
Simon N. Foley
Dieter Gollmann
Einar Snekkenes (Eds.)

 123

LN
CS

 1
04

92

22nd European Symposium
on Research in Computer Security
Oslo, Norway, September 11–15, 2017, Proceedings, Part I

Computer Security –
ESORICS 2017

Lecture Notes in Computer Science 10492

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Simon N. Foley • Dieter Gollmann
Einar Snekkenes (Eds.)

Computer Security –

ESORICS 2017
22nd European Symposium on Research in Computer Security
Oslo, Norway, September 11–15, 2017
Proceedings, Part I

123

Editors
Simon N. Foley
IMT Atlantique
Rennes
France

Dieter Gollmann
Hamburg University of Technology
Hamburg
Germany

Einar Snekkenes
NTNU
Gjøvik
Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-66401-9 ISBN 978-3-319-66402-6 (eBook)
DOI 10.1007/978-3-319-66402-6

Library of Congress Control Number: 2017949525

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2017, corrected publication 2018
Chapter 3 was created within the capacity of an US governmental employment. US copyright protection does
not apply.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book contains the papers that were selected for presentation and publication at the
22nd European Symposium on Research in Computer Security, ESORICS 2017, which
was held in Oslo, Norway, September 11–15, 2017. The aim of ESORICS is to further
the progress of research in computer security by bringing together researchers in the
area, by promoting the exchange of ideas with system developers and by encouraging
links with researchers in related areas.

The Program Committee accepted 54 papers out of a total of 338 papers that were
submitted from 51 different countries, resulting in an acceptance rate of 16%. The
accepted papers are drawn from a wide range of topics, including data protection,
security protocols, systems, web and network security, privacy, threat modelling and
detection, information flow and security in emerging applications such as cryptocur-
rencies, the Internet of Things, and automotive. The 120-member Program Committee,
assisted by a further 334 external reviewers, reviewed and discussed the papers online
over a period of 8 weeks, writing a total of 1015 reviews for authors.

ESORICS 2017 would not have been possible without the contributions of the many
volunteers who freely gave their time and expertise. We would like to thank the
members of the Program Committee and the external reviewers for their substantial
work in evaluating the papers. We would also like to thank the ESORICS Steering
Committee and its Chair Pierangela Samarati; the Organisation Chair Laura Georg; the
Publicity Chair Cristina Alcaraz; the Workshop Chair Sokratis Katsikas and all
workshop co-chairs, who organized the workshops co-located with ESORICS. We
would like to especially thank the sponsors of this year’s ESORICS conference: the
Center for Cyber and Information Security, COINS Research School, KPMG, the
Norwegian University of Science and Technology NTNU, Oxford University Press,
and the Research Council of Norway.

Finally, we would like to express our thanks to the authors who submitted papers to
ESORICS. They, more than anyone else, are what makes this conference possible.

July 2017 Simon Foley
Dieter Gollmann
Einar Snekkenes

Organization

Program Committee

Gail-Joon Ahn Arizona State University, USA
Alessandro Armando University of Genoa and Fondazione Bruno Kessler, Italy
Frederik Armknecht Universität Mannheim, Germany
Michael Backes CISPA, Saarland University, Germany
Giampaolo Bella Università di Catania, Italy
Zinaida Benenson University of Erlangen-Nuremberg, Germany
Elisa Bertino Purdue University, USA
Carlo Blundo Università degli Studi di Salerno, Italy
Rainer Boehme University of Innsbruck, Austria
Colin Boyd Norwegian University of Science and Technology

(NTNU), Norway
Stefan Brunthaler Paderborn University, Germany
Chris Brzuska TU Hamburg, Germany
Tom Chothia University of Birmingham, UK
Sherman S.M. Chow Chinese University of Hong Kong, Hong Kong, China
Mauro Conti University of Padua, Italy
Cas Cremers University of Oxford, UK
Frédéric Cuppens IMT Atlantique, France
Nora Cuppens-Boulahia IMT Atlantique, France
Mads Dam KTH, Sweden
Sabrina De Capitani

di Vimercati
Università degli Studi di Milano, Italy

Hervé Debar Télécom SudParis, France
Roberto Di Pietro Bell Labs, France
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Wenliang Du Syracuse University, USA
Pavlos Efraimidis Democritus University of Thrace, Greece
Hannes Federrath University of Hamburg, Germany
Simone Fischer-Hübner Karlstad University, Sweden
Riccardo Focardi Università Ca’ Foscari, Venice, Italy
Simon Foley IMT Atlantique, France
Sara Foresti DI - Università degli Studi di Milano, Italy
Felix Freiling Friedrich-Alexander-Universität Erlangen-Nürnberg

(FAU), Germany
Sibylle Froeschle University of Oldenburg, Germany
Lenzini Gabriele SnT/University of Luxembourg, Luxembourg
Joaquin Garcia-Alfaro Télécom SudParis, France
Dieter Gollmann TU Hamburg, Germany

Dimitris Gritzalis Athens University of Economics and Business, Greece
Stefanos Gritzalis University of the Aegean, Greece
Joshua Guttman Worcester Polytechnic Institute, USA
Gerhard Hancke City University of Hong Kong, Hong Kong, China
Marit Hansen Unabhängiges Landeszentrum für Datenschutz

Schleswig-Holstein, Germany
Rene Rydhof Hansen Aalborg University, Denmark
Feng Hao Newcastle University, UK
Cormac Herley Microsoft Research, USA
Xinyi Huang Fujian Normal University, China
Michael Huth Imperial College London, UK
Aaron D. Jaggard U.S. Naval Research Laboratory, USA
Sushil Jajodia George Mason University, USA
Limin Jia Carnegie Mellon University, USA
Wouter Joosen Katholieke Universiteit Leuven, Belgium
Vasilis Katos Bournemouth University, UK
Sokratis Katsikas Center for Cyber and Information Security,

NTNU, Norway
Florian Kerschbaum University of Waterloo, Canada
Dogan Kesdogan Universität Regensburg, Germany
Kwangjo Kim KAIST, South Korea
Steve Kremer Inria Nancy - Grand Est, France
Marina Krotofil Honeywell Industrial Cyber Security Lab, USA
Ralf Küsters University of Stuttgart, Germany
Junzuo Lai Singapore Management University, Singapore
Kwok Yan Lam Nanyang Technological University, Singapore
Costas Lambrinoudakis University of Piraeus, Greece
Peeter Laud Cybernetica AS, Estonia
Adam J. Lee University of Pittsburgh, USA
Yingjiu Li Singapore Management University, Singapore
Antonio Lioy Politecnico di Torino, Italy
Peng Liu The Pennsylvania State University, USA
Javier Lopez University of Malaga, Spain
Pratyusa K. Manadhata Hewlett-Packard Laboratories, USA
Luigi Mancini Università di Roma La Sapienza, Italy
Heiko Mantel TU Darmstadt, Germany
Olivier Markowitch Université Libre de Bruxelles (ULB), Belgium
Fabio Martinelli IIT-CNR, Italy
Sjouke Mauw University of Luxembourg, Luxembourg
Antonio Maña University of Malaga, Spain
Catherine Meadows NRL, USA
John Mitchell Stanford University, USA
Aikaterini Mitrokotsa Chalmers University of Technology, Sweden
Refik Molva EURECOM, France
Charles Morisset Newcastle University, UK
Rolf Oppliger eSECURITY Technologies, Switzerland

VIII Organization

Stefano Paraboschi Università di Bergamo, Italy
Dusko Pavlovic University of Hawaii, USA
Günther Pernul Universität Regensburg, Germany
David Pichardie ENS Rennes/IRISA/Inria, France
Frank Piessens Katholieke Universiteit Leuven, Belgium
Wolter Pieters Delft University of Technology, The Netherlands
Michalis Polychronakis Stony Brook University, USA
Joachim Posegga University of Passau, Germany
Christian W. Probst Technical University of Denmark, Denmark
Christina Pöpper New York University Abu Dhabi, UAE
Kai Rannenberg Goethe University Frankfurt, Germany
Awais Rashid Lancaster University, UK
Indrajit Ray Colorado State University, USA
Kui Ren State University of New York at Buffalo, USA
Mark Ryan University of Birmingham, UK
Peter Y.A. Ryan University of Luxembourg, Luxembourg
Andrei Sabelfeld Chalmers University of Technology, Sweden
Reyhaneh Safavi-Naini University of Calgary, Canada
Pierangela Samarati Università degli Studi di Milano, Italy
Ravi Sandhu University of Texas at San Antonio, USA
Ralf Sasse ETH Zürich, Switzerland
Nitesh Saxena University of Alabama at Birmingham, USA
Andreas Schaad Huawei European Research Center, Germany
Steve Schneider University of Surrey, UK
Joerg Schwenk Ruhr-Universität Bochum, Germany
Basit Shafiq Lahore University of Management Sciences, Pakistan
Ben Smyth Verified IO Limited
Einar Snekkenes NTNU, Norway
Willy Susilo University of Wollongong, Australia
Krzysztof Szczypiorski Warsaw University of Technology, Poland
Björn Tackmann IBM Research, Switzerland
Qiang Tang Cornell University, USA
Nils Ole Tippenhauer Singapore University of Technology and Design,

Singapore
Aggeliki Tsohou Ionian University, Greece
Jaideep Vaidya Rutgers University, USA
Vijay Varadharajan The University of Newcastle, UK
Luca Viganò King’s College London, UK
Michael Waidner Fraunhofer SIT, Germany
Cong Wang City University of Hong Kong, Hong Kong, China
Lingyu Wang Concordia University, USA
Edgar Weippl SBA Research, Austria
Stephen D. Wolthusen Royal Holloway, University of London, UK and

Norwegian University of Science and Technology,
Norway

Christos Xenakis University of Piraeus, Greece

Organization IX

Jeff Yan Lancaster University, UK
Meng Yu University of Texas at San Antonio, USA
Ben Zhao University of Chicago, USA
Jianying Zhou Singapore University of Technology and Design,

Singapore
Haojin Zhu Shanghai Jiao Tong University, China

Additional Reviewers

Abdullah, Lamya
Abramova, Svetlana
Agudo, Isaac
Ah-Fat, Patrick
Ahlawat, Amit
Akowuah, Francis
Albanese, Massimiliano
Alimohammadifar, Amir
Alpirez Bock, Estuardo
Alrabaee, Saed
Ambrosin, Moreno
Aminanto, Muhamad Erza
Anand, S Abhishek
Angles-Tafalla, Carles
Aonzo, Simone
Arlitt, Martin
Arriaga, Afonso
Assaf, Mounir
Atzeni, Andrea
Auerbach, Benedikt
Avizheh, Sepideh
Bacis, Enrico
Bag, Samiran
Bajramovic, Edita
Ban Kirigin, Tajana
Barber, Simon
Bardin, Sebastien
Bastys, Iulia
Basu, Hridam
Baumann, Christoph
Belgacem, Boutheyna
Berbecaru, Diana
Besson, Frédéric
Bilzhause, Arne
Biondi, Fabrizio
Bkakria, Anis

Blanc, Gregory
Blanco-Justicia, Alberto
Blochberger, Maximilian
Bogaerts, Jasper
Boschini, Cecilia
Bossen, Jannek Alexander Westerhof
Boureanu, Ioana
Bours, Patrick
Brandt, Markus
Brooks, Tyson
Bruni, Alessandro
Buhov, Damjan
Bullee, Jan-Willem
Burkert, Christian
Bursuc, Sergiu
Busch, Marcel
Butin, Denis
Böhm, Fabian
Calzavara, Stefano
Carmichael, Peter
Ceccato, Mariano
Chen, Jie
Chen, Long
Chen, Rongmao
Cheng, Peng
Cheval, Vincent
Choi, Rakyong
Ciampi, Michele
Clark, Daniel
Cohn-Gordon, Katriel
Costa, Gabriele
Costache, Anamaria
Costantino, Gianpiero
Courtois, Nicolas
Dai, Tianxiang
Dantas, Yuri Gil

X Organization

Davies, Gareth T.
De Benedictis, Marco
De Gaspari, Fabio
De Meo, Federico
Dehnel-Wild, Martin
Del Pino, Rafaël
Desmet, Lieven
Drogkaris, Prokopios
Drosatos, George
Duman, Onur
Duong, Tuyet
Fan, Xiong
Farràs, Oriol
Fernandez, Carmen
Ferrari, Stefano
Fett, Daniel
Fleischhacker, Nils
Freeman, Kevin
Frey, Sylvain
Gadyatskaya, Olga
Garratt, Luke
Gazeau, Ivan
Genc, Ziya A.
Geneiatakis, Dimitris
Georgiopoulou, Zafeiroula
Gervais, Arthur
Giustolisi, Rosario
Gogioso, Stefano
Gonzalez-Burgueño, Antonio
Gritti, Clémentine
Groll, Sebastian
Grosz, Akos
Guan, Le
Guanciale, Roberto
Gunasinghe, Hasini
Gyftopoulos, Sotirios
Gérard, François
Götzfried, Johannes
Hallgren, Per
Hamann, Tobias
Hammann, Sven
Han, Jinguang
Harborth, David
Hartmann, Lukas
Hassan, Sabri
Hatamian, Majid

Haupert, Vincent
Hausknecht, Daniel
Herrera, Jordi
Hils, Maximilian
Huang, Yi
Hummer, Matthias
Ilia, Panagiotis
Iovino, Vincenzo
Islam, Morshed
Issel, Katharina
Iwaya, Leonardo
Jackson, Dennis
Jansen, Kai
Jansen, Rob
Jhawar, Ravi
Joensen, Ólavur Debes
Johannes, Schickel
Jonker, Hugo
Jourdan, Jacques-Henri
Jäschke, Angela
Kalloniatis, Christos
Kandias, Miltiadis
Katz, Jonathan
Kerstan, Henning
Kersten, Rody
Kintis, Panagiotis
Kohls, Katharina
Kokolakis, Spyros
Kountouras, Athanasios
Kuchta, Veronika
Kälber, Sven
Köstler, Johannes
Labunets, Katsiaryna
Lacoste, Marc
Lagorio, Giovanni
Lai, Russell W.F.
Lain, Daniele
Lal, Chhagan
Laperdrix, Pierre
Laporte, Vincent
Latzo, Tobias
Lazrig, Ibrahim
Learney, Robert
Lehmann, Anja
Leontiadis, Iraklis
Li, Hanyi

Organization XI

Li, Ximeng
Liang, Kaitai
Lin, Fuchun
Liu, Ximeng
Liu, Ximing
Lochbihler, Andreas
Lopez, Jose M.
Lu, Yuan
Lyvas, Christos
Ma, Jack P.K.
Mace, John
Madi, Taous
Magkos, Emmanouil
Mahgoub Yahia Mohamed, Muzamil
Majumdar, Suryadipta
Maragoudakis, Manolis
Marino, Francesco
Marktscheffel, Tobias
Martinez, Sergio
Marx, Matthias
Mateus, Paulo
McEvoy, Richard
Mehnaz, Shagufta
Melicher, William
Mercaldo, Francesco
Meyer, Maxime
Mizera, Andrzej
Momeni, Sadaf
Moore, Nicholas
Muehlberg, Jan Tobias
Müeller, Johannes
Mukherjee, Subhojeet
Mulamba, Dieudonne
Mylonas, Alexios
Navarro-Arribas, Guillermo
Nemati, Hamed
Neupane, Ajaya
Neven, Gregory
Nieto, Ana
Ntouskas, Teo
Nuñez, David
Olesen, Anders Trier
Oqaily, Momen
Ordean, Mihai
Önen, Melek
Palmarini, Francesco

Pang, Jun
Panico, Agostino
Parra-Arnau, Javier
Pasquini, Cecilia
Patachi, Stefan
Pelosi, Gerardo
Petit, Christophe
Petrovic, Slobodan
Pham, Vinh
Pitropakis, Nikolaos
Preuveneers, Davy
Pridöhl, Henning
Puchta, Alexander
Pulls, Tobias
Pérez-Solà, Cristina
Rafnsson, Willard
Rajagopalan, Siva
Rakotondravony, Noelle
Rao, Fang-Yu
Rausch, Daniel
Rekleitis, Evangelos
Reuben, Jenni
Ribes-González, Jordi
Ricci, Sara
Richthammer, Hartmut
Rios, Ruben
Rosa, Marco
Roth, Christian
Roux-Langlois, Adeline
Rupprecht, David
Saracino, Andrea
Satvat, Kiavash
Saxena, Neetesh
Schiffman, Joshua
Schmid, Lara
Schmitz, Christopher
Schmitz, Guido
Schneider, David
Schnitzler, Theodor
Schoepe, Daniel
Schoettle, Pascal
Schroeder, Dominique
Schwarz, Oliver
Sciarretta, Giada
Senf, Daniel
Sgandurra, Daniele

XII Organization

Shah, Ankit
Shahandashti, Siamak
Sheikhalishahi, Mina
Shen, Jian
Shirani, Paria
Shirvanian, Maliheh
Shrestha, Prakash
Shulman, Haya
Simo, Hervais
Siniscalchi, Luisa
Sjösten, Alexander
Skrobot, Marjan
Smith, Geoffrey
Soria-Comas, Jordi
Soska, Kyle
Spolaor, Riccardo
Stamatelatos, Giorgos
Stergiopoulos, George
Strackx, Raoul
Stübs, Marius
Su, Tao
Sy, Erik
Sänger, Johannes
Tai, Raymond K.H.
Tasch, Markus
Tasidou, Aimilia
Taubmann, Benjamin
Taylor, Gareth
Tesfay, Welderufael
Tolomei, Gabriele
Truderung, Tomasz
Trujillo, Rolando
Tsalis, Nikolaos
Tupakula, Uday
Vallini, Marco
Van Acker, Steven
Van Bulck, Jo
van Ginkel, Neline
Van Rompay, Cédric
Vanbrabant, Bart
Vasilopoulos, Dimitrios

Vazquez Sandoval, Itzel
Venkatesan, Sridhar
Venturi, Daniele
Veseli, Fatbardh
Vielberth, Manfred
Virvilis, Nick
Vissers, Thomas
Volkamer, Melanie
Wang, Jiafan
Wang, Minqian
Wang, Qinglong
Wang, Wei
Wang, Xiuhua
Weber, Alexandra
Weber, Michael
Wikström, Douglas
Wolter, Katinka
Wong, Harry W.H.
Woo, Maverick
Xu, Jun
Xu, Ke
Xu, Peng
Yaich, Reda
Yang, S.J.
Yautsiukhin, Artsiom
Yesuf, Ahmed Seid
Ying, Kailiang
Yu, Jiangshan
Yu, Xingjie
Zamyatin, Alexei
Zavatteri, Matteo
Zhang, Liang Feng
Zhang, Mengyuan
Zhang, Yuqing
Zhao, Yongjun
Zhao, Yunwei
Zhou, Lan
Zhu, Fei
Ziener, Daniel
Zimmer, Ephraim

Organization XIII

Contents – Part I

From Intrusion Detection to Software Design . 1
Sandro Etalle

Justifying Security Measures — a Position Paper . 11
Cormac Herley

The Once and Future Onion . 18
Paul Syverson

Tightly Secure Ring-LWE Based Key Encapsulation
with Short Ciphertexts . 29

Martin R. Albrecht, Emmanuela Orsini, Kenneth G. Paterson,
Guy Peer, and Nigel P. Smart

Tree-Based Cryptographic Access Control . 47
James Alderman, Naomi Farley, and Jason Crampton

Source Code Authorship Attribution Using Long Short-Term Memory
Based Networks . 65

Bander Alsulami, Edwin Dauber, Richard Harang, Spiros Mancoridis,
and Rachel Greenstadt

Is My Attack Tree Correct? . 83
Maxime Audinot, Sophie Pinchinat, and Barbara Kordy

Server-Aided Secure Computation with Off-line Parties 103
Foteini Baldimtsi, Dimitrios Papadopoulos, Stavros Papadopoulos,
Alessandra Scafuro, and Nikos Triandopoulos

We Are Family: Relating Information-Flow Trackers. 124
Musard Balliu, Daniel Schoepe, and Andrei Sabelfeld

Labeled Homomorphic Encryption: Scalable and Privacy-Preserving
Processing of Outsourced Data . 146

Manuel Barbosa, Dario Catalano, and Dario Fiore

MTD CBITS: Moving Target Defense for Cloud-Based IT Systems 167
Alexandru G. Bardas, Sathya Chandran Sundaramurthy,
Xinming Ou, and Scott A. DeLoach

Modular Verification of Protocol Equivalence in the Presence
of Randomness . 187

Matthew S. Bauer, Rohit Chadha, and Mahesh Viswanathan

http://dx.doi.org/10.1007/978-3-319-66402-6_1
http://dx.doi.org/10.1007/978-3-319-66402-6_2
http://dx.doi.org/10.1007/978-3-319-66402-6_3
http://dx.doi.org/10.1007/978-3-319-66402-6_4
http://dx.doi.org/10.1007/978-3-319-66402-6_4
http://dx.doi.org/10.1007/978-3-319-66402-6_5
http://dx.doi.org/10.1007/978-3-319-66402-6_6
http://dx.doi.org/10.1007/978-3-319-66402-6_6
http://dx.doi.org/10.1007/978-3-319-66402-6_7
http://dx.doi.org/10.1007/978-3-319-66402-6_8
http://dx.doi.org/10.1007/978-3-319-66402-6_9
http://dx.doi.org/10.1007/978-3-319-66402-6_10
http://dx.doi.org/10.1007/978-3-319-66402-6_10
http://dx.doi.org/10.1007/978-3-319-66402-6_11
http://dx.doi.org/10.1007/978-3-319-66402-6_12
http://dx.doi.org/10.1007/978-3-319-66402-6_12

Non-interactive Provably Secure Attestations for Arbitrary RSA Prime
Generation Algorithms. 206

Fabrice Benhamouda, Houda Ferradi, Rémi Géraud,
and David Naccache

Reusing Nonces in Schnorr Signatures: (and Keeping It Secure...). 224
Marc Beunardeau, Aisling Connolly, Houda Ferradi, Rémi Géraud,
David Naccache, and Damien Vergnaud

WebPol: Fine-Grained Information Flow Policies for Web Browsers 242
Abhishek Bichhawat, Vineet Rajani, Jinank Jain, Deepak Garg,
and Christian Hammer

Verifying Constant-Time Implementations by Abstract Interpretation 260
Sandrine Blazy, David Pichardie, and Alix Trieu

Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox
for Android . 278

Lorenzo Bordoni, Mauro Conti, and Riccardo Spolaor

Zero Round-Trip Time for the Extended Access Control Protocol 297
Jacqueline Brendel and Marc Fischlin

Server-Supported RSA Signatures for Mobile Devices 315
Ahto Buldas, Aivo Kalu, Peeter Laud, and Mart Oruaas

Verifiable Document Redacting. 334
Hervé Chabanne, Rodolphe Hugel, and Julien Keuffer

Securing Data Analytics on SGX with Randomization 352
Swarup Chandra, Vishal Karande, Zhiqiang Lin, Latifur Khan,
Murat Kantarcioglu, and Bhavani Thuraisingham

DeltaPhish: Detecting Phishing Webpages in Compromised Websites 370
Igino Corona, Battista Biggio, Matteo Contini, Luca Piras,
Roberto Corda, Mauro Mereu, Guido Mureddu, Davide Ariu,
and Fabio Roli

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 389
Cas Cremers, Martin Dehnel-Wild, and Kevin Milner

Per-Session Security: Password-Based Cryptography Revisited 408
Grégory Demay, Peter Gaži, Ueli Maurer, and Björn Tackmann

AVR Processors as a Platform for Language-Based Security 427
Florian Dewald, Heiko Mantel, and Alexandra Weber

XVI Contents – Part I

http://dx.doi.org/10.1007/978-3-319-66402-6_13
http://dx.doi.org/10.1007/978-3-319-66402-6_13
http://dx.doi.org/10.1007/978-3-319-66402-6_14
http://dx.doi.org/10.1007/978-3-319-66402-6_15
http://dx.doi.org/10.1007/978-3-319-66402-6_16
http://dx.doi.org/10.1007/978-3-319-66402-6_17
http://dx.doi.org/10.1007/978-3-319-66402-6_17
http://dx.doi.org/10.1007/978-3-319-66402-6_18
http://dx.doi.org/10.1007/978-3-319-66402-6_19
http://dx.doi.org/10.1007/978-3-319-66402-6_20
http://dx.doi.org/10.1007/978-3-319-66402-6_21
http://dx.doi.org/10.1007/978-3-319-66402-6_22
http://dx.doi.org/10.1007/978-3-319-66402-6_23
http://dx.doi.org/10.1007/978-3-319-66402-6_24
http://dx.doi.org/10.1007/978-3-319-66402-6_25

A Better Composition Operator for Quantitative Information
Flow Analyses . 446

Kai Engelhardt

Analyzing the Capabilities of the CAN Attacker . 464
Sibylle Fröschle and Alexander Stühring

Erratum to: Per-Session Security: Password-Based
Cryptography Revisited . E1

Grégory Demay, Peter Gaži, Ueli Maurer, and Björn Tackmann

Author Index . 483

Contents – Part I XVII

http://dx.doi.org/10.1007/978-3-319-66402-6_26
http://dx.doi.org/10.1007/978-3-319-66402-6_26
http://dx.doi.org/10.1007/978-3-319-66402-6_27

Contents – Part II

Automated Analysis of Equivalence Properties for Security Protocols
Using Else Branches . 1

Ivan Gazeau and Steve Kremer

Quantifying Web Adblocker Privacy . 21
Arthur Gervais, Alexandros Filios, Vincent Lenders, and Srdjan Capkun

More Efficient Structure-Preserving Signatures - Or: Bypassing
the Type-III Lower Bounds . 43

Essam Ghadafi

Adversarial Examples for Malware Detection . 62
Kathrin Grosse, Nicolas Papernot, Praveen Manoharan,
Michael Backes, and Patrick McDaniel

PerfWeb: How to Violate Web Privacy with Hardware
Performance Events. 80

Berk Gulmezoglu, Andreas Zankl, Thomas Eisenbarth, and Berk Sunar

Acoustic Data Exfiltration from Speakerless Air-Gapped Computers
via Covert Hard-Drive Noise (‘DiskFiltration’) . 98

Mordechai Guri, Yosef Solewicz, Andrey Daidakulov, and Yuval Elovici

DOMPurify: Client-Side Protection Against XSS and Markup Injection 116
Mario Heiderich, Christopher Späth, and Jörg Schwenk

Preventing DNS Amplification Attacks Using the History
of DNS Queries with SDN. 135

Soyoung Kim, Sora Lee, Geumhwan Cho, Muhammad Ejaz Ahmed,
Jaehoon (Paul) Jeong, and Hyoungshick Kim

A Traceability Analysis of Monero’s Blockchain. 153
Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena

Multi-rate Threshold FlipThem . 174
David Leslie, Chris Sherfield, and Nigel P. Smart

Practical Keystroke Timing Attacks in Sandboxed JavaScript 191
Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner,
Clémentine Maurice, and Stefan Mangard

On-Demand Time Blurring to Support Side-Channel Defense 210
Weijie Liu, Debin Gao, and Michael K. Reiter

http://dx.doi.org/10.1007/978-3-319-66399-9_1
http://dx.doi.org/10.1007/978-3-319-66399-9_1
http://dx.doi.org/10.1007/978-3-319-66399-9_2
http://dx.doi.org/10.1007/978-3-319-66399-9_3
http://dx.doi.org/10.1007/978-3-319-66399-9_3
http://dx.doi.org/10.1007/978-3-319-66399-9_4
http://dx.doi.org/10.1007/978-3-319-66399-9_5
http://dx.doi.org/10.1007/978-3-319-66399-9_5
http://dx.doi.org/10.1007/978-3-319-66399-9_6
http://dx.doi.org/10.1007/978-3-319-66399-9_6
http://dx.doi.org/10.1007/978-3-319-66399-9_7
http://dx.doi.org/10.1007/978-3-319-66399-9_8
http://dx.doi.org/10.1007/978-3-319-66399-9_8
http://dx.doi.org/10.1007/978-3-319-66399-9_9
http://dx.doi.org/10.1007/978-3-319-66399-9_10
http://dx.doi.org/10.1007/978-3-319-66399-9_11
http://dx.doi.org/10.1007/978-3-319-66399-9_12

VuRLE: Automatic Vulnerability Detection and Repair by Learning
from Examples . 229

Siqi Ma, Ferdian Thung, David Lo, Cong Sun, and Robert H. Deng

Link-Layer Device Type Classification on Encrypted Wireless Traffic
with COTS Radios . 247

Rajib Ranjan Maiti, Sandra Siby, Ragav Sridharan,
and Nils Ole Tippenhauer

LeaPS: Learning-Based Proactive Security Auditing for Clouds 265
Suryadipta Majumdar, Yosr Jarraya, Momen Oqaily,
Amir Alimohammadifar, Makan Pourzandi, Lingyu Wang,
and Mourad Debbabi

Identifying Multiple Authors in a Binary Program. 286
Xiaozhu Meng, Barton P. Miller, and Kwang-Sung Jun

Secure IDS Offloading with Nested Virtualization
and Deep VM Introspection . 305

Shohei Miyama and Kenichi Kourai

Privacy Implications of Room Climate Data . 324
Philipp Morgner, Christian Müller, Matthias Ring, Björn Eskofier,
Christian Riess, Frederik Armknecht, and Zinaida Benenson

Network Intrusion Detection Based on Semi-supervised
Variational Auto-Encoder . 344

Genki Osada, Kazumasa Omote, and Takashi Nishide

No Sugar but All the Taste! Memory Encryption
Without Architectural Support . 362

Panagiotis Papadopoulos, Giorgos Vasiliadis, Giorgos Christou,
Evangelos Markatos, and Sotiris Ioannidis

Inference-Proof Updating of a Weakened View Under the Modification
of Input Parameters . 381

Joachim Biskup and Marcel Preuß

Preventing Advanced Persistent Threats in Complex Control Networks 402
Juan E. Rubio, Cristina Alcaraz, and Javier Lopez

Shortfall-Based Optimal Placement of Security Resources
for Mobile IoT Scenarios . 419

Antonino Rullo, Edoardo Serra, Elisa Bertino, and Jorge Lobo

XX Contents – Part II

http://dx.doi.org/10.1007/978-3-319-66399-9_13
http://dx.doi.org/10.1007/978-3-319-66399-9_13
http://dx.doi.org/10.1007/978-3-319-66399-9_14
http://dx.doi.org/10.1007/978-3-319-66399-9_14
http://dx.doi.org/10.1007/978-3-319-66399-9_15
http://dx.doi.org/10.1007/978-3-319-66399-9_16
http://dx.doi.org/10.1007/978-3-319-66399-9_17
http://dx.doi.org/10.1007/978-3-319-66399-9_17
http://dx.doi.org/10.1007/978-3-319-66399-9_18
http://dx.doi.org/10.1007/978-3-319-66399-9_19
http://dx.doi.org/10.1007/978-3-319-66399-9_19
http://dx.doi.org/10.1007/978-3-319-66399-9_20
http://dx.doi.org/10.1007/978-3-319-66399-9_20
http://dx.doi.org/10.1007/978-3-319-66399-9_21
http://dx.doi.org/10.1007/978-3-319-66399-9_21
http://dx.doi.org/10.1007/978-3-319-66399-9_22
http://dx.doi.org/10.1007/978-3-319-66399-9_23
http://dx.doi.org/10.1007/978-3-319-66399-9_23

Boot Attestation: Secure Remote Reporting with Off-The-Shelf
IoT Sensors . 437

Steffen Schulz, André Schaller, Florian Kohnhäuser,
and Stefan Katzenbeisser

RingCT 2.0: A Compact Accumulator-Based (Linkable Ring Signature)
Protocol for Blockchain Cryptocurrency Monero. 456

Shi-Feng Sun, Man Ho Au, Joseph K. Liu, and Tsz Hon Yuen

SePCAR: A Secure and Privacy-Enhancing Protocol
for Car Access Provision . 475

Iraklis Symeonidis, Abdelrahaman Aly, Mustafa Asan Mustafa,
Bart Mennink, Siemen Dhooghe, and Bart Preneel

Privacy-Preserving Decision Trees Evaluation via Linear Functions 494
Raymond K.H. Tai, Jack P.K. Ma, Yongjun Zhao,
and Sherman S.M. Chow

Stringer: Measuring the Importance of Static Data Comparisons
to Detect Backdoors and Undocumented Functionality 513

Sam L. Thomas, Tom Chothia, and Flavio D. Garcia

Generic Constructions for Fully Secure Revocable
Attribute-Based Encryption. 532

Kotoko Yamada, Nuttapong Attrapadung, Keita Emura,
Goichiro Hanaoka, and Keisuke Tanaka

Enforcing Input Correctness via Certification in Garbled
Circuit Evaluation . 552

Yihua Zhang, Marina Blanton, and Fattaneh Bayatbabolghani

Author Index . 571

Contents – Part II XXI

http://dx.doi.org/10.1007/978-3-319-66399-9_24
http://dx.doi.org/10.1007/978-3-319-66399-9_24
http://dx.doi.org/10.1007/978-3-319-66399-9_25
http://dx.doi.org/10.1007/978-3-319-66399-9_25
http://dx.doi.org/10.1007/978-3-319-66399-9_26
http://dx.doi.org/10.1007/978-3-319-66399-9_26
http://dx.doi.org/10.1007/978-3-319-66399-9_27
http://dx.doi.org/10.1007/978-3-319-66399-9_28
http://dx.doi.org/10.1007/978-3-319-66399-9_28
http://dx.doi.org/10.1007/978-3-319-66399-9_29
http://dx.doi.org/10.1007/978-3-319-66399-9_29
http://dx.doi.org/10.1007/978-3-319-66399-9_30
http://dx.doi.org/10.1007/978-3-319-66399-9_30

From Intrusion Detection to Software Design

Sandro Etalle(B)

Eindhoven University of Technology, University of Twente
and SecurityMatters BV, Eindhoven, The Netherlands

s.etalle@tue.nl

Abstract. I believe the single most important reason why we are so
helpless against cyber-attackers is that present systems are not supervis-
able. This opinion is developed in years spent working on network intru-
sion detection, both as academic and entrepreneur. I believe we need
to start writing software and systems that are supervisable by design;
in particular, we should do this for embedded devices. In this paper, I
present a personal view on the field of intrusion detection, and conclude
with some consideration on software design.

1 Preamble

Allow me to start with a personal note: it is useful to understand where my com-
ments come from. I landed on the field of intrusion detection in 2004, after years
of moving from rather theoretical to increasingly more practical research topics.
We dove into the intrusion detection field with the declared intent of setting
up a company afterwards. After years of trying many useless ideas, we focused
on a couple of promising technologies. In 2009, my 2 PhD students Damiano
Bolzoni and Emmanuele Zambon and I started SecurityMatters. As of May 2017,
SecurityMatters is doing well, and there are some very demanding customers
who are very happy with its network monitoring system, so in-between the fail-
ures we must have done a couple of things right. While I need to clarify that
SecurityMatters appliance is now much more than a network intrusion detec-
tion system and certainly way more than an anomaly-based intrusion detection
system, SecurityMatters has been a tremendous learning experience regarding
intrusion detection. In what follows I would like to share with you some of the
lessons learned.

2 A Journey in Intrusion Detection

Network intrusion detection is the art of detecting when something goes wrong
simply by monitoring network traffic. This can be done at different places in
a system. In an industrial system, you can monitor the networks of the web

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 1–10, 2017.
DOI: 10.1007/978-3-319-66402-6 1

2 S. Etalle

applications, the back office (Windows), the SCADA1 system and the PLC2

(I have used an industrial control system as reference, but this is immaterial).
Depending where you look, you have different observables. Regardless of where
you do the monitoring, there are two ways to detect when something goes wrong
in a system: either you recognize the wrong behaviour or you are able to recognize
the correct behaviour and you alert when something deviates from it. So you
either have a model of the malicious behaviour or you have a model of the
legitimate behaviour. There is no third way, even though you can intermix the
two approaches.

This is reflected in the notation used in the intrusion detection community
[1,2], where knowledge based intrusion detection (a.k.a., misuse based3) is the
kind of intrusion detection that relies on a model of the attack, and behaviour
based intrusion detection the one that relies on the model of the legitimate behav-
iour. In turn, behaviour based NIDS are usually subdivided in anomaly based
NIDS and specification based intrusion detection [3], with the distinction that in
anomaly based NIDS the model of the target system is built more or less auto-
matically during a “learning phase”, while in specification-based NIDS models
are “manually developed specifications that capture legitimate (rather than pre-
viously seen) system behaviors” [4]. The common perception about knowledge-
based vs. anomaly-based and specification-based NIDS is that

P1 Knowledge-based NIDSs work well in practical deployments, but they are
“ineffective”

P2 Anomaly-based NIDS are effective (only) in benchmarks, but do not work
well in practical deployments.

P3 Specification-based NIDS are effective (only) in benchmarks and for very
specific – small – systems, but cannot be applied to practical large systems
(next to being too expensive to build and maintain).

In what follows, I will touch on what I think are the reasons behind this
“perception”, and I will particularly focus on anomaly detection systems because
our experience with them is instrumental to the goal of this paper. Where I
want to get to in the end is to argue that the true reason of the shortcomings
of acceptance-based systems (P2 and P3) are more rooted in the way we design
software than in the actual limitations of those approaches.

But first, we need to agree on the parameters we refer to, when we evaluate
the detection systems. Intuitively, IDSs need to be effective on real systems

1 Supervisory control and data acquisition (SCADA). For the purpose of this paper it
is a control (computer) system used e.g., in industrial control systems. Intuitively,
SCADA systems control e.g., PLCs.

2 Programmable Logic Controller (PLC). Typically small computer systems used in
e.g., manufacturing to connect to sensors and actuators.

3 The notation in the literature is unfortunately confusing: misuse based systems
are often narrowly associated with the use of signatures; similarly, anomaly based
systems are usually associated with the use of machine-learning techniques like neural
networks, while their scope is much broader.

From Intrusion Detection to Software Design 3

and cost-effective to operate, and in my opinion this translates in the following
partially unusual list of desiderata:

D1 High detection rate (effectiveness), also w.r.t. attacks that have not been
witnessed yet (e.g., 0-days).

D2 Low false positive rate (FPR). The FPR is one of the important factors
in determining the total cost of ownership of the intrusion detection system.

D3 Actionability. When the IDS raises an alert, someone needs to act upon
it. The more information the IDS can provide over the alert raised that can
be useful to determine the reaction strategy, the better it is. While often
forgotten in the benchmarks, actionability is always an important factor in
the operational cost of an IDS.

D4 Adaptability. Most IT systems change continuously (even SCADA system,
for that matter), therefore the IDS has to be able to cope with that. In
our experience, adaptability is another primary factor in the total cost of
ownership of an IDS, because changes can raise false alerts, that need to be
acted upon.

D5 Scalability. One of the obvious challenges ahead is monitoring increasingly
complex, heterogeneous and open systems of systems. Not all IDS technolo-
gies scale up that well.

For the sake of clarity, we need to unclutter the terminology used in the
sequel, because the word “system” is overloaded and it is used to indicate both
the monitoring and the monitored system. To distinguish the two uses of “sys-
tem” I will use the following notation

– the “target system” (or “underlying system”) is the system being monitored,
– the “system” is usually the monitoring system (the NIDS).

We can now discuss P1 . . . P3, starting with knowledge-based detection.

Knowledge-Based Systems. That knowledge-based NIDS systems “work”
is demonstrated by the fact that basically all network intrusion detection and
prevention systems commercially available are knowledge-based (typically based
on signatures). There are probably millions of knowledge-based NIDS in use
around the globe. In particular, knowledge-based systems score very well on
actionability (they recognize the kind of attack, so they can immediately refer to
the appropriate mitigation strategy), scalability (when you recognize the attacks
it does not matter if you are looking at one target system or at a hundred of
them, provided that the FPR is reasonably low).

However, they are ineffective because it is very easy for attackers to evade
them [5,6]. Knowledge-based systems (in particular, signature-based) catch
mainstream, well-established attacks, but they are always a few steps behind,
and are actually helpless against skilful and targeted attackers. Knowledge-based
detection is (and I believe will always be) extremely useful, because it handles
efficiently the low-key attacks, but will never be the key technology that will
defend us from the prepared attacker.

So let us move to behavior-based NIDS.

4 S. Etalle

Behavior-Based Systems. As argued before, here I will focus in partic-
ular on anomaly detection systems. In a nutshell, the art of anomaly-based
intrusion detection is finding a suitable abstraction function AF such that if
AF (present state) �∈ AF (model of target system) then the system raises an alert.
In the anomaly-based systems the model of the system is built using machine
learning techniques. A hard to break misunderstanding is that the machine learn-
ing in use must be general-purpose and domain agnostic, like e.g., neural net-
works. This is not so, and nowadays the machine learning (and the AF) used
is often tailored for the specific protocol and the specific domain of the target
system. We will further elaborate on that in the section about whitebox anom-
aly detection. On the other hand, since we are talking about behavior-based
detection, the AF should in theory be attack-agnostic. In practice, however, this
cannot be completely so, in the sense that the possibly interesting anomalies
(the attacks) must not be lost in the abstraction (***). So to build a good AF
you do need to have some idea of the possible attacker vectors and the kind of
events you are interested in observing. If you don’t know what you are looking
for, you are probably not going to find it.

Getting back to the statement P2, that “anomaly-based systems do not work
in practice” It is now interesting to take a look at it in the light of the experiences
we had in making anomaly detection systems actually work. Let us look at D1
. . . D5 and how anomaly detection copes with them. Allow me to keep D1 and
D2 (detection rate and false positives) as last.

Actionability. By definition, anomaly-based network intrusion detection sys-
tems (ABNIDSs) do not recognize the attack (otherwise, you would have used
a knowledge-based detection, with less headaches), the only thing they can rely
on is their knowledge of the target system. But if you have completely lost the
semantics of the target system when you applied the abstraction function AF,
then you have also lost an important source of information, that can be very
useful in deciding how to act upon an alerts. This is the reason why I like to
distinguish two kind of ABNIDS, which I call blackbox and whitebox. - We call
blackbox those ABNIDs that use abstraction function unrelated to the system’s
semantics, like n-gram analysis, neural networks, and alike. - We call whitebox
systems those ABNIDS in which the abstraction function AF retains something
of the high-level semantics of the target system. I would call whitebox IDS
an IDS that would distinguish between read and write file access, and would
be able to report an alert like “the substation Alpha is giving instructions to
PLC Beta: this is an anomalous action as Alpha normally only reads data from
Beta”. (Aside: we started using the notation “whitebox ABNIDS” in [7], there
is another reference to whitebox anomaly detection in [8], but that is about
host-based detection, and is unrelated).

To start with an unprofessional statement:

Personal Opinion 1. I believe that blackbox anomaly-based intrusion detection
systems are of very limited use for security.

This was noticed back in 2010 by Sommer and Paxson, [9], who wrote “We argue
that when evaluating an anomaly detection system, understanding the target

From Intrusion Detection to Software Design 5

system’s semantic properties is much more valuable than identifying a concrete
set of parameters for which the system happens to work best for a particular
input”. To this, we added some evidence in [10]. In our hands-on experience, the
problem with blackbox (say n-gram-based) ABNIDS is that their actionability
is zero: you get an alert and to find out what is going on you need to have a
very skilled someone take a look with Wireshark. Is it interesting? What should
be done about it? The information given with the ABNIDS warning was “the
frequency distribution of this packet is abnormal”. Whitebox detection here
has a tremendous advantage: it tells you something about the semantics of the
anomaly and what the target system was doing at the time of the alert, and the
insight in the alert can be much more detailed, like “there is a doctor breaking
the glass 10 times in a day, the observed limit is 5”.

In our search for usable anomaly-detection, we came to the conclusion that

Personal Opinion 2. “Useful” anomaly-based intrusion detection is not quite
about intrusion detection; it is about being able to understand what happens in
the target system and being able to monitor its integrity.

In our opinion, good anomaly detection starts by a good representation of the
target system. A representation people can understand. You do not concentrate
so much on the attack you need to discover (even though (***) has to be sat-
isfied), but on explaining what happens. This brings it closer to specification
based systems and to monitoring/forensics. By doing so, you’ll have less difficul-
ties (a) getting the IDS accepted at the stakeholder (it appears “familiar”) (b)
providing actionable security when something goes wrong.

To give a concrete example: this is the recurring pattern of what typically
happens in real-life deployments of a whitebox ABNIDS (based on the experience
we have when deploying SilentDefense): the first thing we make is the model of
the target system. This usually takes a couple of days of passive listening to
the network traffic, and the application of our whitebox AF. Then we present
the customer with the results. We haven’t started doing anomaly detection yet,
we have just learned the model. And by only producing a good model of the
target system we have identified at least a dozen issues in the network that need
to be solved and can be acted upon (notice that a blackbox model would not
produce the same results). When this happens, we believe we are in presence
of an anomaly detection system that (a) is “good”, and (b) fits well the target
system.

The downside of this approach is that anomaly-detection systems need to
specialize to a particular domain, which is not only a particular network protocol
but a particular set of applications of it. In addition, things might work well in
a certain domain (e.g., Industrial Control Systems – ICS) but they might not
work at all in another domain (e.g., IT). For instance, because the changes and
intrinsic dynamism of a domain make a certain model obsolete too quickly. Our
experience with SecurityMatters taught us that domain knowledge is crucial to
success, in that for instance we “understand” very well domains such as energy
distribution, oil and gas, etc. We have also learned how to approach a new
domain, but each new domain requires adjustments and understanding.

6 S. Etalle

Adaptability. Behaviour-based systems - regardless of whether they are anomaly-
based or specification based - need by definition to be adjusted every time there
is a change in the underlying system. This is a problem, even in a closed, rel-
atively static setting like ICSs. There is a common misunderstanding that the
network traffic (and the underlying settings) of Industrial Control Systems does
not change much in time. This is not true: there are continuous changes due to
maintenance, replacement of parts, new functionalities, etc.; if a behavior-based
system is connected, then it should have the ability of adjusting itself to these
changes without raising a myriad of alerts. This requires providing facilities to
the people who are in charge of the monitoring to distinguish the typical benign
cases from the possibly malicious ones. Again, it comes down to understanding
the application domain, and building some actionability into the system. This is
yet another reason why – given how software is written today –

Personal Opinion 3. There cannot be a one-size-fits-all anomaly-based net-
work intrusion detection system that works equally well on all domains.

Examples of “domains” are backoffice, webapplication, IoT, but also more specif-
ically: Oil and Gas, Banking, Water companies. In short: ABNIDSs are always
tailored to the target system.

This brings up the point of Scalability. Since ABNIDS are tailored to the
target system, scalability is by definition an issue. To monitor 1000 networks,
you need a thousand different models, that need to be trimmed when things
change, etc. To monitor a smart city you have to monitor every single building,
every single room etc.: there is no fixed recipe that fits all of them (as in the case
of knowledge-based detection). The obvious conclusion is that this technology
scales only up to a point, but areas like IoT, with thousands and thousands of
different networks, will need a leap forward in our approach to monitoring.

Detection rate and false positives. FPs are the nightmare of researchers and
practitioners alike because a high false positive rate (FPR) means that the IDS
will not be looked at. Our experience in ICS confirms that it is usually possi-
ble to tune the system to find the “best” compromise between DR and FPR,
though in our experience, in the case of whitebox anomaly detection this is
done more by focusing on what is monitorable and disregarding what is “not
monitorable”, which are the parts for which it is simply impossible to make a
reasonable model of the observables. In ICS, the “monitorable” part dominates,
and we took advantage of that to engineer an effective NIDS; but if we look at
e.g. a standard laptop, there is no way we could make a reasonable whitebox
model of what happens in there. I want to address this in the next section, but
before I do so it is time to touch on specification-based systems.

Specification Based Intrusion Detection Systems. Here I need to say that
I do not have enough first-hand experience about them to have a bold opinion,
but it seems to me that they share with ABNIDS a lot of the pro’s and the
con’s, with the added problem that producing the specification is usually very
costly. I believe that one of the root problems with this technology is that – to

From Intrusion Detection to Software Design 7

be effective – the specification should take into consideration the environment:
the same system (say a PLC) can behave very differently when used in different
contexts, and having the specification of the PLC in isolation is of little use
for intrusion detection. On the other hand, providing a specification for each
implementation is prohibitively expensive. Here ABNIDSs have a tremendous
advantage over specification-based systems, because they learn the behaviour of
the target system in the appropriate context. Additional (obvious) difficulties
include dealing with changes in the systems and actionability. While I believe
that specification-based NIDS form a very promising area, my personal opinion
is that for the moment their applicability is limited to very specific domains,
that are even more narrow that those to which we can apply anomaly-detection
profitably.

Some Considerations on Intrusion Detection. While we cannot say (yet)
that whitebox ABNIDSs are successful in general, we have seen that they can be
successful in monitoring specific systems and in particular we have experienced
that when they are successful, the reason is usually that they manage to lift
the understanding to the application level: by analysing the network trace they
understand what the application is doing. That is where anomaly detection
can be effective. In our specific case, achieving this required putting together a
massive knowledge of the domain, and was possible because our target systems
(ICS) are less confusing than e.g., standard computers. In fact, there is little
hope that our method could be (economically) applied to e.g. the applications
running in a modern laptop. This is because the network observables they exhibit
are so complex, limited and confusing that you simply can’t understand what
is going on, let alone make a usable whitebox model of it (not to mention, deal
with changes, which are the rule, rather than the exception).

3 Writing Supervisable Software

I now want to step away from the topic of intrusion detection and build on
the above considerations to talk about software design. Giving for granted that
software and systems will never be secure, as statistics and trends amply demon-
strate, we have to focus on engineering resilient systems, and a large part of this
resiliency lies in early understanding of when things go wrong. This is what an
intrusion detection is supposed to do. Unfortunately, as the journey above indi-
cates, I believe that there is little hope that intrusion detection will work on a
global scale; it will always work on some sectors, some target areas, but there
are large areas where they are ineffective or too expensive.

This is not surprising, if we consider that ICT systems are largely built as
black boxes, and after building them we pretend that the monitoring system is
able to detect when something goes awry. For some of those black boxes (the
“simpler” ones) IDSs are able to do so, but when the black box is too complex
inside or when there are too many of them connected together we lose control,
and IDSs can only pick some meaningful indicators here and there and hope to

8 S. Etalle

make the best of them. The global picture is then lost and in my opinion this is
when IDSs stop being effective.

It also appears that complexity this is only going to get worse: on one hand
the scale of the target systems is exploding (see IoT), on the other hand, we
tend to try to make things “more secure” by making systems more unintelligible
(e.g., by obfuscating and encrypting the observables), therefore making it harder
to reconstruct the global picture.

To build resilient systems, I believe we need to change drastically the way we
actually write software. Next to “security by design”, we need something else:

Personal Opinion 4. We should develop a discipline of writing software that
is supervisable (and privacy-preserving) by design.

I do not have (yet) a precise definition of what supervisable is. What I am
advocating is a discipline more than a science, a discipline I believe we need to
develop; with a lot of practical, hands-on work.

In general, I think that programs and systems should be designed to pro-
vide meaningful observables (including meaningful network observables), which
should be sufficient for the instructed observer to understand:

(a) what the underlying applications are actually doing,
(b) if the system is actually doing what it is pretending to do,

and, ideally,

(c) what the system is failing to do,
(d) whether there is something wrong with the system, and how to react to it.

Privacy and data confidentiality are obviously very important concerns, and
these points seem to oppose them. This is the reason why privacy is explicitly
mentioned in the opinion above: supervisability and privacy/confidentiality can-
not be considered as separate issues and need to be addressed together at design
time. This can be done by separating the information regarding the working
of the application from the information that needs to be kept confidential, and
adopt different encryption strategies for them.

Personal Opinion 5. Trying to achieve privacy by making the software not
supervisable is in my opinion as wrong as trying to achieve security by obscurity.

This is – I am afraid – a common engineering mistake: encrypting “everything”
to stay on the safe side. Unfortunately, this often makes the system less super-
visable, less manageable, it makes troubleshooting harder and in several cases it
does not help security [11].

It is better to consider everything public, except for the confidential and
the private information. In addition, I am not saying that everything should be
monitored by everyone, but everything should be supervisable by something, and
there should be something monitoring on it. Something trusted. Communication
can be encrypted, when needed, and supervisors need to be able to decrypt the
non-confidential parts to monitor the functioning of the system.

From Intrusion Detection to Software Design 9

Getting back to the points above, point (a) advocates the use of observables
with a clear semantics. This is a necessary condition to obtain (b), which is the
key element. It states that the observables (and the communication) should be
designed in such a way that it is difficult for a hypothetical attacker who has
managed to subvert the target system to do anything without being noticed. I
realize that in many cases this is impossible: televisions, servers etc. will always
deal with gigabits binary data in which it is by definition easy for an attacker
to embed his own payload. But there are other cases in which this is possi-
ble. I am thinking in particular at how we should deal with the software of
smaller embedded systems and IoT devices. Point (c) goes a step further and
encourages the engineering of systems with predictable behaviour and provid-
ing sufficient observables to allow one to determine whether they are actually
operating correctly. As it happens, while point (b) argues for a minimization of
the communication, point (c) makes a case for the opposite: that the number of
observables should be sufficient to understand also when something is not hap-
pening. Finally, (d) touches on the idea that we should start thinking about how
to do incident response right from the moment that we design the systems. It is
very much “wishful thinking”, but in the long run, it is probably unavoidable.
It should be clear that what I called supervisable is reminiscent of but is very
different from the concepts of monitorability as defined in runtime verification
(e.g., [12,13]), and the concepts of observability and diagnosability [14].

It may seem that I am advocating writing software for which it is possi-
ble to do specification-based intrusion detection. This is not quite true, for the
same reason I mentioned earlier when discussing specification-based NIDS: the
same artefact behaves (rightly) very differently when put in different contexts
and I don’t believe this variability can be captured by a specification (not a
cost-effective one). I would happy to be contradicted. What I am advocating is
writing software that allows to do monitoring it, possibly using a combination of
techniques like those in anomaly-based detection, specification-based detection
and correlation as is done in present SIM-SIEMS.

In this ideal world, software artefacts should be self-explanatory in their
behaviour, and it should be straightforward to for the instructed observer to
be able to understand what the system is actually doing by simply observing
its network behaviour. Unfortunately, this is not the direction we are following,
and despite the adoption of “standard protocols” when possible, confusion is
the rule and clarity is the exception. Scalability remains an issue, which in my
opinion can only be dealt with in the obvious way by breaking down a system
into monitorable subsystems, etc.

I think this discipline is going to be indispensable in systems where solutions
of different vendors and providers are combined together. Like it is happening in
IoT. Liabilities in case of failure are probably going to play an interesting role
in how systems will be shaped, and in my opinion a form of supervisability will
be a necessary instrument to identify actual responsibilities and actions to be
taken when things go wrong.

10 S. Etalle

Acknowledgements. Many, many thanks to those who have given comments to this
paper, including: Luca Allodi, Elisa Costante, Marc Dacier, Guillaume Dupont, Davide
Fauri, Dieter Gollmann, Alexios Lekidis, Daniel Ricardo dos Santos, Boris Skoric,
Nicola Zannone.

This work has been funded by SpySpot, a project under Cyber Security programme
by NWO, Dutch Organization for Scientific Research. It was also partly funded by
IDEA-ICS project by NWO and U.S. Department of Homeland Security.

References

1. Debar, H., Dacier, M., Wespi, A.: A revised taxonomy for intrusion-detection sys-
tems. Ann. Telecommun. 55(7), 361–378 (2000)

2. Mitchell, R., Chen, I.R.: A survey of intrusion detection techniques for cyber-
physical systems. ACM Comput. Surv. (CSUR) 46(4), 55 (2014)

3. Ko, C., Ruschitzka, M., Levitt, K.: Execution monitoring of security-critical pro-
grams in distributed systems: a specification-based approach. In: Proceedings of the
1997 IEEE Symposium on Security and Privacy, 1997, pp. 175–187. IEEE (1997)

4. Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H., Zhou, S.:
Specification-based anomaly detection: a new approach for detecting network intru-
sions. In: Proceedings of the 9th ACM Conference on Computer and Communica-
tions Security, pp. 265–274. ACM (2002)

5. Ptacek, T.H., Newsham, T.N.: Insertion, evasion, and denial of service: eluding
network intrusion detection. Technical report, DTIC Document (1998)

6. Siddharth, S.: Evading nids, revisited. Symantec Connect Community, pp. 1–5
(2005)

7. Costante, E., Hartog, J., Petković, M., Etalle, S., Pechenizkiy, M.: Hunting the
unknown - white-box database leakage detection. In: Atluri, V., Pernul, G. (eds.)
DBSec 2014. LNCS, vol. 8566, pp. 243–259. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-43936-4 16

8. Shu, X., Yao, D.D., Ryder, B.G.: A formal framework for program anomaly detec-
tion. In: Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404, pp.
270–292. Springer, Cham (2015). doi:10.1007/978-3-319-26362-5 13

9. Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for
network intrusion detection. In: 2010 IEEE Symposium on Security and Privacy
(SP), pp. 305–316. IEEE (2010)

10. Hadžiosmanović, D., Simionato, L., Bolzoni, D., Zambon, E., Etalle, S.: N-Gram
against the machine: on the feasibility of the N-Gram network analysis for binary
protocols. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS, vol.
7462, pp. 354–373. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33338-5 18

11. Fauri, D., de Wijs, B., den Hartog, J., Costante, E., Etalle, S., Zambon, E.: Encryp-
tion in ICS networks: a blessing or a curse? Technical report, Eindhoven Technical
University (2017 to appear)

12. Viswanathan, M., Kim, M.: Foundations for the run-time monitoring of reactive
systems – Fundamentals of the MaC Language. In: Liu, Z., Araki, K. (eds.) ICTAC
2004. LNCS, vol. 3407, pp. 543–556. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-31862-0 38

13. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006). doi:10.1007/11813040 38

14. Bittner, B., Bozzano, M., Cimatti, A., Olive, X.: Symbolic synthesis of observability
requirements for diagnosability. In: AAAI (2012)

http://dx.doi.org/10.1007/978-3-662-43936-4_16
http://dx.doi.org/10.1007/978-3-662-43936-4_16
http://dx.doi.org/10.1007/978-3-319-26362-5_13
http://dx.doi.org/10.1007/978-3-642-33338-5_18
http://dx.doi.org/10.1007/978-3-540-31862-0_38
http://dx.doi.org/10.1007/978-3-540-31862-0_38
http://dx.doi.org/10.1007/11813040_38

Justifying Security Measures — a Position Paper

Cormac Herley(B)

Microsoft Research, Redmond, WA, USA
cormac@microsoft.com

Abstract. There is a problem with the way we reason about problems
in security. The justifications that we offer for many security measures
reduce to unfalsifiable claims or circular statements. This position paper
argues that reliance on less-than-solid arguments acts as a brake on
progress in security.

1 Introduction

A great deal of computer security involves deciding how we should protect infor-
mation, resources and assets. Folk theorems and slogans often emphasize the risk
in neglecting any defense; e.g., “security is only as strong as the weakest link”
and “there is no such thing as partial security.” Unfortunately, we can’t pos-
sibly do everything. Defensive measures generally involve cost in time, money,
or effort, so defending everything against all possible attacks is neither possible
nor appropriate. This leaves us with hard decisions. Which measures should we
choose and which should we neglect? What constitutes a compelling argument
in favor of defensive action?

Consider the defense appropriate for high-value assets. The laptop of the
CFO of a large company might contain unreleased information about earnings,
government systems might contain citizens’ tax returns and health records. In
the documentary movie ‘Citizen Four’ Edward Snowden asks all visitors to place
their phones in the fridge and places a blanket over his head before typing his
password. Clearly, as the target of the national security agencies of multiple
countries (and with his liberty at risk in the event of failure) extraordinary
measures are appropriate for Snowden. However, for most assets and most people
this level of defensive effort is obviously excessive. If the level of caution that
Snowden exhibits was necessary before checking email, Twitter, or Netflix, most
of us would simply close our accounts. We might enjoy these services, but the
benefit we receive limits how much effort we’re willing to put in.

How then should we decide? We have no difficulty acknowledging that the
measures needed to protect a high-value asset is inappropriate and excessive for a
low-value asset, such as an ordinary email, social networking, or even bank asset.
Thus, while we may occasionally repeat slogans about absolute security, few
would argue that all assets should be treated as high-assurance ones. However,
this acknowledgement is not helpful unless we can say which measures we can
neglect.

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 11–17, 2017.
DOI: 10.1007/978-3-319-66402-6 2

12 C. Herley

2 Heads I’m Right, Tails You’ve Just Been Lucky so Far

The austrian philosopher Wittgenstein once contested that the cycle of night
and day should ever have been viewed as evidence that the sun revolved around
the earth: “and how would it look if instead the earth was rotating?” he asked.
That is, the cycle of night and day does nothing to distinguish between these
two competing theories. What looked a reasonable argument actually wasn’t
even evidence.

It can be hard to see the flaws in arguments, especially when the conclusions
have been believed for a long time. I wish to argue that a similar phenomenon
is at work in security, where we have many long-held conclusions supported by
arguments that do not withstand elementary scrutiny. I’m leaning heavily on
a recent paper [1]. The basic result is that claims of necessary conditions for
security are unfalsifiable. To falsify the claim “you must do X to be secure” we
would have to find something secure that doesn’t do X. That this isn’t possible
is a direct consequence of the fact that we can’t ever observe that something is
secure.

Obvious though it is, my experience has been that this result is not embraced
willingly. People who are fond of saying that “the only secure system is
unplugged, encased in concrete, and buried at sea” are reluctant to think through
the immediate implications of that statement. If security is out of reach then
claims of necessary conditions to achieve it are unfalsifiable. This is just elemen-
tary logic; you can’t have it both ways.

When confronted with this fact people often suspect sophistry; they need a
lot of convincing that there’s actually a problem here and not just verbal trickery.
Hence, it’s worth going into detail to show that the common approaches to get
out of this go nowhere. For example, the idea that security is defined relative to
a set of security goals or a threat model doesn’t help: it merely adds a layer of
indirection (i.e., one more turtle) since the necessity of achieving any of the goals
is in turn unfalsifiable. The idea that security is a property to be proved rather
than observed doesn’t help, since proof applies to mathematical rather than
empirical properties; something can be proved secure only if the term “security”
is emptied of all reference to observable outcomes (e.g., Einstein: “As far as the
laws of mathematics refer to reality, they are not certain, and as far as they are
certain, they do not refer to reality”). The idea that security is a scalar quality
to be improved rather than a binary one to be achieved doesn’t help, since the
claim that the security of X is better than the security of X is also unfalsifiable.
See [1] for an expanded treatment of these arguments.

So to summarize, the logical consequences of being unable to observe that
something is secure (or more secure, or that something will not happen, or cannot
happen) are that the following claims are unfalsifiable:

1. “If you don’t do X you are not secure”
2. “If you don’t do X a bad outcome will occur”
3. “If you don’t do X a bad outcome can occur”
4. “Doing X is more secure than not doing X.”

Justifying Security Measures — a Position Paper 13

Thus, for example, we can’t test the truth of the statement “if you don’t use
a strong password you are not secure.” It rules nothing out, and is consistent
with every possible observation, past and future. Equally, if I say “if you don’t
run anti-virus you will be hacked” I am impervious to contradiction: the only
possibilities are that, heads, I’m proved right, or, tails, you’ve just been lucky
so far.

2.1 The Importance of Being Literal

So what should we make of this? Is computer security no better than pseudo-
science? Is it on a par with homeopathy, astrology and belief in paranormal
phenomena? Despite the negative connotations of “unfalsifiable” we should resist
jumping to conclusions. Horoscope predictions are unfalsifiably vague because
they have no basis at all in reality. In contrast, the unfalsifiable statements 1–4
above are usually used as substitutes for claims that have some real basis, and
may indeed be very defensible. For example, when we talk about security being
improved (e.g., #4 above):

Security(X) > Security(X) (1)

we actually generally mean, e.g.,

Outcome(X|ABCD) > Outcome(X|ABCD). (2)

That is, while the security claim is unfalsifiable it is actually meant as a (fal-
sifiable) statement about outcomes under certain assumptions A, B, C and D.
Details have been omitted in (1), but there’s a huge difference between omitting
details and outright pseudo-scientific claims. So is the answer then simply “don’t
take things so literally?” Statements 1–4 are unfalsifiable, but is it just a case
of omitting details in the interest of simplicity? Unfortunately, it’s more serious
than that; the omission of detail does not have innocent effects.

First, it is precisely when they are intended literally that claims are most
useful. A wobble in the orbit of Uranus led to the discovery of Neptune only
because Newton’s laws were taken literally. When taken literally, anything not
explained by measurement error is a discovery. By contrast, the less literal a
claim the more things it’s consistent with; and with enough wiggle room it can
be made consistent with anything. The history of science finding and resolving
inconsistencies [2–4]. Insofar as they make this task harder, vagueness and wiggle
room in claims are barriers to progress.

Second, the errors are directional. Going from (2) to (1) isn’t just a
simplification, it always expands rather than contracts the claim. When
A OR B OR C OR D is true, then (2) makes no claim at all about outcomes.
This fact is entirely lost when we substitute (1) for (2). The restrictions implied
by A,B,C and D can be severe, in which case (2) is making a very narrow claim
while (1) is making a very big one (see examples in Sect. 3). Thus we end up
claiming that X is doing far more than is actually the case.

14 C. Herley

Finally, simplified versions of claims are understandable if, when challenged,
we are prepared to restate with greater precision. However, it’s easy to show that
this is often not the case in security. That is, (2) says that outcomes improve
under certain assumptions, while (1) drops all mention of the assumptions. If
we have a clear understanding of what the assumptions are, we should have no
difficulty falsifying a security claim: just show that what it promised to prevent
can happen anyway. For example, to falsify (2) we would just demonstrate that
X makes no difference to outcomes even when conditions A, B, C and D hold.
If we continue to insist that X is worthwhile when no difference in outcomes is
discernible then we must acknowledge that the list of assumptions is incomplete
(e.g., perhaps X improves outcomes only when E in addition to A, B, C, and D
hold). By contrast (1) rules nothing out: it asks that we do X, but it offers no
justification.

So, if we don’t know what would falsify the justification, then we don’t know
exactly what the measure claims to do. If nothing falsifies our justification then
either it’s a tautology or we’re not actually claiming the measure does anything
observable. Note that this is not the same as saying that it doesn’t do anything.

3 Never Waste a Good Crisis: Passwords

There’s been significant evolution in our thinking about passwords in the last
decade or so. Users used to be advised against writing passwords down, but now
most experts seem to think it acceptable or advisable. Re-using passwords was
considered unacceptable, we now know it is unavoidable [5]. Mandated password
expiration (e.g., every 90 days) used to be considered necessary, we now know
it accomplishes little [6]. Three decades after Morris and Thompson [7] recom-
mended composition constraints (i.e., inclusion of special characters) as a path
to password strength we know that they don’t have the desired effect [8]. That
stronger passwords improve outcomes, in any but very narrow circumstances, is
itself very questionable [5]. Even national standards organizations in the US and
UK have revised long-standing guidance to reverse many recommendations.

It doesn’t seem harsh to say that the history of thinking, advice and instruc-
tions on passwords appears a catalog of error. Things proclaimed with great
confidence have turned out to be simply untrue. Much of the advice directed
at billions of Internet users has turned out to be mis-guided or even harmful.
Passwords might seem an uninteresting research area. We might imagine that
they will soon be a thing of the past (although those advancing this claim have
a history of being optimistic), or that password managers can eliminate many
of the difficulties, etc. However, I claim that, moving on without learning from
mistakes wastes a significant opportunity. The litany of errors points to pro-
found problems in the way we reason about security measures. Unless we can be
confident that the errors in reasoning that generated such a mess in the domain
of passwords have not happened elsewhere it is worth carefully examining what
went wrong.

Justifying Security Measures — a Position Paper 15

3.1 What Constitutes a Compelling Argument
for a Security Measure?

Consider the common recommendation of using a unique password for each
account. Some form like this is explicitly offered by Ives et al. [9] and CERT [10].
I would like to focus, not on whether we believe this measure is sensible, but on
the arguments that we can make in its favor. Justification for avoiding password
re-use usually is as follows:

If you don’t use a unique password for each account, a bad guy
who gets access to one can compromise your other accounts. (3)

This is a true statement; there’s no question that re-use does open an avenue to
compromise. It is not, however, on its own, a convincing argument in favor of
using a unique password per account. Observe that (3) is a tautology. It can be
rewritten:

If you don’t do X then a bad guy can do something that X would
have blocked.

(4)

The argument (3) is simply (4) substituting X for “use a unique password for
each account.” However, if we’re going to argue that (4) offers a compelling
argument for any X we should be prepared to argue that it does so for all X.
Clearly it does not. For example, the claim

If you don’t use a Faraday cage a bad guy can get your private
keys using electro-magnetic emanations. (5)

can also be expressed as in (4). If (3) is a persuasive argument against password
re-use, (5) is a persuasive argument for Faraday cages. The problem with (4)
(and hence (3) and (5)) is that the argument is circular. It simply says if X
blocks something, then that thing is no longer a risk if you do X. This says
nothing at all about likelihood and applies equally to threats that are very real,
and ones that are completely far-fetched for most of us (e.g., the necessity of
placing a blanket over our head as we type passwords).

Tautologies are simply one example of unfalsifiable justification statements.
Next consider the claim that choosing a strong password is better than a mod-
erately weak one (e.g. strong enough to withstand online guessing but no more).
Does the fact that many users ignore this instruction without incident falsify this
claim? If not then (following Sect. 2.1) there are implicit assumptions unstated in
the original claim. For example, there’s clearly no difference in outcomes unless
(A) the password file leaks. There’s also no difference if the password file is
stored (B) plaintext or (C) reversibly encrypted. Even then we’re far from done;
the chain of assumptions actually becomes quite long [5]. We have to flush out
all of the assumptions to produce a falsifiable statement like (2) from the vague
starting point (1). So, it’s not the case that the unfalsifiable claim is a simplified
stand-in for a falsifiable one that we actually intend literally. The fact that we
have to resort to reverse engineering to figure out what falsifies the claim means
we just don’t know under what assumptions it will improve outcomes.

16 C. Herley

3.2 What Evidence Would Prove Us Wrong?

Thus, falsifying the justification forces us to be explicit and exhaustive in docu-
menting restrictions on what a measure claims to do. Difficulty doing this reveals
that implicit or vaguely-stated assumptions lurk. If we are convinced of some-
thing, but can’t describe the evidence that would change our minds, our belief
is not well-founded.

Unfortunately, this seems to be the rule rather than the exception with pass-
word recommendations. Consider for example the advice to:

1. Change passwords regularly
2. Avoid password re-use
3. Choose strong passwords
4. Choose passwords of a certain format.

What evidence would falsify the claim that any of these are worthwhile? If we
had empirical evidence indicating that those who comply fared better than those
who do not then falsification would be simple: a measurement can always be
superseded by a better, more thorough measurement. However, the justification
for these measures does not rest on empirical evidence. Instead, it would appear
to rest on the argument that the recommended measures improve outcomes in
certain circumstances. Since the circumstances are not stated, they are defended
by an argument like (1) rather than (2).

The point is not to argue that these measures accomplish nothing, but to
emphasize that uncertainty about falsifying them is possible only if our justifi-
cation is muddled and we don’t have a precise understanding of what is claimed.

Passwords offers a target-rich environment for those seeking tautologies and
unfalsifiable claims. However, the problem is far more general. What falsifies the
claim that anti-virus is necessary? That cyber-crime is large and growing? That
we need something more secure than passwords? That there’s a tradeoff between
security and usability? That a system with a “proof of security” is better than
one without? If we hold these views, but can’t say what would make us abandon
them then our reasons are not solid.

4 Conclusion

Falsifiability is traditionally taken as the line separating Science from non-Science
[2,3,11]. While this is the almost universal practice in the natural sciences, it is
not unreasonable to ask why, and whether it is equally relevant to fields such
computer security?

Falsifiability is not an arbitrary demarcation criterion, and it’s acceptance
by other scientific communities does not rest on Popper’s authority. Falsifiability
represents a constraint: it restricts the kinds of statements we can make, but in
return gives feedback and self-correction. Falsifiability as a criterion is simply an
acknowledgement that some of the statements we make and some of the ideas
we try will be wrong. Popper’s description of Science doesn’t say how to come

Justifying Security Measures — a Position Paper 17

up with laws, what they should describe, or even if there should be laws at all. It
simply describes the feedback mechanism that, over time, filters out the wrong
statements and ideas, so that our ability to describe the world and anticipate
things not-yet-observed steadily improves.

Other feedback mechanisms exist in other domains. Markets provide feed-
back. Good businesses flourish and bad ones fail. Business models that enjoy
economies of scale push out those that don’t. Engineering techniques and arti-
facts compete against alternative techniques and artifacts. Good ways of design-
ing bridges, airplanes and operating systems supplant less-good ways so long
as there is feedback on what is proving useful in practice. In many of these
domains feedback might not be as formal as falsifiable statements, but is still
strong enough to separate the good approaches from the bad.

The absence of feedback has proved a serious barrier to progress in security.
The reason so many arguments about passwords go in circles is that there’s
nowhere else for them to go. Are lower-case pass-phrases better or worse than
passwords with a mix of characters? Should passwords be written down, or
changed regularly? Is defense against shoulder-surfing worthwhile? no progress
is possible on these and other questions if the justifications offered for them are
immune to feedback and shrink from all of the risks associated with being tested
against observation.

References

1. Herley, C.: Unfalsifiability of security claims. Proc. Nat. Acad. Sci. 113(23), 6415–
6420 (2016)

2. Chalmers, A.F.: What Is This Thing Called Science?, 4th edn. Hackett Publishing,
Indianapolis (2013)

3. Godfrey-Smith, P.: Theory And Reality: An Introduction To The Philosophy Of
Science. University of Chicago Press, Chicago (2009)

4. Herley, C., van Oorschot, P.: SoK: science, security, and the elusive goal of security
as a scientific pursuit. In: IEEE Symposium on Security and Privacy (Oakland
2017) (2017)

5. Florêncio, D., Herley, C., Van Oorschot, P.C.: Pushing on string: the“don’t care”
region of password strength. Commun. ACM 59(11), 66–74 (2016)

6. Zhang, Y., Monrose, F., Reiter, M. K.: The security of modern password expiration:
an algorithmic framework and empirical analysis. In: Proceedings ACM CCS, pp.
176–186 (2010)

7. Morris, R., Thompson, K.: Password security: a case history. Commun. ACM
22(11), 594–597 (1979)

8. Weir, M., Aggarwal, S., Collins, M., Stern, H.: Testing metrics for password cre-
ation policies by attacking large sets of revealed passwords. In: Proceedings ACM
CCS, pp. 162–175 (2010)

9. Ives, B., Walsh, K.R., Schneider, H.: The domino effect of password re-use. Com-
mun. ACM 47(4), 75–78 (2004)

10. US-Cyber Emergency Response Readiness Team: CyberSecurity Tips. http://
www.us-cert.gov/cas/tips/

11. Popper, K.: Conjectures and Refutations: The Growth of Scientific Knowledge.
Routledge, London (1959)

http://www.us-cert.gov/cas/tips/
http://www.us-cert.gov/cas/tips/

The Once and Future Onion

Paul Syverson(B)

U.S. Naval Research Laboratory, Washington, DC, USA
paul.syverson@nrl.navy.mil

Abstract. Onionsites are Internet sites accessed via protocols offer-
ing security protections beyond those provided by the usual protocols
and infrastructure of the Internet, such as confidentiality of address
lookup, and that significantly strengthen commonly offered protections;
for example, their self-authenticating addresses preclude the kinds of
certificate hijacks that have occurred against registered domain names.
I will sketch the properties and design of onion services, including early
history as well as recent developments. I will also describe integration of
onionsites much more fully into conventional Internet sites in ways that
promote their general widescale adoption.

1 Introduction

Prior to a decade ago, website access via encrypted and authenticated connec-
tions was relatively uncommon. Now this is recognized as fundamental to online
commerce, government, and more generally to functioning in many aspects of
modern life. The mechanisms for secure site access that we will discuss herein
are roughly where certificates and TLS were at the turn of the century. I will
describe combining and extending protections provided by such conventional
mechanisms with the stronger mechanisms of Tor’s onion services in ways that
both further improve the security and usability that is currently provided by
either alone and that promote broad adoption of more secure site access.

1.1 Predecessors to Onion Services

We introduced onion routing in the 1990s “to separate identification from rout-
ing” for networked communication [21]. Primary intended uses were for clients
to connect to Internet sites with publicly discoverable network locations, such
as connecting to ordinary websites, but without revealing to the infrastructure
carrying the connection’s traffic, who is visiting which site. At the same time we
introduced onion routing we also introduced reply onions, which were designed
to allow replies to such connections or to otherwise permit connection to sites
with hidden locations [7]. One application we proposed for reply onions was pri-
vate location tracking: user location was regularly uploaded to a user’s server,
which could then selectively provide access to the user’s location information.
The sensors and routing infrastructure, however, could not tell which user was

c© US Government 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 18–28, 2017.
DOI: 10.1007/978-3-319-66402-6 3

The Once and Future Onion 19

sending her location to which server. Another application was a protocol to per-
mit mobile telephony, including per-call billing, without revealing to the local
cell tower what phone number is making the call or, to the account provider,
where the call is being made from [22]. Ross Anderson introduced the design
for a censorship-resistant Eternity Service the same year we introduced onion
routing [1], which featured the location-hiding placement and retrieval of doc-
uments at redundant distributed servers. These were all designs without any
implementation. The first system with at least a research implementation to
permit connections to a service without revealing the service’s network location
was Rewebber [6], followed a few years after by Publius [30]. These were systems
specifically for connecting to a web service, a primary application of Tor’s onion
services half a decade later.

1.2 Basic Overview of Tor Design and Onion Services

I now give a high-level description of Tor and onion service protocols that should
be sufficient to understand what follows. For more detailed descriptions see the
Tor design paper [5] and related documentation at the Tor website [28]. For a
high-level graphical description of onion services see [25]. For a more up to date,
and much more technical, description of onion services protocols see the Tor
Rendezvous Specification [27].

Tor clients randomly select three of the many thousands of relays [26] com-
prising the current Tor network, and create a cryptographic circuit through these
to connect to Internet services. Since only the first relay in the circuit sees the
IP address of the client and only the last (exit) relay sees the IP address of the
destination, this technique separates identification from routing.

To offer an onion service, a web (or other) server creates Tor circuits to
multiple introduction points, Tor relays that await connection attempts from
clients. A user wishing to connect to a particular onion service uses the service’s
onion address to look up these introduction points in a directory system. In a
successful interaction, the client and onionsite then both create Tor circuits to
a client-selected relay, the rendezvous point. The rendezvous point joins their
circuits together, and they can then interact as ordinary client and server of a
web connection over this rendezvous circuit.

Since the onionsite only communicates over Tor circuits it creates, this proto-
col hides its network location, the feature that gives it the name ‘hidden service’.
But, there are other important features to the onion service protocols, notably
self-authentication. The onion address is the hash of the public key of the onion-
site. For example, if one wished to connect to the DuckDuckGo search engine’s
onion service, the address is 3g2upl4pq6kufc4m.onion. If that address is linked
to or entered in the address bar of Tor Browser (a browser based on Firefox
ESR, designed to work with Tor, and bundled in the default Tor download), the
Tor client recognizes this as an onion address and thus knows to use the above
protocol rather than attempting to pass the address through a Tor circuit for
DNS resolution at an exit relay. The public key hashed to produce the address

20 P. Syverson

corresponds to the key that signs the list of introduction points and other ser-
vice descriptor information provided by the directory system. In this way, onion
addresses are self-authenticating, a central point to which we will return.

2 The Alliuminated Web

Users are generally completely in the dark about how their information moves
around the Internet. Though Tor does provide confidentiality of routing meta-
data, it also provides the user with far more routing metadata, indeed authenti-
cated routing metadata, than she would otherwise have, and does so in a highly
usable fashion. A pulldown on the Tor Browser indicates the country and IP
address of the relays in the path of an active Tor circuit.

As noted, we originally called Tor onion services “hidden services” (actually
“location-hidden services” in the first publication [5]). This was perhaps natural
given the above history, but it was misleading terminology in at least two ways.
First, given the varied and nuanced meanings of ‘hidden’ it is easy to insinuate
a general air of exotic mystery and arcane offerings on such sites, rather than
the mundane idea that network location is not revealed merely by making a
site reachable. Calling these “hidden services” did not exactly dissuade those
tech pundits and television drama writers who might be generally inclined to
titillating and frightening stories that boost readership and ad revenue.

More important technically, it calls attention to only one sort of protection
that onion services provide, hiding the network location of the service. This is an
important security property, and researchers and developers continue to work on
strengthening its protection. But putting just that aspect into the name makes it
easy to downplay the other important protections that onion services provide. In
fact, while other properties such as self-authentication remain inherent, location
hiding is now a configuration option since it is not desirable for all settings.
Because ‘hidden services’ was importantly misleading in multiple ways, we now
generally refer to these simply as “onion services”.

3 Evolution of Onion Services

Guards and Vanguards: One of the first design changes to occur after we
introduced onion services in 2004 was to add entry guards. A malicious client
can rapidly request many connections to an onion service, each of which will
cause the onion service to use a new circuit to the rendezvous point. Setting up
even a single relay and making many connections to an onion service, we were
able to correlate connections we requested with ones from a server connecting
into the Tor network at our relay. We were thus able to find the network address
of the onion service within minutes. To counter such attacks, we introduced guard
relays, a set of a very few relays that a client used persistently to connect to
the Tor network [19]. Guards protect onion-service-originated circuits, but also
all clients circuits. Normal clients make multiple connections to multiple sites
during the course of their online activity—albeit normally at a much slower rate

The Once and Future Onion 21

than just described. In that same work, we showed that a similar attack could
quickly uncover a service’s entry guards, and we proposed layered guards as a
means to make such attacks on onion services even slower and more complex.
Over the last decade, many have researched this area, for example exploring the
performance implications of using layered guards for hidden services [12]. Design
and implementation specifics are actively being settled at the time of writing.
Further details can be found in a Tor Proposal [13]. (Tor Proposals are similar
to IETF RFCs.)

Counters to Mining the Onion Service Directory: The first onion-service
directory system, for looking up introduction points and other information given
in a service descriptor, was run at the Tor directory authorities (which maintain
and serve information about the relays comprising the Tor network). But this
was only intended to get onion services up and running, and even the original Tor
design paper mentioned running the directory on a distributed hash table (DHT)
comprised of Tor relays [5]. The DHT-based onion-service directory system was
deployed a few years later. Even with the dynamic distribution of a DHT, an
adversary occupying any of the six positions holding at a given time the service
descriptor for a given onion address could monitor when lookups of it occur, and
could even deny service if it held all six positions in the DHT. We proposed a
partial counter to this by encrypting both the record locator and its content using
the onion address as key [20]. This was later implemented and deployed [27].
Though deployed, it was not widely used, and published research showed how
adversaries could position themselves in the DHT to learn (or block) most onion
addresses [3].

Even if widely used, such encryption would not resist DHT monitoring or
DoS of onion addresses an adversary knew otherwise. Something that does help
even in this case (and is now implemented and deployed) is for the Tor directory
authorities to run a distributed random-value-commitment protocol to be used
in the determination of next-round DHT assignments, thus confounding any
adversary’s attempt to predictably position itself within the DHT [9].

Metrics for onions: Onion-service traffic constitutes a tiny fraction of overall
traffic on the Tor network, but until a few years ago we had no idea how much.
This is now regularly reported on the Tor Metrics site and is roughly 1–5% of
overall application traffic [17]. Likewise the number of onion addresses that exist
(c. 50 K at any time), are reachable, serve content, etc. was not known. These
latter appear to be far fewer, on the order of 10 K and 1 K respectively, but
good numbers are not yet readily available. Collecting such statistics without
harming privacy is difficult [8]. Future work using more secure techniques, such
as provided by PrivCount [11], should give us additional statistics, e.g., the per-
onion-service distribution on connections to onion services during a given period.
The Tor Metrics site also tracks performance, reporting on the time to download
various size files over the network. Until recently, this was limited to downloads
from external servers via exit circuits. With the introduction of OnionPerf [10],
more complex traffic performance could be generated and monitored, and in
particular, performance of onion services is now measured and reported.

22 P. Syverson

Ephemeral and Personal Onions: Further complicating things, onionsites
are not all ordinary web pages. As just one example, OnionShare [18] is a tool
for secure and private file transfer. It creates an onion service on the source com-
puter and places the desired file at its onion address. In default use, once the file
is retrieved, the onion service and the file are deleted. Obviously such onionsites
complicate our understanding of onionsite statistics. Another example of a dif-
ferent sort of onion service is Ricochet [23], a secure instant messaging system
with no central server. Each Ricochet user has an onionsite on his computer
and shares the onion address with potential communicants. Two users wishing
to talk will connect to each other’s onionsite. Ricochet presents the exchanged
messages as a dialogue in its GUI. Onionsites can also be useful for securely
operating a personal cloud service. With privacy and cost in mind, many people
are operating their own cloud infrastructure to store files and calendar entries
using open-source systems such as Cozy.

Facebook and increased integration with the less-secure web: Thou-
sands of users connect to Facebook from locations that do not allow direct con-
nections to facebook.com. And many others simply use Tor Browser for the
added security it provides for general Internet activity. Indeed, in April 2016,
Facebook reported over a million people accessing Facebook over Tor [16]. Now
Facebook could simply encourage users to make an ordinary connection over Tor
to facebook.com. But on the Tor network limited exit capacity is often a dom-
inating factor for Tor performance. This was one of the motivations Facebook
described for offering an onionsite rather than merely encouraging connections to
their registered domain via Tor [15]. More recently, Facebook has begun allowing
onionsite owners to offer previews of their sites to non-Tor users on pages with
a link to their onionsite. Facebook also provides guidance for anyone attempting
to follow such a link using a non-Tor browser, telling them how and why they
might use Tor. And if the onionsite has opted to allow it, a link to the less secure
(non-Tor) version of the site is also offered [24].

Facebook is the largest site by far to incorporate onion service, but is not
the only significant “conventional” site to do so. A few other examples include
ProPublica, a well-known news site, DuckDuckGo, a popular search engine I have
already mentioned, and services and repositories of the Debian operating system.
Some news sites do not, at the time of writing, offer onion addresses for accessing
their content but do make use of SecureDrop, which is an onion service for sources
to securely and anonymously contribute to media organizations including The
Washington Post, The New Yorker, and The Globe and Mail.

A potential concern for popular mainstream sites is doppelgangers. If some-
one were to put up an onionsite at 3g2upk4au4ldfc4m.onion that appears
to be the DuckDuckGo homepage, users might not spot that they had not
reached 3g2upl4pq6kufc4m.onion. Onion addresses are self-authenticating, but
by themselves offer nothing to tie themselves to known public entities. This is
an example of Zooko’s Triangle, which states that names can be any two of
decentralized, secure, and human-meaningful, but not all three at once. One
of the ways to get closer to having all three is to leverage TLS certificates.

The Once and Future Onion 23

If 3g2upl4pq6kufc4m.onion is entered in the Tor Browser, the display in the
URL bar shows “Duck Duck Go, Inc. (US) | https://3g2upl4pq6kufc4m.onion”:
for this address, DuckDuckGo has obtained a TLS certificate that includes the
identification of itself as the organization holding the certificate. And that is pos-
sible because the CA/Browser Forum has authorized the issuance of extended
validation (EV) Certs for onion addresses. Note that this provides an addi-
tional element of site-owner control over authentication that no certificates can:
even with an accepted certificate, without the private key from which the onion
address derives, an adversary cannot read or respond to traffic encoded for
that address (though this does not preclude certificates for doppelgangers). One
important enabling condition for allowing issuance of certs for onion addresses
was the recognition of .onion as a reserved top-level domain by the IETF in
2015 [2]. RFC 7686 designated .onion as a special-use TLD: onion addresses are
not be resolved by DNS as an ordinary registered domain, and they are given a
standardized status.

Only EV certs are eligible for display of the organization name and lock icon
together in the browser URL bar. And, onion addresses are only eligible for EV
certs. This limits them to entities with enough time, money, and motivation to
jump through the hoops necessary to obtain them. Smaller or less well-funded
entities generally obtain domain validation (DV) certificates, which are much
quicker and easier to obtain. One of the concerns that the CA/Browser Forum
had concerning onion addresses, prompting the limitation to EV certs, was the
16-character names that might make them vulnerable to hash collisions. What-
ever the validity of that or some other expressed cryptographic concerns, they
should all be addressed by the new protocols and 56-character names [14] that
are already in the Tor-alpha code release and should be in the stable release by
the time this paper is published.

The motivations for Facebook to run an onion service, e.g., as cited above, do
not include hiding server network location. As such, the original protocol’s use
of Tor circuits from the onion service to the rendezvous point and to the intro-
duction points only adds overhead and reduces performance for both the onion
service and the Tor network. Facebook thus uses single onion services. These
make direct connections from the onion service to the rendezvous and introduc-
tion points and are now specified and implemented for general Tor use [4].

4 John Jacob Onionheimer Schmidt

Should the CA/Browser Forum approve issuing DV certs for onion addresses,
it will further advance the integration of onion services with existing, famil-
iar authentication mechanisms. But even if that happens, it will not permit
the inclusion of organization names in the URL bar or solve other problems
associated with addresses that are not generally understood or recognizable by
humans.

https://3g2upl4pq6kufc4m.onion

24 P. Syverson

The Onion Name System (OnioNS) attempts to respond to these concerns
by creating a system for globally-unique but still human-meaningful names for
onionsites [29]. This has the advantage of not being dependent on any exist-
ing naming scheme, such as existing domain registration. On the other hand,
through much experience and design, existing approaches to naming have evolved
effective usage and infrastructure that we can leverage. And integrating onion
addresses with registered domain names has other advantages.

One way to further this integration is literally, i.e., by incorporating onion
addresses as subdomains of registered domain names. Top-level onion addresses
will still be important, particularly for sites without registered domain names.
And this does not automatically require ‘onion’ to be part of the name, but
the address should be self-authenticating as onion addresses are and should
have adequate encoding properties to preclude confusion with subdomain names
not intended to provide this property. Whether or not that will require stan-
dardization or regulation along the lines of RFC 7686 will need to wait for
more details than I present herein. But, as a strawman illustration, imagine
3g2upl4pq6kufc4m.onion replaced by 3g2upl4pq6kufc4m.onion.duckduckgo.com.
This would have numerous positive prospects.

First, this is not a top-level onion address as in RFC 7686. Thus non-Tor
browsers can resolve and reach this address. As long as the site has content there,
the browser should be able to load it. There will not be a self-authentication
check or other security protections that the Tor Browser adds, nor the routing
security that comes by accessing the service via Tor. Assuming no adversary
shenanigans, however, nothing will break. This should make it appealing to site
owners wanting to minimize overhead and duplicated effort.

Second, because the onion address is simply a subdomain of a registered
domain, it can be covered by a DV cert from any certificate authority that allows
wildcards or the issuing of certs for multiple subdomains. Thus, the address can
be human-meaningful, self-authenticating (if appropriate checks are done), and
still give users the familiar indications that the connection is secure (lock icon
indicating a valid cert from a recognized CA). I will return to this below.

Third, it leverages existing human-meaningful names in a way similar to
other things sites currently do. Whatever user-education component is needed
to engender understanding of the security advantages, there is little or no need
for an established domain to create a campaign to explain a surprising address
change in the URL bar to its users.

Further, it would now be easy for a site to offer multiple subdomain onion
addresses that are automatically tied to one another via their primary domain
name. These could be to offer different services at different places or to different
users, but it is also an easy way to do expiry or revocation without needing
to interact with CRLs or possibly even keep track of user accounts. One can
route multiple onion subdomains to the same page. If one wants to revoke or
expire access for the users reaching the content or service via a particular onion
subdomain, one can simply throw the relevant private key away. Also, one can
do self-certification for some content within a certified domain, for example to

The Once and Future Onion 25

do load balancing and content distribution. Finally, a site that provides a plat-
form for its users to host individual pages or content and that has a wildcard
certificate, e.g., Facebook, could allow users to set up their own onionsites on the
hosting site with the user’s onion key “certified” by the host’s onion key. This
would allow users much more direct control over authentication of and access to
their content, while still providing TLS certification of the host and host “certi-
fication” of the user’s onionsite. There are many details and limitations for some
of these to be practical, but this should give an inkling of the potential.

5 Onions Everywhere

Subdomain onion addresses should be eligible for DV cert issuance just like any
other subdomain. But to get full security advantages, issuance protocols will
need to make sure that relevant checks for possession of the domain, the private
TLS key, and the private onion-service key all properly validate each other. They
should also be checked, e.g., to verify that it is not possible to interleave one type
of expired key or proof of access with still-valid keys of another type, resulting
in an extension or escalation of authorization. In short, there is some research
to be done, even without getting into questions of performance.

Relatedly, a Tor-Browser connection to a subdomain onion service should
provide all the security advantages of current Tor-based access to the onion ser-
vice, together with the protections provided by certified TLS. (It should after the
client software and onion-service directory system have been updated to handle
such addresses.) And as noted above, subdomain onion services will be back-
wards compatible in that a browser knowing nothing about Tor will be able to
reach and interact with the service. But intermediate levels of protection are also
enabled by this approach. Browsers not configured to access Tor could still have
plugins or modifications that check for possession of the appropriate private key
associated with an onion address. Though not offering the routing protection of
connecting via Tor, resistance to DNS hijack and certificate hijack is significantly
improved since it would be necessary to overcome the self-authentication at the
same time.

An adversary could in principle do all the relevant lookup, routing, and cer-
tificate hijacks, coupled with a phished or otherwise insinuated doppelganger
onion address. Even this could be countered by building the right onion address
into the HTTPS Everywhere ruleset. HTTPS Everywhere is a free and open
browser extension that checks for a TLS-protected equivalent to a requested
HTTP connection and then substitutes the appropriate protected connection
request. The need for a ruleset is both because not every site offers an HTTPS
version, and because simply adding an “S” to “HTTP” will not always take the
user to the equivalent site, which depends on the configuration and policies of
the site in question. The equivalent encrypted content may be at a slightly dif-
ferent address, and an HTTPS connection to the URL as requested may go to
a different page within the domain. If one adds onion addresses to the HTTPS
Everywhere ruleset for Tor Browser and other browsers configured to parse and

26 P. Syverson

check onion authentication, then this too would have to be overcome for such
attacks to succeed.

Furthermore, with existing onion addresses, ruleset redirection would again
raise user-surprise concern if a request for a given URL yields a completely
different-looking and not-apparently-related address in the URL bar. With sub-
domain onions, the redirection is much more along the lines of existing HTTPS
Everywhere switches. User surprise should thus be comparable to the current
status quo.

User-friendly onionsite set up: Let’s Encrypt is a certificate authority that
allows anyone to obtain a free DV cert for her site. But it is more than that. Let’s
Encrypt strives to make certificate issuance as quick, automatic, and transparent
as possible, so that site owners have as painless an experience as possible setting
up a TLS-protected version of their site. Once the above mentioned systems
and protocols are in place, it would be natural for Let’s Encrypt to facilitate an
onion-protected version of a site just as they do now for TLS protection.

6 Conclusion

I hope the nature, history, and prospects for onion services are now well alliu-
minated for you. I hope also that you are enthusiastic to see subdomain onion
addresses researched, specified, implemented, and deployed as sketched above.
In such a future, individual, business, and government websites and services can
all be set up to offer much more secure access than is now possible.

Acknowledgments. More people have helped shape the work and ideas I have
described above than could be acknowledged here. Specific thanks to Richard Barnes
for conversations that led to the ideas for subdomain onions, and to Matt Traudt and
Ryan Wails for helpful comments on a draft of this paper.

References

1. Anderson, R.: The eternity service. In: 1st International Conference on the Theory
and Applications of Cryptology (Pragocrypt 1996), pp. 242–252. Czech Technical
University Publishing House, Prague, Czech Republic, September/October 1996

2. Appelbaum, J., Muffett, A.: The .onion special-use domain name (2015). https://
tools.ietf.org/html/rfc7686

3. Biryukov, A., Pustogarov, I., Weinmann, R.P.: Trawling for Tor hidden services:
detection, measurement, deanonymization. In: IEEE Symposium on Security and
Privacy (SP) (2013)

4. Brown, T.W., Brooks, J., Johnson, A., Jansen, R., Kadianakis, G., Syverson, P.,
Dingledine, R.: Rendezvous single onion services, Tor proposal 252 (2015). https://
gitweb.torproject.org/torspec.git/tree/proposals/260-rend-single-onion.txt

5. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium, August 2004

6. Goldberg, I., Wagner, D.: TAZ servers and the Rewebber network: enabling anony-
mous publishing on the World Wide Web. First Monday 3(4) (1998)

https://tools.ietf.org/html/rfc7686
https://tools.ietf.org/html/rfc7686
https://gitweb.torproject.org/torspec.git/tree/proposals/260-rend-single-onion.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/260-rend-single-onion.txt

The Once and Future Onion 27

7. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137–150. Springer, Heidelberg
(1996). doi:10.1007/3-540-61996-8 37

8. Goulet, D., Johnson, A., Kadianakis, G., Loesing, K.: Hidden-service statistics
reported by relays. Tor Technical report 2015–04-001, The Tor Project, April 2015

9. Goulet, D., Kadianakis, G.: Random number generation during Tor voting, (Tor
proposal 250) (2015). https://gitweb.torproject.org/torspec.git/tree/proposals/
250-commit-reveal-consensus.txt

10. Jansen, R.: Onionperf. https://github.com/robgjansen/onionperf
11. Jansen, R., Johnson, A.: Safely measuring Tor. In: Proceedings of the 23rd ACM

Conference on Computer and Communications Security (CCS 2016) (2016)
12. Jansen, R., Tschorsch, F., Johnson, A., Scheuermann, B.: The sniper attack: anony-

mously deanonymizing and disabling the Tor network. In: Proceedings of the Net-
work and Distributed Security Symposium - NDSS 2014. IEEE, February 2014

13. Kadianakis, G., Perry, M.: Defending against guard discovery attacks using van-
guards, (Tor proposal 247) (2015). https://gitweb.torproject.org/torspec.git/tree/
proposals/247-hs-guard-discovery.txt

14. Mathewson, N.: Next-generation hidden services in Tor (Tor proposal 224).
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt

15. Muffett, A.: How to get a company or organisation to implement an onion site, i.e. a
Tor hidden service, October 2015. https://www.facebook.com/notes/alec-muffett/
how-to-get-a-company-or-organisation-to-implement-an-onion-site-ie-a-tor-
hidden-/10153762090530962

16. Muffett, A.: 1 million people use Facebook over Tor, April 2016. https://www.
facebook.com/notes/facebook-over-tor/1-million-people-use-facebook-over-tor/
865624066877648

17. Onion service traffic metrics site. https://metrics.torproject.org/hidserv-rend-
relayed-cells.html

18. Onionshare. https://onionshare.org/
19. Øverlier, L., Syverson, P.: Locating hidden servers. In: 2006 IEEE Symposium on

Security and Privacy (S& P 2006), Proceedings, pp. 100–114. IEEE CS, May 2006
20. Øverlier, L., Syverson, P.: Valet services: improving hidden servers with a personal

touch. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 223–244.
Springer, Heidelberg (2006). doi:10.1007/11957454 13

21. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Proxies for anonymous routing. In:
Twelfth Annual Computer Security Applications Conference, pp. 95–104. IEEE
CS Press (1996)

22. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Protocols using anonymous connec-
tions: mobile applications. In: Christianson, B., Crispo, B., Lomas, M., Roe, M.
(eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 13–23. Springer, Heidelberg
(1998). doi:10.1007/BFb0028156

23. Ricochet. https://ricochet.im/
24. Shackleton, W.: Improved sharing of .onion links on Facebook (2017). https://

www.facebook.com/notes/facebook-over-tor/improved-sharing-of-onion-links-on-
facebook/1196217037151681/

25. Tor: Hidden Services Protocol. https://www.torproject.org/docs/hidden-services.
html.en

26. Tor network size. https://metrics.torproject.org/networksize.html
27. Tor Rendezvous Specification. https://gitweb.torproject.org/torspec.git/tree/

rend-spec.txt

http://dx.doi.org/10.1007/3-540-61996-8_37
https://gitweb.torproject.org/torspec.git/tree/proposals/250-commit-reveal-consensus.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/250-commit-reveal-consensus.txt
https://github.com/robgjansen/onionperf
https://gitweb.torproject.org/torspec.git/tree/proposals/247-hs-guard-discovery.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/247-hs-guard-discovery.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt
https://www.facebook.com/notes/alec-muffett/how-to-get-a-company-or-organisation-to-implement-an-onion-site-ie-a-tor-hidden-/10153762090530962
https://www.facebook.com/notes/alec-muffett/how-to-get-a-company-or-organisation-to-implement-an-onion-site-ie-a-tor-hidden-/10153762090530962
https://www.facebook.com/notes/alec-muffett/how-to-get-a-company-or-organisation-to-implement-an-onion-site-ie-a-tor-hidden-/10153762090530962
https://www.facebook.com/notes/facebook-over-tor/1-million-people-use-facebook-over-tor/865624066877648
https://www.facebook.com/notes/facebook-over-tor/1-million-people-use-facebook-over-tor/865624066877648
https://www.facebook.com/notes/facebook-over-tor/1-million-people-use-facebook-over-tor/865624066877648
https://metrics.torproject.org/hidserv-rend-relayed-cells.html
https://metrics.torproject.org/hidserv-rend-relayed-cells.html
https://onionshare.org/
http://dx.doi.org/10.1007/11957454_13
http://dx.doi.org/10.1007/BFb0028156
https://ricochet.im/
https://www.facebook.com/notes/facebook-over-tor/improved-sharing-of-onion-links-on-facebook/1196217037151681/
https://www.facebook.com/notes/facebook-over-tor/improved-sharing-of-onion-links-on-facebook/1196217037151681/
https://www.facebook.com/notes/facebook-over-tor/improved-sharing-of-onion-links-on-facebook/1196217037151681/
https://www.torproject.org/docs/hidden-services.html.en
https://www.torproject.org/docs/hidden-services.html.en
https://metrics.torproject.org/networksize.html
https://gitweb.torproject.org/torspec.git/tree/rend-spec.txt
https://gitweb.torproject.org/torspec.git/tree/rend-spec.txt

28 P. Syverson

28. The Tor Project. https://www.torproject.org/
29. Victors, J., Li, M., Fu, X.: The onion name system: Tor-powered decentralized DNS

for Tor onion services. Proc. Priv. Enhancing Technol. 2017(1), 21–41 (2017)
30. Waldmen, M., Rubin, A.D., Cranor, L.F.: Publius: A robust, tamper-evident,

censorship-resistant web publishing system. In: Proceedings of the 9th USENIX
Security Symposium, August 2000

https://www.torproject.org/

Tightly Secure Ring-LWE Based Key
Encapsulation with Short Ciphertexts

Martin R. Albrecht1, Emmanuela Orsini2, Kenneth G. Paterson1, Guy Peer3,
and Nigel P. Smart2(B)

1 Royal Holloway, University of London, London, UK
2 University of Bristol, Bristol, UK

nigel@cs.bris.ac.uk
3 Dyadic Security, Ashkelon, Israel

Abstract. We provide a tight security proof for an IND-CCA Ring-
LWE based Key Encapsulation Mechanism that is derived from a generic
construction of Dent (IMA Cryptography and Coding, 2003). Such a
tight reduction is not known for the generic construction. The resulting
scheme has shorter ciphertexts than can be achieved with other generic
constructions of Dent or by using the well-known Fujisaki-Okamoto con-
structions (PKC 1999, Crypto 1999). Our tight security proof is obtained
by reducing to the security of the underlying Ring-LWE problem, avoid-
ing an intermediate reduction to a CPA-secure encryption scheme. The
proof technique maybe of interest for other schemes based on LWE and
Ring-LWE.

1 Introduction

The possible advent of a quantum computer would immediately render insecure
the vast majority of currently deployed public key cryptography. Hence, over
the last few years, there has been considerably effort in trying to establish new
public key encryption and signature schemes which are presumably resistant to
the threat of quantum computers. Indeed, the US standards body NIST last
year launched a Post Quantum Crypto (PQC) Project and published a call for
submissions of quantum-resistant public-key cryptographic algorithms [27].

Among the leading candidates for post-quantum public key encryption
(PKE) schemes are those based on the Learning with Errors (LWE) problem and
its ring equivalent (Ring-LWE). Starting with the seminal work of Regev [29],
there has been considerable work on various aspects of designing public key
encryption schemes based on LWE and Ring-LWE [9,25], research into imple-
mentation aspects [8,13,23,30,31], research into attacks [1,2,4,20–22], and var-
ious applications to advanced cryptographic constructions such as Somewhat
Homomorphic Encryption [6,7,18].

Much existing work has, however, concentrated on producing encryption
schemes meeting only a basic level of security, namely IND-CPA security. The
development of schemes achieving the much stronger IND-CCA security notion
has received less attention. Of course, given an IND-CPA scheme, we can apply
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 29–46, 2017.
DOI: 10.1007/978-3-319-66402-6 4

30 M.R. Albrecht et al.

a standard off-the-shelf transform to obtain an IND-CCA scheme. For example,
the Fujisaki-Okamoto transform in [14] constructs an IND-CCA secure public-
key encryption scheme (PKE) from an IND-CPA (or even one-way secure) secure
PKE, if it is also γ-uniform (see Definition 2). This reduction is tight but comes
at the cost of also encrypting, under the IND-CPA PKE, the concaternation of
the message and a random seed of λ bits, where λ is the security parameter.1

Since public key encryption is not well-suited to the transmission of long mes-
sages, public key encryption is often used to transmit a symmetric key, which
is then used in a one-time-secure Authenticated Encryption (AE) scheme to
encrypt the actual message. This methodology is often called the KEM-DEM
paradigm [10]. It only requires the construction of a key encapsulation mecha-
nism (KEM) rather than a full PKE scheme, and this is usually somewhat easier
or leads to more efficient solutions than designing or repurposing a PKE scheme.
It turns out that there are general constructions for obtaining IND-CCA secure
KEMs from weaker primitives.

In the context of producing a KEM, the Fujisaki-Okamoto transform can be
applied by setting the “primary message” to be the random KEM key of size
λ bits. Thus one obtains a total message size of 2 λ bits to encrypt under the
IND-CPA encryption scheme. However, in LWE schemes the underlying message
size directly impacts on the overall ciphertext size and the additional λ bits of
random seed produce a ciphertext expansion of at least λ bits.

Dent [11] provides a veritable smörg̊asbord of techniques for constructing
KEMs from weakly secure PKE schemes, giving five constructions of IND-CCA
secure KEMs in total. The constructions in Tables 1–3 of [11] require strong require
strong properties from an underlying IND-CPA secure PKE scheme. The construc-
tion in Table 4 of [11] requires OW-CPA security for a starting deterministic PKE
scheme. This transformation is attractive, since the reduction given in [11, Theo-
rem 8] is tight. On the other hand, ciphertexts are slightly expanded compared to
the starting scheme, since they require the inclusion of an extra hash value (whose
size must be at least twice the security parameter). It is possible to de-randomise
any IND-CPA secure PKE scheme having large message space to achieve OW-CPA
security, e.g. by setting the randomness r used during encryption as r = H(m) for
some random oracle H(·). The proof is a simple exercise. Thus Dent’s Table 4 con-
struction can be used with an LWE-style PKE scheme as a starting point, though
again with a cost of some ciphertext expansion.

The construction in Table 5 of [11] and analysed in Theorems 5 and 9 for
building IND-CCA secure KEMs is of more interest to us. The construction starts
with an OW-CPA secure scheme, but a probabilistic one, and does not introduce
any ciphertext overhead. On the other hand, it has a non-tight reduction: the
security bound degrades by a factor qD + qH + qK where qD is the number
of decryption oracle queries and qK resp. qH is the number of key derivation
resp. hash function queries (both modelled as a random oracle).

In the spirit of a KEM-DEM construction is a second generic transform
of Fujisaki and Okamoto, given in [15,16] (see [28] for an application in the

1 In a post-quantum scheme the reader should have λ = 256 in mind.

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 31

context of LWE-based public-key encryption). This yields a hybrid encryption
scheme, but it is not in the true KEM-DEM paradigm (since the KEM part
depends on the message m). The underlying symmetric cipher need not be an
AE scheme, but can simply be a one-time pad encryption of the message and
the message is used to produce the required randomness for the KEM-like part.
The method of [15,16] has two advantages over [14]: firstly a one-time pad is
more space efficient than an AE scheme; secondly the public key component does
not suffer from the ciphertext expansion noted above for LWE based schemes.
However, these benefits come at a cost, because the associated security reduction
is not tight. In particular, the security bound degrades by a factor of qH , the
number of queries made to a hash function H, modelled as a random oracle.
We note that a tight reduction can be achieved [17], either by making stronger
assumptions about the underlying primitives or when the underlying primitive
permits plaintext checking.

Having a tight security reduction is a very desirable property in practice-
oriented cryptographic primitives. Essentially, the tightness of a reduction deter-
mines the strength of the security guarantees provided by the security proof; in
concrete security terms, a tight reduction shows that an algorithm breaking the
security of the scheme can be used to solve an assumed-to-be-hard problem with-
out any significant increase in the running time or loss in success probability. A
tight proof thus ensures that breaking the scheme (within the respective adversar-
ial model) is at least as hard as breaking the alleged hard computational problem.
On the other hand, a non-tight reduction can only provide much weaker guaran-
tees, giving rise to the argument that the primitive should be instantiated with
larger security parameters in order to account for the non-tightness of the proof.

This discussion and the preceding analysis of Dent’s constructions raises the
natural question: is it possible to build an IND-CCA secure KEM from simpler
primitives with a tight security reduction, and without introducing any cipher-
text overhead beyond that of the DEM? In this paper, we provide a positive
solution to this question.

To answer the question, we produce a new security analysis for Dent’s sec-
ond construction (as shown in [11, Table 5]) in Sect. 3. The analysis applies to
the case where the underlying OW-CPA scheme is instantiated using a spe-
cific construction based on lattices associated to polynomial rings, and which
is secure under a natural variant of the Ring-LWE assumption. We name the
resulting IND-CCA secure KEM as LIMA (for LattIce MAthematics), cf. Sect. 2
for details. In contrast to the generic case handled in [11], our security reduction
for the specific scheme is tight. Our proof exploits some weakly homomorphic
properties enjoyed by the underlying encryption scheme. Because it is based on
applying Dent’s second construction to a simpler scheme, LIMA has no cipher-
text overhead beyond that simpler scheme. Thus, we find that tightness can be
maintained, whilst still using a generic construction which at first sight appears
to be non-tight. Given the increased interest in LWE-based encryption our proof
technique may be of interest in other schemes.

32 M.R. Albrecht et al.

In concurrent and independent work, Hofheinz et al. [19] have shown that,
amongst other things, Dent’s second construction can be proven to achieve IND-
CCA security in a tight manner, for any starting scheme that is IND-CPA secure
(rather than OW-CPA secure as in Dent’s original analysis).

We overview the construction of LIMA here. We start from standard Ring-
LWE encryption going back to [24], based on a polynomial ring of dimension
N , reduced with respect to a modulus q. The encryption consists of an Ring-
LWE sample, consisting of two ring elements c0, c1, and thus has ciphertexts of
bitsize 2 · N · �log2 q�. For reference, the reader may think of N = 1024 and
�log2 q� = 17. Assuming one bit can be encoded per polynomial coefficient, this
size can be reduced to N ·�log2 q�+�·�log2 q� for �-bit messages by truncating c0.
Thus, to transport a λ-bit key, a minimum of (N +λ) · �log2 q� bits of ciphertext
need to be sent.2

In Table 1, we compare the tightness and ciphertext expansion of the various
constructions mentioned above, as well as in this work. We let |AE(m)| denote
the ciphertext size of a one-time AE encryption of a message m, which is roughly
|m| + λ′ where λ′ is the space needed for a post-quantum secure authentication
code. For the [14] scheme we assume that |m| is too large to be encrypted directly
under the transform, and thus the scheme needs to be used in a hybrid format.

Table 1. Ring-LWE ciphertext sizes for various IND-CCA transforms. We write �q for
�log2 q�.

Class Construction Ciphertext Size Tightness

PKE [14] (N + 2 · λ) · �q + |AE(m)| ε + . . .

PKE [15,16] (N + λ) · �q + |m| qH · ε

KEM [11, Table 4] (N + λ) · �q + 2λ + |AE(m)| ε + . . .

KEM [11, Table 5] (N + λ) · �q + |AE(m)| (qD + qH + qK) · ε

KEM This work (non-generic) (N + λ) · �q + |AE(m)| ε + . . .

Note that our security analysis, like all the prior mentioned works, is in the
Random Oracle Model (ROM). To fully assess post-quantum security, one should
instead analyse security in the Quantum ROM (QROM), as introduced in [5]. In
this model, an adversary can make superposition queries to the Random Oracle,
possibly giving it much greater power, and invalidating certain classical ROM
proof techniques. One way to achieve QROM security for PKE and KEMs is
to add extra hash values to ciphertexts, cf. [32] which does this in the context
of the FO transform. This of course increases the ciphertext size and, currently,
results in non-tight reductions. It is an important open question whether one can
achieve QROM security for a Dent-like KEM construction with a tight reduction
and without suffering any ciphertext overhead.
2 More bits can be saved by suppressing the least significant bits of c1 resp., in this

specific case of transmitting a key, by reconciliation [12,28].

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 33

Finally, achieving IND-CCA security also requires handling decryption errors
of genuine encryptions. In Ring-LWE systems a validly generated ciphertext may
not decrypt correctly if the initial “error term” used to generate the ciphertext
is so large that it produces a wrap-around with respect to the modulus q. There
are two ways around this issue; either select q so large that the probability of
this occuring is vanishingly small, i.e. 2−λ, or by truncating the distribution
used to produce the error term. We note, though, that these two modifications
are orthogonal to the refined security proof of Dent’s construction given in this
work, since in Dent’s construction the decryption algorithm actually re-encrypts
the ciphertext as part of its operation and so can detect whether such an issue
occurs.

2 Ring-LWE Key Encapsulation

Our basic scheme is defined over a global ring R = Z[X]/(Φm(X)) for some
cyclotomic polynomial Φm(X), and essentially follows the construction in [25].
We will let Rq denote the reduction of this ring modulo the integer q, i.e.
Rq = Zq[X]/(Φm(X)). We let N = φ(m) denote the degree of this ring. On
the set Zq we define the distribution χσ which selects an integer with proba-
bility approximated by a discrete Gaussian with standard deviation σ centred
on 0. The parameters (N, q, σ) will heavily influence the security of the scheme,
and so are functions of a security parameter λ. In this paper, we assume suitable
choices of the parameters can be selected for given values of λ. As noted in the
introduction, the reader may think of N = 1024 and �log2 q� = 17, while σ will
be a small constant ≈ 3.2.

The distribution χσ can be extended to all of Rq by generating N values
from χσ independently and then assigning these values to the coefficients of an
element from Rq, in which case we write a ← χN

σ . If we wish to select an element
in Rq uniformly at random we will write a ← Rq. If we want to be precise about
what random coins we use then we write a ←r Rq.

To aid bandwidth efficiency we sometimes truncate a ring element to a vector
of integers modulo q of smaller size. Given a ring element a ∈ Rq, representing
the element

a = a0 + a1 · X + · · · + aN−1 · XN−1

we define, for 1 ≤ T ≤ N ,

Trunc(a, T) = a0 + a1 · X + · · · + aT−1 · XT−1.

This is encoded, for transmission and storage, as the vector of T integers

a0‖a1 . . . ‖aT−1.

2.1 IND-CPA Secure PKE

To define our KEM we first define a basic PKE scheme which is only IND-CPA
secure. We give this as a tuple of algorithms (KeyGen,Enc-CPA,Dec-CPA).

34 M.R. Albrecht et al.

Key-Gen: Key generation proceeds as follows

1. a ← Rq.
2. s ← χN

σ .
3. e′ ← χN

σ .
4. b ← a · s + e′.
5. sk ← s.
6. pk ← (a, b).
7. Return (pk, sk).

Enc-CPA(m, pk, r): The encryption mechanism takes as input the public key
pk = (a, b), a message m ∈ {0, 1}�, and random coins r. We assume that � =
|m| ≤ N . We map this bit string (interpreted as a bit-vector) to a ring element
(with binary coefficients) via the function BV-2-RE(m), and perform the inverse
mapping via a function RE-2-BV(μ). The function BV-2-RE takes a bit string of
length � and maps it to a polynomial whose first � coefficients are the associated
bits, and all other coefficients are zero. (Here we identify bit values with 0 and
1 mod q.)

1. μ ← BV-2-RE(m).
2. v, e, d ←r χN

σ .
3. x ← d + Δq · μ (mod q). (Here, Δq = 	q/2
.)
4. t ← b · v + x.
5. c0 ← Trunc(t, �).
6. c1 ← a · v + e.
7. Return c = (c0, c1).

Note that c0 is the ring element b ·v +d+Δq ·m truncated to � coefficients, thus
the bit-size of a ciphertext is equal to (N + �) · �log2 q� = (N + |m|) · �log2 q�.
Dec-CPA(c, sk): On input of a ciphertext c = (c0, c1), and a secret key sk = s
the decryption is performed as follows:

1. Define � to be the length of c0, i.e. the number of field elements used to
represent c0.

2. v ← s · c1.
3. t ← Trunc(v, �).
4. f ← c0 − t.
5. Convert f into centered-representation. That is, let f = (f0, . . . , f�−1) where

each fi ∈ Zq. For each i, if 0 ≤ fi ≤ q−1
2 then leave it unchanged. Else, if

q
2 < fi ≤ q − 1, then set fi ← fi − q (over the integers).

6. μ ←
∣
∣
∣

⌊
2
q f

⌉∣
∣
∣ (i.e., round component-wise to the nearest integer and take the

absolute value; the result will be a binary vector).
7. m ← RE-2-BV(μ).
8. Return m.

We will prove that this PKE scheme is IND-CPA secure under an LWE-style
assumption in Sect. 3.

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 35

2.2 IND-CCA Secure PKE

Before proceeding to define our KEM, we explain how to use the above IND-
CPA-secure PKE scheme to obtain an IND-CCA secure PKE scheme using the
Fujisaki—Okamoto transform of [14]. This is for later comparison with our pro-
posed IND-CCA secure KEM.

We take the tuple of algorithms (KeyGen,Enc-CPA,Dec-CPA) and produce
a new tuple (KeyGen, Enc-CCA, Dec-CCA). The key generation algorithm stays
the same and we do not repeat it.

The original encryption scheme (KeyGen,Enc-CPA,Dec-CPA) can encrypt N -
bit messages, while the IND-CCA scheme encrypts messages that are N −λ bits
in length. The encryption scheme makes use of a hash function H to produce
the random coins r for the underlying IND-CPA secure scheme; we model H as
a Random Oracle in the security analysis.

Enc-CCA(m, pk):

1. u ← {0, 1}λ.
2. μ ← m‖u.
3. r ← H(μ).
4. (c0, c1) ← Enc-CPA(μ, pk, r).
5. Return c = (c0, c1).

Dec-CCA(c, sk):

1. μ ← Dec-CPA(c, sk).
2. m‖u ← μ, where u is λ bits long.
3. r ← H(μ).
4. c′ ← Enc-CPA(μ, pk, r).
5. If c �= c′ then return ⊥.
6. Return m.

Note for this scheme the bit-size of a ciphertext is equal to (N +|m|+λ)·�log2 q�,
since we require N elements to represent c1, and |m|+λ elements to represent c0,
as the message for the underlying CPA scheme is equal to the actual message plus
λ bits of randomness. We provide a security theorem establishing the IND-CCA
security of this PKE scheme in Sect. 3. This is based on the results of [14].

2.3 LIMA: A CCA-Secure Key Encapsulation Mechanism

One could use the above encryption scheme directly as a KEM by simply using
it to encrypt one-time � ≤ N − λ bit keys, with a resulting ciphertext size
of (N + � + λ) · �log2 q� bits. However, the following scheme (which we call
LIMA and which follows the generic construction methodology of [11, Table 5]),
enables us to transmit a key with � bits of entropy using a ciphertext of bit-
size (N + �) · �log2 q�, thus reducing by λ · �log2 q� the number of bits needed
to represent a ciphertext. The method makes use not only of a random oracle

36 M.R. Albrecht et al.

H to produce the randomness needed for the encryption function, but also a
key derivation function K(�′) (also modelled as a random oracle) to produce the
actual encapsulated key (which can be of any length �′). Again the scheme is
presented as a tuple of algorithms LIMA = (KeyGen,Encap-CCA,Decap-CCA) in
which KeyGen is as for the basic encryption scheme above.

Encap-CCA(�, �′, pk): This takes as input a public key pk and two bit lengths
�, �′, and outputs an encapsulation c = (c0, c1) and the key k ∈ {0, 1}�′

it
encapsulates. The bit length � controls the ciphertext size and the associated
entropy in the output key k.

1. x ← {0, 1}�.
2. r ← H(x).
3. (c0, c1) ← Enc-CPA(x, pk, r).
4. k ← K(�′)(x).
5. Return (c = (c0, c1),k).

Decap-CCA(c, sk): This takes as input a secret key key sk and an encapsulation
c = (c0, c1), and outputs the key k it encapsulates.

1. x ← Dec-CPA(c, sk).
2. r ← H(x).
3. c′ ← Enc-CPA(x, pk, r).
4. If c �= c′ then return ⊥.
5. k ← K(�′)(x).
6. Return k.

The IND-CCA security of this KEM is established in the next section, with a
tight reduction to an LWE-style hardness assumption.

3 Security Proofs

In this section we present the hard problem on which the security of our scheme
LIMA rests, survey prior security results on the Fujisaki-Okamoto transform and
Dent’s construction, and finally present our tight proof of security for LIMA.

3.1 Hard Problems

We recall the definition of Ring-LWE problem in normal form [3,24,26]. In the
definition below we directly consider all elements in Rq instead of the appropriate
dual and canonical spaces associated to with it.

Definition 1 (Ring-LWE). Let χσ denote the distribution defined earlier.
Consider the following experiment: a challenger picks s ∈ χN

σ ⊂ Rq and a bit
β ∈ {0, 1}. The adversary A is given an oracle which on empty input returns a
pair (a, b) ∈ R2

q, where if β = 0 the two elements are chosen uniformly at ran-
dom, and if β = 1 the value a is chosen uniformly at random and b is selected

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 37

such that b = a · s + e where e ∈ χN
σ ⊂ Rq. At the end of the experiment the

adversary outputs its guess β′ as to the hidden bit β. For an adversary which
makes nQ calls to its oracle and running in time t, we define

AdvLWE(A, nQ, t) = 2 ·
∣
∣
∣ Pr[β = β′] − 1

2

∣
∣
∣.

We conjecture that AdvLWE(A, nQ, t) is negligible for all adversaries.

Conjecture 1. For suitable choices of σ,N and q (which depend on the security
parameter λ) we conjecture that ε = AdvLWE(A,nQ, t) is a negligible function in
the security parameter λ. In particular, for all adversaries running in time t we
have t/ε2 ≥ 2λ.

We note that in the conjecture above we normalize the running time by success
probability as 1/ε2 — instead of the more customary 1/ε — because we are
considering a decision problem.

3.2 Provable Security of the Basic Encryption Scheme

The IND-CPA security of our basic encryption scheme (KeyGen,Enc-CPA,
Dec-CPA) is established in the following theorem.

Theorem 1. In the random oracle model, if the LWE problem is hard, then the
scheme (KeyGen,Enc-CPA,Dec-CPA) is IND-CPA secure. In particular, if there
is an adversary A against the IND-CPA security of (KeyGen,Enc-CPA,Dec-CPA)
in the random oracle model, then there are adversaries B and D such that

AdvIND-CPA(A) ≤ 2 · AdvLWE(B, 1, t) + 2 · AdvLWE(D, 2, t).

We provide a proof of this theorem in the full version of this work.

3.3 Provable Security of Our IND-CCA Secure PKE Scheme

Our construction of an IND-CCA secure encryption scheme uses the Fujisaki-
Okamoto transform [14] applied to our basic scheme. Before we can apply this
transform, we first need to establish its γ-uniformity.

Definition 2 (γ-Uniformity). Consider an IND-CPA encryption scheme
given by the tuple of algorithms (KeyGen, Enc-CPA, Dec-CPA) with Enc-CPA :
M × R −→ C being the encryption function mapping messages and randomness
to ciphertexts. Such a scheme is said to be γ-uniform if for all public keys pk
output by KeyGen, all m ∈ M and all c ∈ C we have γ(pk,m, c) ≤ γ,3 where

γ(pk,m, c) = Pr[r ∈ R : c = Enc-CPA(m, pk, r)].

3 We let γ(·) denote a function and γ denote a constant.

38 M.R. Albrecht et al.

The lemma below establishes that Ring-LWE-based encryption has low γ-
uniformity.

Lemma 1. Let (KeyGen,Enc-CPA,Dec-CPA) with parameters N,χσ, q be the
basic PKE scheme described in Sect. 2.1 and let σ such that Pr[X = x | X ←r

χσ] ≤ 1/2 for any x, then this scheme is γ-uniform with γ ≤ 2−N .

Proof. For simplicity, we consider the case of encryption without truncation,
where we will prove a stronger bound. Our argument extends easily to the case
of truncated ciphertexts. Recall that encryption can be written as

c = (c0, c1) = (b · v + e, a · v + d + Δq · μ (mod q)).

Here μ is a deterministic encoding of the message m. Recall also that v, e, d ←r

χN
σ . We see that for fixed m, and fixed c = (c0, c1), if v is also fixed, then d

and e are determined (by solving a simple linear system of equations). Thus
we can write (for a fixed public key) d = f1(v) and e = f2(v) for functions
f1, f2 that depend on m and c. Letting V,E,D denote random variables that
are distributed as χN

σ , and letting 1g denote an indicator function for a predicate
g, it follows that

γ(pk,m, c) = Pr[(v, e, d) ←r (χN
σ)3 : c = Enc-CPA(m, pk, (v, e, d))]

=
∑

v,e,d

1c=Enc-CPA(m,pk,(v,e,d)) · Pr[(V,E,D) = (v, e, d)]

=
∑

v,e,d

1c=Enc-CPA(m,pk,(v,e,d)) · Pr[V = v] · Pr[E = e] · Pr[D = d]

≤ 2−2N
∑

v,e,d

1c=Enc-CPA(m,pk,(v,e,d)) · Pr[V = v]

= 2−2N
∑

v

1c=Enc-CPA(m,pk,(v,f2(v),f1(v))) · Pr[V = v]

≤ 2−2N
∑

v

1 · Pr[V = v]

= 2−2N .

Here, we first used the independence of the random variables V,E,D to simplify.
Then, we used that if X ∼ χN

σ , then Pr[X = x] ≤ 2−N for any value x by our
assumption for each coordinate and the independence of the coordinates. After
that, we used the fact that if v is fixed, then e and d are determined as functions
of v to simplify the sum to one over a single variable v. Finally, we used the fact
that the sum over a distribution’s probabilities equals 1. ��
Note that in our construction the condition ∀x,Pr[X = x | X ←r χN

σ] ≤ 1/2
is always satisfied by picking σ > 1. Also note that if we truncate c0 to �
components then the above bound becomes 2−(N+�) by considering d truncated
to � components directly as being sampled from χ�

σ.

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 39

Applying the main result (Theorem 3) of Fujisaki and Okamoto [14], we
obtain the following:4

Theorem 2. Suppose that (KeyGen,Enc-CPA,Dec-CPA) is (t′, ε′) IND-CPA
secure and γ-uniform. For any qH , qD, the scheme (KeyGen, Enc-CCA,
Dec-CCA), derived from (KeyGen, Enc-CPA, Dec-CPA) as in Sect. 2.2, is (t, ε)
IND-CCA secure for any adversary making at most qH queries to H (modelled
as a random oracle) and at most qD queries to the decryption oracle, where

t = t′ − qH · (TEnc + v · N),

ε = ε′ · (1 − γ)−qD + qH · 2−λ+1,

where TEnc is the running time of the encryption function and v is a constant.

3.4 Provable Security of LIMA

As remarked earlier our KEM construction LIMA is obtained by applying the
construction of Dent [11, Table 5]. This builds an IND-CCA secure KEM from
a OW-CPA secure PKE scheme. By Theorem 1, we know that our underlying
encryption scheme is IND-CPA secure. It also has large message space. It follows
that it is OW-CPA secure. Directly applying the generic result [11, Theorem 5],
we would obtain the following security theorem for LIMA.

Theorem 3. Suppose there is an adversary A which breaks the IND-CCA secu-
rity of LIMA in the random oracle model, with advantage ε, running in time t
making at most qD decapsulation queries, qH queries to the random oracle imple-
menting the PRG function and qK queries to the random oracle implementing
the KDF. Then there is an adversary B breaking the OW-CPA security of the
underlying encryption scheme running in time essentially t, with advantage ε′

such that
ε ≤ (qD + qH + qK) · ε′ +

qD

2�
+ γ · qD

where � is the size of the message being encrypted in the underlying encryption
scheme, i.e. the size of x in our construction.,

The problem with this result is that it does not give a very tight reduction.
We thus present a new tight proof of our construction, which is not generic,
i.e. we make explicit use of the Ring-LWE based construction of the underlying
encryption scheme.

Theorem 4. In the random oracle model, if the LWE problem is hard then
LIMA is an IND-CCA secure KEM. In particular if A is an adversary against
the IND-CCA security of LIMA running in time t, then there are adversaries B
and D such that

4 Using k = N and k0 = 256 in Theorem 3 of [14].

40 M.R. Albrecht et al.

Game G0: IND-CCA Security of our KEM

1. a ← Rq

2. s, e′ ← χN
σ

3. b ← a · s + e′.
4. x ← {0, 1}�

5. (v, e, d) ← H(x).
6. μ ← BV-2-RE(x).
7. a′ ← a · v + e.
8. b′ ← b · v + d.
9. t ← b′ + Δq · μ.

10. c∗
0 ← Trunc(t, �).

11. c∗
1 ← a′.

12. β ← {0, 1}.
13. If β = 0 then k ← {0, 1}�′

14. Else k ← K(x).
15. β′ ← A((a, b), (c∗

0 , c∗
1),k).

– If A calls decapsulation oracle on a pair c = (c0, c1) �= (c∗
0 , c∗

1) then
(a) x′ ← Dec-CPA(c, s).
(b) (v′, e′, d′) ← H(x′).
(c) μ′ ← BV-2-RE(x′).
(d) a′′ ← a · v′ + e′.
(e) b′′ ← b · v′ + d′.
(f) t′ ← b′′ + Δq · μ′.
(g) c′

0 ← Trunc(t, �).
(h) c′

1 ← a′′.
(i) If c �= c′ = (c′

0, c′
1) then return ⊥.

(j) Return k′ ← K(x′).
16. Output 1 if and only if β = β′.

Fig. 1. Game G0: IND-CCA Security of our KEM

ε ≤ 2 ·
(

ε′ + ε′′ +
qH + qK

2�
+ γ · qD

)

,

where ε = AdvIND-CCA(A, t), ε′ = AdvLWE(B, 1, t) and ε′′ = AdvLWE(D, 2, t).

