request many connections to an onion service, each of which will
cause the onion service to use a new circuit to the rendezvous point. Setting up
even a single relay and making many connections to an onion service, we were
able to correlate connections we requested with ones from a server connecting
into the Tor network at our relay. We were thus able to find the network address
of the onion service within minutes. To counter such attacks, we introduced guard
relays, a set of a very few relays that a client used persistently to connect to
the Tor network [19]. Guards protect onion-service-originated circuits, but also
all clients circuits. Normal clients make multiple connections to multiple sites
during the course of their online activity—albeit normally at a much slower rate

The Once and Future Onion 21

than just described. In that same work, we showed that a similar attack could
quickly uncover a service’s entry guards, and we proposed layered guards as a
means to make such attacks on onion services even slower and more complex.
Over the last decade, many have researched this area, for example exploring the
performance implications of using layered guards for hidden services [12]. Design
and implementation specifics are actively being settled at the time of writing.
Further details can be found in a Tor Proposal [13]. (Tor Proposals are similar
to IETF RFCs.)

Counters to Mining the Onion Service Directory: The first onion-service
directory system, for looking up introduction points and other information given
in a service descriptor, was run at the Tor directory authorities (which maintain
and serve information about the relays comprising the Tor network). But this
was only intended to get onion services up and running, and even the original Tor
design paper mentioned running the directory on a distributed hash table (DHT)
comprised of Tor relays [5]. The DHT-based onion-service directory system was
deployed a few years later. Even with the dynamic distribution of a DHT, an
adversary occupying any of the six positions holding at a given time the service
descriptor for a given onion address could monitor when lookups of it occur, and
could even deny service if it held all six positions in the DHT. We proposed a
partial counter to this by encrypting both the record locator and its content using
the onion address as key [20]. This was later implemented and deployed [27].
Though deployed, it was not widely used, and published research showed how
adversaries could position themselves in the DHT to learn (or block) most onion
addresses [3].

Even if widely used, such encryption would not resist DHT monitoring or
DoS of onion addresses an adversary knew otherwise. Something that does help
even in this case (and is now implemented and deployed) is for the Tor directory
authorities to run a distributed random-value-commitment protocol to be used
in the determination of next-round DHT assignments, thus confounding any
adversary’s attempt to predictably position itself within the DHT [9].

Metrics for onions: Onion-service traffic constitutes a tiny fraction of overall
traffic on the Tor network, but until a few years ago we had no idea how much.
This is now regularly reported on the Tor Metrics site and is roughly 1-5% of
overall application traffic [17]. Likewise the number of onion addresses that exist
(c. 50K at any time), are reachable, serve content, etc. was not known. These
latter appear to be far fewer, on the order of 10K and 1K respectively, but
good numbers are not yet readily available. Collecting such statistics without
harming privacy is difficult [8]. Future work using more secure techniques, such
as provided by PrivCount [11], should give us additional statistics, e.g., the per-
onion-service distribution on connections to onion services during a given period.
The Tor Metrics site also tracks performance, reporting on the time to download
various size files over the network. Until recently, this was limited to downloads
from external servers via exit circuits. With the introduction of OnionPerf [10],
more complex traffic performance could be generated and monitored, and in
particular, performance of onion services is now measured and reported.

22 P. Syverson

Ephemeral and Personal Onions: Further complicating things, onionsites
are not all ordinary web pages. As just one example, OnionShare [18] is a tool
for secure and private file transfer. It creates an onion service on the source com-
puter and places the desired file at its onion address. In default use, once the file
is retrieved, the onion service and the file are deleted. Obviously such onionsites
complicate our understanding of onionsite statistics. Another example of a dif-
ferent sort of onion service is Ricochet [23], a secure instant messaging system
with no central server. Each Ricochet user has an onionsite on his computer
and shares the onion address with potential communicants. Two users wishing
to talk will connect to each other’s onionsite. Ricochet presents the exchanged
messages as a dialogue in its GUI. Onionsites can also be useful for securely
operating a personal cloud service. With privacy and cost in mind, many people
are operating their own cloud infrastructure to store files and calendar entries
using open-source systems such as Cozy.

Facebook and increased integration with the less-secure web: Thou-
sands of users connect to Facebook from locations that do not allow direct con-
nections to facebook.com. And many others simply use Tor Browser for the
added security it provides for general Internet activity. Indeed, in April 2016,
Facebook reported over a million people accessing Facebook over Tor [16]. Now
Facebook could simply encourage users to make an ordinary connection over Tor
to facebook.com. But on the Tor network limited exit capacity is often a dom-
inating factor for Tor performance. This was one of the motivations Facebook
described for offering an onionsite rather than merely encouraging connections to
their registered domain via Tor [15]. More recently, Facebook has begun allowing
onionsite owners to offer previews of their sites to non-Tor users on pages with
a link to their onionsite. Facebook also provides guidance for anyone attempting
to follow such a link using a non-Tor browser, telling them how and why they
might use Tor. And if the onionsite has opted to allow it, a link to the less secure
(non-Tor) version of the site is also offered [24].

Facebook is the largest site by far to incorporate onion service, but is not
the only significant “conventional” site to do so. A few other examples include
ProPublica, a well-known news site, DuckDuckGo, a popular search engine I have
already mentioned, and services and repositories of the Debian operating system.
Some news sites do not, at the time of writing, offer onion addresses for accessing
their content but do make use of SecureDrop, which is an onion service for sources
to securely and anonymously contribute to media organizations including The
Washington Post, The New Yorker, and The Globe and Mail.

A potential concern for popular mainstream sites is doppelgangers. If some-
one were to put up an onionsite at 3g2upk4audldfcdm.onion that appears
to be the DuckDuckGo homepage, users might not spot that they had not
reached 3g2upldpg6kufcdm.onion. Onion addresses are self-authenticating, but
by themselves offer nothing to tie themselves to known public entities. This is
an example of Zooko’s Triangle, which states that names can be any two of
decentralized, secure, and human-meaningful, but not all three at once. One
of the ways to get closer to having all three is to leverage TLS certificates.

The Once and Future Onion 23

If 3g2upldpgbkufcdm.onion is entered in the Tor Browser, the display in the
URL bar shows “Duck Duck Go, Inc. (US) | https://3g2upldpgbkufcdm.onion”:
for this address, DuckDuckGo has obtained a TLS certificate that includes the
identification of itself as the organization holding the certificate. And that is pos-
sible because the CA/Browser Forum has authorized the issuance of extended
validation (EV) Certs for onion addresses. Note that this provides an addi-
tional element of site-owner control over authentication that no certificates can:
even with an accepted certificate, without the private key from which the onion
address derives, an adversary cannot read or respond to traffic encoded for
that address (though this does not preclude certificates for doppelgangers). One
important enabling condition for allowing issuance of certs for onion addresses
was the recognition of .onion as a reserved top-level domain by the IETF in
2015 [2]. RFC 7686 designated .onion as a special-use TLD: onion addresses are
not be resolved by DNS as an ordinary registered domain, and they are given a
standardized status.

Only EV certs are eligible for display of the organization name and lock icon
together in the browser URL bar. And, onion addresses are only eligible for EV
certs. This limits them to entities with enough time, money, and motivation to
jump through the hoops necessary to obtain them. Smaller or less well-funded
entities generally obtain domain validation (DV) certificates, which are much
quicker and easier to obtain. One of the concerns that the CA/Browser Forum
had concerning onion addresses, prompting the limitation to EV certs, was the
16-character names that might make them vulnerable to hash collisions. What-
ever the validity of that or some other expressed cryptographic concerns, they
should all be addressed by the new protocols and 56-character names [14] that
are already in the Tor-alpha code release and should be in the stable release by
the time this paper is published.

The motivations for Facebook to run an onion service, e.g., as cited above, do
not include hiding server network location. As such, the original protocol’s use
of Tor circuits from the onion service to the rendezvous point and to the intro-
duction points only adds overhead and reduces performance for both the onion
service and the Tor network. Facebook thus uses single onion services. These
make direct connections from the onion service to the rendezvous and introduc-
tion points and are now specified and implemented for general Tor use [4].

4 John Jacob Onionheimer Schmidt

Should the CA/Browser Forum approve issuing DV certs for onion addresses,
it will further advance the integration of onion services with existing, famil-
iar authentication mechanisms. But even if that happens, it will not permit
the inclusion of organization names in the URL bar or solve other problems
associated with addresses that are not generally understood or recognizable by
humans.

https://3g2upl4pq6kufc4m.onion

24 P. Syverson

The Onion Name System (OnioNS) attempts to respond to these concerns
by creating a system for globally-unique but still human-meaningful names for
onionsites [29]. This has the advantage of not being dependent on any exist-
ing naming scheme, such as existing domain registration. On the other hand,
through much experience and design, existing approaches to naming have evolved
effective usage and infrastructure that we can leverage. And integrating onion
addresses with registered domain names has other advantages.

One way to further this integration is literally, i.e., by incorporating onion
addresses as subdomains of registered domain names. Top-level onion addresses
will still be important, particularly for sites without registered domain names.
And this does not automatically require ‘onion’ to be part of the name, but
the address should be self-authenticating as onion addresses are and should
have adequate encoding properties to preclude confusion with subdomain names
not intended to provide this property. Whether or not that will require stan-
dardization or regulation along the lines of RFC 7686 will need to wait for
more details than I present herein. But, as a strawman illustration, imagine
3g2upldpgbkufcdm.onion replaced by 3g2upldpqbkufcdm.onion.duckduckgo.com.
This would have numerous positive prospects.

First, this is not a top-level onion address as in RFC 7686. Thus non-Tor
browsers can resolve and reach this address. As long as the site has content there,
the browser should be able to load it. There will not be a self-authentication
check or other security protections that the Tor Browser adds, nor the routing
security that comes by accessing the service via Tor. Assuming no adversary
shenanigans, however, nothing will break. This should make it appealing to site
owners wanting to minimize overhead and duplicated effort.

Second, because the onion address is simply a subdomain of a registered
domain, it can be covered by a DV cert from any certificate authority that allows
wildcards or the issuing of certs for multiple subdomains. Thus, the address can
be human-meaningful, self-authenticating (if appropriate checks are done), and
still give users the familiar indications that the connection is secure (lock icon
indicating a valid cert from a recognized CA). I will return to this below.

Third, it leverages existing human-meaningful names in a way similar to
other things sites currently do. Whatever user-education component is needed
to engender understanding of the security advantages, there is little or no need
for an established domain to create a campaign to explain a surprising address
change in the URL bar to its users.

Further, it would now be easy for a site to offer multiple subdomain onion
addresses that are automatically tied to one another via their primary domain
name. These could be to offer different services at different places or to different
users, but it is also an easy way to do expiry or revocation without needing
to interact with CRLs or possibly even keep track of user accounts. One can
route multiple onion subdomains to the same page. If one wants to revoke or
expire access for the users reaching the content or service via a particular onion
subdomain, one can simply throw the relevant private key away. Also, one can
do self-certification for some content within a certified domain, for example to

The Once and Future Onion 25

do load balancing and content distribution. Finally, a site that provides a plat-
form for its users to host individual pages or content and that has a wildcard
certificate, e.g., Facebook, could allow users to set up their own onionsites on the
hosting site with the user’s onion key “certified” by the host’s onion key. This
would allow users much more direct control over authentication of and access to
their content, while still providing TLS certification of the host and host “certi-
fication” of the user’s onionsite. There are many details and limitations for some
of these to be practical, but this should give an inkling of the potential.

5 Onions Everywhere

Subdomain onion addresses should be eligible for DV cert issuance just like any
other subdomain. But to get full security advantages, issuance protocols will
need to make sure that relevant checks for possession of the domain, the private
TLS key, and the private onion-service key all properly validate each other. They
should also be checked, e.g., to verify that it is not possible to interleave one type
of expired key or proof of access with still-valid keys of another type, resulting
in an extension or escalation of authorization. In short, there is some research
to be done, even without getting into questions of performance.

Relatedly, a Tor-Browser connection to a subdomain onion service should
provide all the security advantages of current Tor-based access to the onion ser-
vice, together with the protections provided by certified TLS. (It should after the
client software and onion-service directory system have been updated to handle
such addresses.) And as noted above, subdomain onion services will be back-
wards compatible in that a browser knowing nothing about Tor will be able to
reach and interact with the service. But intermediate levels of protection are also
enabled by this approach. Browsers not configured to access Tor could still have
plugins or modifications that check for possession of the appropriate private key
associated with an onion address. Though not offering the routing protection of
connecting via Tor, resistance to DNS hijack and certificate hijack is significantly
improved since it would be necessary to overcome the self-authentication at the
same time.

An adversary could in principle do all the relevant lookup, routing, and cer-
tificate hijacks, coupled with a phished or otherwise insinuated doppelganger
onion address. Even this could be countered by building the right onion address
into the HTTPS Everywhere ruleset. HI'TPS Everywhere is a free and open
browser extension that checks for a TLS-protected equivalent to a requested
HTTP connection and then substitutes the appropriate protected connection
request. The need for a ruleset is both because not every site offers an HTTPS
version, and because simply adding an “S” to “HTTP” will not always take the
user to the equivalent site, which depends on the configuration and policies of
the site in question. The equivalent encrypted content may be at a slightly dif-
ferent address, and an HTTPS connection to the URL as requested may go to
a different page within the domain. If one adds onion addresses to the HTTPS
Everywhere ruleset for Tor Browser and other browsers configured to parse and

26 P. Syverson

check onion authentication, then this too would have to be overcome for such
attacks to succeed.

Furthermore, with existing onion addresses, ruleset redirection would again
raise user-surprise concern if a request for a given URL yields a completely
different-looking and not-apparently-related address in the URL bar. With sub-
domain onions, the redirection is much more along the lines of existing HTTPS
Everywhere switches. User surprise should thus be comparable to the current
status quo.

User-friendly onionsite set up: Let’s Encrypt is a certificate authority that
allows anyone to obtain a free DV cert for her site. But it is more than that. Let’s
Encrypt strives to make certificate issuance as quick, automatic, and transparent
as possible, so that site owners have as painless an experience as possible setting
up a TLS-protected version of their site. Once the above mentioned systems
and protocols are in place, it would be natural for Let’s Encrypt to facilitate an
onion-protected version of a site just as they do now for TLS protection.

6 Conclusion

I hope the nature, history, and prospects for onion services are now well alliu-
minated for you. I hope also that you are enthusiastic to see subdomain onion
addresses researched, specified, implemented, and deployed as sketched above.
In such a future, individual, business, and government websites and services can
all be set up to offer much more secure access than is now possible.

Acknowledgments. More people have helped shape the work and ideas I have
described above than could be acknowledged here. Specific thanks to Richard Barnes
for conversations that led to the ideas for subdomain onions, and to Matt Traudt and
Ryan Wails for helpful comments on a draft of this paper.

References

1. Anderson, R.: The eternity service. In: 1st International Conference on the Theory
and Applications of Cryptology (Pragocrypt 1996), pp. 242-252. Czech Technical
University Publishing House, Prague, Czech Republic, September/October 1996

2. Appelbaum, J., Muffett, A.: The .onion special-use domain name (2015). https://
tools.ietf.org/html/rfc7686

3. Biryukov, A., Pustogarov, I., Weinmann, R.P.: Trawling for Tor hidden services:
detection, measurement, deanonymization. In: IEEE Symposium on Security and
Privacy (SP) (2013)

4. Brown, T.W., Brooks, J., Johnson, A., Jansen, R., Kadianakis, G., Syverson, P.,
Dingledine, R.: Rendezvous single onion services, Tor proposal 252 (2015). https://
gitweb.torproject.org/torspec.git /tree/proposals/260-rend-single-onion.txt

5. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium, August 2004

6. Goldberg, I., Wagner, D.: TAZ servers and the Rewebber network: enabling anony-
mous publishing on the World Wide Web. First Monday 3(4) (1998)

https://tools.ietf.org/html/rfc7686
https://tools.ietf.org/html/rfc7686
https://gitweb.torproject.org/torspec.git/tree/proposals/260-rend-single-onion.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/260-rend-single-onion.txt

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

The Once and Future Onion 27

Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137-150. Springer, Heidelberg
(1996). doi:10.1007/3-540-61996-8_37

Goulet, D., Johnson, A., Kadianakis, G., Loesing, K.: Hidden-service statistics
reported by relays. Tor Technical report 2015-04-001, The Tor Project, April 2015
Goulet, D., Kadianakis, G.: Random number generation during Tor voting, (Tor
proposal 250) (2015). https://gitweb.torproject.org/torspec.git/tree/proposals/
250-commit-reveal-consensus.txt

Jansen, R.: Onionperf. https://github.com/robgjansen/onionperf

Jansen, R., Johnson, A.: Safely measuring Tor. In: Proceedings of the 23rd ACM
Conference on Computer and Communications Security (CCS 2016) (2016)
Jansen, R., Tschorsch, F., Johnson, A., Scheuermann, B.: The sniper attack: anony-
mously deanonymizing and disabling the Tor network. In: Proceedings of the Net-
work and Distributed Security Symposium - NDSS 2014. IEEE, February 2014
Kadianakis, G., Perry, M.: Defending against guard discovery attacks using van-
guards, (Tor proposal 247) (2015). https://gitweb.torproject.org/torspec.git/tree/
proposals/247-hs-guard-discovery.txt

Mathewson, N.: Next-generation hidden services in Tor (Tor proposal 224).
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt
Muffett, A.: How to get a company or organisation to implement an onion site, i.e. a
Tor hidden service, October 2015. https://www.facebook.com/notes/alec-muffett/
how-to-get-a-company-or-organisation-to-implement-an-onion-site-ie-a-tor-
hidden-/10153762090530962

Muffett, A.: 1 million people use Facebook over Tor, April 2016. https://www.
facebook.com /notes/facebook-over-tor/1-million-people-use-facebook-over-tor/
865624066877648

Onion service traffic metrics site. https://metrics.torproject.org/hidserv-rend-
relayed-cells.html

Onionshare. https://onionshare.org/

@verlier, L., Syverson, P.: Locating hidden servers. In: 2006 IEEE Symposium on
Security and Privacy (S& P 2006), Proceedings, pp. 100-114. IEEE CS, May 2006
@verlier, L., Syverson, P.: Valet services: improving hidden servers with a personal
touch. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 223-244.
Springer, Heidelberg (2006). doi:10.1007/11957454_13

Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Proxies for anonymous routing. In:
Twelfth Annual Computer Security Applications Conference, pp. 95-104. IEEE
CS Press (1996)

Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Protocols using anonymous connec-
tions: mobile applications. In: Christianson, B., Crispo, B., Lomas, M., Roe, M.
(eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 13-23. Springer, Heidelberg
(1998). doi:10.1007/BFb0028156

Ricochet. https://ricochet.im/

Shackleton, W.: Improved sharing of .onion links on Facebook (2017). https://
www.facebook.com/notes/facebook-over-tor/improved-sharing-of-onion-links-on-
facebook/1196217037151681/

Tor: Hidden Services Protocol. https://www.torproject.org/docs/hidden-services.
html.en

Tor network size. https://metrics.torproject.org/networksize.html

Tor Rendezvous Specification. https://gitweb.torproject.org/torspec.git/tree/
rend-spec.txt

http://dx.doi.org/10.1007/3-540-61996-8_37
https://gitweb.torproject.org/torspec.git/tree/proposals/250-commit-reveal-consensus.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/250-commit-reveal-consensus.txt
https://github.com/robgjansen/onionperf
https://gitweb.torproject.org/torspec.git/tree/proposals/247-hs-guard-discovery.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/247-hs-guard-discovery.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt
https://www.facebook.com/notes/alec-muffett/how-to-get-a-company-or-organisation-to-implement-an-onion-site-ie-a-tor-hidden-/10153762090530962
https://www.facebook.com/notes/alec-muffett/how-to-get-a-company-or-organisation-to-implement-an-onion-site-ie-a-tor-hidden-/10153762090530962
https://www.facebook.com/notes/alec-muffett/how-to-get-a-company-or-organisation-to-implement-an-onion-site-ie-a-tor-hidden-/10153762090530962
https://www.facebook.com/notes/facebook-over-tor/1-million-people-use-facebook-over-tor/865624066877648
https://www.facebook.com/notes/facebook-over-tor/1-million-people-use-facebook-over-tor/865624066877648
https://www.facebook.com/notes/facebook-over-tor/1-million-people-use-facebook-over-tor/865624066877648
https://metrics.torproject.org/hidserv-rend-relayed-cells.html
https://metrics.torproject.org/hidserv-rend-relayed-cells.html
https://onionshare.org/
http://dx.doi.org/10.1007/11957454_13
http://dx.doi.org/10.1007/BFb0028156
https://ricochet.im/
https://www.facebook.com/notes/facebook-over-tor/improved-sharing-of-onion-links-on-facebook/1196217037151681/
https://www.facebook.com/notes/facebook-over-tor/improved-sharing-of-onion-links-on-facebook/1196217037151681/
https://www.facebook.com/notes/facebook-over-tor/improved-sharing-of-onion-links-on-facebook/1196217037151681/
https://www.torproject.org/docs/hidden-services.html.en
https://www.torproject.org/docs/hidden-services.html.en
https://metrics.torproject.org/networksize.html
https://gitweb.torproject.org/torspec.git/tree/rend-spec.txt
https://gitweb.torproject.org/torspec.git/tree/rend-spec.txt

28

28.
29.

30.

P. Syverson

The Tor Project. https://www.torproject.org/

Victors, J., Li, M., Fu, X.: The onion name system: Tor-powered decentralized DNS
for Tor onion services. Proc. Priv. Enhancing Technol. 2017(1), 21-41 (2017)
Waldmen, M., Rubin, A.D., Cranor, L.F.: Publius: A robust, tamper-evident,
censorship-resistant web publishing system. In: Proceedings of the 9th USENIX
Security Symposium, August 2000

https://www.torproject.org/

Tightly Secure Ring-LWE Based Key
Encapsulation with Short Ciphertexts

Martin R. Albrecht!, Emmanuela Orsini?, Kenneth G. Paterson', Guy Peer?,
and Nigel P. Smart>®™)

! Royal Holloway, University of London, London, UK
2 University of Bristol, Bristol, UK
nigel@cs.bris.ac.uk
3 Dyadic Security, Ashkelon, Israel

Abstract. We provide a tight security proof for an IND-CCA Ring-
LWE based Key Encapsulation Mechanism that is derived from a generic
construction of Dent (IMA Cryptography and Coding, 2003). Such a
tight reduction is not known for the generic construction. The resulting
scheme has shorter ciphertexts than can be achieved with other generic
constructions of Dent or by using the well-known Fujisaki-Okamoto con-
structions (PKC 1999, Crypto 1999). Our tight security proof is obtained
by reducing to the security of the underlying Ring-LWE problem, avoid-
ing an intermediate reduction to a CPA-secure encryption scheme. The
proof technique maybe of interest for other schemes based on LWE and
Ring-LWE.

1 Introduction

The possible advent of a quantum computer would immediately render insecure
the vast majority of currently deployed public key cryptography. Hence, over
the last few years, there has been considerably effort in trying to establish new
public key encryption and signature schemes which are presumably resistant to
the threat of quantum computers. Indeed, the US standards body NIST last
year launched a Post Quantum Crypto (PQC) Project and published a call for
submissions of quantum-resistant public-key cryptographic algorithms [27].

Among the leading candidates for post-quantum public key encryption
(PKE) schemes are those based on the Learning with Errors (LWE) problem and
its ring equivalent (Ring-LWE). Starting with the seminal work of Regev [29],
there has been considerable work on various aspects of designing public key
encryption schemes based on LWE and Ring-LWE [9,25], research into imple-
mentation aspects [8,13,23,30,31], research into attacks [1,2,4,20-22], and var-
ious applications to advanced cryptographic constructions such as Somewhat
Homomorphic Encryption [6,7,18].

Much existing work has, however, concentrated on producing encryption
schemes meeting only a basic level of security, namely IND-CPA security. The
development of schemes achieving the much stronger IND-CCA security notion
has received less attention. Of course, given an IND-CPA scheme, we can apply

© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 29-46, 2017.
DOI: 10.1007/978-3-319-66402-6_4

30 M.R. Albrecht et al.

a standard off-the-shelf transform to obtain an IND-CCA scheme. For example,
the Fujisaki-Okamoto transform in [14] constructs an IND-CCA secure public-
key encryption scheme (PKE) from an IND-CPA (or even one-way secure) secure
PKE, if it is also y-uniform (see Definition 2). This reduction is tight but comes
at the cost of also encrypting, under the IND-CPA PKE, the concaternation of
the message and a random seed of \ bits, where X is the security parameter.!

Since public key encryption is not well-suited to the transmission of long mes-
sages, public key encryption is often used to transmit a symmetric key, which
is then used in a one-time-secure Authenticated Encryption (AE) scheme to
encrypt the actual message. This methodology is often called the KEM-DEM
paradigm [10]. It only requires the construction of a key encapsulation mecha-~
nism (KEM) rather than a full PKE scheme, and this is usually somewhat easier
or leads to more efficient solutions than designing or repurposing a PKE scheme.
It turns out that there are general constructions for obtaining IND-CCA secure
KEMs from weaker primitives.

In the context of producing a KEM, the Fujisaki-Okamoto transform can be
applied by setting the “primary message” to be the random KEM key of size
A bits. Thus one obtains a total message size of 2 A\ bits to encrypt under the
IND-CPA encryption scheme. However, in LWE schemes the underlying message
size directly impacts on the overall ciphertext size and the additional A bits of
random seed produce a ciphertext expansion of at least A bits.

Dent [11] provides a veritable smorgasbord of techniques for constructing
KEMs from weakly secure PKE schemes, giving five constructions of IND-CCA
secure KEMs in total. The constructions in Tables 1-3 of [11] require strong require
strong properties from an underlying IND-CPA secure PKE scheme. The construc-
tion in Table 4 of [11] requires OW-CPA security for a starting deterministic PKE
scheme. This transformation is attractive, since the reduction given in [11, Theo-
rem 8] is tight. On the other hand, ciphertexts are slightly expanded compared to
the starting scheme, since they require the inclusion of an extra hash value (whose
size must be at least twice the security parameter). It is possible to de-randomise
any IND-CPA secure PKE scheme having large message space to achieve OW-CPA
security, e.g. by setting the randomness r used during encryption as r = H(m) for
some random oracle H(-). The proof is a simple exercise. Thus Dent’s Table 4 con-
struction can be used with an LWE-style PKE scheme as a starting point, though
again with a cost of some ciphertext expansion.

The construction in Table5 of [11] and analysed in Theorems 5 and 9 for
building IND-CCA secure KEMs is of more interest to us. The construction starts
with an OW-CPA secure scheme, but a probabilistic one, and does not introduce
any ciphertext overhead. On the other hand, it has a non-tight reduction: the
security bound degrades by a factor gp + gy + qx where gp is the number
of decryption oracle queries and ¢ resp. qm is the number of key derivation
resp. hash function queries (both modelled as a random oracle).

In the spirit of a KEM-DEM construction is a second generic transform
of Fujisaki and Okamoto, given in [15,16] (see [28] for an application in the

! In a post-quantum scheme the reader should have A = 256 in mind.

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 31

context of LWE-based public-key encryption). This yields a hybrid encryption
scheme, but it is not in the true KEM-DEM paradigm (since the KEM part
depends on the message m). The underlying symmetric cipher need not be an
AE scheme, but can simply be a one-time pad encryption of the message and
the message is used to produce the required randomness for the KEM-like part.
The method of [15,16] has two advantages over [14]: firstly a one-time pad is
more space efficient than an AE scheme; secondly the public key component does
not suffer from the ciphertext expansion noted above for LWE based schemes.
However, these benefits come at a cost, because the associated security reduction
is not tight. In particular, the security bound degrades by a factor of gy, the
number of queries made to a hash function H, modelled as a random oracle.
We note that a tight reduction can be achieved [17], either by making stronger
assumptions about the underlying primitives or when the underlying primitive
permits plaintext checking.

Having a tight security reduction is a very desirable property in practice-
oriented cryptographic primitives. Essentially, the tightness of a reduction deter-
mines the strength of the security guarantees provided by the security proof; in
concrete security terms, a tight reduction shows that an algorithm breaking the
security of the scheme can be used to solve an assumed-to-be-hard problem with-
out any significant increase in the running time or loss in success probability. A
tight proof thus ensures that breaking the scheme (within the respective adversar-
ial model) is at least as hard as breaking the alleged hard computational problem.
On the other hand, a non-tight reduction can only provide much weaker guaran-
tees, giving rise to the argument that the primitive should be instantiated with
larger security parameters in order to account for the non-tightness of the proof.

This discussion and the preceding analysis of Dent’s constructions raises the
natural question: is it possible to build an IND-CCA secure KEM from simpler
primitives with a tight security reduction, and without introducing any cipher-
text overhead beyond that of the DEM? In this paper, we provide a positive
solution to this question.

To answer the question, we produce a new security analysis for Dent’s sec-
ond construction (as shown in [11, Table5]) in Sect.3. The analysis applies to
the case where the underlying OW-CPA scheme is instantiated using a spe-
cific construction based on lattices associated to polynomial rings, and which
is secure under a natural variant of the Ring-LWE assumption. We name the
resulting IND-CCA secure KEM as LIMA (for LattIce MAthematics), cf. Sect. 2
for details. In contrast to the generic case handled in [11], our security reduction
for the specific scheme is tight. Our proof exploits some weakly homomorphic
properties enjoyed by the underlying encryption scheme. Because it is based on
applying Dent’s second construction to a simpler scheme, LIMA has no cipher-
text overhead beyond that simpler scheme. Thus, we find that tightness can be
maintained, whilst still using a generic construction which at first sight appears
to be non-tight. Given the increased interest in LWE-based encryption our proof
technique may be of interest in other schemes.

32 M.R. Albrecht et al.

In concurrent and independent work, Hotheinz et al. [19] have shown that,
amongst other things, Dent’s second construction can be proven to achieve IND-
CCA security in a tight manner, for any starting scheme that is IND-CPA secure
(rather than OW-CPA secure as in Dent’s original analysis).

We overview the construction of LIMA here. We start from standard Ring-
LWE encryption going back to [24], based on a polynomial ring of dimension
N, reduced with respect to a modulus ¢q. The encryption consists of an Ring-
LWE sample, consisting of two ring elements cg, ¢1, and thus has ciphertexts of
bitsize 2 - N - [log, q]. For reference, the reader may think of N = 1024 and
[logy g] = 17. Assuming one bit can be encoded per polynomial coefficient, this
size can be reduced to N - [log, ¢] +£- [log, g for £-bit messages by truncating c.
Thus, to transport a A-bit key, a minimum of (N 4+ A) - [log, ¢ bits of ciphertext
need to be sent.?

In Table 1, we compare the tightness and ciphertext expansion of the various
constructions mentioned above, as well as in this work. We let |AE(m)| denote
the ciphertext size of a one-time AE encryption of a message m, which is roughly
|m| + A" where X\ is the space needed for a post-quantum secure authentication
code. For the [14] scheme we assume that |m| is too large to be encrypted directly
under the transform, and thus the scheme needs to be used in a hybrid format.

Table 1. Ring-LWE ciphertext sizes for various IND-CCA transforms. We write ¢, for
[log, q1.

Class | Construction Ciphertext Size Tightness

PKE | [14] (N+2-X)-lg+|AE(m)| |e+...

PKE | [15,16] (N +X) -4y + |m)| qH - €

KEM | [11, Table4] (N4 X)Ly 42X+ |AE(m)||e+ ...

KEM | [11, Table 5] (N +) -4y + |AE(m)] (gp +qu +qK) - €
KEM | This work (non-generic) | (N + \) - £4 + |AE(m)| et...

Note that our security analysis, like all the prior mentioned works, is in the
Random Oracle Model (ROM). To fully assess post-quantum security, one should
instead analyse security in the Quantum ROM (QROM), as introduced in [5]. In
this model, an adversary can make superposition queries to the Random Oracle,
possibly giving it much greater power, and invalidating certain classical ROM
proof techniques. One way to achieve QROM security for PKE and KEMs is
to add extra hash values to ciphertexts, cf. [32] which does this in the context
of the FO transform. This of course increases the ciphertext size and, currently,
results in non-tight reductions. It is an important open question whether one can
achieve QROM security for a Dent-like KEM construction with a tight reduction
and without suffering any ciphertext overhead.

2 More bits can be saved by suppressing the least significant bits of ¢; resp., in this
specific case of transmitting a key, by reconciliation [12,28].

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 33

Finally, achieving IND-CCA security also requires handling decryption errors
of genuine encryptions. In Ring-LWE systems a validly generated ciphertext may
not decrypt correctly if the initial “error term” used to generate the ciphertext
is so large that it produces a wrap-around with respect to the modulus ¢. There
are two ways around this issue; either select ¢ so large that the probability of
this occuring is vanishingly small, i.e. 27*, or by truncating the distribution
used to produce the error term. We note, though, that these two modifications
are orthogonal to the refined security proof of Dent’s construction given in this
work, since in Dent’s construction the decryption algorithm actually re-encrypts
the ciphertext as part of its operation and so can detect whether such an issue
occurs.

2 Ring-LWE Key Encapsulation

Our basic scheme is defined over a global ring R = Z[X]/(®$,,(X)) for some
cyclotomic polynomial @,,(X), and essentially follows the construction in [25].
We will let R, denote the reduction of this ring modulo the integer g, i.e.
Ry = Z4[X]/ (@ (X)). We let N = ¢(m) denote the degree of this ring. On
the set Z, we define the distribution x, which selects an integer with proba-
bility approximated by a discrete Gaussian with standard deviation o centred
on 0. The parameters (N, ¢, o) will heavily influence the security of the scheme,
and so are functions of a security parameter \. In this paper, we assume suitable
choices of the parameters can be selected for given values of A. As noted in the
introduction, the reader may think of N = 1024 and [log, ¢| = 17, while o will
be a small constant ~ 3.2.

The distribution x, can be extended to all of R; by generating N values
from x, independently and then assigning these values to the coefficients of an
element from R, in which case we write a « x2. If we wish to select an element
in R, uniformly at random we will write a < R,. If we want to be precise about
what random coins we use then we write a «, R,.

To aid bandwidth efficiency we sometimes truncate a ring element to a vector
of integers modulo ¢ of smaller size. Given a ring element a € R, representing
the element

a=ag+a - X+ --+an_1 XN

we define, for 1 <T < N,
Trunc(a,T)=ao+a1 - X+ +ap_1- xT-1
This is encoded, for transmission and storage, as the vector of T integers

a0||a1 N ||CLT,1.

2.1 IND-CPA Secure PKE

To define our KEM we first define a basic PKE scheme which is only IND-CPA
secure. We give this as a tuple of algorithms (KeyGen, Enc-CPA, Dec-CPA).

34 M.R. Albrecht et al.

Key-Gen: Key generation proceeds as follows

a < Ry.

s —xN.

e — xN.
b—a-s+e.
sk — s.

pt — (a,b).
Return (pt, s¢).

N ot RN

Enc-CPA(m, p&, r): The encryption mechanism takes as input the public key

pt = (a,b), a message m € {0,1}*, and random coins r. We assume that ¢ =
lm| < N. We map this bit string (interpreted as a bit-vector) to a ring element
(with binary coefficients) via the function BV-2-RE(m), and perform the inverse
mapping via a function RE-2-BV(u). The function BV-2-RE takes a bit string of
length ¢ and maps it to a polynomial whose first £ coefficients are the associated
bits, and all other coefficients are zero. (Here we identify bit values with 0 and
1 mod gq.)

1. 41 — BV-2-RE(m).

2. v,e,d «—, xN.

3. x—d+ A, p (mod q). (Here, A, = ¢/2].)
4. t—b-v+ux.

5. ¢ < Trunc(t,?).

6. cp<—a-v+e.

7. Return ¢ = (¢, ¢1).

Note that ¢ is the ring element b-v+d+ A, -m truncated to £ coeflicients, thus
the bit-size of a ciphertext is equal to (N + £) - [log, ¢] = (N + |m]) - [log, q].

Dec-CPA(c, st): On input of a ciphertext ¢ = (cg, ¢1), and a secret key st = s
the decryption is performed as follows:

1. Define ¢ to be the length of ¢y, i.e. the number of field elements used to
represent cgp.

2. v+ 5-C1.

3. t « Trunc(v, {).

4. f <~ Cop — t.

5. Convert f into centered-representation. That is, let f = (fo,..., fe—1) where
each f; € Zg. For each 4, if 0 < f; < % then leave it unchanged. Else, if
4 < fi <q—1, then set f; — f; —q (over the integers).

6. p— Ef—‘ ‘ (i.e., round component-wise to the nearest integer and take the

absolute value; the result will be a binary vector).
7. m — RE-2-BV(p).
8. Return m.

We will prove that this PKE scheme is IND-CPA secure under an LWE-style
assumption in Sect. 3.

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 35

2.2 IND-CCA Secure PKE

Before proceeding to define our KEM, we explain how to use the above IND-
CPA-secure PKE scheme to obtain an IND-CCA secure PKE scheme using the
Fujisaki—Okamoto transform of [14]. This is for later comparison with our pro-
posed IND-CCA secure KEM.

We take the tuple of algorithms (KeyGen, Enc-CPA, Dec-CPA) and produce
a new tuple (KeyGen, Enc-CCA, Dec-CCA). The key generation algorithm stays
the same and we do not repeat it.

The original encryption scheme (KeyGen, Enc-CPA, Dec-CPA) can encrypt N-
bit messages, while the IND-CCA scheme encrypts messages that are N — X bits
in length. The encryption scheme makes use of a hash function H to produce
the random coins r for the underlying IND-CPA secure scheme; we model H as
a Random Oracle in the security analysis.

Enc-CCA(m, pt):

u — {0,1}.

p— miu.

r— H(p).

(co,c1) < Enc-CPA(u, pt,).
Return ¢ = (¢, ¢1).

L o =

Dec-CCA(c, st):

1 — Dec-CPA(c, st).

m|ju — p, where u is A bits long.
r e H(j).

¢’ — Enc-CPA(p, pt, 7).

If ¢ # ¢’ then return L.

Return m.

SRl

Note for this scheme the bit-size of a ciphertext is equal to (N +|m|+X)-[log, q],
since we require N elements to represent c1, and |m|+\ elements to represent ¢y,
as the message for the underlying CPA scheme is equal to the actual message plus
A bits of randomness. We provide a security theorem establishing the IND-CCA
security of this PKE scheme in Sect. 3. This is based on the results of [14].

2.3 LIMA: A CCA-Secure Key Encapsulation Mechanism

One could use the above encryption scheme directly as a KEM by simply using
it to encrypt one-time ¢ < N — X\ bit keys, with a resulting ciphertext size
of (N + ¢+)) - [logyq| bits. However, the following scheme (which we call
LIMA and which follows the generic construction methodology of [11, Table5]),
enables us to transmit a key with £ bits of entropy using a ciphertext of bit-
size (N + £) - [log, q], thus reducing by A - [log, ¢] the number of bits needed
to represent a ciphertext. The method makes use not only of a random oracle

36 M.R. Albrecht et al.

H to produce the randomness needed for the encryption function, but also a
key derivation function K¢ (also modelled as a random oracle) to produce the
actual encapsulated key (which can be of any length ¢'). Again the scheme is
presented as a tuple of algorithms LIMA = (KeyGen, Encap-CCA, Decap-CCA) in
which KeyGen is as for the basic encryption scheme above.

Encap-CCA(£, £, pt): This takes as input a public key pt and two bit lengths

¢, ¢', and outputs an encapsulation ¢ = (cp,c1) and the key k € {0, 1}2/ it
encapsulates. The bit length ¢ controls the ciphertext size and the associated
entropy in the output key k.

1.z« {01}

2. r— H(x).

3. (co,c1) < Enc-CPA(z, pt, 7).
Ck— KW (z).

. Return (¢ = (¢, 1), k).

(AR

Decap-CCA(c, st): This takes as input a secret key key s¢ and an encapsulation
¢ = (co, 1), and outputs the key k it encapsulates.

x < Dec-CPA(c, st).

r — H(x).

¢’ — Enc-CPA(z, pt, 7).
If ¢ # ¢’ then return L.
k — K(e,)(l‘).

Return k.

S S

The IND-CCA security of this KEM is established in the next section, with a
tight reduction to an LWE-style hardness assumption.

3 Security Proofs

In this section we present the hard problem on which the security of our scheme
LIMA rests, survey prior security results on the Fujisaki-Okamoto transform and
Dent’s construction, and finally present our tight proof of security for LIMA.

3.1 Hard Problems

We recall the definition of Ring-LWE problem in normal form [3,24,26]. In the
definition below we directly consider all elements in R, instead of the appropriate
dual and canonical spaces associated to with it.

Definition 1 (Ring-LWE). Let x, denote the distribution defined earlier.
Consider the following experiment: a challenger picks s € XN C Ry and a bit
B € {0,1}. The adversary A is given an oracle which on empty input returns a
pair (a,b) € Ri, where if 3 = 0 the two elements are chosen uniformly at ran-
dom, and if B = 1 the value a is chosen uniformly at random and b is selected

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 37

such that b = a - s + e where e € X C R,. At the end of the experiment the
adversary outputs its guess (3 as to the hidden bit B. For an adversary which
makes ng calls to its oracle and running in time t, we define

AdVWVE(A g, t) =2 |Pr[3 =] — % .

We conjecture that Adv™VE(A, ng,t) is negligible for all adversaries.

Congecture 1. For suitable choices of o, N and ¢ (which depend on the security
parameter \) we conjecture that ¢ = Adv"VE(A, ng, t) is a negligible function in
the security parameter \. In particular, for all adversaries running in time t we
have t/e? > 2X,

We note that in the conjecture above we normalize the running time by success
probability as 1/e2 — instead of the more customary 1/e — because we are
considering a decision problem.

3.2 Provable Security of the Basic Encryption Scheme

The IND-CPA security of our basic encryption scheme (KeyGen,Enc-CPA,
Dec-CPA) is established in the following theorem.

Theorem 1. In the random oracle model, if the LWE problem is hard, then the
scheme (KeyGen, Enc-CPA, Dec-CPA) is IND-CPA secure. In particular, if there
is an adversary A against the IND-CPA security of (KeyGen, Enc-CPA, Dec-CPA)
in the random oracle model, then there are adversaries B and D such that

AdvIND-CPA(4) < 2. AdVYWYE(B, 1, 1) + 2 - AVIVE(D, 2, ¢).

We provide a proof of this theorem in the full version of this work.

3.3 Provable Security of Our IND-CCA Secure PKE Scheme

Our construction of an IND-CCA secure encryption scheme uses the Fujisaki-
Okamoto transform [14] applied to our basic scheme. Before we can apply this
transform, we first need to establish its y-uniformity.

Definition 2 (y-Uniformity). Consider an IND-CPA encryption scheme
given by the tuple of algorithms (KeyGen, Enc-CPA, Dec-CPA) with Enc-CPA :
M xR — C being the encryption function mapping messages and randomness
to ciphertexts. Such a scheme is said to be y-uniform if for all public keys pt
output by KeyGen, all m € M and all c € C we have v(pt, m,c) < v,> where

~v(pt,m,c) = Prjr € R : ¢ = Enc-CPA(m, pt, r)].

3 We let v(-) denote a function and ~ denote a constant.

38 M.R. Albrecht et al.

The lemma below establishes that Ring-LWE-based encryption has low ~-
uniformity.

Lemma 1. Let (KeyGen, Enc-CPA, Dec-CPA) with parameters N, xo,q be the
basic PKE scheme described in Sect. 2.1 and let o such that Pr[X =z | X «—,
Xo] < 1/2 for any x, then this scheme is y-uniform with v < 27V,

Proof. For simplicity, we consider the case of encryption without truncation,
where we will prove a stronger bound. Our argument extends easily to the case
of truncated ciphertexts. Recall that encryption can be written as

c=(cp,c1)=(b-v+ea-v+d+A;-p (mod q)).

Here p is a deterministic encoding of the message m. Recall also that v,e,d «—,
Y. We see that for fixed m, and fixed ¢ = (cg,c1), if v is also fixed, then d
and e are determined (by solving a simple linear system of equations). Thus
we can write (for a fixed public key) d = f1(v) and e = fo(v) for functions
f1, fo that depend on m and c. Letting V, E, D denote random variables that
are distributed as x¥, and letting 1, denote an indicator function for a predicate
g, it follows that

~v(pt,m, c) = Pr[(v,e,d) «—, (Xf,v)?’ : ¢ = Enc-CPA(m, pt, (v, e, d))]
= Z]-C:Enc—CPA(m,pE,(v,e,d)) . PI‘[(V, E7 D) = (U7 €, d)]

v,e,d

= Y le—Enc-CPAGmpt.(v.e)) - PY[V = 0] - Pr[E = €] - Pr[D = d]
v,e,d

< 2_2N Z]-c:Enc—CPA(m,p{’,(u,e,d)) : PI[V = ’U]

v,e,d

=272V e ne.cPAGmpt (v fo(v).fa () - PE[V = 0]

< 2_2N21 - Pr[V = v]

= 272N,

Here, we first used the independence of the random variables V|, E, D to simplify.
Then, we used that if X ~ y2, then Pr[X = z] < 27V for any value = by our
assumption for each coordinate and the independence of the coordinates. After
that, we used the fact that if v is fixed, then e and d are determined as functions
of v to simplify the sum to one over a single variable v. Finally, we used the fact
that the sum over a distribution’s probabilities equals 1. a

Note that in our construction the condition Va, Pr[X = o | X «—,)] < 1/2
is always satisfied by picking ¢ > 1. Also note that if we truncate ¢y to ¢
components then the above bound becomes 2~ (Nt by considering d truncated
to £ components directly as being sampled from x%.

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 39

Applying the main result (Theorem 3) of Fujisaki and Okamoto [14], we
obtain the following:*

Theorem 2. Suppose that (KeyGen, Enc-CPA, Dec-CPA) is (', ¢’) IND-CPA
secure and ~y-uniform. For any qm,qp, the scheme (KeyGen, Enc-CCA,
Dec-CCA), derived from (KeyGen, Enc-CPA, Dec-CPA) as in Sect. 2.2, is (t,¢€)
IND-CCA secure for any adversary making at most qg queries to H (modelled
as a random oracle) and at most qp queries to the decryption oracle, where

t:t’_QH'(TEnc"_U'N),
€= (1=7)7 4 g -2,

where Tgne is the running time of the encryption function and v is a constant.

3.4 Provable Security of LIMA

As remarked earlier our KEM construction LIMA is obtained by applying the
construction of Dent [11, Table5]. This builds an IND-CCA secure KEM from
a OW-CPA secure PKE scheme. By Theorem 1, we know that our underlying
encryption scheme is IND-CPA secure. It also has large message space. It follows
that it is OW-CPA secure. Directly applying the generic result [11, Theorem 5],
we would obtain the following security theorem for LIMA.

Theorem 3. Suppose there is an adversary A which breaks the IND-CCA secu-
rity of LIMA in the random oracle model, with advantage €, running in time t
making at most qp decapsulation queries, qr queries to the random oracle imple-
menting the PRG function and qx queries to the random oracle implementing
the KDF. Then there is an adversary B breaking the OW-CPA security of the
underlying encryption scheme running in time essentially t, with advantage €

such that
(72}

2¢
where £ is the size of the message being encrypted in the underlying encryption
scheme, i.e. the size of x in our construction.,

e<(gp+aqu+ax)-€+ =7 +7 4D

The problem with this result is that it does not give a very tight reduction.
We thus present a new tight proof of our construction, which is not generic,
i.e. we make explicit use of the Ring-LWE based construction of the underlying
encryption scheme.

Theorem 4. In the random oracle model, if the LWE problem is hard then
LIMA is an IND-CCA secure KEM. In particular if A is an adversary against
the IND-CCA security of LIMA running in time t, then there are adversaries B
and D such that

4 Using k = N and ko = 256 in Theorem 3 of [14].

40 M.R. Albrecht et al.

Game Gg: IND-CCA Security of our KEM

a+— Ry

syel —xN

b—a-s+e.

z — {0,1}*

(v,e,d) «— H(z).

u — BV-2-RE(z).

a —a-v+e.

b —b-v+d.

t—b + Ay p.

10. ¢ < Trunc(t, £).

11. ¢ < a’.

12. 8« {0,1}.

13. If B = 0 then k «— {0,1}*

14. Else k «— K(x).

15. 8" — A((a,b), (c5, c1). k).

— If A calls decapsulation oracle on a pair ¢ = (co, c1) # (¢g, ¢]) then

(a) ' < Dec-CPA(c, s).
(b) (v',e,d) — H(z').
(c) p' < BV-2-RE(z").
(d) @’ «—a-v +¢€.
(e) b «—b-v' +d.
(f) ' —b"+ A4
(g) co < Trunc(t, ?).
(h) ¢} «a”.
(i) If c # ¢’ = (cp,c}) then return L.
(j) Return k/ «— K(z').

16. Output 1 if and only if 3 = g’.

CRNIOR N =

Fig. 1. Game Go: IND-CCA Security of our KEM

e<2-<e'+e”+qH2—ZqK+’7~(JD>7

where € = Adv'NPCA(A 1), € = AdVYE(B,1,1) and ¢ = Adv"VE(D, 2,1).

Proof. Consider the game Gy, defined in Fig. 1, defining IND-CCA security of
our KEM construction. As this is run in the Random Oracle model we model
the PRG by a random oracle H, and the KDF by a random oracle K, each of
which are maintained by the challenger as lists (H-List and K-List) of pairs of
input/output values. We define the advantage in the usual way in this game

e=AdVNPCA (4) =2 | Pr[B = 4] - %‘ =2- ’Pr[.A wins game Gg| — % .
We now make a game hop as follows. We replace the real decapsulation algo-
rithm used in Game Gq to one which operates as in Fig. 2. Note that as written
the oracle takes time O(qg) to execute. However, by also storing the associated
(ch, ¢}) in the H-List, we can obtain a logarithmic cost to evaluate the oracle.
The game with this new decapsulation oracle is called G;. Clearly Gy and G; are
identical except when the adversary submits an encapsulation to the decapsula-
tion oracle for which it has not queried the random oracle H on the underlying
message .

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 41

Decapsulation oracle in Game Gy

1. For all tuples (z’,v’,¢e’,d’) on the H-List execute
(a) p' «— BV-2-RE(z').
(b) @’ —a-v +¢€.
(c) b —b-v +d.
(@) b+ Ay
(e) C;’ «— Trunc(t, £).
(f) Cl - a/j. ’ / ’ ’
P({g) If CJ_: ¢’ = (c;,c}) then return k/ — K(z).
2. Return L.

Fig. 2. Decapsulation oracle in Game G;

Let E denote the event that decapsulation of a ciphertext in Game Gy is correctly
handled, but it is not correctly handled in Game G;. We have

Pr[A wins game G| = Pr[A wins game Gg|E] - Pr[E]
+ Pr[A wins game Go|—FE] - Pr[—E]
< Pr[E] + Pr[A wins game Go|—E]
<~v-gp + Pr[A wins game G].

Here we apply a union bound across each of the ¢p decapsulation queries and use
the fact that, for each decapsulation query, the probability of event FE is bounded
by =, relating to the uniformity of the encryption scheme. This is because F
occurs only if the value of z underlying the query c¢ has not been queried to H,
in which case the random value used to encrypt x is still uniformly random from
the adversary’s perspective; hence the probability that = actually encapsulates
to c is bounded by 7.

We now make a game hop to the game in which instead of picking b = a-s+¢’
we select b € R, uniformly at random. We call this game Gy and define it in
Fig. 3. If is then clear that if the adversary can distinguish playing Gy from Go
then it can solve the LWE problem. Thus we have, for some adversary B,

¢ = Adv™E(B,1,t) = | Pr[A wins game G;] — Pr[A wins game Gy]|.

At this point in the proof of IND-CPA security for the basic PKE scheme we
made a game hop to a game in which ¢’ and ¥’ are chosen uniformly at random,
and then remarked that if the adversary can spot this hop then we can turn the
adversary into an algorithm which attacks the LWE problem with two samples.
The same direct approach cannot be used here, as the input to the random oracle
H depends on the message. Thus an adversary could distinguish which game it
is in, if it was able to recover the message = in some way.

Instead of performing a game hop at this point we construct an adversary D,
given in Fig. 4, which uses the adversary A in game G, to solve the same LWE
problem. The algorithm D is given as input (obtained via two calls to the LWE
oracle) a tuple (a,b,a’,b’), where a,b are chosen uniformly random in R,, and

42 M.R. Albrecht et al.
Game Go
1. a,b— Ry
2.z — {0,1}*
3. (v,e,d) «— H(z).
4. p «— BV-2-RE(z).
5 a —a-v—+e.
6. b —b-v+d.
T.ote—b + A p.
8. ¢f « Trunc(t,£).
9. ¢ —a'.
10. B« {0,1}.
11. If 8 = 0 then k — {0, 1}
12. Else k «— K(z).
13. B «— A((a,b), (c5, c}), k).
— If A calls it decapsulation oracle on a pair ¢ = (co, c1) # (¢, ¢]) then respond using
the method from Game G; above.
14. Output 1 if and only if 8 = 5’.
Fig. 3. Game G2
Adversary D breaking LWE
1. = — {0,1}*
2. p < BV-2-RE(z).
3. t—b + Ay p.
4. ¢f «— Trunc(t,£).
5. ¢ «—a.
6. k — {0,1}*
7. B — A((a,b), (¢, 1), k).
— If A calls it decapsulation oracle on a pair ¢ = (co, c1) # (cg, ¢]) then respond using
the method from Game G, above.
— If A calls the random oracle H or the random oracle K on the value x then D terminates
and outputs 1, i.e. (a,b,a’,b’) is an LWE pair of samples.
8. If A terminates without making the random oracle calls above then D outputs zero.

Fig. 4. Adversary D breaking LWE

is asked to distinguish whether (a’,b’) are also selected uniformly at random or
whether ¢/ =a-v+eand ¥ =b- v+ d for some values v,e,d € x,-.

First note that the encapsulation which is passed to A by D is not a valid
encapsulation of any key, irrespective of what D’s input is. This is because, even
if D’s input was a pair of LWE samples the randomness used to produce the
samples did not come from applying H to the encoded message x.

Let F' denote the event that the adversary A queries the random oracle H
on the value z, and let G denote the event that A queries the random oracle K
on x. If neither F' nor G occurs then A has no advantage in winning the Game
Ga, so we have

Pr[A wins game Go] (1)
= Pr[A wins game Go|F' V G] - Pr[F' V G in game G,]
+ Pr[A wins game G3|=(F V G)] - Pr[~(F V G) in game Gs]

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 43

< Pr[FV G in game Gg]
+ Pr[A wins game G3|=F A =G in game G|

1
= Pr[F VG in game Go] + 3 (2)

We examine the behaviour of D when it is given the two different inputs.

— If the input to D is a uniformly random tuple then the target encapsulation
(c§,ct) contains no information about z. Thus the probability that F' or G
happens is essentially (¢ + qx) - 27¢, where gg is the number of queries to
H made by A and gk is the number of queries made to K. So we have

_ QH+QK>

Pr[D wins its game| Input is random] = (1 5

— If the input to D is a pair of LWE samples then A is running in a perfect
simulation of the game Go, until (and if) event F' or G happens. If F or G
happens then D wins its game, otherwise D loses its game. So we have

Pr[D wins its game| Input is an LWE sample] = Pr[F' V G in game Go).
Putting this all together we have

Pr[D wins its game]
= Pr[D wins its game| Input is random] - Pr[Input is random)]
+ Pr[D wins its game| Input is LWE sample]
- Pr[Input is LWE sample]

1 1
= (1—%[2—:(‘”() -§—|—Pr[F\/Gin game Gg]'i
Now, combining this with Eq. 2 we obtain
1
Pr[A wins game Go] < Pr[F V G in game Go] + 3
1
= 2. Pr[D wins its game| — <1 - (]H;(JK> + 3

Thus we have a bound on the total advantage of A in game G of

1

e<2- ‘Pr[A wins game G| — 3
1
<2. "Y -¢p + Pr[A wins game G| — 3

—9. ‘,Y -qp + Pr[A wins game G

1
— Pr[A wins game G2] 4+ Pr[A wins game Gs] — 3

44

M.R. Albrecht et al.

1
§2-7-qD+2-e’+2-’Pr[AwinsgameGﬂ—i

§2'7'QD+2~6'+2~’2'Pr[Dwinsitsgame]*1+QH2#
1
SQ"Y‘QD+2~6/+4-’Pr[DWinsitsgame]*ilJquHQ#
+
S2"Y'QD—|—2-6'—|—2-e”+2-(111127EQK.

This completes the proof of Theorem 4.

Acknowledgements. This work has been supported in part by ERC Advanced Grant
ERC-2015-AdG-IMPaCT, and by EPSRC via grants EP/N021940/1, EP/M012824,
EP/M013472/1, EP/L018543/1 and EP/P009417/1.

References

. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parame-

ter choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 103-129. Springer, Cham (2017). doi:10.
1007/978-3-319-56614-6_4

Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Crypto. 9(3), 169-203 (2015)

Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595-618. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8_35

Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W.,
Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322-337. Springer, Cham (2014).
doi:10.1007/978-3-319-08344-5_21

Boneh, D., Dagdelen, O, Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41-69. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25385-0_3

Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97-106. IEEE Computer
Society Press, October 2011

Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505-524. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9_29

Chen, D.D., Mentens, N., Vercauteren, F., Roy, S.S., Cheung, R.C.C., Pao, D.,
Verbauwhede, I.: High-speed polynomial multiplication architecture for Ring-LWE
and SHE cryptosystems. IEEE Trans. Circ. Syst. 62-I(1), 157-166 (2015), http://
dx.doi.org/10.1109/TCSI1.2014.2350431

Cheon, J.H., Han, K., Kim, J., Lee, C., Son, Y.: A practical post-quantum
public-key cryptosystem based on spLWE. In: Hong, S., Park, J.H. (eds.)
ICISC 2016. LNCS, vol. 10157, pp. 51-74. Springer, Cham (2017). do0i:10.1007/
978-3-319-53177-9_3

http://dx.doi.org/10.1007/978-3-319-56614-6_4
http://dx.doi.org/10.1007/978-3-319-56614-6_4
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/978-3-319-08344-5_21
http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1109/TCSI.2014.2350431
http://dx.doi.org/10.1109/TCSI.2014.2350431
http://dx.doi.org/10.1007/978-3-319-53177-9_3
http://dx.doi.org/10.1007/978-3-319-53177-9_3

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 45

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. STAM J. Comput. 33(1),
167-226 (2003)

Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptogra-
phy and Coding 2003. LNCS, vol. 2898, pp. 133-151. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-40974-8_12

Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688
(2012), http://eprint.iacr.org/2012/688

Du, C., Bai, G.: A family of scalable polynomial multiplier architectures for ring-
LWE based cryptosystems. Cryptology ePrint Archive, Report 2016/323 (2016),
http://eprint.iacr.org/2016/323

Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53-68. Springer, Heidelberg (1999). do0i:10.1007/3-540-49162-7_5

Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537-554.
Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_34

Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Crypto. 26(1), 80-101 (2013)

Galindo, D., Martin, S., Morillo, P., Villar, J.L.: Easy verifiable primitives and
practical public key cryptosystems. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS,
vol. 2851, pp. 69-83. Springer, Heidelberg (2003). do0i:10.1007/10958513_6
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75-92. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-40041-4_5

Hofheinz, D., Hovelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. Cryptology ePrint Archive, Report 2017/604 (2017),
http://eprint.iacr.org/2017,/604

Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applica-
tions to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 43-62. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6_3

Kirshanova, E., May, A., Wiemer, F.: Parallel implementation of BDD enumeration
for LWE. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS,
vol. 9696, pp. 580-591. Springer, Cham (2016). doi:10.1007/978-3-319-39555-5_31
Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319-339. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19074-2_21

Liu, Z., Seo, H., Sinha Roy, S., Grofischadl, J., Kim, H., Verbauwhede, I.: Efficient
ring-LWE encryption on 8-Bit AVR processors. In: Giineysu, T., Handschuh, H.
(eds.) CHES 2015. LNCS, vol. 9293, pp. 663-682. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48324-4_33

Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1-23.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_1

Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35-54. Springer, Heidelberg (2013). do0i:10.1007/978-3-642-38348-9_3

http://dx.doi.org/10.1007/978-3-540-40974-8_12
http://eprint.iacr.org/2012/688
http://eprint.iacr.org/2016/323
http://dx.doi.org/10.1007/3-540-49162-7_5
http://dx.doi.org/10.1007/3-540-48405-1_34
http://dx.doi.org/10.1007/10958513_6
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://eprint.iacr.org/2017/604
http://dx.doi.org/10.1007/978-3-662-47989-6_3
http://dx.doi.org/10.1007/978-3-662-47989-6_3
http://dx.doi.org/10.1007/978-3-319-39555-5_31
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/978-3-662-48324-4_33
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-642-38348-9_3

46

26.

27.

28.

29.

30.

31.

32.

M.R. Albrecht et al.

Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147-191. Springer,
Heidelberg (2009)

NIST National Institute for Standards and Technology: Post-quantum crypto
project (2017), http://csrc.nist.gov/groups/ST/post-quantum-crypto/

Peikert, C.: Lattice cryptography for the internet. Cryptology ePrint Archive,
Report 2014/070 (2014), http://eprint.iacr.org/2014/070

Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84-93. ACM Press,
May 2005

Reparaz, O., Sinha Roy, S., Vercauteren, F., Verbauwhede, I.: A masked ring-LWE
implementation. In: Giineysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol.
9293, pp. 683-702. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4 34
Roy, S.S., Vercauteren, F.; Mentens, N., Chen, D.D., Verbauwhede, I.: Com-
pact ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 371-391. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44709-3_21

Targhi, E.E., Unruh, D.: Post-quantum security of the fujisaki-okamoto and OAEP
transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 192-216.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53644-5_8

http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://eprint.iacr.org/2014/070
http://dx.doi.org/10.1007/978-3-662-48324-4_34
http://dx.doi.org/10.1007/978-3-662-44709-3_21
http://dx.doi.org/10.1007/978-3-662-44709-3_21
http://dx.doi.org/10.1007/978-3-662-53644-5_8

Tree-Based Cryptographic Access Control

James Alderman, Naomi Farley®™), and Jason Crampton

Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
{james.alderman, jason.crampton}@rhul.ac.uk,
naomi.farley.2010@live.rhul.ac.uk

Abstract. As more and more data is outsourced to third party servers,
the enforcement of access control policies using cryptographic techniques
becomes increasingly important. Enforcement schemes based on symmet-
ric cryptography typically issue users a small amount of secret material
which, in conjunction with public information, allows the derivation of
decryption keys for all data objects for which they are authorized.

We generalize the design of prior enforcement schemes by mapping
access control policies to a graph-based structure. Unlike prior work, we
envisage that this structure may be defined independently of the pol-
icy to target different efficiency goals; the key issue then is how best to
map policies to such structures. To exemplify this approach, we design a
space-efficient KAS based on a binary tree which imposes a logarithmic
bound on the required number of derivations whilst eliminating public
information. In the worst case, users may require more cryptographic
material than in prior schemes; we mitigate this by designing heuristic
optimizations of the mapping and show through experimental results
that our scheme performs well compared to existing schemes.

1 Introduction

Access control is a fundamental security service in modern computing systems.
Informally, requests from users to interact with protected resources are filtered
and only those interactions that are authorized by a policy configured by the
resource owner(s) are allowed. Software-based access control mechanisms are
not appropriate when resources are stored by an untrusted third party. Instead,
we may use cryptographic mechanisms whereby data objects are encrypted and
authorized users are given appropriate cryptographic keys. The problem, then,
is to efficiently and accurately distribute appropriate keys to users. Symmetric
cryptography may be preferred over public key techniques (e.g. Attribute-based
Encryption) due to their better efficiency and smaller ciphertext and key sizes.

Thus, in recent years, there has been considerable interest in Key Assignment
Schemes (KASs) [1,2,5,9,13,16,21], which are particularly suitable for enforcing

James Alderman was supported by the European Comission through H2020-ICT-
2014-1-644024 “CLARUS”.
Naomi Farley was supported by the UK EPSRC through EP/K035584/1 “Centre
for Doctoral Training in Cyber Security at Royal Holloway”.

© Springer International Publishing AG 2017

S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 4764, 2017.
DOT: 10.1007/978-3-319-66402-6_5

48 J. Alderman et al.

information flow policies. Such policies define a partially ordered set (poset) of
security labels encoding hierarchical access rights [7]. KASs typically represent
the poset as a directed acyclic graph [2,13-16,21,22] and enable iterative key
derivation along paths: users are issued a small number of secrets and users with
security label x can derive the key associated to y < x using the secret associated
with x and public information associated with edges in a path from z to y.

The general design goals of a KAS [16] are to minimize: (a) the cryptographic
material required by each user; (b) the amount of public information required;
and (c) the computational cost of key derivations. Unsurprisingly, it is not pos-
sible to realize all objectives simultaneously, and so trade-offs have been sought.
Derivation in early KASs was based on expensive computations [1]. The perfor-
mance of more recent KASs is heavily dependent on the graph chosen to represent
the policy. The graphs used in prior KASs are subsets of the transitive closure of
the poset, often simply the Hasse diagram [14-16,21]. Many works [2,4,12,22]
reduce derivation costs by adding ‘shortcut’ edges to the Hasse diagram but
require a substantial amount of additional public information e.g. O(n?) where
n is the number of labels in the policy and may itself be large, particularly when
labels are defined in terms of subsets of attributes. Recent works [13-15,17] aim
for space-efficient KASs by eliminating public information via partitioning the
Hasse diagram into chains or trees; however users may require additional secrets
and it is not possible to bound derivation costs (beyond the trivial O(n)).

In this work, we generalize the design approaches of prior KASs to consider
mapping the policy poset to any directed acyclic graph, not only a subset of the
transitive closure of the poset. In particular, one may choose such an enforcement
structure independently of the poset to target particular design goals of the
resulting KAS. The natural questions that then arise are ‘what structure should
we choose?’ and ‘how should the policy be mapped to this structure?’. We define
the following steps to follow when designing a KAS:

1. Identify the design criteria to be optimized and choose an enforcement struc-
ture that provides these properties;

2. Choose a mapping from the policy poset to the enforcement structure that
optimizes performance of the remaining criteria;

3. Instantiate a key derivation mechanism over the enforcement structure to
define the keys and secrets to be used in the KAS.

Prior KASs were restricted in the choice of enforcement structure due to only
considering trivial mappings to enforcement structures (i.e. nodes in the enforce-
ment structure corresponded directly to labels in the poset). In contrast, we
introduce additional flexibility by allowing one to optimize the choices of struc-
ture and mapping to achieve different design goals. We hope that this flex-
ible design approach will spur the design of novel KASs to target specific
requirements.

To illustrate our approach, we shall design a KAS which eliminates pub-
lic information and in which derivation costs are logarithmically bounded; our
example therefore bridges the gap between KASs [2,4,12,22] that bound deriva-
tion costs and recent works which eliminate public information [13-15,17] but

Tree-Based Cryptographic Access Control 49

which cannot bound derivation. To achieve this goal, we use a binary tree as our
enforcement structure. This choice is simple and intuitive to serve as an exam-
ple, introduces interesting optimization problems when choosing the mapping,
and reduces storage costs for users by removing the need for users to store the
enforcement structure — derivation paths are immediately apparent from the
security labels. Thus, our KAS may be applicable to settings in which storage for
(possibly large) derivation information on client devices is limited and in which
key derivation should be fast e.g. consider a smart card which must derive tempo-
ral access keys. We shall also see that our KAS permits very flexible assignment
of access rights, lending itself to settings with diverse user populations.

The remaining design criteria to be optimized (through the choice of map-
ping from policy poset to enforcement structure) is the amount of cryptographic
material required by users. As with [14,15], removing public information results
in users requiring additional secrets; in our case, the worst-case bound is [n/2]
secrets. We develop heuristic methods for finding a mapping which minimizes
the average number of secrets users must store and demonstrate via experimen-
tal evaluation that our scheme works well in practice. Indeed, we show that our
scheme compares favorably with other KASs that require no public information.

We begin with relevant background material. In Sect. 3, we introduce our
KAS based on a binary tree, before proposing methods to optimize the choices
of structure and mapping in Sect. 4. Section 5 experimentally evaluates the KAS,
and in Sect. 6 we discuss interesting policy features enabled by our scheme.

2 Background and Notation

A partially ordered set (poset) [15] is a pair (L, <) where < is a binary, reflexive,
anti-symmetric, transitive order relation on L. For x,y € L, we may write y >
ifx <y,and x < y if z < y,x # y. We say that y covers z, denoted x < y,
if and only if z < y and there exists no z € L such that x < z < y. We say
that z,y € L are incomparable if x € y and y € x. The width of a poset is the
size of its largest set of incomparable elements. For [€ L, the order filter of [is
N ={x e L:xz>1}and the order ideal of l is [l ={x € L :z <1}.

An information flow policy [7] defines a poset (L, <) of security labels, a set
of users U, a set of data objects O, and a function A : UUO — L. A user u € U
is authorized to read an object o € O if and only if A(0) < A(w).

Key Assignment Schemes (KASs) [2,16,21] enforce read-only information
flow policies, primarily using symmetric cryptography. A setup authority gen-
erates a unique key x; associated to each label [€ L and each data object o is
encrypted using #x(,). Each user u requires the keys {r; : [< A(u)} to decrypt
the objects for which she is authorized. Typically a KAS reduces the number of
keys issued to users by giving each user a small amount of secret information
from which they can derive all keys for which they are authorized. The strongest
notion of security for a KAS (Key Indistinguishability [2]) requires that a col-
lusion of users cannot distinguish a key for which they are not authorized from
a random string (i.e. unauthorized users learn nothing about the keys used to

50 J. Alderman et al.

protect objects). To achieve such a notion, one typically requires a strict sepa-
ration between secrets, issued to users, and keys, used to encrypt and decrypt
objects.

Definition 1. A Key Assignment Scheme (KAS) for a poset (L, <) comprises:

- ({o1, ki}er, » Pub) & Gen(17, (L, <)) is a probabilistic polynomial-time algo-
rithm run by a setup authority that takes a security parameter 17 and (L, <)
and outputs a symmetric key k; and a secret o; for each l € L, along with a
set of public derivation information Pub;

- k « Derive((L, <), z,y, 04, Pub) is a deterministic polynomial-time algorithm
run by a user to derive K, from the secret material o,. It takes (L, <), labels
x,y € L, the secret o, and public information Pub, and outputs the derived
key k = Ky assigned to label y if y < x, and outputs k =1 otherwise.

A KAS is correct if ky < Derive((L, <), z,y, 05, Pub) for all p € N, all (L, <), all
({01, ki},cr , Pub) output by Gen(17, (L, <)), and all 2,y € L such that y < .

Let e denote the empty string and z || y denote the concatenation of strings
2 and y. The power set of a set X, denoted 2%, is the set of all subsets of X.

Let G = (V, E) be a directed graph where, for vertices z,y € V, (z,y) € E
denotes a directed edge from z to y. We say that = is an ancestor of y (and y is
a descendant of x) if there exists a directed path from z to y in G. The Hasse
diagram, H(L,<) = (L, E), of a poset (L, <), is a directed graph with vertex set
L and where (z,y) € E if and only if y <z in (L, <). Let H*(L,<) = (L, E*)
be the transitive closure of H(L,<), where E* = {(x,y) : y < x}.

A matching of an undirected graph G = (V, E) is a set M C E of pairwise
non-adjacent edges i.e. no two edges in M share a common vertex. When G has
weighted edges, a mazimum weight matching M in G is a matching for which
the sum of the weights of the edges in M is maximal.

3 Owur Construction

We begin by motivating our choice of enforcement structure according to the
design goals of our example (to minimize public information and to bound deriva-
tion costs). We then show how to instantiate a KAS on this structure using a
very simple key derivation mechanism.

3.1 Defining the Enforcement Structure

The best approach we currently know to construct KASs without public deriva-
tion information is to ensure that every vertex in the enforcement structure
(directed acyclic graph) has in-degree at most 1 i.e. each secret is derived from
at most one other secret [14,15]. For this reason, we will choose a tree structure.

We shall restrict our focus to binary trees, which are simple to dis-
cuss in this introductory work whilst enabling a KAS in which users need
not store the enforcement structure itself, further reducing storage costs.

Tree-Based Cryptographic Access Control 51

A binary tree also appears to be a reasonable choice in general: we shall see
that the number of secrets that must be issued can be reduced when multiple
users are authorized for some set of access rights (security labels) and that these
sets correspond to descendants of nodes in the tree; hence we may expect more
users to share a set of labels when the size of that set is small i.e. when the
degree of nodes is low.

The maximum derivation cost for any key is bounded by the maximal path
in the enforcement structure. The minimal depth of a binary tree with n leaves is
[logn].! Internal nodes with a single child only increase derivation paths and so
we restrict our focus to full binary trees (where all nodes have 0 or 2 children).

We therefore define our enforcement structure to be a rooted, full binary
tree with n leaves and of depth [logn]. Note that there remain many such trees
and many ways in which to map a specific policy poset to such a tree; these
choices have a direct effect of the efficiency of the resulting KAS. In this section
we shall assume that the specific tree and mapping are given and we shall show
how to assign and derive secrets and keys (for an arbitrary policy). We consider
methods to optimize these choices to enforce specific policies in Sect. 4.

3.2 Instantiating a KAS on Our Enforcement Structure

Let ((L,<),U,O,\) be a read-only information flow policy and let n = |L]
be the number of security labels in the policy. Suppose that we have chosen
a specific full binary tree T,, = (V, E) with n leaves and depth [logn] and a
bijective mapping « from security labels in L to the leaves of T},. Intuitively, our
construction generates keys using the binary tree structure as follows:

1. We associate a binary string of length at most [logn] to each vertex in V;

2. We then associate a secret to the root node of T, from which a secret for each
non-root vertex may be derived using standard key derivation methods. The
binary string associated to the vertex dictates how the secret is derived;

3. For each security label [€ L, we define the key x; used to protect data objects
in the KAS to be the secret assigned to the leaf labeled «(l). To minimize
the material issued to users, we issue secrets associated to non-leaf nodes of
T, from which secrets for all descendant nodes can be derived (in particular
users can derive all keys for which they are authorized).

Labeling the Tree. We label the root node of T;, by the empty string € and,
for each node x € V, label the left and right children of = (if they exist) by
z || 0 and z || 1 respectively. Figure la gives an example labeling of a tree T5.
We may abuse notation by referring to a node of T,, and its associated binary
string interchangeably. We denote the set of leaf nodes in T}, by V.

1 All logarithms are base 2 throughout this paper.

52 J. Alderman et al.

Deriving Keys. We now assign a secret to each node. Let p be a security
parameter and let F : {0,1}” x {0,1}" — {0,1}” be a Pseudo-Random Function
(PRF) which takes a key k and a string = and outputs a pseudo-random string
of the same length as the key. We shall write Fy(x) in preference to F'(k,x).
The secret s(e) associated to the root node € € V is chosen uniformly at

random: s(e) & {0,1}”. For each non-root node y = = || b in V, where x € V
and b € {0, 1}, we compute the secret s(y) = Fy(;(b). If z is a prefix of y, then
s(y) may be derived from s(z) by iteratively applying F' on each remaining bit
of y in turn. This is shown in Fig.1b and in GetSec in Fig. 1c. For appropriate
choices of F, it is computationally infeasible to compute s(z) from s(y).

Assigning Keys. Recall that « is a bijective mapping associating each security
label I € L to a unique leaf node a(l) in V. For a set of security labels X C
L, we define a(X) = {a(z) : z € X}. Recall also that each object o € O is
associated with a security label A(o) € L. Hence, A(0) is associated with a leaf
node a(A(0)) € T,,. We may refer to the secrets associated to leaf nodes in T,
as keys; o should thus be encrypted under the key ryo) = s(a(A(0))).

Each user v € U is authorized for the security labels |[A(u) =
{l e L:1< Xu)} and hence requires the keys {k, = s(x) : z € a([\(u))}. We
may reduce the cryptographic material that v must be issued by using non-leaf
nodes of T, to represent multiple elements of |A(u). If a(]A(u)) contains all
descendant leaf nodes of a node x € V|, we may instead issue the single secret
s(x); keys for all descendant leaf nodes can then be efficiently derived. More
formally:

Definition 2. Given X CV, we define the minimal cover, [X], of X to be the
smallest subset of V' such that:

1. for every x € X, there exists an ancestor of x in [X];
2. for everyy € [X], every z € V that has y as an ancestor belongs to X.

Then, a user issued a set of secrets oy, containing {s(x) : € [a(]A(u))]} may
derive k; = s(a(l)) if and only if I < A(u). Condition 1 ensures that a user can
derive all keys for which they are authorized (correctness), whilst Condition 2
ensures that they cannot derive any other keys (security). Since T,, is a full tree
(every node has 0 or 2 children), it is easy to see that [X] is unique.

As an example, consider an information flow policy mapped to the tree Tj
given in Fig. la and suppose a(]!) = {010,011,1} for some label I € L. Then,
[a(ll)] = {01,1}, and o, contains FFS(€>(O)(1) and Fy(1).

A simple method to compute [X] for X C V is to observe that a node z € V'
is an ancestor of a node y € V' if and only if the binary string associated to x is
a prefix of the string associated to y. Let us define the strict prefix of bit string
boby ... b; to be bgby ...b;_1. Then, if two bit strings in X share a strict prefix,
both may be replaced by the strict prefix and the keys for both strings can be
computed in a single step. We may continue replacing pairs of bit strings in X
(of the same length) with their common strict prefix until no more pairs can

Tree-Based Cryptographic Access Control 53

Gen(1”, (£, 9)) Derive(—, —,a(y), 72, —)
Leta:L —V foreach (1,s(l)) € 0y :
s(e) ka2 {0,1}* if [is a prefix of a(y)
Pub —1 return GetSec(a(y), !, s(l))
return L

foreach [€ L :

r1 — GetSec(a(l), €, s(e€)) GetSec(a, b, s(b))
W —{lerL:U<i}
foreach z € [a([(]))] :

s(x) — GetSec(z, €, s(€))

o {(@s@) zefa@]) 7P
for i = len(b)...len(a) — 1:

5(z || ai) = Fyez (i)

2z a;

if b is not a prefix of a

return L

return ({x;,01},c, , Pub)

return s(a)

[Fs00)] [FooD] [Fon©)] [Foy®)]

(b) Secret generation (¢) Our KAS construction

Fig. 1. Our KAS construction with an example tree 75 and an illustration of secret
generation. The inputs to the supporting algorithm GetSec in the KAS are two bit
strings a = ag ... am,b =bg...bn, where m,n € N, and a secret s(b).

be found. With this method, [X| can be computed directly from the set of bit
strings X and the set up authority need not store the enforcement structure 7;,.

3.3 Summary and Discussion

Our complete KAS construction is given in Fig.lc. It is easy to see that:
(1) no user requires more than [n/2] secrets; (2) no user requires more than
[logn] steps to derive a decryption key; and (3) no additional information is
required to perform key derivation. In contrast, for an iterative KAS with public
information [16]: (1) users require a single secret; (2) derivation may take up to
n steps; (3) up to O(n?) items of public information may be required. In other
words, our scheme has advantages in terms of public information and deriva-
tion cost, but users may need to manage additional secrets. A more detailed
comparison with related work is given in Sect. 5.

Derivation in our construction requires knowledge of a binary label a(y)
for y € L; hence one may argue that the o mapping should constitute public
information. It seems apparent, however, that storing some representation of
labels is an inherent requirement of any efficient KAS — data objects must be
labeled by their security label to identify the objects to be retrieved from the
file-system and the decryption keys to use, whilst secrets must be labeled such
that they can be used to derive appropriate decryption keys.?

2 It is unfortunate that existing KAS definitions do not permit consideration of such
implementation details. In our case, permitting Gen to take the full policy rather
than just (L, <) could aid defining . Alternatively, the input could be (a(L), <).

54 J. Alderman et al.

In our scheme, oy(,) contains the appropriate binary labels and we assume
that each object o € O is labeled by a(A(0)) instead of A(0). (In fact, a(A(0)) is
a compact way to uniquely represent security labels and may actually decrease
storage costs.) Thus, the input to Derive in our KAS includes a(y) instead of
y € L, and « need not be public. Derive requires only the binary string a(y) of
the target label y and a suitable secret o,; we omit other unrequired inputs.

To our knowledge, all prior KASs (including those without public derivation
information) require that users store the enforcement structure for use during
Derive. In schemes that use public information, this is to identify the information
needed to derive the next secret in the derivation “path”. In schemes based on
tree or chain partitions [13-15,17], the algorithm must know which secret should
begin the derivation. In contrast, a nice feature of our scheme with the above
method for computing [a(]A(u))] is that Derive need only test whether one
binary string is a prefix of another. Thus, it is sufficient for users to provide only
the binary labels a(A(0)) and [«([l)], which we have already argued represent
necessary knowledge for users of any KAS. Furthermore, the steps required to
derive a key are immediately apparent from the binary label itself, without
requiring user knowledge of T;, or (L, <). In short, our scheme means that only
the administrator need know the actual structure of the security policy. This
clearly has practical advantages, but is also useful if policy privacy is required.

Correctness and Security. It is easy to see that our KAS is correct due to Condi-
tion 1 of Definition 2 and the iterative nature of the key generation. The iterative
function s computes s(x) from any prefix y of z, and Condition 1 of Definition 2
ensures that, for all labels [€ | A(u), there exists a prefix of a(l) in [a(lA(u))].

Our scheme meets the strongest security property currently defined for KASs:

Theorem 1. Let F : {0,1}" x {0,1}" — {0,1}" be a secure pseudo-random
function with security parameter p € N. Then, for any information flow policy

P=((L,<),U0,\), the KAS in Fig. 1c is strongly key indistinguishable.

The full version of this paper gives a security proof bounding the advantage of an
adversary against our KAS by the (negligible) advantage of a set of distinguishers
against F'.

Our scheme is somewhat unusual in that each label is associated with a single
value. All prior schemes, to our knowledge, that achieve key indistinguishability
require each label to be associated with a secret and a key. In our case, secrets
are associated with interior nodes of the tree (which are not associated to a
security label), while keys are just secrets associated with leaf nodes; the values
issued to users (i.e. secrets o (,)) may, and do, contain keys themselves.

Related Work. Our construction is similar to the Goldreich, Goldwasser and
Micali (GGM) puncturable PRF [19]. In Sect. 6, we take advantage of the inher-
ent puncturing mechanism to enforce additional policy features such as separa-
tion of duty and limited-depth inheritance. The iterative application of a PRF
over a tree structure superficially resembles the forward-secure key updating

Tree-Based Cryptographic Access Control 55

scheme of Backes et al. [6] in which all keys are generated independently for
the purpose of key refreshing (e.g. for a single label); we define multiple, related
security labels and keys. Finally, Blundo et al. [8] also considered methods to
derive keys using tree structures in the context of access control matrices, showed
that finding optimal trees to minimize user secrets is an NP-hard problem and
introduced heuristic approaches; our work focuses on the design of KASs for
information flow policies and considers different heuristic techniques in Sect. 4.

4 Optimizing the Enforcement Structure and Mapping

We now complete our KAS by considering methods to fine-tune the specific
choice of enforcement structure and to choose the mapping from policy poset
to enforcement structure. We have seen that our KAS has some advantages
over prior KASs but that users may require many secrets in the worst-case. We
therefore aim to design methods that, given a policy poset, mitigate this concern
and optimize the performance of the resulting KAS. (Prior schemes are limited
in this regard as they only consider a trivial mapping and are hence limited to
enforcement structures based directly on the poset e.g. Hasse diagrams.)

Recall that each user u € U is issued a set of secrets oy(,) associated to
the minimal cover [a(|A(u))] of their authorized set. Thus, whenever a(]A(u))
contains both children of a node in T, the size of oy, is reduced by one. To
minimize the average size of o(,) over all users u € U, we therefore aim to define
a such that the authorized sets a(|A(u)) contain as many such pairs of child
nodes as possible. Of course, every such reduction increases the derivation cost
by one but the maximal derivation path remains bounded by [logn]. Figure 2
illustrates the effect of choosing two different & mappings when n = 5.

Unfortunately, we conjecture that finding an optimal mapping is a hard prob-
lem. The number of permissible trees and mappings grows exponentially and it
appears difficult to optimally group labels (to share a common prefix in T},)
without considering a global view — each choice restricts the possible groupings
for other labels and whilst some label groupings would benefit some users, they
may lead other users to require a large number of secrets.

Our goal in this section, therefore, is to introduce heuristics to find ‘good’
« mappings. We first describe our best performing heuristic, based on finding
maximal matchings between sets of labels with respect to suitable weightings.
We then discuss a considerably cheaper heuristic which, in our experiments,
provides reasonable performance.

4.1 The FindTree Heuristic

Recall that the size of a binary label represents the depth of the associated node
in T,; thus we may fully describe the structure of T, and the assignment of
labels to leaves via an a mapping that outputs binary labels of varying sizes.
To represent such a mapping, let us define a partition to be a recursive data
structure with an associated depth function D. For each [€ L, let P = [I] be a

56 J. Alderman et al.

[~]

00

(a) Poset (b) T5 generated by a2
i ar (1) az()] [o (10)] [z (10)]
al{a,c,d,e}|001 10 [{00,010,1} {001,01,1}
b|{b,d,e} [011 000 |{011,000,1} {0}
cl{c} 010 11 |{010} {11}
d|{d,e} |o00 01 |{000,1} {001,01}
el{e} 1 001 |{1} {001}

Fig. 2. An example showing the effects of two different choices of @ mappings. Observe
that the average size of [a2(]l)] is smaller than that of [a1(|l)].

partition (of depth D(P) = 0). For two partitions P and @, let [P, Q] also be a
partition of depth max(D(P),D(Q)) + 1. Any binary tree T' can be represented
by a partition e.g. Ts in Fig. 2b is represented by [[[[b], [e]], [d]], [[a], [c]]]-

Our aim is to find a partition P of depth D(P) = [logn| that maximizes the
number of shared strict prefixes in the authorized sets of all users. Our approach
is to find pairs of labels that most commonly occur together in authorized sets,
and to which the greatest number of users are assigned; such pairs shall be
assigned to sibling leaf nodes in T;,. Every time a user is authorized for the pair
of labels, they may instead be issued the single secret associated to their parent.

Intuitively, to optimally pair sets of labels, we form a weighted graph where
vertices represent partitions of labels and edge weights represent the number of
users authorized for all labels in the connected partitions. We find a mazimum
weight matching on this graph which selects edges to maximize the associated
weights; matched vertices represent partitions that should be grouped as a sub-
tree in 7;,. We iterate this process to form larger groups, beginning with pairs
since smaller sets of labels are most likely to occur in multiple authorization
sets and hence benefit the most users. Ultimately we create a sequence of nested
partitions (of differing sizes) describing which labels should be grouped, and at
which level, in T},. Each chosen partition size dictates the structure of T,,; the
optimal structure is thus derived from the specific policy being enforced.

Our FindTree heuristic is given in Fig. 3. Figure 3 illustrates the heuristic on
the poset in Fig. 2a; the selected maximum weight matchings are illustrated by
solid edges. The average number of secrets required is g using the mapping found
via FindTree compared to % when using the ag mapping from Fig. 2b.

FindTree begins by defining a set of vertices V for a graph, where each vertex
is a trivial partition [I] for a label | € L. A loop then iteratively groups labels

Tree-Based Cryptographic Access Control 57

P & FindTree((L, <), U, \):

Let ¢ = 1. Define V = {[I] : l € L}. While |V| > 2:

1. If V| < 2M°8[L11=% then increment 4.
2. Construct the undirected graph G = (V, E) where each vertex is a partition and

E={PQ:P,Q€V,P+#Q,D(P),D(Q) <i-1}.

3. For each edge PQ € E, define the weight w(PQ) = 3" ;pn1g) U(2) to be the
number of users authorized for all labels in the partitions P and Q.

4. Find a maximum weight matching M of G.

5. Define a new set of vertices V' = {[P,Q] : PQ € M}, where each vertex is a new

partition comprising two partitions that were paired in the maximal matching.

For any unmatched vertices (i.e. vertices X € V such that no edge in M includes

X), add X to V.
7. Redefine the vertex set V =V’ and go to next iteration.

6.

If |V| =1, return V, else return the partition [V[0], V[1]].

veV Tv U(v) /M\
[| {a} |1 Ry
(0] {v} 2 [e] q{—/— _ ,,i _ ,\\, ?,\f;p [b] v Tv
[| {fa,c} | 3 SN 2 (ld], [e]]|{a, b, d}
[d | {abd} | 2 g\j“\y:’i 0 [la, [c]] {a}
le] |{a,b,d,e}| 1 [dféiii—3§!¢] [b] {v}

(c) Vertices formed from

(b) First matching first matching
LHa(®)|[le(D)]

10 [{00,1}

o1 | {0}

11| {11}

000| {00}

001| {001}

Pl e o llal.]) Final partition (f) Resulting mapping «
(d) Second matching [[[[d], [e]], [b]], [[a], [c]]] and minimal covers

(a) Initial vertices and user

assignments

ld. L]
oy
271

o [0 ||

Fig. 3. The FindTree heuristic to find a suitable binary tree partition and example
application on the poset in Fig. 2a with user assignments shown in Fig. 3a.

together to form sub-trees in T,,. On each iteration, Step 2 forms a graph in
which vertices represent previously found partitions and edges represent poten-
tial groupings; restrictions on permissible groupings are discussed below. Step
3 assigns a weight to each edge corresponding to the number of users autho-
rized for all labels in the connected partitions: let U(l) = [{u € U : A(u) = l}|

58 J. Alderman et al.

be the number of users assigned to a label [€ L, and recall the order filter
1l ={x € L:x>1} describes the labels authorized for I. For a partition P, let
elems(P) denote the set of labels in a partition P e.g. elems([[d, V], [a]]) = {a, b, d}
and let TP = ﬂleelems(P) 11 be the set of labels in the order filter of all labels in P.
Then the weight assigned to an edge connecting P and @ is the sum of U(z) for
z € TP N 1Q i.e. the number of users authorized for all labels in P and Q.

Step 4 applies a mazimum weight matching algorithm which selects a set
of non-adjacent edges from G with the greatest total weight (i.e. the groupings
that benefit the most users). Step 5 forms a set of vertices to create the graph
for the next iteration; each vertex is a partition formed from a pair of partitions
matched in Step 4. Step 6 also defines vertices for partitions left unmatched in
Step 4 such that later iterations may consider them to form a sub-tree containing
triples of labels. The process is repeated until a single partition remains; to ensure
termination, we assume that maximal matchings contain at least one edge.

We maintain a counter ¢ representing the level of T,, at which sub-trees
induced by the current partition matchings shall be rooted. The level of the root
node is equal to the depth of the tree and the level of the lowest leaf node is
0. To ensure that the tree has depth [logn], we only add an edge in Step 2
between partitions P and @ if the depth of P and @ does not exceed ¢ — 1; thus,
when ¢ = 1, we only pair singleton labels, and when ¢ = [logn], we only pair
partitions of depth at most [logn] — 1. In Step 1 we also check that the number
of partitions remaining is at most 2/1°81=% hefore incrementing i to ensure that
enough groupings are performed at each level for the final tree to be binary.

If one stores Tv and D(v) for each v € V, we may construct each weighted
graph G in O(n?) time. Finding the maximum weight matching requires O(n?)
time [18]. Since we iterate O(n) times, our heuristic requires O(n*) time.

4.2 The Order Filter Sort Heuristic

FindTree is our best-performing heuristic. From experimental evaluation, how-
ever, we observe that when there is a choice of tree (i.e. when |L| is not 2% or
2% — 1 for some x), FindTree chooses a structure (isomorphic to) a left-balanced
tree approximately half the time. (A left-balanced, or complete, tree has all lev-
els completely filled except possibly the last, and the leaves are as far left as
possible.) In the full version of this paper, we show that amending FindTree
to only map labels to a fized left-balanced tree structure does not significantly
degrade the heuristic’s performance but reduces the run-time to O(n3logn). We
conjecture that the maximal weight matching algorithm chooses as many pairs
as possible during the first iteration causing most tuples to comprise pairs and
making it likely that the resulting tree structure resembles a left-balanced tree.

However, if one is willing to fix the tree-structure to be left-balanced, a very
cheap heuristic is to simply sort labels by the size of their order filters Tl in
decreasing order, and to map labels to leaf nodes from left to right. Intuitively
one hopes that by pairing labels with large order filters, the order filters are
likely to intersect. Users authorized for a label within the intersection require
at least one fewer secret. This heuristic requires O(nlogn) time, and we shall

Tree-Based Cryptographic Access Control 59

see in Sect. 5 that it performs remarkably well in practice. Unlike FindTree, this
heuristic does not consider the number of users assigned to labels. We therefore
expect FindTree to be more optimal in general, although we may hope that many
realistic policies may have many users assigned to ‘low’ labels (with large order
filters) which would favor this cheaper heuristic.

5 Evaluation

We now compare our scheme to prior KASs with respect to the following para-
meters: K is the maximum number of keys/secrets a user must be issued, P is
the amount of public derivation information, and D is the maximum number of
derivation steps required. The discussion is summarized in Table 1.

Many schemes issue users a single key (K = 1) and enable iterative derivation
along paths in the enforcement structure using public information. In many
schemes [16,21], the enforcement structure is simply the Hasse diagram of (L, <),
in which case P = O(n?) and D = O(n). An alternative is to define a directed
graph where zy is an edge if and only if y < z, in which case P = O(n?) and
D = 1. The ‘trivial’ KAS supplies users with the keys associated to all y < A(u);
hence K = O(n), P =0 and D = 0. Recent schemes remove public information
by forming a sub-graph of the Hasse diagram which is either a tree [15] or a
chain partition [13,14,17]. In these schemes, P = 0, while D = O(n) (or, more
precisely, the depth of the poset) but users may require several keys: for schemes
based on chain partitions, K = w where w is the width of (L, <); in schemes
based on tree partitions, K = ¢ keys, where ¢ > w is the number of leaves in the
tree. Recall that in our scheme: K = [n/2rceil keys; P = 0; and D = O([logn]).

Table 1. Comparison of different KASs. |E*| and |E| represent the number of edges
in the Hasse diagram H (L, <) and its transitive closure, respectively.

Scheme Max. Keys K | Public Info P | Derivations D
Trivial [16] O(n) 0 0

Iterative [2,16] | 1 |E™| O(n)

Direct [2,16] |1 |E| 1

Tree [15] O(L) 0 O(n)

Chain [14] O(w) 0 O(n)

Our scheme o([%1) 0 O(Jlog(n)])

We now present an experimental evaluation showing the performance of these
KASs in practice in the worst- and average-cases. For each value of |L|, we
average the results on 30 posets generated randomly by choosing a ‘connection
probability’ p for each node = uniformly at random; for each other node y, a
covering relation y < x is added to the poset with probability p. The number of

60 J. Alderman et al.

users assigned to each label is chosen randomly between 0 and 100. For a fair
comparison, we aim to evaluate the KASs on a variety of posets and have not
aimed towards any particular policy. A priority for future work is to evaluate
KASs on specific real-world policies of interest; unfortunately we have thus far
been unable to find real examples of interesting sizes. Most KAS literature does
not provide experimental evaluations; ours is certainly the first to compare the
efficiency of chain and tree-based KASs, which may be of independent interest.

We compare an Iterative scheme that uses public derivation information (the
extended scheme by Atallah et al. [2] instantiated on the Hasse Diagram of the
poset), Chain- [14] and Tree-based Schemes [15] (which do not require public
information), and our KAS using both the FindTree and the order filter-based
heuristics. Figures 4a and ¢ show the average and maximum number of derivation
steps required to compute any key. Derivation steps are considered to be PRF
evaluations (the iterative scheme [2] also requires a number of decryptions which
are not counted). Figures4b and d show the average and maximum number of
secrets (or keys) required by any user in each scheme. The iterative scheme is
omitted for clarity, since each user requires one secret.

Recall that the design goals of this example were to bound derivation costs
whilst eliminating public information, and it can be seen that this is achieved.
Our scheme outperforms all other KASs in terms of derivation costs in these
tests. In particular, our logarithmic growth contrasts with the linear cost of
tree-based schemes and, particularly in the worst-case, can become rather high.
Furthermore, recall that the storage costs are further reduced in our scheme
compared to other KASs since users need not store the enforcement structure.
With regards to the number of secrets a user requires (which was not one of our
primary design goals), our KAS outperforms chain-based schemes but does not
quite match tree-based schemes. However, in concrete terms, the actual number
of secrets required does not vary greatly between any scheme. Importantly, in
these experiments, our theoretical worst-case bound of [n/2] is not met. Whilst
it remains possible to obtain this bound (e.g. if the poset is highly symmetrical
with equal user assignments over all labels), we expect that such policies may
be rather unlikely and that our heuristics will mitigate the concern in prac-
tice. Remarkably, the heuristic based on order-filters (with runtime O(nlogn))
performs comparably to FindTree heuristic (with runtime O(n?)).

Ultimately, the best choice of KAS will always depend on the requirements
of the specific application setting and on the policy being enforced. Our scheme
appears to be a good well-rounded candidate and may be the best choice if
derivation costs or storage requirements are a concern. Our scheme out-performs
chain-based schemes in terms of both derivation costs and the number of user
secrets required. Furthermore, the analysis required to find an optimal chain-
partition requires O(n*w) time, where w is the width of the poset [14], whilst our
cheapest heuristic requires just O(nlogn). Thus, in many settings, our scheme
may be preferable over chain-based schemes.

Tree-Based Cryptographic Access Control 61

Average number of derivations required by any user Average number of secrets required by any user

— FindLabel — FindLabel
16 Tree il Tree
Chain Partition / 5 Chain Partition
1 - terative with Pub — e—e Order Filter Sort
- e—e Order Filter Sort

IS

10

w

Average number of derivations per user
Average number of secrets per user

Pt
4/»/s/'/¢.._—r—=(°/r__f_"'_< ,
N
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Ll Ll
(a) (b)

Maximum number of derivations required by any user Maximum number of secrets required by any user

— FindLabel — FindLabel
— Tree — Tree
50 Chain Partition /,,,,/ 7 Chain Partition
- Iterative with Pub Order Filter Sort

e—e Order Filter Sort

40

) / |
20 e
§ /

Maximum number of derivations per user

Maximum number of secrets per user
o

0
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
It It
() (d)

Fig. 4. Experimental evaluation

6 Flexible Access Management

In this section, we summarize some additional features enabled by our KAS; the
full version of this paper will also introduce a general policy representation (sub-
suming information flow, temporal and role-based policies) and an associated
KAS allowing flexible grouping of access rights.

Prior KASs require all keys, secrets and derivation information to be defined
and assigned during Gen which may be inefficient when policies define a large
number of labels, some of which may never actually be assigned or used. In
particular, some policies define a set of primitive labels (e.g. roles, attributes
or time periods) and must include security labels for all combinations that may
be assigned during the system lifetime (e.g. role-based policies define 2% labels
for R roles [11]). In contrast, using our KAS, one can define T, for n primitive
labels and define a single secret (for the root node of T;,) during Gen. Instead of
defining additional labels for each potential combination, one can dynamically
issue secrets corresponding to the minimal cover of a required set of primitives

62 J. Alderman et al.

as required — one can dynamically form new ‘labels’ that cover the required
access rights as users join the system. Our mechanism is similar to the GGM
puncturable PRF [19] and this can be viewed as utilizing the puncturing mech-
anism to define access rights. A puncturable PRF issues keys restricting the
pseudo-random outputs that may be computed, which is precisely the goal of a
KlI-secure KAS. This puncturing technique enables useful features such as:

Limited Depth Inheritance is an important component of hierarchical access
policies to prevent senior users aggregating excessive access rights [2,10,20].
Encoding such restrictions directly into the poset may increase the number
of labels and derivation paths (and hence the amount of public information)
or increase the width of the poset (and hence the number of secrets users must
hold [14,15]). To our knowledge, the only KAS that directly allows limited depth
inheritance [2] requires public information and, crucially, is not collusion resistant
(and hence not KlI-secure). In contrast, our KAS can enable limited depth inheri-
tance to be efficiently implemented. Intuitively, we wish to change the authorized
set of a user from |u = {y e L:y< A(u)} to luyy ={yeL:y<Au),y <!}
where [is a threshold label beyond which derivation should be prevented.
Clearly, it is rather difficult to terminate derivation in typical iterative KASs
where the key for [€ L is determined by the secrets of labels I’ > [. In our
KAS, on the other hand, secrets correspond to interior nodes of 7;, which are
not associated to security labels. Thus, one can simply issue the minimal cover
[a(lu)] = [{a(l) : I € [u;}] and ignore any labels below the threshold when
selecting the set of secrets.

Separation of Duty policies form an important business practice which com-
partmentalize objects and users to avoid conflicts of interests. In essence, users
assigned a label [should no longer inherit the access rights of a set of labels
X C L which, again, often requires complex and costly modifications to the
poset. Using our KAS, one may simply issue [a(lu\ X)] = [{a(l) : 1 € [u\ X}].

Interval-based Policies such as temporal or geo-spatial policies [3,12] can be
handled in the same way. Consider a temporal policy where L is a set of time
periods [0,n] and users are authorized for time intervals [a,b) for 0 < a,b < n.
Prior KASs require a label for each possible interval. Using our KAS, we may
instead define L to be simply [0, n] and issue precisely the secrets corresponding
to [{a(z) : z € [a,b)]}]. Intuitively, one may think of L as a total order and use
the limited depth inheritance constraint to restrict derivation from a down to b.

7 Conclusion

We have introduced a novel approach to designing KASs by mapping policies
to enforcement structures which need not be derived directly from the policy
poset. We have given an example of a very simple KAS based on a binary tree
and introduced heuristics to optimally map the policy to a tree. We have shown
that our KAS performs favorably to prior schemes, and reduces the storage
requirements of user devices and logarithmically bounds derivation costs.

It is also important to consider how keys and secrets can be updated. KASs
with public information [2,16] may amend a portion of that information to define

Tree-Based Cryptographic Access Control 63

new secrets using the same derivation mechanism, but prior work [14,15] has not
considered how to perform updates without public information. A natural solu-
tion is to include counters in the PRF inputs when deriving keys; each derivation
step may have a ‘version’ indicated by the counter. Derivation costs will not
increase but users must learn current counter values in some way. Investigating
such methods and their associated costs will be a priority for future work. We
would also like to use our experimental implementations to perform a thorough
comparison of the relative costs and strengths of KASs compared to public key
schemes e.g. Attribute-based Encryption.

We hope that future work will also consider enforcement structures to target
different design goals of KASs and develop interesting optimization strategies for
the mappings e.g. one could generalize our construction to n-ary trees or trees
with varying degrees. Finally, we hope that our work spurs the development of
efficient constrained PRF's tailored to enforcing access control policies.

References

1. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in
a hierarchy. ACM Trans. Comput. Syst. 1(3), 239-248 (1983)

2. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and Efficient Key
Management for Access Hierarchies. ACM Trans. Inf. Syst. Secur. 12(3) (2009)

3. Atallah, M.J., Blanton, M., Frikken, K.B.: Efficient techniques for realizing geo-
spatial access control. In: Bao, F., Miller, S. (eds.) ASIACCS, pp. 82-92. ACM
(2007)

4. Atallah, M.J., Blanton, M., Frikken, K.B.: Incorporating temporal capabilities
in existing key management schemes. In: Biskup, J., Lépez, J. (eds.) ESORICS
2007. LNCS, vol. 4734, pp. 515-530. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74835-9_34

5. Ateniese, G., Santis, A.D., Ferrara, A.L., Masucci, B.: Provably-secure time-bound
hierarchical key assignment schemes. J. Cryptol. 25(2), 243-270 (2012)

6. Backes, M., Cachin, C., Oprea, A.: Secure key-updating for lazy revocation. In:
Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp.
327-346. Springer, Heidelberg (2006). doi:10.1007/11863908_21

7. Bell, D.E., LaPadula, L.J.: Computer security model: Unified exposition and Mul-
tics interpretation. Technical report, ESD-TR-75-306, MITRE Corp. (1975)

8. Blundo, C., Cimato, S., di Vimercati, S.D.C., Santis, A.D., Foresti, S., Paraboschi,
S., Samarati, P.: Managing key hierarchies for access control enforcement: heuristic
approaches. Comput. Secur. 29(5), 533-547 (2010)

9. Castiglione, A., Santis, A.D., Masucci, B., Palmieri, F., Castiglione, A., Li, J.,
Huang, X.: Hierarchical and shared access control. IEEE Trans. Inf. Foren. Secur.
11(4), 850-865 (2016)

10. Crampton, J.: On permissions, inheritance and role hierarchies. In: Jajodia, S.,
Atluri, V., Jaeger, T. (eds.) ACM Conference on Computer and Communications
Security, pp. 85-92. ACM (2003)

11. Crampton, J.: Cryptographic enforcement of role-based access control. In: Degano,
P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 191-205.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19751-2_13

http://dx.doi.org/10.1007/978-3-540-74835-9_34
http://dx.doi.org/10.1007/978-3-540-74835-9_34
http://dx.doi.org/10.1007/11863908_21
http://dx.doi.org/10.1007/978-3-642-19751-2_13

64

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

J. Alderman et al.

Crampton, J.: Practical and efficient cryptographic enforcement of interval-based
access control policies. ACM Trans. Inf. Syst. Secur. 14(1), 14 (2011)

Crampton, J., Daud, R., Martin, K.M.: Constructing key assignment schemes from
chain partitions. In: Foresti, S., Jajodia, S. (eds.) DBSec 2010. LNCS, vol. 6166,
pp. 130-145. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13739-6_9
Crampton, J., Farley, N., Gutin, G., Jones, M.: Optimal constructions for chain-
based cryptographic enforcement of information flow policies. In: Samarati, P. (ed.)
DBSec 2015. LNCS, vol. 9149, pp. 330-345. Springer, Cham (2015). doi:10.1007/
978-3-319-20810-7_23

Crampton, J., Farley, N., Gutin, G., Jones, M., Poettering, B.: Cryptographic
enforcement of information flow policies without public information. In: Malkin,
T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol.
9092, pp. 389-408. Springer, Cham (2015). doi:10.1007/978-3-319-28166-7_19
Crampton, J., Martin, K.M., Wild, P.R.: On key assignment for hierarchical access
control. In: CSFW, pp. 98-111. IEEE Computer Society (2006)

Freire, E.S.V., Paterson, K.G., Poettering, B.: Simple, efficient and strongly
Kl-secure hierarchical key assignment schemes. In: Dawson, E. (ed.) CT-RSA
2013. LNCS, vol. 7779, pp. 101-114. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36095-4_7

Galil, Z.: Efficient algorithms for finding maximum matching in graphs. ACM
Comput. Surv. 18(1), 23-38 (1986)

Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792-807 (1986)

Sandhu, R.S., Ferraiolo, D.F.,; Kuhn, D.R.: The NIST model for role-based access
control: towards a unified standard. In: ACM Workshop on Role-Based Access
Control, pp. 47-63 (2000)

Santis, A.D., Ferrara, A.L., Masucci, B.: Efficient provably-secure hierarchical key
assignment schemes. In: Kucera, L., Kucera, A. (eds.) MFCS 2007. LNCS, vol.
4708, pp. 371-382. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74456-6_-34
Santis, A.D., Ferrara, A.L., Masucci, B.: New constructions for provably-secure
time-bound hierarchical key assignment schemes. In: Lotz, V., Thuraisingham,
B.M. (eds.) SACMAT 2007, 12th ACM Symposium on Access Control Models
and Technologies, Sophia Antipolis, France, June 20-22, 2007, Proceedings, pp.
133-138. ACM (2007)

http://dx.doi.org/10.1007/978-3-642-13739-6_9
http://dx.doi.org/10.1007/978-3-319-20810-7_23
http://dx.doi.org/10.1007/978-3-319-20810-7_23
http://dx.doi.org/10.1007/978-3-319-28166-7_19
http://dx.doi.org/10.1007/978-3-642-36095-4_7
http://dx.doi.org/10.1007/978-3-642-36095-4_7
http://dx.doi.org/10.1007/978-3-540-74456-6_34

Source Code Authorship Attribution Using Long
Short-Term Memory Based Networks

Bander Alsulami!®), Edwin Dauber!®) Richard Harang?,
Spiros Mancoridis', and Rachel Greenstadt!

! Drexel University, Philadelphia, USA
{bma4d8,egd34,spiros,rachel.a.greenstadt}@drexel.edu
2 Sophos, Abingdon, UK

richard.harang@sophos.com

Abstract. Machine learning approaches to source code authorship attri-
bution attempt to find statistical regularities in human-generated source
code that can identify the author or authors of that code. This has appli-
cations in plagiarism detection, intellectual property infringement, and
post-incident forensics in computer security. The introduction of fea-
tures derived from the Abstract Syntax Tree (AST) of source code has
recently set new benchmarks in this area, significantly improving over
previous work that relied on easily obfuscatable lexical and format fea-
tures of program source code. However, these AST-based approaches rely
on hand-constructed features derived from such trees, and often include
ancillary information such as function and variable names that may be
obfuscated or manipulated.

In this work, we provide novel contributions to AST-based source code
authorship attribution using deep neural networks. We implement Long
Short-Term Memory (LSTM) and Bidirectional Long Short-Term Mem-
ory (BiLSTM) models to automatically extract relevant features from
the AST representation of programmers’ source code. We show that our
models can automatically learn efficient representations of AST-based
features without needing hand-constructed ancillary information used by
previous methods. Our empirical study on multiple datasets with differ-
ent programming languages shows that our proposed approach achieves
the state-of-the-art performance for source code authorship attribution
on AST-based features, despite not leveraging information that was pre-
viously thought to be required for high-confidence classification.

Keywords: Source code authorship attribution - Code stylometry -
Long short-term memory - Abstract syntax tree + Security - Privacy

1 Introduction

Source code authorship attribution has demonstrated to be a valuable instru-
ment in multiple domains. In legal cases, lawyers often need to dispute source
code partnership conflicts and intellectual property infringement [6,28,57].
© Springer International Publishing AG 2017

S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 65-82, 2017.
DOI: 10.1007/978-3-319-66402-6 6

66 B. Alsulami et al.

In educational institutions, detecting plagiarisms among students’ submitted
assignments is a growing interest [14,49]. In software engineering, source code
authorship attribution is used to study software evolution through dynamic
updates [26,36]. Source code stylometry is also used for code clone detection,
automatic re-factorization, complexity measurement, and code design patterns
enforcement [1,4,11,24,27,55]. In computer security, source code authorship
attribution can be used to identify malware authors in post-incident forensic
analysis [31,32]. Research has shown that syntactical features from the original
source code can be recovered from decompiling the binary executable files [§].
However, building a profile for malware authors is still a challenging problem
due to the lack of ground truth code samples. In the privacy domain, the abil-
ity to identify the author of anonymous code presents a privacy threat to some
developers. Programmers might prefer to maintain their anonymity for certain
security projects for political and safety reasons [7,8]. Even small contributions to
public source code repositories can be used to identify the anonymous program-
mers [12]. Recent advances in source code stylometry comes from hand-crafted
AST-based features.

This paper presents our contributions to source code authorship attribution
using AST-based features. We demonstrate that our LSTM-based neural net-
work models, that require only the structural syntactic features of the AST as
input, learns improved features that substantially improve upon the performance
of manually constructed ones. We measure the generalization of our models on
different datasets with different programming languages. We also show the clas-
sification accuracy and performance scalability of our models on a large number
of authors. The remainder of this paper is organized as follows: Sect. 2 describes
the related work that is relevant to source code authorship attribution. Section 3
describes common obfuscation techniques used in source code. Section 4 describe
background information about the AST features and the neural network models
used by our models. The model architecture and the algorithm used for learning
the feature of AST are described in Sect. 5. The experimental setup, training and
testing data, and the evaluation of the results are described in Sects.6 and 7.
Section 8 summarizes our conclusions and potential future work.

2 Related Work

Source code authorship attribution is inspired by the classic literature author-
ship attribution problem. While natural languages have more flexible grammat-
ical rules than programming languages, programmers still have a large degree of
flexibility to reveal their distinguishing styles in the code they write. For exam-
ple, experienced programmers exhibit different coding styles than exhibited by
novice programmers [7]. Early work uses plain textual features of the source
code to identify the authors of the source code. A popular feature extraction
technique is using N-grams to extract the frequency of sequences of n-characters
from the source code. N-gram techniques approach source code authorship attri-
bution as a traditional text classification problem with the source code files as

Source Code Authorship Attribution 67

text documents [15]. Other works use layout and format features of the source
code as metrics to improve the accuracy of the authors’ classification. Layout
features include the length of a line of code, or the number of spaces in a line of
code, and the frequency of characters (underscores, semicolons, and commas) in
a line of code. Researchers often measure the statistical distributions, frequen-
cies, and average measurements of the layout features [14]. For instance, some
researchers use the statistical distribution of the length of lines, number of lead-
ing spaces, underscores per line, semicolons, commas per line, and words per line
as discriminative features. They use Shannon’s entropy to highlight important
features, and a probabilistic Bayes classifier to identify the authors [28,41].
Latter work expands on source code features to lexical and style features
to avoid the limitation of format features. Lexical features are based on the
tokens of the source code for a particular programming language grammar. A
token can be an identifier, function, class, keyword, or a language-specific symbol
such as a bracket. The naming convention for classes, functions, and identifiers
can also be used as lexical features. The naming convention feature has shown
success in authorship identification [7,14,29,52]. For instance, researchers use
the average length of variable names, the number of variables, the number of for
loop statements and the total number of all loop statements in a feature set, and
use C4.5 decision trees to detect outsourced student programming assignments
[14]. Other work combines 6-grams of source code tokens such as keywords and
operators with multiple similarity measurement methods to create a profile for
students based on their submitted C/C++/Java source code files [49].
Recently, syntactic features, have shown significant success in source code
authorship attribution [7,29,52]. The main syntax feature derived from source
code is the Abstract Syntax Tree (AST). Syntactic features avoid many defects
related to format and style features. For instance, ASTs capture the structural
features of the source code regardless of the source code format or the devel-
opment environment used for the writing of the code. AST-based features have
been used to detect partial clones in C source code programs [29]. In that paper,
the authors extract an AST tree for each program and then create a hash code for
each subtree. Subtrees with similar hash values are grouped together to reduce
the storage requirement and improve the speed of the code clone detection.
Previous studies combine different types of features to improve the accuracy
of source code authorship attribution. Some early works combine format and
lexical features and implement a feature selection technique to remove the least
significant features [14,49]. Recent works use a large variety of format, lexical,
and syntactic features, and use an Information gain and Random Forest ensem-
ble to select the most important features to identify the authors of a source
code file [7,52]. Because of the large number of features, the feature selection
process becomes critical in the model’s performance for source code authorship
attribution. Our work is different from these efforts primarily in that we focus
on identifying the authors of source code using only the abstract structure of the
AST. We ignore the format and lexical features of source code. We also discard
the attributes in the AST nodes such as identifiers, numeric constants, string

68 B. Alsulami et al.

literals, and keywords. We avoid the hand-tuned feature engineering process by
building deep neural network models that automatically learn the efficient fea-
ture representations of the AST. By using only AST features, we aim to build
source code authorship attribution models that are resilient against source code
obfuscation techniques, and are language-independent so that they can be auto-
matically extended to programming language that supports AST.