Proof. Consider the game G0, defined in Fig. 1, defining IND-CCA security of
our KEM construction. As this is run in the Random Oracle model we model
the PRG by a random oracle H, and the KDF by a random oracle K, each of
which are maintained by the challenger as lists (H-List and K-List) of pairs of
input/output values. We define the advantage in the usual way in this game

ε = AdvIND-CCA(A, t) = 2 ·
∣
∣
∣ Pr[β = β′] − 1

2

∣
∣
∣ = 2 ·

∣
∣
∣ Pr[A wins game G0] − 1

2

∣
∣
∣.

We now make a game hop as follows. We replace the real decapsulation algo-
rithm used in Game G0 to one which operates as in Fig. 2. Note that as written
the oracle takes time O(qH) to execute. However, by also storing the associated
(c′

0, c
′
1) in the H-List, we can obtain a logarithmic cost to evaluate the oracle.

The game with this new decapsulation oracle is called G1. Clearly G0 and G1 are
identical except when the adversary submits an encapsulation to the decapsula-
tion oracle for which it has not queried the random oracle H on the underlying
message x.

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 41

Decapsulation oracle in Game G1

1. For all tuples (x′, v′, e′, d′) on the H-List execute
(a) μ′ ← BV-2-RE(x′).
(b) a′′ ← a · v′ + e′.
(c) b′′ ← b · v′ + d′.
(d) t′ ← b′′ + Δq · μ′.
(e) c′

0 ← Trunc(t, �).
(f) c′

1 ← a′′.
(g) If c = c′ = (c′

0, c′
1) then return k′ ← K(x′).

2. Return ⊥.

Fig. 2. Decapsulation oracle in Game G1

Let E denote the event that decapsulation of a ciphertext in Game G0 is correctly
handled, but it is not correctly handled in Game G1. We have

Pr[A wins game G0] = Pr[A wins game G0|E] · Pr[E]
+ Pr[A wins game G0|¬E] · Pr[¬E]

≤ Pr[E] + Pr[A wins game G0|¬E]
≤ γ · qD + Pr[A wins game G1].

Here we apply a union bound across each of the qD decapsulation queries and use
the fact that, for each decapsulation query, the probability of event E is bounded
by γ, relating to the uniformity of the encryption scheme. This is because E
occurs only if the value of x underlying the query c has not been queried to H,
in which case the random value used to encrypt x is still uniformly random from
the adversary’s perspective; hence the probability that x actually encapsulates
to c is bounded by γ.

We now make a game hop to the game in which instead of picking b = a·s+e′

we select b ∈ Rq uniformly at random. We call this game G2 and define it in
Fig. 3. If is then clear that if the adversary can distinguish playing G1 from G2

then it can solve the LWE problem. Thus we have, for some adversary B,

ε′ = AdvLWE(B, 1, t) =
∣
∣
∣ Pr[A wins game G1] − Pr[A wins game G2]

∣
∣
∣.

At this point in the proof of IND-CPA security for the basic PKE scheme we
made a game hop to a game in which a′ and b′ are chosen uniformly at random,
and then remarked that if the adversary can spot this hop then we can turn the
adversary into an algorithm which attacks the LWE problem with two samples.
The same direct approach cannot be used here, as the input to the random oracle
H depends on the message. Thus an adversary could distinguish which game it
is in, if it was able to recover the message x in some way.

Instead of performing a game hop at this point we construct an adversary D,
given in Fig. 4, which uses the adversary A in game G2 to solve the same LWE
problem. The algorithm D is given as input (obtained via two calls to the LWE
oracle) a tuple (a, b, a′, b′), where a, b are chosen uniformly random in Rq, and

42 M.R. Albrecht et al.

Game G2

1. a, b ← Rq

2. x ← {0, 1}�

3. (v, e, d) ← H(x).
4. μ ← BV-2-RE(x).
5. a′ ← a · v + e.
6. b′ ← b · v + d.
7. t ← b′ + Δq · μ.
8. c∗

0 ← Trunc(t, �).
9. c∗

1 ← a′.
10. β ← {0, 1}.
11. If β = 0 then k ← {0, 1}�′

12. Else k ← K(x).
13. β′ ← A((a, b), (c∗

0 , c∗
1),k).

– If A calls it decapsulation oracle on a pair c = (c0, c1) �= (c∗
0 , c∗

1) then respond using
the method from Game G1 above.

14. Output 1 if and only if β = β′.

Fig. 3. Game G2

Adversary D breaking LWE

1. x ← {0, 1}�

2. μ ← BV-2-RE(x).
3. t ← b′ + Δq · μ.
4. c∗

0 ← Trunc(t, �).
5. c∗

1 ← a′.
6. k ← {0, 1}�′

7. β′ ← A((a, b), (c∗
0 , c∗

1),k).
– If A calls it decapsulation oracle on a pair c = (c0, c1) �= (c∗

0 , c∗
1) then respond using

the method from Game G1 above.
– If A calls the random oracle H or the random oracle K on the value x then D terminates

and outputs 1, i.e. (a, b, a′, b′) is an LWE pair of samples.
8. If A terminates without making the random oracle calls above then D outputs zero.

Fig. 4. Adversary D breaking LWE

is asked to distinguish whether (a′, b′) are also selected uniformly at random or
whether a′ = a · v + e and b′ = b · v + d for some values v, e, d ∈ χσ.

First note that the encapsulation which is passed to A by D is not a valid
encapsulation of any key, irrespective of what D’s input is. This is because, even
if D’s input was a pair of LWE samples the randomness used to produce the
samples did not come from applying H to the encoded message x.

Let F denote the event that the adversary A queries the random oracle H
on the value x, and let G denote the event that A queries the random oracle K
on x. If neither F nor G occurs then A has no advantage in winning the Game
G2, so we have

Pr[A wins game G2] (1)
= Pr[A wins game G2|F ∨ G] · Pr[F ∨ G in game G2]

+ Pr[A wins game G2|¬(F ∨ G)] · Pr[¬(F ∨ G) in game G2]

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 43

≤ Pr[F ∨ G in game G2]
+ Pr[A wins game G2|¬F ∧ ¬G in game G2]

= Pr[F ∨ G in game G2] +
1
2
. (2)

We examine the behaviour of D when it is given the two different inputs.

– If the input to D is a uniformly random tuple then the target encapsulation
(c∗

0, c
∗
1) contains no information about x. Thus the probability that F or G

happens is essentially (qH + qK) · 2−�, where qH is the number of queries to
H made by A and qK is the number of queries made to K. So we have

Pr[D wins its game| Input is random] =
(

1 − qH + qK

2�

)

.

– If the input to D is a pair of LWE samples then A is running in a perfect
simulation of the game G2, until (and if) event F or G happens. If F or G
happens then D wins its game, otherwise D loses its game. So we have

Pr[D wins its game| Input is an LWE sample] = Pr[F ∨ G in game G2].

Putting this all together we have

Pr[D wins its game]
= Pr[D wins its game| Input is random] · Pr[Input is random]

+ Pr[D wins its game| Input is LWE sample]
· Pr[Input is LWE sample]

=
(

1 − qH + qK

2�

)

· 1
2

+ Pr[F ∨ G in game G2] · 1
2

Now, combining this with Eq. 2 we obtain

Pr[A wins game G2] ≤ Pr[F ∨ G in game G2] +
1
2

= 2 · Pr[D wins its game] −
(

1 − qH + qK

2�

)

+
1
2

Thus we have a bound on the total advantage of A in game G0 of

ε ≤ 2 ·
∣
∣
∣ Pr[A wins game G0] − 1

2

∣
∣
∣

≤ 2 ·
∣
∣
∣γ · qD + Pr[A wins game G1] − 1

2

∣
∣
∣

= 2 ·
∣
∣
∣γ · qD + Pr[A wins game G1]

− Pr[A wins game G2] + Pr[A wins game G2] − 1
2

∣
∣
∣

44 M.R. Albrecht et al.

≤ 2 · γ · qD + 2 · ε′ + 2 ·
∣
∣
∣ Pr[A wins game G2] − 1

2

∣
∣
∣

≤ 2 · γ · qD + 2 · ε′ + 2 ·
∣
∣
∣2 · Pr[D wins its game] − 1 +

qH + qK

2�

∣
∣
∣

≤ 2 · γ · qD + 2 · ε′ + 4 ·
∣
∣
∣ Pr[D wins its game] − 1

2

∣
∣
∣ + 2 · qH + qK

2�

≤ 2 · γ · qD + 2 · ε′ + 2 · ε′′ + 2 · qH + qK

2�
.

This completes the proof of Theorem 4.

Acknowledgements. This work has been supported in part by ERC Advanced Grant
ERC-2015-AdG-IMPaCT, and by EPSRC via grants EP/N021940/1, EP/M012824,
EP/M013472/1, EP/L018543/1 and EP/P009417/1.

References

1. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parame-
ter choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). doi:10.
1007/978-3-319-56614-6 4

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Crypto. 9(3), 169–203 (2015)

3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 35

4. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W.,
Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014).
doi:10.1007/978-3-319-08344-5 21

5. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25385-0 3

6. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer
Society Press, October 2011

7. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 29

8. Chen, D.D., Mentens, N., Vercauteren, F., Roy, S.S., Cheung, R.C.C., Pao, D.,
Verbauwhede, I.: High-speed polynomial multiplication architecture for Ring-LWE
and SHE cryptosystems. IEEE Trans. Circ. Syst. 62-I(1), 157–166 (2015), http://
dx.doi.org/10.1109/TCSI.2014.2350431

9. Cheon, J.H., Han, K., Kim, J., Lee, C., Son, Y.: A practical post-quantum
public-key cryptosystem based on spLWE. In: Hong, S., Park, J.H. (eds.)
ICISC 2016. LNCS, vol. 10157, pp. 51–74. Springer, Cham (2017). doi:10.1007/
978-3-319-53177-9 3

http://dx.doi.org/10.1007/978-3-319-56614-6_4
http://dx.doi.org/10.1007/978-3-319-56614-6_4
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/978-3-319-08344-5_21
http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1109/TCSI.2014.2350431
http://dx.doi.org/10.1109/TCSI.2014.2350431
http://dx.doi.org/10.1007/978-3-319-53177-9_3
http://dx.doi.org/10.1007/978-3-319-53177-9_3

Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts 45

10. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

11. Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptogra-
phy and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-40974-8 12

12. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688
(2012), http://eprint.iacr.org/2012/688

13. Du, C., Bai, G.: A family of scalable polynomial multiplier architectures for ring-
LWE based cryptosystems. Cryptology ePrint Archive, Report 2016/323 (2016),
http://eprint.iacr.org/2016/323

14. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption
at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp.
53–68. Springer, Heidelberg (1999). doi:10.1007/3-540-49162-7 5

15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 34

16. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Crypto. 26(1), 80–101 (2013)

17. Galindo, D., Mart́ın, S., Morillo, P., Villar, J.L.: Easy verifiable primitives and
practical public key cryptosystems. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS,
vol. 2851, pp. 69–83. Springer, Heidelberg (2003). doi:10.1007/10958513 6

18. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-40041-4 5

19. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. Cryptology ePrint Archive, Report 2017/604 (2017),
http://eprint.iacr.org/2017/604

20. Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applica-
tions to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6 3

21. Kirshanova, E., May, A., Wiemer, F.: Parallel implementation of BDD enumeration
for LWE. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS,
vol. 9696, pp. 580–591. Springer, Cham (2016). doi:10.1007/978-3-319-39555-5 31

22. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19074-2 21

23. Liu, Z., Seo, H., Sinha Roy, S., Großschädl, J., Kim, H., Verbauwhede, I.: Efficient
ring-LWE encryption on 8-Bit AVR processors. In: Güneysu, T., Handschuh, H.
(eds.) CHES 2015. LNCS, vol. 9293, pp. 663–682. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48324-4 33

24. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 1

25. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 3

http://dx.doi.org/10.1007/978-3-540-40974-8_12
http://eprint.iacr.org/2012/688
http://eprint.iacr.org/2016/323
http://dx.doi.org/10.1007/3-540-49162-7_5
http://dx.doi.org/10.1007/3-540-48405-1_34
http://dx.doi.org/10.1007/10958513_6
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://eprint.iacr.org/2017/604
http://dx.doi.org/10.1007/978-3-662-47989-6_3
http://dx.doi.org/10.1007/978-3-662-47989-6_3
http://dx.doi.org/10.1007/978-3-319-39555-5_31
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/978-3-662-48324-4_33
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-642-38348-9_3

46 M.R. Albrecht et al.

26. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer,
Heidelberg (2009)

27. NIST National Institute for Standards and Technology: Post-quantum crypto
project (2017), http://csrc.nist.gov/groups/ST/post-quantum-crypto/

28. Peikert, C.: Lattice cryptography for the internet. Cryptology ePrint Archive,
Report 2014/070 (2014), http://eprint.iacr.org/2014/070

29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
May 2005

30. Reparaz, O., Sinha Roy, S., Vercauteren, F., Verbauwhede, I.: A masked ring-LWE
implementation. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol.
9293, pp. 683–702. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4 34

31. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Com-
pact ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 371–391. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44709-3 21

32. Targhi, E.E., Unruh, D.: Post-quantum security of the fujisaki-okamoto and OAEP
transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 192–216.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53644-5 8

http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://eprint.iacr.org/2014/070
http://dx.doi.org/10.1007/978-3-662-48324-4_34
http://dx.doi.org/10.1007/978-3-662-44709-3_21
http://dx.doi.org/10.1007/978-3-662-44709-3_21
http://dx.doi.org/10.1007/978-3-662-53644-5_8

Tree-Based Cryptographic Access Control

James Alderman, Naomi Farley(B), and Jason Crampton

Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
{james.alderman,jason.crampton}@rhul.ac.uk,

naomi.farley.2010@live.rhul.ac.uk

Abstract. As more and more data is outsourced to third party servers,
the enforcement of access control policies using cryptographic techniques
becomes increasingly important. Enforcement schemes based on symmet-
ric cryptography typically issue users a small amount of secret material
which, in conjunction with public information, allows the derivation of
decryption keys for all data objects for which they are authorized.

We generalize the design of prior enforcement schemes by mapping
access control policies to a graph-based structure. Unlike prior work, we
envisage that this structure may be defined independently of the pol-
icy to target different efficiency goals; the key issue then is how best to
map policies to such structures. To exemplify this approach, we design a
space-efficient KAS based on a binary tree which imposes a logarithmic
bound on the required number of derivations whilst eliminating public
information. In the worst case, users may require more cryptographic
material than in prior schemes; we mitigate this by designing heuristic
optimizations of the mapping and show through experimental results
that our scheme performs well compared to existing schemes.

1 Introduction

Access control is a fundamental security service in modern computing systems.
Informally, requests from users to interact with protected resources are filtered
and only those interactions that are authorized by a policy configured by the
resource owner(s) are allowed. Software-based access control mechanisms are
not appropriate when resources are stored by an untrusted third party. Instead,
we may use cryptographic mechanisms whereby data objects are encrypted and
authorized users are given appropriate cryptographic keys. The problem, then,
is to efficiently and accurately distribute appropriate keys to users. Symmetric
cryptography may be preferred over public key techniques (e.g. Attribute-based
Encryption) due to their better efficiency and smaller ciphertext and key sizes.

Thus, in recent years, there has been considerable interest in Key Assignment
Schemes (KASs) [1,2,5,9,13,16,21], which are particularly suitable for enforcing

James Alderman was supported by the European Comission through H2020-ICT-
2014-1-644024 “CLARUS”.
Naomi Farley was supported by the UK EPSRC through EP/K035584/1 “Centre
for Doctoral Training in Cyber Security at Royal Holloway”.

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 47–64, 2017.
DOI: 10.1007/978-3-319-66402-6 5

48 J. Alderman et al.

information flow policies. Such policies define a partially ordered set (poset) of
security labels encoding hierarchical access rights [7]. KASs typically represent
the poset as a directed acyclic graph [2,13–16,21,22] and enable iterative key
derivation along paths: users are issued a small number of secrets and users with
security label x can derive the key associated to y < x using the secret associated
with x and public information associated with edges in a path from x to y.

The general design goals of a KAS [16] are to minimize: (a) the cryptographic
material required by each user; (b) the amount of public information required;
and (c) the computational cost of key derivations. Unsurprisingly, it is not pos-
sible to realize all objectives simultaneously, and so trade-offs have been sought.
Derivation in early KASs was based on expensive computations [1]. The perfor-
mance of more recent KASs is heavily dependent on the graph chosen to represent
the policy. The graphs used in prior KASs are subsets of the transitive closure of
the poset, often simply the Hasse diagram [14–16,21]. Many works [2,4,12,22]
reduce derivation costs by adding ‘shortcut’ edges to the Hasse diagram but
require a substantial amount of additional public information e.g. O(n2) where
n is the number of labels in the policy and may itself be large, particularly when
labels are defined in terms of subsets of attributes. Recent works [13–15,17] aim
for space-efficient KASs by eliminating public information via partitioning the
Hasse diagram into chains or trees; however users may require additional secrets
and it is not possible to bound derivation costs (beyond the trivial O(n)).

In this work, we generalize the design approaches of prior KASs to consider
mapping the policy poset to any directed acyclic graph, not only a subset of the
transitive closure of the poset. In particular, one may choose such an enforcement
structure independently of the poset to target particular design goals of the
resulting KAS. The natural questions that then arise are ‘what structure should
we choose?’ and ‘how should the policy be mapped to this structure?’. We define
the following steps to follow when designing a KAS:

1. Identify the design criteria to be optimized and choose an enforcement struc-
ture that provides these properties;

2. Choose a mapping from the policy poset to the enforcement structure that
optimizes performance of the remaining criteria;

3. Instantiate a key derivation mechanism over the enforcement structure to
define the keys and secrets to be used in the KAS.

Prior KASs were restricted in the choice of enforcement structure due to only
considering trivial mappings to enforcement structures (i.e. nodes in the enforce-
ment structure corresponded directly to labels in the poset). In contrast, we
introduce additional flexibility by allowing one to optimize the choices of struc-
ture and mapping to achieve different design goals. We hope that this flex-
ible design approach will spur the design of novel KASs to target specific
requirements.

To illustrate our approach, we shall design a KAS which eliminates pub-
lic information and in which derivation costs are logarithmically bounded; our
example therefore bridges the gap between KASs [2,4,12,22] that bound deriva-
tion costs and recent works which eliminate public information [13–15,17] but

Tree-Based Cryptographic Access Control 49

which cannot bound derivation. To achieve this goal, we use a binary tree as our
enforcement structure. This choice is simple and intuitive to serve as an exam-
ple, introduces interesting optimization problems when choosing the mapping,
and reduces storage costs for users by removing the need for users to store the
enforcement structure — derivation paths are immediately apparent from the
security labels. Thus, our KAS may be applicable to settings in which storage for
(possibly large) derivation information on client devices is limited and in which
key derivation should be fast e.g. consider a smart card which must derive tempo-
ral access keys. We shall also see that our KAS permits very flexible assignment
of access rights, lending itself to settings with diverse user populations.

The remaining design criteria to be optimized (through the choice of map-
ping from policy poset to enforcement structure) is the amount of cryptographic
material required by users. As with [14,15], removing public information results
in users requiring additional secrets; in our case, the worst-case bound is �n/2�
secrets. We develop heuristic methods for finding a mapping which minimizes
the average number of secrets users must store and demonstrate via experimen-
tal evaluation that our scheme works well in practice. Indeed, we show that our
scheme compares favorably with other KASs that require no public information.

We begin with relevant background material. In Sect. 3, we introduce our
KAS based on a binary tree, before proposing methods to optimize the choices
of structure and mapping in Sect. 4. Section 5 experimentally evaluates the KAS,
and in Sect. 6 we discuss interesting policy features enabled by our scheme.

2 Background and Notation

A partially ordered set (poset) [15] is a pair (L,�) where � is a binary, reflexive,
anti-symmetric, transitive order relation on L. For x, y ∈ L, we may write y � x
if x � y, and x < y if x � y, x �= y. We say that y covers x, denoted x � y,
if and only if x < y and there exists no z ∈ L such that x < z < y. We say
that x, y ∈ L are incomparable if x �� y and y �� x. The width of a poset is the
size of its largest set of incomparable elements. For l ∈ L, the order filter of l is
↑l = {x ∈ L : x � l} and the order ideal of l is ↓l = {x ∈ L : x � l}.

An information flow policy [7] defines a poset (L,�) of security labels, a set
of users U , a set of data objects O, and a function λ : U ∪ O → L. A user u ∈ U
is authorized to read an object o ∈ O if and only if λ(o) � λ(u).

Key Assignment Schemes (KASs) [2,16,21] enforce read-only information
flow policies, primarily using symmetric cryptography. A setup authority gen-
erates a unique key κl associated to each label l ∈ L and each data object o is
encrypted using κλ(o). Each user u requires the keys {κl : l � λ(u)} to decrypt
the objects for which she is authorized. Typically a KAS reduces the number of
keys issued to users by giving each user a small amount of secret information
from which they can derive all keys for which they are authorized. The strongest
notion of security for a KAS (Key Indistinguishability [2]) requires that a col-
lusion of users cannot distinguish a key for which they are not authorized from
a random string (i.e. unauthorized users learn nothing about the keys used to

50 J. Alderman et al.

protect objects). To achieve such a notion, one typically requires a strict sepa-
ration between secrets, issued to users, and keys, used to encrypt and decrypt
objects.

Definition 1. A Key Assignment Scheme (KAS) for a poset (L,�) comprises:

– ({σl, κl}l∈L , Pub) $← Gen(1ρ, (L,�)) is a probabilistic polynomial-time algo-
rithm run by a setup authority that takes a security parameter 1ρ and (L,�)
and outputs a symmetric key κl and a secret σl for each l ∈ L, along with a
set of public derivation information Pub;

– κ ← Derive((L,�), x, y, σx, Pub) is a deterministic polynomial-time algorithm
run by a user to derive κy from the secret material σx. It takes (L,�), labels
x, y ∈ L, the secret σx, and public information Pub, and outputs the derived
key κ = κy assigned to label y if y � x, and outputs κ =⊥ otherwise.

A KAS is correct if κy ← Derive((L,�), x, y, σx, Pub) for all ρ ∈ N, all (L,�), all
({σl, κl}l∈L , Pub) output by Gen(1ρ, (L,�)), and all x, y ∈ L such that y � x.

Let ε denote the empty string and x ‖ y denote the concatenation of strings
x and y. The power set of a set X, denoted 2X , is the set of all subsets of X.

Let G = (V,E) be a directed graph where, for vertices x, y ∈ V , (x, y) ∈ E
denotes a directed edge from x to y. We say that x is an ancestor of y (and y is
a descendant of x) if there exists a directed path from x to y in G. The Hasse
diagram, H(L,�) = (L,E), of a poset (L,�), is a directed graph with vertex set
L and where (x, y) ∈ E if and only if y � x in (L,�). Let H�(L,�) = (L,E�)
be the transitive closure of H(L,�), where E� = {(x, y) : y < x}.

A matching of an undirected graph G = (V,E) is a set M ⊆ E of pairwise
non-adjacent edges i.e. no two edges in M share a common vertex. When G has
weighted edges, a maximum weight matching M in G is a matching for which
the sum of the weights of the edges in M is maximal.

3 Our Construction

We begin by motivating our choice of enforcement structure according to the
design goals of our example (to minimize public information and to bound deriva-
tion costs). We then show how to instantiate a KAS on this structure using a
very simple key derivation mechanism.

3.1 Defining the Enforcement Structure

The best approach we currently know to construct KASs without public deriva-
tion information is to ensure that every vertex in the enforcement structure
(directed acyclic graph) has in-degree at most 1 i.e. each secret is derived from
at most one other secret [14,15]. For this reason, we will choose a tree structure.

We shall restrict our focus to binary trees, which are simple to dis-
cuss in this introductory work whilst enabling a KAS in which users need
not store the enforcement structure itself, further reducing storage costs.

Tree-Based Cryptographic Access Control 51

A binary tree also appears to be a reasonable choice in general: we shall see
that the number of secrets that must be issued can be reduced when multiple
users are authorized for some set of access rights (security labels) and that these
sets correspond to descendants of nodes in the tree; hence we may expect more
users to share a set of labels when the size of that set is small i.e. when the
degree of nodes is low.

The maximum derivation cost for any key is bounded by the maximal path
in the enforcement structure. The minimal depth of a binary tree with n leaves is
�log n�.1 Internal nodes with a single child only increase derivation paths and so
we restrict our focus to full binary trees (where all nodes have 0 or 2 children).

We therefore define our enforcement structure to be a rooted, full binary
tree with n leaves and of depth �log n�. Note that there remain many such trees
and many ways in which to map a specific policy poset to such a tree; these
choices have a direct effect of the efficiency of the resulting KAS. In this section
we shall assume that the specific tree and mapping are given and we shall show
how to assign and derive secrets and keys (for an arbitrary policy). We consider
methods to optimize these choices to enforce specific policies in Sect. 4.

3.2 Instantiating a KAS on Our Enforcement Structure

Let ((L,�), U,O, λ) be a read-only information flow policy and let n = |L|
be the number of security labels in the policy. Suppose that we have chosen
a specific full binary tree Tn = (V,E) with n leaves and depth �log n� and a
bijective mapping α from security labels in L to the leaves of Tn. Intuitively, our
construction generates keys using the binary tree structure as follows:

1. We associate a binary string of length at most �log n� to each vertex in V;
2. We then associate a secret to the root node of Tn from which a secret for each

non-root vertex may be derived using standard key derivation methods. The
binary string associated to the vertex dictates how the secret is derived;

3. For each security label l ∈ L, we define the key κl used to protect data objects
in the KAS to be the secret assigned to the leaf labeled α(l). To minimize
the material issued to users, we issue secrets associated to non-leaf nodes of
Tn from which secrets for all descendant nodes can be derived (in particular
users can derive all keys for which they are authorized).

Labeling the Tree. We label the root node of Tn by the empty string ε and,
for each node x ∈ V , label the left and right children of x (if they exist) by
x ‖ 0 and x ‖ 1 respectively. Figure 1a gives an example labeling of a tree T5.
We may abuse notation by referring to a node of Tn and its associated binary
string interchangeably. We denote the set of leaf nodes in Tn by V .

1 All logarithms are base 2 throughout this paper.

52 J. Alderman et al.

Deriving Keys. We now assign a secret to each node. Let ρ be a security
parameter and let F : {0, 1}ρ ×{0, 1}� → {0, 1}ρ be a Pseudo-Random Function
(PRF) which takes a key k and a string x and outputs a pseudo-random string
of the same length as the key. We shall write Fk(x) in preference to F (k, x).

The secret s(ε) associated to the root node ε ∈ V is chosen uniformly at

random: s(ε) $←− {0, 1}ρ. For each non-root node y = x ‖ b in V , where x ∈ V
and b ∈ {0, 1}, we compute the secret s(y) = Fs(x)(b). If x is a prefix of y, then
s(y) may be derived from s(x) by iteratively applying F on each remaining bit
of y in turn. This is shown in Fig. 1b and in GetSec in Fig. 1c. For appropriate
choices of F , it is computationally infeasible to compute s(x) from s(y).

Assigning Keys. Recall that α is a bijective mapping associating each security
label l ∈ L to a unique leaf node α(l) in V . For a set of security labels X ⊆
L, we define α(X) = {α(x) : x ∈ X}. Recall also that each object o ∈ O is
associated with a security label λ(o) ∈ L. Hence, λ(o) is associated with a leaf
node α(λ(o)) ∈ Tn. We may refer to the secrets associated to leaf nodes in Tn

as keys; o should thus be encrypted under the key κλ(o) = s(α(λ(o))).
Each user u ∈ U is authorized for the security labels ↓λ(u) =

{l ∈ L : l � λ(u)} and hence requires the keys {κx = s(x) : x ∈ α(↓λ(u))} . We
may reduce the cryptographic material that u must be issued by using non-leaf
nodes of Tn to represent multiple elements of ↓λ(u). If α(↓λ(u)) contains all
descendant leaf nodes of a node x ∈ V , we may instead issue the single secret
s(x); keys for all descendant leaf nodes can then be efficiently derived. More
formally:

Definition 2. Given X ⊆ V , we define the minimal cover, �X�, of X to be the
smallest subset of V such that:

1. for every x ∈ X, there exists an ancestor of x in �X�;
2. for every y ∈ �X�, every z ∈ V that has y as an ancestor belongs to X.

Then, a user issued a set of secrets σλ(u) containing {s(x) : x ∈ �α(↓λ(u))�} may
derive κl = s(α(l)) if and only if l � λ(u). Condition 1 ensures that a user can
derive all keys for which they are authorized (correctness), whilst Condition 2
ensures that they cannot derive any other keys (security). Since Tn is a full tree
(every node has 0 or 2 children), it is easy to see that �X� is unique.

As an example, consider an information flow policy mapped to the tree T5

given in Fig. 1a and suppose α(↓l) = {010, 011, 1} for some label l ∈ L. Then,
�α(↓l)� = {01, 1}, and σl contains FFs(ε)(0)(1) and Fs(ε)(1).

A simple method to compute �X� for X ⊆ V is to observe that a node x ∈ V
is an ancestor of a node y ∈ V if and only if the binary string associated to x is
a prefix of the string associated to y. Let us define the strict prefix of bit string
b0b1 . . . bi to be b0b1 . . . bi−1. Then, if two bit strings in X share a strict prefix,
both may be replaced by the strict prefix and the keys for both strings can be
computed in a single step. We may continue replacing pairs of bit strings in X
(of the same length) with their common strict prefix until no more pairs can

Tree-Based Cryptographic Access Control 53

000 001 010 011

00 01

0 1

ε

(a) T5

Fs(00)(0) Fs(00)(1) Fs(01)(0) Fs(01)(1)

Fs(0)(0) Fs(0)(1)

Fs(ε)(0) Fs(ε)(1)

s(ε)

(b) Secret generation

Gen(1ρ, (L, �))

Let α : L → V

s(ε)
$←− {0, 1}ρ

Pub ←⊥
foreach l ∈ L :

κl ← GetSec(α(l), ε, s(ε))

↓(l) ← {
l′ ∈ L : l′ � l

}

foreach x ∈ �α(↓(l))� :

s(x) ← GetSec(x, ε, s(ε))

σl ← {(x, s(x)) : x ∈ �α(↓(l)�}
return ({κl, σl}l∈L , Pub)

Derive(−, −, α(y), σx, −)

foreach (l, s(l)) ∈ σx :

if l is a prefix of α(y)

return GetSec(α(y), l, s(l))

return ⊥

GetSec(a, b, s(b))

if b is not a prefix of a

return ⊥
z ← b

for i = len(b) . . . len(a) − 1 :

s(z ‖ ai) = Fs(z)(ai)

z ← z ‖ ai

return s(a)

(c) Our KAS construction

Fig. 1. Our KAS construction with an example tree T5 and an illustration of secret
generation. The inputs to the supporting algorithm GetSec in the KAS are two bit
strings a = a0 . . . am, b = b0 . . . bn, where m, n ∈ N, and a secret s(b).

be found. With this method, �X� can be computed directly from the set of bit
strings X and the set up authority need not store the enforcement structure Tn.

3.3 Summary and Discussion

Our complete KAS construction is given in Fig. 1c. It is easy to see that:
(1) no user requires more than �n/2� secrets; (2) no user requires more than
�log n� steps to derive a decryption key; and (3) no additional information is
required to perform key derivation. In contrast, for an iterative KAS with public
information [16]: (1) users require a single secret; (2) derivation may take up to
n steps; (3) up to O(n2) items of public information may be required. In other
words, our scheme has advantages in terms of public information and deriva-
tion cost, but users may need to manage additional secrets. A more detailed
comparison with related work is given in Sect. 5.

Derivation in our construction requires knowledge of a binary label α(y)
for y ∈ L; hence one may argue that the α mapping should constitute public
information. It seems apparent, however, that storing some representation of
labels is an inherent requirement of any efficient KAS — data objects must be
labeled by their security label to identify the objects to be retrieved from the
file-system and the decryption keys to use, whilst secrets must be labeled such
that they can be used to derive appropriate decryption keys.2

2 It is unfortunate that existing KAS definitions do not permit consideration of such
implementation details. In our case, permitting Gen to take the full policy rather
than just (L, �) could aid defining α. Alternatively, the input could be (α(L), �).

54 J. Alderman et al.

In our scheme, σλ(u) contains the appropriate binary labels and we assume
that each object o ∈ O is labeled by α(λ(o)) instead of λ(o). (In fact, α(λ(o)) is
a compact way to uniquely represent security labels and may actually decrease
storage costs.) Thus, the input to Derive in our KAS includes α(y) instead of
y ∈ L, and α need not be public. Derive requires only the binary string α(y) of
the target label y and a suitable secret σx; we omit other unrequired inputs.

To our knowledge, all prior KASs (including those without public derivation
information) require that users store the enforcement structure for use during
Derive. In schemes that use public information, this is to identify the information
needed to derive the next secret in the derivation “path”. In schemes based on
tree or chain partitions [13–15,17], the algorithm must know which secret should
begin the derivation. In contrast, a nice feature of our scheme with the above
method for computing �α(↓λ(u))� is that Derive need only test whether one
binary string is a prefix of another. Thus, it is sufficient for users to provide only
the binary labels α(λ(o)) and �α(↓l)�, which we have already argued represent
necessary knowledge for users of any KAS. Furthermore, the steps required to
derive a key are immediately apparent from the binary label itself, without
requiring user knowledge of Tn or (L,�). In short, our scheme means that only
the administrator need know the actual structure of the security policy. This
clearly has practical advantages, but is also useful if policy privacy is required.

Correctness and Security. It is easy to see that our KAS is correct due to Condi-
tion 1 of Definition 2 and the iterative nature of the key generation. The iterative
function s computes s(x) from any prefix y of x, and Condition 1 of Definition 2
ensures that, for all labels l ∈ ↓λ(u), there exists a prefix of α(l) in �α(↓λ(u))�.

Our scheme meets the strongest security property currently defined for KASs:

Theorem 1. Let F : {0, 1}ρ × {0, 1}� → {0, 1}ρ be a secure pseudo-random
function with security parameter ρ ∈ N. Then, for any information flow policy
P = ((L,�), U,O, λ), the KAS in Fig. 1c is strongly key indistinguishable.

The full version of this paper gives a security proof bounding the advantage of an
adversary against our KAS by the (negligible) advantage of a set of distinguishers
against F .

Our scheme is somewhat unusual in that each label is associated with a single
value. All prior schemes, to our knowledge, that achieve key indistinguishability
require each label to be associated with a secret and a key. In our case, secrets
are associated with interior nodes of the tree (which are not associated to a
security label), while keys are just secrets associated with leaf nodes; the values
issued to users (i.e. secrets σλ(u)) may, and do, contain keys themselves.

Related Work. Our construction is similar to the Goldreich, Goldwasser and
Micali (GGM) puncturable PRF [19]. In Sect. 6, we take advantage of the inher-
ent puncturing mechanism to enforce additional policy features such as separa-
tion of duty and limited-depth inheritance. The iterative application of a PRF
over a tree structure superficially resembles the forward-secure key updating

Tree-Based Cryptographic Access Control 55

scheme of Backes et al. [6] in which all keys are generated independently for
the purpose of key refreshing (e.g. for a single label); we define multiple, related
security labels and keys. Finally, Blundo et al. [8] also considered methods to
derive keys using tree structures in the context of access control matrices, showed
that finding optimal trees to minimize user secrets is an NP-hard problem and
introduced heuristic approaches; our work focuses on the design of KASs for
information flow policies and considers different heuristic techniques in Sect. 4.

4 Optimizing the Enforcement Structure and Mapping

We now complete our KAS by considering methods to fine-tune the specific
choice of enforcement structure and to choose the mapping from policy poset
to enforcement structure. We have seen that our KAS has some advantages
over prior KASs but that users may require many secrets in the worst-case. We
therefore aim to design methods that, given a policy poset, mitigate this concern
and optimize the performance of the resulting KAS. (Prior schemes are limited
in this regard as they only consider a trivial mapping and are hence limited to
enforcement structures based directly on the poset e.g. Hasse diagrams.)

Recall that each user u ∈ U is issued a set of secrets σλ(u) associated to
the minimal cover �α(↓λ(u))� of their authorized set. Thus, whenever α(↓λ(u))
contains both children of a node in Tn, the size of σλ(u) is reduced by one. To
minimize the average size of σλ(u) over all users u ∈ U , we therefore aim to define
α such that the authorized sets α(↓λ(u)) contain as many such pairs of child
nodes as possible. Of course, every such reduction increases the derivation cost
by one but the maximal derivation path remains bounded by �log n�. Figure 2
illustrates the effect of choosing two different α mappings when n = 5.

Unfortunately, we conjecture that finding an optimal mapping is a hard prob-
lem. The number of permissible trees and mappings grows exponentially and it
appears difficult to optimally group labels (to share a common prefix in Tn)
without considering a global view — each choice restricts the possible groupings
for other labels and whilst some label groupings would benefit some users, they
may lead other users to require a large number of secrets.

Our goal in this section, therefore, is to introduce heuristics to find ‘good’
α mappings. We first describe our best performing heuristic, based on finding
maximal matchings between sets of labels with respect to suitable weightings.
We then discuss a considerably cheaper heuristic which, in our experiments,
provides reasonable performance.

4.1 The FindTree Heuristic

Recall that the size of a binary label represents the depth of the associated node
in Tn; thus we may fully describe the structure of Tn and the assignment of
labels to leaves via an α mapping that outputs binary labels of varying sizes.
To represent such a mapping, let us define a partition to be a recursive data
structure with an associated depth function D. For each l ∈ L, let P = [l] be a

56 J. Alderman et al.

a

c d

b

e

(a) Poset

d a c b

00 01

0 e

ε

(b) T5 generated by α2

l ↓l α1(l) α2(l) � �α1(↓l)� � α2(↓l)

a {a, c, d, e} 001 10 {00, 010, 1} {001, 01, 1}
b {b, d, e} 011 000 {011, 000, 1} {0}
c {c} 010 11 {010} {11}
d {d, e} 000 01 {000, 1} {001, 01}
e {e} 1 001 {1} {001}

Fig. 2. An example showing the effects of two different choices of α mappings. Observe
that the average size of �α2(↓l)� is smaller than that of �α1(↓l)�.

partition (of depth D(P) = 0). For two partitions P and Q, let [P,Q] also be a
partition of depth max(D(P),D(Q)) + 1. Any binary tree T can be represented
by a partition e.g. T5 in Fig. 2b is represented by [[[[b], [e]], [d]], [[a], [c]]].

Our aim is to find a partition P of depth D(P) = �log n� that maximizes the
number of shared strict prefixes in the authorized sets of all users. Our approach
is to find pairs of labels that most commonly occur together in authorized sets,
and to which the greatest number of users are assigned; such pairs shall be
assigned to sibling leaf nodes in Tn. Every time a user is authorized for the pair
of labels, they may instead be issued the single secret associated to their parent.

Intuitively, to optimally pair sets of labels, we form a weighted graph where
vertices represent partitions of labels and edge weights represent the number of
users authorized for all labels in the connected partitions. We find a maximum
weight matching on this graph which selects edges to maximize the associated
weights; matched vertices represent partitions that should be grouped as a sub-
tree in Tn. We iterate this process to form larger groups, beginning with pairs
since smaller sets of labels are most likely to occur in multiple authorization
sets and hence benefit the most users. Ultimately we create a sequence of nested
partitions (of differing sizes) describing which labels should be grouped, and at
which level, in Tn. Each chosen partition size dictates the structure of Tn; the
optimal structure is thus derived from the specific policy being enforced.

Our FindTree heuristic is given in Fig. 3. Figure 3 illustrates the heuristic on
the poset in Fig. 2a; the selected maximum weight matchings are illustrated by
solid edges. The average number of secrets required is 6

5 using the mapping found
via FindTree compared to 8

5 when using the α2 mapping from Fig. 2b.
FindTree begins by defining a set of vertices V for a graph, where each vertex

is a trivial partition [l] for a label l ∈ L. A loop then iteratively groups labels

Tree-Based Cryptographic Access Control 57

P
$←− FindTree((L, �), U, λ):

Let i = 1. Define V = {[l] : l ∈ L}. While |V | > 2:

1. If |V | � 2�log |L|�−i then increment i.
2. Construct the undirected graph G = (V, E) where each vertex is a partition and

E = {PQ : P, Q ∈ V, P
= Q,D(P),D(Q) � i − 1}.

3. For each edge PQ ∈ E, define the weight w(PQ) =
∑

z∈(↑P∩↑Q) U(z) to be the
number of users authorized for all labels in the partitions P and Q.

4. Find a maximum weight matching M of G.
5. Define a new set of vertices V ′ = {[P, Q] : PQ ∈ M}, where each vertex is a new

partition comprising two partitions that were paired in the maximal matching.
6. For any unmatched vertices (i.e. vertices X ∈ V such that no edge in M includes

X), add X to V ′.
7. Redefine the vertex set V = V ′ and go to next iteration.

If |V | = 1, return V , else return the partition [V [0], V [1]].

v ∈ V ↑v U(v)

[a] {a} 1

[b] {b} 2

[c] {a, c} 3

[d] {a, b, d} 2

[e] {a, b, d, e} 1

(a) Initial vertices and user
assignments

[a]

[b][e]

[d] [c]

0111

0

2
2

1

1

5

(b) First matching

v ↑v

[[d], [e]] {a, b, d}
[[a], [c]] {a}

[b] {b}
(c) Vertices formed from
first matching

[[d], [e]]

[[a], [c]][b]

12

0

(d) Second matching

d e

00 b a c

0 1

ε

(e) Final partition
[[[[d], [e]], [b]], [[a], [c]]]

l α(l) �↓α(l)�
a 10 {00, 1}
b 01 {0}
c 11 {11}
d 000 {00}
e 001 {001}

(f) Resulting mapping α
and minimal covers

Fig. 3. The FindTree heuristic to find a suitable binary tree partition and example
application on the poset in Fig. 2a with user assignments shown in Fig. 3a.

together to form sub-trees in Tn. On each iteration, Step 2 forms a graph in
which vertices represent previously found partitions and edges represent poten-
tial groupings; restrictions on permissible groupings are discussed below. Step
3 assigns a weight to each edge corresponding to the number of users autho-
rized for all labels in the connected partitions: let U(l) = |{u ∈ U : λ(u) = l}|

58 J. Alderman et al.

be the number of users assigned to a label l ∈ L, and recall the order filter
↑l = {x ∈ L : x � l} describes the labels authorized for l. For a partition P , let
elems(P) denote the set of labels in a partition P e.g. elems([[d, b], [a]]) = {a, b, d}
and let ↑P =

⋂
l∈elems(P) ↑l be the set of labels in the order filter of all labels in P .

Then the weight assigned to an edge connecting P and Q is the sum of U(z) for
z ∈ ↑P ∩ ↑Q i.e. the number of users authorized for all labels in P and Q.

Step 4 applies a maximum weight matching algorithm which selects a set
of non-adjacent edges from G with the greatest total weight (i.e. the groupings
that benefit the most users). Step 5 forms a set of vertices to create the graph
for the next iteration; each vertex is a partition formed from a pair of partitions
matched in Step 4. Step 6 also defines vertices for partitions left unmatched in
Step 4 such that later iterations may consider them to form a sub-tree containing
triples of labels. The process is repeated until a single partition remains; to ensure
termination, we assume that maximal matchings contain at least one edge.

We maintain a counter i representing the level of Tn at which sub-trees
induced by the current partition matchings shall be rooted. The level of the root
node is equal to the depth of the tree and the level of the lowest leaf node is
0. To ensure that the tree has depth �log n�, we only add an edge in Step 2
between partitions P and Q if the depth of P and Q does not exceed i−1; thus,
when i = 1, we only pair singleton labels, and when i = �log n�, we only pair
partitions of depth at most �log n�− 1. In Step 1 we also check that the number
of partitions remaining is at most 2�log n�−i before incrementing i to ensure that
enough groupings are performed at each level for the final tree to be binary.

If one stores ↑v and D(v) for each v ∈ V , we may construct each weighted
graph G in O(n3) time. Finding the maximum weight matching requires O(n3)
time [18]. Since we iterate O(n) times, our heuristic requires O(n4) time.

4.2 The Order Filter Sort Heuristic

FindTree is our best-performing heuristic. From experimental evaluation, how-
ever, we observe that when there is a choice of tree (i.e. when |L| is not 2x or
2x − 1 for some x), FindTree chooses a structure (isomorphic to) a left-balanced
tree approximately half the time. (A left-balanced, or complete, tree has all lev-
els completely filled except possibly the last, and the leaves are as far left as
possible.) In the full version of this paper, we show that amending FindTree
to only map labels to a fixed left-balanced tree structure does not significantly
degrade the heuristic’s performance but reduces the run-time to O(n3 log n). We
conjecture that the maximal weight matching algorithm chooses as many pairs
as possible during the first iteration causing most tuples to comprise pairs and
making it likely that the resulting tree structure resembles a left-balanced tree.

However, if one is willing to fix the tree-structure to be left-balanced, a very
cheap heuristic is to simply sort labels by the size of their order filters ↑l in
decreasing order, and to map labels to leaf nodes from left to right. Intuitively
one hopes that by pairing labels with large order filters, the order filters are
likely to intersect. Users authorized for a label within the intersection require
at least one fewer secret. This heuristic requires O(n log n) time, and we shall

Tree-Based Cryptographic Access Control 59

see in Sect. 5 that it performs remarkably well in practice. Unlike FindTree, this
heuristic does not consider the number of users assigned to labels. We therefore
expect FindTree to be more optimal in general, although we may hope that many
realistic policies may have many users assigned to ‘low’ labels (with large order
filters) which would favor this cheaper heuristic.

5 Evaluation

We now compare our scheme to prior KASs with respect to the following para-
meters: K is the maximum number of keys/secrets a user must be issued, P is
the amount of public derivation information, and D is the maximum number of
derivation steps required. The discussion is summarized in Table 1.

Many schemes issue users a single key (K = 1) and enable iterative derivation
along paths in the enforcement structure using public information. In many
schemes [16,21], the enforcement structure is simply the Hasse diagram of (L,�),
in which case P = O(n2) and D = O(n). An alternative is to define a directed
graph where xy is an edge if and only if y < x, in which case P = O(n2) and
D = 1. The ‘trivial’ KAS supplies users with the keys associated to all y � λ(u);
hence K = O(n), P = 0 and D = 0. Recent schemes remove public information
by forming a sub-graph of the Hasse diagram which is either a tree [15] or a
chain partition [13,14,17]. In these schemes, P = 0, while D = O(n) (or, more
precisely, the depth of the poset) but users may require several keys: for schemes
based on chain partitions, K = w where w is the width of (L,�); in schemes
based on tree partitions, K = � keys, where � � w is the number of leaves in the
tree. Recall that in our scheme: K = �n/2rceil keys; P = 0; and D = O(�log n�).

Table 1. Comparison of different KASs. |E�| and |E| represent the number of edges
in the Hasse diagram H(L, �) and its transitive closure, respectively.

Scheme Max. Keys K Public Info P Derivations D

Trivial [16] O(n) 0 0

Iterative [2,16] 1 |E�| O(n)

Direct [2,16] 1 |E| 1

Tree [15] O(�) 0 O(n)

Chain [14] O(w) 0 O(n)

Our scheme O(�n
2
�) 0 O(�log(n)�)

We now present an experimental evaluation showing the performance of these
KASs in practice in the worst- and average-cases. For each value of |L|, we
average the results on 30 posets generated randomly by choosing a ‘connection
probability’ p for each node x uniformly at random; for each other node y, a
covering relation y � x is added to the poset with probability p. The number of

60 J. Alderman et al.

users assigned to each label is chosen randomly between 0 and 100. For a fair
comparison, we aim to evaluate the KASs on a variety of posets and have not
aimed towards any particular policy. A priority for future work is to evaluate
KASs on specific real-world policies of interest; unfortunately we have thus far
been unable to find real examples of interesting sizes. Most KAS literature does
not provide experimental evaluations; ours is certainly the first to compare the
efficiency of chain and tree-based KASs, which may be of independent interest.

We compare an Iterative scheme that uses public derivation information (the
extended scheme by Atallah et al. [2] instantiated on the Hasse Diagram of the
poset), Chain- [14] and Tree-based Schemes [15] (which do not require public
information), and our KAS using both the FindTree and the order filter-based
heuristics. Figures 4a and c show the average and maximum number of derivation
steps required to compute any key. Derivation steps are considered to be PRF
evaluations (the iterative scheme [2] also requires a number of decryptions which
are not counted). Figures 4b and d show the average and maximum number of
secrets (or keys) required by any user in each scheme. The iterative scheme is
omitted for clarity, since each user requires one secret.

Recall that the design goals of this example were to bound derivation costs
whilst eliminating public information, and it can be seen that this is achieved.
Our scheme outperforms all other KASs in terms of derivation costs in these
tests. In particular, our logarithmic growth contrasts with the linear cost of
tree-based schemes and, particularly in the worst-case, can become rather high.
Furthermore, recall that the storage costs are further reduced in our scheme
compared to other KASs since users need not store the enforcement structure.
With regards to the number of secrets a user requires (which was not one of our
primary design goals), our KAS outperforms chain-based schemes but does not
quite match tree-based schemes. However, in concrete terms, the actual number
of secrets required does not vary greatly between any scheme. Importantly, in
these experiments, our theoretical worst-case bound of �n/2� is not met. Whilst
it remains possible to obtain this bound (e.g. if the poset is highly symmetrical
with equal user assignments over all labels), we expect that such policies may
be rather unlikely and that our heuristics will mitigate the concern in prac-
tice. Remarkably, the heuristic based on order-filters (with runtime O(n log n))
performs comparably to FindTree heuristic (with runtime O(n4)).

Ultimately, the best choice of KAS will always depend on the requirements
of the specific application setting and on the policy being enforced. Our scheme
appears to be a good well-rounded candidate and may be the best choice if
derivation costs or storage requirements are a concern. Our scheme out-performs
chain-based schemes in terms of both derivation costs and the number of user
secrets required. Furthermore, the analysis required to find an optimal chain-
partition requires O(n4w) time, where w is the width of the poset [14], whilst our
cheapest heuristic requires just O(n log n). Thus, in many settings, our scheme
may be preferable over chain-based schemes.

Tree-Based Cryptographic Access Control 61

(a) (b)

(c) (d)

Fig. 4. Experimental evaluation

6 Flexible Access Management

In this section, we summarize some additional features enabled by our KAS; the
full version of this paper will also introduce a general policy representation (sub-
suming information flow, temporal and role-based policies) and an associated
KAS allowing flexible grouping of access rights.

Prior KASs require all keys, secrets and derivation information to be defined
and assigned during Gen which may be inefficient when policies define a large
number of labels, some of which may never actually be assigned or used. In
particular, some policies define a set of primitive labels (e.g. roles, attributes
or time periods) and must include security labels for all combinations that may
be assigned during the system lifetime (e.g. role-based policies define 2R labels
for R roles [11]). In contrast, using our KAS, one can define Tn for n primitive
labels and define a single secret (for the root node of Tn) during Gen. Instead of
defining additional labels for each potential combination, one can dynamically
issue secrets corresponding to the minimal cover of a required set of primitives

62 J. Alderman et al.

as required — one can dynamically form new ‘labels’ that cover the required
access rights as users join the system. Our mechanism is similar to the GGM
puncturable PRF [19] and this can be viewed as utilizing the puncturing mech-
anism to define access rights. A puncturable PRF issues keys restricting the
pseudo-random outputs that may be computed, which is precisely the goal of a
KI-secure KAS. This puncturing technique enables useful features such as:

Limited Depth Inheritance is an important component of hierarchical access
policies to prevent senior users aggregating excessive access rights [2,10,20].
Encoding such restrictions directly into the poset may increase the number
of labels and derivation paths (and hence the amount of public information)
or increase the width of the poset (and hence the number of secrets users must
hold [14,15]). To our knowledge, the only KAS that directly allows limited depth
inheritance [2] requires public information and, crucially, is not collusion resistant
(and hence not KI-secure). In contrast, our KAS can enable limited depth inheri-
tance to be efficiently implemented. Intuitively, we wish to change the authorized
set of a user from ↓u = {y ∈ L : y � λ(u)} to ↓ul = {y ∈ L : y � λ(u), y �< l}
where l is a threshold label beyond which derivation should be prevented.
Clearly, it is rather difficult to terminate derivation in typical iterative KASs
where the key for l ∈ L is determined by the secrets of labels l′ > l. In our
KAS, on the other hand, secrets correspond to interior nodes of Tn which are
not associated to security labels. Thus, one can simply issue the minimal cover
�α(↓ul)� = �{α(l′) : l′ ∈ ↓ul}� and ignore any labels below the threshold when
selecting the set of secrets.

Separation of Duty policies form an important business practice which com-
partmentalize objects and users to avoid conflicts of interests. In essence, users
assigned a label l should no longer inherit the access rights of a set of labels
X ⊆ L which, again, often requires complex and costly modifications to the
poset. Using our KAS, one may simply issue �α(↓u \ X)� = �{α(l) : l ∈ ↓u \ X}�.

Interval-based Policies such as temporal or geo-spatial policies [3,12] can be
handled in the same way. Consider a temporal policy where L is a set of time
periods [0, n] and users are authorized for time intervals [a, b) for 0 � a, b < n.
Prior KASs require a label for each possible interval. Using our KAS, we may
instead define L to be simply [0, n] and issue precisely the secrets corresponding
to �{α(x) : x ∈ [a, b)]}�. Intuitively, one may think of L as a total order and use
the limited depth inheritance constraint to restrict derivation from a down to b.

7 Conclusion

We have introduced a novel approach to designing KASs by mapping policies
to enforcement structures which need not be derived directly from the policy
poset. We have given an example of a very simple KAS based on a binary tree
and introduced heuristics to optimally map the policy to a tree. We have shown
that our KAS performs favorably to prior schemes, and reduces the storage
requirements of user devices and logarithmically bounds derivation costs.

It is also important to consider how keys and secrets can be updated. KASs
with public information [2,16] may amend a portion of that information to define

Tree-Based Cryptographic Access Control 63

new secrets using the same derivation mechanism, but prior work [14,15] has not
considered how to perform updates without public information. A natural solu-
tion is to include counters in the PRF inputs when deriving keys; each derivation
step may have a ‘version’ indicated by the counter. Derivation costs will not
increase but users must learn current counter values in some way. Investigating
such methods and their associated costs will be a priority for future work. We
would also like to use our experimental implementations to perform a thorough
comparison of the relative costs and strengths of KASs compared to public key
schemes e.g. Attribute-based Encryption.

We hope that future work will also consider enforcement structures to target
different design goals of KASs and develop interesting optimization strategies for
the mappings e.g. one could generalize our construction to n-ary trees or trees
with varying degrees. Finally, we hope that our work spurs the development of
efficient constrained PRFs tailored to enforcing access control policies.

References

1. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in
a hierarchy. ACM Trans. Comput. Syst. 1(3), 239–248 (1983)

2. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and Efficient Key
Management for Access Hierarchies. ACM Trans. Inf. Syst. Secur. 12(3) (2009)

3. Atallah, M.J., Blanton, M., Frikken, K.B.: Efficient techniques for realizing geo-
spatial access control. In: Bao, F., Miller, S. (eds.) ASIACCS, pp. 82–92. ACM
(2007)

4. Atallah, M.J., Blanton, M., Frikken, K.B.: Incorporating temporal capabilities
in existing key management schemes. In: Biskup, J., López, J. (eds.) ESORICS
2007. LNCS, vol. 4734, pp. 515–530. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74835-9 34

5. Ateniese, G., Santis, A.D., Ferrara, A.L., Masucci, B.: Provably-secure time-bound
hierarchical key assignment schemes. J. Cryptol. 25(2), 243–270 (2012)

6. Backes, M., Cachin, C., Oprea, A.: Secure key-updating for lazy revocation. In:
Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp.
327–346. Springer, Heidelberg (2006). doi:10.1007/11863908 21

7. Bell, D.E., LaPadula, L.J.: Computer security model: Unified exposition and Mul-
tics interpretation. Technical report, ESD-TR-75-306, MITRE Corp. (1975)

8. Blundo, C., Cimato, S., di Vimercati, S.D.C., Santis, A.D., Foresti, S., Paraboschi,
S., Samarati, P.: Managing key hierarchies for access control enforcement: heuristic
approaches. Comput. Secur. 29(5), 533–547 (2010)

9. Castiglione, A., Santis, A.D., Masucci, B., Palmieri, F., Castiglione, A., Li, J.,
Huang, X.: Hierarchical and shared access control. IEEE Trans. Inf. Foren. Secur.
11(4), 850–865 (2016)

10. Crampton, J.: On permissions, inheritance and role hierarchies. In: Jajodia, S.,
Atluri, V., Jaeger, T. (eds.) ACM Conference on Computer and Communications
Security, pp. 85–92. ACM (2003)

11. Crampton, J.: Cryptographic enforcement of role-based access control. In: Degano,
P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 191–205.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19751-2 13

http://dx.doi.org/10.1007/978-3-540-74835-9_34
http://dx.doi.org/10.1007/978-3-540-74835-9_34
http://dx.doi.org/10.1007/11863908_21
http://dx.doi.org/10.1007/978-3-642-19751-2_13

64 J. Alderman et al.

12. Crampton, J.: Practical and efficient cryptographic enforcement of interval-based
access control policies. ACM Trans. Inf. Syst. Secur. 14(1), 14 (2011)

13. Crampton, J., Daud, R., Martin, K.M.: Constructing key assignment schemes from
chain partitions. In: Foresti, S., Jajodia, S. (eds.) DBSec 2010. LNCS, vol. 6166,
pp. 130–145. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13739-6 9

14. Crampton, J., Farley, N., Gutin, G., Jones, M.: Optimal constructions for chain-
based cryptographic enforcement of information flow policies. In: Samarati, P. (ed.)
DBSec 2015. LNCS, vol. 9149, pp. 330–345. Springer, Cham (2015). doi:10.1007/
978-3-319-20810-7 23

15. Crampton, J., Farley, N., Gutin, G., Jones, M., Poettering, B.: Cryptographic
enforcement of information flow policies without public information. In: Malkin,
T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol.
9092, pp. 389–408. Springer, Cham (2015). doi:10.1007/978-3-319-28166-7 19

16. Crampton, J., Martin, K.M., Wild, P.R.: On key assignment for hierarchical access
control. In: CSFW, pp. 98–111. IEEE Computer Society (2006)

17. Freire, E.S.V., Paterson, K.G., Poettering, B.: Simple, efficient and strongly
KI-secure hierarchical key assignment schemes. In: Dawson, E. (ed.) CT-RSA
2013. LNCS, vol. 7779, pp. 101–114. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36095-4 7

18. Galil, Z.: Efficient algorithms for finding maximum matching in graphs. ACM
Comput. Surv. 18(1), 23–38 (1986)

19. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

20. Sandhu, R.S., Ferraiolo, D.F., Kuhn, D.R.: The NIST model for role-based access
control: towards a unified standard. In: ACM Workshop on Role-Based Access
Control, pp. 47–63 (2000)

21. Santis, A.D., Ferrara, A.L., Masucci, B.: Efficient provably-secure hierarchical key
assignment schemes. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol.
4708, pp. 371–382. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74456-6 34

22. Santis, A.D., Ferrara, A.L., Masucci, B.: New constructions for provably-secure
time-bound hierarchical key assignment schemes. In: Lotz, V., Thuraisingham,
B.M. (eds.) SACMAT 2007, 12th ACM Symposium on Access Control Models
and Technologies, Sophia Antipolis, France, June 20–22, 2007, Proceedings, pp.
133–138. ACM (2007)

http://dx.doi.org/10.1007/978-3-642-13739-6_9
http://dx.doi.org/10.1007/978-3-319-20810-7_23
http://dx.doi.org/10.1007/978-3-319-20810-7_23
http://dx.doi.org/10.1007/978-3-319-28166-7_19
http://dx.doi.org/10.1007/978-3-642-36095-4_7
http://dx.doi.org/10.1007/978-3-642-36095-4_7
http://dx.doi.org/10.1007/978-3-540-74456-6_34

Source Code Authorship Attribution Using Long
Short-Term Memory Based Networks

Bander Alsulami1(B), Edwin Dauber1(B), Richard Harang2,
Spiros Mancoridis1, and Rachel Greenstadt1

1 Drexel University, Philadelphia, USA
{bma48,egd34,spiros,rachel.a.greenstadt}@drexel.edu

2 Sophos, Abingdon, UK
richard.harang@sophos.com

Abstract. Machine learning approaches to source code authorship attri-
bution attempt to find statistical regularities in human-generated source
code that can identify the author or authors of that code. This has appli-
cations in plagiarism detection, intellectual property infringement, and
post-incident forensics in computer security. The introduction of fea-
tures derived from the Abstract Syntax Tree (AST) of source code has
recently set new benchmarks in this area, significantly improving over
previous work that relied on easily obfuscatable lexical and format fea-
tures of program source code. However, these AST-based approaches rely
on hand-constructed features derived from such trees, and often include
ancillary information such as function and variable names that may be
obfuscated or manipulated.

In this work, we provide novel contributions to AST-based source code
authorship attribution using deep neural networks. We implement Long
Short-Term Memory (LSTM) and Bidirectional Long Short-Term Mem-
ory (BiLSTM) models to automatically extract relevant features from
the AST representation of programmers’ source code. We show that our
models can automatically learn efficient representations of AST-based
features without needing hand-constructed ancillary information used by
previous methods. Our empirical study on multiple datasets with differ-
ent programming languages shows that our proposed approach achieves
the state-of-the-art performance for source code authorship attribution
on AST-based features, despite not leveraging information that was pre-
viously thought to be required for high-confidence classification.

Keywords: Source code authorship attribution · Code stylometry ·
Long short-term memory · Abstract syntax tree · Security · Privacy

1 Introduction

Source code authorship attribution has demonstrated to be a valuable instru-
ment in multiple domains. In legal cases, lawyers often need to dispute source
code partnership conflicts and intellectual property infringement [6,28,57].
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 65–82, 2017.
DOI: 10.1007/978-3-319-66402-6 6

66 B. Alsulami et al.

In educational institutions, detecting plagiarisms among students’ submitted
assignments is a growing interest [14,49]. In software engineering, source code
authorship attribution is used to study software evolution through dynamic
updates [26,36]. Source code stylometry is also used for code clone detection,
automatic re-factorization, complexity measurement, and code design patterns
enforcement [1,4,11,24,27,55]. In computer security, source code authorship
attribution can be used to identify malware authors in post-incident forensic
analysis [31,32]. Research has shown that syntactical features from the original
source code can be recovered from decompiling the binary executable files [8].
However, building a profile for malware authors is still a challenging problem
due to the lack of ground truth code samples. In the privacy domain, the abil-
ity to identify the author of anonymous code presents a privacy threat to some
developers. Programmers might prefer to maintain their anonymity for certain
security projects for political and safety reasons [7,8]. Even small contributions to
public source code repositories can be used to identify the anonymous program-
mers [12]. Recent advances in source code stylometry comes from hand-crafted
AST-based features.

This paper presents our contributions to source code authorship attribution
using AST-based features. We demonstrate that our LSTM-based neural net-
work models, that require only the structural syntactic features of the AST as
input, learns improved features that substantially improve upon the performance
of manually constructed ones. We measure the generalization of our models on
different datasets with different programming languages. We also show the clas-
sification accuracy and performance scalability of our models on a large number
of authors. The remainder of this paper is organized as follows: Sect. 2 describes
the related work that is relevant to source code authorship attribution. Section 3
describes common obfuscation techniques used in source code. Section 4 describe
background information about the AST features and the neural network models
used by our models. The model architecture and the algorithm used for learning
the feature of AST are described in Sect. 5. The experimental setup, training and
testing data, and the evaluation of the results are described in Sects. 6 and 7.
Section 8 summarizes our conclusions and potential future work.

2 Related Work

Source code authorship attribution is inspired by the classic literature author-
ship attribution problem. While natural languages have more flexible grammat-
ical rules than programming languages, programmers still have a large degree of
flexibility to reveal their distinguishing styles in the code they write. For exam-
ple, experienced programmers exhibit different coding styles than exhibited by
novice programmers [7]. Early work uses plain textual features of the source
code to identify the authors of the source code. A popular feature extraction
technique is using N-grams to extract the frequency of sequences of n-characters
from the source code. N-gram techniques approach source code authorship attri-
bution as a traditional text classification problem with the source code files as

Source Code Authorship Attribution 67

text documents [15]. Other works use layout and format features of the source
code as metrics to improve the accuracy of the authors’ classification. Layout
features include the length of a line of code, or the number of spaces in a line of
code, and the frequency of characters (underscores, semicolons, and commas) in
a line of code. Researchers often measure the statistical distributions, frequen-
cies, and average measurements of the layout features [14]. For instance, some
researchers use the statistical distribution of the length of lines, number of lead-
ing spaces, underscores per line, semicolons, commas per line, and words per line
as discriminative features. They use Shannon’s entropy to highlight important
features, and a probabilistic Bayes classifier to identify the authors [28,41].

Latter work expands on source code features to lexical and style features
to avoid the limitation of format features. Lexical features are based on the
tokens of the source code for a particular programming language grammar. A
token can be an identifier, function, class, keyword, or a language-specific symbol
such as a bracket. The naming convention for classes, functions, and identifiers
can also be used as lexical features. The naming convention feature has shown
success in authorship identification [7,14,29,52]. For instance, researchers use
the average length of variable names, the number of variables, the number of for
loop statements and the total number of all loop statements in a feature set, and
use C4.5 decision trees to detect outsourced student programming assignments
[14]. Other work combines 6-grams of source code tokens such as keywords and
operators with multiple similarity measurement methods to create a profile for
students based on their submitted C/C++/Java source code files [49].

Recently, syntactic features, have shown significant success in source code
authorship attribution [7,29,52]. The main syntax feature derived from source
code is the Abstract Syntax Tree (AST). Syntactic features avoid many defects
related to format and style features. For instance, ASTs capture the structural
features of the source code regardless of the source code format or the devel-
opment environment used for the writing of the code. AST-based features have
been used to detect partial clones in C source code programs [29]. In that paper,
the authors extract an AST tree for each program and then create a hash code for
each subtree. Subtrees with similar hash values are grouped together to reduce
the storage requirement and improve the speed of the code clone detection.

Previous studies combine different types of features to improve the accuracy
of source code authorship attribution. Some early works combine format and
lexical features and implement a feature selection technique to remove the least
significant features [14,49]. Recent works use a large variety of format, lexical,
and syntactic features, and use an Information gain and Random Forest ensem-
ble to select the most important features to identify the authors of a source
code file [7,52]. Because of the large number of features, the feature selection
process becomes critical in the model’s performance for source code authorship
attribution. Our work is different from these efforts primarily in that we focus
on identifying the authors of source code using only the abstract structure of the
AST. We ignore the format and lexical features of source code. We also discard
the attributes in the AST nodes such as identifiers, numeric constants, string

68 B. Alsulami et al.

literals, and keywords. We avoid the hand-tuned feature engineering process by
building deep neural network models that automatically learn the efficient fea-
ture representations of the AST. By using only AST features, we aim to build
source code authorship attribution models that are resilient against source code
obfuscation techniques, and are language-independent so that they can be auto-
matically extended to programming language that supports AST.

3 Source Code Obfuscation

Obfuscation is the process of obscuring source code to decrease a human’s abil-
ity to understand it. Programmers may use obfuscation to conceal parts of its
functionality from a human or computer analysis. For instance, malware authors
use obfuscation techniques to hide the malicious behavior of their programs and
avoid detection from static malware detection [3,35]. Obfuscation also decreases
the usability of reverse-engineering binary executable files. Commercial software
might use obfuscation to increase the difficulty of reverse engineering their soft-
ware and protect their software licensing [43].

Trivial source code obfuscation techniques can easily obscure the format fea-
tures of the source code. For instance, they may remove/add random text to com-
ment sections. They may also randomly eliminate the indentations and spaces
in the source code files. Modern IDEs format source code file content based on
particular formatting conventions. This results in a consistent coding style across
all source code written using the same development tools. This reduces the con-
fidence of using format features to identify the authors of source code. Advanced
obfuscation tools target more sophisticated features such as lexical and style
features of the source code. For example, variable, function, and class names
can be changed to arbitrary random names that are hard to be interpreted by a
human. Stunnix1, an obfuscation tool for programs written in C/C++ languages,
uses a cryptographic hash function to obfuscate identifier names, a hexadecimal
encoding function to obfuscate strings literals, a random generation function to
obfuscate source code file names. ProGuard2, an obfuscation tool for Java, uses
random names for classes, methods, identifiers, configuration files, and libraries.

Despite efforts to harden program source code from static analysis using vari-
ous obfuscation techniques, the semantics of the program remain the same. That
is, the structure of the AST and the control flow of the program remain largely
intact. Control flow obfuscation techniques work on low-level machine code and
incur performance and storage overhead [2]. This leads developers to use triv-
ial obfuscation techniques without affecting the performance of their programs.
Therefore, inferring a programmer’s coding styles using structural features of
an AST is more robust and resilient to most automatic obfuscation techniques.
Obfuscating the syntactic features of the source code of a high-level programming
language while preserving the program’s behavior requires code refactorization.
Fully automated code refactorization suffers from reliability issues which makes
1 http://stunnix.com/prod/cxxo/.
2 https://www.guardsquare.com/en/proguard.

http://stunnix.com/prod/cxxo/
https://www.guardsquare.com/en/proguard

Source Code Authorship Attribution 69

it inefficient and unfeasible in most cases [9,33]. Code refactorization requires
human interference to guarantee the correctness of the refactorization process.

4 Abstract Syntax Tree

An Abstract Syntax Tree (AST) is a tree that represents the syntactic structure
of a program’s source code written in a programming language. An AST is an
abstract representation of the source code that omits information such as com-
ments, special characters, and string delimiters. Each AST node has a specific
type and might hold auxiliary information about the source code such as an
identifier’s name and type, string literals, and numeric values. Nodes in an AST
can have multiple children that represent the building blocks of a program.

An AST is constructed by the compiler in the early stages of the compi-
lation process. It represents information about the source code that is needed
for later stages such as semantic analysis and code generation. Therefore, an
AST contains no information about the format of the source code. Integrated
Development Environments (IDEs) and source code editors enforce conventional
formatting and naming conventions to improve the readability of source code.
In the context of authorship identification, code formatting tools might conta-
minate and negatively affect the source code formatting features. In contrast,
ASTs are less prone to the influence of development tools and can capture the
programmer’s coding style directly. Therefore, it is more reliable for authorship
identification techniques to analyze a program using its AST rather than its
source code.

Figures 1 and 2 show a code example in Python and its corresponding AST.
Module represents the root node of the AST and has two child nodes: Function-
Def and Expr. Each node in the AST has a label that specifies a code block in
the source code. Some AST nodes such as Name and Num have extra attributes
(square) and a numeric constant (2), respectively. AST nodes often have a vari-
able number of children depending on their type and context in the source code.
For instance, Call nodes, in this example, have two children because function
square is declared with only one argument. However, in other contexts, Call can
have more than two child nodes when the function is declared with more than
one parameter.

AST is tree-structured data that requires models that naturally operates on
trees to extract useful features of the AST representation. Feature extraction
techniques such as n-grams are limited and lose information over long-distance
dependencies [42,58]. While a tree-like variant of the Long Short-Term Memory
(LSTM) such as Tree-Structured Long Short-Term Memory Networks (Tree-
LSTM) and Long Short-Term Memory Over Recursive Structures (S-LSTM)
seem intuitive, the nature of ASTs, which often have a large number of child
nodes in each subtree, presents a challenge for Tree-LSTM and S-LSTM imple-
mentations [47,59]. Tree variant networks have shown to be successful in mod-
eling tree structure data with fixed number of children [30,47,59]. Long Short-
Term Memory (LSTM) networks are a unique architecture of Recurrent Neural

70 B. Alsulami et al.

1 de f square (arg1) :
2 re turn arg1 ∗∗

2
3

4 square (square (10))

Fig. 1. Python code example

Module

FunctionDef(square)

Arguments

Arg(arg1)

Return

BinOp

Name(arg1)

Load

Pow Num(2)

Expr

Call

Name(square)

Load

Call

Name(square)

Load

Num(10)

Fig. 2. Abstract Syntax Tree for Python code example

Networks (RNN) [16,20,25]. An LSTM network has an internal state that allows
it to learn the dynamic temporal behavior of long sequences over time. LSTM-
based networks differ in architecture based on gate connections and informa-
tion propagation. One successful architecture used for sequence classifications is
the Bidirectional LSTM (BiLSTM). In contrast to the standard unidirectional
LSTM, BiLSTM processes sequences in two different directions: forward and
backward. Therefore, at each time step, the BiLSTM network has access to the
past and future information.

5 Model Architecture

Our models traverse an AST using a Depth First Search algorithm. The model
starts from the root node (the top node) of the AST and recursively examines
all its inner nodes (nodes that have children) until it reaches a leaf node (a
node with no child). An Inner node along with its children nodes is called a
subtree. Therefore, an AST can be viewed as a root node with multiple subtrees.
The model passes the leaf node to the Embedding Layer to generate a vector
representation of that node. This process continues recursively for all the nodes in
the AST. When all the vector representations of a subtree’s nodes are retrieved,
the model passes the subtree vectors to the Subtree Layer. The Subtree Layer
encodes the subtree and returns a vector representation of that subtree. The
model continues to encode each subtree as a vector, eventually, the AST is
reduced into a final state vector representation that is passed into the final layer
of the model (Softmax Layer). The Softmax Layer returns the predicted author
for the AST. Algorithm1 shows how to integrate the three layers in our models
to learn the structural syntactic features of ASTs. The following subsections
explain each layer’s role in our model.

Source Code Authorship Attribution 71

Algorithm 1. The Algorithm to learn the structural syntactic features of an
AST.
1: procedure DFS(ast)
2: count ← Number of children in ast
3: if count = 0 then
4: return EmbeddingLayer(ast)
5: end if
6: treevec ← EmptyTree()
7: for i ← 1, count do
8: treevec.child[i] ← DFS(ast.child[i])
9: end for

10: treevec.root ← EmbeddingLayer(ast.root)
11: return SubtreeLayer(treevec)
12: end procedure

5.1 Embedding Layer

The Embedding Layer maps individual AST nodes to their corresponding embed-
ding vector representations. An embedding vector is a continuous fixed-length
real-valued vector that can be trained with other parameters in the model. The
number of embedding vectors defined in the model is equivalent to the num-
ber of unique nodes in the AST. The layer uses the node label to look up
its corresponding embedding vector. Embedding representations have shown to
improve the generalization of neural networks to multiple complex learning tasks
[34,39,44,51].

5.2 Subtree Layer

The Subtree Layer encodes each subtree into a single vector representation.
When the layer receives a subtree and its vector representation, the layer flattens
the subtree into a sequence. That is, the layer processes the subtree sequentially
in a pre-order fashion. Therefore, the root of the subtree is the first node in
the sequence and the rest of the child nodes in the subtree are placed in the
sequence from left to right. Subtree Layer can be implemented with any RNN
architecture. In our work, we use LSTM and BiLSTM architectures and name
them Subtree LSTM and Subtree BiLSTM, respectively.

Subtree LSTM processes the sequence of vector representations in a forward
direction. The last hidden state in the sequence is used as a vector representa-
tion of the subtree. Subtree LSTM applies dropout on that hidden state, and
propagates the results to the higher subtree. Subtree LSTM also resets its mem-
ory state before processing the next sequence. In the case of multi-layer Subtree
LSTMs, the lower layer passes the hidden state vector of each time step, after
applying dropout, as an input to the higher layer.

72 B. Alsulami et al.

(a) LSTM

(b) BiLSTM

Fig. 3. An example of how the Subtree LSTM and the Subtree BiLSTM layers encode
an AST.

Subtree BiLSTM processes subtrees as two sequences in two different direc-
tions. Similar to Subtree LSTM, the first sequence is processed forward from left
to right. However, the second sequence is processed in backward, from right to
left. The hidden states resulting from the forward and the backward passes are
concatenated to generate a new vector representation that is used as an input for
the next step. In the case of multi-layer BiLSTM Subtree, the lower layer passes
the hidden states, after applying dropout, as an input to the higher layer at each
step. The last hidden state of the highest layer is the final vector representation
of the subtree.

Figure 3 gives an example on how the Subtree LSTM and the Subtree BiL-
STM encode a subtree of an AST. The Subtree LSTM starts encoding the left-
most subtree as a sequence of 2, 4, and 5. A dropout is then applied on the last
hidden state h1, and the result is used as a vector representation of the subtree.
h1 replaces the subtree and becomes a new child node in the AST. Next, the
Subtree LSTM resets its memory state and encodes the rightmost subtree as h2

vector representation. Finally, Subtree LSTM encodes the AST as a sequence of
1, h1, and h2. The hidden state h3 is used as the final vector representation of
the AST. On the other hand, Subtree BiLSTM encodes the leftmost subtree as
two sequences. The forward sequence is 2, 4, and 5, and the backward sequence
is 5, 4, and 2. The last hidden state h1 results from the merge of the last hidden
states of the forward and backward sequences. A dropout is applied to h1 and
the result is used as a representation of the subtree and substitution in the AST.
Next, the Subtree BiLSTM resets its memory states and encodes the rightmost
subtree into h2 vector representation. Finally, the Subtree BiLSTM encodes the

Source Code Authorship Attribution 73

AST as forward and backward sequences of 1, h1, and h2 and h2, h1, and 1,
respectively. The hidden state h3 is used as the final vector representation of
the AST.

5.3 Softmax Layer

The Softmax Layer is a linear layer with the Softmax activation function. The
Softmax function is a generalized logistic regression function that is used for
multi-class classification problems. The Softmax Layer generates a normalized
probability distribution of the candidate source code authors. Given the last
hidden state of the AST, the Softmax Layer applies a linear transformation on
the input followed by the Softmax function to extract the probability distribu-
tion of authors. The author with the highest probability is selected as the final
prediction of the model.

6 Experimental Setup

6.1 Data Collection

In this experiment, we collect two datasets for two different programming lan-
guages. The first and second datasets contain source code files from Python and
C++, respectively. Our goal is to empirically evaluate the classification efficiency
and the generalization of our models on different programming languages with
different AST structures. The Python dataset is collected from Google Code Jam
(GCJ)3. Google Code Jam is an annual international coding competition hosted
by Google. The contestants are presented with programming problems and need
to provide solutions to these problems in a timely manner. The Python dataset
has 700 source code files from 70 programmers and 10 programming problems.
Programmers work individually on each of the 10 problems. Therefore, each
problem has 70 source code solutions with different programming styles. The
C++ dataset is collected from Github4. Github is an online collaboration and
sharing platform for programmers. We crawl Github starting from a set of pro-
lific programmers and spidering out through other programmers they collaborate
with, cloning any repositories for which over 90% of the lines of code are from
the same programmer. We then group C++ files by author. To create sufficient
training examples, we exclude any C++ file whose AST’s depth is less than
10 levels or has 5 branches at most. The final dataset has 200 files from 10
programmers and 20 files per programmer.

Python AST files are extracted using a Python module called ast. The mod-
ule is built into the Python 2.7 framework5. Each AST contains one root node
called Module and represents a single Python source code file, as shown in Fig. 2.

3 https://code.google.com/codejam.
4 https://github.com.
5 https://docs.python.org/2/library/ast.html.

https://code.google.com/codejam
https://github.com
https://docs.python.org/2/library/ast.html

74 B. Alsulami et al.

The number of unique AST node types in Python 2.7 are 130 nodes. In addi-
tion, C++ AST files are extracted using the third party fuzzy parser joern [54].
Joern parses the C++ file, outputs the data into a graph database, and then
python scripts can be used to explore the database to write machine-readable
files containing AST information. A fuzzy parser performs the same basic func-
tion as a regular parser, but can operate on incomplete or uncompilable code [5].
Using such a parser allows us to attribute programs which are either incomplete
or contain syntax errors, but more importantly, it means that we do not parse
external libraries which are likely written by a different programmer. In contrast
to Python ASTs, there are 53 unique node types for C++ ASTs. Each C++
source code file may contain multiple ASTs. The tool creates a separate AST for
the global definition of a class, a struct, or a function. However, we merge each
of these into a single AST per C++ file. That is, we create a root node called
Program that includes the global blocks as children.

6.2 Training Models

Our models are trained using Stochastic Gradient Descent (SGD) with Momen-
tum and compute the derivatives for the gradient using Backpropagation
Through Structure [19,40,45]. SGD is an incremental optimization algorithm
for minimizing the parameters of an objective function, also known as the loss
function. The loss function in our models is the cross-entropy loss function.
SGD computes the gradient of the parameters with respect to the instances in
the training dataset. After computing the gradient, the parameters are updated
in the direction of the negative gradient. Momentum is an acceleration technique
that keeps track of the past updates with an exponential decay. Momentum has
been successfully used to train large deep neural networks [22,45,46,48].

At the beginning of the training process, we set the learning rate to 1×10−2

and the momentum factor to 0.9. The models are trained up to 500 epochs with
an early stopping technique to prevent overfitting [10]. We also use L2 weight
decay regularization with a factor of 0.001 to reduce overfitting [17]. We use a
gradient clipping technique to prevent the exploding gradient during training
[37]. The models’ parameters are initialized with Glorot initialization to speed
up the convergence during the training [18]. The biases for all gates in the LSTM
and BiLSTM models are set to zero, while the bias for the forget gate is set to 1
[56]. We set the dropout rate to 0.2 and use inverted dropout to scale the input
at training time and remove the overhead at test time. We use Chainer, a deep
neural framework, to implement our LSTM and BiLSTM models [50].

7 Evaluation

In this section, we evaluate the complexity of our models and compare their
classification accuracy and scaling capability to the state-of-the-art models in
source code authorship attributions.

Source Code Authorship Attribution 75

7.1 Model Complexity

We evaluate the complexity of LSTM and BiLSTM models by varying the recur-
rent architecture, the number of layers, and hidden units on 25 and 70 authors
from the Python dataset. We examine the effectiveness of (1, 2) layers and (100,
250, 500) hidden units for LSTM and BiLSTM models. Figure 4 shows the effect
of increasing the hidden unit size on the one and two layers of LSTM and BiL-
STM models using 70 authors from the Python dataset. For the one layer models,
the LSTM and BiLSTM models continue to improve their performance accuracy
while increasing the hidden units until they reach 100 units. After that, the clas-
sification accuracy of the models decreases when more hidden units are added.
However, the decline in the classification accuracy is minimal after exceeding
250 hidden units. Therefore, increasing the size of the hidden units to more than
100 does not improve the performance for one layer LSTM and BiLSTM models.
On the contrary, two layers LSTM and BiLSTM models improve their classifica-
tion accuracy until they reach 250 hidden units. However, the accuracy declines
sharply when adding more hidden units. We think that larger layers might be
over-fitting the training data. Therefore, 250 hidden units are the optimal size
for two layered LSTM and BiLSTM models.

Fig. 4. The classification accuracy for
(1,2) layers of LSTM and BiLSTM mod-
els with (50, 100, 250, 500) for 70 authors
on the Python dataset.

Fig. 5. The classification accuracy for
one layer LSTM and BiLSTM with 100
hidden units on the Python test dataset.

Choosing the optimal recurrent architecture of RNN is crucial for improv-
ing the classification accuracy of our models. In our research, BiLSTM models
show superior performance to LSTM models. These results are in agreement
with recent experiments using LSTM-based networks [21,53]. Figure 5 shows
the accuracy of the one layer LSTM and BiLSTM models with 100 hidden units

76 B. Alsulami et al.

during the training process. We split the 70 authors from the Python dataset
into 80% training and 20% testing sets with a balanced distribution of authors.
We measure the accuracy of the models on the test dataset after each epoch for
500 epochs. As shown, the BiLSTM model achieves higher classification accuracy
and converges quicker than the LSTM model.

7.2 Author Classification

We compare our LSTM and BiLSTM models to the state-of-the-art in source
code authorship attribution [7,52]. The work in both research experiments uses
a combination of layout, lexical, and syntactic features. We exclude the lay-
out and lexical features from the evaluation and only include the syntactic fea-
tures that are relevant to the structure of the AST. While excluding layout and
lexical features degrades the accuracy of prior work, it enables a fair compari-
son between the structural/syntactic AST-based features of their work, and the
structural/syntactic AST-based features we are developing. In [7], researchers
use information gain as a feature selection to select the most important features
and use Random Forest as the classifier. The work in [52] uses a greedy feature
selection method and Linear SVM as the final classifier. We implement the clas-
sifiers using the Scikit-Learn machine learning framework [38]. We use a grid
search technique to select the optimal hyperparameters for Random Forest and
SVM. We evaluate the models on 25 and 70 authors from the Python dataset,
and 10 authors from the C++ dataset. We split the datasets into 80% train-
ing and 20% testing sets with a balanced distribution of authors. We select one
layer LSTM and BiLSTM with 100 hidden units for comparisons based on their
superior performance.

Table 1. The classification accuracy for (1,2) layers of LSTM and BiLSTM with 100
hidden units, Linear SVM, and Random Forest models using 25 and 70 authors on the
Python dataset, and 10 authors on the C++ dataset.

Dataset

Python C++

25 (Authors) 70 (Authors) 10 (Authors)

Random forest* 86.00 72.90 75.90

Linear SVM* 77. 2 61.28 73.50

LSTM 92.00 86.36 80.00

BiLSTM 96.00 88.86 85.00

* The accuracy results differ from the results in the papers (Refer to Sect. 7.2)

Table 1 shows the results of the four authorship attribution models: Random
Forest, Linear SVM, LSTM, and BiLSTM. The BiLSTM model achieves the
best classification accuracy. The LSTM model achieves the second best accuracy.

Source Code Authorship Attribution 77

As mentioned earlier, the accuracy results of Linear SVM and Random Forest
models differ from the results in the original works because we focused only on
the AST-based features and excluded extra features such as the layout and style
features. The results show that LSTM and BiLSTM models can efficiently learn
the abstract representation of ASTs for a large number of authors who have
coded using different programming languages.

7.3 Scaling Author Classification

Large source code datasets often have a large number of authors. Deep neural
networks have shown the capability to scale effectively to large datasets with
a large number of labels [13,23,53]. A source code authorship classifier needs
to handle a large number of different authors with a sufficient classification
accuracy. In this experiment, we measure the effect of increasing the number
of authors on the classification accuracy of our models. We vary the number of
selected authors consecutively to 5, 25, 55, and 70 from the Python datasets. We
use the one layer LSTM and BiLSTM models with 100 hidden units and compare
the results to the Random Forest and Linear SVM models [7,52]. We obtain this
results using 80% training and 20% testing sets with a balanced distribution of
authors.

Figure 6 shows the performance of LSTM, BiLSTM, Linear SVM, and Ran-
dom Forest models when increasing the number of authors in the Python dataset.
In general, all the models suffer an inevitable loss in the classification accuracy
when the number of authors is increased. However, LSTM and BiLSTM models
suffer the least decrease and maintain a robust performance accuracy when the
number of authors is large. The Random Forest model achieves an adequate per-
formance, and the Linear SVM model suffers the most significant deterioration
in classification accuracy.

7.4 Top Authors Predication

Random Forest, LSTM, and BiLSTM models predict the author with the high-
est probability as the potential author of an AST. In some cases, researchers
increase the prediction to include the top n potential authors for further analy-
sis, especially, when the difference between the authors’ prediction probabilities
is insignificant. Thus, researchers sometimes include the top n highest probabili-
ties in the prediction process [46]. In this experiment, we measure the classifica-
tion accuracy of our models when we pick the top n predictions for source code
authors. We measure the ability of our models to narrow down the search for
the potential authors. We compare the top 1, 5, 10, 15, and 20 predictions of the
LSTM and BiLSTM models to the Random Forest [7]. We select one layer LSTM
and BiLSTM with 100 hidden units and evaluate the models on 70 authors from
the Python dataset. We obtain this results using 80% training and 20% testing
sets with a balanced distribution of authors on the Python dataset.

Figure 7 shows the result of increasing the number of the predicted authors in
the final prediction. The Random Forest model gains the largest improvement

78 B. Alsulami et al.

in the classification accuracy when the top 5 candidate authors are included.
The classification accuracy of the Random Forest model continues to improve as
the number of top candidate authors increases. Surprisingly, the Random Forest
model exceeds the BiLSTM model in the classification accuracy when including
the top 20 predicted authors. For the LSTM model, the classification accuracy
improves steadily while increasing the number of top candidate authors. The
classification accuracy reaches its peak to a nearly perfect accuracy at 15 candi-
dates. The LSTM model also exceeds the BiLSTM model after including the top
5 candidate authors. The BiLSTM model reaches its peak classification accuracy
at 15 candidate authors. The BiLSTM model achieves lower classification accu-
racy than the LSTM model after including the top 5 predicted authors and less
than the Random Forest model after including the top 15 predicted authors.

Fig. 6. The classification accuracy for
one layer LSTM and BiLSTM with 100
hidden units, Random Forest, and Linear
SVM models for 5, 25, 55, and 70 authors
in the Python dataset.

Fig. 7. The top predictions of one
layer LSTM and BiLSTM models with
100 hidden units and Random Forest
classifier.

8 Conclusions and Future Work

We present a novel approach to AST-based source code authorship attribution
using LSTM and BiLSTM models. We show that our models are efficient at
learning the structural syntactic features of ASTs. We evaluate our models on
multiple datasets and programming languages. We improve the performance
results from the previous state-of-the-art on source code authorship attribution
using ASTs. We evaluate the scaling capability of our models on a large number
of authors.

In the future, we would like to study source code with multiple authors,
as large source code projects have multiple programmers collaborating on the

Source Code Authorship Attribution 79

same code section. We would like to evaluate our models on ASTs with multiple
authors. We would also like to harden our models against advanced obfuscation
techniques that use code factorization for source code.

Acknowledgments. This work is supported by a Fellowship from the Isaac L.
Auerbach Cybersecurity Institute at Drexel University, and by an appointment to the
Student Research Participation Program at the U.S Army Research Laboratory admin-
istered by the Oak Ridge Institute for Science and Education through an interagency
agreement between the U.S. Department of Energy and USARL.

References

1. Antoniol, G., Fiutem, R., Cristoforetti, L.: Using metrics to identify design patterns
in object-oriented software. In: Proceedings of Fifth International Symposium on
Software Metrics, 1998, pp. 23–34. IEEE (1998)

2. Balachandran, V., Tan, D.J., Thing, V.L., et al.: Control flow obfuscation for
android applications. Comput. Secur. 61, 72–93 (2016)

3. Barford, P., Yegneswaran, V.: An inside look at botnets. In: Christodorescu, M.,
Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware Detection. Advances in
Information Security, vol. 27, pp. 171–191. Springer, Boston, MA (2007). doi:10.
1007/978-0-387-44599-1 8

4. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: 1998 Proceedings of International Conference on Software
Maintenance, pp. 368–377. IEEE (1998)

5. Bischofberger, W.R.: Sniff (abstract): a pragmatic approach to a c++ programming
environment. ACM SIGPLAN OOPS Messenger 4(2), 229 (1993)

6. Burrows, S., Uitdenbogerd, A.L., Turpin, A.: Application of information retrieval
techniques for source code authorship attribution. In: Zhou, X., Yokota, H.,
Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 699–713. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00887-0 61

7. Caliskan-Islam, A., Harang, R., Liu, A., Narayanan, A., Voss, C., Yamaguchi,
F., Greenstadt, R.: De-anonymizing programmers via code stylometry. In: 24th
USENIX Security Symposium (USENIX Security), Washington, DC (2015)

8. Caliskan-Islam, A., Yamaguchi, F., Dauber, E., Harang, R., Rieck, K., Greenstadt,
R., Narayanan, A.: When coding style survives compilation: De-anonymizing pro-
grammers from executable binaries. arXiv preprint (2015). arXiv:1512.08546

9. Calliss, F.W.: Problems with automatic restructurers. ACM SIGPLAN Notices
23(3), 13–21 (1988)

10. Caruana, R., Lawrence, S., Giles, L.: Overfitting in neural nets: backpropagation,
conjugate gradient, and early stopping. In: NIPS, pp. 402–408 (2000)

11. Chilowicz, M., Duris, E., Roussel, G.: Syntax tree fingerprinting for source code
similarity detection. In: 2009 IEEE 17th International Conference on Program
Comprehension, ICPC 2009, pp. 243–247. IEEE (2009)

12. Dauber, E., Caliskan-Islam, A., Harang, R., Greenstadt, R.: Git blame who?:
stylistic authorship attribution of small, incomplete source code fragments. arXiv
preprint (2017). arXiv:1701.05681

13. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A.,
Tucker, P., Yang, K., Le, Q.V., et al.: Large scale distributed deep networks. In:
Advances in Neural Information Processing Systems, pp. 1223–1231 (2012)

http://dx.doi.org/10.1007/978-0-387-44599-1_8
http://dx.doi.org/10.1007/978-0-387-44599-1_8
http://dx.doi.org/10.1007/978-3-642-00887-0_61
http://arxiv.org/abs/1512.08546
http://arxiv.org/abs/1701.05681

80 B. Alsulami et al.

14. Elenbogen, B.S., Seliya, N.: Detecting outsourced student programming assign-
ments. J. Comput. Sci. Coll. 23(3), 50–57 (2008)

15. Frantzeskou, G., Stamatatos, E., Gritzalis, S., Chaski, C.E., Howald, B.S.: Iden-
tifying authorship by byte-level n-grams: the source code author profile (SCAP)
method. Int. J. Dig. Evid. 6(1), 1–18 (2007)

16. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction
with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

17. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks archi-
tectures. Neural Comput. 7(2), 219–269 (1995)

18. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS, vol. 9, pp. 249–256 (2010)

19. Goller, C., Kuchler, A.: Learning task-dependent distributed representations by
backpropagation through structure. In: 1996 IEEE International Conference on
Neural Networks, vol. 1, pp. 347–352. IEEE (1996)

20. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

21. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Netw. 18(5), 602–610 (2005)

22. Greff, K., Srivastava, R.K., Koutńık, J., Steunebrink, B.R., Schmidhuber, J.:
LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. (2016)

23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

24. Heuzeroth, D., Holl, T., Hogstrom, G., Lowe, W.: Automatic design pattern detec-
tion. In: 2003 11th IEEE International Workshop on Program Comprehension, pp.
94–103. IEEE (2003)

25. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

26. Kim, M., Notkin, D., Grossman, D.: Automatic inference of structural changes for
matching across program versions. In: ICSE, vol. 7, pp. 333–343 (2007)

27. Koschke, R., Falke, R., Frenzel, P.: Clone detection using abstract syntax suffix
trees. In: 2006 13th Working Conference on Reverse Engineering, WCRE 2006,
pp. 253–262. IEEE (2006)

28. Kothari, J., Shevertalov, M., Stehle, E., Mancoridis, S.: A probabilistic approach
to source code authorship identification. In: 2007 Fourth International Conference
on Information Technology, ITNG 2007, pp. 243–248. IEEE (2007)

29. Lazar, F.M., Banias, O.: Clone detection algorithm based on the abstract syntax
tree approach. In: 2014 IEEE 9th International Symposium on Applied Computa-
tional Intelligence and Informatics (SACI), pp. 73–78. IEEE (2014)

30. Li, J., Luong, M.T., Jurafsky, D., Hovy, E.: When are tree structures necessary for
deep learning of representations? arXiv preprint (2015). arXiv:1503.00185

31. Marquis-Boire, M., Marschalek, M., Guarnieri, C.: Big Game Hunting: The Pecu-
liarities in Nation-State Malware Research. Black Hat, Las Vegas (2015)

32. Meng, X.: Fine-grained binary code authorship identification. In: Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pp. 1097–1099. ACM (2016)

33. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Softw. Eng.
30(2), 126–139 (2004)

34. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint (2013). arXiv:1301.3781

http://arxiv.org/abs/1503.00185
http://arxiv.org/abs/1301.3781

Source Code Authorship Attribution 81

35. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detec-
tion. In: 2007 Twenty-Third Annual Computer security Applications Conference,
ACSAC 2007, pp. 421–430. IEEE (2007)

36. Neamtiu, I., Foster, J.S., Hicks, M.: Understanding source code evolution using
abstract syntax tree matching. ACM SIGSOFT Softw. Eng. Notes 30(4), 1–5
(2005)

37. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural
networks. ICML 3(28), 1310–1318 (2013)

38. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

39. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: EMNLP, vol. 14, pp. 1532–1543 (2014)

40. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Cogn. Model. 5(3), 1 (1988)

41. Russell, S., Norvig, P., Intelligence, A.: A Modern Approach. Artificial Intelligence.
Prentice-Hall, Egnlewood Cliffs (1995). pp. 25, 27

42. Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. In: Interspeech, pp. 338–
342 (2014)

43. Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G., Weippl, E.: Pro-
tecting software through obfuscation: can it keep pace with progress in code analy-
sis? ACM Comput. Surv. (CSUR) 49(1), 4 (2016)

44. Socher, R., Bauer, J., Manning, C.D., Ng, A.Y.: Parsing with compositional vector
grammars. In: ACL, vol. 1, pp. 455–465 (2013)

45. Sutskever, I., Martens, J., Dahl, G.E., Hinton, G.E.: On the importance of ini-
tialization and momentum in deep learning. In: ICML (3), vol. 28, pp. 1139–1147
(2013)

46. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

47. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint (2015).
arXiv:1503.00075

48. Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: generalizing residual architec-
tures. arXiv preprint (2016). arXiv:1603.08029

49. Tennyson, M.F.: A replicated comparative study of source code authorship attri-
bution. In: 2013 3rd International Workshop on Replication in Empirical Software
Engineering Research (RESER), pp. 76–83. IEEE (2013)

50. Tokui, S., Oono, K., Hido, S., Clayton, J.: Chainer: a next-generation open source
framework for deep learning. In: Proceedings of Workshop on Machine Learning
Systems (LearningSys) in the Twenty-Ninth Annual Conference on Neural Infor-
mation Processing Systems (NIPS) (2015)

51. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image
caption generator. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3156–3164 (2015)

52. Wisse, W., Veenman, C.: Scripting DNA: identifying the javascript programmer.
Dig. Invest. 15, 61–71 (2015)

http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1603.08029

82 B. Alsulami et al.

53. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neural machine translation
system: bridging the gap between human and machine translation. arXiv preprint
(2016). arXiv:1609.08144

54. Yamaguchi, F., Golde, N., Arp, D., Rieck, K.: Modeling and discovering vulner-
abilities with code property graphs. In: Proceedings of the IEEE Symposium on
Security and Privacy (S&P) (2014)

55. Yu, D.Q., Peng, X., Zhao, W.Y.: Automatic refactoring method of cloned code
using abstract syntax tree and static analysis. J. Chin. Comput. Syst. 30(9), 1752–
1760 (2009)

56. Zaremba, W.: An empirical exploration of recurrent network architectures (2015)
57. Zhang, F., Jhi, Y.C., Wu, D., Liu, P., Zhu, S.: A first step towards algorithm plagia-

rism detection. In: Proceedings of the 2012 International Symposium on Software
Testing and Analysis, pp. 111–121. ACM (2012)

58. Zhou, C., Sun, C., Liu, Z., Lau, F.: A C-LSTM neural network for text classifica-
tion. arXiv preprint (2015). arXiv:1511.08630

59. Zhu, X.D., Sobhani, P., Guo, H.: Long short-term memory over recursive struc-
tures. In: ICML, pp. 1604–1612 (2015)

http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1511.08630

Is My Attack Tree Correct?

Maxime Audinot1,2(B), Sophie Pinchinat1,2, and Barbara Kordy1,3

1 IRISA, Rennes, France
maxime.audinot@irisa.fr

2 University Rennes 1, Rennes, France
3 INSA Rennes, Rennes, France

Abstract. Attack trees are a popular way to represent and evaluate
potential security threats on systems or infrastructures. The goal of this
work is to provide a framework allowing to express and check whether
an attack tree is consistent with the analyzed system. We model real
systems using transition systems and introduce attack trees with for-
mally specified node labels. We formulate the correctness properties of
an attack tree with respect to a system and study the complexity of the
corresponding decision problems. The proposed framework can be used
in practice to assist security experts in manual creation of attack trees
and enhance development of tools for automated generation of attack
trees.

1 Introduction

An attack tree is a graphical model allowing a security expert to illustrate and
analyze potential security threats. Thanks to their intuitiveness, attack trees
gained a lot of popularity in the industrial sector [15], and organizations such as
NATO [24] and OWASP [20] recommend their use in threat assessment processes.
The root of an attack tree represents an attack objective, i.e., an attacker’s goal,
and the rest of the tree decomposes this goal into sub-goals that the attacker
may need to reach in order to perform his attack [26]. In this paper, we develop a
formal framework to evaluate how well an attack tree describes the attacker’s goal
with respect to the system that is being analyzed. This work has been motivated
by the two following practical problems.

First, in the industrial context, attack trees are created manually by security
experts who haustive knowledge about all the facets (technical, social, physical)
of the analyzed system. This process is often supported by the use of libraries
containing generic models for standard security threats. Although using libraries
provides a good starting point, the resulting attack tree may not always be
fully consistent with the system that is being analyzed. This problem might
be reinforced by the fact that the node names in attack trees are often very
short, and may thus lack precision or be inaccurate and misleading. If the tree is
incomplete or imprecise, the results of its analysis (e.g., estimation of the attack’s
cost or its probability) might be inaccurate. If the tree contains branches that
are irrelevant for the considered system, the time of its analysis might be longer
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 83–102, 2017.
DOI: 10.1007/978-3-319-66402-6 7

84 M. Audinot et al.

than necessary. This implies that a manually created tree needs to be validated
against a system to be analyzed before it can be used as a formal model on which
the security of the system will be evaluated.

Second, to limit the burden of their manual creation, several academic pro-
posals for automated generation of attack trees have recently been made [11,
23,30]. In particular, we are currently developing the ATSyRA tool for assisted
generation of attack trees from system models [23]. Our experience shows that,
due to the complexity and scalability issues, a fully automated generation is
impossible. Some generation steps must thus be supported by humans. Such a
semi-automated approach gives the expert a possibility of manually decompos-
ing a goal, in such a way that an automated generation of the subtrees can be
performed. This work provides formal foundations for the next version of our
tool which will assist the expert in producing trees that, by design, are correct
with respect to the underlying system.

Contribution. To address the problems identified above, we introduce a mathe-
matical framework allowing us to formalize the notion of attack trees and to
define as well as verify their practically-relevant correctness properties with
respect to a given system. We model real-life systems using finite transition
systems. The attack tree nodes are labeled with formally specified goals formu-
lated in terms of preconditions and postconditions over the possible states of
the transition system. Formalizing the labels of the attack tree nodes allows
us to overcome the problem of imprecise or misleading text-based node names
and makes formal treatment of attack trees possible. We define the notion of
Admissibility of an attack tree with respect to a given system and introduce the
correctness properties for attack trees, called Meet, Under-Match, Over-Match,
and Match. These properties express the precision with which a given goal is
refined into sub-goals with respect to a given system. We then establish the
complexity of verifying the correctness properties to apprehend the nature of
potential algorithmic solutions to be implemented.

Related work. In order to use any modeling framework in practice, formal foun-
dations are necessary. Previous research on formalization of attack trees focused
mainly on mathematical semantics for attack tree-based models [10,12–14,19],
and various algorithms for their quantitative analysis [1,16,25]. However, all
these formalizations rely on an action-based approach, where the attacker’s goals
represented by the labels of the attack tree nodes are expressed using actions
that the attacker needs to perform to achieve his/her objective. In this work, we
pioneer a state-based approach to attack trees, where the attacker’s goals relate
to the states of the modeled system. The advantage of such a state-based app-
roach is that it may benefit from verification and model checking techniques, in
a natural way, as this has already been done in the case of attack graphs [21,28].
In our framework, the label of each node of an attack tree is formulated in terms
of preconditions and postconditions over the states of the modeled system: intu-
itively speaking, the goal of the attacker is to start from any state in the system
that satisfies the preconditions and reach a state where the postconditions are

Is My Attack Tree Correct? 85

met. The idea of formalizing the labels of attack tree nodes in terms of precon-
ditions and postconditions has already been explored in [22]. However there, the
postcondition (i.e., consequence) of an action is represented by a parent node
and its children model the preconditions and the action itself.

Model checking of attack trees, especially using tools such as PRISM or
UPPAAL, has already been successfully employed, in particular to support their
quantitative analysis, as in [2,8,17]. Such techniques provide an effective way
of handling a multi-parameter evaluation of attack scenarios, e.g., identifying
the resources needed for a successful attack or checking whether there exists an
attack whose cost is lower than a given value and whose probability of success
is greater than a certain threshold. However, these approaches either do not
consider any particular system beforehand, or they rely on a model of the system
that features explicit quantitative aspects.

The link between the analyzed system and the corresponding attack tree
is made explicit in works dealing with automated generation of attack trees
from system models [11,23]. The systems considered in [11] capture locations,
assets, processes, policies, and actors. The goal of the attacker is to reach a
given location or obtain an asset, and the attack tree generation algorithm relies
on invalidation of policies that forbid him to do so. In the case of [23], the
ATSyRA tool is used to effectively generate a transition system for a real-life
system: starting from a domain-specific language describing the original system,
ATSyRA compiles this description into a symbolic transition system specified in
the guarded action language GAL [29]. ATSyRA can already handle the physical
layer of a system (locations and connections/accesses between them) and we are
currently working on extending it with the digital layer. Since our experience
shows that generating a transition system from a description in a domain-specific
language is possible and efficient, in this paper we suppose that the transition
system for a real system has been previously created and is available.

Finally, to the best of our knowledge, the problem of defining and verifying
the correctness of an attack tree with respect to the analyzed system has only
been considered in [3] which has been the starting point for the work presented
in this paper.

2 Motivating Example

Before presenting our framework, we first introduce a motivating example on
which we will illustrate the notions and concepts employed in this paper.

The system modeled in our running example is a building containing a safe
holding a confidential document. The goal of the attacker is to reach the safe
without being detected. We purposely keep this example small and intuitive to
ease the understanding of the proposed framework. The floor plan of the building
is depicted in Fig. 1a. It contains two rooms, denoted by Room1 and Room2,
two doors – Door1 allowing to move from outside of the building to Room1 and
Door2 connecting Room1 and Room2 – as well as one window in Room2. Both
doors are initially locked and it is left unspecified whether the window is open

86 M. Audinot et al.

or not. Such unspecified information expresses that the analyst cannot predict
whether the window will be open or closed in the case of a potential attack or
that he has a limited knowledge about the system. In both cases, this lack of
information needs to be taken into account during the analysis process. The two
doors can be unlocked by means of Key1 and Key2, respectively. We assume
that a camera that monitors Door2 is located in Room1. The camera is initially
on but it can be switched off manually. The safe is in Room2.

Fig. 1. Running example building

The attacker is located outside
of the building and his goal is to
reach the safe without being detected
by the camera. In Fig. 1b, we have
depicted three scenarios (that we
will call paths) allowing the attacker
to reach his goal. In the first scenario
(depicted using dotted line), the
attacker goes straight through the
window, if it is open. In the remain-
ing two scenarios, the attacker gath-
ers the necessary keys and goes
through the two doors, switching off
the camera on his way. These two
scenarios differ only in the order
in which the concurrent actions are
sequentially performed. Since col-
lecting Key2 and switching off the
camera are independent actions, the
attacker can first collect Key2 and
then switch the camera off (dashed line), or switch the camera off before collect-
ing Key2 (solid line).

The system in our example consists of the building and the attacker. It is
modeled using state variables whose values determine possible configurations of
the system.

– Position – variable describing the attacker’s position, ranging over {Outside,
Room1, Room2};

– WOpen – Boolean variable describing whether the window is open (tt) or not
(ff);

– Locked1 and Locked2 – Boolean variables to describe whether the respective
doors are locked or not;

– Key1 and Key2 – Boolean variables to describe whether the attacker possesses
the respective key;

– CamOn – Boolean variable describing if the camera is on;
– Detected – Boolean variable to describe if the camera detected the attacker,
i.e., whether the attacker has crossed the area monitored by the camera while
it was on.

Is My Attack Tree Correct? 87

Given a set of state variables, we express possible configurations of a
system using propositions. Propositions are either equalities of the form
state variable=value or Boolean combinations of such equalities. Intuitively, a
proposition expresses a constraint on the possible configurations. A configuration
in which all the variables are left unspecified is called the empty configuration.
We denote it by �.

In order to analyze the security of a system, security experts often use the
model of attack trees. An attack tree is a tree in which each node represents an
attacker objective, and the children of a node represent a decomposition of this
objective into sub-objectives. In this work, we consider attack trees with three
types of nodes:

– OR nodes representing alternative choices – to achieve the goal of the node,
the attacker needs to achieve the goal of at least one child;

– AND nodes representing conjunctive decomposition – to achieve the goal of the
node, the attacker needs to achieve all of the goals represented by its children
(the children of an AND node are connected with an arc);

– SAND nodes representing sequential decomposition – to achieve the goal of the
node, the attacker needs to achieve all of the goals represented by its children
in the given order (the children of a SAND node are connected with an arrow).

Reach Room2

undetected

Go through

the window

Go through

the door

Deactivate

the camera

Reach

Room2

Unlock

Door1

Unlock

Door2

Enter

Room2

Fig. 2. Attack tree with infor-
mal, text-based node names

The attack tree given in Fig. 2 illustrates that
in order to enter Room2 undetected (root node of
type OR), the attacker can either enter through the
window or through the doors. In order to use the
second alternative (node of type AND), he needs
to make sure that the camera is deactivated and
that he reaches Room2. To achieve the last objec-
tive (node of type SAND), he first needs to unlock
Room1, then unlock Room2, and finally enter to
Room2.

One of the most problematic aspects of attack
trees are the informal, text-based names of their
nodes. These names are often very short and thus
do not express all the information that the tree
author had in mind while creating the tree. In
particular, the textual names relate to the objective that the attacker should
reach, however, they usually do not capture the information about the initial
situation from which he starts.

To overcome the weakness of text-based node names, we propose to formal-
ize the attacker’s goal using two configurations: the initial configuration, usually
denoted by ι, is the configuration before the attack starts, i.e., represents pre-
conditions; and the final configuration, usually denoted by γ, represents post-
conditions, i.e., the state to be reached to succeed in the attack. The goal with
initial configuration ι and final configuration γ is written 〈ι, γ〉.

In our running example, the initial configuration is ι := (Position =
Outside) ∧ (Key1 = ff) ∧ (Key2 = ff) ∧ (Locked1 = tt) ∧ (Locked2 = tt) ∧

88 M. Audinot et al.

(CamOn = tt). It describes that the attacker is originally outside of the building,
he does not have any of the keys, the two doors are locked, and the camera is
on. The final configuration is γ := (Position = Room2) ∧ (Detected = ff), i.e.,
the attacker reached Room2 without being detected.

Figure 3 illustrates how such formally specified goals are used to label the
nodes of attack trees. The goal 〈ι, γ〉 introduced above is the label of the root
node of the tree. It is then refined into sub-goals 〈ιi, γi〉, where i reflects the
position of the node in the tree.

Sub-goal 〈ι1, γ1〉: The attacker, who wants to reach the safe in Room2 without
being detected, is located outside of the building and the window is initially open.
We let ι1 := (Position = Outside) ∧ (Key1 = ff) ∧ (Key2 = ff) ∧ (Locked1 =
tt) ∧ (Locked2 = tt) ∧ (CamOn = tt) ∧ (WOpen = tt) and γ1 := γ.

Sub-goal 〈ι2, γ2〉: This sub-goal is similar to the previous one, but the window
is originally closed. We let ι2 := (Position = Outside)∧ (Key1 = ff)∧ (Key2 =
ff) ∧ (Locked1 = tt) ∧ (Locked2 = tt) ∧ (CamOn = tt) ∧ (WOpen = ff) and
γ2 := γ.

Sub-goal 〈ι21, γ21〉: The attacker, who might be in any initial configuration,
wants to deactivate the camera. We then let ι21 := � and γ21 := (CamOn = ff).

(ι, γ)

(ι1, γ1) (ι2, γ2)

(ι21, γ21) (ι22, γ22)

(ι221, γ221) (ι222, γ222) (ι223, γ223)

Fig. 3. Attack tree with formal labels

Sub-goal 〈ι22, γ22〉: Similar to sub-goal
〈ι2, γ2〉, with the difference that we do
not care whether the camera is ini-
tially on and we no longer require that
the attacker remains undetected. We let
ι22 := (Position = Outside) ∧ (Key1 =
ff) ∧ (Key2 = ff) ∧ (Locked1 = tt) ∧
(Locked2 = tt) ∧ (WOpen = ff) and
γ22 := (Position = Room2).

Sub-goal 〈ι221, γ221〉: The initial situ-
ation is the same as in the sub-goal
〈ι22, γ22〉, but we require that the attacker
unlocks Door1 but not Door2: ι221 := ι22
and γ221 := (Locked1 = ff)∧(Locked2 =
tt).

Sub-goal 〈ι222, γ222〉: Now, the objective is to go from a state where Door1 is
unlocked and Door2 is locked (like in the configuration γ221) to a state where
both doors are unlocked. We let ι222 := γ221 and γ222 := (Locked1 = ff) ∧
(Locked2 = ff).

Sub-goal 〈ι223, γ223〉: Finally, the last sub-goal is for the attacker, starting in a
state where both doors are unlocked, to reach Room2. We let ι223 := γ222 and
γ223 := γ22.

Is My Attack Tree Correct? 89

3 Formal Modeling

We now provide formal notations and definitions of transition systems and attack
trees that we have informally described in Sect. 2.

3.1 Transition Systems

We model real-life systems using finite transition systems. Transition system is
a simple, yet powerful formal tool to represent a dynamic behavior of a system
by listing all its possible states and transitions between them. The finiteness of
the state transition system is a reasonable and realistic assumption. A formal
model can either be finite because the real-life underlying system is intrinsically
finite, or it can have a finite representation obtained by standard abstraction
techniques, as used in verification, static analysis, and model-checking.

We fix the set Prop of propositions that we use to formalize possible configu-
rations of the real system. In the rest of the paper, we suppose that Prop contains
propositions of the form ι, γ, to denote preconditions (ι) and postconditions (γ)
of the goals.

Definition 1 (Transition system). A transition system over Prop is a tuple
S = (S,→, λ), where S is a finite set of states (elements of S are denoted by
s, si for i ∈ N), →⊆ S × S is the transition relation of the system (which is
assumed left-total), and λ : Prop → 2S is the labeling function. We say that a
state s is labeled by p when s ∈ λ(p). The size of S is |S| = |S| + |→|.
For the rest of this paper, we assume that we are given a transition system S over
Prop. A path in S is a non-empty sequence of states. We use typical elements
π, π′, π1, . . . , ρ, . . . to denote paths. The size of a path π, denoted by |π|, is its
number of transitions, and π(i) is the element at position i in π, for 0 ≤ i ≤ |π|.
An empty path1 is a path of size 0. We write Π(S) for the set of all paths in S. For
ι, γ ∈ Prop, we shortly say that a path π “goes from ι to γ” whenever π(0) ∈ λ(ι)
and π(|π|) ∈ λ(γ). The set of direct successors of a set of states S′ ⊆ S is
PostS(S′) = {s ∈ S | ∃s′ ∈ S′ such that (s′, s) ∈→}. The set of successors of a
set of states S′ ⊆ S is Post∗S(S′) = {s ∈ S | ∃π with π(0) ∈ S′ and π(|π|) = s},
and the set of predecessors of S′ ⊆ S is Pre∗

S(S′) = {s ∈ S | ∃π with π(0) =
s and π(|π|) ∈ S′}.

A factor of a path π is a subsequence composed of consecutive elements of π.
Formally, a factor of a path π is a path π′, such that there exists 0 ≤ k ≤ |π|−|π′|,
where π(i + k) = π′(i), for 0 ≤ i ≤ |π′|. An anchoring of π′ in π is an interval
[k, l] ⊆ [0, |π|] where for all i ∈ [k, l], π′(i−k) = π(i) and l−k = |π′|. Notice that
we may have |π′| = 0. We denote by π[k, l] the factor of π of anchoring [k, l].
In other words, the anchorings of π′ in π are the intervals [k, l] of positions in π
such that π[k, l] = π′.

1 Since a path is a non-empty sequence of states, the empty path contains exactly one
state.

90 M. Audinot et al.

We now introduce concatenation and parallel decomposition of paths – two
notions that will serve us to define the semantics of sequential and conjunctive
refinements in attack trees, respectively.

Definition 2 (Concatenation of paths). Let π1, π2, . . . , πn ∈ Π(S) be
paths, such that πi(|πi|) = πi+1(0) for 1 ≤ i ≤ n − 1. The con-
catenation of π1, π2, . . . , πn, denoted by π1.π2.πn, is the path π, where
π[

∑i−1
k=1 |πk| ,

∑i−1
k=1 |πk| + |πi|] = πi

2. We generalize the concatenation to sets
of paths by letting Π.Π ′ = {π ∈ Π(S) | ∃i, 0 ≤ i ≤ |π| and π[0, i] ∈
Π and π[i, |π|] ∈ Π ′}.
Definition 3 (Parallel decomposition of paths). A set {π1, . . . , πn} ⊆
Π(S) is a parallel decomposition of π ∈ Π(S) if for every 1 ≤ i ≤ n the path πi is
a factor of π for some anchoring [ki, li], such that every interval [j, j+1] ⊆ [0, |π|]
is contained in [ki, li] for some i ∈ {1, . . . , n} (which trivially holds if |π| = 0).
We then say that the sequence π1, . . . , πn is a parallel decomposition of π for
the anchorings [k1, l1], . . . , [kn, ln].

Lemma 1. Given a path π ∈ Π(S), and a sequence k1, l1, . . . , kn, ln ∈ [0, |π|],
deciding whether π[k1, l1], . . . , π[kn, ln] is a parallel decomposition of π for the
anchorings [k1, l1], . . . , [kn, ln] can be done in time O(n |π|).
Proof. Verifying that π[k1, l1], . . . , π[kn, ln] is a parallel decomposition of π for
the anchorings [k1, l1], . . . , [kn, ln] amounts to checking that for every interval
[j, j + 1] ⊆ [0, |π|], there is an i ∈ [1, n] such that [j, j + 1] ⊆ [ki, li]. This can
clearly be done in time O(n |π|) by a naive approach.

An example of a parallel decomposition is illustrated in Fig. 4, where π1 =
π[0, 2], π2 = π[3, 5], and π3 = π[1, 4].

Fig. 4. Parallel decomposition of π into {π1, π2, π3}.

A cycle in a path π ∈ Π(S) is a factor π′ of π such that π′(0) = π′(|π′|).
An elementary path is a path with no cycle. Remark that an elementary path π
does not contain any state more than once, so |π| ≤ |S|. Removing a cycle π′ of
anchoring [k, l] from a path π yields the path π[0, k].π[l, |π|]. Removing all the
cycles from π consists in iteratively removing cycles until the resulting path is
2 We use the convention that

∑0
k=1 |πk| = 0.

Is My Attack Tree Correct? 91

elementary. Note that the resulting path may depend on the order in which the
cycles are removed.

We illustrate the notions defined in this section on our running example.

Example 1. We use the state variables introduced in Sect. 2 to describe the states
of a part of our building system. By z0 we denote the state where Position =
Outside (the attacker is outside); WOpen = ff (the window is closed); Locked1 =
Locked2 = tt (both doors are locked); Key1 = Key2 = ff (the attacker does
not have any key); CamOn = tt (the camera is on); Detected = ff (the attacker
has not been detected). Furthermore, we consider seven additional states zi, such
that, for every 1 ≤ i ≤ 7, the specification of zi is the same as the specification of
zi−1, except one variable: state z1 is as z0 but Key1 = tt (the attacker has Key1);
state z2 is as z1 but Locked1 = ff (Door1 is unlocked); state z3 is as z2 but
Position = Room1 (the attacker is in Room1); z4 is as z3 but CamOn = ff (the
camera is off); z5 is as z4 but Key2 = tt (the attacker has Key2); state z6 is as z5
but Locked2 = ff (Door2 is unlocked); state z7 is as z6 but Position = Room2
(the attacker is in Room2).

To model the dynamic behavior of the system, we set (zi−1, zi) ∈→, for
all 1 ≤ i ≤ 7. Given p = (Position = Outside) ∧ (Locked1 = tt) and p′ =
(Position = Room1)∨(Position = Room2), we have z0, z1 ∈ λ(p) and zi ∈ λ(p′),
for 3 ≤ i ≤ 7.

The path ρ = z0z1z2z3z4z5z6z7, corresponds to the scenario depicted using
solid line in Fig. 1b. The set {z0z1z2z3z4, z3z4z5z6z7} is an example of parallel
decomposition of ρ. To show that while being in Room1 the attacker can turn
off but also turn on the camera, we could add the transition (z4, z3) to →. In
this case, the attacker could also take the path ρ′ = z0z1z2z3z4z3z4z5z6z7 which
is not elementary because it contains the cycle z3z4z3.

3.2 Attack Trees

To evaluate the security of systems, we use attack trees. An attack tree does not
replace the state-transition system model – it complements it with additional
information on how the corresponding real-life system could be attacked. There
exist a plethora of methods and algorithms for quantitative and qualitative rea-
soning about security using attack trees [15]. However, accurate results can only
be obtained if the attack tree is in some sense consistent with the analyzed sys-
tem. Our goal is thus to validate the relevance of an attack tree with respect
to a given system. To make this validation possible, we need a model capturing
more information than just text-based names of the nodes. In this section, we
therefore introduce a formal definition of attack trees, where the difference with
the classical definition is the presence of a goal of the form 〈ι, γ〉 at each node.

Definition 4 (Attack tree). An attack tree T over the set of propositions
Prop is either a leaf 〈ι, γ〉, where ι, γ ∈ Prop, or a composed tree of the form
(〈ι, γ〉, OP)(T1, T2, . . . , Tn), where ι, γ ∈ Prop, OP ∈ {OR, AND, SAND} has arity
n ≥ 2, and T1, T2, . . . , Tn are attack trees. The main goal of an attack tree
T = (〈ι, γ〉, OP)(T1, T2, . . . , Tn) is 〈ι, γ〉 and its operator is OP.

92 M. Audinot et al.

The size of an attack tree |T | is the number of the nodes in T . Formally,
|〈ι, γ〉| = 1 and |(〈ι, γ〉, OP)(T1, T2, . . . , Tn)| = 1 + Σn

i=1 |Ti|.
As an example, the tree in Fig. 3 is T = (〈ι, γ〉, OR)(T1, T2). The subtree T1 =

〈ι1, γ1〉 is a leaf and T2 = (〈ι2, γ2〉, AND)(〈ι21, γ21〉, T22) is a composed tree with
T22 = (〈ι22, γ22〉, SAND)(〈ι221, γ221〉, 〈ι222, γ222〉, 〈ι223, γ223〉).

Before introducing properties that address correctness of an attack tree,
we need to define the path semantics of goal expressions that arise from
tree descriptions. A goal expression is either a mere atomic goal of the form
〈ι, γ〉 or a composed goal of the form OP(〈ι1, γ1〉, 〈ι2, γ2〉, . . . , 〈ιn, γn〉), where
OP ∈ {OR, SAND, AND}. The path semantics of a goal expression is defined as
follows.

– [[〈ι, γ〉]]S = {π ∈ Π(S) | π goes from ι to γ}
– [[OR(〈ι1, γ1〉, 〈ι2, γ2〉, . . . , 〈ιn, γn〉)]]S = [[〈ι1, γ1〉]]S ∪ [[〈ι2, γ2〉]]S ∪ . . .∪ [[〈ιn, γn〉]]S
– [[SAND(〈ι1, γ1〉, 〈ι2, γ2〉, . . . , 〈ιn, γn〉)]]S = [[〈ι1, γ1〉]]S .[[〈ι2, γ2〉]]S[[〈ιn, γn〉]]S
– [[AND(〈ι1, γ1〉, 〈ι2, γ2〉, . . . , 〈ιn, γn〉)]]S = {π ∈ Π(S) | ∀i ∈ {1, . . . , n} ∃πi ∈

[[〈ιi, γi〉]]S , s.t. {π1, π2, . . . , πn} is a parallel decomposition of π}.

Consider the goal 〈ι, γ〉 of our running example, and let Z be the system
introduced in Example 1. We have [[〈ι, γ〉]]S = {z0z1z2(z3z4)kz5z6z7 | k ≥ 1},
where (z3z4)k is the path composed of k executions of z3z4.

4 Correctness Properties of Attack Trees

We now define four correctness properties for attack trees, illustrate them on
our running example, and discuss their relevance for real-life security analysis.

4.1 Definitions

Before formalizing the correctness properties for attack trees, we wish to discard
attack trees with “useless” nodes. To achieve this, we define the admissibility of
an attack tree T w.r.t. the system S.

The property that an attack tree T is admissible w.r.t. a system S is induc-
tively defined as follows. A leaf tree 〈ι, γ〉 is admissible whenever [[〈ι, γ〉]]S �= ∅.
A composed tree (〈ι, γ〉, OP)(T1, . . . , Tn) is admissible whenever three conditions
hold: (a) [[〈ι, γ〉]]S �= ∅, (b) [[OP(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅, where 〈ιi, γi〉 is the
main goal of Ti (1 ≤ i ≤ n), and (c) every subtree Ti is admissible.

We now propose four notions of correctness, that provide various formal
meanings to the local refinement of a goal in an admissible tree.

Definition 5 (Correctness properties). Let T be a composed admissible
attack tree of the form (〈ι, γ〉, OP)(T1, T2 . . . , Tn), and assume 〈ιi, γi〉 is the main
goal of Ti, for i ∈ {1, . . . , n}. The tree T has the

1. Meet property if [[OP(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ∩ [[〈ι, γ〉]]S �= ∅.
2. Under-Match property if [[OP(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ⊆ [[〈ι, γ〉]]S .

Is My Attack Tree Correct? 93

3. Over-Match property if [[OP(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ⊇ [[〈ι, γ〉]]S .
4. Match property if [[OP(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S = [[〈ι, γ〉]]S .

Clearly the Match property implies all other properties, whereas Under- and
Over-Match properties are incomparable – as illustrated in Sect. 4.2 – and they
both imply the Meet property. Note that a tree T has the Match property if, and
only if, it has both the Under-Match property and the Over-Match property.

The correctness properties of Definition 5 are local (at the root of the sub-
tree), but they can easily be made global by propagating their requirement to
all of the subtrees. As there are |T | many subtrees, the complexity of globally
deciding these properties has the same order of magnitude as in the local case.

4.2 Illustration on the Running Example

In the system Z defined in Example 1 and composed of the states z0, . . . , z7, we
add two states. First, the state z′

0 that is similar to z0 except that we assume that
the window is open, i.e., WOpen = tt, and second, the state z′

7 that is similar to
z′
0 except that we assume that the attacker is in Room2, i.e., Position = Room2.

As a consequence the transitions of the system Z become z′
0 → z0 → z1 → z2 →

z3 ↔ z4 → z5 → z6 → z7 and z′
0 → z′

7, where the latter models that if the
window is open, the attacker can reach Room2 undetected by entering through
the window.

Let us consider the attack tree T (〈ι, γ〉, OR)(〈ι1, γ1〉, T2) from Fig. 3, where
the main goal of T2 is 〈ι2, γ2〉. Since in system Z, the set of paths [[〈ι, γ〉]]S
is exactly the union of [[〈ι1, γ1〉]]S and [[〈ι2, γ2〉]]S , the tree T has the Match
property w.r.t. Z. This means that in order to achieve goal 〈ι, γ〉, it is necessary
and sufficient to achieve goal 〈ι1, γ1〉 or goal 〈ι2, γ2〉.

We now consider the sub-tree T2 of T rooted at the node labeled by 〈ι2, γ2〉
in Fig. 3. The tree T2 is of the form (〈ι2, γ2〉, AND)(〈ι21, γ21〉, T ′

2) where the main
goal of T ′

2 is 〈ι22, γ22〉. Our objective is to analyze the relationship between
the main goal 〈ι2, γ2〉 of T2 and the composed goal AND(〈ι21, γ21〉, 〈ι22, γ22〉).
In other words, we ask how does the aim of reaching Room2 undetected via
building relates with turning off the camera (〈ι21, γ21〉) and reaching Room2
(〈ι22, γ22〉). A quick analysis of system Z shows that indeed achieving both sub-
goals 〈ι21, γ21〉 and 〈ι22, γ22〉 is necessary to achieve goal 〈ι2, γ2〉, but actually it is
not sufficient. Consider the path δ = z′

0z0z1z2z3z4z5z6z7. This path achieves goal
AND(〈ι21, γ21〉, 〈ι22, γ22〉), as it can be decomposed into δ21 = z′

0z0z1z2z3z4 and
δ22 = z0z1z2z3z4z5z6z7, achieving 〈ι21, γ21〉 and 〈ι22, γ22〉, respectively. However,
δ /∈ [[〈ι2, γ2〉]]S , since z′

0 �∈ λ(ι2) (recall that ι2 requires the window to be closed
which is not the case in z′

0). This is what the Over-Match property reflects. As a
consequence, the main tree T does not have the global Match property w.r.t. Z.

Symmetrically to the Over-Match property, Under-Match reflects a sufficient
but not necessary condition. Under-Match is illustrated in the extended version
of this work [4]. Regarding the Meet property, we invite the reader to consider
the following discussion on the relevance of the correctness properties we have
proposed.

94 M. Audinot et al.

4.3 Relevance of the Correctness Properties

The main objective of introducing the four correctness properties is to be able to
validate an attack tree with respect to a system S, i.e., verify how faithfully the
tree represents potential threats on S. This is of special importance for the trees
that are created manually or which are borrowed from an attack tree library.

In the perfect world, we would expect to work with attack trees having the
(global) Match property, i.e., where the refinement of every (sub-)goal covers
perfectly all possible ways of reaching the (sub-)goal in the system. However, a
tree created by a human will rarely have this property. The experts usually do not
have perfect knowledge about the system and might lack information about some
relevant data. Trees that have been created for similar systems are often reused
but they might actually be incomplete or inaccurate with respect to the current
system. Finally, requiring the (global) Match property might also be unrealistic
for goals expressed only with a couple 〈precondition, postcondition〉. There-
fore, Match is often too strong to be the property expected by default.

In practice, experts base their trees on some example scenarios, which implies
that they obtain trees having the (global) Meet property. The Meet property –
which ensures that there is at least one path in the system satisfying both the
parent goal and its refinement – is the minimum that we expect from an attack
tree so that we can consider that it is (in some sense) correct and so that we can
start reasoning about the security of the underlying system.

However, in order to be able to perform a thorough and accurate analysis of
security, one needs stronger properties to hold. One of the purposes of attack
trees is to provide a summary of possible individual attack scenarios in order to
quantify the security-relevant parameters, such as their cost, their time or their
probability. This helps the security experts to compare and rank the different
scenarios, to be able to deduce the most probable ones and propose suitable
countermeasures. The classical bottom-up algorithm for quantification of attack
trees, described for instance in [19], assigns the parameter values to the leaf
nodes and then propagates them up to the root, using functions that depend on
the type of the refinement used (in our case OR, AND, SAND). This means that the
value of the parent node depends solely on the values of its children. To make
such a bottom-up quantification meaningful from the attacker’s perspective, we
need to require at least the (global) Under-Match property. Indeed, this property
stipulates that all the paths satisfying a refinement of a node’s goal also satisfy
the goal itself. Under-Match corresponds thus to an under-approximation of the
set of scenarios and it is enough to consider it for the purpose of finding a
vulnerability in the system.

To make the analysis meaningful from the point of view of the defender, we will
rather require the Over-Match property. This property means that all the paths
satisfying the parent goal also satisfy its decomposition into sub-goals. Since the
Over-Match property corresponds to an over-approximation of the set of scenar-
ios, it is enough to consider it for the purpose of designing countermeasures.