3 Source Code Obfuscation

Obfuscation is the process of obscuring source code to decrease a human’s abil-
ity to understand it. Programmers may use obfuscation to conceal parts of its
functionality from a human or computer analysis. For instance, malware authors
use obfuscation techniques to hide the malicious behavior of their programs and
avoid detection from static malware detection [3,35]. Obfuscation also decreases
the usability of reverse-engineering binary executable files. Commercial software
might use obfuscation to increase the difficulty of reverse engineering their soft-
ware and protect their software licensing [43].

Trivial source code obfuscation techniques can easily obscure the format fea-
tures of the source code. For instance, they may remove/add random text to com-
ment sections. They may also randomly eliminate the indentations and spaces
in the source code files. Modern IDEs format source code file content based on
particular formatting conventions. This results in a consistent coding style across
all source code written using the same development tools. This reduces the con-
fidence of using format features to identify the authors of source code. Advanced
obfuscation tools target more sophisticated features such as lexical and style
features of the source code. For example, variable, function, and class names
can be changed to arbitrary random names that are hard to be interpreted by a
human. Stunnix!, an obfuscation tool for programs written in C/C++ languages,
uses a cryptographic hash function to obfuscate identifier names, a hexadecimal
encoding function to obfuscate strings literals, a random generation function to
obfuscate source code file names. ProGuard?, an obfuscation tool for Java, uses
random names for classes, methods, identifiers, configuration files, and libraries.

Despite efforts to harden program source code from static analysis using vari-
ous obfuscation techniques, the semantics of the program remain the same. That
is, the structure of the AST and the control flow of the program remain largely
intact. Control flow obfuscation techniques work on low-level machine code and
incur performance and storage overhead [2]. This leads developers to use triv-
ial obfuscation techniques without affecting the performance of their programs.
Therefore, inferring a programmer’s coding styles using structural features of
an AST is more robust and resilient to most automatic obfuscation techniques.
Obfuscating the syntactic features of the source code of a high-level programming
language while preserving the program’s behavior requires code refactorization.
Fully automated code refactorization suffers from reliability issues which makes

! http://stunnix.com/prod/cxxo/.
2 https:/ /www.guardsquare.com /en/proguard.

http://stunnix.com/prod/cxxo/
https://www.guardsquare.com/en/proguard

Source Code Authorship Attribution 69

it inefficient and unfeasible in most cases [9,33]. Code refactorization requires
human interference to guarantee the correctness of the refactorization process.

4 Abstract Syntax Tree

An Abstract Syntax Tree (AST) is a tree that represents the syntactic structure
of a program’s source code written in a programming language. An AST is an
abstract representation of the source code that omits information such as com-
ments, special characters, and string delimiters. Each AST node has a specific
type and might hold auxiliary information about the source code such as an
identifier’s name and type, string literals, and numeric values. Nodes in an AST
can have multiple children that represent the building blocks of a program.

An AST is constructed by the compiler in the early stages of the compi-
lation process. It represents information about the source code that is needed
for later stages such as semantic analysis and code generation. Therefore, an
AST contains no information about the format of the source code. Integrated
Development Environments (IDEs) and source code editors enforce conventional
formatting and naming conventions to improve the readability of source code.
In the context of authorship identification, code formatting tools might conta-
minate and negatively affect the source code formatting features. In contrast,
ASTs are less prone to the influence of development tools and can capture the
programmer’s coding style directly. Therefore, it is more reliable for authorship
identification techniques to analyze a program using its AST rather than its
source code.

Figures 1 and 2 show a code example in Python and its corresponding AST.
Module represents the root node of the AST and has two child nodes: Function-
Def and FExpr. Each node in the AST has a label that specifies a code block in
the source code. Some AST nodes such as Name and Num have extra attributes
(square) and a numeric constant (2), respectively. AST nodes often have a vari-
able number of children depending on their type and context in the source code.
For instance, Call nodes, in this example, have two children because function
square is declared with only one argument. However, in other contexts, Call can
have more than two child nodes when the function is declared with more than
one parameter.

AST is tree-structured data that requires models that naturally operates on
trees to extract useful features of the AST representation. Feature extraction
techniques such as n-grams are limited and lose information over long-distance
dependencies [42,58]. While a tree-like variant of the Long Short-Term Memory
(LSTM) such as Tree-Structured Long Short-Term Memory Networks (Tree-
LSTM) and Long Short-Term Memory Over Recursive Structures (S-LSTM)
seem intuitive, the nature of ASTs, which often have a large number of child
nodes in each subtree, presents a challenge for Tree-LSTM and S-LSTM imple-
mentations [47,59]. Tree variant networks have shown to be successful in mod-
eling tree structure data with fixed number of children [30,47,59]. Long Short-
Term Memory (LSTM) networks are a unique architecture of Recurrent Neural

70 B. Alsulami et al.

Module
FunctionDef(square) Expr

Arguments Return Call
1 def square (argl) : Arg(argl) BinOp Name(square) Call
2 return argl *x P ! T

2 Name(argl) Pow Num(2) Load Name(square) Num(10)

3 !
. square (square (10)) Load Load

Fig. 1. Python code example Fig. 2. Abstract Syntax Tree for Python code example

Networks (RNN) [16,20,25]. An LSTM network has an internal state that allows
it to learn the dynamic temporal behavior of long sequences over time. LSTM-
based networks differ in architecture based on gate connections and informa-
tion propagation. One successful architecture used for sequence classifications is
the Bidirectional LSTM (BiLSTM). In contrast to the standard unidirectional
LSTM, BiLSTM processes sequences in two different directions: forward and
backward. Therefore, at each time step, the BILSTM network has access to the
past and future information.

5 Model Architecture

Our models traverse an AST using a Depth First Search algorithm. The model
starts from the root node (the top node) of the AST and recursively examines
all its inner nodes (nodes that have children) until it reaches a leaf node (a
node with no child). An Inner node along with its children nodes is called a
subtree. Therefore, an AST can be viewed as a root node with multiple subtrees.
The model passes the leaf node to the Embedding Layer to generate a vector
representation of that node. This process continues recursively for all the nodes in
the AST. When all the vector representations of a subtree’s nodes are retrieved,
the model passes the subtree vectors to the Subtree Layer. The Subtree Layer
encodes the subtree and returns a vector representation of that subtree. The
model continues to encode each subtree as a vector, eventually, the AST is
reduced into a final state vector representation that is passed into the final layer
of the model (Softmaz Layer). The Softmaz Layer returns the predicted author
for the AST. Algorithm 1 shows how to integrate the three layers in our models
to learn the structural syntactic features of ASTs. The following subsections
explain each layer’s role in our model.

Source Code Authorship Attribution 71

Algorithm 1. The Algorithm to learn the structural syntactic features of an
AST.

1: procedure DFS(ast)

2 count «—— Number of children in ast
3 if count =0 then

4: return EmbeddingLayer(ast)
5: end if
6.
7
8

treevec «— EmptyTree()
for i — 1, count do
: treeyec.child[i] «— DFS(ast.child[i])
9: end for

10: treeyec.root «— EmbeddingLayer(ast.root)
11: return SubtreeLayer(treeyec)

12: end procedure

5.1 Embedding Layer

The Embedding Layer maps individual AST nodes to their corresponding embed-
ding vector representations. An embedding vector is a continuous fixed-length
real-valued vector that can be trained with other parameters in the model. The
number of embedding vectors defined in the model is equivalent to the num-
ber of unique nodes in the AST. The layer uses the node label to look up
its corresponding embedding vector. Embedding representations have shown to
improve the generalization of neural networks to multiple complex learning tasks

34,39,44,51].

5.2 Subtree Layer

The Subtree Layer encodes each subtree into a single vector representation.
When the layer receives a subtree and its vector representation, the layer flattens
the subtree into a sequence. That is, the layer processes the subtree sequentially
in a pre-order fashion. Therefore, the root of the subtree is the first node in
the sequence and the rest of the child nodes in the subtree are placed in the
sequence from left to right. Subtree Layer can be implemented with any RNN
architecture. In our work, we use LSTM and BiLSTM architectures and name
them Subtree LSTM and Subtree BiLSTM, respectively.

Subtree LSTM processes the sequence of vector representations in a forward
direction. The last hidden state in the sequence is used as a vector representa-
tion of the subtree. Subtree LSTM applies dropout on that hidden state, and
propagates the results to the higher subtree. Subtree LSTM also resets its mem-
ory state before processing the next sequence. In the case of multi-layer Subtree
LSTMs, the lower layer passes the hidden state vector of each time step, after
applying dropout, as an input to the higher layer.

72 B. Alsulami et al.
(b) BiLSTM

(a) LSTM i

R
#-LSTM %m_k]‘[%@_ Backvord
h3 -
© 1 A
LsT™ LST™M 1 i .
() () T .
1 hy h,
(T &7 g o
@/ © im S | e g o %M_;HE%@_,‘_?M_,_. Forwra
G © ! T
o)
.

6 7
N
_ [Ty —
1
(2) { N

[
3) i) 1 G) 3) s
— i Zaa 1 1
O O, (’6\1/‘/\!7\\ o Sl LS}M — O] ©) ;/ \,7\‘—» LsTM LsT™M LSTM Forward
= 2 &) T
2 4 5

Step!
N

]
!

]

g}—’

9

]

z

Steps

Fig. 3. An example of how the Subtree LSTM and the Subtree BiLSTM layers encode
an AST.

Subtree BiLSTM processes subtrees as two sequences in two different direc-
tions. Similar to Subtree LSTM, the first sequence is processed forward from left
to right. However, the second sequence is processed in backward, from right to
left. The hidden states resulting from the forward and the backward passes are
concatenated to generate a new vector representation that is used as an input for
the next step. In the case of multi-layer BILSTM Subtree, the lower layer passes
the hidden states, after applying dropout, as an input to the higher layer at each
step. The last hidden state of the highest layer is the final vector representation
of the subtree.

Figure 3 gives an example on how the Subtree LSTM and the Subtree Bil-
STM encode a subtree of an AST. The Subtree LSTM starts encoding the left-
most subtree as a sequence of 2, 4, and 5. A dropout is then applied on the last
hidden state h1, and the result is used as a vector representation of the subtree.
hy replaces the subtree and becomes a new child node in the AST. Next, the
Subtree LSTM resets its memory state and encodes the rightmost subtree as hs
vector representation. Finally, Subtree LSTM encodes the AST as a sequence of
1, h1, and hs. The hidden state hg is used as the final vector representation of
the AST. On the other hand, Subtree BiLSTM encodes the leftmost subtree as
two sequences. The forward sequence is 2, 4, and 5, and the backward sequence
is 5, 4, and 2. The last hidden state h; results from the merge of the last hidden
states of the forward and backward sequences. A dropout is applied to h; and
the result is used as a representation of the subtree and substitution in the AST.
Next, the Subtree BILSTM resets its memory states and encodes the rightmost
subtree into hg vector representation. Finally, the Subtree BiLSTM encodes the

Source Code Authorship Attribution 73

AST as forward and backward sequences of 1, hy, and hy and hs, hy, and 1,
respectively. The hidden state hs is used as the final vector representation of
the AST.

5.3 Softmax Layer

The Softmax Layer is a linear layer with the Softmax activation function. The
Softmax function is a generalized logistic regression function that is used for
multi-class classification problems. The Softmax Layer generates a normalized
probability distribution of the candidate source code authors. Given the last
hidden state of the AST, the Softmax Layer applies a linear transformation on
the input followed by the Softmax function to extract the probability distribu-
tion of authors. The author with the highest probability is selected as the final
prediction of the model.

6 Experimental Setup

6.1 Data Collection

In this experiment, we collect two datasets for two different programming lan-
guages. The first and second datasets contain source code files from Python and
C++, respectively. Our goal is to empirically evaluate the classification efficiency
and the generalization of our models on different programming languages with
different AST structures. The Python dataset is collected from Google Code Jam
(GCJ)3. Google Code Jam is an annual international coding competition hosted
by Google. The contestants are presented with programming problems and need
to provide solutions to these problems in a timely manner. The Python dataset
has 700 source code files from 70 programmers and 10 programming problems.
Programmers work individually on each of the 10 problems. Therefore, each
problem has 70 source code solutions with different programming styles. The
C++ dataset is collected from Github*. Github is an online collaboration and
sharing platform for programmers. We crawl Github starting from a set of pro-
lific programmers and spidering out through other programmers they collaborate
with, cloning any repositories for which over 90% of the lines of code are from
the same programmer. We then group C++ files by author. To create sufficient
training examples, we exclude any C++ file whose AST’s depth is less than
10 levels or has 5 branches at most. The final dataset has 200 files from 10
programmers and 20 files per programmer.

Python AST files are extracted using a Python module called ast. The mod-
ule is built into the Python 2.7 framework®. Each AST contains one root node
called Module and represents a single Python source code file, as shown in Fig. 2.

3 https://code.google.com/codejam.
4 https://github.com.
5 https://docs.python.org/2/library /ast.html.

https://code.google.com/codejam
https://github.com
https://docs.python.org/2/library/ast.html

74 B. Alsulami et al.

The number of unique AST node types in Python 2.7 are 130 nodes. In addi-
tion, C++ AST files are extracted using the third party fuzzy parser joern [54].
Joern parses the C++ file, outputs the data into a graph database, and then
python scripts can be used to explore the database to write machine-readable
files containing AST information. A fuzzy parser performs the same basic func-
tion as a regular parser, but can operate on incomplete or uncompilable code [5].
Using such a parser allows us to attribute programs which are either incomplete
or contain syntax errors, but more importantly, it means that we do not parse
external libraries which are likely written by a different programmer. In contrast
to Python ASTSs, there are 53 unique node types for C++ ASTs. Each C++
source code file may contain multiple ASTs. The tool creates a separate AST for
the global definition of a class, a struct, or a function. However, we merge each
of these into a single AST per C++ file. That is, we create a root node called
Program that includes the global blocks as children.

6.2 Training Models

Our models are trained using Stochastic Gradient Descent (SGD) with Momen-
tum and compute the derivatives for the gradient using Backpropagation
Through Structure [19,40,45]. SGD is an incremental optimization algorithm
for minimizing the parameters of an objective function, also known as the loss
function. The loss function in our models is the cross-entropy loss function.
SGD computes the gradient of the parameters with respect to the instances in
the training dataset. After computing the gradient, the parameters are updated
in the direction of the negative gradient. Momentum is an acceleration technique
that keeps track of the past updates with an exponential decay. Momentum has
been successfully used to train large deep neural networks [22,45,46,48].

At the beginning of the training process, we set the learning rate to 1 x 1072
and the momentum factor to 0.9. The models are trained up to 500 epochs with
an early stopping technique to prevent overfitting [10]. We also use Ly weight
decay regularization with a factor of 0.001 to reduce overfitting [17]. We use a
gradient clipping technique to prevent the exploding gradient during training
[37]. The models’ parameters are initialized with Glorot initialization to speed
up the convergence during the training [18]. The biases for all gates in the LSTM
and BiLSTM models are set to zero, while the bias for the forget gate is set to 1
[56]. We set the dropout rate to 0.2 and use inverted dropout to scale the input
at training time and remove the overhead at test time. We use Chainer, a deep
neural framework, to implement our LSTM and BiLSTM models [50].

7 Evaluation

In this section, we evaluate the complexity of our models and compare their
classification accuracy and scaling capability to the state-of-the-art models in
source code authorship attributions.

Source Code Authorship Attribution 75

7.1 Model Complexity

We evaluate the complexity of LSTM and BiLSTM models by varying the recur-
rent architecture, the number of layers, and hidden units on 25 and 70 authors
from the Python dataset. We examine the effectiveness of (1, 2) layers and (100,
250, 500) hidden units for LSTM and BiLSTM models. Figure 4 shows the effect
of increasing the hidden unit size on the one and two layers of LSTM and BiL-
STM models using 70 authors from the Python dataset. For the one layer models,
the LSTM and BiLLSTM models continue to improve their performance accuracy
while increasing the hidden units until they reach 100 units. After that, the clas-
sification accuracy of the models decreases when more hidden units are added.
However, the decline in the classification accuracy is minimal after exceeding
250 hidden units. Therefore, increasing the size of the hidden units to more than
100 does not improve the performance for one layer LSTM and BiLLSTM models.
On the contrary, two layers LSTM and BiLSTM models improve their classifica-
tion accuracy until they reach 250 hidden units. However, the accuracy declines
sharply when adding more hidden units. We think that larger layers might be
over-fitting the training data. Therefore, 250 hidden units are the optimal size
for two layered LSTM and BiLSTM models.

100 : ‘ 100

95 1 095+

=)
©
=1

N Y

o

&

&
5

Accuracy
o
=
3
=
»

Accuracy (%)

T R — | ; /:/'/v/. \o
5L e Tl 07

70 . 070}

—— LSTM (1-Layer)
65 —e- BILSTM (1-Layer) H 0.65
-@- LSTM (2-Layers)

A& BILSTM (2-Layers)

=—a |STM (1-Layer, 100-Units)
e—e BLSTM (1-Layer, 100-Units)

60 L - 0.60 L L T
50 100 250 500 0 100 200 300 400 500

Hidden Units Epochs

Fig. 4. The classification accuracy for
(1,2) layers of LSTM and BiLSTM mod-
els with (50, 100, 250, 500) for 70 authors

Fig. 5. The classification accuracy for
one layer LSTM and BiLSTM with 100
hidden units on the Python test dataset.

on the Python dataset.

Choosing the optimal recurrent architecture of RNN is crucial for improv-
ing the classification accuracy of our models. In our research, BiLSTM models
show superior performance to LSTM models. These results are in agreement
with recent experiments using LSTM-based networks [21,53]. Figure5 shows
the accuracy of the one layer LSTM and BiLSTM models with 100 hidden units

76 B. Alsulami et al.

during the training process. We split the 70 authors from the Python dataset
into 80% training and 20% testing sets with a balanced distribution of authors.
We measure the accuracy of the models on the test dataset after each epoch for
500 epochs. As shown, the BILSTM model achieves higher classification accuracy
and converges quicker than the LSTM model.

7.2 Author Classification

We compare our LSTM and BiLSTM models to the state-of-the-art in source
code authorship attribution [7,52]. The work in both research experiments uses
a combination of layout, lexical, and syntactic features. We exclude the lay-
out and lexical features from the evaluation and only include the syntactic fea-
tures that are relevant to the structure of the AST. While excluding layout and
lexical features degrades the accuracy of prior work, it enables a fair compari-
son between the structural /syntactic AST-based features of their work, and the
structural/syntactic AST-based features we are developing. In [7], researchers
use information gain as a feature selection to select the most important features
and use Random Forest as the classifier. The work in [52] uses a greedy feature
selection method and Linear SVM as the final classifier. We implement the clas-
sifiers using the Scikit-Learn machine learning framework [38]. We use a grid
search technique to select the optimal hyperparameters for Random Forest and
SVM. We evaluate the models on 25 and 70 authors from the Python dataset,
and 10 authors from the C++ dataset. We split the datasets into 80% train-
ing and 20% testing sets with a balanced distribution of authors. We select one
layer LSTM and BiLSTM with 100 hidden units for comparisons based on their
superior performance.

Table 1. The classification accuracy for (1,2) layers of LSTM and BiLSTM with 100
hidden units, Linear SVM, and Random Forest models using 25 and 70 authors on the
Python dataset, and 10 authors on the C+-+ dataset.

Dataset

Python C++

25 (Authors) | 70 (Authors) | 10 (Authors)
Random forest* | 86.00 72.90 75.90
Linear SVM* | 77. 2 61.28 73.50
LSTM 92.00 86.36 80.00
BiLSTM 96.00 88.86 85.00

* The accuracy results differ from the results in the papers (Refer to Sect.7.2)

Table 1 shows the results of the four authorship attribution models: Random
Forest, Linear SVM, LSTM, and BiLSTM. The BiLSTM model achieves the
best classification accuracy. The LSTM model achieves the second best accuracy.

Source Code Authorship Attribution 7

As mentioned earlier, the accuracy results of Linear SVM and Random Forest
models differ from the results in the original works because we focused only on
the AST-based features and excluded extra features such as the layout and style
features. The results show that LSTM and BiLSTM models can efficiently learn
the abstract representation of ASTs for a large number of authors who have
coded using different programming languages.

7.3 Scaling Author Classification

Large source code datasets often have a large number of authors. Deep neural
networks have shown the capability to scale effectively to large datasets with
a large number of labels [13,23,53]. A source code authorship classifier needs
to handle a large number of different authors with a sufficient classification
accuracy. In this experiment, we measure the effect of increasing the number
of authors on the classification accuracy of our models. We vary the number of
selected authors consecutively to 5, 25, 55, and 70 from the Python datasets. We
use the one layer LSTM and BiLSTM models with 100 hidden units and compare
the results to the Random Forest and Linear SVM models [7,52]. We obtain this
results using 80% training and 20% testing sets with a balanced distribution of
authors.

Figure 6 shows the performance of LSTM, BiLSTM, Linear SVM, and Ran-
dom Forest models when increasing the number of authors in the Python dataset.
In general, all the models suffer an inevitable loss in the classification accuracy
when the number of authors is increased. However, LSTM and BiLSTM models
suffer the least decrease and maintain a robust performance accuracy when the
number of authors is large. The Random Forest model achieves an adequate per-
formance, and the Linear SVM model suffers the most significant deterioration
in classification accuracy.

7.4 Top Authors Predication

Random Forest, LSTM, and BiLSTM models predict the author with the high-
est probability as the potential author of an AST. In some cases, researchers
increase the prediction to include the top n potential authors for further analy-
sis, especially, when the difference between the authors’ prediction probabilities
is insignificant. Thus, researchers sometimes include the top n highest probabili-
ties in the prediction process [46]. In this experiment, we measure the classifica-
tion accuracy of our models when we pick the top n predictions for source code
authors. We measure the ability of our models to narrow down the search for
the potential authors. We compare the top 1, 5, 10, 15, and 20 predictions of the
LSTM and BiLSTM models to the Random Forest [7]. We select one layer LSTM
and BiLSTM with 100 hidden units and evaluate the models on 70 authors from
the Python dataset. We obtain this results using 80% training and 20% testing
sets with a balanced distribution of authors on the Python dataset.

Figure 7 shows the result of increasing the number of the predicted authors in
the final prediction. The Random Forest model gains the largest improvement

78 B. Alsulami et al.

in the classification accuracy when the top 5 candidate authors are included.
The classification accuracy of the Random Forest model continues to improve as
the number of top candidate authors increases. Surprisingly, the Random Forest
model exceeds the BiLSTM model in the classification accuracy when including
the top 20 predicted authors. For the LSTM model, the classification accuracy
improves steadily while increasing the number of top candidate authors. The
classification accuracy reaches its peak to a nearly perfect accuracy at 15 candi-
dates. The LSTM model also exceeds the BILSTM model after including the top
5 candidate authors. The BiLSTM model reaches its peak classification accuracy
at 15 candidate authors. The BiLSTM model achieves lower classification accu-
racy than the LSTM model after including the top 5 predicted authors and less
than the Random Forest model after including the top 15 predicted authors.

80 80

Accuracy (%)
Accuracy (%)

751 T, T 751

70} S 1 70}
—B- LSTM (1-Layer, 100-Units)

65 H{—e- BILSTM (1-Layer, 100-Units) E 1 65| —8— LSTM (1-Layer, 100-Units) |{
-@- Random Forest —®- BILSTM (1-Layer, 100-Units)
--A- Linear SYM e -®- Random Forest

60 - 60 L -

5 25 55 70 1 5 10 15 2C

Source Code Authors Top Predicted Authors

Fig. 6. The classification accuracy for
one layer LSTM and BiLSTM with 100
hidden units, Random Forest, and Linear
SVM models for 5, 25, 55, and 70 authors

Fig.7. The top predictions of one
layer LSTM and BiLSTM models with
100 hidden units and Random Forest
classifier.

in the Python dataset.

8 Conclusions and Future Work

We present a novel approach to AST-based source code authorship attribution
using LSTM and BiLSTM models. We show that our models are efficient at
learning the structural syntactic features of ASTs. We evaluate our models on
multiple datasets and programming languages. We improve the performance
results from the previous state-of-the-art on source code authorship attribution
using ASTs. We evaluate the scaling capability of our models on a large number
of authors.

In the future, we would like to study source code with multiple authors,
as large source code projects have multiple programmers collaborating on the

Source Code Authorship Attribution 79

same code section. We would like to evaluate our models on ASTs with multiple
authors. We would also like to harden our models against advanced obfuscation
techniques that use code factorization for source code.

Acknowledgments. This work is supported by a Fellowship from the Isaac L.
Auerbach Cybersecurity Institute at Drexel University, and by an appointment to the
Student Research Participation Program at the U.S Army Research Laboratory admin-
istered by the Oak Ridge Institute for Science and Education through an interagency
agreement between the U.S. Department of Energy and USARL.

References

10.

11.

12.

13.

Antoniol, G., Fiutem, R., Cristoforetti, L.: Using metrics to identify design patterns
in object-oriented software. In: Proceedings of Fifth International Symposium on
Software Metrics, 1998, pp. 23-34. IEEE (1998)

Balachandran, V., Tan, D.J., Thing, V.L., et al.: Control flow obfuscation for
android applications. Comput. Secur. 61, 72-93 (2016)

Barford, P., Yegneswaran, V.: An inside look at botnets. In: Christodorescu, M.,
Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware Detection. Advances in
Information Security, vol. 27, pp. 171-191. Springer, Boston, MA (2007). doi:10.
1007/978-0-387-44599-1_8

Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: 1998 Proceedings of International Conference on Software
Maintenance, pp. 368-377. IEEE (1998)

Bischofberger, W.R.: Sniff (abstract): a pragmatic approach to a c++ programming
environment. ACM SIGPLAN OOPS Messenger 4(2), 229 (1993)

Burrows, S., Uitdenbogerd, A.L., Turpin, A.: Application of information retrieval
techniques for source code authorship attribution. In: Zhou, X., Yokota, H.,
Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 699-713. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00887-0_61

Caliskan-Islam, A., Harang, R., Liu, A., Narayanan, A., Voss, C., Yamaguchi,
F., Greenstadt, R.: De-anonymizing programmers via code stylometry. In: 24th
USENIX Security Symposium (USENIX Security), Washington, DC (2015)
Caliskan-Islam, A., Yamaguchi, F., Dauber, E., Harang, R., Rieck, K., Greenstadt,
R., Narayanan, A.: When coding style survives compilation: De-anonymizing pro-
grammers from executable binaries. arXiv preprint (2015). arXiv:1512.08546
Calliss, F.W.: Problems with automatic restructurers. ACM SIGPLAN Notices
23(3), 13-21 (1988)

Caruana, R., Lawrence, S., Giles, L.: Overfitting in neural nets: backpropagation,
conjugate gradient, and early stopping. In: NIPS, pp. 402-408 (2000)

Chilowicz, M., Duris, E., Roussel, G.: Syntax tree fingerprinting for source code
similarity detection. In: 2009 IEEE 17th International Conference on Program
Comprehension, ICPC 2009, pp. 243-247. IEEE (2009)

Dauber, E., Caliskan-Islam, A., Harang, R., Greenstadt, R.: Git blame who?:
stylistic authorship attribution of small, incomplete source code fragments. arXiv
preprint (2017). arXiv:1701.05681

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A.,
Tucker, P., Yang, K., Le, Q.V., et al.: Large scale distributed deep networks. In:
Advances in Neural Information Processing Systems, pp. 1223-1231 (2012)

http://dx.doi.org/10.1007/978-0-387-44599-1_8
http://dx.doi.org/10.1007/978-0-387-44599-1_8
http://dx.doi.org/10.1007/978-3-642-00887-0_61
http://arxiv.org/abs/1512.08546
http://arxiv.org/abs/1701.05681

80

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

B. Alsulami et al.

Elenbogen, B.S., Seliya, N.: Detecting outsourced student programming assign-
ments. J. Comput. Sci. Coll. 23(3), 50-57 (2008)

Frantzeskou, G., Stamatatos, E., Gritzalis, S., Chaski, C.E., Howald, B.S.: Iden-
tifying authorship by byte-level n-grams: the source code author profile (SCAP)
method. Int. J. Dig. Evid. 6(1), 1-18 (2007)

Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction
with LSTM. Neural Comput. 12(10), 2451-2471 (2000)

Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks archi-
tectures. Neural Comput. 7(2), 219-269 (1995)

Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS, vol. 9, pp. 249-256 (2010)

Goller, C., Kuchler, A.: Learning task-dependent distributed representations by
backpropagation through structure. In: 1996 IEEE International Conference on
Neural Networks, vol. 1, pp. 347-352. IEEE (1996)

Goodfellow, 1., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Netw. 18(5), 602-610 (2005)
Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R., Schmidhuber, J.:
LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770-778 (2016)

Heuzeroth, D., Holl, T., Hogstrom, G., Lowe, W.: Automatic design pattern detec-
tion. In: 2003 11th IEEE International Workshop on Program Comprehension, pp.
94-103. IEEE (2003)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735-1780 (1997)

Kim, M., Notkin, D., Grossman, D.: Automatic inference of structural changes for
matching across program versions. In: ICSE, vol. 7, pp. 333-343 (2007)

Koschke, R., Falke, R., Frenzel, P.: Clone detection using abstract syntax suffix
trees. In: 2006 13th Working Conference on Reverse Engineering, WCRE 2006,
pp. 253-262. IEEE (2006)

Kothari, J., Shevertalov, M., Stehle, E., Mancoridis, S.: A probabilistic approach
to source code authorship identification. In: 2007 Fourth International Conference
on Information Technology, ITNG 2007, pp. 243-248. IEEE (2007)

Lazar, F.M., Banias, O.: Clone detection algorithm based on the abstract syntax
tree approach. In: 2014 IEEE 9th International Symposium on Applied Computa-
tional Intelligence and Informatics (SACI), pp. 73-78. IEEE (2014)

Li, J., Luong, M.T., Jurafsky, D., Hovy, E.: When are tree structures necessary for
deep learning of representations? arXiv preprint (2015). arXiv:1503.00185
Marquis-Boire, M., Marschalek, M., Guarnieri, C.: Big Game Hunting: The Pecu-
liarities in Nation-State Malware Research. Black Hat, Las Vegas (2015)

Meng, X.: Fine-grained binary code authorship identification. In: Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pp. 1097-1099. ACM (2016)

Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng.
30(2), 126-139 (2004)

Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint (2013). arXiv:1301.3781

http://arxiv.org/abs/1503.00185
http://arxiv.org/abs/1301.3781

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Source Code Authorship Attribution 81

Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detec-
tion. In: 2007 Twenty-Third Annual Computer security Applications Conference,
ACSAC 2007, pp. 421-430. IEEE (2007)

Neamtiu, 1., Foster, J.S., Hicks, M.: Understanding source code evolution using
abstract syntax tree matching. ACM SIGSOFT Softw. Eng. Notes 30(4), 1-5
(2005)

Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. ICML 3(28), 1310-1318 (2013)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825-2830 (2011)

Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: EMNLP, vol. 14, pp. 1532-1543 (2014)

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Cogn. Model. 5(3), 1 (1988)

Russell, S., Norvig, P., Intelligence, A.: A Modern Approach. Artificial Intelligence.
Prentice-Hall, Egnlewood Cliffs (1995). pp. 25, 27

Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. In: Interspeech, pp. 338-
342 (2014)

Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G., Weippl, E.: Pro-
tecting software through obfuscation: can it keep pace with progress in code analy-
sis? ACM Comput. Surv. (CSUR) 49(1), 4 (2016)

Socher, R., Bauer, J., Manning, C.D., Ng, A.Y.: Parsing with compositional vector
grammars. In: ACL, vol. 1, pp. 455-465 (2013)

Sutskever, 1., Martens, J., Dahl, G.E., Hinton, G.E.: On the importance of ini-
tialization and momentum in deep learning. In: ICML (3), vol. 28, pp. 1139-1147
(2013)

Sutskever, 1., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104-3112
(2014)

Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint (2015).
arXiv:1503.00075

Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: generalizing residual architec-
tures. arXiv preprint (2016). arXiv:1603.08029

Tennyson, M.F.: A replicated comparative study of source code authorship attri-
bution. In: 2013 3rd International Workshop on Replication in Empirical Software
Engineering Research (RESER), pp. 76-83. IEEE (2013)

Tokui, S., Oono, K., Hido, S., Clayton, J.: Chainer: a next-generation open source
framework for deep learning. In: Proceedings of Workshop on Machine Learning
Systems (LearningSys) in the Twenty-Ninth Annual Conference on Neural Infor-
mation Processing Systems (NIPS) (2015)

Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image
caption generator. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3156-3164 (2015)

Wisse, W., Veenman, C.: Scripting DNA: identifying the javascript programmer.
Dig. Invest. 15, 61-71 (2015)

http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1603.08029

82

53.

54.

55.

56.
57.

58.

59.

B. Alsulami et al.

Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neural machine translation
system: bridging the gap between human and machine translation. arXiv preprint
(2016). arXiv:1609.08144

Yamaguchi, F., Golde, N.; Arp, D., Rieck, K.: Modeling and discovering vulner-
abilities with code property graphs. In: Proceedings of the IEEE Symposium on
Security and Privacy (S&P) (2014)

Yu, D.Q., Peng, X., Zhao, W.Y.: Automatic refactoring method of cloned code
using abstract syntax tree and static analysis. J. Chin. Comput. Syst. 30(9), 1752—
1760 (2009)

Zaremba, W.: An empirical exploration of recurrent network architectures (2015)
Zhang, F., Jhi, Y.C., Wu, D., Liu, P., Zhu, S.: A first step towards algorithm plagia-
rism detection. In: Proceedings of the 2012 International Symposium on Software
Testing and Analysis, pp. 111-121. ACM (2012)

Zhou, C., Sun, C., Liu, Z., Lau, F.: A C-LSTM neural network for text classifica-
tion. arXiv preprint (2015). arXiv:1511.08630

Zhu, X.D., Sobhani, P., Guo, H.: Long short-term memory over recursive struc-
tures. In: ICML, pp. 1604-1612 (2015)

http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1511.08630

Is My Attack Tree Correct?

Maxime Audinot!2®™9) | Sophie Pinchinat'?, and Barbara Kordy!

L TRISA, Rennes, France
maxime.audinot@irisa.fr
2 University Rennes 1, Rennes, France
3 INSA Rennes, Rennes, France

Abstract. Attack trees are a popular way to represent and evaluate
potential security threats on systems or infrastructures. The goal of this
work is to provide a framework allowing to express and check whether
an attack tree is consistent with the analyzed system. We model real
systems using transition systems and introduce attack trees with for-
mally specified node labels. We formulate the correctness properties of
an attack tree with respect to a system and study the complexity of the
corresponding decision problems. The proposed framework can be used
in practice to assist security experts in manual creation of attack trees
and enhance development of tools for automated generation of attack
trees.

1 Introduction

An attack tree is a graphical model allowing a security expert to illustrate and
analyze potential security threats. Thanks to their intuitiveness, attack trees
gained a lot of popularity in the industrial sector [15], and organizations such as
NATO [24] and OWASP [20] recommend their use in threat assessment processes.
The root of an attack tree represents an attack objective, i.e., an attacker’s goal,
and the rest of the tree decomposes this goal into sub-goals that the attacker
may need to reach in order to perform his attack [26]. In this paper, we develop a
formal framework to evaluate how well an attack tree describes the attacker’s goal
with respect to the system that is being analyzed. This work has been motivated
by the two following practical problems.

First, in the industrial context, attack trees are created manually by security
experts who haustive knowledge about all the facets (technical, social, physical)
of the analyzed system. This process is often supported by the use of libraries
containing generic models for standard security threats. Although using libraries
provides a good starting point, the resulting attack tree may not always be
fully consistent with the system that is being analyzed. This problem might
be reinforced by the fact that the node names in attack trees are often very
short, and may thus lack precision or be inaccurate and misleading. If the tree is
incomplete or imprecise, the results of its analysis (e.g., estimation of the attack’s
cost or its probability) might be inaccurate. If the tree contains branches that
are irrelevant for the considered system, the time of its analysis might be longer
© Springer International Publishing AG 2017

S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 83-102, 2017.
DOT: 10.1007/978-3-319-66402-6_7

84 M. Audinot et al.

than necessary. This implies that a manually created tree needs to be validated
against a system to be analyzed before it can be used as a formal model on which
the security of the system will be evaluated.

Second, to limit the burden of their manual creation, several academic pro-
posals for automated generation of attack trees have recently been made [11,
23,30]. In particular, we are currently developing the ATSyRA tool for assisted
generation of attack trees from system models [23]. Our experience shows that,
due to the complexity and scalability issues, a fully automated generation is
impossible. Some generation steps must thus be supported by humans. Such a
semi-automated approach gives the expert a possibility of manually decompos-
ing a goal, in such a way that an automated generation of the subtrees can be
performed. This work provides formal foundations for the next version of our
tool which will assist the expert in producing trees that, by design, are correct
with respect to the underlying system.

Contribution. To address the problems identified above, we introduce a mathe-
matical framework allowing us to formalize the notion of attack trees and to
define as well as verify their practically-relevant correctness properties with
respect to a given system. We model real-life systems using finite transition
systems. The attack tree nodes are labeled with formally specified goals formu-
lated in terms of preconditions and postconditions over the possible states of
the transition system. Formalizing the labels of the attack tree nodes allows
us to overcome the problem of imprecise or misleading text-based node names
and makes formal treatment of attack trees possible. We define the notion of
Admissibility of an attack tree with respect to a given system and introduce the
correctness properties for attack trees, called Meet, Under-Match, Over-Match,
and Match. These properties express the precision with which a given goal is
refined into sub-goals with respect to a given system. We then establish the
complezity of verifying the correctness properties to apprehend the nature of
potential algorithmic solutions to be implemented.

Related work. In order to use any modeling framework in practice, formal foun-
dations are necessary. Previous research on formalization of attack trees focused
mainly on mathematical semantics for attack tree-based models [10,12-14,19],
and various algorithms for their quantitative analysis [1,16,25]. However, all
these formalizations rely on an action-based approach, where the attacker’s goals
represented by the labels of the attack tree nodes are expressed using actions
that the attacker needs to perform to achieve his/her objective. In this work, we
pioneer a state-based approach to attack trees, where the attacker’s goals relate
to the states of the modeled system. The advantage of such a state-based app-
roach is that it may benefit from verification and model checking techniques, in
a natural way, as this has already been done in the case of attack graphs [21,28].
In our framework, the label of each node of an attack tree is formulated in terms
of preconditions and postconditions over the states of the modeled system: intu-
itively speaking, the goal of the attacker is to start from any state in the system
that satisfies the preconditions and reach a state where the postconditions are

Is My Attack Tree Correct? 85

met. The idea of formalizing the labels of attack tree nodes in terms of precon-
ditions and postconditions has already been explored in [22]. However there, the
postcondition (i.e., consequence) of an action is represented by a parent node
and its children model the preconditions and the action itself.

Model checking of attack trees, especially using tools such as PRISM or
UPPAAL, has already been successfully employed, in particular to support their
quantitative analysis, as in [2,8,17]. Such techniques provide an effective way
of handling a multi-parameter evaluation of attack scenarios, e.g., identifying
the resources needed for a successful attack or checking whether there exists an
attack whose cost is lower than a given value and whose probability of success
is greater than a certain threshold. However, these approaches either do not
consider any particular system beforehand, or they rely on a model of the system
that features explicit quantitative aspects.

The link between the analyzed system and the corresponding attack tree
is made explicit in works dealing with automated generation of attack trees
from system models [11,23]. The systems considered in [11] capture locations,
assets, processes, policies, and actors. The goal of the attacker is to reach a
given location or obtain an asset, and the attack tree generation algorithm relies
on invalidation of policies that forbid him to do so. In the case of [23], the
ATSyRA tool is used to effectively generate a transition system for a real-life
system: starting from a domain-specific language describing the original system,
ATSyRA compiles this description into a symbolic transition system specified in
the guarded action language GAL [29]. ATSyRA can already handle the physical
layer of a system (locations and connections/accesses between them) and we are
currently working on extending it with the digital layer. Since our experience
shows that generating a transition system from a description in a domain-specific
language is possible and efficient, in this paper we suppose that the transition
system for a real system has been previously created and is available.

Finally, to the best of our knowledge, the problem of defining and verifying
the correctness of an attack tree with respect to the analyzed system has only
been considered in [3] which has been the starting point for the work presented
in this paper.

2 DMotivating Example

Before presenting our framework, we first introduce a motivating example on
which we will illustrate the notions and concepts employed in this paper.

The system modeled in our running example is a building containing a safe
holding a confidential document. The goal of the attacker is to reach the safe
without being detected. We purposely keep this example small and intuitive to
ease the understanding of the proposed framework. The floor plan of the building
is depicted in Fig. la. It contains two rooms, denoted by Rooml and Room2,
two doors — Doorl allowing to move from outside of the building to Room1 and
Door2 connecting Room1 and Room2 — as well as one window in Room2. Both
doors are initially locked and it is left unspecified whether the window is open

86 M. Audinot et al.

or not. Such unspecified information expresses that the analyst cannot predict
whether the window will be open or closed in the case of a potential attack or
that he has a limited knowledge about the system. In both cases, this lack of
information needs to be taken into account during the analysis process. The two
doors can be unlocked by means of Keyl and Key2, respectively. We assume
that a camera that monitors Door?2 is located in Room1. The camera is initially
on but it can be switched off manually. The safe is in Room2.

The attacker is located outside
of the building and his goal is to Ke I?Attacker
reach the safe without being detected y
by the camera. In Fig.1b, we have
depicted three scenarios (that we
will call paths) allowing the attacker
to reach his goal. In the first scenario Camera
(depicted using dotted line), the '*i
attacker goes straight through the !i
window, if it is open. In the remain-
ing two scenarios, the attacker gath-
ers the necessary keys and goes
through the two doors, switching off Window
the camera on his way. These two
scenarios differ only in the order Safe ﬂ
in which the concurrent actions are
sequentially performed. Since col-
lecting Key2 and switching off the
camera are independent actions, the
attacker can first collect Key2 and
then switch the camera off (dashed line), or switch the camera off before collect-
ing Key2 (solid line).

The system in our example consists of the building and the attacker. It is
modeled using state variables whose values determine possible configurations of
the system.

([/s}

Doorl

(a) Floor plan (b) Attack scenarios

Fig. 1. Running example building

— Position — variable describing the attacker’s position, ranging over {Outside,
Room1, Room2};

— WOpen — Boolean variable describing whether the window is open (tt) or not
(££);

— Lockedl and Locked2 — Boolean variables to describe whether the respective
doors are locked or not;

— Key1 and Key2 — Boolean variables to describe whether the attacker possesses
the respective key;

— Cam0On — Boolean variable describing if the camera is on;

— Detected — Boolean variable to describe if the camera detected the attacker,
i.e., whether the attacker has crossed the area monitored by the camera while
it was on.

Is My Attack Tree Correct? 87

Given a set of state variables, we express possible configurations of a
system using propositions. Propositions are either equalities of the form
state_variable=value or Boolean combinations of such equalities. Intuitively, a
proposition expresses a constraint on the possible configurations. A configuration
in which all the variables are left unspecified is called the empty configuration.
We denote it by T.

In order to analyze the security of a system, security experts often use the
model of attack trees. An attack tree is a tree in which each node represents an
attacker objective, and the children of a node represent a decomposition of this
objective into sub-objectives. In this work, we consider attack trees with three
types of nodes:

— OR nodes representing alternative choices — to achieve the goal of the node,
the attacker needs to achieve the goal of at least one child;

— AND nodes representing conjunctive decomposition — to achieve the goal of the
node, the attacker needs to achieve all of the goals represented by its children
(the children of an AND node are connected with an arc);

— SAND nodes representing sequential decomposition — to achieve the goal of the
node, the attacker needs to achieve all of the goals represented by its children
in the given order (the children of a SAND node are connected with an arrow).

Reach Room2
undetected
Go through Go through
the window the door

£\

One of the most problematic aspects of attack
trees are the informal, text-based names of their
nodes. These names are often very short and thus Fig. 2. Attack tree with infor-
do not express all the information that the tree mal, text-based node names
author had in mind while creating the tree. In
particular, the textual names relate to the objective that the attacker should
reach, however, they usually do not capture the information about the initial
situation from which he starts.

To overcome the weakness of text-based node names, we propose to formal-
ize the attacker’s goal using two configurations: the initial configuration, usually
denoted by ¢, is the configuration before the attack starts, i.e., represents pre-
conditions; and the final configuration, usually denoted by <, represents post-
conditions, i.e., the state to be reached to succeed in the attack. The goal with
initial configuration ¢ and final configuration v is written (¢, 7).

In our running example, the initial configuration is ¢ := (Position =
Outside) A (Keyl = ff) A (Key2 = ff) A (Lockedl = tt) A (Locked2 = tt) A

The attack tree given in Fig. 2 illustrates that
in order to enter Room2 undetected (root node of
type OR), the attacker can either enter through the
window or through the doors. In order to use the
second alternative (node of type AND), he needs
to make sure that the camera is deactivated and
that he reaches Room2. To achieve the last objec-
tive (node of type SAND), he first needs to unlock
Room1, then unlock Room2, and finally enter to
Room?2.

88 M. Audinot et al.

(CamOn = tt). It describes that the attacker is originally outside of the building,
he does not have any of the keys, the two doors are locked, and the camera is
on. The final configuration is v := (Position = Room2) A (Detected = £f), i.e.,
the attacker reached Room2 without being detected.

Figure 3 illustrates how such formally specified goals are used to label the
nodes of attack trees. The goal (¢,7) introduced above is the label of the root
node of the tree. It is then refined into sub-goals (¢;,~;), where i reflects the
position of the node in the tree.

Sub-goal (t1,71): The attacker, who wants to reach the safe in Room2 without
being detected, is located outside of the building and the window is initially open.
We let ¢; := (Position = Outside) A (Keyl = £f) A (Key2 = £f) A (Lockedl =
tt) A (Locked2 = tt) A (CamOn = tt) A (WOpen = tt) and v, := 7.

Sub-goal (13,72): This sub-goal is similar to the previous one, but the window
is originally closed. We let to := (Position = Outside) A (Keyl = ££f) A (Key2 =
ff) A (Lockedl = tt) A (Locked2 = tt) A (CamOn = tt) A (WOpen = £f) and
V2 =1

Sub-goal (i91,721): The attacker, who might be in any initial configuration,
wants to deactivate the camera. We then let 137 := T and 797 := (CamOn = £f).

Sub-goal (92,722): Similar to sub-goal

(t2,72), with the difference that we do @

not care whether the camera is ini-

tially on and we no longer require that

the attacker remains undetected. We let @ @

oo := (Position = Outside) A (Keyl = —

ff) A (Key2 = ff) A (Lockedl = tt) A

(Locked2 = tt) A (WOpen = f£f) and @

a2 := (Position = Room2). =

Sub-goal (i221,7221): The initial situ-

ation is th<e same ;S in the sub-goal @ @ @
(22, Y227, but we require that the attacker

unlocks Doorl but not Door2: teoq := 99 Fig. 3. Attack tree with formal labels
and Y221 := (Lockedl = ff) A (Locked2 =

tt).

Sub-goal (t992,7222): Now, the objective is to go from a state where Doorl is
unlocked and Door2 is locked (like in the configuration ~s21) to a state where
both doors are unlocked. We let 1922 := 7221 and 7900 := (Lockedl = ff) A
(Locked2 = £f).

Sub-goal (1923, 7223): Finally, the last sub-goal is for the attacker, starting in a
state where both doors are unlocked, to reach Room2. We let 1953 := 7225 and

Y223 = 7Y22-

Is My Attack Tree Correct? 89

3 Formal Modeling

We now provide formal notations and definitions of transition systems and attack
trees that we have informally described in Sect. 2.

3.1 Transition Systems

We model real-life systems using finite transition systems. Transition system is
a simple, yet powerful formal tool to represent a dynamic behavior of a system
by listing all its possible states and transitions between them. The finiteness of
the state transition system is a reasonable and realistic assumption. A formal
model can either be finite because the real-life underlying system is intrinsically
finite, or it can have a finite representation obtained by standard abstraction
techniques, as used in verification, static analysis, and model-checking.

We fix the set Prop of propositions that we use to formalize possible configu-
rations of the real system. In the rest of the paper, we suppose that Prop contains
propositions of the form ¢, 7, to denote preconditions (¢) and postconditions ()
of the goals.

Definition 1 (Transition system). A transition system over Prop is a tuple
S = (S,—,), where S is a finite set of states (elements of S are denoted by
8,8; fori € N), -C S x S is the transition relation of the system (which is
assumed left-total), and X\ : Prop — 2° is the labeling function. We say that a
state s is labeled by p when s € A(p). The size of S is |S| = |S| + |—|.

For the rest of this paper, we assume that we are given a transition system S over
Prop. A path in S is a non-empty sequence of states. We use typical elements
w7 T, ..., p,... to denote paths. The size of a path 7, denoted by |r|, is its
number of transitions, and 7 (¢) is the element at position ¢ in 7, for 0 <14 < |r|.
An empty path? is a path of size 0. We write I1(S) for the set of all paths in S. For
t,7 € Prop, we shortly say that a path 7 “goes from ¢ to v” whenever 7(0) € A(¢)
and 7(|r|) € A(y). The set of direct successors of a set of states S” C S is
Posts(S") ={s € S| 3¢’ € §' such that (s',s) €—}. The set of successors of a
set of states S' C S is Post5(S') = {s € S| Ir with 7(0) € S’ and 7 (|7|) = s},
and the set of predecessors of S” C S is Pre%(S’) = {s € S | In with 7 (0) =
s and 7(|7|) € S'}.

A factor of a path 7 is a subsequence composed of consecutive elements of .
Formally, a factor of a path 7 is a path 7', such that there exists 0 < k < |7r|—|7'|,
where w(i + k) = 7/(4), for 0 < i < |7’|. An anchoring of 7 in 7 is an interval
[k,1] C [0, |r|] where for all ¢ € [k,l], 7'(i —k) = w(i) and | — k = |7’|. Notice that
we may have |7'| = 0. We denote by n[k,l] the factor of m of anchoring [k,].
In other words, the anchorings of 7/ in 7 are the intervals [k,] of positions in 7
such that w[k,l] = 7'

! Since a path is a non-empty sequence of states, the empty path contains exactly one
state.

90 M. Audinot et al.

We now introduce concatenation and parallel decomposition of paths — two
notions that will serve us to define the semantics of sequential and conjunctive
refinements in attack trees, respectively.

Definition 2 (Concatenation of paths). Let my,79,...,m, € II(S) be

paths, such that m(|m|) = mi41(0) for 1 < ¢ < n — 1. The con-
catenation of mi,ma,...,m,, denoted by mi.ma..... Tn, 18 the path w, where
il 2;11 |7k | ,22;11 || + |m|] = m%. We generalize the concatenation to sets

of paths by letting II.II' = {m € II(S) | 3,0 < i < |n| and w[0,7] €
IT and (i, |x|] € IT'}.

Definition 3 (Parallel decomposition of paths). A set {m,...,m,} C
I1(S) is a parallel decomposition of w € II(S) if for every 1 < i < n the path 7; is
a factor of w for some anchoring [k;,l;], such that every interval [j, j+1] C [0, |r|]
is contained in [k;,l;] for some i € {1,...,n} (which trivially holds if |x| = 0).
We then say that the sequence my,...,T, is a parallel decomposition of 7 for
the anchorings [k1,11], ..., [kn,ln].

Lemma 1. Given a path m € II(S), and a sequence ki,li, ..., kn, 1, € [0,|7]],
deciding whether w(ki,l1], ..., 7[kn,ln] s a parallel decomposition of m for the
anchorings [k1,l1], ..., [kn,ln] can be done in time O(n|w|).

Proof. Verifying that w[k1,l1],...,w[kn,[,] is a parallel decomposition of 7 for
the anchorings [k1,01],..., [kn,l»] amounts to checking that for every interval
[4,5 + 1] C [0,|x]], there is an ¢ € [1,n] such that [j,j + 1] C [k;,1;]. This can
clearly be done in time O(n|7|) by a naive approach.

An example of a parallel decomposition is illustrated in Fig. 4, where m =
m[0,2], mo = 7[3,5], and w3 = 7[1,4].

L b8 Y

r— 00— — 0—0— 0

So S S 83 S4 S5

3 T Y1 (5] Uyl Y2

° e I~ o

So 52 53 S5
(%] 3 Y3

S1 Sy4

Fig. 4. Parallel decomposition of 7 into {m1, w2, 73}.

A cycle in a path 7 € II(S) is a factor #’ of 7 such that #'(0) = «'(|7’|).
An elementary path is a path with no cycle. Remark that an elementary path 7
does not contain any state more than once, so || < |S|. Removing a cycle 7’ of
anchoring [k,[] from a path 7 yields the path «[0, k].7w[l,|r|]. Removing all the
cycles from 7 consists in iteratively removing cycles until the resulting path is

2 We use the convention that 22:1 |mk| = 0.

Is My Attack Tree Correct? 91

elementary. Note that the resulting path may depend on the order in which the
cycles are removed.
We illustrate the notions defined in this section on our running example.

Ezample 1. We use the state variables introduced in Sect. 2 to describe the states
of a part of our building system. By zg we denote the state where Position =
Outside (the attacker is outside); WOpen = £f (the window is closed); Lockedl =
Locked2 = tt (both doors are locked); Keyl = Key2 = ff (the attacker does
not have any key); CamOn = tt (the camera is on); Detected = £f (the attacker
has not been detected). Furthermore, we consider seven additional states z;, such
that, for every 1 < < 7, the specification of z; is the same as the specification of
z;—1, except one variable: state 27 is as zg but Keyl = tt (the attacker has Keyl);
state z9 is as z; but Lockedl = ff (Doorl is unlocked); state z3 is as zo but
Position = Rooml (the attacker is in Rooml); z4 is as z3 but CamOn = £f (the
camera is off); z5 is as z4 but Key2 = tt (the attacker has Key2); state zg is as 25
but Locked2 = ff (Door2 is unlocked); state z7 is as zg but Position = Room2
(the attacker is in Room2).

To model the dynamic behavior of the system, we set (z;—1,2;) €—, for
all 1 < ¢ < 7. Given p = (Position = Outside) A (Lockedl = tt) and p’ =
(Position = Rooml)V (Position = Room2), we have zg, 21 € A(p) and z; € A(p),
for3<i<7T.

The path p = zpz1292324252627, corresponds to the scenario depicted using
solid line in Fig. 1b. The set {z021222324, 2324252627} is an example of parallel
decomposition of p. To show that while being in Room1 the attacker can turn
off but also turn on the camera, we could add the transition (24, 23) to —. In
this case, the attacker could also take the path p’ = z9212223242324252627 Which
is not elementary because it contains the cycle z3z423.

3.2 Attack Trees

To evaluate the security of systems, we use attack trees. An attack tree does not
replace the state-transition system model — it complements it with additional
information on how the corresponding real-life system could be attacked. There
exist a plethora of methods and algorithms for quantitative and qualitative rea-
soning about security using attack trees [15]. However, accurate results can only
be obtained if the attack tree is in some sense consistent with the analyzed sys-
tem. Our goal is thus to validate the relevance of an attack tree with respect
to a given system. To make this validation possible, we need a model capturing
more information than just text-based names of the nodes. In this section, we
therefore introduce a formal definition of attack trees, where the difference with
the classical definition is the presence of a goal of the form (¢,7) at each node.

Definition 4 (Attack tree). An attack tree T over the set of propositions
Prop is either a leaf (1,7), where ¢,y € Prop, or a composed tree of the form
({¢,v),0P)(Th, T3, ...,Ty), where v,y € Prop, OP € {OR, AND, SAND} has arity
2, and Ty, T, ..., T, are attack trees. The main goal of an attack tree
({t,7), OP)(T1, To,...,Ty) is (t,y) and its operator is OP.

v

n
T

92 M. Audinot et al.

The size of an attack tree |T| is the number of the nodes in T. Formally,
|<L7’Y>‘ =1 and |(<L7’Y>a UP)(T17T27 s 7Tn)‘ =1+ Eznzl |T’L|

As an example, the tree in Fig. 3 is T' = ({¢,), 0R)(T1,T2). The subtree T} =
(t1,7m) is a leaf and To = ({t2,72), AND)({ta1,¥21),T22) is a composed tree with
Tro = ((t22,722), SAND)((t221,Y221), (t222, ¥222), (L223, ¥223))-

Before introducing properties that address correctness of an attack tree,
we need to define the path semantics of goal expressions that arise from
tree descriptions. A goal expression is either a mere atomic goal of the form
(t,v) or a composed goal of the form OP({¢1,71), {t2,V2),.. ., {tn,Vn)), Where
OP € {OR,SAND, AND}. The path semantics of a goal expression is defined as
follows.