Our method to evaluate the correctness of an attack tree is to check Admis-
sibility and the (global) Meet property. If it holds, then we say that the attack

Is My Attack Tree Correct? 95

tree construction is correct w.r.t. to the analyzed system. We then look at the
stronger properties. Depending on the situation, the expert might want to ensure
either the (global) Under-Match or the (global) Over-Match property. If the tree
fails to verify the desired property with respect to a given system S, then it
needs to be reshaped before it can be employed for the security analysis of the
real system modeled by S.

5 Complexity Issues

In this section, we address the complexity of deciding our four correctness proper-
ties introduced in Definition 5. For full proofs, we refer the reader to the extended
version of this work [4]. Table 1 gives an overview of the obtained results. In the
case of the OR and the SAND operators, all the correctness properties are decided in
polynomial time, which is promising in practice. However, for the AND operator,
checking the Admissibility property and the Meet property is NP-complete, and
checking the Under-Match property is co-NP-complete. These last two problems
are therefore intractable [9], but recall that their complexity in practice might
be lower thanks to much favorable kinds of instances (see for example [18]).

Table 1. Complexities of the correctness properties.

Admissibility Meet Under-Match Over-Match Match

OR P P P P P

SAND P P P P P

AND NP-c NP-c co-NP-c co-NP co-NP

We first state two lemmas that will be useful for our complexity analysis.
Lemma 2 provides a bound to the size of paths we need to consider in the system
for the verification of correctness properties. Lemma 3 provides the complexity
of checking if a path reflects a particular combination of subgoals.

Lemma 2. Let S be a transition system, OP ∈ {OR, AND, SAND}, and
ι1, γ1, . . . ιn, γn ∈ Prop. For every path π in [[OP(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ,
there exists a path π′ of linear size in |S| and n that is also in
[[OP(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S and which preserves the ends of π, i.e., π′(0) = π(0)
and π′(|π′|) = π(|π|). More precisely, |π′| ∈ O((2n − 1) |S|).
Lemma 3. Let S be a transition system, ι1, γ1, . . . ιn, γn be propositions in Prop,
and let π ∈ Π(S). Determining whether π ∈ [[OP(〈ι1, γ1〉, 〈ι2, γ2〉, . . . , 〈ιn, γn〉)]]S
can be done in time O(|π|+n), if OP = SAND, and in time O(|π|n), if OP = AND.

The proofs of the two lemmas are provided in [4].

96 M. Audinot et al.

5.1 Checking Admissibility (Column 1 of Table 1)

We now investigate the complexity of deciding the admissibility of an attack
tree.

Proposition 1. Given a system S and ι1, γ1, . . . ιn, γn ∈ Prop, decid-
ing [[〈ι, γ〉]]S �= ∅, deciding [[OR(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅, and deciding
[[SAND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅ are decision problems in P.

Proof.

1. Determining if [[〈ι, γ〉]]S is not empty amounts to performing a standard reach-
ability analysis in S, which can be done in polynomial time.

2. By the path semantics of the OR operator, [[OR(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅ if
and only if there is i ∈ [1, n], such that [[〈ιj , γj〉]]S �= ∅, which by the case 1 of
this proof, yields a polynomial time algorithm.

3. Checking that [[SAND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅ can be done by a forward
analysis: for 1 ≤ i ≤ n, we define a sequence of state sets Si by induction
over i as follows: we let S1 = λ(ι1). Next, for 2 ≤ i < n, Si+1 = λ(ιi+1) ∩
λ(γi) ∩ Post∗S(Si). Clearly, [[SAND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅ if, and only if
Sn �= ∅. Moreover, computing Sn takes at most n |S| steps, since each Si+1 is
computed from Si in at most |S| steps.

In the case of the AND operator the reasoning is more complex.

Proposition 2. Given a system S and ι1, γ1, . . . ιn, γn ∈ Prop, deciding the
non-emptiness [[AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅ is NP-complete.

Proof. NP-easy: We can use the algorithm of Lemma 3, with the algorithm
guessing a path of polynomial size according to Lemma 2. NP-hard: We recall
that a set of clauses C over a set of (propositional) variables {p1, . . . , pr} is
composed of elements (the clauses) C ∈ C such that C is a set of literals, that
is either a variable pi or its negation ¬pi. The set C is satisfiable if there exists
a valuation of the variables p1, . . . , pr that renders all the clauses of C true.
The SAT problem is: given a set of clauses C , to decide if it is satisfiable. It is
well-known that SAT is an NP-complete problem [6].

Now, let C = {C1, . . . , Cm} be a set of clauses over variables {p1, . . . , pr}
(ordered by their index) that is an input of the SAT problem. Classically, we let
|C | be the sum of the sizes of all the clauses in C , where the size of a clause is
the number of its literals.

In the following, we let the symbol
i denote either pi or ¬pi, for every
i ∈ {1, . . . , r}. We define the labeled transition system SC = (SC ,→C , λC) over
the set of propositions {start, C1, . . . , Cm}, where start is a fresh proposition, as
follows. The set of states is SC =

⋃r
i=1{pi,¬pi}∪{s}, where s is a fresh state; the

transition relation is →C= {(
i,
i+1) | i ∈ [1, r −1]}∪{(s,
1)}; and the labeling
of states λC : {start, C1, . . . , Cm} → 2S is such that λC (start) = {s} and
λC (Ci) = {
 ∈ Ci} for 1 ≤ i ≤ m. Note that, by definition, |SC | is polynomial

Is My Attack Tree Correct? 97

s

p

¬p

q

¬q

r

¬r

start

C1,C2

C1

C2

Fig. 5. The system S{C1,C2} where C1 = p ∨ ¬q and C2 = p ∨ r.

in |C |. For example, the transition system corresponding to the set formed by
clauses C1 = p ∨ ¬q and C2 = p ∨ r is depicted in Fig. 5.

It is then easy to establish that [[AND(〈start, C1〉, 〈start, C2〉, . . . ,
〈start, Cm〉)]]SC �= ∅ if, and only if C is satisfiable.

According to the formal definition of the statement “T is admissible w.r.t. S”
as defined in Sect. 4, it is easy to combine the results of Propositions 1 and 2, to
conclude that verifying that a tree is admissible is an NP-complete problem.

5.2 Checking the Meet property (Column 2 of Table 1)

Preliminaries on temporal logic. We consider a syntactic fragment of the tempo-
ral logic CTL [5] where the only temporal operator is “eventually”, here denoted
by symbol ♦, and where Boolean operators are conjunction and disjunction. The
syntax of the formulas is ϕ := p | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦ϕ. The semantics of formulas
is given with regard to a labeled transition system S = (S,→, λ): each for-
mula ϕ denotes a subset of states, which we note [ϕ]S , and which is defined by
induction: [p]S = λ(p), [ϕ ∧ ϕ′]S = [ϕ]S ∩ [ϕ′]S , [ϕ ∨ ϕ′]S = [ϕ]S ∪ [ϕ′]S , and
[♦ϕ]S = Pre∗

S([ϕ]S), where Pre∗
S is defined in Sect. 3.1. Recall that s ∈ [♦ϕ]S

if, and only if, there is a path in S starting from s and that reaches a state in
[ϕ]S . It is well-established that computing [ϕ]S can be done in polynomial time
in |S| and |ϕ| (see for example [27]).

We now turn to the complexity of verifying the Meet property.

Proposition 3. Given a system S and ι, γ, ι1, γ1, . . . ιn, γn ∈ Prop, the problem
of deciding [[OR(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S∩[[〈ι, γ〉]]S �= ∅, and the problem of deciding
[[SAND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ∩ [[〈ι, γ〉]]S �= ∅ are in P.

Proof.

1. Let ϕOR :=
n∨

i=1

ι ∧ ιi ∧ ♦(γ ∧ γi). We claim that [[OR(〈ι1, γ1〉, . . . 〈ιn, γn〉)]]S ∩

[[〈ι, γ〉]]S �= ∅ iff [ϕOR]S �= ∅. We easily conclude our proof from the claim and
the fact that computing [ϕOR]S can be done in polynomial time.

98 M. Audinot et al.

2. Let ϕSAND := ι ∧ ι1 ∧ ♦(γ1 ∧ ι2 ∧ ♦(γ2 ∧ . . . ♦(γn ∧ γ))). We claim that
[[SAND(〈ι1, γ1〉, . . . 〈ιn, γn〉)]]S ∩[[〈ι, γ〉]]S �= ∅ iff [ϕSAND]S �= ∅. We easily conclude
our proof from the claim and the fact that computing [ϕSAND]S can be done
in polynomial time.

The proofs of the two claims can be found in the extended version [4].

Again, the AND operator turns out to be intrinsically more complex to deal
with.

Proposition 4. Given a system S and ι, γ, ι1, γ1, . . . ιn, γn ∈ Prop, deciding
[[AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ∩ [[〈ι, γ〉]]S �= ∅ is an NP-complete problem.

Proof. NP-easy: We can construct a non-deterministic polynomial time algo-
rithm that guesses a path π ∈ Π(S), of polynomial size in |S| and n (this is
justified by Lemma 2), and checks that π ∈ [[AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S , which
can be done in polynomial time in the size of π, which is also in polynomial time
in |S| and n by the choice of π (see Lemma 3). NP-hard: we reduce the problem
of deciding [[AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S �= ∅ which is NP-hard by Proposition 2.
The details are given in the extended version [4].

As a consequence of Propositions 3 and 4, it is NP-complete to verify that an
attack tree has the Meet property, but if we restrict to attack trees that contain
only OR or SAND operators, the problem becomes P .

5.3 Checking the Under-Match property (Column 3 of Table 1)

The OR and SAND operators do not pose any problem. Due to the lack of space,
we omit the proof which can be found in the extended version [4].

Proposition 5. Given a system S and ι, γ, ι1, γ1, . . . ιn, γn ∈ Prop, decid-
ing [[OR(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ⊆ [[〈ι, γ〉]]S , and deciding [[SAND(〈ι1, γ1〉, . . . ,
〈ιn, γn〉)]]S ⊆ [[〈ι, γ〉]]S are decision problems in P.

As previously, the AND operator yields a more complex problem to solve.

Proposition 6. Given a system S and ι, γ, ι1, γ1, . . . ιn, γn ∈ Prop, deciding
[[AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ⊆ [[〈ι, γ〉]]S is a co-NP-complete problem.

This proof is given in the extended version [4].

5.4 Checking the Over-Match property (Column 4 of Table 1)

Again, the cases for the OR and AND operators are smooth whereas the case of
the AND operator is more difficult. Full proofs of these results are long and can
be found in [4].

Is My Attack Tree Correct? 99

Proposition 7. Given a system S and ι, γ, ι1, γ1, . . . ιn, γn ∈ Prop, decid-
ing [[OR(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ⊇ [[〈ι, γ〉]]S and deciding [[SAND(〈ι1, γ1〉, . . . ,
〈ιn, γn〉)]]S ⊇ [[〈ι, γ〉]]S are decision problems in P. On the contrary deciding
[[AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉)]]S ⊇ [[〈ι, γ〉]]S is a decision problem in co-NP.

Finally, we can get an upper bound for column 5 of Table 1 (the Match
property) by taking the maximum between upper bound complexities for Under-
Match and Over-Match, which achieves the filling of Table 1.

6 Conclusion and Future Work

In this work, we have developed and studied a formal setting to assist experts
in the design of attack trees when a particular system is considered. The system
is described by a finite state-transition system that reflects its dynamics and
whose finite paths (sequences of states) denote attack scenarios. The attack tree
nodes are labeled with pairs 〈ι, γ〉 expressing the attacker’s goals in terms of
pre and postconditions. The semantics of attack trees is based on sets of finite
paths in the transition system. Such sets of paths can be characterized as a mere
reachability condition of the form “all paths from condition ι to condition γ”,
or by a combination of those by means of OR, AND, and SAND.

We have exhibited the Admissibility property which allows us to check
whether it makes sense to analyze a given attack tree in the context of a con-
sidered system. We then propose four natural correctness properties on top of
Admissibility, namely

– Meet – the node’s refinement makes sense in a given system;
– Under (resp. Over) Match – the node’s refinement under-approximates (resp.

over-approximates) the goal of the node in a given system; and
– Match – the node’s refinement expresses exactly the node’s goal in a given

system.

While analyzing an attack tree with respect to a system, we propose to start
by checking whether each of its subtrees satisfies the Meet property – this is
the minimum that we require from a correct attack tree. If this is the case, we
can then check how well the tree refines the main attacker’s goal, using (Under-
and Over-) Matching. Our study reveals that the highest complexity in such
analysis is due to conjunctive refinements (i.e., the AND operator), as opposed
to disjunctive and sequential refinements, cf. Table 1. The reason is that the
semantics that we use in our framework relies on paths in a transition system
and thus modeling and verification for paths’ concatenation (used to formalize
the SAND refinements) is much simpler than those for parallel decomposition
(used to formalize the AND refinements). Indeed, the latter requires to analyze
the combinatorics of paths representing children of a conjunctively refined node.

The framework presented in this paper offers numerous possibilities for prac-
tical applications in industrial setting. First, it can be used to estimate the
quality of a refinement of an attack goal, that an expert could borrow from

100 M. Audinot et al.

an attack pattern library. The correctness properties introduced in this work
allow us to evaluate the relevance of often generic refinements in the context of a
given system. Second, classical attack trees use text-based nodes that represent a
desired configuration to be reached (our postcondition γ) without specifying the
initial configuration (our precondition ι) where the attack will start from. Given
a transition system S describing a real system to be analyzed, the text-based
goals can be straightforwardly translated into formal propositions expressing the
final configurations (i.e., γ) to be reached by the attacker. The expert may also
specify the initial configurations (i.e., ι), but if he does not do so, they can be
automatically generated from the transition system, by simply taking all states
belonging to the set Pre∗

S(λ(γ)) of predecessors of λ(γ) in S.
For pedagogical reasons, we have focused on simple atomic goals (i.e., node

labels) that are definable in terms of a precondition and a postcondition. As one
of the future directions, we would like to enrich the language of atomic goals, for
instance by adding variables with history or invariants. Variables with history
can be used to express properties such as “Once detected, the attacker will always
stay detected”. With invariants, we may add constraints to the goals, as in “Reach
Room2 undetected without ever crossing Room1”. If invariants are added to
atomic goals, for instance using LTL formulas, the complexity of some problems
presented in this paper may increase. In that case, checking that a path satisfies
the semantics of a node might no longer be done in constant time, but in polyno-
mial time, or even in PSPACE-complete, if arbitrary LTL formulas are allowed
[7]. It would then be relevant to study the interplay between the expressiveness
of the atomic goals and the complexity of verifying these correctness properties.

It would also be interesting to extend our framework to capture more com-
plex properties than those defined in Definition 5. Pragmatic examples of such
properties would be validities and tests expressed in an adequate logic. Validi-
ties would be formulas that are true in any system. An example of a validity
would look like AND(〈ι, γ〉〈ι′, γ′〉) � SAND(〈ι, γ〉〈ι′, γ′〉), with the meaning that a
sequential composition is a particular case of parallel composition. Tests would
be formulas which might be true in some systems, but not necessarily in all
cases. For instance, a formula like AND(〈ι, γ〉〈ι′, γ′〉) � SAND(〈ι, γ〉〈ι′, γ′〉) would
mean that, in a given system, it is impossible to realize both 〈ι, γ〉 and 〈ι′, γ′〉
otherwise than sequentially in this particular order.

Finally, we are currently working on integrating the framework developed
in this work to the ATSyRA tool. The ultimate goal is to design software for
generation of attack trees satisfying the correctness properties that we have intro-
duced. The short- term objective is to validate the practicality of the proposed
framework and its usability with respect to the complexity results that we have
proven in this work.

References

1. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46666-7 6

http://dx.doi.org/10.1007/978-3-662-46666-7_6

Is My Attack Tree Correct? 101

2. Aslanyan, Z., Nielson, F.: Model checking exact cost for attack scenarios. In:
Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 210–231. Springer,
Heidelberg (2017). doi:10.1007/978-3-662-54455-6 10

3. Audinot, M., Pinchinat, S.: On the soundness of attack trees. In: Kordy, B.,
Ekstedt, M., Kim, D.S. (eds.) GraMSec 2016. LNCS, vol. 9987, pp. 25–38. Springer,
Cham (2016). doi:10.1007/978-3-319-46263-9 2

4. Audinot, M., Pinchinat, S., Kordy, B.: Is my attack tree correct? (extended ver-
sion). CoRR abs/1706.08507 (2017), http://arxiv.org/abs/1706.08507

5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). doi:10.1007/BFb0025774

6. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of
the Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM
(1971)

7. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic
on finite traces. In: IJCAI 2013 Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, pp. 854–860. Association for Computing
Machinery (2013)

8. Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Poulsen,
D.B.: Modelling attack-defense trees using timed automata. In: Fränzle, M.,
Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 35–50. Springer, Cham
(2016). doi:10.1007/978-3-319-44878-7 3

9. Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 29. W.H. Freeman
and Company, New York (2002)

10. Horne, R., Mauw, S., Tiu, A.: Semantics for specialising attack trees based on
linear logic. Fundam. Inform. 153(1–2), 57–86 (2017)

11. Ivanova, M.G., Probst, C.W., Hansen, R.R., Kammüller, F.: Transforming graphi-
cal system models to graphical attack models. In: Mauw, S., Kordy, B., Jajodia, S.
(eds.) GraMSec 2015. LNCS, vol. 9390, pp. 82–96. Springer, Cham (2016). doi:10.
1007/978-3-319-29968-6 6

12. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack
trees with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC
2015. IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). doi:10.1007/
978-3-319-18467-8 23

13. Jürgenson, A., Willemson, J.: Serial model for attack tree computations. In: Lee,
D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 118–128. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14423-3 9

14. Kordy, B., Mauw, S., Radomirovic, S., Schweitzer, P.: Attack-defense trees. J. Log.
Comput. 24(1), 55–87 (2014)

15. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13–14,
1–38 (2014)

16. Kordy, B., Pouly, M., Schweitzer, P.: Probabilistic reasoning with graphical security
models. Inf. Sci. 342, 111–131 (2016)

17. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via
priced timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FOR-
MATS 2015. LNCS, vol. 9268, pp. 156–171. Springer, Cham (2015). doi:10.1007/
978-3-319-22975-1 11

18. Leyton-Brown, K., Hoos, H.H., Hutter, F., Xu, L.: Understanding the empirical
hardness of NP-complete problems. Commun. ACM 57(5), 98–107 (2014)

http://dx.doi.org/10.1007/978-3-662-54455-6_10
http://dx.doi.org/10.1007/978-3-319-46263-9_2
http://arxiv.org/abs/1706.08507
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/978-3-319-44878-7_3
http://dx.doi.org/10.1007/978-3-319-29968-6_6
http://dx.doi.org/10.1007/978-3-319-29968-6_6
http://dx.doi.org/10.1007/978-3-319-18467-8_23
http://dx.doi.org/10.1007/978-3-319-18467-8_23
http://dx.doi.org/10.1007/978-3-642-14423-3_9
http://dx.doi.org/10.1007/978-3-319-22975-1_11
http://dx.doi.org/10.1007/978-3-319-22975-1_11

102 M. Audinot et al.

19. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). doi:10.
1007/11734727 17

20. OWASP: CISO AppSec Guide: Criteria for managing application security risks
(2013)

21. Phillips, C.A., Swiler, L.P.: A graph-based system for network-vulnerability analy-
sis. In: Workshop on New Security Paradigms, pp. 71–79. ACM (1998)

22. Pieters, W., Padget, J., Dechesne, F., Dignum, V., Aldewereld, H.: Effectiveness of
qualitative and quantitative security obligations. J. Inf. Sec. Appl. 22, 3–16 (2015)

23. Pinchinat, S., Acher, M., Vojtisek, D.: ATSyRa: an integrated environment for
synthesizing attack trees. In: Mauw, S., Kordy, B., Jajodia, S. (eds.) GraM-
Sec 2015. LNCS, vol. 9390, pp. 97–101. Springer, Cham (2016). doi:10.1007/
978-3-319-29968-6 7

24. Research, N., (RTO), T.O.: Improving Common Security Risk Analysis. Tech.
Rep. AC/323(ISP-049)TP/193, North Atlantic Treaty Organisation, University of
California, Berkeley (2008)

25. Roy, A., Kim, D.S., Trivedi, K.S.: Attack countermeasure trees (ACT): towards
unifying the constructs of attack and defense trees. Secur. Commun. Netw. 5(8),
929–943 (2012)

26. Schneier, B.: Attack trees: modeling security threats. Dr. Dobb’s J. Softw. Tools
24(12), 21–29 (1999)

27. Schnoebelen, P.: The complexity of temporal logic model checking. Adv. Modal
Logic 4(35), 393–436 (2002)

28. Sheyner, O., Haines, J.W., Jha, S., Lippmann, R., Wing, J.M.: Automated gener-
ation and analysis of attack graphs. In: IEEE S&P, pp. 273–284. IEEE Computer
Society (2002)

29. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46681-0 20

30. Vigo, R., Nielson, F., Nielson, H.R.: Automated generation of attack trees. In:
CSF, pp. 337–350. IEEE Computer Society (2014)

http://dx.doi.org/10.1007/11734727_17
http://dx.doi.org/10.1007/11734727_17
http://dx.doi.org/10.1007/978-3-319-29968-6_7
http://dx.doi.org/10.1007/978-3-319-29968-6_7
http://dx.doi.org/10.1007/978-3-662-46681-0_20

Server-Aided Secure Computation
with Off-line Parties

Foteini Baldimtsi1(B), Dimitrios Papadopoulos2, Stavros Papadopoulos3,
Alessandra Scafuro4, and Nikos Triandopoulos5

1 George Mason University, Fairfax, USA
foteini@gmu.edu

2 Hong Kong University of Science and Technology, Sai Kung, Hong Kong
dipapado@cse.ust.hk

3 Intel Labs, MIT, Cambridge, USA
stavrosp@csail.mit.edu

4 North Carolina State University, Raleigh, USA
ascafur@ncsu.edu

5 Stevens Institute of Technology, Hoboken, USA
ntriando@stevens.edu

Abstract. Online social networks (OSNs) allow users to jointly compute
on each other’s data (e.g., profiles, geo-locations, etc.). Privacy issues nat-
urally arise in this setting due to the sensitive nature of the exchanged
information. Ideally, nothing about a user’s data should be revealed to
the OSN provider or non-friends, and even her friends should only learn
the output of a specific computation. A natural approach for achieving
these strong privacy guarantees is via secure multi-party computation
(MPC). However, existing MPC-based approaches do not capture two
key properties of OSN setting: Users does not need to be online while
their friends query the OSN server on their data; and, once uploaded,
user’s data can be repeatedly queried by the server on behalf of user’s
friends. In this work, we present two concrete MPC constructions that
achieve these properties. The first is an adaptation of garbled circuits
that converts inputs under different keys to ones under the same key, and
the second is based on 2-party mixed protocols and involves a novel 2-
party re-encryption module. Using state- of-the-art cryptographic tools,
we provide a proof-of-concept implementation of our schemes for two
concrete use cases, overall validating their efficiency and efficacy in pro-
tecting privacy in OSNs.

1 Introduction

Secure computation is a cryptographic tool that enables n mutually distrustful
parties to compute the output of a function on their combined inputs, while keep-
ing the inputs secret. Originally, the problem of secure computation considered
n equally powerful, fully connected parties that interact for a one-time compu-
tation and was mostly regarded as an intriguing theoretical question. However,
as more data and services are managed by remote untrusted machines, this tool
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 103–123, 2017.
DOI: 10.1007/978-3-319-66402-6 8

104 F. Baldimtsi et al.

became increasingly relevant for real-world scenarios over time. Thus, the effort
of the community has focused on making secure computation amenable to real
applications in ways that can be summarized in the following three directions:

(a) Optimization of Existing Classical Protocols. An amazing line of work
focused on improving the concrete efficiency of existing results in the model of
equally powerful, fully connected parties such as Yao’s garbled circuit [49,50],
and GMW [25] and BGW [11]. For example, a sequence of work [10,17,36–38,42,
45,51] showed that classic garbled circuits can be implemented very efficiently,
reducing the number of encryptions required for each garbled gate.

(b) Introduction of New Interaction/Computation Models to Reduce
the Computational Burden of the Parties. These new models consider
distinguished nodes (often called “servers”) that carry out most of the compu-
tation and communication. For example, [39] considers a single-server model,
where parties encrypt their inputs using homomorphic encryption, send them to
an untrusted server that performs the computation and delivers the encrypted
output to the parties who engage in a MPC protocol to decrypt the result. In this
way, parties have to do work that is independent of the function complexity, but
depends only on the input/output size. While asymptotically advantageous, [39]
has poor concrete efficiency. Other works [18,19,23,32,33] have looked at lever-
aging this “server-aided” model with the additional assumption that the server
does not collude with the parties. In this setting, they are able to provide effi-
cient multiparty protocols based on garbled circuits, where parties communicate
with the servers upon each computation to provide the encoding of their inputs
(some parties need to additional engage with the server requiring communication
complexity proportional to the circuit size). A multi-server model has also been
considered [14,20,31,43] where computation is performed by multiple servers
and the non-collusion requirement is moved from client-to-server to server-to-
server only.

(c) Introduction of Models Tailored to Specific Real World Applica-
tions. Works in this direction proposed models that better reflect real world
threat models and interaction patterns. An example of such work is the model
for computation over the Internet introduced by Halevi et al. in [27]. In their
model there is a single server which is always online but the parties involved in
the protocol are not expected to be online. Instead, they connect only when they
desire to provide inputs to the computation or learn the output of the protocol.
However, every time a new computation needs to be performed, parties must
connect and provide fresh encodings of their input (even if it has not changed).
This makes [27] very relevant to applications that require a one-time computa-
tion, such as e-voting, where clients connect once to cast their vote and once to
get the election result.

Our Contribution. In this work, we make progress in the last direction, by
proposing a new model that fits a specific real world scenario –Online Social
Networks (OSN)– and we provide two new protocols and respective implemen-
tations. OSNs enable users to store information they wish to share with other

Server-Aided Secure Computation with Off-line Parties 105

authorized users –their friends– and the latter can access friends’ data at their
own convenience. As opposed to one-time computation applications which are
captured by [27], OSNs allow repeated computations over a party’s data. E.g.,
in the friend-finder application of Facebook, called “Nearby Friends”, Alice’s
location is sent to Facebook’s server once and can be re-used by her friends
several times, without Alice performing any further action. This type of interac-
tion mandates two key properties: (i) data re-usability, i.e., personal data that
a user may upload once to the OSN server can be repeatedly computed upon
(possibly in different ways), and (ii) friend non-participation, i.e., a user need
not be online when one of her friends requests a computation that involves her
data. We introduce a model where parties upload their secret input to a single,
untrusted, server in a one-time step, and then they do not have to be on-line
anymore unless they want to update their own input or they want to compute
(via the server) a function on the combined inputs of their friends. Crucially,
and in contrast with [27], whenever a friend requests a computation from the
server, the other parties do not need to provide a new encoding for their inputs.

Our Model. We consider a single-server hosting the OSN, and multiple users
that form the social network. We represent the OSN as a graph; the users con-
stitute the nodes of the graph, and an edge denotes that the two vertices are
friends. Users upload their data to the server, and update them at any time. The
users agree upon arbitrary queries (i.e., specific computations over their uploaded
data) with their friends (e.g., “who is my geographically nearest friend”), and
each user may repeatedly issue queries to the server about her own and her
friends’ data. Both upload and query executions involve only the server and a
single user, while the remaining users do not need to participate or even to be
online.

Our privacy goals are: (i) the server learns nothing about the user data or
the query results, (ii) the querier learns nothing about her friends’ data other
than what is inferred from the results, and (iii) the querier learns nothing about
non-friends’ data. Note that we do not consider the social graph structure to be
sensitive. Moreover, we assume that every user allows all of her friends to query
on her data, i.e., “friendship” implies access control on one’s data. Hiding the
graph and supporting more sophisticated access policies are interesting problems
that are orthogonal to our work. Our performance requirements are: (i) the cost
to upload/update a user’s input should be constant, and (ii) the constructions
should involve lightweight cryptographic tools, with reasonable upload and query
times.

Definitional Choices. Our security model has two relaxations. First, we
assume that friends do not collude with the OSN provider, they can col-
lude with each other however (non-friend collusion with the OSN server is
also accepted). This type of security relaxation, first formalized as bounded-
collusions by Kamara et al. in [32], has since been adopted in a sequence of
works [18,19,23,32,33]. We believe that this collusion model is meaningful in
OSN applications where friendship implies some level of trust. Note that regard-
less of the collusion model, in the OSN interaction model (where the server can

106 F. Baldimtsi et al.

perform a computation without other users), only a weaker input-privacy can
be achieved. Indeed, [27] shows that a collusion between server and any user Uj

allows them to learn the residual function on many inputs of their choice. Second,
we consider the semi-honest model, i.e., we assume that the parties execute the
protocols correctly. Although weaker, this model provides full protection against
security breaches suffered by OSN providers or by friends. In the full version of
the paper [8], we elaborate on some of challenges that arise when moving to the
malicious setting where adversaries may arbitrarily deviate from the protocol.

Our Technique: Multi-party Computation from a Two-Party Proto-
col. Our approach consists of implementing a multi-party functionality, using
strictly two-party protocols run between a single user and the server. Our key
technical contribution is developing “translation” mechanisms to translate input
encrypted under a friend’s secret key, into data that is encrypted with a com-
mon key which is secret shared between the OSN server and the user, but is
not known by any of them. In developing this tool, we leverage the assump-
tion that a friend does not collude with the OSN server. In this way, parties
upload encodings of their inputs to the server and, any time a party wishes to
compute a function, the server will use her friends’ encodings and interact with
the querier to carry out the computation. This might seem relatively easy to
achieve, e.g., if the friend input encodings are all produced under the querier’s
key, or by establishing fresh shared randomness before every single computa-
tion (as in [23]). The former approach requires each friend to produce a separate
encoding of her value for each of her friends, leading to considerable overhead for
upload. The latter prevents re-usability of values, forcing friends to get involved
in someone else’s computations. Thus, the challenge in realizing the multi-party
OSN functionality from two-party protocols boils down to simultaneously achiev-
ing re-usability, friend non-participation and efficient uploads, while employing
lightweight cryptographic primitives (such as symmetric or additively homomor-
phic encryption). At the core of our solutions are mechanisms for re-randomizing
the encoding of the inputs upon each computation, without involving any party
except the querier and the server.

Overview of our Protocols. We design two MPC-based constructions
based on well-studied techniques for secure two-party computation, garbled
circuits [49,50] and mixed protocols [13,21,28,34]. Each user independently
encrypts a value under her own key and uploads the encryption to the server
with constant cost. The difficulty lies in implementing a two-party query pro-
tocol on encryptions produced by different keys. We achieve this by having two
users exchange common secrets once upon establishing their friendship. Using
these secrets, the querier can emulate a multi-party protocol by solely interacting
with the server.

Our first construction, presented in Sect. 4 is based on garbled circuits. The
main idea is that the querier prepares a selection table utilizing the common
secrets during the query, which allows the server to map the (unknown to the
querier) encoded friend inputs to the encoding expected by the querier’s circuit.
A similar idea was used in [40] for a different setting, namely garbled RAMs.

Server-Aided Secure Computation with Off-line Parties 107

A positive side-effect of this is that is eliminates the need for costly oblivious
transfers (OT) required in traditional two-party garbled circuit schemes.

Our second construction, presented in Sect. 5, adopts the two-party mixed
protocols approach, motivated by the fact that the performance of garbled cir-
cuits is adversely affected by functions with large circuit representation. The
main idea is to substitute the parts of the computation that yield a large number
of circuit gates with arithmetic modules. The latter are implemented via two-
party protocols, executed between the querier and the server involving homo-
morphic ciphertexts. A core component of our solution is a novel two-party
re-encryption protocol, which enables the server to privately convert the homo-
morphic ciphertexts of the querier’s friends, to ciphertexts under the querier’s
key. Unlike existing proxy re-encryption schemes [5,6,35], our simple technique
maintains the homomorphic properties of ciphertexts, and can be retrofitted into
any existing scheme that uses (partially) homomorphic encryption (e.g., [46]),
allowing computation over ciphertexts produced with different keys of collabo-
rating users.

Implementation. In Sect. 6, we provide a proof-of-concept implementation and
experimentally evaluate its performance for applications that measure closeness
under the Euclidean and the Manhattan distance metrics, which are useful in
OSNs (e.g., location closeness in Foursquare, or profile closeness in Match.com).

2 Preliminaries

Semi-Homomorphic Encryption. We utilize public-key additively homomor-
phic schemes (e.g., Paillier [47]). Hereafter, [[·]]pk denotes a ciphertext encrypted
with additively homomorphic encryption under key pk . When it is clear from
the context we omit pk from the subscript. Given ciphertexts [[a]], [[b]] of a and
b under the same key, additively homomorphic encryption allows the computa-
tion of the ciphertext of a + b as [[a]] · [[b]] = [[a + b]], where · denotes a certain
operation on ciphertexts (e.g., modular multiplication in Paillier). Given [[a]] it
allows to efficiently compute [[au]], for a plaintext value u, by computing [[a]]u.
Note that [[a]]−u ≡ [[a]]u

′
, where u′ is the additive inverse of u in the plaintext

space. Moreover, given [[a]] one can produce a fresh re-encryption without the
secret key, by generating a new encryption [[0]] of 0, and computing [[a]] · [[0]].

Yao’s Garbled Circuits [49,50]. This is the de-facto method for secure two-
party computation, which was originally proposed for the semi-honest model.
For readers that are not familiar with the concept of garbled circuits, we include
a detailed description in the full version of our paper [8]. At a high level the
scheme works as follows: consider two parties, Uq and S (this notation will be
helpful later). Suppose that Uq wishes to compute a function f on S’s and her
own data. First Uq expresses f as a Boolean circuit, i.e., as a directed acyclic
graph of Boolean gates such as AND and OR, and sends a “garbled” version of
the circuit to S to evaluate it using its own input. Note that Uq does not send
her inputs to S, instead her inputs are encoded into the garbled circuit such that

108 F. Baldimtsi et al.

S can not determine what they are. Uq is typically referred to as the garbler and
S as the evaluator.

Mixed Protocols. In garbled circuits, even simple functions may result in a
circuit with an excessive number of gates. For instance, textbook multiplication
of two �-bit values is expressed with O(�2) gates. Motivated by this, many recent
works (e.g. [13,21,28,34]) focus on substituting a large portion of the circuit with
a small number of boolean or arithmetic gates (i.e., ADD and MUL). The secure
evaluation of the Boolean gates is done efficiently via garbled circuits, while
that of the arithmetic via schemes like homomorphic encryption or arithmetic
secret-sharing, yielding efficient protocols for functionalities like comparison of
encrypted values [7,15,22]. Such protocols, referred to as mixed protocols, also
provide ways for converting from one to the other, i.e., from garbled circuit values
to homomorphic encryptions and vice versa. Note that all possible functions
can be expressed as combinations of additions and multiplications, thus mixed
protocols exist for every function. Without loss of generality, in the sequel we
assume that both parties’ initial inputs to every mixed protocol are encrypted
under an additively homomorphic encryption scheme, and with one party’s key.

Figure 1 illustrates two examples of mixed protocols evaluating functions f
and g, denoted as πf and πg. Function f is expressed as the composition f2 ◦ f1,
where f1 is represented with an arithmetic circuit evaluated by a homomorphic
encryption protocol πf1 , and f2 is represented by a Boolean circuit evaluated by
a garbled circuit protocol πf2 . Moreover, there exists a secure conversion pro-
tocol πC from homomorphically encrypted values to garbled inputs. Function g
is expressed as g2 ◦ g1, where πg1 is based on a garbled circuit, πg2 on homo-
morphic encryption, and πC′ is the corresponding secure conversion protocol.
Since we assume that the inputs are homomorphic encryptions, πg first requires
their conversion to garbled values via πC . Given f , the challenge is to find a
decomposition to simpler functions f1, . . . , fn, where each fi is expressed either
as a Boolean or arithmetic circuit, such that the mixed protocol is more efficient
than evaluating f solely with a garbled circuit. [13,21,28,34] addressed this chal-
lenge by providing automated tools for decomposing certain functions, as well as
appropriate conversions. If there exist protocols for the secure evaluation of all
fi’s, and given that the conversion protocols are secure, the composition of these
protocols securely evaluates f [16]. In the full version, we present two mixed
protocols we use for private multiplication and comparison of encrypted values.

Fig. 1. Examples of mixed protocols

Server-Aided Secure Computation with Off-line Parties 109

3 Problem Formulation

Our setting involves a server S, and a set of users U . The server maintains an
(initially empty) undirected graph G = (V, E). A vertex vi ∈ V represents the
information that the server knows about a user Ui ∈ U . An edge eij ∈ E between
vertices vi and vj stores information about the (bidirectional) friendship between
Ui and Uj . By Gi we denote the friend list of Ui. Table 1 summarizes the notation
used in the rest of the paper.

Table 1. Summary of symbols

Symbol Meaning

Ui, Uq, S User i, querier, server

G = (V, E) Graph with vertices vi ∈ V and edges eij ∈ E
Gi Friend list of Ui

Ek Symmetric encryption under key k

FK Pseudorandom function (PRF) under key K

[[·]]pk Additively homomorphic encryption under key pk

xi Input of Ui

� Length of xi

xi[l] lth bit of xi

GC Garbled circuit

[0.05cm] Xb
jl Encryption of b = xj [l] in our generic protocol

[0.1cm] wb
jl Garbled value for b = xj [l] in our generic protocol

[0.1cm] sbjl Key for selecting wb
jl in our generic protocol

[0.1cm] Tq Selection table of Uq in our generic protocol

3.1 Security Definition

We formalize the privacy requirements for the OSN model in the semi-honest
setting, using the ideal/real world paradigm [25]. Specifically, we first define
the ideal functionality, FOSN, that captures the security properties we want to
guarantee in the OSN model. In the ideal world, FOSN is implemented by a
trusted third party that privately interacts with all parties, while the latter do not
interact with each other. In this setting, parties can only obtain the information
allowed by FOSN. In the real world, the trusted party is replaced by a protocol π
executed jointly by the parties. Informally, π securely realizes FOSN, if whatever
can be learned by an adversary A running the real protocol and interacting
with other parties, can be simulated by an algorithm, called the simulator Sim,
interacting only with the trusted party. We define here our ideal functionality,
which meets the privacy goals stated in Sect. 1. Note that FOSN is a reactive
functionality that responds to messages received by parties.

110 F. Baldimtsi et al.

Ideal Functionality FOSN. Interact with a set U of users and a server S. Initialize an empty graph
G.

– Join(Ui). Upon receiving a Join request from user Ui, if vertex vi already exists in G do
nothing; else, add vi to G, and send (Join, Ui) to S and (Join, ok) to Ui.

– Connect(Ui, Uj). Upon receiving a Connect request from users Ui, Uj , if G contains edge
eij do nothing; else, add eij to edge list E of G, and send (Connect, Uj , Ui) to S and
(Connect, Ui, Uj , ok) to Ui and Uj .

– Upload(Ui, xi). Upon receiving an Upload request from Ui with input xi, if vi does not exist,
do nothing; otherwise, store xi in vi. Finally, send (Upload, Ui) to S and (Upload, ok) to Ui.

– Query(Uq, f). Upon receiving a Query request from user Uq for function f , retrieve the adjacent
vertices of vq from G, then compute y = f(α, xq, {xj | ∀j : Uj ∈ Gq}), where α is a query-
dependent parameter. Finally, send (out, y) to Uq and (Query, f, Uq) to S.

Ideal World Execution. Each user Ui ∈ U receives as input ini = (Gi,xi, ri, fi),
where Gi is Ui’s friend list, xi = (x(1)

i , x
(2)
i , . . .) is the sequence of inputs

that Ui uses in her Upload queries, ri represents Ui’s random tape, and fi =
(f (1)

i , f
(2)
i , . . .) is the functions used in her Query requests. Gi dictates the calls

to Connect, xi the calls to Upload, and fi the calls to Query. Note that the
functionality keeps only the xi value of the latest Upload. Finally, the server’s
only input is the random tape rS . Each Ui hands her ini to the trusted party
implementing FOSN, and receives only the outputs of her Query executions and
the acknowledgments of the Join, Upload and Connect requests. We denote the
output of Ui from the interaction with FOSN by outi. S receives only (ordered)
notifications of the requests made by the users. We denote the output of S from
the interaction with FOSN by outS .

Real World Execution. In the real world, there exists a protocol specification
π = 〈U , S〉, played between the users in U and the server S. Each user Ui ∈ U has
as input ini = (Gi,xi, ri, fi), defined as in the ideal world, whereas S has random
tape rS . An adversary A can corrupt either a set CorrUsers of users or the
server S (but not both). We denote by viewπ

ACorrUsers
the view of the real adversary

A corrupting users Ui in the set CorrUsers. This consists of the input of every
Ui ∈ CorrUsers, and the entire transcript Transi obtained from the execution
of protocol π between the server and every Ui ∈ CorrUsers. Respectively, viewπ

S

denotes the view of the corrupted server, which contains rS and transcripts
Transi obtained from the execution of π with every Ui ∈ U .

Bounded Collusions. Note that, based on the above description, our scheme
does not allow any user to collude with the server. However, it is straightforward
to extend our security definition to permit users that are not connected with the
querier in G to collude with the server. Intuitively, since such users share no data
with the querier, the coalition of S with them offers no additional knowledge.
We choose not to formulate such collusions to alleviate our notation.

More Elaborate Access Policies. One extension of our model would be to
allow users to specify more elaborate access policies, e.g., that certain friends
may only ask for certain computations, limit the number of times their data
may be queried, or revoke a friendship entirely. In the semi-honest model with
bounded collusions all these can be trivially achieved by simply specifying this
to the server who notifies the affected parties (which can be implemented by
whatever access policy mechanism the OSN provider operates). These become

Server-Aided Secure Computation with Off-line Parties 111

more challenging problems in the malicious setting which we leave as future
work.
Definition 1. A protocol π = 〈U , S〉 securely realizes the functionality FOSN in
the presence of static, semi-honest adversaries if, for all λ, it holds that:

Server Corruption: There exists PPT SimS such that SimS(1λ, outS) ∼=
viewAπ

S
.

Users Corruption: For all sets CorrUsers ⊂ U , there exists PPT SimCorrUsers

such that: SimCorrUsers(1λ, ini, outi}Ui∈CorrUsers} ∼= viewAπ
CorrUsers

.

3.2 Our General Approach

This subsection presents an approach that is common in both our constructions
for realizing the functionality FOSN. It also provides a more practical interpreta-
tion of the party interaction in our protocols, which will facilitate their presenta-
tion in the next sections. The key idea in this approach is twofold: (i) every user
has her own key, which she uses to encrypt her input in Upload, and (ii) dur-
ing Connect, the two involved users exchange keys that are used in subsequent
Query executions initiated by either user. The protocol interfaces are as follows:

– Join〈Ui(1λ), S(G)〉: On input security parameter λ, Ui generates a key Ki and
notifies the server S that she joins the system. The output of the server is
graph G′, where vertex vi is added into V of G.

– Connect〈Ui(Ki), Uj(Kj), S(G)〉: Ui and Uj establish keys ki→j and kj→i via
S. S creates an edge eij that stores the two keys and adds it to E of G. The
private output of S is the updated graph G′.

– Upload〈Ui(Ki, xi), S(G)〉: User Ui encodes her data xi (for simplicity we
assume xi is a single value, but it is straightforward to extend our model
for vectors of values) into ci under her secret key Ki and sends it to S who
stores the received value into vi in G. For simplicity, we assume that vi stores
a single ci, and every Upload execution overwrites the previous value. The
private output of S is the updated G′.

– Query〈Uq(Kq, α), S(G)〉(f): On input function f and auxiliary parameters α,
Uq interacts with S and learns the value y = f(α, xq, {xj | ∀j : Uj ∈ Gq}),
using keys {kj→q | ∀j : Uj ∈ Gq}.

We describe the execution of the interfaces in Fig. 2. The left part of the figure
illustrates the party interaction and the right part depicts how the server’s graph
G changes by the protocol execution. In Join, U1 generates her key and notifies S,
who adds v1 to the graph. In Connect, U2 and U3 establish k2→3, k3→2 and send
them to S. The latter adds edge e23 (storing the two values) to G. In Upload,
U4 encodes her input x4 under her key K4 into c4, and sends it to S who stores
it in vertex v4 (overwriting any previous value). Finally, in Query, U5 engages
in a two-party protocol with S and computes the output of a function f on α
and (x5, x6, x7, x8). The latter are the current plain data of U5 and her friends
U6, U7 and U8, respectively. Note that S possesses only the encryptions of these
values, namely (c5, c6, c7, c8). Also, (c6, c7, c8) were produced by U6, U7, U8 with

112 F. Baldimtsi et al.

Fig. 2. Example protocol executions of our scheme

keys (K6,K7,K8), which are not known to U5 and S. Performing the compu-
tation without these keys is the main challenge in our model, since U6, U7, U8

should not participate in this phase. As we shall see, our solutions overcome
this challenge using the keys k6→5, k7→5, k8→5 that U5 received upon connecting
with U6, U7, U8, respectively. A final remark concerns our decision to store keys
ki→j at the server. Alternatively, each user Uj could store all keys ki→j locally.
However, this would lead to a linear storage cost in the number of friends at the
end of Connect at Uj . In Sects. 4 and 5 we show how to instantiate our general
approach using garbled circuits and mixed protocols, respectively.

4 Garbled Circuit Protocol

Suppose querier Uq wishes to compute a function f . She first expresses f as a
Boolean circuit, garbles it (see Sect. 2), and sends it to the server S along with
the garbled values corresponding to her input xq. In order to evaluate the circuit,
S needs the garbled values corresponding to the input xj of every Uj in friend
list Gq of Uq. How can S and Uq figure out which garbled values Uq should send
to S for the input xj of Uj , without knowing xj?

There are approaches [23,32,33] that solve this problem by having each friend
Uj ∈ Gq interact with Uq once to agree on a common randomness. Then, when-
ever Uq wishes to evaluate f , she creates a garbled circuit using the common
randomness and sends it to S, whereas, all friends send their garbled values to
S. This means that all friends must actively participate in Query. Note also that
the garbled values cannot be reused, and, thus, the friends must participate in
the protocol every time Uq executes Query. Other approaches [18,43] instead
enable the transferring of the friends’ garbled values via an “outsourced” OT,
run between the server S, the querier Uq and each friend Uj in Gq. This approach
gets rid of the common randomness, and hence, the pre-processing phase, but it
still requires all friends to be on-line (to run the outsourced OT) for each Query
request.

We take a different approach that capitalizes on the pre-processing phase
(Connect), in a way that turns Query into a strictly two-party protocol run
between Uq and S, and no friends need to be involved. In our solution, each

Server-Aided Secure Computation with Off-line Parties 113

user Ui has a secret key Ki for a pseudorandom function (PRF), that exchanges
with a friend upon each Connect phase. This is done via the server, using their
respective public keys. To upload her secret input xi, Ui encodes each bit of xi

as a PRF evaluation under key Ki, and sends them to S. Finally, the Query is
performed as follows. Querier Uq first prepares a garbled circuit for the func-
tion f and sends it to S, together with the garbled values corresponding to her
own input. The garbled values of each friend Ui are instead encrypted with keys
derived from the PRF evaluations under Ki, which S uses to evaluate the cir-
cuit. We illustrate this idea using the example of Fig. 3 which focuses on the
evaluation of an AND gate A. For a comparison of the modifications required
by our scheme compared to standard garbled circuits, see the full version of
the paper [8]. The top wire of A corresponds to the first bit of xq (i.e., xq[1])
belonging to Uq, whereas the bottom wire to the lth bit of xj (i.e., xj [l]) of Uj

for some l ∈ [�]. Moreover, xq[1] = 1 and xj [l] = 1. Upon Upload, Uj sends to
the server an encryption of xj [l] as X1

jl = FKj
(1, l, rj), where F is a PRF and rj

is a random nonce sent to S along with X1
jl (note that, if xj [l] was 0, Uj would

send X0
jl = FKj

(0, l, rj)).

Fig. 3. Use of selection tables in garbled circuits

In Query, Uq garbles gate A, obtaining all garbled values w, and producing
the garbled truth table for A. She then sends to S the garbled truth table
and her garbled value w1

q1 corresponding to xq[1]. When sending the above, Uq

does not know the actual value of xj [l] and, thus, she does not know if she
should send w0

jl or w1
jl. Nevertheless, in Connect, Uj provided Uq with the means

to help S select between w0
jl, w1

jl. Specifically, S stores kj→q which encrypts
Uj ’s Kj under Uq’s public key. Uq retrieves kj→q and nonce rj (uploaded by
Uj along with X1

jl) from S. Next, she decrypts Kj from kj→q and computes
selection keys s0jl = FKj

(0, l, rj) and s1jl = FKj
(1, l, rj). Then, she encrypts Uj ’s

possible garbled values using these keys, producing Es1
jl
(w1

jl) and Es0
jl

(w0
jl). She

stores this pair in random order into a two-dimensional selection table Tq[j, l],
where rows represent Uq’s friends and columns the input bits. In the general
construction Uq fills the |Gq| · � entries of Tq and sends it to S with the garbled
circuit.

Upon receiving the garbled circuit and Tq, S attempts to decrypt the values
in T [j, l], using X1

jl as the decryption key. Since, by construction, X1
jl = s1jl,

114 F. Baldimtsi et al.

S successfully decrypts only w1
jl. Note that this can be seen as an OT played

between S and user Uq, where S uses the knowledge of the encrypted input
X1

jl to select the garbled value w1
jl. The rest of the circuit evaluation proceeds

normally, noting that the final garbled output is decrypted by the querier (i.e.,
the output mapping to plaintext is not disclosed to the server).

The idea of mapping encoded bits (unknown to the garbler) to the appro-
priate garbled values expected by a circuit, appeared first in [40] for a different
problem, namely to construct garbled RAMs. In that setting, a single user wishes
to execute a program in a RAM outsourced to some untrusted server, without
the latter ever learning the contents of the RAM. In our setting, the unknown
garbled inputs of Uq’s friends can be perceived as the unknown state of the
server’s RAM before the evaluation of our garbled circuit.

Construction. We follow the notation of Table 1 and assume that GC is con-
structed and evaluated as explained at a high level in Sect. 2, without formaliz-
ing the algorithms to alleviate notation. Let F be a PRF, (E,D) a CPA-secure
symmetric-key encryption scheme, and let (E ′,D ′) be a CPA-secure public-key
encryption scheme. We assume that encryption algorithms are randomized. Our
garbled circuit protocol, πGP, works as follows.1

1. Join〈Ui(1λ), S(G)〉: On input 1λ, Ui randomly chooses a PRF key Ki ∈
{0, 1}λ, and sends her public-key pki to S. S adds vi initialized with value
pki into V of G.

2. Connect〈Ui(Ki), Uj(Kj)〉: Ui receives the public key pkj of Uj from S. Sets
ki→j to E ′(pkj ,Ki) and sends it to S. Uj computes and sends kj→i to S who
then creates edge eij storing ki→j , kj→i, and adds it to E of G.

3. Upload〈Ui(Ki, xi), S(G)〉: Ui chooses nonce ri, computes value X
xi[l]
il as

FKi
(xi[l], l, ri) ∀ l ∈ [�], and sends them to S who stores the value ci =

((Xxi[1]
i1 , . . . , X

xi[�]
i�), ri) in vi.

4. Query〈Uq(Kq, α), S(G)〉(f): Uq does the following:
(a) Key and nonce retrieval. For each Uj ∈ Gq, retrieve key kj→q and

(latest) nonce rj from S, and decrypt kj→q to get Kj .
(b) Garbled circuit computation. Uq transforms f into a circuit, and

garbles it as GC .
(c) Selection table generation. For each user Uj in Gq and index l ∈ [�]:

Compute selection keys: Generate s0jl = FKj
(0, l, rj), s1jl = FKj

(1, l, rj).
Compute garbled inputs: Produce encryptions Es0

jl
(w0

jl) and Es1
jl
(w1

jl)
with the selection keys.
Set selection table entry: Store Es0

jl
(w0

jl) and Es1
jl
(w1

jl) into Tq[j, l] in a
random order.

(d) Circuit transmission. Send GC , Tq to S.
S then decrypts the garbled values of each Uj ∈ Gq from Tq, with the
encoding X

xj [l]
jl for each l ∈ [�]. He evaluates GC and sends output to Uq

who Obtains the result y by decoding the circuit output.

1 Due to space limitations, we include all proofs in the full version of the paper [8].

Server-Aided Secure Computation with Off-line Parties 115

Theorem 1. If F is a PRF, (E,D) is a symmetric-key CPA-secure encryp-
tion scheme with efficiently verifiable range, (E ′,D ′) is a public-key CPA-secure
encryption scheme, the garbling scheme satisfies privacy and obliviousness, and
assuming secure channels between S and the users, protocol πGP securely realizes
FOSN as per Definition 1.

5 Mixed Protocol

Sharing the motivation of mixed protocols we explore an alternative construc-
tion for evaluating a function f in the OSN model, which combines garbled
circuits with additive homomorphic encryption. Recall from Sect. 3.2 that our
general approach for designing private constructions for the OSN model entails
only two-party interactions. Let Ff denote the functionality that evaluates f
on input homomorphically encrypted values (i.e., the function which the querier
wishes to apply to the server stored data). In this work we define the func-
tion f to operate over additively homomorphic ciphertexts when also given as
input the decryption key (formally defined in the full version [8]). Let πf be
a mixed protocol that securely realizes Ff as discussed in Sect. 2, executed by
the server S and the querier Uq. Assume that S possesses the values of Uq and
her friends, homomorphically encrypted under the Uq’s key. These constitute
the input to πf . In this case, S and Uq can securely evaluate f upon Query by
executing πf . The challenge lies in bringing the inputs of Uq’s friends into homo-
morphic encryptions under Uq’s key, without necessitating friend participation
in Query. A naive solution would be to have every user send her input to S dur-
ing Upload, encrypted under all of her friends’ keys. This would allow the server
to readily have all inputs in the right form upon Uq’s Query, but it would also
violate our performance requirement for Upload, since the cost would be linear
in the number of friends.

In our proposed approach, each user uploads only a single encryption of her
input (under her own key), rendering the cost of Upload independent of the
number of her friends. In addition, during Connect, each friend Uj of the querier
Uq provides her with the means (namely through the kj→q key shown in Fig. 2)
to re-encrypt Uj ’s input into a homomorphic ciphertext under the querier’s key.

Construction. Throughout this section, we utilize the symbols summarized in
Table 1. πRE represents a protocol implementing the re-encryption functionality
FRE , fully described in Sect. 5.1. The protocol πf is executed between a server
S holding a sequence of encrypted values ([[x1]]pkq

, [[x2]]pkq
, . . .), and Uq holding

pkq. At the end of the execution, Uq receives y = f(α, . . . , xq, . . .), whereas S
receives nothing. Below, we describe our mixed protocol πMP:

1. Join〈Ui(1λ), S(G)〉: On input the security parameter λ, Ui generates a PRF
key Ki, and notifies S that she joins the system by sending pk i. S adds node
vi (initialized with pk i) to graph G.

2. Connect〈Ui(Ki), Uj(Kj), S(G)〉: Users Ui and Uj , having each other public
keys, compute kj→i = [[Kj]]pki

, ki→j = [[Ki]]pkj
respectively, and send them

to S. Then, S creates an edge eij in G storing the two values.

116 F. Baldimtsi et al.

3. Upload〈Ui(Ki, xi), S(G)〉: User Ui picks random nonce ri, computes ρi =
FKi

(ri), and sends ci = (xi + ρi, ri) to S, who stores it into vi ∈ G.
4. Query〈Uq(Kq, α), S(G)〉(f): User Uq and S run πRE, where Uq has as input

Kq and S has G. Recall that G contains cj and kj→q for every friend Uj of
Uq. The server receives as output [[xj]]pkq

, where xj is the private input of
a friend Uj . Subsequently, S and Uq execute πf , where S uses as input the
ciphertexts [[xj]]pkq

, along with [[α]]pkq
which is provided by the querier. At

the end of this protocol, Uq learns y = f(α, xq, {xj | ∀j : Uj ∈ Gq}).

Theorem 2. If F is a PRF and the homomorphic public-key encryption scheme
is CPA-secure, assuming secure channels between S and the users, and assuming
πRE and πf securely realize functionalities FRE and Ff , respectively, protocol πMP

securely realizes FOSN as per Definition 1.

5.1 Re-Encryption Protocol

Our re-encryption protocol πRE implements FRE which is a two-party function-
ality executed between the server S and a querier Uq. Let cj be the ciphertext
of input xj of user Uj (under Uj ’s key), stored at S. The goal is to switch cj into
a new ciphertext c′

j under Uq’s key, without the participation of Uj . Moreover,
it is crucial that c′

j is an encryption under an (additive) homomorphic scheme,
because this will subsequently be forwarded to the two-party mixed protocol
(πf) that expects homomorphically encrypted inputs. We provide a formal def-
inition of the re-encryption functionality FRE in the semi-honest setting using
the real/ideal paradigm in the full version [8].

A re-encryption protocol, πRE , can be achieved via the well-known notion
of proxy re-encryption [12,30]. Specifically, Uj can provide S with a proxy re-
encryption key kj→q for Uq during Connect. S can then re-encrypt cj into c′

j

using kj→q in Query, without interacting with either Uj or Uq. Nevertheless,
recall that πRE needs the resulting c′

j to be additive homomorphic. Therefore,
this approach needs the proxy re-encryption scheme to also be additive homo-
morphic. One such candidate is the classic ElGamal-like scheme of [6], which
is multiplicative homomorphic, but can be turned into additive homomorphic
by a simple “exponential ElGamal” trick. The problem of this modified scheme
is that it requires a small message domain, since decryption entails a discrete
logarithm computation. Even if the x values are indeed small in a variety of appli-
cations, all existing mixed protocols frequently inject some large (e.g., 100-bit)
randomness ρ into the homomorphically encrypted value x, necessitating after-
wards the decryption of (the large) x + ρ instead of x. This renders the scheme
inefficient in our context. To the best of our knowledge, the only other proxy
re-encryption schemes with additive homomorphic properties are based on lat-
tices [5,35], whose efficiency is rather limited for practical purposes.

Our Construction. Our alternative approach can be efficiently implemented
with any additive homomorphic scheme and a PRF. The key idea is to engage
the server S and the querier Uq in a single-round interaction that does not reveal

Server-Aided Secure Computation with Off-line Parties 117

Fig. 4. The re-encryption protocol πRE

anything to Uq. We illustrate our protocol in Fig. 4 for the re-encryption of cj

(produced with Uj ’s key) to c′
j under Uq’s key. S has as input cj (obtained during

Uj ’s Upload) and kj→q (obtained during the execution of Connect between Uq

and Uj), whereas Uq has key skq. In the following, [[·]] denotes a homomorphic
ciphertext under Uq’s key. S first parses cj as (xj+ρj , rj) in Step 1. She then picks
a random value ρ∗ from an appropriate large domain and computes c∗

j = xj+ρj+
ρ∗ to statistically hide xj +ρj (Steps 2-3). Subsequently, she sends c∗

j , rj , kj→q to
Uq (Step 4). The latter decrypts kj→q using skq to retrieve Kj , then computes
c∗
j − FKj

(rj) to remove randomness ρj , homomorphically encrypts the result
under pkq and sends it back to S (Steps 5-7). Finally, S computes [[ρ∗]]−1 and
uses it to remove ρ∗ from the received ciphertext. The final output is c′

j = [[xj]],
i.e., Uj ’s original input encrypted under Uq’s key. The above protocol can also
be extended to accommodate the simultaneous conversion of all ciphertexts cj

such that Uj is a friend of Uq, into homomorphic ciphertexts c′
j under Uq’s key.

Lemma 1. If F is a PRF and the additive homomorphic scheme is CPA-secure,
πRE is secure in the presence of static semi-honest adversaries, under the stan-
dard secure MPC definition of [24].

6 Experimental Evaluation

In this section we experimentally evaluate our schemes for two concrete use
cases: (squared) Euclidean and Manhattan distances. These two metrics are used
extensively in location-based applications (e.g., where the inputs are geograph-
ical coordinates and the query returns the geographically closest friend), and
they entail different arithmetic operations (recall that the performance of a gar-
bled circuit or mixed protocol is tightly dependent on the types of operations
involved).2

2 For simplicity, we focus on returning the smallest distance, rather than the identity
of the closest friend (which can be done easily in garbled circuits and with a standard
technique in mixed protocols, e.g., see [7,22]).

118 F. Baldimtsi et al.

Cryptographic Libraries. We used JustGarble [9], a state-of-the-art tool with
excellent performance for circuit garbling and evaluation. It supports two impor-
tant optimizations, free-XOR [37] and row-reduction [45], which reduce the size
of the garbled circuit, and the time to garble and evaluate it. Existing compil-
ers (e.g., [34,41]) for constructing the necessary circuits for our use cases are
not directly compatible with JustGarble. Thus, we designed the necessary cir-
cuits ourselves, using the basic building blocks that come with JustGarble and
employing heuristic optimizations for reducing the number of non-XOR gates.

For our mixed protocols, we used the cryptographic tools described in Sect. 2.
We used the Paillier implementation of [1] for the additive homomorphic scheme.
For oblivious transfers (OT), we used the code of [52] that implements the OT
of [44] with the extension of [29], over an elliptic curve group instantiated with
the Miracl C/C++ library [2]. When possible, we used the standard ciphertext-
packing method to save communication cost.

Setup. We tested four instantiations: our garbled circuit protocol for the Euclid-
ean and Manhattan case (referred to as GP-Euc and GP-Man, respectively),
and their mixed protocol counterparts (referred to as MP-Euc and MP-Man,
respectively). All experiments were run on a single 64-bit machine with an
Intel R©CoreTM i5-2520M CPU at 2.50 GHz and 16 GB RAM, running Linux
Ubuntu 14.04. We employed the OpenSSL AES implementation [3] for PRF
evaluation and symmetric key encryption at 128-bit level security, leveraging
the AES-NI capability [26] of our testbed CPU. For Paillier, we used a 2048-
bit group, and for OT a 256-bit elliptic curve group of prime order. Finally, we
set the statistically hiding randomness (e.g., ρ in our re-encryption protocol) to
100 bits.

We assess the following costs: size of the garbled circuit in GP-Euc and
GP-Man, total communication cost over the channel between two parties, and
computational cost at each party. Note that we focus only on Query, since the
costs for Join, Upload, and Connect are negligible. We vary the number of friends
(10, 100, 1000), the bit-length of each value in the input vector of a user (16,
32, 64), and the number of dimensions (1, 2, 4). Larger numbers of dimensions
can capture more general applications entailing Euclidean/Manhattan distance
(e.g., user profiles in matchmaking applications). In each experiment, we vary
one parameter fixing the other two to their middle values. For computation over-
head, we run each experiment 100 times and report average (wall-clock) time.

Circuit Size and Bandwidth Cost. Our first set of experiments evaluates
the circuit size (in terms of number of non-XOR gates) in the garbled circuit
instantiations, and the communication cost (in MB) in all methods. The results
are shown in Fig. 5. First, we vary the number of friends, while fixing the bit
size to 32 and the dimensions to 2. The circuit size grows linearly in the number
of friends for both distance functions. In the Euclidean case, the circuit is an
order of magnitude larger than in Manhattan. This is due to the multiplications
Euclidean involves, which require a quadratic number of gates in the number
of input element bits. This impacts the communication cost accordingly, since
the querier must send a number of garbling values per gate. The overhead of

Server-Aided Secure Computation with Off-line Parties 119

Fig. 5. Circuit size in terms of non-XOR gates (top) and total communication cost in
MBs (bottom) vs. number of friends (left), element bit-size (middle), and number of
dimensions (right).

MP-Euc is approximately an order of magnitude smaller than that of GP-Euc
(e.g., ∼33 MB vs. ∼346 MB for 1000 friends). For the case of Manhattan, the
corresponding gap is smaller, due to its substantially smaller circuit size. Note
that the communication cost in MP-Man is larger than that of MP-Euc. This
is because, recall, MP-Man involves two comparison stages; one during distance
computation (due to the absolute values) and one for the final comparison phase.

Then, we show the same two costs for variable bit sizes, setting the number of
friends to 100 and dimensions to 2. The circuit size for the Euclidean case grows
more steeply with the number of bits; when the bit size doubles, the number
of gates almost quadruples. This is expected due to the quadratic (in the bit
size) complexity of multiplication. This is not true for the case of Manhattan,
where the size roughly doubles when doubling the bit size. The circuit size trend
carries over in the communication cost for the garbled circuit approaches. For
the mixed protocols, the communication cost grows linearly, but less severely
than when varying the number of friends. The reason is that the main cost in
these schemes stems mostly from transmitting the necessary garbled circuits the
size of which is dominated by the statistical randomness that is fixed to 100 bits
(and thus is independent of the variable parameter).

Finally, we plot circuit size and communication overhead as a function of
the number of dimensions, for 100 friends and 32-bit inputs. There is a linear
dependence between the number of dimensions and the required gates and, thus,
both metrics grow linearly for the case of garbled circuits. The same is true for
MP-Man, since it entails one absolute value computation per dimension. In the
case of MP-Euc there is one multiplication component per dimension and, hence,
the communication cost scales linearly as well. However, contrary to MP-Man,

120 F. Baldimtsi et al.

MP-Euc involves a comparison protocol only in the final stage: as we explained
above, this component receives inputs with a fixed 100-bit length, independently
of dimensions. Since this component introduces the dominant communication
cost, the total overhead is marginally affected by the number of dimensions.

Computational Cost. The second set of our experiments assesses the compu-
tational cost at the querier and the server upon Query, and the results are illus-
trated in Fig. 6. A first observation is that the computational cost in the garbled
circuit approaches is extremely small due to our selection table technique that
entirely eliminates the need for oblivious transfers, and the very efficient imple-
mentation of JustGarble. Our mixed protocols feature a higher overhead (at
both client and server) than their counterparts, because they entail expensive
public-key operations (mainly for homomorphic encryptions and decryptions,
but also for the base OTs). Still, the computational times for our mixed proto-
col constructions are not prohibitive even for our largest tested parameters. In
most cases the overhead for both querier and server is below 3 s, whereas even
for 1000 friends it is below 14 s. A general observation regarding the garbled
circuit approaches is that, for all varied parameters, the cost at the server is sig-
nificantly smaller than that at the client. This is due to the fact that the server
performs only symmetric key operations (for extracting the garbled inputs from
the selection table and evaluating the garbled circuit), whereas the client also
has to decrypt the keys established with her friends during the connection phase,
using public-key operations. Finally, regarding the individual curves in the plots,
note that they follow similar trends to the corresponding ones in Fig. 5, for the
same reasons we explained for the communication cost.

Fig. 6. Total computational cost in seconds at querier (top) and server (bottom) vs.
number of friends (left), element bit-size (middle), and number of dimensions (right).

Server-Aided Secure Computation with Off-line Parties 121

Summary and Discussion. Overall, our GC implementations feature excellent
computational times for our tested settings, in the order of a few milliseconds
for most scenarios. However, they incur an excessive communication cost for
the Euclidean distance (more than 300 MBs for the case of 1000 friends). Our
MP implementation is very beneficial for this case, reducing the communication
cost by roughly 10x. On the other hand, our MP incur higher computational
times than GC, as they entail numerous public key operations to manipulate
the Paillier ciphertexts; yet they still offer reasonable performance. Overall, our
schemes offer different computation/communication trade-offs in the OSN set-
ting and, interestingly, the overall performance is comparable to existing works
that use the same tools in the standard secure two-party computation setting.
It is beyond the scope of this paper to advocate one approach over the other.
Their performance is highly dependent on the query function and the capabil-
ities of a given system and is a hot research topic in the secure computation
literature (e.g., see [34,48]). Moreover, ongoing research can help optimize both
alternatives, e.g., the half-gate optimization of [51] reduces the garbled circuit
size, whereas [21] shows how faster mixed protocols are achieved using arithmetic
shares.

Acknowledgements. We would like to thank Payman Mohassel and Arash Afshar
for sharing parts of their code from [4], and the anonymous reviewers for their detailed
comments and suggestions. Work partially done while the first and second authors were
at Boston University and the fourth author was at Boston University and Northeastern
University. Research supported in part by the U.S. National Science Foundation under
CNS grants 1012798, 1012910, 1347350, 1413964, and 1414119.

References

1. CPABE (Ciphertext-Policy Attribute-Based Encryption) toolkit. http://acsc.cs.
utexas.edu/cpabe/

2. MIRACL cryptographic SDK. https://www.certivox.com/miracl
3. OpenSSL cryptography and SSL/TLS toolkit. https://www.openssl.org/
4. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computa-

tion based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 22

5. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-encryption under
LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp.
1–18. Springer, Cham (2013). doi:10.1007/978-3-319-03515-4 1

6. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM TISSEC 9(1), 1–30
(2006)

7. Baldimtsi, F., Ohrimenko, O.: Sorting and searching behind the curtain. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 127–146. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47854-7 8

8. Baldimtsi, F., Papadopoulos, D., Papadopoulos, S., Scafuro, A., Triandopoulos, N.:
Secure computation in online social networks. Cryptology ePrint Archive, Report
2016/948 (2016)

http://acsc.cs.utexas.edu/cpabe/
http://acsc.cs.utexas.edu/cpabe/
https://www.certivox.com/miracl
https://www.openssl.org/
http://dx.doi.org/10.1007/978-3-642-55220-5_22
http://dx.doi.org/10.1007/978-3-642-55220-5_22
http://dx.doi.org/10.1007/978-3-319-03515-4_1
http://dx.doi.org/10.1007/978-3-662-47854-7_8

122 F. Baldimtsi et al.

9. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: IEEE SP (2013)

10. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the Internet. In: ACM CCS (2016)

11. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC (1988)

12. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). doi:10.1007/BFb0054122

13. Bogdanov, D., Laud, P., Randmets, J.: Domain-polymorphic language for privacy-
preserving applications. In: CCS-PETShop (2013)

14. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Secure multiparty computation goes live. In: FC (2009)

15. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS (2015)

16. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

17. Carmer, B., Rosulek, M.: Linicrypt: a model for practical cryptography. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 416–445.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53015-3 15

18. Carter, H., Mood, B., Traynor, P., Butler, K.R.B.: Secure outsourced garbled cir-
cuit evaluation for mobile devices. In: USENIX Security (2013)

19. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2 28

20. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). doi:10.1007/11535218 23

21. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

22. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.:
Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS
2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03168-7 14

23. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: STOC (1994)

24. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, New York (2004)

25. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: STOC
(1987)

26. Gueron, S.: Intel advanced encryption standard AES instruction set white paper.
Intel Corporation, August 2008

27. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 132–150. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 8

28. Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: CCS (2010)

29. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45146-4 9

http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/978-3-662-53015-3_15
http://dx.doi.org/10.1007/978-3-642-36594-2_28
http://dx.doi.org/10.1007/11535218_23
http://dx.doi.org/10.1007/978-3-642-03168-7_14
http://dx.doi.org/10.1007/978-3-642-03168-7_14
http://dx.doi.org/10.1007/978-3-642-22792-9_8
http://dx.doi.org/10.1007/978-3-540-45146-4_9

Server-Aided Secure Computation with Off-line Parties 123

30. Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: NDSS (2003)
31. Jakobsen, T.P., Nielsen, J.B., Orlandi, C.: A framework for outsourcing of secure

computation. In: CCSW (2014)
32. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.

Cryptology ePrint Archive, Report 2011/272 (2011)
33. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function

evaluation. In: CCS (2012)
34. Kerschbaum, F., Schneider, T., Schröpfer, A.: Automatic protocol selection in

secure two-party computations. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.)
ACNS 2014. LNCS, vol. 8479, pp. 566–584. Springer, Cham (2014). doi:10.1007/
978-3-319-07536-5 33

35. Kirshanova, E.: Proxy re-encryption from lattices. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 77–94. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54631-0 5

36. Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR
gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44381-1 25

37. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and appli-
cations. In: ICALP (2008)

38. Kreuter, B., Shelat, A., Shen, C.: Billion-gate secure computation with malicious
adversaries. In: USENIX Security (2012)

39. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC (2012)

40. Lu, S., Ostrovsky, R.: How to garble RAM programs. In: EUROCRYPT (2013)
41. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay: a secure two-party compu-

tation system. In: USENIX Security (2004)
42. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:

the garbled circuit approach. In: ACM CCS (2015)
43. Mood, B., Gupta, D., Butler, K.R.B., Feigenbaum, J.: Reuse it or lose it: more

efficient secure computation through reuse of encrypted values. In: CCS (2014)
44. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA (2001)
45. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism

design. In: EC (1999)
46. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-

preserving ridge regression on hundreds of millions of records. In: IEEE SP (2013)
47. Paillier, P.: Public-key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

48. Schneider, T., Zohner, M.: GMW vs. yao? efficient secure two-party computation
with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
275–292. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39884-1 23

49. Yao, A.C.: How to generate and exchange secrets. In: FOCS (1986)
50. Yao, A.C.: Protocols for secure computations. In: FOCS (1982)
51. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,

Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6 8

52. Zohner, M.: OTExtension library. https://github.com/encryptogroup/
OTExtension

http://dx.doi.org/10.1007/978-3-319-07536-5_33
http://dx.doi.org/10.1007/978-3-319-07536-5_33
http://dx.doi.org/10.1007/978-3-642-54631-0_5
http://dx.doi.org/10.1007/978-3-642-54631-0_5
http://dx.doi.org/10.1007/978-3-662-44381-1_25
http://dx.doi.org/10.1007/978-3-662-44381-1_25
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-642-39884-1_23
http://dx.doi.org/10.1007/978-3-662-46803-6_8
https://github.com/encryptogroup/OTExtension
https://github.com/encryptogroup/OTExtension

We Are Family: Relating Information-Flow
Trackers

Musard Balliu(B), Daniel Schoepe, and Andrei Sabelfeld

Chalmers University of Technology, Gothenburg, Sweden
musard@chalmers.se

Abstract. While information-flow security is a well-established area,
there is an unsettling gap between heavyweight information-flow con-
trol, with formal guarantees yet limited practical impact, and lightweight
tainting techniques, useful for bug finding yet lacking formal assurance.
This paper proposes a framework for exploring the middle ground in
the range of enforcement from tainting (tracking data flows only) to
fully-fledged information-flow control (tracking both data and control
flows). We formally illustrate the trade-offs between the soundness and
permissiveness that the framework allows to achieve. The framework is
deployed in a staged fashion, statically embedding a dynamic monitor,
being parametric in security policies, as they do not need to be fixed
until the final deployment. This flexibility facilitates a secure app store
architecture, where the static stage of verification is performed by the
app store and the dynamic stage is deployed on the client. To illustrate
the practicality of the framework, we implement our approach for a core
of Java and evaluate it on a use case with enforcing privacy policies in the
Android setting. We also show how a state-of-the-art dynamic monitor
for JavaScript can be easily adapted to implement our approach.

Keywords: Language-based security · Information-flow control · Taint
tracking

1 Introduction

Motivation. The sheer bulk of sensitive information that software manipulates
makes security a major concern. A recent report shows that several of the top
10 most popular flashlight apps on the Google Play store may send sensitive
information such as pictures and video, users’ location, and the list of contacts,
to untrusted servers [49]. Unfortunately, trusted code also incurs serious security
flaws, as proven by the Heartbleed bug [51] found in the OpenSSL library.

Information-flow control [44] offers an appealing approach to security assur-
ance by design. It helps tracking the flow of information from confidential/un-
trusted sources to public/trusted sinks, ensuring, for confidentiality, that confi-
dential inputs are not leaked to public outputs, and, for integrity, that untrusted
inputs do not affect trusted outputs.
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 124–145, 2017.
DOI: 10.1007/978-3-319-66402-6 9

We Are Family: Relating Information-Flow Trackers 125

Background. Applications can leak information through programming-
language constructs, giving rise to two basic types of information flows: explicit
and implicit flows [21]. Consider a setting with variables secret and public
for storing confidential (or high) and public (or low) information, respectively.
Explicit flows occur whenever sensitive information is passed explicitly by an
assignment, e.g., as in public := secret. Implicit flows arise via control-flow
structures of programs, e.g. conditionals and loops, as in if secret then public :=
0 else public := 1. The final value of public depends on the initial value of secret
because of a low assignment, i.e., assignment to a low variable, made in a high
context, i.e., branch of a conditional with a secret guard.

Information-flow control is typically categorized as static and dynamic:
(1) Static techniques mainly impose Dennings’ approach [21] by assigning secu-
rity labels to input data, e.g. variables, APIs, and ensuring separation between
secret and public computation, essentially by maintaining the invariant that
no low assignment [32,44,56] occurs in a high context. Other static tech-
niques include program logics [10,13], model checking [8,23], abstract interpreta-
tions [27] and theorem proving [20,40]. However, static techniques face precision
(high false-positive rate) challenges, rejecting many secure programs. These chal-
lenges include dynamic code evaluation and aliasing, as illustrated by the snip-
pet x.f := 0 ; y.f := secret ; out(L, x.f). A non-trivial static analysis would
have to approximate whether object references x and y are aliases. Moreover,
the fact that security policies are to be known at verification time makes them
less suitable in dynamic contexts. (2) Dynamic techniques use program runtime
information to track information flows [5,26,43]. The execution of the analyzed
program is monitored for security violations. Broadly, the monitor enforces the
invariant that no assignment from high to low variables occurs either explic-
itly or implicitly. Dynamic techniques are particularly useful in highly dynamic
contexts and policies, where the code is often unknown until runtime. However,
since the underlying semantic condition, noninterference [28], is not a trace
property [38], dynamic techniques face challenges with branches not taken by
the current execution. Consider the secure program that manipulates location
information: if (MIN ≤ loc) && (loc ≤ MAX) then tmp := loc else skip. If
the user’s (secret) location loc is within an area bound by constants MIN and
MAX , the program stores the exact location in a temporary variable tmp, with-
out ever sending it to a public observer. A dynamic analysis, e.g. No-Sensitive
Upgrade [5,58], incorrectly rejects the program (due to a security label upgrade
in a high context), although neither loc nor tmp are ever sent to an attacker.
Permissive Upgrade [6] increases precision, however, it will incorrectly rule out
any secure program that subsequently branches on variable tmp.

Combining dynamic and static analysis, hybrid approaches have recently
received increased attention [18,31,36,37,39]. While providing strong formal
guarantees, to date the practical impact of all these approaches has been limited,
largely due to low precision (or permissiveness). Moreover, static, dynamic, and
hybrid information-flow analysis require knowledge of the control-flow graph to
properly propagate the program counter security label that keeps track of the

126 M. Balliu et al.

sensitivity of the context. This label is difficult to recover whenever code has
undergone heavyweight optimization and obfuscation, e.g. to protect its intel-
lectual property, or in presence of reflection.

In contrast, taint tracking is a practical success story in computer security,
with many applications at all levels of hardware and software stack [45,47]. Taint
tracking is a pure data dependency analysis that only tracks explicit flows. It is
successful thanks to its lightweight nature, ignoring any control-flow dependen-
cies that would be otherwise required for fully-fledged information-flow control.
On the downside, taint tracking is mainly used as a bug finding technique, pro-
viding, with a few exceptions [45,46,57], no formal guarantees. Importantly,
implicit flows may occur not only in malicious code [33,42], but also in trusted
programs (written by a trusted programmer) [11,34,35,50].

These considerations point to an unsettling gap between heavyweight tech-
niques for information-flow control, with formal guarantees yet limited practical
impact, and lightweight tainting techniques that are useful for bug finding yet
lacking formal assurance.

Approach. By considering the trade-offs between soundness and permissive-
ness, this paper explores the middle ground, by a framework for a range of
enforcement mechanisms from tainting to fully-fledged information-flow control.
We address trusted and malicious code. However, we make a key distinction
between two kinds of implicit flows: observable implicit flows and hidden implicit
flows, borrowing the terminology of Staicu and Pradel [50]. Observable implicit
flows arise whenever a variable is updated under a high security context and
later output to an attacker. Not all implicit flows are, however, observable, since
also the absence of a variable update can leak information (cf. Fig. 3); we call
these hidden implicit flows. Tracking explicit flows and observable implicit flows
raises the security bar for trusted code [50]. It allows for permissive, lightweight
and purely dynamic enforcement in the spirit of taint tracking, yet providing
higher security assurance. To evaluate soundness and permissiveness of the tech-
nique, we propose observable secrecy, a novel security condition that captures
the essence of observable implicit flows. It helps us answer the question: “what
is the security price we pay for having fewer false positives for useful programs”?
We remark that the distinction between observable and hidden implicit flows is
purely driven by ease of enforcement and permissiveness. Moreover, we leverage
existing techniques and extend the framework to account for hidden implicit
flows, thus addressing malicious code. We then present a family of flow-sensitive
dynamic monitors that enforce a range of security policies by adapting a stan-
dard information-flow monitor from the literature [5,43].

The framework is deployed in a staged fashion. We statically embed dynamic
monitors for (observable and/or hidden) implicit flows into the program code
by lightweight program transformation, and leverage a dynamic taint tracker to
enforce stronger policies. For malicious code, we use the cross-copying technique,
originally proposed by Vachharajani et al. [53] for systems code, to transform
hidden implicit flows into observable implicit flows. The transformations and
soundness proofs for theorems can be found in the full version of the paper [14].

We Are Family: Relating Information-Flow Trackers 127

Fig. 1. Secure App Store architecture

Secure App Store. The flexibility of the approach on the policy and enforce-
ment side facilitates a secure app store architecture, depicted in Fig. 1. Devel-
opers deliver the code to the App Store, which computes sources and sinks, and
leverages the control-flow graph to convert implicit flows into explicit flows. For
trusted (non-malicious) apps, a lightweight transformation converting observable
implicit flows into explicit may be sufficient, otherwise cross copying is needed.
Subsequently, the App Store can perform code optimizations and obfuscations,
and publish the resulting APK file (together with sources and sinks) on behalf of
the developer. Finally, end users can download the app, define their own security
policies and run the app on a dynamic taint tracker, remarkably, with no need
of the program’s control-flow graph. Alternatively, end users can leverage static
taint trackers [1,29] to verify their policies against the code.

We implement the transformations for a core of Java and evaluate them on
the use case of a Pedometer app. We run the transformed app on TaintDroid [24]
and check it against user-defined policies. We also show how JSFlow [30], a
dynamic monitor for JavaScript, can provide higher precision by changing the
security condition to observable secrecy.

Structure and Contributions. In summary, the paper makes the following
contributions: (i) observable secrecy, a security condition for validating sound-
ness and precision wrt. observable implicit and explicit flows (Sect. 2); (ii) a
framework that allows expressing a range of enforcement mechanisms from taint-
ing to information-flow control (Sect. 3); (iii) lightweight transformations that
leverage dynamic taint tracking for higher security assurance (Sect. 4); (iv) a
flexible app store architecture and a prototype implementation for Android apps
(Sect. 5).

2 Security Framework

We employ knowledge-based definitions [4,9,10] to introduce security conditions
ranging from weak/explicit secrecy [45,57] to noninterference [28].

2.1 Language

Consider a simple imperative language with I/O primitives, SIMPL. The lan-
guage expressions consist of variables x ∈ Var , built-in values n ∈ Val such as

128 M. Balliu et al.

Fig. 2. SIMPL language grammar

integers and booleans, binary operators ⊕ and unary operators �. We write tt
for boolean value true and ff for boolean value false. The language constructs
contain skip, assignment, conditional, loops, input and output. The full grammar
of SIMPL can be found in Fig. 2.

We use input and output channels to model communication of the program
with the external world. We label input and output channels with security lev-
els � (defined below) that indicate the confidentiality level of the information
transmitted on the corresponding channel. We denote the set of SIMPL pro-
grams by P. We write x̄ for a set of variables {x1, · · · , xn} such that for all
1 ≤ i ≤ n, xi ∈ Var , and V ars(e) for the set of free variables of expression e.

We assume a bounded lattice of security levels (L,�,�,�). A level � ∈ L
represents the confidentiality of a piece of data present on a given channel or
program variable. We assume that there is one channel for each security level
� ∈ L. As usual, � denotes the ordering relation between security levels and,
� and � denote the join and meet lattice operators, respectively. We write 	
and ⊥ to denote the top and the bottom element of the lattice. In the exam-
ples, we use a two-level security lattice L = {L,H} consisting of level H (high)
for variables/channels containing confidential information and level L (low) for
variables/channels containing public information, and L � H. We focus on con-
fidentiality, noting that integrity is similar through dualization [16].

We model input by environments E ∈ Env mapping channels to streams
of input values. For simplicity, we consider one stream for each level � ∈ L.
An environment E : L → N → Val maps levels to infinite sequences of values.
Two environments E1 and E2 are �-equivalent, written E1 ≈� E2, iff ∀�′. �′ �
� ⇒ E1(�′) = E2(�′). Another source of input are the initial values of program
variables. We model memory as a mapping m : Var → Val from variables to
values. We use m,m0,m1, . . . to range over memories. We write m[x �→ n] to
denote a memory m with variable x assigned the value n. We write m(e) for the
value of expression e in memory m. A security environment Γ : Var �→ L is a
mapping from program variables to lattice elements. The security environment
assigns security levels to the memory through program variables. We use the
terms security level and security label as synonyms. Two memories m1 and m2

are �-equivalent, written m1 ≈� m2, iff ∀x ∈ Var . Γ (x) � � ⇒ m1(x) = m2(x).
An observation α ∈ Obs is a pair of a security level and a value, i.e. Obs = L×

Val , or the empty observation ε. A trace τ is a finite sequence of observations. We
write τ.τ ′ for concatenation of traces τ and τ ′, and |τ | for the length of a trace τ .
We denote by τ �� the projection of trace τ at security level �. Formally, we have
ε ��= ε and (�′, n).τ ′ ��= (�′, n).(τ ′ ��) if �′ � �; otherwise (�′, n).τ ′ ��= τ ′ ��.
Two traces τ1, τ2 are �-equivalent, written τ1 ≈� τ2, iff τ1 ��= τ2 ��.

We Are Family: Relating Information-Flow Trackers 129

2.2 Semantics

The operational semantics of SIMPL is standard and it is reported in the full
version [14]. A state (E ,m) is a pair of an environment E ∈ Env and a memory
m ∈ Mem. A configuration E � 〈P,m〉 consists of an environment E , a program
P and a memory m. We write E � 〈P,m〉 α−→ E ′ � 〈P ′,m′〉 to denote that a
configuration E � 〈P,m〉 evaluates in one step to configuration E ′ � 〈P ′,m′〉,
producing an observation α ∈ Obs. We write −→∗ or τ−→∗

to denote the reflexive

and transitive closure of −→. We write E � 〈P,m〉 τ ′
−→ whenever the configuration

is unimportant. We use ε to denote program termination.

2.3 Defining Secrecy

The goal of this subsection is to provide an attacker-centric definition of secrecy.
The condition requires that the knowledge acquired by observing program out-
puts does not enable the attacker to learn sensitive information about the initial
program state (inputs and memories). We assume the attacker knows the pro-
gram code and has perfect recall of all the past observations. We first illustrate
the security condition by an example, and then provide the formal definition.

Example 1. Let P = if h then out(L, 1) else out(L, 2) be a SIMPL program
and h a secret variable, i.e. Γ (h) = H. Depending on the initial value of h, the
program outputs either out(L, 1) or out(L, 2) on a channel of security level L.

An attacker at security level L can reason about the initial value of h as
follows: (i) Before seeing any output, the attacker considers any boolean value
as possible for h, therefore the knowledge is h ∈ {tt,ff}. (ii) If the statement
out(L, 1) is executed, the attacker can refine the knowledge to h ∈ {tt} and thus
learn the initial value of h. (iii) Similarly, if the statement out(L, 2) is executed,
the attacker learns that h was initially false. Hence, the program is insecure.

We now define the knowledge that an attacker at level � acquires from observing
a trace of a program P . We capture this by considering the set of initial states
that the attacker considers possible based on their observations. Concretely, for a
given initial state (E0,m0) and a program P , an initial state (E ,m) is considered
possible if E ≈� E0, m ≈� m0, and it matches the trace produced by E0 � 〈P,m0〉.
We define the attacker’s knowledge in the standard way [4]:

Definition 1 (Knowledge). The knowledge set for program P , initial state
(E0,m0), security level � and trace τ is given by k(P, E0,m0, τ) = {(E ,m) | E ≈�

E0 ∧ m ≈� m0 ∧ (∃P ′, E ′,m′, τ ′. E � 〈P,m〉 τ ′
−→∗ E ′ � 〈P ′,m′〉 ∧ τ ≈� τ ′)}.

We focus on progress-insensitive security, which ignores information leaks
through the observation of computation progress, e.g. program divergence [3].
To this end, we relax the requirement that the attacker learns nothing at each
execution step, by allowing leaks that arise from observing the progress of com-
putation. Concretely, we define progress knowledge as the set of initial states
that the attacker considers possible based on the fact that some output event
has occurred, independently of what the exact output value was.

130 M. Balliu et al.

Definition 2 (Progress Knowledge). The progress knowledge set for pro-
gram P , initial state (E0,m0), level �, and trace τ is given by kP (P, E0,m0, τ) =
{(E ,m) | E ≈� E0 ∧ m ≈� m0 ∧ (∃P ′, E ′,m′, τ ′, α �= ε. E � 〈P,m〉 τ ′

−→∗ E ′ �
〈P ′,m′〉 α−→∗ ∧ α ��= α ∧ τ ≈� τ ′)}.

We can now define a progress-insensitive secrecy by requiring that progress
knowledge after observing a trace τ is the same as the knowledge obtained after
observing the trace τ.α. Consequently, what the attacker learns from observ-
ing the exact output value is the same as what they learn from observing the
computation progress, i.e. that some output event has occurred.

Definition 3 (Progress-insensitive Secrecy). A program P satisfies
Progress-insensitive Secrecy at level �, written Sec(�) � P , iff whenever E �
〈P,m〉 τ.α−−→∗ E ′ � 〈P ′,m′〉 ∧ α ��= α ∧ α �= ε, we have kP (P, E ,m, τ) =
k(P, E ,m, τ.α). P satisfies Progress-insensitive Secrecy, written Sec |= P iff
Sec(�) � P , for all �.

We can see that the program in Example 1 does not satisfy progress-
insensitive secrecy at security level L, as the progress knowledge of observing
some output, i.e. either out(L, 1) or out(L, 2), is h ∈ {tt,ff}, while the knowl-
edge of observing the exact output, e.g. out(L, 1), is h ∈ {tt}.

2.4 Security Conditions

Information-flow monitors can enforce progress-insensitive secrecy, thus prevent-
ing both implicit and explicit flows. Taint tracking, on the other hand, is an
enforcement mechanism that only prevents explicit flows, otherwise ignores any
control-flow dependencies [21]. In contrast to noninterference, security conditions
for taint tracking [45,57] serve more as semantic criteria for evaluating soundness
and precision of the underlying enforcement mechanism rather than providing
an intuitive meaning of security. Driven by the same motivation, we propose
a family of security conditions that allows exploring the space of enforcement
mechanisms from taint tracking to information-flow control.

Our security conditions rely on the observational power of an attacker over
the program code and executions. We model attackers with respect to their per-
run view of the program code and extract the program slice that an attacker
considers possible for any concrete execution. This allows to re-use the same
condition as in Definition 3 for the program slice that the attacker can observe.

Fig. 3. Leaking through label upgrades

Concretely, a security condition for
taint tracking can be modelled as secrecy
with respect to an attacker that only
observes explicit statements (input, out-
put and assignment) extracted from any
concrete execution of a program P . Simi-
larly, (termination-insensitive) noninter-
ference [3] corresponds secrecy for an
attacker that has a whole view of P .

We Are Family: Relating Information-Flow Trackers 131

We will use the example in Fig. 3 to illustrate the security conditions. Con-
sider the program P with boolean variable h of level H and boolean variables
l1, l2 of level L. It can be seen that P outputs the initial value of variable h to
an observer at security level L through a sequence of control flow decisions. In
fact, the program does not satisfy the condition in Definition 3.

We introduce extraction contexts C as a gadget to model the observational
power of an attacker over the program code. Extraction contexts provide a mech-
anism to leverage the operational semantics of the language and extract the
program slice that an attacker observes for any given concrete execution.

C ::= [] | skip | x := e | x ← in(�) | out(�, e) | C;C | if e then C else C

Syntactically, extraction contexts are programs that may contain holes []. For
our purposes, contexts will contain at most one hole that represents a placeholder
for the program statements that are yet to be evaluated by the program execution
at hand. We extend the operational semantics to transform contexts in order to
extract programs for weak secrecy and observable secrecy.

Weak Secrecy. Weak secrecy [57], a security condition for taint tracking, states
that every sequence of explicit statements executed by any program run must be
secure. We formalize weak secrecy as secrecy (cf. Definition 3) for the program,
i.e. the sequence of explicit statements, extracted from any (possibly incomplete)
execution of the original program. We achieve this by extending the configura-
tions with extraction contexts. Here we discuss a few interesting rules as reported
in Fig. 4. The complete set of rules can be found in [14].

Fig. 4. Excerpt of extraction rules for weak secrecy

Each program execution starts with the empty context []. To extract explicit
statements, we propagate assignment and output commands into the context,
while conditionals are simply ignored (cf. the context remains unchanged).
Sequential composition ensures that the sequence of explicit statements is prop-
agated correctly. It can be shown that complete (terminated) executions contain
no holes and incomplete executions contain exactly one hole.

We define weak secrecy in terms of secrecy for explicit statements extracted
from any program execution. We write C[skip] to denote the result of replacing
the hole with command skip in a context C. Otherwise, if the context contains
no hole, we have C[skip] = C. This is needed because the security condition is
defined for any execution, including complete and incomplete executions.

132 M. Balliu et al.

Definition 4 (Weak secrecy). A program P satisfies weak secrecy for ini-
tial state (E ,m), written WS �E,m P , iff whenever E � 〈P,m, []〉 τ−→∗ E ′ �
〈P ′,m′, C〉, we have Sec |= C[skip]. A program P satisfies weak secrecy, writ-
ten WS � P , iff WS �E,m P for all states (E ,m).

Consider the program from Fig. 3 and an initial state (E0,m0). Depending
on whether m0(h) = tt and m0(h) = ff, we extract program (5) or program (6),
respectively, shown in Fig. 5.

Fig. 5. Extracted programs

We can see that none
of the programs contains
variable h, hence they
both satisfy secrecy (Def-
inition 3). As a result, the
original program P satis-
fies weak secrecy.

Observable Secrecy. We now present a novel security condition, dubbed
observable secrecy, that captures the intuition of observable implicit flows.
Observable implicit flows are implicit flows that arise whenever a variable is
modified in the high branch that is currently executed by the program, and later
it is output to the attacker. Preventing observable implicit flows is of interest
for purely dynamic mechanisms as it provides higher security compared to weak
secrecy, yet allowing for dynamic monitors that are more permissive than moni-
tors for noninterference. Permissiveness, however, comes at the price of ignoring
hidden implicit flows. The following program, where h has security level H, con-
tains an observable implicit flow whenever m0(h) = tt, otherwise the flow is
hidden.

l := ff ; if h then {l := tt} else {skip} ; out(L, l)

The security condition considers an attacker that only observes the instruc-
tions (both control-flow and explicit statements) executed by the concrete pro-
gram execution, otherwise it ignores (i.e. replaces with skip) any instruction
occurring in the untaken branches. To capture these flows, we extend the small-
step operational semantics to extract the program code observable by this
attacker, as shown in Fig. 6.

The rules for assignment, input, output and sequential composition are the
same as for weak secrecy. Rules for conditionals propagate the observable condi-
tional into the context C to keep track of the executed branch and replace the
untaken branch with skip. The new hole [] ensures that the commands under
the executed branch are properly modified by the new context. We unfold loop
statements into conditionals and handle them similarly. Sequential composition
ensures that the sequence of observable statements is propagated correctly. When
rule O-SeqEmpty is applied, the context C does not contain any holes, hence
a new hole is introduced to properly handle the remaining command P2.

Definition 5 (Observable secrecy). A program P satisfies observable secrecy
for initial state (E ,m), written OS �E,m P , iff whenever E � 〈P,m, []〉 τ−→∗ E ′ �

We Are Family: Relating Information-Flow Trackers 133

Fig. 6. Extraction rules for observable secrecy

〈P ′,m′, C〉, we have Sec |= C[skip]. A program P satisfies observable secrecy,
written OS � P , iff OS �E,m P for all states (E ,m).

For the above example, the operational semantics rules for observable secrecy
yield the programs:

l := ff ; if h then {l := tt} else {skip} ; out(L, l)
l := ff ; if h then {skip} else {skip} ; out(L, l)

The first program does not satisfy secrecy (Definition 3), while the second
program does. Therefore the original program does not satisfy observable secrecy.

Full Secrecy. Full secrecy is a security condition that models secrecy with
respect to an attacker that has a complete knowledge of program code and there-
fore can learn information through explicit and (observable or hidden) implicit
flows. This corresponds to progress-insensitive noninterference (Definition 3).

Definition 6 (Full secrecy). A program P satisfies full secrecy for initial state
(E ,m), written FS �E,m P , iff whenever E � 〈P,m〉 τ−→∗ E ′ � 〈P ′,m′〉, we have
Sec |= P . A program P satisfies full secrecy, written FS � P , iff FS �E,m P for
all states (E ,m).

3 Enforcement Framework

We employ variants of flow-sensitive dynamic monitors (trackers) to enforce the
security conditions presented in the last section. Compared to existing work

134 M. Balliu et al.

(cf. Sect. 6), we use semantic security conditions, weak secrecy and observ-
able secrecy, to justify soundness of weak tracking and observable tracking
mechanisms.

Figure 7 presents the instrumented semantics which is parametric on the
security labels, transfer functions and constraints. By instantiating each of the
parameters (Table 1), we show how the semantics implements sound dynamic
trackers for weak secrecy (Theorem 1), observable secrecy (Theorem 2) and full
secrecy (Theorem 3). All proofs are reported in the full version [14].

Fig. 7. Instrumented semantics

The instrumented semantics assumes a bounded lattice (L,�,�,�) and an
initial security environment Γ , as defined in Sect. 2.1. We use a program counter
stack of security levels pc to keep track of the security context, i.e. the security
level of conditional and loop expressions, at a given execution point. We write
� :: pc to denote a stack of labels, where the label � is its top element. Abusing
notation, we also write pc to represent the upper bound on the security levels
of the stack elements. The monitored semantics introduces the special instruc-
tion end to remember the join points in the control flow and update the pc
stack accordingly. Instrumented configurations Γ, pc, E � 〈P,m〉 extend original

We Are Family: Relating Information-Flow Trackers 135

configurations with the security environment Γ and security context stack pc.
We write Γ, pc, E � 〈c,m〉 α−→→ Γ ′, pc′, E ′ � 〈c′,m′〉 to denote that an instru-
mented configuration Γ, pc, E � 〈c,m〉 evaluates in one step to instrumented
configuration Γ ′, pc′, E ′ � 〈c′,m′〉, producing observations α ∈ Obs. We write
−→→∗ or τ−→→∗ to denote the reflexive and transitive closure of α−→→. We write Γ (e)
for �x∈V ars(e)Γ (x) and E for abnormal termination.

In what follows, we use the constraints in Table 1 to instantiate the rules in
Fig. 7, and present a family of dynamic monitors for weak tracking (known as
taint tracking), observable tracking, and full tracking (known as No-Sensitive
Upgrade [5]). The monitors implement the failstop strategy and terminate the
program abnormally (cf. rules for E) whenever a potentially insecure statement is
executed. Note that abnormal termination does not produce any observable event
and it is treated as a progress channel, similarly to nontermination. We write
I �E,m P for an execution of a monitored program P from initial state (E ,m),
initial security environment Γ and initial stack ⊥, where I ∈ {WS,OS, FS}.

Monitored executions may change the semantics of the original program by
collapsing insecure executions into abnormal termination. To account for the
monitored semantics, we instantiate the security conditions from Sect. 2.4 with
the semantics of instrumented executions and, abusing notation, write I |=E,m P
to refer to an execution of P under the instrumented semantics. We then show
that any program executed under an instrumented execution, i.e., I �E,m P ,
satisfies the security condition, i.e., I |=E,m P .

Weak Tracking. Weak tracking is a dynamic mechanism that prevents explicit
flows from sources of higher security levels to sinks of lower security levels. Weak
tracking allows leaks through implicit flows. The second column in Table 1 gives
the set of constraints that a typical taint analysis would implement for our
language.

Table 1. Constraints for Monitors in Fig. 7

Rule Weak Observable Full

φasgT tt tt pc � Γ (x)

φasgF ff ff pc �� Γ (x)

φoutT Γ (e) � � Γ (e) � pc � � Γ (e) � pc � �

φoutF Γ (e) �� � Γ (e) �� pc � � Γ (e) �� pc � �

φinT tt pc � � pc � �

φinF ff pc �� � pc �� �

φend tt pc = � :: pc′ pc = � :: pc′

φif/φwh tt �′ = pc � Γ (e)
pc′ = �′ :: pc

�′ = pc�Γ (e)
pc′ = �′ :: pc

Since the analysis ignores all
implicit flows, the pc stack is
redundant and we never update
it during the monitor execu-
tion. For the same reason, we
apply no side conditions to the
rules for conditionals and loops.
Rule S-Assign propagates the
security level of the expression
on the right-hand side to the
variable on the left-hand side
to track potential explicit flows,
while rule S-Assign-F never applies. Rule S-Out ensures that only direct flows
from lower levels affect a given output level. If the constraint is not satisfied, the
program terminates abnormally (cf. S-Out-F).

To illustrate the weak tracking monitor, consider the program from Fig. 3.
Initially, the security environment Γ assigns the label L to variables l1 and l2, and
the label H to variable h. After the execution of line (1), the security environment

136 M. Balliu et al.

Γ ′ does not change since pc = L and, Γ (n) = L for all n ∈ Val , therefore
Γ ′(l1) = Γ ′(l2) = L�Γ (ff) = L (cf. rule S-Assign). Moreover, the lines (2) and
(3) do not modify Γ ′ (cf. rules S-IfTrue and S-IfFalse). Finally, the output
in line (4) is allowed since Γ (l2) = L � L (cf. rule S-Out). In fact, the program
satisfies weak secrecy (Definition 4), and it is accepted by weak tracking.

We show that any program that is executed under the weak tracking monitor,
i.e. I = WS, satisfies weak secrecy.

Theorem 1. WS �E,m P ⇒ WS �E,m P

Observable Tracking. Observable tracking is a dynamic security mechanism
that accounts for explicit flows and observable implicit flows. Observable implicit
flows occur whenever a low security variable that is updated in a high security
context is later output to a low security channel. The condition justifies the secu-
rity of a program with respect to an attacker that only knows the control-flow
path of the current execution. Observable tracking has the appealing property of
only propagating the security label of variables in a concrete program execution,
without analyzing variables modified in the untaken branches. This is remark-
able as it sidesteps the need for convoluted static analysis otherwise required
for languages with dynamic features such as reflection. Moreover, as we discuss
later, observable tracking is more permissive than existing enforcement mech-
anisms such as NSU [5] or Permissive Upgrade [6]. Permissiveness is achieved
at the expense of enforcing a different security condition, i.e. observable secrecy,
instead of full secrecy. For trusted code, observable secrecy might be sufficient to
determine unintentional security bugs. Otherwise, for malicious code, we present
a transformation (Sect. 4) that enables observable tracking to enforce full secrecy,
yet being more permissive than full tracking.

The instrumented semantics for observable tracking (cf. third column in
Table 1) strengthens the constraints for weak tracking by: (i) introducing the
pc stack to properly track changes of security labels for variables updated in a
high context; (ii) disallowing input from low security channels in a high context;
(iii) and constraining the output on a low channel by disallowing low expressions
that depend on a high context.

Consider again the program in Fig. 3 under the instrumented semantics for
observable tracking. After executing the assignments in (1), the variables l1 and
l2 have security level L. If h is tt, the variable l1 has security level H after the
first conditional in (2) (cf. S-IfTrue rule). As a result, the guard of the second
conditional in (3) is false, and we execute the else branch. The security level of
the variable l2 remains L, therefore the output on the L channel in (4) is allowed
(cf. S-Out rule). Otherwise, if h is ff, then the else branch is executed and l1
has security level L. The second conditional does not change the security level of
l2, although the then branch is executed. In fact, the guard only depends on L
variables, i.e. l1, hence security level of l2 remains L and the subsequent output
is allowed. The program, in fact, satisfies observable secrecy.

We prove that any program that is executed under the observable tracking
monitor, i.e. I = OS, satisfies observable secrecy.

We Are Family: Relating Information-Flow Trackers 137

Theorem 2. OS �E,m P ⇒ OS �E,m P

Full Tracking. Full tracking, best known as No-Sensitive Upgrade [5,58], pre-
vents both explicit and (observable or hidden) implicit flows from sources of
higher security levels to sinks of lower security levels. This is achieved by dis-
allowing changes of variables’ security labels in high contexts (as opposed to
the strategy followed by observable tracking). While sound for full secrecy, this
strategy incorrectly terminates any program that updates a low security variable
in a high security context, even if that variable is never output to low channel.
This is unfortunate as it rejects secure programs that only use sensitive data for
internal computations without ever sending them on low channels.

The semantics for full tracking adds additional constraints to the rules for
observable tracking (cf. fourth column in Table 1). In particular, rule S-Assign
only allows low assignments in low security contexts, i.e. whenever pc � Γ (x).

Consider again the program in Fig. 3 and the semantics for full tracking. As
before, initially Γ (l1) = Γ (l2) = L, and Γ (h) = H. If the value of h is true,
the then branch of the first conditional is executed, and the program is stopped
because of a low assignment in a high context. This is a sound behavior of full
tracking as the original program does not satisfy full secrecy. Unfortunately,
full tracking will also stop any secure programs that contain the conditional
statement in (2). For example, if we replace the output statement in (4) with
out(L, 1) or out(H, l2), the resulting program clearly satisfies full secrecy. How-
ever, whenever h is true, full tracking will incorrectly stop the program.

We show that any program that is executed under the full tracking monitor,
i.e. I = FS, satisfies full secrecy.

Theorem 3. FS �E,m P ⇒ FS �E,m P

4 Staged Information-Flow Control

Two main factors hinder the adoption of dynamic information-flow control in
practice: challenging implementation and permissiveness. To properly update
the program counter stack at runtime, observable and full tracking require the
knowledge of the program’s control-flow graph. This requirement is unrealistic for
unstructured, heavily optimized or obfuscated code, such as the code delivered
to end users (cf. Sect. 1). In contrast, weak tracking disregards the control-flow
graph and only considers explicit statements. As a result, the enforcement is
more permissive and easier to implement.

In the full version [14], we present a staged analysis that first applies light-
weight program transformations to convert implicit flows into explicit flows,
thus delegating the task of enforcing observable and full secrecy to a weak
tracker. Concretely, we inline the program counter stack into the source code
in a semantics-preserving manner by introducing fake dependencies that cause a
weak tracker to capture potential observable and/or hidden implicit flows. The
transformation is completely transparent to the underlying security policy, which
makes it suitable for the scenarios envisioned in Sect. 1.

138 M. Balliu et al.

Table 2. Permissiveness

Program Γ (h) = H, Γ (l) = Γ (k) = L
and h = tt

Weak Full PU OT

P0 l := tt ; if h then {l := h} ; out(L, l) − − − −
P1 if h then l := tt + − + +

P2 if h then l := tt ; if l then skip + − − +

P3 l := tt ; k := tt ; if h then {l := ff} ;
if l then {k := ff} ; out(L, 1)

+ − − +

P4 if h then out(L, 1) else out(L, 1) + − − −
P5 l := tt ; k := tt ; if h then {l := ff} ;

if l then {k := ff} ; out(L, k)
+ ✗ ✗ +

Soundness vs Permissiveness. We use the examples in Table 2 to illustrate
soundness and permissiveness for existing dynamic trackers.

Fig. 8. Soundness vs Permissiveness

Except for the program P5,
all programs are secure for full
secrecy. We summarize the rela-
tions between the security conditions
(solid ovals) and enforcement mech-
anisms (dashed ovals) in Fig. 8. The
security conditions are incompara-
ble, as shown by the programs P0, P4

and P5 from Table 2. Moreover, there
is a strict inclusion between the set
of secure programs accepted by the
trackers (cf. Table 2).

Theorem 4. FT �E,m P ⇒ OT �E,m P ⇒ WT �E,m P

Table 2 illustrates permissiveness for the state-of-the-art purely dynamic
trackers. All trackers account for explicit flows, however, as illustrated by pro-
gram P0, they can be imprecise (cf. “−”) due to approximation. P1 will be
rejected by full tracking, i.e. NSU [5], while program P2 will be rejected by Per-
missive Upgrade [6], although none of them performs any outputs. P3 encodes
the value of the high boolean variable h into the final value of variable k through
hidden implicit flows, however, k is never output. Observable tracking (column
6 and 7) correctly accepts the program, thus decreasing the number of false pos-
itives that the other trackers would otherwise report. P0 and P4 will be rejected
by most trackers due to over-approximation. Arguably, program patterns like P0

and P4 are unlikely to be used, and, for trusted code, they can be fixed, e.g. by
code transformations.

These considerations make a good case for using observable tracking as a
permissive purely dynamic mechanism for security testing. However, programs

We Are Family: Relating Information-Flow Trackers 139

may still leak through hidden implicit flows. The insecure program P5 will be
correctly rejected by NSU and Permissive Upgrade (cf. “✗”) and, it will be
correctly accepted by observable tracking.

5 Implementation and Evaluation

Implementation. Our tool is a prototype built on top of the Soot frame-
work [54] and it uses an intermediate bytecode language, Jimple [54], to imple-
ment the static transformations presented in Sect. 3. We provide a description of
Jimple and discuss advanced language features in the full version [14]. We imple-
mented the code transformation for Android applications. The instrumented
applications are then run using TaintDroid [24]. The code of the implementa-
tion is available online [14]. Overall, the implementation of static transforma-
tions proved to be straight-forward, due to the use of Jimple as an intermediate
language and the modularity of the transformations. This indicates that this
approach is indeed lightweight compared to elaborate information-flow trackers.

Use Case: Pedometer. To evaluate our approach, we apply the presented
implementation to an open-source step counting application [41] from the popu-
lar F-Droid repository. By default, the application performs no network output.
To check if illegal flows are properly detected, we add network communication in
a number of scenarios. We give condensed forms of these examples in this section
to abstract from Android-specific issues regarding sensor queries; we refer the
reader to the implementation’s source code for the full examples [14].

Usage statistics: The step counting application may want to report usage infor-
mation to the developer. However, a user may not want the actual step count
to be reported to the developer. By tracking observable implicit flows, reporting
usage information in a low context does not generate a false positive. However,
disclosing the actual step count or reporting that the app was used on certain
day in a high context will yield an error (Fig. 9).

Fig. 9. Step counter example

Declassifying average pace: The appli-
cation may additionally send the aver-
age pace to a server to provide com-
parisons with other users. However,
the actual step count should still
not be disclosed. We implement a
where-style declassification policy as
described in [14].

Location information: To show the user more detailed information, we also
extended the application with rudimentary location tracking to allow for display-
ing information such as the number of steps per city. As location information is
sensitive, our transformation ensures that nothing about the user’s coordinates
is leaked through explicit or observable implicit flows. We then modified the

140 M. Balliu et al.

program to leak location information through hidden implicit flows as in Fig. 3.
Again, our cross-copying transformation ensured that such leaks are prevented.

Use Case: JSFlow. Existing information-flow tools, such as JSFlow [30], can
be easily modified to enforce observable secrecy instead of noninterference. For
the latest release of JSFlow, version 1.1, it was sufficient to comment out as few
as 4 lines of code to change to enforcing observable secrecy.

Work on value sensitivity in the context of JSFlow [31] points out precision
issues due to the No-Sensitive Upgrade policy, as in examples like (x := 1 ;
if h then x := 2 else skip ; out(L, 1)). A standard information-flow monitor
such as JSFlow would stop this program to avoid upgrading the label of x in a
secret context, even though x is never output later in the program. Modifying
JSFlow to enforce observable secrecy however accepts the program.

6 Related Work

Referring to the surveys on language-based information-flow security [44] and
taint tracking [47], we only discuss the most closely related work.

Information-Flow Policies. Contrasting noninterference [28], Volpano [57]
introduces weak secrecy, a security condition for taint tracking. Schoepe et al.
generalize weak secrecy by explicit secrecy [45] and enforce it by faceted val-
ues [46]. Our work explores observable secrecy as the middle ground. Similarly
to weak secrecy and noninterference, observable secrecy is not a trace property.

Several authors study knowledge-based conditions [3,4,9,10]. We explore the
attacker’s view of program code to discriminate polices, relating in particular
to the forgetful attackers by Askarov and Chong [2], though the exact relation
is subject to further investigation. While implicit flows in the wild are impor-
tant [33,42], they can also appear in trusted code [34,35]. By tracking explicit
and observable implicit flows, we raise the security bar wrt. taint tracking.

Staged Analysis. Our work takes inspiration from Beringer [15], who pro-
vides formal arguments of using taint tracking to enforce noninterference policies.
Beringer also leverages the cross copying technique to consider hidden implicit
flows. By contrast, we justify soundness of the enforcement mechanism in terms
of semantic conditions like weak secrecy with respect to uninstrumented seman-
tics. On the other hand, Beringer introduces a notion of path tracking to account
for termination-sensitive noninterference, and supports the theory (for an imper-
ative language without I/O) by a formalization in Coq. Our work distinguishes
between malicious and trusted code, providing security conditions and enforce-
ment mechanisms for both settings (including a prototype implementation).

Rifle [53] treats implicit flows by cross-copying program instrumentation and
taint tracking, with separate taint registers for explicit and implicit flows. The
focus is on efficiency, as soundness is only justified informally. Like Beringer’s,
our work gives formal and practical evidence for the usefulness of Rifle’s ideas.

We Are Family: Relating Information-Flow Trackers 141

Other works leverage the cross-copying technique to enforce noninterference
policies. Le Guernic [36] uses cross-copying in a hybrid monitor for noninterfer-
ence, and refers to observable and hidden implicit flows as implicit and explicit
indirect flows, respectively. Chugh et al. [19] present a hybrid approach to han-
dling JavaScript code. Their approach first computes statically a dynamic resid-
ual, which is checked at runtime in a second stage. For trusted code, Kang et
al. [34] study targeted (called culprit) implicit flows. Bao et at. [11] identify strict
control dependences and evaluate their effectiveness for taint tracking empiri-
cally. These works illuminate the benefits of observable implicit flows.

Dynamic Enforcement and Inlining. Fenton [26] studies purely dynamic
information-flow monitors. Austin and Flanagan [5] leverage No-Sensitive
Upgrade [58] to enforce noninterference for JavaScript and propose Permissive
Upgrade [6] to improve precision. We show that NSU can be too restrictive, and
propose solutions to improve precision for malicious and trusted code. Chudnov
and Naumann [18] and Magazinius et al. [37] propose information-flow monitor
inlining, integrating the NSU strategy into program’s code. Bielova and Rezk [17]
survey recent work in (information-flow) monitor inlining. Our transformations
can be seen as lightweight inlining of dynamic monitors, for (observable and/or
hidden) implicit flows. Russo and Sabelfeld [43] discuss trade-offs between static
and dynamic flow-sensitive analysis. We leverage their flow-sensitive monitor.

Secure multi-execution [22] and faceted values [7] enforce noninterference:
programs are executed as many times as there are security levels, with outputs
at each level computed by the respective runs. Barthe et al. [12] study pro-
gram transformations to implement secure multi-execution. These techniques
are secure by construction and provide high precision. However, they require
synchronization between computations at different security levels, and face chal-
lenges for languages with side-effects and I/O. Also, they may modify the seman-
tics and introduce crashes, thus making it difficult to detect attacks. By con-
trast, we focus on failstop monitoring, trading full permissiveness to avoids such
pitfalls.

Static and Hybrid Enforcement. Volpano et al. [56] formalize the soundness
of Dennings’ static analysis [21] with respect to noninterference by a security
type system, extended by further work with advanced features [44]. Hunt and
Sands [32] present flow-sensitive security types. Our work leverages dynamic
analysis to enforce similar policies. Other analysis for information flow include
program logics [10,13], model checking [8,23], abstract interpretations [27] and
theorem proving [20,40]. While more precise than security type systems, these
approaches may face several challenges with scalability.

Hybrid enforcement combines static and dynamic analysis. Le Guernic [36]
proposes hybrid flow-sensitive mechanisms supporting for sequential and con-
current languages. Venkatakrishnan et al. [55] present a hybrid monitor for
a language with procedures and show that it enforces noninterference. Shroff
et al. [48] present a monitor with dynamic dependency analysis for a language
with heap. Tripp et al. [52] study hybrid security for JavaScript code by com-
bining static analysis and dynamic partial evaluation. Moore and Chong [39]

142 M. Balliu et al.

propose two optimizations of hybrid monitors for efficiency: selective tracking
of variable security levels and memory abstractions for languages with dynamic
memory. Hybrid approaches use static analysis to approximate computational
effects for program paths that are not visited by a given execution. This can be
challenging for languages with complex features, e.g. reflection, and unstructured
control flow. We strike the balance by performing static analysis for implicit flows
(basically boolean expressions) and delegating the resolution of complex features
to a dynamic taint tracker.

Mobile App Security. There exists a large body of works on information-flow
analysis in the mobile app domain. The majority of these analysis only accounts
for explicit flows. This is due to the presence of complex language features and
highly dynamic lifecycles, however, for potentially malicious and trusted code,
implicit flows are important to address. Our proposal in Fig. 1 enables existing
work to provide stronger guarantees in a flexible manner. TaintDroid [24] is a
dynamic taint tracker developed to capture privacy violations in Android apps.
We use TaintDroid as dynamic component in our implementation. Most static
analysis works certify security with respect to weak secrecy [1,29]. Despite the
great progress in improving precision, the false positive rate remains high [29].

Ernst et al. [25] propose collaborative verification of information-flow require-
ments for a high-integrity app store. Developers and the app store collaborate
to reduce the overall verification cost. Concretely, developers provide the source
code with information-flow specifications (security types), while the app store
verifies their correctness. Our model is complementary and, by contrast, user-
centric, allowing for more flexible policies and reducing the developers’ burden.

7 Conclusion

We have presented a framework of information-flow trackers, allowing us to relate
a range of enforcement from taint tracking to information-flow control. We have
explored the middle ground by distinguishing malicious and trusted code and
considering trade-offs between soundness and permissiveness. We have deployed
the framework in a staged fashion by combining lightweight static analysis with
dynamic taint tracking, enabling us to envision a secure app store architecture.
We have experimented with the approach by a prototype implementation.

Future work includes dynamic security policies and case studies from the
F-Droid repository. While the current framework allows for parametric policies
on users’ side, we conjecture that the static transformations, being transparent
to the underlying policy, can be extended to handle rich dynamic policies.

Acknowledgments. This work was partly funded by the European Community under
the ProSecuToR project and the Swedish research agency VR.

We Are Family: Relating Information-Flow Trackers 143

References

1. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y.L.,
Octeau, D., McDaniel, P.: Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In: PLDI (2014)

2. Askarov, A., Chong, S.: Learning is change in knowledge: Knowledge-based security
for dynamic policies. In: CSF (2012)

3. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive nonin-
terference leaks more than just a bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 333–348. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88313-5 22

4. Askarov, A., Sabelfeld, A.: Gradual release: unifying declassification, encryption
and key release policies. In: S&P (2007)

5. Austin, T.H., Flanagan, C.: Efficient purely-dynamic information flow analysis.
SIGPLAN Not. 44, 20–31 (2009)

6. Austin, T.H., Flanagan, C.: Permissive dynamic information flow analysis. In:
PLAS (2010)

7. Austin, T.H., Yang, J., Flanagan, C., Solar-Lezama, A.: Faceted execution of
policy-agnostic programs. In: PLAS (2013)

8. Balliu, M., Dam, M., Guernic, G.L.: ENCoVer: symbolic exploration for informa-
tion flow security. In: CSF (2012)

9. Balliu, M., Dam, M., Le Guernic, G.: Epistemic temporal logic for information flow
security. In: PLAS (2011)

10. Banerjee, A., Naumann, D.A., Rosenberg, S.: Expressive declassification policies
and modular static enforcement. In: S&P (2008)

11. Bao, T., Zheng, Y., Lin, Z., Zhang, X., Xu, D.: Strict control dependence and its
effect on dynamic information flow analyses. In: ISSTA (2010)

12. Barthe, G., Crespo, J.M., Devriese, D., Piessens, F., Rivas, E.: Secure multi-
execution through static program transformation. In: Giese, H., Rosu, G. (eds.)
FMOODS/FORTE -2012. LNCS, vol. 7273, pp. 186–202. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30793-5 12

13. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
MSCS 21, 1207–1252 (2011)

14. We are family: relating information flow trackers (Extended Version). http://www.
cse.chalmers.se/research/group/security/family

15. Beringer, L.: End-to-end multilevel hybrid information flow control. In: Jhala, R.,
Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 50–65. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-35182-2 5

16. Biba, K.J.: Integrity considerations for secure computer systems. Technical report,
MITRE Corp (1977)

17. Bielova, N., Rezk, T.: A taxonomy of information flow monitors. In: Piessens, F.,
Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 46–67. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49635-0 3

18. Chudnov, A., Naumann, D.A.: Information flow monitor inlining. In: CSF (2010)
19. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for

javascript. In: PLDI (2009)
20. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of

secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol.
3450, pp. 193–209. Springer, Heidelberg (2005). doi:10.1007/978-3-540-32004-3 20

http://dx.doi.org/10.1007/978-3-540-88313-5_22
http://dx.doi.org/10.1007/978-3-540-88313-5_22
http://dx.doi.org/10.1007/978-3-642-30793-5_12
http://www.cse.chalmers.se/research/group/security/family
http://www.cse.chalmers.se/research/group/security/family
http://dx.doi.org/10.1007/978-3-642-35182-2_5
http://dx.doi.org/10.1007/978-3-662-49635-0_3
http://dx.doi.org/10.1007/978-3-540-32004-3_20

144 M. Balliu et al.

21. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20, 504–513 (1977)

22. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: S&P
2010 (2010)

23. Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M.N., Seidl, H.: Model check-
ing information flow in reactive systems. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 169–185. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-27940-9 12

24. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.G., Cox, L.P., Jung, J.,
McDaniel, P., Sheth, A.N.: Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. 32, 5
(2014)

25. Ernst, M.D., Just, R., Millstein, S., Dietl, W., Pernsteiner, S., Roesner, F., Koscher,
K., Barros, P.B., Bhoraskar, R., Han, S., Vines, P., Wu, E.X.: Collaborative veri-
fication of information flow for a high-assurance app. store. In: CCS (2014)

26. Fenton, J.S.: Memoryless subsystems. Comput. J. 17(2), 143–147 (1974)
27. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: parameterizing non-

interference by abstract interpretation. In: POPL (2004)
28. Goguen, J.A., Meseguer, J.: Security policies and security models. In: S&P (1982)
29. Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen, N., Rinard, M.C.: Infor-

mation flow analysis of android applications in droidsafe. In: NDSS (2015)
30. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: tracking information flow

in javaScript and its APIs. In: SAC (2014)
31. Hedin, D., Bello, L., Sabelfeld, A.: Value-sensitive hybrid information flow control

for a javascript-like language. In: CSF (2015)
32. Hunt, S., Sands, D.: On flow-sensitive security types. In: POPL, pp. 79–90 (2006)
33. Jang, D., Jhala, R., Lerner, S., Shacham, H.: An empirical study of privacy-

violating information flows in javaScript web applications. In: CCS (2010)
34. Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA++: dynamic taint

analysis with targeted control-flow propagation. In: NDSS (2011)
35. King, D., Hicks, B., Hicks, M., Jaeger, T.: Implicit flows: can’t live with ‘Em, can’t

live without ‘Em. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352,
pp. 56–70. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89862-7 4

36. Le Guernic, G.: Confidentiality enforcement using dynamic information flow analy-
ses. Ph.D. thesis, Kansas State University (2007)

37. Magazinius, J., Russo, A., Sabelfeld, A.: On-the-fly inlining of dynamic security
monitors. Comput. Secur. 31, 827–843 (2010)

38. McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: S&P (1994)

39. Moore, S., Chong, S.: Static analysis for efficient hybrid information-flow control.
In: CSF (2011)

40. Nanevski, A., Banerjee, A., Garg, D.: Dependent type theory for verification of
information flow and access control policies. ACM Trans. Program. Lang. 35, 6
(2013)

41. https://f-droid.org/repository/browse/?fdid=name.bagi.levente.pedometer
42. Russo, A., Sabelfeld, A., Li, K.: Implicit flows in malicious and nonmalicious code.

Marktoberdorf Summer School (IOS Press) (2009)
43. Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:

CSF (2010)
44. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. JSAC 21,

5–19 (2003)

http://dx.doi.org/10.1007/978-3-642-27940-9_12
http://dx.doi.org/10.1007/978-3-642-27940-9_12
http://dx.doi.org/10.1007/978-3-540-89862-7_4
https://f-droid.org/repository/browse/?fdid=name.bagi.levente.pedometer

We Are Family: Relating Information-Flow Trackers 145

45. Schoepe, D., Balliu, M., Pierce, B.C., Sabelfeld, A.: Explicit secrecy: a policy for
taint tracking. In: EuroS&P (2016)

46. Schoepe, D., Balliu, M., Piessens, F., Sabelfeld, A.: Let’s face it: faceted values for
taint tracking. In: ESORICS (2016)

47. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: S&P 2010 (2010)

48. Shroff, P., Smith, S., Thober, M.: Dynamic dependency monitoring to secure infor-
mation flow. In: CSF (2007)

49. SnoopWall: Flashlight Apps Threat Assessment Report (2014). https://www.
snoopwall.com/reports

50. Staicu, C., Pradel, M.: An empirical study of implicit information flow (2015).
poster at PLDI. https://www.informatik.tu-darmstadt.de/fileadmin/user upload/
Group SOLA/Papers/poster-pldi2015-src.pdf

51. (2015). http://www.heartbleed.com
52. Tripp, O., Ferrara, P., Pistoia, M.: Hybrid security analysis of web javascript code

via dynamic partial evaluation. In: ISSTA (2014)
53. Vachharajani, N., Bridges, M.J., Chang, J., Rangan, R., Ottoni, G., Blome, J.A.,

Reis, G.A., Vachharajani, M., August, D.I.: RIFLE: an architectural framework
for user-centric information-flow security. In: MICRO (2004)

54. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot
- a java bytecode optimization framework. In: CASCR (1999)

55. Venkatakrishnan, V.N., Xu, W., DuVarney, D.C., Sekar, R.: Provably correct run-
time enforcement of non-interference properties. In: Ning, P., Qing, S., Li, N. (eds.)
ICICS 2006. LNCS, vol. 4307, pp. 332–351. Springer, Heidelberg (2006). doi:10.
1007/11935308 24

56. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis.
JCS 4, 167–187 (1996)

57. Volpano, D.: Safety versus secrecy. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS,
vol. 1694, pp. 303–311. Springer, Heidelberg (1999). doi:10.1007/3-540-48294-6 20

58. Zdancewic, S.A.: Programming languages for information security. Ph.D. thesis,
Cornell University, Ithaca, NY, USA (2002)

https://www.snoopwall.com/reports
https://www.snoopwall.com/reports
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SOLA/Papers/poster-pldi2015-src.pdf
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SOLA/Papers/poster-pldi2015-src.pdf
http://www.heartbleed.com
http://dx.doi.org/10.1007/11935308_24
http://dx.doi.org/10.1007/11935308_24
http://dx.doi.org/10.1007/3-540-48294-6_20

Labeled Homomorphic Encryption

Scalable and Privacy-Preserving Processing
of Outsourced Data

Manuel Barbosa1, Dario Catalano2(B), and Dario Fiore3

1 INESC TEC and FCUP, Porto, Portugal
2 University of Catania, Catania, Italy

catalano@dmi.unict.it
3 IMDEA Software Institute Madrid, Madrid, Spain

Abstract. In privacy-preserving processing of outsourced data a Cloud
server stores data provided by one or multiple data providers and then
is asked to compute several functions over it. We propose an efficient
methodology that solves this problem with the guarantee that a honest-
but-curious Cloud learns no information about the data and the receiver
learns nothing more than the results. Our main contribution is the pro-
posal and efficient instantiation of a new cryptographic primitive called
Labeled Homomorphic Encryption (labHE). The fundamental insight
underlying this new primitive is that homomorphic computation can be
significantly accelerated whenever the program that is being computed
over the encrypted data is known to the decrypter and is not secret—
previous approaches to homomorphic encryption do not allow for such
a trade-off. Our realization and implementation of labHE targets com-
putations that can be described by degree-two multivariate polynomials.
As an application, we consider privacy preserving Genetic Association
Studies (GAS), which require computing risk estimates from features in
the human genome. Our approach allows performing GAS efficiently, non
interactively and without compromising neither the privacy of patients
nor potential intellectual property of test laboratories.

1 Introduction

Privacy-preserving data processing techniques are crucial enablers for moving
many security-critical applications to the Cloud, and they may be the key to
unlocking new socially-relevant applications and business opportunities. As an
example, consider the case of personalized medicine, where a medical center
offers highly specialized services that permit guiding the medical care of a Client
based on information encoded in the Genome. Such direct-to-consumer services
are already a reality, so we will not discuss whether or not they are desirable.
Instead, we propose a new methodology that can be used today to deploy such
services in the Cloud (genomic studies may involve a huge amount of data),
whilst protecting the privacy of the Client, and intellectual property that may be
a concern for the medical center. Controlling who has access to individual data in
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 146–166, 2017.
DOI: 10.1007/978-3-319-66402-6 10

Labeled Homomorphic Encryption 147

these scenarios will likely be mandatory for ethical and/or legal reasons, and this
pattern arises in many other real-world applications (e.g., analysis of taxpayers’
or consumers’ data, users’ geographic locations, etc.) where our solution may be
of use.

Fig. 1. The parties and workflow of our
system.

We consider a scenario with three
actors – data providers, the Cloud, and
a receiver – with the following work-
flow (Fig. 1). Data providers send data
to the Cloud, and the receiver asks the
Cloud to execute certain queries on the
outsourced data. For the applications
we consider, the key requirements are

privacy and efficiency. Privacy properties should guarantee that the Cloud does
not learn any information on the hosted data, and that the receiver learns noth-
ing more than the queries outcomes. Furthermore, it should be possible for many
data providers to contribute with inputs to the same computation, in such a
way that data introduced by one provider is protected from the others. The effi-
ciency requirement involves two main aspects: computation and communication.
With respect to computation, the protocol should have minimal impact for data
providers. There is little point for them in delegating storage and/or computa-
tion to the Cloud if this requires prohibitive costs; their only task should be to
collect and send data and be minimally involved in the rest of the protocol (e.g.,
they could go offline). Moreover, in several applications the data providers can
be resource-constrained devices (e.g., sensors) for which a lightweight protocol
is essential. In terms of computation, the protocol should also run efficiently at
the Cloud. Although Cloud providers have powerful resources, in an outsourcing
setting one has to pay for them and thus the lighter is the protocol’s burden
the cheaper is the service’s cost. On the communication side, one would like
solutions with minimal bandwidth overhead both between data providers and
the Cloud, and between the Cloud and the receiver. For example, the communi-
cation with the receiver should not depend on the amount of data hosted by the
Cloud. Low bandwidth is particularly relevant in the context of mobile networks
and mobile devices: high bandwidth consumptions drain batteries and cost a
lot due to the price of mobile network connections (most of the times under a
pay-per-use model).

Our Contribution. We propose and efficiently instantiate a new cryptographic
primitive called Labeled Homomorphic Encryption (labHE) that gives a solution
to the problem of privately processing outsourced data outlined above. Our real-
ization and implementation of labHE targets computations that can be described
by degree-two multivariate polynomials, which capture a significant fraction of
statistical functions and, in particular, statistical computations used in genomic
analysis. As we detail later, our solution outperforms protocols based on previous
somewhat homomorphic encryption schemes in essentially all fronts: our com-
munication costs are more than two orders of magnitude smaller, computation
is more than 80 times faster for data providers and up to 9000 times faster for

148 M. Barbosa et al.

the Cloud. The insight that unlocks such performance gains is that homomor-
phic computation can be significantly accelerated whenever the program that
is being computed over the encrypted data is known to decrypter and is not
secret—previous approaches to homomorphic encryption do not allow for such
a trade-off.

Labeled Homomorphic Encryption. Our new labHE notion combines the
model of labeled programs, put forward in the context of homomorphic authen-
ticators (e.g. [5,7,15]), with the concept of homomorphic encryption. Homo-
morphic encryption (HE) [16,27] is like ordinary encryption with the additional
capability of a (publicly executable) evaluation algorithm Eval. The latter takes
as input a program P and encrypted messages m1, . . . ,mn, and outputs an
encryption of P (m1, . . . ,mn).

labHE is similar to HE with the following additions. First, every piece of
(encrypted) data is associated with a unique label. A label could be the index of
a database record or any other string that can be used to identify the outsourced
data item. Thus, when encrypting a message m, one specifies a corresponding
label τ (which does not need to be kept secret, though). To give an example,
think of a blood pressure sensor which collects measurements at regular time
instants: the pressure value is the actual data while the time instant is the label.
Next, whenever a user Bob wants to ask the cloud to compute f on some (previ-
ously outsourced) encrypted inputs, he makes the query by specifying the labels
of these inputs. For instance, Bob may say “compute the mean on messages
with labels (Pressure, 1), . . . , (Pressure, 100)”. The combination of f and the
labels in the query is called a “labeled program” P , which is what is executed
by the Cloud. Finally, upon the receipt of the (encrypted) answer c from the
Cloud, Bob runs the decryption algorithm with his secret key, c, and labeled
program P . Introducing labeled programs in HE formalizes the intuition that
Bob is decrypting the result of a known function (the labeled program, the query)
on the unknown outsourced data (the encrypted messages). We stress that in
the outsourcing setting labeling is always implicit, as some mechanism is always
needed to specify the portion of the outsourced data over which the Cloud has to
compute. Moreover, although one may wonder that labels leak additional infor-
mation, it is not hard to see that this can be avoided by choosing an appropriate
labeling (e.g., simple indices) which reveals only trivial information.

For efficiency we require labHE ciphertexts to be succinct, i.e., of fixed size,
independent of the computation executed on it. We concede that the running
time of labHE decryption may depend on P : this is the most noticeable difference
with standard HE. Interestingly, however, in our realizations this has almost
negligible impact on efficiency in practice. For security, we require labHE to
meet the usual semantic security notion (i.e., one cannot tell apart encryptions
of known messages) and also to satisfy a property that we call context-hiding.
This essentially says that a ciphertext encrypting the result m = P (m1, . . . ,mn)
reveals only m and nothing more about the program inputs.

Basic and Multi-user labHE. The basic labHE notion requires the same secret
key to encrypt and decrypt. It can be used to perform privacy-preserving compu-

Labeled Homomorphic Encryption 149

tations on outsourced data as follows. A data provider, Alice, jointly executes the
setup algorithm with Bob, the receiver, and gets a secret encryption key that she
can use to encrypt her data before outsourcing it to the Cloud. Bob can then ask
the Cloud to compute a labeled program P on Alice’s data, obtain an encryption
of the result and decrypt this with his secret decryption key. In terms of data
privacy, labHE semantic security ensures that, as long as the Cloud does not get
to see the keys used for encryption/decryption, it does not learn anything about
Alice’s data or the result of the computation; context-hiding further guarantees
that, as long as the Cloud does not reveal the originally encrypted ciphertexts
to Bob, then Bob learns only the query results and no other information about
Alice’s individual data. We note that this trust model is particularly well suited
to a scenario in which Alice (or more of the senders in the multi-sender scenario
below) controls the Cloud and uses it to offer a service to Bob. Regarding effi-
ciency, the only work of Alice is to encrypt and transmit the data, while the
succinctness of labHE yields short communication between the Cloud and Bob:
answers received by Bob do not depend on the size of the outsourced data.

In addition to basic labHE, we also provide a more powerful generalization to
a multi-user setting, which inherits all the performance features of the basic one.
Here one can perform computations over data encrypted by different providers,
and these do not need to share any common secret. Indeed, key generation in
the basic labHE notion can be split between sender and receiver as follows. Bob
generates a master public key and a master secret key. Knowing Bob’s master
public key, Alice can unilaterally encrypt with her own generated encryption
key, and create a public key that becomes associated with her encrypted data.
In this way, no trusted a priori set-up is required in addition to a PKI. More-
over, multiple senders can do exactly the same as Alice to encrypt under their
public keys and Bob’s master public key, with the extra guarantee that the data
encrypted by one sender cannot be decrypted by a different sender. Decryption
requires knowledge of the master secret along with the public keys of all the
users whose ciphertexts were involved in the computation.

On the Usefulness of Labeling Programs. The essence of labHE is to take
advantage of the fact that, when delegating some computation P on outsourced
data, P is typically provided explicitly to the cloud. Interestingly, when using
(standard) homomorphic encryption this inherent privacy loss does not seem to
be exploitable to gain efficiency. labHE, on the other hand, aims at trading the
(unavoidable!) leak of P to significantly reduce the cost of the computation.

Indeed, the main difference with respect to (standard) homomorphic encryp-
tion is in decryption: decrypting in labHE requires Bob to do work that depends
on the program P . More precisely, and simplifying things a bit, Bob will basi-
cally need to recompute P on (values related to) the labels corresponding to the
original inputs. Interestingly we show that, as this computation is performed
on unencrypted and very succinct data (short pseudorandom fingerprints of the
labels), it has very low impact in practice. In fact, the cost of decryption is
always orders of magnitude lower than that of running the computation in the
Cloud. Not only that, this can be done prior to receiving the encrypted results

150 M. Barbosa et al.

from the Cloud! This becomes particularly interesting when considering that our
realizations of labHE are extremely efficient also for the Cloud (see below for
more details about this). Indeed, we show that, building on [6], labHE support-
ing computations expressible via degree-2 polynomials can be realized from any
encryption scheme that is only linearly homomorphic. Since these are typically
more efficient than their more expressive counterparts, the same holds for the
resulting labHE.

To the best of our knowledge, the idea of trading-off function privacy for effi-
ciency has not been previously applied in the field of (somewhat) homomorphic
encryption; for this reason, and while our work focuses on the specific case of
computing degree two polynomials on ciphertexts, we believe that this idea could
be of independent interest and might find applications for settings requiring more
expressive computations as well.

An Overview of Our Techniques. We provide an intuitive description of
our solution, discussing some of the core ideas underlying it. We encrypt a mes-
sage m ∈ M via a two-component ciphertext (m − b,Enc(b)), where Enc is a
linearly homomorphic encryption scheme and b is random in M. In [6], Cata-
lano and Fiore show that ciphertexts of this form allow for the evaluation of
degree-two polynomials on encrypted data, at the cost of losing compactness.
More precisely, Catalano and Fiore argue that when applying a polynomial f on
(m1 − b1,Enc(b1)), . . . , (mt − bt,Enc(bt)), there may be the possibility (depend-
ing on the structure of f) to end up with a huge O(t)-components ciphertext
(Enc(f(m1, . . . ,mt) − f(b1, . . . , bt)),Enc(b1), . . . ,Enc(bt)).

Our key idea to solve the compactness issue in the context of labHE is to
let every bi depend on the corresponding label; in our construction we set bi as
the output of FK(τi), where F is a pseudorandom function and τi is the unique
label associated with message mi. The crucial observation is that, because the
labels are known to the decryptor, the value f(b1, . . . , bt) can be reconstructed
at decryption time, and the components Enc(b1), . . . ,Enc(bt) dismissed from
the above ciphertext. This gives us a construction that supports all degree-two
polynomials with constant-size ciphertexts! Interestingly, this simple idea, when
instantiated with fast cryptographic primitives (e.g., the Sponge-based pseudo-
random function from the Kekkac Code Package and the Joye-Libert cryptosys-
tem [20]) yields an extremely efficient realization of the primitive, that allows
to outsource the computation of various useful functions (e.g. statistics, genetic
association studies) in a very efficient yet privacy preserving way.

Efficient labHE Realizations. We show how to construct expressive labHE
schemes for quadratic functions by using standard number theoretic (linearly-
homomorphic) encryption schemes, such as Paillier [25], Bresson et al. [4] and
Joye-Libert [20]. We implemented one of these instantiations – the one based on
the Joye-Libert cryptosystem that we call labHE(JL13) – and tested its per-
formance for the case of computing statistical functions on encrypted data.
Our experiments demonstrate that labHE(JL13) outperforms a solution based
on state-of-the-art somewhat homomorphic encryption (FV) [13,24] (optimized
to support the same class of functions) on essentially all fronts. For example,

Labeled Homomorphic Encryption 151

comparing labHE(JL13) against FV, we observed that in labHE(JL13) the com-
munication costs are 400 times smaller, encrypting is more than 80 times faster,
while computing the results is between 9000 and 50 times faster for the Cloud.

Applications. To further highlight the performance benefits of our solution
in the real world, we looked at two specific applications: i. computing relevant
statistical functions over encrypted data outsourced to the Cloud and ii. perform-
ing Genetic Association Studies that preserve both the privacy of users and the
intellectual property of the laboratories performing the tests. These applications
are discussed in Sect. 6.

Solutions Based on Related Primitives. In the full version [1] we discuss
how alternative solutions for the same applications could be developed using
other cryptographic techniques—other forms of homomorphic encryption, secure
multiparty computation and classical techniques—emphasizing the advantages
of labelled homomorphic encryption in terms of computational costs and band-
width in each chase, and highlighting the differences in trust models and neces-
sary infrastructure.

Preliminaries and Notation. We denote with λ ∈ N a security parameter,
and with poly(λ) any function bounded by a polynomial in λ. We say that a
function ε is negligible if it vanishes faster than the inverse of any polynomial
in λ. We use PPT for probabilistic polynomial time, i.e., poly(λ). If S is a set,
x

$← S denotes selecting x uniformly at random in S. If A is a probabilistic
algorithm, x

$← A(·) denotes the process of running A on some appropriate
input and assigning its output to x. For a positive integer n, we denote by [n]
the set {1, . . . , n}. We refer to [16] for standard security notions related to HE.

2 Labeled HE

In this section we introduce the notion of Labeled Homomorphic Encryption
(labHE, for short). This notion adapts the one of (symmetric-key) homomorphic
encryption to the setting of labeled programs. This is based on the following
key ideas. First, each piece of (encrypted) data that is outsourced is assigned
a unique label which is used to identify the data. Second, whenever a client
wants to ask the cloud to compute a function f on a portion of the outsourced
(encrypted) data, the client specifies the inputs of f among the outsourced data.
These inputs are identified by specifying their labels. The combination of f with
these labels is called a labeled program. In short, labels allow clients to express
queries on outsourced data.

In our homomorphic encryption notion, these ideas are introduced as fol-
lows. The encryption algorithm takes as input also a label; this is to say that
the encryptor assigns a unique index to the encrypted data. Second, the decryp-
tion algorithm takes as additional input a labeled program; this is to express
that the decryptor recovers the result of a known query (the labeled program)
on the (unknown) outsourced data. In practice, the set of labels has concise
representation (e.g. they can be names or even indexes in [1, n]).

152 M. Barbosa et al.

Labeled Programs. Here we recall the notion of labeled programs [15], adapted
to the case of arithmetic circuits as in [5]. The definition is taken almost verbatim
from [5]. A labeled program P is a tuple (f, τ1, . . . , τn) such that f : Mn → M
is a function on n variables (e.g., a circuit), and τi ∈ {0, 1}∗ is the label of the
i-th variable input of f .

Labeled Homomorphic Encryption. A symmetric-key Labeled Homomor-
phic Encryption scheme labHE consists of the following algorithms.

KeyGen(1λ). The key generation algorithm takes as input the security parameter
λ. It outputs a secret key sk and a public evaluation key epk. We assume that
epk implicitly contains a description of a message space M, a label space L,
and a class F of “admissible” circuits.

Enc(sk, τ,m). The encryption algorithm takes as input the secret key sk, a label
τ ∈ L and a message m ∈ M. It outputs a ciphertext C.

Eval(epk, f, C1, . . . , Ct). On input epk, an arithmetic circuit f : Mt → M in
the class F of “allowed” circuits, and t ciphertexts C1, . . . , Ct, the evaluation
algorithm returns a ciphertext C.

Dec(sk,P, C). The decryption algorithm takes as input the secret key, a labeled
program P, and a ciphertext C, and it outputs a message m ∈ M.

A labHE must satisfy correctness, succinctness, semantic security, and context-
hiding.

Definition 1 (Correctness). A Labeled Homomorphic Encryption scheme
labHE = (KeyGen,Enc,Eval,Dec) correctly evaluates a family of circuits F if
for all honestly generated keys (epk, sk) $← KeyGen(1λ), for all f ∈ F , all labels
τ1, . . . , τt ∈ L, all messages m1, . . . ,mt ∈ M, any Ci

$← Enc(sk, τi,mi) ∀i ∈ [t],
and P = (f, τ1, . . . , τt),

Pr[Dec(sk,P,Eval(epk, f, C1, . . . , Ct)) = f(m1, . . . ,mt)] = 1 − negl(λ) .

Informally succinctness means that the size of ciphertexts output by Eval is
some fixed polynomial in the security parameter, and does not depend on the
size of the evaluated circuit. Formally, this is defined as follows.

Definition 2 (Succinctness). A Labeled Homomorphic Encryption scheme
labHE = (KeyGen,Enc,Eval,Dec) is said to succinctly evaluate a family of cir-
cuits F if there is a fixed polynomial p(·) such that every honestly generated
ciphertext (output of either Enc or Eval) has size (in bits) p(λ).

We note that our notion of succinctness is weaker than the notion of com-
pactness of standard homomorphic encryption. Compactness dictates that the
running time of the decryption algorithm is bounded by some fixed polynomial
in λ. Succinctness is weaker in the sense that a compact scheme is also suc-
cinct whereas the converse might not be true (indeed our construction satisfies
succinctness but not compactness).

The security of a labHE scheme is defined via a notion of semantic security
that adapts to our setting the standard notion put forward by Goldwasser and
Micali [17].

Labeled Homomorphic Encryption 153

Definition 3 (Semantic Security for labHE). Let labHE = (KeyGen,Enc,
Eval,Dec) be a Labeled Homomorphic Encryption scheme and A be a PPT adver-
sary. Consider the following experiment where A is given access to an oracle
Enc(sk, ·, ·) that on input a pair (τ,m) outputs Enc(sk, τ,m):

Experiment ExpSS
labHE,A(λ)

b
$← {0, 1}; (epk, sk) $← KeyGen(1λ)

(m0, τ
∗
0 ,m1, τ

∗
1)←AEnc(sk,·,·)(epk)

c
$← Enc(sk, τ∗

b ,mb) ; b′←AEnc(sk,·,·)(c)
If b′ = b return 1. Else return 0.

We say that A is a legitimate adversary if it queries the encryption oracle on
distinct labels (i.e., each label τ is never queried more than once), and never on
the two challenge labels τ∗

0 , τ∗
1 . We define A’s advantage as AdvSS

labHE,A(λ) :=
Pr[ExpSS

labHE,A(λ) = 1] − 1
2 . Then we say that labHE provides semantic-security

if for any PPT legitimate algorithm A it holds AdvSS
labHE,A(λ) = negl(λ).

Finally we define another security property of Labeled Homomorphic Encryp-
tion called context-hiding, which says that a user running m = Dec(sk,P, C)
learns nothing about the input m′, except that m = f(m′), where f is the
function in P.

Definition 4 (Context Hiding). We say that a Labeled Homomorphic
Encryption scheme labHE satisfies context-hiding for a family of circuits F if
there exists a PPT simulator Sim and a negligible function ε(λ) such that the
following holds. For any λ ∈ N, any pair of keys (epk, sk) $← KeyGen(1λ), any
circuit f ∈ F with t inputs, any tuple of messages m1, . . . ,mt ∈ M, labels
τ1, . . . , τt ∈ L, corresponding ciphertexts Ci

$← Enc(sk, τi,mi) ∀i = 1, . . . , t,
P = (f, τ1, . . . , τt) and m = f(m1, . . . ,mt):

SD[Eval(epk, f, C1, . . . , Ct), Sim(1λ, sk,P,m)] = negl(λ)

Labeled Homomorphic Encryption with Preprocessing. Here we define
a special case of Labeled Homomorphic Encryption where some of the algorithms
allow for a preprocessing step that enables to speed up online computations.

We say that a scheme labHE has offline/online encryption if it admits
two algorithms Offline-Enc and Online-Enc working as follows. Offline-Enc(sk, τ)
takes a label and the secret key and produces an offline ciphertext Coff for τ .
Online-Enc(Coff ,m) takes a message m and an offline ciphertext for label τ and
produces a ciphertext C. The two algorithms must be correct in the sense that
Enc(sk, τ,m) equals the outcome of Online-Enc(Offline-Enc(sk, τ),m). Informally,
the first algorithm is the computationally more costly procedure that can be run
independently of the actual message one wishes to encrypt. Online-Enc, on the
other hand, is more efficient but can be executed only when m becomes available.

A scheme labHE has offline/online decryption if it admits two algorithms
Offline-Dec and Online-Dec as follows. Offline-Dec(sk,P) takes a secret key and

154 M. Barbosa et al.

a labeled program and produces an offline secret key skoff for P. Notice that
skoff does not depend on a ciphertext. Online-Dec(skoff , C) takes skoff and C
and outputs a message m. Again, the two algorithms must be correct in the
sense that Dec(sk,P, C) equals the outcome of Online-Dec(Offline-Dec(sk,P), C).
Offline/online decryption allows to split the decryption procedure into two parts:
the offline one which is computationally more expensive and may depend on the
complexity of the program P; the online part that is much faster and whose
running time is a fixed polynomial in the security parameter.

3 A Construction of Labeled HE for Quadratic
Polynomials

In this section we present a construction of Labeled Homomorphic Encryption
that supports the evaluation of degree-two polynomials. Our construction builds
upon the technique of [6] for boosting linearly homomorphic encryption schemes
to evaluate degree-two polynomials on ciphertexts. Interestingly, however, while
the construction from [6] achieves succinctness only for the subclass of degree-
two polynomials where the number of degree-two monomials is bounded by a
constant, our realization achieves succinctness for all degree-two polynomials.
Similarly to [6], our realization builds upon any (linearly) homomorphic encryp-
tion scheme that is public space (e.g., [25]). This property requires that the
message space M is a (publicly known) commutative ring where it is possible to
sample random elements efficiently (see [6] for a more rigorous definition).

Let ĤE = (ˆKeyGen, ˆEnc, ˆEval, D̂ec) be a public-space linearly-homomorphic
encryption scheme (see [16] for the details). Following [6] we denote with Ĉ the
ciphertext space of ĤE, we use Greek letters to denote elements of Ĉ and Roman
letters for elements of M. Without loss of generality we assume that ˆEval con-
sists of two procedures: one to perform (homomorphic) additions and another
to perform (homomorphic) multiplications by constants. We denote these oper-
ations with � and ·, respectively and (abusing notation) we denote addition and
multiplication in M as + and ·.

We propose a Labeled Homomorphic Encryption scheme labHE =
(KeyGen,Enc,Eval,Dec) capable of evaluating multivariate polynomials of degree
2 over M, with respect to some (finite) set of labels L ⊂ {0, 1}∗. We use a pseudo-
random function F : {0, 1}k × {0, 1}∗ → M, with key space {0, 1}k, for some
k = poly(λ).

KeyGen(1λ): On input a security parameter λ ∈ N, run ˆKeyGen(1λ) to get
(pk, sk′). Next, choose a random seed K ∈ {0, 1}k for the PRF, and set
L = {0, 1}∗. Output sk = (sk′,K) and epk = (pk,L). The above assumes
that pk already describes both ĤE’s message space M and its ciphertext
space Ĉ. The message space of labHE will be M.

Enc(sk, τ,m): We describe Enc directly in terms of its two components Offline-Enc
and Online-Enc.
Offline-Enc(sk, τ): Given a label τ , compute b ← F (K, τ) and outputs Coff =

(b, ˆEnc(pk, b)).

Labeled Homomorphic Encryption 155

Online-Enc(Coff). Parse Coff as (b, β) and output C = (a, β), where a ← m−b
(in M). Notice that the cost of online encryption is that of an addition
in M.

Eval(epk, f, C1, . . . , Ct): Eval is composed of 3 different procedures: Mult,Add,
cMult. We describe each such procedure separately. Informally, Mult allows to
perform (homomorphic) multiplications, Add deals with homomorphic addi-
tions and cMult takes care of (homomorphic) multiplications by known con-
stants.
Mult: On input two ciphertexts C ′

1, C
′
2 ∈ M × Ĉ where, for i = 1, 2, Ci =

(ai, βi), the algorithm computes a “multiplication” ciphertext C = α ∈ Ĉ
as:

α = ˆEnc(pk, a1 · a2) � a1 · β2 � a2 · β1

Correctness follow from the fact that, if ai = (mi−bi) and βi ∈ ˆEnc(pk, bi)
for some bi ∈ M, then

α ∈ ˆEnc (pk, (m1m2 − b1m2 − b2m1 + b1b2)+
(b2m1 − b1b2) + (b1m2 − b1b2)) = ˆEnc(pk,m1m2 − b1b2)

Add: We distinguish two cases depending on the format of the two input
ciphertexts C1, C2. If C1, C2 ∈ M × Ĉ where, for i = 1, 2, Ci = (ai, βi),
then the algorithm produces a new ciphertext C = (a, β) ∈ M × Ĉ com-
puted as

a = a1 + a2, β = β1 � β2

For correctness in this case note that if ai = (mi −bi) and βi ∈ ˆEnc(pk, bi)
for some bi ∈ M, then a = (m1 +m2)− (b1 +b2) and β ∈ ˆEnc(pk, b1 +b2).
If, on the other hand, the received ciphertexts are C1, C2 ∈ Ĉ where,
for i = 1, 2, Ci = αi, the new ciphertext C = α ∈ Ĉ is computed as
α = α1 � α2.

cMult: As before, on input a constant c ∈ M and a ciphertext C, we distin-
guish two cases depending on the format of C. If C = (a, β) ∈ M × Ĉ,
this algorithm returns a ciphertext C ′ = (a · c, c · β) ∈ M × Ĉ. If, on the
other hand, C = α ∈ Ĉ, this algorithm returns a ciphertext C ′ = c ·α ∈ Ĉ.
The correctness of the above operations is straightforward.

Dec(sk,P, C): As for the case of the encryption procedure, we describe the algo-
rithm in terms of its two components Offline-Dec and Online-Dec.
Offline-Dec(sk,P). Given sk and the labeled program P, parse P as

(f, τ1, . . . , τt). For i = 1, . . . , t, the algorithm computes bi ← F (K, τi),
b = f(b1, . . . , bt) and outputs skP = (sk, b).

Online-Dec(skP , C). Parse skP as (sk, b), we distinguish two cases depending
on whether C ∈ M × Ĉ or not.
If C = (a, β) ∈ M × Ĉ there are two decryption methods: (i) output
m = a + b; (ii) output m = a + D̂ec(sk, β).
If C ∈ Ĉ set m̂ = D̂ec(sk, C) and output m = m̂ + b.
Notice that the cost of online decryption solely depends on the cost of
D̂ec and it is totally independent of P. Moreover the decryption method
(ii) does not require the offline phase.

156 M. Barbosa et al.

Succinctness of labHE follows easily from the compactness of the underlying
linearly-homomorphic encryption. Correctness follows from a simple inductive
argument on the structure of labelled programs: i. decryption of freshly encrypted
ciphertexts is correct if the underlying ĤE is correct; ii. to show that the
encrypted output of a labelled program decrypts correctly, one establishes that
individual gates will produce the correct result for all possible configurations
of the input ciphertexts, distinguishing the cases that the input ciphertexts are
fresh encryptions or the outputs of other gates.

Security. The following two theorems prove that our labHE scheme satisfies
semantic security and context hiding respectively.

Theorem 1. If ĤE is semantically-secure and F is pseudorandom then labHE
is semantically secure.

The proof is obtained via a simple hybrid argument. First, notice that if one
modifies ExpSS

labHE,A(λ) so that the b’s corresponding to τ0 and τ1 are taken at
random (rather than using F), then the resulting experiment is computationally
indistinguishable from the original one, under the assumption that F is PRF.
Afterwards, notice that

(m0 − b0, ˆEnc(pk, b)) ≈ (m0 − b0, ˆEnc(pk, 0))
≡ (m1 − b1, ˆEnc(pk, 0)) ≈ (m1 − b1, ˆEnc(pk, b1))

where ≈ denotes computational indistinguishability by the semantic security of
ĤE and ≡ means that the distributions are identical.

Theorem 2. If ĤE is circuit-private, then labHE is context-hiding.

Proof. We prove the theorem by showing the following simulator. Let ˆSim be
the simulator for the circuit privacy of ĤE. If f is a degree-1 polynomial the
simulator Sim(1λ, sk, (f, τ1, . . . , τt),m) computes b = f(F (K, τ1), . . . , F (K, τt))
and outputs C = (m−b, ˆSim(1λ, pk, b)). If f is of degree 2, the simulator does the
same except that it computes C = ˆSim(1λ, pk,m−b). It is straightforward to see
that by the circuit privacy of ĤE C is distributed identically to the ciphertext
produced by Eval.

4 Multi-user Labeled HE

In this section we introduce a multi-user variant of Labeled Homomorphic
Encryption. The main idea is that encryptors do not share a global common
secret key. Rather, each user i employs his own secret key uski to encrypt, yet it
is possible to homomorphically compute over data encrypted by different users.
Decryption then requires knowledge of the master secret along with the public
keys of all the users whose ciphertexts were involved in the computation.

A Multi-User Labeled Homomorphic Encryption scheme consists of a tuple
of algorithms mu-labHE = (Setup,KeyGen,Enc,Eval,Dec) working as follows.

Labeled Homomorphic Encryption 157

Setup(1λ). The setup algorithm takes as input the security parameter λ, and
outputs a master secret key msk and a master public key mpk. We assume
that mpk implicitly contains a description of a message space M, a label
space L, and a class F of “admissible” circuits.

KeyGen(mpk). The key generation algorithm takes as input the master public
key mpk and outputs a user secret key usk and a user public key upk.

Enc(mpk, usk, τ,m). The encryption algorithm takes as input the master public
key mpk, a user secret key usk, a label τ ∈ L and a message m ∈ M. It
outputs a ciphertext C.

Eval(mpk, f, C1, . . . , Ct). On input mpk, an arithmetic circuit f : Mt → M in
the class F of “allowed” circuits, and t ciphertexts C1, . . . , Ct, the evaluation
algorithm returns a ciphertext C.

Dec(sk,upk,P, C). The decryption algorithm takes as input the secret key, a
vector of user secret keys upk = (upk1, . . . , upk�), a labeled program P, and
a ciphertext C, and it outputs a message m ∈ M.

A Multi-User Labeled Homomorphic Encryption scheme is required to satisfy
correctness, succinctness, semantic security, and context-hiding as defined below.

Definition 5 (Correctness). A Multi-User Labeled Homomorphic Encryption
scheme mu-labHE = (Setup,KeyGen,Enc,Eval,Dec) correctly evaluates a family
of circuits F if for all honestly generated keys (mpk,msk) $← Setup(1λ), all user
keys (upk1, usk1), . . . , (upk�, usk�)

$← KeyGen(mpk), for all f ∈ F , all labels
τ1, . . . , τt ∈ L, messages m1, . . . ,mt ∈ M, any Ci

$← Enc(mpk, uskji , τi,mi)
∀i ∈ [t], ji ∈ [�] and P = (f, τ1, . . . , τt):

Pr[Dec(sk,upk,P,Eval(pk, f, C1, . . . , Ct)) = f(m1, . . . ,mt)] = 1 − negl(λ) .

The notion of succinctness for multi-user Labeled Homomorphic Encryption
is identical to that given in Definition 2. Security of Multi-User Labeled Homo-
morphic Encryption is defined similarly to that of labHE.

Definition 6 (Semantic Security for mu-labHE). Let mu-labHE = (Setup,
KeyGen,Enc,Eval,Dec) be a Multi-User Labeled Homomorphic Encryption
scheme and A be a PPT adversary. Consider the following experiment where
A is given access to an oracle Enc(mpk, usk, ·, ·) that on input a pair (τ,m) out-
puts Enc(mpk, usk, τ,m):

Experiment ExpSS
mu-labHE,A(λ)

b
$← {0, 1}; (mpk,msk) $← Setup(1λ);

(upk, usk) $← KeyGen(mpk)
(m0, τ

∗
0 ,m1, τ

∗
1)←AEnc(mpk,usk,·,·)(mpk, upk)

C
$← Enc(mpk, usk, τ∗

b ,mb) ; b′←AEnc(mpk,usk,·,·)(C)
If b′ = b return 1. Else return 0.

158 M. Barbosa et al.

We say that A is a legitimate adversary if it queries the encryption oracle on
distinct labels (i.e., each label τ is never queried more than once), and never on
the two challenge labels τ∗

0 , τ∗
1 . We define A’s advantage as AdvSS

mu-labHE,A(λ) :=
Pr[ExpSS

mu-labHE,A(λ) = 1]− 1
2 . Then we say that mu-labHE has semantic-security

if for any PPT legitimate algorithm A it holds AdvSS
mu-labHE,A(λ) = negl(λ).

Finally we adapt the notion of context-hiding of Labeled Homomorphic
Encryption to the multi-user case. The intuitive meaning of the notion is the
same.

Definition 7 (Context Hiding). A Multi-User Labeled Homomorphic Encryp-
tion scheme mu-labHE satisfies context-hiding for a family of circuits F if there
exists a PPT simulator Sim and a negligible function ε(λ) such that the following
holds. For any λ ∈ N, any pair of master keys (mpk,msk) $← Setup(1λ), any �

user keys (upk1, usk1), . . . , (upk�, usk�)
$← KeyGen(mpk), any circuit f ∈ F with t

inputs, any tuple of messages m1, . . . ,mt ∈ M, labels τ1, . . . , τt ∈ L, ciphertexts
Ci

$← Enc(mpk, uskji , τi,mi) ∀i = 1, . . . , t and ji ∈ [�], P = (f, τ1, . . . , τt) and
m = f(m1, . . . ,mt):

SD[Eval(epk, f, C1, . . . , Ct), Sim(1λ,msk,upk,P,m)] ≤ ε(λ) .

In the full version [1] we show how to modify our construction to give an
mu-labHE.

5 Statistics Using labHE

In this section we show that by using our constructions of (multi-user) Labeled
Homomorphic Encryption for quadratic polynomials, it is possible to compute
relevant statistical functions over encrypted data. In the next Section we will then
describe two application scenarios where the specific features of our protocol act
as enablers for real-world applications. Intuitively, the restriction of computing
only quadratic polynomials can be described as follows: suppose a value x and a
value y are secret and are encrypted using our scheme. Then, one can compute
any polynomial of the form a1x

2 +a2y
2 +a3xy +a4x+a5y +a6. More generally,

given an arbitrary number of encrypted values, possibly coming from many users,
one can compute any function that can be expressed as a linear function of those
values and pairwise products between those values. We will see a few interesting
examples of this next.

Consider a dataset as a matrix X = {xi,j}, for i = 1, . . . , n and j = 1, . . . , d.
Number d represents the dimension (i.e., the number of variables/columns) while
n is the number of dataset members (or rows).

Mean and Covariance. First, we show how to compute the mean and covari-
ance over a multidimensional dataset X. It is not hard to see how to extend
these ideas to the computation of any other function that can be represented
with a degree-2 polynomial. Such functions include, e.g., the root mean square

Labeled Homomorphic Encryption 159

(RMS), and the Pearson’s and uncentered correlation coefficient. The mean of
the j-th column is the value μj = 1

n

∑n
i=1 xi,j . Since our labHE does not sup-

port division, we compute homomorphically the value μ̂j =
∑n

i=1 xi,j and let
the receiver do the division after decryption. This is natural in scenarios where
the computation conducted over the data is known to the decryptor, which is
something that labelled homomorphic encryption implicitly assumes.

For a datasetX, its covariancematrixC = {cj,k} for j, k = 1, . . . , d is defined as

cj,k =
1
n

n∑

i=1

xi,j · xi,k − 1
n2

(
n∑

i=1

xi,j

) (
n∑

i=1

xi,k

)

Again we will use the scheme to compute homomorphically the integers

ĉj,k = n2 · cj,k = n
n∑

i=1

xi,j · xi,k −
(

n∑

i=1

xi,j

)(
n∑

i=1

xi,k

)

and let the receiver obtain cj,k by doing a division by n2 after decryption.

Weighted Sum. Given a dataset X = {xi,j} and a vector of weights y =
{yi}n

i=1, the weighted sum of the j-th column of X is the value ωj =
∑n

i=1 xi,j ·yi.
There are two situations to consider. If the weights are not secret, then the

weighted sum can be expressed as a degree-1 polynomial over the encrypted
column X. If, on the other hand, the vector of weights is itself secret, then the
weighted sum becomes a degree two polynomial (an inner-product) between two
vectors of encrypted values. We will see in the next section how this can be useful
for genenetic association tests.

Euclidean Distance. Given a matrix X = {xi,j} the (square of) Euclidean
distance between the j-th column of X and a vector y = {yi}n

i=1 is the value
δj =

∑n
i=1(xi,j −yi)2. This is an example of a function that requires a quadratic

computation if either part of the data set is encrypted.

6 Applications and Evaluation

We implemented our (multi-user) labHE realization in C, and we evaluated its
performance in two applications. In what follows we discuss the applications and
present the experimental results. We refer to the full version [1] for more details.

6.1 Implementation and Micro-Benchmarks

We implemented our (multi-user) labHE realization in C starting from the GNU
Multiprecision Library1 (GMP) and the Kekkac Code Package2 (KCP). We used
GMP to implement the linearly homomorphic encryption scheme by Joye and

1 https://gmplib.org/.
2 https://github.com/gvanas/KeccakCodePackage.

https://gmplib.org/
https://github.com/gvanas/KeccakCodePackage

160 M. Barbosa et al.

Libert [20] (JL13) and relied on Sponge-based pseudorandom function included
in the KCP. The JL13 cryptosystem has message space Z2k and works over
Z

∗
N , where N = pq is the product of two quasi-safe primes p = 2kp′ + 1 and

q = 2kq′ + 1. For security [20] k needs to be at most 1/4 log N − λ, where λ is
the security parameter. Note that taking message space Z2k allows to perform
computations over the integers with k-bits precision, and also to encode real
values by using fixed point representations with suitable scaling as described,
e.g., in [8]. Although our implementation is flexible, we fixed the security level
at that of 2048 RSA moduli, conjectured to correspond to roughly 100–112
bits of security. All our implementations are single-threaded. Our benchmarking
results were collected in a standard MacBook Pro machine with a 2.7 GHz Intel
Core i5 and 16 GB or RAM. For every chosen set of parameters, we repeated the
experiment 10 times, and took the median of the timings. In all cases we observed
a coefficient of variation below 10%. For comparison with SHE we used the FV
implementation in SEAL 2.0 [24] configured to support the same functions and
security level.

Micro-Benchmarks. Regarding communication/storage costs, every cipher-
text of our scheme, instantiated with the above parameters can be encoded into
272 bytes. For instance, if we consider a dataset with n = 220 rows and d = 2
columns, it means that a server has to store about 560 MBytes. We now turn to
the timings of basic operations such as key generation, encryption and decryp-
tion of level-1 ciphertexts (i.e., outputs of degree-1 functions, such as Mean).
Collected timings are 155.11 ms for key generation, 0.35 ms for Encryption and
3.42 ms for decryption. Notably, while key generation is relatively relevant (it
is executed only once), the speed in the encryption procedure (that is executed
for every dataset item) is way more relevant for scalability. For a large data size
such as the one above, encryption can be done in 12 min in a modest machine.

6.2 Outsourcing Privacy Preserving Statistics

Consider the case where a large dataset is stored on an (untrusted) Cloud.
The latter is used both to store and to perform computations on encrypted
data on behalf of one (or more) Clients. More precisely we considered two sce-
narios. One where the Client acts both as Data Provider and Receiver and a
three party scenario where these roles are played by different users/entities. Of
course, a solution to the problem of computing secure statistics in these scenar-
ios can be obtained via somewhat homomorphic encryption schemes supporting
quadratic polynomials. labHE, however, achieves the same goal with unprece-
dented efficiency both in terms of computation costs and in terms of bandwidth
consumption. In our experiments, we considered multidimensional datasets rep-
resented as (n × d) matrices X = {xi,j}, where n are the dataset members and
d the dimension (or number of variables). Univariate statistics such as Mean
and Variance are computed column-wise (e.g., the mean of the j-th column is
μj = 1

n

∑n
i=1 xi,j), whereas bivariate correlation ones such as Covariance act

over pairs of columns. In this setting, if we consider a dataset of over two million

Labeled Homomorphic Encryption 161

entries (n = 220 × d = 2) that are 32-bit integers, the solution based on the
FV somewhat homomorphic encryption requires over 249 GB of storage at the
Cloud whereas labHE(JL13) only 560 Mbytes. Moreover, for such large datasets
the amount of memory required to perform homomorphic computations using
FV placed it out of reach of the standard machines we used for benchmark-
ing (scalability is bounded at around 30K elements for 16 GB of RAM) while
labHE(JL13) scaled up easily to two million entries. When considering the more
modest datasets (where FV could run) the cumulative time of computing a
Covariance matrix on the encrypted dataset and decrypting its result is 32 min
using FV and 37 s with labHE(JL13); computing and decrypting a Mean query
takes about 9 s with FV and around 19 ms with labHE(JL13).

6.3 Privacy Preserving GAS

Genetic Association Studies (GAS) look for statistically relevant features across
the human genome, singling out those that can be correlated to given traits.
Typically such studies are carried by performing series of tests. Each test tar-
gets a particular trait and takes into consideration associated information that
is encoded in specific positions of an individual’s genome, the so-called Single
Nucleotide Polymorphisms (SNP). Each test computes a Genetic Risk Score: a
weighted sum of the information collected for each SNP and the weights cor-
respond to risk estimates computed for a reference population [23]. This SNP
genotyping has already several applications, ranging from personalized medicine
to forensics. Access to such tests is, for the most part, controlled by the health
services of different countries, but a new trend of Direct-to-Consumer (DTC)
genomic analysis is arising, where companies offer a multitude of association
tests to the public. Privacy is obviously a paramount concern in such services.

In this paper we propose a system for a Secure Direct-to-Consumer GAS,
based on our Multi-User Labeled Homomorphic Encryption. Its architecture
is presented in Fig. 2 (the colors represent trust domains), and roughly works
as follows. The Patient wishes to be tested by the GAS service and trusts a
Certified Genotyping Institution (CGI) to analyse a biological sample s, extract
SNP information Gs, correctly encrypt it under the Patient’s public key pk
using mu-labHE, and then erase all of the SNP-related information.3 The GAS
is trusted by the Patient to correctly encrypt the test parameters P and send
them to the Cloud. Next, the Cloud can compute the Genetic Risk Score on the
encrypted data, and send this (encrypted) result to the Patient.

The threat model considered in our solution assumes that both the GAS and
the Cloud are honest-but-curious. The GAS is trusted to follow a set of rules
of the protocol, but not trusted to learn the genetic data of the Patient—even
if it colludes with the Cloud. The Cloud is trusted by the GAS not to reveal
the encrypted test parameters to the Patient, and is trusted by the Client to
correctly perform the computation (over encrypted data). Note that the Cloud

3 This level of trust is implicit in GAS systems and cannot be eliminated from such a
system, unless the Patient can perform the genotyping activities autonomously.

162 M. Barbosa et al.

CGI Cloud GAS

Patient
(pk, sk)

Sample s

Epk(Gs) Epk(P)

Epk(T (Gs, P))

Fig. 2. Architecture of a Secure Direct-to-Consumer GAS.

is not trusted by the Client to learn genetic data, and it may also be assumed to
collude with the GAS, which means that this trust model is compatible with the
most likely scenario that the GAS owns or contracts the Cloud service itself, and
uses it to provide a service to the Patient. Under this threat model, we argue
that: i. the semantic security of our mu-labHE ensures that no information about
the encrypted data is leaked, except for its length; and ii. context hiding ensures
that even the Patient, with knowledge of his secret key, obtains no information
about the (possibly proprietary) test parameters P provided by the GAS. Details
follow.

Security Analysis. The total number of SNPs that have been documented
up to date in the human genome is in the range of 150M. However, only a
very small fraction of those, under 100K, has been looked at from a clinical
analysis point of view4 and, indeed, the number of medical conditions that have
been scientifically related to a Genetic Risk Score is around 5000.5 Furthermore,
specific association tests, e.g., for a medical condition, will focus on a very small
number of SNPs ranging from 1 or 2, to at most a few hundred and a safe
estimate is that, over all current association tests, each of them will on average
look at 50 SNPs. This places the number of clinically relevant SNPs, at present,
at around 30K. This is roughly the number of SNPs that one needs to look at
in order to evaluate all the Genetic Risk Scores that have been associated with
a medical condition. We assume that there is a predefined set L of all positions
(loci) of relevant SNPs, which is public and known by all parties. This could be
the union of all positions that the GAS may test in all of its analyses—if this
is not sensitive information from the point of view of the GAS—or it may be
a larger set of all positions of SNPs that are known to be clinically relevant by
the scientific community. In the first case we would have |L| in the range of a
few hundred, and in the second case we would have |L| in the range of the 30K,
as things stand today [9,19]. Under these assumptions, our solution guarantees
that nothing is leaked about the genetic information of the Patient nor about the
concrete parameters used by the GAS to perform its tests. Furthermore, if one
sets L to include all clinically relevant SNPs, then no-one except the Patient and
the medical center defining the tests will learn which traits are being tested—
crucially this means that all access patterns over the stored genome data are
4

https://www.ncbi.nlm.nih.gov/snp.
5

http://www.disgenet.org/web/DisGeNET.

https://www.ncbi.nlm.nih.gov/snp
http://www.disgenet.org/web/DisGeNET

Labeled Homomorphic Encryption 163

kept private. Otherwise, it will be publicly known that the Patient was tested
at positions relevant for a specific GAS.

Although this approach may seem wasteful of resources, this is essential to
ensuring that the Cloud (or some external observer) can infer nothing from an
encrypted version of Gs and P , in addition to the public set L itself, under the
assumption that the encryption scheme is semantically secure. Furthermore, as
we will see in our experimental evaluation, the efficiency of our homomorphic
encryption scheme works as an enabler for this level of security, as it permits
performing computations in reasonable time.

Benchmarks. Figure 3 shows the timing data we collected when evaluating our
protocol on data sets of increasing sizes. The offline encryption and decryption
times increase linearly with the number of SNPs, although the offline decryp-
tion time is under 90 ms even for 30000 SNPs, whereas the off-line encryption
time gradually grows up to 45 s. The overall decryption time, even accounting
for the preprocessing is very light: note that on-line decryption takes constant
time in the range of 3 ms. Online encryption time, on the other hand is very
fast, and can be done in under 24 ms even for 30000 SNPs. Finally, the homo-
morphic computation in the cloud, grows linearly with the number of points,
and it is reasonably small, clearly in the range of practicality, and even using
a single modest server and no parallelism. In our machine, the processing time
was around 47 s for a risk analysis involving 30000 SNPs. We recall that this
was the estimated worst case scenario for the union of SNPs corresponding to
all GAS-relevant information known to today. The size of the encrypted data
processed by the cloud is, in this case, 32 MByte, half of it produced by the
Patient and half by the medical centre.

Fig. 3. Timings for various algorithms in secure GAS protocol for increasing numbers
of SNPs.

To evaluate the scalability of our solution we considered a Map-Reduce sce-
nario where the multiplicative part of the weighted sum is split by multiple
servers in the Cloud. In this way many partial sums can be computed in parallel
and later combined to get the final result. Using this strategy, a GAS compu-
tation including over 1 million SNPs can be completed in roughly 3 min using

164 M. Barbosa et al.

10 servers (excluding communication overhead). Using FV [13], as underlying
building block for a risk analysis involving only 30K SNPs the size of encrypted
data processed by the Cloud becomes, roughly, 14 GBytes, which is over 400
times more than the space required by our solution. For the same task, FV-
based solutions turn out to be around 100 times slower than our solution. This
comparison is for a modest number of SNPs since, for larger parameters, experi-
ments became highly unstable and eventually infeasible due to too large memory
requirements that surpassed the capabilities of our benchmarking platform.

7 Conclusions

We presented a new methodology for processing remotely outsourced data in a
privacy preserving way via the notion of Labeled Homomorphic Encryption. We
showed an efficient realization and implementation of this primitive that targets
computations described by degree-2 polynomials, with applications to executing
statistical functions on encrypted data. Our experiments confirmed the practi-
cality of our solution showing that it outperforms solutions based on somewhat
homomorphic encryption. Our current solutions achieve privacy against a honest-
but-curious Cloud server. In order to achieve security against malicious servers,
one can use verifiable computation protocols in a generic fashion, as explained in
[14]. Unfortunately, applying this idea generically to our schemes does not yield
an efficient solution. Informally this is because modeling algebraic operations
over Z

∗
N is expensive when using state-of-the-art VC protocols (such as [26]).

Designing an ad-hoc verifiable computation mechanism for our schemes while
preserving efficiency is therefore a promising future direction for this work.

Acknowledgements. The work of Dario Fiore was partially supported by the Euro-
pean Union’s Horizon 2020 Research and Innovation Programme under grant agree-
ment 688722 (NEXTLEAP), the Spanish Ministry of Economy under project refer-
ences TIN2015-70713-R (DEDETIS), RTC-2016-4930-7 (DataMantium), and under a
Juan de la Cierva fellowship to Dario Fiore, and by the Madrid Regional Government
under project N-Greens (ref. S2013/ICE-2731). Manuel Barbosa was funded by project
“NanoSTIMA: Macro-to-Nano Human Sensing: Towards Integrated Multimodal Health
Monitoring and Analytics/NORTE-01-0145-FEDER-000016”, which is financed by the
North Portugal Regional Operational Programme (NORTE 2020), under the PORTU-
GAL 2020 Partnership Agreement, and through the European Regional Development
Fund (ERDF).

References

1. Barbosa, M., Catalano, D., Fiore, D.: Labeled homomorphic encryption: scalable
and privacy-preserving processing of outsourced data. IACR Cryptol. ePrint Arch.
2017, 326 (2017)

2. Barman, L., Elgraini, M.T., Raisaro, J.L., Hubaux, J., Ayday, E.: Privacy threats
and practical solutions for genetic risk tests. In: 2015 IEEE Symposium on Security
and Privacy Workshops, SPW 2015, pp. 27–31. IEEE (2015)

Labeled Homomorphic Encryption 165

3. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast
privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88313-5 13

4. Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with
a double trapdoor decryption mechanism and its applications. In: Laih, C.-S.
(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-40061-5 3

5. Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
336–352. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 21

6. Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-
2 functions on encrypted data. In: ACM CCS 2015–22nd ACM Conference on
Computer and Communication Security, pp. 1518–1529 (2015)

7. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 21

8. Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed point arithmetic in SHE
scheme. IACR Cryptol. ePrint Arch. 2016, 250 (2016)

9. Covolo, L., Rubinelli, S., Ceretti, E., Gelatti, U.: Internet-based direct-to-consumer
genetic testing: a systematic review. J. Med. Internet Res. 17(12), e279 (2015)

10. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – Or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40203-6 1

11. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 38

12. Danezis, G., Cristofaro, E.D.: Fast and private genomic testing for disease sus-
ceptibility. In: Privacy in the Electronic Society, WPES 2014, pp. 31–34. ACM
(2014)

13. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). http://eprint.iacr.org/2012/144

14. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. In: ACM CCS 14, pp. 844–855. ACM Press (2014)

15. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 301–320. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-42045-0 16

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st ACM
STOC, pp. 169–178. ACM Press (2009)

17. S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental poker
keeping secret all partial information. In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC ’82, pp. 365–377, 1982. ACM

18. Halevi, S., Shoup, V.: Helib. https://github.com/shaih/HElib
19. Johnson, A.D., Bhimavarapu, A., Benjamin, E.J., Fox, C., Levy, D., Jarvik, G.P.,

O’Donnell, C.J.: CLIA-tested genetic variants on commercial SNP arrays: potential
for incidental findings in genome-wide association studies. Genet. Med.: Off. J. Am.
Coll. Med. Genet. 12(6), 355–363 (2010)

http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/978-3-540-40061-5_3
http://dx.doi.org/10.1007/978-3-642-38348-9_21
http://dx.doi.org/10.1007/978-3-662-44371-2_21
http://dx.doi.org/10.1007/978-3-662-44371-2_21
http://dx.doi.org/10.1007/978-3-642-40203-6_1
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://eprint.iacr.org/2012/144
http://dx.doi.org/10.1007/978-3-642-42045-0_16
https://github.com/shaih/HElib

166 M. Barbosa et al.

20. Joye, M., Libert, B.: Efficient cryptosystems from 2k -th power residue symbols.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
76–92. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 5

21. Karvelas, N.P., Peter, A., Katzenbeisser, S., Tews, E., Hamacher, K.: Privacy-
preserving whole genome sequence processing through proxy-aided ORAM. In:
Privacy in the Electronic Society, WPES 2014, pp. 1–10. ACM (2014)

22. Kessler, T., Vilne, B., Schunkert, H.: The impact of genome-wide association stud-
ies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol.
Med. 8(7), 688–701 (2016)

23. Madsen, B.E., Browning, S.R.: A groupwise association test for rare mutations
using a weighted sum statistic. PLoS Genet. 5(2), 1–11 (2009)

24. Nathan Dowlin, J.W., Gilad-Bachrach, R.: Manual for using homomorphic encryp-
tion for bioinformatics. Technical report, November 2015

25. Paillier, P.: Public-Key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

26. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252.
IEEE (2013)

27. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On Data Banks and Privacy Homo-
morphisms. Foundations of Secure Computation. Academia Press, Ghent (1978)

http://dx.doi.org/10.1007/978-3-642-38348-9_5
http://dx.doi.org/10.1007/3-540-48910-X_16

MTD CBITS: Moving Target Defense
for Cloud-Based IT Systems

Alexandru G. Bardas1(B), Sathya Chandran Sundaramurthy2,
Xinming Ou3, and Scott A. DeLoach4

1 University of Kansas, Lawrence, KS, USA
alexbardas@ku.edu

2 DataVisor, Mountain View, CA, USA
sathya.chandran@datavisor.com

3 University of South Florida, Tampa, FL, USA
xou@usf.edu

4 Kansas State University, Manhattan, KS, USA
sdeloach@ksu.edu

Abstract. The static nature of current IT systems gives attackers the
extremely valuable advantage of time, as adversaries can take their time
and plan attacks at their leisure. Although cloud infrastructures have
increased the automation options for managing IT systems, the intro-
duction of Moving Target Defense (MTD) techniques at the entire IT
system level is still very challenging. The core idea of MTD is to make
a system change proactively as a means to eliminating the asymmetric
advantage the attacker has on time. However, due to the number and
complexity of dependencies between IT system components, it is not
trivial to introduce proactive changes without breaking the system or
severely impacting its performance.

In this paper, we present an MTD platform for Cloud-Based IT Sys-
tems (MTD CBITS), evaluate its practicality, and perform a detailed
analysis of its security benefits. To the best of our knowledge MTD
CBITS is the first MTD platform that leverages the advantages of a
cloud-automation framework (ANCOR) that captures an IT system’s
setup parameters and dependencies using a high-level abstraction. This
allows our platform to make automated changes to the IT system, in
particular, to replace running components of the system with fresh new
instances. To evaluate MTD CBITS’ practicality, we present a series
of experiments that show negligible (statistically non-significant) per-
formance impacts. To evaluate effectiveness, we analyze the costs and
security benefits of MTD CBITS using a practical attack window model
and show how a system managed using MTD CBITS will increase attack
difficulty.

A.G. Bardas—As of July 2017, Alexandru G. Bardas’s affiliation is The University
of Kansas. This work was conducted when he was a graduate student and then a
visiting assistant professor at Kansas State University.
S.C. Sundaramurthy—As of June 2017, Sathya C. Sundaramurthy’s affiliation is
DataVisor. This work was conducted when he was a graduate student at University
of South Florida.

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 167–186, 2017.
DOI: 10.1007/978-3-319-66402-6 11

168 A.G. Bardas et al.

1 Introduction

Current IT systems operate in a relatively static configuration and give attackers
the extremely important advantage of time. Therefore, a promising new app-
roach, called Moving Target Defense or MTD [19], has emerged as a potential
solution. MTD techniques are expected to increase uncertainty and complex-
ity for attackers, reduce their window of opportunity, and raise the costs of
their reconnaissance and attack efforts. There have been a number of MTD-
related research efforts such as randomizing memory layouts [3,13,31], IP
addresses [6,20,27], executable codes [8,24,53], and even machine instruction
sets [9,29]. These are important steps towards achieving the overall goal of
moving target defense, but they focus on individual aspects of a system — IP
addresses, code for particular applications, and specific architectures. There has
not been much research on how to apply an MTD approach at the entire IT sys-
tem level. We view an IT system as a subset of an enterprise network, a group
of one or more machines (physical or virtual) that work together to fulfill a
goal. The overall goal and the scope of an IT system are determined by the user
(system engineer/administrator) and can range from a one-machine service (e.g.,
FTP server), to more complex deployments with large numbers of machines with
internal dependencies (e.g., multi-host eCommerce setups).

Applying an MTD approach to the entire IT system is important for several
reasons. First, system administrators fight the continual and generally losing
battle of monitoring their IT systems for possible intrusions, patching vulner-
abilities, modifying firewall rules, etc. The complexity of such systems and the
time required to maintain them are major reasons why errors creep into sys-
tem configurations and create security holes. The stagnant nature of IT systems
gives adversaries chances to discover security holes, find opportunities to exploit
them, gain/escalate privileges, and maintain persistent presence over time. For
example, the data released (summer 2016) as a consequence of the Democratic
National Committee (DNC [18]) breach resulted after attackers were present in
the DNC systems for over a year [15]. According to Mandiant’s M-Trends 2016
and 2017 reports [34,35], the median number of days an organization was com-
promised before discovering the breach was 146 days in 2015 and 99 days in
2016. Even though this constitutes an improvement, it is still way too long. For
instance, Mandiant’s Red Team was able to obtain access to domain adminis-
trator credentials, on average, within three days of gaining initial access to an
environment. On the other hand, Verizon’s DBIR 2016 [49] states that, overall,
the detection deficit is actually getting worse.

Persistence is a trend that turned into a constant [34,35]. Introducing changes
at the entire IT system level will increase the difficulty for attackers to obtain ini-
tial access and, especially, to maintain persistent presence. Persistent malware is
given an expiration date as running components of the IT system are constantly
being replaced with fresh new instances. This has the potential to change the
current attacker mode of operation from compromise and persist [15,33–35] to
the more challenging obligation of repeated compromise.

MTD CBITS: Moving Target Defense 169

However, there are several challenges for introducing MTD mechanisms at
the entire IT system level. Due to the number and complexity of dependencies
between IT system components, it is not trivial to carry out proactive changes
without breaking the system or severely impacting its performance. Introducing
changes proactively, if done improperly, may introduce additional complexities.
Making a complex system more complex is unlikely to increase its security. Thus
a practical MTD design must simplify system configuration and maintenance,
while enabling the capability of “moving”. For this reason, we have leveraged
ANCOR [47] proposed in our prior work and extended it to an MTD platform.

ANCOR is a framework for creating and managing cloud-based IT sys-
tems using a high-level abstraction (an up-to-date IT system inventory). While
ANCOR was focused on creating and managing IT systems in a reliable and
automated way, this paper analyzes the feasibility and potential security ben-
efits of an MTD approach based on live instance replacement. A live instance
replacement mechanism can be the means to deploying various defenses in an
automated way while constantly removing attackers’ persistent access. For ver-
ification purposes, we have re-created the eCommerce scenario, tested it in a
new performance testing setup, and also developed a new scenario that uses a
set of operational database dumps and real traffic traces (MediaWiki [36] with
Wikipedia database dumps).

The main contributions of this paper are as follows:

1. We leverage ANCOR [47] for creating and managing IT systems, and extend
it to an MTD platform based on live instance (VM) replacements.

2. We evaluate the practicality of this MTD platform through a series of exper-
iments on two realistic IT system scenarios. The experimental results show
that the MTD operations may have negligible impact on the normal opera-
tions of the IT systems.

3. We analyze the security benefits brought by the MTD platform through an
attack window model, and show how to use the model to quantify the security
benefits of a given MTD configuration.

2 Our MTD Approach

Our approach of introducing moving target defense at the entire IT system
level is to create a platform where any running component of an IT system can
be replaced with a pristine version. A component is simply a virtual machine
instance or a cluster of instances. We consider that the MTD approach will be
deployed in a cloud environment. Cloud infrastructures (e.g., OpenStack and
Amazon Web Services – AWS) made it possible and easy to create bare-metal
equivalent virtual machine instances and networks. It appears inevitable that
IT systems of all sizes are moving towards the cloud — be it private, public, or
hybrid (fog and edge computing).

170 A.G. Bardas et al.

2.1 Threat Model

In-scope threats are the risks our MTD approach intends to mitigate, by increas-
ing the difficulty on the attackers’ side. The risks range from reconnaissance
actions to arbitrary code execution, and side-channel attacks.

Attackers are able to perform various reconnaissance actions (e.g., port scan-
ning) on the public facing instances, as well as internal probing if they gain access
to an instance on the internal network. Furthermore, they may also execute
arbitrary code on an instance. Applications may be poorly configured, miscon-
figured, or have vulnerabilities that allow arbitrary code execution with admin-
istrator/root privileges on an instance which is part of the targeted system, e.g.,
buffer overflow, unsanitized input. Moreover, a social engineering attack (e.g.,
phishing) may lead to obtaining the privileged user credentials. Arbitrary code
execution can result in an operating system compromise that enables attack-
ers to escalate their privileges and maintain their access through backdoors. In
addition, attackers may attempt to pivot through the internal network.

Attacks on the MTD platform itself are out of scope for this paper; this
includes the MTD controller, the cloud platform (usually controlled by the cloud
provider), and the configuration management tools. Currently, the MTD con-
troller instance is protected using guidelines (e.g., [46]) for securing configuration
management tool master nodes. We leave it for future work to study in-depth
the security of the MTD platform itself.

We evaluated the feasibility of replacing services and small databases. Since
persistent data is stored on different volume types in a cloud (e.g., OpenStack
Cinder, Ceph, etc.), attaching the data volume to new instances proved more
efficient than synchronizing the data on each new instance.

Attackers might be able to store backdoor information in persistent data that
enables them to restore persistent access, making the replacement process less
effective. Various approaches have been proposed for different environments to
ensure the integrity of the stored data, e.g., [17,28,48]. For the purpose of this
paper we are relying on existing solutions for ensuring data integrity.

2.2 Background

The advancements in virtualization technologies contributed significantly to the
evolution of cloud computing [7]. The following capabilities are commonly avail-
able on a cloud platform: provisioning instances with various hardware capabili-
ties, utilizing security groups for network access control, and creating storage vol-
umes. At the same time, configuration management tools (CMTs) have become
a well-established solution to managing the applications and services (software
stack) in an automated fashion. Popular CMT solutions include Puppet [43]
and Chef [12]. Walmart, Wells Fargo, and other companies leverage CMTs to
configure tens of thousands of servers in an automated fashion [44].

A CMT works by installing an agent on the host to be managed, which com-
municates with a controller (called the master) to receive configuration direc-
tives. In case the host’s current state (e.g., installed packages, customized config-
uration files, etc.) is different than the one specified in the directives, the CMT

MTD CBITS: Moving Target Defense 171

agent is responsible for issuing the appropriate commands to bring the system
into the specified state.

2.3 MTD CBITS Implementation

MTD CBITS (Fig. 1) is based on the ANCOR framework which supports cre-
ating and managing cloud-based IT systems using a high-level abstraction. The
abstraction allows the system administrator to define the high-level structure
of the IT system, without specifying the detailed configuration parameters such
as IP addresses, port numbers, and other application-specific settings for each
instance. The high-level abstraction explicitly specifies the dependency among
the various roles — clusters of instances with similar configurations. ANCOR
has a “compilation process” that processes this abstract specification, generates
detailed configuration parameters for each instance, leverages CMT role imple-
mentations, and automatically creates an IT system on a cloud infrastructure.
The current implementation targets OpenStack and uses Puppet; it may also be
changed to AWS and Chef.

Fig. 1. The MTD platform (MTD CBITS) takes an abstract specification of an IT sys-
tem as its input, and creates the corresponding concrete system on a cloud infrastruc-
ture. In addition to ANCOR, MTD CBITS can perform frequent live instance
replacements throughout the lifetime of the IT system (green arrows). (Color figure
online)

In this paper we refer to an MTD system as an IT system deployed and man-
aged using our MTD platform that supports dynamically replacing instances.
The platform takes an MTD system specification (user’s requirements) as its
input and automatically creates and manages the corresponding concrete MTD
system on OpenStack (Fig. 1). The configuration parameters are not hard-coded;
they are generated at run-time from the high-level system specification. The
operations model stores the computed parameters and can be viewed as an MTD
system inventory — a layer on top of the CMT (Puppet). This data is passed
to Puppet through Hiera [45], a key/value look-up tool for configuration data.
Whenever a change occurs in the deployed MTD system, it is also recorded in
the operations model. Therefore, the operations model always stores up-to-date
information about the running IT system.

172 A.G. Bardas et al.

Most of the MTD CBITS components are stored on the MTD controller (see
Fig. 1). The MTD controller is, basically, used to deploy and manage the MTD
systems: it can reach the OpenStack API, hosts the Puppet master, and is able
to communicate through the Puppet agents with all instances that are part of
the IT system. The MTD controller cannot be reached from the public network
and communicates with the agents over an internal isolated network. Moreover,
the communication between the Puppet master and the agents is encrypted.

2.4 Instance Replacement Implementation

Using the operations model, MTD CBITS facilitates a variety of adaptation
operations (movements) for the managed IT systems, creating a moving tar-
get defense. In our MTD approach, live instance replacement is carried out
through a sequence of adaptations: adding new instances, reconfiguring depen-
dent instances, and removing the old instances.

Reconfiguring Instances. In-place reconfigurations (updated CMT directives)
may include internal service changes such as changing service parameters (e.g.,
credentials), applying service and OS patches, etc., or changes that involve
dependent roles. These changes will be accompanied by infrastructure updates
(e.g., security group changes).

Adding or Removing Instances. The MTD platform enables the addition and
removal of running instances. Both adaptations also involve reconfiguring depen-
dent instances. This happens through a sequence of tasks and in both cases, the
affected dependent services will be notified using a set of updated CMT direc-
tives. When adding a new instance, the updated configuration directions are sent
to the dependent instances (push configuration to dependent instances) after the
new instance is ready-to-use (provisioned and configured). In this way, if failures
affect the new instances the MTD system’s functionality will not be affected
during the change process. On the other hand, when removing an instance, first,
the dependent instances are notified before the actual deletion happens.

The instance replacement process merges the adding of new instances and
removing the old instances: one-instance or a cluster of instances may be replaced
at once. Creating security groups, provisioning new instances, and configuring
them are tasks that can be performed in parallel. Once all these tasks finish,
the MTD controller computes the updated CMT directives for all the dependent
instances. Dependent instances will receive only one set of directives that con-
tains all the updates. Therefore, replacing one instance, or replacing all instances
belonging to a role, will take roughly the same amount of time. The new instances
may use compatible implementations with different IPs, ports, operating systems
or application versions. The roles that instances fulfill in an MTD system can
be implemented in numerous ways.

3 Feasibility Analysis

This section summarizes our conclusions after evaluating the impact of instance
replacements on real-world IT systems deployed and managed using our MTD

MTD CBITS: Moving Target Defense 173

CBITS platform. Regardless of potential security benefits, an unreasonable per-
formance overhead would make the approach infeasible. We focused our efforts
on the applications, while persistent data (database content) was stored on cloud
volumes and reattached to new instances.

Our hypothesis was that the performance overhead of instance replacements
can be negligible (statistically non-significant) when using MTD CBITS. The
experiments were carried out on a cloud testbed consisting of 14 nodes (1 con-
troller and 13 compute nodes) running OpenStack (Icehouse). We focused on
two IT system setups: eCommerce deployment and MediaWiki with Wikipedia
database dumps. More scenarios are available on our project’s webpage.

To test the performance, we used http-perf [2] for the eCommerce system
and WikiBench [51] for the MediaWiki deployment. http-perf launches HTTP
requests against a server while capturing several metrics, including response
times while WikiBench replays real traffic traces against a MediaWiki site. To
establish a baseline (i.e., the control group), we ran the benchmarking tools
without MTD enabled (no instance replacements). Next, we ran the benchmark-
ing tools while replacing various instances. During the replacement process, sav-
ing and restoring the active sessions was handled at the application level (e.g.,
eCommerce webapp) or by a dedicated component in the system (i.e., memcached
in the MediaWiki/Wikipedia scenario). We observed that depending on the com-
ponent that is being replaced all or the vast majority of the active sessions were
successfully restored. In all setups, caching features were disabled and configu-
rations were reloaded without restarting the services. For this reason, we did not
focus on the performance measurement values per se but on the difference (Δ)
between the baseline and the replacement measurements. With caching enabled,
requests are answered from the cache and not from the system component under
test (e.g., webapp) [47]. Thus, there is little or no impact of component replace-
ment. Using MTD CBITS to manage the above-mentioned scenarios, we were
able to show that our hypothesis holds.

Fig. 2. Scalable and highly available eCommerce website blueprint. db master,

msg queue are single instances while weblb, webapp, bg worker, db slave are imple-
mented by a homogeneous cluster of instances.

174 A.G. Bardas et al.

3.1 eCommerce Deployment

Let us consider a scalable and highly available architecture of an eCommerce
website with various clusters of services as shown in Fig. 2: web load balancers
(Nginx or Varnish), web application (Ruby on Rails with Unicorn), database
(MySQL), messaging queue (Redis), and worker app (Sidekiq). A cluster can
be implemented by one or more homogeneous instances. Arrows indicate depen-
dency between clusters of instances. Each cluster consists of multiple instances
implementing the same services.

The website implements the basic operations (i.e., read and write from and
to the database, or submit a worker task) needed in an eCommerce setup. The
baseline performance (Table 1) was determined by performing read operations on
the eCommerce website. Similar to Unruh et al. (our previous work), we focused
our efforts on the web application and database clusters, but tested them using a
different benchmarking tool (http-perf) and an increased load on the database.

Table 1. eCommerce website – average performance overhead of carrying out one
replacement operation: replacing one instance and replacing the whole cluster.

Aggregated results from 20 experiment runs

Each experiment run: 150,000 requests sent using 70 concurrent connections

Response time
(sec)

Total time Server
Processing
Rate (req/sec)

HTTP Error
Responses

Avg. stdev Avg. stdev Avg. stdev Avg. stdev

Baseline 0.408 0.069 14min 48 s 160 s 175.352 36.924 0 0

Replacing one
webapp

0.425 0.050 15min 17 s 119 s 166.340 22.236 1.50 4.66

Replacing
webapp cluster

0.424 0.047 15min 16 s 110 s 166.032 18.887 42.60 37.57

Replacing one
db slave

0.426 0.040 15min 31 s 91 s 162.675 16.481 588.10 62.84

Replacing
db slave cluster

0.439 0.035 15min 55 s 73 s 158.051 12.320 913.75 113.57

As it can be observed in Table 1, under baseline conditions the eCommerce
deployment was able to handle 150,000 requests originating from 70 connec-
tions without any errors. Each request was reading 50 entries from the database.
Replacing database or web application instances can be performed in a com-
parable amount of time (within approximately a minute of the baseline mea-
surements). Next, we tried to assess the overall impact of the instance replace-
ment process under the same high load used in the baseline. We performed one-
instance and whole-cluster instance replacement on the web application cluster,
and then on the database cluster (specifically database slaves). The differences

MTD CBITS: Moving Target Defense 175

between replacement and the baseline measurements are, in general, statistically
non-significant and the performance loss is insignificant during the replacement
process (see Table 1). When replacing the webapp, there were very few HTTP
error responses. On the other hand, when replacing the database slaves, as shown
in Table 1, the performance is slightly impacted by this change and on average
913.75 out of 150,000 requests failed, amounting to 0.61% of total number of
requests. We observed that requests are dropped when dependent instances are
establishing connections with the new (fresh) instances due to the received con-
figuration updates, while still processing incoming requests.

3.2 MediaWiki with Wikipedia DB Dumps

Unlike the eCommerce scenario that utilized synthetic workloads, WikiBench is
a web hosting benchmark that leverages actual Wikipedia database dumps and
generates real traffic by replaying traces of traffic addressed to wikipedia.org.

Similar to Moon et al. [37] we utilized the traces from September 2007 and
the corresponding Wikipedia database dumps [52]. Our setup consists of a load-
balancer (Nginx), three MediaWiki backends, a database hosting the Wikipedia
dumps, and a Memcached instance for sharing sessions (the state) among the
backends (Fig. 3).

Fig. 3. MediaWiki with Wikipedia database dumps.

In establishing the baseline, we ran WikiBench (replayed real traces) on our
deployment. MTD CBITS did not interfere in an any way when performing
the baseline measurements. Next, we replayed the same traces while replacing
one mediawiki webapp instance and then the whole cluster. We recorded the
averages and standard deviations over ten different runs (see Table 2). We did
not focus on the overall errors per se, however, we directed our attention on
the difference in the number of errors between the baseline and the replacement
actions. We noticed that the difference between the replacement operations aver-
ages and the baseline is very small, statistically non-significant. However, in case
of the one-instance replacement, we recorded an outlier that displayed a much
lower number of HTTP 200 responses than the rest of the experiment runs: 608
compared to 855, which was the average over nine experiment runs. Including
the outlier we would still have only 27 errors with a stdev of 90.55 errors.

http://wikipedia.org

176 A.G. Bardas et al.

Table 2. WikiBench (WikiBench (MediaWiki with Wikipedia database dumps) – aver-
age performance overhead of carrying out one replacement operation: replacing one
mediawiki webapp instance and replacing the whole mediawiki webapp cluster.

Aggregated results from 10 experiment runs

Each run: around 4150 requests, 50 threats, 1 worker, max. timeout 200 ms

Response time
(sec)

Total time Server
Processing
Rate (req/sec)

HTTP Error
Responses

Avg. stdev Avg. stdev Avg. stdev Avg. Diff. stdev

Baseline 0.054 0.001 10min 1 s 0.0003 s 6.914 0.004 N/A 1.26

Replacing one
webapp

0.053 0.001 10min 1 s 0.001 s 6.910 0.006 0 1.12

Replacing
webapp cluster

0.053 0.001 10min 1 s 0.001 s 6.910 0.005 +3 1.77

4 Security Analysis

In general, quantifying the security of an IT system is a challenging task [26].
Quantifying the benefits of constantly changing a system is even more demand-
ing [23]. While there have been numerous attempts [16,22,26,41], the proposed
security metrics are usually at a higher abstraction level that enables them to
capture a wider range of IT systems. Thus, most of the time, it is hard to validate
them in an objective manner on a concrete (production-like) IT system.

We propose to measure the effectiveness of an MTD system in terms of the
meaningful interruptions it creates for attackers and the cost associated with
those interruptions. In a nutshell, this section is focused on determining when
instance replacements should happen (strategy), how many replacements in a
given time period (cost) and what this means in terms of attack windows,
persistence, and pivoting options.

4.1 Attack Windows and Attack Surface

An attack window is a continuous time interval an attacker may leverage without
being interrupted by system changes. System changes refer to reconfigurations
that would not happen on a regular basis (every few minutes, hours, or days) in
a static system, e.g., changing internal IPs, ports, applications, or credentials.

A system’s attack surface can be viewed as the subset of the IT system’s
resources that an attacker can use to attack the system. This subset of resources
is composed of methods, channels, and untrusted data items [32]. Methods refer
to the codebase entry and exit points of the IT system’s software applications,
channels are used to connect and invoke a system’s methods, while untrusted
data items are used to send or receive data into or from the target system.
Strategies to harden the system and reduce the attack surface include reducing

MTD CBITS: Moving Target Defense 177

the amount of running code (methods), eliminating unneeded services, running
updated applications, and reducing the channels available to untrusted users [32].

Reconnaissance and Pivoting Options. MTD CBITS manages an IT
system’s internal communication channels by leveraging OpenStack’s security
groups as a per-instance fine-grained firewall. A security group is automatically
configured to allow only ingress and egress traffic from and to the dependee
and dependent instances. Moreover, traffic will be allowed only to and from the
ports (TCP and/or UDP) stored in MTD CBITS’s operations model (including
related connections). Specifically, MTD CBITS reduces the attack surface of the
deployment through reducing the entry points available to untrusted users and
limiting the number of channels to the predetermined ones. Instances can initiate
connections to dependent instances only on specific port numbers (stored in the
operations model, Fig. 1).

The limited pivoting options constitute an important security benefit if an
attacker is able to compromise one or more instances in the deployment. For
example in the eCommerce deployment (Fig. 2), if the weblb instances were
compromised, an attacker would be able to reach only the three webapp instances
through the internal network and not all the instances belonging to the other
nodes. A node represents a role in the IT system – a single unit of configuration
that corresponds to one instance or a high-availability cluster of instances. (Here,
a role as presented in Sect. 2.3 corresponds to a node in the security analysis.)
Without the possibility of creating new communication channels, attackers are
forced into using existing channels in order to advance or to exfiltrate data
(specifically, only over related connections).

Attacker’s Presence – Persistent Access. Attackers usually exploit some-
what unpredictable occurrences on the targeted IT systems e.g., software bugs,
misconfigurations, or user actions. Exploits and other actions may not have the
same outcome every time they are executed. Although reducing the attack sur-
face in a non-MTD-CBITS environment helps to prevent security failures, it
does not mitigate the amount of damage an attacker could inflict once a vul-
nerability is found. In an MTD CBITS environment, even if the same flawed
node/role implementation (with the same vulnerabilities) is used on a new
instance, configuration parameters (e.g., IP, ports, credentials, cryptographic
keys) will be updated forcing attackers to adjust their attack in order to poten-
tially re-compromise the instance. Installed malware is not really “persistent”
anymore and needs to be re-installed on new instances. This process can be noisy
since it needs to be performed repeatedly in order to maintain access.

Attack Window Terminology. We have defined the following terminology to
describe the proposed model. An attack attempt is an effort to gain unauthorized
privileges and data on a system. An attack path may include several nodes that
are part of the targeted IT system. These nodes can be:

1. Transparent nodes. Replacing the instances of such a node will most probably
not influence an ongoing attack. Load balancers (weblbs) are transparent

178 A.G. Bardas et al.

nodes if they simply relay requests to webapp instances without altering them
regardless of the weblb implementation (e.g., Varnish or Nginx). Replacing
a transparent node on the attack path will not influence an ongoing attack,
e.g., replacing a load balancer should have the same effect on all requests
(benign or malicious) to be passed to the webapps in the eCommerce website
(Fig. 2). We note that under different attack assumptions, weblb could be
attacked directly and in this case it will not be a transparent node.

2. Stepping-stone nodes. Different outcomes for benign and malicious requests.
For example, in the eCommerce website (Fig. 2), an attack on db master
to possibly succeed, usually, requires a vulnerable or misconfigured webapp.
Changing webapp to a different implementation will most likely disrupt the
ongoing attack on db master. Thus replacing a stepping-stone node on the
attack path will impact an ongoing attack. There are two types of stepping-
stone nodes:
(a) Compromised. Attackers have root/admin privileges.
(b) Misconfigured. Attackers don’t have complete control over the node. One

or more vulnerabilities and misconfigurations allow attackers to perform
an attack on a node down the way, e.g., a misconfiguration on the webapp
instances allows unsanitized user input that results in a SQL injection
which leads to compromising the database node, db master (see Fig. 2).

An adaptation point is the moment when new (fresh) instances start being used in
the deployment. New instances use a compatible implementation with different
IP addresses, passwords, and port numbers. Due to these configuration changes,
attacks are generally interrupted at adaptation points of stepping-stone or target
nodes and the attacker must restart the attack attempt.
A few definitions are needed to determine the length of attack windows.

Definition 1. We define Tp(X) to be the period of time taken into consideration
i.e., extent of time when attacks might be launched against node X.

Definition 2. Tr(X) is the interval between adaptation points on node X.

We have Tr(X) = ch(X) + d(X) + a(X), where

ch(X) - time interval to bring a new instance that implements X in a ready-
to-use state, e.g., provision and configure the new instance(s);
d(X) - duration to change to the ready-to-use new instance(s), d(X) > 0
e.g., pushing configuration to dependent nodes; and
a(X) - delay specifically introduced by the user, a(X) ≥ 0.

Definition 3. Ta(X) is the duration of an attack attempt on node X.

Provisioning and configuring new instances can be performed in parallel by MTD
CBITS. However, changing to the new instances belonging to dependent nodes
(parameter d for each node) must be completed sequentially in order not to dis-
rupt the communication between the dependent services. Therefore, the adapta-
tion points (Tr’s) of two dependent nodes cannot be fully aligned (coincide) as

MTD CBITS: Moving Target Defense 179

such. There will always be a very short delay between the two adaptation points.
However, because the duration of d was usually around 1 second in our testing
scenarios, we consider this type of alignment as efficient as a full alignment.

One adaptation point does not necessarily create one meaningful interrup-
tion for an attacker. If there are several adaptation points that are aligned, we
consider this as only one meaningful interruption from an attacker’s perspec-
tive. A meaningful interruption is a disruption that forces attackers to restart an
attack attempt (redo a significant number of the steps that are part of the attack
attempt). We consider that one adaptation point creates a meaningful interrup-
tion if it is at least one time measurement unit away (1 min in our case) from
other adaptation points. Also, we view an adaptation moment as one adaptation
point or several aligned adaptation points that create a meaningful interruption.

4.2 Adaptation Points Placement

Assuming X is the targeted node and Y1 ... Yl−1 are the stepping-stone nodes on
the path to X, our goal is to determine the lengths of potential attack windows.
For this reason, it is vital to determine the moments when adaptation points are
aligned. First, the individual replacement-process starting time for each node
must be taken into consideration. Thus, the earliest starting time can be con-
sidered moment 0, while the placement of the other starting times captures the
difference related to moment 0. Let us state the following:

tmin = min(start timeTr(X), start timeTr(Y1), ...),
while tX = start timeTr(X) − tmin, tY1 = start timeTr(Y1) − tmin, ...1

Now, the problem can be defined and solved using the Chinese Remainder The-
orem. Using this theorem one can determine integer m that, when divided by
some given divisors, leaves given remainders. In our scenario the given divisors
are Tr(X), Tr(Y1) ...Tr(Yl−1), the given remainders are tX , tY1 , ..., tYl−1 , and m
represents the moment when the adaptation points are aligned. We can derive
the following cases:

Case 1
If Tr(X), Tr(Y1), ..., Tr(Yl−1) are pairwise coprime then:
• Integer m exists and can be calculated
• All solutions for m are congruent lcm(Tr(X), Tr(Y1), ..., Tr(Yl−1)) 2

Case 2
If Tr(X),Tr(Y1), ..., Tr(Yl−1) not pairwise coprime then:

If ∀i, j ∈ {X,Y1, ..., Yl−1}, ti ≡ tj mod gcd(Tr(i), T (j)) is TRUE, then:
• Integer m exists and can be calculated
Else:

• Integer m does not exist
1 min is the minimum.
2 lcm stands for “least common multiple” and gcd is the “greatest common divisor”.

180 A.G. Bardas et al.

Fig. 4. Possible IT system architecture. Arrows indicate dependencies between nodes.

Case 3
If Tr(X), Tr(Y1), ..., Tr(Yl−1) are not pairwise coprime

AND ∀i, j ∈ {X,Y1, ..., Yl−1}, ti ≡ tj mod gcd(Tr(i), T (j)) is FALSE, then:
• No pair of adaptation points will be aligned
• Integer m does not exist

Case 4
If Tr(X), Tr(Y1), ..., Tr(Yl−1) not pairwise coprime AND ∃i, j, a, b ∈
{X,Y1, ..., Yl−1},

ti ≡ tj mod gcd(Tr(i), T (j)) is FALSE,
ta ≡ tb mod gcd(Tr(a), T (b)) is TRUE, then:

• Some of the adaptation points will be aligned
• Integer m does not exist

4.3 Attack Windows Example

To briefly illustrate the options a user has when managing their deployment
using MTD CBITS, let us consider a possible IT system architecture as pictured
in Fig. 4. Replacing one or all instances belonging to a node takes roughly the
same amount of time (see Sect. 2.4). The architecture pictured in Fig. 4 can serve
as a concrete eCommerce website (as shown Fig. 2).

Based on an improved version (with faster replacements) of the concrete
eCommerce scenario, the replacement times for the nodes in Fig. 4 are Tr(B) =
10 minutes, Tr(F) = Tr(E) = 11 min, Tr(A) = Tr(C) = Tr(D) = 3 min and
d(B) = d(F) = d(E) = d(A) = d(C) = d(D) = 1 second. Tr values are at their
lowest bound for the current environment. In other words, ch’s and d’s are at
their minimum and a’s are equal to 0.

There are two possibilities to reach node E: A, B, F, E or A, B, E (Fig. 4).
For the purpose of this example we will focus on the first path, A, B, F, E. Node
A is transparent (e.g., weblb in the eCommerce scenario), and therefore Tr(A)
will not be taken into consideration.

Assuming the replacements start at the same time, the maximum attack
window available to an attacker is min(Tr(E), Tr(B), Tr(F)) = min(10, 11, 11) =
10 minutes. For example, over a period of one day, the MTD system will keep

MTD CBITS: Moving Target Defense 181

Fig. 5. Attack windows distribution over one day. The cost is 407 adaptation moments
in all three cases: Option1 – 262 interruptions with starting times (tB , tE , tF) = (0, 0, 0),
Option2 – 380 interruptions with (tB , tE , tF) = (0, 0, 1), and Option3 – 381 interrup-
tions with (tB , tE , tF) = (0, 1, 6).

the maximum attack window for the instances belonging to node E to 10 min
while in a static system an attack window can be as long as the entire day.

Figure 5 illustrates three possible attack windows distributions over one day
(24 h). To generate these distributions 407 adaptation points are needed in each
case. As observed in Fig. 5, for the same cost, the outcome may be very different.
For instance, Option1 – 262 interruptions and 26 ten-minute attack windows when
starting at (0,0,0) might not be the best option; a user can get 380 interruptions
and fewer ten-minute windows for the same number of adaptation moments (cost).

In order to increase the number of interruptions while maintaining a com-
parable cost (number of adaptations), adaptation points should not pairwise
coincide. For this reason, we can opt for a set of parameters that fall under Case
3 in Sect. 4.2. By setting a(B) to 1 min we have Tr(E) = Tr(B) = Tr(F) = 11
minutes. Next, we chose different starting times that fulfill the requirements in
Case 3. Fig. 6 illustrates three different such starting time options that result in
the same number of interruptions, 393, for the same cost. Furthermore, we have
more attack windows with the same length while the length of the maximum
window is also shorter compared to Fig. 5. What if attackers learn the parame-
ters over time? A user may use multiple parameter sets for Tp. Moreover, Tp can
also be changed.

In case of a successful attack, the maximum time an attacker may spend on
an instance belonging to E, is equal to the difference between the maximum
attack window and the duration of the successful attack attempt, Ta(E). Thus,
in the worst case scenario an attacker may spend between 4 and 10 min on an
instance belonging to node E depending on the parameter choice (e.g., Figs. 5
and 6). While there are numerous options for starting times and other parameters
(e.g., parameter a), a user will always be able to calculate the cost and predict
the outcome in terms of number of adaptation moments.

The cost of an adaptation point is quantified in terms of the needed resources
and the performance overhead (degradation) the environment can accept. The
resources may include the cost for the hardware, electricity, and everything else
needed to reach the desired values for the ch and d parameters. On the other

182 A.G. Bardas et al.

hand, a (delay introduced by the user) is the parameter that can be easily
changed. While increasing a has no upper bound, once a = 0, decreasing Tr

values involves changing ch and/or d.

5 Discussion and Limitations

Numerous organizations embraced the DevOps adventure in an effort to auto-
mate their systems. An integral part of DevOps is focused on a CMT [43]. Even
though MTD CBITS is not a “blanket”-like solution that simply covers existing
running IT systems, adopting it is well within reach.

CMT-driven automation is the key, but it is not enough. Without an inte-
grated inventory, instance replacements are heavily dependent on manual inter-
vention. Using its operations model, MTD CBITS maintains an up-to-date inven-
tory of the entire IT system and leverages it to reliably automate the instance
replacements throughout the lifetime of the IT system.

On cloud infrastructures, the replacements may also constitute an efficient,
user-controlled defense against various side-channel attacks. Instead of relying
only on the cloud provider, the user controls the replacement operations and can
regularly trigger physical host location “refreshes”. The physical host where a
new instance is placed depends on the cloud provider’s scheduler. While public
cloud scheduler rules may differ, we used the OpenStack Filter Scheduler with the
default settings on our infrastructure. Although we had only thirteen compute
nodes, instances “move” between nodes every replacement operation. We have
deployed the eCommerce scenario (Fig. 2) with 20 web applications, webapps.
We noticed that between the initial deployment and the first whole webapp-
cluster replacement only 3 out of 13 hosts were assigned the same number of
instances, while between the first and the second replacement only 2 out of 13.

The performance loss on a cloud infrastructure can be compared in a way
to Netflix’s approach to test the resiliency of their IT systems. They deployed
a service (called Chaos Monkey [1]) that seeks out high-availability clusters of

Fig. 6. Attack windows distribution over one day when no two adaptation points coin-
cide. The cost is 393 adaptation moments for 393 interruptions in all three cases:
Option4 with starting times (tB , tE , tF) = (0, 4, 7), Option5 with (tB , tE , tF) = (0, 4, 9),
Option6 with (tB , tE , tF) = (0, 2, 9).

MTD CBITS: Moving Target Defense 183

services and randomly terminates instances within the cluster. MTD CBITS on
the other hand, replaces instances proactively in an organized way for security
purposes in virtualized environments (IaaS clouds). Nevertheless, physical hosts
may also be managed similar to VMs by using offerings such as MaaS [10].

6 Related Work

Most MTD-related work focuses on specific aspects of system configuration, such
as IP addresses [6,20,27], memory layouts [3,13,31], instruction sets [9,29], html
keywords [14,50], SQL queries [9], or database table keywords [14]. Software
diversity has also been investigated in several efforts [8,24,53] as a way to sup-
port multiple configurations. Although more comprehensive frameworks [30,42]
for various environments [5,11] have been proposed, most are still conceptual,
and require significant theoretical and practical development. In an attempt to
provide a more efficient experimentation support for various pro-active defenses,
researchers have proposed VINE [21]. Unlike MTD CBITS which captures the
overall IT system and manages it throughout its lifetime, VINE enables users
to create an emulated setting of an existing network on OpenStack for training
and experimentation purposes.

Narain et al. used high-level specifications for network infrastructure config-
uration management in the ConfigAssure [39] and DADC [38] projects. Similar
concepts have been proposed by Al-Shaer in MUTE [4], which uses binary deci-
sion diagrams to achieve dynamic network configurations. On the other hand,
SCIT [25] has been used to achieve intrusion tolerance by restoring VM instances
to their original state [40]. Our approach achieves the same intrusion tolerance
as SCIT and adopts formal models similar to Narain to ensure that instance
replacement(s) will not disrupt normal operations.

In terms of metrics, Okhravi et al. [41] quantitatively studied dynamic plat-
forms as a defensive mechanism, while Cybenko and Hughes [16] introduced a
quantitative framework to model diversity and showed how it can defend the
three core goals of cyber security: confidentiality, integrity, and availability. Our
ability to quantify cost while controlling the lengths of attack windows provides
a new perspective on measuring security benefits, which may be an important
component of the proposed higher-level metrics.

7 Conclusions

We propose and evaluate an MTD platform that captures service dependencies
at the entire IT system level, and performs live instance replacements in a reliable
way with negligible performance overhead on a cloud infrastructure. We recorded
statistically non-significant differences between the baseline measurements (no
MTD operations – static system) and the MTD replacement operations.

On the security side, we are able to quantify the outcome (lengths of potential
attack windows) in terms of the cost (number of adaptations), and demonstrate
that MTD systems managed and deployed using MTD CBITS will achieve the

184 A.G. Bardas et al.

goal of increasing attack difficulty (e.g., restricted reconnaissance and pivoting
options, limited persistent access).

MTD CBITS and ANCOR implementations, all scenarios, and auxiliary
materials (e.g., supporting proofs for Cases 3 and 4 from Sect. 4.2, a Python
implementation for an “attack windows calculator”, more comprehensive bene-
fits descriptions, etc.) are available at https://github.com/arguslab/ancor.

Acknowledgements. We would like to thank the reviewers for their valuable feed-
back and everyone involved in this research over the years, especially Rui Zhuang,
Ali Ali, Simon Novelly, Ian Unruh, and Brian Cain. This work was supported by the
Air Force Office of Scientific Research (FA9550-12-1-0106). Opinions, findings, conclu-
sions, or recommendations expressed in this material are those of the authors and do
not necessarily reflect the agencies’ views.

References

1. Chaos Monkey. https://github.com/netflix/chaosmonkey. Accessed Apr 2017
2. http-perf. https://www.npmjs.com/package/http-perf. Accessed Apr 2017
3. PaX ASLR. https://pax.grsecurity.net/docs/aslr.txt. Accessed Apr 2017
4. Al-Shaer, E.: Toward network configuration randomization for moving target

defense. In: Jajodia, S., Ghosh, A., Swarup, V., Wang, C., Wang, X. (eds.) Moving
Target Defense. Advances in Information Security, vol. 54, pp. 153–159. Springer,
New York (2011). doi:10.1007/978-1-4614-0977-9 9

5. Albanese, M., De Benedictis, A., Jajodia, S., Sun, K.: A moving target defense
mechanism for MANETs based on identity virtualization. In: IEEE CNS (2013)

6. Antonatos, S., Akritidis, P., Markatos, E.P., Anagnostakis, K.G.: Defending against
Hitlist worms using network address space randomization. In: ACM WORM (2005)

7. Armbust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. In:
ACM CACM (2010)

8. Bauer, K., Dedhia, V., Skowyra, R., Streilein, W., Okhravi, H.: Multi-variant exe-
cution to protect unpatched software. In: RWS (2015)

9. Boyd, S.W., Kc, G.S., Locasto, M.E., Keromytis, A.D., Prevelakis, V.: On the
general applicability of instruction-set randomization. In: IEEE TDSC, July 2010

10. Canonical, Metal as a Service (MAAS). https://maas.io/. Accessed Apr 2017
11. Casola, V., Benedictis, A.D., Albanese, M.: A moving target defense approach for

protecting resource-constrained distributed devices. In: IEEE IRI (2013)
12. Chef. https://www.chef.io/chef/. Accessed Mar 2017
13. Chen, P., Xu, J., Lin, Z., Xu, D., Mao, B., Liu, P.: A practical approach for adaptive

data structure layout randomization. In: Pernul, G., Ryan, P.Y.A., Weippl, E.
(eds.) ESORICS 2015. LNCS, vol. 9326, pp. 69–89. Springer, Cham (2015). doi:10.
1007/978-3-319-24174-6 4

14. Christodorescu, M., Fredrikson, M., Jha, S., Giffin, J.: End-to-End software diver-
sification of internet services. In: Jajodia, S., Ghosh, A., Swarup, V., Wang, C.,
Wang, X. (eds.) Moving Target Defense. Advances in Information Security, vol. 54,
pp. 117–130. Springer, New York (2011). doi:10.1007/978-1-4614-0977-9 7

15. Crowdstrike, Bears in the Midst. https://goo.gl/djML8Q. Accessed Apr 2017
16. Cybenko, G., Hughes, J.: No free lunch in cyber security. In: MTD (2014)

https://github.com/arguslab/ancor
https://github.com/netflix/chaosmonkey
https://www.npmjs.com/package/http-perf
https://pax.grsecurity.net/docs/aslr.txt
http://dx.doi.org/10.1007/978-1-4614-0977-9_9
https://maas.io/
https://www.chef.io/chef/
http://dx.doi.org/10.1007/978-3-319-24174-6_4
http://dx.doi.org/10.1007/978-3-319-24174-6_4
http://dx.doi.org/10.1007/978-1-4614-0977-9_7
https://goo.gl/djML8Q

MTD CBITS: Moving Target Defense 185

17. De Capitani, S., di Vimercati, S., Foresti, S., Jajodia, S.P., Samarati, P.: Efficient
integrity checks for join queries in the cloud. In: IOS JCS (2016)

18. Democratic National Committee. https://goo.gl/nxemkK. Accessed Apr 2017
19. DHS, Moving Target Defense. https://goo.gl/5qXtoH. Accessed Apr 2017
20. Dunlop, M., Groat, S., Urbanski, W., Marchany, R., Tront, J.: MT6D: a moving

target IPv6 defense. In: IEEE MILCOM (2011)
21. Eskridge, T.C., Carvalho, M.M., Stoner, E., Toggweiler, T., Granados, A.: VINE:

a cyber emulation environment for MTD experimentation. In: ACM MTD (2015)
22. Evans, D., Nguyen-Tuong, A., Knight, J.: Effectiveness of Moving Target Defenses

(2011)
23. Hobson, T., Okhravi, H., Bigelow, D., Rudd, R., Streilein, W.: On the challenges

of effective movement. In: ACM MTD (2014)
24. Homescu, A., Jackson, T., Crane, S., Brunthaler, S., Larsen, P., Franz, M.: Large-

scale automated software diversity-program evolution redux. In: IEEE TDSC
(2015)

25. Huang, Y., Arsenault, D., Sood, A.: Closing cluster attack windows through server
redundancy and rotations. In: Workshop on Cluster Security (2006)

26. Hughes, J., Cybenko, G.: Quantitative metrics and risk assessment: the three tenets
model of cybersecurity. In: Technology Innovation Management Review (2013)

27. Jafarian, J.H., Al-Shaer, E., Duan, Q.: An effective address mutation approach for
disrupting reconnaissance attacks. IEEE Trans. Inf. Forensics Secur. 10, 2562–2577
(2015)

28. Karapanos, N., Filios, A., Popa, R.A., Capkun, S.: Verena: end-to-end integrity
protection for web applications. In: IEEE S&P (2016)

29. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: ACM CCS (2003)

30. Keromytis, A.D., Geambasu, R., Sethumadhavan, S., Stolfo, S.J., Yang, J.,
Benameur, A., Dacier, M., Elder, M., Kienzle, D., Stavrou, A.: The MEERKATS
cloud security architecture. In: IEEE DCS (2012)

31. Kil, C., Jun, J., Bookholt, C., Xu, J., Ning, P.: Address Space Layout Permuta-
tion (ASLP): towards fine-grained randomization of commodity software. In: IEEE
ACSAC (2006)

32. Manadhata, P.K., Wing, J.M.: An attack surface metric. In: IEEE TSE (2010)
33. Mandiant, APT1 Report. https://goo.gl/Cx3wz2. Accessed Mar 2017
34. Mandiant, M-Trends 2016 Report. https://goo.gl/PmJdEZ. Accessed Apr 2017
35. Mandiant, M-Trends 2017 Report. https://goo.gl/ISs8tX. Accessed Apr 2017
36. MediaWiki. https://www.mediawiki.org. Accessed Apr 2017
37. Moon, S.-J., Sekar, V., Reiter, M.K.: Nomad: mitigating arbitrary cloud side chan-

nels via provider-assisted migration. In: ACM CCS (2015)
38. Narain, S., Coan, D.C., Falchuk, B., Gordon, S., Kang, J., Kirsch, J., Naidu, A.,

Sinkar, K., Tsang, S., Malik, S., Zhang, S., Rajabian-Schwart, V., Tirenin, W.: A
science of network configuration. J. CSIAC-CSIS, 4(1), 18–31 (2016)

39. Narain, S., Malik, S., Al-Shaer, E.: Towards eliminating configuration errors in
cyber infrastructure. In: IEEE SafeConfig (2011)

40. Nguyen, Q., Sood, A.: Designing SCIT architecture pattern in a cloud-based envi-
ronment. In: DSN-W (2011)

41. Okhravi, H., Riordan, J., Carter, K.: Quantitative evaluation of dynamic platform
techniques as a defensive mechanism. In: Stavrou, A., Bos, H., Portokalidis, G.
(eds.) RAID 2014. LNCS, vol. 8688, pp. 405–425. Springer, Cham (2014). doi:10.
1007/978-3-319-11379-1 20

https://goo.gl/nxemkK
https://goo.gl/5qXtoH
https://goo.gl/Cx3wz2
https://goo.gl/PmJdEZ
https://goo.gl/ISs8tX
https://www.mediawiki.org
http://dx.doi.org/10.1007/978-3-319-11379-1_20
http://dx.doi.org/10.1007/978-3-319-11379-1_20

186 A.G. Bardas et al.

42. Portokalidis, G., Keromytis, A.D.: Global ISR: toward a comprehensive defense
against unauthorized code execution. In: Jajodia, S., Ghosh, A., Swarup, V., Wang,
C., Wang, X. (eds.) Moving Target Defense. Advances in Information Security, vol.
54, pp. 49–76. Springer, New York (2011). doi:10.1007/978-1-4614-0977-9 3

43. Puppet. https://puppet.com/, https://goo.gl/r1WcKm. Accessed Apr 2017
44. Puppet Blog. https://goo.gl/TSRTS0, https://goo.gl/9Z1YhK. Accessed Apr 2017
45. Puppet Hiera. http://docs.puppetlabs.com/hiera/1/. Accessed Apr 2017
46. Puppet, os hardening. https://goo.gl/vjkCgZ. Accessed Apr 2017
47. Unruh, I., Bardas, A.G., Zhuang, R., Ou, X., DeLoach, S.A.: Compiling abstract

specifications into concrete systems - bringing order to the cloud. In: USENIX
LISA (2014)

48. US Patent US6917930. https://goo.gl/KYMT9a. Accessed Apr 2017
49. Verizon, 2016 DBIR. http://goo.gl/E0OSr7. Accessed Apr 2017
50. Vikram, S., Yang, C., Gu, G.: NOMAD: towards non-intrusive MTD against web

bots. In: IEEE CNS (2013)
51. Wikibench. http://www.wikibench.eu/. Accessed Apr 2017
52. Wikipedia DB dumps. https://goo.gl/8jfhkk. Accessed Apr 2017
53. Williams, D., Hu, W., Davidson, J.W., Hiser, J.D., Knight, J.C., Nguyen-Tuong,

A.: Security through diversity: leveraging virtual machine technology. In: IEEE
S&P, July 2009

http://dx.doi.org/10.1007/978-1-4614-0977-9_3
https://puppet.com/
https://goo.gl/r1WcKm
https://goo.gl/TSRTS0
https://goo.gl/9Z1YhK
http://docs.puppetlabs.com/hiera/1/
https://goo.gl/vjkCgZ
https://goo.gl/KYMT9a
http://goo.gl/E0OSr7
http://www.wikibench.eu/
https://goo.gl/8jfhkk

Modular Verification of Protocol Equivalence
in the Presence of Randomness

Matthew S. Bauer1(B), Rohit Chadha2, and Mahesh Viswanathan1

1 University of Illinois at Urbana-Champaign, Champaign, USA
msbauer2@illinois.edu

2 University of Missouri, Columbia, USA

Abstract. Security protocols that provide privacy and anonymity guar-
antees are growing increasingly prevalent in the online world. The highly
intricate nature of these protocols makes them vulnerable to subtle design
flaws. Formal methods have been successfully deployed to detect these
errors, where protocol correctness is formulated as a notion of equiva-
lence (indistinguishably). The high overhead for verifying such equiva-
lence properties, in conjunction with the fact that protocols are never
run in isolation, has created a need for modular verification techniques.
Existing approaches in formal modeling and (compositional) verification
of protocols for privacy have abstracted away a fundamental ingredi-
ent in the effectiveness of these protocols, randomness. We present the
first composition results for equivalence properties of protocols that are
explicitly able to toss coins. Our results hold even when protocols share
data (such as long term keys) provided that protocol messages are tagged
with the information of which protocol they belong to.

1 Introduction

Cryptographic protocols are often analyzed in the so-called symbolic model,
where the assumption of perfect cryptography is made. Messages are symbolic
terms modulo an equational theory (as opposed to bit-strings) and crypto-
graphic operations are modeled via equations in the theory. The threat model
is that of the Dolev-Yao attacker [33], in which the attacker has the ability to
read, intercept and replay all messages on public channels and can also non-
deterministically inject its own messages into the network. Verification tech-
niques in this domain are fairly mature and a number of sophisticated analysis
tools have been developed [12,35,54].

Automated tools based on Dolev-Yao analysis are fundamentally limited
to protocols that are purely non-deterministic, where non-determinism is used
to model concurrency as well as the interaction between protocol participants

M.S. Bauer and M. Viswanathan—Partially supported by grant NSF CNS 1314485.
R. Chadha—Partially supported by grants NSF CNS 1314338 and NSF CNS
1553548.

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 187–205, 2017.
DOI: 10.1007/978-3-319-66402-6 12

188 M.S. Bauer et al.

with their environment. The order and nature of these interactions is deter-
mined entirely by an attacker (also known as a scheduler) who resolves all non-
determinism. There are, however, a large class of protocols whose correctness
depends on an explicit ability to model and reason about coin tosses. With pri-
vacy goals in mind, these protocols lie at the heart of many anonymity systems
such as Crowds [51], mix-networks [20], onion routers [38] and Tor [32]. Random-
ization is also used in cryptographic protocols to achieve fair exchange [11,36],
voter privacy in electronic voting [53] and denial of service prevention [40]. The
privacy and anonymity properties achieved by these systems are often formu-
lated in terms of protocol equivalence (indistinguishability). For example, proto-
col equivalence is used in the analysis of properties like anonymity, unlinkability,
and vote privacy [5,7,30,34,44].

Catherine Meadows, in her summary of the over 30 year history of for-
mal techniques in cryptographic protocol analysis [47,48], identified the devel-
opment of formal analysis techniques for anonymous communication systems
as a fundamental and still largely unsolved challenge. The main difficulty in
adapting Dolev-Yao analysis to such randomized protocols has been the sub-
tle interaction between non-determinism and randomization — if the attacker
is allowed to “observe” the results of the private coin tosses in its scheduling
decisions, then the analysis may reveal “security flaws” in correct protocols
(see examples in [14,16,18,21,37]). In order to circumvent this problem, many
authors [10,14,16–18,21,29,37] have proposed that protocols be analyzed only
with respect to attackers that are forced to take the same action in any two
protocol executions that are indistinguishable to the attacker. For the indistin-
guishability relation on traces, we propose [10,17] trace-equivalence of applied-pi
calculus processes [1]. In this framework, an attacker is a function from traces,
the equivalence classes on executions under the trace-equivalence relation, to the
set of attacker actions.

We consider the problem of composition for randomized protocols when the
protocols are allowed to share data, such as keys. Our focus here is on equiva-
lence properties. Two randomized protocols P and Q are said to be trace equiv-
alent [17], if for each attacker A and trace t, the measure of executions in the
trace t obtained when A interacts with protocol P is exactly the same as the
measure of executions in the trace t obtained when A interacts with protocol Q.
The protocols themselves are specified as processes in an applied pi-style calculus,
parametrized by an equational theory that models cryptographic primitives. The
protocols in our formalism are simple; a protocol is said to be simple if there is
no principal-level nondeterminism [25]. As observed in [17], this notion of equiv-
alence coincides with the notion of trace-equivalence for simple non-randomized
protocols.

Contributions: We begin by considering the case when the number of sessions
in a protocol is bounded. Our first result (Theorem 1 on Page 10) captures the
conditions under which the composition of equivalent protocols under disjoint
equational theories preserves trace equivalence. Formally, consider trace equiva-
lent protocols P and Q over equational theory Ea, and trace equivalent protocols

Modular Verification of Protocol Equivalence in the Presence of Randomness 189

P ′ and Q′ over equational theory Eb, where Ea and Eb are disjoint. We show
that the composition of P and P ′ is equivalent to the composition of Q and
Q′, provided the shared secrets between P and P ′ and those between Q and Q′

are kept with probability 1. While such a result also holds for non-randomized
protocols (see [4,27] for example), randomization presents its own challenges.

The first challenge arises from the fact that even if P ′ and Q′ do not leak
shared secrets (with P and Q, respectively), they may still reveal the equalities
that hold amongst the shared secrets. Revealing these equalities may, in some
cases, allow the attacker to infer the result of a private coin toss (See Example 4
on Page 12). Consequently, our composition theorem requires that P and Q
remain trace equivalent even when such equalities are revealed. The revelation
of the equalities is achieved by adding actions to protocols P and Q that reveal
“hashes” of shared secrets.

As in the case of non-randomized protocols [4,27], the proof proceeds by
showing that it suffices to consider the case when P (Q) does not share any
secrets with P ′ (Q′ respectively). This is achieved by observing that if the com-
position of P and P ′ is not trace equivalent to the composition of Q and Q′,
then there must be a trace t and an individual execution ρ in the composition
of P and P ′ (or of Q and Q′) such that ρ belongs to t and there is no execution
in the composition of Q and Q′ (or of P and P ′ respectively) in the trace t. It is
then observed that if the shared secrets between P and P ′, and between Q and
Q′, are re-initialized to fresh values respecting the same equalities amongst them
as in the execution ρ, then the transformed protocols continue to remain trace
inequivalent. For randomized protocols, we no longer have an individual execu-
tion that witnesses protocol inequivalence. Instead we have an attacker A and
a trace t which occurs with different probabilities when the protocols interact
with A. Observe that the executions corresponding to the trace t will then form
a tree, and different equalities amongst the shared secrets may hold in different
branches. Thus, a simple transformation as in the case of non-randomized proto-
cols no longer suffices (see Example 6 on Page 13). Instead, we have to perform
a non-trivial inductive argument (with induction on number of coin tosses) to
show that it suffices to consider the case when P (Q) does not share any secrets
with P ′ (Q′ respectively).

Our second result concerns the case when the equational theories Ea and Eb

are the same, each containing cryptographic primitives for symmetric encryption,
symmetric decryption and hashes (see Theorem 2 on Page 14). For this case, we
show that the composition of randomized protocols preserves trace equivalence
when the protocols are allowed to share secrets, provided protocol messages are
tagged with the information of which protocol they belong to. As in the case
of non-randomized protocols, this is achieved by showing that in presence of
tagging, the protocols can be transformed to new protocols Pnew, P ′

new, Qnew, Q′
new

such that Pnew and Qnew are trace equivalent protocols with equational theory
Enew, and P ′

new and Q′
new are trace equivalent protocols with disjoint equational

theory E′
new. Thus, this result follows from our first result.

190 M.S. Bauer et al.

Our final result extends the above result to the case of unbounded number
of sessions (see Theorem 3 on Page 15). We again consider the case when the
equational theories Ea and Eb are the same, containing cryptographic primitives
for symmetric encryption, symmetric decryption and hashes. In order to achieve
this result, we additionally require that messages from each session are tagged
with a unique session identifier.

Related Work. For the non-randomized case, a number of papers have identi-
fied requirements for proving protocol compositions secure. Safety properties are
considered in [2,4,6,22,24,26–28,31,41–43,49] and indistinguishability proper-
ties in [3,4]. A recent work [10] has also explored the composition of randomized
protocols with respect to reachability properties. In the computational model,
the problem of composing protocols securely has been studied in [13,15]. Our
result is most closely related to [3,4,10].

Much of research effort on mechanically analyzing anonymity systems has
used techniques based on model checking and simulation. For example, [56]
uses the PRISM model checker [46] to analyze the Crowds system. While these
works are valuable, the techniques are ad-hoc in nature, and don’t naturally
extend to larger classes of protocols. In [55], an analysis of Chaum’s Dinning
cryptographers protocol [19] was carried out the in CSP framework [45]. In
all of these works, the messages constructed by the attacker is assumed to be
bounded. [17] considers the complexity of the problem of verifying bounded
number of sessions of simple randomized cryptographic protocols that use sym-
metric and asymmetric encryption. They show that checking secrecy properties
is coNEXPTIME-complete and the problem of checking protocol equivalence
is decidable in coNEXPTIME. In contrast, both of these problems are known
to be coNP-complete for non-randomized protocols [8,23,25,52]. The increased
overhead in the verification effort that comes with the introduction of randomiza-
tion in protocols places a premium on modular verification techniques, allowing
smaller analysis efforts to be stitched together.

2 Protocols

In this section we introduce our process algebra for modeling security protocols
with coin tosses. Our formalism can be seen as an extension of the one from [3].
Similar to [39], it extends the applied π-calculus by the inclusion of a new oper-
ator for probabilistic choice. Like [3], the calculus doesn’t include else branches
and considers a single public channel. We will assume the reader is familiar with
the models of discrete time Markov chains (DTMCs) and partially observable
Markov decision process (POMDPs); for completeness these definitions can be
found in the full version of this paper [9].

2.1 Terms, Equational Theories and Frames

A signature F contains a finite set of function symbols, each with an associated
arity. We assume countably infinite and pairwise disjoint sets of special con-
stant symbols M and N , where M and N represent public and private names,

Modular Verification of Protocol Equivalence in the Presence of Randomness 191

respectively. Variable symbols are the union of two disjoint sets X and Xw (where
F ∩(X ∪Xw) = ∅) representing protocol and frame variables, respectively. Terms
are built by the application of function symbols to variables and terms in the
standard way. Given a signature F and Y ⊆ X ∪ Xw, we use T (F ,Y) to denote
the set of terms built over F and Y. The set of variables occurring in a term u
is denoted by vars(u). A ground term is one that contains no free variables.

A substitution σ is a partial function that maps variables to terms such
that the domain of σ is finite. dom(σ) will denote the domain and ran(σ) will
denote the range. For a substitution σ with dom(σ) = {x1, ..., xk}, we denote
σ as {x1 �→ σ(x1), ..., xk �→ σ(xk)}. A substitution σ is said to be ground if
every term in ran(σ) is ground and a substitution with an empty domain will be
denoted as ∅. Substitutions can be extended to terms in the usual way and we
write tσ for the term obtained by applying the substitution σ to the term t.

Our process algebra is parameterized by a non-trivial equational theory
(F , E), where E is a set of F-Equations. By an F-Equation, we mean a pair
u = v where u, v ∈ T (F \ N ,X) are terms that do not contain private names.
Two terms u and v are said to be equal with respect to an equational theory
(F , E), denoted u =E v, if E 	 u = v in the first order theory of equality.
We assume that if two terms containing names are equal, they will remain equal
when the names are replaced by arbitrary terms. We often identify an equational
theory (F , E) by E when the signature is clear from the context. Processes are
executed in an environment that consists of a frame ϕ and a binding substitution
σ. Formally, σ : X → T (F) and ϕ : Xw → T (F).

Two frames ϕ1 and ϕ2 are said to be statically equivalent if dom(ϕ1) =
dom(ϕ2) and for all r1, r2 ∈ T (F \ N ,Xw) we have r1ϕ1 =E r2ϕ1 iff r1ϕ2 =E

r2ϕ2. Intuitively, two frames are statically equivalent if an attacker cannot distin-
guish between the information they contain. A term u ∈ T (F) is deducible from
a frame ϕ with recipe r ∈ T (F \ N , dom(ϕ)) in equational theory E, denoted
ϕ 	r

E u, if rϕ =E u. We often omit r and E and write ϕ 	 u if they are clear
from the context.

An equational theory E0 is called trivial if u =E0 v for any terms u, v and
otherwise it is said to be non-trivial. For the rest of the paper, Fb and Fc are
signatures with disjoint sets of function symbols and (Fb, Eb) and (Fc, Ec) are
non-trivial equational theories. The combination of these two theories will be
(F , E) = (Fb ∪ Fc, Eb ∪ Ec).

2.2 Syntax

We assume a countably infinite set of labels L and an equivalence relation ∼
on L that induces a countably infinite set of equivalence classes. For l ∈ L, [l]
denotes the equivalence class of l. We use Lb and Lc to range over subsets of L
such that Lb ∩Lc = ∅ and both Lb and Lc are closed under ∼. Each equivalence
class is assumed to contain a countably infinite set of labels. Operators in our
grammar will come with a unique label from L, which together with the relation
∼, will be used to mask the information an attacker can obtain about actions of

192 M.S. Bauer et al.

a process. So, when an action with label l is executed, the attacker will only be
able to infer [l].

The syntax of processes is introduced in Fig. 1. We begin by introducing
what we call basic processes, denoted by B,B1, B2, ...Bn. In the definition of
basic processes, p ∈ [0, 1], l ∈ L, x ∈ X and ci ∈ {�, u = v}∀i ∈ {1, ..., k} where
u, v ∈ T (F \N ,X). In the case of the assignment rule (x := u)l, we additionally
require that x
∈ vars(u). Intuitively, basic processes will be used to represent
the actions of a particular protocol participant. The 0 process does nothing. The
process νxl creates a fresh name and binds it to x while (x := u)l assigns the
term u to the variable x. The test process [c1 ∧ ... ∧ ck]l terminates if ci is � or
ci is u = v where u =E v for all i ∈ {1, ..., k} and otherwise, if some ci is u = v
and u
=E v, the process deadlocks. The process in(x)l reads a term u from
the public channel and binds it to x and the process out(u)l outputs a term on
the public channel. The processes P ·l Q sequentially executes P followed by Q
whereas the process P +l

p Q behaves like P with probability p and like Q with
probability 1 − p.

Basic Processes
B ::= 0 νxl (x := u)l [c1 ∧ ... ∧ ck]l in(x)l out(u)l (B · B) (B +l

p B)

Basic Contexts
D[�] ::= � B D[�] · B B · D[�] D[�] +l

p D[�]

Contexts [ai ∈ {νx, (x := u)}]

C[�1, ..., �m] ::= al1
1 · ... · aln

n · (D1[�1]|...|Dm[�m])

Fig. 1. Process syntax

We will assume a countable set of process variables Xc, whose typical ele-
ments will be denoted by �,�1, ...,�m. In Fig. 1, basic contexts are obtained by
extending basic processes with a single process variable from Xc. Basic contexts
will be denoted by D[�], D1[�], D2[�], ..., Dn[�]. D1[B1] denotes the process
that results from replacing every occurrence of � in D1 by B1. A context is then
a sequential composition of fresh variable creations and variable assignments
followed by the parallel composition of a set of basic contexts. The prefix of
variable creations and assignments is used to instantiate data common to one or
more basic contexts. A process is nothing but a context that does not contain
any process variables. We will use C,C1, C2, ..., Cn to denote contexts and P ,
Q or R to denote processes. For a context C[�1, ...,�m] and basic processes
B1, ..., Bm, C[B1, ..., Bm] denotes the process that results from replacing each
process variable �i by Bi.

A context C[�1, ...,�m] = a1 · ... · an · (D1[�1]|...|Dm[�m]) is said to be well-
formed if every operator has a unique label and for any labels l1 and l2 occurring
in Di and Dj for i, j ∈ {1, 2, ...,m}, i
= j iff [l1]
= [l2]. For the remainder of

Modular Verification of Protocol Equivalence in the Presence of Randomness 193

this paper, contexts are assumed to be well-formed. A process that results from
replacing process variables in a context by basic processes is also assumed to be
well-formed. Unless otherwise stated, we will always assume that all of the labels
in a basic process come from the same equivalence class. For readability, we will
omit process labels when they are not relevant in a particular setting. Whenever
new actions are added to a process, their labels are assumed to be fresh and not
equivalent to any existing labels of that process.

For a process Q, fv(Q) and bv(Q) denote the set of variables that have some
free or bound occurrence in Q, respectively. The formal definition is standard and
is presented in the full version [9]. Processes containing no free variables are called
ground. We restrict our attention to processes that do not contain variables with
both free and bound occurrences. That is, for a process Q, fv(Q) ∩ bv(Q) = ∅.
We now give an examples illustrating the type of protocols that can be modeled
and analyzed in our process algebra.

Example 1. In a simple DC-net protocol, two parties Alice and Bob want to
anonymously publish two confidential bits mA and mB, respectively. To achieve
this, Alice and Bob agree on three private random bits b0, b1 and b2 and output
a pair of messages according to the following scheme. In our specification of the
protocol, all of the private bits will be generated by Alice.

If b0 = 0 Alice: MA,0 = b1 ⊕ mA, MA,1 = b2
Bob: MB,0 = b1, MB,1 = b2 ⊕ mB

If b0 = 1 Alice: MA,0 = b1, MA,1 = b2 ⊕ mA

Bob: MB,0 = b1 ⊕ mB , MB,1 = b2

From the protocol output, the messages mA and mB can be retrieved as MA,0 ⊕
MB,0 and MA,1 ⊕ MB,1. The party to which the messages belong, however,
remains unconditionally private, provided the exchanged secrets are not revealed.
This protocol can be modeled using the equational theory built on the signature
FDC = {0, 1,⊕, senc, sdec, pair, fst, snd, val} with the following equations.

sdec(senc(m, k), k) = m, fst(pair(x, y)) = x, snd(pair(x, y)) = y,
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z), x ⊕ 0 = x, x ⊕ x = 0, x ⊕ y = y ⊕ x,
val(m, 0, b1, b2) = pair(b1 ⊕ m, b2), val(m, 1, b1, b2) = pair(b1, b2 ⊕ m)

The roles of Alice and Bob in this protocol are defined in our process syntax as
follows.

A = ((b0 := 0) + 1
2

(b0 := 1)) · ((b1 := 0) + 1
2

(b1 := 1)) · ((b2 := 0) + 1
2

(b2 := 1)·
out(senc(pair(b0, pair(b1, b2)), k1) · out(val(mA, b0, b1, b2))

B = in(z) · (y := sdec(z, k2)) · (b0 := fst(y)) · (b1 := fst(snd(y)))·
(b2 := snd(snd(y))) · out(val(mB , b0 ⊕ 1, b1, b2))

Notice that the output of Bob depends on the value of Alice’s coin flip. Because
our process calculus does not contain else branches, the required functionality is

194 M.S. Bauer et al.

embedded in the equational theory. Also notice that the communication between
Alice and Bob in the above specification requires pre-established secret keys
k1, k2. These keys are established by first running some key exchange protocol,
which can be modeled by the context C[�1,�2] = νk · (k1 := k) · (k2 := k) ·
(�1|�2). If Alice holds the bit b and Bob holds the bit b′, the entire protocol is
C[(mA := b) · A, (mB := b′) · B].

2.3 Semantics

Given a process P , an extended process is a 3-tuple (P,ϕ, σ) where ϕ is a frame
and σ is a binding substitution. Semantically, a ground process P is a POMDP
(partially observable Markov decision process) (Z, zs,Act,Δ,O, obs), where Z
is the set of all extended processes, zs is the start state (P, ∅, ∅), Act is the
set of actions (pairs containing a recipe and an equivalence class on labels),
Δ is a probabilistic transition relation describing how a process evolves, O is a
countable set of observations used to model information available to the attacker
and obs is a labeling of states with observations. Informally, a process evolves as
follows. After i execution steps, if the process is in state z, the attacker chooses an
action α, which together with the state z defines a unique probability distribution
μ given by the transition relation Δ. The process then moves to state z′ in the
(i + 1)-st step with probability μ(z′). The only constraint on the choice of the
action α is that the same action must be chosen in all executions which are
indistinguishable to the attacker. We give the formal definitions below.

IN

r ∈ T (F \ N , Xw) ϕ �r u x �∈ dom(σ)

(in(x)l, ϕ, σ)
(r,[l])−−−−→ δ(0,ϕ,σ∪{x�→u}) NEW

x �∈ dom(σ) n is a fresh name

(νxl, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ,σ∪{x�→n})

OUT

vars(u) ⊆ dom(σ) i = |dom(ϕ)| + 1

(out(u)l, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ∪{w(i,[l]) �→uσ},σ) SEQ

Q0 �= 0 (Q0, ϕ, σ)
α−→ μ

(Q0 · Q1, ϕ, σ)
α−→ μ · Q1

TEST

∀i ∈ {1, ..., n}, ci �

([c1 ∧ ... ∧ cn]l, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ,σ) NULL

(Q0, ϕ, σ)
α−→ μ

(0 · Q0, ϕ, σ)
α−→ μ

ASSG

vars(u) ⊆ dom(σ) x �∈ dom(σ)

((x := u)l, ϕ, σ)
(τ,[l])−−−−→ δ(0,ϕ,σ∪{x�→uσ}) PARL

(Q0, ϕ, σ)
α−→ μ

(Q0|Q1, ϕ, σ)
α−→ μ|Q1

PROB (Q1 +l
p Q2, ϕ, σ)

(τ,[l])−−−−→ δ(Q1,ϕ,σ) +p δ(Q2,ϕ,σ) PARR

((Q1, ϕ, σ)
α−→ μ

(Q0|Q1, ϕ, σ)
α−→ Q0|μ

Fig. 2. Process semantics

Modular Verification of Protocol Equivalence in the Presence of Randomness 195

The set of all actions is Act = (T (F \ N ,Xw) ∪ {τ},L/ ∼). In Fig. 2, we
define Δ which maps an extended process and an action to a distribution on Z.
There we write (P,ϕ, σ) α−→ μ if Δ((P,ϕ, σ), α) = μ. In Fig. 2, μ · Q denotes the
distribution μ1 such that μ1(P ′, ϕ, σ) = μ(P,ϕ, σ) if P ′ is P ·Q and 0 otherwise.
The distributions μ|Q and Q|μ are defined analogously. The notation ci 	 � is
used to denote the case when ci is � or ci is u = v where vars(u, v) ⊆ dom(σ) and
uσ =E vσ. Note that Δ is well-defined, as basic processes are deterministic and
each basic process is associated with a unique equivalence class. An execution ρ of
a process P is a finite sequence z0

α1−→ z1 · · · αm−−→ zm such that z0, z1, ..., zm ∈ Z,
z0 = zs and for each i ≥ 0, zi

αi+1−−−→ μi+1 and μi+1(zi+1) > 0. The probability of
the execution ρ of P , denoted prob(ρ, P), is μ1(z1) × ... × μm(zm).

Given an extended process η, let enabled(η) denote the set of all (§, [l]) such

that for some μ, where (P,ϕ, σ)
(§,[l])−−−→ μ, § ∈ T (F\N ,Xw)∪{τ} and l is the label

of an input or output action. For a frame ϕ, we write [ϕ] to denote the equivalence
class of ϕ with respect to E, where EQ denotes the set of all such equivalence
classes. For O = 2Act × EQ, define obs as a function from extended processes to
O such that for any extended process η = (P,ϕ, σ), obs(η) = (enabled(η), [ϕ]).
For an execution ρ = z0

α1−→ z1 · · · αm−−→ zm we write tr(ρ) to represent the
trace of ρ, defined as the sequence obs(z0)

α1−→ obs(z1) · · · αm−−→ obs(zm). The set
of all traces of a process P is denoted Trace(P). A trace models the view of
the attacker for a particular execution. An attacker for a process P is a partial
function A : Trace(P) ↪→ Act. An attacker resolves all non-determinism, and
when a process P is executed with respect to a fixed attacker A, the evolution
of the process P can be described by a DTMC PA. For process P , adversary
A and trace t, let ρ1, ..., ρk be the executions of PA such that tr(ρi) = t for all
i ∈ {1, ..., k}. We will write prob(t, PA) to denote

∑k
i=1 prob(t, P

A).
An extended process (Q,ϕ, σ) over the equational theory (F , E) preserves

the secrecy of x ∈ vars(Q), written (Q,ϕ, σ) |=E x, if there is no r ∈
T (F \ N , dom(ϕ)) such that ϕ 	r

E xσ. A process P is said to keep variables
x1, ..., xn secret with probability 1, denoted P |=E,1 secret(x1, ..., xn), if there is
no execution of P containing a state z such that z
|=E x for some x ∈ {x1, ..., xn}.
Two processes P0 and P1 over the same set of actions and observations are said
to be trace equivalent, denoted P0 ≈ P1, if for every attacker A and trace
t ∈ Trace(P0) ∪ Trace(P1), prob(t, PA

0) = prob(t, PA
1). Observe that for a proto-

col P not containing coin tosses, any two executions of P are distinguishable.
Furthermore, for each attacker A, there is only one execution of protocol P .
Thus, it follows that our notion of trace equivalence coincides with the notion of
trace-equivalence for the applied pi-calculus. We conclude this section by show-
ing how the notion of trace equivalence can capture privacy properties of the
DC-net protocol described earlier in this section.

Example 2. Consider the DC-net protocol defined in Example 1 which is
designed to insure that an observer of the protocol’s output can obtain Alice
and Bob’s bits but cannot distinguish the party to which each bit belongs. This
property can be modeled by the equivalence C[(mA := 0) · A|(mB := 1) · B] ≈

196 M.S. Bauer et al.

C[(mA := 1) ·A|(mB := 0) ·B] which says that any attacker for the DC-net pro-
tocol will observe identical probabilities for every sequence of protocol outputs,
regardless of the bits that Alice and Bob hold in their messages.

3 Compositional Equivalence of Single Session Protocols

3.1 Disjoint Data

In the case of non-randomized protocols, it is well known that composition
preserves equivalence when protocols do not share data. Recall that we have
introduced a new notion of equivalence for randomized protocols wherein two
protocols P,Q are equivalent if, for every attacker A and trace t, the event t
has equal probability in the Markov chains PA and QA. A cornerstone of our
result establishes that parallel composition is a congruence with respect to this
equivalence when protocols do not share data.

Lemma 1. Let P, P ′, Q,Q′ be closed processes such that vars(P) ∩ vars(Q) = ∅
and vars(P ′) ∩ vars(Q′) = ∅. If P ≈ P ′ and Q ≈ Q′ then P |Q ≈ P ′|Q′.

In the absence of probabilistic choice, Lemma 1 is obtained by transforming an
attacker A for P |Q into an attacker A′ that “simulates” Q to P (and vice versa).
When a term created by Q is forwarded to P by A, the attacker A′ forwards a
new recipe in which the nonces in the term created by Q are replaced by fresh
nonces created by the adversary. This technique is not directly applicable in the
presence of randomness, where the adversary must forward a common term to
P in every indistinguishable execution of P |Q. For example, if the outputs n1

and h(n2) from Q are forwarded by A to P in two indistinguishable executions,
the recipe constructed by A′ must be identical for both executions. Further
complicating matters, if n2 is later revealed by Q, the simulation of n1 and h(n2)
to P via a common term can introduce in-equivalences that were not present in
the original executions. We prove the result by showing P ≈ P ′ ⇒ P |Q ≈ P ′|Q
and Q ≈ Q′ ⇒ P |Q ≈ P |Q′, which together imply Lemma 1. Each sub-goal is
obtained by first inducting on the number of probabilistic choices in the common
process. In the case of P |Q ≈ P ′|Q, for example, this allows one to formulate an
adversary A for P |Q (resp. P ′|Q) as a combination of two disjoint adversaries.
We then appeal to a result on POMDPs where we prove that the asynchronous
product of POMDPs preserves equivalence.

3.2 Disjoint Primitives

In our composition result, we would like to argue that if two contexts C[�] and
C ′[�] are equivalent and two basic process B and B′ are equivalent, then the
processes C[B] and C ′[B′] are trace equivalent. In such a setup, contexts can
instantiate data (keys) that are used by and occur free in the basic processes.
This setup provides a natural way to model and reason about protocols that
begin by carrying out a key exchange before transitioning into another phase of

Modular Verification of Protocol Equivalence in the Presence of Randomness 197

the protocol. It is worth pointing out that the combination of key exchange with
anonymity protocols can indeed lead to errors. For example, it was observed
in [50] that the RSA implementation of mix networks leads to a degradation
in the level of anonymity provided by the mix. The formalization of our main
composition result is as follows.

Theorem 1. Let C[�1, ...,�n] = νk1 · ... · νkm · (D1[�1]|...|Dn[�n]) (resp.
C ′[�1, ...,�n] = νk′

1 · ... · νk′
m · (D′

1[�1]|...|D′
n[�n])) be a context over Fc with

labels from Lc. Further let B1, ..., Bn (resp. B′
1, ..., B

′
n) be basic processes over Fb

with labels from Lb. For l1, ..., ln ∈ Lb and �
∈ Fb ∪Fc, assume that the following
hold.

1. fv(C) = fv(C ′) = ∅, fv(Bi) = {xi} and fv(B′
i) = {x′

i}
2. vars(C) ∩ vars(Bi) = {xi} and vars(C ′) ∩ vars(B′

i) = {x′
i}

3. C[B1, ..., Bn] and C ′[B′
1, ..., B

′
n] are ground

4. C[B1, ..., Bn] |=E,1 secret(x1, ..., xn) and C ′[B′
1, ..., B

′
n] |=E,1 secret(x′

1, ..., x
′
n)

5. C[out(�(x1))l1 , ..., out(�(xn))ln] ≈ C ′[out(�(x1))l1 , ..., out(�(xn))ln]
6. νk·(x1 := k)·...·(xn := k)·(B1|...|Bn) ≈ νk·(x′

1 := k)·...·(x′
n := k)·(B′

1|...|B′
n)

Then C[B1, ..., Bn] ≈ C ′[B′
1, ..., B

′
n].

Observe that the function symbol � is used to reveal equalities among the
shared secrets. We discuss this requirement further in Example 4. Below, we
demonstrate the application of Theorem 1 to reason about the security of the
DC-net protocol from Example 1, where Diffie-Hellman is used for key exchange.

Example 3. Let A,B be the protocols for Alice and Bob from the DC-net pro-
tocol given in Example 1. Let FDH = {f, g,mac} be the signature for the equa-
tional theory EDH = {f(g(y), x) = f(g(x), y)}. This equational theory models
the Diffie-Hellman primitives, i.e. f(x, y) = xy mod p, g(y) = αy mod p for some
group generator α. We use mac for a keyed hash function and a, b as the public
names of Alice and Bob, respectively. Define C[�1,�2] = νkh · D1[�1]|D2[�2]
to be the context that models a variant of the Diffie-Hellman protocol where D1

and D2 are below.

D1 = νx · out(g(x)) · out(mac(g(x), a, kh)) · in(z)·
in(z′) · [z′ = mac(z, b, kh)] · (k1 := f(x, z)) · �1

D2 = νy · out(g(y)) · out(mac(g(y), b, kh)) · in(z)·
in(z′) · [z′ = mac(z, a, kh)] · (k2 := f(y, z)) · �2

We want to show the equivalence C[(mA := 0) ·A|(mB := 1) ·B] ≈ C[(mA :=
1) ·A|(mB := 0) ·B]. Using the results established in Theorem 1, the verification
effort is reduced to verifying the following set of simpler properties, where K =
νk · (k1 := k) · (k2 := k).