— [{e,]® = {7 € I(S) | goes from ¢ to v}

B HDR(<L17 P)/l>7 <L2,’y2>a cey <Ln7 Pyn>)]]s = [[<L1ﬂ 71>]]SU [[<L2772>HSU' U [[<Ln7 ,yn>]]S

B %SAND(<L17’YI>’ <[’27 ’72>7) <Ln7’7n>)]]s = [[<L1’ ’71>]]S'[[<L2>72>H8 """ [[(LTH 771)]]5
[

AND(<L17’)/1>, <L2372>7 REE) <Ln77n>)]]8 = {ﬂ € H(‘S) | Vi € {13 s 777'} dm; €
(i, 7)), s.t. {m1, 72, ..., 7, } is a parallel decomposition of 7}.

Consider the goal (t,7) of our running example, and let Z be the system
introduced in Example 1. We have [(:,7)]° = {z02122(2324)F 252627 | k > 1},
where (z324)* is the path composed of k executions of z32y.

4 Correctness Properties of Attack Trees

We now define four correctness properties for attack trees, illustrate them on
our running example, and discuss their relevance for real-life security analysis.

4.1 Definitions

Before formalizing the correctness properties for attack trees, we wish to discard
attack trees with “useless” nodes. To achieve this, we define the admissibility of
an attack tree T w.r.t. the system S.

The property that an attack tree T is admissible w.r.t. a system S is induc-
tively defined as follows. A leaf tree (1,7) is admissible whenever [{1,7)]® # 0.
A composed tree ({¢,7),0P)(T1,...,T,) is admissible whenever three conditions
hold: (a) [{t, V)] # 0, (b) [OP({t1,71)s -+, (tns 1))]E # 0, where (1;,v;) is the
main goal of T; (1 <14 < n), and (c) every subtree T; is admissible.

We now propose four notions of correctness, that provide various formal
meanings to the local refinement of a goal in an admissible tree.

Definition 5 (Correctness properties). Let T be a composed admissible
attack tree of the form ({t,7), OP)(T1,Ts ..., T,), and assume (1;,7;) is the main
goal of T;, fori € {1,...,n}. The tree T has the

1. Meet property if [OP({t1,71), - - {tn, Ya))]S N [{t,)] # 0.
2. Under-Match property if [OP((t1,71)s- - -, {tn, 1a))]® C [{t,7)]°-

Is My Attack Tree Correct? 93

3. Over-Match property if [OP((t1,71), - - (tns Yu))]S 2 [{t,7)]°-
4. Match property if [OP({t1,71),-- -, (Ln,'yn>)]]s = [{¢, 7)]]3.

Clearly the Match property implies all other properties, whereas Under- and
Over-Match properties are incomparable — as illustrated in Sect.4.2 — and they
both imply the Meet property. Note that a tree T has the Match property if, and
only if, it has both the Under-Match property and the Over-Match property.

The correctness properties of Definition 5 are local (at the root of the sub-
tree), but they can easily be made global by propagating their requirement to
all of the subtrees. As there are |T'| many subtrees, the complexity of globally
deciding these properties has the same order of magnitude as in the local case.

4.2 Tllustration on the Running Example

In the system Z defined in Example 1 and composed of the states zg, ..., 27, we
add two states. First, the state z{, that is similar to zg except that we assume that
the window is open, i.e., WOpen = tt, and second, the state 2/, that is similar to
z{, except that we assume that the attacker is in Room2, i.e., Position = Room2.
As a consequence the transitions of the system Z become 2z, — zp — 21 — 29 —
z3 < 24 — 25 — 2zg — 27 and 2, — 2z}, where the latter models that if the
window is open, the attacker can reach Room2 undetected by entering through
the window.

Let us consider the attack tree T'({¢,v),0R)({¢1,71),T2) from Fig.3, where
the main goal of Ty is (i9,72). Since in system Z, the set of paths [{(1,7)]°
is exactly the union of [{t1,71)]® and [{t2,72)]®, the tree T has the Match
property w.r.t. Z. This means that in order to achieve goal (t,), it is necessary
and sufficient to achieve goal (11,71) or goal (t2,72).

We now consider the sub-tree T5 of T rooted at the node labeled by (t2,72)
in Fig. 3. The tree Ty is of the form ({t2,%2), AND)({t21, V1), T3) where the main
goal of Ty is (i22,722). Our objective is to analyze the relationship between
the main goal (1a,7v2) of Th and the composed goal AND({t21,721), (t22,Y22))-
In other words, we ask how does the aim of reaching Room2 undetected via
building relates with turning off the camera ({t21,721)) and reaching Room2
((t22,722)). A quick analysis of system Z shows that indeed achieving both sub-
goals (t21,v21) and (ta2,v22) is necessary to achieve goal (1a,7v2), but actually it is
not sufficient. Consider the path § = z{z021222324252627. This path achieves goal
AND({t21,721), {t22,V22)), as it can be decomposed into do1 = z{zpz1222324 and
doo = 2021222324252627, achieving (ta1,v21) and (122, Y22), respectively. However,
§ ¢ [{t2,72)]°, since 2, & A(12) (recall that to requires the window to be closed
which is not the case in z{)). This is what the Over-Match property reflects. As a
consequence, the main tree 7' does not have the global Match property w.r.t. Z.

Symmetrically to the Over-Match property, Under-Match reflects a sufficient
but not necessary condition. Under-Match is illustrated in the extended version
of this work [4]. Regarding the Meet property, we invite the reader to consider
the following discussion on the relevance of the correctness properties we have
proposed.

94 M. Audinot et al.

4.3 Relevance of the Correctness Properties

The main objective of introducing the four correctness properties is to be able to
validate an attack tree with respect to a system S, i.e., verify how faithfully the
tree represents potential threats on S. This is of special importance for the trees
that are created manually or which are borrowed from an attack tree library.

In the perfect world, we would expect to work with attack trees having the
(global) Match property, i.e., where the refinement of every (sub-)goal covers
perfectly all possible ways of reaching the (sub-)goal in the system. However, a
tree created by a human will rarely have this property. The experts usually do not
have perfect knowledge about the system and might lack information about some
relevant data. Trees that have been created for similar systems are often reused
but they might actually be incomplete or inaccurate with respect to the current
system. Finally, requiring the (global) Match property might also be unrealistic
for goals expressed only with a couple (precondition, postcondition). There-
fore, Match is often too strong to be the property expected by default.

In practice, experts base their trees on some example scenarios, which implies
that they obtain trees having the (global) Meet property. The Meet property —
which ensures that there is at least one path in the system satisfying both the
parent goal and its refinement — is the minimum that we expect from an attack
tree so that we can consider that it is (in some sense) correct and so that we can
start reasoning about the security of the underlying system.

However, in order to be able to perform a thorough and accurate analysis of
security, one needs stronger properties to hold. One of the purposes of attack
trees is to provide a summary of possible individual attack scenarios in order to
quantify the security-relevant parameters, such as their cost, their time or their
probability. This helps the security experts to compare and rank the different
scenarios, to be able to deduce the most probable ones and propose suitable
countermeasures. The classical bottom-up algorithm for quantification of attack
trees, described for instance in [19], assigns the parameter values to the leaf
nodes and then propagates them up to the root, using functions that depend on
the type of the refinement used (in our case OR, AND, SAND). This means that the
value of the parent node depends solely on the values of its children. To make
such a bottom-up quantification meaningful from the attacker’s perspective, we
need to require at least the (global) Under-Match property. Indeed, this property
stipulates that all the paths satisfying a refinement of a node’s goal also satisfy
the goal itself. Under-Match corresponds thus to an under-approximation of the
set of scenarios and it is enough to consider it for the purpose of finding a
vulnerability in the system.

To make the analysis meaningful from the point of view of the defender, we will
rather require the Over-Match property. This property means that all the paths
satisfying the parent goal also satisfy its decomposition into sub-goals. Since the
Over-Match property corresponds to an over-approximation of the set of scenar-
ios, it is enough to consider it for the purpose of designing countermeasures.

Our method to evaluate the correctness of an attack tree is to check Admis-
sibility and the (global) Meet property. If it holds, then we say that the attack

Is My Attack Tree Correct? 95

tree construction is correct w.r.t. to the analyzed system. We then look at the
stronger properties. Depending on the situation, the expert might want to ensure
either the (global) Under-Match or the (global) Over-Match property. If the tree
fails to verify the desired property with respect to a given system S, then it
needs to be reshaped before it can be employed for the security analysis of the
real system modeled by S.

5 Complexity Issues

In this section, we address the complexity of deciding our four correctness proper-
ties introduced in Definition 5. For full proofs, we refer the reader to the extended
version of this work [4]. Table 1 gives an overview of the obtained results. In the
case of the OR and the SAND operators, all the correctness properties are decided in
polynomial time, which is promising in practice. However, for the AND operator,
checking the Admissibility property and the Meet property is NP-complete, and
checking the Under-Match property is co-NP-complete. These last two problems
are therefore intractable [9], but recall that their complexity in practice might
be lower thanks to much favorable kinds of instances (see for example [18]).

Table 1. Complexities of the correctness properties.

Admissibility | Meet | Under-Match | Over-Match | Match
OR |P P P P P
SAND | P P P P P
AND |NP-c NP-c | co-NP-c co-NP co-NP

We first state two lemmas that will be useful for our complexity analysis.
Lemma 2 provides a bound to the size of paths we need to consider in the system
for the verification of correctness properties. Lemma 3 provides the complexity
of checking if a path reflects a particular combination of subgoals.

Lemma 2. Let S be a transition system, OP € {OR,AND,SAND}, and
L1, Y1y tnyYn € Prop. For every path m in [OP((t1,71),. ., {tn,)],
there exists a path 7w of linear size in |S| and n that is also in
[OP((t1,71)s - {tn, 1))]® and which preserves the ends of m, i.e., ©'(0) = 7(0)
and 7' (|7']) = w(|7]). More precisely, |n'| € O((2n — 1) |S]).

Lemma 3. Let S be a transition system, t1,71, - - - tn, Yn be propositions in Prop,
and let © € I1(S). Determining whether = € [OP({t1,71), (t2,72); - - - s {tn, 1))
can be done in time O(|w|+n), if OP = SAND, and in time O(|x|n), if OP = AND.

The proofs of the two lemmas are provided in [4].

96 M. Audinot et al.

5.1 Checking Admissibility (Column 1 of Table 1)

We now investigate the complexity of deciding the admissibility of an attack
tree.

Proposition 1. Given a system S and t1,7%1,---tn,Vn € Prop, decid-

ing [(t, V]S # 0, deciding [OR((t1,71); s {tn,)] # 0, and deciding
[SAND((t1,71), - - -, (tns Yu))]E # O are decision problems in P.

Proof.

1. Determining if [{¢,7)]® is not empty amounts to performing a standard reach-
ability analysis in S, which can be done in polynomial time.

2. By the path semantics of the OR operator, [OR({t1,71),- -, (tn, Vn)] # 0 if
and only if there is i € [1,n], such that [{¢;,~;)]® # 0, which by the case 1 of
this proof, yields a polynomial time algorithm.

3. Checking that [SAND((t1,71),- -, (tn;Yn))]® # 0 can be done by a forward
analysis: for 1 < i < n, we define a sequence of state sets .S; by induction
over i as follows: we let S = A(e1). Next, for 2 < i < n, S;11 = A1) N
(i) N Postk(S;). Clearly, [SAND({t1,71), -+, {tn,¥n))]® # 0 if, and only if
Spn # 0. Moreover, computing S,, takes at most n | S| steps, since each S; 1 is
computed from S; in at most |S| steps.

In the case of the AND operator the reasoning is more complex.

Proposition 2. Given a system S and t1,71,...tn,¥n € Prop, deciding the
non-emptiness [AND((t1,71), - - -, (tns Yn))]S # 0 is NP-complete.

Proof. NP-easy: We can use the algorithm of Lemma 3, with the algorithm
guessing a path of polynomial size according to Lemma 2. NP-hard: We recall
that a set of clauses € over a set of (propositional) variables {pi,...,p,} is
composed of elements (the clauses) C' € € such that C is a set of literals, that
is either a variable p; or its negation —p;. The set € is satisfiable if there exists
a valuation of the variables pi,...,p, that renders all the clauses of € true.
The SAT problem is: given a set of clauses €, to decide if it is satisfiable. It is
well-known that SAT is an NP-complete problem [6].

Now, let € = {C1,...,C} be a set of clauses over variables {pi,...,p,}
(ordered by their index) that is an input of the SAT problem. Classically, we let
|| be the sum of the sizes of all the clauses in €, where the size of a clause is
the number of its literals.

In the following, we let the symbol ¢; denote either p;, or —p;, for every
i €{1,...,r}. We define the labeled transition system Si = (S¢, —%, A¢) over
the set of propositions {start,Cy,...,Cy,}, where start is a fresh proposition, as
follows. The set of states is S = |J;_, {pi, —p; }U{s}, where s is a fresh state; the
transition relation is —¢= {(¢;, lix1) | ¢ € [1,7 — 1]} U{(s, ¢1)}; and the labeling
of states \¢ : {start,Cy,...,Cp} — 2% is such that A\g(start) = {s} and
Mg (Ci) = {€ € C;} for 1 < i < m. Note that, by definition, |S¢| is polynomial

Is My Attack Tree Correct? 97

Fig. 5. The system S¢¢,,c,} where C1 =pV -gand C2 =p V.

in |%|. For example, the transition system corresponding to the set formed by
clauses C7 = pV =g and Cy = p V r is depicted in Fig. 5.

It is then easy to establish that [AND((start,C4), (start,Cs),...,
(start, Cp,))]5¢ # 0 if, and only if € is satisfiable.

According to the formal definition of the statement “I" is admissible w.r.t. §”
as defined in Sect. 4, it is easy to combine the results of Propositions 1 and 2, to
conclude that verifying that a tree is admissible is an NP-complete problem.

5.2 Checking the Meet property (Column 2 of Table 1)

Preliminaries on temporal logic. We consider a syntactic fragment of the tempo-
ral logic CTL [5] where the only temporal operator is “eventually”, here denoted
by symbol ¢, and where Boolean operators are conjunction and disjunction. The
syntax of the formulasis ¢ :=p | ¢ A | ¢V | Op. The semantics of formulas
is given with regard to a labeled transition system & = (S,—,\): each for-
mula ¢ denotes a subset of states, which we note [¢]s, and which is defined by
induction: [pls = A(p), [p A ¢'ls = [¢ls N [¢]s, [p V ¢'ls = [¢]ls U [¢']s, and
[Opls = Pres([¢)s), where Prek is defined in Sect. 3.1. Recall that s € [Op]s
if, and only if, there is a path in S starting from s and that reaches a state in
[¢]s. Tt is well-established that computing [¢]s can be done in polynomial time
in |S| and |p| (see for example [27]).
We now turn to the complexity of verifying the Meet property.

Proposition 3. Given a system S and t,7y,t1,71, - - - tn, Yn € Prop, the problem
of deciding [OR((t1,71); - - -, (tn, Ya)) SN[, 7)]S # 0, and the problem of deciding
[SAND({11,71). - - (s 1))IS 1 [t]S # 0 are i P

Proof.

1. Let gy := \/ LA AO(Y A ;). We claim that [JOR({t1,71), - - {tn, 1))]® N
i=1
[(e,7)]S # 0 iff [pr]s # 0. We easily conclude our proof from the claim and
the fact that computing [¢or]s can be done in polynomial time.

98 M. Audinot et al.

2. Let osanp :=t A1 AQ(1 A2 AO(2 A .. O(yn A y))). We claim that

[SAND({t1,71); - - - {tn, YN]SO (e, V)] # O iff [psawp]s # 0. We easily conclude
our proof from the claim and the fact that computing [¢sap]s can be done
in polynomial time.

The proofs of the two claims can be found in the extended version [4].

Again, the AND operator turns out to be intrinsically more complex to deal
with.

Proposition 4. Given a system S and t,7,t1,71,- - -tn,Vn € Prop, deciding
[AND((t1,71), - - -5 (s Y)] O [{e, 1)]S # 0 is an NP-complete problem.

Proof. NP-easy: We can construct a non-deterministic polynomial time algo-
rithm that guesses a path m € II(S), of polynomial size in |S| and n (this is
justified by Lemma 2), and checks that 7 € [AND((t1, V1), - -, (tn,Yn))]°, which
can be done in polynomial time in the size of 7, which is also in polynomial time
in |S| and n by the choice of 7 (see Lemma 3). NP-hard: we reduce the problem
of deciding [AND({t1,71), - -, {tn,¥n))]® # 0 which is NP-hard by Proposition 2.
The details are given in the extended version [4].

As a consequence of Propositions 3 and 4, it is NP-complete to verify that an
attack tree has the Meet property, but if we restrict to attack trees that contain
only OR or SAND operators, the problem becomes P.

5.3 Checking the Under-Match property (Column 3 of Table 1)

The OR and SAND operators do not pose any problem. Due to the lack of space,
we omit the proof which can be found in the extended version [4].

Proposition 5. Given a system S and t,7,t1,71,---tn,Yn € Prop, decid-

ing [OR((1,71)s - {tn, 1u))I® © [,)], and deciding [SAND((1,71), -,
{tn, Y] C [{1,7)]° are decision problems in P.

As previously, the AND operator yields a more complex problem to solve.

Proposition 6. Given a system S and t,7,t1,71,---tn,Vn € Prop, deciding
[AND((t1,71), - - - 5 (tns Y))]E € [,)] is @ co-NP-complete problem.

This proof is given in the extended version [4].

5.4 Checking the Over-Match property (Column 4 of Table 1)

Again, the cases for the OR and AND operators are smooth whereas the case of
the AND operator is more difficult. Full proofs of these results are long and can
be found in [4].

Is My Attack Tree Correct? 99

Proposition 7. Given a system S and t,7,t1,71,---tn,Yn € Prop, decid-
ing [OR({t1,71); s {tn,)] 2 [(t,7)]° and deciding [SAND({t1,71),. ..,
{tn, ¥aN]® 2 [{t,M]® are decision problems in P. On the contrary deciding
[AND((t1,71),s - - (b, u)]E 2 [, 7)]® is a decision problem in co-NP.

Finally, we can get an upper bound for column 5 of Tablel (the Match
property) by taking the maximum between upper bound complexities for Under-
Match and Over-Match, which achieves the filling of Table 1.

6 Conclusion and Future Work

In this work, we have developed and studied a formal setting to assist experts
in the design of attack trees when a particular system is considered. The system
is described by a finite state-transition system that reflects its dynamics and
whose finite paths (sequences of states) denote attack scenarios. The attack tree
nodes are labeled with pairs (t,7) expressing the attacker’s goals in terms of
pre and postconditions. The semantics of attack trees is based on sets of finite
paths in the transition system. Such sets of paths can be characterized as a mere
reachability condition of the form “all paths from condition ¢ to condition ~”,
or by a combination of those by means of OR, AND, and SAND.

We have exhibited the Admissibility property which allows us to check
whether it makes sense to analyze a given attack tree in the context of a con-
sidered system. We then propose four natural correctness properties on top of
Admissibility, namely

— Meet — the node’s refinement makes sense in a given system;

— Under (resp. Over) Match — the node’s refinement under-approximates (resp.
over-approximates) the goal of the node in a given system; and

— Match — the node’s refinement expresses exactly the node’s goal in a given
system.

While analyzing an attack tree with respect to a system, we propose to start
by checking whether each of its subtrees satisfies the Meet property — this is
the minimum that we require from a correct attack tree. If this is the case, we
can then check how well the tree refines the main attacker’s goal, using (Under-
and Over-) Matching. Our study reveals that the highest complexity in such
analysis is due to conjunctive refinements (i.e., the AND operator), as opposed
to disjunctive and sequential refinements, cf. Table1. The reason is that the
semantics that we use in our framework relies on paths in a transition system
and thus modeling and verification for paths’ concatenation (used to formalize
the SAND refinements) is much simpler than those for parallel decomposition
(used to formalize the AND refinements). Indeed, the latter requires to analyze
the combinatorics of paths representing children of a conjunctively refined node.

The framework presented in this paper offers numerous possibilities for prac-
tical applications in industrial setting. First, it can be used to estimate the
quality of a refinement of an attack goal, that an expert could borrow from

100 M. Audinot et al.

an attack pattern library. The correctness properties introduced in this work
allow us to evaluate the relevance of often generic refinements in the context of a
given system. Second, classical attack trees use text-based nodes that represent a
desired configuration to be reached (our postcondition 7) without specifying the
initial configuration (our precondition ¢) where the attack will start from. Given
a transition system S describing a real system to be analyzed, the text-based
goals can be straightforwardly translated into formal propositions expressing the
final configurations (i.e.,) to be reached by the attacker. The expert may also
specify the initial configurations (i.e., ¢), but if he does not do so, they can be
automatically generated from the transition system, by simply taking all states
belonging to the set Pre%(A(7y)) of predecessors of A(7) in S.

For pedagogical reasons, we have focused on simple atomic goals (i.e., node
labels) that are definable in terms of a precondition and a postcondition. As one
of the future directions, we would like to enrich the language of atomic goals, for
instance by adding variables with history or invariants. Variables with history
can be used to express properties such as “Once detected, the attacker will always
stay detected”. With invariants, we may add constraints to the goals, as in “Reach
Room?2 undetected without ever crossing Room1”. If invariants are added to
atomic goals, for instance using LTL formulas, the complexity of some problems
presented in this paper may increase. In that case, checking that a path satisfies
the semantics of a node might no longer be done in constant time, but in polyno-
mial time, or even in PSPACE-complete, if arbitrary LTL formulas are allowed
[7]. It would then be relevant to study the interplay between the expressiveness
of the atomic goals and the complexity of verifying these correctness properties.

It would also be interesting to extend our framework to capture more com-
plex properties than those defined in Definition 5. Pragmatic examples of such
properties would be validities and tests expressed in an adequate logic. Validi-
ties would be formulas that are true in any system. An example of a validity
would look like AND({¢,y){¢’,7")) 3 SAND({¢,¥){¢',~’)), with the meaning that a
sequential composition is a particular case of parallel composition. Tests would
be formulas which might be true in some systems, but not necessarily in all
cases. For instance, a formula like AND({¢,v){¢',~’)) T SAND({¢,¥){’,7")) would
mean that, in a given system, it is impossible to realize both (¢,7) and (/,~)
otherwise than sequentially in this particular order.

Finally, we are currently working on integrating the framework developed
in this work to the ATSyRA tool. The ultimate goal is to design software for
generation of attack trees satisfying the correctness properties that we have intro-
duced. The short- term objective is to validate the practicality of the proposed
framework and its usability with respect to the complexity results that we have
proven in this work.

References

1. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95-114. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46666-7_6

http://dx.doi.org/10.1007/978-3-662-46666-7_6

10.

11.

12.

13.

14.

15.

16.

17.

18.

Is My Attack Tree Correct? 101

Aslanyan, Z., Nielson, F.: Model checking exact cost for attack scenarios. In:
Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 210-231. Springer,
Heidelberg (2017). doi:10.1007/978-3-662-54455-6_-10

Audinot, M., Pinchinat, S.: On the soundness of attack trees. In: Kordy, B.,
Ekstedt, M., Kim, D.S. (eds.) GraMSec 2016. LNCS, vol. 9987, pp. 25-38. Springer,
Cham (2016). doi:10.1007/978-3-319-46263-9_2

Audinot, M., Pinchinat, S., Kordy, B.: Is my attack tree correct? (extended ver-
sion). CoRR abs/1706.08507 (2017), http://arxiv.org/abs/1706.08507

Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52-71. Springer, Heidelberg (1982). do0i:10.1007/BFb0025774
Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of
the Third Annual ACM Symposium on Theory of Computing, pp. 151-158. ACM
(1971)

De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic
on finite traces. In: IJCATI 2013 Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, pp. 854-860. Association for Computing
Machinery (2013)

Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Poulsen,
D.B.: Modelling attack-defense trees using timed automata. In: Franzle, M.,
Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 35-50. Springer, Cham
(2016). doi:10.1007/978-3-319-44878-7_3

Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 29. W.H. Freeman
and Company, New York (2002)

Horne, R., Mauw, S., Tiu, A.: Semantics for specialising attack trees based on
linear logic. Fundam. Inform. 153(1-2), 57-86 (2017)

Ivanova, M.G., Probst, C.W., Hansen, R.R., Kammiiller, F.: Transforming graphi-
cal system models to graphical attack models. In: Mauw, S., Kordy, B., Jajodia, S.
(eds.) GraMSec 2015. LNCS, vol. 9390, pp. 82-96. Springer, Cham (2016). doi:10.
1007/978-3-319-29968-6_6

Jhawar, R., Kordy, B., Mauw, S., Radomirovié¢, S., Trujillo-Rasua, R.: Attack
trees with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC
2015. TAICT, vol. 455, pp. 339-353. Springer, Cham (2015). doi:10.1007/
978-3-319-18467-8_23

Jiirgenson, A., Willemson, J.: Serial model for attack tree computations. In: Lee,
D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 118-128. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14423-3_9

Kordy, B., Mauw, S., Radomirovic, S., Schweitzer, P.: Attack-defense trees. J. Log.
Comput. 24(1), 55-87 (2014)

Kordy, B., Pietre-Cambacédes, L., Schweitzer, P.: Dag-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13—14,
1-38 (2014)

Kordy, B., Pouly, M., Schweitzer, P.: Probabilistic reasoning with graphical security
models. Inf. Sci. 342, 111-131 (2016)

Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via
priced timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FOR-
MATS 2015. LNCS, vol. 9268, pp. 156-171. Springer, Cham (2015). doi:10.1007/
978-3-319-22975-1_11

Leyton-Brown, K., Hoos, H.H., Hutter, F., Xu, L.: Understanding the empirical
hardness of NP-complete problems. Commun. ACM 57(5), 98-107 (2014)

http://dx.doi.org/10.1007/978-3-662-54455-6_10
http://dx.doi.org/10.1007/978-3-319-46263-9_2
http://arxiv.org/abs/1706.08507
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/978-3-319-44878-7_3
http://dx.doi.org/10.1007/978-3-319-29968-6_6
http://dx.doi.org/10.1007/978-3-319-29968-6_6
http://dx.doi.org/10.1007/978-3-319-18467-8_23
http://dx.doi.org/10.1007/978-3-319-18467-8_23
http://dx.doi.org/10.1007/978-3-642-14423-3_9
http://dx.doi.org/10.1007/978-3-319-22975-1_11
http://dx.doi.org/10.1007/978-3-319-22975-1_11

102

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

M. Audinot et al.

Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186-198. Springer, Heidelberg (2006). doi:10.
1007/11734727_17

OWASP: CISO AppSec Guide: Criteria for managing application security risks
(2013)

Phillips, C.A., Swiler, L.P.: A graph-based system for network-vulnerability analy-
sis. In: Workshop on New Security Paradigms, pp. 71-79. ACM (1998)

Pieters, W., Padget, J., Dechesne, F., Dignum, V., Aldewereld, H.: Effectiveness of
qualitative and quantitative security obligations. J. Inf. Sec. Appl. 22, 3—-16 (2015)
Pinchinat, S., Acher, M., Vojtisek, D.: ATSyRa: an integrated environment for
synthesizing attack trees. In: Mauw, S., Kordy, B., Jajodia, S. (eds.) GraM-
Sec 2015. LNCS, vol. 9390, pp. 97-101. Springer, Cham (2016). doi:10.1007/
978-3-319-29968-6_7

Research, N.; (RTO), T.O.: Improving Common Security Risk Analysis. Tech.
Rep. AC/323(ISP-049)TP/193, North Atlantic Treaty Organisation, University of
California, Berkeley (2008)

Roy, A., Kim, D.S., Trivedi, K.S.: Attack countermeasure trees (ACT): towards
unifying the constructs of attack and defense trees. Secur. Commun. Netw. 5(8),
929-943 (2012)

Schneier, B.: Attack trees: modeling security threats. Dr. Dobb’s J. Softw. Tools
24(12), 21-29 (1999)

Schnoebelen, P.: The complexity of temporal logic model checking. Adv. Modal
Logic 4(35), 393-436 (2002)

Sheyner, O., Haines, J.W., Jha, S., Lippmann, R., Wing, J.M.: Automated gener-
ation and analysis of attack graphs. In: IEEE S&P, pp. 273-284. IEEE Computer
Society (2002)

Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinellj,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231-237. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46681-0-20

Vigo, R., Nielson, F., Nielson, H.R.: Automated generation of attack trees. In:
CSF, pp. 337-350. IEEE Computer Society (2014)

http://dx.doi.org/10.1007/11734727_17
http://dx.doi.org/10.1007/11734727_17
http://dx.doi.org/10.1007/978-3-319-29968-6_7
http://dx.doi.org/10.1007/978-3-319-29968-6_7
http://dx.doi.org/10.1007/978-3-662-46681-0_20

Server-Aided Secure Computation
with Off-line Parties

Foteini Baldimtsi'®), Dimitrios Papadopoulos?, Stavros Papadopoulos?,
Alessandra Scafuro?, and Nikos Triandopoulos®

! George Mason University, Fairfax, USA
foteini@gmu.edu
2 Hong Kong University of Science and Technology, Sai Kung, Hong Kong
dipapado@cse.ust.hk
3 Intel Labs, MIT, Cambridge, USA
stavrosp@csail.mit.edu
4 North Carolina State University, Raleigh, USA
ascafur@ncsu.edu
5 Stevens Institute of Technology, Hoboken, USA
ntriando@stevens.edu

Abstract. Online social networks (OSNs) allow users to jointly compute
on each other’s data (e.g., profiles, geo-locations, etc.). Privacy issues nat-
urally arise in this setting due to the sensitive nature of the exchanged
information. Ideally, nothing about a user’s data should be revealed to
the OSN provider or non-friends, and even her friends should only learn
the output of a specific computation. A natural approach for achieving
these strong privacy guarantees is via secure multi-party computation
(MPC). However, existing MPC-based approaches do not capture two
key properties of OSN setting: Users does not need to be online while
their friends query the OSN server on their data; and, once uploaded,
user’s data can be repeatedly queried by the server on behalf of user’s
friends. In this work, we present two concrete MPC constructions that
achieve these properties. The first is an adaptation of garbled circuits
that converts inputs under different keys to ones under the same key, and
the second is based on 2-party mixed protocols and involves a novel 2-
party re-encryption module. Using state- of-the-art cryptographic tools,
we provide a proof-of-concept implementation of our schemes for two
concrete use cases, overall validating their efficiency and efficacy in pro-
tecting privacy in OSNs.

1 Introduction

Secure computation is a cryptographic tool that enables n mutually distrustful
parties to compute the output of a function on their combined inputs, while keep-
ing the inputs secret. Originally, the problem of secure computation considered
n equally powerful, fully connected parties that interact for a one-time compu-
tation and was mostly regarded as an intriguing theoretical question. However,
as more data and services are managed by remote untrusted machines, this tool

© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 103-123, 2017.
DOI: 10.1007/978-3-319-66402-6_8

104 F. Baldimtsi et al.

became increasingly relevant for real-world scenarios over time. Thus, the effort
of the community has focused on making secure computation amenable to real
applications in ways that can be summarized in the following three directions:

(a) Optimization of Existing Classical Protocols. An amazing line of work
focused on improving the concrete efficiency of existing results in the model of
equally powerful, fully connected parties such as Yao’s garbled circuit [49,50],
and GMW [25] and BGW [11]. For example, a sequence of work [10,17,36-38,42,
45,51] showed that classic garbled circuits can be implemented very efficiently,
reducing the number of encryptions required for each garbled gate.

(b) Introduction of New Interaction/Computation Models to Reduce
the Computational Burden of the Parties. These new models consider
distinguished nodes (often called “servers”) that carry out most of the compu-
tation and communication. For example, [39] considers a single-server model,
where parties encrypt their inputs using homomorphic encryption, send them to
an untrusted server that performs the computation and delivers the encrypted
output to the parties who engage in a MPC protocol to decrypt the result. In this
way, parties have to do work that is independent of the function complexity, but
depends only on the input/output size. While asymptotically advantageous, [39]
has poor concrete efficiency. Other works [18,19,23,32,33] have looked at lever-
aging this “server-aided” model with the additional assumption that the server
does not collude with the parties. In this setting, they are able to provide effi-
cient multiparty protocols based on garbled circuits, where parties communicate
with the servers upon each computation to provide the encoding of their inputs
(some parties need to additional engage with the server requiring communication
complexity proportional to the circuit size). A multi-server model has also been
considered [14,20,31,43] where computation is performed by multiple servers
and the non-collusion requirement is moved from client-to-server to server-to-
server only.

(c) Introduction of Models Tailored to Specific Real World Applica-
tions. Works in this direction proposed models that better reflect real world
threat models and interaction patterns. An example of such work is the model
for computation over the Internet introduced by Halevi et al. in [27]. In their
model there is a single server which is always online but the parties involved in
the protocol are not expected to be online. Instead, they connect only when they
desire to provide inputs to the computation or learn the output of the protocol.
However, every time a new computation needs to be performed, parties must
connect and provide fresh encodings of their input (even if it has not changed).
This makes [27] very relevant to applications that require a one-time computa-
tion, such as e-voting, where clients connect once to cast their vote and once to
get the election result.

Our Contribution. In this work, we make progress in the last direction, by
proposing a new model that fits a specific real world scenario —Online Social
Networks (OSN)— and we provide two new protocols and respective implemen-
tations. OSNs enable users to store information they wish to share with other

Server-Aided Secure Computation with Off-line Parties 105

authorized users —their friends— and the latter can access friends’ data at their
own convenience. As opposed to one-time computation applications which are
captured by [27], OSNs allow repeated computations over a party’s data. E.g.,
in the friend-finder application of Facebook, called “Nearby Friends”, Alice’s
location is sent to Facebook’s server once and can be re-used by her friends
several times, without Alice performing any further action. This type of interac-
tion mandates two key properties: (i) data re-usability, i.e., personal data that
a user may upload once to the OSN server can be repeatedly computed upon
(possibly in different ways), and (ii) friend non-participation, i.e., a user need
not be online when one of her friends requests a computation that involves her
data. We introduce a model where parties upload their secret input to a single,
untrusted, server in a one-time step, and then they do not have to be on-line
anymore unless they want to update their own input or they want to compute
(via the server) a function on the combined inputs of their friends. Crucially,
and in contrast with [27], whenever a friend requests a computation from the
server, the other parties do not need to provide a new encoding for their inputs.

Our Model. We consider a single-server hosting the OSN, and multiple users
that form the social network. We represent the OSN as a graph; the users con-
stitute the nodes of the graph, and an edge denotes that the two vertices are
friends. Users upload their data to the server, and update them at any time. The
users agree upon arbitrary queries (i.e., specific computations over their uploaded
data) with their friends (e.g., “who is my geographically nearest friend”), and
each user may repeatedly issue queries to the server about her own and her
friends’ data. Both upload and query executions involve only the server and a
single user, while the remaining users do not need to participate or even to be
online.

Our privacy goals are: (i) the server learns nothing about the user data or
the query results, (ii) the querier learns nothing about her friends’ data other
than what is inferred from the results, and (iii) the querier learns nothing about
non-friends’ data. Note that we do not consider the social graph structure to be
sensitive. Moreover, we assume that every user allows all of her friends to query
on her data, i.e., “friendship” implies access control on one’s data. Hiding the
graph and supporting more sophisticated access policies are interesting problems
that are orthogonal to our work. Our performance requirements are: (i) the cost
to upload/update a user’s input should be constant, and (ii) the constructions
should involve lightweight cryptographic tools, with reasonable upload and query
times.

Definitional Choices. Our security model has two relaxations. First, we
assume that friends do not collude with the OSN provider, they can col-
lude with each other however (non-friend collusion with the OSN server is
also accepted). This type of security relaxation, first formalized as bounded-
collusions by Kamara et al. in [32], has since been adopted in a sequence of
works [18,19,23,32,33]. We believe that this collusion model is meaningful in
OSN applications where friendship implies some level of trust. Note that regard-
less of the collusion model, in the OSN interaction model (where the server can

106 F. Baldimtsi et al.

perform a computation without other users), only a weaker input-privacy can
be achieved. Indeed, [27] shows that a collusion between server and any user U
allows them to learn the residual function on many inputs of their choice. Second,
we consider the semi-honest model, i.e., we assume that the parties execute the
protocols correctly. Although weaker, this model provides full protection against
security breaches suffered by OSN providers or by friends. In the full version of
the paper [8], we elaborate on some of challenges that arise when moving to the
malicious setting where adversaries may arbitrarily deviate from the protocol.

Our Technique: Multi-party Computation from a Two-Party Proto-
col. Our approach consists of implementing a multi-party functionality, using
strictly two-party protocols run between a single user and the server. Our key
technical contribution is developing “translation” mechanisms to translate input
encrypted under a friend’s secret key, into data that is encrypted with a com-
mon key which is secret shared between the OSN server and the user, but is
not known by any of them. In developing this tool, we leverage the assump-
tion that a friend does not collude with the OSN server. In this way, parties
upload encodings of their inputs to the server and, any time a party wishes to
compute a function, the server will use her friends’ encodings and interact with
the querier to carry out the computation. This might seem relatively easy to
achieve, e.g., if the friend input encodings are all produced under the querier’s
key, or by establishing fresh shared randomness before every single computa-
tion (as in [23]). The former approach requires each friend to produce a separate
encoding of her value for each of her friends, leading to considerable overhead for
upload. The latter prevents re-usability of values, forcing friends to get involved
in someone else’s computations. Thus, the challenge in realizing the multi-party
OSN functionality from two-party protocols boils down to simultaneously achiev-
ing re-usability, friend non-participation and efficient uploads, while employing
lightweight cryptographic primitives (such as symmetric or additively homomor-
phic encryption). At the core of our solutions are mechanisms for re-randomizing
the encoding of the inputs upon each computation, without involving any party
except the querier and the server.

Overview of our Protocols. We design two MPC-based constructions
based on well-studied techniques for secure two-party computation, garbled
circuits [49,50] and mized protocols [13,21,28,34]. Each user independently
encrypts a value under her own key and uploads the encryption to the server
with constant cost. The difficulty lies in implementing a two-party query pro-
tocol on encryptions produced by different keys. We achieve this by having two
users exchange common secrets once upon establishing their friendship. Using
these secrets, the querier can emulate a multi-party protocol by solely interacting
with the server.

Our first construction, presented in Sect. 4 is based on garbled circuits. The
main idea is that the querier prepares a selection table utilizing the common
secrets during the query, which allows the server to map the (unknown to the
querier) encoded friend inputs to the encoding expected by the querier’s circuit.
A similar idea was used in [40] for a different setting, namely garbled RAMs.

Server-Aided Secure Computation with Off-line Parties 107

A positive side-effect of this is that is eliminates the need for costly oblivious
transfers (OT) required in traditional two-party garbled circuit schemes.

Our second construction, presented in Sect. 5, adopts the two-party mixed
protocols approach, motivated by the fact that the performance of garbled cir-
cuits is adversely affected by functions with large circuit representation. The
main idea is to substitute the parts of the computation that yield a large number
of circuit gates with arithmetic modules. The latter are implemented via two-
party protocols, executed between the querier and the server involving homo-
morphic ciphertexts. A core component of our solution is a novel two-party
re-encryption protocol, which enables the server to privately convert the homo-
morphic ciphertexts of the querier’s friends, to ciphertexts under the querier’s
key. Unlike existing proxy re-encryption schemes [5,6,35], our simple technique
maintains the homomorphic properties of ciphertexts, and can be retrofitted into
any existing scheme that uses (partially) homomorphic encryption (e.g., [46]),
allowing computation over ciphertexts produced with different keys of collabo-
rating users.

Implementation. In Sect. 6, we provide a proof-of-concept implementation and
experimentally evaluate its performance for applications that measure closeness
under the Euclidean and the Manhattan distance metrics, which are useful in
OSNs (e.g., location closeness in Foursquare, or profile closeness in Match.com).

2 Preliminaries

Semi-Homomorphic Encryption. We utilize public-key additively homomor-
phic schemes (e.g., Paillier [47]). Hereafter, [-],» denotes a ciphertext encrypted
with additively homomorphic encryption under key pk. When it is clear from
the context we omit pk from the subscript. Given ciphertexts [a], [b] of a and
b under the same key, additively homomorphic encryption allows the computa-
tion of the ciphertext of a + b as [a] - [b] = [a + b], where - denotes a certain
operation on ciphertexts (e.g., modular multiplication in Paillier). Given [a] it
allows to efficiently compute [au], for a plaintext value u, by computing [a]*.
Note that [a] ™ = [a]*, where ’ is the additive inverse of u in the plaintext
space. Moreover, given [a] one can produce a fresh re-encryption without the
secret key, by generating a new encryption [0] of 0, and computing [a] - [0].

Yao’s Garbled Circuits [49,50]. This is the de-facto method for secure two-
party computation, which was originally proposed for the semi-honest model.
For readers that are not familiar with the concept of garbled circuits, we include
a detailed description in the full version of our paper [8]. At a high level the
scheme works as follows: consider two parties, U, and S (this notation will be
helpful later). Suppose that U, wishes to compute a function f on S’s and her
own data. First U, expresses f as a Boolean circuit, i.e., as a directed acyclic
graph of Boolean gates such as AND and OR, and sends a “garbled” version of
the circuit to S to evaluate it using its own input. Note that U, does not send
her inputs to S, instead her inputs are encoded into the garbled circuit such that

108 F. Baldimtsi et al.

S can not determine what they are. U, is typically referred to as the garbler and
S as the evaluator.

Mixed Protocols. In garbled circuits, even simple functions may result in a
circuit with an excessive number of gates. For instance, textbook multiplication
of two (-bit values is expressed with O(¢?) gates. Motivated by this, many recent
works (e.g. [13,21,28,34]) focus on substituting a large portion of the circuit with
a small number of boolean or arithmetic gates (i.e., ADD and MUL). The secure
evaluation of the Boolean gates is done efficiently via garbled circuits, while
that of the arithmetic via schemes like homomorphic encryption or arithmetic
secret-sharing, yielding efficient protocols for functionalities like comparison of
encrypted values [7,15,22]. Such protocols, referred to as mized protocols, also
provide ways for converting from one to the other, i.e., from garbled circuit values
to homomorphic encryptions and vice versa. Note that all possible functions
can be expressed as combinations of additions and multiplications, thus mixed
protocols exist for every function. Without loss of generality, in the sequel we
assume that both parties’ initial inputs to every mixed protocol are encrypted
under an additively homomorphic encryption scheme, and with one party’s key.

Figure1 illustrates two examples of mixed protocols evaluating functions f
and g, denoted as ¢ and 7,. Function f is expressed as the composition fao0 f1,
where f; is represented with an arithmetic circuit evaluated by a homomorphic
encryption protocol 7y, , and fs is represented by a Boolean circuit evaluated by
a garbled circuit protocol m¢,. Moreover, there exists a secure conversion pro-
tocol m¢ from homomorphically encrypted values to garbled inputs. Function g
is expressed as g2 o g1, where m,, is based on a garbled circuit, w4, on homo-
morphic encryption, and m¢ is the corresponding secure conversion protocol.
Since we assume that the inputs are homomorphic encryptions, 7, first requires
their conversion to garbled values via wo. Given f, the challenge is to find a
decomposition to simpler functions fi, ..., f,, where each f; is expressed either
as a Boolean or arithmetic circuit, such that the mixed protocol is more efficient
than evaluating f solely with a garbled circuit. [13,21,28,34] addressed this chal-
lenge by providing automated tools for decomposing certain functions, as well as
appropriate conversions. If there exist protocols for the secure evaluation of all
fi’s, and given that the conversion protocols are secure, the composition of these
protocols securely evaluates f [16]. In the full version, we present two mixed
protocols we use for private multiplication and comparison of encrypted values.

T
HE: Homomorphic Encryption
Ty T Tfy GC: Garbled Circuit
C :HEto GC conversion
input—-| HE c GC | output C' :GCto HE conversion
77 : Protocol securely evaluating f
7c : Protocol for conversion C

Tg
el Tgy el Tgs
C H GC F‘ C' H HE %-’output

Fig. 1. Examples of mixed protocols

input —|

Server-Aided Secure Computation with Off-line Parties 109

3 Problem Formulation

Our setting involves a server S, and a set of users Y. The server maintains an
(initially empty) undirected graph G = (V,&). A vertex v; € V represents the
information that the server knows about a user U; € . An edge e;; € £ between
vertices v; and v; stores information about the (bidirectional) friendship between
U; and U;. By G; we denote the friend list of U;. Table 1 summarizes the notation
used in the rest of the paper.

Table 1. Summary of symbols

Symbol Meaning

Ui, Uy, S User i, querier, server

G=mW,¢) Graph with vertices v; € V and edges e;; € €

G Friend list of U;

Ei Symmetric encryption under key k

Fy Pseudorandom function (PRF) under key K

[-1px Additively homomorphic encryption under key pk
T Input of U;

/ Length of x;

x:[1] I'*® bit of x;

GC Garbled circuit

[0.05cm] X7 | Encryption of b = z;[l] in our generic protocol
[0.1cm] w Jz Garbled value for b = z;[l] in our generic protocol
0. lcm] Key for selecting w?l in our generic protocol
[0.1cm] T; | Selection table of U, in our generic protocol

3.1 Security Definition

We formalize the privacy requirements for the OSN model in the semi-honest
setting, using the ideal/real world paradigm [25]. Specifically, we first define
the ideal functionality, Fosn, that captures the security properties we want to
guarantee in the OSN model. In the ideal world, Fosy is implemented by a
trusted third party that privately interacts with all parties, while the latter do not
interact with each other. In this setting, parties can only obtain the information
allowed by Fosn. In the real world, the trusted party is replaced by a protocol 7
executed jointly by the parties. Informally, 7 securely realizes Fosy, if whatever
can be learned by an adversary A running the real protocol and interacting
with other parties, can be simulated by an algorithm, called the simulator Sim,
interacting only with the trusted party. We define here our ideal functionality,
which meets the privacy goals stated in Sect.1. Note that Fosn is a reactive
functionality that responds to messages received by parties.

110 F. Baldimtsi et al.

Ideal Functionality Fosy. Interact with a set U of users and a server S. Initialize an empty graph
g.

— Join(U;). Upon receiving a Join request from user U;, if vertex v; already exists in G do
nothing; else, add v; to G, and send (Join, U;) to S and (Join, ok) to U;.

— Connect(U;, Uj). Upon receiving a Connect request from users U;,Uj, if G contains edge
e;; do nothing; else, add e;; to edge list £ of G, and send (Connect,U;,U;) to S and
(Connect, U;, Uj, ok) to U; and Uj.

— Upload(U;, ;). Upon receiving an Upload request from U; with input z;, if v; does not exist,
do nothing; otherwise, store z; in v;. Finally, send (Upload, U;) to S and (Upload, ok) to U;.

— Query(Uq, f). Upon receiving a Query request from user U, for function f, retrieve the adjacent
vertices of vy from G, then compute y = f(a,zq,{z; | V5 : U; € G4}), where « is a query-
dependent parameter. Finally, send (out, y) to Uy and (Query, f,Ug) to S.

Ideal World Execution. Each user U; € U receives as input in; = (G;,x;, 7,),
where G; is U;’s friend list, x; = (acgl) x§2)7...) is the sequence of inputs
that U; uses in her Upload queries, r; represents U;’s random tape, and f; =

)

(fi(l), fi(Q), ...) is the functions used in her Query requests. G; dictates the calls
to Connect, x; the calls to Upload, and f; the calls to Query. Note that the
functionality keeps only the z; value of the latest Upload. Finally, the server’s
only input is the random tape rg. Each U; hands her in; to the trusted party
implementing Fosn, and receives only the outputs of her Query executions and
the acknowledgments of the Join, Upload and Connect requests. We denote the
output of U; from the interaction with Fosny by out;. S receives only (ordered)
notifications of the requests made by the users. We denote the output of S from
the interaction with Fosn by outg.

Real World Execution. In the real world, there exists a protocol specification
m = (U, S), played between the users in U/ and the server S. Each user U; € U has
as input in; = (G;, x;, 74, f;), defined as in the ideal world, whereas S has random
tape rg. An adversary A can corrupt either a set CorrUsers of users or the
server S (but not both). We denote by view; the view of the real adversary
A corrupting users U; in the set CorrUsers. This consists of the input of every
U; € CorrUsers, and the entire transcript Trans; obtained from the execution
of protocol m between the server and every U; € CorrUsers. Respectively, viewg
denotes the view of the corrupted server, which contains rg and transcripts
Trans; obtained from the execution of w with every U; € U.

Bounded Collusions. Note that, based on the above description, our scheme
does not allow any user to collude with the server. However, it is straightforward
to extend our security definition to permit users that are not connected with the
querier in G to collude with the server. Intuitively, since such users share no data
with the querier, the coalition of S with them offers no additional knowledge.
We choose not to formulate such collusions to alleviate our notation.

More Elaborate Access Policies. One extension of our model would be to
allow users to specify more elaborate access policies, e.g., that certain friends
may only ask for certain computations, limit the number of times their data
may be queried, or revoke a friendship entirely. In the semi-honest model with
bounded collusions all these can be trivially achieved by simply specifying this
to the server who notifies the affected parties (which can be implemented by
whatever access policy mechanism the OSN provider operates). These become

Server-Aided Secure Computation with Off-line Parties 111

more challenging problems in the malicious setting which we leave as future
work.

Definition 1. A protocol m = (U, S) securely realizes the functionality Fosn in
the presence of static, semi-honest adversaries if, for all \, it holds that:

Server Corruption: There exists PPT Simg such that Simg(1*, outg) =
view 47

Users Corruption: For all sets CorrUsers C U, there exists PPT Simcorrusers
such that: SimCorrUsers(l/\v ing, OUti}UiGCorrUsers} = view 4x

CorrUsers

3.2 Owur General Approach

This subsection presents an approach that is common in both our constructions
for realizing the functionality Fosn. It also provides a more practical interpreta-
tion of the party interaction in our protocols, which will facilitate their presenta-
tion in the next sections. The key idea in this approach is twofold: (i) every user
has her own key, which she uses to encrypt her input in Upload, and (ii) dur-
ing Connect, the two involved users exchange keys that are used in subsequent
Query executions initiated by either user. The protocol interfaces are as follows:

— Join(U;(1*), S(G)): On input security parameter \, U; generates a key K; and
notifies the server S that she joins the system. The output of the server is
graph G’, where vertex v; is added into V of G.

— Connect(U;(K;),U;(K;),S(G)): U; and U; establish keys k;_.; and k;_; via
S. S creates an edge e;; that stores the two keys and adds it to £ of G. The
private output of S is the updated graph G’.

— Upload(U; (K, z;), S(G)): User U; encodes her data x; (for simplicity we
assume x; is a single value, but it is straightforward to extend our model
for vectors of values) into ¢; under her secret key K; and sends it to S who
stores the received value into v; in G. For simplicity, we assume that v; stores
a single ¢;, and every Upload execution overwrites the previous value. The
private output of S is the updated G’.

- Query(Uy(Ky,), S(G))(f): On input function f and auxiliary parameters «,
U, interacts with S and learns the value y = f(a, zq,{x; | Vj : U; € Gy}),
using keys {k;_q |Vj : U; € Gy}

We describe the execution of the interfaces in Fig. 2. The left part of the figure
illustrates the party interaction and the right part depicts how the server’s graph
G changes by the protocol execution. In Join, U; generates her key and notifies 5,
who adds vy to the graph. In Connect, U and Uj establish ko3, k3.2 and send
them to S. The latter adds edge ea3 (storing the two values) to G. In Upload,
U, encodes her input x4 under her key K, into ¢4, and sends it to S who stores
it in vertex vy (overwriting any previous value). Finally, in Query, Us engages
in a two-party protocol with S and computes the output of a function f on «
and (x5, xe, 7, zs). The latter are the current plain data of Us and her friends
Us, U7 and Ug, respectively. Note that S possesses only the encryptions of these
values, namely (cs, cg, 7, cg). Also, (cg, 7, cs) were produced by Us, Uz, Ug with

112 F. Baldimtsi et al.

Party interaction Server's view of §
) N notify) Uplo?d
Join U (1Y) —————— » S(9) new
- ¥ 4
K g o | Comneet 4
oin
N blish key: -
Connect Uz (K>) cstablish ks Us(K3) N
vy
koo k32 T T Ouery
5(9)

o
Upload Uy(Kyzi) —— 4 & 8(9)

Query Us(Ks,a)
y = fla, x5, 26, 27, 28)

Fig. 2. Example protocol executions of our scheme

keys (Kg, K7, Ks), which are not known to Us and S. Performing the compu-
tation without these keys is the main challenge in our model, since Ug, U7, Ug
should not participate in this phase. As we shall see, our solutions overcome
this challenge using the keys kg_.5, k7—5, ks—5 that Us received upon connecting
with Usg, Uz, Ug, respectively. A final remark concerns our decision to store keys
ki—; at the server. Alternatively, each user U; could store all keys k;_.; locally.
However, this would lead to a linear storage cost in the number of friends at the
end of Connect at U;. In Sects.4 and 5 we show how to instantiate our general
approach using garbled circuits and mixed protocols, respectively.

4 Garbled Circuit Protocol

Suppose querier U, wishes to compute a function f. She first expresses f as a
Boolean circuit, garbles it (see Sect.2), and sends it to the server S along with
the garbled values corresponding to her input z,. In order to evaluate the circuit,
S needs the garbled values corresponding to the input x; of every U; in friend
list G4 of Uy. How can S and Uy figure out which garbled values U, should send
to S for the input x; of Uj, without knowing x;7

There are approaches [23,32,33] that solve this problem by having each friend
U; € G, interact with U, once to agree on a common randomness. Then, when-
ever U, wishes to evaluate f, she creates a garbled circuit using the common
randomness and sends it to S, whereas, all friends send their garbled values to
S. This means that all friends must actively participate in Query. Note also that
the garbled values cannot be reused, and, thus, the friends must participate in
the protocol every time U, executes Query. Other approaches [18,43] instead
enable the transferring of the friends’ garbled values via an “outsourced” OT,
run between the server S, the querier U, and each friend U; in G,. This approach
gets rid of the common randomness, and hence, the pre-processing phase, but it
still requires all friends to be on-line (to run the outsourced OT) for each Query
request.

We take a different approach that capitalizes on the pre-processing phase
(Connect), in a way that turns Query into a strictly two-party protocol run
between U, and S, and no friends need to be involved. In our solution, each

Server-Aided Secure Computation with Off-line Parties 113

user U; has a secret key K; for a pseudorandom function (PRF), that exchanges
with a friend upon each Connect phase. This is done via the server, using their
respective public keys. To upload her secret input x;, U; encodes each bit of z;
as a PRF evaluation under key K;, and sends them to S. Finally, the Query is
performed as follows. Querier U, first prepares a garbled circuit for the func-
tion f and sends it to S, together with the garbled values corresponding to her
own input. The garbled values of each friend U; are instead encrypted with keys
derived from the PRF evaluations under Kj;, which S uses to evaluate the cir-
cuit. We illustrate this idea using the example of Fig.3 which focuses on the
evaluation of an AND gate A. For a comparison of the modifications required
by our scheme compared to standard garbled circuits, see the full version of
the paper [8]. The top wire of A corresponds to the first bit of z, (i.e., 4[1])
belonging to U,, whereas the bottom wire to the I*" bit of z; (i.e., x;[l]) of U;
for some I € [¢]. Moreover, z4[1] = 1 and z;[l] = 1. Upon Upload, U; sends to
the server an encryption of z;[l] as X}l = Fg;(1,1,7;), where F'is a PRF and r;
is a random nonce sent to S along with X;l (note that, if x;[{] was 0, U; would

send X7 = F,;(0,1,75)).

Truth table of A Selection table Ty of U,
Eyy, (Byy (wh) bt
Eﬂ‘ﬁ,'l(Ew‘,’z(w%))
Bt (Bup, (W) piona [| | Bt ()
Eyp, (E,“‘n’ (w9)) g By ()|
Uy

1 —I1p Wa N ul_‘ 1
w!
1 i» Wit w}, is decrypted using

(on behalf of U) X} =Fi, (L)) =5}
uploaded by U;

Fig. 3. Use of selection tables in garbled circuits

In Query, U, garbles gate A, obtaining all garbled values w, and producing
the garbled truth table for A. She then sends to S the garbled truth table
and her garbled value w}; corresponding to x4[1]. When sending the above, U,
does not know the actual value of z,[l] and, thus, she does not know if she
should send wY; or wj;. Nevertheless, in Connect, U; provided U, with the means
to help S select between w?l, wjl-l. Specifically, S stores k;_., which encrypts
U,;’s K; under U,’s public key. U, retrieves k;_, and nonce r; (uploaded by
U; along with X glz) from S. Next, she decrypts K; from k;_, and computes
selection keys 521 = Fk,(0,1,7;) and 3;1 = Fk,(1,1,7;). Then, she encrypts U;’s
possible garbled values using these keys, producing Esjl_l (w]ll) and Esgl (w?l). She
stores this pair in random order into a two-dimensional selection table Ty[j,1],
where rows represent U,’s friends and columns the input bits. In the general
construction U, fills the |G| - £ entries of T, and sends it to S with the garbled
circuit.