1. C[B1, ..., Bn] |=E,1 secret(x1, ..., xn) and C ′[B′
1, ..., B

′
n] |=E,1 secret(x′

1, ..., x
′
n)

2. K · ((ma := 0) · A|(mb := 1) · B) ≈ K · ((ma := 1) · A|(mb := 0) · B)

Property 1 can also be verified modularly using the results from [10]. When the
contexts in the equivalence are not the same, one must also verify property 5
from Theorem 1.

198 M.S. Bauer et al.

3.3 Difficulties Arising from Randomization

In the setup from Theorem 1, observe that C[�], C ′[�] contain process (free)
variables. As a result, trace equivalence cannot directly be used to equate these
objects. One natural notion of equivalence between C[�] and C ′[�] is achieved by
requiring C[B0] ≈ C ′[B0] under all assignments of � to a basic process B0. While
mathematically sufficient for achieving composition, such a definition creates a
non-trivial computational overhead. Instead, our result is able to guarantee safe
composition when C[B0] ≈ C ′[B0] for a single instantiation of B0. A natural
selection for B0 is the empty process [�]. We illustrate why such a choice is
insufficient in Example 4.

Example 4. Consider the contexts defined below.

C[�1,�2] = νk1 · νk2 · ((x1 := k1) · �1|(x2 := k1) · �2 + 1
2

(x2 := k2) · �2)
C ′[�1,�2] = νk1 · νk2 · ((x1 := k1) · �1|(x2 := k1) · �2 + 1

2
(x2 := k1) · �2).

Notice that C and C ′ differ in that C assigns x2 to k1 or k2, each with
probability 1

2 , while C ′ assigns x2 to k1 with probability 1. For the basic processes
B1 = out(h(x1)) and B2 = out(h(x2)). We have C[[�], [�]] ≈ C ′[[�], [�]] as for
any adversary A, C[[�], [�]]A and C ′[[�], [�]]A yield a single common trace that
occurs with probability 1. On the other hand, C[B1, B2]
≈ C ′[B1, B2]. This is
because there is an adversary A′ for the processes C[B1, B2] and C ′[B1, B2] such
that the trace outputting h(k1), h(k1) occurs with probability 1 in C ′[B1, B2]A

′

and with probability 1
2 in C[B1, B2]A

′
. The second trace of C[B1, B2]A

′
outputs

h(k1), h(k2) with probability 1
2 .

The problematic behavior arising in Example 4 occurs when basic processes
reveal equalities among the shared secrets from the context. Revealing these equal-
ities may, in some cases, allow the attacker to infer the result of a private coin toss.
Consequently, our composition theorem must require contexts to remain secure
even when such equalities are revealed. As was the case with composition con-
texts, our result also relies on a notion of equivalence between basic processes B
and B′ that contain free variables. Universal quantification over the free variables
results in a non-trivial computational overhead. However, we are able to show that
when B is not trace equivalent to B′ under some instantiation of the free variables,
then B and B′ can also be shown to be trace in-equivalent when all of the free vari-
ables take the same value. This allows us to prove a stronger result by requiring
a weaker condition on the equivalence between B and B′. Another subtle compo-
nent of Theorem 1 is condition 1, which allows each basic process to share only a
single variable with the context. As demonstrated by Example 5, the composition
theorem does not hold when this restriction is relaxed.

Example 5. Consider the context and processes below.

C[�] = νk1 · νk2 · νk3 · (x1 := k1) · (x2 := k2) · (x3 := k3) · �
B1 = out(senc(x1, x3)) · out(senc(x1, x3))
B2 = out(senc(x1, x3)) · out(senc(x1, x2)).

Modular Verification of Protocol Equivalence in the Presence of Randomness 199

For B0 = νk · (x1 := k) · (x2 := k) · (x3 := k) we have B0 · B1 ≈ B0 · B2 but
C[B1]
≈ C[B2]. Indeed, observe that B0 ·B1 and B0 ·B2 have a single trace that
outputs senc(k, k), senc(k, k). However, an adversary that executes C[B1], C[B2]
to completion produces a trace that outputs senc(k1, k3), senc(k1, k3) for C[B1]
and a trace that outputs senc(k1, k3), senc(k1, k2) for C[B2].

We now give a sketch of the proof of Theorem 1.

3.4 Proof Sketch for Theorem 1

The result is achieved by showing that if C[B1, ..., Bn] is not trace equiva-
lent to C ′[B′

1, ..., B
′
n] then one of conditions 5 or 6 from Theorem 1 is vio-

lated. More specifically, we use an offending trace t under an attacker A for
C[B1, ..., Bn]
≈ C ′[B′

1, ..., B
′
n], i.e. a trace such that prob(t, C[B1, ..., Bn]A)
=

prob(t, C ′[B′
1, ..., B

′
n]A), to construct a trace t′ that witnesses a violation of con-

dition 5 or 6 from Theorem 1. We can show that if C[B1, ..., Bn]
≈ C ′[B′
1, ..., B

′
n]

then
C[out(�(x1)), ..., out(�(xn))]|B0 · (B1|...|Bn)

≈
C ′[out(�(x1)), ..., out(�(xn))]|B′

0 · (B′
1|...|B′

n)
(1)

where B0 and B′
0 are processes that bind {x1, ..., xn} and {x′

1, ..., x
′
n}, respec-

tively. This transformation is a non-trival extension of a result from [3,27]
which allows a process P |Q, where P and Q share common variables but are
over disjoint signatures, to be transformed into an “equivalent” process P ′|Q′

where variables are no longer shared. Variables of Q are re-initialized in Q′

according to the equational equivalences they respect in an execution of P |Q.
Unlike nondeterministic processes, where executions are sequences, executions
in randomized processes form a tree where variables can receive different val-
ues in different branches of the tree. From Eq. 1, we can apply Lemma 1 to
achieve either C[out(�(x1)), ..., out(�(xn))]
≈ C ′[out(�(x1)), ..., out(�(xn))] or
B0 · (B1|...|Bn)
≈ B′

0 · (B′
1|...|B′

n). In the former case, we have contradicted
condition 5 of Theorem 1. If we achieve B0 · (B1|...|Bn)
≈ B′

0 · (B′
1|...|B′

n), we
additionally need to transform an adversary that witnesses the in-equivalence
to an adversary that witnesses the in-equivalence νk · (x1 := k) · ... · (xn :=
k) · (B1|...|Bn)
≈ νk · (x′

1 := k) · ... · (x′
n := k) · (B′

1|...|B′
n). The presence of ran-

domness makes this transformation tricky, as illustrated by Example 6 below.

Example 6. Define B0, B
′
0 = νk1 · νk2 · (x1 := k1) · (x2 := k2), B1, B

′
1 =

out(h(x1)), B2 = in(y) ·(out(y)+ 1
2
out(h(x2))) and B′

2 = in(y) ·(out(h(x2))+ 1
2

out(h(x2))). Consider the adversary A for B0 · (B1|B2) (resp. B′
0 · (B′

1|B′
2)) that

forwards the output of B1 (resp. B′
1) to B2 (resp. B′

2). A is a witness to the
in-equivalence of B0 · (B1|B2) and B′

0 · (B′
1|B′

2), but it does not witness the in-
equivalence of νk1 ·(x1 := k1)·(x2 := k1)·(B1|B2) and νk1 ·(x1 := k1)·(x2 := k1)·
(B1|B′

2). We can, however, transform the attacker A to an attacker A′ that wit-
nesses νk1 ·(x1 := k1) ·(x2 := k1) ·(B1|B2)
≈ νk1 ·(x1 := k1) ·(x2 := k1) ·(B1|B′

2).
The details of this transformation can be found in the full version [9].

200 M.S. Bauer et al.

3.5 Shared Primitives Through Tagging

Theorem 1 requires that the context and basic processes don’t share crypto-
graphic primitives. To extend the result to processes that allow components of
the composition to share primitives, such as functions for encryption, decryption
and hashing, we utilize a syntactic transformation of a protocol and its signa-
ture called tagging. When a protocol is tagged, a special identifier is appended
to each of the messages that it outputs. On input, the protocol recursively tests
all subterms of the input message to verify their tags are consistent with the pro-
tocol’s tag. If this requirement is not met, the protocol deadlocks. The details of
our tagging scheme, which are similar to the ones given in [3,27], can be found
in the full version [9]. In Theorem 2, we show that an attack on a composition
of two tagged protocols originating from the same signature can be mapped to
an attack on the composition of the protocols when the signatures are explicitly
made disjoint. Given a context C[�1, ...,�n] and basic processes B1, ..., Bn we
write �C[B1, ..., Bn]� to denote the tagged version of C[B1, ..., Bn]. Our tagging
result considers the fixed equational theory where Fsenc = {senc, sdec, h} and
Esenc = {sdec(senc(m, k), k) = m}. For this theory, we define a signature renam-
ing function d which transforms a context C over the signature (Fsenc, Esenc) to
a context Cd by replacing every occurrence of the function symbols senc, sdec
and h in C by sencd, sdecd and hd, respectively.

Theorem 2. Let C[�1, ...,�n] = νk1 · ... · νkm · (D1[�1]|...|Dn[�n]) (resp.
C ′[�1, ...,�n] = νk′

1 · ... · νk′
m · (D′

1[�1]|...|D′
n[�n])) be a context over Fsenc with

labels from Lc. Further let B1, ..., Bn (resp. B′
1, ..., B

′
n) be basic processes over

Fsenc with labels from Lb. For l1, ..., ln ∈ Lb and �
∈ Fb ∪ Fc, assume that the
following hold.

1. fv(C) = fv(C ′) = ∅, fv(Bi) = {xi} and fv(B′
i) = {x′

i}
2. vars(C) ∩ vars(Bi) = {xi} and vars(C ′) ∩ vars(B′

i) = {x′
i}

3. C[B1, ..., Bn] and C ′[B′
1, ..., B

′
n] are ground

4. C[B1, ..., Bn] |=E,1 secret(x1, ..., xn) and C ′[B′
1, ..., B

′
n] |=E,1 secret(x′

1, ..., x
′
n)

5. C[out(�(x1))l1 , ..., out(�(xn))ln] ≈ C ′[out(�(x1))l1 , ..., out(�(xn))ln]
6. νk·(x1 := k)·...·(xn := k)·(B1|...|Bn) ≈ νk·(x′

1 := k)·...·(x′
n := k)·(B′

1|...|B′
n)

Then �Cc[Bb
1, ..., B

b
n]� ≈ �(C ′)c[(B′

1)
b, ..., (B′

n)b]�.

4 Compositional Equivalence for Multi-session Protocols

In this section, we extend our composition result to protocols that can run
multiple sessions. Our focus will be on protocols that have a single occurrence of
the replication operator appearing in the context. This restriction simplifies the
statement of the results and proofs. However, it is possible to extend our results
to protocols with a more general framework for replication. Formally, a context
with replication is over the following grammar.

C[�1, ...,�m] :: = al1
1 · ... · aln

n ·!l(D1[�1]|...|Dm[�m])

Modular Verification of Protocol Equivalence in the Presence of Randomness 201

REPL
(!lP, ϕ, σ)

(τ,l)−−−→ δ(P (i)|!lP,ϕ,σ)

P (i) is relabeled freshly

Fig. 3. Replication semantics

where a ∈ {νx, (x := u)}. The semantics of this new replication operator are
given in Fig. 3, where i ∈ N is used to denoted the smallest previously unused
index. We will write P (i) to denote that process that results from renaming
each occurrence of x ∈ vars(P) to xi for i ∈ N. When P (i) is relabeled freshly
as in Fig. 3, the new labels must all belong to the same equivalence class (that
contains only those labels).

Our semantics imposes an explicit variable renaming with each application
of a replication rule. The reason for this is best illustrated through an example.
Consider the process !in(x) · P and the execution

(!in(x) · P, ∅, ∅) →∗ (in(x) · P |!in(x) · P,ϕ, {x �→ t} ∪ σ)

where variable renaming does not occur. This execution corresponds to the
attacker replicating !in(x) · P , running one instance of in(x) · P and then repli-
cating !in(x) · P again. Note that, because x is bound at the end of the above
execution, the semantics of the input action cause the process to deadlock at
in(x). In other words, an attacker can only effective run one copy of !in(x) · P
for any process of the form !in(x) · P .

Our composition result must prevent messages from one session of a process
from being confused with messages from another sessions. We achieve this by
introducing an occurrence of νλ directly following the replication operator. This
freshly generated “session tag” will then be used to augment tags occurring in the
composed processes. Recall that for any POMDPs M1 and M2, if M1
≈ M2 there
exists an adversary A and trace t such that prob(t, [[M1]]A) = prob(t, [[M2]]A).
This trace t must have finite length and subsequently M1,M2 can only per-
form a bounded number of replication actions in t. This means one can trans-
form A, t,M1,M2 to an adversary A′, trace t′ and POMDPs M ′

1,M
′
2 such that

prob(t′, [[M ′
1]]

A′
) = prob(t′, [[M ′

2]]
A′

) where M ′
1,M

′
2 do not contain replication.

This is achieved by syntactically unrolling the replication operator |t| times in
M1 (resp. M2). In the resulting process, every unrolling of M1 (resp. M2) gener-
ates a new parallel branch with fresh labels coming from a fresh equivalence class.
The result below is a consequence of the preceding observation and Theorem 2.

Theorem 3. Let C[�1, ...,�n] = νk1 · ... · νkm·!νλ · (D1[�1]|...|Dn[�n]) (resp.
C ′[�1, ...,�n] = νk′

1 · ... · νk′
m·!νλ · (D′

1[�1]|...|D′
n[�n])) be a context over Fsenc

with labels from Lc. Further let B1, ..., Bn (resp. B′
1, ..., B

′
n) be basic processes

over Fsenc with labels from Lb. For l1, ..., ln ∈ Lb and �
∈ Fb ∪ Fc, assume that
the following hold.

202 M.S. Bauer et al.

1. fv(C) = fv(C ′) = ∅, fv(Bi) = {xi} and fv(B′
i) = {x′

i}
2. vars(C) ∩ vars(Bi) = {xi} and vars(C ′) ∩ vars(B′

i) = {x′
i}

3. C[B1, ..., Bn] and C ′[B′
1, ..., B

′
n] are ground

4. λ
∈ vars(C[B1, ..., Bn]) ∪ vars(C ′[B′
1, ..., B

′
n])

5. C[B1, ..., Bn] |=E,1 secret(x1, ..., xn) and C ′[B′
1, ..., B

′
n] |=E,1 secret(x′

1, ..., x
′
n)

6. C[out(�(x1))l1 , ..., out(�(xn))ln] ≈ C ′[out(�(x1))l1 , ..., out(�(xn))ln]
7. νk·(x1 := k)·...·(xn := k)·!(B1|...|Bn) ≈ νk·(x′

1 := k)·...·(x′
n := k)·!(B′

1|...|B′
n)

Then �νk1 · ... · νkm·!νλ · (D(c,λ)
1 [B(b,λ)

1] | ... | D
(c,λ)
n [B(b,λ)

n])� ≈ �νk′
1 · ... ·

νk′
m·!νλ · ((D′

1)
(c,λ)[(B′

1)
(b,λ)] | ... | (D′

n)(c,λ)[(B′
n)(b,λ)])�.

Notice that Theorem 3 again requires the fixed equational theory Fsenc with
primitives for symmetric encryption/decription and hashes.

5 Conclusions and Future Work

We have considered the problem of composition for randomized security proto-
cols, initially analyzing protocols with a bounded number of sessions. Formally,
consider trace equivalent protocols P and Q over equational theory Ea, and trace
equivalent protocols P ′ and Q′ over equational theory Eb. We showed that the
composition of P and P ′ with Q and Q′ preserves trace equivalence, provided Ea

and Eb are disjoint. The same result applies to the case when both equational
theories coincide and consist of symmetric encryption/decryption and hashes,
provided each protocol message is tagged with a unique identifier for the protocol
to which it belongs. Finally, we show that the latter result extends to protocols
with an unbounded number of sessions, as long as messages from each session
of the protocol are tagged with a unique session identifier. For future work, we
plan to investigate protocols that allow dis-equality tests amongst messages. We
also plan to investigate the composition problem when the equational theories
coincide and contain other cryptographic primitives in addition to symmetric
encryption/decryption and hashes.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
ACM SIGPLAN Not. 36(3), 104–115 (2001)

2. Andova, S., Cremers, C.J.F., Gjøsteen, K., Mauw, S., Mjølsnes, S.F., Radomirovic,
S.: A framework for compositional verification of security protocols. Inf. Comput.
206(2–4), 425–459 (2008)

3. Arapinis, M., Cheval, V., Delaune, S.: Verifying privacy-type properties in a mod-
ular way. In: CSF, pp. 95–109 (2012)

4. Arapinis, M., Cheval, V., Delaune, S.: Composing security protocols: from con-
fidentiality to privacy. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol.
9036, pp. 324–343. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46666-7 17

5. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied pi calculus. In: CSF, pp. 107–121 (2010)

http://dx.doi.org/10.1007/978-3-662-46666-7_17

Modular Verification of Protocol Equivalence in the Presence of Randomness 203

6. Arapinis, M., Delaune, S., Kremer, S.: From one session to many: dynamic tags
for security protocols. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008.
LNCS (LNAI), vol. 5330, pp. 128–142. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-89439-1 9

7. Basin, D., Dreier, J., Sasse, R.: Automated symbolic proofs of observational equiv-
alence. In: CCS, pp. 1144–1155 (2015)

8. Baudet, M.: Deciding security of protocols against off-line guessing attacks. In:
CCS, pp. 16–25 (2005)

9. Bauer, M.S., Chadha, R., Viswanathan, M.: Modular verification of protocol equiv-
alence in the presence of randomness. http://hdl.handle.net/2142/96261

10. Bauer, M.S., Chadha, R., Viswanathan, M.: Composing protocols with randomized
actions. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 189–
210. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49635-0 10

11. Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: A fair protocol for signing
contracts. IEEE Trans. Inf. Theor. 36(1), 40–46 (1990)

12. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. In: LICS, pp. 331–340 (2005)

13. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

14. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, P., Segala,
R.: Task-structured probabilistic I/O automata. In: Workshop on Discrete Event
Systems (2006)

15. Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual
authentication and key-exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006). doi:10.1007/
11681878 20

16. Chadha, R., Sistla, A., Viswanathan, M.: Model checking concurrent programs
with nondeterminism and randomization. In: FSTTCS, pp. 364–375 (2010)

17. Chadha, R., Sistla, A.P., Viswanathan, M.: Verification of randomized security
protocols. In: LICS (2017)

18. Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the sched-
uler. Inf. Comput. 208, 694–715 (2010)

19. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptology 1(1), 65–75 (1988)

20. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

21. Cheung, L.: Reconciling nondeterministic and probabilistic choices. Ph.D. thesis,
Radboud University of Nijmegen (2006)

22. Chevalier, C., Delaune, S., Kremer, S.: Transforming password protocols to com-
pose. In: FSTTCS, pp. 204–216 (2011)

23. Chevalier, Y., Rusinowitch, M.: Decidability of equivalence of symbolic derivations.
J. Autom. Reasoning 48, 263–292 (2010)

24. Cortier, V., Delaitre, J., Delaune, S.: Safely composing security protocols. In:
Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 352–363.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-77050-3 29

25. Cortier, V., Delaune, S.: A method for proving observational equivalence. In: CSF,
pp. 266–276 (2009)

26. Cortier, V., Delaune, S.: Safely composing security protocols. Formal Methods
Syst. Des. 34(1), 1–36 (2009)

27. Ciobâcă, Ş., Cortier, V.: Protocol composition for arbitrary primitives. In: CSF,
pp. 322–336 (2010)

http://dx.doi.org/10.1007/978-3-540-89439-1_9
http://dx.doi.org/10.1007/978-3-540-89439-1_9
http://hdl.handle.net/2142/96261
http://dx.doi.org/10.1007/978-3-662-49635-0_10
http://dx.doi.org/10.1007/11681878_20
http://dx.doi.org/10.1007/11681878_20
http://dx.doi.org/10.1007/978-3-540-77050-3_29

204 M.S. Bauer et al.

28. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and com-
positional logic for security protocols. J. Comput. Secur. 13(3), 423–482 (2005)

29. de Alfaro, L.: The verification of probabilistic systems under memoryless partial
information policies is hard. In: PROBMIV (1999)

30. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435–487 (2009)

31. Delaune, S., Kremer, S., Ryan, M.D.: Composition of password-based protocols.
In: CSF, pp. 239–251 (2008)

32. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. Technical report, DTIC Document (2004)

33. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theor.
29(2), 198–208 (1983)

34. Dreier, J., Duménil, C., Kremer, S., Sasse, R.: Beyond subterm-convergent equa-
tional theories in automated verification of stateful protocols. In: Maffei, M., Ryan,
M. (eds.) POST 2017. LNCS, vol. 10204, pp. 117–140. Springer, Heidelberg (2017).
doi:10.1007/978-3-662-54455-6 6

35. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties, pp. 1–50 (2009)

36. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

37. Garcia, F., van Rossum, P., Sokolova, A.: Probabilistic Anonymity and Admissible
Schedulers. CoRR, abs/0706.1019 (2007)

38. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137–150. Springer, Heidelberg
(1996). doi:10.1007/3-540-61996-8 37

39. Goubault-Larrecq, J., Palamidessi, C., Troina, A.: A probabilistic applied Pi–
calculus. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 175–190. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-76637-7 12

40. Gunter, C.A., Khanna, S., Tan, K., Venkatesh, S.S.: Dos protection for reliably
authenticated broadcast. In: NDSS (2004)

41. Guttman, J.D.: Authentication tests and disjoint encryption: a design method for
security protocols. J. Comput. Secur. 12(3–4), 409–433 (2004)

42. Guttman, J.D.: Cryptographic protocol composition via the authentication tests.
In: Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 303–317. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00596-1 22

43. He, C., Sundararajan, M., Datta, A., Derek, A., Mitchell, J.C.: A modular correct-
ness proof of IEEE 802.11i and TLS. In: CCS, pp. 2–15 (2005)

44. Hirschi, L., Baelde, D., Delaune, S.: A method for verifying privacy-type properties:
the unbounded case. In: SP, pp. 564–581 (2016)

45. Hoare, C.A.R.: Communicating Sequential Processes, vol. 178 (1985)
46. Kwiatkowska, M., Norman, G., Parker, D.: Prism: probabilistic symbolic model

checker. In: International Conference on Modelling Techniques and Tools for Com-
puter Performance Evaluation, pp. 200–204 (2002)

47. Meadows, C.: Formal methods for cryptographic protocol analysis: emerging issues
and trends. IEEE J. Sel. Areas Commun. 21(1), 44–54 (2003)

48. Meadows, C.: Emerging issues and trends in formal methods in cryptographic
protocol analysis: twelve years later. In: Mart́ı-Oliet, N., Ölveczky, P.C., Talcott, C.
(eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 475–492. Springer,
Cham (2015). doi:10.1007/978-3-319-23165-5 22

49. Mödersheim, S., Viganò, L.: Sufficient conditions for vertical composition of secu-
rity protocols. In: CCS, pp. 435–446 (2014)

http://dx.doi.org/10.1007/978-3-662-54455-6_6
http://dx.doi.org/10.1007/3-540-61996-8_37
http://dx.doi.org/10.1007/978-3-540-76637-7_12
http://dx.doi.org/10.1007/978-3-642-00596-1_22
http://dx.doi.org/10.1007/978-3-319-23165-5_22

Modular Verification of Protocol Equivalence in the Presence of Randomness 205

50. Pfitzmann, B., Pfitzmann, A.: How to break the direct RSA-implementation of
mixes. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol.
434, pp. 373–381. Springer, Heidelberg (1990). doi:10.1007/3-540-46885-4 37

51. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. TISSEC 1(1),
66–92 (1998)

52. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
is NP-complete. In: CSFW, pp. 174–190 (2001)

53. Ryan, P.Y.A., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter: a
voter-verifiable voting system. IEEE Trans. Inf. Forensics Secur. 4(4), 662–673
(2009)

54. Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated analysis of diffie-hellman
protocols and advanced security properties. In: CSF, pp. 78–94 (2012)

55. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Bertino, E., Kurth, H.,
Martella, G., Montolivo, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218.
Springer, Heidelberg (1996). doi:10.1007/3-540-61770-1 38

56. Shmatikov, V.: Probabilistic analysis of an anonymity system. J. Comput. Secur.
12(3–4), 355–377 (2004)

http://dx.doi.org/10.1007/3-540-46885-4_37
http://dx.doi.org/10.1007/3-540-61770-1_38

Non-interactive Provably Secure Attestations
for Arbitrary RSA Prime Generation Algorithms

Fabrice Benhamouda1, Houda Ferradi2, Rémi Géraud3(B),
and David Naccache3

1 IBM Research, Yorktown Heights, USA
fabrice.benhamouda@normalesup.org

2 NTT Secure Platform Laboratories, 3-9-11 Midori-cho,
Musashino-shi, Tokyo 180-8585, Japan

ferradi.houda@lab.ntt.co.jp
3 Département d’informatique de l’ENS, École normale supérieure,

CNRS, PSL Research University, Paris, France
{remi.geraud,david.naccache}@ens.fr

Abstract. RSA public keys are central to many cryptographic applica-
tions; hence their validity is of primary concern to the scrupulous cryp-
tographer. The most relevant properties of an RSA public key (n, e)
depend on the factors of n: are they properly generated primes? are
they large enough? is e co-prime with φ(n)? etc. And of course, it is out
of question to reveal n’s factors.

Generic non-interactive zero-knowledge (NIZK) proofs can be used to
prove such properties. However, NIZK proofs are not practical at all.
For some very specific properties, specialized proofs exist but such ad
hoc proofs are naturally hard to generalize.

This paper proposes a new type of general-purpose compact non-
interactive proofs, called attestations, allowing the key generator to con-
vince any third party that n was properly generated. The proposed con-
struction applies to any prime generation algorithm, and is provably
secure in the Random Oracle Model.

As a typical implementation instance, for a 138-bit security, verify-
ing or generating an attestation requires k = 1024 prime generations.
For this instance, each processed message will later need to be signed or
encrypted 14 times by the final users of the attested moduli.

Keywords: RSA key generation · Random oracle · Non-interactive proof

1 Introduction

When provided with an RSA public key n, establishing that n is hard to factor
might seem challenging: indeed, most of n’s interesting properties depend on its
secret factors, and even given good arithmetic properties (large prime factors,
etc.) a subtle backdoor may still be hidden in n or e [1,27,28,30,31].

Several approaches, mentioned below, focused on proving as many interesting
properties as possible without compromising n. However, such proofs are limited
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 206–223, 2017.
DOI: 10.1007/978-3-319-66402-6 13

Non-interactive Provably Secure Attestations 207

in two ways: first, they might not always be applicable — for instance [2,3,19]
cannot prove that (n, e) define a permutation when e is too small. In addition,
these ad hoc proofs are extremely specialized. If one wishes to prove some new
property of n’s factors, that would require modelling this new property and
looking for a proper form of proof.

This paper proposes a new kind of general-purpose compact non-interactive
proof ωn, called attestation. An attestation allows the key generator to convince
any third party that n was properly generated. The corresponding construction,
called an attestation scheme, applies to any prime generation algorithm G(1P , r)
where r denotes G’s random tape, and P the size of the generated primes. The
method can, for instance, attest that n is composed of primes as eccentric as
those for which �9393 sin4(p3)� = 3939.

More importantly, our attestation scheme provides the first efficient way to
prove that (n, e) defines a permutation for a small e, by making G only output
primes p such that e is coprime with p − 1.

Our construction is provably secure in the Random Oracle Model.
We present two variants: In the first, a valid attestation ωn ensures that

n contains at least two P -bit prime factors generated by G (if n is honestly
generated, n must contain � prime factors, for some integer � ≥ 2 depending on
the security parameter). In the second variant, a valid attestation ωn covers a
set of moduli n = (n1, . . . , nu) and ensures that at least one of these ni is a
product of two P -bit prime factors generated by G.

Both variants are unified into a general attestation scheme (i.e., use several
multi-factor moduli) to encompass the entire gamut of tradeoffs offered by the
concept.

Prior Work. A long thread of papers deals with proving number-theoretic
properties of composite moduli. The most general (yet least efficient) of these use
non-interactive zero-knowledge (NIZK) proof techniques [8,11,15]. Recent work
by Groth [16] establishes that there is a perfect NIZK argument for n being a
properly generated RSA modulus. We distinguish between these generic proofs
that can, in essence, prove anything provable [4] and ad hoc methods allowing
to prove proper modulus generation in faster ways albeit for very specific Gs.

The first ad hoc modulus attestation scheme was introduced by Van de Graff
and Peralta [26] and consists in proving that n is a Blum integer without reveal-
ing its factors. Boyar, Friedl and Lund [7] present a proof that n is square-free.
Leveraging [7,26], Gennaro, Micciancio and Rabin [14] present a protocol prov-
ing that n is the product of two “quasi-safe” primes1. Camenisch and Michels
[9] give an NIZK proof that n is a product of two safe primes. Juels and Gua-
jardo [18] introduce a proof for RSA key generation with verifiable randomness.
Besides its complexity, [18]’s main drawback is that public parameters must
be published by a trustworthy authority (TTP). Several authors [5,10,21,22]
describe protocols proving that n is the product of two primes p and q, without
proving anything on p, q but their primality. Proving that n = pq is insufficient
1 A prime p is “quasi-safe” if p = 2ua + 1 for a prime u and some integer a.

208 F. Benhamouda et al.

to ascertain security (for instance, p may be too short). Hence, several authors
(e.g., [6,10,12,13,20,21]) introduced methods allowing to prove that p and q are
roughly of identical sizes.

This work takes an entirely different direction: Given any generation proce-
dure G, we prove that G has been followed correctly during the generation of
n. The new approach requires no TTPs, does not rely on n having any specific
properties and attests that the correct prime generation algorithm has been used
— with no restriction whatsoever on how this algorithm works.

As such, the concern of generating proper moduli (e.g. such that (N, e) define
a permutation, but what constitutes a “proper” modulus may depend on the
application) is entirely captured by the concern of choosing G appropriately.
Our work merely attests that G was indeed used.

Cryptographic applications of attested RSA moduli abound. We refer the
reader to [14] or [21] for an overview of typical applications of attested moduli. In
particular, such concerns are salient in schemes where an authority is in charge of
generating n (e.g., Fiat-Shamir or Guillou-Quisquater) and distributing private
keys to users, or in the design of factoring-based verifiable secret-sharing schemes.

Another context in which this work has its place is to protect against the
subversion of key generation procedures, as studied in e.g., [27,29–31]. A recent
effort in that direction is [24].

2 Outline of the Approach

The proposed attestation method is based on the following idea: fix k ≥ 2,
generate k random numbers r1, . . . , rk and define hi = H(i, ri) where H denotes
a hash function. Let pi = G(hi) and:

N =
k∏

i=1

pi

Define (X1,X2) = H′
2(N), where H′

2 is a hash function which outputs two
indices 1 ≤ X1 < X2 ≤ k. We later show how to construct such an H′

2. This
defines n = pX1 × pX2 and

ωn = {r1, r2, . . . , rX1−1, �, rX1+1, . . . , rX2−1, �, rX2+1, . . . , rk}

Here, a star symbol (�) denotes a placeholder used to skip one index. The data
ωn is called the attestation of n. The algorithm A used to obtain ωn is called an
attestator.

The attestation process is illustrated in Fig. 1: the choice of the ri determines
N , which is split into two parts: n and N/n. Splitting is determined by d, which
is the digest of N , and is hence unpredictable for the opponent.

Verifying the validity of such an attestation ωn is performed as follows: all
(non-star) values ri in ωn are fed to G to generate primes, that are multiplied
together and by n. This gives back N . If by hashing N and reading, as earlier,

Non-interactive Provably Secure Attestations 209

r1 h1 p1
...

...
...

rX1 hX1 pX1...
...

... N d = {X1, X2}
rX2 hX2 pX2...

...
...

rk hk pk

H(1, r1) G(h1)

H(X1, rX1) G(hX1)

H(X2, rX2) G(hX2)

H(k, rk) G(hk)

H′
2(N)×

Fig. 1. The approach used to generate and validate an attestation.

the digest of N (denoted d) as two values X1 and X2, we get the two exact starred
positions X1 and X2 in ωn, then ωn is valid; else ωn is invalid. The algorithm
V we just described is called a validator. It is very similar to the attestator A
mentioned above.

For a subtle reason, the ri’s are pre-processed into a set of values hi before
being fed into G. The values hi are generated by hashing the input ris with their
positions i. This serves two purposes: first, the hash welds together ri and its
position i in the list, which prevents the opponent from shuffling the pis to his
advantage; second, hashing prevents the opponent from manipulating the ri’s to
influence G’s output.

Evidently, as presented here, the method requires a very large k to achieve
a high enough security level. The attacker, who chooses X1,X2, is expected to
perform k(k − 1)/2 operations to succeed. We circumvent this limitation using
two techniques:

– The first technique uses � indices X1, . . . , X� and not only � = 2. In RSA,
security depends on the fact that n contains at least two properly formed
prime factors. Hence we can afford to shorten k by allowing more factors in
n. The drawback of using �-factor moduli is a significant user slow-down as
most factoring-based cryptosystems run in O(log3 n). Also, by doing so, we
prove that n contains a properly formed modulus rather than that n is a
properly formed modulus.

– A second strategy consists in using 2u indices to form u moduli n1, . . . , nu.
Here, each user will be given u moduli and will process2 each message u times.
Thereby, total signature size and slow-down are only linear in �. Encryption
is more tricky: while for properly signing a message it suffices that at least
one ni is secure, when encrypting a message all ni must be secure. Hence,
to encrypt, the sender will pick u session keys κi, encrypt each κi using ni,
and form the global session-key κ = κ1 ⊕ . . . ⊕ κu. The target message will
then be encrypted (using a block-cipher) using κ. In other words, it suffices

2 Sign, verify, encrypt, or decrypt.

210 F. Benhamouda et al.

to have at least one factoring-resistant ni to achieve message confidentiality.
Interestingly, to be secure a signature conceptually behaves as a logical “or”,
while encryption behaves as a logical “and”.

The size of ωn is also a concern in this simple outline. Indeed, as presented here
ωn is O(kR) bits large, where R represents the bitsize of the ri

3. Given the previ-
ous remark on k being rather large, this would result in very large attestations.
Luckily, it turns out that attestation size can be reduced to O(R log k) using
hash trees, as we explain in Sect. 5.

Note. Multiplication in N is one implementation option. All we need is a com-
pletely multiplicative operation. For instance, as we have:

(
a

N

)
=

(
a

p1

)(
a

p2

)
· · ·

(
a

pk

)
,

the hash of the product of the Jacobi symbols of the pi with respect to the first
primes aj = 2, 3, 5, . . .4 can equally serve as an index generator.

Before we proceed note that when generating a complete RSA key pair (n, e),
it is important to ascertain that gcd(e, φ(n)) = 1. This constraint is easy to
integrate into G5. All in all, what we prove is that with high probability, the key
was generated by the desired algorithm G, whichever this G happens to be.

3 Model and Analysis

3.1 Preliminaries and Notations

We now formally introduce the tools necessary to rigorously describe and analyse
the method sketched in Sect. 2.

Throughout this paper, λ will denote a security parameter. The expression
polynomial time will always refer to λ. The construction uses two cryptographic
hash functions: a classical hash function H : {0, 1}∗ → {0, 1}R and a second
hash function H′

d : {0, 1}∗ → Sd where Sd is the set of subsets of {1, . . . , k} of
size d (for some positive integer d and k). H′ can be constructed from a classical
hash function using an unranking function [25] (see full version of this paper).
Both hash functions will be modelled as random oracles in the security analysis.

Let k ≥ 2. Moreover our attestation and validation algorithms always implic-
itly take λ as input. We denote by |a| the bitsize of a.

Let G(1P , r) be a polynomial-time algorithm which, on input of a unary size
P and of a random seed r ∈ {0, 1}R produces a prime or a probably prime p of

3 Because G may destroy entropy, R must be large enough to make the function
G(H(i, r)) collision resistant.

4 This product is actually an aj-wise exclusive-or.
5 A simple way to do so consists in re-running G with ri‖j (instead of ri) for j = 1, 2, . . .

until gcd(pi − 1, e) = 1.

Non-interactive Provably Secure Attestations 211

size P . The argument 1P is often omitted, for the sake of simplicity. The size
P of the primes is supposed to be a function of λ. We write r1

$← {0, 1}R to
indicate that the seed r1 is chosen uniformly at random from {0, 1}R.

An attestation scheme for G is a pair of two algorithms (A,V), where

– A is an attestation algorithm which takes as input k random entries
((r1, . . . , rk) ∈ {0, 1}R, in the sequel) and which outputs a tuple of mod-
uli n = (n1, . . . , nu) along with a bitstring ωn, called an attestation; u and k
are integer parameters depending on λ; when u = 1, n1 is denoted n;

– V is a validation algorithm which takes as input a tuple of moduli n =
(n1, . . . , nu) together with an attestation ωn. V checks ωn, and outputs True
or False.

An attestation scheme must comply with the following properties:

– Randomness. If r1, . . . , rk are independent uniform random values, A(1λ, r1,
. . . , rk) should output a tuple of moduli n = (n1, . . . , nu) where each ni is
the product of � random primes generated by G. The positive integer � ≥ 2 is
a parameter depending on λ. More formally the two following distributions
should be statistically indistinguishable:
{
n = (n1, . . . , nu)

∣∣∣∣
(r1, . . . , rk) $← {0, 1}R

(n1, . . . , nu, ωn) ← A(r1, . . . , rk)

}

{
n = (n1, . . . , nu)

∣∣∣∣
(r1, . . . , r�u) $← {0, 1}R

n1 ← G(r1) · · · G(r�), . . . , nu ← G(r(u−1)�+1) · · · G(ru�)

}

– Correctness. The validator V always accepts an attestation honestly generated
by the attestator A. More precisely, for all r1, . . . , rk:

V (A(1λ, r1, . . . , rk)
)

= True.

– Soundness. No polynomial-time adversary F can output (with non-negligible
probability) a tuple n = (n1, . . . , nu) and a valid attestation ωn such that no
ni contains at least two prime factors generated by G with two distinct random
seeds. More formally, for any polynomial-time adversary F , the soundness
advantage Advsnd(F) defined as

Pr

⎡
⎣(n = (n1, . . . , nu), ωn)

$← F(1λ)

∣∣∣∣∣∣
V(n1, . . . , nu, ωn) = True and
∀i = 1, . . . , u, �s1, s2 ∈ {0, 1}R,

s1 �= s2 and G(s1) · G(s2) divides ni

⎤
⎦

is negligible in λ.
– Non-revealing. We formalise the property than an attestation does not leak

sensitive information about the attested modulus as follows: An attestation
algorithm A is said to be non-revealing if, for any n, any PPT adversary F
and any computable property P (n) ∈ {0, 1} of n alone, the advantage of F
in computing P (n) knowing the output ωn of A is at most negligibly higher
than without knowing ωn.

212 F. Benhamouda et al.

Table 1. Summary of the various parameters

λ Security parameter (all the other parameters are function of λ)

P Size of prime numbers pi generated by G
R Size of the seed used by G to generate a prime number

k Number of primes generated by the attestator A, which is the dominating cost
of A

u Number of moduli output by A (u = 1 in the multi-prime variant, and u ≥ 2 in
the multi-modulus variant)

� Number of factors of each modulus ni: |ni| = �P

We remark that when it is hard to find two seeds s1 and s2 such that G(s1) =
G(s2), then soundness basically means that one of the ni’s contains a product of
two distinct primes generated by G. In addition, when � = 2, if V rejects moduli
of size different from 2P (the size of an honestly generated modulus), one of the
ni’s is necessarily exactly the product of two prime factors generated by G.

Table 1 summarizes the various parameters used in our construction (all are
assumed to be function of λ). We now describe the following two variants:

– The multi-prime variant, where A only outputs one modulus (i.e., u = 1);
– The multi-modulus variant, where A outputs u ≥ 2 two-factor moduli (i.e.,

� = 2).

3.2 Multi-prime Attestation Scheme (u = 1)

We now describe the algorithms A and V that generate and verify, respectively,
an attestation along with an RSA public key, when u = 1 (only one modulus is
generated). Algorithms in this Section are given for � = 2 (corresponding to the
common case where n = pq) for the sake of clarity and as a warm-up.

Algorithms for arbitrary � are particular cases of the general algorithms
described in Sect. 3.4.

In Algorithms 1 and 2, a star symbol (�) denotes a placeholder used to skip
one index.

Generating an Attestation. The attestator A is described in Algorithm 1.
A calls H and G.

Non-interactive Provably Secure Attestations 213

Algorithm 1: Attestator A for the attestation scheme (u = 1, � = 2)
Input: r1, . . . , rk.
Output: n, ωn.

1. N ← 1
2. for all i ← 1 to k
3. hi ← H(i, ri)
4. pi ← G (hi)
5. N ← N × pi

6. X1, X2 ← H′
2(N)

7. ωn ← {r1, . . . , rX1−1, �, rX1+1, . . . , rX2−1, �, rX2+1, . . . , rk}
8. n ← pX1 × pX2

9. return n, ωn

In this setting, the attestation has size k. This size is reduced to log k using hash
trees as described in Sect. 5.

Verifying an Attestation. The validator V is described in Algorithm 2.

Algorithm 2: Validator V for the attestation scheme (u = 1, � = 2)
Input: n, ωn.
Output: True or False.

1. N ← n
2. for all ri �= � ∈ ωi

3. hi ← H(i, ri)
4. pi ← G (hi)
5. N ← N × pi

6. X1, X2 ← H′
2(N)

7. if rX1 = � and rX2 = � and #{ri ∈ ωn s.t. ri = �} = 2 and |n| = �P
8. return True
9. return False

Correctness: The his are generated deterministically, therefore so are the pis,
and their product times n yields the correct value of N .

Randomness: In the Random Oracle Model (for H), the scheme’s randomness
is proven later in Sect. 4.1, as a particular case of the general scheme’s soundness
(see Sect. 3.4).

3.3 Multi-modulus Attestation Scheme (u ≥ 2, � = 2)

The second variant consists in generating in a batch u = �/2 bi-factor moduli.
The corresponding attestator and validator are given in Algorithms 3 and 4.

214 F. Benhamouda et al.

Algorithm 3: Attestator A for the attestation scheme (u ≥ 2, � = 2)
Input: r1, . . . , rk.
Output: n = (n1, . . . , nu), ωn .

1. N ← 1
2. for i ← 1 to k
3. hi ← H(i, ri)
4. pi ← G (hi)
5. N ← N × pi

6. X1, . . . , X2u ← H′
2u(N)

7. ωn ← {r1, . . . , rX1−1, �, rX1+1, . . . , rXu�−1, �, rXu�+1, . . . , rk}
8. for j ← 1 to u
9. nj ← pX2j × pX2j+1

10. return n = (n1, . . . , nu), ωn

Algorithm 4: Validator V for the attestation scheme (u ≥ 2, � = 2)
Input: n = (n1, . . . , nu), ωn .
Output: True or False

1. N ← n1 × · · · × nu

2. for ri �= � ∈ ωn

3. hi ← H(i, ri)
4. pi ← G (hi)
5. N ← N × pi

6. X1, . . . , X2u ← H′
2u(N)

7. if rj = � for all j = 1 to u and #{ri s.t. ri = �} = 2u and |n1| = · · · = |nu| =
2P

8. return True
9. return False

3.4 General Attestation Scheme

Algorithms 5 and 6 describe our general attestation scheme, for any u ≥ 1 and
� ≥ 2. The previous multi-prime and multi-modulus schemes are illustrative
particular cases of this scheme.

The correctness and randomness arguments are similar to those of Sect. 3.2.
In addition, the attestation has size k. This size is brought down to �u log k using
hash-trees as described in Sect. 5.

Non-interactive Provably Secure Attestations 215

Algorithm 5: Attestator A for the general scheme (u ≥ 1, � ≥ 2)
Input: r1, . . . , rk.
Output: n = (n1, . . . , nu), ωn .

1. N ← 1
2. for i ← 1 to k
3. hi ← H(i, ri)
4. pi ← G (hi)
5. N ← N × pi

6. X1, . . . , Xu� ← H′
u�(N)

7. ωn ← {r1, . . . , rX1−1, �, rX1+1, . . . , rXu�−1, �, rXu�+1, . . . , rk}
8. for j ← 1 to u
9. nj ← pX(�−1)j+1 × · · · × pX�j

10. return n = (n1, . . . , nu), ωn

Algorithm 6: Validator V for the general scheme (u ≥ 1, � ≥ 2)
Input: n, ωn .
Output: True or False

1. N ← n1 × · · · × nu

2. for ri �= � in ωn

3. hi ← H(i, ri)
4. pi ← G (hi)
5. N ← N × pi

6. X1, . . . , X2u� ← H′
u�(N)

7. if rXj = � for j = 1 to � and #{ri s.t. ri = �} = u� and |n1| = · · · = |nu| = �P
8. return True
9. return False

4 Security and Parameter Choice

4.1 Security

In this section, we prove that for correctly chosen parameters u, �, k, the gen-
eral attestation scheme defined in Sect. 3.4 (Algorithms 5 and 6) is sound. We
recall that the two other properties required by an attestation scheme (namely
correctness and randomness) were proven in previous sections.

More formally, we have the following theorem:

Theorem 1. In the Random Oracle Model, the soundness advantage of an
adversary making qH queries to H and qH′ queries to H′ is at most:

(qH′ + 1) ·
(

�u

k − (� − 1)u + 1

)(�−1)u

+
qH · (qH − 1)

2
· pG−col ,

where pG−col is the probability that G(r) = G(s), when r, s
$← {0, 1}R.

We point out that pG−col must be small, otherwise the generated primes are
unsafe in any case.

216 F. Benhamouda et al.

Proof. First, we denote by Si the set of all prime numbers ρ = G(H(i, r)),
for which (i, r) has been queried to H (for i = 1, . . . , k). We remark that the
probability that two such primes ρ are equal is at most qH·(qH−1)

2 · pG−col. This
is the second term in the security bound.

In the sequel, we suppose that there are no collisions between the primes.
Thus the sets Si are pairwise disjoint.

Now assume that the adversary F has been able to forge a valid attestation
ωn for n = (n1, . . . , nu) and let N = β

∏u
i=1 ni, where β stands for the product

of all the primes generated from the elements of ωn. As the attestation is valid,
|n1| = · · · = |nu| = �P . Let N =

∏L
i=1 ρi be the prime decomposition of N . Up

to reordering the sets Si, there exists an integer t such that:

– none of S1, . . . , St contains a factor ρi;
– each of St+1, . . . , Sk contains a factor ρi. We arbitrarily choose a prime pi ∈ Si

for i = t + 1, . . . , k.

We distinguish two cases:

– if t < (�−1)·u, then this means that N is divisible by m = pt+1×· · ·×pk. But
we also know that N is divisible by n1 × · · · × nu. As |n1 × · · · × nu| = �uP ,
|m| = (k − t)P ≥ kP − (� − 1)uP + P , and |N | = kP , we have

|gcd(n1 · · · nu,m)| ≥ |n1 · · · nu| + |m| − |N | ≥ (u + 1)P.

This implies that n1 × · · · × nu is divisible by at least u + 1 distinct primes
among pt+1, . . . , pk. By the pigeon-hole principle, at least one of the ni’s is
divisible by two distinct primes generated as G(ri) for two distinct seeds ri

(seeds have to be distinct, otherwise the two primes would be equal).
– if t ≥ (�−1) ·u, the adversary will only be able to generate a valid attestation

if none of the indices X1, . . . , Xu� (obtained by H′
u�(N)) falls in {1, . . . , t}.

As {1, . . . , k} \ {X1, . . . , Xu�} is a random subset of {1, . . . , k} with k − �u
elements, the previous bad event (F is able to generate a valid attestation)
corresponds to this set being a subset of {t + 1, . . . , k} and happens with
probability:

(
k−t

k−�u

)
(

k
k−�u

) =
(k − t) · (k − t − 1) · · · (k − �u + 1)

k · (k − 1) · · · (k − �u + 1)
· (�u)!
(�u − t)!

≤ 1
(k − t + 1)t

· (�u)t ≤
(

�u

k − (� − 1)u + 1

)(�−1)·u
.

Since F makes qH′ queries to H′, we get the theorem’s bound (where the +1
corresponds to the query necessary to verify F ’s attestation if he did not do
it himself).
�

Theorem 2. In the programmable random oracle model, our attestations are
non-revealing.

Non-interactive Provably Secure Attestations 217

Proof. The proof strategy consists in replacing the hash functions by a random
oracle, resulting in attestations which are in particular completely unrelated to
the modulus’ factorization. We give the proof in the multi-prime � = 2 case. The
more general case is similar.

Let n be an RSA modulus, and let ωn = (r1, . . . , rk), where there are exactly
two values rX1 = rX2 = �, be an attestation.

Assume that there exists a PPT adversary A that can compute some property
P (n) from the knowledge of n and ωn, with access to the hash functions H and
H′

2, with non-negligible advantage. Since A uses H′
2 as a black box, we can

replace H′
2 by a programmable random oracle as follows.

We compute

N = n ×
k∏

i=1,i �=X1,X2

G (H (i, ri)) .

Now H′
2 is replaced by a random oracle that returns {X1,X2} if its input equals

N , and a couple of random distinct integers in {1, . . . , k} otherwise. In particular,
note that H′

2 is not given the factorization of n. With this choice of H′
2, ωn is a

valid attestation for n.
However, by design, ωn is chosen independently from n. Thus it is clear that

if A can compute P (n) from the knowledge of n and ωn, in fact A can compute
P (n) from n alone.
�

4.2 Typical Parameters and Complexity Analysis

Algorithms 5 and 6 have the following properties:

– Attestation size |ωn| = 2u�R log k, using the hash-tree compression technique
in Sect. 5

– λ-bit security approximatively when:
(

�u

k − (� − 1)u + 1

)(�−1)u

≤ 2−λ

(according to the soundness bound given by Theorem 1, omitting the second
part, which is negligible in practice);

– Attestation and validation times mostly consist in generating (or re-
generating) the k primes. Validation time is very slightly faster than attesta-
tion time.

5 Compressing the Attestation

As mentioned above, providing an attestation ωn “as is” might be cumbersome,
as it grows linearly with k. However, it is possible to drastically reduce ωn’s size
using the following technique.

The tree of Fig. 2 is constructed as follows: Let h be some public hash func-
tion. Each non-leaf node C of the tree has two children, whose value is computed

218 F. Benhamouda et al.

by rx0 ← h(rx, 0) and rx1 ← h(rx, 1) for the left child and the right child respec-
tively, where rx is the value of C. Given a root seed r, one can therefore recon-
struct the whole tree. The leaf values can now be used as ri’s for the attestation
procedure.

To compress ωn we proceed as follows:

– Get the indices X1 and X2 from the attestation procedure;
– Identify the paths from X1 up to the root, and mark them;
– Identify the paths from X2 up to the root, and mark them;
– Send the following information:

ωn = {for all leaves L, highest-ranking unmarked parent of L}

This requires revealing at most 2 log2 k intermediate higher-rank hashes6 instead
of the k−2 values required to encode ωn when naively sending the seeds directly.

Generalization to u� ≥ 2 is straightforward.

6 Parameter Settings

Table 2 shows typical parameter values illustrating different tradeoffs between
security (λ), attestation size (2u�R log k), modulus size (�), the number of
required moduli (u), and the work factors of A and V (ktG where tG is G’s aver-
age running time). Table 3 provides the same information for the multi-modulus
variant.

We (arbitrarily) consider that reasonable attestations and validations should
occur in less than ten minutes using standard HSM such as the IBM 4764 PCI-X
Cryptographic Coprocessor [17] or Oracle’s Sun Crypto Accelerator SCA 6000
[23]. When run with 7 threads in the host application, the 4764 generates on
average 2.23 key-pairs per second (1,024 bits). The SCA 6000 (for which average
key generation figures are not available) is about 11 times faster than the 4764
when processing RSA 1,024-bit keys. Hence we can assume that the SCA 6000
would generate about 24 key-pairs per second. We thus consider that average-
cost current-date HSMs generate 10 key-pairs per second, i.e., 20 primes per
second.

Spending ten minutes to generate or validate an attestation might not be an
issue given that attestation typically occurs only once during n’s lifetime. This
means that a “reasonable” attestation implementation would use k = 10 × 60 ×
20 = 12,000. This gives � = 10 and � = 6 for the multi-prime and multi-modulus
A (respectively) for λ = 128.

Note that in practical field deployments an attestation would be verified once
by a trusted Attestation Authority and replaced by a signature on n (or n).

6 I.e., we essentially only publish co-paths.

Non-interactive Provably Secure Attestations 219

r

r0 = h(r, 0)

r00 = h(r0, 0)

r000 = h(r00, 0)

r001 = h(r00, 1)

r01 = h(r0, 1)

r010 = h(r01, 0)

r011 = h(r01, 1)

r1 = h(r, 1)

r10 = h(r1, 0)

r100 = h(r10, 0)

r101 = h(r10, 1)

r11 = h(r1, 1)

r110 = h(r11, 0)

r111 = h(r11, 1)

Fig. 2. Compressing ωn using a hash tree.

220 F. Benhamouda et al.

Table 2. Some typical parameters for multi-factor attestation (u = 2). Each table
entry contains λ for the corresponding choice of k and �.

log2 k Time � = 6 � = 8 � = 10 � = 12 � = 14 � = 16 � = 18 � = 20

8 25 s 43 54 64 72 79 84 89 93

9 51 s 53 69 83 95 107 117 126 135

10 1.7 min 64 83 101 118 134 148 162 175

11 3.4 min 74 97 119 140 160 179 197 214

12 6.8 min 84 111 138 162 186 209 231 253

13 13.7 min 94 125 156 185 212 239 266 291

14 27.3 min 104 139 174 207 238 269 300 329

15 54.6 min 114 153 192 229 264 299 334 367

16 1.8 h 124 167 210 251 290 329 368 405

17 3.6 h 134 181 228 273 317 359 402 443

18 7.3 h 144 195 246 295 343 389 436 481

19 14.6 h 154 209 264 317 369 419 470 519

20 1.2 d 164 223 282 339 395 449 504 557

21 2.4 d 174 237 300 361 421 479 538 595

According to the bounds of Theorem 1, we have

λ ≥ −(� − 1)u log2

(
�u

k − (� − 1)u + 1

)

Table 3. Some typical parameters for multi-modulus attestation (u = �/2). Each cell
contains λ for the corresponding choice of k and �. Some choices of parameters are
incompatible and are hence indicated by a dash.

log2 k Time � = 6 � = 8 � = 10 � = 12 � = 14 � = 16 � = 18 � = 20 � = 30 � = 40 � = 50 � = 60 � = 70 � = 80

7 12 s 39 46 33 - - - - - - - - - - -

8 25 s 56 79 93 92 69 11 - - - - - - - -

9 51 s 71 109 145 173 191 194 176 131 - - - - - -

10 1.7min 87 138 193 246 295 338 371 391 169 - - - - -

11 3.4min 102 167 239 315 393 469 542 611 801 519 - - - -

12 6.8min 117 195 285 383 487 594 704 814 1315 1600 1470 655 - -

13 13.7min 132 223 330 450 579 717 861 1011 1786 2505 3036 3248 2989 2064

14 27.3min 147 251 375 516 671 838 1016 1204 2239 3342 4410 5347 6065 6468

15 54.6min 162 279 420 582 762 959 1170 1396 2682 4150 5705 7267 8768 10143

16 1.8 h 177 307 465 648 853 1079 1324 1586 3121 4944 6964 9109 11319 13540

17 3.6 h 192 335 511 714 944 1199 1477 1777 3558 5731 8205 10914 13800 16814

18 7.3 h 207 363 556 780 1036 1319 1630 1967 3994 6514 9439 12702 16248 20030

19 14.6 h 222 391 601 846 1127 1439 1783 2157 4430 7296 10668 14480 18679 23217

20 1.2 d 237 419 646 912 1218 1559 1936 2347 4865 8076 11895 16255 21102 26391

21 2.4 d 252 447 691 978 1309 1679 2089 2537 5300 8857 13121 18027 23521 29558

Non-interactive Provably Secure Attestations 221

Table 2 is read as follows: we can see that taking for instance � = 10 and
log2 k = 13 with the multi-factor version gives 156-bit security. In Table 3, taking
� = 10 and log2 k = 13 with the multi-modulus version gives 285-bit security.

7 Conclusion and Further Research

The construction described in this paper attests in a non-interactive way that n
was properly generated using an arbitrary (publicly known) prime generator G.
The attestation is compact and publicly verifiable. As a result, any entity can
convince herself of the modulus’ validity before using it. Even though compu-
tation times may seem unattractive, we stress that attestation generation and
verification only need to be performed once.

This work raises a number of interesting questions.
Committing to the primes pi’s might also be achieved using more involved

tools such as pairings. For instance, given the commitments gp1 and gp2 , it is
easy to check that e(gp1 , gp2) = e(g, g)n.

An interesting research direction consists in hashing N mod v (instead of N)
for some public v, to speed-up calculations. However, the condition v > n must
be enforced by design to prevent an opponent from using ωn as the “attestation”
of n + tv for some t ∈ N. Note that we did not adapt our security proof to this
(overly?) simplified variant.

In general, any strategy allowing to reduce k without impacting λ would
yield more efficient attestators. Also, generalizing and applying this approach to
the parameter generation of other cryptographic problems, such as the discrete
logarithm, may prove useful.

Finally, to date, no attestation method proves (without resorting to TTPs)
that the random tape used for forming the primes was properly drawn. Like all
other prior work articles cited in Sect. 1, we do not address this issue and assume
that the random number that feeds G was not biased by the attacker.

Acknowledgements. The first author was supported by the Defense Advanced
Research Projects Agency (DARPA) and Army Research Office (ARO) under Con-
tract No.W911NF-15-C-0236.

References

1. Anderson, R.: Practical RSA trapdoor. Electron. Lett. 29(11), 995–995 (1993)
2. Bellare, M., Yung, M.: Certifying cryptographic tools: the case of trapdoor per-

mutations. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 442–460.
Springer, Heidelberg (1993). doi:10.1007/3-540-48071-4 31

3. Bellare, M., Yung, M.: Certifying permutations: noninteractive zero-knowledge
based on any trapdoor permutation. J. Cryptology 9(3), 149–166 (1996)

4. Ben-Or, M., Goldreich, O., Goldwasser, S., H̊astad, J., Kilian, J., Micali, S.,
Rogaway, P.: Everything provable is provable in zero-knowledge. In: Goldwasser,
S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York (1990).
doi:10.1007/0-387-34799-2 4

http://dx.doi.org/10.1007/3-540-48071-4_31
http://dx.doi.org/10.1007/0-387-34799-2_4

222 F. Benhamouda et al.

5. Boneh, D., Franklin, M.: Efficient generation of shared RSA keys (extended
abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–
439. Springer, Heidelberg (1997). doi:10.1007/BFb0052253

6. Boudot, F.: Efficient proofs that a committed number lies in an interval. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer,
Heidelberg (2000). doi:10.1007/3-540-45539-6 31

7. Boyar, J., Friedl, K., Lund, C.: Practical zero-knowledge proofs: giving hints
and using deficiencies. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT
1989. LNCS, vol. 434, pp. 155–172. Springer, Heidelberg (1990). doi:10.1007/
3-540-46885-4 18

8. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

9. Camenisch, J., Michels, M.: Separability and efficiency for generic group signa-
ture schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430.
Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 27

10. Chan, A., Frankel, Y., Tsiounis, Y.: Easy come — easy go divisible cash. In:
Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer,
Heidelberg (1998). doi:10.1007/BFb0054154

11. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic, or: can
zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol.
1462, pp. 424–441. Springer, Heidelberg (1998). doi:10.1007/BFb0055745

12. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997). doi:10.1007/BFb0052225

13. Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly veri-
fiable secret sharing and its applications. In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg (1998). doi:10.1007/BFb0054115

14. Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statistical zero-
knowledge proof system for quasi-safe prime products. In: ACM CCS 1998, pp.
67–72. ACM Press, San Francisco, 2–5 November 1998

15. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements in zero-
knowledge, and a methodology of cryptographic protocol design. In: Odlyzko, A.M.
(ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987)

16. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). doi:10.1007/11761679 21

17. IBM: 4764 PCI-X Cryptographic Coprocessor. http://www-03.ibm.com/security/
cryptocards/pcixcc/overperformance.shtml

18. Juels, A., Guajardo, J.: RSA key generation with verifiable randomness. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 357–374. Springer,
Heidelberg (2002). doi:10.1007/3-540-45664-3 26

19. Kakvi, S.A., Kiltz, E., May, A.: Certifying RSA. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 404–414. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-34961-4 25

20. Liskov, M., Silverman, B.: A statistical-limited knowledge proof for secure RSA
keys (1998) (manuscript)

21. Mao, W.: Verifiable partial sharing of integer factors. In: Tavares, S., Meijer, H.
(eds.) SAC 1998. LNCS, vol. 1556, pp. 94–105. Springer, Heidelberg (1999). doi:10.
1007/3-540-48892-8 8

http://dx.doi.org/10.1007/BFb0052253
http://dx.doi.org/10.1007/3-540-45539-6_31
http://dx.doi.org/10.1007/3-540-46885-4_18
http://dx.doi.org/10.1007/3-540-46885-4_18
http://dx.doi.org/10.1007/3-540-48405-1_27
http://dx.doi.org/10.1007/BFb0054154
http://dx.doi.org/10.1007/BFb0055745
http://dx.doi.org/10.1007/BFb0052225
http://dx.doi.org/10.1007/BFb0054115
http://dx.doi.org/10.1007/11761679_21
http://www-03.ibm.com/security/cryptocards/pcixcc/overperformance.shtml
http://www-03.ibm.com/security/cryptocards/pcixcc/overperformance.shtml
http://dx.doi.org/10.1007/3-540-45664-3_26
http://dx.doi.org/10.1007/978-3-642-34961-4_25
http://dx.doi.org/10.1007/3-540-48892-8_8
http://dx.doi.org/10.1007/3-540-48892-8_8

Non-interactive Provably Secure Attestations 223

22. Micali, S.: Fair public-key cryptosystems. In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 113–138. Springer, Heidelberg (1993). doi:10.1007/
3-540-48071-4 9

23. Oracle: Sun Crypto accelerator SCA 6000. http://www.oracle.com/us/products/
servers-storage/036080.pdf

24. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power
of kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016,
Part II. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53890-6 2

25. Stanton, D., White, D.: Constructive Combinatorics. Springer, New York (1986)
26. van de Graaf, J., Peralta, R.: A simple and secure way to show the validity of your

public key. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 128–134.
Springer, Heidelberg (1988). doi:10.1007/3-540-48184-2 9

27. Young, A., Yung, M.: The dark side of “Black-Box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 8

28. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). doi:10.1007/3-540-69053-0 6

29. Young, A., Yung, M.: The prevalence of kleptographic attacks on discrete-log based
cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 264–
276. Springer, Heidelberg (1997). doi:10.1007/BFb0052241

30. Young, A., Yung, M.: Malicious cryptography: kleptographic aspects (invited
talk). In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 7–18. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30574-3 2

31. Young, A., Yung, M.: A space efficient backdoor in RSA and its applications. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 128–143. Springer,
Heidelberg (2006). doi:10.1007/11693383 9

http://dx.doi.org/10.1007/3-540-48071-4_9
http://dx.doi.org/10.1007/3-540-48071-4_9
http://www.oracle.com/us/products/servers-storage/036080.pdf
http://www.oracle.com/us/products/servers-storage/036080.pdf
http://dx.doi.org/10.1007/978-3-662-53890-6_2
http://dx.doi.org/10.1007/978-3-662-53890-6_2
http://dx.doi.org/10.1007/3-540-48184-2_9
http://dx.doi.org/10.1007/3-540-68697-5_8
http://dx.doi.org/10.1007/3-540-69053-0_6
http://dx.doi.org/10.1007/BFb0052241
http://dx.doi.org/10.1007/978-3-540-30574-3_2
http://dx.doi.org/10.1007/11693383_9

Reusing Nonces in Schnorr Signatures

(and Keeping It Secure...)

Marc Beunardeau1, Aisling Connolly1, Houda Ferradi2, Rémi Géraud1(B),
David Naccache1, and Damien Vergnaud1

1 Département d’informatique de l’ENS, École Normale Supérieure,
CNRS, PSL Research University, 75005 Paris, France

{marc.beunardeau,aisling.connolly,remi.geraud,david.naccache,
damien.vergnaud}@ens.fr

2 NTT Secure Platform Laboratories,
3–9–11 Midori-cho, Musashino-shi, Tokyo 180–8585, Japan

ferradi.houda@lab.ntt.co.jp

Abstract. The provably secure Schnorr signature scheme is popular and
efficient. However, each signature requires a fresh modular exponentia-
tion, which is typically a costly operation. As the increased uptake in
connected devices revives the interest in resource-constrained signature
algorithms, we introduce a variant of Schnorr signatures that mutualises
exponentiation efforts.

Combined with precomputation techniques (which would not yield as
interesting results for the original Schnorr algorithm), we can amortise
the cost of exponentiation over several signatures: these signatures share
the same nonce. Sharing a nonce is a deadly blow to Schnorr signatures,
but is not a security concern for our variant.

Our Scheme is provably secure, asymptotically-faster than Schnorr
when combined with efficient precomputation techniques, and experi-
mentally 2 to 6 times faster than Schnorr for the same number of signa-
tures when using 1 MB of static storage.

1 Introduction

The increased popularity of lightweight implementations invigorates the interest
in resource-preserving protocols. Interestingly, this line of research was popular
in the late 1980’s, when smart-cards started performing public-key cryptographic
operations (e.g. [11]). Back then, cryptoprocessors were expensive and cumber-
some, and the research community started looking for astute ways to identify
and sign with scarce resources.

In this work we revisit a popular signature algorithm published by Schnorr
in 1989 [23] and seek to lower its computational requirements assuming that the
signer is permitted to maintain some read-only memory. This storage allows for
time-memory trade-offs, which are usually not very profitable for typical Schnorr
parameters.

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 224–241, 2017.
DOI: 10.1007/978-3-319-66402-6 14

Reusing Nonces in Schnorr Signatures 225

We introduce a new signature scheme, which is provably secure in the random
oracle model (ROM) under the assumption that the partial discrete logarithm
problem (see below) is intractable. This scheme can benefit much more from
precomputation techniques, which results in faster signatures.

Implementation results confirm the benefits of this approach when combining
efficient precomputation techniques, when enough static memory is available (of
the order of 250 couples of the form (x, gx)). We provide comparisons with
Schnorr for several parameters and pre-computation schemes.

1.1 Intuition and General Outline of the Idea

Schnorr’s signature algorithm uses a large prime modulus p and a smaller prime
modulus q dividing p − 1. The security of the signature scheme relies on the
discrete logarithm problem in a subgroup of order q of the multiplicative group
of the finite field Zp (with q | p − 1). Usually the prime p is chosen to be large
enough to resist index-calculus methods for solving the discrete-log problem
(e.g. 3072 bits for a 128-bit security level), while q is large enough to resist the
square-root algorithms [25] (e.g. 256 bits for 128-bit security level).

The intuition behind our construction is to consider a prime p such that p−1
has several different factors qi large enough to resist these birthday attacks, i.e.

p = 1 + 2
�∏

i=1

qi

then several “orthogonal” Schnorr signatures can share the same commitment
component r = gk mod p. This is not the case with standard Schnorr signatures
where, if a k is reused then the secret signing key is revealed.

It remains to find how r can be computed quickly. In the original Schnorr
protocol k is picked uniformly at random in Zq. However, to be secure, our con-
struction requires that k is picked in the larger set Zp−1. This means that a
much higher effort is required to compute r. Here we cut corners by generat-
ing an r with pre-computation techniques which allow an exponentiation to be
sub-linear. The trick is that once the exponentiation is sub-linear, we are more
effective in our setting than in the original Schnorr setting.

We start by reminding how the original Schnorr signature scheme works and
explain how we extend it assuming that k is randomly drawn from Zp−1. We then
present applications of our construction, by comparing several pre-processing
schemes.

2 Preliminaries

We denote the security parameter by κ ∈ N which is given to all algorithms in
the unary form 1κ. Algorithms are randomized unless otherwise stated, and
PPT stands for “probabilistic polynomial-time,” in the security parameter.

226 M. Beunardeau et al.

We denote random sampling from a finite set X according to the uniform distri-
bution with x � X. We also use the symbol � for assignments from randomized
algorithms, while we denote assignment from deterministic algorithms and cal-
culations with the symbol ←. If n is an integer, we write Zn for the ring Z/nZ.
We let Z∗

n the invertible elements of Zn. As is usual, f ∈ negl(κ) denotes a func-
tion that decreases faster than the inverse of any polynomial in κ; such functions
are called negligible. The set of numbers 1, 2, . . . , k is denoted [k]. Most of our
security definitions and proofs use code-based games. A game G consists of an
initializing procedure Init, one or more procedures to respond to oracle queries,
and a finalizing procedure Fin.

2.1 Schnorr’s Signature Scheme

Schnorr signatures [23] are an offspring ElGamal signatures [10] which are prov-
ably secure in the Random Oracle Model under the assumed hardness of solving
generic instances of the Discrete Logarithm Problem (DLP) [21]. The Schnorr
signature scheme is a tuple of algorithms defined as follows:

– Setup(1κ): Large primes p, q are chosen, such that q ≥ 2κ and p−1 = 0 mod q.
A cyclic group G ⊂ Zp of prime order q is chosen, in which it is assumed that
the DLP is hard, along with a generator g ∈ G. A hash function H : {0, 1}∗ →
G is chosen. Public parameters are pp = (p, q, g,G,H).

– KeyGen(pp): Pick an integer x uniformly at random from [2, q − 1] as the
signing key sk, and publish y ← gx as the public key pk.

– Sign(pp, sk,m): Pick k uniformly at random in Z
∗
q , compute r ← gk mod q,

e ← H(m, r), and s ← k − ex mod q. Output σ ← {r, s} as a signature.

– Verify(pp, pk,m, σ): Let (r, s) ← σ, compute e ← H(m, r) and return True if
gsye = r, and False otherwise.

2.2 Security Model

We recall the strong1 EUF-CMA security notion:

Definition 1 (Strong EUF-CMA Security). A signature scheme Σ is secure
against existential forgeries in a chosen-message attack (strongly EUF-CMA-
secure) if the advantage of any PPT adversary A against the EUF-CMA game
defined in Fig. 1 is negligible: AdvEUFA,Σ(κ) = Pr

[
EUFA

Σ(κ) = 1
]

∈ negl(κ).

1 In contrast to the weak version, the adversary is allowed to forge for a message that
they have queried before, provided that their forgery is not an oracle response.

Reusing Nonces in Schnorr Signatures 227

Fig. 1. The strong EUF-CMA experiment for digital signature schemes.

3 Our Scheme: Using Multiple q’s

Our construction relies on using a prime p of the form mentioned in the intro-
duction. This is not a trivial change, and requires care as we discuss below.

Technically, our construction is a stateful signature scheme (see e.g.
[15, Chap. 12]), in which we simultaneously sign only one message and keep
a state corresponding to the values k, gk and the index i for the current prime
number. However, it is more compact and convenient to describe it as a signature
for � simultaneous messages.

3.1 Our Signature Scheme

Similar to the Schnorr signature scheme, our scheme is a tuple of algorithms
(Setup, KeyGen, Sign, and Verify), which we define as follows:

– Setup(1κ): Generate � primes q1, . . . , q� of size ≥ 2κ and � groups G1, . . . ,G�

respectively of order q1, . . . q� such that the DLP is hard in the respective Gi,
and such that p = 1 + 2

∏
qi is prime. This is easily achieved by selecting

(� − 1) safe primes qi and varying the last one until p is prime.2 Choose
a cryptographic hash function H : {0, 1}∗ → {0, 1}q1 . The hash function
will be used to produce elements of Zqi

. For this we will denote by Hi the
composition of H and a conversion function from {0, 1}q1 to Zqi

3. Finally,
choose g a generator of the group Z

∗
p of order p − 1. The public parameters

are therefore
pp =

(
p, {qi}�

i=1,H, g, {Gi}�
i=1

)
.

– KeyGen(pp): The signer chooses x � Z
∗
p−1 and computes y ← gx mod p. The

key sk = x is kept private to the signer, while the verification key pk = y is
made public.

2 See the full version of this paper for a discussion on some particularly interesting
moduli.

3 This conversion function can read the string as a binary number and reduce it mod qi

for example.

228 M. Beunardeau et al.

– Sign(pp, sk,m1, . . . ,m�): The signer chooses k � Zp, such that k �= 0 mod qi

for all i, and computes r ← gk mod p.
The signer can now sign the � messages mi as:

ρi � {0, 1}κ, ei ← Hi(mi, r, ρi), and si ← k − eix mod qi

outputting the � signatures σi = {r, si, ρi}—or, in a more compact form4,

σ = {r, s1, . . . , s�, ρ1, . . . , ρ�}.

– Verify(pp, pk,mi, (r, si, ρi), i): Verifying a signature is achieved by slightly
modifying the original Schnorr scheme: First check that si ∈ {0, . . . qi − 1}
and compute ei ← Hi(mi, r, ρi), then observe that for a correct signature5:

(gsiyei)
p−1
qi = r

p−1
qi mod p.

The signature is valid if and only if this equality holds, otherwise the signature
is invalid (see Lemma 1).

Remark 1. Note that unlike Schnorr, in the Sign algorithm we add a random ρi

for a signature to make the argument of the hash function unpredictable. This
will be useful for the proof of Theorem 1 in the ROM.

Remark 2. Note also that one almost recovers the original Schnorr construction
for � = 1—the only differences being in the verification formula, where both
sides are squared in our version, and the addition of a fresh random to hash.

Lemma 1 (Correctness). Our signature scheme is correct.

Proof. Let g, y, r, si, and ρi be as generated by the KeyGen and Sign algorithms
for a given message mi. We check that,

(
gsiyei

r

)p−1
qi

= 1 mod p.

By the definition of si, there exists λ ∈ Z such that gsi = gk−eix+λqi , hence

gsiyeig−k = gλqi mod p.

Raising this to the power of p−1
qi

we get gλ(p−1) = 1 since the order the multi-
plicative group Z

∗
p is p − 1. �	

4 The compact form allows not to send the nonce � times, which gives an “amortized”
size of the signature, and avoid an overhead in communication.

5 One can note, p−1
qi

= 2q1 · · · qi−1qi+1 · · · q�.

Reusing Nonces in Schnorr Signatures 229

3.2 Security

To aid in the proof of security, we introduce the following problem which we
call the partial discrete logarithm problem (PDLP). Intuitively it corresponds
to solving a discrete logarithm problem in the subgroup of our choice.

Definition 2 (PDLP). Let � ≥ 2 be an integer, q1, . . . , q� distinct prime num-
bers and q = q1 . . . q�. Let G be a group of order q and g a generator of G. Given
g, q, q1, . . . , ql, and y = gx, the partial discrete logarithm problem (PDLP) con-
sists in finding i ∈ [�] and xi ∈ Zqi

such that xi = x mod qi.

In our context, we are chiefly interested in a subgroup of order q of a multiplica-
tive group of a finite field Z

∗
p, where q divides p − 1—ideally, q = (p − 1)/2. The

best known algorithms to solve the PDLP are index-calculus based methods in
Z

∗
p and square-root algorithms in subgroups of prime order qi for some i ∈ [�].

With p of bit-size 3072, q = (p − 1)/2, � = 12 and q1, . . . , q� of bit-size 256, we
conjecture that solving the PDLP requires about 2128 elementary operations.
In the full version of this paper, we provide a security argument in the generic
group model on the intractability of the PDLP for large enough prime numbers
q1, . . . , q�.

Theorem 1 (Existential unforgeability). Our scheme is provably
EUF-CMA-secure assuming the hardness of solving the PDLP, in the ROM.

To prove this result, we will exhibit a reduction from an efficient EUF-CMA
forger to an efficient PDLP solver. To that end we first show a sequence of
indistinguishability results between the output distributions of

– Our signature algorithm Sign = Sign0 on user inputs.
– A modified algorithm Sign1 (see Fig. 2), where the hash of user inputs is

replaced by a random value. This situation is computationally indistinguish-
able from the previous one in the ROM.

– A modified algorithm Sign2 (see Fig. 2), that has no access to the signing key
x. The output distribution of this algorithm is identical to the output of Sign1
(Theorem 2).

Then we use the forking lemma [3,22] to show that an efficient EUF-CMA-
adversary against Sign2 can be used to construct an efficient PDLP solver. Finally
we leverage the above series of indistinguishably results to use an adversary
against Sign0. Let CRT (for Chinese Remainder Theorem) be the isomorphism
that maps Zq1 × · · · × Zq�

× Z2 to Zp−1.

Theorem 2. The output distributions of Sign1 and Sign2 are identical.

Proof. This theorem builds on several intermediate results described in Lemmas
2 to 6. We denote δ the output distribution of Sign1 and δ′ the output distribution
of Sign2. The structure of the proof is the following:

– In Lemma 2 we show that the output of Sign2 is a subset of the output of
Sign1.

230 M. Beunardeau et al.

Fig. 2. The algorithms used in Theorem 2, as part of the proof of Theorem 1.

– Lemma 3 shows that in Sign1 there is a unique random tape per output.
– Lemma 4 shows that in Sign2 there are exactly two random tapes per output.
– Lemma 6 shows that there are twice as many random tapes possible for Sign2

than for Sign1

This demonstrates that by uniformly choosing the random tape, the resulting
distributions for Sign1 and Sign2 are identical, which is the uniform distribution
on the set of valid signatures.

Lemma 2. Every tuple of δ′ is a valid signature tuple. Therefore δ′ ⊆ δ.

Proof (of Lemma 2). Let (r, e1, . . . , e�, s1, . . . , s�, ρ1, . . . , ρ�) ∈ δ′. Let i ∈ [�]. By
the Chinese Remainder Theorem we have:

S = si mod qi and E = ei mod qi.

So there exists λ, μ ∈ Z such that

S = si + λqi and E = ei + μqi.

Hence:

r
p−1
qi =

(
gSyE

) p−1
qi

=
(
gsi+λqiyei+μqi

) p−1
qi

= (gsiyei)
p−1
qi gλ(p−1)yμ(p−1)

= (gsiyei)
p−1
qi

Reusing Nonces in Schnorr Signatures 231

The last equality holds since the order of the multiplicative group Z
∗
p is p − 1,

and this concludes the proof with the fact that r �= 1 mod qi. �	
Lemma 3. There is exactly one random tape upon which Sign1 can run to yield
each particular tuple of δ.

Proof (of Lemma 3). Let k, e1, . . . , e�, ρ1, . . . , ρ� and k′, e′
1, . . . , e

′
�, ρ

′
1, . . . , ρ

′
� be

random choices of δ that both yield (r, e1, . . . , e�, s1, . . . , s�, ρ1, . . . , ρ�). It is
immediate that ei = e′

i and ρi = ρ′
i for all i ∈ [�]. Also since gk = gk′

, g is
of order p − 1 and since k and k′ are in [p] then k = k′. �	
Lemma 4. There are exactly two random tapes over k, ρ1, . . . , ρ�, e1, . . . , e�

that output each tuple of δ′.

Proof (of Lemma 4). Let e1, . . . , e�, s1, . . . , s�, a, b, ρ1, . . . , ρ� and e′
1, . . . , e

′
�,

s′
1, . . . , s

′
�, a′, b′, ρ′

1, . . . , ρ
′
� be random choices that both give (r, e1, . . . , e�,

s1, . . . , s�, ρ1, . . . , ρ�). It is immediate that ei = e′
i, si = s′

i, and ρi = ρ′
i for

all i ∈ [�]. Let S, S′, E, and E′ be the corresponding CRT images. We have
gSyE = gS′

yE′
, which is gS+xE = gS′+xE′

, and S + xE = S′ + xE′ mod (p − 1).
Since x is odd (it is invertible mod p−1), it follows that S +E and S′ +E′ have
the same parity. Therefore a+ b = a′ + b′ mod 2 and we have two choices: a = b,
or a = 1 − b, both of which are correct. �	

Lemma 5. #
(
Zp \

(⋃�
i=1{qi, 2qi, . . . , p − 1}

))
= 2

∏�
i=1(qi − 1).

Proof (of Lemma 5). The number of invertible elements modp is
∏�

i=1(qi −1)×
(2 − 1) so the number of invertible mod qi for all i (and not necessarily for 2) is
2
∏�

i=1(qi − 1). This is exactly the cardinality of the set
(
Zp \

(
�⋃

i=1

{qi, 2qi, . . . , p − 1}
))

.

�	
Lemma 6. There are twice as many possible random choices in δ′ as in δ.

Proof (of Lemma 6). For the number of random choices in δ we use Lemma 5 to
count the number of k and then count the number of ei and get 2

∏�
i=1(qi −1)×∏�

i=1 qi. For δ′, having r �= 1 mod qi is equivalent to having si �= −eix. Therefore
it has the same number of random choices as a distribution picking the si from
Zqi

\ {eix} which is
∏�

i=1 qi × ∏�
i=1(qi − 1) × 2 × 2. �	

It follows from the above results that the two distributions are the same, i.e. the
uniform distribution over the set of valid signatures.
This concludes the proof of Theorem 2. �	
Theorem 3 (Security under Chosen Message Attack). An efficient
attacker against Sign2 can be turned into an efficient PDLP solver in the ROM.

232 M. Beunardeau et al.

Fig. 3. An efficient EUF-CMA adversary A against our scheme, with random oracle H
and a signing oracle O.

Fig. 4. An efficient solver R for the PDLP, using a polynomial number of queries to
A. R implements the random oracle as R.H and the signing oracle as R.Sign. The
rewinded adversary and oracles are indicated with a prime symbol.

Proof. Let A be an attacker that wins the EUF-CMA game for our scheme,
illustrated in Fig. 3. We construct in Figs. 4 and 5 an algorithm R that uses A
to solve the PDLP. A′ is equivalent to A (with the same random tape which we
omit in the notation), the difference being that it interacts with different oracles.
Abusing notation we denote by R.Hi the composition of the hash function and
the conversion function. If L is a list of pairs, we denote by L−1[e] the index of
the element e in the list, and by L[i] the i-th element of the list. If they cannot
(i.e. if e is not in the list, or the list does not have an i-th element) they abort.

The algorithm R aborts in four possible ways during the simulation (denoted
(), (†), (‡) and (§)) in Figs. 4 and 5. We upper-bound the probability of these
events in the following list:

– () This occurs with negligible probability since the ρ is a fresh random which
is unpredictable by the adversary.

– (†) This occurs with non overwhelming probability since the adversary is
efficient.

– (‡) The element is in the list with non negligible probability because if the
adversary forges on an unqueried hash in the ROM, it has a negligible chance
to succeed.

– (§) This happens with non overwhelming probability due to the forking lemma
[22].

Reusing Nonces in Schnorr Signatures 233

Fig. 5. An efficient solver for the PDLP, constructed from an efficient EUF-CMA adver-
sary against our scheme.

234 M. Beunardeau et al.

If R does not abort, then
(
gs∗

ye∗) p−1
qi∗ = (r∗)

p−1
qi∗ =

(
gs̃∗

yẽ∗) p−1
qi∗ mod p. Then

s∗ + e∗x = s̃∗ + ẽ∗ mod qi∗ . It follows that the value returned by R is equal to
x mod qi∗ .

R succeeds with non negligible probability, as explained earlier. The prob-
ability of forking is polynomial in the number of queries to the random oracle,
the number of queries to the signature oracle, and �. Note that the reduction is
� times looser than [22]. This concludes the proof of Theorem 3. �	
Proof (of Theorem 1). Using Theorem 2, we can use Sign0 instead of Sign2 as a
target for the attacker in Theorem 3. �	

4 Provably Secure Pre-Computations

Often the bottleneck in implementations centers around modular exponentiation.
In this section we briefly outline several proposed pre-computation techniques,
as well as presenting in more detail two pre-computation schemes which were
used in our implementation to compare timings between classical Schnorr and
our scheme.

4.1 Brief Overview of Speed-Up Techniques

The problem of computing modular exponentiations is well-known to imple-
menters of both DLP-based and RSA-based cryptosystems. In the specific case
that we want to compute gx mod p, the following strategies have been proposed
but their security is often heuristic:

– Use signed expansions (only applicable to groups where inversion is efficient);
– Use Frobenius expansions or the GLV/GLS method (only applicable to cer-

tain elliptic curves);
– Batch exponentiations together, as suggested by M’Räıhi and Naccache [18].

The above approaches work for arbitrary values of x. Alternatively, one may
choose a particular value of x with certain properties which make computation
faster; however there is a possibility that doing so weakens the DLP:

– Choose x with low Hamming weight as proposed by Agnew et al. [1];
– Choose x to be a random Frobenius expansion of low Hamming weight, as

discussed by Galbraith [12, Sect. 11.3];
– Choose x to be given by a random addition chain, as proposed by Schroeppel

et al. [24];
– Choose x to be a product of low Hamming weight integers as suggested by

Hoffstein and Silverman [13]—broken by Cheon and Kim [6];
– Choose x to be a small random element in GLV representation—broken by

Aranha et al. [2];

Reusing Nonces in Schnorr Signatures 235

Finally, a third branch of research uses large amounts of pre-computation to gen-
erate random pairs (x, gx mod p). The first effort in this direction was Schnorr’s
[23], quickly broken by de Rooij [9]. Other constructions are due to Brickell et
al. [5], Lim and Lee [17], and de Rooij [8]. The first provably secure solution is
due to Boyko et al. [4], henceforth BPV, which was extended and made more
precise by [7,19,20]. This refined algorithm is called E-BPV (extended BPV).

4.2 The E-BPV Pre-computation Scheme

E-BPV6 relies on pre-computing and storing a set of n pairs (ki, g
ki mod p); then

a “random” pair (r, gr mod p) is generated by choosing a subset S of size k the
ki, and for each i a random exponent xi between 1 and h. Then a pair (r,R) is
computed as r ← Σi∈Sxidi mod φ(p), R ← gr mod p with a non trivial speedup
due to Brickell et al. [5] (BGMW). To guarantee an acceptable level of security,
and resist lattice reduction attacks, the number n of precomputed pairs must be
sufficiently large; and enough pairs with large enough exponents must be used
to generate a new couple (Fig. 6).

Fig. 6. The E-BPV algorithm for generating random pairs (x, gx mod p). The BPV
algorithm is a special case of E-BPV for h = 2.

Nguyen et al. [19] showed that using E-BPV instead of standard exponenti-
ation gives an adversary an advantage bounded by

m

√
K(

n
k

)
(h − 1)k

6 BPV is a special case of E-BPV where h = 2. As such they share the same precom-
puting step.

236 M. Beunardeau et al.

with m the number of signature queries by the adversary, (k, n, h) E-BPV para-
meters, and K the exponent’s size.7

We fix conservatively m = 2128. For our scheme, at 128-bit security, we have
K = P = 3072. As suggested in [19] we set n = k, and constrain our memory:

hk ≥ 23400

Optimizing 2k + h under this constraint, we find (h, k) = (176, 455). This cor-
responds to 1087 modular multiplications, i.e., an amortized cost of 90 multipli-
cations per signature, for about 170 kB of storage.

Alternatively, we can satisfy the security constraints by setting n = 2048,
h = 100, k = 320, which corresponds to about 770 kB of storage, giving an
amortized cost of 62 modular multiplications per signature.

In the implementation (Sect. 5), we solve the constrained optimisation prob-
lem to find the best coefficients (i.e., the least number of multiplications) for a
given memory capacity.

Remark 3 (Halving storage cost). The following idea can halve the amount of
storage required for the couples (x, gx): instead of drawing the values x at ran-
dom, we draw a master secret s once, and compute xi+1 ← gxi ⊕ s (or, more
generally/securely, a PRF with low complexity xi+1 = PRFs(gxi)). Only s, x0,
and the values gxi need to be stored; instead of all the couples (xi, g

xi). This
remark applies to both BPV and E-BPV.

4.3 Lim and Lee Precomputation Scheme

We also consider a variation on Lim and Lee’s fast exponentiation algorithm
[17]. Their scheme originally computes gr for r known in advance, but it is easily
adapted to the setting where r is constructed on the fly. The speed-up is only
linear, however, which ultimately means we cannot expect a sizable advantage
over Schnorr. Nevertheless, Lim and Lee’s algorithm is less resource-intensive
and can be used in situations where no secure E-BPV parameters can be found
(e.g., in ultra-low memory settings).

The Lim-Lee scheme (LL) has two parameters, h and v. In the original LL
algorithm, the exponent is known in advance, but it is easily modified to generate
an exponent on the fly. Intuitively, it consists in splitting the exponent in a
“blocks” of size h, and dividing further each block in b sub-blocks of size v. The
number of modular multiplications (in the worst case) is a + b − 2, and we have
to store (2h − 1)v pairs. The algorithms are given in Fig. 7.

For a given amount of memory M , it is easy to solve the constrained opti-
mization problem, and we find

hopt =
1

ln(2)

(
1 + W

(
1 + M

e

))

7 For Schnorr, the exponent’s size is Q; for our scheme, it is P .

Reusing Nonces in Schnorr Signatures 237

Fig. 7. The LL algorithm for generating random pairs (x, gx mod p).

where W is the Lambert function. For a memory M of 750 kB, this gives h ≈ 8.6.
The optimal parameters for integers are h = 9 and v = 4.8

Remark 4. For LL, Remark 3 on halving storage requirements does not apply,
as x need not be stored.

A summary of the properties for the pre-computations techniques E-PBV
and LL can be found in Table 1.

Table 1. Precomputation/online computation trade-offs.

Algorithm Storage Multiplications Security

Square-and-multiply 0 1.5 log P Always

BPV [4] nP k − 1 m
√

P

(n
k)

< 2−κ

E-BPV [19] nP 2k + h − 3 m
√

P

(n
k)(h−1)k

< 2−κ

Lim and Lee [17] 2h × v × P log P
h

(1 + 1
v
) − 3 Always

5 Implementation Results

Our scheme, using the algorithms described in Sects. 3 and 4, has been imple-
mented in C using the GMP library. In the interest of timing comparison we have
also implemented the classical Schnorr scheme. The results for several scenarios
are outlined in Table 2 (at 128-bit security) and Table 3 (at 192-bit security).
Complete source code and timing framework are available upon request from
the authors.

238 M. Beunardeau et al.

Table 2. Timing results for Schnorr and our scheme, at 128-bit security (P = 3072,
Q = 256). Computation was performed on an ArchLinux single-core 32-bit virtual
machine with 128 MB RAM. Averaged over 256 runs.

Scheme Storage Precomp Time (per sig.) Verify

Schnorr – – 6.14 ms 73.9 ms

Schnorr + [19] + [5] 170 kB 33 s 2.80 ms 73.9 ms

Schnorr + [19] + [5] 750 kB 33 s 2.03 ms 73.9 ms

Schnorr + [19] + [5] 1MB 34 s 2.00 ms 73.9 ms

Schnorr + [19] + [5] 2MB 37 s 2.85 ms 73.9 ms

Schnorr + [17] 165 kB 3 s 949 μs 73.9 ms

Schnorr + [17] 750 kB 3 s 644 μs 73.9 ms

Schnorr + [17] 958 kB 3 s 630 μs 73.9 ms

Schnorr + [17] 1.91 MB 3 s � 472 ns 73.9 ms

Our Scheme – – 5.94 ms 2.4 s

Our Scheme + [19] + [5] 170 kB 33 s 1.23 ms 2.4 s

Our Scheme + [19] + [5] 750 kB 33 s 426 μs 2.4 s

Our Scheme + [19] + [5] 1MB 34 s 371 μs 2.4 s

Our Scheme + [19] + [5] 2MB 37 s � 327 μs 2.4 s

Our Scheme + [17] 165 kB 3 s 918 μs 2.4 s

Our Scheme + [17] 750 kB 3 s 709 μs 2.4 s

Our Scheme + [17] 958 kB 3 s 650 μs 2.4 s

Our Scheme + [17] 1.91 MB 3 s 757 μs 2.4 s

Table 3. Timing results for Schnorr and our scheme, at 192-bit security (P = 7680,
Q = 384). Computation was performed on an ArchLinux single-core 32-bit virtual
machine with 128 MB RAM. Averaged over 256 runs.

Scheme Storage Time (/sig.)

Schnorr – 35.2 ms

Schnorr + [17] 715 kB 508 μs

Schnorr + [19] + [5] 750 kB 2.08 ms

Schnorr + [19] + [5] 1.87 MB 1.62 ms

Schnorr + [17] 1.87 MB � 476 μs

Our Scheme – 33.0 ms

Our Scheme + [17] 715 kB 486 μs

Our Scheme + [17] 1.87 MB 467 μs

Our Scheme + [19] + [5] 1.87 MB � 263 μs

Reusing Nonces in Schnorr Signatures 239

These experiments show that our scheme is faster than Schnorr when at least
250 pairs (i.e., 750 kB at 128-bit security) have been precomputed. This effect is
even more markedly visible at higher security levels: our scheme benefits more,
and more effectively, from the E-BPV + BGMW optimisation as compared to
Schnorr. The importance of combining E-BPV and BGMW is also visible: E-
BPV using naive exponentiation does not provide any speed-up.

Schnorr and our scheme achieve identical performance when using Lim and
Lee’s optimisation, confirming the theoretical analysis. When less than 1 MB of
memory is allotted, this is the better choice.

6 Heuristic Security

Several papers describe server-aided precomputation techniques (e.g., [16]),
which perform exponentiations with the help of a (possibly untrusted) server,
i.e., such techniques allow to outsource the computation of gx mod n, with public
g and n, without revealing x to the server.

Interestingly, the most efficient algorithms in that scenario (which of course
we could leverage) use parameters provided by Hohenberger and Lysyanskaya
[14] for E-BPV. A series of papers took these parameters for granted (including
[16]), but we should point out that these are not covered by the security proof
found in [19].

Despite this remark, it seems that no practical attack is known either; there-
fore if we are willing to relax our security expectations somewhat it is possible
to compute the modular exponentiation faster. Namely, a Q-bit exponent can
be computed in O(log Q2) modular multiplications.

Our Scheme uses an exponent that is � times bigger than Schnorr, which
is amortized over � signatures. Comparing our scheme to Schnorr, the ratio is
� log(Q)2

(log �Q)2 . With Q = 256 we get a ratio of approximately 5.7.
Note that as Q increases, so does �, and therefore so does the advantage of

our scheme over Schnorr in that regime.

7 Conclusion

We have introduced a new digital signature scheme variant of Schnorr signa-
tures, that reuses the nonce component for several signatures. Doing so does
not jeopardise the scheme’s security; attempting to do the same with classical
Schnorr signatures would immediately reveal the signing key. However the main
appeal of our approach is that precomputation techniques, whose benefits can
only be seen for large enough problems, become applicable and interesting. As a
result, without loss of security, it becomes possible to sign messages using fewer
modular multiplications. Our technique is general and can be applied to several
signature schemes using several speed-up techniques.
8 In practice, it turns out that h = v = 8 performs slightly better, due to various

implementation speed-ups possible in this situation.

240 M. Beunardeau et al.

References

1. Agnew, G.B., Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A.: An implementation
for a fast public-key cryptosystem. J. Crypto. 3(2), 63–79 (1991)

2. Aranha, D.F., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Tibouchi, M.,
Zapalowicz, J.-C.: GLV/GLS decomposition, power analysis, and attacks on
ECDSA signatures with single-bit nonce bias. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 262–281. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-45611-8 14

3. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 2006,
30 October–3 November, pp. 390–399. ACM Press, Alexandria (2006)

4. Boyko, V., Peinado, M., Venkatesan, R.: Speeding up discrete log and factor-
ing based schemes via precomputations. In: Nyberg, K. (ed.) EUROCRYPT
1998. LNCS, vol. 1403, pp. 221–235. Springer, Heidelberg (1998). doi:10.1007/
BFb0054129

5. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast exponentiation
with precomputation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658,
pp. 200–207. Springer, Heidelberg (1993). doi:10.1007/3-540-47555-9 18

6. Cheon, J.H., Kim, H.: Analysis of low hamming weight products. Disc. Appl. Math.
156(12), 2264–2269 (2008), http://dx.doi.org/10.1016/j.dam.2007.09.018

7. Coron, J.-S., M’Räıhi, D., Tymen, C.: Fast generation of pairs (k, [k]P) for koblitz
elliptic curves. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259,
pp. 151–164. Springer, Heidelberg (2001). doi:10.1007/3-540-45537-X 12

8. Rooij, P.: Efficient exponentiation using precomputation and vector addition
chains. In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 389–399.
Springer, Heidelberg (1995). doi:10.1007/BFb0053453

9. de Rooij, P.: On Schnorr’s preprocessing for digital signature schemes. J. Crypto.
10(1), 1–16 (1997)

10. ElGamal, T.: On computing logarithms over finite fields. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 396–402. Springer, Heidelberg (1986). doi:10.
1007/3-540-39799-X 28

11. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

12. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge
University Press (2012), https://www.math.auckland.ac.nz/ sgal018/crypto-book/
crypto-book.html

13. Hoffstein, J., Silverman, J.H.: Random small hamming weight products with appli-
cations to cryptography. Disc. Appl. Math. 130(1), 37–49 (2003), http://dx.doi.
org/10.1016/S0166-218X(02)00588--7

14. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30576-7 15

15. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC Press (2007)

16. Kiraz, M.S., Uzunkol, O.: Efficient and verifiable algorithms for secure outsourcing
of cryptographic computations. Int. J. Inf. Sec. 15(5), 519–537 (2016), http://dx.
doi.org/10.1007/s10207-015-0308-7

http://dx.doi.org/10.1007/978-3-662-45611-8_14
http://dx.doi.org/10.1007/978-3-662-45611-8_14
http://dx.doi.org/10.1007/BFb0054129
http://dx.doi.org/10.1007/BFb0054129
http://dx.doi.org/10.1007/3-540-47555-9_18
http://dx.doi.org/10.1016/j.dam.2007.09.018
http://dx.doi.org/10.1007/3-540-45537-X_12
http://dx.doi.org/10.1007/BFb0053453
http://dx.doi.org/10.1007/3-540-39799-X_28
http://dx.doi.org/10.1007/3-540-39799-X_28
http://dx.doi.org/10.1007/3-540-47721-7_12
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
http://dx.doi.org/10.1016/S0166-218X(02)00588--7
http://dx.doi.org/10.1016/S0166-218X(02)00588--7
http://dx.doi.org/10.1007/978-3-540-30576-7_15
http://dx.doi.org/10.1007/s10207-015-0308-7
http://dx.doi.org/10.1007/s10207-015-0308-7

Reusing Nonces in Schnorr Signatures 241

17. Lim, C.H., Lee, P.J.: More flexible exponentiation with precomputation. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer,
Heidelberg (1994). doi:10.1007/3-540-48658-5 11

18. M’Räıhi, D., Naccache, D.: Batch exponentiation: a fast DLP-based signature gen-
eration strategy. In: Gong, L., Stearn, J. (eds.) CCS 1996, Proceedings of the 3rd
ACM Conference on Computer and Communications Security, New Delhi, India,
March 14–16, pp. 58–61. ACM (1996), http://doi.acm.org/10.1145/238168.238187

19. Nguyen, P.Q., Shparlinski, I.E., Stern, J.: Distribution of modular sums and the
security of the server aided exponentiation. In: Cryptography and Computational
Number Theory, pp. 331–342. Springer (2001)

20. Nguyen, P., Stern, J.: The hardness of the hidden subset sum problem and its
cryptographic implications. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 31–46. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 3

21. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). doi:10.1007/3-540-68339-9 33

22. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Crypto. 13(3), 361–396 (2000)

23. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
doi:10.1007/0-387-34805-0 22

24. Schroeppel, R., Orman, H., O’Malley, S., Spatscheck, O.: Fast key exchange with
elliptic curve systems. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963,
pp. 43–56. Springer, Heidelberg (1995). doi:10.1007/3-540-44750-4 4

25. Shanks, D.: Class number, a theory of factorization and genera. Proc. Symp. Pure
Math. 20, 415–440 (1970)

http://dx.doi.org/10.1007/3-540-48658-5_11
http://doi.acm.org/10.1145/238168.238187
http://dx.doi.org/10.1007/3-540-48405-1_3
http://dx.doi.org/10.1007/3-540-68339-9_33
http://dx.doi.org/10.1007/0-387-34805-0_22
http://dx.doi.org/10.1007/3-540-44750-4_4

WebPol: Fine-Grained Information Flow Policies
for Web Browsers

Abhishek Bichhawat1(B) , Vineet Rajani2 , Jinank Jain3, Deepak Garg2 ,
and Christian Hammer4

1 Saarland University, Saarbrücken, Germany
bichhawat@cs.uni-saarland.de

2 MPI-SWS, Kaiserslautern, Saarbrücken, Germany
dg@mpi-sws.org

3 ETH Zürich, Zürich, Switzerland
4 University of Potsdam, Potsdam, Germany

Abstract. In the standard web browser programming model, third-
party scripts included in an application execute with the same privilege
as the application’s own code. This leaves the application’s confiden-
tial data vulnerable to theft and leakage by malicious code and inad-
vertent bugs in the third-party scripts. Security mechanisms in modern
browsers (the same-origin policy, cross-origin resource sharing and con-
tent security policies) are too coarse to suit this programming model.
All these mechanisms (and their extensions) describe whether or not a
script can access certain data, whereas the meaningful requirement is to
allow untrusted scripts access to confidential data that they need and to
prevent the scripts from leaking data on the side. Motivated by this gap,
we propose WebPol, a policy mechanism that allows a website developer
to include fine-grained policies on confidential application data in the
familiar syntax of the JavaScript programming language. The policies
can be associated with any webpage element, and specify what aspects
of the element can be accessed by which third-party domains. A script
can access data that the policy allows it to, but it cannot pass the data
(or data derived from it) to other scripts or remote hosts in contraven-
tion of the policy. To specify the policies, we expose a small set of new
native APIs in JavaScript. Our policies can be enforced using any of
the numerous existing proposals for information flow tracking in web
browsers. We have integrated our policies into one such proposal that we
use to evaluate performance overheads and to test our examples.

1 Introduction

Webpages today rely on third-party JavaScript to provide useful libraries,
page analytics, advertisements and many other features. JavaScript works on
a mashup model, wherein the hosting page and included scripts share the
page’s state (called the DOM). Consequently, by design, all included third-party
scripts run with the same access privileges as the hosting page. While some
third-party scripts are developed by large, well-known, trustworthy vendors,
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 242–259, 2017.
DOI: 10.1007/978-3-319-66402-6 15

http://orcid.org/0000-0002-3075-2743
http://orcid.org/0000-0001-7701-8311
http://orcid.org/0000-0002-0888-3093
http://orcid.org/0000-0001-5955-3732

WebPol: Fine-Grained Information Flow Policies for Web Browsers 243

many other scripts are developed by small, domain-specific vendors whose com-
mercial motives do not always align with those of the webpage providers and
users. This leaves sensitive information such as passwords, credit card numbers,
email addresses, click histories, cookies and location information vulnerable to
inadvertent bugs and deliberate exfiltration by third-party scripts. In many cases,
developers are fully aware that a third-party script accesses sensitive data to pro-
vide useful functionality, but they are unaware that the script also leaks that
data on the side. In fact, this is a widespread problem [18].

Existing web security standards and web browsers address this problem unsat-
isfactorily, favoring functionality over privacy. The same-origin policy (SOP) [5]
implemented in all major browsers restricts a webpage and third-party scripts
included in it to communicating with web servers from the including webpage’s
domain only. However, broad exceptions are allowed. For instance, there is no
restriction on request parameters in urls that fetch images and, unsurprisingly,
third-party scripts leak information by encoding it in image urls. The candi-
date web standard Content Security Policy (CSP) [31], also implemented in most
browsers, allows a page to white list scripts that may be included, but places no
restriction on scripts that have been included, thus not helping with the prob-
lem above. Other mechanisms (including a provision in the SOP) restrict scripts
loaded in a different third-party window or frame from accessing the resources of
a page but do not restrict third-party scripts included in the page itself.

The academic community has recently proposed solutions based on informa-
tion flow control (IFC) [7,9,12,16,18,26,28,30], also known as mandatory access
control. Their ideal goal is to allow third-party scripts access to necessary sensi-
tive data, but restrictwhere scripts can send the data—and data derived from that
data—in accordance with a policy. While this would balance functionality and pri-
vacy perfectly, all existing IFC-based solutions for web browsers fall short of this
ideal goal. Many proposals, including several taint-based solutions [7,9,16,26],
focus on the IFC mechanism, but currently lack adequate support for speci-
fying policies conveniently. Flowfox [30] provides a rich policy framework but
all websites are subject to the same policy, and the underlying IFC technique,
secure multi-execution [13], does not handle shared state soundly. COWL [28] uses
coarse-grained isolation, allowing scripts’ access to either remote domains or the
shared state, but not both. This requires significant code changes when both are
needed simultaneously (see Sect. 7 for more details).

The contribution of our work is WebPol, a policy framework that allows a
webpage developer to release data selectively to third-party scripts (to obtain
useful functionality), yet control what the scripts can do with the data. WebPol
integrates with any taint-based IFC solution to overcome the shortcomings listed
above. WebPol policies label sensitive content (page elements and user-generated
events) at source, and selectively declassify them by specifying where (to which
domains) the content and its derivatives can flow. Host page developers specify
WebPol policies in JavaScript, a language already familiar to them.

Under the hood, any taint-based IFC solution can be used to track data
flows and to enforce WebPol policies. As a demonstrative prototype, we have

244 A. Bichhawat et al.

integrated WebPol with our previous taint-based IFC framework for WebKit [7,
26], the engine that powers Apple’s Safari and other browsers. We demonstrate
the expressiveness of WebPol policies through examples and by applying WebPol
to two real websites. Through measurements, we demonstrate that WebPol poli-
cies impose low-to-moderate overhead, which makes WebPol usable today. A full
version of the paper [8] contains more details, including a small lab study through
which we test that WebPol can be effectively used by programmers familiar with
HTML and JavaScript.

2 Overview

This section provides an overview of information flow control (IFC) in the con-
text of web browsers and lists important considerations in the design of WebPol.
IFC is a broad term for techniques that control the flow of sensitive informa-
tion in accordance with pre-defined policies. Sensitive information is information
derived from sources that are confidential or private. Any IFC system has two
components—the policy component and the enforcement component. The policy
component allows labeling of private information sources. The label on a source
specifies how private information from that source can be used and where it
can flow. The collection of rules for labeling is called the policy. The enforce-
ment component enforces policies. WebPol contributes a policy component to
complement existing work on enforcement components in web browsers. Many
existing enforcement components can be used with WebPol. For completeness,
we describe both policy and enforcement components here.

Policy component. The policy component provides a way to label or mark sen-
sitive data sources with labels that represent confidentiality and where data can
flow. In the context of webpages, data sources are objects generated in response
to user events like the content of a password box generated due to key presses
or a mouse click on a sensitive button, and data obtained in a network receive
event. In WebPol, data sources can be labeled with three kinds of labels, in
increasing order of confidentiality: (1) the label public represents non-sensitive
data, (2) for each domain domain, the label domain represents data private to
the domain; such data’s flow should be limited only to the browser and servers
belonging to domain and its subdomains, and (3) the label local represents
very confidential data that must never leave the browser. Technically, labels are
elements of the partial order public < domaini < local. Labels higher in the
order represent more confidentiality than labels lower in the order. These labels
are fairly expressive.1 For example, labeling a data source with the domain of
the hosting page prevents exfiltration to third-parties. Labeling a data source
with the domain of a third-party provider such as an page analytics provider
allows transfer to only that service.

1 Richer label models that support, for instance, conjunctions and disjunctions of
labels [27] are compatible with WebPol. However, we have not found the need for
such models so far.

WebPol: Fine-Grained Information Flow Policies for Web Browsers 245

Since most data on a webpage is not sensitive, it is reasonable to label data
sources public by default and only selectively assign a different label. WebPol
uses this blacklisting approach. Two nuances of source labeling are noteworthy.
The first is its fine granularity. Not all objects generated by the same class of
events have the same label. For instance, characters entered in a password field
may have the domain label of the hosting page, limiting their flow only to the
host, but characters entered in other fields may be accessible to third-party
advertising or analytics scripts without restrictions. This leads to the following
requirement on the policy component.

Requirement 1: The policy component must allow associating different policies
with different elements of the page.

The second nuance is that the label of an object can be dynamic, i.e., history-
dependent. Consider a policy that hides from an analytics script how many times
a user clicked within an interactive panel, but wants to share whether or not the
user clicked at least once. The label of a click event on the panel is public the
first time the user clicks on it and private afterwards and, hence, it depends
on the history of user interaction. This yields the following requirement on the
policy component.

Requirement 2: Labels may be determined dynamically. This requirement means
that labels must be set by trusted policy code that is executed on-the-fly and that
has local state.

Enforcement component. Source data labels must be enforced even as scripts
transform and transmit the data. Existing literature is rife with techniques for
doing this, even in the context of web-browsers. Fine-grained taint tracking [7,
9,16,18,26], coarse-grained taint tracking [6,28], faceted execution [4,32], secure
multi-execution [13,30], and static analysis [10,15,21] are some enforcement tech-
niques that have been considered in the context of JavaScript. They differ consid-
erably in their mechanics, their expressiveness and ease of fit with the browser
programming model. WebPol has been designed keeping fine-grained taint track-
ing (FGTT) in mind, so we explain that technique in some detail below.

In FGTT, the language runtime is modified to track information flows and to
attach a label (often called a taint) with each runtime object, including objects
on the stack, the heap and, in the context of web browsers, the DOM. Two
kinds of flows are typically considered. Explicit flows arise as a result of direct
assignment. In these cases, the label of the destination object is overwritten with
the label of the source object. Implicit flows arise due to control dependencies.
For instance, in pub = false; if (sec) pub = true, the final value of pub
depends on sec although there is no direct assignment from sec to pub. Implicit
flows are tracked by keeping a context label on the instruction pointer. Once both
explicit and implicit flows are tracked, enforcing policies is straightforward: An
outgoing communication with domain d’s servers is allowed only if the labels on
the payload of the communication and the instruction pointer at the point of
the communication are either public or d. This ensures that all labels attached
to source data are respected.

246 A. Bichhawat et al.

FGTT can be implemented either by modifying the browser’s JavaScript
engine to track flows and labels [7,16], or by a source-to-source transform of
JavaScript code prior to execution [9]. There is a space and time overhead asso-
ciated with storing labels and tracking them. However, with careful engineering,
this overhead can be reduced enough to not be noticeable to end-users.

3 WebPol policy model

WebPol works on a browser that has already been augmented with IFC enforce-
ment. It provides a framework that allows setting labels at fine-granularity, thus
expressing and enforcing rich policies. This section describes the threat model
for WebPol and explains the WebPol design.

Threat model. WebPol prevents under-the-hood exfiltration of sensitive data
that has been provided to third-party scripts for legitimate reasons. So, third-
party scripts are not trusted but code from the host domain is trusted.

We are interested only in JavaScript-level bugs or exfiltration attempts. We
trust the browser infrastructure to execute all JavaScript code following the lan-
guage’s semantics and to dispatch events correctly. Low-level attacks that target
vulnerabilities in the browser engine are out of scope. Similarly, defending against
network attacks (like man-in-the-middle attacks) is not our goal. Orthogonal
techniques like end-to-end encryption or HTTPS can be used to defend against
those attacks. Integrity attacks are also out of scope. For instance, attacks based
on sending requests containing no sensitive data to websites, where the user
might already be logged in, cannot be prevented using this model.

WebPol executes on top of an IFC enforcement in the browser. That
enforcement is assumed to be correct and to track all flows. Prior work on such
enforcement has often been supplemented with formal proofs to show that the
enforcement is correct, at least abstractly [7,16,26].

WebPol’s policies are agnostic to specific channels of information leak. How-
ever, current IFC enforcements in browsers track only explicit and implicit flows.
Consequently, leaks over other channels such as timing and memory-usage are
currently out of scope. As IFC enforcements improve to cover more channels,
WebPol’s policies will extend to them as well.

3.1 Policies as Event Handlers

The first question in the design of WebPol is who should specify policies. Since
our goal is to prevent exfiltration of data by third-party scripts and it is the
developer of the host page who bootstraps the inclusion of scripts and best
understands how data on the page should be used, it is natural and pragmatic
to have the developer specify policies, possibly as part of the page itself.

The next question is how the developer specifies policies. To answer this,
we recall the two requirements we identified in Sect. 2—it should be possible
to specify different policies on different page elements and policies should be
allowed to include code that is executed on-the-fly to generate labels. When we

WebPol: Fine-Grained Information Flow Policies for Web Browsers 247

also consider the fact that sensitive data is usually generated by input events, it is
clear that policies should be page element-specific, (trusted) code that is executed
after events have occurred (this code labels event-generated data). Fortunately,
web browsers provide exactly this abstraction in the form of event handlers! So,
we simply extend the event-handling logic in web browsers to express WebPol
policies. This allows us to leverage a lot of the existing browser logic for event
handler installation, parsing and event dispatch. Before explaining how we do
this, we provide a brief overview of event handling in web browsers.

Event handlers and event dispatch. Browsers execute JavaScript functions,
called event handlers, in response to input events like mouse clicks, key presses,
and asynchronous network receives. Save for network receive events, every event
has a target, which is an element in the page’s DOM where the event originated.
For instance, if a button is clicked, the target of the ensuing event is the button.
Code running on a page can add an event handler on any element on the page,
listening for a specific event. When an event occurs, all handlers associated
for that event with the event’s target and the target’s ancestors are triggered
sequentially. This is called event dispatch. The specific order in which handlers
are triggered is not relevant for our purposes (although it is fairly interesting for
IFC enforcement [26]). The whole process is bootstrapped by the static HTML
of the page, which may contain JavaScript that is executed when the page loads
initially, and this JavaScript installs the first set of event handlers.

Policy handlers. In WebPol, policies are special event handlers, specified using
a special marker in the HTML source of the hosting page. These special handlers,
called policy handlers, follow standard JavaScript syntax, can be attached to
any page element, listening for any event and, like other handlers, are triggered
every time the event is dispatched on the element or any of its descendants in
the DOM. However, unlike other handlers, the sole goal of policy handlers is to
assign labels to other sensitive objects, including the event being dispatched. To
allow the policy handlers to do this, we modify the browser slightly to afford
these handlers two special privileges:

– Policy handlers can execute two new JavaScript API functions that set labels
on other objects. No other JavaScript code can execute these two functions.
These functions are described later.

– During event dispatch all applicable policy handlers are executed before
ordinary handlers. This ensures that labels are set before ordinary handlers
(including those of third-party scripts) execute.

To maintain the integrity of the policies, policy handlers must be included in
the HTML source of the page directly. They cannot be installed dynamically
by JavaScript code. Otherwise, third-party scripts could install policy handlers
that set very permissive labels. Also, if a DOM element has a policy handler,
we disallow third-party scripts from detaching that element or moving it else-
where, as that can change the interpretation of the policy. Similarly, changing
the attributes of such an element is restricted.

248 A. Bichhawat et al.

Fig. 1. Workflow of the WebPol policy model

Since different policy handlers can be associated with different elements,
Requirement 1 is satisfied. Moreover, policy handlers are ordinary JavaScript
code, so they can also maintain local state in private variables, thus satisfying
Requirement 2.

The workflow of policy interpretation in WebPol is shown in Fig. 1. We briefly
summarize the steps:

1. The web page developer specifies the policy in the host HTML page in the
form of special event handlers.

2. The browser parses the policy and registers its handlers (mostly like usual
handlers, but with the two special privileges mentioned above).

3. When an event dispatches, listening policy handlers are executed first.
4. These policy handlers set labels on objects affected by the event, including

the event object itself. They may also update any local state they maintain.
5. The remaining event handlers are dispatched as usual. The IFC enforcement

in the browser enforces all labels that have been set by the policy handlers
(during any prior event’s dispatch), thus preventing any data leak in contra-
vention of the labels.

3.2 Integration with the Web Browser

WebPol needs minor modifications to the browser to parse and interpret policies
and to expose additional JavaScript API functions to set labels.

HTML and event dispatch changes. WebPol adds an HTML extension to
differentiate policy code from other JavaScript code. Concretely, we change the
browser’s parser to interpret any script file with the extension .policy included
directly in the host page as a policy. If such a policy script installs a handler,
it is treated as a policy handler. Additionally, a policy script can set labels on
the page’s global variables and DOM elements (like password fields). If a script
does this, it should be included in the host page before third-party scripts that
use those variables. WebPol also requires a small change to the browser’s event
dispatch mechanism to execute policy handlers before other handlers.

WebPol: Fine-Grained Information Flow Policies for Web Browsers 249

1 var p = document.getElementById("pwd");

2 p.addEventListener("keypress", function (e){

3 var score = checkPwdStrength(p.value);

4 document.getElementById("pwdStrength").innerText = score;

5 new Image().src = "http://stealer.com/pwd.jsp?pwd="+p +score;

6 });

Listing 1. Password strength checking script that leaks the password

Label-setting APIs. WebPol exposes two new JavaScript API functions to set
labels. These functions can be called only by the policy code in .policy files
and handlers installed by such files (we modify the browser to enforce this).

The function setLabel(label) sets the label of the object on which it is
called to label. As explained earlier, label can be public, a domain name, or
local (the default is public). Once an object’s label is set, it is enforced by the
underlying IFC enforcement. The special label HOST is a proxy for the domain
of the host page.

The function setContext(label) can be called only on an event object. It
restricts the visibility of the event to label label and higher. In simple terms,
if label is a domain, then only that domain can ever learn that this event
occurred, whereas if label is local, then no domain can ever learn that this
event occurred. Technically, this is accomplished by setting the so-called program
counter label (pc) of event handlers running during the dispatch to label, which
ensures that their side-effects (writes to DOM and network communication) are
labeled label or higher.

As opposed to setLabel, which makes individual data objects (like password
fields) private, setContext makes the existence of an event private. This is use-
ful. For instance, clicking on the “politics” section of a news feed might indicate
that the user is interested in politics, which may be private information, so the
page may want to hide even the existence of click events from third-party scripts.
(The distinction between the privacy of event content and event occurrence has
been previously described by Rafnsson and Sabelfeld [25].)

4 Examples

We illustrate the expressiveness of WebPol policies through a few examples.

Example 1: Password strength checker. Many websites deploy password
strength checkers on pages where users set new passwords. A password strength
checker is an event handler from a third-party library that is triggered each time
the user enters a character in the new password field. The handler provides visual
feedback to the user about the strength of the password entered so far. Strength
checkers usually check the length of the password and the diversity of characters
used. Consequently, they do not require any network communication. However,
standard browser policies cannot enforce this and the password strength checker
can easily leak the password if it wants to. Listing 1 shows such a “leaky”

250 A. Bichhawat et al.

1 function currencyConverter() {

2 var toCur = document.getElementById("to").value;

3 var xh = new XMLHttpRequest();

4 xh.onreadystatechange = function() {

5 if (xh.readyState == 4) {

6 currencyRate = eval(xhttp.responseText);

7 var aAmt = document.getElementById("amt").value;

8 var convAmt = aAmt * currencyRate;

9 document.getElementById("camt").innerHTML = convAmt;

10 xh.open("GET","http://currConv.com/amount.jsp?atc=" + aAmt

);

11 xh.send(); }}

12 xh.open("GET","http://currConv.com/conv.jsp?toCur=" + toCur, true

);

13 xh.send(); }

Listing 2. Currency converter script that leaks a private amount

password checker. The checker installs a listener for keypresses in the password
field (line 2). In response to every keypress, the listener delivers its expected
functionality by checking the strength of the password and indicating this to
the user (lines 3, 4), but then it leaks out the password to stealer.com by
requesting an image at a url that includes the password (line 5). The browser’s
standard SOP allows this.

With WebPol, the developer of the host webpage can prevent any exfiltration
of the password by including the policy script:

document.getElementById("pwd").setLabel("HOST");

This policy sets the label of the password field to the host’s own domain using the
function setLabel(). Subsequently, the IFC enforcement restricts all outgoing
communication that depends on the password field to the host.

Conceptually, this example is simple because it does not really leverage the
fine-granularity of WebPol policies and FGTT. Here, the third-party script does
not need any network communication for its intended functionality and, hence,
simpler confinement mechanisms that prohibit a third-party script from commu-
nicating with remote servers would also suffice. Our next example is a scenario
where the third-party script legitimately needs remote communication. It lever-
ages the fine-granularity of WebPol policies and FGTT.

Example 2: Currency conversion. Consider a webpage from an e-commerce
website which displays the cost of an item that the user intends to buy. The
amount is listed in the site’s native currency, say US dollars (USD), but for the
user’s convenience, the site also allows the user to see the amount converted to
a currency of his/her choice. For this, the user selects a currency from a drop-
down list. A third-party JavaScript library reads both the USD amount and
the second currency, converts the amount to the second currency and inserts it
into the webpage, next to the USD amount. The third-party script fetches the

WebPol: Fine-Grained Information Flow Policies for Web Browsers 251

1 var p = document.getElementbyId("sect_name");

2 p.addEventListener("click",function(event){

3 event.setLabel("HOST"); });

Listing 3. Policy that allows counting clicks but hides details of the clicks

1 clickCount = 0;

2 var p = document.getElementbyId("sect_name");

3 p.addEventListener("click",function clkHdlr(e){ clickCount += 1; });

Listing 4. Analytics script that counts clicks

current conversion rate from its backend service at currConv.com. Consequently,
it must send the name of the second currency to its backend service, but must not
send the amount being converted (the amount is private information). The web
browser’s same-origin policy has been relaxed (using, say, CORS [20]) to allow
the script to talk to its backend service at currConv.com. The risk is that the
script can now exfiltrate the private amount. Listing 2 shows a leaky script that
does this. On line 13, the script makes a request to its backend service passing
to the second currency. The callback handler (lines 4–11) reads the amount from
the page element amt, converts it and inserts the result into the page (lines 6–9).
Later, it leaks out the amount to the backend service on line 10, in contravention
of the intended policy.

With WebPol, this leak can be prevented with the following policy that sets
the label of the amount to the host only:

document.getElementById("amt").setLabel("HOST")

This policy prevents exfiltration of the amount but does not interfere with the
requirement to exfiltrate the second currency. Importantly, no modifications are
required to a script that does not try to leak data (e.g., the script obtained by
dropping the leaky line 10 of Listing 2).

Example 3: Web analytics. To better understand how users interact with
their websites, web developers often include third-party analytics scripts that
track user clicks and keypresses to generate useful artifacts like page heat-maps
(which part of the page did the user interact with the most?). Although a web
developer might be interested in tracking only certain aspects of their users’
interaction, the inclusion of the third-party scripts comes with the risk that the
scripts will also record and exfiltrate other private user behavior (possibly for
monetizing it later). Using WebPol, the web developer can write precise policies
about which user events an analytics script can access and when. We show several
examples of this.

To allow a script to only count the number of occurrences of a class of events
(e.g., mouse clicks) on a section of the page, but to hide the details of the indi-
vidual events (e.g., the coordinates of every individual click), the web developer
can add a policy handler on the top-most element of the section to set the
label of the individual event objects to HOST. This prevents the analytics script’s

252 A. Bichhawat et al.

1 var alreadyClicked = false; var p =

2 document.getElementById("sect_name");

3 p.addEventListener("click",function(event){

4 if (alreadyClicked = true) event.setContext("HOST");

5 else {alreadyClicked = true; event.setLabel("HOST");} });

Listing 5. Policy that tracks whether a click happened or not only

listening handler from examining the details of individual events, but since the
handler is still invoked at each event, it can count their total number. Listings 3
and 4 show the policy handler and the corresponding analytics script that counts
clicks in a page section named sect name.

Next, consider a restriction of this policy, which allows the analytics script to
learn only whether or not at least one click happened in the page section, com-
pletely hiding clicks beyond the first. This policy can be represented in WebPol
using a local state variable in the policy to track whether or not a click has hap-
pened. Listing 5 shows the policy. The policy uses a variable alreadyClicked
to track whether or not the user has clicked in the section. Upon the user’s first
click, the policy handler sets the event’s label to the host’s domain (line 5). This
makes the event object private but allows the analytics handler to trigger and
record the occurrence of the event. On every subsequent click, the policy handler
sets the event’s context to the host domain using setContext() (line 4). This
prevents the analytics script from exfiltrating any information about the event,
including the fact that it occurred.

Finally, note that a developer can subject different page sections to differ-
ent policies by attaching different policy handlers to them. The most sensitive
sections may have a policy that unconditionally sets the event context to the
host’s, effectively hiding all user events in those sections. Less sensitive sections
may have policies like those of Listings 3 and 5. Non-sensitive sections may have
no policies at all, allowing analytics scripts to see all events in them.

Example 4: Defending against overlay-based attacks. The full version of
the paper [8] describes a simple WebPol policy that defends against an attack
where a malicious script creates a transparent overlay over a sensitive element
(like a password field) to record user events like keypresses without policy pro-
tection.

5 Implementation

We have prototyped WebPol in WebKit, a popular open source browser engine
that powers many browsers including Apple’s Safari. Our implementation runs
on top of our prior IFC enforcement in WebKit that uses FGTT and a bit of on-
the-fly static analysis [7]. The IFC enforcement is highly optimized, and covers
most JavaScript native functions (the DOM API) [26]. It targets WebKit nightly
build #r122160 and works with the Safari web browser, version 6.0. Since it is
difficult to port our earlier implementation (not WebPol) to a newer version of

WebPol: Fine-Grained Information Flow Policies for Web Browsers 253

WebKit, we choose to evaluate WebPol on this slightly outdated setup. This
suffices since WebPol’s design is not affected by recent browser updates. The
source code is available online at: https://github.com/bichhawat/ifc4bc.

Our earlier IFC implementation modified approximately 6,800 lines in the
JavaScript engine, the DOM APIs and the event handling logic for FGTT. To
implement WebPol, we additionally modified the HTML parser to distinguish
policy files (extension .policy) from other JavaScript files and to give policy
code extra privileges. We also added the two new JavaScript API functions
setLabel() and setContext(). Finally, we modified the event dispatch logic to
trigger policy handlers before other handlers. In all, we changed 25 lines in the
code of the parser, added 60 lines for the two new API functions and changed
110 lines in the event dispatch logic. Overall, implementing WebPol has low
overhead, and we expect that it can also be ported to other browsers or later
versions of WebKit easily.

6 Evaluation

The goal of our evaluation is two-fold. First, we want to measure WebPol over-
head, both on parsing and installing policies during page load and on executing
policy handlers later. We do this for four examples presented in Sect. 4 and for
two real-world websites. Second, we wish to understand whether WebPol can be
used easily. Accordingly, we apply WebPol policies to two real-world websites
and report on our experience. All our experiments were performed on a 3.2 GHz
Quad-core Intel Xeon processor with 8 GB RAM, running Mac OS X version
10.7.4 using the browser configuration described in Sect. 5.

Performance overheads on synthetic examples. To measure WebPol’s
runtime overhead, we tested four examples from Sect. 4 (Examples 1, 2 and
the two sub-examples of Example 3) in three different configurations: Base—
uninstrumented browser, no enforcement; IFC—taint tracking from prior work,
but no policy handlers (everything is labeled public); WebPol—our system run-
ning policy handlers and taint tracking.

Table 1. Performance of examples from Sect. 4. All time in ms. The percentages in
parentheses in the column IFC are overheads relative to Base. Similar numbers in the
column WebPol are additional overheads, still relative to Base.

Example # JavaScript execution time Page load time

Base IFC WebPol Base IFC WebPol

Example 1 2430 2918 (+20.1%) 2989 (+1.9%) 16 17 (+6.3%) 19 (+12.5%)

Example 2 3443 4361 (+26.7%) 5368 (+29.2%) 41 43 (+4.9%) 46 (+7.2%)

Example 3 (count) 1504 1737 (+15.5%) 1911 (+11.6%) 24 25 (+4.2%) 31 (+25.0%)

Example 3 (presence) 1780 2095 (+17.7%) 2414 (+18.9%) 26 28 (+7.7%) 30 (+7.7%)

https://github.com/bichhawat/ifc4bc

254 A. Bichhawat et al.

JavaScript execution time: To measure the overheads of executing policy handler
code, we interacted with all four programs manually by entering relevant data
and performing clicks a fixed number of times. For each of these configurations,
we measured the total time spent only in executing JavaScript, including scripts
and policies loaded initially with the page and the scripts and policies executed in
response to events. The difference between IFC and Base is the overhead of taint
tracking, while the difference between the WebPol and IFC is the overhead
of evaluating policy handlers. Since we are only measuring JavaScript execution
time and there are no time-triggered handlers in these examples, variability in the
inter-event gap introduced by the human actor does not affect the measurements.

The left half of Table 1 shows our observations. All numbers are averages
of 5 runs and the standard deviations are all below 7%. Taint-tracking (IFC)
adds overheads ranging from 15.5% to 26.7% over Base. To this, policy handlers
(WebPol) adds overheads ranging from 1.9% to 29.2%. WebPol overheads are
already modest, but we also note that this is also a very challenging (conserva-
tive) experiment for WebPol. The scripts in both sub-examples of Example 3 do
almost nothing. The scripts in Examples 1 and Example 2 are slightly longer, but
are still much simpler than real scripts. On real and longer scripts, the relative
overheads of evaluating the policy handlers is significantly lower as shown later.
Moreover, our baseline in this experiment does not include other browser costs,
such as the cost of page parsing and rendering, and network delays. Compared
to those, both IFC and WebPol overheads are negligible.

Page load time: We separately measured the time taken for loading the initial
page (up to the DOMContentLoaded event). The difference between WebPol
and IFC is the overhead for parsing and loading policies. The right half of
Table 1 shows our observations. All numbers are the average of 20 runs and all
standard deviations are below 8%. WebPol overheads due to policy parsing and
loading range from 7.2% to 25% (last column). When we add overheads due to
taint tracking (column IFC), the numbers increase to 12.1% to 29.2%. Note that
page-load overheads are incurred only once on every page (re-)load.

Real-world websites. To understand whether WebPol scales to real-world web-
sites, we evaluated WebPol on policies for two real-world applications—the web-
site http://www.passwordmeter.com that deploys a password-strength checker
(similar to Example 1) and a bank login page that includes third-party analytics
scripts (similar to Example 3). Both policies were written by hand and are shown
in the full version of the paper [8].

Experience writing policies: In both cases, we were able to come up with mean-
ingful policies easily after we understood the code, suggesting that WebPol poli-
cies can be (and should be) written by website developers. The policy for the
password-strength checker is similar to Listing 1 and prevents the password from
being leaked to third-parties. We had to write four lines of additional policy code
to allow the script to write the results of the password strength check (which
depends on the password) into the host page. The analytics script on the bank
website communicates all user-behavior to its server. We specified a policy that

http://www.passwordmeter.com

WebPol: Fine-Grained Information Flow Policies for Web Browsers 255

Table 2. Performance on two real-world websites. All time in ms. The percentages in
parentheses in the column IFC are overheads relative to Base. Similar numbers in the
column WebPol are additional overheads, still relative to Base.

Website JavaScript execution time Page load time

Base IFC WebPol Base IFC WebPol

Password 79.5 115.5 (+45.3%) 126 (+13.2%) 303 429 (+41.6%) 441 (+4.0%)

Analytics 273.4 375.1 (+37.2%) 386.1 (+4.0%) 2151 2422 (+12.6%) 2499 (+3.6%)

disallows exfiltration of keypresses on the username and the password text-boxes
to third-parties.

Performance overheads: We also measured performance overheads on the two
websites, in the same configurations as for the synthetic examples. Table 2 shows
the results. On real-world websites, where actual computation is long, the over-
heads of WebPol are rather small. The overheads of executing policy handlers,
relative to Base’s JavaScript execution time, are 4.0% and 13.2%, while the
overheads of parsing and loading policies are no more than 4.0%. Even the total
overhead of IFC and WebPol does not adversely affect the user experience in
any significant way.

This experiment indicates that WebPol is suitable for real-world websites.

7 Related Work

Browser security is a very widely-studied topic. Here, we describe only closely
related work on browser security policies and policy enforcement techniques.

Information flow control and script isolation. The work most closely
related to our is that of Vanhoef et al. [30] on stateful declassification policies in
reactive systems, including web browsers. Their policies are similar to ours, but
there are significant differences. First, their policies are attached to the browser
and they are managed by the browser user rather than website developers. Sec-
ond, the policies have coarse-granularity: They apply uniformly to all events of
a certain type. Hence, it is impossible to specify a policy that makes keypresses
in a password field secret, but makes other keypresses public. Third, the enforce-
ment is based on secure multi-execution [13], which is, so far, not compatible
with shared state like the DOM.

COWL [28] enforces mandatory access control at coarse-granularity. In
COWL, third-party scripts are sandboxed. Each script gets access to either
remote servers or the host’s DOM, but not both. Scripts that need both must be
re-factored to pass DOM elements over a message-passing API (postMessage).
This can be both difficult and have high overhead. For scripts that do not need
this factorization, COWL is more efficient than solutions based on FGTT.

Mash-IF [21] uses static analysis to enforce IFC policies. Mash-IF’s model
is different from WebPol’s model. Mash-IF policies are attached only to DOM

256 A. Bichhawat et al.

nodes and there is no support for adding policies to new objects or events.
Also, in Mash-IF, the browser user (not the website developer) decides what
declassifications are allowed. Mash-IF is limited to a JavaScript subset that
excludes commonly used features such as eval and dynamic property access.

JSand [3] uses server-side changes to the host page to introduce wrappers
around sensitive objects, in the style of object capabilities [24]. These wrap-
pers mediate every access by third-party scripts and can enforce rich access
policies. Through secure multi-execution, coarse-grained information flow poli-
cies are also supported. However, as mentioned earlier, it is unclear how secure
multi-execution can be used with scripts that share state with the host page.

WebPol policies are enforced using an underlying IFC component. Although,
in principle, any IFC technique such as fine-grained taint tracking [7,9,16,18],
coarse-grained taint tracking [28] or secure multi-execution [13] can be used with
WebPol, to leverage the full expressiveness of WebPol’s finely-granular policies, a
fine-grained IFC technique is needed. JSFlow [16,17] is a stand-alone implemen-
tation of a JavaScript interpreter with fine-grained taint tracking. Many seminal
ideas for labeling and tracking flows in JavaScript owe their lineage to JSFlow,
but since JSFlow is written from scratch it has very high overheads. Building
on ideas introduced by Just et al. [19], our own prior work [7,26] implements
fine-grained IFC in an existing browser engine, WebKit, by modifying the Java-
Script interpreter. The overheads are significantly lower than JSFlow, which is
why chose to integrate WebPol with our own work. Both JSFlow and our work
include formal proofs that the taint tracking is complete, relative to the abstrac-
tions of a formal model. Chudnov and Naumann [9] present another approach
to fine-grained IFC for JavaScript. They rewrite source programs to add shadow
variables that hold labels and additional code that tracks taints. This approach
is inherently more portable than that of JSFlow or our work, both of which are
tied to specific, instrumented browsers. However, it is unclear to us how this
approach could be extended with a policy framework like WebPol that assigns
state-dependent labels at runtime.

Access control. The traditional browser security model is based on restricting
scripts’ access to data, not on tracking how scripts use data. However, no model
based on access control alone can simultaneously allow scripts access to data
they need for legitimate purposes and prevent them from leaking the data on
the side. Doing so is the goal of IFC and WebPol. Nonetheless, we discuss some
related work on access control in web browsers.

The standard same-origin policy (SOP) and content-security policy (CSP)
were described in Sect. 1. An additional, common access policy—cross-origin
resource sharing (CORS) [20]—relaxes SOP to allow some cross-origin requests.

Conscript [23] allows the specification of fine-grained access policies on
individual scripts, limiting what actions every script can perform. Similarly,
AdJail [22] limits the execution of third-party scripts to a shadow page and
restricts communication between the script and the host page. Zhou and
Evans [33] take a dual approach, where fine-grained access control rules are
attached to DOM elements. The rules specify which scripts can and cannot

WebPol: Fine-Grained Information Flow Policies for Web Browsers 257

access individual elements. Along similar lines, Dong et al. [14] present a tech-
nique to isolate sensitive data using authenticated encryption. Their goal is to
reduce the size of the trusted computing base. ADsafe [11] and FBJS [1] restrict
third-party code to subsets of JavaScript, and use static analysis to check for
illegitimate access. Caja [2] uses object capabilities to mediate all access by
third-party scripts. WebJail [29] supports least privilege integration of third-
party scripts by restricting script access based on high-level policies specified
by the developer. All these techniques enforce only access policies and cannot
control what a script does with data it has been provided in good faith.

8 Conclusion

Third-party JavaScript often requires access to sensitive data to provide mean-
ingful functionality, but comes with the risk that the data may be leaked on the
side. Information flow control in web browsers can solve this problem. Within
this context, this paper proposed WebPol, a mechanism for labeling sensitive
data, dynamically and at fine-granularity. WebPol uses JavaScript for policy
specification, which makes it developer-friendly, and re-uses the browser’s event
handling logic for policy interpretation, which makes it easy to implement and
improves the likelihood of easy portability across browsers and versions. Our
evaluation indicates that WebPol has low-to-moderate overhead, even including
the cost of information flow control and, hence, it can be used on websites today.

Acknowledgments. We thank several anonymous reviewers for their excellent feed-
back. This work was funded in part by the Deutsche Forschungsgemeinschaft (DFG)
grant “Information Flow Control for Browser Clients” under the priority program “Reli-
ably Secure Software Systems” (RS3).

References

1. Facebook. FBJS. https://developers.facebook.com/docs/javascript. Accessed 19
June 2017

2. Google Caja: A source-to-source translator for securing JavaScript-based web con-
tent. https://developers.google.com/caja/. Accessed 19 June 2017

3. Agten, P., Van Acker, S., Brondsema, Y., Phung, P.H., Desmet, L., Piessens, F.:
JSand: complete client-side sandboxing of third-party javascript without browser
modifications. In: Proceedings of 28th Annual Computer Security Applications
Conference (ACSAC), pp. 1–10. ACM, New York (2012)

4. Austin, T.H., Flanagan, C.: Multiple facets for dynamic information flow. In: Pro-
ceedings 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), pp. 165–178. ACM, New York (2012)

5. Barth, A.: The web origin concept. http://tools.ietf.org/html/rfc6454. Accessed 19
June 2017

6. Bauer, L., Cai, S., Jia, L., Passaro, T., Stroucken, M., Tian, Y.: Run-time mon-
itoring and formal analysis of information flows in chromium. In: Proceedings of
ISOC Network and Distributed System Security Symposium (NDSS) (2015)

https://developers.facebook.com/docs/javascript
https://developers.google.com/caja/
http://tools.ietf.org/html/rfc6454

258 A. Bichhawat et al.

7. Bichhawat, A., Rajani, V., Garg, D., Hammer, C.: Information flow con-
trol in WebKit’s javascript bytecode. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 159–178. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54792-8 9

8. Bichhawat, A., Rajani, V., Jain, J., Garg, D., Hammer, C.: WebPol: fine-grained
information flow policies for web browsers (Full version) (2017). http://arxiv.org/
abs/1706.06932

9. Chudnov, A., Naumann, D.A.: Inlined information flow monitoring for javascript.
In: Proceedings 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), pp. 629–643. ACM, New York (2015)

10. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for java-
script. In: Proceedings of 30th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pp. 50–62. ACM, New York (2009)

11. Crockford, D.: ADsafe. http://adsafe.org/. Accessed 19 June 2017
12. De Groef, W., Devriese, D., Nikiforakis, N., Piessens, F.: FlowFox: a web browser

with flexible and precise information flow control. In: Proceedings of 19th ACM
Conference on Computer and Communications Security (CCS), pp. 748–759. ACM,
New York (2012)

13. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: Pro-
ceedings of 31st IEEE Symposium on Security and Privacy (SP), pp. 109–124.
IEEE Computer Society, Washington, DC (2010)

14. Dong, X., Chen, Z., Siadati, H., Tople, S., Saxena, P., Liang, Z.: Protecting sensitive
web content from client-side vulnerabilities with CRYPTONS. In: Proceedings
of 20th ACM SIGSAC Conference on Computer and Communications Security
(CCS), pp. 1311–1324. ACM, New York (2013)

15. Guarnieri, S., Pistoia, M., Tripp, O., Dolby, J., Teilhet, S., Berg, R.: Saving the
world wide web from vulnerable javascript. In: Proceedings of 2011 International
Symposium on Software Testing and Analysis (ISSTA), pp. 177–187. ACM, New
York (2011)

16. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: tracking information flow
in javascript and its APIs. In: Proceedings of 29th Annual ACM Symposium on
Applied Computing (SAC), pp. 1663–1671. ACM, New York (2014)

17. Hedin, D., Sabelfeld, A.: Information-flow security for a core of javascript. In:
Proceedings of IEEE 25th Computer Security Foundations Symposium (CSF), pp.
3–18. IEEE Computer Society, Washington, DC (2012)

18. Jang, D., Jhala, R., Lerner, S., Shacham, H.: An empirical study of privacy-
violating information flows in javascript web applications. In: Proceedings of 17th
ACM Conference on Computer and Communications Security (CCS), pp. 270–283.
ACM, New York (2010)

19. Just, S., Cleary, A., Shirley, B., Hammer, C.: Information flow analysis for java-
script. In: Proceedings of 1st ACM SIGPLAN International Workshop on Pro-
gramming Language and Systems Technologies for Internet Clients (PLASTIC),
pp. 9–18. ACM, New York (2011)

20. van Kesteren, A.: Cross-origin resource sharing. http://www.w3.org/TR/cors/.
Accessed 19 June 2017

21. Li, Z., Zhang, K., Wang, X.: Mash-if: practical information-flow control within
client-side mashups. In: Proceedings of 40th Annual IEEE/IFIP International Con-
ference on Dependable Systems Networks (DSN), pp. 251–260 (2010)

http://dx.doi.org/10.1007/978-3-642-54792-8_9
http://dx.doi.org/10.1007/978-3-642-54792-8_9
http://arxiv.org/abs/1706.06932
http://arxiv.org/abs/1706.06932
http://adsafe.org/
http://www.w3.org/TR/cors/

WebPol: Fine-Grained Information Flow Policies for Web Browsers 259

22. Louw, M.T., Ganesh, K.T., Venkatakrishnan, V.N.: AdJail: practical enforcement
of confidentiality and integrity policies on web advertisements. In: Proceedings of
19th USENIX Conference on Security (USENIX Security), pp. 24–40. USENIX
Association, Berkeley (2010)

23. Meyerovich, L.A., Livshits, B.: ConScript: specifying and enforcing fine-grained
security policies for javascript in the browser. In: Proceedings of 31st IEEE Sym-
posium on Security and Privacy (SP), pp. 481–496. IEEE Computer Society,
Washington, DC (2010)

24. Miller, M.: Robust composition: towards a unified approach to access control and
concurrency control. Ph.D. thesis, Johns Hopkins University (2006)

25. Rafnsson, W., Sabelfeld, A.: Secure multi-execution: fine-grained, declassification-
aware, and transparent. In: Proceedings of IEEE 26th Computer Security Foun-
dations Symposium (CSF), pp. 33–48. IEEE Computer Society, Washington, DC
(2013)

26. Rajani, V., Bichhawat, A., Garg, D., Hammer, C.: Information flow control for
event handling and the DOM in web browsers. In: Proceedings of IEEE 28th Com-
puter Security Foundations Symposium (CSF), pp. 366–379. IEEE Computer Soci-
ety, Washington, DC (2015)

27. Stefan, D., Russo, A., Mazières, D., Mitchell, J.C.: Disjunction category labels. In:
Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161, pp. 223–239. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-29615-4 16

28. Stefan, D., Yang, E.Z., Marchenko, P., Russo, A., Herman, D., Karp, B., Mazières,
D.: Protecting users by confining javascript with COWL. In: Proceedings of 11th
USENIX Conference on Operating Systems Design and Implementation (OSDI),
pp. 131–146. USENIX Association, Berkeley, CA, USA (2014)

29. Van Acker, S., De Ryck, P., Desmet, L., Piessens, F., Joosen, W.: WebJail: least-
privilege integration of third-party components in web mashups. In: Proceedings of
27th Annual Computer Security Applications Conference (ACSAC), pp. 307–316.
ACM, New York (2011)

30. Vanhoef, M., De Groef, W., Devriese, D., Piessens, F., Rezk, T.: Stateful declassifi-
cation policies for event-driven programs. In: Proceedings of IEEE 27th Computer
Security Foundations Symposium (CSF), pp. 293–307. IEEE Computer Society,
Washington, DC (2014)

31. West, M.: Content security policy level 3. https://www.w3.org/TR/CSP3/.
Accessed 19 June 2017

32. Yang, J., Yessenov, K., Solar-Lezama, A.: A language for automatically enforcing
privacy policies. In: Proceedings of 39th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL), pp. 85–96. ACM, New
York (2012)

33. Zhou, Y., Evans, D.: Protecting private web content from embedded scripts. In:
Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 60–79. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23822-2 4

http://dx.doi.org/10.1007/978-3-642-29615-4_16
https://www.w3.org/TR/CSP3/
http://dx.doi.org/10.1007/978-3-642-23822-2_4

Verifying Constant-Time Implementations
by Abstract Interpretation

Sandrine Blazy1(B) , David Pichardie2(B), and Alix Trieu1(B)

1 CNRS IRISA - Université Rennes 1 - Inria, Rennes, France
sandrine.blazy@irisa.fr, alix.trieu@irisa.fr

2 CNRS IRISA - ENS Rennes - Inria, Rennes, France
david.pichardie@irisa.fr

Abstract. Constant-time programming is an established discipline to
secure programs against timing attackers. Several real-world secure C
libraries such as NaCl, mbedTLS, or Open Quantum Safe, follow this
discipline. We propose an advanced static analysis, based on state-of-
the-art techniques from abstract interpretation, to report time leakage
during programming. To that purpose, we analyze source C programs and
use full context-sensitive and arithmetic-aware alias analyses to track the
tainted flows.

We give semantic evidences of the correctness of our approach on a
core language. We also present a prototype implementation for C pro-
grams that is based on the CompCert compiler toolchain and its com-
panion Verasco static analyzer. We present verification results on various
real-world constant-time programs and report on a successful verification
of a challenging SHA-256 implementation that was out of scope of pre-
vious tool-assisted approaches.

1 Introduction

To protect their implementations, cryptographers follow a very strict program-
ming discipline called constant-time programming. They avoid branchings con-
trolled by secret data as an attacker could use timing attacks, which are a broad
class of side-channel attacks that measure different execution times of a program
in order to infer some of its secret values [1,11,18,23]. They also avoid mem-
ory load/store indexed by secret data because of cache-timing attacks. Several
real-world secure C libraries such as NaCl [7], mbedTLS [26], or Open Quantum
Safe [30], follow this programming discipline.

The constant-time programming discipline requires to transform programs.
These transformations may be tricky and error-prone, mainly because they
involve low-level features of C and non-standard operations (e.g. bit-level manip-
ulations). We argue that programmers need tool assistance to use this program-
ming discipline. First, they need feedback at the source level during program-
ming, in order to verify that their implementation is constant time and also
to understand why a given implementation is not constant time as expected.
Moreover, they need to trust that their compiler will not break source security
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 260–277, 2017.
DOI: 10.1007/978-3-319-66402-6 16

http://orcid.org/0000-0002-0189-0223

Verifying Constant-Time Implementations by Abstract Interpretation 261

when translating the guarantees obtained at the source level. Indeed, compiler
optimizations could interfere with the previous constant-time transformations
performed by the programmer. In this paper, we choose to implement static
analysis at source level to simplify error reporting, but couple the analyzer to
the highly trustworthy CompCert compiler [25]. This strategic design choice
allows us to take advantage of static analysis techniques that would be hard to
apply at lowest program representation levels.

Static analysis is frequently used for identifying security vulnerabilities in
software, for instance to detect security violations pertaining to information
flow [15,21,34]. In this paper, we propose an advanced static analysis, based on
state-of-the-art techniques from abstract interpretation [12] (mainly fixpoint iter-
ations operating over source programs, use of widening operators, computations
performed by several abstract domains including a memory abstract domain
handling pointer arithmetic), to report time leakage during programming.

Data originating from a statement where information may leak is tainted
with the lowest security level. Our static analysis uses two security levels, that
we call secret (high level) and public (low level); it analyzes source C programs
and uses full context-sensitive (i.e., the static analysis distinguishes the different
invocations of a same function) and arithmetic-aware alias analyses (i.e., the
cells of an array are individually analyzed, even if they are accessed using pointer
dereferencing and pointer arithmetic) to track the tainted flows.

We follow the abstract interpretation methodology: we design an abstract
interpreter that executes over security properties instead of concrete values,
and use approximation of program executions to perform fixpoint computations.
We hence leverage the inference capabilities of advanced abstract interpretation
techniques as relational numeric abstractions [28], abstract domain collabora-
tions [19], arithmetic-aware alias analysis [9,27], to build a very precise taint
analysis on C programs. As a consequence, even if a program uses a same mem-
ory block to store both secret and public values during computations, our analy-
sis should be able to track it, without generating too many spurious false alarms.
This programming pattern appears in real-world implementations, such as the
SHA-256 implementation in NaCl that we are able to analyze.

In this paper, we make the following contributions:

– We define a new methodology for verifying constant-time security of C pro-
grams. Our static analysis is fully automatic and sound by construction.

– We instrument our approach in the Verasco static analyzer [22]. Verasco is
a formally-verified static analyzer, that is connected to the formally-verified
CompCert C compiler. We thus benefit from the CompCert correctness the-
orem, stating roughly that a compiled program behaves as prescribed by the
semantics of its source program.

– We report our results obtained from a benchmark of representative crypto-
graphic programs that are known to be constant time. Thanks to the precision
of our static analyzer, we are able to analyze programs that are out of reach
of state-of-the-art tools.

262 S. Blazy et al.

This paper is organized as follows. First, Sect. 2 presents the Verasco static ana-
lyzer. Then, Sect. 3 explains our methodology and details our abstract interpreter.
Section 4 describes the experimental evaluation of our static analyzer. Related
work is described in Sect. 5, followed by conclusions.

2 The Verasco Abstract Interpreter

Verasco is a static analyzer based on abstract interpretation that is formally veri-
fied in Coq [22]. Its proof of correctness ensures the absence of runtime errors (such
as out-of-bound array accesses, null pointer dereference, and arithmetic excep-
tions) in the analyzed C programs. Verasco relies on several abstract domains,
including a memory domain that finely tracks properties related to memory con-
tents, taking into account type conversions and pointer arithmetic [9].

Verasco is connected to the CompCert formally-verified C compiler, that is
also formally verified in Coq [25]. Its correctness theorem is a semantics preserva-
tion theorem; it states that the compilation does not introduce bugs in compiled
programs. More precisely, Verasco operates over C#minor, a C-like language that
is the second intermediate language in the CompCert compilation pipeline.

Verasco raises an alarm as soon as it detects a potential runtime error. Its
correctness theorem states that if Verasco returns no alarm, then the analyzed
program is safe (i.e., none of its observable behaviors is an undefined behav-
ior, according to the C#minor semantics). The design of Verasco is inspired by
Astrée [8], a milestone analyzer that was able to successfully analyze realistic
safety-critical software systems for aviation and space flights. Verasco follows a
similar modular architecture as Astrée, that is shown in Fig. 1.

First, at the bottom of the figure, a large hub of numerical abstract domains
is provided to infer numerical invariants on programs. These properties can be
relational as for example j +1 ≤ i ≤ j +2 in a loop (with Octagons or Polyhedra
abstract domains). All these domains finely analyze the behavior of machine
integers and floating-points (with potential overflows) while unsound analyzers
would assume ideal arithmetic. They are connected all-together via communi-
cation channels that allow each domain to improve its own precision via spe-
cific queries to other domains. As a consequence, Verasco is able to infer subtle
numerical invariants that require complex reasoning about linear arithmetic,
congruence and symbolic equalities.

Second, on top of these numerical abstractions sits an abstract memory func-
tor [9] that tracks fine-grained aliases and interacts with the numerical domains.
This functor can choose to represent each cell of a same memory block with a
single property, or to finely track each specific property of every position in the
block. Contrary to many other alias analyses, this approach allows us to reason
on local and global variables with the same level of precision, even when the mem-
ory addresses are manipulated by the programmer. Some unavoidable approxima-
tions are performed when the target of a memory dereference corresponds to sev-
eral possible targets, but Verasco makes the impact of such imprecision as limited
as possible. Because of ubiquitous pointer arithmetic in C programs (even simple

Verifying Constant-Time Implementations by Abstract Interpretation 263

array accesses are represented via pointer arithmetic in C semantics), the func-
tor needs to ask advanced symbolic numerical queries to the abstract numerical
domain below it. In return, its role is to hide the load and store operations from
them, and only communicate via symbolic numerical variables.

Third, the last piece of the analyzer is an advanced abstract interpreter
that builds a fixpoint for the analysis result. This task is a bit more complex
than in standard dataflow analysis techniques that look for the least solution of
dataflow equation systems. In such settings, each equation is defined by means
of monotone operators in a well chosen lattice without infinite ascending chains.
By computing the successive iterates of the transfer functions attached to each
equations, starting from a bottom element, the fixpoint computation always ter-
minates on the least element of the lattice that satisfies all equations. In contrast,
the Verasco abstract interpreter relies on infinite lattices, where widening and
narrowing operators [12] are used for ensuring and accelerating the convergence.
Smart iteration strategies are crucial when using such accelerating operators
because they directly impact the precision of the analysis diagnosis. Verasco
builds its strategy by following the structure of the program. On every program
loop, it builds a local fixpoint using accelerating techniques. At every function
call, it makes a recursive call of the abstract interpreter on the body of the callee.
The callee may be resolved thanks to the state abstraction functor in presence
of function pointers. The recursive nature of the abstract interpreter makes the
analysis very precise because each function is independently analyzed as many
times as there are calling contexts that invoke it.

integer and

arithmetic

CongruencesIntervals Polyhedra OctagonsSymbolic
equalities

Linearization

CompCert compiler...

statesState abstraction

Abstract interpreterOK/Alarm

Numerical abstraction

ClightCompCert C C#minor

Communication
channels

Fig. 1. Architecture of the Verasco static analyzer

264 S. Blazy et al.

Furthermore, C#minor is classically structured in functions, statements, and
expressions. Expressions have no side effects; they include reading temporary
variables (which do not reside in memory), taking the address of a non-temporary
variable, constants, arithmetic operations, and dereferencing addresses. The
arithmetic, logical, comparison, and conversion operators are roughly those of C,
but without overloading: for example, distinct operators are provided for integer
multiplication and floating-point multiplication. Likewise, there are no implicit
casts: all conversions between numerical types are explicit. Statements offer both
structured control and goto with labels. C loops as well as break and continue
statements are encoded as infinite loops with a multi-level exit n that jumps to
the end of the (n + 1)-th enclosing block.

3 Verifying Constant-Time Security

Our static analyzer operates over C#minor programs. In this paper, we use a
simpler While toy-language for clarity. It is defined in the first part of this
section. Then, we detail our model for constant-time leakage, and explain the
tainting semantics we have defined to track data dependencies in programs. Last,
we explain the main algorithm of our static analyzer.

3.1 The While Language

Our While language is classically structured in statements and expressions, as
shown in Fig. 2. Expressions include constants, addresses of variables, arithmetic
operations and dereferencing addresses, so as to model pointer aliasing. State-
ments include skip statements, stores, sequences, if and while statements.

Fig. 2. Syntax of While programs

The semantics of While is defined in Fig. 3 using a small-step style, sup-
porting the reasoning on nonterminating programs. Contrary to the C language,
the semantics is deterministic (and so is the semantics of C#minor). Given a
semantic state σ, an expression e evaluates (big-step style) in a value v (written
〈σ, e〉 → v); the execution of a statement s results in an updated state σ′ and
a new statement to execute s′ (written 〈σ, s〉 → 〈σ′, s′〉). The semantic state σ
maps memory locations (pairs l = (x, n) made of an address and an offset from
this address) to values. Values can either be locations or constants, and we write
σ(e) to denote the value of expression e in state σ (i.e. 〈σ, e〉 → σ(e)).

The reflexive transitive closure of this small-step semantics represents the
execution of a program. When the program terminates (resp. diverges, e.g. when

Verifying Constant-Time Implementations by Abstract Interpretation 265

Fig. 3. Semantics of While programs

an infinite loop is executed), it is a finite (resp. infinite) execution of steps. The
execution of a program is safe iff either the program diverges, or the program
terminates (i.e., its final semantic state is 〈σ, skip〉, meaning that there is no
more statement to execute). The execution of a program is stuck (on 〈σ, s〉) when
s differs from skip and no semantic rule can be applied.

3.2 Constant-Time Security

In our model, we assume that branching statements and memory accesses may
leak information through their execution. We use a similar definition of constant-
time security to the one given in [2]. We define a leakage model L as a map from
semantic states 〈σ, p〉 to sequences of observations L(〈σ, p〉) with ε being the
empty observation. Two executions are said to be indistinguishable when their
observations are the same:

L(〈σ0, p0〉) · L(〈σ1, p1〉) · . . . = L(〈σ′
0, p

′
0〉) · L(〈σ′

1, p
′
1〉) ·

Definition 1 (Constant-time leakage model). Our leakage model is such
that the three following equalities hold, where ∗e′

0, . . . ∗ e′
n are the read memory

accesses appearing respectively in expressions e in the first line, e in the second
line, e1 and e2 in the third line.

1. L(〈σ, if e then p1 else p2〉) = σ(e)σ(e′
0) . . . σ(e′

n)
2. L(〈σ, while e do p〉) = σ(e)σ(e′

0) . . . σ(e′
n)

3. L(〈σ, e1 = e2〉) = σ(e1)σ(e′
0) . . . σ(e′

n)

The first and second lines mean that the value of branching conditions is con-
sidered as leaked. The last line means that the address of a store access is also
considered as leaked. Additionally, all locations of read accesses are also consid-
ered as leaked.

266 S. Blazy et al.

Given this leakage model, two indistinguishable executions of a program must
necessarily have the same control flow. Moreover, one execution cannot be stuck
while the other can continue execution. Indeed, in our While language, the only
way to have a stuck execution is either to try to dereference a value that is
not a valid location (a constant or an out-of-range location), or to write in a
constant value or to branch on a non-boolean value. However, by definition of
indistinguishability and the leakage model, these values must be the same in
both executions, thus both executions have the same control flow.

Given a program, we assume that the attacker has access to the values of
some of its inputs, which we call the public input variables, and does not have
access of the other ones, which we call the secret input variables.

Definition 2 (Constant-time security). A program p0 is constant time if
for any set Xi of public input variables such that for all pair of safe executions
〈σ0, p0〉 → 〈σ1, p1〉 → . . . and 〈σ′

0, p0〉 → 〈σ′
1, p

′
1〉 → . . . such that both states

share the same public values (i.e., ∀x ∈ Xi, i ∈ N, σ0(x, i) = σ′
0(x, i)), then both

executions are indistinguishable.

This definition means that a constant-time program is such that, any pair of its
executions that only differ on its secrets must leak the exact same information.
This also gives a definition of constant-time security for infinite execution.

3.3 Reducing Security to Safety

We introduce an intermediate tainting semantics for While programs in Fig. 4,
and use the � symbol to distinguish its executions from those of the original
semantics. The tainting semantics is an instrumentation of the While seman-
tics that tracks dependencies. In the tainted semantics, a program gets stuck if
branchings or memory accesses depend on secrets. We introduce taints, either
High or Low to respectively represent secret and public values and a union opera-
tor on taints defined as follows: Low 	 Low = Low and ∀ t, High 	 t = t 	 High =
High; it is used to compute the taint of a binary expression. In the instrumented
semantics, we take into account taints in semantic values: the semantic state σ
becomes a tainted state στ , where locations are now mapped to pairs made of a
value and a taint.

Let us note that for a dereferencing expression ∗e1 to have a value, the taint
associated to e1 must be Low. Indeed, we forbid memory read accesses that
might leak secret values. This concerns dereferencing expressions (loads) and
assignment statements (store of a lvalue). Similarly, test conditions in branching
statements must also have a Low taint.

The instrumented semantics preserves the regular behavior of programs
(defined in Fig. 3), as stated by the following theorem, which can be proven
by induction on the execution relation.

Theorem 1. Any safe execution 〈στ0, p0〉 � 〈στ1, p1〉 � . . . of program p0 in
the tainting semantics implies that the execution 〈σ0, p0〉 → 〈σ1, p1〉 → . . . is
also safe in the regular semantics. Here, for all k, σk is a semantic state such

Verifying Constant-Time Implementations by Abstract Interpretation 267

Fig. 4. Tainting semantics for While programs

that for all location l where στk is defined, there exists a taint tk such that
στk(l) = (σk(l), tk). As an immediate corollary, any safe program according to
the tainting semantics is also safe according to the regular semantics.

Theorem 1 is useful to prove our main theorem relating our instrumented
semantics and the constant-time property we want to verify on programs.

Theorem 2. Any safe program w.r.t. the tainting semantics is constant time.

Proof. Let p0 be a safe program with respect to the tainting semantics. Let Xi

be a set of public variables and let 〈σ0, p0〉 → 〈σ1, p1〉 → . . . and 〈σ′
0, p0〉 →

〈σ′
1, p

′
1〉 → . . . be two safe executions of p0 such that for all x ∈ Xi and n ∈ N,

we have σ0(x, n) = σ′
0(x, n).

We now need to prove that both executions are indistinguishable. Let στ0

be such that for all x ∈ Xi, n ∈ N, στ0(x, n) = (σ0(x, n), Low) and also for all
x /∈ Xi, n ∈ N, στ0(x, n) = (σ0(x, n), High).

By safety of program p0 according to the tainting semantics, there exists some
states στ1, στ2, . . . such that 〈στ0, p0〉 � 〈στ1, p1〉 � . . . is a safe execution. Let
σn′ be such that there exists for all location l, a taint t′n such that, στn(l) =
(σn′(l), t′n). We prove by strong induction on n that σn′ = σn.

– It is clearly true for n = 0 by definition of στ0.
– Suppose it is true for all k < n and let us prove it for n. By using Theorem 1,

we know that there exists a safe execution 〈σ0, p0〉 → 〈σ1′ , p1′〉 → . . . →
〈σn′ , pn′〉 → Furthermore, the semantics is deterministic and we know
that 〈σ0, p0〉 → 〈σ1, p1〉 → Therefore, we have the following series of
equalities: σ1′ = σ1, p1′ = p1, . . . σn′ = σn, pn′ = pn.

Thus, for all k ∈ N, the state στk verifies that for all l, there exists tk
such that στk(l) = (σk(l), tk). Similarly, we define σ′

τ0, σ
′
τ1, . . . for the second

execution which also verifies the same property by construction.

268 S. Blazy et al.

Finally, we need to prove that for all n ∈ N, L(〈σn, pn〉) = L(〈σ′
n, p′

n〉). First,
we define the notation σn =L σ′

n for all n ∈ N, meaning that for all l, στn(l) =
(σn(l), Low) iff σ′

τn(l) = (σ′
n(l), Low) and σn(l) = σ′

n(l). Both environments must
agree on locations with Low taints. For all n ∈ N, let us prove by induction on
pn that if pn = p′

n and σn =L σ′
n, then pn+1 = p′

n+1 and σn+1 =L σ′
n+1.

– if pn = skip;p′, it is true because pn+1 = p′
n+1 = p′, σn+1 = σn and also

σ′
n+1 = σ′

n.
– if pn = p; p′, it is true by induction hypothesis.
– if pn = if e . . . or pn = while e . . ., we have σn+1 = σn and σ′

n+1 = σ′
n.

Furthermore, we know that there exists some v such that 〈στn, e〉 � (v, Low)
and similarly, there exists v′ such that 〈σ′

τn, e〉 � (v′, Low) because of the
safety in the tainting semantics. Since σn(e) = v, σ′

n(e) = v′ and σn =L σ′
n,

we have v = v′ and thus pn+1 = p′
n+1.

– if pn = e1 = e2, we have pn+1 = p′
n+1 = skip. By using the same reasoning

as the previous case, we can prove that σn(e1) = σ′
n(e1) = l. There exists

v, v′, t, t′ such that 〈στn, e2〉 � (v, t) and 〈σ′
τn, e2〉 � (v′, t′) and thus σn+1 =

σn[l
→ v] and σ′
n+1 = σn[l
→ v′]. If t = t′ = Low, then v = v′ and σn+1 =L

σ′
n+1. If t = t′ = High, then σn+1 =L σ′

n+1 by definition. Without loss of
generality, we can consider that t = Low and t′ = High. e2 must necessarily
contain a memory read ∗e3 such that 〈σ′

τn, ∗e3〉 � (v3, High) otherwise t′ =
Low. With a similar reasoning than before, we can prove σn(e3) = σ′

n(e3) = l′.
So, στn(l′) must have High taint by definition of σn =L σ′

n, which is absurd.

Finally, by exploiting this lemma, a simple induction proves that for all n ∈ N,
pn = p′

n and σn =L σ′
n. Furthermore, a direct consequence is that for all n ∈ N,

L(〈σn, pn〉) = L(〈σ′
n, p′

n〉).

3.4 Abstract Interpreter

To prove that a program is safe according to the tainting semantics, we design a
static analyzer based on abstract interpretation. It computes a correct approxi-
mation of the execution the analyzed program, thus if the approximative execu-
tion is safe, then the actual execution must necessarily be safe.

As our actual implementation takes advantage of the Verasco static ana-
lyzer, we reuse its memory abstraction M#. It provides target#, assert# and
assign# operators working as follows. Given an abstract environment σ# and
an expression e, target#(e, σ#) returns a list of locations l1, . . . ln corresponding
to the locations that are represented by e. It returns ⊥# if e cannot be evalu-
ated to a location. Second, suppose that we have an if statement with condition
(∗x < 5) and the abstract environment only knows that location (x, 0) has its
value in [0, 42]. The analysis can gain precision by assuming in the first (resp.
second) branch that location (x, 0) has its value in [0, 4] (resp. [5, 42]). Similarly,
if we know that (x, 0) only has its value between in [−2, 4], we do not need
to analyze the second branch. Thus, given an abstract environment σ# and an
expression e, assert#(e, σ#) returns a modified abstract environment assuming

Verifying Constant-Time Implementations by Abstract Interpretation 269

that e is true; if it is not possible (because e can only evaluate to false in σ#

for example), it returns the error state ⊥#. Third, assign#(e1, e2, σ#) is the
abstract counterpart of e1 = e2.

Now, for the analysis to track taints, we need an abstraction of taints Taint#
that we define as Low# and High#. We use Low# to indicate that a location
contains a value that has exactly a Low taint and High# to indicate that it
may be Low or High. In order to analyze the following snippet, it is necessary
to correctly approximate the taint that will be assigned to location (x, 0) after
execution.

if /* low expr */ x = /* high expr */ else x = /* low expr */

As it can either be Low or High, we use the approximation High#. We could
have used High# to indicate that a location can only have a High value, however
constant-time security is not interested in knowing that value has exactly High
taint, but only in knowing that it may have a High taint.

The analyzer is now given a new mapping τ# that maps locations to
abstract taints. Given σ#, τ# and an expression e, we define a new opera-
tor low(e, σ#, τ#) asserting that e has Low taint and contains only non-secret
dependent memory reads. It is defined recursively as follows. The tricky part is
∗e, where the operator verifies that e has a low taint to ensure that the memory
access is not secret dependent and then uses targets# to ensure that all possible
accessed locations contain Low values.

– low(n, σ#, τ#) = true and low(x, σ#, τ#) = true
– low(∗e, σ#, τ#) = low(e, σ#, τ#) ∧ ∧

li∈targets#(e,σ#)(τ
#(li) = Low#)

– low(e1 ⊕ e2, σ
#, τ#) = low(e1, σ#, τ#) ∧ low(e2, σ#, τ#)

Similarly to low, we define safe(e, σ#, τ#) as asserting that e does not con-
tain secret dependent memory reads but does not check the taint of e. We also
define taint#(e, σ#, τ#) as the abstract taint of expression e. Moreover, to take
account of taintings, we then define assert#τ and assign#τ as follows.

assert#τ (e, σ#, τ#) = if low(e, σ#, τ#) then (assert#(e, σ#), τ#) else ⊥#

assign#τ (e1, e2, σ#, τ#) = if low(e1, σ#, τ#) ∧ safe(e2, σ#, τ#) then

(assign #(e1, e2, σ#),
⊔

li∈targets(e,σ#)

τ#[li
→ taint#(e, σ#, τ#)]) else ⊥#.

Finally, the abstract analysis [[p]](σ#, τ#) of program p starting with abstract
environment σ# and tainting τ# is defined in Fig. 5. To analyze (p1; p2), first
p1 is analyzed and then p2 is analyzed using the environment given by the first
analysis. Similarly, to analyze a statement (if e then p1 else p2), p1 is analyzed
assuming that e is true and p2 is analyzed assuming the opposite, 	# is then
used to get an over-approximation of both results.

The loop (while e do p) is the trickiest part to analyze, as the analysis
cannot just analyze one iteration of the loop body and then recursively analyze
the loop again since it may never terminate. It thus tries to find a loop invariant.

270 S. Blazy et al.

Fig. 5. Abstract execution of statements

The standard method in abstract interpretation is to compute a post-fixpoint of
the function iter(e, p, ·) as defined in Fig. 5. It represents a loop invariant, the
final result is thus the invariant where the test condition does not hold anymore.
In order to compute the post-fixpoint, we use pfp(f, x) which computes a post-
fixpoint of monotone function f by successively computing x, f(x), f(f(x)), . . .,
and forces convergence using a widening-narrowing operator on the M# part.
The taint part does not require convergence help because it is a finite lattice.

3.5 Correctness of the Abstract Interpreter

In order to state the correctness of our abstract interpreter, we introduce the
concept of concretization. We use v ∈ γ(v#) to say that v is in the concretization
of abstract value v#, which means that v# represents a set of concrete values of
which v is a member.

The abstract interpreter operates over a product M# × T# of abstract envi-
ronments and abstract taintings (maps from location to taints). For σ# ∈ M#,
we suppose we already have its concretization γ1(σ#) (as given in [9]). For τ# ∈
T#, we first define the concretization of abstract taints by γτ (Low#) = {Low} and
γτ (High#) = {Low, High}. For all στ , we call σ1

τ and σ2
τ the two functions such

that for all l, στ (l) = (σ1
τ (l), σ2

τ (l)). The concretization γ2(τ#) is then defined as
follows.

γ2(τ#) = {σ2
τ |∀l, σ2

τ (l) ∈ γτ (τ#(l))}
Finally, for all (σ#, τ#) ∈ M# × T#, its concretization γ(σ#, τ#) is defined as

γ(σ#, τ#) = {στ |σ1
τ ∈ γ1(σ#) ∧ σ2

τ ∈ γ2(τ#)}

The correctness theorem of the abstract interpreter intuitively means that if
the abstract interpreter does not raise an alarm, then the program must be safe
according to the tainting semantics (in which case it is also safe according to
the original semantics, because of Theorem 1). The correctness theorem can be
stated as follows.

Verifying Constant-Time Implementations by Abstract Interpretation 271

Theorem 3. For all program p, environment στ and abstract environment σ#
τ

such that στ ∈ γ(σ#
τ), if we have the execution 〈στ , p〉 �∗ 〈σ′

τ , skip〉, then we
also have σ′

τ ∈ γ([[p]]#(σ#
τ)).

In order to prove this theorem, we follow the usual methodology in abstract
interpretation and define a collecting semantics, aiming at facilitating the proof.
The semantics (not detailed in the paper) still expresses the dynamic behavior
of programs but takes a closer form to the analysis. It operates over properties
of concrete environments, thus bridging the gap between concrete environments
and abstract environments, which represent sets of concrete environments.

4 Implementation and Experiments

Following the methodology presented in Sect. 3, we have implemented a proto-
type leveraging the Verasco static analyzer. We have been able to evaluate our
prototype by verifying multiple actual C code constant-time algorithms taken
from different cryptographic libraries such as NaCl [7], mbedTLS [26], Open
Quantum Safe [10] and curve25519-donna [16].

In order to use our tool, the user simply has to indicate which variables are
to be considered secrets and the prototype will either raise alarms indicating
where secrets may leak, or indicate that the input program is constant time.
The user can either indicate a whole global variable to be considered as secret at
the start of the program, or uses the verasco any int secret built-in function
to produce a random signed integer to be considered as secret.

4.1 Memory Separation

By leveraging Verasco, the prototype has no problem handling difficult problems
such as memory separation. For example, the small example of Fig. 6 is easily
proved as constant time. In this program, an array t is initialized with random
values, such that the values in odd offsets are considered as secrets, contrary to
values in even offsets. So, the analyzer needs to be precise enough to distinguish
between the array cells and to take into account pointer arithmetic. The potential
leak happens on line 6. However, the condition on line 5 constrains i%2 == 0 to
be true, and thus i must be even on line 6, so t[i] does not contain a secret. A
naive analyzer would taint the whole array as secret and would thus not be able
to prove the program constant-time, however our prototype has no problem to
prove it.

Interestingly, an illustration of the problem can be found in real-world pro-
grams. For example, the NaCl implementation of SHA-256 is not handled by [2]
due to this. Indeed, in this program, the hashing function uses the following C
struct as an internal state that contains both secret and public values during
execution.

272 S. Blazy et al.

Fig. 6. An example program that is analyzed as constant time

typedef struct crypto_hash_sha256_state {

uint32_t state [8];

uint32_t count [2];

unsigned char buf [64]; } crypto_hash_sha256_state ;

While field count contains public values, fields state and buf can contain
both public and secret values. Only count is used in possibly leaking operations,
however the whole struct is allocated as a single memory block at low level
(i.e., LLVM) and [2] does not manage to prove the memory separation.

4.2 Cryptographic Algorithms

We report in Table 1 our results on a set of cryptographic algorithms, all exe-
cutions times reported were obtained on a 3.1 GHz Intel i7 with 16 GB of
RAM. Sizes are reported in terms of numbers of C#minor statements (i.e.,
close to C statements), lines of code are measured with cloc and execution
times are reported in seconds. The first block of lines gathers test cases for the
implementations of a representative set of cryptographic primitives including
TEA [36], an implementation of sampling in a discrete Gaussian distribution by
Bos et al. [10] (rlwe sample) taken from the Open Quantum Safe library [30],
an implementation of elliptic curve arithmetic operations over Curve25519 [6] by
Langley [16](curve25519-donna), and various primitives such as AES, DES, etc.
The second block reports on different implementations from the NaCl library [7].
The third block reports on implementations from the mbedTLS [26] library.
Finally, the last result corresponds to an implementation of MAC-then-Encode-
then-CBC-Encrypt (MEE-CBC).

All these examples are proven constant time, except for AES and DES. Our
prototype rightfully reports memory accesses depending on secrets, so these two
programs are not constant time. Similarly to [2], rlwe sample is only proven
constant time, provided that the core random generator is also constant time,
thus showing that it is the only possible source of leakage.

The last example mee-cbc is a full implementation of the MEE-CBC con-
struction using low-level primitives taken from the NaCl library. Our prototype
is able to verify the constant-time property of this example, showing that it
scales to large code bases (939 loc).

Verifying Constant-Time Implementations by Abstract Interpretation 273

Table 1. Verification of cryptographic primitives

Example Size Loc Time

aes 1171 1399 41.39

curve25519-donna 1210 608 586.20

des 229 436 2.28

rlwe sample 145 1142 30.76

salsa20 341 652 0.04

sha3 531 251 57.62

snow 871 460 3.37

tea 121 109 3.47

nacl chacha20 384 307 0.34

nacl sha256 368 287 0.04

nacl sha512 437 314 1.02

mbedtls sha1 544 354 0.19

mbedtls sha256 346 346 0.38

nbedtls sha512 310 399 0.26

mee-cbc 1959 939 933.37

Our prototype is able to verify a similar set of programs as [2], except for
the libfixedtimefixedpoint library [3] which unfortunately does not use stan-
dard C and is not handled by CompCert. The library uses extensively a GNU
extension known as statement-expressions and would require heavy rewriting to
be accepted by our tool.

On the other hand, our tool shows its agility with memory separation on the
program SHA-256 that was out of reach for [2] and its restricted alias manage-
ment. In terms of analysis time, our tool behaves similarly to [2]. On a similar
experiment platform, we observe a speedup between 0.1 and 10. This is very
encouraging for our tool whose efficiency is still in an upgradeable stage, com-
pared to the tool of [2] that relies on decades of implementation efforts for the
LLVM optimizer and the Boogie verifier.

5 Related Work

This paper deals with static program verification for information-flow track-
ing [34]. Different formal techniques have been used in this area. The type-based
approach [29] provides an elegant modular verification approach but requires pro-
gram annotations, especially for each program function. Because a same function
can be called in very different security contexts, providing an expressive anno-
tation language is challenging and annotating programs is a difficult task. This
approach has been mainly proposed for programming language with strong type
guarantees such as Java [29] or ML [31]. The deductive approach [14] is based

274 S. Blazy et al.

on more expressive logics than type systems and then allows to express sub-
tle program invariants. On the other hand, the loop invariant annotation effort
requires strong formal method expertise and is very much time consuming. The
static analysis approach only requires minimal annotation (the input taints) and
then tries to infer all the remaining invariants in the restricted analysis logic.
This approach has been followed to track efficiently implicit flows using program
dependence graphs [20,33]. We also follow a static approach but our backbone
technique is an advanced value analysis for C, that we use to infer fine-grained
memory separation properties and finely track taints in an unfolded call graph of
the program. Building a program dependence graph for memory is a well known
challenge and scaling this approach to a Verasco (or Astrée) memory analysis is
left for further work.

This paper deals however with a restricted notion of information flow:
constant-time security. Here, implicit flow tracking is simplified since we
must reject1 control-flow branching that depends on secret inputs. Our abstract
interpretation approach proposes to accompany a taint analysis with a pow-
erful value analysis. The tool tis-ct [35] uses a similar approach but based on
the Frama-C value analysis, instead of Verasco (and its Astrée architecture).
The tool is developed by the TrustInSoft company and not associated with
any scientific publication. It has been used to analyze OpenSSL. Frama-C and
Verasco value analysis are based on different abstract interpretation techniques
and thus the tainting power of tis-ct and our tool will differ. As an example
of difference, Verasco provides relational abstraction of memory contents while
tis-ct is restricted to non-relational analysis (like intervals). CacheAudit [17] is a
also based on abstract interpretation but analyze cache leakage at binary level.
Analysing program at this low level tempers the inference capabilities for mem-
ory separation, because the memory is seen as a single memory block. Verasco
benefits from a source level view where each function has its own region for
managing local variables.

In a previous work of the second author [5], C programs where compiled by
CompCert to an abstraction of assembly before being analyzed. A simple data-
flow analysis was then performed, flow insensitive for every memory block except
the memory stack, and constant-time security was verified. The precision of this
approach requires to fully inline the program before analysis. It means that
every function call was replaced by its function body until no more function call
remained. This has serious impact on the efficiency of the analysis and a program
like curve25519-donna was out of reach. The treatment of memory stack was
also very limited since no value analysis was available at this level or program
representation. There was no way to finely taint an array content if this array laid
in the stack (which occurs when C arrays are declared as local variables). Hence,
numerous manual program rewritings were required before analysis. Our current
approach releases these restrictions but requires more trust on the compiler (see
our discussion in the conclusion).

1 We could accept some of them if we were able to prove that all branches provide a
similar timing behavior.

Verifying Constant-Time Implementations by Abstract Interpretation 275

A very complete treatment of constant-time security has been recently pro-
posed by the ct-verif tool [2]. Its verification is based on a reduction of constant
time security of a program P to safety of a product program Q that simulates two
parallel executions of P . The tool is based on the LLVM compiler and operates
at the LLVM bytecode level, after LLVM optimizations and alias analyses. Once
obtained, the bytecode program is transformed into a product program which,
in turn, is verified by the Boogie verifier [4] and its traditional SMT tool suite.
In Sect. 4, we made a direct experimental comparison with this tool. We list here
the main design differences between this work and ours. First we do not perform
the analysis at a similar program representation. LLVM bytecode is interesting
because one can develop analyses that benefit from the rich collection of tools pro-
vided by the LLVM platform. For example, [2] benefits from LLVM data-structure
analysis [24] to partition memory objects into disjoint regions. Still, compiler alias
analyses are voluntarily limited because compilers translate programs in almost
linear time. Verasco (and its ancestor Astrée) follows a more ambitious approach
and tracks very finely the content of the memory. Using Verasco requires a different
tool design but opens the door for more verified programs, as for example the SHA-
256 example. Second, we target a more restricted notion of constant-time security
than [2] which relaxes the property with a so-called notion of publicly observable
outputs. The extension is out of scope of our current approach but seems promis-
ing for specific programs. Only one program in our current experiment is affected
by this limitation. At last, we embed our tool in a more foundational semantic
framework. Verasco and CompCert are formally verified. It leaves the door open
for a fully verified constant-time analyzer, while a fully verified ct-verif tool would
require to prove SMT solvers, Boogie verifier and LLVM. The Vellvm [37] is a
first attempt in the direction of verifying the LLVM platform, but it is currently
restricted to a core subset (essentially the SSA generation) of the LLVM passes,
and suffers from time-performance limitations.

Other approaches rely on dynamic analysis (e.g. [13] that extends of Valgrind
in order to check constant-address security) or on statistical analysis of execution
timing [32]. These approaches are not sound.

6 Conclusion

In this paper, we presented a methodology to ensure that a software imple-
mentation is constant time. Our methodology is based on advanced abstract
interpretation techniques and scales on commonly used cryptographic libraries.
Our implementation sits in a rich foundational semantic framework, Verasco and
CompCert, which give strong semantic guarantees. The analysis is performed at
source level and can hence give useful feedback to the programmer that needs
to understand why his program is not constant time.

There are two main directions for future work. The first one concerns seman-
tic soundness. By inspecting CompCert transformation passes, we conjecture
that they preserve the constant-time property of source programs we successfully
analyze. We left as further work a formal proof of this conjecture. The second

276 S. Blazy et al.

direction concerns expressiveness. In order to verify more relaxed properties, we
could try to mix the program-product approach of [2] with the Verasco analysis.
The current loop invariant inference and analysis of [2] are rather restricted.
Using advanced alias analysis and relational numeric analysis could strengthen
the program-product approach, if it was performed at the same representation
level as Verasco.

References

1. Aciiçmez, O., Koç, Ç.K., Seifert, J.-P.: On the power of simple branch prediction
analysis. In: ACM Symposium on Information, Computer and Communications
Security (2007)

2. Almeida, J.B., et al.: Verifying constant-time implementations. In: 25th USENIX
Security Symposium, USENIX Security 16 (2016)

3. Andrysco, M., et al.: On subnormal floating point and abnormal timing. In: Pro-
ceedings of the 2015 IEEE Symposium on Security and Privacy (2015)

4. Barnett, M., et al.: Boogie: a modular reusable verifier for object-oriented pro-
grams. In: Proceedings of FMCO 2005 (2005)

5. Barthe, G., et al.: System-level non-interference for constant-time cryptography.
In: Conference on Computer and Communications Security (CCS) (2014)

6. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Public Key
Cryptography - PKC 2006: 9th International Conference on Theory and Practice
in Public-Key Cryptography (2006)

7. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: International Conference on Cryptology and Information Secu-
rity in Latin America (2012)

8. Blanchet, B., et al.: A static analyzer for large safety-critical software. In: PLDI
(2003)

9. Blazy, S., Laporte, V., Pichardie, D.: An abstract memory functor for verified C
static analyzers. In: International Conference on Functional Programming (ICFP
2016) (2016)

10. Bos, J.W., et al.: Post-quantum key exchange for the TLS protocol from the ring
learning with errors problem. In: IEEE Symposium on Security and Privacy, SP
2015 (2015)

11. Canvel, B., Hiltgen, A., Vaudenay, S., Vuagnoux, M.: Password interception in
a SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
583–599. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 34

12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Symposium
on Principles of Programming Languages, POPL 1977 (1977)

13. ctgrind. https://github.com/agl/ctgrind
14. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of secure

information flow. In: Proceedings of 2nd International Conference on Security in
Pervasive Computing (2005)

15. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19,
236–243 (1976)

16. donna. https://code.google.com/archive/p/curve25519-donna
17. Doychev, G., et al.: CacheAudit: a tool for the static analysis of cache side channels.

In: USENIX Conference on Security (2013)

http://dx.doi.org/10.1007/978-3-540-45146-4_34
https://github.com/agl/ctgrind
https://code.google.com/archive/p/curve25519-donna

Verifying Constant-Time Implementations by Abstract Interpretation 277

18. Al Fardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: Symposium on Security and Privacy (SP 2013) (2013)

19. Feret, J.: Static analysis of digital filters. In: European Symposium on Program-
ming (ESOP 2004) (2004)

20. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Sec. 8,
399–422 (2009)

21. Hedin, D., Sabelfeld, A.: A perspective on information-flow control. In: Software
Safety and Security - Tools for Analysis and Verification (2012)

22. Jourdan, J.-H., et al.: A formally-verified C static analyzer. In: Symposium on
Principles of Programming Languages, POPL 2015 (2015)

23. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In: Advances in Cryptology - CRYPTO 1996 (1996)

24. Lattner, C., Lenharth, A., Adve, V.S.: Making contextsensitive points-to analysis
with heap cloning practical for the real world. In: Conference on Programming
Language Design and Implementation, PLDI 2007 (2007)

25. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52, 107–115
(2009)

26. mbed TLS (formerly known as PolarSSL). https://tls.mbed.org/
27. Miné, A.: Field-sensitive value analysis of embedded C programs with union types

and pointer arithmetics. In: Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES 2006) (2006)

28. Miné, A.: The octagon abstract domain. In: Higher-Order and Symbolic Compu-
tation (2006)

29. Myers, A.C.: JFlow: practical mostly-static information flow control. In: Sympo-
sium on Principles of Programming Languages, POPL 1999 (1999)

30. Open Quantum Safe. https://openquantumsafe.org/
31. Pottier, F., Simonet, V.: Information flow inference for ML. ACM Trans. Program.

Lang. Syst. 25, 117–158 (2003)
32. Reparaz, O., Balasch, J., Verbauwhede, I.: Dude, is my code constant time. In:

Proceedings of DATE 2017 (2017)
33. Rodrigues, B., Quintão Pereira, F.M., Aranha, D.F.: Sparse representation of

implicit flows with applications to side-channel detection. In: Compiler Construc-
tion (2016)

34. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21, 5–19 (2003)

35. TIS-CT. http://trust-in-soft.com/tis-ct/
36. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Fast Soft-

ware Encryption: Second International Workshop Leuven (1995)
37. Zhao, J.: et al.: Formalizing the LLVM intermediate representation for verified

program transformation. In: Symposium on Principles of Programming Languages,
POPL 2012 (2012)

https://tls.mbed.org/
https://openquantumsafe.org/
http://trust-in-soft.com/tis-ct/

Mirage: Toward a Stealthier and Modular
Malware Analysis Sandbox for Android

Lorenzo Bordoni, Mauro Conti, and Riccardo Spolaor(B)

University of Padua, Padua, Italy
lorenzo.bordoni@studenti.unipd.it,

{conti,riccardo.spolaor}@math.unipd.it

Abstract. Nowadays, malware is affecting not only PCs but also mobile
devices, which became pervasive in everyday life. Mobile devices can
access and store personal information (e.g., location, photos, and mes-
sages) and thus are appealing to malware authors. One of the most
promising approach to analyze malware is by monitoring its execution
in a sandbox (i.e., via dynamic analysis). In particular, most malware
sandboxing solutions for Android rely on an emulator, rather than a
real device. This motivates malware authors to include runtime checks
in order to detect whether the malware is running in a virtualized envi-
ronment. In that case, the malicious app does not trigger the malicious
payload. The presence of differences between real devices and Android
emulators started an arms race between security researchers and mal-
ware authors, where the former want to hide these differences and the
latter try to seek them out.

In this paper we present Mirage, a malware sandbox architecture for
Android focused on dynamic analysis evasion attacks. We designed the
components of Mirage to be extensible via software modules, in order
to build specific countermeasures against such attacks. To the best of
our knowledge, Mirage is the first modular sandbox architecture that is
robust against sandbox detection techniques. As a representative case
study, we present a proof of concept implementation of Mirage with a
module that tackles evasion attacks based on sensors API return values.

1 Introduction

In recent years, mobile devices like smartphones, tablets and smartwatches have
spread rapidly, thanks to their portability and their affordable price. These
devices became everyday multi-purpose tools and, consequently, a receptacle
for personal information. Among mobile operating systems, Android is the lead-
ing platform, with a market share of 86% in 2016 [12], and it is growing as a new
target for malware. The Android operating system uses a modified version of the
Linux kernel, where each app runs individually in a secured environment, which
isolates its data and code execution from other apps. The operating system medi-
ates apps’ access requests to sensitive user data and input devices (i.e., enforcing
a Mandatory Access Control). Without any permission, an app can only access
few system resources (e.g., sensors, device model and manufacturer) [3].
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 278–296, 2017.
DOI: 10.1007/978-3-319-66402-6 17

Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 279

Although malware could escalate privileges by exploiting vulnerabilities in
the operating system, new threats arise also from apps that run unprivileged.
Malware for Android often harms users by abusing the permissions granted to
it. For example, malware can cause financial loss by leveraging features such as
telephony, SMS and MMS, while with access to camera, microphone, and GPS
it can turn a smartphone into an advanced covert listening device. Moreover,
the leak of confidential data, such as photos, emails and contacts, threatens
users privacy as never before [40]. Attackers usually spread malware infections
by repackaging an app to contain malicious code, and by uploading it to Google
Play (i.e., the official marketplace) or alternative marketplaces [42]. A possible
approach to reveal malicious Android apps consists of analyzing them one at a
time. However, this may be fighting a losing battle: Google Play counts more
than 2.2 million apps today [32]. Thus, in recent years, researchers attention
moved to the study of batch (i.e., non-interactive) analysis systems [17,34,35].

Malware analysts can examine suspicious apps through static analysis and
dynamic analysis. On one hand, static analysis consists of inspecting the
resources in the packaged app (e.g., manifest, bytecode) without executing it.
Unfortunately, an adversary can hinder static analysis by using techniques such
as obfuscation, encryption, and by updating code at runtime. On the other hand,
dynamic analysis consists in monitoring the execution of an app in a test system.
During such analysis, the sample (i.e., an app submitted for the analysis) runs
in a sandbox. A sandbox is an isolated environment where malware analysts can
execute and examine untrusted apps, without risking harm to the host system.

Academic and enterprise researchers independently developed many mal-
ware analysis systems for Android. For example, Google introduced Bouncer,
a dynamic analysis system that automatically scans apps uploaded to Google
Play [18]. Such analysis systems run long queues of batch analyses in parallel,
and typically do not rely on real devices but on Android emulators. Unfortu-
nately, emulators present some hardware and software differences (i.e., artifacts)
with respect to real devices, which can also be recognized at runtime by apps:
By detecting these artifacts, an app can easily recognize whether it is running
or not on a real device. A malicious app can exploit emulator detection to evade
dynamic analysis and show a benign behavior, instead of the malicious pay-
load. Relying on such mechanism, malware authors might spread a new gen-
eration of malicious apps, which they would be hardly detectable with current
dynamic analysis systems. While researchers keep improving dynamic analysis
techniques, they are overlooking the accuracy of virtualization. In current mal-
ware analysis services for Android, the coarseness of the underlying emulator
hinders researchers efforts.

Contribution. The contribution of this paper is a step towards the development
of a stealthier malware analysis sandbox for Android, which reproduces as much
as possible the characteristics of real devices. Our goal is to show malware the

280 L. Bordoni et al.

characteristics of an execution environment that appear to be real but are not
actually there.1 In this paper, we make the following contributions:

– We define six requirements to design a sandbox that can cope with current
evasion attacks, and is easy to evolve in response to novel detection tech-
niques.

– We propose Mirage, an architecture that fulfills all these requirements.
Researchers can use Mirage to implement more effective malware analysis
sandboxes for Android.

– We describe our proof of concept implementation of Mirage.
– We evaluate the effectiveness and the modularity of Mirage by tackling a

specific and representative case: address sandbox detection techniques that
exploit sensors capabilities and events.

– We show that Mirage, with our sensors module, can cope with most evasion
attacks based on sensors that affect current dynamic analysis systems.

Organization. The rest of the paper is organized as follows. We start by present-
ing related work in Sect. 2. In Sect. 3, we define six requirements that we believe
are essential to develop a malware analysis sandbox for Android. In Sect. 4, we
present the components of Mirage. As a representative case study, in Sect. 5, we
describe our proof of concept implementation of Mirage which addresses evasion
attacks based on sensors. In Sect. 6, we compare our system with state of the
art malware analysis services and we discuss its effectiveness in Sect. 7. Finally,
Sect. 8 concludes the paper.

2 Related Work

Security researchers put a lot of effort in detecting PC virtualization [26,29].
However, in the era of cloud computing, a desktop or server operating system
running inside a virtual machine is no longer a sign that dynamic analysis is
taking place. Regarding mobile devices, nowadays malware analysts mainly rely
on emulators, so malware can use emulator detection to evade dynamic analysis.
Therefore, we strongly believe that evasion attacks on mobile emulators will be
a hot topic for researchers in the years to come.

In what follows, we report the work related to the domain of sandbox detec-
tion. In [36], Vidas et al. described four classes of techniques to evade dynamic
analysis systems for Android. The authors categorize such techniques with
respect to differences in behavior (e.g., Android API artifacts, emulated network-
ing), in CPU and graphical performances, in hardware and software components
(e.g., CPU bugs), and in system design. Similarly, Petsas et al. in [28] presented
evasion attacks against Android virtual devices. Jing et al. in [15] introduced
Morpheus, a software that automatically extracts and rank heuristics to detect
Android emulators. Morpheus retrieves artifacts from real and virtual devices,

1 Like a mirage in a sand(box) desert, and this motivates the name of our proposed
solution.

Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 281

and it compares the retrieved artifacts to generate heuristics. Morpheus derived
10,632 heuristics from three out of thirty-three sources of artifacts. Maier et al.
in [19] presented a tool for Android called Sand-Finger, which is able to collect
information from sandboxes that malware can use to evade dynamic analysis.

Some industry presentations examined the sandbox detection problem as
well. Strazzere, in [33], proposed detection techniques based on system proper-
ties, QEMU pipes and content in the device, which he embedded in an app for
Android. Oberheide et al., in [24], and Percoco et al., in [27], showed that Google
Bouncer is not resilient against evasion attacks, and an attacker can bypass it
to distribute malware via Google Play marketplace. In addition to fingerprint-
ing Bouncer, the former managed to launch a remote connect-back shell in its
infrastructure.

Researchers proposed many dynamic malware analysis systems for Android
that rely on an emulator. Few examples of such systems are CopperDroid [34],
CuckooDroid [6], DroidBox [16] and DroidScope [41]. Other systems such as
AASandbox [5], Andrubis [17], Mobile-Sandbox [31], SandDroid [30] and Trace-
Droid [35] perform dynamic analysis on an emulator as well, but they also use
static analysis to improve their performances. In addition to performing both sta-
tic and dynamic analysis, authors in [37] proposed to analyze samples using an
emulator that they enhanced to tackle some evasion attacks. Although authors
in [37] focus on how to perform malware analysis, it presents some interest-
ing ideas against sandbox detection techniques. An interesting idea is to use a
mixed infrastructure composed of real and virtual devices. Mutti et al. in [22]
presented BareDroid, a malware analysis system based on real devices, instead
of emulators, which consequently is more robust to evasion attacks. The authors
estimated that a BareDroid infrastructure would cost almost two times the cost
of a system based on emulators with the same capabilities. However, a virtual
infrastructure is more elastic when compared to a cluster composed only of phys-
ical devices, which may suffer from under or over-provisioning.

To the best of our knowledge, the work by Gajrani et al. [10] is the most
similar to our proposal. After giving a general overview on emulator detection
methods, the authors present DroidAnalyst, a dynamic analysis system that is
resilient against some of them. Their system can hinder evasion attacks based on
device properties, network, sensors, files, API methods and software components.
We share a common goal with the authors of [10]: the development of a malware
sandbox for Android resilient against evasion attacks. However, we identified
in [10] the following limitations (that we instead overcome with our proposal):

– Their analysis about artifacts in Android sensors API is not exhaustive. For
example, they do not take some of our findings (see Sect. 5.2) into considera-
tion.

– They propose a solution that consists of a set of patches to their analysis
system based on QEMU. Therefore, it is not a general architecture like our
proposal.

– DroidAnalyst uses an approach based on emulator binary and system image
refinement, which does not allow the same emulator to impersonate two

282 L. Bordoni et al.

different real devices, unless they are modified again and restarted. Con-
versely, the requirements of Mirage (presented in Sect. 3) discourage any mod-
ification to the emulator, since the sandbox would be less flexible and hard
to maintain.

To evaluate the effectiveness of our sandbox detection heuristics based on sensors,
we tried to submit to DroidAnalyst our sample, i.e., the SandboxStorm app (see
Sect. 6). Unfortunately, the DroidAnalyst dynamic analysis subsystem was under
maintenance, and is still not available at the time of writing.

3 Sandbox Requirements

After studying state of the art sandbox detection techniques [15,19,28,36], we
define six key requirements that we believe are essential to develop a malware
analysis sandbox for Android. Our goal is to derive the design of an architecture
from the requirements, which can consist of one or more parts (i.e., components).
We formulate the first three requirements on the basis of desired features to cope
with the evasion attacks described in the aforementioned work (see Sect. 2).
Moreover, we formulate three additional requirements taking into account that
the sandbox should be flexible. The requirements are:

– Stealthiness of sandbox components: The components of the sandbox
shall be unnoticeable by malware. Otherwise, an adversary could recognize
a component of the sandbox, and evade dynamic analysis. This may seem a
trivial requirement, but it serves as a cornerstone for our work. Nowadays,
virtualized environments are not realistic and easily detectable [20,26,28,29].
Unfortunately, adding new countermeasures in such environments to achieve
stealthiness produces new artifacts (e.g., processes and files). Such artifacts
allow malware authors to fingerprint the whole system, causing the ineffec-
tiveness of the countermeasures in place to make the virtualized environment
stealthy. If the sandbox is not fully undetectable, it should be able to hide its
imperfections, hiding them to the samples.

– Consistency of bogus data: The sandbox shall provide realistic and consis-
tent information to the sample throughout the analysis. Otherwise, an adver-
sary could detect the sandbox by exploiting the discrepancies in information
that comes from different sources. To hide the artifacts in the emulator, the
sandbox must produce a large amount of fake data. In this case, random gen-
eration is not an option, since it is prone to introduce discrepancies in data.
For example, telephone numbers in contacts shall be composed of a country
calling code plus a fixed number of digits [36]. A possible solution could be
to use data collected from real mobile devices. In addition to that, the mod-
ules in the sandbox that inject such data must coordinate with each other to
mimic a realistic environment.

– Monitor known evasion attempts: The sandbox should be able to notice
whenever a sample is likely exploiting known detection techniques. Even
if some artifacts are obvious but not fixable with nowadays technologies,

Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 283

it is worth to log all the suspicious attempts and act in an alternative way.
However, when an app looks for artifacts, it does not strictly means that that
app is trying to evade the analysis.

– Modularity of sandbox components: The components of the sandbox
shall be modular with respect to detection techniques that malware exploits.
We believe this is a key requirement, since researchers keep reporting cutting-
edge [15,19,28,36] evasion attacks every year. Researchers shall have the
opportunity to develop, customize and publish new parts in a modular fash-
ion, to keep up with the state of the art. A system designed to be open to
new contributions makes it also improvable, in order to cope with emerg-
ing threats. Furthermore, since the Android operating system and its SDK
change rapidly, sometimes new features break the compatibility with old ones
that were available in previous versions. Hence, it is necessary to divide the
components internally into modules. This allows to redesign and implement
again just the modules that the changes affect.

– No modifications to the Android source code: The sandbox should
not require any change of the Android source code. Although it would pos-
sible to alter APIs by modifying the operating system, compiling Android
requires a significant amount of computational resources. In fact, a single
build of an Android version newer than Froyo (2.2.x) requires more than two
hours on a 64-bit consumer PC, plus at least 250 GB (including 100 GB for
a checkout) of free disk space [1]. Even with the necessary resources and a
semi-automated workflow, maintaining several versions simultaneously would
be an overwhelming task.

– No modifications to the Android emulator: The sandbox should not
require significant modifications to the emulator. Researchers are using differ-
ent hypervisors and virtual machines for dynamic malware analysis, therefore
we cannot focus on a specific technology. For example, systems like Copper-
Droid [34] use virtual machine introspection to reconstruct the behaviors of
malware, hence such systems are potentially adaptable to any emulator. Forc-
ing the scientific community to port the existing software to meet a modified
emulator would likely lead to failure in the adoption.

4 Mirage: Our System Architecture

In this section we present Mirage, our architecture for a malware analysis sand-
box robust against evasion attacks. One of the key feature of Mirage is that it
is composed of processes that execute inside the operating system, and software
that runs outside the emulator. This feature allows Mirage to be not tied to a
specific analysis system.

In Fig. 1, we illustrate the four main components of Mirage which are the
Methods Hooking Layer (Sect. 4.1), the Events Player (Sect. 4.2), the Coordina-
tor and Logger (Sect. 4.3), and the Data Collection App (Sect. 4.4).

284 L. Bordoni et al.

Coordinator
and Logger

Methods
Hooking Layer

Sample

Android virtual device
Mirage

Component name

Legend

Events Player

Data
Collection App

Communication

Component name

Communication
and interception

Malware
analysis
system

Android
API

Component of Mirage

Not part of Mirage

Fig. 1. Mirage architecture, highlighting its components and their interactions.

4.1 Methods Hooking Layer

The first component of Mirage architecture is the Methods Hooking Layer. This
component executes as a process in the Android operating system. The main
function of Methods Hooking Layer is to intercept calls to methods of Android
API and manipulate their return value. Such manipulation occurs just whenever
the original returned value may reveal the presence of the underlying emulator.
Relying on this component, we can address the majority of behavioral differ-
ences. As an example, we can return a well-formed telephone number when a
sample asks for TelephonyManager.getLine1Number(), instead of the default
one (which in an emulator always begin with 155552155, followed by two random
digits). Since it is possible to predict which artifacts the Methods Hooking Layer
introduces, we can use such component to hide them as well. Moreover, hooked
methods should perform minimal computation to reduce the risk of detection
via computational timing attacks.

The code of the Methods Hooking Layer executes directly on a compiled oper-
ating system image. Hence, such code is debuggable without modifying and com-
piling every time the Android source code. In compliance with the modularity of
sandbox components requirement (see Sect. 3), the modular sub-architecture of
the Methods Hooking Layer makes it flexible with respect to changes. The Meth-
ods Hooking Layer divide hooks by target artifacts, thus they are editable with-
out touching the other hooks. Moreover, such sub-architecture allows researchers
to share their proof of concepts or mature modules in a common framework. How-
ever, system constants expose some artifacts as well (e.g., the ones contained in
android.os.Build).

4.2 Events Player

Real mobile devices generate many events in response to external stimuli, hence
hooking methods calls and manipulation their return value is not enough to
simulate such asynchronous behavior. In order to make our runtime environment
as realistic as possible, we need the Events Player replay recorded or generated
streams of events in the emulator. Besides the touch screen, the main sources of
events are sensors (e.g., accelerometer, thermometer) and multimedia interfaces
(e.g., camera, microphone).

The Events Player replays tidily the streams of events, respecting their
order. The accuracy of values domain is crucial to build a stealthy sandbox.

Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 285

Indeed, the sandbox would be vulnerable to detection and fingerprinting,
whether the injected events do not resemble the ones that come from a real
sensor (e.g., they are out of range). Similarly to the Methods Hooking Layer,
the Events Player uses only tools from Android, Android SDK and emulators,
without requiring any modification.

4.3 Coordinator and Logger

The Coordinator and Logger, as it results clear from its name, has two roles: to
coordinate and to log. Its first role as coordinator consists in ensuring consistency
of bogus data, which the other components inject into the emulator. Whenever
the Methods Hooking Layer loads a new module, or when the Events Player
opens an events stream, we have to instruct the coordinator on how to manage
such hooks or events stream in accordance with the other modules. A deep study
of the interaction between Android features lead to a set of rules, which the
coordinator feature is able to interpret. For example, data that sensors acquire
is interdependent (e.g., accelerometer and GPS). Moreover, actuators on the
device (i.e., the screen, the notification LED, the flash, speakers and the vibrator)
can also influence data that sensors record (e.g., speakers may influence the
microphone).

The second role of this component consists in logging what happens inside
the sandbox. This logging feature of the Coordinator and Logger is useful to have
an insight on which detection techniques the samples are probably exploiting.
In addition to that, the logging feature is even more useful to signal whenever a
sample attempts to use a known technique which the sandbox is not able to cope
with yet. In this way, Mirage is able to monitor all possible evasion attempts. The
Methods Hooking Layer reports to the Coordinator and Logger every suspect or
evidence about the analyzed sample. The Coordinator and Logger could manage
the analysis process entirely. As an example, this component could handle tasks
such as sample submission or the presentation of results.

4.4 Data Collection App

The task of the Data Collection App is to collect information from real mobile
devices. Then, the Coordinator and Logger will inject such information into the
Methods Hooking Layer and into the Events Player. The goal of this process is
to hide artifacts in the emulator. Indeed, acquiring data from different smart-
phones and tablets models allows to create emulator instances with different
characteristics. At the same time, this approach also reduces the risk that mal-
ware authors detect a particular image. The app is also responsible of capturing
events streams on the real device, and store them in a compact and easy to
replay representation.

The Data Collection App can retrieve information from real mobile devices
available in a laboratory, but a real advantage would be to collect data with
crowd-sourcing. On one hand, in a laboratory scenario researchers could ask
their colleagues or students to kindly give their help by installing the app

286 L. Bordoni et al.

and uploading data. Two examples of existing loggers for Android used for
research purposes are DeviceAnalyzer [39] and DELTA [7]. On the other hand,
in a crowd-sourcing scenario companies could include the Data Collection App in
their mobile app. Adopting a freemium pricing strategy, companies can freely dis-
tribute their software for free in exchange for data collected from the device. With
an app with a wide user base, it is also possible to acquire “disposable” data on
demand. As an example, an antivirus app may offer to the user an extension of the
license or a month of premium features, if she agrees to share with the company her
sensors events for the next ten minutes. In both scenarios, we highlight that data
collection must be respectful of the privacy of the participants, e.g., applying per-
turbation on collected data [11]. Such perturbation is meant to alter information
in such a way that avoids to expose the contributing user’s identity (e.g., biomet-
rics, habits) and, at the same time, preserves the characteristics of the device.

5 A Representative Case Study: Tackling Evasion
Attacks Based on Sensors with Mirage

In this section, we present the development process of a sensors module for
Mirage, i.e., a collection of modules that emulates sensors in one or more Mirage
components. Designing an effective countermeasure against evasion attacks
requires a deep understanding of the problem. In this case study, we analyzed the
differences in sensors characteristics between real devices and emulators. This
case study has two purposes: (i) to briefly describe how we implemented Mirage,
and (ii) to show that Mirage is effective against the proposed detection heuristics
based on sensors. With a proof of concept implementation, we propose also an
approach to carry out an investigation on evasion attacks. The final goal of such
investigation is the development of a module for Mirage. In this way, researchers
can extend Mirage to tackle novel evasion attacks, by following the workflow we
present in this section.

In what follow, we discuss some choices about the components of our Mirage
implementation. First, the Methods Hooking Layer rely on the Xposed frame-
work as a methods hooking facility [38]. Xposed is an open source tool that
allows to inject code before and after a method call. It is worthy of note that
other hooking tools, such as Cydia Substrate [8], adbi [21] serve the same pur-
pose. In particular, we preferred Xposed because Cydia Substrate is not open
source and adbi supports only the instruction sets of ARM processors. Xposed
by its nature is detectable, since it introduces some artifacts. However, subvert-
ing methods hooking detection techniques is not difficult, as pointed out in [4].
Secondly, the Events Player relies on a Telnet console in QEMU, which allows to
remotely inject sensors events into the emulator. During our preliminary stud-
ies, we considered multiple alternative approaches. Unfortunately, most of the
alternative approaches we investigated are not viable due to our requirements in
Sect. 3 (e.g., modifications to the emulator) or because they are not compatible
with recent Android versions (e.g., RERAN [14]). Although this is a QEMU-
specific feature, other emulators (e.g., Genymotion, Andy) offer a similar events

Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 287

injection mechanism. Finally, we develop a custom Data Collection App and we
implement the remaining components as a set of scripts.

The case study we report in this paper is focused on sensors artifacts. We
chose detection techniques based on sensors for three reasons:

1. Researchers pointed the feasibility of such detection techniques [28,36] with-
out providing any effective countermeasure.

2. A possible countermeasure against such detection techniques involves multi-
ple components in our system (i.e., the Methods Hooking Layer, the Events
Player, the Coordinator and Logger, the Data Collection App).

3. Accessing motion, position and environmental sensors do not require any per-
mission. This means that the sensors-based detection techniques are stealth-
ier than the ones that do not rely on sensors. In fact, a popular app can be
repackaged to include a sensors-based detection technique, without altering
the original permission list in its manifest.

Our workflow starts with threat modeling (described in Sect. 5.1), continues
with artifacts discovery and analysis (Sect. 5.2), and ends with the implemen-
tation of the module (Sect. 5.3). By following the above steps, researchers can
progressively improve Mirage, toward an ideally undetectable sandbox.

5.1 Threat Model

In our threat model, we assume an attacker that is running a malicious app
on a mobile device, with full access to the Android sensors API. The sensors
API is composed of SensorManager, Sensor, and SensorEvent classes, plus
the SensorEventListener interface. An instance of SensorManager corresponds
to the sensor service, which allows to access to the set of sensors available on
the device. An instance of Sensor is related to a specific sensor, which can be
hardware or software-based. The methods of the Sensor object permit to identify
sensor capabilities. The SensorEvent class represents a single sensor event, that
contains: the sensor type, the sensor state (i.e., value and accuracy), and the
event timestamp. The SensorEventListener is a Java interface to implement
in order to receive notifications whenever a sensor state changes. In our threat
model, we also assume that the malicious app has a limited timespan before
deciding whether to execute the payload or to remain dormant. In that time
interval, the malicious app can monitor some sensors events.

5.2 Artifacts Analysis

Artifacts are imperfections that make a sandbox distinguishable from a real
device. To put ourselves in attacker’s shoes, we studied the Android sensors
API in order to find out which sensors artifacts malware could leverage to evade
dynamic analysis. First, we analyzed real smartphones such as LG/Google Nexus
5 and 5X, Samsung Galaxy S5 and S6, Galaxy Ace Plus, and Asus ZenFone 2.
These real devices were running different operating system versions, ranging

288 L. Bordoni et al.

from Android 2.3 (API level 9) to Android 7 (API level 24), which is the most
recent release at the time of writing. Then, we analyzed how emulators supports
sensors. In this analysis, we considered Android SDK’s emulator and Genymotion
(free plan), given their popularity among developers. On one hand, the Android
SDK provides a mobile device emulator based on QEMU (QEMU from now on).
Such emulator uses Android Virtual Device (AVD) configurations to customize
the emulated hardware platform. On the other hand, Genymotion is a third
party emulator, but it is compatible with Android SDK tools. Genymotion allows
developers to control features like the camera, the GPS and battery charge levels.
Most of the features of Genymotion are also manageable through a Java API [13].

The first discrepancy we noticed is that both emulators support a limited
set of sensors. The developers of Android defined some types of sensors (i.e.,
the ones whose names begin with android.sensor.*). For such sensors, the
getType method returns an integer number less than or equal to 100. Moreover,
vendors can introduce custom sensors, i.e., the sensors for which getStringType
returns a string that begins with com.google.sensor.* in the Nexus 5X. Given
this fact, we can argue that a malware author who wants to target as much users
as possible will not rely on device-specific sensors. In addition to that, malware
authors have to focus on sensors available in API level 9 in order to target most
of the devices (approximately 99.9% of the active devices according to Google
Play [2]).

In our analysis, we considered the sensors embedded in real devices and the
ones simulated by virtual devices. For each sensor, we called all methods available
in the Sensor class. As an example, in Table 1 we show the discrepancies in terms
of return values for accelerometer methods on real and emulated Nexus 5X. In
Table 1, we also include the return values for our proposal, which we discuss in
details in Sect. 6. Malware authors can rely on those discrepancies to develop
simple detection techniques (a single conditional statement is enough). We refer
to these techniques as static heuristics, since they exploit an artifact due to the
Android API, which is not related to events streams. The accelerometer, thanks
to its wide availability, is particularly well suited for broad-spectrum heuristics.

Table 1. Example of return values for Nexus 5X accelerometer in real devices, vanilla
emulators (i.e., QEMU and Genymotion) and QEMU enriched with Mirage.

Device getName getVendor getFifoMax-EventCount

Real BMI160 accelerometer Bosch 5736

QEMU Goldfish 3-axis

Accelerometer

The Android

Open Source

Project

0

Genymotion Genymotion

Accelerometer

Genymobile 0

QEMU + Mirage BMI160 accelerometer Bosch 5736

Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 289

In the literature, researchers already pointed out the feasibility of dynamic
heuristics, in which they exploited sensors events that emulators generate [28,36].
We investigated further: for each real mobile device at our disposal, we regis-
tered callback methods to receive changes in sensors state. By applying the
option SENSOR DELAY FASTEST, we got those states as fast as possible. In our
experiments, we observed that collecting an incoming stream of events for ten
seconds is enough for our purpose. We collected sensors data from real mobile
devices in three different scenarios: lying on a table, while typing and leaving
them in a pocket while walking. Then, we repeated the data collection task on
QEMU and Genymotion emulators. Such emulators allow only two modes of
screen rotation: portrait and landscape.

During our experiments, we were able to observe some differences between
real and emulated motion sensors. In real mobile devices, we noticed that motion
sensors (e.g., the accelerometer) quickly oscillate among a small range of values,
even when the device is lying on a flat surface. In emulators, we noticed that it is
possible to stimulate the accelerometer by changing from landscape to portrait
mode. In contrast, without rotating the screen, each motion sensor in emulators
produce the same value. Table 2 records the constant values that each sensor
in QEMU produces. It is worthy of note that some sensors in QEMU produce
values only along one axis, so in Table 2 we mark the cells related to the other
two axes as n/a.

Table 2. Constant values produced by sensors in QEMU, grouped by screen
orientation.

getStringType Portrait Landscape

values[0] values[1] values[2] values[0] values[1] values[2]

android.sensor. accelerometer 0 9.77622 0.813417 9.77622 0 0.813417

magnetic field 0 0 0 0 0 0

light 0 n/a n/a 0 n/a n/a

pressure 0 n/a n/a 0 n/a n/a

proximity 1 n/a n/a 1 n/a n/a

relative humidity 0 n/a n/a 0 n/a n/a

To show the detectability of the analyzed emulators, we implemented a fast
dynamic heuristic that observes the variance of accelerometer values. Since by
default such emulators are able to produce at most two different accelerome-
ter values along one axis, if the accelerometer produces at least three different
values it is likely to be on a real device. In general, static heuristics are faster
than dynamic ones, because static heuristics do not require looping or waiting.
Hence, the execution time of our dynamic heuristics depends on how fast sensors
generate events, since it needs to retrieve at least three values in order to decide.
Unfortunately, dynamic heuristics that rely on sensors are harder to tackle than
static ones. Indeed, an ideal countermeasure against such dynamic heuristics
consist in simulating or replaying events.

290 L. Bordoni et al.

5.3 Module Implementation

In order to tackle the evasion attacks in Sect. 5.2 with Mirage:

– We included in our Data Collection App the code we used for artifacts analysis.
– We patched the discrepancies in return values using information we obtained

from the Data Collection App.

To address static heuristics, we added to the Methods Hooking Layer our knowl-
edge about the characteristics of real sensors. In fact, the Methods Hooking Layer
can intercept methods calls directed to the Sensor class, returning values that we
collected from sensors of a real device. Xposed executes a method before (pre-
method) and after (post-method) each method hooked [38]. The pre-method
can evaluate and alter the arguments, or it can return a custom result. In our
implementation, we used only post-methods. In fact, first we allow the origi-
nal methods to execute, then we inspect the sensor type, and finally we alter
its return value accordingly. After defining an hook for each method of Sensor
class, for every available sensor type, Mirage is able to mimic a real device.

In our proof of concept implementation, we leveraged QEMU to develop the
replay mechanism of Events Player. This is because QEMU exposes a console
via Telnet and it supports more sensors than Genymotion. Such console allows
to control the virtualized environment, including sensors. The syntax of a Telnet
command is telnet <host> <console-port>, where the default port is 5554.
Once connected, we can set the values for a given sensor using the command
set <sensorname> <value-a>[:<value-b>[:<value-c>]]. We implemented a
prototype that reads a stream of values from a file and injects such stream
(i.e., replay) into a running emulator. Under these settings, the Coordinator and
Logger ensures that the Events Player replays for each sensor a sequence that
is part of the same stream. This solution is adaptable to all Android emulators
that expose a similar injection mechanism (including the premium releases of
Genymotion), and it does not require any modification to the emulator.

6 Evaluation

For the evaluation of our proposal, we developed the SandboxStorm app. Such
app includes the static and dynamic heuristics in Sect. 5.2, thus it easily detected
both QEMU and Genymotion emulators. To show that similar artifacts are also
present in state of the art systems, we submitted our SandboxStorm app both to
offline and online malware analysis services. We picked CuckooDroid and Droid-
Box as offline dynamic analysis software, mainly because they are open source.
CuckooDroid adds to the Cuckoo Sandbox a QEMU-based virtual machine to
execute and analyze Android apps [6]. DroidBox relies on QEMU and it tries
to understand the sample’s behavior by repackaging the app with monitoring
code [16]. Then, we picked some state of the art online malware analysis services
from [23]. Among them SandDroid [30] and TraceDroid [35] were in working
order. Moreover, we had the opportunity of testing the SandboxStorm app also

Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 291

on Andrubis [17] before its shutdown. Unfortunately, CopperDroid [34] was stuck
on a long queue of unaccomplished analysis at the time of our evaluation.

In Table 3, we summarize the results we obtained by running our SandboxS-
torm app in the aforementioned malware analysis systems. The results show
that both static and dynamic heuristics of our SandboxStorm app successfully
detected the presence of an underlying emulator. In the worst case, our dynamic
heuristic took about 74 seconds to detect that the app is running on a virtual
device. However, we believe that such amount of time is still negligible in this
scenario, since a malicious app can delay the start of its malicious behavior by
74 seconds. It is worthy of note that Andrubis and TraceDroid did not made
available any sensor. However, the absence of sensors is a clear evidence that the
sample is not running on a real device.

In order to evaluate our sensors module, we executed the SandboxStorm app
in QEMU enhanced with our proof of concept implementation of Mirage. Once
distributed, our Data Collection App can retrieve more information from real
smartphones and tablets, in order to build several profiles. The static heuristics
in SandboxStorm app failed to detect Mirage, because its Methods Hooking Layer
manipulates the return values of methods on the fly. In Table 1, we compare
some artifacts in vanilla emulators (see Sect. 5.2) to the corresponding values we
collected during the execution inside Mirage. These values are identical to the
ones provided by a real Nexus 5X. Moreover, the methods in Sensor class return
realistic values for each sensor in the emulator. Even our dynamic heuristic in
SandboxStorm app failed to detect the sandbox. In fact, the Events Player injects
previously recorded sensors values, that are naturally different from the ones that
we described in Table 2. Overall, SandboxStorm app is not able to notice that it
is running in Mirage.

We also tested the stealthiness of our Mirage implementation against Droid-
Bench (version 3.0-develop) [9], an open source benchmark suite, which includes
several test cases (i.e., apps) for emulator detection. In particular, we tested our
sensors module against “Sensors1” test case. The “Sensors1” test successfully
recognized our real devices and both vanilla QEMU and Genymotion, but it
missclassified our QEMU enhanced with Mirage as a real device.

Table 3. Detection time by analysis system and heuristic type.

Analysis system Static heuristic Dynamic heuristic

CuckooDroid 16 ms 70361 ms

DroidBox 18 ms 69581 ms

Andrubis 16 ms n/a

SandDroid 15 ms 73964 ms

Tracedroid 17 ms n/a

292 L. Bordoni et al.

Fig. 2. Number of events retrieved in ten seconds for several sensors and devices.

7 Discussion

The core contribution of our work is Mirage, a framework that allows researchers
to build malware analysis systems for Android that are robust against evasion
attacks. Mirage is potentially adaptable to work with any emulator or hypervisor.
Our implementation of Mirage, is able to tackle complex heuristics based on
sensors of our SandboxStorm app (see Sect. 6). In the rest of this section, we
first discuss the effectiveness of our sensors module and possible limitations of
Mirage. Then, we present some alternative implementations of the Events Player.
Finally, we remark the importance of modularity in the design of Mirage.

Effectiveness of the Sensors Module. We verified that the sensors module is
effective against our static and dynamic heuristics based on sensors (see Sect. 6).
We further investigated the reasons underneath the success of our implementation
of Mirage against the “Sensor1” heuristic of DroidBench. We noticed that such
heuristic checks the presence of 13 distinct types of sensors. If DroidBench detects
a number of sensors that is less than or equal to a given threshold (the authors set
this threshold to 7), it reports the presence of an emulator. Hence, this test case
consists in a static heuristic. In Mirage, the Methods Hooking Layer is responsible
to cope with detection techniques that are purely static. Since our sensors module
for theMethodsHookingLayer can fake the presence of sensors that are not actually
there, “Sensor1” test case fails to count the number of real sensors.

Overall, the development process of the sensors module for Mirage helped
us to show that our proposal can be a useful tool to tackle evasive malware on
Android. Unfortunately, such module has some shortcomings. Given a specific
real device simulated by Mirage, the Methods Hooking Layer is able to mimic
static characteristics of sensors available in such device, even if these sensors are
not present in the underlying emulator. Similarly, Mirage can also hide the sen-
sors that are available in the emulator whenever they are not present in the real
device. Nevertheless, for sandbox detection techniques that monitor the events
stream (like the dynamic heuristic in SandboxStorm app), our Events Player
implementation is limited to the set of sensors supported by the underlying
emulator (i.e., QEMU, in our current implementation).

Pre-filter NDK-based Applications. The Native Development Kit (NDK)
allows embedding native code into Android apps. NDK can be useful for

Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 293

developers that need reduced latency to run computationally intensive apps
(e.g., games) or to reuse code libraries written in C and C++. Unfortunately,
allowing developers to code using NDK enables mobile malware authors to
develop kernel-level exploits and sophisticated detection techniques [28,36]. Mal-
ware that is able to measure performances at low level (e.g., that measure the
duration of time-consuming computation) can evade analysis systems based on
virtualization by performing computational timing attacks. This is because such
systems insert additional layers between the Android operating system and the
CPU, with respect to real devices. Even though all these kind of artifacts are
hard to patch, we can easily detect the usage of native code. Since Mirage can-
not handle NDK-based malware properly, it could forward these samples to a
real device or to a small bare metal infrastructure for the analysis. We assume
that most of the requests are addressed in our sandbox, and we consider the
forwarding of the samples to a real device as a last chance.

Alternative Implementations of the Events Player. Before deciding to
rely on the Telnet console in QEMU in order to implement the sensors module
in the Events Player, we considered different approaches. In order to simulate
sensor events in real time, researchers in [28] suggested to use external soft-
ware simulators, like OpenIntents Sensor Simulator (OISS) [25], or to adopt or
a record-and-replay approach, like RERAN [14]. On one hand, OISS is an app
that transmits simulated or recorded sensors streams to an emulator. Unfortu-
nately, to receive the generated sensors events, OISS forces apps developers to
use its own API instead of Android sensors API. This constraint is unsuitable for
malware analysis, because the source code of the sample usually is not available.
On the other hand, RERAN is a tool that first captures an events stream from
a real device and then injects the stream in another device. Input events are
recorded from /dev/input/event* in the source device and stored in a trace
using getevent tool of Android SDK. A custom replay agent reads the trace and
writes events to /dev/input/event* in the destination device. Unfortunately,
in recent smartphones (e.g., Nexus 5X, Galaxy S5) getevent tool is able to get
the touchscreen and buttons events, but not sensors ones.

Modularity of Mirage Components. One of the most important lesson we
learned during our experiments is that the Android platform is rapidly and
unpredictably changing. To give a significant example, while we were testing our
heuristics, the developers of Android released an improved version of QEMU
(along with Android Studio 2.0 release). This new version handles many more
simulated events than the previous ones, actually resembling a real device. To
show that, in Fig. 2 we compare the number of events retrieved in ten seconds
from real and virtual Nexus 5X. In this experiment, we used the last releases of
QEMU and Genymotion. Each sensor that the two emulators support is able to
generate a number of events approximately equal or greater than the sensors on
the real Nexus 5X. Unfortunately, the developers of Android arbitrarily decided
to remove the opportunity to set sensors values via Telnet in the improved version
of QEMU, which we exploited in our implementation of the Events Player.

294 L. Bordoni et al.

Although we still do not know if the developers will reintroduce such feature
in the future, this change highlights that the modularity in Mirage components is
fundamental. Now QEMU is able to produce a significant number of sensors events
on its own. Hence, it is possible to hook also methods of SensorEventListener
class and manipulate the returned sensors values directly (without injecting sen-
sors events from the Events Player). The isolation between the modules of the
Events Player and the Methods Hooking Layer allows to relocate the simulation
of sensors events from the former to the latter, without modifying the other mod-
ules. Nonetheless, to give a more comprehensive proof of concept of Mirage, we
preferred to use the previous release of QEMU (prior to Android Studio 2.0), keep-
ing the simulation of sensors events in the Events Player.

8 Conclusion

In this paper, we take a step towards the stealthiness of malware analysis sand-
boxes for Android. After carefully reviewing the state of the art, we enlisted six
essential requirements that an analysis system have to fulfill to tackle evasion
attacks. Hence, we proposed Mirage, a framework that fulfills all these require-
ments. In this paper, we also presented a representative case study, which shows
how Mirage can cope with sandbox detection techniques that exploit artifacts in
emulators due to sensors API. To evaluate our proposal, we developed a proof of
concept implementation of Mirage, enabled with our sensors module. To compare
our sandbox to state of the art dynamic analysis services for Android, we also
developed the SandboxStorm app. This app contains some static and dynamic
heuristics to detect emulators, based on our findings about sensors API artifacts.
Our thorough evaluation shows that all dynamic analysis systems that we tested
are detectable by our SandboxStorm app. Conversely, Mirage resembled a real
device and, consequently, sensors-based heuristics in SandboxStorm app and in
DroidBench were not able to detect Mirage as a sandbox.

Acknowledgments. Mauro Conti is supported by a Marie Curie Fellowship funded
by the European Commission (agreement PCIG11-GA-2012-321980). This work is also
partially supported by the EU TagItSmart! Project (agreement H2020-ICT30-2015-
688061), the EU-India REACH Project (agreement ICI+/2014/342-896), and by the
projects “Physical-Layer Security for Wireless Communication”, and “Content Centric
Networking: Security and Privacy Issues” funded by the University of Padua. This
work is partially supported by the grant n. 2017-166478 (3696) from Cisco University
Research Program Fund and Silicon Valley Community Foundation. This work is
also partially funded by the project CNR-MOST/Taiwan 2016-17 “Verifiable Data
Structure Streaming”.

References

1. Android. Building requirements. goo.gl/7rLNfX (2016)
2. Android. Dashboards. goo.gl/7ygJx (2016)
3. Android. Developer’s guide. goo.gl/lvtCmr (2016)

http://goo.gl/7rLNfX
http://goo.gl/7ygJx
http://goo.gl/lvtCmr

Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox 295

4. Bergman, N.: Android anti-hooking techniques in Java. goo.gl/vN1iDU (2015)
5. Bläsing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S.A., Albayrak, S.: An Android

application sandbox system for suspicious software detection. In: IEEE MALWARE
(2010)

6. Check Point Software Technologies LTD. Automated Android malware analysis
with Cuckoo Sandbox. goo.gl/pDokqw (2016)

7. Conti, M., Santo, E.D., Spolaor, R.: DELTA: data extraction and logging tool for
Android (2016). arXiv preprint: arXiv:1609.02769

8. Freeman, J.: Instrument Java methods using native code. goo.gl/1yqeFj (2016)
9. Fritz, C., Arzt, S., Rasthofer, S.: DroidBench. goo.gl/MEPCsD (2016)

10. Gajrani, J., Sarswat, J., Tripathi, M., Laxmi, V., Gaur, M., Conti, M.: A robust
dynamic analysis system preventing sandbox detection by Android malware. In:
ACM SIN (2015)

11. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future chal-
lenges. IEEE Commun. Mag. 49, 32–39 (2011)

12. Gartner. Gartner says five of top 10 worldwide mobile phone vendors increased
sales in second quarter of 2016. goo.gl/X0ArDi (2016)

13. Genymotion. Using Genymotion Java API. goo.gl/zCTuDl (2016)
14. Gomez, L., Neamtiu, I., Azim, T., Millstein, T.: Reran: timing-and touch-sensitive

record and replay for android. In: IEEE ICSE (2013)
15. Jing, Y., Zhao, Z., Ahn, G.-J., Hu, H.: Morpheus: automatically generating heuris-

tics to detect Android emulators. In: ACM ACSAC (2014)
16. Lantz, P.: Dynamic analysis of Android apps. goo.gl/bFvjWS (2015)
17. Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Van Der

Veen, V., Platzer, C.: Andrubis-1,000,000 apps later: a view on current Android
malware behaviors. In: IEEE BADGERS (2014)

18. Lockheimer, H.: Android and security. goo.gl/fFFQcC (2012)
19. Maier, D., Protsenko, M., Müller, T.: A game of droid and mouse: the threat of

split-personality malware on Android. Comput. Secur. 54, 2–15 (2015)
20. Matenaar, F., Schulz, P.: Detecting Android sandboxes. goo.gl/0fp4bB (2012)
21. Mulliner, C.: The Android dynamic binary instrumentation toolkit. goo.gl/bzvBzm

(2016)
22. Mutti, S., Fratantonio, Y., Bianchi, A., Invernizzi, L., Corbetta, J., Kirat, D.,

Kruegel, C., Vigna, G.: BareDroid: large-scale analysis of android apps on real
devices. In: ACM ACSAC (2015)

23. Neuner, S., Van der Veen, V., Lindorfer, M., Huber, M., Merzdovnik, G.,
Mulazzani, M., Weippl, E.: Enter sandbox: Android sandbox comparison (2014).
arXiv preprint: arXiv:1410.7749

24. Oberheide, J., Miller, C.: Dissecting the Android Bouncer. SummerCon (2012)
25. OpenIntents. Sensor Simulator. goo.gl/n1a9XD (2014)
26. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful of red-pills: how to

automatically generate procedures to detect CPU emulators. In: USENIX WOOT
(2009)

27. Percoco, N.J., Schulte, S.: Adventures in BouncerLand. Black Hat USA (2012)
28. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage

against the virtual machine: hindering dynamic analysis of Android malware. In:
ACM EUROSEC (2014)

29. Raffetseder, T., Kruegel, C., Kirda, E.: Detecting system emulators. In: Garay,
J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp.
1–18. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75496-1 1

http://goo.gl/vN1iDU
http://goo.gl/pDokqw
http://arxiv.org/abs/1609.02769
http://goo.gl/1yqeFj
http://goo.gl/MEPCsD
http://goo.gl/X0ArDi
http://goo.gl/zCTuDl
http://goo.gl/bFvjWS
http://goo.gl/fFFQcC
http://goo.gl/0fp4bB
http://goo.gl/bzvBzm
http://arxiv.org/abs/1410.7749
http://goo.gl/n1a9XD
http://dx.doi.org/10.1007/978-3-540-75496-1_1

296 L. Bordoni et al.

30. SandDroid. An automatic Android application analysis system (2014). http://
sanddroid.xjtu.edu.cn/

31. Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., Hoffmann, J.: Mobile-
sandbox: having a deeper look into Android applications. In: ACM SAC (2013)

32. Statista. Number of apps available in leading app stores as of June 2016.
goo.gl/tCnPXW(2016)

33. Strazzere, T.: Dex education 201 - anti-emulation. goo.gl/jrqaaJ (2013)
34. Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: CopperDroid: automatic recon-

struction of Android malware behaviors. In: NDSS (2015)
35. Van Der Veen, V., Bos, H., Rossow, C.: Dynamic analysis of Android malware.

Internet & Web Technology Master thesis, VU University Amsterdam (2013)
36. Vidas, T., Christin, N.: Evading Android runtime analysis via sandbox detection.

In: ACM ASIACCS (2014)
37. Vidas, T., Tan, J., Nahata, J., Tan, C.L., Christin, N., Tague, P.: A5: automated

analysis of adversarial Android applications. In: ACM SPSM (2014)
38. Vollmer, R.: XposedBridge development tutorial. goo.gl/P0piK (2016)
39. Wagner, D.T., Rice, A., Beresford, A.R.: Device analyzer. In: Proceedings of ACM

HOTMOBILE (2011)
40. Wheatstone, R.: Pippa Middleton’s iCloud hacked. goo.gl/xnNQ5u (2016)
41. Yan, L.K., Yin, H.: DroidScope: seamlessly reconstructing the OS and Dalvik

semantic views for dynamic Android malware analysis. In: USENIX Security (2012)
42. Zhou, Y., Jiang, X.: Dissecting Android malware: characterization and evolution.

In: IEEE SP (2012)

http://sanddroid.xjtu.edu.cn/
http://sanddroid.xjtu.edu.cn/
http://goo.gl/tCnPXW
http://goo.gl/jrqaaJ
http://goo.gl/P0piK
http://goo.gl/xnNQ5u

Zero Round-Trip Time for the Extended
Access Control Protocol

Jacqueline Brendel(B) and Marc Fischlin

Cryptoplexity, Technische Universität Darmstadt, Darmstadt, Germany
{jacqueline.brendel,marc.fischlin}@cryptoplexity.de

http://www.cryptoplexity.de

Abstract. The Extended Access Control (EAC) protocol allows to cre-
ate a shared cryptographic key between a client and a server. While orig-
inally used in the context of identity card systems and machine readable
travel documents, the EAC protocol is increasingly adopted as a univer-
sal solution to secure transactions or for attribute-based access control
with smart cards. Here we discuss how to enhance the EAC protocol
by a so-called zero-round trip time (0RTT) mode. Through this mode
the client can, without further interaction, immediately derive a new
key from cryptographic material exchanged in previous executions. This
makes the 0RTT mode attractive from an efficiency viewpoint such that
the upcoming TLS 1.3 standard, for instance, will include its own 0RTT
mode. Here we show that also the EAC protocol can be augmented to
support a 0RTT mode. Our proposed EAC+0RTT protocol is compli-
ant with the basic EAC protocol and adds the 0RTT mode smoothly on
top. We also prove the security of our proposal according to the common
security model of Bellare and Rogaway in the multi-stage setting.

1 Introduction

The Extended Access Control (EAC) protocol establishes an authenticated key
between a client’s smart card (also called chip in this context) and a server
(or, terminal) over a public channel. For this, both parties run a sophisticated
Diffie-Hellman key exchange protocol in which either party deploys its certified
long-term key. While originally deployed in the German identity card systems
[10] and referenced by the International Civil Aviation Organization for machine
readable travel documents [24], the EAC protocol is increasingly adopted as a
potent solution in related scenarios, for example to secure transactions [29] and
for attribute-based physical access control with smart cards [28].

Especially for access control, if deployed in situations where user experience
hinges on fast response times, reducing the latency is important. A concrete
example, as discussed in a FIPS 201-2 workshop in 2015 [19], is turnstile access
in subway stations. This requirement has led for instance to the development of
the ISO/IEC 24727-6 and ANSI 504-1 standardized “Open Protocol for Access
Control Identification and Ticketing with privacY” (OPACITY) for smart cards
[33], which uses persistent binding for speeding up the key generation process.
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 297–314, 2017.
DOI: 10.1007/978-3-319-66402-6 18

298 J. Brendel and M. Fischlin

Unfortunately—and also underlining the importance of rigor—OPACITY has
been shown to display cryptographic weaknesses [15]. 1

In this paper we show that the EAC protocol can be augmented by a low-
latency mode, called zero round-trip time (0RTT). This mode enables efficient re-
establishment of secure channels for returning clients. A rigorous security proof
for the resulting augmented protocol completes the enhancement. We emphasize
that the design choices of the original EAC protocol are beyond our discussion
here. Our goal is to show that a 0RTT version can be implemented based on the
existing infrastructure.

1.1 Striving for Zero Round-Trip Time

The EAC protocol consists of two connected phases, the terminal authentication
(TA), followed by the chip authentication (CA). Both steps require only a small
number of message exchanges to establish a session key. At the same time, recent
efforts in the area of key exchange protocols aim at modes of operations which
allow for even faster data delivery. More precisely, it should be possible for a
party to re-use cryptographic data from a previous connection to derive a fresh
session key without further interaction, thus allowing the party to transmit data
immediately. Such a mode is called zero round-trip time (0RTT).

The first proposal for a 0RTT-supporting protocol came from Google with
its QUIC protocol [20]. The 0RTT mode allows the client to send data to a
known server without having to wait for the server’s response. This idea was then
quickly adopted for the drafts of the new TLS version 1.3, and has been included
in the latest drafts in various versions [30–32]. Even on a network layer level,
the Windows Networking Team recently announced to support 0RTT for TCP
connections in order to reduce latency (see [11] for TCP Fast Open description).

The rough idea of the approach taken by QUIC and TLS (for the Diffie-
Hellman version [30]) 2 is that, upon the first encounter, the server also sends
a semi-static public key gs as part of the authenticated key exchange. Unlike
an ephemeral key, which is used only within a single session, and a long-term
key which spans over a large amount of sessions, such a semi-static key is valid
for a very limited time only. This time period may range from a few seconds
to a couple of days. In particular, the semi-static key may be used in multiple
sessions.

The next time the client contacts the server, the client may combine a fresh
ephemeral key gc with the server’s semi-static key gs to immediately compute
a Diffie-Hellman key gcs and derive an intermediate session key. The client can
now send gc and already deliver data secured under the intermediate session key,

1 Remarkably, the publication of this analysis pre-dates the latest version of SP800-
73-4 [12], dated May 2015, which lists OPACITY as a suitable solution for key
establishment.

2 The latest version of the TLS draft [32] focuses on a pre-shared key 0RTT version
and has for now dropped the Diffie-Hellman based version; the main EAC protocol
only supports a Diffie-Hellman based key exchange, though.

Zero Round-Trip Time for the Extended Access Control Protocol 299

without round trip. For both QUIC and TLS the parties then continue the key
exchange protocol to switch to full session keys.

It is obvious that the non-interactive derivation of the 0RTT session key
comes at a price in terms of security: Since the server cannot contribute to such
a key in a per-session manner, an adversary can replay the client’s protocol
message and data to the server. This is inevitable, but accepted by the designers
of QUIC and TLS 1.3 as worthwhile to achieve the desired level of efficiency.

1.2 Contribution

As briefly mentioned before, we show that the EAC protocol can also be aug-
mented to support a 0RTT mode. Interestingly, the extension can be added on
top with minimal changes to the original protocol. As in the proposal of QUIC
and TLS 1.3 we let the terminal include an additional semi-static key pksemi

T in
the regular EAC execution. The key is transmitted as part of the auxiliary data
field of the original EAC description, and is thus also authenticated through the
terminal’s signature in the TA phase.

In the full run of the EAC protocol the semi-static key is still ignored for the
session key derivation. Instead, and as in the original EAC description, the chip
then receives the terminal’s ephemeral key and derives a session key from its
certified long-term key and this ephemeral key. The client authenticates through
a message authentication code under the session key. In this regard, the slightly
modified protocol complies with the original EAC protocol, using the auxiliary
data field to transfer an additional key.

If a chip later wants to reconnect to a terminal for which it already holds
the semi-static key, it only runs the CA phase again. But instead of receiving
a fresh ephemeral key from the terminal, it uses the semi-static key to build
the session key. Note that the semi-static key is already authenticated through
the previous execution of the EAC protocol. Omitting the transmission of the
terminal’s ephemeral key turns this step into a non-interactive protocol.

A straightforward idea to improve efficiency further may be to use the ter-
minal’s ephemeral key once more for 0RTT, instead of using the semi-static key.
The downside is that the terminal would need to store all ephemeral keys in
a certain time frame. This is why, both we here as well as TLS [30], use semi-
static keys instead. Nonetheless we discuss some potential variations of our basic
designs in Sect. 4.

We then show that our EAC+0RTT protocol, which consists of the (aug-
mented) EAC protocol run followed by any number of subsequent 0RTT EAC
protocol executions, meets the common security properties of an authenticated
key exchange protocol.

But we, of course, need to account for the possibility of replay attacks on
the 0RTT data. Furthermore, it is convenient to model the possibly many 0RTT
EAC handshakes following a single EAC execution in a so-called multi-stage
setting. To this end we adopt the multi-stage extension of the Bellare-Rogaway
model in [17].

300 J. Brendel and M. Fischlin

The proof of security for the EAC+0RTT protocol does not rely on previous
results.Nevertheless,wewish tomention themany security analyses of theGerman
identity card protocols and certain eIDAS extensions [2–5,13,14,22,23,27].
Also, we remark that general approaches to build low-latency protocols such as
[21] cannot be applied in the context of the EAC protocol without major changes
to the protocol.

2 Protocol Description

We next present the Extended Access Control protocol and its extension to
support 0RTT. The 0RTT extension should be seen as a particular mode or sub
protocol which co-exists with the original EAC protocol. In particular, many
instances of 0RTT EAC may follow a single full EAC protocol run (until pksemi

T

changes, in which case the terminal will most likely reject).

2.1 The Extended Access Protocol

The Extended Access Control protocol establishes a secure channel between a
chip and a terminal. It is divided in two phases: the Terminal Authentication
(TA) and Chip Authentication (CA) as depicted in Fig. 1. We integrate the
0RTT EAC protocol to the existing EAC protocol smoothly by using the pre-
specified auxiliary data field in which any data can be sent in an authenticated
manner to the chip during the TA phase. The auxiliary data field has originally
been included to pass further information to the chip such as the current date,
and the original EAC protocol ignores any such data if sent under an unknown
object identifier. In our case, the terminal can utilize this field to transmit its
semi-static key pksemi

T to the chip to enable future 0RTT EAC executions.

Terminal Authentication. The terminal authentication lets the chip C verify
the terminal T ’s identity and its permissions to access sensitive data. This is
achieved via the certificate certT held by T . This certificate contains not only the
terminal’s signed public key but also its granted access rights. We assume that
each certificate cert contains some unique identifier certID which can either be
the serial number or an identifier like CertID or CertUID, and that certID allows
to determine the user identity. Furthermore, as mentioned earlier, the terminal
authentication can be used to distribute the terminal’s public semi-static key to
the chip, thereby permitting future 0RTT EAC executions.

In a first step, the terminal sends its certificate for verification to the chip,
which can then either abort, in case of an invalid certificate, or proceed by
extracting the terminal’s public key pkT from the valid certificate. If the session
was not aborted by C, T generates its ephemeral key pair (epkT , eskT) and sends
the compressed version of the ephemeral key epkT to C. This initiates a challenge-
response mechanism. The chip replies with a nonce rC chosen uniformly at ran-
dom. The terminal authentication is complete, if the chip can then successfully
verify the received signature sT ← Sig(skT , idC ||rC ||Compr(epkT)||pksemi

T) over

Zero Round-Trip Time for the Extended Access Control Protocol 301

Fig. 1. Terminal Authentication (TA) and Chip Authentication (CA). All operations
are modulo q resp. over the elliptic curve. The gray part shows the 0RTT support
inserted in the (optional) auxiliary data field.

the chip’s identity, chosen nonce and the compressed ephemeral key. Depending
on whether the terminal offers support for 0RTT executions, the signature may
contain the terminal’s semi-static public key pksemi

T .

Chip Authentication. In the second part of the EAC protocol, the chip is
authenticated to the terminal and a session key for subsequent encrypted and
integrity-protected communications between chip and terminal is established.

302 J. Brendel and M. Fischlin

The chip transmits its credentials to the terminal and receives in response the
ephemeral public key epkT (if the terminal did not abort due to an invalid certifi-
cate). After checking epkT against the compressed value received during the TA
phase, the chip can compute the Diffie-Hellman value k from epkT and its own
long-term secret key skC . Together with a uniformly random value r′

C , the DH
value k is used to derive an encryption key Kenc, as well as two authentication
keys Kmac,K

′
mac.

3 For final authentication, the chip uses K ′
mac to compute a

tag τ over the ephemeral public key of the terminal. The tag is then transmit-
ted to the terminal, alongside the random value r′

C used in the key derivation.
The terminal is now able to derive the DH key k and subsequently the keys
(Kenc,Kmac,K

′
mac), where the session key K is given by (Kenc,Kmac). The ter-

minal aborts the CA phase prematurely if it is not able to verify τ . Otherwise
the session identifier and partner identifier are generated on both sides. If C has
received a semi-static key, it saves this key along with the terminal’s certificate
certT for further reference. The EAC protocol execution is completed successfully
if both parties terminate in accepting state.

2.2 The 0RTT EAC Protocol

Figure 2 shows the modified protocol supporting 0RTT between a chip C and a
terminal T . The chip now holds additional information in form of the semi-static
public key pksemi

T , which it obtained during a previous EAC protocol interaction
with T . In the 0RTT extension of the EAC protocol, C and T perform the
following actions, corresponding to a non-interactive version of the CA protocol
since the pksemi

T is used instead of epkT . Thus, the extra communication round in
the CA protocol in which T sends the (uncompressed) ephemeral key becomes
obsolete.

At first, the chip C picks a random nonce r′′
C and computes the DH shared

value k = DHDC
(skC , pksemi

T). Using these two values, C then derives the keys
(Kenc,Kmac,K

′
mac) where, as in the EAC protocol, K ′

mac is an additional authen-
tication key used internally in the 0RTT EAC key exchange (see [14] for a discus-
sion). The session key is then given by K = (Kenc,Kmac). Finally, C computes
the MAC-value over the semi-static public key

τ = MAC(K ′
mac, pk

semi
T)

and sends its first (and only) flight of data to T consisting of

– the authentication token τ ,
– the previously chosen nonce r′′

C ,
– its public key pkC , as well as its certificate certC ,
– the domain parameter DC , and
– early application data encrypted under the previously derived key.

3 For the necessity of K′
mac in a proof in the Bellare-Rogaway-style we refer to the

discussion in [14].

Zero Round-Trip Time for the Extended Access Control Protocol 303

Upon receiving the chip’s message, T verifies the validity of pkC and certC , and
aborts if the verification is unsuccessful. Otherwise, T uses the public key, its
semi-static secret sksemi

T and the random nonce r′′
C to derive K ′

mac and the 0RTT
EAC session key K. T can then check the validity of the authentication token τ
and aborts if the tag cannot be verified. If τ is valid, T decrypts the attached
early application data. This completes the 0RTT EAC execution.

If the terminal does not support 0RTT, or the semi-static key provided by
the chip is outdated or otherwise invalid, the process is aborted and the chip
must initiate a fresh execution of the full EAC protocol in order to establish
an authenticated secure channel with the terminal. There are, of course, sev-
eral conceivable ways to recover from failures in the 0RTT handshake. Possible
alternatives are described in Sect. 4.3.

Fig. 2. 0RTT EAC. All operations are modulo q resp. over the elliptic curve. Note that
the fields sid and pid are used within the security proof and describe partnered sessions
and intended communication partners.

2.3 Discussion

As mentioned before, the design choices of the original EAC protocol are beyond
our discussion here. We demonstrated that a 0RTT version can be implemented
based on the existing infrastructure. In particular, it is important that such a
solution is “non-invasive” in the sense that it does not require major changes
to the existing protocol but is added “on top”. Of course, any extension brings
some modifications, e.g., in our case both the chip and the terminal must now
implement the 0RTT EAC protocol and store semi-static keys. Yet, our proposal
for the augmented EAC protocol complies with the original EAC description by
using the auxiliary data field for the semi-static key. Furthermore, the 0RTT

304 J. Brendel and M. Fischlin

mode is identical to the plain execution of the CA phase, only that the semi-
static key identifier is used instead of the one for the ephemeral key.

We also stress that we do not comment on the security-efficiency trade-off
concerning 0RTT modes, but rather offer the option to have such a mode for the
EAC protocol in principle. Whether chips and terminals eventually support this
mode and tolerate for example the replay problem, is case dependent. Still, the
examples of QUIC and TLS 1.3 indicate that, from an engineering perspective,
the desire to have such modes exists, and we provide a potential technical solution
for EAC.

Finally, let us point out that 0RTT transfers inherently include the small
risk that the transmitted data cannot be recovered by the receiver, e.g., if the
receiver has switched the semi-static key in the meantime. For common client-
server scenarios the client may thus have to re-transmit the data. This problem
is often outweighed by the efficiency gain in the regular cases. For smart card
applications it may be preferable to have the terminal first signal its support
of 0RTT and to communicate the current identifier of the semi-static key, thus
saving the card from performing unnecessary operations. This can be done with
the transmission of the certificate in the first step of the TA protocol, allowing the
card to decide which mode to execute. Strictly speaking, this would effectively
support a “lightweight 1RTT” protocol mode, still with significant efficiency
advantages.

3 Overview over Security Analysis

Due to space restrictions we only give a brief overview over our security results.
A comprehensive description of the model and the complete security proofs are
available in the full version [6].

3.1 Game-Based Approach

The main theorem (Theorem 2) is proven by a technique commonly referred
to as game-hopping. The proof is organized as a finite sequence of games
G0, G1, . . . , Gk which are played between a challenger and an adversary. Infor-
mally, the transitions from one game to the next are small changes to the envi-
ronment in which the adversary is situated, leading from a position where the
winning probability of the attacker is unknown (game G0) to a situation where
this probability can be determined (game Gk). The overall goal is to bound the
adversary’s advantage in winning the original security game G0 by the inverse
of any polynomial in the security parameter.

3.2 Security Model

The security model is situated within the game-based approach of Bellare and
Rogaway (BR model) [1] in which an adversary with full control over the network,
must be able to distinguish real session keys from independently drawn keys.

Zero Round-Trip Time for the Extended Access Control Protocol 305

To this end, the adversary can interact with protocol participants and instances
via oracles. Details on these queries follow shortly.

A single execution of EAC between a chip and a terminal may be followed
by multiple 0RTT handshakes between the parties. To model this situation, we
adopt the notion of multi-stage key exchange as originally introduced in the
related QUIC analysis of Fischlin and Günther [17]. This extension of the BR
model allows for multiple keys to be established within a single session. As
opposed to the multi-stage setting encountered in e.g. QUIC, we can make use
of a simplified setting here, since no key derived within a session is used to secure
communications in further stages of the same session. Thus, all keys derived in
a single session can be seen as independent.

Adversarial Interaction. To initiate a new session the adversary can call the
NewSession oracle, which takes a label to determine which of the two modes
(full EAC or 0RTT EAC) to execute. The adversary can query the Send oracle
to send protocol message to an instance, immediately getting the party’s reply
in return. The adversary is furthermore permitted to learn the long-term secret
keys of parties through a Corrupt oracle. Leakage of session keys and semi-static
secret keys, which are used to derive 0RTT session keys, is modeled through
Reveal and RevealSemiStaticKey queries, respectively.

To engage with the BR game (cf. Definition 2), the adversary may perform
Test queries for some session(s) of the protocol, resulting in either the receipt of
the corresponding session key or of an independently and uniformly chosen key,
the choice made at random. In order to win the game, the adversary must now
distinguish which kind of key it received.

Freshness of Session Keys. In order to avoid trivial attacks, some restric-
tions concerning the Test queries apply. Foremost, the party of a tested session
must not be corrupt, or else the adversary is trivially able to compute the ses-
sion key. Analogously, neither the tested session key may have been revealed to
the adversary nor the party’s semi-static secret key in case of the 0RTT mode.
Since both communication parties are supposed to derive the same session key
in a key exchange protocol, we must also rule out similar trivial attacks on the
communication partner of a tested session. To keep track if one of these cases
has occurred, a flag lost is introduced with initial value false. Here, communica-
tion partners are usually identified through session identifiers which determine
sessions belonging together.

Security Definitions. We follow the approach of Brzuska et al. [8,9], and
Fischlin and Günther [17], and separate the required security properties intoMatch
security and BR security. The conditions onMatch security guarantee that the ses-
sion identifiers enable the correct identification of partnered sessions, while partner
identifiers pid reflect the correct intended communication partners.Multi-Stage BR
security refers to Bellare-Rogaway-like key secrecy as discussed above, demanding
that for each stage, session keys appear to be fresh random keys.

306 J. Brendel and M. Fischlin

The subsequent analysis of the EAC+0RTT protocol is based on the following
security notions as described in [16] and adapted to our particular setting:

Definition 1 (Match security). Let n be the security parameter. Furthermore
let KE be a key exchange protocol and let A be a PPT adversary interacting with
KE in the following game GMatch

KE,A (n):

Setup. The challenger generates long-term public/private-key pairs with certifi-
cates for each participant U ∈ U .

Query. The adversary A receives the generated public keys and has access to the
queries NewSession, NewSemiStaticKey, Send, Reveal, RevealSemiStaticKey,
and Corrupt.

Stop. At some point, the adversary stops with no output.

We say that A wins the game, denoted by GMatch
KE,A (n) = 1, if at least one of the

following conditions holds:

1. There exist two labels label, label′ and stages i, j ∈ {1, . . . , M} such that
(label, i) �= (label′, j) but sidi = sid′

j �= ⊥, label.stage ≥ i, label′.stage ≥ j
and stexec,i �= rejected, and stexec,j ′ �= rejected, but Ki �= K′

i. (Different session
keys in partnered sessions, either within the same session at different stages
or across two sessions.)

2. There exist two labels label, label′ such that sidi = sid′
j �= ⊥ for some stages

i, j ∈ {1, . . .M}, role = initiator, and role′ = responder, but label.ownid �=
label′.pid or label.pid �= label′.ownid. (Different intended partner.)

3. There exist at least three labels label, label′ and label′′ and stages i, j, k such
that (label, i), (label′, j), (label′′, k) are pairwise distinct, but sidi = sid′

j =
sid′′

k �= ⊥ and for any two of the three sessions with role responder and mode
0RTT it holds that the owners are distinct. (More than two sessions share a
session id for some stage and this event was not caused by a simple replay
attack on the 0RTT protocol for the same responder.)

We say KE is Match-secure if for all PPT adversaries A the following advantage
function is negligible in the security parameter n: AdvMatch

KE,A := Pr
[
GMatch

KE,A (n) = 1
]
.

Definition 2 (BR Key Secrecy). Let n be the security parameter. Further-
more let KE be a key exchange protocol with key distribution D and let A be a
PPT adversary interacting with KE in the following game GBR,D

KE,A(n):

Setup. The challenger generates long-term public/private-key pairs and certifi-
cate for each participant U ∈ U , chooses the test bit btest

$←− {0, 1} at random,
and sets lost ← false.

Query. The adversary A receives the generated public keys and has access to the
queries NewSession, NewSemiStaticKey, Send, Reveal, RevealSemiStaticKey,
Corrupt, and Test.

Guess. At some point, A stops and outputs a guess bguess.

Zero Round-Trip Time for the Extended Access Control Protocol 307

Finalize. The challenger sets the ‘lost’ flag to lost ← true if there exist two (not
necessarily distinct) labels label, label′ and stages i, j ∈ {1, . . . ,M} such that
sidi = sid′

j, label.stkey,i = revealed, and label′.testedj = true. (Adversary has
tested and revealed the key in a single session or in two partnered sessions.)

A wins the game, denoted by GBR,D
KE,A = 1, if bguess = btest and lost = false. We say

that Multi-Stage BR key secrecy holds for KE if for all PPT adversaries A the
advantage function

AdvBR,D
KE,A(n) := Pr

[
GBR,D

KE,A(n) = 1
]

− 1
2

is negligible in the security parameter n. A key exchange protocol KE is further
called Multi-Stage BR-secure if KE is both Match-secure and BR key secrecy for
KE holds.

We note that the winning conditions are independent of the forward secrecy
property of the KE protocol. Forward secrecy is already taken into account in
the formulation of the Reveal and Corrupt queries and the finalization step of the
game.

3.3 Cryptographic Assumptions

In the following we will provide definitions of the basic cryptographic assump-
tions underlying the security proof of the EAC+0RTT protocol. In particular,
we introduce a double-sided (or symmetric) variant of the PRF-ODH assump-
tion, further referred to as mmPRF-ODH. We start by recalling what it means for
signatures and certificates to be existentially unforgeable under chosen message
attacks:

Definition 3 (EUF-CMA assumption). Let n be the security parameter. Fur-
thermore let S = (SKG,Sig,SVf) be a signature scheme and let A be a PPT
algorithm. We define the following EUF-CMA security game GEUF-CMA

Sig,A (n):

Setup. Generate a key pair (pk, sk) $←− SKG(1n) and give pk to the adversary A.
Query Phase. In the next phase A can adaptively query messages

m1,m2, . . . ,mq ∈ {0, 1}∗ with q ∈ N arbitrary, which the signing oracle
answers with σ1 ← Sig(sk,m1), σ2 ← Sig(sk,m2), . . . , σq ← Sig(sk,mq).

Output. At some point, A outputs a message m∗ and a potential signature σ∗.
Output 1 iff SVf(pk,m∗, σ∗) = 1 and m∗ �= mi for all i = 1, 2, . . . , q.

We define the advantage function

AdvEUF-CMA
S,A (n) := Pr

[
GEUF-CMA

Sig,A (n) = 1
]

We say that a signature scheme S is EUF-CMA secure, if for any A the advantage
function is negligible (as a function in n).

308 J. Brendel and M. Fischlin

The definitions for certification schemes work analogously. That is, a certifi-
cation scheme consists of three algorithms C = (CKG,CA,CVf) for creating the
authority’s key pair, the certification of a public key, and for verifying a public
key with respect to a certificate. We allow for multiple certifications of the same
public key but assume that each certification requests is accompanied by an
identifier id which will be included in certID. Then we can define unforgeability
as for signatures, implying that the adversary cannot forge a valid certificate for
a new public key or for a previously certified key under a new identity. We write
AdvEUF-CMA

C,A for the advantage of an adversary in the EUF-CMA game against a
certification scheme. In the EAC protocol the authority’s public key is given by
pkCVCA and the key generation, certificate creation and certificate verification
are often described implicitly only.

Furthermore, we can define message authentication codes (MACs) M =
(MKG,MAC,MVf) analogously, except that the key generation algorithm only
outputs a single secret key and the adversary does not receive any initial input
in the attack. We write AdvEUF-CMA

M,A for the advantage of an adversary A in this
game.

Finally, we need that the compression function Compr is collision-resistant.
That is, for an adversary A it should be infeasible to find group elements X �= Y
such that Compr(X) = Compr(Y). We write AdvCRCompr,A to denote the advantage
of such an adversary A. We remark that we actually need a weaker requirement
from Compr, resembling second preimage resistance, namely that for a random
group element X it should be hard to find a colliding different Y , when given
the discrete logarithm of X with respect to the group.

Next, we define our version of the PRF-ODH assumption as a slight extension
to the original definition given in [25,26]. In accordance with the systematic
study of the PRF-ODH assumption by Brendel et al. [7], we term our notion
mmPRF-ODH, which corresponds to the strongest variant with multiple queries
to both ODH oracles.

Definition 4 (mmPRF-ODH assumption). Let G = 〈g〉 be a cyclic group of
prime order q with generator g, and let PRF : G×{0, 1}∗ → {0, 1}n be a pseudo-
random function with keys K ∈ G, input strings x ∈ {0, 1}∗, and output strings
y ∈ {0, 1}n, i.e., y ← PRF(K,x).

We define the following mmPRF-ODH security game GmmPRF-ODH
PRF,A between a

challenger C and a probabilistic polynomial-time (PPT) adversary A.:

Setup. The challenger C samples u $←− Zq and provides G, g, and gu to the
adversary A.

Query Phase 1. A can issue arbitrarily many queries to the following ora-
cle ODHu.
ODHu oracle. On a query of the form (A, x), the challenger first checks if

A /∈ G and returns ⊥ if this is the case.
Otherwise, it computes y ← PRF(Au, x) and returns y.

Challenge. Eventually, A issues a challenge query x�. On this query, C sam-
ples v $←− Zq and a bit b $←− {0, 1} uniformly at random. It then computes

Zero Round-Trip Time for the Extended Access Control Protocol 309

y�
0 = PRF(guv, x�) and samples y�

1
$←− {0, 1}n uniformly random. The chal-

lenger returns (gv, y�
b) to A.

Query Phase 2. Next, A may issue (arbitrarily many and interleaved) queries
to the following oracles ODHu and ODHv.
ODHu oracle. On a query of the form (A, x), the challenger first checks if

A /∈ G or (A, x) = (gv, x�) and returns ⊥ if this is the case. Otherwise,
it computes y ← PRF(Au, x) and returns y.

ODHv oracle. On a query of the form (B, x), the challenger first checks if
B /∈ G or (B, x) = (gu, x�) and returns ⊥ if this is the case. Otherwise,
it computes y ← PRF(Bv, x) and returns y.

Guess. Eventually, A stops and outputs a bit b′.

We say that the adversary wins the mmPRF-ODH game if b′ = b and define
the advantage function

AdvmmPRF-ODH,G
PRF,A (n) := 2 ·

(
Pr[b′ = b] − 1

2

)

and, assuming a sequence of groups in dependency of the security parame-
ter, we say that a pseudorandom function PRF with keys from (Gn)n provides
mmPRF-ODH security if for any A the advantage AdvmmPRF-ODH

PRF,A (n) is negligible
in the security parameter n.

3.4 Analysis

Under the assumptions described above we can show that the EAC+0RTT pro-
tocol satisfies the required security properties:

Theorem 1. The EAC+0RTT protocol is Match-secure. For any efficient
adversary A we have

AdvMatch
EAC,A ≤ q2p · min{2−|nonce|, 1

q }
where qp is the maximum number of sub protocol executions, |nonce| is the bit-
length of each of the nonces rC , r′

C , r′′
C , and q is the order of the group from

which (ephemeral) keys are chosen.