Upon receiving the garbled circuit and Ty, S attempts to decrypt the values

in T[j,1], using X]11 as the decryption key. Since, by construction, X jlz = sjl-l,

114 F. Baldimtsi et al.

S successfully decrypts only wjl-l. Note that this can be seen as an OT played
between S and user U,, where S uses the knowledge of the encrypted input
X ;l to select the garbled value wjll. The rest of the circuit evaluation proceeds
normally, noting that the final garbled output is decrypted by the querier (i.e.,
the output mapping to plaintext is not disclosed to the server).

The idea of mapping encoded bits (unknown to the garbler) to the appro-
priate garbled values expected by a circuit, appeared first in [40] for a different
problem, namely to construct garbled RAMs. In that setting, a single user wishes
to execute a program in a RAM outsourced to some untrusted server, without
the latter ever learning the contents of the RAM. In our setting, the unknown
garbled inputs of U,’s friends can be perceived as the unknown state of the
server’s RAM before the evaluation of our garbled circuit.

Construction. We follow the notation of Table1 and assume that GC' is con-
structed and evaluated as explained at a high level in Sect. 2, without formaliz-
ing the algorithms to alleviate notation. Let F be a PRF, (E, D) a CPA-secure
symmetric-key encryption scheme, and let (E’, D’) be a CPA-secure public-key
encryption scheme. We assume that encryption algorithms are randomized. Our
garbled circuit protocol, mgp, works as follows.!

1. Join(U;(1*),8(G)): On input 1%, U; randomly chooses a PRF key K; €
{0,1}*, and sends her public-key pk; to S. S adds v; initialized with value
pk; into V of G.

2. Connect(U;(K;),U;(K;)): U; receives the public key pk; of U; from S. Sets
ki—.; to E'(pkj, K;) and sends it to S. U; computes and sends k;_.,; to S who
then creates edge e;; storing k;_.;, kj—;, and adds it to £ of G.

3. Upload(U;(K;,x;),S(G)): U; chooses nonce r;, computes value X‘T’[l] as
Fr, (x]l],l,r;) ¥ 1 € [{], and sends them to S who stores the Value ¢ =
((Xffm, R fl[e),7i) in v;.

4. Query(U, (K4, @), S(G))(f): Uy does the following:

(a) Key and nonce retrieval. For each U; € G, retrieve key k;_,, and
(latest) nonce r; from S, and decrypt k4 to get K.

(b) Garbled circuit computation. U, transforms f into a circuit, and
garbles it as GC.

(c) Selection table generation. For each user U; in G, and index [€ [{]:
Compute selection keys: Generate sgl = Fk;(0,1,75), s}l = Fx;(1,1,7;).
Compute garbled inputs: Produce encryptions ES?z (w?l) and ES}z (wjll)
with the selection keys.

Set selection table entry: Store Ego (w9;) and Es}l(wjll) into T,[j,1] in a
random order.

(d) Circuit transmission. Send GC, T; to S.

S then decrypts the garbled values of each U; € G, from T, with the

encoding ijlj U for each I € [/]. He evaluates GC' and sends output to U,
who Obtains the result y by decoding the circuit output.

! Due to space limitations, we include all proofs in the full version of the paper [8].

Server-Aided Secure Computation with Off-line Parties 115

Theorem 1. If F is a PRF, (E,D) is a symmetric-key CPA-secure encryp-
tion scheme with efficiently verifiable range, (E’, D') is a public-key CPA-secure
encryption scheme, the garbling scheme satisfies privacy and obliviousness, and
assuming secure channels between S and the users, protocol wgp securely realizes
Fosn as per Definition 1.

5 Mixed Protocol

Sharing the motivation of mixed protocols we explore an alternative construc-
tion for evaluating a function f in the OSN model, which combines garbled
circuits with additive homomorphic encryption. Recall from Sect. 3.2 that our
general approach for designing private constructions for the OSN model entails
only two-party interactions. Let F; denote the functionality that evaluates f
on input homomorphically encrypted values (i.e., the function which the querier
wishes to apply to the server stored data). In this work we define the func-
tion f to operate over additively homomorphic ciphertexts when also given as
input the decryption key (formally defined in the full version [8]). Let my be
a mixed protocol that securely realizes F; as discussed in Sect. 2, executed by
the server S and the querier U,. Assume that S possesses the values of U, and
her friends, homomorphically encrypted under the U,’s key. These constitute
the input to m¢. In this case, S and U, can securely evaluate f upon Query by
executing m¢. The challenge lies in bringing the inputs of U,’s friends into homo-
morphic encryptions under U,’s key, without necessitating friend participation
in Query. A naive solution would be to have every user send her input to S dur-
ing Upload, encrypted under all of her friends’ keys. This would allow the server
to readily have all inputs in the right form upon U,’s Query, but it would also
violate our performance requirement for Upload, since the cost would be linear
in the number of friends.

In our proposed approach, each user uploads only a single encryption of her
input (under her own key), rendering the cost of Upload independent of the
number of her friends. In addition, during Connect, each friend U; of the querier
U, provides her with the means (namely through the k;_, key shown in Fig. 2)
to re-encrypt U;’s input into a homomorphic ciphertext under the querier’s key.

Construction. Throughout this section, we utilize the symbols summarized in
Table 1. mre represents a protocol implementing the re-encryption functionality
FrE, fully described in Sect.5.1. The protocol 7 is executed between a server
S holding a sequence of encrypted values ([[xl]]pkq, [[x2]]pkq, ...), and Uy holding
pk,. At the end of the execution, U, receives y = fla,...,xq,...), whereas S
receives nothing. Below, we describe our mixed protocol myp:

1. Join(U;(1*),8(G)): On input the security parameter A, U; generates a PRF
key K;, and notifies S that she joins the system by sending pk,. S adds node
v; (initialized with pk;) to graph G.

2. Connect(U;(K;),U;(K;),S(G)): Users U; and Uj, having each other public
keys, compute kj_.; = [K;]pk,, ki—j = [KiJpk; respectively, and send them
to S. Then, S creates an edge e;; in G storing the two values.

116 F. Baldimtsi et al.

3. Upload(U;(K;,x;),S(G)): User U; picks random nonce r;, computes p; =
Fk,(r:), and sends ¢; = (x; + pi,r;) to S, who stores it into v; € G.

4. Query(Uy(Kq4, @), S(G))(f): User U, and S run wre, where U, has as input
K, and S has G. Recall that G contains c¢; and k;_.4 for every friend U; of
Uy. The server receives as output [z;]pk,, where x; is the private input of
a friend U;. Subsequently, S and U, execute ¢, where S uses as input the
ciphertexts [z;],x,, along with [a],x, which is provided by the querier. At
the end of this protocol, U, learns y = f(a, zg, {z; | Vi : U; € Gg}).

Theorem 2. If F is a PRF and the homomorphic public-key encryption scheme
is CPA-secure, assuming secure channels between S and the users, and assuming
mre and Ty securely realize functionalities Fre and Fy, respectively, protocol mvp
securely realizes Fosn as per Definition 1.

5.1 Re-Encryption Protocol

Our re-encryption protocol mrg implements Frg which is a two-party function-
ality executed between the server S and a querier U,. Let c; be the ciphertext
of input z; of user U; (under U;’s key), stored at S. The goal is to switch ¢; into
a new ciphertext c;» under U,’s key, without the participation of U;. Moreover,
it is crucial that c} is an encryption under an (additive) homomorphic scheme,
because this will subsequently be forwarded to the two-party mixed protocol
() that expects homomorphically encrypted inputs. We provide a formal def-
inition of the re-encryption functionality Fre in the semi-honest setting using
the real/ideal paradigm in the full version [8].

A re-encryption protocol, mgg, can be achieved via the well-known notion
of proxy re-encryption [12,30]. Specifically, U; can provide S with a prozy re-
encryption key kj—.q for U, during Connect. S can then re-encrypt c; into c/
using kj_.q in Query, without interacting with either U; or U,. Nevertheless,
recall that mrg needs the resulting c;- to be additive homomorphic. Therefore,
this approach needs the proxy re-encryption scheme to also be additive homo-
morphic. One such candidate is the classic ElGamal-like scheme of [6], which
is multiplicative homomorphic, but can be turned into additive homomorphic
by a simple “exponential ElGamal” trick. The problem of this modified scheme
is that it requires a small message domain, since decryption entails a discrete
logarithm computation. Even if the x values are indeed small in a variety of appli-
cations, all existing mixed protocols frequently inject some large (e.g., 100-bit)
randomness p into the homomorphically encrypted value x, necessitating after-
wards the decryption of (the large) = + p instead of x. This renders the scheme
inefficient in our context. To the best of our knowledge, the only other proxy
re-encryption schemes with additive homomorphic properties are based on lat-
tices [5,35], whose efficiency is rather limited for practical purposes.

Our Construction. Our alternative approach can be efficiently implemented
with any additive homomorphic scheme and a PRF. The key idea is to engage
the server S and the querier U, in a single-round interaction that does not reveal

Server-Aided Secure Computation with Off-line Parties 117

U(I(Sk(]) S(Cj, k’]*ﬂ])
1.parse ¢ as (¥ + pj, 75)
2. pick random p*
3. compute
4.send cj,r;and (a5 +pj) +p" =5
5. decrypt [K] kjisq = [K;]
6. compute B —
[[F;F - Ffff(rj)]] =
[z; + 071 7. send [z + p°]
——— > 8. compute
[ej + 0T - [p"] " = 5]

Fig. 4. The re-encryption protocol mrg

anything to U,. We illustrate our protocol in Fig.4 for the re-encryption of c;
(produced with U;’s key) to ¢ under U,’s key. S has as input ¢; (obtained during
U,’s Upload) and k;_., (obtained during the execution of Connect between U,
and Uj), whereas U, has key sk,. In the following, [-] denotes a homomorphic
ciphertext under U, ’s key. S first parses ¢; as (xj+p;, ;) in Step 1. She then picks
arandom value p* from an appropriate large domain and computes c; =zi+pi+
p* to statistically hide x; +p; (Steps 2-3). Subsequently, she sends ¢}, 7;, kj—q to
Uy (Step 4). The latter decrypts k;_, using sk, to retrieve K, then computes
¢; — Fk; (rj) to remove randomness p;, homomorphically encrypts the result
under pk, and sends it back to S (Steps 5-7). Finally, S computes [p*] " and
uses it to remove p* from the received ciphertext. The final output is ¢j = [z;],
i.e., U;’s original input encrypted under U,’s key. The above protocol can also
be extended to accommodate the simultaneous conversion of all ciphertexts c;
such that Uj; is a friend of Uy, into homomorphic ciphertexts c; under U,’s key.

Lemma 1. If F is a PRF and the additive homomorphic scheme is CPA-secure,
TRE 1S secure in the presence of static semi-honest adversaries, under the stan-
dard secure MPC' definition of [24].

6 Experimental Evaluation

In this section we experimentally evaluate our schemes for two concrete use
cases: (squared) Fuclidean and Manhattan distances. These two metrics are used
extensively in location-based applications (e.g., where the inputs are geograph-
ical coordinates and the query returns the geographically closest friend), and
they entail different arithmetic operations (recall that the performance of a gar-
bled circuit or mixed protocol is tightly dependent on the types of operations
involved).?

2 For simplicity, we focus on returning the smallest distance, rather than the identity
of the closest friend (which can be done easily in garbled circuits and with a standard
technique in mixed protocols, e.g., see [7,22]).

118 F. Baldimtsi et al.

Cryptographic Libraries. We used JustGarble [9], a state-of-the-art tool with
excellent performance for circuit garbling and evaluation. It supports two impor-
tant optimizations, free-XOR [37] and row-reduction [45], which reduce the size
of the garbled circuit, and the time to garble and evaluate it. Existing compil-
ers (e.g., [34,41]) for constructing the necessary circuits for our use cases are
not directly compatible with JustGarble. Thus, we designed the necessary cir-
cuits ourselves, using the basic building blocks that come with JustGarble and
employing heuristic optimizations for reducing the number of non-XOR, gates.

For our mixed protocols, we used the cryptographic tools described in Sect. 2.
We used the Paillier implementation of [1] for the additive homomorphic scheme.
For oblivious transfers (OT), we used the code of [52] that implements the OT
of [44] with the extension of [29], over an elliptic curve group instantiated with
the Miracl C/C++ library [2]. When possible, we used the standard ciphertext-
packing method to save communication cost.

Setup. We tested four instantiations: our garbled circuit protocol for the Euclid-
ean and Manhattan case (referred to as GP-Euc and GP-Man, respectively),
and their mixed protocol counterparts (referred to as MP-Euc and MP-Man,
respectively). All experiments were run on a single 64-bit machine with an
Intel®Core™ i5-2520M CPU at 2.50 GHz and 16 GB RAM, running Linux
Ubuntu 14.04. We employed the OpenSSL AES implementation [3] for PRF
evaluation and symmetric key encryption at 128-bit level security, leveraging
the AES-NI capability [26] of our testbed CPU. For Paillier, we used a 2048-
bit group, and for OT a 256-bit elliptic curve group of prime order. Finally, we
set the statistically hiding randomness (e.g., p in our re-encryption protocol) to
100 bits.

We assess the following costs: size of the garbled circuit in GP-Euc and
GP-Man, total communication cost over the channel between two parties, and
computational cost at each party. Note that we focus only on Query, since the
costs for Join, Upload, and Connect are negligible. We vary the number of friends
(10, 100, 1000), the bit-length of each value in the input vector of a user (16,
32, 64), and the number of dimensions (1, 2, 4). Larger numbers of dimensions
can capture more general applications entailing Euclidean/Manhattan distance
(e.g., user profiles in matchmaking applications). In each experiment, we vary
one parameter fixing the other two to their middle values. For computation over-
head, we run each experiment 100 times and report average (wall-clock) time.

Circuit Size and Bandwidth Cost. Our first set of experiments evaluates
the circuit size (in terms of number of non-XOR gates) in the garbled circuit
instantiations, and the communication cost (in MB) in all methods. The results
are shown in Fig. 5. First, we vary the number of friends, while fixing the bit
size to 32 and the dimensions to 2. The circuit size grows linearly in the number
of friends for both distance functions. In the Euclidean case, the circuit is an
order of magnitude larger than in Manhattan. This is due to the multiplications
Euclidean involves, which require a quadratic number of gates in the number
of input element bits. This impacts the communication cost accordingly, since
the querier must send a number of garbling values per gate. The overhead of

Server-Aided Secure Computation with Off-line Parties 119

.
107 [GP-Euc —=— 10" "GP-Euc —=— GP-Euc —=—
GP-Man —— GP-Man —— GP-Man —&—

|

non-XOR gates
=) S
U >
#non-XOR gates
5] 3
2 £
#non-XOR gates
=) >
o >

; ~ o 10* 10*
10 107 10° 16 32 64 1 2 4
friends # element bits # dimensions
3 | GP-Euc —=— GP-Euc —=— GP-Euc —=—

GP-Man —+—
MP-Euc —5—
MP-Man —&—

GP-Man —&—
MP-Euc —8—

| !Z

VA?;

0! 10° 1€ 16 32 64 1 2 4

friends # element bits # dimensions

@
bl
=
)
E]

Communication (MB)
S S

> 2.
Communication (MB)

MP-Euc —8—
102 fMP-Man —a—

T

Communication (MB)

5]
1)

Fig. 5. Circuit size in terms of non-XOR gates (top) and total communication cost in
MBs (bottom) vs. number of friends (left), element bit-size (middle), and number of
dimensions (right).

MP-Euc is approximately an order of magnitude smaller than that of GP-Euc
(e.g., ~33MB vs. ~346 MB for 1000 friends). For the case of Manhattan, the
corresponding gap is smaller, due to its substantially smaller circuit size. Note
that the communication cost in MP-Man is larger than that of MP-Euc. This
is because, recall, MP-Man involves two comparison stages; one during distance
computation (due to the absolute values) and one for the final comparison phase.

Then, we show the same two costs for variable bit sizes, setting the number of
friends to 100 and dimensions to 2. The circuit size for the Euclidean case grows
more steeply with the number of bits; when the bit size doubles, the number
of gates almost quadruples. This is expected due to the quadratic (in the bit
size) complexity of multiplication. This is not true for the case of Manhattan,
where the size roughly doubles when doubling the bit size. The circuit size trend
carries over in the communication cost for the garbled circuit approaches. For
the mixed protocols, the communication cost grows linearly, but less severely
than when varying the number of friends. The reason is that the main cost in
these schemes stems mostly from transmitting the necessary garbled circuits the
size of which is dominated by the statistical randomness that is fixed to 100 bits
(and thus is independent of the variable parameter).

Finally, we plot circuit size and communication overhead as a function of
the number of dimensions, for 100 friends and 32-bit inputs. There is a linear
dependence between the number of dimensions and the required gates and, thus,
both metrics grow linearly for the case of garbled circuits. The same is true for
MP-Man, since it entails one absolute value computation per dimension. In the
case of MP-Euc there is one multiplication component per dimension and, hence,
the communication cost scales linearly as well. However, contrary to MP-Man,

120 F. Baldimtsi et al.

MP-Euc involves a comparison protocol only in the final stage: as we explained
above, this component receives inputs with a fixed 100-bit length, independently
of dimensions. Since this component introduces the dominant communication
cost, the total overhead is marginally affected by the number of dimensions.

Computational Cost. The second set of our experiments assesses the compu-
tational cost at the querier and the server upon Query, and the results are illus-
trated in Fig. 6. A first observation is that the computational cost in the garbled
circuit approaches is extremely small due to our selection table technique that
entirely eliminates the need for oblivious transfers, and the very efficient imple-
mentation of JustGarble. Our mixed protocols feature a higher overhead (at
both client and server) than their counterparts, because they entail expensive
public-key operations (mainly for homomorphic encryptions and decryptions,
but also for the base OTs). Still, the computational times for our mixed proto-
col constructions are not prohibitive even for our largest tested parameters. In
most cases the overhead for both querier and server is below 3 s, whereas even
for 1000 friends it is below 14s. A general observation regarding the garbled
circuit approaches is that, for all varied parameters, the cost at the server is sig-
nificantly smaller than that at the client. This is due to the fact that the server
performs only symmetric key operations (for extracting the garbled inputs from
the selection table and evaluating the garbled circuit), whereas the client also
has to decrypt the keys established with her friends during the connection phase,
using public-key operations. Finally, regarding the individual curves in the plots,
note that they follow similar trends to the corresponding ones in Fig. 5, for the
same reasons we explained for the communication cost.

GP-Euc —@— GP-Euc —@— GP-Euc —@—
GP-Man —a&— GP-Man —a— GP-Man —a—
MP-Euc —8— MP-Euc —B— MP-Euc —B—
_ 10>} MP-Man —A— 5| MP-Man —a— 5| MP-Man —a—
2 g 10 g 10
N 1 N N
5 10 g 2
g £10 £10
= E 4 F g |
o 10° 10°
10 e I ——
10! 10% 10° 16 32 64 1 2 4
friends # element bits # dimensions
GP-Euc —@— GP-Euc —@— GP-Euc —@—
GP-Man —a— GP-Man —a— GP-Man —a—
MP-Euc —B— MP-Euc —&— MP-Euc —B—
_ 10> | MP-Man —A— _ 10>} MP-Man —a— ~ 1*} MP-Man —a—
2 10 3 3
f 1()“ % 10 % 10!
g 10 £ 10° 5 4 £ 0 Wﬁéﬂ
= = E 10
E 10 B &
107 0 ./-—/. 10 "
107 10 . 102 N
10! 10% 10° 16 32 64 1 2 4
friends # element bits # dimensions

Fig. 6. Total computational cost in seconds at querier (top) and server (bottom) vs.
number of friends (left), element bit-size (middle), and number of dimensions (right).

Server-Aided Secure Computation with Off-line Parties 121

Summary and Discussion. Overall, our GC implementations feature excellent
computational times for our tested settings, in the order of a few milliseconds
for most scenarios. However, they incur an excessive communication cost for
the Euclidean distance (more than 300 MBs for the case of 1000 friends). Our
MP implementation is very beneficial for this case, reducing the communication
cost by roughly 10x. On the other hand, our MP incur higher computational
times than GC, as they entail numerous public key operations to manipulate
the Paillier ciphertexts; yet they still offer reasonable performance. Overall, our
schemes offer different computation/communication trade-offs in the OSN set-
ting and, interestingly, the overall performance is comparable to existing works
that use the same tools in the standard secure two-party computation setting.
It is beyond the scope of this paper to advocate one approach over the other.
Their performance is highly dependent on the query function and the capabil-
ities of a given system and is a hot research topic in the secure computation
literature (e.g., see [34,48]). Moreover, ongoing research can help optimize both
alternatives, e.g., the half-gate optimization of [51] reduces the garbled circuit
size, whereas [21] shows how faster mixed protocols are achieved using arithmetic
shares.

Acknowledgements. We would like to thank Payman Mohassel and Arash Afshar
for sharing parts of their code from [4], and the anonymous reviewers for their detailed
comments and suggestions. Work partially done while the first and second authors were
at Boston University and the fourth author was at Boston University and Northeastern
University. Research supported in part by the U.S. National Science Foundation under
CNS grants 1012798, 1012910, 1347350, 1413964, and 1414119.

References

1. CPABE (Ciphertext-Policy Attribute-Based Encryption) toolkit. http://acsc.cs.
utexas.edu/cpabe/

2. MIRACL cryptographic SDK. https://www.certivox.com/miracl

OpenSSL cryptography and SSL/TLS toolkit. https://www.openssl.org/

4. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computa-
tion based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 387—404. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5_22

5. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-encryption under
LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp.
1-18. Springer, Cham (2013). doi:10.1007/978-3-319-03515-4_1

6. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM TISSEC 9(1), 1-30
(2006)

7. Baldimtsi, F., Ohrimenko, O.: Sorting and searching behind the curtain. In:
Bohme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 127-146. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47854-7_8

8. Baldimtsi, F., Papadopoulos, D., Papadopoulos, S., Scafuro, A., Triandopoulos, N.:
Secure computation in online social networks. Cryptology ePrint Archive, Report
2016,/948 (2016)

w

http://acsc.cs.utexas.edu/cpabe/
http://acsc.cs.utexas.edu/cpabe/
https://www.certivox.com/miracl
https://www.openssl.org/
http://dx.doi.org/10.1007/978-3-642-55220-5_22
http://dx.doi.org/10.1007/978-3-642-55220-5_22
http://dx.doi.org/10.1007/978-3-319-03515-4_1
http://dx.doi.org/10.1007/978-3-662-47854-7_8

122

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

F. Baldimtsi et al.

Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: IEEE SP (2013)

Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the Internet. In: ACM CCS (2016)

Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC (1988)

Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127-144.
Springer, Heidelberg (1998). doi:10.1007/BFb0054122

Bogdanov, D., Laud, P., Randmets, J.: Domain-polymorphic language for privacy-
preserving applications. In: CCS-PETShop (2013)

Bogetoft, P., Christensen, D.L., Damgard, 1., Geisler, M., Jakobsen, T., Krgigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Secure multiparty computation goes live. In: FC (2009)

Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS (2015)

Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143-202 (2000)

Carmer, B., Rosulek, M.: Linicrypt: a model for practical cryptography. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 416-445.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53015-3_15

Carter, H., Mood, B., Traynor, P., Butler, K.R.B.: Secure outsourced garbled cir-
cuit evaluation for mobile devices. In: USENIX Security (2013)

Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499-518.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2_28

Damgard, 1., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378-394. Springer, Heidelberg (2005). doi:10.1007/11535218_23

Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Goldberg, 1., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235-253. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03168-7_14

Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: STOC (1994)

Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, New York (2004)

Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: STOC
(1987)

Gueron, S.: Intel advanced encryption standard AES instruction set white paper.
Intel Corporation, August 2008

Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 132-150. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_8
Henecka, W., Kogl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: CCS (2010)

Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145-161. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45146-4_9

http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/978-3-662-53015-3_15
http://dx.doi.org/10.1007/978-3-642-36594-2_28
http://dx.doi.org/10.1007/11535218_23
http://dx.doi.org/10.1007/978-3-642-03168-7_14
http://dx.doi.org/10.1007/978-3-642-03168-7_14
http://dx.doi.org/10.1007/978-3-642-22792-9_8
http://dx.doi.org/10.1007/978-3-540-45146-4_9

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.

44.
45.

46.

47.

48.

49.
50.
51.

52.

Server-Aided Secure Computation with Off-line Parties 123

Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: NDSS (2003)

Jakobsen, T.P., Nielsen, J.B., Orlandi, C.: A framework for outsourcing of secure
computation. In: CCSW (2014)

Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
Cryptology ePrint Archive, Report 2011/272 (2011)

Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function
evaluation. In: CCS (2012)

Kerschbaum, F., Schneider, T., Schropfer, A.: Automatic protocol selection in
secure two-party computations. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.)
ACNS 2014. LNCS, vol. 8479, pp. 566-584. Springer, Cham (2014). doi:10.1007/
978-3-319-07536-5_33

Kirshanova, E.: Proxy re-encryption from lattices. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 77-94. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54631-0_5

Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR
gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8617, pp. 440-457. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44381-1_25

Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and appli-
cations. In: ICALP (2008)

Kreuter, B., Shelat, A., Shen, C.: Billion-gate secure computation with malicious
adversaries. In: USENIX Security (2012)

Lépez-Alt, A., Tromer, E.; Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC (2012)

Lu, S., Ostrovsky, R.: How to garble RAM programs. In: EUROCRYPT (2013)
Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay: a secure two-party compu-
tation system. In: USENIX Security (2004)

Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
the garbled circuit approach. In: ACM CCS (2015)

Mood, B., Gupta, D., Butler, K.R.B., Feigenbaum, J.: Reuse it or lose it: more
efficient secure computation through reuse of encrypted values. In: CCS (2014)
Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA (2001)
Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: EC (1999)

Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: IEEE SP (2013)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X_16

Schneider, T., Zohner, M.: GMW vs. yao? efficient secure two-party computation
with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
275-292. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39884-1_23

Yao, A.C.: How to generate and exchange secrets. In: FOCS (1986)

Yao, A.C.: Protocols for secure computations. In: FOCS (1982)

Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220-250. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6-8

Zohner, M.: OTExtension library. https://github.com/encryptogroup/
OTExtension

http://dx.doi.org/10.1007/978-3-319-07536-5_33
http://dx.doi.org/10.1007/978-3-319-07536-5_33
http://dx.doi.org/10.1007/978-3-642-54631-0_5
http://dx.doi.org/10.1007/978-3-642-54631-0_5
http://dx.doi.org/10.1007/978-3-662-44381-1_25
http://dx.doi.org/10.1007/978-3-662-44381-1_25
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-642-39884-1_23
http://dx.doi.org/10.1007/978-3-662-46803-6_8
https://github.com/encryptogroup/OTExtension
https://github.com/encryptogroup/OTExtension

We Are Family: Relating Information-Flow
Trackers

Musard Balliu®9 | Daniel Schoepe, and Andrei Sabelfeld

Chalmers University of Technology, Gothenburg, Sweden
musard@chalmers.se

Abstract. While information-flow security is a well-established area,
there is an unsettling gap between heavyweight information-flow con-
trol, with formal guarantees yet limited practical impact, and lightweight
tainting techniques, useful for bug finding yet lacking formal assurance.
This paper proposes a framework for exploring the middle ground in
the range of enforcement from tainting (tracking data flows only) to
fully-fledged information-flow control (tracking both data and control
flows). We formally illustrate the trade-offs between the soundness and
permissiveness that the framework allows to achieve. The framework is
deployed in a staged fashion, statically embedding a dynamic monitor,
being parametric in security policies, as they do not need to be fixed
until the final deployment. This flexibility facilitates a secure app store
architecture, where the static stage of verification is performed by the
app store and the dynamic stage is deployed on the client. To illustrate
the practicality of the framework, we implement our approach for a core
of Java and evaluate it on a use case with enforcing privacy policies in the
Android setting. We also show how a state-of-the-art dynamic monitor
for JavaScript can be easily adapted to implement our approach.

Keywords: Language-based security - Information-flow control - Taint
tracking

1 Introduction

Motivation. The sheer bulk of sensitive information that software manipulates
makes security a major concern. A recent report shows that several of the top
10 most popular flashlight apps on the Google Play store may send sensitive
information such as pictures and video, users’ location, and the list of contacts,
to untrusted servers [49]. Unfortunately, trusted code also incurs serious security
flaws, as proven by the Heartbleed bug [51] found in the OpenSSL library.

Information-flow control [44] offers an appealing approach to security assur-
ance by design. It helps tracking the flow of information from confidential/un-
trusted sources to public/trusted sinks, ensuring, for confidentiality, that confi-
dential inputs are not leaked to public outputs, and, for integrity, that untrusted
inputs do not affect trusted outputs.

© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 124-145, 2017.
DOI: 10.1007/978-3-319-66402-6_9

We Are Family: Relating Information-Flow Trackers 125

Background. Applications can leak information through programming-
language constructs, giving rise to two basic types of information flows: explicit
and implicit flows [21]. Consider a setting with variables secret and public
for storing confidential (or high) and public (or low) information, respectively.
Explicit flows occur whenever sensitive information is passed explicitly by an
assignment, e.g., as in public := secret. Implicit flows arise via control-flow
structures of programs, e.g. conditionals and loops, as in if secret then public :=
0 else public := 1. The final value of public depends on the initial value of secret
because of a low assignment, i.e., assignment to a low variable, made in a high
context, i.e., branch of a conditional with a secret guard.

Information-flow control is typically categorized as static and dynamic:
(1) Static techniques mainly impose Dennings’ approach [21] by assigning secu-
rity labels to input data, e.g. variables, APIs, and ensuring separation between
secret and public computation, essentially by maintaining the invariant that
no low assignment [32,44,56] occurs in a high context. Other static tech-
niques include program logics [10,13], model checking [8,23], abstract interpreta-
tions [27] and theorem proving [20,40]. However, static techniques face precision
(high false-positive rate) challenges, rejecting many secure programs. These chal-
lenges include dynamic code evaluation and aliasing, as illustrated by the snip-
pet z.f := 0 ; y.f := secret ; out(L,x.f). A non-trivial static analysis would
have to approximate whether object references x and y are aliases. Moreover,
the fact that security policies are to be known at verification time makes them
less suitable in dynamic contexts. (2) Dynamic techniques use program runtime
information to track information flows [5,26,43]. The execution of the analyzed
program is monitored for security violations. Broadly, the monitor enforces the
invariant that no assignment from high to low variables occurs either explic-
itly or implicitly. Dynamic techniques are particularly useful in highly dynamic
contexts and policies, where the code is often unknown until runtime. However,
since the underlying semantic condition, noninterference [28], is not a trace
property [38], dynamic techniques face challenges with branches not taken by
the current execution. Consider the secure program that manipulates location
information: if (MIN < loc) && (loc < MAX) then tmp := loc else skip. If
the user’s (secret) location loc is within an area bound by constants MIN and
MAX , the program stores the exact location in a temporary variable tmp, with-
out ever sending it to a public observer. A dynamic analysis, e.g. No-Sensitive
Upgrade [5,58], incorrectly rejects the program (due to a security label upgrade
in a high context), although neither loc nor tmp are ever sent to an attacker.
Permissive Upgrade [6] increases precision, however, it will incorrectly rule out
any secure program that subsequently branches on variable tmp.

Combining dynamic and static analysis, hybrid approaches have recently
received increased attention [18,31,36,37,39]. While providing strong formal
guarantees, to date the practical impact of all these approaches has been limited,
largely due to low precision (or permissiveness). Moreover, static, dynamic, and
hybrid information-flow analysis require knowledge of the control-flow graph to
properly propagate the program counter security label that keeps track of the

126 M. Balliu et al.

sensitivity of the context. This label is difficult to recover whenever code has
undergone heavyweight optimization and obfuscation, e.g. to protect its intel-
lectual property, or in presence of reflection.

In contrast, taint tracking is a practical success story in computer security,
with many applications at all levels of hardware and software stack [45,47]. Taint
tracking is a pure data dependency analysis that only tracks explicit flows. It is
successful thanks to its lightweight nature, ignoring any control-flow dependen-
cies that would be otherwise required for fully-fledged information-flow control.
On the downside, taint tracking is mainly used as a bug finding technique, pro-
viding, with a few exceptions [45,46,57], no formal guarantees. Importantly,
implicit flows may occur not only in malicious code [33,42], but also in trusted
programs (written by a trusted programmer) [11,34,35,50].

These considerations point to an unsettling gap between heavyweight tech-
niques for information-flow control, with formal guarantees yet limited practical
impact, and lightweight tainting techniques that are useful for bug finding yet
lacking formal assurance.

Approach. By considering the trade-offs between soundness and permissive-
ness, this paper explores the middle ground, by a framework for a range of
enforcement mechanisms from tainting to fully-fledged information-flow control.
We address trusted and malicious code. However, we make a key distinction
between two kinds of implicit flows: observable implicit flows and hidden implicit
flows, borrowing the terminology of Staicu and Pradel [50]. Observable implicit
flows arise whenever a variable is updated under a high security context and
later output to an attacker. Not all implicit flows are, however, observable, since
also the absence of a variable update can leak information (cf. Fig.3); we call
these hidden implicit flows. Tracking explicit flows and observable implicit flows
raises the security bar for trusted code [50]. It allows for permissive, lightweight
and purely dynamic enforcement in the spirit of taint tracking, yet providing
higher security assurance. To evaluate soundness and permissiveness of the tech-
nique, we propose observable secrecy, a novel security condition that captures
the essence of observable implicit flows. It helps us answer the question: “what
is the security price we pay for having fewer false positives for useful programs”?
We remark that the distinction between observable and hidden implicit flows is
purely driven by ease of enforcement and permissiveness. Moreover, we leverage
existing techniques and extend the framework to account for hidden implicit
flows, thus addressing malicious code. We then present a family of flow-sensitive
dynamic monitors that enforce a range of security policies by adapting a stan-
dard information-flow monitor from the literature [5,43].

The framework is deployed in a staged fashion. We statically embed dynamic
monitors for (observable and/or hidden) implicit flows into the program code
by lightweight program transformation, and leverage a dynamic taint tracker to
enforce stronger policies. For malicious code, we use the cross-copying technique,
originally proposed by Vachharajani et al. [53] for systems code, to transform
hidden implicit flows into observable implicit flows. The transformations and
soundness proofs for theorems can be found in the full version of the paper [14].

We Are Family: Relating Information-Flow Trackers 127

Secure App Store

> Implement app > Compute sources/sinks > Final policy
> APK to app store > Transform program > Taint tracker
> Obfuscate app

Fig. 1. Secure App Store architecture

Secure App Store. The flexibility of the approach on the policy and enforce-
ment side facilitates a secure app store architecture, depicted in Fig. 1. Devel-
opers deliver the code to the App Store, which computes sources and sinks, and
leverages the control-flow graph to convert implicit flows into explicit flows. For
trusted (non-malicious) apps, a lightweight transformation converting observable
implicit flows into explicit may be sufficient, otherwise cross copying is needed.
Subsequently, the App Store can perform code optimizations and obfuscations,
and publish the resulting APK file (together with sources and sinks) on behalf of
the developer. Finally, end users can download the app, define their own security
policies and run the app on a dynamic taint tracker, remarkably, with no need
of the program’s control-flow graph. Alternatively, end users can leverage static
taint trackers [1,29] to verify their policies against the code.

We implement the transformations for a core of Java and evaluate them on
the use case of a Pedometer app. We run the transformed app on TaintDroid [24]
and check it against user-defined policies. We also show how JSFlow [30], a
dynamic monitor for JavaScript, can provide higher precision by changing the
security condition to observable secrecy.

Structure and Contributions. In summary, the paper makes the following
contributions: (i) observable secrecy, a security condition for validating sound-
ness and precision wrt. observable implicit and explicit flows (Sect.2); (i) a
framework that allows expressing a range of enforcement mechanisms from taint-
ing to information-flow control (Sect.3); (ii7) lightweight transformations that
leverage dynamic taint tracking for higher security assurance (Sect.4); (iv) a
flexible app store architecture and a prototype implementation for Android apps
(Sect. 5).

2 Security Framework

We employ knowledge-based definitions [4,9,10] to introduce security conditions
ranging from weak/explicit secrecy [45,57] to noninterference [28].
2.1 Language

Consider a simple imperative language with I/O primitives, SIMPL. The lan-
guage expressions consist of variables z € Var, built-in values n € Val such as

128 M. Balliu et al.

ex=z|n|ledel|Se
=skip | P;P|z:=¢ |z <+ in({) | out(l,e)
| if e then P else P | while e do P

g
i

Fig. 2. SIMPL language grammar

integers and booleans, binary operators & and unary operators ©. We write tt
for boolean value true and ff for boolean value false. The language constructs
contain skip, assignment, conditional, loops, input and output. The full grammar
of SIMPL can be found in Fig. 2.

We use input and output channels to model communication of the program
with the external world. We label input and output channels with security lev-
els ¢ (defined below) that indicate the confidentiality level of the information
transmitted on the corresponding channel. We denote the set of SIMPL pro-
grams by P. We write T for a set of variables {z1,---,2,} such that for all
1<i<n,z; € Var, and Vars(e) for the set of free variables of expression e.

We assume a bounded lattice of security levels (£,C,U,M). A level £ € L
represents the confidentiality of a piece of data present on a given channel or
program variable. We assume that there is one channel for each security level
¢ € L. As usual, C denotes the ordering relation between security levels and,
U and M denote the join and meet lattice operators, respectively. We write T
and L to denote the top and the bottom element of the lattice. In the exam-
ples, we use a two-level security lattice £ = {L, H} consisting of level H (high)
for variables/channels containing confidential information and level L (low) for
variables/channels containing public information, and L C H. We focus on con-
fidentiality, noting that integrity is similar through dualization [16].

We model input by environments £ € FEnv mapping channels to streams
of input values. For simplicity, we consider one stream for each level ¢ € L.
An environment £ : L — N — Val maps levels to infinite sequences of values.
Two environments £ and &y are f-equivalent, written & =~ &, iff V. ¢/ C
L= & (0) = &(). Another source of input are the initial values of program
variables. We model memory as a mapping m : Var — Val from variables to
values. We use m,mg, my,... to range over memories. We write m[z +— n] to
denote a memory m with variable x assigned the value n. We write m(e) for the
value of expression e in memory m. A security environment I' : Var — L is a
mapping from program variables to lattice elements. The security environment
assigns security levels to the memory through program variables. We use the
terms security level and security label as synonyms. Two memories m; and mo
are f-equivalent, written my =2y mq, iff Vo € Var. I'(x) C £ = mq(z) = ma(z).

An observation o € Obs is a pair of a security level and a value, i.e. Obs = LX
Val, or the empty observation €. A trace 7 is a finite sequence of observations. We
write 7.7 for concatenation of traces 7 and 7/, and |7| for the length of a trace 7.
We denote by 7 [, the projection of trace 7 at security level £. Formally, we have
€ [¢= € and (¢',n).7" [¢= (¢',n).(7" [¢) if ¢/ C ¢; otherwise (¢/,n).7" [¢= 7" |4
Two traces 71, T» are f-equivalent, written 7 =~y 7o, iff 7 [p= 7 [4.

We Are Family: Relating Information-Flow Trackers 129

2.2 Semantics

The operational semantics of SIMPL is standard and it is reported in the full
version [14]. A state (€, m) is a pair of an environment £ € Env and a memory
m € Mem. A configuration £ - (P, m) consists of an environment &£, a program
P and a memory m. We write & F (P,m) 2 & F (P',m/) to denote that a
configuration £ = (P,m) evaluates in one step to configuration & + (P’,m’),

producing an observation a € Obs. We write —* or " to denote the reflexive

and transitive closure of —. We write £ - (P,m) — whenever the configuration
is unimportant. We use € to denote program termination.

2.3 Defining Secrecy

The goal of this subsection is to provide an attacker-centric definition of secrecy.
The condition requires that the knowledge acquired by observing program out-
puts does not enable the attacker to learn sensitive information about the initial
program state (inputs and memories). We assume the attacker knows the pro-
gram code and has perfect recall of all the past observations. We first illustrate
the security condition by an example, and then provide the formal definition.

Ezample 1. Let P = if h then out(L, 1) else out(L,2) be a SIMPL program
and h a secret variable, i.e. I'(h) = H. Depending on the initial value of h, the
program outputs either out(L, 1) or out(L,2) on a channel of security level L.
An attacker at security level L can reason about the initial value of h as
follows: (i) Before seeing any output, the attacker considers any boolean value
as possible for h, therefore the knowledge is h € {tt,ff}. (ii) If the statement
out(L, 1) is executed, the attacker can refine the knowledge to h € {tt} and thus
learn the initial value of h. (iii) Similarly, if the statement out(L, 2) is executed,
the attacker learns that h was initially false. Hence, the program is insecure.

We now define the knowledge that an attacker at level £ acquires from observing
a trace of a program P. We capture this by considering the set of initial states
that the attacker considers possible based on their observations. Concretely, for a
given initial state (€, mo) and a program P, an initial state (£, m) is considered
possible if £ &, &y, m =2y myp, and it matches the trace produced by & + (P, myg).
We define the attacker’s knowledge in the standard way [4]:

Definition 1 (Knowledge). The knowledge set for program P, initial state
(&0, myo), security level £ and trace T is given by k(P,Ey, mo,7) = {(E,m) | € =~
EoAm=ymoA@PE m! 7. EF (Pm) X EF (P,m/y AT = 7))

We focus on progress-insensitive security, which ignores information leaks
through the observation of computation progress, e.g. program divergence [3].
To this end, we relax the requirement that the attacker learns nothing at each
execution step, by allowing leaks that arise from observing the progress of com-
putation. Concretely, we define progress knowledge as the set of initial states
that the attacker considers possible based on the fact that some output event
has occurred, independently of what the exact output value was.

130 M. Balliu et al.

Definition 2 (Progress Knowledge). The progress knowledge set for pro-
gram P, initial state (Ey,mo), level £, and trace T is given by kp(P, &y, mo,T) =
{(E,m) | € = Eg Am =g mog A (BPE m/, T # €. E F (P,m) =% &
(Plm')y & Nali=anT ~r)).

We can now define a progress-insensitive secrecy by requiring that progress
knowledge after observing a trace 7 is the same as the knowledge obtained after
observing the trace 7.«. Consequently, what the attacker learns from observ-
ing the exact output value is the same as what they learn from observing the
computation progress, i.e. that some output event has occurred.

Definition 3 (Progress-insensitive Secrecy). A program P satisfies
Progress-insensitive Secrecy at level £, written Sec(¢) E P, iff whenever £
(P, m) SR (P'm’y Na Ty= aANa # € we have kp(P,E,m,7) =
k(P,E,m,T.c). P satisfies Progress-insensitive Secrecy, written Sec = P iff
Sec(¢) E P, for all £.

We can see that the program in Examplel does not satisfy progress-
insensitive secrecy at security level L, as the progress knowledge of observing
some output, i.e. either out(L, 1) or out(L,2), is h € {tt, ff}, while the knowl-
edge of observing the exact output, e.g. out(L,1), is h € {tt}.

2.4 Security Conditions

Information-flow monitors can enforce progress-insensitive secrecy, thus prevent-
ing both implicit and explicit flows. Taint tracking, on the other hand, is an
enforcement mechanism that only prevents explicit flows, otherwise ignores any
control-flow dependencies [21]. In contrast to noninterference, security conditions
for taint tracking [45,57] serve more as semantic criteria for evaluating soundness
and precision of the underlying enforcement mechanism rather than providing
an intuitive meaning of security. Driven by the same motivation, we propose
a family of security conditions that allows exploring the space of enforcement
mechanisms from taint tracking to information-flow control.

Our security conditions rely on the observational power of an attacker over
the program code and executions. We model attackers with respect to their per-
run view of the program code and extract the program slice that an attacker
considers possible for any concrete execution. This allows to re-use the same
condition as in Definition 3 for the program slice that the attacker can observe.

Concretely, a security condition for
taint tracking can be modelled as secrec hi=tt =1t (1)

g y

with respect to an attacker that only if h then [, := ff else skip (2)
observes explicit statements (input, out- if [; then [:= ff else skip (3)
put and assignment) extracted from any out(L, l5) (4)
concrete execution of a program P. Simi-
larly, (termination-insensitive) noninter-
ference [3] corresponds secrecy for an
attacker that has a whole view of P.

Fig. 3. Leaking through label upgrades

We Are Family: Relating Information-Flow Trackers 131

We will use the example in Fig. 3 to illustrate the security conditions. Con-
sider the program P with boolean variable h of level H and boolean variables
l1,15 of level L. It can be seen that P outputs the initial value of variable h to
an observer at security level L through a sequence of control flow decisions. In
fact, the program does not satisfy the condition in Definition 3.

We introduce extraction contexts C as a gadget to model the observational
power of an attacker over the program code. Extraction contexts provide a mech-
anism to leverage the operational semantics of the language and extract the
program slice that an attacker observes for any given concrete execution.

Cu= [|skip|z:=e|z—in({)|out(f,e) | C;C |if e then C else C

Syntactically, extraction contexts are programs that may contain holes [|. For
our purposes, contexts will contain at most one hole that represents a placeholder
for the program statements that are yet to be evaluated by the program execution
at hand. We extend the operational semantics to transform contexts in order to
extract programs for weak secrecy and observable secrecy.

Weak Secrecy. Weak secrecy [57], a security condition for taint tracking, states
that every sequence of explicit statements executed by any program run must be
secure. We formalize weak secrecy as secrecy (cf. Definition 3) for the program,
i.e. the sequence of explicit statements, extracted from any (possibly incomplete)
execution of the original program. We achieve this by extending the configura-
tions with extraction contexts. Here we discuss a few interesting rules as reported
in Fig. 4. The complete set of rules can be found in [14].

‘W-ASssIGN W-Ovut

m(e) =n m(e) =n

EF(z:=e,m,C) = EF (e,m[z — n],Clz :=€]) £ (out(t,e), m, C) (eml, o (e, m, Clout(£, e)])

W-IFTRUE W-Seq
m(e) = tt EF(P1,m,C) 5 & - (P,m',C")

E F (if e then P; else P, m,C) - £+ (P1,m,C) g (P ; Pa,m,C) = &'+ <p1’ i Py,m’,C)

Fig. 4. Excerpt of extraction rules for weak secrecy

Each program execution starts with the empty context []. To extract explicit
statements, we propagate assignment and output commands into the context,
while conditionals are simply ignored (cf. the context remains unchanged).
Sequential composition ensures that the sequence of explicit statements is prop-
agated correctly. It can be shown that complete (terminated) executions contain
no holes and incomplete executions contain exactly one hole.

We define weak secrecy in terms of secrecy for explicit statements extracted
from any program execution. We write C[skip] to denote the result of replacing
the hole with command skip in a context C. Otherwise, if the context contains
no hole, we have C[skip] = C. This is needed because the security condition is
defined for any execution, including complete and incomplete executions.

132 M. Balliu et al.

Definition 4 (Weak secrecy). A program P satisfies weak secrecy for ini-
tial state (£,m), written WS Fg . P, iff whenever € F (P,m,][]) LR~
(P',m/,C), we have Sec |= C[skip]. A program P satisfies weak secrecy, writ-
ten WS E P, iff WS Eg.m P for all states (£, m).

Consider the program from Fig.3 and an initial state (&, mg). Depending
on whether mg(h) = tt and mg(h) = ff, we extract program (5) or program (6),
respectively, shown in Fig. 5.

We can see that none
of the programs contains Iy :=tt ;1o :=tt; [:=ff; skip ; out(L,ls) (5)
variable h, hence they [1:=tt;l2:=tt;skip;ly:=1f;out(L,l) (6)
both satisfy secrecy (Def-
inition 3). As a result, the Fig. 5. Extracted programs
original program P satis-
fies weak secrecy.

Observable Secrecy. We now present a novel security condition, dubbed
observable secrecy, that captures the intuition of observable implicit flows.
Observable implicit flows are implicit flows that arise whenever a variable is
modified in the high branch that is currently executed by the program, and later
it is output to the attacker. Preventing observable implicit flows is of interest
for purely dynamic mechanisms as it provides higher security compared to weak
secrecy, yet allowing for dynamic monitors that are more permissive than moni-
tors for noninterference. Permissiveness, however, comes at the price of ignoring
hidden implicit flows. The following program, where h has security level H, con-
tains an observable implicit flow whenever mg(h) = tt, otherwise the flow is
hidden.
[:=ff;if h then {l := tt} else {skip} ; out(L,!)

The security condition considers an attacker that only observes the instruc-
tions (both control-flow and explicit statements) executed by the concrete pro-
gram execution, otherwise it ignores (i.e. replaces with skip) any instruction
occurring in the untaken branches. To capture these flows, we extend the small-
step operational semantics to extract the program code observable by this
attacker, as shown in Fig. 6.

The rules for assignment, input, output and sequential composition are the
same as for weak secrecy. Rules for conditionals propagate the observable condi-
tional into the context C to keep track of the executed branch and replace the
untaken branch with skip. The new hole [] ensures that the commands under
the executed branch are properly modified by the new context. We unfold loop
statements into conditionals and handle them similarly. Sequential composition
ensures that the sequence of observable statements is propagated correctly. When
rule O-SEQEMPTY is applied, the context C' does not contain any holes, hence
a new hole is introduced to properly handle the remaining command Ps.

Definition 5 (Observable secrecy). A program P satisfies observable secrecy
for initial state (€, m), written OS Fg ,, P, iff whenever £ = (P,m,[]) = &' F

We Are Family: Relating Information-Flow Trackers 133

O-Sk1pP O-In
T =&l EW)(n+1)] m’ = mz — £(£)(0)]

£+ (skip,m,C) = £ F (g,m, C[skip]) €+ (z + in(£),m,C) = £ + (e,m’, Clz + in(£)])

O-AssIGN O-SeqQ -
m(e) =n EF(P1,m,C) — & F(P,m,C")

Er(z:=e,m,C) = EF (e,mlz = n],Clz:=e]) £+ (P, ; Po,m,C) 5 &'+ (Pll s Py,m/,C)

O-0OuTt O-WHILEFALSE
m(e) =n m(e) = ff

£F (out(t,), m, C) [(¢,n)] £+ (e,m, Clout(£, &)]) £+ (while e do P,m,C) — £ - (e, m, C[skip])

O-WHILETRUE
m(e) = tt

£+ (while e do P,m,C) — £ - (P ; while e do P, m, C|if e then [] else skip])

O-IFTRUE O-SEQEMPTY
m(e) = tt
£ F (if e then P; else P>, m,C) — £ = (P, m, C[if e then [] else skip]) £F (e ; P2, m,C) = EF (P2, m,C 5 [])

O-IFFALSE
m(e) = ff

£k (if e then Py else P>, m,C) — £ (P2, m, C[if e then skip else [|])

O-IFTRUE O-SEQEMPTY
m(e) = tt
£ F (if e then P; else P>, m,C) — £ - (P, m, C[if e then [] else skip]) £F (e ; P2, m,C) = EF (P2, m,C 5 [])

Fig. 6. Extraction rules for observable secrecy

(P',m/,C), we have Sec |= C[skip]. A program P satisfies observable secrecy,
written OS E P, iff OS Eg , P for all states (€, m).

For the above example, the operational semantics rules for observable secrecy
yield the programs:

l:=ff;if h then {l := tt} else {skip} ; out(L,])
l:=ff;if h then {skip} else {skip} ; out(L,I)

The first program does not satisfy secrecy (Definition 3), while the second
program does. Therefore the original program does not satisfy observable secrecy.

Full Secrecy. Full secrecy is a security condition that models secrecy with
respect to an attacker that has a complete knowledge of program code and there-
fore can learn information through explicit and (observable or hidden) implicit
flows. This corresponds to progress-insensitive noninterference (Definition 3).

Definition 6 (Full secrecy). A program P satisfies full secrecy for initial state
(E,m), written FS Fg . P, iff whenever € = (P, m) LUer (P’',m'), we have
Sec |= P. A program P satisfies full secrecy, written FS E P, iff FS g, P for
all states (€,m).

3 Enforcement Framework

We employ variants of flow-sensitive dynamic monitors (trackers) to enforce the
security conditions presented in the last section. Compared to existing work

134 M. Balliu et al.

(cf. Sect.6), we use semantic security conditions, weak secrecy and observ-
able secrecy, to justify soundness of weak tracking and observable tracking
mechanisms.

Figure 7 presents the instrumented semantics which is parametric on the
security labels, transfer functions and constraints. By instantiating each of the
parameters (Table1), we show how the semantics implements sound dynamic
trackers for weak secrecy (Theorem 1), observable secrecy (Theorem 2) and full
secrecy (Theorem 3). All proofs are reported in the full version [14].

S-SKIP S-IN-F
SinF
I, pc, €+ (skip,m) —» I',pc, E F (e, m) I'pc,EF (xz + in(L),m) —» ¢

S-Out S-WHILEFALSE
m(e) =n DoutT m(e) = tt bwh

n . U
I pe, € - (out(4, e), m) [(¢,n)] I pe, € F (e,m) I',pc, €+ (while e do P,m) —» I',pc ,E + (end, m)

S-IN
g =E[—n— EW(n+ 1) m' = mlz — £(£)(0)] I'" =[x~ £Upc GinT

I,pe, €+ (x + in(£),m) — I, pc, & + (e, m')

S-IFFALSE S-AssIGN-F
m(e) = ff iy PasgF
I',pc, €+ (if e then P; else Py, m) —» I',pc’,E F (P2 ; end, m) I'pc,EF (x:=e,m) —» ¢

S-IFTRUE S-Out-F
m(e) = tt bif PoutF
I, pc, € - (if e then Py else Py, m) —» I',pc’, € + (P1 ; end, m) I'ypc, €+ (out(L,e), m) —» ¢

S-SEQEMPTY S-END
PEnd
Typc,EF (e; Pa,m) —» I',pc, E F (P2, m) I, pc, €+ (end, m) —» I,pc', €+ (e, m)

S-WHILETRUE
m(e) =tt Pwh

I',pc, £ + (while e do P,m) —» I',pc’,€ - (P ; end ; while ¢ do P, m)

S-ASSIGN S-SEQ
m(e) =n I'" = I'[z — peU I'(e)] GasgT Iype, EF (Pi,m) 25 I pc’ &+ (P],m')

Type,EF (x:=e,m) = ', pc,E F (g, m[x — n]) I,pc,EF (Pr; Po,m) < I pc’, & + (P ; Py,m')

Fig. 7. Instrumented semantics

The instrumented semantics assumes a bounded lattice (£,C,U, M) and an
initial security environment I, as defined in Sect. 2.1. We use a program counter
stack of security levels pc to keep track of the security context, i.e. the security
level of conditional and loop expressions, at a given execution point. We write
£::pc to denote a stack of labels, where the label £ is its top element. Abusing
notation, we also write pc to represent the upper bound on the security levels
of the stack elements. The monitored semantics introduces the special instruc-
tion end to remember the join points in the control flow and update the pc
stack accordingly. Instrumented configurations I', pe, £ b (P, m) extend original

We Are Family: Relating Information-Flow Trackers 135

configurations with the security environment I" and security context stack pc.
We write I',pc,€ F {(c,m) Z» I ,pcd/,E F (¢,m') to denote that an instru-
mented configuration I',pc,€ F (c¢,m) evaluates in one step to instrumented
configuration IV, pc/, &' F (¢, m’), producing observations o € Obs. We write
—»* or Z»* to denote the reflexive and transitive closure of ~». We write I"(e)
for Uzevars(eyl (z) and £ for abnormal termination.

In what follows, we use the constraints in Table 1 to instantiate the rules in
Fig. 7, and present a family of dynamic monitors for weak tracking (known as
taint tracking), observable tracking, and full tracking (known as No-Sensitive
Upgrade [5]). The monitors implement the failstop strategy and terminate the
program abnormally (cf. rules for #) whenever a potentially insecure statement is
executed. Note that abnormal termination does not produce any observable event
and it is treated as a progress channel, similarly to nontermination. We write
7 kg m P for an execution of a monitored program P from initial state (£, m),
initial security environment I" and initial stack L, where Z € {WS,0S, FS}.

Monitored executions may change the semantics of the original program by
collapsing insecure executions into abnormal termination. To account for the
monitored semantics, we instantiate the security conditions from Sect. 2.4 with
the semantics of instrumented executions and, abusing notation, write Z |=¢ ,,, P
to refer to an execution of P under the instrumented semantics. We then show
that any program executed under an instrumented execution, i.e., I ¢, P,
satisfies the security condition, i.e., Z =¢ m P.

Weak Tracking. Weak tracking is a dynamic mechanism that prevents explicit
flows from sources of higher security levels to sinks of lower security levels. Weak
tracking allows leaks through implicit flows. The second column in Table 1 gives
the set of constraints that a typical taint analysis would implement for our
language.