Similarly, we can show key secrecy, and even argue forward secrecy with
respect to subsequent terminal corruptions. We note that forward secrecy with
respect to chip corruptions is impossible to achieve for EAC since the chip does
not generate ephemeral keys for executions but rather uses the long-term secrets:

Theorem 2. The EAC+0RTT protocol provides key secrecy (with responder for-
ward secrecy). That is, for any efficient adversary A there exist efficient adver-
saries B3,B4,B5,B10/11 such that

AdvBR,D
KE,A(n) ≤ 3q2p · max{2−|nonce|, 1

q } + AdvCRCompr,B3

+ AdvEUF-CMA
C,B4

+ qT · AdvEUF-CMA
S,B5

+ 4qp · qC · max{qp, qsskid} · AdvmmPRF-ODH
B10/11

310 J. Brendel and M. Fischlin

where qp is the maximum number of sub protocol executions, qs is the maximal
number of sessions, qC is the maximal number of chips, qT is the maximal num-
ber of terminals, |nonce| is the bit-length of each of the nonces rC , r′

C , r′′
C , and q

is the order of the group from which (ephemeral) keys are chosen.

Remark 1. It may come as a surprise that the unforgeability of the MAC does
not enter the security bound. This is due to the fact that we are “only” interested
in key secrecy in the above theorem, stating that at most the intended partner
can compute the session key and that seeing other session keys does not facilitate
this task. The former is ensured by the certification of the chip’s long-term key
and the fact that one cannot corrupt the chip. The latter is already captured by
the mmPRF-ODH assumption, which states that learning related values of the
PRF does not help to distinguish the challenge value from random.

Remark 2. Note that our analysis does not provide any form of key confirmation
nor entity authentication. In fact, the final MAC can be seen as providing exactly
these properties [18].

4 Variations

There exist several alternatives to implement 0RTT executions. For example,
the 0RTT keys may be established either in the fashion of a Diffie-Hellman key
exchange or—forgoing forward secrecy— rather from pre-shared keys (derived as
additional key material in the previous round). It is also interesting to investigate
different ways of handling negotiation failures in the 0RTT case. In the following,
we therefore present different choices for the 0RTT flow.

4.1 Diffie-Hellman Variant

The 0RTT EAC extension presented in Sect. 2.2 is based on a Diffie-Hellman
style key agreement. Similar implementations can also be found in Google’s
QUIC protocol and in earlier draft versions of TLS 1.3 (draft 12 [30] and earlier).

4.2 Pre-shared Key Variant

From draft 13 [31] onward, TLS 1.3 replaces the DH-based variant of 0RTT
handshakes by a pre-shared key (PSK) alternative. The pre-shared key is estab-
lished either out of band or, more commonly, in a preceding interaction between
server and client. Once a full handshake has been completed, the client receives
a so-called PSK identity from the server. The PSK was derived in the initial
handshake and can then be used by the client to derive keys for future (0RTT)
handshakes. To initiate a 0RTT handshake, the client simply incorporates the
early data and pre shared key extension in the ClientHello, followed by the
application data. After the successful processing of the data, the server then
responds with the ServerHello and a forward-secret key is then derived as in
the ordinary handshake.

Zero Round-Trip Time for the Extended Access Control Protocol 311

In principle, one could also imagine a similar approach for the EAC protocol,
using the pre-shared keying material instead of the shared Diffie-Hellman key.
Note, however, that this may require further changes to the EAC protocol (for
the additional keying material) and that, unlike the Diffie-Hellman version, this
does not provide any (terminal) forward secrecy.

4.3 Error Handling

Zero round-trip time may not be supported by all servers, or there may occur
errors in trying to decrypt the early data. Here we discuss how such problems
are dealt with in other settings, and how one can proceed in the EAC case.

Google’s QUIC Protocol. From a design perspective, all handshakes in QUIC
are also 0RTT handshakes, of which some may fail. The server replies with a
ServerHello if all necessary information to complete the handshake was con-
tained in the preceding ClientHello. If this was not the case, the server sends
a rejection message encompassing information that allows the client to make
progress in a next handshake attempt. The type and extent of information sent
along with the rejection message can be chosen individually by the server but
must not prevent clients from establishing a valid handshake within a reasonable
time frame.

TLS 1.3 Draft 20. Upon receiving a 0RTT handshake request with encrypted
early data, the server can answer in three ways: It may either disregard the 0RTT
extension and return no response, causing the client to fall back to the standard
1RTT handshake. Or it may return the empty extension, thereby signalling
to the client that prior validation checks were successful and that the server
intends to process the received early data. Furthermore, the server may send a
HelloRetryRequest to the client asking it to send a ClientHello without the
early data extension.

0RTT EAC. In case of failure, we expected the client to fall back to a full EAC
protocol execution consisting of terminal and chip authentication. This may seem
like an expensive step in view of performance, especially if the semi-static key
used by the client is simply outdated. If the terminal does not support 0RTT,
fall back to full EAC is clearly inevitable.

Furthermore, we emphasize that it is in general not possible for terminals to
identify outdated keys. In order for a terminal to detect this (i.e., to distinguish
unknown keys from outdated keys), it must keep at least the last used value of
pksemi

T when updating to a new value pksemi
T

′
. Keeping state is commonly seen

as not recommendable, if not infeasible, in most use cases. However, we note
that a chip receives all the data it needs to initiate future 0RTT handshakes
with a 0RTT-supporting terminal during the terminal authentication phase of
the EAC protocol. Therefore, it is sufficient for the chip to carry out the TA
phase before the 0RTT handshake can be re-tried. In light of this, it is also
conceivable for terminals to proceed similarly to the mechanism deployed in the

312 J. Brendel and M. Fischlin

QUIC protocol and to reply with the current authenticated semi-static key, i.e.,
to send certT , pksemi

T , sT where sT ← Sig(skT , pksemi
T).

5 Conclusion

The Extended Access Control (EAC) protocol is a universal solution for key
establishment between two parties. In this work, we presented a 0RTT mode
for the EAC protocol which allows to reduce the latency of recurring connec-
tions. It is noteworthy that this 0RTT mode can be added as an extension with
minimal changes to the original protocol. We further showed that EAC+0RTT
can be proven secure in the multi-stage setting of the Bellare-Rogaway model.
Thus, the modified protocol still achieves the common security properties of an
authenticated key exchange protocol.

Acknowledgements. We thank the anonymous reviewers for valuable comments.
This work has been co-funded by the DFG as part of project D.2 within the RTG 2050
“Privacy and Trust for Mobile Users”, as well as part of project S4 within the CRC 1119
CROSSING.

References

1. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (Aug
(1994)

2. Bender, J., Dagdelen, Ö., Fischlin, M., Kügler, D.: Domain-specific pseudonymous
signatures for the german identity card. In: Gollmann, D., Freiling, F.C. (eds.)
ISC 2012. LNCS, vol. 7483, pp. 104–119. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33383-5 7

3. Bender, J., Dagdelen, Ö., Fischlin, M., Kügler, D.: The PACE—AA Protocol for
Machine Readable Travel Documents, and Its Security. In: Keromytis, A.D. (ed.)
FC 2012. LNCS, vol. 7397, pp. 344–358. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32946-3 25

4. Bender, J., Fischlin, M., Kügler, D.: Security analysis of the PACE key-agreement
protocol. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC
2009. LNCS, vol. 5735, pp. 33–48. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04474-8 3

5. Bender, J., Fischlin, M., Kügler, D.: The PACE|CA protocol for machine readable
travel documents. In: Bloem, R., Lipp, P. (eds.) INTRUST 2013. LNCS, vol. 8292,
pp. 17–35. Springer, Cham (2013). doi:10.1007/978-3-319-03491-1 2

6. Brendel, J., Fischlin, M.: Zero Round-Trip Time for the Extended Access Control
Protocol. Cryptology ePrint Archive, Report 2017/060 (2017). http://eprint.iacr.
org/2017/060

7. Brendel, J., Fischlin, M., Günther, F., Janson, C.: PRF-ODH: Relations, Instan-
tiations, and Impossibility Results. Cryptology ePrint Archive, Report 2017/517
(2017). http://eprint.iacr.org/2017/517

8. Brzuska, C.: On the foundations of key exchange. Ph.D. thesis, Technische
Universität Darmstadt, Darmstadt, Germany (2013). http://tuprints.ulb.
tu-darmstadt.de/3414/

http://dx.doi.org/10.1007/978-3-642-33383-5_7
http://dx.doi.org/10.1007/978-3-642-33383-5_7
http://dx.doi.org/10.1007/978-3-642-32946-3_25
http://dx.doi.org/10.1007/978-3-642-32946-3_25
http://dx.doi.org/10.1007/978-3-642-04474-8_3
http://dx.doi.org/10.1007/978-3-642-04474-8_3
http://dx.doi.org/10.1007/978-3-319-03491-1_2
http://eprint.iacr.org/2017/060
http://eprint.iacr.org/2017/060
http://eprint.iacr.org/2017/517
http://tuprints.ulb.tu-darmstadt.de/3414/
http://tuprints.ulb.tu-darmstadt.de/3414/

Zero Round-Trip Time for the Extended Access Control Protocol 313

9. Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability of Bellare-
Rogaway key exchange protocols. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.)
ACM CCS 2011, pp. 51–62. ACM Press, October 2011

10. BSI (Bundesamt für Sicherheit in der Informationstechnik, Federal Office for Infor-
mation Security): Technical Guideline TR-03110: Advanced Security Mechanisms
for Machine Readable Travel Documents: Extended Access Control (EAC), Pass-
word Authenticated Connection Establishment (PACE), and Restricted Identifi-
cation (RI. BSI-TR-03110, version 2.0) (2008)

11. Cheng, Y., Chu, J., Radhakrishnan, S., Jain, A.: TCP Fast Open, RFC 7413,
Internet Engineering Task Force (IETF), December 2014

12. Cooper, D., Ferraiolo, H., Mehta, K., Francomacaro, S., Chandramouli, R., Mohler,
J.: Interfaces for Personal Identity Verification - Part 1: PIV Card Application
Namespace, Data Model and Representation, May 2015

13. Coron, J.-S., Gouget, A., Icart, T., Paillier, P.: Supplemental access control
(PACE v2): security analysis of PACE integrated mapping. In: Naccache, D. (ed.)
Cryptography and Security: From Theory to Applications. LNCS, vol. 6805, pp.
207–232. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28368-0 15

14. Dagdelen, Ö., Fischlin, M.: Security analysis of the extended access control protocol
for machine readable travel documents. In: Burmester, M., Tsudik, G., Magliveras,
S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 54–68. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-18178-8 6

15. Dagdelen, Ö., Fischlin, M., Gagliardoni, T., Marson, G.A., Mittelbach, A., Onete,
C.: A cryptographic analysis of OPACITY - (extended abstract). In: Crampton,
J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 345–362.
Springer, Heidelberg (2013)

16. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of
the TLS 1.3 handshake protocol candidates. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015, pp. 1197–1210. ACM Press, October 2015

17. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC
protocol. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 1193–1204.
ACM Press, November 2014

18. Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key
exchange: a formal treatment and implications for TLS 1.3. In: 2016 IEEE Sym-
posium on Security and Privacy, pp. 452–469. IEEE Computer Society Press, May
2016

19. Gilson, B., Baldridge, T.: PKI (CAK) – Enabled PACS with PIV Card: PACS
Lessons Learned and Need for Speed, May 2015. Presentation at FIPS 201–2
Supporting Special Publications Workshop. http://csrc.nist.gov/groups/SNS/piv/
fips 201-2 march 2015/day one/gilson baldridge piv-cak enabled pacs fips201-2
2015.pdf

20. Google: QUIC, a multiplexed stream transport over UDP (2016). https://www.
chromium.org/quic

21. Hale, B., Jager, T., Lauer, S., Schwenk, J.: Speeding: on low-latency key exchange.
Cryptology ePrint Archive, Report 2015/1214 (2015). http://eprint.iacr.org/2015/
1214

22. Hanzlik, L., Krzywiecki, �L., Kuty�lowski, M.: Simplified PACE|AA protocol. In:
Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 218–232. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38033-4 16

23. Hanzlik, L., Kuty�lowski, M.: Restricted identification secure in the extended
Canetti-Krawczyk model. J. Univ. Comput. Sci. 21(3), 419–439 (2015)

http://dx.doi.org/10.1007/978-3-642-28368-0_15
http://dx.doi.org/10.1007/978-3-642-18178-8_6
http://csrc.nist.gov/groups/SNS/piv/fips_201-2_march_2015/day_one/gilson_baldridge_piv-cak_enabled_pacs_fips201-2_2015.pdf
http://csrc.nist.gov/groups/SNS/piv/fips_201-2_march_2015/day_one/gilson_baldridge_piv-cak_enabled_pacs_fips201-2_2015.pdf
http://csrc.nist.gov/groups/SNS/piv/fips_201-2_march_2015/day_one/gilson_baldridge_piv-cak_enabled_pacs_fips201-2_2015.pdf
https://www.chromium.org/quic
https://www.chromium.org/quic
http://eprint.iacr.org/2015/1214
http://eprint.iacr.org/2015/1214
http://dx.doi.org/10.1007/978-3-642-38033-4_16

314 J. Brendel and M. Fischlin

24. ICAO: Machine Readable Travel Documents, Part 11, Security Mechanisms for
MRTDs. Doc 9303, 7th edn. (2015)

25. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012)

26. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (2013)

27. Kuty�lowski, M., Krzywiecki, �L., Kubiak, P., Koza, M.: Restricted identification
scheme and Diffie-Hellman linking problem. In: Chen, L., Yung, M., Zhu, L. (eds.)
INTRUST 2011. LNCS, vol. 7222, pp. 221–238. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32298-3 15

28. Morgner, F., Bastian, P., Fischlin, M.: Attribute-based access control archi-
tectures with the eIDAS protocols. In: SSR 2016: Security Standardisation
Research. LNCS, vol. 10074, pp. 205-226. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-49100-4 9

29. Morgner, F., Bastian, P., Fischlin, M.: Securing transactions with the eIDAS pro-
tocols. In: Foresti, S., Lopez, J. (eds.) WISTP 2016. LNCS, vol. 9895, pp. 3–18.
Springer, Cham (2016). doi:10.1007/978-3-319-45931-8 1

30. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3, draft-ietf-
tls-tls13-12. https://tools.ietf.org/html/draft-ietf-tls-tls13-12

31. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3, draft-ietf-
tls-tls13-13. https://tools.ietf.org/html/draft-ietf-tls-tls13-13

32. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3 - draft-ietf-
tls-tls13-20. https://tools.ietf.org/html/draft-ietf-tls-tls13-20

33. Smart Card Alliance: Industry Technical Contributions: OPACITY. http://www.
smartcardalliance.org/smart-cards-contributions-opacity/

http://dx.doi.org/10.1007/978-3-642-32298-3_15
http://dx.doi.org/10.1007/978-3-642-32298-3_15
http://dx.doi.org/10.1007/978-3-319-49100-4_9
http://dx.doi.org/10.1007/978-3-319-49100-4_9
http://dx.doi.org/10.1007/978-3-319-45931-8_1
https://tools.ietf.org/html/draft-ietf-tls-tls13-12
https://tools.ietf.org/html/draft-ietf-tls-tls13-13
https://tools.ietf.org/html/draft-ietf-tls-tls13-20
http://www.smartcardalliance.org/smart-cards-contributions-opacity/
http://www.smartcardalliance.org/smart-cards-contributions-opacity/

Server-Supported RSA Signatures
for Mobile Devices

Ahto Buldas1,2(B), Aivo Kalu1, Peeter Laud1, and Mart Oruaas1

1 Cybernetica AS, Tallinn, Estonia
ahto.buldas@cyber.ee

2 Tallinn University of Technology, Tallinn, Estonia

Abstract. We propose a new method for shared RSA signing between
the user and the server so that: (a) the server alone is unable to create
valid signatures; (b) having the client’s share, it is not possible to create a
signature without the server; (c) the server detects cloned client’s shares
and blocks the service; (d) having the password-encrypted client’s share,
the dictionary attacks cannot be performed without alerting the server;
(e) the composite RSA signature “looks like” an ordinary RSA signature
and verifies with standard crypto-libraries. We use a modification of the
four-prime RSA scheme of Damg̊ard, Mikkelsen and Skeltved from 2015,
where the client and the server have independent RSA private keys.
As their scheme is vulnerable to dictionary attacks, in our scheme, the
client’s RSA private exponent is additively shared between server and
client. Our scheme has been deployed and has over 200,000 users.

1 Introduction

Digital signature mechanisms require secure storage of private keys. It is often
recommended to hold keys in special hardware (like smart-cards). This is an
expensive solution for wide employment of digital signatures (e.g. national digital
ID). Moreover, nowadays people use mobile devices for their everyday business,
as well as for communicating with e-government services. Mobile devices may not
have a possibility to physically connect to a card-reader, the connection interfaces
change rapidly, and after all, connecting a card-reader with a mobile phone would
just be inconvenient. The cryptographic algorithms used for digital signatures
may become insecure and the key size insufficient. Changing the algorithm or
the key size would generally mean physical replacement of all smart-cards in use.

Software is much easier to change. Mobile devices update their software auto-
matically so that the users often do not even notice the updating process. From
economical perspective, digital signature solutions based solely on software are
extremely appealing. The hardest thing to solve in software-based digital signa-
ture schemes is private key management. Keys stored in the static memory of a
mobile device or any other type of computer can easily be cloned by attackers
who gain access to the memory. With cloned keys, attackers can create unlimited
amounts of forged signatures that are indistinguishable from the genuine ones.

This work has been supported by Estonian Research Council, grant No. IUT27-1.

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 315–333, 2017.
DOI: 10.1007/978-3-319-66402-6 19

316 A. Buldas et al.

Private keys may be stored in encrypted form, where the decryption key is
derived from a password entered by the owner of the device. But practice shows
that human-memorisable passwords do not withstand dictionary attacks.

One way to make software-based digital signatures more secure is to share the
signature key between the mobile device and a service, so that a correct signature
can only be created when the mobile device and the service cooperate. So even
if the user’s share of the signature key is cloned, the use of the clone requires
communication with the service. If the user’s key-share is chosen randomly and is
camouflaged (i.e. encrypted with the user’s password in a proper way [18,19,21]),
an off-line dictionary attack will not be possible, because the attacker (without
communicating with the server) cannot distinguish the right password from the
wrong guesses. If the attacker uses the service for the dictionary attack, such an
attempt is recognisable for the service, and after a fixed number wrong guesses,
the service may block the client and refuse to cooperate.

Shared keys are easy to generate for one party. In this case, the user’s mobile
device generates both shares, keeps one share, sends the second share to the
service, and deletes the second share. Such a solution however does not protect
against an attack where the mobile device is under adversary’s control during key
generation. After such an attack, the attacker is again able to create unlimited
number of forged signatures without communicating with the server. If the server
is the party who generates the shares and gives the share to the client, such an
attack is not possible but in that case, the service (if abused by insiders) would
be able to forge the signatures in unlimited way.

Hence, to withstand dictionary attacks and at the same time to avoid the
abuse of the key by potentially malicious servers, the mobile device and the
server must generate their shares in such a way that none of the parties at any
time has the complete private key of the user. Such cryptographic protocols
exist but have drawbacks. The general multi-party computation methods are
complex and inefficient. Some methods assume third parties’ involvement during
key generation, such as trusted dealers.

Recently, Damg̊ard, Mikkelsen and Skeltved [11] proposed an elegant scheme
in which two parties can generate their RSA key shares completely independently
and with the same computational effort than generating ordinary RSA keys.
Their scheme has a drawback though. If one wants to implement their scheme as
a software application for a mobile device, it turns out that even if the private
key is perfectly camouflaged (password-encrypted), the attacker always has a
reference point for a dictionary attack. This is because the client’s public modulus
is needed to create the client’s share of the signature and hence either the public
modulus is stored in the device in open form or is recoverable via password-based
decryption. As a reference point, an attacker may check the relationship between
the decrypted private exponent and the public modulus.

We present the Smart-ID scheme, a modification of the scheme of [11]
to make it invulnerable to dictionary attacks. The main idea is to additively
share the client’s RSA private exponent so that the camouflaged part of the
key is completely random and gives no reference points for dictionary attacks.

Server-Supported RSA Signatures for Mobile Devices 317

We also consider some ways of making the scheme even stronger by adding a
mechanism that enables the service to discover clones of the client’s key and to
block the service timely.

2 State of the Art

RSA: The RSA signature scheme [22] is one of the most widely used digital
signatures. A message m ∈ Zn = {0, . . . , n − 1} is signed with a modular power
function σ(m) = md mod n, where d is the secret exponent and n = pq is a
product of two large prime numbers p and q. The verification check of a signed
message (m,σ) also involves a power function ν(σ) = σe mod n, where e is
the public exponent. A signed message (m,σ) verifies correctly, if ν(σ) = m.
The public and the private exponents satisfy ed ≡ 1 (mod ϕ(n)), where ϕ(n) =
(p − 1)(q − 1) is the Euler’s totient function.

Shared RSA: Suppose the private exponent d is the sum of two random compo-
nents d ≡ d′ + d′′ (mod ϕ(n)), where d′ and d′′ are held by two separate parties
(say, Client and Server). To sign a message m cooperatively, the parties create
their signature shares σ′ = md′

mod n and σ′′ = md′′
mod n. The shares are

then combined by

σ = σ′ · σ′′ mod n = md′ · md′′
mod n = md′+d′′

mod n = md mod n ,

which is the ordinary RSA signature σ of m. This is called additive sharing of
RSA signature. Only the two parties together can create verifiable signatures.

The idea of shared key approach was first presented by Desmedt and Fraenkel
[12,13]. For the RSA signature scheme [22], the shared keys approach is studied
in [8,15,23] and the mobile device and server case in [2,7,9,21] but these works
do not investigate the problem of generating keys in a distributed way. It is
assumed that shares of the key are generated by a trusted dealer.

Shared Generation of RSA Keys: Distributed generation of shared RSA keys
has also been thoroughly studied. The first practically implementable solution
was proposed by Boneh and Franklin [4,5]. The following schemes [6,10,14,16,17]
are just variations of the original scheme [4]. The main idea is to generate a
candidate RSA modulus n = pq (where p, q are just random numbers) using
multi-party computation, so that p and q will be additively shared between the
parties. A special bi-primality test is then applied to n. The candidate n can
be used if both p and q are prime. Hence, the average number of attempts is
quadratic in the size of n, which means that the key generation time is very large
– hundreds of times slower than the original RSA key generation.

Damg̊ard-Mikkelsen-Skeltved Scheme: An elegant and efficient solution to
the problem of shared generation was proposed in [11]. In their scheme, after
fixing the public exponent e, the two parties first locally generate their own
RSA public keys (n1, e) and (n2, e) and the corresponding private exponents
d1 and d2. The final (composite) public key is (n1n2, e). To sign a message

318 A. Buldas et al.

m ∈ Zn1n2 , both parties first create their own signatures σ1 = md1 mod n1 and
σ2 = md2 mod n2. They will then use the Chinese Remainder Theorem (CRT)
to compute the final signature σ = Cn1,n2(σ1, σ2) ∈ Zn1n2 , satisfying σ ≡ σi

(mod ni) for i ∈ {1, 2}. To verify such signature, one simply checks whether
σe ≡ m (mod n1n2). Hence any existing software supporting RSA signatures is
able to verify the signatures of [11] without modifications.

The problem with this solution is that dictionary attacks are still possible,
even if the client’s private exponent is encrypted – the client’s public modulus
(say n1) is public and can be used to verify the guessed passwords.

Camenisch et al. Scheme: A server-assisted RSA signature scheme was pro-
posed in [7]. In their scheme, the client is authenticated with the help of pass-
word, designed so that the dictionary attacks against it are impossible. While
aiming for a range of advanced properties, such as privacy against the server,
and universally composable security, the signing key in their scheme is gener-
ated fully by the client, and then shared with the server. Therefore, an adversary
who reads the client device during key generation has a power to create valid
signatures without contacting the server.

Dictionary Attacks: An adversary, having a dictionary of passwords, tries
them one by one until the right one has been found. For such attack:

– The number of possible passwords has to be relatively small. Random crypto-
graphic keys with a lot of entropy (≥ 80 bits) cannot be successfully guessed.

– It must be possible to recognize the right password [3, Definition 3.10].

If the private exponent d of the RSA key is encrypted with a password pwd , and
the adversary has both the ciphertext cd and the public key (n, e), then it can
verify its guess pwd∗ by generating a random m ∈ Zn and checking whether

(me)decpwd∗ (cd) ≡ m (mod n) .

This is the case for the scheme in [11], where the client’s device must contain cd

and the client’s modulus n1, and the public exponent e is known to everybody.
Shared RSA may be used to take away the point of reference that the adver-

sary uses to check the correctness of its guesses. This has been done in [7], but
their scheme has other undesirable properties, as described previously.

3 New Scheme

We will now describe our scheme with the properties listed in the abstract. None
of the previously proposed schemes have all these properties. The main idea of
our solution is that we use a scheme similar to [11] where client and server have
independent RSA keys. We make their scheme resistant to dictionary attacks.
To simplify the presentation, we assume that each client of the scheme has only
a single key. Then we can talk about either blocking a key, or blocking a client.
We start with a definition.

Definition 1. A prime number p is an (�, s)-safe prime, if p = 2ap′
1 · · · p′

k + 1,
where p′

i > s are prime numbers, and 1 ≤ a ≤ �.

Server-Supported RSA Signatures for Mobile Devices 319

3.1 Description of the Scheme

Setup: Let the desired security level of the scheme be η bits. From η, suitable
values for � and s, as well as the RSA modulus length k are selected. An example
of such selection is given in Sect. 6. The numbers T0 of wrong password guesses
for a client, and the public exponent e (e.g. 3, or 22

4
+ 1) are also fixed.

For each active client C, the server stores the values n1C , n2C , d′′
1C , d2C , rC ,

TC . In following, we drop the subscript C if it is clear from the context. Here n1

and n2 are k-bit RSA moduli, d′′
1 ∈ Zn1 , d2 ∈ Zn2 , r is an η-bit string, and T is

the wrong password counter for the given client. In this scheme, the quantities
n1, n2, d2 are the same as in [11]. The client’s private exponent d1 is additively
shared as d1 = d′

1 + d′′
1 (mod ϕ(n1)) between the client and the server. The

one-time password r is used to detect clones of client’s signing functionality.
Let P ⊆ {0, 1}l be the set of possible passwords. Given a password pwd ∈ P,

there has to be a client-specific process of turning pwd into a value d′
1 ∈ Zn1 .

Given a generic black-box pseudo-random function Φ : {0, 1}l+8 → {0, 1}k, a
possible way to construct such d′

1 is given in Algorithm 1. Different clients use
different functions Φ. In practice, Φ(·) is replaced by a pseudo-random func-
tion F (u, ·), where u is a sufficiently long random bit-string. Such F can be
constructed from a block cipher.

Algorithm 1. genShareΦ(pwd , n1)- client’s key share generation using a
generic blck-box PRF Φ

for s ∈ {0, 1, 2, . . . , 255} do
d′
1 ← Φ(pwd‖s);

if d′
1 < n1 then
return d′

1;

return ⊥;

We see that Algorithm 1 may fail, but its probability of failure is less that
2−256. Indeed, the probability of a single iteration failing is less than 1/2, because
n1/2k−1 ≥ 1/2. If Φ is a random function, then all Φ(pwd‖0), . . . , Φ(pwd‖255)
are independent, hence we can multiply the probabilities.

To sign a message M , a cryptographic hash H(M) is computed and a padding
P is added. The hashed and padded message m = P (H(M)) is then input to
the signing protocol. The setup of the scheme includes fixing H and P [25].

Key generation: The client C finds two (�,s)-safe primes p1, q1 with gcd(p1−
1, e)=gcd(q1−1, e)=1, computes n1=p1q1 and d1=e−1(mod ϕ(n1)), and stores n1.

The client gets a password pwd ∈ P from the user, generates and stores a
random bit-string u, computes d′

1 = genShareF (u,·)(pwd , n1) and d′′
1 = d1 − d′

1

(mod ϕ(n1)), generates and stores a random bit-string r. It sends 〈d′′
1 , n1, r〉 to

the server. All communication between C and S takes place over secure channels.

320 A. Buldas et al.

The server S generates two (�, s)-safe primes p2, q2 satisfying gcd(p2−1, e) =
gcd(q2−1, e) = 1. It computes n2 = p2q2, n = n1n2, and d2 = e−1 (mod ϕ(n2)).
It takes T = T0 and stores 〈n1, n2, d

′′
1 , d2, r, T 〉. It sends n back to the client. The

public key of C is (n, e). The client securely deletes all values except 〈n, n1, u, r〉.

Signing: To sign a (hashed and padded) message m, the client C gets a password
pwd from the user, finds d′

1 = genShareF (u,·)(pwd , n1) and the signature share
y = md′

1 (mod n1), picks a random r′←{0, 1}η and sends 〈y,m, r, r′〉 to S.
The server S checks that C is active, looks up its record 〈n1, n2, d

′′
1 , d2, r, T 〉,

computes the client’s signature s1 = y ·md′′
1 (mod n1) and checks its correctness

by verifying if se
1 = m (mod n1). If not, S decrements T and drops the request.

If T = 0, the server deactivates the client.
If the signature check succeeds, S checks if r in the request coincides with

server’s copy of r. In case of match, S computes s2 = md2 mod n2, creates the
composite signature s = Cn1,n2(s1, s2), sends the signature reply 〈s,m〉 back
to the client’s device, stores the new password r′ as r (expecting that the next
signature request will contain r′), and assigns T0 to T . If the signature check
succeeds but r in the request differs from the stored value, the server deactivates
the client. Having received back the signature, C replaces its stored r with r′.

Verification: To verify the signature σ for a hashed and padded message m,
with respect to a public key (n1n2, e), one uses the standard RSA verification
scheme by just checking that me = m (mod n1n2).

3.2 Employed Detection Mechanisms

Key Clone Detection: For detection of fraud, the signing protocol exchanges
additional information between the server and the client and after every new
signature, a common (to client and server) random one-time password is formed.
The one-time password that was formed during the previous signature creation
is a part of the next signature request and is verified by the server during every
signing operation. If the state-vector verification fails but the signature request
itself verifies correctly (i.e. the partial signature is authentic), the server knows
that there are two copies of the client’s private key in use (this is the most likely
cause), and deactivates the client immediately. The clone detection mechanism
can be added as an additional protection layer to any two party (client-server)
type of a signature scheme, assuming that in the signing protocol, the client’s
share s1 of the signature can be verified by the server during the protocol.

If d′
1 has been cloned, the adversary becomes able to impersonate the client.

The main idea of the method is that the client must know the content of
the previously made queries, and this knowledge is verified by the server dur-
ing every signing request. If there are two identical copies of the client pri-
vate key owned by two different parties, then only one of these parties will
be able to continue using the service: namely, the party who first makes the
next signing request. This is because if then also the second party will make a
request, it has no knowledge of the other party’s request and will not be served.

Server-Supported RSA Signatures for Mobile Devices 321

The server will deactivate the client, once it has received a request with cor-
rectly verifying client’s signature share, but with incorrect previous query iden-
tifier. Such a query is a strong evidence of the existence of two copies of client’s
private key.

Periodic Dummy Requests: For faster detection of key abuse, the device
may send periodic dummy signature requests, which are exactly the same as
real signing requests. They require authentication at the server side, but do
not create new signatures. The server has to reply with a dummy reply that is
processed at the device side in the same way as ordinary requests, except that the
device knows that the reply does not require any processing. The time between
two dummy requests is the maximal time the adversary who has a cloned share
of the client’s key (or the clone of the whole key) is able to create forgeries.

4 Robust Implementation

There are the following general types of attacks against a client’s signing device:

– Device Read: The adversary has a short-time access to the passive memory-
content of the device, like the encrypted key file via a cloud-stored backup.
The encrypted key file can then be a subject to dictionary attacks.

– Device Memory Read: The adversary obtains a copy of the active memory
of the device, which may contain the client’s private key share.

– Device Memory Read During Key Generation: The adversary reads
active memory of the device during key generation and obtains client’s private
exponent (not just the client’s share).

– Device Malware: The adversary inserts an active trojan to the signature
device that could stay in the device for arbitrarily long time, i.e. until it is
detected or is removed on a command of the adversary.

– Server Internal Attack: The adversary obtains client-specific secrets that
the service has, or even gets access to server’s private key. Insider attacks fall
into this category.

We analyze the vulnerabilities of possible implementations (represented as a
combination of features) of a server-supported personal signature solution based
on the new shared RSA signature scheme. We consider the following features:

– Independent Key Generation: This means that the server and the client
generate their keys completely independently. This is the key feature of the
scheme of [11].

– Client’s Key is Shared with Server: This means that the client’s private
key is shared between the device and the server.

– Clone Detection: This means that the a special protocol is used for key
clone detection, which blocks the service once both copies of the key are used
at least once (after cloning). If tu is time until the next usage of the device,
then the adversary who cloned the key has tu units of time available to abuse
the cloned key. After tu, in case the genuine device also exists, it sends the

322 A. Buldas et al.

next signature request to the server and the service is blocked. If the client
issues periodic dummy requests to the server as described in Sect. 3.2, then
tu has a well-defined upper bound.

There are 6 meaningful combinations of these features. We analyse their
vulnerability and also compare them to the solution where client’s private key is
held in a smart-card. We assume that the smart-card itself generates the client’s
key and is tamper-proof. The combined solutions are denoted as follows:

– 4RSA: The original 4RSA proposed by Damg̊ard et al. [11]
– S: An ordinary (additively) shared RSA scheme
– 4D: 4RSA complemented with the clone detection mechanism
– SD: S complemented with the clone detection mechanism
– S4: 4RSA where the client’s private exponent is shared
– S4D: The solution that combines 4D and S4

Table 1. Comparison of vulnerabilities of the implementations: -means invulnerable,
+t means limited t-time vulnerability, +means unlimited vulnerability.

Name Indep.
key gen.

Client’s
key shared

Clone
detection

Service
inner

Device
read

Device
mem.
read

Mem. read
during key
gen

Device
malware

Smart-card no no no - - - - +

S4D yes yes yes - - +tu +tu +

SD no yes yes - - +tu + +

S4 yes yes no - - + + +

S no yes no - - + + +

4D yes no yes - +tu +tu +tu +

4RSA yes no no - + + + +

The comparison of vulnerabilities of these solutions are summarised in
Table 1. All solutions are vulnerable against malware attacks because active mal-
ware is able to change the hash value that is intended to be signed and thereby to
forge any signature. None of the solutions is vulnerable to inner attacks against
the service because due to the security of RSA, the server is not able to deduce
useful information about client’s private key, having only the public parameters,
and the data disclosed to the server.

4.1 Server’s Key: Client-Specific or Common?

Should the server have just one private key or should the private key be client-
specific? It turns out that that in the case of common server key, the solution
S4D presented in Sect. 3 has unlimited vulnerability against the Memory Read
attacks during key generation. If the adversary is one of the client’s, say A,

Server-Supported RSA Signatures for Mobile Devices 323

Algorithm 2. Existential forgery via adaptive chosen message attack
(p1, q1, d1) ← genKey(k, e);
n1 ← p1 · q1;

(M, σ) ← AH,Σ(n1);

if σ ≡ P (H(M))d1 (mod n1) and A never called Σ(H(M)) then
return 1;

else
return 0;

who has cloned a private key of another client B, then A can forge B’s signature
on m as follows. First, it signs m herself by sending a signing request to the
server. Server sends back the composite signature CnA,nS

(σA(m), σS(m)). After
that, A uses the stolen copy of B’s key to create σB(m) and forms the composite
signature CnB ,nS

(σB(m), σS(m)). Note that the clone detection mechanism will
not activate, because there is no communication that involved the cloned key.
Hence, the server’s key has to be client-specific.

5 Proofs of Security

The notion of exact security (first proposed in [1]) is needed when drawing
practical conclusions on security proofs. We use the definition from [20]:

Definition 2. A cryptographic scheme is S-secure if any t-time adversary has
success δ ≤ t

S , i.e. if every adversary has time-success ratio t
δ ≥ S.

For real-life cryptography, the notion of security bits is often used. For example,
the statement that RSA with 2048-bit modulus has 112 bits of security [24]
means, that the running time of the adversary is measured in time units equal
to the time of encrypting one single block with a typical block-cipher (like AES).

Definition 3. A cryptographic scheme has k bits of security, if any adversary
with running time of T block-cipher units has success δ ≤ T/2k.

In security proofs, we assume that (for certain S) the RSA signature Σ = P (·)d1

mod n1 together with the padding scheme P is S-secure against existential forg-
eries via adaptive chosen message attacks, where H is a hash function which we
model as a random oracle. Such attacks are defined as follows.

Definition 4. In an adaptive chosen message attack, an adversary AH,Σ(n1)
having access to the signing oracle produces a correct message-signature pair
M,Σ(H(M)), without querying Σ with H(M) (Algorithm2).

For storing client’s share securely, we need pseudo-random functions.

324 A. Buldas et al.

Definition 5. By an S-secure Pseudo-Random Function we mean an efficiently
computable two-argument function F : {0, 1}n × {0, 1}p → {0, 1}m, such that
if the first argument u is randomly chosen then the one-argument function
F (u, ·) (given to the distinguisher as a black box without direct access to u) is
S-indistinguishable from the truly random function F of the same type, i.e.

⎪
⎪
⎪
⎪
⎪
⎪
⎪

Prob
u

[

1 ← DF (u,·)
]

− Prob
F

[

1 ← DF
]

⎪
⎪
⎪
⎪
⎪
⎪
⎪

≤ t

S
,

for any t-time distinguisher D, where u ← {0, 1}n and F is a function chosen
randomly and uniformly from the set of all functions of type {0, 1}p → {0, 1}m.

Outline of Proofs: We will prove the following aspects of security:

– Security of the composition procedure: The composed signature scheme
is almost as secure as the underlying RSA scheme.

– Security against malicious servers: Having the public key of the client
and the server-share of client’s private key, and being able to use client and
a signing-oracle, the adversary is unable to sign a message that has not been
used as an oracle query.

– Security against device read: Having the public key of the client and the
password-encrypted private key share, the adversary is not able to create a
forged signature with probability much larger than T

K , where K is the total
number of passwords (PINs), assuming that the password is chosen uniformly
from the set of all possible passwords, and T is the maximum number of
consecutive faulty trials.

– Security against device memory read: Having the public key of the client,
the actual private key share, and the one-time password r, the adversary can
create forged signatures only until the legitimate client makes the next signing
request.

Security proofs depend on the type of primes. Some types of primes may offer
better attack-resistance, while other types of primes might be easier to generate.

5.1 Security of the Composition Procedure

We show that if an attacker succeeds in adaptive chosen message attack against
the composite signature, then there is an attacker that succeeds in adaptive
chosen message attack against the ordinary RSA signature. Let Σ be an oracle
that, given as input a hashed message m, outputs the composite signature

σ(P (m)) = Cn1,n2(σ1(P (m)), σ2(P (m))) .

Let Σ′ be an oracle such that Σ′(m) = σ2(P (m)).

Theorem 1. If RSA is S-secure against existential forgeries via adaptive chosen
message attack, then the composite signature is about S

tex
-secure against the same

attack, where tex is the time for one modular exponentiation.

Server-Supported RSA Signatures for Mobile Devices 325

Proof. Let (m,σ(P (m))) ← AΣ(n1n2) be a t-time adversary that, with prob-
ability δ, produces a valid signature for a message m that was never queried
via the Σ-oracle. We construct an adversary (m,σ2(P (m))) ← AΣ′

2 (n2, e)
that creates a valid signature of a message m that was never queried via the
Σ′-oracle. The adversary A2 generates an RSA key with public modulus n1

and with secret exponent d1 such that ed1 ≡ 1 (mod ϕ(n1)) and then simu-
lates (m,σ(P (m))) ← AΣ(n1n2) so that the Σ(m)-calls are simulated by calling
σ2 ← Σ2(m), computing σ1 ← P (m)d1 mod n1, and finally combining σ1 and
σ2 to the composite signature σ ← Cn1,n2(σ1, σ2). If A produces a valid sig-
nature (m,σ(P (m))), then A2 decomposes σ(P (m)) to σ1 and σ2, and outputs
(m,σ2). If A did not make the oracle call Σ(m), then A2 did not call Σ′ with
m. Hence, A2 (like A) succeeds with probability δ. The running time of A2 does
not exceed tgen + ttex, where tgen is the time for RSA key generation. Hence, as
σ2 is S-secure,

δ ≤ tgen + ttex
S

≤ t(tex + tgen
t)

S
≈ ttex

S
,

assuming that t
 tgen which means that σ is about S
tex

-secure. ��

5.2 Security Against Malicious Servers

We consider a malicious server as an adversary A that has a share d′′
1 of the

client’s private modulus d1 and also has a connection to client’s signature device
that sends signing requests to the server. We assume that A is able to use such
a connection as an oracle Σd′

1
, i.e. to choose messages m, send m to the oracle

and obtain Σd′
1
(m) = P (m)d′

1 mod n. Though, in practice, the server cannot
choose the message m to be signed, we may assume that it does. The goal of
A

H,Σd′
1 (d′′

1) is to produce a message M and the signature P (H(M))d mod n
such that the query Σd′

1
(H(M)) was never made. Algorithm 3 describes such an

attacking scenario. In the real scheme, Φ is F (u, ·) that is assumed to be a PRF.
In the idealized scheme, Φ is a truly random function.

Algorithm 3. Existential forgery by malicious server
(p1, q1, d1) ← genKey(k, e);
n1 ← p1 · q1;
p ← P;

d′
1 ← genShareΦ(p, n1);

d′′
1 ← d1 − d′

1 mod ϕ(n1);

(M, σ) ← A
H,Σd′

1 (n1, d
′′
1);

if σ ≡ P (H(M))d1 (mod n1) and A never called Σd′
1
(H(M)) then

return 1;
else

return 0;

326 A. Buldas et al.

Theorem 2. If RSA is S-secure against existential forgeries via adaptive chosen
message attack and F (u, ·) is an S-secure PRF, then the shared signature system
is S

2tex
-secure against malicious servers, where tex denotes the time needed for

one modular exponentiation.

Proof. Let A
H,Σd′

1 be a t-time adversary that with probability δ produces a pair
M , Σ(H(M)) without calling Σd′

1
with H(M). If instead, we had the flipped

version of the idealized scheme where the parts d′
1 and d′′

1 are exchanged and
the server’s share is just a uniformly distributed random number r ← Zn1 , by
Lemmas 1 and 2, the success of A

H,Σd′
1 is at least δ − t+tgen+tex

S − 2
p − 2

q .
We construct an adversary AH,Σ with running time t′ ≈ t that succeeds

in the original adaptive chosen message attack (Algorithm 2) with probability
δ − t+tgen+tex

S − 2
p − 2

q (against the flipped idealized scheme). The adversary

AH,Σ(n1) first picks r′ ← Zn1 at random and then simulates A
H,Σd′

1 , so that the
calls Σd′

1
(m) are answered with Σ(m) · P (m)−r′

mod n1. As the simulation is
perfect, the success of A is δ− t+tgen+tex

S − 2
p − 2

q . The running time of A does not

exceed t + t(tmul + tex). Thus, δ ≤ t(1+tmul+texp)
S + t+tgen+tex

S + 2
p + 2

q . Assuming
t ≥ tex and tex ≥ tmul + 4 + 2S

p + 2S
q we have t

δ ≥ S
4+tmul+tex+

2S
p + 2S

q

≥ S
2tex

. ��

Lemma 1. If F (u, ·) is an S′-secure PRF, any t-time adversary A that succeeds
in the malicious server attack against the real scheme with probability δ, succeeds
against the idealized scheme with probability at least δ − t+tgen+tex

S′ .

Proof. Otherwise, the (t+tgen+tex)-time distinguisher Dφ defined by Algorithm 3
would have success δ′ >

t+tgen+tex
S′ , contradicting the S′-security of F (u, ·). ��

Lemma 2. If in the idealized scheme, d′
1 and d′′

1 are the client’s and the server
part of the client’s private modulus d1 then the distributions of (d′

1, d
′′
1) and

(d′′
1 , d′

1) are statistically
(

2
p + 2

q − 2
pq

)

-indistinguishable, which means that flip-
ping the components d′

1 and d′′
1 can change the success probability of any adver-

sary (regardless of the definition of the success) only by 2
p + 2

q − 2
pq .

Proof. Consider an attacking scenario that involves our signature scheme and an
adversary A. We construct a distinguisher D(x, y) which simulates the attacking
scenario, except instead of generating the parts d′

1, d
′′
2 in the proper way, D just

assigns d′
1 ← x and d′′

2 ← y. The distinguisher outputs 1 if and only if A succeeds
in the simulation. Due to the statistical closeness of uniform distributions over
Zpq and Zϕ(pq), and the involutory nature of constructing d′′

1 from d′
1, the success

of D cannot exceed 2
p + 2

q − 2
pq . As the success of the distinguisher is by definition

the difference between A’s success in the original scheme and A′s success in the
flipped version of the scheme, this difference does not exceed 2

p + 2
q − 2

pq . ��

5.3 Security Against Device Read

The adversary has obtained the random value u stored in the device in open
form. This u is combined with user’s password p to obtain the client’s share d′

1.

Server-Supported RSA Signatures for Mobile Devices 327

Adversary’s access to the server is modelled as an oracle S with internal state.
It receives queries of the form (m,md′

1 mod n1) and returns md1 mod n1 if the
query is in such form. Otherwise, S returns ⊥. After T0 consecutive ⊥-returns,
S “blocks” and will return only ⊥ even if the queries were correctly formed.

Algorithm 4. Existential forgery via device read
(p1, q1, d1) ← genKey(k, e);
n1 ← p1 · q1;
p ← P;
u ← {0, 1}m;

d′
1 ← genShareF (u,·)(p, n1);

d′′
1 ← d1 − d′

1 mod ϕ(n1);

(M, σ) ← AH,Σ,S(n1, u);

if σ ≡ P (H(M))d1 (mod n1) and A never called Σ(H(M)) then
return 1;

else
return 0;

Definition 6. For any two primes p, q, a padding function P : {0, 1}h → Zpq, a
positive integer s, and a uniformly random m ← Zpq, we use the notation

πP
p,q(s) = Prob

m
[ord(P (m)) < s] .

Theorem 3. If RSA signatures are S-secure against adaptive chosen message
attack and F (u, ·) is S′-secure PRF, then for every s, any t-time adversary
AH,Σ,S succeeds in existential forgery (Algorithm4) with probability

δ ≤ T0

K
+ t · K2

2s
+ t · K

S′ (tex + log2 K) + t · πP
p,q(s) +

t2

2h
+

ttex
S

,

where K is the number of possible passwords (PINs) and T0 is the maximum
allowed consecutive false password trials.

Proof. Let AH,Σ,S(n1, u) be a t-time adversary that succeeds in the existential
forgery attack via device read with probability δ. We may assume without loss
of generality that AH,Σ,S(n1, u) never repeats any oracle calls (with the same
input), and once it outputs (M,σ), it has made a call m ← H(M). We construct
an adversary AH,Σ(n1) that simulates AH,Σ,S(n1, u) as follows:

1. AH,Σ(n1) picks u←{0, 1}m and p0←P and finds yp0←genShareF (u,·)(p0, n1).
2. A then simulates AH,Σ,S(n1, u) and records all Σ-calls and H-calls made by A.
3. If A calls S(m, y), then A checks if P (m)yp0 ≡ y (mod n1) and in case of

match:

328 A. Buldas et al.

– If A has previously made a call σ ← Σ(m), then S(m, y) is replied with σ.
We say that such an S-call is repeating, otherwise the call is non-repeating.

– If A did not make the call σ ← Σ(m) and made a call m ← H(M), then
A stops and outputs (M,σ), that is a successful existential forgery.

– If A did not make a call H(m), then A makes a Σ-call σ ← Σ(m) and
answers S(m, y) with σ.

If there is no match, A increments the wrong-password counter and if the
counter reaches to the limit T , no S-calls are answered any more.

The running time of A does not exceed ttex because the only overhead comes
from the simulation of S-calls where one exponentiation is done in each call.

Hence, the probability that A succeeds without making any successful non-
repeating S-calls does not exceed ttex

S .
The probability that A succeeds with an S-call (m, y) so that before this

S-call, A did not make any H-call with output m (such as m ← H(M)), does
not exceed t2

2h
. This is because the number of S-calls with such m-s is limited by

the running time t and for every H-call m′ ← H(M ′), the probability that m′

belongs to the set of m-s that have been inputs of S-calls made before calling
m′ ← H(M ′) is limited to t

2h
.

The probability that A ever makes an S-call (m, y) such that the call m ←
H(M) was made prior to the S-call (m, y) and the period ord(m) of element
P (m) is less than s is by Definition 6 limited to t · πP

p,q(s).
The probability that A ever makes an S-call (m, y) such that the call m ←

H(M) was made prior to the S-call (m, y) with ord(m) ≥ s and for which there
are two different passwords p, p′ ∈ P with myp ≡ myp′ (mod n) (where yp =
genShareF (u,·)(p, n) and yp′ = genShareF (u,·)(p′, n)) is by Lemma 4 limited to
K2

2s + K
S (tex + log2 K).

The probability that A succeeds with an S-call while all the S-calls (m, y)
are such that {P (m)yp mod n1}p∈P are all different equals to the probability
of guessing the correct password, which does not exceed T

K . Hence, the success
probability of A is

δ ≤ T

K
+ t · K2

2s
+ t · K

S′ (tex + log2 K) + t · πP
p,q(s) +

t2

2h
+

ttex
S

.

��
Lemma 3. If a, b∈Zn, v ≥ ϕ(n), and y ← Zv, then Pr[ay ≡b(mod n)] ≤ 1

ord(a) .

Proof. If b �∈ 〈a〉, i.e. if b is not in the subgroup generated by a, then the proba-
bility is 0. If b = ac, where 0 ≤ c < ord(a), then there are no more than v

ord(a)

values of y, such that ay ≡ b (mod n). Indeed, ay ≡ b (mod n) is equivalent to
y = c + k · ord(a) and from 0 ≤ d < v, we get 0 ≤ k < v−c

ord(a) ≤ v
ord(a) . Hence,

Pr[ay ≡ b (mod n)] ≤ 1
v · v

ord(a) = 1
ord(a) . ��

Lemma 4. Let m ∈ Zn and ord(m) ≥ s. Let F (u, ·) be an S-secure PRF. For
every password p ∈ P, let yp = genShareF (u,·)(p, n). Then, the probability δ of

Server-Supported RSA Signatures for Mobile Devices 329

Algorithm 5. Distinguisher DΦ
n for F (u, ·).

Y ← ∅;
for every p ∈ P do

yp ← genShareΦ(p, n);
if yp ∈ Y then

return 1;
else

Y ← Y ∪ {yp};

return 0;

having p, p′ ∈ P such that p �= p′ and P (m)yp ≡ P (m)yp′ (mod n1) does not
exceed K2

2s + K
S (tex + log2 K).

Proof. By Lemma 3, if {yp}p∈P were pairwise independent, then for any fixed
pair p �= p′: Prob [myp ≡ myp′ (mod n1)] ≤ 1

s . As there are no more than K2/2
such pairs, the probability of having such a pair with P (m)yp ≡ P (m)yp′ does not
exceed K2

2s . Consider now the next distinguisher DΦ
n for F (u, ·) (Algorithm 5).

By definition, δ = Prob
u

[

DF (u,·) = 1
]

. If F is a random oracle, then {yp}p∈P

are pairwise independent and hence Prob
F

[

DF = 1
] ≤ K2

2s . The running time of

D includes the computation time Ktex of {yp}p∈P and the search time K log2 K

for checking that yp ∈ Y and hence, δ ≤ K2

2s + K
S (tex + log2 K) by the S-security

of F (u, ·). ��
Theorem 4. If p, q are (�, s)-safe primes, P : {0, 1}h → Zpq is a padding func-
tion (h < pq), then

πP
p,q(s) ≤ 16�4+4�+1

2h
≤ 16(�+1)4

2h
= 24 log2(�+1)+4−h .

Proof. As P is injective, there are 2h possible values of P (m) which due to the
uniform distribution of m, these values are uniformly distributed in the image
of P as a 2h-element subset of Zpq. By Lemmas 5 and 6, the number of elements
in Zpq with order less than s does not exceed 16�4 + 4� + 1. ��
Lemma 5. If p, q are (�, s)-safe primes, there are at most 16�4 elements m ∈
Z

∗
pq with ord(m) < s.

Proof. By assumptions, there are prime numbers p′
1, . . . , p

′
k, q′

1, . . . , q
′
k ≥ s so

that p − 1 = 2ap′
1 . . . p′

k and q − 1 = 2a′q′
1 . . . q′

k, where both a and a′ belong to
the interval [1 . . . �−1]. Hence, the size of the group Z

∗
pq is ϕ(pq) = (p−1)(q−1) =

4aa′p′
1 . . . p′

kq′
1 . . . q′

k. As the order of an element must be a divisor of the size of
the group, any element m of Z∗

n has order ord(m) that divides 4aa′ or is divisible
by one of the primes p′

i or q′
i which means ord(m) ≥ s. As all the elements of

orders dividing 4aa′ are roots of the polynomial X4aa′ − 1 in Zpq
∼= Zp × Zq

330 A. Buldas et al.

and any polynomial of degree d may have no more than d roots in Zp and Zq,
the number of roots in Zn cannot exceed d2. Hence, the number of elements of
degree less than s does not exceed d2 = (4aa′)2 ≤ 16�4. ��
Lemma 6. If p, q are (�, s)-safe primes, there are at most 4� + 1 elements m ∈
Zpq\Z∗

pq with ord(m) < s.

Proof. As in the previous lemma, let p− 1 = 2ap′
1 . . . p′

k and q − 1 = 2a′q′
1 . . . q′

k.
An element of Zpq is non-invertible (i.e. ∈ Zpq\Z∗

pq) if and only if it is divisible
by p or q. As Zpq

∼= Zp × Zq, the non-invertible elements are represented by
pairs (0,m′) and (m′, 0). An order of (m′, 0) in Zpq is hence the same as the
order of m′ in the field Zp. As the order of an element m′ �= 0 must divide
p − 1 = 2ap′

1 . . . p′
k, then either the order divides one of p′

i and is therefore at
least s, or ord(m′) divides 2a and hence m′ is a root of the polynomial X2a−1 = 0
in Zp. Hence, there are at most 2a ≤ 2� elements m′ �= 0 with ord(m′) < s in
Zp. Hence, there are at most 2� non-zero elements of Zpq divisible by p that
have order less than s. The same can be said about the elements divisible by q.
Hence, together with 0 there are at most 4� + 1 elements in Zpq\Z∗

pq with order
less than s. ��

5.4 Security Against Memory Read

If the adversary A has accessed the memory of the device either during signing or
key generation, then it may have obtained the client’s share d′

1 of client’s private
exponent d1 (either directly or by computing it from (u, pwd)). Possibly it has
also learned server’s share d′′

1 . Additionally, A has learned the one-time password
r. The knowledge of (d′

1, r) is sufficient for A to masquerade the legitimate client.
This is possible until the next query by the client. There are two possibilities.

1. A has changed the one-time password in the meantime. As the client presents
an old one-time password, the server deactivates the client.

2. The one-time password is still valid. In this case, the client is served, and
the one-time password is changed to a uniformly randomly distributed value
which A does not know and can guess it with success probability of only 2−η.
Hence with probability (1 − 2−η), the next adversarial query will be ignored
and the client will be deactivated.

6 An Instantiation of Security Parameters

Let us have a system with the following parameters:

– We use RSA-2048 with (216, 2200)-safe primes (� = 216, s = 2200) and assume
it to have 112 bits of security, i.e. S = 2112tbl

– We use AES-128 as the building block F in the PRF (m = 128, q= 2048
128 = 16)

and assume AES-128 to have 128 security bits as a PRF. Then S′ ≈ 2124.
– The time for a public exponentiation is tpe ≈ 29 · tbl.

Server-Supported RSA Signatures for Mobile Devices 331

– The time for a private exponentiation is tex ≈ 213 · tbl.
– There are K = 230 passwords, and we accept T0 = 8 = 23 wrong trials.
– We use a 256-bit hash function (h = 256).

Thus, T0
K ≈ 2−27 and πP

p,q(s) ≈ 2−188, K2

2s ≈ 2−141, K
S′ (tex + log2 K) ≈ 2−81,

tex
S ≈ 2−99, i.e. we have 99 bits of security and 98 bits against malicious servers.

If a Device Read occurs, the adversary has to spend 254 time units for dou-
bling its guessing chances (compared to T0

K ≈ 2−27). By using AES-256, the
necessary time for an adversary to double the guessing chances will be 2183.

7 Practical Implementation

Generating safe primes p (where p−1
2 is also prime) is time-consuming, especially

in low-power mobile devices. Hence we have settled with (�, s)-safe primes, with
slight loss in security reductions (Sect. 6), but with much faster generation. For
example, for a 1024-bit p = 2ap′ + 1, by using 15-bit a (with 214 ≤ a < 215),
we need a 1008-bit p′. Complete signing uses three RSA operations, one in the
client’s device and two in the server. Additionally, the server needs to perform
at least one RSA verification. RSA signing operations in the app take tens of
milliseconds (for example, on the Nexus 5X, about 30 ms). However, more sig-
nificant is the network delay to transmit the signature share from the app to
the server, which may take up to 100 or 1000 ms. All together, the performance
of the complete signing operation for the authentication and digital signatures,
is still reasonable and sufficiently user friendly. RSA key generation takes sec-
onds for 2048-bit client’s modulus (n1) and tens of seconds for 3072-bit mod-
ulus. For example, on the Nexus 5X, it takes about 3 s to generate the key
for 2048-bit modulus and about 17 s for 3072-bit modulus. The practicality of
Smart-ID scheme has been demonstrated by its deployment. It became publicly
available in Estonia, Latvia, and Lithuania in early November 20161. By June
2017, Smart-ID had more than 200,000 registered users across the three states2.

References

1. Bellare, M., Rogaway, P.: The exact security of digital signatures-how to sign with
RSA and rabin. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996). doi:10.1007/3-540-68339-9 34

2. Bellare, M., Sandhu, R.: The security of practical two-party RSA signature
schemes. Cryptology e-print archive 2001/060

3. Blanchet, B.: Modeling and verifying security protocols with the applied Pi calculus
and ProVerif. Found. Trends Priv. Secur. 1(1–2), 1–135 (2016)

4. Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. In: Kaliski, B.S.
(ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439. Springer, Heidelberg (1997).
doi:10.1007/BFb0052253

1 https://sk.ee/en/News/sk-introduced-the-new-e-identity-solution-smart-id.
2 https://sk.ee/en/News/number-of-smart-id-users-in-the-baltics-surpasses-200-000.

http://dx.doi.org/10.1007/3-540-68339-9_34
http://dx.doi.org/10.1007/BFb0052253
https://sk.ee/en/News/sk-introduced-the-new-e-identity-solution-smart-id
https://sk.ee/en/News/number-of-smart-id-users-in-the-baltics-surpasses-200-000

332 A. Buldas et al.

5. Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. J. ACM 48(4),
702–722 (2001)

6. Boneh, D., Horwitz, J.: Generating a product of three primes with an unknown
factorization. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 237–251.
Springer, Heidelberg (1998). doi:10.1007/BFb0054866

7. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards: How to
sign with a password and a server. In: Zikas, V., Prisco, R. (eds.) SCN 2016. LNCS,
vol. 9841, pp. 353–371. Springer, Cham (2016). doi:10.1007/978-3-319-44618-9 19

8. Damg̊ard, I., Koprowski, M.: Practical threshold RSA signatures without a trusted
dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 152–165.
Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6 10

9. Damg̊ard, I., Mikkelsen, G.L.: On the theory and practice of personal digital signa-
tures. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 277–296.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-00468-1 16

10. Damg̊ard, I., Mikkelsen, G.L.: Efficient, robust and constant-round distributed
RSA key generation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
183–200. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11799-2 12

11. Damg̊ard, I., Mikkelsen, G.L., Skeltved, T.: On the security of distributed multi-
prime RSA. In: Lee, J., Kim, J. (eds.) ICISC 2014. LNCS, vol. 8949, pp. 18–33.
Springer, Cham (2015). doi:10.1007/978-3-319-15943-0 2

12. Desmedt, Y.: Society and group oriented cryptography: a new concept. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg
(1988). doi:10.1007/3-540-48184-2 8

13. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). doi:10.
1007/0-387-34805-0 28

14. Frankel, Y., MacKenzie, P.D., Yung, M.: Robust efficient distributed RSA key
generation. In: Vitter, J.S. (ed.) STOC, pp. 663–672. ACM (1998)

15. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and efficient sharing of
RSA functions. J. Cryptol. 13, 273–300 (2000)

16. Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). doi:10.1007/
3-540-48405-1 8

17. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation
and threshold paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA
2012. LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-27954-6 20

18. Kwon, T.: On the difficulty of protecting private keys in software. In: Chan, A.H.,
Gligor, V. (eds.) ISC 2002. LNCS, vol. 2433, pp. 17–31. Springer, Heidelberg (2002).
doi:10.1007/3-540-45811-5 2

19. Kwon, T.: Robust software tokens – Yet another method for securing user’s digital
identity. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp.
476–487. Springer, Heidelberg (2003). doi:10.1007/3-540-45067-X 41

20. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton
University Press, Princeton (1996)

21. MacKenzie, P., Reiter, M.K.: Networked cryptographic devices resilient to capture.
Int. J. Inf. Secur. 2(1), 1–20 (2003)

22. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

http://dx.doi.org/10.1007/BFb0054866
http://dx.doi.org/10.1007/978-3-319-44618-9_19
http://dx.doi.org/10.1007/3-540-44987-6_10
http://dx.doi.org/10.1007/978-3-642-00468-1_16
http://dx.doi.org/10.1007/978-3-642-11799-2_12
http://dx.doi.org/10.1007/978-3-319-15943-0_2
http://dx.doi.org/10.1007/3-540-48184-2_8
http://dx.doi.org/10.1007/0-387-34805-0_28
http://dx.doi.org/10.1007/0-387-34805-0_28
http://dx.doi.org/10.1007/3-540-48405-1_8
http://dx.doi.org/10.1007/3-540-48405-1_8
http://dx.doi.org/10.1007/978-3-642-27954-6_20
http://dx.doi.org/10.1007/978-3-642-27954-6_20
http://dx.doi.org/10.1007/3-540-45811-5_2
http://dx.doi.org/10.1007/3-540-45067-X_41

Server-Supported RSA Signatures for Mobile Devices 333

23. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). doi:10.1007/
3-540-45539-6 15

24. Smart, N.P. (ed.): Algorithms, Key Size and Protocols Report. Deliverable D5.2
of ECRYPT CSA, 17 October 2016

25. RSA Laboratories. PKCS #1: RSA Encryption Standard, ver. 2.2, October 2012

http://dx.doi.org/10.1007/3-540-45539-6_15
http://dx.doi.org/10.1007/3-540-45539-6_15

Verifiable Document Redacting

Hervé Chabanne1,2, Rodolphe Hugel1, and Julien Keuffer1,3(B)

1 Morpho, Issy-les-Moulineaux, France
{herve.chabanne,rodolphe.hugel,julien.keuffer}@morpho.com

2 Telecom ParisTech, Paris, France
3 Eurecom, Biot, France

Abstract. In 2016, Naveh and Tromer introduced PhotoProof, a novel
approach to image authentication based on cryptographic proofs. We
here show how to simplify PhotoProof to get a protocol closely related to
redactable signature schemes. From an authenticated breeder document,
we only keep the necessary fields to prove what its owner wants to assert
and black out all the others to remove sensitive data from the document.
We efficiently instantiate our scheme and give implementation results
that show its practicality.

Keywords: Data privacy · zk-SNARK · Redactable signatures

1 Introduction

Motivation. People are frequently asked for information such as their place of
residence, a source of income or a proof of employment in order to get e.g. a
traveling visa or an identity card. They can provide a document, called a breeder
document, which will be accepted as a proof as long as the document provider
is trusted by the service which needs the paper. Nevertheless, these documents
might contain private information that the owner does not want to share with
the service provider asking for a justification. The problem addressed in this
paper is to determine whether it is possible to keep sensitive information private
on a document while giving a third party assurance that the redacted document
was built from an authentic one.

To illustrate the relevance of the latter problem, we below give some exam-
ples where a document contains private information useless for the required
justification:

– giving a pay stub to justify employment indeed gives the name and address
of the employer but also reveals a sensitive and useless information for this
goal, namely the salary amount,

– someone can prove he has earnings by providing the balance of his bank state-
ment (in order to get a visa for instance) but the detail of all the transactions
written in the statement does not concern the entity needing a revenue justi-
fication,

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 334–351, 2017.
DOI: 10.1007/978-3-319-66402-6 20

Verifiable Document Redacting 335

– in some countries, for the issuance of documents like driver license or identity
card, an individual has to prove his place of residence with a bill (e.g. an
electricity bill) where his name is written. However, the bill can also mention
the name of the partner, which has no connection with the original request.

Even if removing the sensitive information from the document looks as a nat-
ural and efficient solution to our problematic, service providers fear fraudulent
document forgery and often ask to bring the original document.

In this paper, we argue that documents digitization opens the possibility
to use cryptographic techniques such as signature to guarantee integrity and
authenticity of the document issued by the trusted provider. Still, a problem
remains: if the user makes redaction on a signed document, the signature cannot
be verified with the new modified document. The client could ask the document
issuer to edit a new redacted and signed version of the original document but
this reveals which information is sensitive and thus is a privacy loss.

Our Contribution. We propose a protocol to issue a redacted document from
an original and authenticated document. Our protocol involves three parties: the
issuer of the original document, the client that wants to redact the document and
the document user who makes a request to the client. The protocol gives strong
guarantees that nothing has been modified from the original document except
the redacted parts. Moreover it links the redacted document to the original one
while keeping the original one private. It should also be noticed that the issuer
of the document has minimal work to do: after generating a document, he only
has to compute a hash value and a signature. No further work is needed during
the redaction or the verification of the document.

The main tool for building this protocol is verifiable computation [18]. In ver-
ifiable computation, a verifier delegates a computation to an untrusted prover.
The prover sends back the result of the computation and a proof that the com-
putation is correct. Several implementations of verifiable computation have been
proposed [7,12,15,26]. Among these schemes, we need the one having two addi-
tional properties: being non-interactive and providing zero-knowledge proofs for
inputs supplied by the prover. Basically, our protocol is the following: the issuer
first generates a document, signs a hash computed from the original document
and sends the document, the hash and its signature to the client. The client
then redacts some parts of the document and computes a non-interactive zero-
knowledge proof, proving that only the redacted parts have been modified from
the original document. The signature of the redacted document consists of the
original signature and the proof. This signature has constant size and thus does
not depend on the proportion of the document that has been redacted. The zero-
knowledge property of the proof ensures that no information about the original
document is contained in the proof. The client can then send the redacted doc-
ument and its signature to the document user, along with some other elements
needed to verify the proof. If the proof is correct, the document user can accept
the redacted document with confidence. We stress that the document is publicly
verifiable: the scheme produces verification keys and anyone with access to these

336 H. Chabanne et al.

keys can verify the validity of the proof. Moreover since the proof has a constant
short size, the verification is quick.

Related Works. In France, the most recent proposition to secure breeder doc-
ument is called 2D-DOC [1]. It is a protocol to secure physical breeder document
such as electricity bill, bank statement or phone bill. The most relevant informa-
tion of the document are gathered and form a blob that is digitally signed. The
blob and its signature are represented as a 2D bar-code and printed on the docu-
ment. This guarantees the authenticity and integrity of the document. However,
if the document is redacted the signature is no longer valid with the information
left. Moreover, since the 2D bar-code contains the most relevant information of
the document, private data appear on the bar-code and redacting the bar-code
destroys the authenticity proof of the document.

Photoproof [25] is a recent protocol enabling the authentication of images that
have been modified from an original one as long as the transformations belong to
a well defined set. It builds on the notion of proof carrying data (PCD) [14] which
are data along with a proof of some property satisfied by the data. PCD enable
a data to be sequentially modified, the proof containing a proof of the current
property and also a proof that all the previous data modifications have satisfied
the required properties. PCD can be instantiated but the computational overhead
for the prover is consequent: for example in Photoproof [25], limiting the set of
transformation to cropping, rotating, transposing, bit flipping and modifying the
brightness of the image, the authors report 300 seconds to build a proof for a 128×
128 (pixels) image. The size of the public key used to build the proof is 2 GB; in
contrast the verification is less than half a second long. So, even if the requirement
of integrity and of confidentiality are satisfied, there is a need to simplify the above
scheme in order to reach some efficiency and to be able to deal with larger images.
Indeed, an A4 format bill scanned at 100 dpi produces a 1169 × 827 image. Our
scheme also enables image authentication, but since we only allow redaction, we
obtain much better proving time. Our scheme can therefore more easily scale on
image size. See Sect. 4.2 for implementation results.

Redactable signatures are strongly related to our proposal. A redactable sig-
nature allows a party to remove parts of a signed document and to update the
signature without possession of the signer’s secret key. Moreover, the validation
of the updated signature is still possible with the signer’s public key. Redactable
signatures have been independantly introduced by [23,29]; there has been a large
body of work since, e.g. [13,17,28]. Our proposal shares some security goals with
redactable signatures such as privacy of the redacted content and unforgeability
of the signature. A notable difference is that everyone can redact a document
in redactable signatures schemes while in our protocol only the owner of the
document can perform redaction. Indeed some private inputs of the proof com-
puted by the redactor cannot be supplied unless being in possession of both
the original document and some value used to compute the hash. Our protocol
enables redacting an image, a use case for which the existing redactable schemes
would be impractical due to the length of the obtained signature or the time to

Verifiable Document Redacting 337

generate the signature. Indeed in redactable signature schemes the length of the
signature depends on the number of message blocks n and has at best a length
of O(n). In the redaction of an image each pixel can be potentially redacted
and therefore a block for an image to redact is a pixel. In contrast, our redacted
signature has constant size. We finally note that our scheme cannot satisfy the
transparency property as defined in [13], which states that it should be unfea-
sible to decide whether a signature directly comes from the signer or has been
generated after some redaction. Indeed, we give places where redaction happened
to the verifier and thus transparency cannot be reached. This fits however to our
use case since the redacted document is given to the verifier and redacted places
are thus visible to the verifier.

Organization of the Paper. We define the protocol syntax and its security
in Sect. 2. We give background on verifiable computation in Sect. 3. We thus
instantiate our protocol in the case of document represented as images and give
experimental results in Sect. 4.

2 Our Protocol for Redacting Documents

2.1 High Level Description

Let the document issuer (DI), the client (CL) and the service provider (SP) be
the three parties involved in the scheme. The document issuer first generates
a document D, computes a hash value C from D and a random value r. DI
then signs the hash value to authenticate it and sends the client D, C, r and
the signature of C. To give the possibility to redact the document to the client
while keeping a link with the original document, we use a verifiable computation
scheme to produce a proof of the statement below. In the statement, MOD is
a set describing all the redacted places of the document D. In our motivating
example, MOD would be the coordinates of all the pixels of the image that are
turned black.

There exists a document D and a set of coordinates MOD such that the
redacted document Dred only differs from D in places defined by the set MOD.

In the proof, the original document D stays private using a property of veri-
fiable computing schemes: the prover can supply a private input in the compu-
tation and build a zero-knowledge proof of the computation. The verifier thus
cannot infer information about the prover’s input by examining the proof. To
ensure that the proof has been built with the original document, a hash com-
puted from the original document is added to the computation. Since this hash
will be sent to the verifier of the redacted document it cannot be only the hash
of the document, otherwise this would give an oracle for the verifier to test the
redacted parts of the document. This is why the random value r is computed by
the document issuer and concatenated to the document before the hash compu-
tation. Using the same notations, the statement to be proved now becomes:

338 H. Chabanne et al.

There exists a document D and a value r such that the hash of D ‖ r equals C
and such that Dred only differs from D in places defined by the set MOD.

Denoting by π the proof, the client thus passes π,Dred,MOD,C and its signature
σ to SP. The service provider first verifies that the signature σ of C is correct
to be sure that the hash of the original document is authentic. He then uses
C,Dred and MOD to verify the proof π. We stress that π ties the hash value
computed and authenticated by the document issuer to the original document
because it proves (in zero-knowledge) that this document, concatenated with the
value r hashes into C. Thus, the correct verification of the signature of C and
of the proof π guarantees that the original document is authentic. In the next
section, we give a more formal description of the scheme.

2.2 The Verifiable Document Redacting Protocol

In this section we define the syntax and the security of our scheme. As it was
mentioned in the introduction, the security goals of our scheme are close to the
redactable signatures goals [29].

Protocol Syntax. Let (Gen, Sign, Ver) be a signature scheme [11], H be a hash
function and let the triple of algorithms (Setup, Prove, Verify) be a zk-SNARK
[7]. See Sect. 3 for details on the zk-SNARK algorithms.
The protocol participants are the Document Issuer (DI), the Client (CL) and
the Service Provider (SP). Let M = (m1, . . . ,mn) be a message composed of n
sub-messages. We use a special symbol # to denote the redaction of a sub-
message. When a message M is redacted, the resulting message is denoted
Mred = (mred

1 , . . . ,mred
n). Our verifiable document redacting (VDR) scheme

is a tuple of four polynomial time algorithms:

KeyGen(1λ,F): this probabilistic algorithm takes a security parameter λ and
runs the Gen algorithm to output a secret/public signing key pair (SK,PK).
It then takes λ and an arithmetic circuit over a finite field Fp, runs the
Setup algorithm and outputs a pair of public proving and verification keys
(EKF , V KF) for the circuit F .

Authent(M,SK): this probabilistic algorithm, run by DI, takes a document M ,
a secret signing key SK and computes:
• r

$← {0, 1}128
• C ← H(M ‖ r)
• σ ← Sign(C,SK)

Output: (C, r, σ)
Redact(M,C, r, σ,EKF): this probabilistic algorithm, run by CL, takes a docu-

ment M , the output (C, r, σ) computed by Authent and the evaluation key
EKF and computes:
• d ← Ver(C, σ, PK)
• If d = 0, then abort.
• Else:

Verifiable Document Redacting 339

• define the set MOD of the redacted sub-messages, MOD is a subset
of {1, . . . , n},

• define Mred such that: ∀i ∈ MOD,Mred(i) = #
• π ← Prove(([M, r] , C,Mred,MOD), EKF), where the value between

brackets, namely the original document and the randomness used to
compute C, are privately supplied by the prover and the circuit F
used in Prove is built to verify the following statement:

⎧
⎪⎨

⎪⎩

∃M, r such thatH(M ‖ r) = C

∀j ∈ MOD,mj = #
∀j /∈ MOD,mj = mred

j

Output: (Mred,MOD,C, σ, π) – the signature of Mred is the pair (σ, π).
DocVerif(Mred,MOD, σ, π, V KF , PK): this deterministic algorithm, run by

SP, takes a redacted document Mred, a set of redacted sub-messages index
MOD, a signature σ, a proof π and the signing public key and the verification
key. It outputs a bit d such that:
• d ← Ver(C, σ, PK)
• d ← d × Verify(π, (Mred, C,MOD), V KF)

Protocol Security. We now define the security goals of our scheme, adapting
security notions defined in [13]. Our first goal is to reach privacy of the redacted
document, informally meaning that no PPT adversary only in possession of the
redacted message and its proof can recover information about the redacted parts
of the message. Our second goal is unforgeability of the proof: a PPT adversary
not being in possession of the original message cannot create a redacted docu-
ment and a proof that will be accepted by the verifier. We formalize these goals
below.

Privacy: a VDR scheme (KeyGen, Authent, Redact, DocVerif) is private if for
all PPT adversaries A, the probability that the experiment Leak evaluates
to 1 is negligibly close to 1

2 .

The Leak experiment:
• b ← {0, 1}
• (M0,M1, i) ← A

with (M0,M1, i) such that ∀j �= i, M0
j = M1

j and M0
i �= M1

i

• (M b
red, Cb, σb, πb) ← OAuth/Redact

• b� ← A(PK,EKF , V KF ,M b
red, Cb, σb, πb)

• Return 1 if b� = b

The adversary’s advantage is defined as: AdvA
Leak =

∣
∣Pr[LeakExp = 1] − 1

2

∣
∣

A VDR scheme is private if AdvA
Leak is negligible for all PPT adversaries.

Unforgeability: a VDR scheme (KeyGen, Authent, Redact, DocVerif) is
unforgeable if for all PPT adversaries A, the probability that the experi-
ment Forge evaluates to 1 is negligible.

340 H. Chabanne et al.

The Forge(λ) experiment:
• (SK,PK,EKF , V KF) ← KeyGen(λ)
• For i = 1, . . . , q: (M i

red,MODi, σi, πi) ← OAuth/Redact

• (Mred,MOD, σ, π) ← A
• Return 1 if:

• DocVerif(Mred,MOD, σ, π, V KF , PK) = 1 and
• (Mred,MOD, σ, π) �= (M i

red,MODi, σi, πi),∀i ∈ {1, . . . , q}.

We define the advantage of the adversary as: AdvA
Forge = |Pr[ForgeExp = 1]|

The VDR scheme is unforgeable if AdvA
Forge is negligible for all PPT adver-

saries.

Definition 1. A VDR scheme is secure if it is private and unforgeable as
defined above.

Theorem 1. If the signature scheme is existentially unforgeable under chosen
message attack (EUF-CMA), the verifiable computing scheme is secure and the
hash function is such that H(., r) is a secure PRF then the VDR scheme is
secure.

Proof. The proof is detailed in Appendix A.

3 Verifiable Computation

With the advent of cloud computing, efficient schemes for delegation of com-
putation have been proposed [20,22], building on the PCP theorem [4]. Despite
the improvements made, these schemes were lacking either expressiveness (only
a restricted class of computation could be delegated) or concrete efficiency
(constants too high in the asymptotics). Few practical-oriented constructions
have been proposed by Groth [21] or Setty et al. [27] but the breakthrough of
Gennaro et al. [18] really opened the way to near practical and general purpose
verifiable computation schemes. Gennaro et al. introduced quadratic arithmetic
programs (QAPs), an efficient way of encoding the arithmetic circuit satisfiabil-
ity problem. Parno et al. [26] embedded QAPs into a bilinear group, producing a
Succinct Non-interactive ARGument (SNARG) that can be turned into a zero-
knowledge Succinct Non-interactive ARgument of Knowledge (zk-SNARK) with
almost no additional costs. The protocol, called Pinocchio, is also publicly veri-
fiable: public evaluation and verification keys are computed from the QAPs and
anyone with access to the verification key can validate the proof. Note that in
order to have an efficient verifier, SNARKs built on QAPs use an expensive pre-
processing phase where evaluation and verification keys are computed, enabling
to produce a constant size proof and to get a constant verification time.

There exists several zk-SNARK implemented systems, all building on QAPs.
They compile a program written with a high-level language into a circuit, turning
the latter into a QAP and then applying a cryptographic machinery to get a

Verifiable Document Redacting 341

SNARK [7,16,26,30]. These systems make different trade-offs between efficiency
for the prover and expressivity of the computations to be verified, comparisons
can be found in the survey [31].

In the following sections, we sketch the QAP construction and the Pinocchio
verifiable computing protocol. Additional details on the Pinocchio protocol and
on the other zk-SNARK protocols can be found in the original papers [7,16,26,30].

3.1 Public Verifiability

We first recall the definitions of non-interactive publicly verifiable computing
(see for instance [18]). Let f be a function, expressed as an arithmetic circuit
over a finite field F and λ be a security parameter. The Setup procedure produces
two public keys, an evaluation key EKf and a verification key V Kf . These keys
depend on the function f , but not on the inputs. The setup phase might be done
once for all, and the keys are reusable for all future inputs:

(EKf , V Kf) ← Setup(1λ, f).

Then a prover, given some input x and the evaluation key EKf , computes y =
f(x) and generates a proof of correctness π for this result:

(y, π) ← Prove(EKf , x).

Anyone, given the input/output (x, y), the proof π and the verification key V Kf

can check the proof:

d ∈ {0, 1} ← Verify(V Kf , x, y, π).

Regarding the security properties such a scheme should satisfy, honestly gener-
ated proofs should be accepted (correctness), and a cheating prover should not
convince a verifier of a false computation (soundness). Formal definitions and
security proofs can be found in [26].

3.2 Quadratic Arithmetic Programs

To be able to perform verifiable computation on a function f , this function has
first to be expressed as an arithmetic circuit F . Given an arithmetic circuit F
over Fp with fan-in 2 gates, each multiplication gate is thus described thanks
to 3 families of polynomials respectively coding the left input, the right input
and the output of the gate. Addition gates, and multiplication-by-constant gates,
are taken into account in these polynomials. The constraints between inputs and
outputs of every gates of the circuit are captured in three families of polynomials,
denoted V = (vi(x))i, W = (wi(x))i, Y = (yi(x))i, and a target polynomial,
denoted T . All these polynomials basically form a QAP. An arbitrary root rg ∈
Fp is picked for each multiplication gate g in F and the target polynomial is
defined as T (x) =

∏

g∈F
(x − rg). Then, an index is assigned to each input of the

342 H. Chabanne et al.

circuit and to each output from a multiplication gate. During the evaluation of
the circuit, the prover computes all the intermediate values of the circuit, here
denoted ci. He then computes the polynomial P (x) = (

∑
civi(x))(

∑
ciwi(x)) −

(
∑

ciyi(x)). If P vanishes at a root rg picked for a multiplicative gate g, the
definitions of the polynomial families implies that:

0 = cvrg
· cwrg

− cyrg
⇔ cvrg

· cwrg
= cyrg

(1)

Equation (1) describes the multiplicative relation between input and output val-
ues of the gate. As a consequence, checking that T divides P is equivalent to
check if P vanishes at all the roots of T and thus comes down to check all the
multiplicative relations within the circuit.

3.3 The Pinocchio Protocol

A full version of the protocol is given in the original paper [26]. We just sketch
here its principle. Each set of polynomials V, W, Y of the QAP is mapped to
an element in a bilinear group. For instance, let Vk ∈ V for some k, we have
Vk ∈ Fp[X]. An element of the form gVk(s) is added to the public evaluation key,
where g is a generator of the group and s is a secret value randomly chosen at the
setup. Then, for a given input, the prover evaluates the circuit directly to obtain
the output and the values of the internal circuit wires. These values are then used
to build the coefficients of the QAP polynomial P , see Sect. 3.2. Let ci denote
these coefficients. The prover evaluates gV (s) =

∏
k(gVk(s))ck , and similarly for

gW (s), gY (s). After computing H = P/T , he is able to compute gH(s) thanks
to some elements in the evaluation key. The proof sent to the verifier roughly
consists of (gV (s), gW (s), gY (s), gH(s)). The verifier uses a bilinear pairing to check
the consistency of the proof. Some additional relations and checks are added in
order to ensure that the inputs have been integrated in the circuit by the prover,
otherwise he could cheat.

3.4 Making a Proof a zk-SNARK

In the Pinocchio protocol, the proof can be turned into a zk-SNARK with little
additional computations. Let assume that the computation to verify is y =
f(x,w), where x is an input supplied by the verifier, f is the function on which
the verifier and the prover agreed and w is a private input of the prover. Loosely
speaking, in a zero-knowledge proof the prover can convince the verifier that
he knows some value w such that : y = f(x,w). This is done without giving
information about w to the verifier, nevertheless the proof is still verifiable.
Technically, this goal is achieved by adding a random multiple of the target
polynomial T to every polynomial of (V,W,Y), in such a way that the checks
still hold if, and only if, the circuit with the given input/output is satisfied.

Verifiable Document Redacting 343

3.5 Expressivity of zk-SNARK Schemes

Even if efficient zk-SNARKs protocols exist, there are still several challenges
to be solved to reach full practicality. One of them is the expressiveness of the
protocols, i.e. their capacity to verify large class of programs. The Pinocchio
protocol cannot verify data dependant loops and is not efficient in branching
programs because it has to evaluate both branches. Note that some protocols
like TinyRAM [7] or Buffet [30] solve this issue but the representation of these
computations as arithmetic circuits generates overheads.

3.6 Security

The q-power knowledge of exponent (q-PKE) and q-power Diffie-Hellman (q-
PDH assumptions) have been defined by Groth [21] and the q-strong Diffie-
Hellman (q-SDH) by Boneh and Boyen [10].

Parno et al. [26] show that if the QAP computed from the circuit to verify has
d multiplicative gates, their protocol is sound (see Sect. 3.1) under the d-PKE,
(4d+4)-PDH and (8d+8)-SDH assumptions.

4 An Instantiation of the VDR Scheme

We now introduce a possible instantiation of the VDR scheme, keeping in mind
that we seek efficiency for the prover. We consider that documents are repre-
sented as gray-scale images, modeled as matrices of n × n pixels. Pixels values
vary between 0 (black) and 255 (white). Redacting a part of the document thus
means that pixels of the redacted area are turned black, so the symbol # defined
in Sect. 2.2 is the pixel value 0. The set MOD of redacted parts of the image is
therefore a set of coordinates, which locates the redacted pixels positions.

We consider implemented verifiable computation schemes to instantiate our
scheme, more specifically the scheme base on Parno et al. protocol [7,26]. The
verification is efficient and the schemes based on QAPs (Sect. 3) have a short,
constant-length proof that is quick to verify. The difficulty is the prover’s com-
putational overhead, which is linked to the number of multiplication gates in the
arithmetic circuit representing the function to verify. More precisely, the prover’s
work has complexity O(N log2 N), where N is the circuit size [26]. Therefore an
efficient arithmetic circuit has first to be designed to limit the number of multi-
plicative gates.

4.1 The Arithmetic Circuit Design

To build the proof used in the Redact algorithm of the VDR scheme (Sect. 2.2),
an arithmetic circuit representing the computation to verify has to be designed
in order to apply the Parno et al. protocol [26] (some background on this protocol
can be found in Sect. 3). A high level view of this circuit is described in Fig. 1. It
contains two sub-circuits verifying respectively the value of the hash passed by

344 H. Chabanne et al.

H r D MOD Dred

H(D ‖ r) ?= H redact(D,MOD) ?= Dred

×

0/1 0/1

0/1

Fig. 1. Arithmetic circuit computing the proof in Redact. A dashed arrow means that
the input is private (and supplied by the prover).

the document issuer to the client and the comparison between the original and
the redacted documents. The operations involved in the sub-circuits are crucial
for the prover efficiency. The circuit has to be carefully designed to be able to
redact several document on different places and to amortize the key generation
cost over several proof computation. Moreover, if the circuit which verify the
correct redaction in the Redact algorithm is changed for some document, the
evaluation and verification keys will change and have thus to be exchanged with
the service provider. We designed a circuit able to prove the correct redaction
for every document modeled as an image of size n × m.

The verification of the hash signature used by the document issuer is not
part of the proof for efficiency reasons. Backes et al. [5] present a verifiable
computing scheme suited for working with authenticated data but, even if the
performance are better than verifying signature with the Pinocchio scheme [26],
the verification of the signature is way more efficient if it is done outside the
proof. Besides, since the proof requires the hash of the document there is an
explicit link between the redacted document and the original one. The addition
of the hash to the proof only slightly increases the length of the proof. The
verifier thus first verify the signature of the hash value to test whether it indeed
correspond to a value generated by the document issuer. If the verification passes,
the verifier can use this hash value as input for the proof verification.

Document Redaction. Since the document to redact is modeled as a matrix,
the proof described in Sect. 2.2 can be represented as an arithmetic circuit using
a boolean matrix for the MOD set. The function in the verifiable computing
scheme for which we compute a proof takes as input a redacted document Dred, a
hash value H and a set MOD. We denote by di,j (resp. dred

i,j) the pixel in position
(i, j) of D (resp. Dred). The prover supplies as private input the document D

Verifiable Document Redacting 345

and the value r, the function f returns the value d ∈ {0, 1} which is the product

of the following boolean tests:

⎧
⎪⎨

⎪⎩

∃r,D such that: C
?= H(D ‖ r)

∀(i, j) ∈ MOD : dred
i,j

?= 0

∀(i, j) �∈ MOD : di,j − dred
i,j

?= 0
Using a boolean matrix M as a mask, we can rewrite the two last set of tests

in a more uniform way. We define the matrix M = (mi,j) as: mi,j = 0 if pixel
(i, j) is redacted and mi,j = 1 otherwise. The tests can thus be rewritten as:

∀(i, j) ∈ {1, . . . , n}2, di,j × mi,j
?= 0. This leads to a small arithmetic sub-circuit

to check if the redacted document has not been modified in other places that
the given ones.

Hash Function. The proof computed by Redact contains the verification of
the hash value computed from the original document so we need to choose a
hash function efficiently verifiable i.e. a function which can be represented as
an arithmetic circuit with few gates. Hash function building on the subset sum
problem are well suited for arithmetic circuits [8,12]. They were introduced by
Ajtai [3] and proved collision-resistant by Goldreich et al. [19]. The collision
resistance of the hash function relies on the hardness of the Short Integer Solution
(SIS) problem. We first recall the Ajtai hash function.

Definition 2. Let m,n be positive integers and q a prime number. For a ran-
domly picked matrix A ∈ Z

n×m
q , the Ajtai hash Hn,m,q : {0, 1}m → Z

n
q is defined

as:
∀x ∈ {0, 1}m, Hn,m,q = A × x mod q (2)

A concrete hardness evaluation is studied by Kosba et al. in [24]. Choosing
Fp, with p ≈ 2254 to be the field where the computations of the arithmetic circuit
are done leads to the following parameters for approximately 100 bit of security:

n = 3,m = 1524, q = p ≈ 2254.

We also used another finite field in our experiments with a lower security level of
80 bit for the associated elliptic curve. Following the method of [24], we obtained
the following parameters:

n = 2,m = 724, q = p ≈ 2181.

Few gates are needed to implement an arithmetic circuit for this hash function:
to hash m bits, n × m multiplicative gates are needed. With the parameters
selected in [24], this means that 4572 gates are needed to hash 1524 bits. As
a comparison, Ben-Sasson et al. designed a hand-optimized arithmetic circuit
to verify the compression function of SHA-256 [6]. Their arithmetic circuit can
therefore hash 512 bits and has about 27000 gates.

346 H. Chabanne et al.

4.2 Experimental Results

We implemented our protocol and benchmarked the verifiable computing part
of the scheme since time consumption of the other parts is negligible compared
to this one. Verifiable computation is implemented using the libsnark library
[2]. The tests were run on a two different machines. The first one, denoted by
machine 1 in the tables, is running at 3.6 GHz with 4 GB of RAM, with no
parallelisation. The second one, denoted machine 2, is more powerful: it has 8
cores running at 2.9 GHz with 16 GB of RAM and uses parallelisation. We first
implemented our scheme for images of size 128 × 128 and chose elliptic curves
at a 128 bit and 80 bit security level [9]. The size of the proof is constant and
short (less than 300 bytes) and thus the verification is fast. Table 1 summarizes
the implementation results with machine 1. The column Constraints reports the
number of constraints needed to check the satisfiability of the circuit implement-
ing the proof redaction. For each security level of the proof, we implemented our
scheme with the SHA256 hash and the Ajtai hash functions for comparison.

Table 1. Benchmark of verifiable computation in the VDR scheme (128×128 images,
machine 1)

Security Hash fct Constraints EK size V K size KeyGen Redact.Prove DocVerif

128 bit Ajtai 19435 7.1 MB 1.3 MB 5.6 s 3.4 s 0.07 s

128 bit SHA256 43920 13.7 MB 1.3 MB 9.2 s 4.7 s 0.07 s

80 bit Ajtai 17834 5.4 MB 1.0 MB 5.5 s 2.4 s 0.07 s

80 bit SHA256 43920 10.8 MB 1.0 MB 9.7 s 3.5 s 0.07 s

Table 2 reports implementation of the proving scheme using Ajtai hash func-
tion and a soundness security of 80 bit with variation on the image size. Table 3
reports the same implementation running on machine 2, with parallelisation.
Note that even if the proof has constant size, the verification time increases with
the image size. This is due to the time to parse the input redacted image to
compute some elements to verify the proof. We continued our experiments until
we reached approximately the size of an A4 document scanned at 100 dpi: we
tested a 1200× 800 image while the true size of an A4 document scanned at 100
dpi would be 1169 × 827.

The prover has most of the computational work to do with the Redact algo-
rithm. However, this does not affect the practicality of the VDR scheme in
the case of image redaction. Indeed, the proof is non-interactive and the client
can prepare its redacted document, compute the related proof and submit both
later to a service provider. On the service provider side, the verification is fast
and does not require to share any secret with the client. The time to verify the
signature of the hash value C has to be added to the verification time given in
Table 1. Using a simple benchmark on OpenSSL, the time reported for signature

Verifiable Document Redacting 347

Table 2. Scaling experiment of the proving part in the VDR scheme (machine 1 +
no parallelisation)

Image size Constraints EK size V K size KeyGen Redact.Prove DocVerif

128 × 128 17834 5.4 MB 1.0 MB 5.6 s 2.4 s 0.07 s

400 × 400 161450 47.9 MB 9.9 MB 38.8 s 20.7 s 0.51 s

500 × 500 251450 74.0 MB 15.5 MB 58.2 s 32.8 s 0.89 s

600 × 600 361450 106.0 MB 22.3 MB 81.1 s 50.8 s 1.3 s

1200 × 800 961450 286.4 MB 59.5 MB 201.3 s 124.5 s 3.3 s

Table 3. Scaling experiment of the proving part in the VDR scheme (machine 2 +
parallelisation)

Image size Constraints EK size V K size KeyGen Redact.Prove DocVerif

128 × 128 17834 5.4 MB 1.0 MB 1.9 s 0.8 s 0.07 s

400 × 400 161450 47.9 MB 9.9 MB 12.4 s 5.9 s 0.5 s

500 × 500 251450 74.0 MB 15.5 MB 19.7 s 9.9 s 0.82 s

600 × 600 361450 106.0 MB 22.3 MB 26.2 s 14.5 s 1.17 s

1200 × 800 961450 286.4 MB 59.5 MB 66.8 s 39.7 s 3.3 s

verification is less than 1 ms for RSA signatures and ECDSA signatures with
the same computer. We conclude that the VDR scheme is compatible with a
practical use.

5 Conclusion

We designed a new scheme to redact an authenticated document, with the goal
to hide sensitive or private data on document digitized as images. Our scheme
is related to redactable signatures schemes but allow to get a much shorter
signature which does not depend on the size of the redaction on the original
document. Moreover, most of the existing redactable signature schemes could
not be deployed in the image redaction use case we described. In contrast, the
running time of our implementation shows that the protocol is practical for the
different participants. We also note that every progress made in the efficiency of
verifiable computation schemes would lead to performance improvement for our
scheme.

Acknowledgments. The authors would like to thank Gäıd Revaud for her precious
programming assistance and the anonymous reviewers of ESORICS for their valuable
feedback and comments. The authors would also like to thank Emmanuel Prouff for
helpful comments that improved the quality of this manuscript. This work was partly
supported by the TREDISEC project (G.A. No. 644412), funded by the European
Union (EU) under the Information and Communication Technologies (ICT) theme of
the Horizon 2020 (H2020) research and innovation programme.

348 H. Chabanne et al.

A Appendix

We prove Theorem 1 in this section. We will prove that our VDR scheme is
private (Lemma 1) and unforgeable (Lemma 2), which will imply Theorem 1.

Lemma 1. If the VC scheme provides (statistical) zero-knowledge proofs and
the hash function H is such that Hr := H(., r) is a secure PRF then the VDR
scheme is private.

Proof. We will bound the advantage of a PPT adversary attacking the privacy of
the scheme using a sequence of games. More precisely we will show that AdvA

Leak

is negligible.

Game 0. This is the original Leak game.
Game 1. Same as Game 0 but here the oracle OAuth/Redact picks a random value

h, signs it and returns the couple h, σ, instead of Cb, σ. Let S1 be the event
that b� = b in Game 1. Since H(., r) is assumed to be a secure PRF, we have
that: Pr [S0] − Pr [S1] � εPRF , where εPRF is the PRF advantage.

Game 2. Same as Game 1, but the part of the oracle OAuth/Redact computing
the proof is replaced by the simulator. Let S2 be the event that b� = b in
Game 2. We have that Pr [S2] = Pr [S1]

Game 3. Same as Game 2, but the simulator of the oracle OAuth/Redact outputs
its proof π without having knowledge of the messages Mc, c ∈ {0, 1}. Let S3

be the event that b� = b in Game 3. Since the VC scheme is assumed to be
zero-knowledge, we have that there exists a negligible function εSZK such
that: Pr [S3] − Pr [S2] � εSZK . Since the signature is now only composed of
random elements, we have Pr [S3] = 1

2 .
Gathering the results of all the games, we finally conclude that:

|Pr [S0] − 1
2
| � εPRF + εSZK (3)

Therefore the VDR scheme is secure. ��

Lemma 2. If the VC scheme is sound and the signature scheme is EUF-CMA,
then the VDR scheme is unforgeable.

Proof (sketch). We show if there exists an efficient adversary succeeding in
the Forge experiment, denoted by AForge, we can build an efficient adversary
AEUF−CMA breaking the EUF-CMA property of the signature or an efficient adver-
sary AVC breaking the soundness of the verifiable computing scheme. These
adversaries are built by forwarding the queries made by AForge. At the end,
AForge outputs a redacted forged document, which is not part of the queries
made before. This redacted forged document is also a forgery for the signature
scheme or for the verifiable computation scheme.

Verifiable Document Redacting 349

References

1. 2D-Doc. https://ants.gouv.fr/Les-solutions/2D-Doc. Accessed 10 Jan 2017
2. Libsnark. https://github.com/scipr-lab/libsnark. Accessed 19 Apr 2017
3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:

Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 99–108 (1996)

4. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.
J. ACM 45(1), 70–122 (1998)

5. Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical
and privacy-preserving proofs on authenticated data. In: 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015, pp. 271–286
(2015)

6. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, 18–21 May
2014, pp. 459–474 (2014)

7. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for
C: verifying program executions succinctly and in zero knowledge. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40084-1 6

8. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles
of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8617, pp. 276–294. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44381-1 16

9. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, 20–22 August 2014, pp. 781–796
(2014). https://www.usenix.org/conference/usenixsecurity14/technical-sessions/
presentation/ben-sasson

10. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24676-3 4

11. Boneh, D., Shoup, V.: A graduate course in applied cryptography, version 0.3.
http://cryptobook.us Accessed 15 Jan 2017

12. Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Walfish, M.: Ver-
ifying computations with state. In: ACM SIGOPS 24th Symposium on Operating
Systems Principles, SOSP 2013, Farmington, PA, USA, 3–6 November 2013, pp.
341–357 (2013)

13. Brzuska, C., Busch, H., Dagdelen, O., Fischlin, M., Franz, M., Katzenbeisser, S.,
Manulis, M., Onete, C., Peter, A., Poettering, B., Schröder, D.: Redactable signa-
tures for tree-structured data: definitions and constructions. In: Zhou, J., Yung,
M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13708-2 6

14. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signa-
ture cards. In: Innovations in Computer Science - ICS 2010, Tsinghua University,
Beijing, China, 5–7 January 2010, Proceedings, pp. 310–331 (2010)

15. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: Innovations in Theoretical Computer Science 2012,
Cambridge, MA, USA, 8–10 January 2012, pp. 90–112 (2012)

https://ants.gouv.fr/Les-solutions/2D-Doc
https://github.com/scipr-lab/libsnark
http://dx.doi.org/10.1007/978-3-642-40084-1_6
http://dx.doi.org/10.1007/978-3-662-44381-1_16
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
http://dx.doi.org/10.1007/978-3-540-24676-3_4
http://cryptobook.us
http://dx.doi.org/10.1007/978-3-642-13708-2_6

350 H. Chabanne et al.

16. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In: 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, 17–21 May
2015, pp. 253–270 (2015)

17. Derler, D., Pöhls, H.C., Samelin, K., Slamanig, D.: A general framework for
redactable signatures andnewconstructions. In:Kwon,S.,Yun,A. (eds.) ICISC2015.
LNCS, vol. 9558, pp. 3–19. Springer, Cham (2016). doi:10.1007/978-3-319-30840-1 1

18. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38348-9 37

19. Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice prob-
lems. Electron. Colloquium Comput. Complex. (ECCC) 3(42) (1996). http://eccc.
hpi-web.de/eccc-reports/1996/TR96-042/index.html

20. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, Victoria, British Columbia, Canada, 17–20 May 2008, pp. 113–122
(2008)

21. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-17373-8 19

22. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs.
In: 22nd Annual IEEE Conference on Computational Complexity (CCC 2007),
13–16 June 2007, San Diego, California, USA, pp. 278–291 (2007)

23. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer,
Heidelberg (2002). doi:10.1007/3-540-45760-7 17

24. Kosba, A., Zhao, Z., Miller, A., Qian, Y., Chan, H., Papamanthou, C., Pass, R.,
Shelat, A., Shi, E.: C∅c∅: a framework for building composable zero-knowledge
proofs. Cryptology ePrint Archive, Report 2015/1093 (2015). http://eprint.iacr.
org/2015/1093

25. Naveh, A., Tromer, E.: Photoproof: cryptographic image authentication for any
set of permissible transformations. In: IEEE Symposium on Security and Privacy,
SP 2016, San Jose, CA, USA, 22–26 May 2016, pp. 255–271 (2016)

26. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, 19–22 May 2013, pp. 238–252 (2013)

27. Setty, S.T.V., McPherson, R., Blumberg, A.J., Walfish, M.: Making argument sys-
tems for outsourced computation practical (sometimes). In: 19th Annual Network
and Distributed System Security Symposium, NDSS 2012, San Diego, California,
USA, 5–8 February 2012 (2012)

28. Slamanig, D., Rass, S.: Generalizations and extensions of redactable signatures
with applications to electronic healthcare. In: Decker, B., Schaumüller-Bichl, I.
(eds.) CMS 2010. LNCS, vol. 6109, pp. 201–213. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-13241-4 19

29. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.)
ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002). doi:10.
1007/3-540-45861-1 22

http://dx.doi.org/10.1007/978-3-319-30840-1_1
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://eccc.hpi-web.de/eccc-reports/1996/TR96-042/index.html
http://eccc.hpi-web.de/eccc-reports/1996/TR96-042/index.html
http://dx.doi.org/10.1007/978-3-642-17373-8_19
http://dx.doi.org/10.1007/3-540-45760-7_17
http://eprint.iacr.org/2015/1093
http://eprint.iacr.org/2015/1093
http://dx.doi.org/10.1007/978-3-642-13241-4_19
http://dx.doi.org/10.1007/3-540-45861-1_22
http://dx.doi.org/10.1007/3-540-45861-1_22

Verifiable Document Redacting 351

30. Wahby, R.S., Setty, S.T.V., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM
and control flow in verifiable outsourced computation. In: 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015, San Diego, California,
USA, 8–11 February 2015 (2015)

31. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them.
Commun. ACM 58(2), 74–84 (2015). http://doi.acm.org/10.1145/2641562

http://doi.acm.org/10.1145/2641562

Securing Data Analytics on SGX
with Randomization

Swarup Chandra(B), Vishal Karande, Zhiqiang Lin, Latifur Khan,
Murat Kantarcioglu, and Bhavani Thuraisingham

University of Texas at Dallas, Richardson, TX, USA
{swarup.chandra,vishal.karande,zhiqiang.lin,lkhan,muratk,

bhavani.thuraisingham}@utdallas.edu

Abstract. Protection of data privacy and prevention of unwarranted
information disclosure is an enduring challenge in cloud computing when
data analytics is performed on an untrusted third-party resource. Recent
advances in trusted processor technology, such as Intel SGX, have reju-
venated the efforts of performing data analytics on a shared platform
where data security and trustworthiness of computations are ensured by
the hardware. However, a powerful adversary may still be able to infer pri-
vate information in this setting from side channels such as cache access,
CPU usage and other timing channels, thereby threatening data and user
privacy. Though studies have proposed techniques to hide such informa-
tion leaks through carefully designed data-independent access paths, such
techniques can be prohibitively slow on models with large number of para-
meters, especially when employed in a real-time analytics application. In
this paper, we introduce a defense strategy that can achieve higher com-
putational efficiency with a small trade-off in privacy protection. In par-
ticular, we study a strategy that adds noise to traces of memory access
observed by an adversary, with the use of dummy data instances. We quan-
titatively measure privacy guarantee, and empirically demonstrate the
effectiveness and limitation of this randomization strategy, using classi-
fication and clustering algorithms. Our results show significant reduction
in execution time overhead on real-world data sets, when compared to a
defense strategy using only data-oblivious mechanisms.

Keywords: Data privacy · Analytics · Intel SGX · Randomization

1 Introduction

When computation involving data with sensitive information is outsourced to
an untrusted third-party resource, data privacy and security is a matter of grave
concern to the data-owner. For example, third-party services offering state-of-
the-art predictive analytics platform may be used on data containing private
information such as health-care records. An adversary in this environment may
control the third-party resource for obtaining records of a specific user, or iden-
tifying sensitive patterns in data. Typically, data is protected from such external
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 352–369, 2017.
DOI: 10.1007/978-3-319-66402-6 21

Securing Data Analytics on SGX with Randomization 353

adversaries using cryptographically secure encryption schemes. However, direct
computation on encrypted data, using techniques such as fully-homomorphic
encryption schemes [13], can be inefficient for many practical purposes [21],
including data analytics - the focus of this paper.

Recent advances in hardware-based technology such as Intel SGX offers cryp-
tographically secure execution environment, called an Enclave, that isolates code
and data from untrusted regions within a device. It is natural to leverage the
confidentiality and trustworthiness provided by this mechanism, supported by
an untrusted third-party server, to efficiently perform large-scale analytics over
sensitive data which is decrypted within a secure region. An adversary control-
ling this server will neither have access to decrypted data, nor will be able to
modify computation involving it.

Unfortunately, studies have discovered presence of side-channels that may
leak undesirable information from within an enclave. By observing resource
access and timing, an adversary can design an attack to derive sensitive informa-
tion from computation at runtime [14,34]. Nevertheless, mechanisms to eliminate
such information leak typically relies on the software developer to hide access
patterns with other non-essential or dummy resource accesses. These include
balanced execution [31] and data-oblivious execution [26]. From the adversarial
point of view, these mechanisms add noise to patterns emerging from essential
computation of a naive implementation. Although using such defenses curb infor-
mation leak from an SGX enclave and guarantee data privacy, they add signifi-
cant computational overhead on certain applications in data analytics; in settings
involving a large number of parameters, and requiring real-time response [23].

In this paper, we discuss a novel defense mechanism that can achieve lower
computational overhead with a trade-off on privacy guarantee, when performing
data analytics within an SGX enclave running on a third-party server. In partic-
ular, we focus on two classical problems in data analytics, i.e., data classification
and clustering. Here, a statistical model is used to predict class labels of given
data instances (in classification) or associate them to clusters (in clustering).
We generate new dummy data instances and interleave them with user-given
data instances before evaluation. Our proposed defense strategy leverages equiv-
alence in resource access patterns observed by an adversary during evaluation of
user-given and dummy data instances. This introduces uncertainty in observed
side-channel information in a stochastic manner.

In short, we make the following contributions in this paper.

– We present a defense strategy against side-channel attacks on Intel SGX by
randomizing information revealed to the attacker, and asymptotically guar-
anteeing data privacy.

– We illustrate its application on popular data analytics including decision tree
and Naive Bayes classification, and k-means clustering techniques.

– We study the effect of privacy in terms of proportion of dummy data instances
employed with respect to user-given data instances, and empirically demon-
strate the effectiveness of our defense strategy.

354 S. Chandra et al.

The rest of the paper is organized as follows. We first provide relevant back-
ground on Intel SGX and data analytics in Sect. 2. We detail the threat model
and our defense strategy in Sect. 3, and describe relevant implementation tech-
niques in Sect. 4. We quantify privacy guarantee of the proposed strategy with
respect to the number of dummy data instances in Sect. 5, and then present
empirical estimates of computational overhead using real-world datasets. We
finally discuss related studies in Sect. 6, and conclude in Sect. 7.

2 Background

2.1 Intel SGX

Intel Software Guard Extensions (SGX) [2] is a set of additional processor
instructions to the x86 family, with hardware support to create secure mem-
ory regions within existing address space. Such an isolated container is called an
Enclave, while rest of the address space is untrusted. Data within these memory
regions can only be accessed by code running within the enclave. This access
control is enforced by the hardware, using attestation and cryptographically
secure keys [11] with a trusted processor. The new SGX instructions are used
to load and initialize an enclave, as well as enter and exit the protected region.
From a developer’s perspective, an enclave is entered by calling trusted ecalls
(enclave calls) from the untrusted application space. The enclave can invoke
untrusted code in its host application by calling ocalls (outside calls) to exit
the enclave. Data from the enclave is always encrypted when it is in memory,
but there are cases in which the content should be securely saved outside the
enclave. The process of exporting the secrets from an enclave is known as Sealing.
The encrypted sealed data can only be decrypted by the enclave. Every SGX-
enabled processor contains a secret hardware key from which other platform keys
are derived. A remote party can verify that a specific enclave is running on SGX
hardware by having the enclave perform remote attestation.

Attacks. While performing computations within the enclave, an adversary con-
trolling the host OS may infer sensitive and confidential information from side-
channels [27]. Assuming the application executed within an enclave is benign, i.e.,
it does not actively leak information, the attacker may observe input-dependent
patterns in data access and execution timing for inferring sensitive information.
This is called as cache-timing attack [14]. Since OS is allowed to have full control
over the page table of an SGX enclave execution, the attacker controlling the
OS may know page access patterns. This eliminates noise in side-channels, and
is called as Controlled-channel attack [34].

Defenses. The burden of ensuring efficiency, data privacy and confidentiality lies
with the application developer who verifies platform authenticity, and performs
guarded memory and I/O access. Therefore, studies have proposed various mech-
anisms including balanced execution [31] and data-oblivious computations [26].

Securing Data Analytics on SGX with Randomization 355

In balanced execution, each branch of a conditional statement is forcefully exe-
cuted by creating dummy operations of data and resource access [27]. Whereas a
data-oblivious solution has its control-flow independent of its input data. As men-
tioned in [26], efficient ORAM techniques [33] cannot be employed for data analyt-
ics since it does not hide input-dependent access paths, and is not ideal for applica-
tions making large number of memory accesses. However, data-independent access
techniques can be used to defend against page-level and cache-level attacks. In
our paper, we discuss a solution that significantly reduces sensitive information in
side-channels by creating and utilizing dummy data along with the original user-
given data during computation.

2.2 Machine Learning

Machine learning is a set of algorithms used to learn and predict patterns in
data. With applications such as image recognition, video analytics [3] and text
comprehension [15], this growing field in computer science has attracted large
attention from both industry and academia. In general, a data instance is a
d-dimensional vector whose elements represent characteristic features. A set of
such data instances is called a dataset. The goal of learning is to identify charac-
teristic patterns in a dataset by training a statistical model, which is later used
to evaluate data instances in the future by generalization [9]. In our study, we
apply the proposed defense strategy on classification models including decision
tree and Naive Bayes, where the problem is to predict class label of a given
data instance. The classifier parameters are learned using a disjoint dataset
with known class labels. Furthermore, we also demonstrate the defense strat-
egy over k-means clustering algorithm, where the problem is to group similar
instances in the dataset. In both these problems, the attacker is interested not
only in obtaining input-dependent patterns from side-channel information, but
also model parameters and structure that are confidential.

3 Secure Data Analytics

3.1 Threat Model

Analytics on data containing sensitive information is performed on a third-party
untrusted server with Intel SGX support. While data-owners have no control
over this server, they may establish a cryptographically secure connection to
an enclave in the server. Similar to [19], we assume that an attacker controls
the untrusted server, and has the ability to interrupt the enclave as desired, by
modifying the OS and SGX SDK, to obtain side-channel information from page
or cache accesses, page faults, and log files. Nonetheless, code and data within
the enclave cannot be modified, except by the data-owner.

The primary goal in an attack is to obtain sensitive information leaked
through side-channels from a benign machine learning application running
within the SGX enclave. Sensitive information may include model parameters,

356 S. Chandra et al.

Table 1. List of symbols.

Symbols Description

d # Features

C # Class labels

x Data instance

y Class label

n Dataset size

k # Clusters

T Set of clusters

L # Dummy data

Table 2. List of public and confidential para-
meters. Here, Tree indicates model structure,
and P indicates probability function.

Model Parameters

Public Confidential

Decision tree n, d, C x, y, Tree

Naive Bayes n, d, C x, y, P (y|x), P (y)

K-Means n, d, C, k, I x, y, T

feature values of input data, and data distribution statistics. For example, struc-
ture of a decision tree (denoted by Tree) may be revealed if nodes in the tree
are present on different pages, while the attacker tracks the order of execution
during evaluation. Similarly, proportion of each cluster (denoted by T) in the
k-means clustering algorithm may reveal sensitive data patterns. We term this
set of sensitive attributes as confidential. A defense mechanism aims to prevent
the attacker from inferring confidential attributes through side-channel infor-
mation. Nevertheless, each learning algorithm has parameters which are data
invariant. For example, height of a decision tree (H), number of features in each
data instance (d), domain and range of feature values (f), number of class labels
(C), number of clusters in k-means clustering (k), and number of iterations for
learning (I), remains constant for a given dataset. These parameters can be eas-
ily inferred from analyzing algorithmic execution. We assume that the code for
each algorithm is publicly available, along with its data invariant parameters.
Table 2 lists the associated confidential and public parameters for each algorithm
considered, with Table 1 listing the frequently used symbols in this paper.

3.2 Overview

Figure 1 illustrates the overall defense methodology proposed in this paper. An
user provides cryptographically secure encrypted data (containing sensitive infor-
mation) to a third-party untrusted server, along with a pre-trained model. An
enclave is established, and the pre-trained model initialized. By requesting a set
of data instances into the enclave from application memory through an ocall,
we decrypt these instances and empirically evaluate the domain and range sta-
tistics of each feature. Since we desire that computation involving dummy data
instances produce access patterns similar to that of user-given data instances,
we generate d feature values uniformly at random within its empirical range to
create a dummy instance. After generating L such instances, we shuffle them
with user-given data instances in a data-oblivious manner and evaluate each
instance in the shuffled dataset sequentially using the pre-trained model that is

Securing Data Analytics on SGX with Randomization 357

Trained Model

Evaluation

U
nt

ru
st

ed
 R

eg
io

n

Tr
us

te
d

R
eg

io
n

Users Unlabeled

Dummy Data
Generation

SGX Runtime Library

ocall / ecall Wrapper

Encrypted Data

Encrypted Result

Application Memory

Encrypted Code

Third Party Server

Oblivious
Comparison

Oblivious
Shuffling

Data
Decryption

Result
Encryption

SGX Enclave Memory

Secure
Connection

Initialize

Fig. 1. Overview of Data Analytics on SGX using randomization.

fully encapsulated within the enclave. By obliviously ignoring results associated
with dummy data instances, we obtain the results for user-given data instances.
We then encrypt these results in a cryptographically secure manner, and save it
in the untrusted application memory via an ocall. Here, data-oblivious shuffling
of dummy and user-given instances is crucial since it introduces uncertainty in
access patterns observed from side-channels by the attacker.

Crux of the above solution is in the way we generate dummy data instances,
and use data-oblivious mechanisms for shuffling and ignoring results of compu-
tation associated with dummy data instances. If we only employ the shuffled
(contaminated) dataset for evaluation in a naive implementation of a data ana-
lytics algorithm, i.e., by ignoring results from dummy instances, it may not be
possible to conceal all sensitive model parameters and data patterns. Each learn-
ing algorithm has an inductive bias, different from one another, which prevents
universal application of a naive strategy by itself. For example, the inductive
bias of a decision tree is that data can be divided in the form of a tree struc-
ture. Whereas, the bias in k-means clustering assumes that instances having
similar properties are closer to each other than those with dissimilar properties.
In both these cases, the structural representation of data is different, and is
input-dependent. We address this challenge by utilizing dummy data instances
to conceal model structure and parameters as well. This indicates that computa-
tion involving dummy data instances need to be tracked, but in a data-oblivious
manner so that uncertainty in resource access trace observed by the attacker is
preserved. We first introduce the primitives of our defense strategy, i.e., dummy
data generation and data-oblivious comparison, in Sect. 3.3, and describe data
analytics algorithms that utilize them for defense, in Sect. 3.4.

3.3 Primitives

Dummy Data Generation. Algorithm 1 illustrates our dummy data gener-
ation process. Using public parameters of user-given dataset D, we choose a
random number uniformly within the range of each feature (i.e., values between
MIN and MAX) in D. This choice limits the bias of dummy data instances, and
prevents them from having distinguishing characteristics compared to user-given

358 S. Chandra et al.

Algorithm 1. A primitive for generating dummy data instances.
Input: D: Dataset, n: Dataset Size, d: No. Features
. Result: D̂: Shuffled Data Instances
begin

MAX,MIN = get range(D,n, d)

D̂ = D

while |D̂| < (n + L) do
v = array(d) // Initialization
for i ∈ {0, d} do

v[i] = random(MAXi,MINi)

D̂ ← v

return oblivious shuffle(D̂)

data instances. If not, an attacker may be able to identify such characteristics
and discard access traces associated with dummy data instances, thereby defeat-
ing our defense mechanism. We generate L dummy data instances and initially
append them to the set of user-given data instances, forming D̂. We then shuffle
D̂ in an oblivious manner, and sequentially process each data instance from the
shuffled dataset during evaluation. One corner case is when MIN = MAX. With
the goal of increasing variance of each feature in D̂, we add an appropriate
margin to MAX such that MIN < MAX is always true. In Sect. 4, we present the
implementation details of oblivious data shuffling.

Data-Oblivious Comparison. We use a data-oblivious comparison primitive
for checking whether a data instance is dummy or not. Typically, we first com-
pute using a data instance, and then decide whether to ignore or retain the
result of such computation depending on the type of data instance involved. We
only desire to ignore results involving dummy data instances in a data-oblivious
fashion. This ensures that the attacker observes resource access traces from both
user-given and dummy data instances, which are indistinguishable.

a) Non-oblivious max b) Oblivious max

Fig. 2. Illustration of data-oblivious comparison.

Figure 2 illustrates the difference between non-oblivious and oblivious
max function as an example of comparison primitive. Figure 2b is oblivi-
ous at the element-level since both conditional branch statements access the

Securing Data Analytics on SGX with Randomization 359

same set of variables. Whereas, Fig. 2a is non-oblivious since either x or y is
accessed when the max function returns depending on the conditional statement
executed. In the case of an array, we access all elements in the array sequentially
to remain data-oblivious. The mechanism proposed in [26] uses a more efficient
compiler-based approach to perform oblivious comparison and array access at
cache-level granularity instead of element-level granularity. We leave its adapta-
tion to our proposed approach for future work.

3.4 Learning Algorithms

Decision Tree Classifier. It is a tree-based model that uses a information-
theoretic measures for data classification. In training a popular variant called
ID3 [9], a feature with the largest information gain, with respect to the class
label, is selected for partitioning the dataset into disjoint subsets. By iteratively
performing this data partitioning on each residual data subset, a tree structure is
created. Each feature value used for partitioning (or rule) then becomes either the
root or an internal node of this tree. A leaf is formed when further partitioning
is discontinued or unnecessary, i.e., when either all features are used along a
path from the root, all data instances within the residual data subset has the
same class label, or a user-defined maximum tree height is achieved. The last
stopping condition is typically used to reduce overfitting [9]. During evaluation,
class label of a test data instance is predicted as the majority label at a leaf that
is encountered by following tree branches, starting from the root, according to
its feature value consistent with the associated rule of intermediate tree nodes.

When a naive implementation of the above algorithm is employed within an
SGX enclave, the attacker may track data-dependent tree node accesses during
evaluation. This reveals the tree structure as well as the path of each test data
instance. A typical strategy to defend against this side-channel inference-based
attack is to balance the tree by adding dummy nodes, and access all nodes
during evaluation of each test instance. As mentioned in [26], such a strategy
has a runtime complexity of O(nα) during evaluation, where α is the number
of tree nodes. However, the complexity in a naive implementation is O(n log α).
Clearly, data-obliviousness is achieved at the cost of computational efficiency,
especially when α is large.

Instead, we utilize the dummy data generation primitive to obtain a con-
taminated dataset, and use the naive evaluation algorithm for class label pre-
diction. During training, we learn a decision tree using user-given training data
instances (with known class labels), and create a balanced tree using dummy
data instances, offline. Figure 3 illustrates an example of a balanced decision
tree. Here, a tree (we term as original) resulting from user-given training data
instances is obfuscated with nodes created from dummy data instances to obtain
a balanced tree. Leaf nodes in the obfuscated tree reflect the class label of its
ancestor node that form a leaf in the original tree. Clearly, the predicted class
label of a test data instance on the obfuscated tree is the same as the original
decision tree. Since dummy data instances are obliviously shuffled with user-
given test data instances, access traces obtained by the attacker for dummy data

360 S. Chandra et al.

1

2 3

1 1 2 3 3

2 3

1 21

1

Fig. 3. Creating an obfuscated decision tree. Shaded nodes are formed using dummy
data while others are formed using user-given data. Labels (denoted by {1, 2, 3}) of the
original tree’s leaf node is replicated in its descendant leaf nodes of the obfuscated tree.

instances are indistinguishable from that of user-given test instances. Therefore,
the true data access path is hidden in the overall noisy access path obtained by
the attacker. With L dummy data instances in the contaminated dataset, the
time complexity of evaluating n user-given test data instances is O((n+L) log α).

Naive Bayes Classifier. It is a Bayesian model trained with an assumption of
feature independence, given class labels [9]. Similar to the decision tree model, we
train a Naive Bayes classifier offline with a user-given training dataset and eval-
uate test data instances online, i.e., within an SGX enclave. During evaluation,
the predicted label of a test data instance is a class with the largest conditional
probability, given its feature values. Such a classifier is typically used in the
field of text classification that has large number of discrete valued features. The
product of class conditional probability is computed for each feature value of
user-given test data instance. Naively, one can pre-compute conditional proba-
bility for each feature value during training and access appropriate values during
evaluation. In this case, an attacker may infer class and feature proportions of
a given test dataset by tracking access sequence of pre-computed values. In a
purely data-oblivious defense strategy, every element in the pre-computed array
is accessed for evaluating each test data instance. If each of the d features have a
discrete range of size f , computational time overhead for evaluation is n×d×f ,
whereas that of the original naive evaluation is n × d. Clearly, this is a bottle-
neck in execution time when the range f is large. Instead, we utilize our dummy
data generation primitive during evaluation by employing the naive method for
accessing pre-computed array elements, inducing access patterns that are alike
for both user-given and dummy data instances. The overhead in computational
time for our modified version of Naive Bayes is (n + L) × d. If L � f , our
proposed defense is more efficient than the pure data-oblivious solution.

K-Means Clustering. The goal of k-means clustering is to group data
instances into k disjoint clusters, where each cluster has a d-dimensional cen-
troid whose value is the mean of all data instances associated with that clus-
ter. Clusters are built in an iterative fashion. We follow a streaming version of

Securing Data Analytics on SGX with Randomization 361

Lloyd’s method [9] for constructing clusters and evaluating user-given test data
instances, since they are suitable for handling large datasets. During training, k
cluster centroids are created by iteratively evaluating its value with least mean
squared Euclidean distance, and re-evaluating cluster association of user-given
data instances using the computed centroid. Evaluation is performed online, i.e.,
within an SGX enclave. The user provides learned centroid and a set of test
data instances. While cluster association of each data instance is evaluated by
computing the minimum Euclidean distance to centroids, we re-compute the
centroid of its associated cluster using the test data instances.

In a naive implementation of k-means clustering, the attacker can infer sensi-
tive information, such as cluster associated of each data instance by tracking the
centroid being accessed during assignment, and cluster proportions during cen-
troid re-computation. The pure data-oblivious solution addresses this problem
by performing dummy access to each centroid. On the contrary, we utilize the
dummy data generation primitive to perform cluster assignment of both dummy
and user-given data instances in an oblivious manner, and use the unmodified
naive cluster re-computation method. This adds noise to cluster proportions
inferred by the attacker. Since the number of clusters is fixed and is typically
small, the time complexity remains the same as the original algorithm [26].

4 Implementation

One possible attack on the proposed defense strategy is to collect access traces
of identical test data instances during evaluation, and use a statistical method
to identify execution pattern of user-given test data instances in them. The main
idea is that though these traces will be poisoned with execution involving ran-
dom dummy data instances, execution of identical test data instances remain
same. An attacker may produce such identical test instances by capturing an
encrypted user-given instance at the application side, and providing identical
copies of this data as input to the enclave application. We use a simple tech-
nique for discouraging this replay-based statistical attack by associating each
data instance with a unique ID (called nonce), whose value is generated from a
sequential counter. When data instances are passed to the enclave in response to
an ocall, we check for data freshness within the enclave by comparing the inter-
nal nonce state to the nonce of each input. We proceed with evaluation if each
new nonce value is greater than the previous one, else we halt execution. Since
an attacker cannot change the nonce value of an encrypted data instance, this
can detect stale instances used for a replay attack. We are aware that there exists
superior methods for generating dummy data instances to thwart replay-based
attacks in related domains [20], and leave its exploration for future work.

An important technique for reducing the effectiveness of inferring sensitive
information from side-channels is the random shuffling of dummy data with
user-given data instances in a data-oblivious manner. For simplicity, we assume
that domain of each feature in the dataset is either discrete or continuous real-
valued numbers. Nominal features are converted into binary vector using one-
hot encoding [24]. Data shuffling is performed as follows. For brevity, we call

362 S. Chandra et al.

the array containing data instances within the enclave as data-array. We asso-
ciate a random number to each element of the data-array. Initially, dummy data
instances are appended to the data-array as soon as they are created. We utilize
sgx read rand for random number generation. We then shuffle this array using
an oblivious sorting mechanism over these random numbers. Similar to [26], we
implement the Batcher’s odd-even sorting network [5] for data-oblivious sorting,
utilizing data-oblivious comparison during data swap when necessary. The run-
time of this sorting method is O((n+L)(log(n+L))2). There are other shuffling
algorithms with more efficient runtime complexity. We leave its applicability for
future work. Meanwhile, we use a Boolean array, of size equal to the data-array,
where value of each element indicates whether the corresponding instance in
data-array is dummy or otherwise. Using oblivious comparison primitive, we
identify and ignore computational results involving dummy data instances while
sequentially evaluating the shuffled dataset.

5 Evaluation

Next, we analyze privacy guarantee of our proposed method and empirically
evaluate computational overhead on various datasets.

5.1 Quantification of Privacy Guarantee

In our attack model, the attacker obtains execution traces in terms of sequential
resource access while performing data analytics with user-given data instances.
An attack on data privacy is successful when the attacker infers sensitive informa-
tion from these traces by identifying distinguishing characteristics. However, the
attack is unsuccessful if such distinguishing characteristics are either eliminated
or significantly reduced via a defense mechanism. Such defenses are effective
when they can provide quantifiable guarantees on data privacy. The primary
question is how to measure privacy? Authors in [26] measure data privacy in
terms of indistinguishability of a trace against a randomly simulated one. Since
our defense mechanism primarily consists of performing non-essential or fake
resource accesses, we define this indistinguishability in terms of trace-variants
that is possible in a data analytics model. A trace-variant can be viewed as a
sequence of page (or cache line) access when evaluating a test data instance. If
N is the total number of trace-variants observed by an attacker from the model,
we compute Privacy-Guarantee (denoted by γ) as the ratio of fake trace-variants
to the total number of observed trace-variants. The value of N may depend on
the variance in data and model. From a defense strategy perspective, every new
data instance can provide a different access sequence at best. In this case, N = n
where n is the user-given dataset size. The following analysis assumes this case
for simplicity, including the defense against replay attack mentioned in Sect. 4.

In a purely data-oblivious solution [26], there are N − 1 fake trace-variants
during evaluation since all possible cache-lines are accessed so that access pattern
is the same for all data instances. For example, all nodes in a decision tree is

Securing Data Analytics on SGX with Randomization 363

0 10.5

No Defense Data-oblivious
mechanism

Data Randomization
mechanism

Fig. 4. Measuring privacy guarantee of SGX defense mechanisms.

accessed for evaluating the class label of each data instance. Here, each node may
reside on a different cache-line or page. Therefore, γ = N−1

N . Note that γ � 1
with large N ; privacy is guaranteed on large N when this defense mechanism
is applied. On the other end of the privacy-guarantee spectrum, γ = 0 when
no defense is applied, i.e., no fake trace-variants are possible. At this extreme,
no privacy is guaranteed to the user’s data. Figure 4 illustrates this privacy-
guarantee spectrum.

Our proposed solution provides asymptotic privacy guarantee in terms of
number of dummy data instances used. Since L dummy data instances are gener-
ated, there are at most L fake trace-variants with N +L observed trace-variants.
Therefore, the associated privacy-guarantee is γ = L

N+L . Clearly, a larger value
of L provides greater privacy guarantee; it tends towards the γ value of purely
data-oblivious solution (i.e., γ � 1) for large L. If L < N , then an attacker
can simply guess each trace to be true and infer sensitive information with a
higher probability than random. Therefore, we choose L ≥ N to limit prob-
ability of a correct guess by the adversary to 1

2 at best (as shown in Fig. 4),
similar to [26]. We now empirically demonstrate our proposed technique, and
showcase the trade-off between privacy guarantee and computational efficiency
with different choices of L.

5.2 Datasets

We measure execution time overhead of the proposed defense strategy using
3 publicly available real-world datasets [28] and a synthetic dataset. Table 3
lists these popular datasets with corresponding data statistics. The Arrhyth-
mia dataset consists of medical patient records with confidential attributes and
ECG measures. The problem is to predict the ECG class of a given patient
record. The Defaulter dataset consists of financial records containing sensitive
information regarding clients of a risk management company. The problem is to
predict whether a client (i.e., a data instance) will default or not. Next, we use
a benchmark dataset called ForestCover. Here, multiple cartographic attributes
of a remotely sensed forest data are given. The problem is to predict forest type
of a given data instance. Finally, we create the Synthetic dataset from a popular
software for data stream mining called MOA [8].

364 S. Chandra et al.

Table 3. Dataset statistics and empirical time overhead with L = n.

Dataset Statistics Time overhead

Size (n) Features (d) Classes (C) Decision tree Naive Bayes K-Means

SGX +

Obliv

SGX +

Rand

SGX +

Obliv

SGX +

Rand

SGX +

Obliv

SGX +

Rand

Arrhythmia (A) 452 280 13 52.49 9.37 319.15 6.11 4.16 6.36

Defaulter (D) 30,000 24 2 4.13 1.11 1.56 1.10 1.07 1.17

ForestCover (F) 50,000 55 7 2.72 1.09 3.13 1.08 1.05 1.07

Synthetic (S) 50,000 71 7 2.53 1.09 3.47 1.07 1.22 1.09

These datasets may contain continuous and discrete valued features. For
simplicity of implementation, we evaluate the decision tree and Naive Bayes
classifiers using a quantized version of each dataset. We divide each feature
range into discrete bins of equal width. For decision tree, we use f = 10 bins.
However, for Naive Bayes, we use f = 1000 bins to reflect the dimensionality
mentioned in Sect. 3.4. Nevertheless, we use the original form of each dataset to
evaluate the k-means clustering algorithm.