Since the analysis ignores all
implicit flows, the pc stack is

Table 1. Constraints for Monitors in Fig.7

redundant and we never update RULE | WEAK |OBSERVABLE |FULL

it during the monitor execu- PaseT |t tt pc C I'(z)
tion. For the same reason, we Pasgr_|fF ft pc £ I'(z)
apply no side conditions to the ourr |I'(e) E L]T(e) EpeU L |I(e) C peUt
rules for conditionals and loops. i“mF i;(e) Z FC(E) % pedt FC(eI:) % pedt
Rule S-ASSIGN propagates the qule s]IZC 77 zc 77
security level of the expression qﬁmd s pe—lopd pe—lpd
on .the right-hand side to ‘Fhe s [bun | B = peLT(e) |€ = peliT(e)
variable on the left-hand side pd =0 pe |pd =0 :pe

to track potential explicit flows,

while rule S-ASSIGN-F never applies. Rule S-OUT ensures that only direct flows
from lower levels affect a given output level. If the constraint is not satisfied, the
program terminates abnormally (cf. S-OUT-F).

To illustrate the weak tracking monitor, consider the program from Fig. 3.
Initially, the security environment I" assigns the label L to variables [; and I, and
the label H to variable h. After the execution of line (1), the security environment

136 M. Balliu et al.

I does not change since pc = L and, I'(n) = L for all n € Val, therefore
I''(ly) =I'"(lz) = LUT'(ff) = L (cf. rule S-ASSIGN). Moreover, the lines (2) and
(3) do not modify I (cf. rules S-IFTRUE and S-IFFALSE). Finally, the output
in line (4) is allowed since I'(l3) = L C L (cf. rule S-OuT). In fact, the program
satisfies weak secrecy (Definition4), and it is accepted by weak tracking.

We show that any program that is executed under the weak tracking monitor,
i.e. T = WS, satisfies weak secrecy.

Theorem 1. WS¢, P= WS FE¢e,,, P

Observable Tracking. Observable tracking is a dynamic security mechanism
that accounts for explicit flows and observable implicit flows. Observable implicit
flows occur whenever a low security variable that is updated in a high security
context is later output to a low security channel. The condition justifies the secu-
rity of a program with respect to an attacker that only knows the control-flow
path of the current execution. Observable tracking has the appealing property of
only propagating the security label of variables in a concrete program execution,
without analyzing variables modified in the untaken branches. This is remark-
able as it sidesteps the need for convoluted static analysis otherwise required
for languages with dynamic features such as reflection. Moreover, as we discuss
later, observable tracking is more permissive than existing enforcement mech-
anisms such as NSU [5] or Permissive Upgrade [6]. Permissiveness is achieved
at the expense of enforcing a different security condition, i.e. observable secrecy,
instead of full secrecy. For trusted code, observable secrecy might be sufficient to
determine unintentional security bugs. Otherwise, for malicious code, we present
a transformation (Sect. 4) that enables observable tracking to enforce full secrecy,
yet being more permissive than full tracking.

The instrumented semantics for observable tracking (cf. third column in
Table 1) strengthens the constraints for weak tracking by: (i) introducing the
pc stack to properly track changes of security labels for variables updated in a
high context; (ii) disallowing input from low security channels in a high context;
(iii) and constraining the output on a low channel by disallowing low expressions
that depend on a high context.

Consider again the program in Fig. 3 under the instrumented semantics for
observable tracking. After executing the assignments in (1), the variables [; and
l> have security level L. If h is tt, the variable [y has security level H after the
first conditional in (2) (cf. S-IFTRUE rule). As a result, the guard of the second
conditional in (3) is false, and we execute the else branch. The security level of
the variable I remains L, therefore the output on the L channel in (4) is allowed
(cf. S-OUT rule). Otherwise, if h is ff, then the else branch is executed and [
has security level L. The second conditional does not change the security level of
l2, although the then branch is executed. In fact, the guard only depends on L
variables, i.e. [1, hence security level of [remains L and the subsequent output
is allowed. The program, in fact, satisfies observable secrecy.

We prove that any program that is executed under the observable tracking
monitor, i.e. Z = OS, satisfies observable secrecy.

We Are Family: Relating Information-Flow Trackers 137

Theorem 2. OSt¢,, P = OS Fg,p P

Full Tracking. Full tracking, best known as No-Sensitive Upgrade [5,58], pre-
vents both explicit and (observable or hidden) implicit flows from sources of
higher security levels to sinks of lower security levels. This is achieved by dis-
allowing changes of variables’ security labels in high contexts (as opposed to
the strategy followed by observable tracking). While sound for full secrecy, this
strategy incorrectly terminates any program that updates a low security variable
in a high security context, even if that variable is never output to low channel.
This is unfortunate as it rejects secure programs that only use sensitive data for
internal computations without ever sending them on low channels.

The semantics for full tracking adds additional constraints to the rules for
observable tracking (cf. fourth column in Table1). In particular, rule S-ASSIGN
only allows low assignments in low security contexts, i.e. whenever pc C I'(z).

Consider again the program in Fig. 3 and the semantics for full tracking. As
before, initially I'(l;) = I'(lz) = L, and I'(h) = H. If the value of h is true,
the then branch of the first conditional is executed, and the program is stopped
because of a low assignment in a high context. This is a sound behavior of full
tracking as the original program does not satisfy full secrecy. Unfortunately,
full tracking will also stop any secure programs that contain the conditional
statement in (2). For example, if we replace the output statement in (4) with
out(L, 1) or out(H,ls), the resulting program clearly satisfies full secrecy. How-
ever, whenever h is true, full tracking will incorrectly stop the program.

We show that any program that is executed under the full tracking monitor,
i.e. T = FS, satisfies full secrecy.

Theorem 3. FSt¢e,, P= FSFg, P

4 Staged Information-Flow Control

Two main factors hinder the adoption of dynamic information-flow control in
practice: challenging implementation and permissiveness. To properly update
the program counter stack at runtime, observable and full tracking require the
knowledge of the program’s control-flow graph. This requirement is unrealistic for
unstructured, heavily optimized or obfuscated code, such as the code delivered
to end users (cf. Sect.1). In contrast, weak tracking disregards the control-flow
graph and only considers explicit statements. As a result, the enforcement is
more permissive and easier to implement.

In the full version [14], we present a staged analysis that first applies light-
weight program transformations to convert implicit flows into explicit flows,
thus delegating the task of enforcing observable and full secrecy to a weak
tracker. Concretely, we inline the program counter stack into the source code
in a semantics-preserving manner by introducing fake dependencies that cause a
weak tracker to capture potential observable and/or hidden implicit flows. The
transformation is completely transparent to the underlying security policy, which
makes it suitable for the scenarios envisioned in Sect. 1.

138 M. Balliu et al.

Table 2. Permissiveness

ProGgraM I'(h) =H, I'(l) = I'(k) =L | WEaK FuLL | PU|OT
and h = tt

Py |l:=tt;if h then {l := h}; out(L,!) — — - |-

P, | if h then [:=tt + — + |+

P, |if h then [:= tt ; if [then skip + — - |+

Ps|l:=tt; k:=tt;if h then {l := I} ; + — - |+
if [then {k := ff} ; out(L, 1)

Py | if h then out(L, 1) else out(L, 1) + — - |-

Ps | l:=tt; k:=tt;if h then {l := ff}; + X X |+

if [then {k := ff} ; out(L, k)

Soundness vs Permissiveness. We use the examples in Table 2 to illustrate
soundness and permissiveness for existing dynamic trackers.

Except for the program Ps,
all programs are secure for full
secrecy. We summarize the rela-
tions between the security conditions
(solid ovals) and enforcement mech-
anisms (dashed ovals) in Fig.8. The
security conditions are incompara-
ble, as shown by the programs Py, Py
and Ps from Table 2. Moreover, there
is a strict inclusion between the set
of secure programs accepted by the
trackers (cf. Table2).

Observable Secrecy Full Secrecy

Fig. 8. Soundness vs Permissiveness

Theorem 4. FI't¢,, P= 0T gy P=>WT k¢, P

Table 2 illustrates permissiveness for the state-of-the-art purely dynamic
trackers. All trackers account for explicit flows, however, as illustrated by pro-
gram Py, they can be imprecise (cf. “—") due to approximation. P; will be
rejected by full tracking, i.e. NSU [5], while program P, will be rejected by Per-
missive Upgrade [6], although none of them performs any outputs. P; encodes
the value of the high boolean variable h into the final value of variable k through
hidden implicit flows, however, k is never output. Observable tracking (column
6 and 7) correctly accepts the program, thus decreasing the number of false pos-
itives that the other trackers would otherwise report. Py and P4 will be rejected
by most trackers due to over-approximation. Arguably, program patterns like Py
and P, are unlikely to be used, and, for trusted code, they can be fixed, e.g. by
code transformations.

These considerations make a good case for using observable tracking as a
permissive purely dynamic mechanism for security testing. However, programs

We Are Family: Relating Information-Flow Trackers 139

may still leak through hidden implicit flows. The insecure program Ps; will be
correctly rejected by NSU and Permissive Upgrade (cf. “X”) and, it will be
correctly accepted by observable tracking.

5 Implementation and Evaluation

Implementation. Our tool is a prototype built on top of the Soot frame-
work [54] and it uses an intermediate bytecode language, Jimple [54], to imple-
ment the static transformations presented in Sect. 3. We provide a description of
Jimple and discuss advanced language features in the full version [14]. We imple-
mented the code transformation for Android applications. The instrumented
applications are then run using TaintDroid [24]. The code of the implementa-
tion is available online [14]. Overall, the implementation of static transforma-
tions proved to be straight-forward, due to the use of Jimple as an intermediate
language and the modularity of the transformations. This indicates that this
approach is indeed lightweight compared to elaborate information-flow trackers.

Use Case: Pedometer. To evaluate our approach, we apply the presented
implementation to an open-source step counting application [41] from the popu-
lar F-Droid repository. By default, the application performs no network output.
To check if illegal flows are properly detected, we add network communication in
a number of scenarios. We give condensed forms of these examples in this section
to abstract from Android-specific issues regarding sensor queries; we refer the
reader to the implementation’s source code for the full examples [14].

Usage statistics: The step counting application may want to report usage infor-
mation to the developer. However, a user may not want the actual step count
to be reported to the developer. By tracking observable implicit flows, reporting
usage information in a low context does not generate a false positive. However,
disclosing the actual step count or reporting that the app was used on certain
day in a high context will yield an error (Fig.9).

Declassifying average pace: The appli-
cation may additionally send the aver-
age pace to a server to provide com- then steps := steps + 1 else skip
parisons with other users. However, out(L,“App used on” + (new Date()))
the actual step count should still

not be disclosed. We implement a Fig. 9. Step counter example
where-style declassification policy as

described in [14].

if (stepSensor.newStep() == true)

Location information: To show the user more detailed information, we also
extended the application with rudimentary location tracking to allow for display-
ing information such as the number of steps per city. As location information is
sensitive, our transformation ensures that nothing about the user’s coordinates
is leaked through explicit or observable implicit flows. We then modified the

140 M. Balliu et al.

program to leak location information through hidden implicit flows as in Fig. 3.
Again, our cross-copying transformation ensured that such leaks are prevented.

Use Case: JSFlow. Existing information-flow tools, such as JSFlow [30], can
be easily modified to enforce observable secrecy instead of noninterference. For
the latest release of JSFlow, version 1.1, it was sufficient to comment out as few
as 4 lines of code to change to enforcing observable secrecy.

Work on value sensitivity in the context of JSFlow [31] points out precision
issues due to the No-Sensitive Upgrade policy, as in examples like (z := 1 ;
if h then z := 2 else skip ; out(L,1)). A standard information-flow monitor
such as JSFlow would stop this program to avoid upgrading the label of = in a
secret context, even though x is never output later in the program. Modifying
JSFlow to enforce observable secrecy however accepts the program.

6 Related Work

Referring to the surveys on language-based information-flow security [44] and
taint tracking [47], we only discuss the most closely related work.

Information-Flow Policies. Contrasting noninterference [28], Volpano [57]
introduces weak secrecy, a security condition for taint tracking. Schoepe et al.
generalize weak secrecy by explicit secrecy [45] and enforce it by faceted val-
ues [46]. Our work explores observable secrecy as the middle ground. Similarly
to weak secrecy and noninterference, observable secrecy is not a trace property.

Several authors study knowledge-based conditions [3,4,9,10]. We explore the
attacker’s view of program code to discriminate polices, relating in particular
to the forgetful attackers by Askarov and Chong [2], though the exact relation
is subject to further investigation. While implicit flows in the wild are impor-
tant [33,42], they can also appear in trusted code [34,35]. By tracking explicit
and observable implicit flows, we raise the security bar wrt. taint tracking.

Staged Analysis. Our work takes inspiration from Beringer [15], who pro-
vides formal arguments of using taint tracking to enforce noninterference policies.
Beringer also leverages the cross copying technique to consider hidden implicit
flows. By contrast, we justify soundness of the enforcement mechanism in terms
of semantic conditions like weak secrecy with respect to uninstrumented seman-
tics. On the other hand, Beringer introduces a notion of path tracking to account
for termination-sensitive noninterference, and supports the theory (for an imper-
ative language without 1/0) by a formalization in Coq. Our work distinguishes
between malicious and trusted code, providing security conditions and enforce-
ment mechanisms for both settings (including a prototype implementation).
Rifle [53] treats implicit flows by cross-copying program instrumentation and
taint tracking, with separate taint registers for explicit and implicit flows. The
focus is on efficiency, as soundness is only justified informally. Like Beringer’s,
our work gives formal and practical evidence for the usefulness of Rifle’s ideas.

We Are Family: Relating Information-Flow Trackers 141

Other works leverage the cross-copying technique to enforce noninterference
policies. Le Guernic [36] uses cross-copying in a hybrid monitor for noninterfer-
ence, and refers to observable and hidden implicit flows as implicit and explicit
indirect flows, respectively. Chugh et al. [19] present a hybrid approach to han-
dling JavaScript code. Their approach first computes statically a dynamic resid-
ual, which is checked at runtime in a second stage. For trusted code, Kang et
al. [34] study targeted (called culprit) implicit flows. Bao et at. [11] identify strict
control dependences and evaluate their effectiveness for taint tracking empiri-
cally. These works illuminate the benefits of observable implicit flows.

Dynamic Enforcement and Inlining. Fenton [26] studies purely dynamic
information-flow monitors. Austin and Flanagan [5] leverage No-Sensitive
Upgrade [58] to enforce noninterference for JavaScript and propose Permissive
Upgrade [6] to improve precision. We show that NSU can be too restrictive, and
propose solutions to improve precision for malicious and trusted code. Chudnov
and Naumann [18] and Magazinius et al. [37] propose information-flow monitor
inlining, integrating the NSU strategy into program’s code. Bielova and Rezk [17]
survey recent work in (information-flow) monitor inlining. Our transformations
can be seen as lightweight inlining of dynamic monitors, for (observable and/or
hidden) implicit flows. Russo and Sabelfeld [43] discuss trade-offs between static
and dynamic flow-sensitive analysis. We leverage their flow-sensitive monitor.

Secure multi-execution [22] and faceted values [7] enforce noninterference:
programs are executed as many times as there are security levels, with outputs
at each level computed by the respective runs. Barthe et al. [12] study pro-
gram transformations to implement secure multi-execution. These techniques
are secure by construction and provide high precision. However, they require
synchronization between computations at different security levels, and face chal-
lenges for languages with side-effects and I/O. Also, they may modify the seman-
tics and introduce crashes, thus making it difficult to detect attacks. By con-
trast, we focus on failstop monitoring, trading full permissiveness to avoids such
pitfalls.

Static and Hybrid Enforcement. Volpano et al. [56] formalize the soundness
of Dennings’ static analysis [21] with respect to noninterference by a security
type system, extended by further work with advanced features [44]. Hunt and
Sands [32] present flow-sensitive security types. Our work leverages dynamic
analysis to enforce similar policies. Other analysis for information flow include
program logics [10,13], model checking [8,23], abstract interpretations [27] and
theorem proving [20,40]. While more precise than security type systems, these
approaches may face several challenges with scalability.

Hybrid enforcement combines static and dynamic analysis. Le Guernic [36]
proposes hybrid flow-sensitive mechanisms supporting for sequential and con-
current languages. Venkatakrishnan et al. [55] present a hybrid monitor for
a language with procedures and show that it enforces noninterference. Shroff
et al. [48] present a monitor with dynamic dependency analysis for a language
with heap. Tripp et al. [52] study hybrid security for JavaScript code by com-
bining static analysis and dynamic partial evaluation. Moore and Chong [39]

142 M. Balliu et al.

propose two optimizations of hybrid monitors for efficiency: selective tracking
of variable security levels and memory abstractions for languages with dynamic
memory. Hybrid approaches use static analysis to approximate computational
effects for program paths that are not visited by a given execution. This can be
challenging for languages with complex features, e.g. reflection, and unstructured
control flow. We strike the balance by performing static analysis for implicit flows
(basically boolean expressions) and delegating the resolution of complex features
to a dynamic taint tracker.

Mobile App Security. There exists a large body of works on information-flow
analysis in the mobile app domain. The majority of these analysis only accounts
for explicit flows. This is due to the presence of complex language features and
highly dynamic lifecycles, however, for potentially malicious and trusted code,
implicit flows are important to address. Our proposal in Fig. 1 enables existing
work to provide stronger guarantees in a flexible manner. TaintDroid [24] is a
dynamic taint tracker developed to capture privacy violations in Android apps.
We use TaintDroid as dynamic component in our implementation. Most static
analysis works certify security with respect to weak secrecy [1,29]. Despite the
great progress in improving precision, the false positive rate remains high [29].
Ernst et al. [25] propose collaborative verification of information-flow require-
ments for a high-integrity app store. Developers and the app store collaborate
to reduce the overall verification cost. Concretely, developers provide the source
code with information-flow specifications (security types), while the app store
verifies their correctness. Our model is complementary and, by contrast, user-
centric, allowing for more flexible policies and reducing the developers’ burden.

7 Conclusion

We have presented a framework of information-flow trackers, allowing us to relate
a range of enforcement from taint tracking to information-flow control. We have
explored the middle ground by distinguishing malicious and trusted code and
considering trade-offs between soundness and permissiveness. We have deployed
the framework in a staged fashion by combining lightweight static analysis with
dynamic taint tracking, enabling us to envision a secure app store architecture.
We have experimented with the approach by a prototype implementation.

Future work includes dynamic security policies and case studies from the
F-Droid repository. While the current framework allows for parametric policies
on users’ side, we conjecture that the static transformations, being transparent
to the underlying policy, can be extended to handle rich dynamic policies.

Acknowledgments. This work was partly funded by the European Community under
the ProSecuToR project and the Swedish research agency VR.

We Are Family: Relating Information-Flow Trackers 143

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y.L.,
Octeau, D., McDaniel, P.: Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In: PLDI (2014)

Askarov, A., Chong, S.: Learning is change in knowledge: Knowledge-based security
for dynamic policies. In: CSF (2012)

Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive nonin-
terference leaks more than just a bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 333-348. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88313-5_22

Askarov, A., Sabelfeld, A.: Gradual release: unifying declassification, encryption
and key release policies. In: S&P (2007)

Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis.
SIGPLAN Not. 44, 20-31 (2009)

Austin, T.H., Flanagan, C.: Permissive dynamic information flow analysis. In:
PLAS (2010)

Austin, T.H., Yang, J., Flanagan, C., Solar-Lezama, A.: Faceted execution of
policy-agnostic programs. In: PLAS (2013)

Balliu, M., Dam, M., Guernic, G.L.: ENCoVer: symbolic exploration for informa-
tion flow security. In: CSF (2012)

Balliu, M., Dam, M., Le Guernic, G.: Epistemic temporal logic for information flow
security. In: PLAS (2011)

Banerjee, A., Naumann, D.A., Rosenberg, S.: Expressive declassification policies
and modular static enforcement. In: S&P (2008)

Bao, T., Zheng, Y., Lin, Z., Zhang, X., Xu, D.: Strict control dependence and its
effect on dynamic information flow analyses. In: ISSTA (2010)

Barthe, G., Crespo, J.M., Devriese, D., Piessens, F., Rivas, E.: Secure multi-
execution through static program transformation. In: Giese, H., Rosu, G. (eds.)
FMOODS/FORTE -2012. LNCS, vol. 7273, pp. 186-202. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30793-5_12

Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
MSCS 21, 1207-1252 (2011)

We are family: relating information flow trackers (Extended Version). http://www.
cse.chalmers.se/research/group/security /family

Beringer, L.: End-to-end multilevel hybrid information flow control. In: Jhala, R.,
Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 50-65. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-35182-2_5

Biba, K.J.: Integrity considerations for secure computer systems. Technical report,
MITRE Corp (1977)

Bielova, N., Rezk, T.: A taxonomy of information flow monitors. In: Piessens, F.,
Vigano, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 46—67. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49635-0_3

Chudnov, A., Naumann, D.A.: Information flow monitor inlining. In: CSF (2010)
Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for
javascript. In: PLDI (2009)

Darvas, A., Héhnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol.
3450, pp. 193-209. Springer, Heidelberg (2005). doi:10.1007/978-3-540-32004-3_20

http://dx.doi.org/10.1007/978-3-540-88313-5_22
http://dx.doi.org/10.1007/978-3-540-88313-5_22
http://dx.doi.org/10.1007/978-3-642-30793-5_12
http://www.cse.chalmers.se/research/group/security/family
http://www.cse.chalmers.se/research/group/security/family
http://dx.doi.org/10.1007/978-3-642-35182-2_5
http://dx.doi.org/10.1007/978-3-662-49635-0_3
http://dx.doi.org/10.1007/978-3-540-32004-3_20

144

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

M. Balliu et al.

Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20, 504-513 (1977)

Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: S&P
2010 (2010)

Dimitrova, R., Finkbeiner, B., Kovacs, M., Rabe, M.N.; Seidl, H.: Model check-
ing information flow in reactive systems. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCALI 2012. LNCS, vol. 7148, pp. 169-185. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-27940-9_12

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.G., Cox, L.P., Jung, J.,
McDaniel, P., Sheth, A.N.: Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. 32, 5
(2014)

Ernst, M.D., Just, R., Millstein, S., Dietl, W., Pernsteiner, S., Roesner, F., Koscher,
K., Barros, P.B., Bhoraskar, R., Han, S., Vines, P., Wu, E.X.: Collaborative veri-
fication of information flow for a high-assurance app. store. In: CCS (2014)
Fenton, J.S.: Memoryless subsystems. Comput. J. 17(2), 143-147 (1974)
Giacobazzi, R., Mastroeni, I.: Abstract non-interference: parameterizing non-
interference by abstract interpretation. In: POPL (2004)

Goguen, J.A., Meseguer, J.: Security policies and security models. In: S&P (1982)
Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen, N., Rinard, M.C.: Infor-
mation flow analysis of android applications in droidsafe. In: NDSS (2015)

Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: tracking information flow
in javaScript and its APIs. In: SAC (2014)

Hedin, D., Bello, L., Sabelfeld, A.: Value-sensitive hybrid information flow control
for a javascript-like language. In: CSF (2015)

Hunt, S., Sands, D.: On flow-sensitive security types. In: POPL, pp. 79-90 (2006)
Jang, D., Jhala, R., Lerner, S., Shacham, H.: An empirical study of privacy-
violating information flows in javaScript web applications. In: CCS (2010)

Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA++: dynamic taint
analysis with targeted control-flow propagation. In: NDSS (2011)

King, D., Hicks, B., Hicks, M., Jaeger, T.: Implicit flows: can’t live with ‘Em, can’t
live without ‘Em. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352,
pp. 56-70. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89862-7_4

Le Guernic, G.: Confidentiality enforcement using dynamic information flow analy-
ses. Ph.D. thesis, Kansas State University (2007)

Magazinius, J., Russo, A., Sabelfeld, A.: On-the-fly inlining of dynamic security
monitors. Comput. Secur. 31, 827-843 (2010)

McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: S&P (1994)

Moore, S., Chong, S.: Static analysis for efficient hybrid information-flow control.
In: CSF (2011)

Nanevski, A., Banerjee, A., Garg, D.: Dependent type theory for verification of
information flow and access control policies. ACM Trans. Program. Lang. 35, 6
(2013)

https://f-droid.org/repository /browse/?fdid=name.bagi.levente.pedometer

Russo, A., Sabelfeld, A., Li, K.: Implicit flows in malicious and nonmalicious code.
Marktoberdorf Summer School (IOS Press) (2009)

Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:
CSF (2010)

Sabelfeld, A., Myers, A.C.: Language-based information-flow security. JSAC 21,
5-19 (2003)

http://dx.doi.org/10.1007/978-3-642-27940-9_12
http://dx.doi.org/10.1007/978-3-642-27940-9_12
http://dx.doi.org/10.1007/978-3-540-89862-7_4
https://f-droid.org/repository/browse/?fdid=name.bagi.levente.pedometer

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

We Are Family: Relating Information-Flow Trackers 145

Schoepe, D., Balliu, M., Pierce, B.C., Sabelfeld, A.: Explicit secrecy: a policy for
taint tracking. In: EuroS&P (2016)

Schoepe, D., Balliu, M., Piessens, F., Sabelfeld, A.: Let’s face it: faceted values for
taint tracking. In: ESORICS (2016)

Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: S&P 2010 (2010)

Shroff, P., Smith, S., Thober, M.: Dynamic dependency monitoring to secure infor-
mation flow. In: CSF (2007)

SnoopWall: Flashlight Apps Threat Assessment Report (2014). https://www.
snoopwall.com /reports

Staicu, C., Pradel, M.: An empirical study of implicit information flow (2015).
poster at PLDL. https://www.informatik.tu-darmstadt.de/fileadmin /user_upload/
Group_-SOLA /Papers/poster-pldi2015-src.pdf

(2015). http://www.heartbleed.com

Tripp, O., Ferrara, P., Pistoia, M.: Hybrid security analysis of web javascript code
via dynamic partial evaluation. In: ISSTA (2014)

Vachharajani, N., Bridges, M.J., Chang, J., Rangan, R., Ottoni, G., Blome, J.A.,
Reis, G.A., Vachharajani, M., August, D.I.: RIFLE: an architectural framework
for user-centric information-flow security. In: MICRO (2004)

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot
- a java bytecode optimization framework. In: CASCR (1999)

Venkatakrishnan, V.N.; Xu, W., DuVarney, D.C., Sekar, R.: Provably correct run-
time enforcement of non-interference properties. In: Ning, P., Qing, S., Li, N. (eds.)
ICICS 2006. LNCS, vol. 4307, pp. 332-351. Springer, Heidelberg (2006). doi:10.
1007/11935308_24

Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis.
JCS 4, 167-187 (1996)

Volpano, D.: Safety versus secrecy. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS,
vol. 1694, pp. 303-311. Springer, Heidelberg (1999). doi:10.1007/3-540-48294-6_20
Zdancewic, S.A.: Programming languages for information security. Ph.D. thesis,
Cornell University, Ithaca, NY, USA (2002)

https://www.snoopwall.com/reports
https://www.snoopwall.com/reports
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SOLA/Papers/poster-pldi2015-src.pdf
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SOLA/Papers/poster-pldi2015-src.pdf
http://www.heartbleed.com
http://dx.doi.org/10.1007/11935308_24
http://dx.doi.org/10.1007/11935308_24
http://dx.doi.org/10.1007/3-540-48294-6_20

Labeled Homomorphic Encryption

Scalable and Privacy-Preserving Processing
of Outsourced Data

Manuel Barbosa!, Dario Catalano?®), and Dario Fiore3

1 INESC TEC and FCUP, Porto, Portugal
2 University of Catania, Catania, Italy
catalano@dmi.unict.it
3 IMDEA Software Institute Madrid, Madrid, Spain

Abstract. In privacy-preserving processing of outsourced data a Cloud
server stores data provided by one or multiple data providers and then
is asked to compute several functions over it. We propose an efficient
methodology that solves this problem with the guarantee that a honest-
but-curious Cloud learns no information about the data and the receiver
learns nothing more than the results. Our main contribution is the pro-
posal and efficient instantiation of a new cryptographic primitive called
Labeled Homomorphic Encryption (labHE). The fundamental insight
underlying this new primitive is that homomorphic computation can be
significantly accelerated whenever the program that is being computed
over the encrypted data is known to the decrypter and is not secret—
previous approaches to homomorphic encryption do not allow for such
a trade-off. Our realization and implementation of labHE targets com-
putations that can be described by degree-two multivariate polynomials.
As an application, we consider privacy preserving Genetic Association
Studies (GAS), which require computing risk estimates from features in
the human genome. Our approach allows performing GAS efficiently, non
interactively and without compromising neither the privacy of patients
nor potential intellectual property of test laboratories.

1 Introduction

Privacy-preserving data processing techniques are crucial enablers for moving
many security-critical applications to the Cloud, and they may be the key to
unlocking new socially-relevant applications and business opportunities. As an
example, consider the case of personalized medicine, where a medical center
offers highly specialized services that permit guiding the medical care of a Client
based on information encoded in the Genome. Such direct-to-consumer services
are already a reality, so we will not discuss whether or not they are desirable.
Instead, we propose a new methodology that can be used today to deploy such
services in the Cloud (genomic studies may involve a huge amount of data),
whilst protecting the privacy of the Client, and intellectual property that may be
a concern for the medical center. Controlling who has access to individual data in
© Springer International Publishing AG 2017

S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 146-166, 2017.
DOI: 10.1007/978-3-319-66402-6_10

Labeled Homomorphic Encryption 147

these scenarios will likely be mandatory for ethical and/or legal reasons, and this
pattern arises in many other real-world applications (e.g., analysis of taxpayers’
or consumers’ data, users’ geographic locations, etc.) where our solution may be
of use.

We consider a scenario with three

(Do provier 1)~ Query P actors — data providers, the Cloud, and
Data provider 2 | ——— p) |Receiver] & receiver — with the following work-
[7/ flow (Fig. 1). Data providers send data
(D v) to the Cloud, and the receiver asks the

Cloud to execute certain queries on the
outsourced data. For the applications
we consider, the key requirements are
privacy and efficiency. Privacy properties should guarantee that the Cloud does
not learn any information on the hosted data, and that the receiver learns noth-
ing more than the queries outcomes. Furthermore, it should be possible for many
data providers to contribute with inputs to the same computation, in such a
way that data introduced by one provider is protected from the others. The effi-
ciency requirement involves two main aspects: computation and communication.
With respect to computation, the protocol should have minimal impact for data
providers. There is little point for them in delegating storage and/or computa-
tion to the Cloud if this requires prohibitive costs; their only task should be to
collect and send data and be minimally involved in the rest of the protocol (e.g.,
they could go offline). Moreover, in several applications the data providers can
be resource-constrained devices (e.g., sensors) for which a lightweight protocol
is essential. In terms of computation, the protocol should also run efficiently at
the Cloud. Although Cloud providers have powerful resources, in an outsourcing
setting one has to pay for them and thus the lighter is the protocol’s burden
the cheaper is the service’s cost. On the communication side, one would like
solutions with minimal bandwidth overhead both between data providers and
the Cloud, and between the Cloud and the receiver. For example, the communi-
cation with the receiver should not depend on the amount of data hosted by the
Cloud. Low bandwidth is particularly relevant in the context of mobile networks
and mobile devices: high bandwidth consumptions drain batteries and cost a
lot due to the price of mobile network connections (most of the times under a
pay-per-use model).

Fig. 1. The parties and workflow of our
system.

Our Contribution. We propose and efficiently instantiate a new cryptographic
primitive called Labeled Homomorphic Encryption (labHE) that gives a solution
to the problem of privately processing outsourced data outlined above. Our real-
ization and implementation of labHE targets computations that can be described
by degree-two multivariate polynomials, which capture a significant fraction of
statistical functions and, in particular, statistical computations used in genomic
analysis. As we detail later, our solution outperforms protocols based on previous
somewhat homomorphic encryption schemes in essentially all fronts: our com-
munication costs are more than two orders of magnitude smaller, computation
is more than 80 times faster for data providers and up to 9000 times faster for

148 M. Barbosa et al.

the Cloud. The insight that unlocks such performance gains is that homomor-
phic computation can be significantly accelerated whenever the program that
is being computed over the encrypted data is known to decrypter and is not
secret—previous approaches to homomorphic encryption do not allow for such
a trade-off.

Labeled Homomorphic Encryption. Our new labHE notion combines the
model of labeled programs, put forward in the context of homomorphic authen-
ticators (e.g. [5,7,15]), with the concept of homomorphic encryption. Homo-
morphic encryption (HE) [16,27] is like ordinary encryption with the additional
capability of a (publicly executable) evaluation algorithm Eval. The latter takes
as input a program P and encrypted messages mgq,...,my,, and outputs an
encryption of P(my,...,my,).

labHE is similar to HE with the following additions. First, every piece of
(encrypted) data is associated with a unique label. A label could be the index of
a database record or any other string that can be used to identify the outsourced
data item. Thus, when encrypting a message m, one specifies a corresponding
label 7 (which does not need to be kept secret, though). To give an example,
think of a blood pressure sensor which collects measurements at regular time
instants: the pressure value is the actual data while the time instant is the label.
Next, whenever a user Bob wants to ask the cloud to compute f on some (previ-
ously outsourced) encrypted inputs, he makes the query by specifying the labels
of these inputs. For instance, Bob may say “compute the mean on messages
with labels (Pressure,1),...,(Pressure,100)”. The combination of f and the
labels in the query is called a “labeled program” P, which is what is executed
by the Cloud. Finally, upon the receipt of the (encrypted) answer ¢ from the
Cloud, Bob runs the decryption algorithm with his secret key, ¢, and labeled
program P. Introducing labeled programs in HE formalizes the intuition that
Bob is decrypting the result of a known function (the labeled program, the query)
on the unknown outsourced data (the encrypted messages). We stress that in
the outsourcing setting labeling is always implicit, as some mechanism is always
needed to specify the portion of the outsourced data over which the Cloud has to
compute. Moreover, although one may wonder that labels leak additional infor-
mation, it is not hard to see that this can be avoided by choosing an appropriate
labeling (e.g., simple indices) which reveals only trivial information.

For efficiency we require labHE ciphertexts to be succinct, i.e., of fixed size,
independent of the computation executed on it. We concede that the running
time of labHE decryption may depend on P: this is the most noticeable difference
with standard HE. Interestingly, however, in our realizations this has almost
negligible impact on efficiency in practice. For security, we require labHE to
meet the usual semantic security notion (i.e., one cannot tell apart encryptions
of known messages) and also to satisfy a property that we call context-hiding.
This essentially says that a ciphertext encrypting the result m = P(mq,...,my,)
reveals only m and nothing more about the program inputs.

Basic and Multi-user labHE. The basic labHE notion requires the same secret
key to encrypt and decrypt. It can be used to perform privacy-preserving compu-

Labeled Homomorphic Encryption 149

tations on outsourced data as follows. A data provider, Alice, jointly executes the
setup algorithm with Bob, the receiver, and gets a secret encryption key that she
can use to encrypt her data before outsourcing it to the Cloud. Bob can then ask
the Cloud to compute a labeled program P on Alice’s data, obtain an encryption
of the result and decrypt this with his secret decryption key. In terms of data
privacy, labHE semantic security ensures that, as long as the Cloud does not get
to see the keys used for encryption/decryption, it does not learn anything about
Alice’s data or the result of the computation; context-hiding further guarantees
that, as long as the Cloud does not reveal the originally encrypted ciphertexts
to Bob, then Bob learns only the query results and no other information about
Alice’s individual data. We note that this trust model is particularly well suited
to a scenario in which Alice (or more of the senders in the multi-sender scenario
below) controls the Cloud and uses it to offer a service to Bob. Regarding effi-
ciency, the only work of Alice is to encrypt and transmit the data, while the
succinctness of labHE yields short communication between the Cloud and Bob:
answers received by Bob do not depend on the size of the outsourced data.

In addition to basic labHE, we also provide a more powerful generalization to
a multi-user setting, which inherits all the performance features of the basic one.
Here one can perform computations over data encrypted by different providers,
and these do not need to share any common secret. Indeed, key generation in
the basic labHE notion can be split between sender and receiver as follows. Bob
generates a master public key and a master secret key. Knowing Bob’s master
public key, Alice can unilaterally encrypt with her own generated encryption
key, and create a public key that becomes associated with her encrypted data.
In this way, no trusted a priori set-up is required in addition to a PKI. More-
over, multiple senders can do exactly the same as Alice to encrypt under their
public keys and Bob’s master public key, with the extra guarantee that the data
encrypted by one sender cannot be decrypted by a different sender. Decryption
requires knowledge of the master secret along with the public keys of all the
users whose ciphertexts were involved in the computation.

On the Usefulness of Labeling Programs. The essence of labHE is to take
advantage of the fact that, when delegating some computation P on outsourced
data, P is typically provided explicitly to the cloud. Interestingly, when using
(standard) homomorphic encryption this inherent privacy loss does not seem to
be exploitable to gain efficiency. labHE, on the other hand, aims at trading the
(unavoidable!) leak of P to significantly reduce the cost of the computation.
Indeed, the main difference with respect to (standard) homomorphic encryp-
tion is in decryption: decrypting in labHE requires Bob to do work that depends
on the program P. More precisely, and simplifying things a bit, Bob will basi-
cally need to recompute P on (values related to) the labels corresponding to the
original inputs. Interestingly we show that, as this computation is performed
on unencrypted and very succinct data (short pseudorandom fingerprints of the
labels), it has very low impact in practice. In fact, the cost of decryption is
always orders of magnitude lower than that of running the computation in the
Cloud. Not only that, this can be done prior to receiving the encrypted results

150 M. Barbosa et al.

from the Cloud! This becomes particularly interesting when considering that our
realizations of labHE are extremely efficient also for the Cloud (see below for
more details about this). Indeed, we show that, building on [6], labHE support-
ing computations expressible via degree-2 polynomials can be realized from any
encryption scheme that is only linearly homomorphic. Since these are typically
more efficient than their more expressive counterparts, the same holds for the
resulting labHE.

To the best of our knowledge, the idea of trading-off function privacy for effi-
ciency has not been previously applied in the field of (somewhat) homomorphic
encryption; for this reason, and while our work focuses on the specific case of
computing degree two polynomials on ciphertexts, we believe that this idea could
be of independent interest and might find applications for settings requiring more
expressive computations as well.

An Overview of Our Techniques. We provide an intuitive description of
our solution, discussing some of the core ideas underlying it. We encrypt a mes-
sage m € M via a two-component ciphertext (m — b, Enc(b)), where Enc is a
linearly homomorphic encryption scheme and b is random in M. In [6], Cata-
lano and Fiore show that ciphertexts of this form allow for the evaluation of
degree-two polynomials on encrypted data, at the cost of losing compactness.
More precisely, Catalano and Fiore argue that when applying a polynomial f on
(mq — b1, Enc(b1)),..., (m¢ — by, Enc(b;)), there may be the possibility (depend-
ing on the structure of f) to end up with a huge O(t)-components ciphertext
(Enc(f(ma,...,m¢) — f(b1,...,b:)), Enc(b1),...,Enc(bs)).

Our key idea to solve the compactness issue in the context of labHE is to
let every b; depend on the corresponding label; in our construction we set b; as
the output of Fik(7;), where F' is a pseudorandom function and 7; is the unique
label associated with message m;. The crucial observation is that, because the
labels are known to the decryptor, the value f(by,...,b;) can be reconstructed
at decryption time, and the components Enc(by),...,Enc(b:) dismissed from
the above ciphertext. This gives us a construction that supports all degree-two
polynomials with constant-size ciphertexts! Interestingly, this simple idea, when
instantiated with fast cryptographic primitives (e.g., the Sponge-based pseudo-
random function from the Kekkac Code Package and the Joye-Libert cryptosys-
tem [20]) yields an extremely efficient realization of the primitive, that allows
to outsource the computation of various useful functions (e.g. statistics, genetic
association studies) in a very efficient yet privacy preserving way.

Efficient labHE Realizations. We show how to construct expressive labHE
schemes for quadratic functions by using standard number theoretic (linearly-
homomorphic) encryption schemes, such as Paillier [25], Bresson et al. [4] and
Joye-Libert [20]. We implemented one of these instantiations — the one based on
the Joye-Libert cryptosystem that we call labHE(JL13) — and tested its per-
formance for the case of computing statistical functions on encrypted data.
Our experiments demonstrate that labHE(JL13) outperforms a solution based
on state-of-the-art somewhat homomorphic encryption (FV) [13,24] (optimized
to support the same class of functions) on essentially all fronts. For example,

Labeled Homomorphic Encryption 151

comparing labHE(JL13) against FV, we observed that in labHE(JL13) the com-
munication costs are 400 times smaller, encrypting is more than 80 times faster,
while computing the results is between 9000 and 50 times faster for the Cloud.

Applications. To further highlight the performance benefits of our solution
in the real world, we looked at two specific applications: i. computing relevant
statistical functions over encrypted data outsourced to the Cloud and ii. perform-
ing Genetic Association Studies that preserve both the privacy of users and the
intellectual property of the laboratories performing the tests. These applications
are discussed in Sect. 6.

Solutions Based on Related Primitives. In the full version [1] we discuss
how alternative solutions for the same applications could be developed using
other cryptographic techniques—other forms of homomorphic encryption, secure
multiparty computation and classical techniques—emphasizing the advantages
of labelled homomorphic encryption in terms of computational costs and band-
width in each chase, and highlighting the differences in trust models and neces-
sary infrastructure.

Preliminaries and Notation. We denote with A € N a security parameter,
and with poly(\) any function bounded by a polynomial in A\. We say that a
function € is negligible if it vanishes faster than the inverse of any polynomial
in A\. We use PPT for probabilistic polynomial time, i.e., poly(A). If S is a set,
z < S denotes selecting z uniformly at random in S. If A is a probabilistic
algorithm, z < A(-) denotes the process of running A on some appropriate
input and assigning its output to x. For a positive integer n, we denote by [n]
the set {1,...,n}. We refer to [16] for standard security notions related to HE.

2 Labeled HE

In this section we introduce the notion of Labeled Homomorphic Encryption
(labHE, for short). This notion adapts the one of (symmetric-key) homomorphic
encryption to the setting of labeled programs. This is based on the following
key ideas. First, each piece of (encrypted) data that is outsourced is assigned
a unique label which is used to identify the data. Second, whenever a client
wants to ask the cloud to compute a function f on a portion of the outsourced
(encrypted) data, the client specifies the inputs of f among the outsourced data.
These inputs are identified by specifying their labels. The combination of f with
these labels is called a labeled program. In short, labels allow clients to express
queries on outsourced data.

In our homomorphic encryption notion, these ideas are introduced as fol-
lows. The encryption algorithm takes as input also a label; this is to say that
the encryptor assigns a unique index to the encrypted data. Second, the decryp-
tion algorithm takes as additional input a labeled program; this is to express
that the decryptor recovers the result of a known query (the labeled program)
on the (unknown) outsourced data. In practice, the set of labels has concise
representation (e.g. they can be names or even indexes in [1,n]).

152 M. Barbosa et al.

Labeled Programs. Here we recall the notion of labeled programs [15], adapted
to the case of arithmetic circuits as in [5]. The definition is taken almost verbatim
from [5]. A labeled program P is a tuple (f,71,...,7,) such that f : M"™ — M
is a function on n variables (e.g., a circuit), and 7 € {0,1}* is the label of the
i-th variable input of f.

Labeled Homomorphic Encryption. A symmetric-key Labeled Homomor-
phic Encryption scheme labHE consists of the following algorithms.

KeyGen(1*). The key generation algorithm takes as input the security parameter
A. It outputs a secret key sk and a public evaluation key epk. We assume that
epk implicitly contains a description of a message space M, a label space L,
and a class F of “admissible” circuits.

Enc(sk, 7,m). The encryption algorithm takes as input the secret key sk, a label
7 € L and a message m € M. It outputs a ciphertext C.

Eval(epk, f,C1,...,C). On input epk, an arithmetic circuit f : M! — M in
the class F of “allowed” circuits, and ¢ ciphertexts C1, ..., C}, the evaluation
algorithm returns a ciphertext C.

Dec(sk, P, C). The decryption algorithm takes as input the secret key, a labeled
program P, and a ciphertext C, and it outputs a message m € M.

A labHE must satisfy correctness, succinctness, semantic security, and context-
hiding.

Definition 1 (Correctness). A Labeled Homomorphic Encryption scheme
labHE = (KeyGen, Enc, Eval, Dec) correctly evaluates a family of circuits F if

for all honestly generated keys (epk, sk) & KeyGen(1*), for all f € F, all labels
Ti,..., 7 € L, all messages mq,...,my € M, any C; < Enc(sk, 7;,m;) Vi € [t],
and P = (f,11,...,7),

Pr[Dec(sk, P, Eval(epk, f,C1,...,Ct)) = f(m1,...,ms)] =1 — negl()\) .

Informally succinctness means that the size of ciphertexts output by Eval is
some fixed polynomial in the security parameter, and does not depend on the
size of the evaluated circuit. Formally, this is defined as follows.

Definition 2 (Succinctness). A Labeled Homomorphic Encryption scheme
labHE = (KeyGen, Enc, Eval, Dec) is said to succinctly evaluate a family of cir-
cuits F if there is a fized polynomial p(-) such that every honestly generated
ciphertezt (output of either Enc or Eval) has size (in bits) p(\).

We note that our notion of succinctness is weaker than the notion of com-
pactness of standard homomorphic encryption. Compactness dictates that the
running time of the decryption algorithm is bounded by some fixed polynomial
in A. Succinctness is weaker in the sense that a compact scheme is also suc-
cinct whereas the converse might not be true (indeed our construction satisfies
succinctness but not compactness).

The security of a labHE scheme is defined via a notion of semantic security
that adapts to our setting the standard notion put forward by Goldwasser and
Micali [17].

Labeled Homomorphic Encryption 153

Definition 3 (Semantic Security for labHE). Let labHE = (KeyGen, Enc,
Eval, Dec) be a Labeled Homomorphic Encryption scheme and A be a PPT adver-
sary. Consider the following experiment where A is given access to an oracle
Enc(sk, -,) that on input a pair (T,m) outputs Enc(sk, 7, m):

Ezperiment ExpiiHE’A()\)
b <& {0,1}; (epk,sk) < KeyGen(1*)
(mo, 7y ma, 71)= AEnC(s) (epk)
¢ < Enc(sk, 77, mp) ; b/~ AENBkn) ()
If b = b return 1. Else return 0.

We say that A is a legitimate adversary if it queries the encryption oracle on
distinct labels (i.e., each label T is never queried more than once), and never on
the two challenge labels 75, 7. We define A’s advantage as Adv,SaSbHE)A()\) =

Pr[ExpaiHEyA()\) =1] — 1. Then we say that labHE provides semantic-security
if for any PPT legitimate algorithm A it holds AdvﬁiHE’A()\) = negl(\).

Finally we define another security property of Labeled Homomorphic Encryp-
tion called context-hiding, which says that a user running m = Dec(sk, P, C)
learns nothing about the input m’, except that m = f(m’), where f is the
function in P.

Definition 4 (Context Hiding). We say that a Labeled Homomorphic
Encryption scheme labHE satisfies context-hiding for a family of circuits F if
there exists a PPT simulator Sim and a negligible function e(\) such that the
following holds. For any A € N, any pair of keys (epk,sk) < KeyGen(1*), any
circuit f € F with t inputs, any tuple of messages my,...,m; € M, labels
T,...,7 € L, corresponding ciphertexts C; < Enc(sk, 7;,m;) Vi = 1,...,¢,
P=(f,m1,-..,7t) andm = f(my,...,my):

SD[Eval(epk, f, C1,...,Cy), Sim(1*,sk, P, m)] = negl(\)

Labeled Homomorphic Encryption with Preprocessing. Here we define
a special case of Labeled Homomorphic Encryption where some of the algorithms
allow for a preprocessing step that enables to speed up online computations.
We say that a scheme labHE has offfine/online encryption if it admits
two algorithms Offline-Enc and Online-Enc working as follows. Offline-Enc(sk, 7)
takes a label and the secret key and produces an offline ciphertext Cy for 7.
Online-Enc(Coyfr, m) takes a message m and an offline ciphertext for label 7 and
produces a ciphertext C. The two algorithms must be correct in the sense that
Enc(sk, 7, m) equals the outcome of Online-Enc(Offline-Enc(sk, 7), m). Informally,
the first algorithm is the computationally more costly procedure that can be run
independently of the actual message one wishes to encrypt. Online-Enc, on the
other hand, is more efficient but can be executed only when m becomes available.
A scheme labHE has offline/online decryption if it admits two algorithms
Offline-Dec and Online-Dec as follows. Offline-Dec(sk, P) takes a secret key and

154 M. Barbosa et al.

a labeled program and produces an offline secret key skof for P. Notice that
skoff does not depend on a ciphertext. Online-Dec(skofr, C) takes skos and C
and outputs a message m. Again, the two algorithms must be correct in the
sense that Dec(sk, P, C) equals the outcome of Online-Dec(Offline-Dec(sk, P), C).
Offline/online decryption allows to split the decryption procedure into two parts:
the offline one which is computationally more expensive and may depend on the
complexity of the program P; the online part that is much faster and whose
running time is a fixed polynomial in the security parameter.

3 A Construction of Labeled HE for Quadratic
Polynomials

In this section we present a construction of Labeled Homomorphic Encryption
that supports the evaluation of degree-two polynomials. Our construction builds
upon the technique of [6] for boosting linearly homomorphic encryption schemes
to evaluate degree-two polynomials on ciphertexts. Interestingly, however, while
the construction from [6] achieves succinctness only for the subclass of degree-
two polynomials where the number of degree-two monomials is bounded by a
constant, our realization achieves succinctness for all degree-two polynomials.
Similarly to [6], our realization builds upon any (linearly) homomorphic encryp-
tion scheme that is public space (e.g., [25]). This property requires that the
message space M is a (publicly known) commutative ring where it is possible to
sample random elements efficiently (see [6] for a more rigorous definition).

Let HE = (KeyAGen, Eﬂc, EQaL D?ac) be a public-space linearly-homomorphic
encryption scheme (see [16] for the details). Following [6] we denote with C the
ciphertext space of HAE7 we use Greek letters to denote elements of C and Roman
letters for elements of M. Without loss of generality we assume that Eval con-
sists of two procedures: one to perform (homomorphic) additions and another
to perform (homomorphic) multiplications by constants. We denote these oper-
ations with B and -, respectively and (abusing notation) we denote addition and
multiplication in M as + and -.

We propose a Labeled Homomorphic Encryption scheme labHE =
(KeyGen, Enc, Eval, Dec) capable of evaluating multivariate polynomials of degree
2 over M, with respect to some (finite) set of labels £ C {0,1}*. We use a pseudo-
random function F : {0,1}* x {0,1}* — M, with key space {0,1}*, for some
k = poly(X).

KeyGen(1*): On input a security parameter A € N, run KeyAGen(l)‘) to get
(pk,sk’). Next, choose a random seed K € {0,1}* for the PRF, and set
£ = {0,1}*. Output sk = (sk’, K) and epk = (pk, £). The above assumes
that pk already describes both HE’s message space M and its ciphertext
space C. The message space of labHE will be M.

Enc(sk, 7,m): We describe Enc directly in terms of its two components Offline-Enc
and Online-Enc.

Offline-Enc(sk, 7): Given a label 7, compute b «+ F (K, 7) and outputs Cog =
(b, Enc(pk, b)).

Labeled Homomorphic Encryption 155

Online-Enc(Cyfr). Parse Cof as (b, 3) and output C = (a, 8), where a — m—1b
(in M). Notice that the cost of online encryption is that of an addition
in M.

Eval(epk, f,Cy,...,C}): Eval is composed of 3 different procedures: Mult, Add,
cMult. We describe each such procedure separately. Informally, Mult allows to
perform (homomorphic) multiplications, Add deals with homomorphic addi-
tions and cMult takes care of (homomorphic) multiplications by known con-
stants. .

Mult: On input two ciphertexts C1,C% € M x C where, for ¢ = 1,2, C; =

(as, Bi), the algorithm computes a “multiplication” ciphertext C' = « € ¢

as:

a = Eﬁc(pk,al . a2) H ay '62 H as - ﬁl

Correctness follow from the fact that, if a; = (m; —b;) and §; € Eﬁc(pk, bi)
for some b; € M, then

(A E,I’\IC (pk7 (m1m2 —bymg — bomy + b1b2)+
(b2m1 — blbg) + (b1m2 — b1b2>) = Eﬁc(pk,mlmg — blbg)

Add: We distinguish two cases depending on the format of the two input
ciphertexts Cy, Cy. If Cy,Co € M x C where, for i = 1,2, C; = (as, Bi),
then the algorithm produces a new ciphertext C' = (a,) € M X C com-
puted as

a=a+a, B=pHMG

For correctness in this case note that if a; = (m; —b;) and ; € Eﬂc(pk, bi)
for some b; € M, then a = (m;+ms) — (by +b2) and 8 € Eﬁc(pk7 b1 +b2).
If, on the other hand, the received ciphertexts are C1,Cs € C where,
for ¢ = 1,2, C; = «;, the new ciphertext C = «a € C is computed as
o= a1 Bas.

cMult: As before, on input a constant ¢ € M and a ciphertext C', we distin-
guish two cases depending on the format of C. If C' = (a,3) € M x C,
this algorithm returns a ciphertext ¢’ = (a - ¢,c- 3) € M X C. If, on the
other hand, C = « € C, this algorithm returns a ciphertext ¢/ = c-«a € C.
The correctness of the above operations is straightforward.
Dec(sk, P, C): As for the case of the encryption procedure, we describe the algo-
rithm in terms of its two components Offline-Dec and Online-Dec.
Offline-Dec(sk, P). Given sk and the labeled program P, parse P as
(f,71,...,7). For i = 1,..., ¢, the algorithm computes b; «— F(K,;),
b= f(b1,...,b) and outputs skp = (sk,b).

Online-Dec(skp, C). Parse skp as (sk, b), we distinguish two cases depending
on whether C' € M x C or not.
If C = (a,3) € M x C there are two decryption methods: (i) output
m = a+ b; (ii) output m = a + Dec(sk, 3).
If C € C set 1 = Dec(sk, C) and output m = 7 + b.
Notice that the cost of online decryption solely depends on the cost of
Dec and it is totally independent of P. Moreover the decryption method
(ii) does not require the offline phase.

156 M. Barbosa et al.

Succinctness of labHE follows easily from the compactness of the underlying
linearly-homomorphic encryption. Correctness follows from a simple inductive
argument on the structure of labelled programs: i. decryption of freshly encrypted
ciphertexts is correct if the underlying HE is correct; ii. to show that the
encrypted output of a labelled program decrypts correctly, one establishes that
individual gates will produce the correct result for all possible configurations
of the input ciphertexts, distinguishing the cases that the input ciphertexts are
fresh encryptions or the outputs of other gates.

Security. The following two theorems prove that our labHE scheme satisfies
semantic security and context hiding respectively.

Theorem 1. If HE s semantically-secure and F is pseudorandom then labHE
is semantically secure.

The proof is obtained via a simple hybrid argument. First, notice that if one
modifies ExpiSbHEyA()\) so that the b’s corresponding to 79 and 7; are taken at
random (rather than using F'), then the resulting experiment is computationally
indistinguishable from the original one, under the assumption that F' is PRF.
Afterwards, notice that

(mg — bo, EaC(Pka b)) =~ (mg — bo, E?‘C(PKO))
= (my — by, Enc(pk,0)) ~ (my — by, Enc(pk, by))

where = denotes computational indistinguishability by the semantic security of
HE and = means that the distributions are identical.

Theorem 2. If HE s circuit-private, then labHE is context-hiding.

Proof. We prove the theorem by showing the following simulator. Let Sim be
the simulator for the circuit privacy of HE. If f is a degree-1 polynomial the
simulator Sim(1*,sk, (f,71,...,7), m) computes b = f(F(K,1),..., F(K,7))
and outputs C' = (m—b, Sim(1*, pk, b)). If f is of degree 2, the simulator does the
same except that it computes C = SiAm(lk7 pk,m —b). It is straightforward to see
that by the circuit privacy of HE C is distributed identically to the ciphertext
produced by Eval.

4 Multi-user Labeled HE

In this section we introduce a multi-user variant of Labeled Homomorphic
Encryption. The main idea is that encryptors do not share a global common
secret key. Rather, each user ¢ employs his own secret key usk; to encrypt, yet it
is possible to homomorphically compute over data encrypted by different users.
Decryption then requires knowledge of the master secret along with the public
keys of all the users whose ciphertexts were involved in the computation.

A Multi-User Labeled Homomorphic Encryption scheme consists of a tuple
of algorithms mu-labHE = (Setup, KeyGen, Enc, Eval, Dec) working as follows.

Labeled Homomorphic Encryption 157

Setup(1?). The setup algorithm takes as input the security parameter A, and
outputs a master secret key msk and a master public key mpk. We assume
that mpk implicitly contains a description of a message space M, a label
space L, and a class F of “admissible” circuits.

KeyGen(mpk). The key generation algorithm takes as input the master public
key mpk and outputs a user secret key usk and a user public key upk.

Enc(mpk, usk, 7,m). The encryption algorithm takes as input the master public
key mpk, a user secret key usk, a label 7 € £ and a message m € M. It
outputs a ciphertext C.

Eval(mpk, f,C1,...,C;). On input mpk, an arithmetic circuit f : M?! — M in
the class F of “allowed” circuits, and ¢ ciphertexts C1, ..., C}, the evaluation
algorithm returns a ciphertext C.

Dec(sk, upk, P, C). The decryption algorithm takes as input the secret key, a
vector of user secret keys upk = (upky,...,upk,), a labeled program P, and
a ciphertext C, and it outputs a message m € M.

A Multi-User Labeled Homomorphic Encryption scheme is required to satisfy
correctness, succinctness, semantic security, and context-hiding as defined below.

Definition 5 (Correctness). A Multi-User Labeled Homomorphic Encryption
scheme mu-labHE = (Setup, KeyGen, Enc, Eval, Dec) correctly evaluates a family
of circuits F if for all honestly generated keys (mpk, msk) & Setup(1*), all user
keys (upk,,usky), ..., (upky,usky) < KeyGen(mpk), for all f € F, all labels
Ti,...,Tt € L, messages my,...,my € M, any C; & Enc(mpk, usk;,, 7, m;)
Vi € [t]7ji S [é] and P = (f,Tl, . ,Tt).'

Pr[Dec(sk, upk, P, Eval(pk, f,C1,...,Ct)) = f(m1,...,m¢)] =1 — negl(\).

The notion of succinctness for multi-user Labeled Homomorphic Encryption
is identical to that given in Definition 2. Security of Multi-User Labeled Homo-
morphic Encryption is defined similarly to that of labHE.

Definition 6 (Semantic Security for mu-labHE). Let mu-labHE = (Setup,
KeyGen, Enc,Eval, Dec) be a Multi-User Labeled Homomorphic Encryption
scheme and A be a PPT adversary. Consider the following experiment where
A is given access to an oracle Enc(mpk, usk, -, -) that on input a pair (,m) out-
puts Enc(mpk, usk, 7,m):

Ezperiment Expsmsu_hbHE)A()\)
b <& {0,1}; (mpk, msk) < Setup(1*);
(upk, usk) < KeyGen(mpk)
(g, 75 1, 77) AEPELMR55) (o, upk)
c < Enc(mpk, usk, 7, my) ; b’%AE”C(mpk’“Sk"*')(O)
If b = b return 1. Else return 0.

158 M. Barbosa et al.

We say that A is a legitimate adversary if it queries the encryption oracle on
distinct labels (i.e., each label T is never queried more than once), and never on
the two challenge labels 7, 7. We define A’s advantage as Advimsu-labHE,,A(/\) =

Pr[Exprsni_beE}A()\) = 1]— 5. Then we say that mu-labHE has semantic-security
if for any PPT legitimate algorithm A it holds Advﬁ_,abHE,A()\) = negl()).

Finally we adapt the notion of context-hiding of Labeled Homomorphic
Encryption to the multi-user case. The intuitive meaning of the notion is the
same.

Definition 7 (Context Hiding). A Multi-User Labeled Homomorphic Encryp-
tion scheme mu-labHE satisfies context-hiding for a family of circuits F if there
exists a PPT simulator Sim and a negligible function e(\) such that the following
holds. For any A € N, any pair of master keys (mpk, msk) & Setup(1?), any ¢
user keys (upkq, usky), ..., (upky, usky) & KeyGen(mpk), any circuit f € F with t
inputs, any tuple of messages my,...,my € M, labels T1,...,7 € L, ciphertexts
C; & Enc(mpk, usk;,, 7,m;) Vi = 1,...,t and j; € [(], P = (f,7,...,7) and
m= f(my,...,m¢):

SD[Eval(epk, f,C1,...,C;), Sim(1*, msk, upk, P, m)] < €(\).

In the full version [1] we show how to modify our construction to give an
mu-labHE.

5 Statistics Using labHE

In this section we show that by using our constructions of (multi-user) Labeled
Homomorphic Encryption for quadratic polynomials, it is possible to compute
relevant statistical functions over encrypted data. In the next Section we will then
describe two application scenarios where the specific features of our protocol act
as enablers for real-world applications. Intuitively, the restriction of computing
only quadratic polynomials can be described as follows: suppose a value x and a
value y are secret and are encrypted using our scheme. Then, one can compute
any polynomial of the form a;z? + asy? + aszy + a4z + asy + ag. More generally,
given an arbitrary number of encrypted values, possibly coming from many users,
one can compute any function that can be expressed as a linear function of those
values and pairwise products between those values. We will see a few interesting
examples of this next.

Consider a dataset as a matrix X = {x; ;},fori=1,...,nand j =1,...,d.
Number d represents the dimension (i.e., the number of variables/columns) while
n is the number of dataset members (or rows).

Mean and Covariance. First, we show how to compute the mean and covari-
ance over a multidimensional dataset X. It is not hard to see how to extend
these ideas to the computation of any other function that can be represented
with a degree-2 polynomial. Such functions include, e.g., the root mean square

Labeled Homomorphic Encryption 159

(RMS), and the Pearson’s and uncentered correlation coefficient. The mean of
the j-th column is the value p; = %Z?:l x;,. Since our labHE does not sup-
port division, we compute homomorphically the value fi; = Z?zl x;; and let
the receiver do the division after decryption. This is natural in scenarios where
the computation conducted over the data is known to the decryptor, which is
something that labelled homomorphic encryption implicitly assumes.

For a dataset X, its covariance matrix C' = {¢; } for j,k = 1,. .., disdefined as

1 n 1 n n
Gk = E Tij - Tik = 05 E Zi,j E Tik
=1 =1 =1

Again we will use the scheme to compute homomorphically the integers

n n n
N 2
Cjk =T - Cjg =" § :.131‘,]‘ “Lik — § :.131‘,]‘ § :xiJC
i=1 i=1

i=1
and let the receiver obtain c;; by doing a division by n? after decryption.

Weighted Sum. Given a dataset X = {z;;} and a vector of weights y =
{vyi}7,, the weighted sum of the j-th column of X is the value w; = 1" | ;. ;- y;.

There are two situations to consider. If the weights are not secret, then the
weighted sum can be expressed as a degree-1 polynomial over the encrypted
column X. If, on the other hand, the vector of weights is itself secret, then the
weighted sum becomes a degree two polynomial (an inner-product) between two
vectors of encrypted values. We will see in the next section how this can be useful
for genenetic association tests.

Euclidean Distance. Given a matrix X = {z; ;} the (square of) Euclidean
distance between the j-th column of X and a vector y = {y;}7; is the value
§; =>" (w; j —v;)? This is an example of a function that requires a quadratic
computation if either part of the data set is encrypted.

6 Applications and Evaluation

We implemented our (multi-user) labHE realization in C, and we evaluated its
performance in two applications. In what follows we discuss the applications and
present the experimental results. We refer to the full version [1] for more details.

6.1 Implementation and Micro-Benchmarks

We implemented our (multi-user) labHE realization in C starting from the GNU
Multiprecision Library! (GMP) and the Kekkac Code Package? (KCP). We used
GMP to implement the linearly homomorphic encryption scheme by Joye and

! https://gmplib.org/.
2 https://github.com/gvanas/KeccakCodePackage.

https://gmplib.org/
https://github.com/gvanas/KeccakCodePackage

160 M. Barbosa et al.

Libert [20] (JL13) and relied on Sponge-based pseudorandom function included
in the KCP. The JL13 cryptosystem has message space Zsx and works over

%, where N = pq is the product of two quasi-safe primes p = 2¥p’ + 1 and
q = 2F¢' + 1. For security [20] k needs to be at most 1/4log N — A\, where X is
the security parameter. Note that taking message space Zqyr allows to perform
computations over the integers with k-bits precision, and also to encode real
values by using fixed point representations with suitable scaling as described,
e.g., in [8]. Although our implementation is flexible, we fixed the security level
at that of 2048 RSA moduli, conjectured to correspond to roughly 100-112
bits of security. All our implementations are single-threaded. Our benchmarking
results were collected in a standard MacBook Pro machine with a 2.7 GHz Intel
Core i5 and 16 GB or RAM. For every chosen set of parameters, we repeated the
experiment 10 times, and took the median of the timings. In all cases we observed
a coefficient of variation below 10%. For comparison with SHE we used the FV
implementation in SEAL 2.0 [24] configured to support the same functions and
security level.

Micro-Benchmarks. Regarding communication/storage costs, every cipher-
text of our scheme, instantiated with the above parameters can be encoded into
272 bytes. For instance, if we consider a dataset with n = 220 rows and d = 2
columns, it means that a server has to store about 560 MBytes. We now turn to
the timings of basic operations such as key generation, encryption and decryp-
tion of level-1 ciphertexts (i.e., outputs of degree-1 functions, such as Mean).
Collected timings are 155.11 ms for key generation, 0.35 ms for Encryption and
3.42ms for decryption. Notably, while key generation is relatively relevant (it
is executed only once), the speed in the encryption procedure (that is executed
for every dataset item) is way more relevant for scalability. For a large data size
such as the one above, encryption can be done in 12min in a modest machine.

6.2 QOutsourcing Privacy Preserving Statistics

Consider the case where a large dataset is stored on an (untrusted) Cloud.
The latter is used both to store and to perform computations on encrypted
data on behalf of one (or more) Clients. More precisely we considered two sce-
narios. One where the Client acts both as Data Provider and Receiver and a
three party scenario where these roles are played by different users/entities. Of
course, a solution to the problem of computing secure statistics in these scenar-
ios can be obtained via somewhat homomorphic encryption schemes supporting
quadratic polynomials. labHE, however, achieves the same goal with unprece-
dented efficiency both in terms of computation costs and in terms of bandwidth
consumption. In our experiments, we considered multidimensional datasets rep-
resented as (n x d) matrices X = {x; ;}, where n are the dataset members and
d the dimension (or number of variables). Univariate statistics such as Mean
and Variance are computed column-wise (e.g., the mean of the j-th column is
i = %Z?:l x; j), whereas bivariate correlation ones such as Covariance act
over pairs of columns. In this setting, if we consider a dataset of over two million

Labeled Homomorphic Encryption 161

entries (n = 220 x d = 2) that are 32-bit integers, the solution based on the
FV somewhat homomorphic encryption requires over 249 GB of storage at the
Cloud whereas labHE(JL13) only 560 Mbytes. Moreover, for such large datasets
the amount of memory required to perform homomorphic computations using
FV placed it out of reach of the standard machines we used for benchmark-
ing (scalability is bounded at around 30K elements for 16 GB of RAM) while
labHE(JL13) scaled up easily to two million entries. When considering the more
modest datasets (where FV could run) the cumulative time of computing a
Covariance matrix on the encrypted dataset and decrypting its result is 32 min
using FV and 37s with labHE(JL13); computing and decrypting a Mean query
takes about 9s with FV and around 19 ms with labHE(JL13).

6.3 Privacy Preserving GAS

Genetic Association Studies (GAS) look for statistically relevant features across
the human genome, singling out those that can be correlated to given traits.
Typically such studies are carried by performing series of tests. Each test tar-
gets a particular trait and takes into consideration associated information that
is encoded in specific positions of an individual’s genome, the so-called Single
Nucleotide Polymorphisms (SNP). Each test computes a Genetic Risk Score: a
weighted sum of the information collected for each SNP and the weights cor-
respond to risk estimates computed for a reference population [23]. This SNP
genotyping has already several applications, ranging from personalized medicine
to forensics. Access to such tests is, for the most part, controlled by the health
services of different countries, but a new trend of Direct-to-Consumer (DTC)
genomic analysis is arising, where companies offer a multitude of association
tests to the public. Privacy is obviously a paramount concern in such services.

In this paper we propose a system for a Secure Direct-to-Consumer GAS,
based on our Multi-User Labeled Homomorphic Encryption. Its architecture
is presented in Fig.2 (the colors represent trust domains), and roughly works
as follows. The Patient wishes to be tested by the GAS service and trusts a
Certified Genotyping Institution (CGI) to analyse a biological sample s, extract
SNP information Gy, correctly encrypt it under the Patient’s public key pk
using mu-labHE, and then erase all of the SNP-related information.® The GAS
is trusted by the Patient to correctly encrypt the test parameters P and send
them to the Cloud. Next, the Cloud can compute the Genetic Risk Score on the
encrypted data, and send this (encrypted) result to the Patient.

The threat model considered in our solution assumes that both the GAS and
the Cloud are honest-but-curious. The GAS is trusted to follow a set of rules
of the protocol, but not trusted to learn the genetic data of the Patient—even
if it colludes with the Cloud. The Cloud is trusted by the GAS not to reveal
the encrypted test parameters to the Patient, and is trusted by the Client to
correctly perform the computation (over encrypted data). Note that the Cloud

3 This level of trust is implicit in GAS systems and cannot be eliminated from such a
system, unless the Patient can perform the genotyping activities autonomously.

162 M. Barbosa et al.

CGL Cloud GAS
Ew(Gs) Ew(P)

lEDK(T(Gsa P))
Sample s
Patient

(pk, sk)

Fig. 2. Architecture of a Secure Direct-to-Consumer GAS.

is not trusted by the Client to learn genetic data, and it may also be assumed to
collude with the GAS, which means that this trust model is compatible with the
most likely scenario that the GAS owns or contracts the Cloud service itself, and
uses it to provide a service to the Patient. Under this threat model, we argue
that: i. the semantic security of our mu-labHE ensures that no information about
the encrypted data is leaked, except for its length; and ii. context hiding ensures
that even the Patient, with knowledge of his secret key, obtains no information
about the (possibly proprietary) test parameters P provided by the GAS. Details
follow.

Security Analysis. The total number of SNPs that have been documented
up to date in the human genome is in the range of 150M. However, only a
very small fraction of those, under 100K, has been looked at from a clinical
analysis point of view* and, indeed, the number of medical conditions that have
been scientifically related to a Genetic Risk Score is around 5000.° Furthermore,
specific association tests, e.g., for a medical condition, will focus on a very small
number of SNPs ranging from 1 or 2, to at most a few hundred and a safe
estimate is that, over all current association tests, each of them will on average
look at 50 SNPs. This places the number of clinically relevant SNPs, at present,
at around 30K. This is roughly the number of SNPs that one needs to look at
in order to evaluate all the Genetic Risk Scores that have been associated with
a medical condition. We assume that there is a predefined set £ of all positions
(loci) of relevant SNPs, which is public and known by all parties. This could be
the union of all positions that the GAS may test in all of its analyses—if this
is not sensitive information from the point of view of the GAS—or it may be
a larger set of all positions of SNPs that are known to be clinically relevant by
the scientific community. In the first case we would have || in the range of a
few hundred, and in the second case we would have |£] in the range of the 30K,
as things stand today [9,19]. Under these assumptions, our solution guarantees
that nothing is leaked about the genetic information of the Patient nor about the
concrete parameters used by the GAS to perform its tests. Furthermore, if one
sets L to include all clinically relevant SNPs, then no-one except the Patient and
the medical center defining the tests will learn which traits are being tested—
crucially this means that all access patterns over the stored genome data are

4 https://www.ncbi.nlm.nih.gov/snp.
5 http://www.disgenet.org/web/DisGeNET.

https://www.ncbi.nlm.nih.gov/snp
http://www.disgenet.org/web/DisGeNET

Labeled Homomorphic Encryption 163

kept private. Otherwise, it will be publicly known that the Patient was tested
at positions relevant for a specific GAS.

Although this approach may seem wasteful of resources, this is essential to
ensuring that the Cloud (or some external observer) can infer nothing from an
encrypted version of G4 and P, in addition to the public set £ itself, under the
assumption that the encryption scheme is semantically secure. Furthermore, as
we will see in our experimental evaluation, the efficiency of our homomorphic
encryption scheme works as an enabler for this level of security, as it permits
performing computations in reasonable time.

Benchmarks. Figure 3 shows the timing data we collected when evaluating our
protocol on data sets of increasing sizes. The offline encryption and decryption
times increase linearly with the number of SNPs, although the offline decryp-
tion time is under 90 ms even for 30000 SNPs, whereas the off-line encryption
time gradually grows up to 45s. The overall decryption time, even accounting
for the preprocessing is very light: note that on-line decryption takes constant
time in the range of 3ms. Online encryption time, on the other hand is very
fast, and can be done in under 24 ms even for 30000 SNPs. Finally, the homo-
morphic computation in the cloud, grows linearly with the number of points,
and it is reasonably small, clearly in the range of practicality, and even using
a single modest server and no parallelism. In our machine, the processing time
was around 47s for a risk analysis involving 30000 SNPs. We recall that this
was the estimated worst case scenario for the union of SNPs corresponding to
all GAS-relevant information known to today. The size of the encrypted data
processed by the cloud is, in this case, 32 MByte, half of it produced by the
Patient and half by the medical centre.

Offline Work (ms, Dec on right-hand scale) Online Work (ms) Homorphic computation (ms)

Fig. 3. Timings for various algorithms in secure GAS protocol for increasing numbers
of SNPs.

To evaluate the scalability of our solution we considered a Map-Reduce sce-
nario where the multiplicative part of the weighted sum is split by multiple
servers in the Cloud. In this way many partial sums can be computed in parallel
and later combined to get the final result. Using this strategy, a GAS compu-
tation including over 1 million SNPs can be completed in roughly 3 min using

164 M. Barbosa et al.

10 servers (excluding communication overhead). Using FV [13], as underlying
building block for a risk analysis involving only 30K SNPs the size of encrypted
data processed by the Cloud becomes, roughly, 14 GBytes, which is over 400
times more than the space required by our solution. For the same task, FV-
based solutions turn out to be around 100 times slower than our solution. This
comparison is for a modest number of SNPs since, for larger parameters, experi-
ments became highly unstable and eventually infeasible due to too large memory
requirements that surpassed the capabilities of our benchmarking platform.

7 Conclusions

We presented a new methodology for processing remotely outsourced data in a
privacy preserving way via the notion of Labeled Homomorphic Encryption. We
showed an efficient realization and implementation of this primitive that targets
computations described by degree-2 polynomials, with applications to executing
statistical functions on encrypted data. Our experiments confirmed the practi-
cality of our solution showing that it outperforms solutions based on somewhat
homomorphic encryption. Our current solutions achieve privacy against a honest-
but-curious Cloud server. In order to achieve security against malicious servers,
one can use verifiable computation protocols in a generic fashion, as explained in
[14]. Unfortunately, applying this idea generically to our schemes does not yield
an efficient solution. Informally this is because modeling algebraic operations
over Z% is expensive when using state-of-the-art VC protocols (such as [26]).
Designing an ad-hoc verifiable computation mechanism for our schemes while
preserving efficiency is therefore a promising future direction for this work.

Acknowledgements. The work of Dario Fiore was partially supported by the Euro-
pean Union’s Horizon 2020 Research and Innovation Programme under grant agree-
ment 688722 (NEXTLEAP), the Spanish Ministry of Economy under project refer-
ences TIN2015-70713-R (DEDETIS), RTC-2016-4930-7 (DataMantium), and under a
Juan de la Cierva fellowship to Dario Fiore, and by the Madrid Regional Government
under project N-Greens (ref. S2013/ICE-2731). Manuel Barbosa was funded by project
“NanoSTIMA: Macro-to-Nano Human Sensing: Towards Integrated Multimodal Health
Monitoring and Analytics/NORTE-01-0145-FEDER-000016”, which is financed by the
North Portugal Regional Operational Programme (NORTE 2020), under the PORTU-
GAL 2020 Partnership Agreement, and through the European Regional Development
Fund (ERDF).

References

1. Barbosa, M., Catalano, D., Fiore, D.: Labeled homomorphic encryption: scalable
and privacy-preserving processing of outsourced data. IACR Cryptol. ePrint Arch.
2017, 326 (2017)

2. Barman, L., Elgraini, M.T., Raisaro, J.L., Hubaux, J., Ayday, E.: Privacy threats
and practical solutions for genetic risk tests. In: 2015 IEEE Symposium on Security
and Privacy Workshops, SPW 2015, pp. 27-31. IEEE (2015)

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

Labeled Homomorphic Encryption 165

Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast
privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 192-206. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88313-5_13

Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with
a double trapdoor decryption mechanism and its applications. In: Laih, C.-S.
(ed.) ASTACRYPT 2003. LNCS, vol. 2894, pp. 37-54. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-40061-5_3

Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
336-352. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_21
Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-
2 functions on encrypted data. In: ACM CCS 2015-22nd ACM Conference on
Computer and Communication Security, pp. 1518-1529 (2015)

Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 371-389. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2_21

Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed point arithmetic in SHE
scheme. IACR Cryptol. ePrint Arch. 2016, 250 (2016)

Covolo, L., Rubinelli, S., Ceretti, E., Gelatti, U.: Internet-based direct-to-consumer
genetic testing: a systematic review. J. Med. Internet Res. 17(12), 279 (2015)
Damgard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority — Or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1-18. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40203-6_-1

Damgard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643-662. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5_38

Danezis, G., Cristofaro, E.D.: Fast and private genomic testing for disease sus-
ceptibility. In: Privacy in the Electronic Society, WPES 2014, pp. 31-34. ACM
(2014)

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/2012/144
Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. In: ACM CCS 14, pp. 844-855. ACM Press (2014)

Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASTACRYPT 2013. LNCS, vol. 8270, pp. 301-320. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-42045-0_16

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st ACM
STOC, pp. 169-178. ACM Press (2009)

S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental poker
keeping secret all partial information. In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC ’82, pp. 365-377, 1982. ACM
Halevi, S., Shoup, V.: Helib. https://github.com/shaih/HElib

Johnson, A.D.; Bhimavarapu, A., Benjamin, E.J., Fox, C., Levy, D., Jarvik, G.P.,
O’Donnell, C.J.: CLIA-tested genetic variants on commercial SNP arrays: potential
for incidental findings in genome-wide association studies. Genet. Med.: Off. J. Am.
Coll. Med. Genet. 12(6), 355-363 (2010)

http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/978-3-540-40061-5_3
http://dx.doi.org/10.1007/978-3-642-38348-9_21
http://dx.doi.org/10.1007/978-3-662-44371-2_21
http://dx.doi.org/10.1007/978-3-662-44371-2_21
http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://eprint.iacr.org/2012/144
http://dx.doi.org/10.1007/978-3-642-42045-0_16
https://github.com/shaih/HElib

166

20.

21.

22.

23.

24.

25.

26.

27.

M. Barbosa et al.

Joye, M., Libert, B.: Efficient cryptosystems from 2¥-th power residue symbols.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
76-92. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_5

Karvelas, N.P., Peter, A., Katzenbeisser, S., Tews, E., Hamacher, K.: Privacy-
preserving whole genome sequence processing through proxy-aided ORAM. In:
Privacy in the Electronic Society, WPES 2014, pp. 1-10. ACM (2014)

Kessler, T., Vilne, B., Schunkert, H.: The impact of genome-wide association stud-
ies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol.
Med. 8(7), 688-701 (2016)

Madsen, B.E., Browning, S.R.: A groupwise association test for rare mutations
using a weighted sum statistic. PLoS Genet. 5(2), 1-11 (2009)

Nathan Dowlin, J.W., Gilad-Bachrach, R.: Manual for using homomorphic encryp-
tion for bioinformatics. Technical report, November 2015

Paillier, P.: Public-Key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X_16

Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238-252.
IEEE (2013)

Rivest, R.L., Adleman, L., Dertouzos, M.L.: On Data Banks and Privacy Homo-
morphisms. Foundations of Secure Computation. Academia Press, Ghent (1978)

http://dx.doi.org/10.1007/978-3-642-38348-9_5
http://dx.doi.org/10.1007/3-540-48910-X_16

MTD CBITS: Moving Target Defense
for Cloud-Based IT Systems

Alexandru G. Bardas'®), Sathya Chandran Sundaramurthy?,
Xinming Ou?®, and Scott A. DeLoach*

! University of Kansas, Lawrence, KS, USA
alexbardas@ku.edu
2 DataVisor, Mountain View, CA, USA
sathya.chandran@datavisor.com
3 University of South Florida, Tampa, FL, USA
xouQusf.edu

4 Kansas State University, Manhattan, KS, USA

sdeloach@ksu.edu

Abstract. The static nature of current I'T systems gives attackers the
extremely valuable advantage of time, as adversaries can take their time
and plan attacks at their leisure. Although cloud infrastructures have
increased the automation options for managing IT systems, the intro-
duction of Moving Target Defense (MTD) techniques at the entire IT
system level is still very challenging. The core idea of MTD is to make
a system change proactively as a means to eliminating the asymmetric
advantage the attacker has on time. However, due to the number and
complexity of dependencies between IT system components, it is not
trivial to introduce proactive changes without breaking the system or
severely impacting its performance.

In this paper, we present an MTD platform for Cloud-Based IT Sys-
tems (MTD CBITS), evaluate its practicality, and perform a detailed
analysis of its security benefits. To the best of our knowledge MTD
CBITS is the first MTD platform that leverages the advantages of a
cloud-automation framework (ANCOR) that captures an IT system’s
setup parameters and dependencies using a high-level abstraction. This
allows our platform to make automated changes to the IT system, in
particular, to replace running components of the system with fresh new
instances. To evaluate MTD CBITS’ practicality, we present a series
of experiments that show negligible (statistically non-significant) per-
formance impacts. To evaluate effectiveness, we analyze the costs and
security benefits of MTD CBITS using a practical attack window model
and show how a system managed using MTD CBITS will increase attack
difficulty.

A.G. Bardas—As of July 2017, Alexandru G. Bardas’s affiliation is The University
of Kansas. This work was conducted when he was a graduate student and then a
visiting assistant professor at Kansas State University.
S.C. Sundaramurthy—As of June 2017, Sathya C. Sundaramurthy’s affiliation is
DataVisor. This work was conducted when he was a graduate student at University
of South Florida.

© Springer International Publishing AG 2017

S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 167-186, 2017.
DOT: 10.1007/978-3-319-66402-6_11

168 A.G. Bardas et al.

1 Introduction

Current I'T systems operate in a relatively static configuration and give attackers
the extremely important advantage of time. Therefore, a promising new app-
roach, called Moving Target Defense or MTD [19], has emerged as a potential
solution. MTD techniques are expected to increase uncertainty and complex-
ity for attackers, reduce their window of opportunity, and raise the costs of
their reconnaissance and attack efforts. There have been a number of MTD-
related research efforts such as randomizing memory layouts [3,13,31], IP
addresses [6,20,27], executable codes [8,24,53], and even machine instruction
sets [9,29]. These are important steps towards achieving the overall goal of
moving target defense, but they focus on individual aspects of a system — IP
addresses, code for particular applications, and specific architectures. There has
not been much research on how to apply an MTD approach at the entire I'T sys-
tem level. We view an IT system as a subset of an enterprise network, a group
of one or more machines (physical or virtual) that work together to fulfill a
goal. The overall goal and the scope of an IT system are determined by the user
(system engineer/administrator) and can range from a one-machine service (e.g.,
FTP server), to more complex deployments with large numbers of machines with
internal dependencies (e.g., multi-host eCommerce setups).

Applying an MTD approach to the entire IT system is important for several
reasons. First, system administrators fight the continual and generally losing
battle of monitoring their IT systems for possible intrusions, patching vulner-
abilities, modifying firewall rules, etc. The complexity of such systems and the
time required to maintain them are major reasons why errors creep into sys-
tem configurations and create security holes. The stagnant nature of I'T systems
gives adversaries chances to discover security holes, find opportunities to exploit
them, gain/escalate privileges, and maintain persistent presence over time. For
example, the data released (summer 2016) as a consequence of the Democratic
National Committee (DNC [18]) breach resulted after attackers were present in
the DNC systems for over a year [15]. According to Mandiant’s M-Trends 2016
and 2017 reports [34,35], the median number of days an organization was com-
promised before discovering the breach was 146 days in 2015 and 99 days in
2016. Even though this constitutes an improvement, it is still way too long. For
instance, Mandiant’s Red Team was able to obtain access to domain adminis-
trator credentials, on average, within three days of gaining initial access to an
environment. On the other hand, Verizon’s DBIR 2016 [49] states that, overall,
the detection deficit is actually getting worse.

Persistence is a trend that turned into a constant [34,35]. Introducing changes
at the entire IT system level will increase the difficulty for attackers to obtain ini-
tial access and, especially, to maintain persistent presence. Persistent malware is
given an expiration date as running components of the IT system are constantly
being replaced with fresh new instances. This has the potential to change the
current attacker mode of operation from compromise and persist [15,33-35] to
the more challenging obligation of repeated compromise.

MTD CBITS: Moving Target Defense 169

However, there are several challenges for introducing MTD mechanisms at
the entire IT system level. Due to the number and complexity of dependencies
between IT system components, it is not trivial to carry out proactive changes
without breaking the system or severely impacting its performance. Introducing
changes proactively, if done improperly, may introduce additional complexities.
Making a complex system more complex is unlikely to increase its security. Thus
a practical MTD design must simplify system configuration and maintenance,
while enabling the capability of “moving”. For this reason, we have leveraged
ANCOR [47] proposed in our prior work and extended it to an MTD platform.

ANCOR is a framework for creating and managing cloud-based IT sys-
tems using a high-level abstraction (an up-to-date IT system inventory). While
ANCOR was focused on creating and managing IT systems in a reliable and
automated way, this paper analyzes the feasibility and potential security ben-
efits of an MTD approach based on live instance replacement. A live instance
replacement mechanism can be the means to deploying various defenses in an
automated way while constantly removing attackers’ persistent access. For ver-
ification purposes, we have re-created the eCommerce scenario, tested it in a
new performance testing setup, and also developed a new scenario that uses a
set of operational database dumps and real traffic traces (MediaWiki [36] with
Wikipedia database dumps).

The main contributions of this paper are as follows:

1. We leverage ANCOR [47] for creating and managing IT systems, and extend
it to an MTD platform based on live instance (VM) replacements.

2. We evaluate the practicality of this MTD platform through a series of exper-
iments on two realistic IT system scenarios. The experimental results show
that the MTD operations may have negligible impact on the normal opera-
tions of the IT systems.

3. We analyze the security benefits brought by the MTD platform through an
attack window model, and show how to use the model to quantify the security
benefits of a given MTD configuration.

2 Our MTD Approach

Our approach of introducing moving target defense at the entire IT system
level is to create a platform where any running component of an IT system can
be replaced with a pristine version. A component is simply a virtual machine
instance or a cluster of instances. We consider that the MTD approach will be
deployed in a cloud environment. Cloud infrastructures (e.g., OpenStack and
Amazon Web Services — AWS) made it possible and easy to create bare-metal
equivalent virtual machine instances and networks. It appears inevitable that
IT systems of all sizes are moving towards the cloud — be it private, public, or
hybrid (fog and edge computing).

170 A.G. Bardas et al.

2.1 Threat Model

In-scope threats are the risks our MTD approach intends to mitigate, by increas-
ing the difficulty on the attackers’ side. The risks range from reconnaissance
actions to arbitrary code execution, and side-channel attacks.

Attackers are able to perform various reconnaissance actions (e.g., port scan-
ning) on the public facing instances, as well as internal probing if they gain access
to an instance on the internal network. Furthermore, they may also execute
arbitrary code on an instance. Applications may be poorly configured, miscon-
figured, or have vulnerabilities that allow arbitrary code execution with admin-
istrator /root privileges on an instance which is part of the targeted system, e.g.,
buffer overflow, unsanitized input. Moreover, a social engineering attack (e.g.,
phishing) may lead to obtaining the privileged user credentials. Arbitrary code
execution can result in an operating system compromise that enables attack-
ers to escalate their privileges and maintain their access through backdoors. In
addition, attackers may attempt to pivot through the internal network.

Attacks on the MTD platform itself are out of scope for this paper; this
includes the MTD controller, the cloud platform (usually controlled by the cloud
provider), and the configuration management tools. Currently, the MTD con-
troller instance is protected using guidelines (e.g., [46]) for securing configuration
management tool master nodes. We leave it for future work to study in-depth
the security of the MTD platform itself.

We evaluated the feasibility of replacing services and small databases. Since
persistent data is stored on different volume types in a cloud (e.g., OpenStack
Cinder, Ceph, etc.), attaching the data volume to new instances proved more
efficient than synchronizing the data on each new instance.

Attackers might be able to store backdoor information in persistent data that
enables them to restore persistent access, making the replacement process less
effective. Various approaches have been proposed for different environments to
ensure the integrity of the stored data, e.g., [17,28,48]. For the purpose of this
paper we are relying on existing solutions for ensuring data integrity.

2.2 Background

The advancements in virtualization technologies contributed significantly to the
evolution of cloud computing [7]. The following capabilities are commonly avail-
able on a cloud platform: provisioning instances with various hardware capabili-
ties, utilizing security groups for network access control, and creating storage vol-
umes. At the same time, configuration management tools (CMTs) have become
a well-established solution to managing the applications and services (software
stack) in an automated fashion. Popular CMT solutions include Puppet [43]
and Chef [12]. Walmart, Wells Fargo, and other companies leverage CMTs to
configure tens of thousands of servers in an automated fashion [44].

A CMT works by installing an agent on the host to be managed, which com-
municates with a controller (called the master) to receive configuration direc-
tives. In case the host’s current state (e.g., installed packages, customized config-
uration files, etc.) is different than the one specified in the directives, the CMT

MTD CBITS: Moving Target Defense 171

agent is responsible for issuing the appropriate commands to bring the system
into the specified state.

2.3 MTD CBITS Implementation

MTD CBITS (Fig. 1) is based on the ANCOR framework which supports cre-
ating and managing cloud-based IT systems using a high-level abstraction. The
abstraction allows the system administrator to define the high-level structure
of the IT system, without specifying the detailed configuration parameters such
as IP addresses, port numbers, and other application-specific settings for each
instance. The high-level abstraction explicitly specifies the dependency among
the various roles — clusters of instances with similar configurations. ANCOR
has a “compilation process” that processes this abstract specification, generates
detailed configuration parameters for each instance, leverages CMT role imple-
mentations, and automatically creates an I'T system on a cloud infrastructure.
The current implementation targets OpenStack and uses Puppet; it may also be
changed to AWS and Chef.

MTD System
Specification
(initial deployment)

- ul Operations Model
(proposed abstraction)

[Conﬁguring and Provisioning Module]

CMT (Puppet’ OpenStack API Libran

MTD - Cloud Infrastructure
_ System - (e.g., OpenStack)

Fig. 1. The MTD platform (MTD CBITS) takes an abstract specification of an IT sys-
tem as its input, and creates the corresponding concrete system on a cloud infrastruc-
ture. In addition to ANCOR, MTD CBITS can perform frequent live instance
replacements throughout the lifetime of the IT system (green arrows). (Color figure
online)

In this paper we refer to an MTD system as an I'T system deployed and man-
aged using our MTD platform that supports dynamically replacing instances.
The platform takes an MTD system specification (user’s requirements) as its
input and automatically creates and manages the corresponding concrete MTD
system on OpenStack (Fig. 1). The configuration parameters are not hard-coded;
they are generated at run-time from the high-level system specification. The
operations model stores the computed parameters and can be viewed as an MTD
system inventory — a layer on top of the CMT (Puppet). This data is passed
to Puppet through Hiera [45], a key/value look-up tool for configuration data.
Whenever a change occurs in the deployed MTD system, it is also recorded in
the operations model. Therefore, the operations model always stores up-to-date
information about the running IT system.

172 A.G. Bardas et al.

Most of the MTD CBITS components are stored on the MTD controller (see
Fig.1). The MTD controller is, basically, used to deploy and manage the MTD
systems: it can reach the OpenStack API, hosts the Puppet master, and is able
to communicate through the Puppet agents with all instances that are part of
the IT system. The MTD controller cannot be reached from the public network
and communicates with the agents over an internal isolated network. Moreover,
the communication between the Puppet master and the agents is encrypted.

2.4 Instance Replacement Implementation

Using the operations model, MTD CBITS facilitates a variety of adaptation
operations (movements) for the managed IT systems, creating a moving tar-
get defense. In our MTD approach, live instance replacement is carried out
through a sequence of adaptations: adding new instances, reconfiguring depen-
dent instances, and removing the old instances.

Reconfiguring Instances. In-place reconfigurations (updated CMT directives)
may include internal service changes such as changing service parameters (e.g.,
credentials), applying service and OS patches, etc., or changes that involve
dependent roles. These changes will be accompanied by infrastructure updates
(e.g., security group changes).

Adding or Removing Instances. The MTD platform enables the addition and
removal of running instances. Both adaptations also involve reconfiguring depen-
dent instances. This happens through a sequence of tasks and in both cases, the
affected dependent services will be notified using a set of updated CMT direc-
tives. When adding a new instance, the updated configuration directions are sent
to the dependent instances (push configuration to dependent instances) after the
new instance is ready-to-use (provisioned and configured). In this way, if failures
affect the new instances the MTD system’s functionality will not be affected
during the change process. On the other hand, when removing an instance, first,
the dependent instances are notified before the actual deletion happens.

The instance replacement process merges the adding of new instances and
removing the old instances: one-instance or a cluster of instances may be replaced
at once. Creating security groups, provisioning new instances, and configuring
them are tasks that can be performed in parallel. Once all these tasks finish,
the MTD controller computes the updated CMT directives for all the dependent
instances. Dependent instances will receive only one set of directives that con-
tains all the updates. Therefore, replacing one instance, or replacing all instances
belonging to a role, will take roughly the same amount of time. The new instances
may use compatible implementations with different IPs, ports, operating systems
or application versions. The roles that instances fulfill in an MTD system can
be implemented in numerous ways.

3 Feasibility Analysis

This section summarizes our conclusions after evaluating the impact of instance
replacements on real-world IT systems deployed and managed using our MTD

MTD CBITS: Moving Target Defense 173

CBITS platform. Regardless of potential security benefits, an unreasonable per-
formance overhead would make the approach infeasible. We focused our efforts
on the applications, while persistent data (database content) was stored on cloud
volumes and reattached to new instances.

Our hypothesis was that the performance overhead of instance replacements
can be negligible (statistically non-significant) when using MTD CBITS. The
experiments were carried out on a cloud testbed consisting of 14 nodes (1 con-
troller and 13 compute nodes) running OpenStack (Icehouse). We focused on
two IT system setups: eCommerce deployment and MediaWiki with Wikipedia
database dumps. More scenarios are available on our project’s webpage.

To test the performance, we used http-perf [2] for the eCommerce system
and WikiBench [51] for the MediaWiki deployment. http-perf launches HTTP
requests against a server while capturing several metrics, including response
times while WikiBench replays real traffic traces against a MediaWiki site. To
establish a baseline (i.e., the control group), we ran the benchmarking tools
without MTD enabled (no instance replacements). Next, we ran the benchmark-
ing tools while replacing various instances. During the replacement process, sav-
ing and restoring the active sessions was handled at the application level (e.g.,
eCommerce_webapp) or by a dedicated component in the system (i.e., memcached
in the MediaWiki/Wikipedia scenario). We observed that depending on the com-
ponent that is being replaced all or the vast majority of the active sessions were
successfully restored. In all setups, caching features were disabled and configu-
rations were reloaded without restarting the services. For this reason, we did not
focus on the performance measurement values per se but on the difference (A)
between the baseline and the replacement measurements. With caching enabled,
requests are answered from the cache and not from the system component under
test (e.g., webapp) [47]. Thus, there is little or no impact of component replace-
ment. Using MTD CBITS to manage the above-mentioned scenarios, we were
able to show that our hypothesis holds.

External

- ——
§, fap
"
(
[
o |
[t TP S
T

<.

Internal
Network

Fig.2. Scalable and highly available eCommerce website blueprint. db_master,
msg_queue are single instances while weblb, webapp, bg-worker, db_slave are imple-
mented by a homogeneous cluster of instances.

174 A.G. Bardas et al.

3.1 eCommerce Deployment

Let us consider a scalable and highly available architecture of an eCommerce
website with various clusters of services as shown in Fig.2: web load balancers
(Nginx or Varnish), web application (Ruby on Rails with Unicorn), database
(MySQL), messaging queue (Redis), and worker app (Sidekiq). A cluster can
be implemented by one or more homogeneous instances. Arrows indicate depen-
dency between clusters of instances. Each cluster consists of multiple instances
implementing the same services.

The website implements the basic operations (i.e., read and write from and
to the database, or submit a worker task) needed in an eCommerce setup. The
baseline performance (Table 1) was determined by performing read operations on
the eCommerce website. Similar to Unruh et al. (our previous work), we focused
our efforts on the web application and database clusters, but tested them using a
different benchmarking tool (http-perf) and an increased load on the database.

Table 1. eCommerce website — average performance overhead of carrying out one
replacement operation: replacing one instance and replacing the whole cluster.

Aggregated results from 20 experiment runs

Fach experiment run: 150,000 requests sent using 70 concurrent connections

Response time | Total time Server HTTP Error
(sec) Processing Responses
Rate (req/sec)
Avg. |stdev Avg. stdev | Avg. stdev | Avg. |stdev
Baseline 0.408 | 0.069 14 min 48s | 160s | 175.352 | 36.924 | 0 0

Replacing one | 0.425 | 0.050 15min 17s|119s | 166.340 | 22.236 | 1.50 | 4.66
webapp

Replacing 0.424 | 0.047 15min 16s|110s | 166.032 | 18.887 | 42.60 | 37.57
webapp cluster

Replacing one | 0.426 | 0.040 15min 31s|91s | 162.675|16.481 | 588.10 | 62.84
db_slave

Replacing 0.439 | 0.035 15min 55s|73s | 158.051 | 12.320 | 913.75 | 113.57
db_slave cluster

As it can be observed in Table 1, under baseline conditions the eCommerce
deployment was able to handle 150,000 requests originating from 70 connec-
tions without any errors. Each request was reading 50 entries from the database.
Replacing database or web application instances can be performed in a com-
parable amount of time (within approximately a minute of the baseline mea-
surements). Next, we tried to assess the overall impact of the instance replace-
ment process under the same high load used in the baseline. We performed one-
instance and whole-cluster instance replacement on the web application cluster,
and then on the database cluster (specifically database slaves). The differences

MTD CBITS: Moving Target Defense 175

between replacement and the baseline measurements are, in general, statistically
non-significant and the performance loss is insignificant during the replacement
process (see Table1). When replacing the webapp, there were very few HTTP
error responses. On the other hand, when replacing the database slaves, as shown
in Table 1, the performance is slightly impacted by this change and on average
913.75 out of 150,000 requests failed, amounting to 0.61% of total number of
requests. We observed that requests are dropped when dependent instances are
establishing connections with the new (fresh) instances due to the received con-
figuration updates, while still processing incoming requests.

3.2 MediaWiki with Wikipedia DB Dumps

Unlike the eCommerce scenario that utilized synthetic workloads, WikiBench is
a web hosting benchmark that leverages actual Wikipedia database dumps and
generates real traffic by replaying traces of traffic addressed to wikipedia.org.

Similar to Moon et al. [37] we utilized the traces from September 2007 and
the corresponding Wikipedia database dumps [52]. Our setup consists of a load-
balancer (Nginx), three MediaWiki backends, a database hosting the Wikipedia
dumps, and a Memcached instance for sharing sessions (the state) among the
backends (Fig. 3).

Fig. 3. MediaWiki with Wikipedia database dumps.

In establishing the baseline, we ran WikiBench (replayed real traces) on our
deployment. MTD CBITS did not interfere in an any way when performing
the baseline measurements. Next, we replayed the same traces while replacing
one mediawiki_webapp instance and then the whole cluster. We recorded the
averages and standard deviations over ten different runs (see Table2). We did
not focus on the overall errors per se, however, we directed our attention on
the difference in the number of errors between the baseline and the replacement
actions. We noticed that the difference between the replacement operations aver-
ages and the baseline is very small, statistically non-significant. However, in case
of the one-instance replacement, we recorded an outlier that displayed a much
lower number of HTTP 200 responses than the rest of the experiment runs: 608
compared to 855, which was the average over nine experiment runs. Including
the outlier we would still have only 27 errors with a stdev of 90.55 errors.

http://wikipedia.org

176 A.G. Bardas et al.

Table 2. WikiBench (WikiBench (MediaWiki with Wikipedia database dumps) — aver-
age performance overhead of carrying out one replacement operation: replacing one
mediawiki _webapp instance and replacing the whole mediawiki_webapp cluster.

Aggregated results from 10 experiment runs

Each run: around 4150 requests, 50 threats, 1 worker, max. timeout 200 ms

Response time | Total time Server HTTP Error
(sec) Processing Responses
Rate (req/sec)

Avg. |stdev Avg. stdev | Avg. |stdev | Avg. Diff. |stdev
Baseline 0.054 | 0.001 10min 1s/0.0003s6.914 | 0.004 N/A 1.26
Replacing one |0.053]0.001 10min 1s/0.001s |6.910|0.006 0 1.12
webapp
Replacing 0.0530.001 10min 1s/0.001s |6.910|0.005 +3 1.77
webapp cluster

4 Security Analysis

In general, quantifying the security of an IT system is a challenging task [26].
Quantifying the benefits of constantly changing a system is even more demand-
ing [23]. While there have been numerous attempts [16,22,26,41], the proposed
security metrics are usually at a higher abstraction level that enables them to
capture a wider range of I'T systems. Thus, most of the time, it is hard to validate
them in an objective manner on a concrete (production-like) IT system.

We propose to measure the effectiveness of an MTD system in terms of the
meaningful interruptions it creates for attackers and the cost associated with
those interruptions. In a nutshell, this section is focused on determining when
instance replacements should happen (strategy), how many replacements in a
given time period (cost) and what this means in terms of attack windows,
persistence, and pivoting options.

4.1 Attack Windows and Attack Surface

An attack window is a continuous time interval an attacker may leverage without
being interrupted by system changes. System changes refer to reconfigurations
that would not happen on a regular basis (every few minutes, hours, or days) in
a static system, e.g., changing internal IPs, ports, applications, or credentials.
A system’s attack surface can be viewed as the subset of the IT system’s
resources that an attacker can use to attack the system. This subset of resources
is composed of methods, channels, and untrusted data items [32]. Methods refer
to the codebase entry and exit points of the IT system’s software applications,
channels are used to connect and invoke a system’s methods, while untrusted
data items are used to send or receive data into or from the target system.
Strategies to harden the system and reduce the attack surface include reducing

MTD CBITS: Moving Target Defense 177

the amount of running code (methods), eliminating unneeded services, running
updated applications, and reducing the channels available to untrusted users [32].

Reconnaissance and Pivoting Options. MTD CBITS manages an IT
system’s internal communication channels by leveraging OpenStack’s security
groups as a per-instance fine-grained firewall. A security group is automatically
configured to allow only ingress and egress traffic from and to the dependee
and dependent instances. Moreover, traffic will be allowed only to and from the
ports (TCP and/or UDP) stored in MTD CBITS’s operations model (including
related connections). Specifically, MTD CBITS reduces the attack surface of the
deployment through reducing the entry points available to untrusted users and
limiting the number of channels to the predetermined ones. Instances can initiate
connections to dependent instances only on specific port numbers (stored in the
operations model, Fig. 1).

The limited pivoting options constitute an important security benefit if an
attacker is able to compromise one or more instances in the deployment. For
example in the eCommerce deployment (Fig.2), if the weblb instances were
compromised, an attacker would be able to reach only the three webapp instances
through the internal network and not all the instances belonging to the other
nodes. A node represents a role in the IT system — a single unit of configuration
that corresponds to one instance or a high-availability cluster of instances. (Here,
a role as presented in Sect. 2.3 corresponds to a node in the security analysis.)
Without the possibility of creating new communication channels, attackers are
forced into using existing channels in order to advance or to exfiltrate data
(specifically, only over related connections).

Attacker’s Presence — Persistent Access. Attackers usually exploit some-
what unpredictable occurrences on the targeted IT systems e.g., software bugs,
misconfigurations, or user actions. Exploits and other actions may not have the
same outcome every time they are executed. Although reducing the attack sur-
face in a non-MTD-CBITS environment helps to prevent security failures, it
does not mitigate the amount of damage an attacker could inflict once a vul-
nerability is found. In an MTD CBITS environment, even if the same flawed
node/role implementation (with the same vulnerabilities) is used on a new
instance, configuration parameters (e.g., IP, ports, credentials, cryptographic
keys) will be updated forcing attackers to adjust their attack in order to poten-
tially re-compromise the instance. Installed malware is not really “persistent”
anymore and needs to be re-installed on new instances. This process can be noisy
since it needs to be performed repeatedly in order to maintain access.

Attack Window Terminology. We have defined the following terminology to
describe the proposed model. An attack attempt is an effort to gain unauthorized
privileges and data on a system. An attack path may include several nodes that
are part of the targeted IT system. These nodes can be:

1. Transparent nodes. Replacing the instances of such a node will most probably
not influence an ongoing attack. Load balancers (weblbs) are transparent

178 A.G. Bardas et al.

nodes if they simply relay requests to webapp instances without altering them

regardless of the weblb implementation (e.g., Varnish or Nginx). Replacing

a transparent node on the attack path will not influence an ongoing attack,

e.g., replacing a load balancer should have the same effect on all requests

(benign or malicious) to be passed to the webapps in the eCommerce website

(Fig.2). We note that under different attack assumptions, weblb could be

attacked directly and in this case it will not be a transparent node.

2. Stepping-stone nodes. Different outcomes for benign and malicious requests.
For example, in the eCommerce website (Fig.2), an attack on db_master
to possibly succeed, usually, requires a vulnerable or misconfigured webapp.
Changing webapp to a different implementation will most likely disrupt the
ongoing attack on db_master. Thus replacing a stepping-stone node on the
attack path will impact an ongoing attack. There are two types of stepping-
stone nodes:

(a) Compromised. Attackers have root/admin privileges.

(b) Misconfigured. Attackers don’t have complete control over the node. One
or more vulnerabilities and misconfigurations allow attackers to perform
an attack on a node down the way, e.g., a misconfiguration on the webapp
instances allows unsanitized user input that results in a SQL injection
which leads to compromising the database node, db_master (see Fig. 2).

An adaptation point is the moment when new (fresh) instances start being used in
the deployment. New instances use a compatible implementation with different
IP addresses, passwords, and port numbers. Due to these configuration changes,
attacks are generally interrupted at adaptation points of stepping-stone or target
nodes and the attacker must restart the attack attempt.

A few definitions are needed to determine the length of attack windows.

Definition 1. We define T,,(X) to be the period of time taken into consideration
i.e., extent of time when attacks might be launched against node X.

Definition 2. T,.(X) is the interval between adaptation points on node X .
We have T,.(X) = ch(X) + d(X) + a(X), where

ch(X) - time interval to bring a new instance that implements X in a ready-
to-use state, e.g., provision and configure the new instance(s);

d(X) - duration to change to the ready-to-use new instance(s), d(X) > 0
e.g., pushing configuration to dependent nodes; and

a(X) - delay specifically introduced by the user, a(X) > 0.

Definition 3. T,(X) is the duration of an attack attempt on node X .

Provisioning and configuring new instances can be performed in parallel by MTD
CBITS. However, changing to the new instances belonging to dependent nodes
(parameter d for each node) must be completed sequentially in order not to dis-
rupt the communication between the dependent services. Therefore, the adapta-
tion points (7;.’s) of two dependent nodes cannot be fully aligned (coincide) as

MTD CBITS: Moving Target Defense 179

such. There will always be a very short delay between the two adaptation points.
However, because the duration of d was usually around 1 second in our testing
scenarios, we consider this type of alignment as efficient as a full alignment.
One adaptation point does not necessarily create one meaningful interrup-
tion for an attacker. If there are several adaptation points that are aligned, we
consider this as only one meaningful interruption from an attacker’s perspec-
tive. A meaningful interruption is a disruption that forces attackers to restart an
attack attempt (redo a significant number of the steps that are part of the attack
attempt). We consider that one adaptation point creates a meaningful interrup-
tion if it is at least one time measurement unit away (1min in our case) from
other adaptation points. Also, we view an adaptation moment as one adaptation
point or several aligned adaptation points that create a meaningful interruption.

4.2 Adaptation Points Placement

Assuming X is the targeted node and Y ... Y;_; are the stepping-stone nodes on
the path to X, our goal is to determine the lengths of potential attack windows.
For this reason, it is vital to determine the moments when adaptation points are
aligned. First, the individual replacement-process starting time for each node
must be taken into consideration. Thus, the earliest starting time can be con-
sidered moment 0, while the placement of the other starting times captures the
difference related to moment 0. Let us state the following:

tmin = min(start_timer, x), start_timer, (y,), ...),

while tx = start_timer, (x) — tmin, ty; = start_timer, (v,) — tmin, "

Now, the problem can be defined and solved using the Chinese Remainder The-
orem. Using this theorem one can determine integer m that, when divided by
some given divisors, leaves given remainders. In our scenario the given divisors
are T,-(X), T,-(Y1) .. T (Y)_1), the given remainders are tx, ty,, ..., ty,_,, and m
represents the moment when the adaptation points are aligned. We can derive
the following cases:

Case 1

If T.(X), T-(Y1), ..., T (Y;—1) are pairwise coprime then:

e Integer m exists and can be calculated

e All solutions for m are congruent lem(7}.(X), T-(Y1), ..., T (Yi_1)) ?

Case 2
If T.(X), T (Y1), ..., T-(Y;—1) not pairwise coprime then:
If Vi,j € {X,Y3,...,Y,_1}, ti =t; mod ged(T,(4),T(j)) is TRUE, then:
e Integer m exists and can be calculated
Else:
e Integer m does not exist

! min is the minimum.

2 lcm stands for “least common multiple” and ged is the “greatest common divisor”.

180 A.G. Bardas et al.

Internal |
Network !

Fig. 4. Possible IT system architecture. Arrows indicate dependencies between nodes.

Case 3
If T.(X),T.(Y1),...,T-(Y;—1) are not pairwise coprime
AND Vi,j € {X,Y1,....,Y_1}, t; =t; mod gecd(T,(i),T(j)) is FALSE, then:
e No pair of adaptation points will be aligned
e Integer m does not exist

Case 4
If T.(X),T.(Y1),..,T-(Y;—1) not pairwise coprime AND i, j,a,b €
{Xa Ylv oy)/lfl}a
t; =t; mod gecd(7,(2),T(j)) is FALSE,
to =ty mod ged(T,(a), T(b)) is TRUE, then:
e Some of the adaptation points will be aligned
e Integer m does not exist

4.3 Attack Windows Example

To briefly illustrate the options a user has when managing their deployment
using MTD CBITS, let us consider a possible IT system architecture as pictured
in Fig. 4. Replacing one or all instances belonging to a node takes roughly the
same amount of time (see Sect. 2.4). The architecture pictured in Fig. 4 can serve
as a concrete eCommerce website (as shown Fig. 2).

Based on an improved version (with faster replacements) of the concrete
eCommerce scenario, the replacement times for the nodes in Fig. 4 are T,.(B) =
10 minutes, T,.(F) = T,.(E) = 11min, T.(A) = T.(C) = T,(D) = 3min and
d(B) = d(F) =d(F) = d(A) = d(C) = d(D) = 1 second. T, values are at their
lowest bound for the current environment. In other words, ch’s and d’s are at
their minimum and a’s are equal to 0.

There are two possibilities to reach node E: A, B, F, E or A, B, E (Fig. 4).
For the purpose of this example we will focus on the first path, A, B, F, E. Node
A is transparent (e.g., weblb in the eCommerce scenario), and therefore T,.(A)
will not be taken into consideration.

Assuming the replacements start at the same time, the maximum attack
window available to an attacker is min(7,.(E), T.(B), T,-(F)) = min(10,11,11) =
10 minutes. For example, over a period of one day, the MTD system will keep

MTD CBITS: Moving Target Defense 181

Number of time windows
%
o

% EREEENEEKRERRDRL
1 2 3 4 5 6 7 8 9 10
X Time window size (min)
2%2)):112 rr::rr\‘ Option->Number of interruptions:
Tr(F) = 11 min ®Option1->262 N ption2->380 Option3->381

Fig. 5. Attack windows distribution over one day. The cost is 407 adaptation moments
in all three cases: Optionl — 262 interruptions with starting times (¢5,tg,tr) = (0,0,0),
Option2 — 380 interruptions with (¢t,tg,tr) = (0,0,1), and Option3 — 381 interrup-
tions with (¢g,tg,tr) = (0,1,6).

the maximum attack window for the instances belonging to node E to 10 min
while in a static system an attack window can be as long as the entire day.

Figure 5 illustrates three possible attack windows distributions over one day
(24h). To generate these distributions 407 adaptation points are needed in each
case. As observed in Fig. 5, for the same cost, the outcome may be very different.
For instance, Optionl — 262 interruptions and 26 ten-minute attack windows when
starting at (0,0,0) might not be the best option; a user can get 380 interruptions
and fewer ten-minute windows for the same number of adaptation moments (cost).

In order to increase the number of interruptions while maintaining a com-
parable cost (number of adaptations), adaptation points should not pairwise
coincide. For this reason, we can opt for a set of parameters that fall under Case
3 in Sect.4.2. By setting a(B) to 1min we have T,.(F) = T.(B) = T.(F) = 11
minutes. Next, we chose different starting times that fulfill the requirements in
Case 3. Fig. 6 illustrates three different such starting time options that result in
the same number of interruptions, 393, for the same cost. Furthermore, we have
more attack windows with the same length while the length of the maximum
window is also shorter compared to Fig.5. What if attackers learn the parame-
ters over time? A user may use multiple parameter sets for 7. Moreover, T}, can
also be changed.

In case of a successful attack, the maximum time an attacker may spend on
an instance belonging to F, is equal to the difference between the maximum
attack window and the duration of the successful attack attempt, T, (E). Thus,
in the worst case scenario an attacker may spend between 4 and 10 min on an
instance belonging to node E depending on the parameter choice (e.g., Figs.5
and 6). While there are numerous options for starting times and other parameters
(e.g., parameter a), a user will always be able to calculate the cost and predict
the outcome in terms of number of adaptation moments.

The cost of an adaptation point is quantified in terms of the needed resources
and the performance overhead (degradation) the environment can accept. The
resources may include the cost for the hardware, electricity, and everything else
needed to reach the desired values for the ch and d parameters. On the other

182 A.G. Bardas et al.

hand, a (delay introduced by the user) is the parameter that can be easily
changed. While increasing a has no upper bound, once a = 0, decreasing T,
values involves changing ch and/or d.

5 Discussion and Limitations

Numerous organizations embraced the DevOps adventure in an effort to auto-
mate their systems. An integral part of DevOps is focused on a CMT [43]. Even
though MTD CBITS is not a “blanket”-like solution that simply covers existing
running IT systems, adopting it is well within reach.

CMT-driven automation is the key, but it is not enough. Without an inte-
grated inventory, instance replacements are heavily dependent on manual inter-
vention. Using its operations model, MTD CBITS maintains an up-to-date inven-
tory of the entire IT system and leverages it to reliably automate the instance
replacements throughout the lifetime of the IT system.

On cloud infrastructures, the replacements may also constitute an efficient,
user-controlled defense against various side-channel attacks. Instead of relying
only on the cloud provider, the user controls the replacement operations and can
regularly trigger physical host location “refreshes”. The physical host where a
new instance is placed depends on the cloud provider’s scheduler. While public
cloud scheduler rules may differ, we used the OpenStack Filter Scheduler with the
default settings on our infrastructure. Although we had only thirteen compute
nodes, instances “move” between nodes every replacement operation. We have
deployed the eCommerce scenario (Fig.2) with 20 web applications, webapps.
We noticed that between the initial deployment and the first whole webapp-
cluster replacement only 3 out of 13 hosts were assigned the same number of
instances, while between the first and the second replacement only 2 out of 13.

The performance loss on a cloud infrastructure can be compared in a way
to Netflix’s approach to test the resiliency of their IT systems. They deployed
a service (called Chaos Monkey [1]) that seeks out high-availability clusters of

g

3 240

=}

S 200

2

o 160

g 120 7 g 7

s 9 g9 7

° g 7 7 7!

o 7 7] 7|

o 7| 7] 7]

£ % 7 7 4

5 o /| 7] 7]

z

1 2 3 4 5 6 7 8 9 10 11

Tr(B) =10 min Time window size (min)
Tr(E) =11 min Option->Number of interruptions:
Tr(F) = 11 min Option4->393 2 Options->393 ™ Option6->393

Fig. 6. Attack windows distribution over one day when no two adaptation points coin-
cide. The cost is 393 adaptation moments for 393 interruptions in all three cases:
Option4 with starting times (¢5,tg,tr) = (0,4, 7), Option5 with (¢5,tg,tr) = (0,4,9),
Option6 with (ts,te,tr) = (0,2,9).

MTD CBITS: Moving Target Defense 183

services and randomly terminates instances within the cluster. MTD CBITS on
the other hand, replaces instances proactively in an organized way for security
purposes in virtualized environments (IaaS clouds). Nevertheless, physical hosts
may also be managed similar to VMs by using offerings such as MaaS [10].

6 Related Work

Most MTD-related work focuses on specific aspects of system configuration, such
as IP addresses [6,20,27], memory layouts [3,13,31], instruction sets [9,29], html
keywords [14,50], SQL queries [9], or database table keywords [14]. Software
diversity has also been investigated in several efforts [8,24,53] as a way to sup-
port multiple configurations. Although more comprehensive frameworks [30,42]
for various environments [5,11] have been proposed, most are still conceptual,
and require significant theoretical and practical development. In an attempt to
provide a more efficient experimentation support for various pro-active defenses,
researchers have proposed VINE [21]. Unlike MTD CBITS which captures the
overall IT system and manages it throughout its lifetime, VINE enables users
to create an emulated setting of an existing network on OpenStack for training
and experimentation purposes.

Narain et al. used high-level specifications for network infrastructure config-
uration management in the ConfigAssure [39] and DADC [38] projects. Similar
concepts have been proposed by Al-Shaer in MUTE [4], which uses binary deci-
sion diagrams to achieve dynamic network configurations. On the other hand,
SCIT [25] has been used to achieve intrusion tolerance by restoring VM instances
to their original state [40]. Our approach achieves the same intrusion tolerance
as SCIT and adopts formal models similar to Narain to ensure that instance
replacement(s) will not disrupt normal operations.

In terms of metrics, Okhravi et al. [41] quantitatively studied dynamic plat-
forms as a defensive mechanism, while Cybenko and Hughes [16] introduced a
quantitative framework to model diversity and showed how it can defend the
three core goals of cyber security: confidentiality, integrity, and availability. Our
ability to quantify cost while controlling the lengths of attack windows provides
a new perspective on measuring security benefits, which may be an important
component of the proposed higher-level metrics.

7 Conclusions

We propose and evaluate an MTD platform that captures service dependencies
at the entire I'T system level, and performs live instance replacements in a reliable
way with negligible performance overhead on a cloud infrastructure. We recorded
statistically non-significant differences between the baseline measurements (no
MTD operations — static system) and the MTD replacement operations.

On the security side, we are able to quantify the outcome (lengths of potential
attack windows) in terms of the cost (number of adaptations), and demonstrate
that MTD systems managed and deployed using MTD CBITS will achieve the

184 A.G. Bardas et al.

goal of increasing attack difficulty (e.g., restricted reconnaissance and pivoting
options, limited persistent access).

MTD CBITS and ANCOR implementations, all scenarios, and auxiliary
materials (e.g., supporting proofs for Cases 3 and 4 from Sect.4.2, a Python
implementation for an “attack windows calculator”, more comprehensive bene-
fits descriptions, etc.) are available at https://github.com/arguslab/ancor.

Acknowledgements. We would like to thank the reviewers for their valuable feed-
back and everyone involved in this research over the years, especially Rui Zhuang,
Ali Ali, Simon Novelly, Ian Unruh, and Brian Cain. This work was supported by the
Air Force Office of Scientific Research (FA9550-12-1-0106). Opinions, findings, conclu-
sions, or recommendations expressed in this material are those of the authors and do
not necessarily reflect the agencies’ views.

References

Chaos Monkey. https://github.com/netflix/chaosmonkey. Accessed Apr 2017
http-perf. https://www.npmjs.com/package/http-perf. Accessed Apr 2017
PaX ASLR. https://pax.grsecurity.net/docs/aslr.txt. Accessed Apr 2017
Al-Shaer, E.: Toward network configuration randomization for moving target
defense. In: Jajodia, S., Ghosh, A., Swarup, V., Wang, C., Wang, X. (eds.) Moving
Target Defense. Advances in Information Security, vol. 54, pp. 153-159. Springer,
New York (2011). doi:10.1007/978-1-4614-0977-9_9
5. Albanese, M., De Benedictis, A., Jajodia, S., Sun, K.: A moving target defense
mechanism for MANETS based on identity virtualization. In: IEEE CNS (2013)
6. Antonatos, S., Akritidis, P., Markatos, E.P., Anagnostakis, K.G.: Defending against
Hitlist worms using network address space randomization. In: ACM WORM (2005)
7. Armbust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, 1., Zaharia, M.: A view of cloud computing. In:
ACM CACM (2010)
8. Bauer, K., Dedhia, V., Skowyra, R., Streilein, W., Okhravi, H.: Multi-variant exe-
cution to protect unpatched software. In: RWS (2015)
9. Boyd, S.W., Kc, G.S., Locasto, M.E., Keromytis, A.D., Prevelakis, V.: On the
general applicability of instruction-set randomization. In: IEEE TDSC, July 2010
10. Canonical, Metal as a Service (MAAS). https://maas.io/. Accessed Apr 2017
11. Casola, V., Benedictis, A.D., Albanese, M.: A moving target defense approach for
protecting resource-constrained distributed devices. In: IEEE IRI (2013)
12. Chef. https://www.chef.io/chef/. Accessed Mar 2017
13. Chen, P., Xu, J., Lin, Z., Xu, D., Mao, B., Liu, P.: A practical approach for adaptive
data structure layout randomization. In: Pernul, G., Ryan, P.Y.A., Weippl, E.
(eds.) ESORICS 2015. LNCS, vol. 9326, pp. 69-89. Springer, Cham (2015). doi:10.
1007/978-3-319-24174-6_4
14. Christodorescu, M., Fredrikson, M., Jha, S., Giffin, J.: End-to-End software diver-
sification of internet services. In: Jajodia, S., Ghosh, A., Swarup, V., Wang, C.,
Wang, X. (eds.) Moving Target Defense. Advances in Information Security, vol. 54,
pp. 117-130. Springer, New York (2011). doi:10.1007/978-1-4614-0977-9_7
15. Crowdstrike, Bears in the Midst. https://goo.gl/djML8Q. Accessed Apr 2017
16. Cybenko, G., Hughes, J.: No free lunch in cyber security. In: MTD (2014)

L

https://github.com/arguslab/ancor
https://github.com/netflix/chaosmonkey
https://www.npmjs.com/package/http-perf
https://pax.grsecurity.net/docs/aslr.txt
http://dx.doi.org/10.1007/978-1-4614-0977-9_9
https://maas.io/
https://www.chef.io/chef/
http://dx.doi.org/10.1007/978-3-319-24174-6_4
http://dx.doi.org/10.1007/978-3-319-24174-6_4
http://dx.doi.org/10.1007/978-1-4614-0977-9_7
https://goo.gl/djML8Q

17.
18.
19.
20.
21.
22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.
34.
35.
36.
37.

38.

39.

40.

41.

MTD CBITS: Moving Target Defense 185

De Capitani, S., di Vimercati, S., Foresti, S., Jajodia, S.P., Samarati, P.: Efficient
integrity checks for join queries in the cloud. In: IOS JCS (2016)

Democratic National Committee. https://goo.gl/nxemkK. Accessed Apr 2017
DHS, Moving Target Defense. https://goo.gl/5qXtoH. Accessed Apr 2017
Dunlop, M., Groat, S., Urbanski, W., Marchany, R., Tront, J.: MT6D: a moving
target IPv6 defense. In: IEEE MILCOM (2011)

Eskridge, T.C., Carvalho, M.M., Stoner, E., Toggweiler, T., Granados, A.: VINE:
a cyber emulation environment for MTD experimentation. In: ACM MTD (2015)
Evans, D., Nguyen-Tuong, A., Knight, J.: Effectiveness of Moving Target Defenses
(2011)

Hobson, T., Okhravi, H., Bigelow, D., Rudd, R., Streilein, W.: On the challenges
of effective movement. In: ACM MTD (2014)

Homescu, A., Jackson, T., Crane, S., Brunthaler, S., Larsen, P., Franz, M.: Large-
scale automated software diversity-program evolution redux. In: IEEE TDSC
(2015)

Huang, Y., Arsenault, D., Sood, A.: Closing cluster attack windows through server
redundancy and rotations. In: Workshop on Cluster Security (2006)

Hughes, J., Cybenko, G.: Quantitative metrics and risk assessment: the three tenets
model of cybersecurity. In: Technology Innovation Management Review (2013)
Jafarian, J.H., Al-Shaer, E., Duan, Q.: An effective address mutation approach for
disrupting reconnaissance attacks. IEEE Trans. Inf. Forensics Secur. 10, 2562—2577
(2015)

Karapanos, N., Filios, A., Popa, R.A., Capkun, S.: Verena: end-to-end integrity
protection for web applications. In: IEEE S&P (2016)

Ke, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: ACM CCS (2003)

Keromytis, A.D., Geambasu, R., Sethumadhavan, S., Stolfo, S.J., Yang, J.,
Benameur, A., Dacier, M., Elder, M., Kienzle, D., Stavrou, A.: The MEERKATS
cloud security architecture. In: IEEE DCS (2012)

Kil, C., Jun, J., Bookholt, C., Xu, J., Ning, P.: Address Space Layout Permuta-
tion (ASLP): towards fine-grained randomization of commodity software. In: IEEE
ACSAC (2006)

Manadhata, P.K., Wing, J.M.: An attack surface metric. In: IEEE TSE (2010)
Mandiant, APT1 Report. https://goo.gl/Cx3wz2. Accessed Mar 2017

Mandiant, M-Trends 2016 Report. https://goo.gl/PmJdEZ. Accessed Apr 2017
Mandiant, M-Trends 2017 Report. https://goo.gl/ISs8tX. Accessed Apr 2017
MediaWiki. https://www.mediawiki.org. Accessed Apr 2017

Moon, S.-J., Sekar, V., Reiter, M.K.: Nomad: mitigating arbitrary cloud side chan-
nels via provider-assisted migration. In: ACM CCS (2015)

Narain, S., Coan, D.C., Falchuk, B., Gordon, S., Kang, J., Kirsch, J., Naidu, A.,
Sinkar, K., Tsang, S., Malik, S., Zhang, S., Rajabian-Schwart, V., Tirenin, W.: A
science of network configuration. J. CSIAC-CSIS, 4(1), 18-31 (2016)

Narain, S., Malik, S., Al-Shaer, E.: Towards eliminating configuration errors in
cyber infrastructure. In: IEEE SafeConfig (2011)

Nguyen, Q., Sood, A.: Designing SCIT architecture pattern in a cloud-based envi-
ronment. In: DSN-W (2011)

Okhravi, H., Riordan, J., Carter, K.: Quantitative evaluation of dynamic platform
techniques as a defensive mechanism. In: Stavrou, A., Bos, H., Portokalidis, G.
(eds.) RAID 2014. LNCS, vol. 8688, pp. 405-425. Springer, Cham (2014). doi:10.
1007/978-3-319-11379-1_20

https://goo.gl/nxemkK
https://goo.gl/5qXtoH
https://goo.gl/Cx3wz2
https://goo.gl/PmJdEZ
https://goo.gl/ISs8tX
https://www.mediawiki.org
http://dx.doi.org/10.1007/978-3-319-11379-1_20
http://dx.doi.org/10.1007/978-3-319-11379-1_20

186

42.

43.
44.
45.
46.
47.

48.
49.
50.

51.
52.
53.

A.G. Bardas et al.

Portokalidis, G., Keromytis, A.D.: Global ISR: toward a comprehensive defense
against unauthorized code execution. In: Jajodia, S., Ghosh, A., Swarup, V., Wang,
C., Wang, X. (eds.) Moving Target Defense. Advances in Information Security, vol.
54, pp. 49-76. Springer, New York (2011). doi:10.1007/978-1-4614-0977-9_3
Puppet. https://puppet.com/, https://goo.gl/rIWcKm. Accessed Apr 2017
Puppet Blog. https://goo.gl/TSRTS0, https://goo.gl/9Z1YhK. Accessed Apr 2017
Puppet Hiera. http://docs.puppetlabs.com/hiera/1/. Accessed Apr 2017

Puppet, os_hardening. https://goo.gl/vjkCgZ. Accessed Apr 2017

Unruh, I., Bardas, A.G., Zhuang, R., Ou, X., DeLoach, S.A.: Compiling abstract
specifications into concrete systems - bringing order to the cloud. In: USENIX
LISA (2014)

US Patent US6917930. https://goo.gl/ KYMT9a. Accessed Apr 2017

Verizon, 2016 DBIR. http://goo.gl/E0OSr7. Accessed Apr 2017

Vikram, S., Yang, C., Gu, G.: NOMAD: towards non-intrusive MTD against web
bots. In: IEEE CNS (2013)

Wikibench. http://www.wikibench.eu/. Accessed Apr 2017

Wikipedia DB dumps. https://goo.gl/8jfhkk. Accessed Apr 2017

Williams, D., Hu, W., Davidson, J.W., Hiser, J.D., Knight, J.C., Nguyen-Tuong,
A.: Security through diversity: leveraging virtual machine technology. In: IEEE
S&P, July 2009

http://dx.doi.org/10.1007/978-1-4614-0977-9_3
https://puppet.com/
https://goo.gl/r1WcKm
https://goo.gl/TSRTS0
https://goo.gl/9Z1YhK
http://docs.puppetlabs.com/hiera/1/
https://goo.gl/vjkCgZ
https://goo.gl/KYMT9a
http://goo.gl/E0OSr7
http://www.wikibench.eu/
https://goo.gl/8jfhkk

Modular Verification of Protocol Equivalence
in the Presence of Randomness

Matthew S. Bauer!®™) Rohit Chadha2, and Mahesh Viswanathan'

! University of Illinois at Urbana-Champaign, Champaign, USA
msbauer2@illinois.edu
2 University of Missouri, Columbia, USA

Abstract. Security protocols that provide privacy and anonymity guar-
antees are growing increasingly prevalent in the online world. The highly
intricate nature of these protocols makes them vulnerable to subtle design
flaws. Formal methods have been successfully deployed to detect these
errors, where protocol correctness is formulated as a notion of equiva-
lence (indistinguishably). The high overhead for verifying such equiva-
lence properties, in conjunction with the fact that protocols are never
run in isolation, has created a need for modular verification techniques.
Existing approaches in formal modeling and (compositional) verification
of protocols for privacy have abstracted away a fundamental ingredi-
ent in the effectiveness of these protocols, randomness. We present the
first composition results for equivalence properties of protocols that are
explicitly able to toss coins. Our results hold even when protocols share
data (such as long term keys) provided that protocol messages are tagged
with the information of which protocol they belong to.

1 Introduction

Cryptographic protocols are often analyzed in the so-called symbolic model,
where the assumption of perfect cryptography is made. Messages are symbolic
terms modulo an equational theory (as opposed to bit-strings) and crypto-
graphic operations are modeled via equations in the theory. The threat model
is that of the Dolev-Yao attacker [33], in which the attacker has the ability to
read, intercept and replay all messages on public channels and can also non-
deterministically inject its own messages into the network. Verification tech-
niques in this domain are fairly mature and a number of sophisticated analysis
tools have been developed [12,35,54].

Automated tools based on Dolev-Yao analysis are fundamentally limited
to protocols that are purely non-deterministic, where non-determinism is used
to model concurrency as well as the interaction between protocol participants

M.S. Bauer and M. Viswanathan—Partially supported by grant NSF CNS 1314485.
R. Chadha—Partially supported by grants NSF CNS 1314338 and NSF CNS
1553548.

© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 187-205, 2017.
DOI: 10.1007/978-3-319-66402-6_12

188 M.S. Bauer et al.

with their environment. The order and nature of these interactions is deter-
mined entirely by an attacker (also known as a scheduler) who resolves all non-
determinism. There are, however, a large class of protocols whose correctness
depends on an explicit ability to model and reason about coin tosses. With pri-
vacy goals in mind, these protocols lie at the heart of many anonymity systems
such as Crowds [51], mix-networks [20], onion routers [38] and Tor [32]. Random-
ization is also used in cryptographic protocols to achieve fair exchange [11,36],
voter privacy in electronic voting [53] and denial of service prevention [40]. The
privacy and anonymity properties achieved by these systems are often formu-
lated in terms of protocol equivalence (indistinguishability). For example, proto-
col equivalence is used in the analysis of properties like anonymity, unlinkability,
and vote privacy [5,7,30,34,44].

Catherine Meadows, in her summary of the over 30year history of for-
mal techniques in cryptographic protocol analysis [47,48], identified the devel-
opment of formal analysis techniques for anonymous communication systems
as a fundamental and still largely unsolved challenge. The main difficulty in
adapting Dolev-Yao analysis to such randomized protocols has been the sub-
tle interaction between non-determinism and randomization — if the attacker
is allowed to “observe” the results of the private coin tosses in its scheduling
decisions, then the analysis may reveal “security flaws” in correct protocols
(see examples in [14,16,18,21,37]). In order to circumvent this problem, many
authors [10,14,16-18,21,29,37] have proposed that protocols be analyzed only
with respect to attackers that are forced to take the same action in any two
protocol executions that are indistinguishable to the attacker. For the indistin-
guishability relation on traces, we propose [10,17] trace-equivalence of applied-pi
calculus processes [1]. In this framework, an attacker is a function from traces,
the equivalence classes on executions under the trace-equivalence relation, to the
set of attacker actions.

We consider the problem of composition for randomized protocols when the
protocols are allowed to share data, such as keys. Our focus here is on equiva-
lence properties. Two randomized protocols P and @ are said to be trace equiv-
alent [17], if for each attacker A and trace ¢, the measure of executions in the
trace ¢t obtained when A interacts with protocol P is exactly the same as the
measure of executions in the trace ¢ obtained when A interacts with protocol Q.
The protocols themselves are specified as processes in an applied pi-style calculus,
parametrized by an equational theory that models cryptographic primitives. The
protocols in our formalism are simple; a protocol is said to be simple if there is
no principal-level nondeterminism [25]. As observed in [17], this notion of equiv-
alence coincides with the notion of trace-equivalence for simple non-randomized
protocols.

Contributions: We begin by considering the case when the number of sessions
in a protocol is bounded. Our first result (Theorem 1 on Page 10) captures the
conditions under which the composition of equivalent protocols under disjoint
equational theories preserves trace equivalence. Formally, consider trace equiva-
lent protocols P and @ over equational theory E,, and trace equivalent protocols

Modular Verification of Protocol Equivalence in the Presence of Randomness 189

P’ and Q' over equational theory Ej, where E, and E; are disjoint. We show
that the composition of P and P’ is equivalent to the composition of @) and
@', provided the shared secrets between P and P’ and those between () and Q'
are kept with probability 1. While such a result also holds for non-randomized
protocols (see [4,27] for example), randomization presents its own challenges.

The first challenge arises from the fact that even if P’ and @’ do not leak
shared secrets (with P and @Q, respectively), they may still reveal the equalities
that hold amongst the shared secrets. Revealing these equalities may, in some
cases, allow the attacker to infer the result of a private coin toss (See Example 4
on Page 12). Consequently, our composition theorem requires that P and @
remain trace equivalent even when such equalities are revealed. The revelation
of the equalities is achieved by adding actions to protocols P and @ that reveal
“hashes” of shared secrets.

As in the case of non-randomized protocols [4,27], the proof proceeds by
showing that it suffices to consider the case when P (@) does not share any
secrets with P’ (@' respectively). This is achieved by observing that if the com-
position of P and P’ is not trace equivalent to the composition of @ and Q’,
then there must be a trace ¢ and an individual execution p in the composition
of P and P’ (or of Q and Q') such that p belongs to ¢ and there is no execution
in the composition of @ and @’ (or of P and P’ respectively) in the trace ¢. It is
then observed that if the shared secrets between P and P’, and between) and
Q', are re-initialized to fresh values respecting the same equalities amongst them
as in the execution p, then the transformed protocols continue to remain trace
inequivalent. For randomized protocols, we no longer have an individual execu-
tion that witnesses protocol inequivalence. Instead we have an attacker A and
a trace ¢ which occurs with different probabilities when the protocols interact
with A. Observe that the executions corresponding to the trace ¢t will then form
a tree, and different equalities amongst the shared secrets may hold in different
branches. Thus, a simple transformation as in the case of non-randomized proto-
cols no longer suffices (see Example 6 on Page 13). Instead, we have to perform
a non-trivial inductive argument (with induction on number of coin tosses) to
show that it suffices to consider the case when P (Q) does not share any secrets
with P’ (Q’ respectively).

Our second result concerns the case when the equational theories F, and Ej
are the same, each containing cryptographic primitives for symmetric encryption,
symmetric decryption and hashes (see Theorem 2 on Page 14). For this case, we
show that the composition of randomized protocols preserves trace equivalence
when the protocols are allowed to share secrets, provided protocol messages are
tagged with the information of which protocol they belong to. As in the case
of non-randomized protocols, this is achieved by showing that in presence of
tagging, the protocols can be transformed to new protocols Prew, Plew, @new @hew
such that Pnew and Qnew are trace equivalent protocols with equational theory
E,cw, and P! and @/, are trace equivalent protocols with disjoint equational

new new
theory E! Thus, this result follows from our first result.

new-*

190 M.S. Bauer et al.

Our final result extends the above result to the case of unbounded number
of sessions (see Theorem 3 on Page 15). We again consider the case when the
equational theories F, and E} are the same, containing cryptographic primitives
for symmetric encryption, symmetric decryption and hashes. In order to achieve
this result, we additionally require that messages from each session are tagged
with a unique session identifier.

Related Work. For the non-randomized case, a number of papers have identi-
fied requirements for proving protocol compositions secure. Safety properties are
considered in [2,4,6,22,24,26-28,31,41-43,49] and indistinguishability proper-
ties in [3,4]. A recent work [10] has also explored the composition of randomized
protocols with respect to reachability properties. In the computational model,
the problem of composing protocols securely has been studied in [13,15]. Our
result is most closely related to [3,4,10].

Much of research effort on mechanically analyzing anonymity systems has
used techniques based on model checking and simulation. For example, [56]
uses the PRISM model checker [46] to analyze the Crowds system. While these
works are valuable, the techniques are ad-hoc in nature, and don’t naturally
extend to larger classes of protocols. In [55], an analysis of Chaum’s Dinning
cryptographers protocol [19] was carried out the in CSP framework [45]. In
all of these works, the messages constructed by the attacker is assumed to be
bounded. [17] considers the complexity of the problem of verifying bounded
number of sessions of simple randomized cryptographic protocols that use sym-
metric and asymmetric encryption. They show that checking secrecy properties
is coONEXPTIME-complete and the problem of checking protocol equivalence
is decidable in coNEXPTIME. In contrast, both of these problems are known
to be coNP-complete for non-randomized protocols [8,23,25,52]. The increased
overhead in the verification effort that comes with the introduction of randomiza-
tion in protocols places a premium on modular verification techniques, allowing
smaller analysis efforts to be stitched together.

2 Protocols

In this section we introduce our process algebra for modeling security protocols
with coin tosses. Our formalism can be seen as an extension of the one from [3].
Similar to [39], it extends the applied 7-calculus by the inclusion of a new oper-
ator for probabilistic choice. Like [3], the calculus doesn’t include else branches
and considers a single public channel. We will assume the reader is familiar with
the models of discrete time Markov chains (DTMCs) and partially observable
Markov decision process (POMDPs); for completeness these definitions can be
found in the full version of this paper [9)].

2.1 Terms, Equational Theories and Frames

A signature F contains a finite set of function symbols, each with an associated
arity. We assume countably infinite and pairwise disjoint sets of special con-
stant symbols M and N, where M and A represent public and private names,

Modular Verification of Protocol Equivalence in the Presence of Randomness 191

respectively. Variable symbols are the union of two disjoint sets X and X,, (where
FN(XUX,) = D) representing protocol and frame variables, respectively. Terms
are built by the application of function symbols to variables and terms in the
standard way. Given a signature F and Y C X U X,,, we use 7 (F,)) to denote
the set of terms built over F and). The set of variables occurring in a term w
is denoted by vars(u). A ground term is one that contains no free variables.

A substitution o is a partial function that maps variables to terms such
that the domain of ¢ is finite. dom(o) will denote the domain and ran(c) will
denote the range. For a substitution o with dom(o) = {z1, ...,z }, we denote
o as {x1 — o(x1),...,x5 — o(zr)}. A substitution o is said to be ground if
every term in ran(c) is ground and a substitution with an empty domain will be
denoted as (). Substitutions can be extended to terms in the usual way and we
write to for the term obtained by applying the substitution o to the term ¢.

Our process algebra is parameterized by a non-trivial equational theory
(F,E), where FE is a set of F-Equations. By an F-Equation, we mean a pair
uw = v where u,v € T(F \ N, X) are terms that do not contain private names.
Two terms u and v are said to be equal with respect to an equational theory
(F,FE), denoted u =g v, if E - u = v in the first order theory of equality.
We assume that if two terms containing names are equal, they will remain equal
when the names are replaced by arbitrary terms. We often identify an equational
theory (F, E) by E when the signature is clear from the context. Processes are
executed in an environment that consists of a frame ¢ and a binding substitution
o. Formally, o : X — T(F) and ¢ : X, — T (F).

Two frames ¢; and ¢y are said to be statically equivalent if dom(p;) =
dom(pz) and for all r1,75 € T(F \ N, X,) we have rip; =g rop; iff 112 =g
rops. Intuitively, two frames are statically equivalent if an attacker cannot distin-
guish between the information they contain. A term u € 7T (F) is deducible from
a frame ¢ with recipe r € T (F \ N,dom(y)) in equational theory E, denoted
¢ Fp u, if ro =g u. We often omit r» and E and write ¢ - v if they are clear
from the context.

An equational theory Ej is called trivial if w =g, v for any terms w,v and
otherwise it is said to be non-trivial. For the rest of the paper, F, and F. are
signatures with disjoint sets of function symbols and (Fy, Ep) and (F., E.) are
non-trivial equational theories. The combination of these two theories will be
(F,E)=(FyUF., Ex, UE,).

2.2 Syntax

We assume a countably infinite set of labels £ and an equivalence relation ~
on L that induces a countably infinite set of equivalence classes. For [€ L, [[]
denotes the equivalence class of [. We use £, and L. to range over subsets of £
such that £, N L. = 0 and both £, and L. are closed under ~. Each equivalence
class is assumed to contain a countably infinite set of labels. Operators in our
grammar will come with a unique label from £, which together with the relation
~, will be used to mask the information an attacker can obtain about actions of

192 M.S. Bauer et al.

a process. So, when an action with label [is executed, the attacker will only be
able to infer [I].

The syntax of processes is introduced in Fig.1. We begin by introducing
what we call basic processes, denoted by B, Bi, Bo,...B,. In the definition of
basic processes, p € [0,1],l € £,z € X and ¢; € {T,u =v}Vi € {1,...,k} where
u,v € T(F\N, X). In the case of the assignment rule (z := u)’, we additionally
require that = ¢ vars(u). Intuitively, basic processes will be used to represent
the actions of a particular protocol participant. The 0 process does nothing. The
process va! creates a fresh name and binds it to o while (x := u)’ assigns the
term u to the variable x. The test process [c; A ... A ck]l terminates if ¢; is T or
¢; is u = v where u =g v for all ¢ € {1,...,k} and otherwise, if some ¢; is u = v
and u #p v, the process deadlocks. The process in(z)' reads a term u from
the public channel and binds it to = and the process out(u)! outputs a term on
the public channel. The processes P -!) sequentially executes P followed by Q
whereas the process P +§, Q@ behaves like P with probability p and like @) with
probability 1 — p.

Basic Processes
B =0 ‘ va! ‘ (z:=u) ‘ [e1 Ao Ack) ‘ in(z)" ‘ out (u)’ ‘ (B-B) ‘ (B 4+, B)

Basic Contexts

pO] ==0|B|D[O)- B|B-D[O]| DIO] +, D[]

Contexts [a; € {vz, (x := u)}]
ClOh, ..., O] = alll coealn (D1[D1]]...| D [Om])

Fig. 1. Process syntax

We will assume a countable set of process variables X, whose typical ele-
ments will be denoted by [, [y, ..., ,,. In Fig. 1, basic contexts are obtained by
extending basic processes with a single process variable from X.. Basic contexts
will be denoted by D[O], D1[0], D[], ..., Dy[0]. D1[B1] denotes the process
that results from replacing every occurrence of [Jin D1 by Bj. A context is then
a sequential composition of fresh variable creations and variable assignments
followed by the parallel composition of a set of basic contexts. The prefix of
variable creations and assignments is used to instantiate data common to one or
more basic contexts. A process is nothing but a context that does not contain
any process variables. We will use C,C4,Cs, ..., C, to denote contexts and P,
Q@ or R to denote processes. For a context C[y,...,0,,] and basic processes
By,...,By,, C[By,...,B,,]| denotes the process that results from replacing each
process variable [J; by B;.

A context C[0y,...,0,] = a1 - ... - ap - (D1[01]]...| D [O]) is said to be well-
formed if every operator has a unique label and for any labels [y and Il occurring
in D; and D, for i,j € {1,2,...,m}, i # j iff [l1] # [l2]. For the remainder of

Modular Verification of Protocol Equivalence in the Presence of Randomness 193

this paper, contexts are assumed to be well-formed. A process that results from
replacing process variables in a context by basic processes is also assumed to be
well-formed. Unless otherwise stated, we will always assume that all of the labels
in a basic process come from the same equivalence class. For readability, we will
omit process labels when they are not relevant in a particular setting. Whenever
new actions are added to a process, their labels are assumed to be fresh and not
equivalent to any existing labels of that process.

For a process @, fv(Q) and bv(Q) denote the set of variables that have some
free or bound occurrence in @), respectively. The formal definition is standard and
is presented in the full version [9]. Processes containing no free variables are called
ground. We restrict our attention to processes that do not contain variables with
both free and bound occurrences. That is, for a process @, fv(Q) N bv(Q) = 0.
We now give an examples illustrating the type of protocols that can be modeled
and analyzed in our process algebra.

Example 1. In a simple DC-net protocol, two parties Alice and Bob want to
anonymously publish two confidential bits m 4 and m g, respectively. To achieve
this, Alice and Bob agree on three private random bits by, b; and by and output
a pair of messages according to the following scheme. In our specification of the
protocol, all of the private bits will be generated by Alice.

Ifbg =0 Alice: MA,ozbl@mA,MA,lzbg
Bob: MB70 = bl, MB,1 = bQ D mp
Ifb():]. Alice: MAﬁOZbl,MAJ:bQ@mA
Bob: MB,O =b1 & mp, MB,I = by

From the protocol output, the messages m 4 and mp can be retrieved as M40 @®
Mpo and Ma1 ® Mp:. The party to which the messages belong, however,
remains unconditionally private, provided the exchanged secrets are not revealed.
This protocol can be modeled using the equational theory built on the signature
Fpe = {0, 1, &, senc, sdec, pair, fst, snd, val} with the following equations.

sdec(senc(m, k), k) = m, fst(pair(z,y)) = x, snd(pair(z,y)) = v,
By dz=20yPz2),200=02,202=0,20y=ydu,
Va|(m,0,b1,b2) = pair(bl @& m, by), val(m, 1,b17b2) = pair(bl,bg (&) m)

The roles of Alice and Bob in this protocol are defined in our process syntax as
follows.

A= ((bo:=0)+1 (bo:=1)) ((br :=0)+1 (br:=1)) - ((b2:=0) +
out(senc(pair(bg, pair(b1, b2)), k1) - out(val(ma, bo, b1, b2))

B =in(z) - (y := sdec(z, k2)) - (bo := fst(y)) - (by := fst(snd(y)))-
(bg :=snd(snd(y))) - out(val(mp,by ® 1,b1,b2))

(bg =].)

1
2

Notice that the output of Bob depends on the value of Alice’s coin flip. Because
our process calculus does not contain else branches, the required functionality is

194 M.S. Bauer et al.

embedded in the equational theory. Also notice that the communication between
Alice and Bob in the above specification requires pre-established secret keys
k1, ko. These keys are established by first running some key exchange protocol,
which can be modeled by the context C[0y, 0| = vk - (k1 := k) - (k2 := k) -
(01]0z). If Alice holds the bit b and Bob holds the bit ¥, the entire protocol is
Clima :=0b)-A (mp:=10)-B].

2.3 Semantics

Given a process P, an extended process is a 3-tuple (P, p, o) where ¢ is a frame
and o is a binding substitution. Semantically, a ground process P is a POMDP
(partially observable Markov decision process) (Z, zs, Act, A, O, obs), where Z
is the set of all extended processes, z; is the start state (P,0,0), Act is the
set of actions (pairs containing a recipe and an equivalence class on labels),
A is a probabilistic transition relation describing how a process evolves, O is a
countable set of observations used to model information available to the attacker
and obs is a labeling of states with observations. Informally, a process evolves as
follows. After i execution steps, if the process is in state z, the attacker chooses an
action «, which together with the state z defines a unique probability distribution
1 given by the transition relation A. The process then moves to state z’ in the
(i + 1)-st step with probability u(z"). The only constraint on the choice of the
action « is that the same action must be chosen in all executions which are
indistinguishable to the attacker. We give the formal definitions below.

reT(F\N,Xyw) oF u z ¢&dom(o) z ¢ dom(o) n is a fresh name
) (1) [CRUN
IN (in(z)', ¢, 0) RUIUIN 8(0,0,0U{z—u}) NEW (va', ¢,0) oD, 8(0,p,0Uf{z—n})
vars(u) C dom(o) 4 = |dom(p)|+1 Qo#0 (Qo,0,0) % p
(0D ¢ o
OUT (out(u)', ¢, 0) ——— 800, 0U w(; 1y e} o) SEQ (Qo-Qi,¢,0) — - Q1

Vie{l,..,n},c; BT (Qo,p,0) 5 u
(r,[1)

TEST ([c1 A ... Acnll, @, 0) ——5 8(0,5,0) NULL (0 - Qo, ¢,0) - p

vars(u) C dom(c) x ¢ dom(o) (Qo,,0) S 1
(7,1

o, 8(0,p,0Uf{w—uc}) PARL (QolQ1,¥,0) = u|Q1

ASSG ((z :=w)', p,0)

(Q1,p,0) S
(7,[1]) o
—— 8(Q1.0,0) T 8(Q2.0,0) PARR (Qo|Q1,¢,0) — Qolp

PROB (Q1 +;, Q2,p,0)

Fig. 2. Process semantics

Modular Verification of Protocol Equivalence in the Presence of Randomness 195

The set of all actions is Act = (T(F \ N, X,) U {7}, L/ ~). In Fig.2, we
define A which maps an extended process and an action to a distribution on Z.
There we write (P, p,0) < p if A((P,p,0),a) = p. In Fig. 2, 1 - Q denotes the
distribution gy such that py (P, p,0) = u(P,p, o) if P’ is P-Q and 0 otherwise.
The distributions u|Q and Q| are defined analogously. The notation ¢; - T is
used to denote the case when ¢; is T or ¢; is u = v where vars(u, v) C dom(c) and
uo =g vo. Note that A is well-defined, as basic processes are deterministic and
each basic process is associated with a unique equivalence class. An ezecution p of
a process P is a finite sequence zy —= z; - - — z,,, such that 2q, 21, ..., 2m € Z,
2o = z5 and for each ¢ > 0, z; Zit, tir1 and pi11(2i41) > 0. The probability of
the execution p of P, denoted prob(p, P), is p1(21) X .. X tiym(2m)-

Given an extended process 7, let enabled(n) denote the set of all (§, [/]) such

that for some u, where (P, p, o) &), u, § € T(F\N, X,)U{7} and [is the label

of an input or output action. For a frame ¢, we write [¢] to denote the equivalence
class of ¢ with respect to E, where EQ denotes the set of all such equivalence
classes. For @ = 24 x EQ, define obs as a function from extended processes to
O such that for any extended process n = (P, ¢,0), obs(n) = (enabled(n), [¢]).
For an execution p = z Lo 2 2, we write tr(p) to represent the
trace of p, defined as the sequence obs(zy) ~ obs(z1) - -+~ obs(2,,). The set
of all traces of a process P is denoted Trace(P). A trace models the view of
the attacker for a particular execution. An attacker for a process P is a partial
function A : Trace(P) — Act. An attacker resolves all non-determinism, and
when a process P is executed with respect to a fixed attacker A, the evolution
of the process P can be described by a DTMC P4. For process P, adversary
A and trace t, let py, ..., pr. be the executions of P* such that tr(p;) = ¢ for all
i€ {1,...,k}. We will write prob(t, P*) to denote Zle prob(t, PA).

An extended process (Q, ¢, o) over the equational theory (F,E) preserves
the secrecy of x € vars(Q), written (Q,¢,0) Eg x, if there is no r €
T(F\ N,dom(p)) such that ¢ F% zo. A process P is said to keep variables
X1, ..., Ty, secret with probability 1, denoted P =g 1 secret(z1, ..., xy,), if there is
no execution of P containing a state z such that z &g « for some z € {1, ..., 2, }.
Two processes Py and P; over the same set of actions and observations are said
to be trace equivalent, denoted Py = Py, if for every attacker A and trace
t € Trace(Py) U Trace(P), prob(t, Ps') = prob(t, P{*). Observe that for a proto-
col P not containing coin tosses, any two executions of P are distinguishable.
Furthermore, for each attacker A, there is only one execution of protocol P.
Thus, it follows that our notion of trace equivalence coincides with the notion of
trace-equivalence for the applied pi-calculus. We conclude this section by show-
ing how the notion of trace equivalence can capture privacy properties of the
DC-net protocol described earlier in this section.

Ezxample 2. Consider the DC-net protocol defined in Example 1 which is
designed to insure that an observer of the protocol’s output can obtain Alice
and Bob’s bits but cannot distinguish the party to which each bit belongs. This
property can be modeled by the equivalence C[(ma :=0) - Al(mp :=1) - B] =

196 M.S. Bauer et al.

C[(ma := 1) A|(mp := 0) - B] which says that any attacker for the DC-net pro-
tocol will observe identical probabilities for every sequence of protocol outputs,
regardless of the bits that Alice and Bob hold in their messages.

3 Compositional Equivalence of Single Session Protocols

3.1 Disjoint Data

In the case of non-randomized protocols, it is well known that composition
preserves equivalence when protocols do not share data. Recall that we have
introduced a new notion of equivalence for randomized protocols wherein two
protocols P, @ are equivalent if, for every attacker A and trace t, the event ¢
has equal probability in the Markov chains P* and Q. A cornerstone of our
result establishes that parallel composition is a congruence with respect to this
equivalence when protocols do not share data.

Lemma 1. Let P,P',Q, Q" be closed processes such that vars(P) Nvars(Q) =
and vars(P') Nvars(Q') = 0. If P ~ P" and Q =~ Q' then P|Q ~ P'|Q’.

In the absence of probabilistic choice, Lemma 1 is obtained by transforming an
attacker A for P|Q into an attacker A’ that “simulates” @ to P (and vice versa).
When a term created by @ is forwarded to P by A, the attacker A’ forwards a
new recipe in which the nonces in the term created by @ are replaced by fresh
nonces created by the adversary. This technique is not directly applicable in the
presence of randomness, where the adversary must forward a common term to
P in every indistinguishable execution of P|Q. For example, if the outputs n;
and h(ng) from @ are forwarded by A to P in two indistinguishable executions,
the recipe constructed by A’ must be identical for both executions. Further
complicating matters, if no is later revealed by @, the simulation of n; and h(ng)
to P via a common term can introduce in-equivalences that were not present in
the original executions. We prove the result by showing P = P’ = P|Q = P’|Q
and Q = Q' = P|Q = P|Q’, which together imply Lemma 1. Each sub-goal is
obtained by first inducting on the number of probabilistic choices in the common
process. In the case of P|Q =~ P’|Q, for example, this allows one to formulate an
adversary A for P|Q (resp. P’'|Q) as a combination of two disjoint adversaries.
We then appeal to a result on POMDPs where we prove that the asynchronous
product of POMDPs preserves equivalence.

3.2 Disjoint Primitives

In our composition result, we would like to argue that if two contexts C[J] and
C'[O] are equivalent and two basic process B and B’ are equivalent, then the
processes C[B] and C'[B’] are trace equivalent. In such a setup, contexts can
instantiate data (keys) that are used by and occur free in the basic processes.
This setup provides a natural way to model and reason about protocols that
begin by carrying out a key exchange before transitioning into another phase of

Modular Verification of Protocol Equivalence in the Presence of Randomness 197

the protocol. It is worth pointing out that the combination of key exchange with
anonymity protocols can indeed lead to errors. For example, it was observed
in [50] that the RSA implementation of mix networks leads to a degradation
in the level of anonymity provided by the mix. The formalization of our main
composition result is as follows.

Theorem 1. Let C[Oy,...,0,] = vky - ... - Vkp - (D1[4]]...|Dn[0x]) (resp.
C'O,...,0,] = vky - ... - vk, - (D1[04]].-|DL[0,])) be a context over F. with
labels from L. Further let By, ..., By, (resp. BY, ..., Bl,) be basic processes over Fy
with labels from Ly. Forly,....l, € Ly and § & FyUF., assume that the following
hold.

fv(C) =fv(C") =0, fv(B;) = {z;} and fv(B}) = {z}}

vars(C) Nvars(B;) = {z;} and vars(C’) N vars(N ={z}}

C[Bi,...,Bn] and C'[By, ..., B}] are ground

C[Bi1,...,By] EE1 secret(x1,...,x,) and C'[BY, ..., Bl Eg1 secret(z], ..., z})
Clout (4(21))", ... out(#())1"] ~ C'[owt(H(z)1, - out(fen)
vk-(x1:=k)-...-(xp := k)-(B1|...|Bn) = vk- (2} := k) Az, = k)-(BY]...|B)

Then C|By, ..., By] = C'|BY, ..., Bl].

S Grds fo o =

Observe that the function symbol f is used to reveal equalities among the
shared secrets. We discuss this requirement further in Example 4. Below, we
demonstrate the application of Theorem 1 to reason about the security of the
DC-net protocol from Example 1, where Diffie-Hellman is used for key exchange.

Example 3. Let A, B be the protocols for Alice and Bob from the DC-net pro-
tocol given in Example 1. Let Fpy = {f, g, mac} be the signature for the equa-
tional theory Epy = {f(9(y),z) = f(g9(z),y)}. This equational theory models
the Diffie-Hellman primitives, i.e. f(x,y) = z¥ mod p, g(y) = a¥ mod p for some
group generator a. We use mac for a keyed hash function and a, b as the public
names of Alice and Bob, respectively. Define C[y, 0] = vky, - D1[0h]]D2[0s]
to be the context that models a variant of the Diffie-Hellman protocol where D1
and D are below.

Dy = vz - out(g(x)) - out(mac(g(x),a, kp)) - in(z)-
in(2') - [z" = mac(z, b, kn)] - (k1 = f(x,2)) - O

Dy = vy - out(g(y)) - out(mac(g(y). b. k1)) - in(2)-
in(2") - [¢" = mac(z,a, kp)] - (k2 := f(y,2)) - O2

We want to show the equivalence C[(m4 := 0)-A|(mp :=1)-B] = C[(ma :=
1)- A|(mp := 0) - B]. Using the results established in Theorem 1, the verification

effort is reduced to verifying the following set of simpler properties, where K =
vk - (kl = k) . (kg = k)

1. C[By,...,By,] [Eg1 secret(zy,...,x,) and C'[BY, ..., B),] =g 1 secret(x), ..., x7,)
2. K-((mg:=0)-Al(mp:=1)-B)= K- ((mg:=1) - A|(mp :=0) - B)

Property 1 can also be verified modularly using the results from [10]. When the
contexts in the equivalence are not the same, one must also verify property 5
from Theorem 1.

198 M.S. Bauer et al.

3.3 Difficulties Arising from Randomization

In the setup from Theorem 1, observe that C[OJ], C'[0] contain process (free)
variables. As a result, trace equivalence cannot directly be used to equate these
objects. One natural notion of equivalence between C[J] and C’[] is achieved by
requiring C[By] =~ C'[By] under all assignments of [J to a basic process By. While
mathematically sufficient for achieving composition, such a definition creates a
non-trivial computational overhead. Instead, our result is able to guarantee safe
composition when C[By] =~ C'[By] for a single instantiation of By. A natural
selection for By is the empty process [T]. We illustrate why such a choice is
insufficient in Example 4.

Ezxample 4. Consider the contexts defined below.

C[Dl,DQ] =vky - vks - ((271 =]€1) . Dﬂ(l‘z = kl) 0o +1 (29 1= kz) . Dg)

C/[DhI:’Q] = l/kl . I/kz . ((1’1 = kl) . Dl|($2 = kl) . D2 +é (IL‘Q = kl) . Dg)

—

[N

Notice that C' and C’ differ in that C assigns x> to k; or ko, each with
probability %, while C’ assigns x5 to k1 with probability 1. For the basic processes
B; = out(h(x;)) and By = out(h(zz)). We have C[[T],[T]] = C'[[T],[T]] as for
any adversary A, C[[T],[T]]* and C’[[T], [T]]** yield a single common trace that
occurs with probability 1. On the other hand, C[B;, Bs] % C’'[By, Bz]. This is
because there is an adversary A’ for the processes C[By, B2] and C'[By, Ba] such
that the trace outputting h(k;), h(k;) occurs with probability 1 in C’[By, By]*
and with probability % in C[By, BQ]A,. The second trace of C[By, BQ]A/ outputs
h(k1), h(k2) with probability 1.

The problematic behavior arising in Example 4 occurs when basic processes
reveal equalities among the shared secrets from the context. Revealing these equal-
ities may, in some cases, allow the attacker to infer the result of a private coin toss.
Consequently, our composition theorem must require contexts to remain secure
even when such equalities are revealed. As was the case with composition con-
texts, our result also relies on a notion of equivalence between basic processes B
and B’ that contain free variables. Universal quantification over the free variables
results in a non-trivial computational overhead. However, we are able to show that
when B is not trace equivalent to B’ under some instantiation of the free variables,
then B and B’ can also be shown to be trace in-equivalent when all of the free vari-
ables take the same value. This allows us to prove a stronger result by requiring
a weaker condition on the equivalence between B and B’. Another subtle compo-
nent of Theorem 1 is condition 1, which allows each basic process to share only a
single variable with the context. As demonstrated by Example 5, the composition
theorem does not hold when this restriction is relaxed.

Ezxample 5. Consider the context and processes below.

C[D] = Uk‘l . l/kg . ng . (371 = kJ1> . ($2 = kg) . (31‘3 = k3) -
B out(senc(xy,z3)) - out(senc(xy, x3))
By = out(senc(x1,x3)) - out(senc(xy,z2)).

Modular Verification of Protocol Equivalence in the Presence of Randomness 199

For By = vk - (z1 :=k) - (z2 := k) - (x5 := k) we have By - By ~ By - By but
C[B1] # C[Bz]. Indeed, observe that By - By and By - Bs have a single trace that
outputs senc(k, k), senc(k, k). However, an adversary that executes C[B1], C[Ba]
to completion produces a trace that outputs senc(kq, ks), senc(ky, ks) for C[B1]
and a trace that outputs senc(ky, k3), senc(ky, ko) for C[Bs)].

We now give a sketch of the proof of Theorem 1.

3.4 Proof Sketch for Theorem 1

The result is achieved by showing that if C[Bjy,..., B,] is not trace equiva-
lent to C'[BYf,...,B}] then one of conditions 5 or 6 from Theorem 1 is vio-
lated. More specifically, we use an offending trace ¢t under an attacker A for
C[By,...,B,] % C'[B},...,Bl], i.e. a trace such that prob(t,C[B, ..., By]*) #
prob(t,C'[BY, ..., B.]*), to construct a trace ¢’ that witnesses a violation of con-

dition 5 or 6 from Theorem 1. We can show that if C[By, ..., B,] % C'[By, ..., B}]

then
Clout(f(z1)), ..., out (#(x))]|Bo - (B1]---| Bn)

ae (1)
C'fout (§(21)), -, out (¢(w,))]| By - (B}]...| BL)

where By and B{, are processes that bind {z1,...,2,} and {z],...,2]}, respec-
tively. This transformation is a non-trival extension of a result from [3,27]
which allows a process P|Q, where P and @ share common variables but are
over disjoint signatures, to be transformed into an “equivalent” process P’|Q’
where variables are no longer shared. Variables of @ are re-initialized in Q'
according to the equational equivalences they respect in an execution of P|Q.
Unlike nondeterministic processes, where executions are sequences, executions
in randomized processes form a tree where variables can receive different val-
ues in different branches of the tree. From Eq.1, we can apply Lemma 1 to
achieve either Clout(f#(x1)),...,out(4(zy,))] % C'lout(f(x1)),..., out(f(x,))] or
By - (By]-..|Bn) % B{ - (B4]...|B.). In the former case, we have contradicted
condition 5 of Theorem 1. If we achieve By - (Bi]...|By) % By - (Bi|...|B),), we
additionally need to transform an adversary that witnesses the in-equivalence
to an adversary that witnesses the in-equivalence vk - (x1 := k) - ... - (x, =
k) - (By|...|Bp) %t vk - (2} :==k) - ...- (a}, .= k) - (B}]...|B)). The presence of ran-
domness makes this transformation tricky, as illustrated by Example 6 below.

Ezample 6. Define By, Bl = vk - vke - (x1 = k1) - (z2 = ko), B1,B] =
out(h(z1)), B2 = in(y) - (out(y) + 1 out(h(z2))) and B; = in(y)- (out(h(z2)) +
out(h(xz))). Consider the adversary A for By - (B1|B2) (resp. By - (B1|B%)) that
forwards the output of B; (resp. Bj) to Bs (resp. Bj). A is a witness to the
in-equivalence of By - (B1|B2) and B, - (B}|B4), but it does not witness the in-
equivalence of vky - (21 := k1) (22 := k1)-(B1|B2) and vk - (21 := k1) (22 := k1)-
(B1|B5). We can, however, transform the attacker A to an attacker A’ that wit-
nesses l/kl . (1?1 = kl) . (JCQ = kl) . (Bl |Bg) "73 Vkl . (931 = /431) . (IQ = kl) . (B1 |Bé)
The details of this transformation can be found in the full version [9].

200 M.S. Bauer et al.

3.5 Shared Primitives Through Tagging

Theorem 1 requires that the context and basic processes don’t share crypto-
graphic primitives. To extend the result to processes that allow components of
the composition to share primitives, such as functions for encryption, decryption
and hashing, we utilize a syntactic transformation of a protocol and its signa-
ture called tagging. When a protocol is tagged, a special identifier is appended
to each of the messages that it outputs. On input, the protocol recursively tests
all subterms of the input message to verify their tags are consistent with the pro-
tocol’s tag. If this requirement is not met, the protocol deadlocks. The details of
our tagging scheme, which are similar to the ones given in [3,27], can be found
in the full version [9]. In Theorem 2, we show that an attack on a composition
of two tagged protocols originating from the same signature can be mapped to
an attack on the composition of the protocols when the signatures are explicitly
made disjoint. Given a context C[y,...,00,] and basic processes By, ..., B, we
write [C[By, ..., Bp]] to denote the tagged version of C[Bj, ..., B,]. Our tagging
result considers the fixed equational theory where Feene = {senc,sdec,h} and
Egenc = {sdec(senc(m, k), k) = m}. For this theory, we define a signature renam-
ing function _¢ which transforms a context C over the signature (Feenc, Esenc) t0
a context C? by replacing every occurrence of the function symbols senc, sdec
and h in C by sency,sdecy and hy, respectively.

Theorem 2. Let C[Oy,...,0,] = vki - ... - Vkp - (D1[4]]...|Dn[8R]) (resp.
'Oy, ...,0,] = vk} - .- vkl - (D[O4]]...|DL[E,])) be a context over Feene with
labels from L.. Further let By, ..., B, (resp. BY,..., Bl) be basic processes over
Feenc with labels from Ly. For ly,...l, € Ly and § & Fp U F.., assume that the
following hold.

fv(C) =fv(C") =0, fv(B;) = {z;} and fv(B]) = {z}}

vars(C) Nvars(B;) = {z;} and vars(C’) N vars(1) ={z}}

C[Bi, - n] and C'[BY, ..., B] are ground

C[Bi1,....By] EFEa1 secret(zl,.. x,) and C'[BY, ..., B)] Ega secret(xf, ..., z},)
Clout (2(21))", . 0wt (#(z0))"] & C'[owt(i(z1)), ., out(§(z,))"]

vk-(x1 :=k)-.. (asn = k)-(B]...|Bn) = vk-(z} := k)-...-(z}, :== k)-(B}|...|B},)

.%9“".“?0&1‘

Then [C¢[BY, ..., B2]] ~ [(C")e[(BY)?, ..., (B.)"]].

4 Compositional Equivalence for Multi-session Protocols

In this section, we extend our composition result to protocols that can run
multiple sessions. Our focus will be on protocols that have a single occurrence of
the replication operator appearing in the context. This restriction simplifies the
statement of the results and proofs. However, it is possible to extend our results
to protocols with a more general framework for replication. Formally, a context
with replication is over the following grammar.

ClO1, ., O] =alt - ale 1Dy [O4]] | Do [O])

Modular Verification of Protocol Equivalence in the Presence of Randomness 201

P(i) is relabeled freshly

REPL (1)
("P, 0, 0) = 8(p (i) 1L Prpro)
Fig. 3. Replication semantics
where ¢ € {vz,(x := u)}. The semantics of this new replication operator are

given in Fig. 3, where ¢ € N is used to denoted the smallest previously unused
index. We will write P(i) to denote that process that results from renaming
each occurrence of z € vars(P) to z* for i € N. When P(i) is relabeled freshly
as in Fig. 3, the new labels must all belong to the same equivalence class (that
contains only those labels).

Our semantics imposes an explicit variable renaming with each application
of a replication rule. The reason for this is best illustrated through an example.
Consider the process lin(z) - P and the execution

(Yin(z) - P,0,0) —* (in(z) - P|lin(z) - P,¢,{z — t} U o)

where variable renaming does not occur. This execution corresponds to the
attacker replicating !in(z) - P, running one instance of in(x) - P and then repli-
cating lin(x) - P again. Note that, because z is bound at the end of the above
execution, the semantics of the input action cause the process to deadlock at
in(x). In other words, an attacker can only effective run one copy of !in(z) - P
for any process of the form !in(z) - P.

Our composition result must prevent messages from one session of a process
from being confused with messages from another sessions. We achieve this by
introducing an occurrence of v\ directly following the replication operator. This
freshly generated “session tag” will then be used to augment tags occurring in the
composed processes. Recall that for any POMDPs M; and Ms, if My % M, there
exists an adversary A and trace ¢ such that prob(t, [M;]4) = prob(t,