5.3 Results and Discussion

The goal of empirical evaluation is to study and demonstrate applicability of our
defense strategy in various settings. We implement a pure data-oblivious strat-
egy, similar to [26], using data-oblivious comparison and array access over naive
implementation of each data analytics algorithm. This baseline defense strategy
is denoted by Obliv, whereas our proposed implementation is denoted by Rand.
For each modified data analytics algorithm (i.e., Obliv and Rand), the compu-
tational time overhead is measured as the ratio of time taken by the modified
algorithm executed within an SGX enclave to that of a naive implementation
executed without SGX support. We perform all experiments on an SGX-enabled
8-core i7-6700 (Skylake) processor operating at 3.4GHz, running Ubuntu 14.04
system with a 64GB RAM.

Table 3 lists the time overhead measured on each dataset for decision tree
and Naive Bayes classifiers, as well as k-means clustering, averaged over 5 inde-
pendent runs. Note that we denote the defense strategies with SGX+x, where
x = {Obliv,Rand}, to emphasize that they are executed within an SGX enclave.
Since SGX currently supports limited enclave memory, we evaluate in a stream-
ing fashion by dividing the dataset into small disjoint sets or chunks. Evaluation
is performed over each chunk of size 64, over the given pre-trained model.

From the table, Rand clearly performs significantly better than Obliv in the
case of decision tree and Naive Bayes classifiers. For example, Rand has only
11% overhead when class labels are evaluated using a decision tree in 16.76s,
compared to Obliv that takes 62.02 s, on the Defaulter dataset. When executing
without any defense within the SGX enclave, it took 16.13 s. This shows that
overhead due to enclave operations is small, as expected [17]. A higher overhead
is observed in the Arrhythmia dataset due to smaller dataset size. For example,

Securing Data Analytics on SGX with Randomization 365

the naive implementation of decision tree on this dataset takes 0.01 s, compared
to 0.79 s in Obliv, and 0.14 s in Rand. Also, it took 0.08 s on the implementation
within SGX enclave, but without employing any defense strategy. Clearly, the
cost of dummy data operations in Rand can be observed in the larger execution
time compared to the naive implementation, yet it is much lower than Obliv.

Limitations. For both decision tree and Naive Bayes classifiers, the number
of fake resource access in Obliv is greater than that of Rand. Evaluating every
test data instances in Obliv accesses each branch in a decision tree, and each
of the d × 1000 elements in the pre-computed probability array of Naive Bayes.
Meanwhile, corresponding resource access in Rand is significantly small. How-
ever, when resource access patterns in both Obliv and Rand is similar during
evaluation, the compromise on privacy with little or no trade-off in computa-
tional time of Rand is not very enticing. Time overhead shown in Table 3 for
k-means clustering algorithm indicates one such example. Here, every cluster
has to be accessed when searching for the nearest centroid to a given test data
instance. While in Obliv, centroid re-computation of cluster assignment may
be performed for each cluster, the time taken for oblivious shuffling of n + L
elements in Rand seem to surpass this re-computation time overhead. Except
for the Synthetic dataset, Obliv outperforms Rand in all other datasets. In this
situation, it is better to use Obliv defense strategy that guarantee better data
privacy than the Rand strategy which provides a sub-optimal privacy guarantee.

Cost of More Privacy. The above results for Rand uses equal number of
dummy and user-given data instances, i.e. L = n. If L is increased to provide
better privacy according to Sect. 5.1, the cost of oblivious data shuffling, in terms
of execution time, increases since n+L data instances are to be shuffled. Figure 5a
illustrates this increase in time overhead when using a decision tree classifier with
Rand defense on various datasets as an example. This indicates that the value of
L can be chosen appropriately by a programmer with desirable trade-off between
computational overhead and data privacy. For example, a larger value of L for
higher γ may be appropriate when the model has larger search space, similar to
the Naive Bayes classifier discussed in this paper. In such cases, higher value of
γ reduces the likelihood of dummy data instances producing unique patterns,
with respect to user-given data instances.

5.4 Security Evaluation

The goal of our security evaluation is to empirically address the two main ques-
tions regarding Rand’s data privacy guarantee; (1) Are access traces observed
by the attacker randomized?, and (2) Are traces obtained from evaluating user-
given and dummy data instances indistinguishable? Using Pin Tool [22], we
generate memory access traces (sequence of read and write) of each classifier
implementation when executing it in the SGX simulation mode. Here, we create
5 disjoint sets of 16 randomly chosen data instances for each dataset.

366 S. Chandra et al.

1 1.5 2 2.5 3 3.5 4

1.1

1.12

1.14

1.16

1.18

L/n

T
im

e
O
ve
rh
ea
d

(a) Time overhead.

A D F S
0.2

0.4

0.6

0.8

1

Dataset

Si
m
ila

ri
ty

(b) Across similarity.

A D F S
0.9

0.92

0.94

0.96

0.98

Dataset

Si
m
ila

ri
ty

(c) Within similarity.

Fig. 5. (a) shows time overhead with increasing L (in proportion of n) on decision
tree classifier with Rand, on D, F and S datasets. (b) shows similarity
scores between access traces across different sets of instances when evaluated on the
same classifier. Here, comparison between different defenses are shown, i.e., Rand,
Obliv, and no defense (). Finally, (c) shows similarity between traces of user-given
and dummy data instances within a set of instances evaluated on Rand.

To answer the first question, we obtain traces by independently evaluating
the 5 sets of data instance on a classifier, for each dataset. We perform different
experiments on classifier implemented with no defenses (naive), Obliv, and Rand,
for comparison. We then compute Levenshtein similarity [25], as a surrogate to
measure noise addition, between traces from the 5 sets on each dataset. Here,
more similarity implies less randomization (i.e., added noise). Figure 5b shows an
example result on trace comparisons obtained by evaluating a decision tree with
corresponding defenses. In the figure, we can observe that traces from Obliv
are more similar to each other (across the 5 sets) than those from the naive
implementation, as mentioned in [26]. For example, in the Arrhythmia dataset,
we obtain a similarity measure of 0.89 for Obliv compared to 0.81 for naive.
However, traces from Rand are more dissimilar to each other compared to Obliv
and naive approaches, indicating more data variance and randomization. On the
contrary, we address the second question by comparing traces within a single
set of 16 data instances. Concretely, we compute Levenshtein similarity between
traces obtained by evaluating user-given data instances only, and those of dummy
data instances only, in each set. Figure 5c illustrates an example on decision tree
classifier with Rand. The high similarity scores between traces corresponding to
the two types of data instances indicate indistinguishability.

6 Related Works

Studies on applications using Intel SGX have focused on an untrusted cloud
computing environment. The first study in this direction [7] executed a complete
application binary within an enclave. However, using this method on applica-
tions requiring large memory caused excessive page-faults that revealed critical
information [32], thereby violating data privacy. To address this challenge, a
recent study [29] used Hadoop as an application to split its interacting compo-
nents between SGX trusted and untrusted regions. The main idea was to reduce

Securing Data Analytics on SGX with Randomization 367

TCB memory usage within the enclave for decreasing page faults. Challenges
in executing data analytics within an SGX enclave was first recently described
by Ohrimenko et al. [26]. They propose a pure data-oblivious solution to guar-
antee privacy at cache-line granularity. We have compared our approach with a
similar defense strategy. Alternative to algorithmic solutions, studies have pro-
posed mechanisms to detect and prevent page faults attacks via malicious OS
verification [12] and transactional synchronization [30].

A large group of studies in privacy preserving mechanisms deal with designing
algorithms to preserve data privacy before data is shared with an untrusted envi-
ronment [1]. Particularly, these studies focus on problems where identification
of individual records are undesirable. Typically, the data is modified by addition
of noise to features, regularization conditions, use of anonymization [10], and
randomization [18] techniques. Instead, we focus on using a trusted hardware
environment to protect privacy by using cryptographic methods to maintain
confidentiality and trustworthiness [6]. We randomize side-channel information
rather than user data for preserving privacy.

Use of dataset contamination to defend against adversaries is not new in
machine learning settings. Studies on anomaly detection and intrusion detec-
tion [16] have discussed various types of attacks and defenses with regard to poi-
soning a user-given dataset with random data [4]. Particularly, a process called
Disinformation is used to alter data seen by an adversary as a form of defense.
This corrupts the parameters of a learner by altering decision boundaries in data
classification. The process of randomization is used to change model parameters
to prevent an adversary from inferring the real parameter values. These method-
ologies, however, limit the influence of user-given data in the learning process and
may affect model performance on prediction with future unseen data instances.
In all these cases, the adversary does not have control over the execution envi-
ronment, and is weak. We instead leverage the effect of randomization to defend
against side-channel attacks from a powerful adversary while performing data
analytics on an Intel SGX enabled processor.

7 Conclusion

In this paper, we introduce a method to randomize side-channel information
observed by a powerful adversary when performing data analytics over a SGX-
enabled untrusted third-party server. With the help of dummy data instances
and oblivious mechanisms, we study the trade-off between computational effi-
ciency and data privacy guarantee in setting with large parameters. Our empir-
ical evaluation demonstrates significant improvement in execution time com-
pared to state-of-the-art defense strategy on data classification and clustering
algorithms, with a small trade-off in privacy.

Acknowledgments. This research was supported in part by NSF awards CNS-
1564112 and CNS-1629951, AFOSR award FA9550-14-1-0173, and NSA award H98230-
15-1-0271. Any opinions, findings, conclusions, or recommendations expressed are those
of the authors and not necessarily of the funding agencies.

368 S. Chandra et al.

References

1. Aggarwal, C.C., Philip, S.Y.: A general survey of privacy-preserving data mining
models and algorithms. In: Privacy-Preserving Data Mining, pp. 11–52. Springer,
Boston (2008)

2. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for cpu
based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, vol. 13 (2013)

3. Antani, S., Kasturi, R., Jain, R.: A survey on the use of pattern recognition meth-
ods for abstraction, indexing and retrieval of images and video. Pattern Recogn.
35(4), 945–965 (2002)

4. Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learning
be secure? In: Proceedings of the 2006 ACM Symposium on Information, Computer
and Communications Security, pp. 16–25. ACM (2006)

5. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the
Spring Joint Computer Conference, 30 April–2 May, 1968, pp. 307–314. ACM
(1968)

6. Bauman, E., Lin, Z.: A case for protecting computer games with SGX. In: Pro-
ceedings of the 1st Workshop on System Software for Trusted Execution (SysTEX
2016), Trento, Italy, December 2016

7. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with haven. ACM Trans. Comput. Syst. (TOCS) 33(3), 8 (2015)

8. Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., Seidl, T.:
Moa: massive online analysis, a framework for stream classification and clustering.
J. Mach. Learn. Res., 44–50 (2010)

9. Bishop, C.M.: Pattern recognition. Mach. Learn. 128, 1–58 (2006)
10. Brickell, J., Shmatikov, V.: The cost of privacy: destruction of data-mining utility

in anonymized data publishing. In: Proceedings of the 14th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 70–78. ACM
(2008)

11. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptology ePrint Archive
2016, p. 86 (2016)

12. Fu, Y., Bauman, E., Quinonez, R., Lin, Z.: SGX-LAPD: thwarting controlled side
channel attacks via enclave verifiable page faults. In 20th International Symposium
on Research in Attacks, Intrusions, and Defenses (RAID) (2017)

13. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: STOC,
vol. 9, pp. 169–178 (2009)

14. Götzfried, J., Eckert, M., Schinzel, S., Müller, T.: Cache attacks on intel SQX.
In: Proceedings of the 10th European Workshop on Systems Security, p. 2. ACM
(2017)

15. Gupta, V., Lehal, G.S., et al.: A survey of text mining techniques and applications.
J. Emerg. Technol. Web Intell. 1(1), 60–76 (2009)

16. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I., Tygar, J.: Adversarial
machine learning. In: Proceedings of the 4th ACM Workshop on Security and
Artificial Intelligence, pp. 43–58. ACM (2011)

17. Karande, V., Bauman, E., Lin, Z., Khan, L.: SGX-Log: securing system logs with
SQX. In: Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, pp. 19–30. ACM (2017)

18. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving
properties of random data perturbation techniques. In: Third IEEE International
Conference on Data Mining, pp. 99–106. IEEE (2003)

Securing Data Analytics on SGX with Randomization 369

19. Lee, S., Shih, M.-W., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-
grained control flow inside SQX enclaves with branch shadowing. arXiv preprint
arXiv:1611.06952 (2016)

20. Li, F., Sun, J., Papadimitriou, S., Mihaila, G.A., Stanoi, I.: Hiding in the crowd:
privacy preservation on evolving streams through correlation tracking. In: IEEE
23rd International Conference on Data Engineering, ICDE 2007, pp. 686–695. IEEE
(2007)

21. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: Oblivm: a programming frame-
work for secure computation. In: 2015 IEEE Symposium on Security and Privacy
(SP), pp. 359–376. IEEE (2015)

22. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: ACM Sigplan Not. 40, 190–200 (2005). ACM

23. Masud, M.M., Gao, J., Khan, L., Han, J., Thuraisingham, B.: A practical approach
to classify evolving data streams: training with limited amount of labeled data. In:
Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 929–934.
IEEE (2008)

24. Murphy, K.P.: Machine learning: a probabilistic perspective. MIT Press (2012)
25. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.

(CSUR) 33(1), 31–88 (2001)
26. Ohrimenko, O., Schuster, F., Fournet, C., Mehta, A., Nowozin, S., Vaswani, K.,

Costa, M.: Oblivious multi-party machine learning on trusted processors. In:
USENIX Security Symposium, pp. 619–636 (2016)

27. Rane, A., Lin, C., Tiwari, M.: Raccoon: closing digital side-channels through obfus-
cated execution. In: 24th USENIX Security Symposium (USENIX Security 15), pp.
431–446 (2015)

28. Repository, U. M. L. (1998), https://archive.ics.uci.edu/ml/datasets/
29. Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz,

G., Russinovich, M.: Vc3: trustworthy data analytics in the cloud using SQX. In:
2015 IEEE Symposium on Security and Privacy, pp. 38–54. IEEE (2015)

30. Shih, M.-W., Lee, S., Kim, T., Peinado, M.: T-SQX: eradicating controlled-channel
attacks against enclave programs. In: Proceedings of the 2017 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA (2017)

31. Shinde, S., Chua, Z. L., Narayanan, V., Saxena, P.: Preventing page faults from
telling your secrets. In: Proceedings of the 11th ACM on Asia Conference on Com-
puter and Communications Security, pp. 317–328. ACM (2016)

32. Sinha, R., Rajamani, S., Seshia, S., Vaswani, K.: Moat: verifying confidentiality
of enclave programs. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 1169–1184. ACM (2015)

33. Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path oram: an extremely simple oblivious ram protocol. In: Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security, pp.
299–310. ACM (2013)

34. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side chan-
nels for untrusted operating systems. In: 2015 IEEE Symposium on Security and
Privacy (SP), pp. 640–656. IEEE (2015)

http://arxiv.org/abs/1611.06952
https://archive.ics.uci.edu/ml/datasets/

DeltaPhish: Detecting Phishing Webpages
in Compromised Websites

Igino Corona1,2(B), Battista Biggio1,2(B), Matteo Contini2, Luca Piras1,2,
Roberto Corda2, Mauro Mereu2, Guido Mureddu2, Davide Ariu1,2,

and Fabio Roli1,2

1 Pluribus One, via Bellini 9, 09123 Cagliari, Italy
2 Department of Electrical and Electronic Engineering,

University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy
{igino.corona,battista.biggio}@pluribus-one.it

Abstract. The large-scale deployment of modern phishing attacks relies
on the automatic exploitation of vulnerable websites in the wild, to max-
imize profit while hindering attack traceability, detection and blacklist-
ing. To the best of our knowledge, this is the first work that specifically
leverages this adversarial behavior for detection purposes. We show that
phishing webpages can be accurately detected by highlighting HTML
code and visual differences with respect to other (legitimate) pages
hosted within a compromised website. Our system, named DeltaPhish,
can be installed as part of a web application firewall, to detect the pres-
ence of anomalous content on a website after compromise, and even-
tually prevent access to it. DeltaPhish is also robust against adversar-
ial attempts in which the HTML code of the phishing page is carefully
manipulated to evade detection. We empirically evaluate it on more than
5,500 webpages collected in the wild from compromised websites, show-
ing that it is capable of detecting more than 99% of phishing webpages,
while only misclassifying less than 1% of legitimate pages. We further
show that the detection rate remains higher than 70% even under very
sophisticated attacks carefully designed to evade our system.

1 Introduction

In spite of more than a decade of research, phishing is still a concrete, widespread
threat that leverages social engineering to acquire confidential data from victim
users [1]. Phishing scams are often part of a profit-driven economy, where stolen
data is sold in underground markets [4,5]. They may be even used to achieve
political or military objectives [2,3]. To maximize profit, as most of the current
cybercrime activities, modern phishing attacks are automatically deployed on a
large scale, exploiting vulnerabilities in publicly-available websites through the
so-called phishing kits [4–8]. These toolkits automatize the creation of phishing
webpages on hijacked legitimate websites, and advertise the newly-created phish-
ing sites to attract potential victims using dedicated spam campaigns. The data
harvested by the phishing campaign is then typically sold on the black market,
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 370–388, 2017.
DOI: 10.1007/978-3-319-66402-6 22

DeltaPhish: Detecting Phishing Webpages in Compromised Websites 371

and part of the profit is reinvested to further support the scam campaign [4,5].
To realize the importance of such a large-scale underground economy, note that,
according to the most recent Global Phishing Survey by APWG, published in
2014, 59, 485 out of the 87, 901 domains linked to phishing scams (i.e., the 71.4%)
were actually pointing to legitimate (compromised) websites [8].

Fig. 1. Homepage (left), legitimate (middle) and phishing (right) pages hosted in a
compromised website.

Compromising vulnerable, legitimate websites does not only enable a large-
scale deployment of phishing attacks; it also provides several other advantages
for cyber-criminals. First, it does not require them to take care of registering
domains and deal with hosting services to deploy their scam. This also circum-
vents recent approaches that detect malicious domains by evaluating abnor-
mal domain behaviors (e.g., burst registrations, typosquatting domain names),
induced by the need of automatizing domain registration [9]. On the other hand,
website compromise is only a pivoting step towards the final goal of the phish-
ing scam. In fact, cyber-criminals normally leave the legitimate pages hosted in
the compromised website intact. This allows them to hide the presence of web-
site compromise not only from the eyes of its legitimate owner and users, but
also from blacklisting mechanisms and browser plug-ins that rely on reputation
services (as legitimate sites tend to have a good reputation) [4].

For these reasons, malicious webpages in compromised websites remain typ-
ically undetected for a longer period of time. This has also been highlighted
in a recent study by Han et al. [4], in which the authors have exposed vul-
nerable websites (i.e., honeypots) to host and monitor phishing toolkits. They
have reported that the first victims usually connect to phishing webpages within
a couple of days after the hosting website has been compromised, while the
phishing website is blacklisted by common services like Google Safe Browsing
and PhishTank after approximately twelve days, on average. The same authors
have also pointed out that the most sophisticated phishing kits include func-
tionalities to evade blacklisting mechanisms. The idea is to redirect the victim
to a randomly-generated subfolder within the compromised website, where the
attacker has previously installed another copy of the phishing kit. Even if the
victim realizes that he/she is visiting a phishing webpage, he/she will be likely
to report the randomly-generated URL of the visited webpage (and not that of
the redirecting one), which clearly makes blacklisting unable to stop this scam.

372 I. Corona et al.

To date, several approaches have been proposed for phishing webpage detec-
tion (Sect. 2). Most of them are based on comparing the candidate phishing
webpage against a set of known targets [10,11], or on extracting some generic
features to discriminate between phishing and legitimate webpages [12,14].

To our knowledge, this is the first work that leverages the adversarial behav-
ior of cyber-criminals to detect phishing pages in compromised websites, while
overcoming some limitations of previous work. The key idea behind our app-
roach, named DeltaPhish (or δPhish, for short), is to compare the HTML code
and the visual appearance of potential phishing pages against the corresponding
characteristics of the homepage of the compromised (hosting) website (Sect. 3).
In fact, phishing pages normally exhibit a much significant difference in terms
of aspect and structure with respect to the website homepage than the other
legitimate pages of the website. The underlying reason is that phishing pages
should resemble the appearance of the website targeted by the scam, while legit-
imate pages typically share the same style and aspect of their homepage (see,
e.g., Fig. 1).

Our approach is also robust to well-crafted manipulations of the HTML code
of the phishing page, aimed to evade detection, as those performed in [15] to mis-
lead the Google’s Phishing Pages Filter embedded in the Chrome web browser.
This is achieved by the proposal of two distinct adversarial fusion schemes that
combine the outputs of our HTML and visual analyses while accounting for
potential attacks against them. We consider attacks targeting the HTML code
of the phishing page as altering also its visual appearance may significantly affect
the effectiveness of the phishing scam. Preserving the visual similarity between
a phishing page and the website targeted by the scam is indeed a fundamental
trust-building tactic used by miscreants to attract new victims [1].

In Sect. 4, we simulate a case study in which δPhish is deployed as a module
of a web application firewall, used to protect a specific website. In this set-
ting, our approach can be used to detect whether users are accessing potential
phishing webpages that are uploaded to the monitored website after its com-
promise. To simulate this scenario, we collect legitimate and phishing webpages
hosted in compromised websites from PhishTank, and compare each of them
with the corresponding homepage (which can be set as the reference page for
δPhish when configuring the web application firewall). We show that, under
this setting, δPhish is able to correctly detect more than 99% of the phishing
pages while misclassifying less than 1% of legitimate pages. We also show that
δPhish can retain detection rates higher than 70% even in the presence of adver-
sarial attacks carefully crafted to evade it. To encourage reproducibility of our
research, we have also made our dataset of 1, 012 phishing and 4, 499 legitimate
webpages publicly available, along with the classification results of δPhish.

We conclude our work in Sect. 5, highlighting its main limitations and related
open issues for future research.

DeltaPhish: Detecting Phishing Webpages in Compromised Websites 373

2 Phishing Webpage Detection

We categorize here previous work on the detection of phishing webpages along
two main axes, depending on (i) the detection approach, and (ii) the features
used for classification. The detection approach can be target-independent, if it
exploits generic features to discriminate between phishing and legitimate web-
pages, or target-dependent, if it compares the suspect phishing webpage against
known phishing targets. In both cases, features can be extracted from the web-
page URL, its HTML content and visual appearance, as detailed below.

Target-independent. These approaches exploit features computed from the
webpage URL and its domain name [14,16–18], from its HTML content and
structure, and from other sources, including search engines, HTTP cookies, web-
site certificates [10,19–25], and even publicly-available blacklisting services like
Google Safe Browsing and PhishTank [26]. Another line of work has consid-
ered the detection of phishing emails by analyzing their content along with that
of the linked phishing webpages [27].

Target-dependent. These techniques typically compare the potential phishing
page to a set of known targets (e.g., PayPal, eBay). HTML analysis has also been
exploited to this end, often complemented by the use of search engines to identify
phishing pages with similar text and page layout [24,28], or by the analysis of the
pages linked to (or by) the suspect pages [29]. The main difference with target-
independent approaches is that most of the target-dependent approaches have
considered measures of visual similarity between webpage snapshots or embed-
ded images, using a wide range of image analysis techniques, mostly based on
computing low-level visual features, including color histograms, two-dimensional
Haar wavelets, and other well-known image descriptors normally exploited in the
field of computer vision [12,13,30,31]. Notably, only few work has considered the
combination of both HTML and visual characteristics [11,32].

Limitations and Open Issues. The main limitations of current approaches
and the related open research issues can be summarized as follows. Despite
target-dependent approaches are normally more effective than target-independent
ones, they require a-priori knowledge of the set of websites that may be poten-
tially targeted by phishing scams, or anyway try to retrieve them during oper-
ation by querying search engines. This makes them clearly unable to detect
phishing scams against unknown, legitimate services. On the other hand, target-
independent techniques are, in principle, easier to evade, as they exploit generic
characteristics of webpages to discriminate between phishing and legitimate
pages, instead of making an explicit comparison between webpages. In particu-
lar, as shown in [15], it is not only possible to infer enough information on how a
publicly-available, target-independent anti-phishing filter (like Google’s Phishing
Pages Filter) works, but it is also possible to exploit this information to evade
detection, by carefully manipulating phishing webpages to resemble the char-
acteristics of the legitimate webpages used to learn the classification system.
Evasion becomes clearly more difficult if visual analysis is also performed, as
modifying the visual appearance of the phishing page tends to compromise the

374 I. Corona et al.

Fig. 2. High-level architecture of δPhish.

effectiveness of the phishing scam [1]. However, mainly due to the higher compu-
tational complexity of this kind of analysis, only few approaches have combined
HTML and visual features for target-dependent phishing detection [11,32], and
it is not clear to which extent they can be robust against well-crafted adversarial
attacks. Another relevant limitation is that no dataset has been made publicly
available for comparing different detection approaches to a common benchmark,
and this clearly hinders research reproducibility.

Our approach overcomes many of the aforementioned limitations. First, it
does not require any knowledge of legitimate websites potentially targeted by
phishing scams. Although it may be thus considered a target-independent app-
roach, it is not based on extracting generic features from phishing and legitimate
webpages, but rather on comparing the characteristics of the phishing page to
those of the homepage hosted in the compromised website. This makes it more
robust than other target-independent approaches against evasion attempts in
which, e.g., the HTML code of the phishing webpage is obfuscated, as this
would make the phishing webpage even more different from the homepage. Fur-
thermore, we explicitly consider a security-by-design approach while engineering
our system, based on explicitly accounting for well-crafted attacks against it.
As we will show, our adversarial fusion mechanisms guarantee high detection
rates even under worst-case changes in the HTML code of phishing pages, by
effectively leveraging the role of the visual analysis. Finally, we publicly release
our dataset to encourage research reproducibility and benchmarking.

3 DeltaPhish

In this section we present DeltaPhish (δPhish). Its name derives from the fact
that it determines whether a certain URL contains a phishing webpage by eval-
uating HTML and visual differences between the input page and the website
homepage. The general architecture of δPhish is depicted in Fig. 2. We denote
with x ∈ X either the URL of the input webpage or the webpage itself, inter-
changeably. Accordingly, the set X represents all possible URLs or webpages.
The homepage hosted in the same domain of the visited page (or its URL) is
denoted with x0 ∈ X . Initially, our system receives the input URL of the input
webpage x and retrieves that of the corresponding homepage x0. Each of these

DeltaPhish: Detecting Phishing Webpages in Compromised Websites 375

URLs is received as input by a browser automation module (Sect. 3.1), which
downloads the corresponding page and outputs its HTML code and a snapshot
image. The HTML code of the input page and that of the homepage are then
used to compute a set of HTML features (Sect. 3.2). Similarly, the two snapshot
images are passed to another feature extractor that computes a set of visual
features (Sect. 3.3). The goal of these feature extractors is to map the input
page x onto a vector space suitable for learning a classification function. Recall
that both feature sets are computed based on a comparison between the char-
acteristics of the input page x and those of the homepage x0. We denote the
two mapping functions implemented by the HTML and by the visual feature
extractor respectively with δ1(x) ∈ R

d1 and δ2(x) ∈ R
d2 , being d1, d2 the dimen-

sionality of the two vector spaces. For compactness of our notation, we do not
explicitly highlight the dependency of δ1(x) and δ2(x) on x0, even if it should be
clear that such functions depend on both x and x0. These two vectorial-based
representations are then used to learn two distinct classifiers, i.e., an HTML- and
a Snapshot-based classifier. During operation, these classifiers will respectively
output a dissimilarity score s1(x) ∈ R and s2(x) ∈ R for each input page x,
which essentially measure how different the input page is from the correspond-
ing homepage. Thus, the higher the score, the higher the probability of x being
a phishing page. These scores are then combined using different (standard and
adversarial) fusion schemes (Sect. 3.4), to output an aggregated score g(x) ∈ R.
If g(x) ≥ 0, the input page x is classified as a phish, and as legitimate otherwise.

Before delving into the technical implementation of each module, it is worth
remarking that δPhish can be implemented as a module in web application fire-
walls, and, potentially, also as an online blacklisting service (to filter suspicious
URLs). Some implementation details that can be used to speed up the processing
time of our approach are discussed in Sect. 4.2.

3.1 Browser Automation

The browser automation module launches a browser instance using Selenium1

to gather the snapshot of the landing web page and its HTML source, even if
the latter is dynamically generated with (obfuscated) JavaScript code. This is
indeed a common case for phishing webpages.

3.2 HTML-Based Classification

For HTML-based classification, we define a set of 11 features, obtained by com-
paring the input page x and the homepage x0 of the website hosted in the same
domain. They will be the elements of the d1-dimensional feature vector δ1(x)
(with d1 = 11) depicted in Fig. 2. We use the Jaccard index J as a similarity
measure to compute most of the feature values. Given two sets A,B, it is defined
as the cardinality of their intersection divided by the cardinality of their union:

J(A,B) = |A ∩ B|/|A ∪ B| ∈ [0, 1] . (1)
1 http://docs.seleniumhq.org.

http://docs.seleniumhq.org

376 I. Corona et al.

If A and B are both empty, J(A,B) = 1. The 11 HTML features used by our
approach are described below.
(1) URL. We extract all URLs corresponding to hyperlinks in x and x0 through
the inspection of the href attribute of the <a> tag,2 and create a set for each
page. URLs are considered once in each set without repetition. We then compute
the Jaccard index (Eq. 1) of the two sets extracted. For instance, let us assume
that x and x0 respectively contain these two URL sets:

Ux : {https://www.example.com/p1/, https://www.example.com/p2/,
https://support.example.com/}

Ux0 : {https://support.example.com/p1, https://www.example.com/p2/,
https://support.example.com/en-us/ht20}

In this case, since only one element is exactly the same in both sets (i.e., https://
www.example.com/p2/), the Jaccard index is J(Ux, Ux0) = 0.2.
(2) 2LD. This feature is similar to the previous one, except that we consider
the second-level domains (2LDs) extracted from each URL instead of the full
link. The 2LDs are considered once in each set without repetition. Let us now
consider the example given for the computation of the previous feature. In this
case, both Ux and Ux0 will contain only example.com, and, thus, J(Ux, Ux0) = 1.
(3) SS. To compute this feature, we extract the content of the <style> tags
from x and x0. They are used to define style information, and every webpage
can embed multiple <style> tags. We compare the similarity between the sets
of <style> tags of x and x0 using the Jaccard index.
(4) SS-URL. We extract URLs from x and x0 that point to external style sheets
through the inspection of the href attribute of the <link> tag; e.g., http://
example.com/resources/styles.css. We create a set of URLs for x and another
for x0 (where every URL appears once in each set, without repetition), and
compute their similarity using the Jaccard index (Eq. 1).
(5) SS-2LD. As for the previous feature, we extract all the URLs that link
external style sheets in x and x0. However, in this case we only consider the
second-level domains for each URL (e.g., example.com). The feature value is
then computed again using the Jaccard index (Eq. 1).
(6) I-URL. For this feature, we consider the URLs of linked images in x and
in x0, separately, by extracting all the URLs specified in the
attributes. The elements of these two sets are image URLs;
e.g., http://example.com/img/image.jpg, and are considered once in each set
without repetition. We then compute the Jaccard index for these two sets (Eq. 1).
(7) I-2LD. We consider the same image URLs extracted for I-URL, but
restricted to their 2LDs. Each 2LD is considered once in each set without repe-
tition, and the feature value is computed using again the Jaccard index (Eq. 1).
(8) Copyright. We extract all significant words, sentences and symbols found
in x and x0 that can be related to copyright claims (e.g., c©, copyright, all rights
2 Recall that the <a> tag defines a hyperlink and the href attribute is its destination.

https://www.example.com/p1/
https://www.example.com/p2/
https://support.example.com/
https://support.example.com/p1
https://www.example.com/p2/
https://support.example.com/en-us/ht20
https://www.example.com/p2/
https://www.example.com/p2/
http://example.com/resources/styles.css
http://example.com/resources/styles.css
http://example.com/img/image.jpg

DeltaPhish: Detecting Phishing Webpages in Compromised Websites 377

reserved), without repetitions, and excluding stop-words of all human languages.
The feature value is then computed using the Jaccard index.
(9) X-links. This is a binary feature. It equals 1 if the homepage x0 is linked in
x (accounting for potential redirections), and 0 otherwise.
(10) Title. This feature is also computed using the Jaccard index. We create
the two sets to be compared by extracting all words (except stop-words) from
the title of x and x0, respectively, without repetitions. They can be found within
the tag <title>, which defines the title of the HTML document, i.e., the one
appearing on the browser toolbar and displayed in search-engine results.
(11) Language. This feature is set to 1 if x and x0 use the same language,
and to 0 otherwise. To identify the language of a page, we first extract the
stop-words for all the human languages known from x and x0, separately, and
without repetitions. We then assume that the page language is that associated
to the maximum number of corresponding stop-words found.

Classification. The 11 HTML features map our input page x onto a vector space
suitable for classification. Using the compact notation defined at the beginning
of this section (see also Fig. 2), we denote the d1-dimensional feature vector cor-
responding to x as δ1(x) (being d1 = 11). We then train a linear Support Vector
Machine (SVM) [33] on these features to classify phishing and legitimate pages.
For each input page, during operation, this classifier computes a dissimilarity
score measuring how different the input page is from its homepage:

s1(x) = wT
1 δ1(x) + b1 . (2)

The feature weights w1 ∈ R
d1 and the bias b1 ∈ R of the classification function

are optimized during SVM learning, using a labeled set of training webpages [33].

3.3 Snapshot-Based Classification

To analyze differences in the snapshots of the input page x and the corresponding
homepage x0, we leverage two state-of-the-art feature representations that are
widely used for image classification, i.e., the so-called Histogram of Oriented
Gradients (HOGs) [34], and color histograms. We have selected these features
since, with respect to other popular descriptors (like the Scale-Invariant Feature
Transform, SIFT), they typically achieve better performance in the presence of
very high inter-class similarities. Unlike HOGs, which are local descriptors, color
histograms give a representation of the spatial distribution of colors within an
image, providing complementary information to our snapshot analysis.

We exploit these two representations to compute a concatenated (stacked)
feature vector for each snapshot image, and then define a way to compute
a similarity-based representation from them. The overall architecture of our
snapshot-based classifier is depicted in Fig. 3. In the following, we explain more
in detail how HOG and color histograms are computed for each snapshot image
separately, and how we combine the stacked feature vectors of the input page x
and of the homepage x0 to obtain the final similarity-based feature vector.

378 I. Corona et al.

Fig. 3. Computation of the visual features in δPhish.

Fig. 4. δPhish image tiling extracts visual features retaining spatial information.

Image Tiling. To preserve spatial information in our visual representation of
the snapshot, we extract visual features not only from the whole snapshot image,
but also from its quarters and sixteenths (as depicted in Fig. 4), yielding (1 ×
1) + (2 × 2) + (4 × 4) = 21 tiles. HOG descriptors and color histograms are
extracted from each tile, and stacked, to obtain two vectors of 21 × 300 = 6, 300
and 21 × 288 = 6, 048 dimensions, respectively.

HOG features. We compute the HOG features for each of the 21 input image
tiles following the steps highlighted in Fig. 5 and detailed below, as in [34]. First,
the image is divided in cells of 8× 8 pixels. For each cell, a 31-dimensional HOG
descriptor is computed, in which each bin represents a quantized direction and
its value corresponds to the magnitude of gradients in that direction (we refer
the reader to [34–36] for further details). The second step consists of considering
overlapping blocks of 2×2 neighboring cells (i.e., 16×16 pixels). For each block,
the 31-dimensional HOG descriptors of the four cells are simply concatenated to

Fig. 5. Computation of the 300 HOG features from an image tile.

DeltaPhish: Detecting Phishing Webpages in Compromised Websites 379

form a (31 × 4) 124-dimensional stacked HOG descriptor, also referred to as a
visual word. In the third step, each visual word extracted from the image tile is
compared against a pre-computed vocabulary of K visual words, and assigned
to the closest word in the vocabulary (we have used K = 300 visual words in our
experiments). Eventually, a histogram of K = 300 bins is obtained for the whole
tile image, where each bin represents the occurrence of each pre-computed visual
word in the tile. This approach is usually referred to as Bag of Visual Words
(BoVW) [37]. The vocabulary can be built using the centroids found by k-means
clustering from the whole set of visual words in the training data. Alternatively,
a vocabulary computed from a different dataset may be also used.

Color features. To extract our color features, we first convert the image from
the RGB (Red-Green-Blue) to the HSV (Hue-Saturation-Value) color space, and
perform the same image tiling done for the extraction of the HOG features
(see Fig. 4). We then compute a quantized 3D color histogram with 8, 12 and
3 bins respectively for the H, S and V channel, corresponding to a vector of
8 × 12 × 3 = 288 feature values. This technique has shown to be capable of
outperforming histograms computed in the RGB color space, in content-based
image retrieval and image segmentation tasks [38].

Both the HOG descriptor and the color histogram obtained from each image
tile are normalized to sum up to one (to correctly represent the relative fre-
quency of each bin). The resulting 21× 300 HOG descriptors and 21 × 288 color
histograms are then stacked to obtain a feature vector consisting of d2 = 12, 348
feature values, as shown in Fig. 3. In the following, we denote this feature vector
respectively with p and p0 for the input page x and the homepage x0.

Similarity-based Feature Representation. After computing the visual fea-
tures p for the input page x and p0 for the homepage x0, we compute the
similarity-based representation δ2(x) (Figs. 2 and 3) from these feature vec-
tors as:

δ2(x) = min(p,p0) (3)

where min here returns the minimum of the two vectors for each coordinate.
Thus, the vector δ2(x) will also consists of d2 = 12, 348 feature values.

Classification. The similarity-based mapping in Eq. (3) is inspired to the his-
togram intersection kernel [39]. This kernel evaluates the similarity between two
histograms u and v as

∑
i min(ui, vi). Instead of summing up the values of δ2(x)

(which will give us exactly the histogram intersection kernel between the input
page and the homepage), we learn a linear SVM to estimate a weighted sum:

s2(x) = wT
2 δ2(x) + b2 , (4)

where, similarly to the HTML-based classifier, w2 ∈ R
d2 and b2 ∈ R are the

feature weights and bias, respectively. This enables us to achieve better perfor-
mances, as, in practice, the classifier itself learns a proper similarity measure
between webpages directly from the training data. This is a well-known practice
in the area of machine learning, usually referred to as similarity learning [40].

380 I. Corona et al.

3.4 Classifier Fusion

The outputs of the HTML- and of the Snapshot-based classifiers, denoted in the
following with a two-dimensional vector s = (s1(x), s2(x)) (Eqs. 2–4), can be
combined using a fixed (untrained) fusion rule, or a classifier (trained fusion).
We consider three different combiners in our experiments, as described below.

Maximum. This rule simply computes the overall score as:

g(x) = max (s1(x), s2(x)) . (5)

The idea is that, for a page to be classified as legitimate, both classifiers should
output a low score. If one of the two classifiers outputs a high score and classifies
the page as a phish, then the overall system will also classify it as a phishing
page. The reason behind this choice relies upon the fact that the HTML-based
classifier can be evaded by a skilled attacker, as we will see in our experiments,
and we aim to avoid that misleading such a classifier will suffice to evade the
whole system. In other words, we would like our system to be evaded only if both
classifiers are successfully fooled by the attacker. For this reason, this simple rule
can be also considered itself a sort of adversarial fusion scheme.

Trained Fusion. To implement this fusion mechanism, we use an SVM with
the Radial Basis Function (RBF) kernel, which computes the overall score as:

g(x) =
∑n

i=1 yiαik(s, si) + b , (6)

where k(s, si) = exp (−γ‖s − si‖2) is the RBF kernel function, γ is the kernel
parameter, and s = (s1(x), s2(x)) and si = (s1(xi), s2(xi)) are the scores pro-
vided by the HTML- and Snapshot-based classifiers for the input page x and
for the n pages in our training set D = {xi, yi}ni=1, being yi ∈ {−1,+1} the
class label (i.e., −1 and +1 for legitimate and phishing pages). The classifier
parameters {αi}ni=1 and b are estimated during training by the SVM learning
algorithm, on the set of scores S = {si, yi}ni=1, which can be computed through
stacked generalization (to avoid overfitting [41]) as explained in Sect. 4.1.

Adversarial Fusion. In this case, we consider the same trained fusion mech-
anism described above, but augment the training scores by simulating attacks
against the HTML-based classifier. In particular, we add a fraction of samples
for which the score of the Snapshot-based classifier is not altered, while the score
of the HTML-based classifier is randomly sampled from a uniform distribution
in [0, 1]. This is a straightforward way to account for the fact that the score
of the HTML-based classifier can be potentially decreased by a targeted attack
against that module, and make the combiner aware of this potential threat.

Some examples of the resulting decision functions are shown in Fig. 7. Worth
remarking, when using trained fusion rules, the output scores of the HTML- and
Snapshot-based classifiers are normalized in [0, 1] using min-max normalization,
to facilitate learning (see Sect. 4.1 for further details).

DeltaPhish: Detecting Phishing Webpages in Compromised Websites 381

4 Experimental Evaluation

In this section we empirically evaluate δPhish, simulating its application as
a module in a web application firewall. Under this scenario, we assume that
the monitored website has been compromised (e.g., using a phishing kit), and
it is hosting a phishing webpage. The URLs contacted by users visiting the
website are monitored by the web application firewall, which can deny access to a
resource if retained suspicious (or which can stop a request if retained a potential
attack against the web server). The contacted URLs that are not blocked by the
web application firewall are forwarded to δPhish, which detects whether they are
substantially different from the homepage (i.e., they are potential phishing pages
hosted in the monitored website). If δPhish reveals such a sign of compromise,
the web application firewall can deny user access to the corresponding URL.

We first discuss the characteristics of the webpages we have collected from
legitimate, compromised websites (hosting phishing scams) to build our dataset,
along with the settings used to run our experiments (Sect. 4.1). We then report
our results, showing that our system can detect most of the phishing pages with
very high accuracy, while misclassifying only few legitimate webpages (Sect. 4.2).
We have also considered an adversarial evaluation of our system in which the
characteristics of the phishing pages are manipulated to evade detection of the
HTML-based classifier. The goal of this adversarial analysis is to show that
δPhish can successfully resist even to worst-case evasive attempts. Notably, we
have not considered attacks against the Snapshot-based classifier as they would
require modifying the visual aspect of the phishing page, thus making it easier
for the victim to recognize the phishing scam.

4.1 Experimental Setting

Dataset. Our dataset has been collected from October 2015 to January 2016,
starting from active phishing URLs obtained online from the PhishTank feed.3

We have collected and manually validated 1, 012 phishing pages. For each phish-
ing page, we have then collected the corresponding homepage from the hosting
domain. By parsing the hyperlinks in the HTML code of the homepage, we have
collected from 3 to 5 legitimate pages from the same website, and validated
them manually. This has allowed us to gather 1, 012 distinct sets of webpages,
from now on referred to as families, each consisting of a phishing page and some
legitimate pages collected from the same website. Overall, our dataset consists
of 5, 511 distinct webpages, 1, 012 of which are phishing pages. We make this
data publicly available, along with the classification results of δPhish.4

In these experiments, we consider 20 distinct training-test pairs to average
our results. For a fair evaluation, webpages collected from the same domain
(i.e., belonging to the same family) are included either in the training data or
in the test data. In each repetition, we randomly select 60% of the families for

3 https://www.phishtank.com.
4 http://deltaphish.pluribus-one.it/.

https://www.phishtank.com
http://deltaphish.pluribus-one.it/

382 I. Corona et al.

training, while the remaining 40% are used for testing. We normalize the feature
values δ1(x) and δ2(x) using min-max normalization, but estimating the 5th and
the 95th percentile from the training data for each feature value, instead of the
minimum and the maximum, to reduce the influence of outlying feature values.

This setting corresponds to the case in which δPhish is trained before deploy-
ment on the web application firewall, to detect phishing webpages independently
from the specific website being monitored. It is nevertheless worth pointing out
that our system can also be trained using only the legitimate pages of the mon-
itored website, i.e., it can be customized depending on the specific deployment.

Classifiers. We consider the HTML- and Snapshot-based classifiers (Sects. 3.2
and 3.3), using the three fusion rules discussed in Sect. 3.4 to combine their
outputs: (i) Fusion (max.), in which the max rule is used to combine the two
outputs (Eq. 5); (ii) Fusion (tr.), in which we use an SVM with the RBF kernel
as the combiner (Eq. 6); and (iii) Fusion (adv.), in which we also use an SVM
with the RBF kernel as the combiner, but augment the training set with phishing
webpages adversarially manipulated to evade the HTML-based classifier.

Parameter tuning. For HTML- and Snapshot-based classifiers, the only para-
meter to be tuned is the regularization parameter C of the SVM algorithm.
For SVM-based combiners exploiting the RBF kernel, we also have to set
the kernel parameter γ. In both cases, we exploit a 5-fold cross-validation
procedure to tune the parameters, by performing a grid search on C, γ ∈
{0.001, 0.01, 0.1, 1, 10, 100}. As the trained fusion rules require a separate train-
ing set for the base classifiers and the combiner (to avoid overfitting), we run a
two-level (nested) cross-validation procedure, usually referred to as stacked gen-
eralization [41]. In particular, the outer 5-fold cross validation splits the training
data into a further training and validation set. This training set is used to tune
the parameters (using an inner 5-fold cross validation as described above) and
train the base classifiers. Then, these classifiers are evaluated on the valida-
tion data, and their outputs on each validation sample are stored. We normalize
these output scores in [0, 1] using min-max normalization. At the end of the outer
cross-validation procedure, we have computed the outputs of the base classifiers
for each of the initial training samples, i.e., the set S = {si, yi}ni=1 (Sect. 3.4).
We can thus optimize the parameters of the combiner on this data and then
learn the fusion rule on all data. For the adversarial fusion, we set the fraction
of simulated attacks added to the training score set to 30% (Sect. 3.4).

4.2 Experimental Results

The results for phishing detection are shown in Fig. 6 (left plot), using Receiver-
Operating-Characteristic (ROC) curves. Each curve reports the average detec-
tion rate of phishing pages (i.e., the true positive rate, TP) against the fraction
of misclassified legitimate pages (i.e., the false positive rate, FP).

The HTML-based classifier is able to detect more than 97% of phishing web-
pages while misclassifying less than 0.5% of legitimate webpages, demonstrating

DeltaPhish: Detecting Phishing Webpages in Compromised Websites 383

0 0.005 0.01 0.015 0.02 0.025 0.03

0.7

0.75

0.8

0.85

0.9

0.95

1

FP

T
P

HTML
Snapshot
Fusion (tr.)
Fusion (adv.)
Fusion (max)

0 1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

Number of modified HTML features

T
P

 a
t F

P
=

1%

HTML
Fusion (tr.)
Fusion (adv.)
Fusion (max)

Fig. 6. ROC curves (left) and adversarial evaluation (right) of the classifiers.

the effectiveness of exploiting differences in the HTML code of phishing and legit-
imate pages. The Snapshot-based classifier is not able to reach such accuracy
since in some cases legitimate webpages may have some different visual appear-
ance, and the visual learning task is inherently more complex. The visual classi-
fier is indeed trained on a much higher number of features than the HTML-based
one. Nevertheless, the detection rate of the Snapshot-based classifier is higher
than 80% at 1% FP, which is still a significant achievement for this classification
task. Note finally that both trained and max fusion rules are able to achieve
accuracy similar to those of the HTML-based classifier, while the adversarial
fusion performs slightly worse. This behavior is due to the fact that injecting
simulated attacks into the training score set of the combiner causes an increase
of the false positive rate (see Fig. 7). This highlights a tradeoff between system
security under attack and accuracy in the absence of targeted attacks against
the HTML-based classifier.

HTML classifier score

Im
ag

e
cl

as
si

fie
r

sc
or

e

−6 −4 −2 0 2 4

−6

−4

−2

0

2

4

−10

−5

0

5

10

HTML classifier score

Im
ag

e
cl

as
si

fie
r

sc
or

e

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−10

−5

0

5

10

HTML classifier score

Im
ag

e
cl

as
si

fie
r

sc
or

e

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−10

−5

0

5

10

Fig. 7. Examples of decision functions (in colors) for maximum (left), trained fusion
(center), and adversarial fusion (right), in the space of the base classifiers’ outputs.
Blue (red) points represent legitimate (phishing) pages. Decision boundaries are shown
as black lines. Phishing pages manipulated to evade the HTML-based classifier will
receive a lower score (i.e., the red points will be shifted to the left), and most likely
evade only the trained fusion. (Color figure online)

Processing time. We have run our experiments on a personal computer
equipped with an Intel(R) Xeon(R) CPU E5-2630 0 operating at 2.30 GHz and

384 I. Corona et al.

4 GB RAM. The processing time of δPhish is clearly dominated by the browser
automation module, which has to retrieve the HTML code and snapshot of the
considered pages. This process typically requires few seconds (as estimated, on
average, on our dataset). The subsequent HTML-based classification is instanta-
neous, while the Snapshot-based classifier requires more than 1.2 s, on average,
to compute its similarity score. This delay is mainly due to the extraction of
the HOG features, while the color features are extracted in less than 3 ms, on
average. The processing time of our approach can be speeded up using paral-
lel computation (e.g., through the implementation of a scalable application on
a cloud computing service), and a caching mechanism to avoid re-classifying
known pages.

Adversarial Evasion. We consider here an attacker that manipulates the
HTML code of his/her phishing page to resemble that of the homepage of the
compromised website, aiming to evade detection by our HTML-based classifier.
We simulate a worst-case scenario in which the attacker has perfect knowledge of
such a classifier, i.e., that he/she knows the weights assigned by the classifier to
each HTML feature. The idea of this evasion attack is to maximally decrease the
classification score of the HTML module while manipulating the minimum num-
ber of features, as in [42]. In this case, an optimal attack will start manipulating
features having the highest absolute weight values. For simplicity, we assume a
worst case attack, where the attacker can modify a feature value either to 0 or
1, although this may not be possible for all features without compromising the
nature of the phishing scam. For instance, in order to set the URL feature to 1
(see Sect. 3.2), an attacker has to use exactly the same set of URLs present in
the compromised website’s homepage. This might require removing some links
from the phishing page, compromising its malicious functionality.

The distribution of the feature weights (and bias) for the HTML-based classi-
fier (computed over the 20 repetitions of our experiment) is shown in the boxplot
of Fig. 8, highlighting two interesting facts. First, features tend to be assigned
only negative weights. This means that each feature tends to exhibit higher
values for legitimate pages, and that the attacker should increase its value to
mislead detection. Since the bias is generally positive, a page tends to be clas-
sified generally as a phish, unless there is sufficient “evidence” that it is similar
to the homepage. Second, the most relevant features (i.e., those which tend to
be assigned the lowest negative weights) are Title, URL, SS-URL, and I-URL.
This will be, in most of the cases, the first four features to be increased by the
attacker to evade detection, while the remaining features play only a minor role
in the classification of phishing and legitimate pages.

The results are reported in Fig. 6 (right plot). It shows how the detection
rate achieved by δPhish at 1% FP decreases against an increasing number of
HTML features modified by the attacker, for the different fusion schemes and the
HTML-based classifier. The first interesting finding is about the HTML-based
classifier, that can be evaded by modifying only a single feature (most likely,
URL). The trained fusion remains slightly more robust, although it exhibits a
dramatic performance drop already at the early stages of the attack. Conversely,

DeltaPhish: Detecting Phishing Webpages in Compromised Websites 385

URL
2L

D SS

SS-U
RL

SS-2
LD

I-U
RL

I-2
LD

Cop
yr

igh
t

X-lin
ks

Title

La
ng

ua
ge

b

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

HTML-based classifier's weights (w) and bias (b)

Fig. 8. Boxplot of feature weights (and bias) for the HTML-based classifier.

the detection rate of maximum and adversarial fusion rules under attack remains
higher than 70%. The underlying reason is that they rely more upon the output
of the Snapshot-based classifier with respect to the trained fusion. In fact, as
already mentioned, such schemes explicitly account for the presence of attacks
against the base classifiers. Note also that the adversarial fusion outperforms
maximum when only one feature is modified, while achieving a similar detection
rate at the later stages of the attack. This clearly comes at the cost of a worse
performance in the absence of attack. Thus, if one retains that such evasion
attempts may be very likely in practice, he/she may decide to trade accuracy in
the absence of attack for an improved level of security against these potential
manipulations. This tradeoff can also be tuned in a more fine-grained manner by
varying the percentage of simulated attacks while training the adversarial fusion
scheme (which we set to 30%), and also by considering a less pessimistic score
distribution than the uniform one (e.g., a Beta distribution skewed towards the
average score assigned by the HTML-based classifier to the phishing pages).

5 Conclusions and Future Work

The widespread presence of public, exploitable websites in the wild has enabled a
large-scale deployment of modern phishing scams. We have observed that phish-
ing pages hosted in compromised websites exhibit a different aspect and structure
from those of the legitimate pages hosted in the same website, for two main rea-
sons: (i) to be effective, phishing pages should resemble the visual appearance
of the website targeted by the scam; and (ii) leaving the legitimate pages intact
guarantees that phishing pages remain active for a longer period of time before
being blacklisted. Website compromise can be thus regarded as a simple pivoting
step in the implementation of modern phishing attacks.

To the best of our knowledge, this is the first work that leverages this aspect
for phishing webpage detection. By comparing the HTML code and the visual
appearance of a potential phishing page with the homepage of the correspond-
ing website, δPhish exhibits high detection accuracy even in the presence of
well-crafted, adversarial manipulation of HTML code. While our results are

386 I. Corona et al.

encouraging, our proposal has its own limitations. It is clearly not able to detect
phishing pages hosted through other means than compromised websites. It may
be adapted to address this issue by comparing the webpage to be classified
against a set of known phishing targets (e.g., PayPal, eBay); in this case, if
the similarity exceeds a given threshold, then the page is classified as a phish.
Another limitation is related to the assumption that legitimate pages within
a certain website share a similar appearance/HTML code with the homepage.
This assumption may be indeed violated, leading the system to misclassify some
pages. We believe that such errors can be limited by extending the comparison
between the potential phishing page and the website homepage also to the other
legitimate pages in the website (and this can be configured at the level of the
web application firewall). This is an interesting evaluation for future work.

Our adversarial evaluation also exhibits some limitations. We have considered
an attacker that deliberately modifies the HTML code of the phishing page to
evade detection. A more advanced attacker might also modify the phishing page
to evade our snapshot-based classifier. This is clearly more complex, as he/she
should not compromise the visual appearance of the phishing page while aiming
to evade our visual analysis. Moreover, the proposed adversarial fusion (i.e., the
maximum) already accounts for this possibility, and the attack can be successful
only if both the HTML and snapshot-based classifiers are fooled. We anyway
leave a more detailed investigation of this aspect to future work, along with
the possibility of training our system using only legitimate data, which would
alleviate the burden of collecting a set of manually-labeled phishing webpages.

Finally, it is worth remarking that we have experimented on more than 5, 500
webpages collected in the wild, which we have also made publicly available for
research reproducibility. Despite this, it is clear that our data should be extended
to include more examples of phishing and legitimate webpages, hopefully through
the help of other researchers, to get more reliable insights on the validity of
phishing webpage detection approaches.

Acknowledgments. This work has been partially supported by the DOGANA
project, funded by the EU Horizon 2020 framework programme, under Grant Agree-
ment no. 653618.

References

1. Beardsley, T.: Phishing detection and prevention, practical counter-fraud solutions.
Technical report, TippingPoint (2005)

2. Hong, J.: The state of phishing attacks. Commun. ACM 55(1), 74–81 (2012)
3. Khonji, M., Iraqi, Y., Jones, A.: Phishing detection: a literature survey. Commun.

Surv. Tutorials 15(4), 2091–2121 (2013). IEEE
4. Han, X., Kheir, N., Balzarotti, D.: Phisheye: live monitoring of sandboxed phishing

kits. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2016, pp. 1402–1413. ACM, New York (2016)

5. Bursztein, E., Benko, B., Margolis, D., Pietraszek, T., Archer, A., Aquino, A.,
Pitsillidis, A., Savage, S.: Handcrafted fraud and extortion: manual account hijack-
ing in the wild. In: IMC 2014, pp. 347–358 (2014)

DeltaPhish: Detecting Phishing Webpages in Compromised Websites 387

6. Cova, M., Kruegel, C., Vigna, G.: There is no free phish: an analysis of “free” and
live phishing kits. In: 2nd WOOT 2008, Berkeley, CA, USA, pp. 4:1–4:8. USENIX
(2008)

7. Invernizzi, L., Benvenuti, S., Cova, M., Comparetti, P.M., Kruegel, C., Vigna, G.:
Evilseed: a guided approach to finding malicious web pages. In: IEEE Symposium
SP 2012, Washington DC, USA, pp. 428–442. IEEE CS (2012)

8. APWG: Global phishing survey: Trends and domain name use in 2014 (2015)
9. Hao, S., Kantchelian, A., Miller, B., Paxson, V., Feamster, N.: PREDATOR: proac-

tive recognition and elimination of domain abuse at time-of-registration. In: ACM
CCS, pp. 1568–1579. ACM (2016)

10. Basnet, R.B., Sung, A.H.: Learning to detect phishing webpages. J. Internet Serv.
Inf. Sec. (JISIS) 4(3), 21–39 (2014)

11. Medvet, E., Kirda, E., Kruegel, C.: Visual-similarity-based phishing detection. In:
4th International Conference SecureComm 2008, pp. 22:1–22:6. ACM, New York
(2008)

12. Chen, T.C., Stepan, T., Dick, S., Miller, J.: An anti-phishing system employing
diffused information. ACM Trans. Inf. Syst. Secur. 16(4), 16:1–16:31 (2014)

13. Chen, T.C., Dick, S., Miller, J.: Detecting visually similar web pages: application
to phishing detection. ACM Trans. Intern. Tech. 10(2), 5:1–5:38 (2010)

14. Blum, A., Wardman, B., Solorio, T., Warner, G.: Lexical feature based phishing
URL detection using online learning. In: 3rd ACM Workshop on Artificial Intelli-
gence and Security, AISec 2010, pp. 54–60. ACM, New York (2010)

15. Liang, B., Su, M., You, W., Shi, W., Yang, G.: Cracking classifiers for evasion: a
case study on the google’s phishing pages filter. In: 25th International Conference
on WWW, Montreal, Canada, pp. 345–356 (2016)

16. Garera, S., Provos, N., Chew, M., Rubin, A.D.: A framework for detection and
measurement of phishing attacks. In: Proceedings of the 2007 ACM Workshop on
Recurring Malcode, WORM 2007, pp. 1–8. ACM, New York (2007)

17. Le, A., Markopoulou, A., Faloutsos, M.: Phishdef: Url names say it all. In: 2011
Proceedings IEEE INFOCOM, pp. 191–195, April 2011

18. Marchal, S., François, J., State, R., Engel, T.: Proactive discovery of phishing
related domain names. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID
2012. LNCS, vol. 7462, pp. 190–209. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33338-5 10

19. Pan, Y., Ding, X.: Anomaly based web phishing page detection. In: 22nd ACSAC,
pp. 381–392 (2006)

20. Xu, L., Zhan, Z., Xu, S., Ye, K.: Cross-layer detection of malicious websites. In:
3rd CODASPY, pp. 141–152. ACM, New York (2013)

21. Whittaker, C., Ryner, B., Nazif, M.: Large-scale automatic classification of phish-
ing pages. In: NDSS, San Diego, California, USA. The Internet Society (2010)

22. Xiang, G., Pendleton, B.A., Hong, J., Rose, C.P.: A hierarchical adaptive prob-
abilistic approach for zero hour phish detection. In: Gritzalis, D., Preneel, B.,
Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 268–285. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15497-3 17

23. Xiang, G., Hong, J., Rose, C.P., Cranor, L.: Cantina+: a feature-rich machine
learning framework for detecting phishing web sites. ACM Trans. Inf. Syst. Secur.
14(2), 21:1–21:28 (2011)

24. Britt, J., Wardman, B., Sprague, A., Warner, G.: Clustering potential phishing
websites using deepmd5. In: 5th LEET, Berkeley, CA, USA. USENIX (2012)

http://dx.doi.org/10.1007/978-3-642-33338-5_10
http://dx.doi.org/10.1007/978-3-642-33338-5_10
http://dx.doi.org/10.1007/978-3-642-15497-3_17

388 I. Corona et al.

25. Jo, I., Jung, E., Yeom, H.: You’re not who you claim to be: website identity check
for phishing detection. In: International Conference on Computer Communication
and Networks, pp. 1–6 (2010)

26. Ludl, C., McAllister, S., Kirda, E., Kruegel, C.: On the effectiveness of techniques
to detect phishing sites. In: Hämmerli, B., Sommer, R. (eds.) DIMVA 2007. LNCS,
vol. 4579, pp. 20–39. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73614-1 2

27. Fette, I., Sadeh, N., Tomasic, A.: Learning to detect phishing emails. In: 16th
International Conference on WWW, pp. 649–656. ACM (2007)

28. Wardman, B., Stallings, T., Warner, G., Skjellum, A.: High-performance content-
based phishing attack detection. In: eCrime Researchers Summit, November 2011

29. Wenyin, L., Liu, G., Qiu, B., Quan, X.: Antiphishing through phishing target
discovery. IEEE Internet Comput. 16(2), 52–61 (2012)

30. Chen, K.T., Chen, J.Y., Huang, C.R., Chen, C.S.: Fighting phishing with discrim-
inative keypoint features. IEEE Internet Comput. 13(3), 56–63 (2009)

31. Fu, A.Y., Wenyin, L., Deng, X.: Detecting phishing web pages with visual similarity
assessment based on earth mover’s distance (emd). IEEE Trans. Dependable Secure
Comput. 3(4), 301–311 (2006)

32. Afroz, S., Greenstadt, R.: Phishzoo: Detecting phishing websites by looking at
them. In: 5th IEEE International Conference on Semantic Computing, pp. 368–
375 (2011)

33. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
34. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:

CVPR, San Diego, CA, USA, pp. 886–893. IEEE CS (2005)
35. Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A., Ramanan, D.: Object detec-

tion with discriminatively trained part-based models. IEEE Trans. Pattern Anal.
Mach. Intell. 32(9), 1627–1645 (2010)

36. Vedaldi, A., Fulkerson, B.: Vlfeat: an open and portable library of computer vision
algorithms. In: Bimbo, A.D., Chang, S.F., Smeulders, A.W.M. (eds.) 18th Inter-
national Conference on Multimedia, Firenze, Italy, pp. 1469–1472. ACM (2010)

37. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization
with bags of keypoints. In: ECCV Workshop on Statistical Learning in Computer
Vision, pp. 1–22 (2004)

38. Sural, S., Qian, G., Pramanik, S.: Segmentation and histogram generation using
the HSV color space for image retrieval. In: ICIP, vol. 2, pp. 589–592 (2002)

39. Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comp. Vis. 7(1), 11–32 (1991)
40. Chechik, G., Sharma, V., Shalit, U., Bengio, S.: Large scale online learning of image

similarity through ranking. J. Mach. Learn. Res. 11, 1109–1135 (2010)
41. Wolpert, D.H.: Stacked generalization. Neural Netw. 5, 241–259 (1992)
42. Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto, G.,

Roli, F.: Evasion attacks against machine learning at test time. In: Blockeel, H.,
Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol.
8190, pp. 387–402. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40994-3 25

http://dx.doi.org/10.1007/978-3-540-73614-1_2
http://dx.doi.org/10.1007/978-3-642-40994-3_25

Secure Authentication in the Grid:
A Formal Analysis of DNP3: SAv5

Cas Cremers, Martin Dehnel-Wild(B), and Kevin Milner

Department of Computer Science, University of Oxford, Oxford, UK
{cas.cremers,martin.dehnel-wild,kevin.milner}@cs.ox.ac.uk

Abstract. Most of the world’s power grids are controlled remotely.
Their control messages are sent over potentially insecure channels,
driving the need for an authentication mechanism. The main communica-
tion mechanism for power grids and other utilities is defined by an IEEE
standard, referred to as DNP3; this includes the Secure Authentication
v5 (SAv5) protocol, which aims to ensure that messages are authenti-
cated. We provide the first security analysis of the complete DNP3: SAv5
protocol. Previous work has considered the message-passing sub-protocol
of SAv5 in isolation, and considered some aspects of the intended security
properties. In contrast, we formally model and analyse the complex com-
position of the protocol’s three sub-protocols. In doing so, we consider
the full state machine, and the possibility of cross-protocol attacks. Fur-
thermore, we model fine-grained security properties that closely match
the standard’s intended security properties. For our analysis, we leverage
the Tamarin prover for the symbolic analysis of security protocols.

Our analysis shows that the core DNP3: SAv5 design meets its
intended security properties. Notably, we show that a previously reported
attack does not apply to the standard. However, our analysis also leads
to several concrete recommendations for improving future versions of the
standard.

1 Introduction

Most of the world’s power grids are monitored and controlled remotely. In prac-
tice, power grids are controlled by transmitting monitoring and control messages,
between authorised operators (‘users’) that send commands from control cen-
ters (‘master stations’), and substations or remote devices (‘outstations’). The
messages may be passed over a range of different media, such as direct serial
connections, ethernet, Wi-Fi, or un-encrypted radio links. As a consequence, we
cannot assume that these channels guarantee confidentiality or authenticity.

The commands that are passed over these media are critical to the security of
the power grid: they can make changes to operating parameters such as increases
or decreases in voltage, opening or closing valves, or starting or stopping motors
[13]. It is therefore desirable that an adversary in control of one of these media
links should not be able to insert or modify messages. This has motivated the
need for a way to authenticate received messages.
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 389–407, 2017.
DOI: 10.1007/978-3-319-66402-6 23

390 C. Cremers et al.

The DNP3 standard, more formally known as IEEE 1815–2012, the “Stan-
dard for Electric Power Systems Communications – Distributed Network Pro-
tocol” [3], is used by most of the world’s power grids for communication, and
increasingly for other utilities such as water and gas.

Secure Authentication version 5 (SAv5) is a new protocol family within
DNP3, and was standardised in 2012 (Chap. 7 of IEEE 1815–2012 [3], based
on IEC/TS 62351-5 [4]). SAv5’s goal is to provide authenticated communica-
tion between parties within a utility grid. For example, this protocol allows a
substation or remote device within a utility grid to verify that all received com-
mands were genuinely sent by an authorised user, that messages have not been
modified, and that messages are not being maliciously replayed from previous
commands.

Given the security-critical nature of the power grid, one might expect that
DNP3: SAv5 would have attracted substantial scrutiny. Instead, there has been
very little analysis, except for a few limited works. One possible explanation is
the inherent complexity of the DNP3: SAv5 protocol, as it consists of three inter-
acting sub-protocols that maintain state to update various keys, which results
in a very complex state machine for each of the participants. Such protocols are
notoriously hard to analyse by hand, and the complex looping constructions pose
a substantial challenge for protocol security analysis tools. Moreover, it is not
sufficient to analyse each sub-protocol in isolation. While this has been known in
theory for a long time [17], practical attacks that exploit cross-protocol interac-
tions have only been discovered more recently, e.g., [11,19]. In general, security
protocol standards are very hard to get right, e.g. [10,21].

Contributions. In this work, we perform the most comprehensive analysis of
the full DNP3 Secure Authentication v5 protocol yet, leveraging automated tools
for the symbolic analysis of security protocols. In particular:

– We provide the first formal models of two of the SAv5 sub-protocols that had
not been modelled previously.

– We provide the first analysis of the complex combination of the three sub-
protocols, thereby considering cross-protocol attacks as well as attacks on
any of the sub-protocols. The security properties that we model capture the
standard’s intended goals in much greater detail than previous works.

– Despite the complexity of the security properties and the protocol, and in
particular its complex state-machine and key updating mechanisms, and con-
sidering unbounded sessions and loop iterations, we manage to verify the
protocol using the Tamarin prover. We conclude that the standard meets its
intended goals if implemented correctly, increasing confidence in this security-
critical building block of many power grids.

– Notably, our findings contradict a claimed result by an earlier analysis; in
particular, our findings show that an attack claimed by other work is not
possible in the standard as defined.

– Our analysis naturally leads to a number of recommendations for improving
future versions of the standard.

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 391

Paper Structure. We start by describing the Secure Authentication v5 stan-
dard in Sect. 2. We describe the sub-protocols’ joint modelling in Sect. 3, and
their analysis and results in Sect. 4. We present our recommendations in Sect. 5,
survey previous analyses of DNP3 in Sect. 6, before concluding in Sect. 7. Further
modelling issues, choices, and examples can be found in [12].

2 The DNP3 Standard

The DNP3 standard [3] gives both high level and semi-formal descriptions, to
serve as an implementation guide, as well as providing an informal problem
statement and conformance guidelines. The Secure Authentication v5 protocol
is described in Chap. 7 of [3]. We give an overview of the system and its sub-
protocols, before describing the threat model from SAv5.

2.1 System and Sub-protocols

There are three types of actor in SAv5: the (single) Authority, the Users (oper-
ating from a Master station), and the Outstations. The Authority decides who
are legitimate users, and generates new (medium-term) Update Keys for these
users. Users send control packets to outstations, who act upon them if they
are successfully authenticated. Outstations send back (similarly authenticated)
monitoring packets. Each user can communicate with multiple outstations, and
each outstation can communicate with multiple users. Users regularly generate
new (short-term) Session Keys for each direction of this communication, and
transport these keys to the outstations. Session keys are distributed and updated
using long-term Authority Keys and medium-term Update keys. These three
different keys are used by three sub-protocols: the Session Key Update proto-
col, the Critical ASDU Authentication protocol, and the Update Key Change
protocol. See Fig. 1 for an overview of the sub-protocols’ relationships.

Initial Key Distribution: Before any protocols are run, a long-term Authority
Key and an initial medium-term update key must be pre-distributed to each
party. These keys are distributed “over a secure channel” (e.g. via USB stick) to
the respective parties. N.B. Session Keys are not pre-distributed.

The Session Key Update Protocol: Before parties can exchange control or
monitoring messages, the user and outstation must initialise session keys. This
sub-protocol initialises (and later updates) a new, symmetric Session Key for
each communication direction.

After �15 min or �1,000 critical messages (both configurable) the session keys
will expire. The user and outstation run the Session Key Update Protocol again,
where the user generates fresh symmetric session keys, and sends them to the
outstation, encrypted with their current update key. These session keys must
remain secret, but the secrecy of new keys importantly does not rely on the
secrecy of previous session keys.

392 C. Cremers et al.

AK

UK0(USR,O)

Update Key Change

Session
Key Update

Critical ASDU
Authentication

UKi(USR,O), i > 0

CDSKj(USR,O),
MDSKj(USR,O), j ≥ 0

Fig. 1. Relationships between sub-
protocols, the flow of keys between
them (vertical), and required pre-
shared keys (horizontal).

User, USR
UKi(USR,O)

Outstation, O
UKi(USR,O)

S1
USR

Fresh CDj

Increment KSQ

S2

SKSMj := KSQ, USR,
KeyStatus [= ‘NOT INIT’], CDj

Fresh CDSKj(USR,O),
MDSKj(USR,O)

S3

SKCMj := KSQ, USR,
{|CDSKj(USR,O),MDSKj(USR,O),

SKSMj |}sUKi(USR,O)

Fresh CDj+1

Increment KSQ

S4S5

SKSMj+1 := KSQ+1, USR,
KeyStatus [= ‘OK’], CDj+1,
HMACMDSKj (USR,O)(SKCMj)

Fig. 2. The Session Key Update Pro-
tocol . The labels S1–5 identify the pro-
tocol rules described in Sect. 2.2.1

All sub-protocols use sequence numbers and freshly generated Challenge Data
with the aim of preventing replay attacks.

The Critical ASDU Authentication Protocol: Outstations use this sub-
protocol to verify that received control packets were genuinely sent by a legiti-
mate user. Vice-versa, this sub-protocol allows a user to confirm that received
monitoring packets were genuinely sent by a legitimate outstation. As this is an
authentication-only protocol, Critical ASDUs are not confidential.

After this sub-protocol’s first execution, the faster ‘Aggressive Mode’ may
be performed: this cuts the non-aggressive mode’s three messages to just one by
sending the ASDU and a keyed HMAC in the same message.

The Update Key Change Protocol: After a longer time, the update key
may expire. The user and outstation (helped by the Authority) will execute the
Update Key Change Protocol . A new update key is created by the Authority,
and sent to both the user and outstation.

2.2 Protocol Descriptions

We now give more detailed descriptions of the three symmetric-key sub-protocols
in Secure Authentication v5. We consider the optional asymmetric mode out of
scope for this analysis. {|m |}sk denotes the symmetric encryption of term m under
key k; similarly HMACk (m) denotes the HMAC of term m keyed by k.

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 393

User, USR
CDSKj(USR,O)

Outstation, O
CDSKj(USR,O)

(Critical) ASDU1

A1

Fresh CD
Increment CSQ

A2
AC1 := CSQ, USR, CD

A3

CSQ, USR,
HMACCDSKj(USR,O)(AC1, ASDU1)

A4

Aggressive Only:
Increment CSQ

AgRq

CSQ+1, USR,
HMACCDSKj(USR,O)(‘Aggr’,

CSQ+1, AC1, ASDU2)
AgRcv

Fig. 3. The Critical ASDU Authentica-
tion Protocol , Control Direction, Non-
Aggressive and Aggressive Modes. The
labels A1–4 identify the protocol rules
described in Sect. 2.2.2

Authority, A
AK

User, USR
AK

Outstation, O
AK

Fresh CDa

USR, CDa
U1

Fresh CDb

Increment KSQ

KSQ, USR, CDb
U2

KSQ, USR, CDb
U3

Fresh UKi(USR,O)

UKC
U4

UKC,
HMACUKi(USR,O)(‘User’,
CDa,CDb, KSQ, USR)

U5

HMACUKi(USR,O)(‘O’,
CDb,CDa, KSQ, USR)

U6U7

Fig. 4. The Update Key Change Proto-
col . The labels U1–7 identify the proto-
col rules described in Sect. 2.2.3. In U4
and U5, UKC is the tuple KSQ, USR,
{|USR,UKi(USR,O),CDb |}sAK

2.2.1 Session Key Update Protocol : See Fig. 2. This is also the first sub-
protocol run after a system restarts, to initialise the shared session keys.

S1. The user sends a Session Key Status Request. The user moves from “Init”
to the state “Wait for Key Status”.

S2. The outstation generates fresh challenge data CDj , and increments its Key
Change Sequence Number, KSQ. It sends a Session Key Status message
(SKSMj) to the user, containing the KSQ value, user ID, USR, Key Status,
and CDj . The outstation moves from “Start” to the state “Security Idle”.

S3. The user generates two new session keys (one for each direction), CDSK
and MDSK, and sends a Session Key Change Message to the outstation
(SKCMj). This contains the KSQ and USR values, and the encryption of the
new keys and the previously received SKSMj message from the outstation,
encrypted with the current symmetric update key. The user moves to the
state “Wait for Key Change Confirmation”.

S4. The outstation decrypts this with the shared update key, and checks that
SKSMj is the same as it previously sent. If so, the outstation increments
KSQ, and generates new challenge data, CDj+1; it sends another Session
Key Status Message (this time SKSMj+1), but as session keys have been
set, the message now also includes an HMAC of SKCMj , keyed with the
MDSK.

394 C. Cremers et al.

S5. The user verifies that the received HMAC was generated from SKCMj . If
so, the user and outstation start to use the new session keys. If not, the
user and outstation mark the keys as invalid, and retry the protocol. The
user state moves to “Security Idle”.

2.2.2 Critical ASDU Authentication Protocol : See Fig. 3. This is the
main data authentication protocol, and is used to verify the authenticity of
critical ASDUs. This can only run after the first execution of the Session Key
Update Protocol , and it can run in both the control and monitoring directions,
User→Outstation and Outstation→User respectively. Here we present it in the
control direction; the direction determines which key is used for the HMAC in
the final message, i.e. CDSK or MDSK. First, the non-aggressive mode; both
parties start in the state “Security Idle”:

A1. The user sends a critical ASDU, which the outstation must authenticate.
A2. On receipt of this ASDU, the outstation increments its Challenge Sequence

Number, CSQ, and sends an Authentication Challenge (AC), which contains
the user’s ID, USR, fresh challenge data, CD, and the CSQ value. The
outstation moves to the state “Wait for Reply”.

A3. The user sends an Authentication Reply message, which contains the CSQ,
USR, and an HMAC of the previously received Authentication Challenge
message, AC, and the critical ASDU it seeks to authenticate. This HMAC
is keyed with the Control Direction Session Key, CDSK.

A4. The outstation verifies that the HMAC was constructed with the AC mes-
sage it sent, the critical ASDU, and keyed with the current CDSK. If it suc-
ceeds, the outstation acts upon this critical ASDU; if it fails, it does not exe-
cute it. Regardless of the outcome, the outstation returns to “Security Idle”.

Aggressive Mode: Once the non-aggressive sub-protocol has run once, the user
may send an Aggressive Mode Request (‘AgRq’ in Fig. 3). This contains both
the new ASDU to be authenticated, the incremented CSQ, and an HMAC in the
same message. This HMAC is calculated over the last Authentication Challenge
message the user received, and the entire preceding message it is being sent in.

The outstation then checks (‘AgRcv’ in Fig. 3) that the HMAC was con-
structed with the last Authentication Challenge, and that the CSQ is incre-
mented from the last message. If so, it accepts and acts upon the ASDU.

2.2.3 Update Key Change Protocol : See Fig. 4. This allows users and
outstations to change the symmetric update key used by the previous protocol.
Both devices start in “Security Idle”; the outstation always remains here.

U1. The user sends an Update Key Change Request message, containing the
user’s ID, USR, and freshly generated challenge data, CDa. The user moves
to the state “Wait for Update Key Reply”.

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 395

U2. Upon receipt of this message, the outstation increments its Key Change
Sequence Number (the same variable as in the previous sub-protocol), and
also generates fresh challenge data, CDb. It sends the new value of KSQ,
USR and CDb to the user in an Update Key Change Reply message.

U3. The user forwards this message on to the Authority.1
U4. The Authority creates a new update key. It encrypts the key, USR, and CDb

with the Authority Key, and transmits it, KSQ, and USR back to the user.
U5. The user decrypts this, and forwards both this message (Update Key

Change), and an Update Key Change Confirmation (UKCC) message to
the outstation. This is an HMAC of the user’s full name, both challenge
data (CDa and CDb), KSQ, and USR, and it is keyed with the new update
key. The user moves to the state “Wait for Update Key Confirmation”.

U6. The outstation decrypts the first part of the message to learn the new update
key, and verifies that the UKCC HMAC was created with the correct chal-
lenge data and KSQ from step U2. If so, it sends back its own UKCC
message (also keyed with the new update key), but with the order of the
challenge data swapped, and with its name, rather than the user’s.

U7. If the user can validate this HMAC (by checking that it was created with
the challenge data and KSQ values from this same protocol run, keyed with
the new update key), then it accepts the message, and both parties start
to use the new update keys. If this fails, the parties retry the protocol.
Regardless of outcome (except timeout), the user moves back to the state
“Security Idle”.

2.3 Threat Model and Security Properties

In this section we describe how we arrived at the threat model and security prop-
erties that we formally analyse. This is not as straightforward as one might think,
as security properties are often informally and minimally described in protocol
standards. For transparency, we will quote the original standards where possible.
We use colored boxes to denote verbatim quotations from other documents.

The standard has a “Problem description” section [3, p. 13] that describes
“the security threats that this specification is intended to address”. We reproduce
this section in its entirety below:

5.2 Specific threats addressed (from IEEE 1815–2012 [3] p. 13)

This specification shall address only the following security threats, as defined in
IEC/TS 62351-2:

– spoofing;
– modification;
– replay
– eavesdropping — on exchanges of cryptographic keys only, not on other data.

Additionally, the general principles section contains a subsection “Perfect
forward secrecy” that suggests an implicit security requirement. We could not
determine any other sections that would imply security requirements.
1 U3 and U4 are technically out of scope for DNP3: SAv5.

396 C. Cremers et al.

The wording of the above section suggests that all listed terms are defined in
IEC/TS 62351-2 [2]. This is not the case: [2] defines only some of these concepts.
In particular, “modification” and (perfect) “forward secrecy” are not defined.
We address the listed concepts in turn, starting from the ones which are defined.
Spoofing. The standard specifies that spoofing is defined through [2] as:

2.2.191 Spoof (from IEC/TS 62351-2 [2] p. 39)

Pretending to be an authorized user and performing an unauthorized action.
[RFC 2828]

While this definition references RFC 2828 [22], there is a difference, in
that [22] equates spoofing and masquerading, but does not reference unautho-
rized actions:
spoofing attack (from RFC 2828 [22])

(I) A synonym for “masquerade attack”.

where masquerade is defined in the RFC as

masquerade attack (from RFC 2828 [22])

a type of attack in which one system entity illegitimately poses as (assumes the
identity of) another entity. (see: spoofing attack.)

Thus, the RFC equates spoofing and masquerading. Analogously, the DNP3
standard directly relies on [2], which defines masquerading as

2.2.131 Masquerade (from IEC/TS 62351-2 [2] p. 30

The pretence by an entity to be a different entity in order to gain unauthorized
access. [ATIS]

Here, ATIS [5] is a glossary from which this particular definition is taken.
Hence it seems that within the context of DNP3, spoofing and masquerading are
interchangeable, similar to the statements in RFC 2828. However, the definitions
in the DNP3 standard [4] are closer to [5] than to [22], since they additionally
include the aspect of unauthorized access/action. Note that the DNP3 standard
has no explicit concept of authorization; this seems out of the standard’s scope.

Replay
2.2.159 Replay Attack (from IEC/TS 62351-2 [2] p. 35)

1. A masquerade which involves use of previously transmitted messages.
[ISO/IEC 9798-1:1997]

This is a verbatim copy of a similar section in the reference ISO/IEC 9798-
1:1997 [16], and suggests that replay is a special case of masquerading/spoofing.

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 397

Eavesdropping
2.2.92 Eavesdropping (from IEC/TS 62351-2 [2] p. 25)

Passive wiretapping done secretly, i.e., without the knowledge of the originator or
the intended recipients of the communication. [RFC 2828]

This is a verbatim copy from the definition in the reference RFC 2828 [22].
However, DNP3 adds the specific restriction to the confidentiality of keys, as
the main purpose of the standard is to authenticate messages that are not
confidential.
Modification. There is no explicit definition: we interpret this as an integrity
requirement: adversaries must not be able to modify transmitted messages.
Perfect Forward Secrecy. The general design text contains:
5.4.10 Perfect forward secrecy (from IEEE 1815–2012 [3] p. 16)

This specification follows the security principle of perfect forward secrecy, as defined
in IEC/TS 62351-2. If a session key is compromised, this mechanism only puts data
from that particular session at risk, and does not permit an attacker to authenticate
data in future sessions.

Surprisingly, IEC/TS 62351-2 [2] does not mention the concept of (perfect)
forward secrecy. However, the informal explanation suggests that the loss of some
session keys should not affect authentication of future sessions with, presumably,
different session keys.
Adversary Capabilities. The standard states that communications might be
performed over insecure channels, and this suggests the threat model includes
adversaries that can manipulate or insert messages.

The standard additionally states that “if update keys are entered or stored
on the device in an insecure fashion, the entire authentication mechanism is
compromised” ([3, p. 21]). This suggests that some forms of compromise might
be considered (e.g., of session keys), but not the full compromise (in which all
stored data is compromised) of a party involved of a session.

3 Formal Model of SAv5 in Tamarin

Our modelling and analysis of Secure Authentication v5 used the Tamarin secu-
rity protocol verification tool [20]. Tamarin is a symbolic tool which supports
both falsification and unbounded verification of security protocols specified as
multiset rewriting systems with respect to (temporal) first-order properties. We
give a brief overview of Tamarin in Sect. 3.3, and an example of its syntax can
be found in the appendices of [12]; for more detail on the theory and use of
Tamarin see [20] and https://tamarin-prover.github.io.

3.1 Symbolic Modelling Assumptions

Symbolic analysis does not consider computational attacks on a protocol, instead
focusing on the logic of protocol interactions. This requires us to make assump-
tions about the primitives used in the protocol, which restricts the power of the
analysis. We make the following assumptions:

https://tamarin-prover.github.io

398 C. Cremers et al.

0 1 2 3

4

5

6
S1 S3 S5

Expire Session Keys

A2A4

U1U3

U5

U7

Fig. 5. A simplified version of the user’s state machine as defined in the standard,
excluding error transitions and the monitoring direction of the Critical ASDU Authen-
tication Protocol . Note that although many transitions occur from the same state,
they are conditional on additional state that is not represented in the state machine
as described by the standard.

– Dolev-Yao Adversary: the adversary controls the network.
– Symbolic Representation: information is contained in terms. Any party

(including the adversary) can either know a term in its entirety, or not know
it, a party cannot learn e.g. a single bit of a term.

– Perfect Cryptography: we assume that the cryptographic primitives used are
perfect. This means that e.g. an adversary can only learn the term m from
the symmetrically encrypted {|m |}sk term if it knows the key, k.

– Hash Functions: we assume that hash functions are one-way and injective.
– Randomness: we assume all freshly generated random terms are unpre-

dictable, and unique (no two fresh terms generated separately are equal).

3.2 Complexity of the Protocol

Each of the protocols within Secure Authentication v5 are individually straight
forward; however, much more complexity becomes apparent when they interact.
To give an indication of the state machines, see Fig. 5 for a diagram showing the
state transitions performed by the user. The system starts in state 0; each node
is the state the user is in before it executes a rule along one of the outgoing edges.
These edges are labelled with the name of the rule which the user executes during
the transition into another state (these names are the same as in the Message
Sequence Charts). This diagram demonstrates how multiple loops can occur in
many different orders, with very little determined structure, and how little of
the relevant state is represented by the standard’s state machines. Each protocol
can loop many times (below certain large thresholds), making the possible routes
through the state machines and state-space very large and complex indeed.

As there is stored data associated with each of these states, we do not get
injective correspondence with the named states from the SAv5 specification.

3.3 Protocol Modelling in Tamarin

In Tamarin, protocols are modelled as a collection of labelled multiset rewrit-
ing rules; these consist of Premises, Actions (or labels), and Conclusions.

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 399

The premises of a rule are facts which must exist in the multiset prior to the
rule’s execution, and conclusions are facts which are added to the multiset by
executing the rule. Individual facts may be either linear or persistent; if a fact is
linear then it is consumed when used in the premise of a rule. Actions are used to
label execution traces: when a rule is executed at a particular point, the actions
are associated to that time point, and can be referenced to describe properties
of traces.

All three sub-protocols’ rules and interactions were modelled as rules in
Tamarin’s operational semantics; the final model comprises 30 multiset rewrit-
ing rules in �450 SLoC. The model and associated theorems are contained in
the file dnp3.m4, which can be found at [1]. We give an example of a SAv5 rule
modelled in Tamarin in the appendices of [12].

The state machines described in [3] (corresponding to the transitions dis-
cussed in Sect. 2.2) capture very little of the protocol logic, as the allowed tran-
sitions depend more on values in memory than on the current state machine
‘state’. As an example, the outstation remains entirely in the named state “Secu-
rity Idle” throughout the Update Key Change Protocol ; however, the outstation
can only respond to certain messages from the user dependent on data from pre-
viously sent or received terms. Our Tamarin models include this much larger
range of transitions, as well as their associated errors and timeouts.

4 Analysis and Results

4.1 Modelling the Threat Model and Security Properties

In Tamarin, security properties are modelled as (temporal) first-order logical
formulae. These are evaluated over so-called action traces that are generated by
the protocol model. Protocol rules have as their second parameter a multiset
of actions; when the rewrite system makes a transition based on a ground rule
instance, the rule’s actions are appended to the action trace. Thus, the action
trace can be considered to be a log of the actions defined by the transition
rules, in a particular execution. The modeller chooses what is logged, and this
enables us to log appropriate events that enable the specification of the desired
properties.

Modelling Adversary Capabilities. As described in Sect. 2.3, the standard
assumes that communication channels are not secure, so we assume the worst:
the adversary fully controls the network, i.e., it can drop and inject arbitrary
messages, and eavesdrop all sent messages. This model is known within symbolic
security verification as the network part of the Dolev-Yao attacker model.

Based on the general principle of perfect forward secrecy, we additionally
provide the adversary with the ability to compromise some (but not all) keys. In
particular, when considering authentication or confidentiality properties, we will
allow the adversary to compromise all session keys except for the CDSK/MDSK
used for this particular critical ASDU. As a result, our model also considers

400 C. Cremers et al.

any attacks on the authentication property that are based on the compromise
of (different) earlier session keys, as described in the standard.

Modelling the Security Properties. We now revisit each of the properties
defined in Sect. 2.3 and describe how we interpret them for modelling purposes,
resulting in three properties called AUTH1, AUTH2, and CONF.

Spoofing: AUTH1. The main security goal of SAv5 seems to be to prevent
spoofing, i.e. to ensure that all critical ASDUs originate from the intended par-
ties. This is classically specified as an authentication property. However, there is
no canonical notion of authentication; instead, there are many subtly different
forms (See, e.g. [18]). In this particular case, we choose a form of agreement,
i.e., if party A receives a critical ASDU, then this exact message was sent by
some B who agrees on the message and some additional parameters. In partic-
ular, the additional parameters we include here are the mode (“aggressive” or
“non-aggressive”) and the direction (“control” or “monitoring”).

One complication is that classical authentication properties link identities: if
Alice receives a message, she associates the sender with an identity (say, Bob),
and the authentication property then encodes that Bob sent the message. How-
ever, in the case of SAv5, there are not always clear identities for parties, e.g.,
outstations. Instead, pairs of users and outstations are effectively linked through
their initial (pre-distributed) update keys. Thus, the best we can hope to prove
is that upon receiving a message, apparently from someone that initially had
update key k, then the message was indeed sent by someone whose initial update
key was k.

We thus model the following (relatively weak) agreement property, which we
refer to as AUTH1: if an outstation or a user receives an Authentication Reply
or Aggressive Mode Request message m in a mode x (where x is either “aggres-
sive” or “non-aggressive”) in direction y (where y is “control” or “monitoring”),
then this message m was sent in mode x for direction y by a party that had the
same initial (pre-distributed) update key.

We consider the following adversary capabilities for this property: the adver-
sary can compromise all session keys (CDSK or MDSK) except for the one used
in the message m. This covers the “perfect forward secrecy” general principle.
Additionally, we allow the adversary to compromise all update keys other than
that used to assign the current session keys.

Replay: AUTH2. Classically, replay refers to multiplicity: if Bob apparently
completes N sessions with Alice, then Alice in fact ran at least N sessions with
Bob. Phrased differently, an adversary should not be able to complete more ses-
sions with Bob than Alice actually ran. However, the definitions in the standard
suggest that replay should be interpreted as a special case of masquerading (and
thus spoofing), which uses previously transmitted messages. From this we infer
that some form of multiplicity or recentness is intended to be part of the anti-
spoofing guarantee. We encode this as AUTH2, which is strictly stronger than
AUTH1.

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 401

Thus, AUTH2 additionally models so-called injective authentication, which
captures the classical notion of replay prevention. Informally, it states that for
each received message, there is a unique message sent. Thus, an attack in which
an adversary tricks Bob into receiving a message twice which Alice only sent
once violates the property.

Eavesdropping: CONF. Since the standard considers non-confidential ASDU
messages, there is no clear confidentiality requirement. However, the authentica-
tion guarantees can only be satisfied against an active adversary if the relevant
keys remain confidential. Hence, a subgoal is to require confidentiality of keys.
This should in particular hold against weaker adversaries, such as eavesdroppers.

We note that the prevention of spoofing attacks (as per the first requirement)
implies that all the relevant keys (Authority Key, Update Key, and MDSK or
CDSK) are confidential with respect to eavesdroppers. If they are not, the active
adversary can trivially use them to spoof a message. We can still model these
confidentiality requirements separately. This is useful for protocols that do not
satisfy the authentication guarantees directly.

If the user chooses, encrypts, and transmits a new Session Key (e.g., CDSK 1)
it is important that the adversary does not learn it. However, it is equally impor-
tant that the adversary cannot e.g. block the transmission of CDSK 1, imperson-
ate the user, and transmit different, adversary-chosen keys (e.g. CDSK 2) to the
outstation. In the second case, CDSK 1 might still be secret, but the adversary
can still issue ‘authentic’ commands to the outstation, HMAC’d with CDSK 2.
Since there are different key types, CONF is modelled as a set of confidentiality
properties, one of each type of key and each perspective (role).

We now give an example of a confidentiality property from our analysis; this
property models the secrecy of Session Keys from the outstation’s point of view:

lemma sessionkey_secrecy_outst:
"not (Ex AK #r . AuthorityKeyReveal(AK) @ r)

==>
(All id UK CDSK MDSK #i.

not (Ex #r . UpdateKeyReveal(UK) @ r)
& not (Ex #r . CDSKReveal(CDSK) @ r)
& not (Ex #r . MDSKReveal(MDSK) @ r)
& received_sess_keys(id, UK, CDSK, MDSK) @ i
==> not (Ex #j . K(CDSK) @ j) & not (Ex #j. K(MDSK) @ j))"

Informally this says, “assuming no authority keys have been compromised, if
the outstation has received some new un-revealed session keys encrypted under
an un-revealed update key, then the adversary cannot derive those new session
keys”. Most key-secrecy lemmas are of this form.

Modification. As stated before, this is not defined in the standard, and we
interpret it as an integrity requirement. As such, it will be covered by our authen-
tication guarantees AUTH1 and AUTH2.

Perfect Forward Secrecy. As noted in Sect. 2.3, this general principle indi-
cates an intended resilience against the compromise of other session keys, and is
covered by our adversary capabilities for the three properties.

402 C. Cremers et al.

4.2 Analysis in Tamarin

Tamarin makes use of backwards reasoning, starting from trace constraints, and
building up further constraints from the possible solutions to an open proof goal.
This has the invariant that all complete traces that fulfil the original constraints
also fulfil at least one of the new sets of constraints. For example, if the current
state contains a rule with an unsolved premise fact, then when Tamarin solves
this premise it splits the current state into several states, each containing one of
the possible conclusions which may have been the source of that fact.

To prove that a particular property holds in all traces (such as “In all traces,
X is preceded by Y”), Tamarin begins with the trace constraints from its nega-
tion (“There exists a trace in which X is not preceded by Y”). Goals are solved
until either there is a case with no goals remaining, which is a completed trace
and thus a counter-example to the property, or all possible states are contra-
dictory. In the latter case, this returns a proof that no trace can satisfy the
constraints of the negated property, and thus the property holds in all traces.

This backwards reasoning makes Tamarin very efficient in many proto-
cols, but is ill-suited to a näıve model of the SAv5 protocol. The specification
relies not only on shared state between each constituent sub-protocol, but also a
shared state machine which dictates which transitions are allowable at particular
times. Further, the majority of state transitions occur from and return to the
same state, Security Idle. Näıvely, an attempt to solve a premise requiring
the Security Idle state may find that many rules are potential sources, and
attempt to solve each of these possibilities separately. Worse, many may intro-
duce new unsolved premises that also require the Security Idle state, creating
a loop.

The key to analysing a protocol like this is to identify invariants over par-
ticular transitions and prioritize solving for the source of these as necessary. For
example, an outstation running the Critical ASDU Authentication Protocol is
making use of session keys that were set during the last Session Key Update
Protocol (rule S4, as labelled in Fig. 2) and are invariant in all other rules. We
therefore add a premise to any rule making use of the session keys so that it
directly relies on the current “session key invariant”, represented by a persistent
fact that is output when the session keys are changed, along with a fresh iden-
tifier so that it cannot unify to any other session key invariant. In solving the
premises, we can prioritize the sources of the current invariants, as the proper-
ties of the current protocol often depend only on the circumstances around the
relevant invariants.

In the Critical ASDU Authentication Protocol example, the authentication
properties depend on the properties of the last Session Key Update and the
original pairing of the user to outstation, and in the Aggressive Mode, on the last
generated challenge data. Each of these is included as an invariant. When proving
that all traces have the AUTH1 property, this allows Tamarin immediately to
solve for the source of the invariants, which adds constraints to, for example,
where the session keys were generated and assigned.

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 403

4.3 Results

Section 4.1 described how the specification requires the protocol be resilient to
Spoofing, Modification, Replay, and Eavesdropping, and how these properties
translated into more formal security properties AUTH1, AUTH2, and CONF.
Our analysis in Tamarin has formally verified all three of these properties for
our model of DNP3: Secure Authentication v5; in particular, they hold for any
(unbounded) number of sessions and loop iterations. These results can be auto-
matically verified by Tamarin from the model and properties in dnp3.m4, which
can be found at [1]. On a modern PC (2.6 GHz Intel Core i7 from 2012 with
8GB RAM), these theorems in total prove in �1 m 33 s. We additionally proved
several sanity checking properties, e.g., to show that our model correctly allows
for expected behaviours.

Security Property Result

AUTH1 verified

AUTH2 verified

CONF verified

As stated in the introduction, our results seemingly contradict an attack
claimed in previous analysis; we will return to this in detail in Sect. 6.

5 Recommendations

Our analysis, while succesful in showing that the main properties hold, also
naturally leads to several recommendations. To aid clarity of implementation,
to avoid possible misinterpretation, and to allow the protocol to meet stronger
security guarantees, we propose the following changes to future versions of the
specification. We discuss the reasoning behind these recommendations in more
detail in the appendices of [12].

Recommendations Based upon Modelling and Analysis:

– Update Key Change messages (g120v13) should contain a clear indication
of intended recipient (i.e. outstation ID). This would allow for a stronger
authentication property that only relies on the secrecy of the Authority key,
not additionally on the secrecy of the new update key.

– The specification must clarify the use of Challenge Sequence Numbers:
• It is not clear whether CSQ values (per direction) should be kept on a

per Master-Outstation pair basis, or whether each device should keep one
universal CSQ value (per direction).

• The specification must clarify whether recipients of CSQ values from the
network (whether Responder or Challenger) should expect CSQ values to

404 C. Cremers et al.

be strictly increasing. The sender’s behaviour (whether in an Authenti-
cation Challenge, Authentication Reply, or Aggressive Mode Request) is
clear, but it is not clear under which conditions a device should accept
a CSQ as valid from another party. If CSQ values are not required to
be strictly increasing, then replay attacks of Aggressive Mode Requests
become possible.

Recommendations Based upon Best Cryptographic Practice:

– The specification should strongly recommend that devices support asymmet-
ric cryptography, rather just than symmetric key-transport. This should be
recommended for both the Update Key Change and Session Key Update
Protocols. Use of Elliptic Curve Cryptography (ECC) would allow stations
to benefit from the added security of asymmetric cryptography, without sig-
nificantly increasing the total amount of data transmitted. Asymmetric cryp-
tography crucially only requires each secret key to be in one location, and
ECC is viable on low-power devices [15].

– Deprecate HMAC-SHA-1. The SHA-1 algorithm is dangerously weak, and
a collision has been found [23]. HMAC-SHA-256 should be required at
minimum.

Other Recommendations:

– The standard must clarify how recipients of messages should parse them, and
the standard must clearly and precisely state how recipients should calculate
HMACs (e.g. to compare to received Authentication Replies and Aggressive
Mode Requests). This must clarify which Sequence Numbers (for both Chal-
lenges and Key Changes) should be valid under which conditions, and which
Challenge Data should be valid in which situations.

– The standard must clearly state when various data should be kept until (e.g.
Challenge Data), when it should be overwritten, and how many previous
instances of this data should be kept per User-Outstation pair.

6 Related Work

Previous work has considered the broader security of DNP3, or, in contrast, only
analysed SAv5’s Critical ASDU Authentication Protocol in isolation.

East et al. 2009 provide an interesting and thorough taxonomy of the
different types of attack against DNP3 in [14], but as this paper was published
before SAv5 was standardised, it does not consider Secure Authentication.

Tawde et al. 2015 propose a ‘bump-in-the-wire’ solution for the key-
management and encryption of critical packets within IEC/TS 62351-5 (the
protocol suite upon which DNP3: SAv5 is based), but provide no formal analy-
sis of this addition or the existing protocols [24].

Attacks Claimed: Amoah et al. 2014 and 2016 use Colored Petri-
Nets to model and analyse both the non-aggressive and aggressive modes of this

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 405

sub-protocol, discovering a denial of service attack in the non-aggressive mode
[9], and a “replay attack” when the aggressive and non-aggressive modes are
combined [7]. Both papers only consider the Critical ASDU protocol in isolation.

According to [7, p. 353], the attack works as follows: after a non-aggressive
critical ASDU request (A1 in Fig. 3), the attacker blocks the Authentication
Challenge message (A2) to the user, and sends a new one with the same challenge
data, but with an artificially incremented CSQ. The user creates an Authentica-
tion Reply (A3, containing an HMAC) with this incremented CSQ value, which
the outstation now rejects (A4). The attacker then replays this Authentication
Reply with the critical ASDU prepended, to match the format of an Aggressive
Mode Request (without modifying the HMAC), which, they claim, the outsta-
tion will now accept: valid Aggresive Mode Requests should have both the same
challenge data as the last sent Authentication Challenge message, and a CSQ
value incremented for each request sent since that challenge. As the user never
sent an Aggressive Mode Request (only a non-aggressive request), [7] claims this
violates agreement.

This attack does not work, as an outstation will not accept a non-aggressive
mode message replayed into the Aggressive Mode. Our reasoning is as follows:
HMACs within an Aggressive Mode Request must be calculated over “The entire
Application Layer fragment that this object is included in, including the Appli-
cation Layer header, all objects preceding this one, and the object header and
object prefix for this object” [3, p. 742, Table A-9]. An Aggressive Mode HMAC
must therefore include the “Object Header g120v3 Authentication Aggressive
Mode Request”, and the “Object Header g120v9 Authentication MAC”; these
two object headers must both be included in the HMAC calculation [3, A.45.9,
p. 741]. In contrast, the calculation of an HMAC within an Authentication Reply
message (g120v2) from a non-aggressive mode request contains no such Aggres-
sive Mode objects or headers. Assuming the attacker cannot successfully modify
the HMAC without access to the session key, an HMAC for an Aggressive Mode
Request will never match one calculated from the non-aggressive mode, regard-
less of whether the CSQ values and challenge data match.

We modelled this ‘attack’ in the file dnp3-aggressive-amoah-attack.
spthy. For this to succeed, we had to under-approximate the original model
significantly compared to the specification. Notably, in this model, we had to
remove anything from the specification stating or implying the mode in both
HMACs, as well as removing checks on the relationship between the CSQ in the
body of the Aggressive Mode Request, and the CSQ within the Authentication
Challenge included in the HMAC [3, p. 211 and 742].

We conclude that this claimed attack is an artefact of a model that is too
coarse, and is not possible in faithful implementations of the standard.

Amoah et al. then make the novel contribution of a method for Critical ASDU
Authentication within the Broadcast or Unicast setting, in [8]. Amoah’s 2016
thesis [6] supplements these papers by providing greater detail of the modelling
and analysis of the Critical ASDU Authentication Protocol .

406 C. Cremers et al.

7 Conclusions

In this work, we have performed the most comprehensive symbolic modelling and
analysis yet of the DNP3 Secure Authentication v5 protocol; this analysis has
considered all of the constituent sub-protocols, including cross protocol attacks.

We make use of novel modelling techniques in Tamarin, by identifying invari-
ants in DNP3’s state transitions to cope with analysis of the protocol’s inherent
complexity, extensive state, and unbounded loops and sessions.

Our findings notably contradict claimed results by earlier analyses; in par-
ticular, our findings show that the attack claimed in [7] is not possible in the
standard as defined.

While our analysis naturally leads to a number of recommendations for
improving future versions of DNP3, we conclude that the core protocol of the
standard meets its stated security goals if implemented correctly, increasing
much-needed confidence in this security-critical building block of power grids.

References

1. DNP3 Secure Authentication v5 Tamarin Model. https://www.cs.ox.ac.uk/people/
cas.cremers/tamarin/dnp3/dnp3.zip

2. IEC/TS 62351–2:2008, Power systems management and associated information
exchange - Data and communications security - Part 2: Glossary of terms. Inter-
national Electrotechnical Commission (2008)

3. IEEE Standard for Electric Power Systems Communications-Distributed Network
Protocol (DNP3). IEEE Std 1815–2012 pp. 1–821, October 2012

4. IEC/TS 62351–5:2013, Power systems management and associated information
exchange - Data and communications security - Part 5: Security for IEC 60870–5
and derivatives. International Electrotechnical Commission (2013)

5. Alliance for Telecommunications Industry Solutions: Glossary. http://www.atis.
org/glossary/definition.aspx?id=3961. Accessed Apr 2017

6. Amoah, R.: Formal security analysis of the DNP3-Secure Authentication Protocol.
Ph.D. thesis, Queensland University of Technology (2016)

7. Amoah, R., Çamtepe, S.A., Foo, E.: Formal modelling and analysis of DNP3 secure
authentication. J. Netw. Comput. Appl. 59, 345–360 (2016)

8. Amoah, R., Çamtepe, S.A., Foo, E.: Securing DNP3 broadcast communications in
SCADA systems. IEEE Trans. Ind. Inf. 12(4), 1474–1485 (2016)

9. Amoah, R., Suriadi, S., Çamtepe, S.A., Foo, E.: Security analysis of the non-
aggressive challenge response of the DNP3 protocol using a CPN model. In: IEEE
International Conference on Communications, ICC 2014, pp. 827–833 (2014)

10. Basin, D.A., Cremers, C., Miyazaki, K., Radomirovic, S., Watanabe, D.: Improving
the security of cryptographic protocol standards. IEEE Secur. Priv. 13(3), 24–31
(2015)

11. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti, A., Strub, P.: Triple
handshakes and cookie cutters: breaking and fixing authentication over TLS. In:
2014 IEEE Symposium on Security and Privacy, pp. 98–113 (2014)

12. Cremers, C., Dehnel-Wild, M., Milner, K.: Secure authentication in the grid: a
formal analysis of DNP3: SAv5 (Full Technical report) (2017). http://www.cs.ox.
ac.uk/people/cas.cremers/downloads/papers/CrDeMi2017-DNP3-extended.pdf

https://www.cs.ox.ac.uk/people/cas.cremers/tamarin/dnp3/dnp3.zip
https://www.cs.ox.ac.uk/people/cas.cremers/tamarin/dnp3/dnp3.zip
http://www.atis.org/glossary/definition.aspx?id=3961
http://www.atis.org/glossary/definition.aspx?id=3961
http://www.cs.ox.ac.uk/people/cas.cremers/downloads/papers/CrDeMi2017-DNP3-extended.pdf
http://www.cs.ox.ac.uk/people/cas.cremers/downloads/papers/CrDeMi2017-DNP3-extended.pdf

Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5 407

13. DNP Users Group: A DNP3 Protocol Primer (Revision A) (2005). https://www.
dnp.org/AboutUs/DNP3%20Primer%20Rev%20A.pdf. Accessed Apr 2017

14. East, S., Butts, J., Papa, M., Shenoi, S.: A taxonomy of attacks on the DNP3
protocol. In: Palmer, C., Shenoi, S. (eds.) ICCIP 2009. IAICT, vol. 311, pp. 67–81.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04798-5 5

15. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-28632-5 9

16. ISO/IEC: ISO/IEC 9798–1:1997, Part 1: General (1997). https://www.iso.org/
standard/27743.html. Accessed Apr 2017

17. Kelsey, J., Schneier, B., Wagner, D.A.: Protocol Interactions and the Chosen Pro-
tocol Attack. In: 5th Workshop on Security Protocols, pp. 91–104 (1997)

18. Lowe, G.: A hierarchy of authentication specifications. In: Proceedings 10th Com-
puter Security Foundations Workshop, pp. 31–43, June 1997

19. Mavrogiannopoulos, N., Vercauteren, F., Velichkov, V., Preneel, B.: A cross-
protocol attack on the TLS protocol. In: ACM CCS 2012, pp. 62–72 (2012)

20. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 48

21. Paterson, K.G., Merwe, T.: Reactive and proactive standardisation of TLS. In:
Chen, L., McGrew, D., Mitchell, C. (eds.) SSR 2016. LNCS, vol. 10074, pp. 160–
186. Springer, Cham (2016). doi:10.1007/978-3-319-49100-4 7

22. Shirey, R.: RFC 2828 - Internet security glossary (2000). https://www.ietf.org/rfc/
rfc2828.txt. Accessed Apr 2017

23. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., et al.: Announc-
ing the first SHA1 collision (2017). https://security.googleblog.com/2017/02/
announcing-first-sha1-collision.html. Accessed Apr 2017

24. Tawde, R., Nivangune, A., Sankhe, M.: Cyber security in smart grid SCADA
automation systems. In: 2015 International Conference on Innovations in Infor-
mation, Embedded and Communication Systems (ICIIECS), pp. 1–5 (2015)

https://www.dnp.org/AboutUs/DNP3%20Primer%20Rev%20A.pdf
https://www.dnp.org/AboutUs/DNP3%20Primer%20Rev%20A.pdf
http://dx.doi.org/10.1007/978-3-642-04798-5_5
http://dx.doi.org/10.1007/978-3-540-28632-5_9
http://dx.doi.org/10.1007/978-3-540-28632-5_9
https://www.iso.org/standard/27743.html
https://www.iso.org/standard/27743.html
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1007/978-3-319-49100-4_7
https://www.ietf.org/rfc/rfc2828.txt
https://www.ietf.org/rfc/rfc2828.txt
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html

Per-Session Security: Password-Based
Cryptography Revisited

Grégory Demay1(B), Peter Gaži2, Ueli Maurer3, and Björn Tackmann4

1 Ergon Informatik AG, Zürich, Switzerland
gregory.demay@ergon.ch

2 IOHK Research, Vienna, Austria
peter.gazi@iohk.io

3 Department of Computer Science, ETH Zürich, Zürich, Switzerland
maurer@inf.ethz.ch

4 IBM Research - Zurich, Rüschlikon, Switzerland
bta@zurich.ibm.com

Abstract. Cryptographic security is usually defined as a guarantee that
holds except when a bad event with negligible probability occurs, and
nothing is guaranteed in that case. However, in settings where a failure
can happen with substantial probability, one needs to provide guarantees
even for the bad case. A typical example is where a (possibly weak) pass-
word is used instead of a secure cryptographic key to protect a session,
the bad event being that the adversary correctly guesses the password. In
a situation with multiple such sessions, a per-session guarantee is desired:
any session for which the password has not been guessed remains secure,
independently of whether other sessions have been compromised.

Our contributions are two-fold. First, we provide a new, general tech-
nique for stating security guarantees that degrade gracefully and which
could not be expressed with existing formalisms. Our method is sim-
ple, does not require new security definitions, and can be carried out in
any simulation-based security framework (thus providing composability).
Second, we apply our approach to revisit the analysis of password-based
message authentication and of password-based (symmetric) encryption
(PBE), investigating whether they provide strong per-session guarantees.

In the case of PBE, one would intuitively expect a weak form of confi-
dentiality, where a transmitted message only leaks to the adversary once
the underlying password is guessed. Indeed, we show that PBE does
achieve this weak confidentiality if an upper-bound on the number of
adversarial password-guessing queries is known in advance for each ses-
sion. However, such local restrictions appear to be questionable in reality

G. Demay—Work done while author was at ETH Zürich and supported by the Zurich
Information Security and Privacy Center.
P. Gaži—Work done while author was at ETH Zürich and IST Austria, in part
supported by the ERC grants 259668-PSPC and 682815-TOCNeT.
B. Tackmann—Work done while author was at ETH Zürich and UC San Diego, in
part supported by SNF fellowship P2EZP2-155566 and NSF grant CNS-1228890.
The full version is available at https://eprint.iacr.org/2016/166.
The original version of this chapter was revised: The erratum to this chapter is
available at https://doi.org/10.1007/978-3-319-66402-6 28.

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 408–426, 2017.
DOI: 10.1007/978-3-319-66402-6_24

https://doi.org/10.1007/978-3-319-66402-6_28.
https://eprint.iacr.org/2016/166

Per-Session Security: Password-Based Cryptography Revisited 409

and, quite surprisingly, we show that in a more realistic scenario the
desired per-session confidentiality is unachievable.

1 Introduction

1.1 Motivation of This Work

Human-memorable passwords represent one of the most widely deployed secu-
rity mechanisms in practice. They are used to authenticate human users in
order to grant them access to various resources such as their computer accounts,
encrypted files, web services, and many more. Despite well-known problems asso-
ciated with this mechanism, its practicality and simplicity from the users’ per-
spective is the main cause of its persisting prevalence. As an example, more than
90% of Google users employ passwords as the only authentication mechanism
for accessing their accounts [25]. Acknowledging this situation, it is extremely
important that security engineers, including designers of cryptographic proto-
cols, have a precise understanding of the security guarantees that passwords
provide for multiple sessions (where one session corresponds to one password;
this is often referred to as the multi-user setting).

There has been significant effort in formalizing the use of passwords, but
the standard provable-security approach in cryptography, focusing on a single
session, falls short of modeling the expected guarantees. The main reason for
this is that passwords, in contrast to cryptographic keys, can be guessed by
the attacker with a probability that can hardly be considered insignificant in the
analysis (independently of whether a concrete or asymptotic security approach is
being used). This is because they are chosen by the users, and therefore typically
do not contain sufficient entropy. When inferring the security guarantees for
multiple sessions via the standard hybrid argument, these substantial terms from
the analyses of the individual sessions accumulate, and may render the overall
statement trivial.

To obtain practically relevant statements about systems that allow for many
sessions with passwords, we cannot resign on all security guarantees as soon as
any password is guessed. Ideally, one would instead hope that as long as not all
passwords were broken, the sessions with passwords that are still safe from the
attacker enjoy a non-reduced degree of security. This simple yet important obser-
vation has been emphasized before, most notably in the work of Bellare et al. [5]
on multi-instance security. At a very high level, their definition aims at ensuring
that, in a setting where the security of each single session cannot be guaranteed,
the amount of work needed for breaking many sessions cannot be amortized, i.e.,
it grows (linearly) with the number of sessions considered.

We believe that this approach, while bringing to light a problem of great
practical relevance, suffers from certain shortcomings that we illustrate on the
example of password-based cryptography. By focusing only on the number of
sessions that can be broken, multi-instance security cannot capture the intu-
ition that sessions protected by strong passwords should be less vulnerable than
sessions protected by weak passwords. Indeed, as the resulting guarantees are in
the form of a global upper bound on the number of sessions that can be broken,

410 G. Demay et al.

they do not give any specific guarantee for a session whose password was not
guessed, independently of whether other sessions were compromised.

From a broader perspective, a setting with multiple sessions relying on pass-
words can be seen as an instance of a scenario where the considered resource (e.g.,
a webmail server) can be gradually weakened by the adversary (e.g., by guessing
the passwords in some of the sessions), while it is still expected to provide some
security guarantees (e.g., for the other sessions) after such weakening.

1.2 Our Contributions

We develop a technique for modeling resources that are available to parties and
used in protocols or applications and can be gradually weakened (we call this
“downgrading”). Later, we apply the technique to password-based cryptogra-
phy in the random oracle model and analyze the security of schemes that use
password-derived keys.

downgradable resources. As our first contribution, we provide a natural and
intuitive formalization of settings where a considered resource can be potentially
downgraded by the actions of an attacker, but still maintains some security guar-
antees afterwards. While there are many possible ways to analyze such settings,
our formalization allows for the natural decoupling of the descriptions of (1) the
resource’s behavior at various “levels” of the downgrade; and (2) the mecha-
nism that controls how the system is currently downgraded (as a response to
the actions of the attacker). We believe that this modularity allows for simpler
analyses of a wide range of resources that can be seen in this way, we discuss the
concrete case of password-based cryptography below. The technique is, however,
more general, and may also find applications in other scenarios where guarantees
may degrade gradually, such as the failure of (some) computational assumptions.

The modeling as proposed is carried out in the constructive cryptography
framework [19] and does not require any modifications of its security definitions.
We believe that a similar approach would be possible in any simulation-based
framework, although in particular an analogy in the universal composability
framework [7] would have to overcome certain technical hurdles that stem from
the difference between these two frameworks, as we detail in the full version [12].

Applications to password-based cryptography. As our second contribu-
tion, we apply this modeling approach to several settings that involve multiple
sessions using cryptographic keys derived from hashing passwords in the random
oracle model. The potential downgrading that we consider here corresponds to
guessing the passwords in some of the sessions.

Idealizing the hash function as a random oracle, a natural expectation for any
such setting is that one obtains a per-session guarantee, i.e. that as long as the
attacker does not guess a password in a particular session, the security guarantees
provided in this session remain identical to the case where a perfect key is used
(i.e., chosen uniformly at random from a large key space). In particular, the
security guarantees of one session are not influenced by other sessions, such as
by other users’ poor choice of a password.

We show that this intuitive view is not generally correct. Below we explain
the reason of this breakdown (which is a variant of the commitment problem

Per-Session Security: Password-Based Cryptography Revisited 411

that occurs in adaptive attacks on public-key encryption), and by giving a series
of results we draw a map of settings that do/do not succumb to this problem:
1. Password-based MACs. We show that if the password-derived keys are

used by a MAC to authenticate insecure channels, a per-session message
authentication is achieved.

2. Single-session PBE. For password-based (symmetric) encryption (PBE),
obtaining a composable statement (i.e., in a simulation-based framework) is
much more delicate even in a single-session case. The reason for this is that,
roughly speaking, the simulator in the ideal world is expected to produce a
simulated ciphertext upon every encryption and without any knowledge of
the actual plaintext. However, if the distinguisher later guesses the underlying
password (and hence can derive the encryption key), it can easily decrypt the
simulated ciphertext and compare the result to the (known) plaintext. But
the simulated ciphertext essentially committed the simulator to a message (or
a small subset of the message space), so the check will fail with overwhelming
probability. Nonetheless, we show that in the single-session setting designing
a simulator, while non-trivial, is possible.

3. Multi-session PBE. In line with our motivation, the desired result would
be to obtain per-session confidentiality, an analogue of the above single-
session statement for the setting with multiple sessions. Surprisingly, as our
next contribution, we show that lifting this positive result to the multi-session
setting is unachievable. Roughly speaking, any construction of r secure chan-
nels from r authenticated channels and the corresponding r password-derived
keys will suffer from a simulation problem analogous to the single-session
case described above. However, this time we formally prove that it cannot
be overcome.

4. Multi-session PBE with local assumptions. To side-step the above
impossibility statement, our next result considers the setting of password-
based encryption under an additional assumption that the number of adver-
sarial password guesses in each of the sessions is a priori known.
This assumption seems implausible in general, in fact we show that it cannot
be achieved by the salting technique often used in the context of password
hashing; instead, as we also show, salting (only) guarantees a global upper
bound. (Yet, there may be specific settings in which the validity of the per-
session bounds can be argued.) We show, however, that the assumption of
local bounds is sufficient to overcome the commitment problem and prove
that the intuitively expected guarantees described above are indeed achieved.
We stress, however, that the simulator constructed in the proof depends on
the password distribution.

5. PBE scheme from PKCS #5. Finally, we observe that the arguments
underlying the above impossibility result in item 3 can also be applied to the
password-based encryption as standardized in PKCS #5 [15].

Composability. Overall, our results yield a characterization of when password-
derived keys can be used in a composable simulation-based security framework
for the task of secure communication. Our aim for strong, composable security

412 G. Demay et al.

guarantees is motivated by the particular relevance of password-based cryptogra-
phy in the Internet, where various cryptographic schemes are used concurrently
and as building blocks of larger protocols. To the best of our knowledge, this
work represents the first composable treatment of (non-interactive) password-
based encryption and message authentication.

1.3 Related Work

Beyond the work on multi-instance security by Bellare et al. [5] that was dis-
cussed in the introduction above, there are large amounts of literature on pass-
words. On the empirical side, the weaknesses of passwords in practice were stud-
ied e.g. in [23]. We attempt to focus on the literature most relevant to our work.

For password-derived keys, most provable-security works focused on the
single-session setting, analyzing ways to augment the key-derivation process to
slow down offline brute-force password-guessing attacks. Techniques to achieve
this include salting (which was introduced in a scenario with multiple users but
without a provable-security analysis) [15], iteration [11,21], and hashing with
moderately hard-to-compute functions [2,9,24]. However, the security analyses
of those works have a different aim from ours as none of them considers the multi-
session scenario. A notable, already mentioned exception is [5] which studied key
derivation functions proposed in PKCS #5 [15] and did focus on security in a
setting with multiple users.

A key-recovery security definition for password-based encryption was given
in [1], but here also only single-session security was considered.

Finally, a separate line of work aims at realizing password-authenticated key
exchange (PAKE) protocols [4,8,13,16] that prevent the possibility of offline
password-guessing attacks and result in keys that can then safely be used for
encryption or authentication. While some of these results are obtained in a com-
posable, simulation-based framework and hence extend naturally to the multi-
session case, the protocols are intrinsically interactive and cannot be used in
non-interactive password-based settings such as ours.

2 Preliminaries

We denote sets by calligraphic letters or capital Greek letters (e.g., X , Σ). A
discrete random variable is denoted by an upper-case letter X, its range by the
corresponding calligraphic letter X , and a realization of the random variable
X is denoted by the corresponding lower-case letter x. Unless stated otherwise,
X $← X denotes a random variable X selected independently and uniformly at
random from X . A tuple of r integers (q1, . . . , qr) will be denoted by a bold
letter q . The set of bit strings of finite length is denoted {0, 1}∗ and x‖y denotes
the concatenation of two bit strings x and y. The empty bit string is denoted �,
while is used as an error symbol.

Discrete systems. Many cryptographic primitives (e.g. block ciphers, MAC
schemes, random functions) can be described as (X ,Y)-random systems [18]

Per-Session Security: Password-Based Cryptography Revisited 413

taking inputs X1,X2, . . . ∈ X and generating for each input Xk an output Yk ∈
Y. In full generality, such an output Yk depends probabilistically on all the
previous inputs X1, . . . , Xk as well as all the previous outputs Y1, . . . , Yk−1.

Resources and converters. The security definitions in this work are stated
in terms of the resources available to parties. The resources in this work are
discrete systems with three interfaces, which we naturally label by elements of
the set {A,B,E}, for Alice’s, Bob’s and Eve’s interface, respectively. We generally
use upper-case bold-face letters, such as R or S for generic resources, and upper-
case sans-serif letters for more specific resources, such as KEY for a shared secret
key resource or AUT for an authenticated channel resource.

A protocol machine employed locally by a party is modeled by a so-called
converter. Attaching a converter α at the i-interface of a resource, where
i ∈ {A,B,E}, models that party i uses α to access this resource. A protocol
then corresponds to a pair of converters, one for each honest party. Convert-
ers are denoted by lower-case Greek letters (e.g., α, σ) or by sans-serif fonts
(e.g., enc, dec). The set of all converters is denoted by Σ. Attaching a converter
α to the i-interface of a resource R is denoted by αi R. Any two resources R
and S can composed in parallel, denoted by [R,S]. For each i ∈ {A,B,E}, the
i-interface of R and S are merged and can be accessed through the i-interface
of [R,S].

The construction notion. We formalize the security of protocols by the
following notion of construction, as introduced by Maurer and Renner [19,20].
To be considered secure, a protocol must satisfy two requirements. First, the
protocol must construct the desired resource in a setting where no attacker is
present. This condition is referred to as the availability or correctness condition
and excludes trivial protocols. Second, the protocol must also construct the
desired resource when the adversary is present, which we refer to as the security
condition. This condition requires that everything the adversary can achieve in
the real world he can also accomplish in the ideal world. To state these two
conditions, we consider pairs of resources (R,R⊥), where R⊥ stands for the
resource R when no adversary is present.

Definition 1. Let ε1 and ε2 be two functions mapping each distinguisher D
to a real number in [0, 1]. A two-party protocol π := (α, β) ∈ Σ2 constructs a
pair of resources (S,S⊥) from an assumed pair of resources (R,R⊥) relative to

simulator σ ∈ Σ and within ε := (ε1, ε2), denoted (R,R⊥)
(π, σ, ε)

(S,S⊥), if
{

ΔD
(
αAβBR⊥, S⊥

)
≤ ε1 (D) (availability)

ΔD
(
αAβBR , σES

)
≤ ε2 (D) (security),

for all distinguishers D, where ΔD (U,V) :=
∣∣PDU (B = 1) − PDV (B = 1)

∣∣
denotes the advantage of D in distinguishing between U and V.

414 G. Demay et al.

An important property of Definition 1 is its composability. Intuitively, if a
resource S is used in the construction of a larger system, then the composability
implies that S can be replaced by αAβBR without affecting the security of the
composed system. More details can be found in [19,26]. All the constructions
stated in this paper are such that the availability condition is trivially satisfied
and we therefore omit it from now onwards. That is, we write R for (R,R⊥).

Message authentication. A message authentication code (MAC) scheme
with message space M ⊆ {0, 1}∗, key space K := {0, 1}n, and tag space
U ⊆ {0, 1}∗ is defined as a pair (tag , vrf), where tag is a (possibly probabilistic)
function taking as input a key k ∈ K and a message m ∈ M to produce a tag
u ← tag (k,m), and vrf is a deterministic function taking as input a key k ∈ K,
a message m ∈ M and a tag u ∈ U to output a bit b := vrf (k,m, u) asserting the
validity of the input tag u. A MAC scheme is correct if vrf (k,m, tag (k,m)) = 1,
for all keys k ∈ K and all messages m ∈ M.

Symmetric encryption. A symmetric encryption scheme with message space
M ⊆ {0, 1}∗, key space K := {0, 1}n, and ciphertext space C ⊆ {0, 1}∗ is defined
as a pair (enc, dec), where enc is a (possibly probabilistic) function taking as
input a key k ∈ K and a message m ∈ M to produce a ciphertext c ← enc (k,m),
and dec is a deterministic function taking as input a key k ∈ K and a ciphertext
c ∈ C to output a plaintext m′ := dec (k, c). The output of dec can also be the
error symbol to indicate an invalid ciphertext. An encryption scheme is correct
if dec (k, enc (k,m)) = m, for all keys k ∈ K and all messages m ∈ M.

3 Transformable Systems

In this section, we present our approach to modeling systems that can be gradu-
ally transformed, in a way that clearly separates the effects of the transformation
from how it can be provoked.

As a warm-up example, consider a key obtained by hashing a secret pass-
word shared between two users Alice and Bob. Idealizing the hash function as
a random oracle, the resulting key is completely random from the perspective
of any third party Eve unless she also queried the random oracle on the same
input; in other words, unless she correctly guessed the password. If we model the
key obtained by this process as a resource, we consider two separate parts of it.
The first one specifies the behavior of the resource before and after the trans-
formation (a “strong” version gives the key only to Alice and Bob, a “weak”
version also gives it to Eve); the second part triggers one of these two versions
based on Eve’s actions (providing a password-guessing game for her, triggering
the weaker version as soon as she wins).

In general, a transformable system is therefore the combination of two ran-
dom systems: a core and a trigger system. The core system specifies how it
behaves as an internal switch value changes, while the trigger system specifies
how this switch value can be changed. More formally, a core system S is simply
an (X ∪ S,Y)-random system, where the set of inputs is partitioned into two

Per-Session Security: Password-Based Cryptography Revisited 415

sets X and S with X ∩ S = ∅. The set X is the set of “normal” inputs, while
S is the set of possible switch values. A trigger system T is a (T ,S)-random
system which outputs a switch value. Elements of T are called trigger values
and correspond to password guesses in our example above.

Definition 2. Let X ,Y,S and T be four discrete sets such that X ∩ S = ∅ and
X ∩ T = ∅. An (X ∪ S,Y)-random system S and a (T ,S)-random system T
form an (X ∪ T ,Y)-random system, denoted ST, defined as follows. On input
x ∈ X , the system ST outputs y ∈ Y, where y is the output of the system S when
queried on the input x. On input t ∈ T , the system ST outputs y′ ∈ Y, where y′

is the output of S when queried on the output s ∈ S of the system T which was
queried on the original input t (see Fig. 1).
The random system ST will be referred to as a transformable system, the random
system S as a core system, and the random system T as a trigger system.

Fig. 1. A transformable system ST formed by combining a core system S with a trigger
system T. “Normal” inputs x ∈ X are processed directly by S, while trigger values
t ∈ T go instead first through the system T whose output s ∈ S is then used as an
input to the system S.

Fixed Switches. Given an (X ∪ S,Y)-core system S, it will be sometimes
convenient to argue about the behavior of S for a particular fixed switch value s ∈
S. To do so, we denote by Ss the (X ,Y)-random system obtained by initializing
S as follows: the switch value s is initially input to S and its resulting output is
discarded. In other words, Ss corresponds to the system S where the value of its
switch is fixed from the beginning to s and cannot be changed. In particular, the
input space of Ss is only X and not X ∪ S. Given a random variable S over S,
we denote by SS the system selected at random in {Ss | s ∈ S} according to S.

downgradable Keys and downgradable Secure Channels. The core
systems that we will consider will actually be resources, i.e., random systems
with 3 interfaces A,B and E for Alice, Bob, and Eve, respectively, where the
switch values are controlled via the interface E. Formally, we model this interface
as being split into two sub-interfaces: EN (for “normal” inputs/outputs) and ES

(for switch values). Typically, Eve will not have a direct access to the interface
ES of the core resource, instead she will only be allowed to access a trigger
system T, which itself produces the switch values. Neither Alice nor Bob have
access to T. Such a core resource combined with a trigger system will be called
a downgradable resource.

416 G. Demay et al.

Alg. 1. Core resource KEYr

sj := 0 and kj
$← {0, 1}n, for all

j ∈ {1, . . . , r}
on input (j, getkey) at i ∈ {A,B}
output (j, kj) at i

on input s ∈ {0, 1}r at ES

(s1, . . . , sr) := s

on input (j, getkey) at EN

if sj = 0 then output (j,) at
EN

else output (j, kj) at EN

Alg. 2. Core resource SECr

sj := 0 and mj := �, for all j ∈ {1, . . . , r}
on first input (j,m) at A

mj := m
output (j,mj) at B
output (j, |mj |) at EN

on input s ∈ {0, 1}r at ES

(s1, . . . , sr) := s

on input (j, getmsg) at EN

if sj = 0 then output (j,) at EN

else output (j,mj) at EN

We now introduce downgradable key resources and downgradable secure chan-
nels, examples of such resources that will be used throughout the paper. These
resources are parameterized (among other) by a fixed number r of sessions. Intu-
itively, these resources provide a graceful deterioration of security by associating
each session with a password and guaranteeing that a session remains secure as
long as its password is not guessed, irrespectively of the state of other sessions.
We first describe the corresponding core resources and then the trigger systems.

Example 1 (Key). The core resource KEYr for r sessions takes as switch at
interface ES an r-bit string (s1, . . . , sr) which specifies for each session whether
it is “broken” (sj = 1) or not (sj = 0). Alice and Bob can retrieve a uniform and
independent key for a given session, while Eve can only retrieve it if the session
is marked as “broken”. The resource KEYr is formalized in Algorithm 1.1

Example 2 (Secure Channel). The core resource SECr for r sessions also takes
as switch value at interface ES an r-bit string which specifies for each session
whether or not confidentiality is “broken”. The resource SECr allows Alice to
send one message per session to Bob. Eve learns nothing about the transmitted
message but its length, unless this session was marked as “broken”, in which case
the message is leaked to her. The channel SECr does not allow Eve to inject any
message, regardless of the value of the switch, and is formalized in Algorithm 2.

Example 3 (Local and Global Password-Guessing Triggers). Eve will not be
allowed to influence the switch values of KEYr or SECr directly, instead she
will have to interact with a trigger system which captures the guessing of per-
session passwords. We consider two different such trigger systems, in both of
them the number of guesses allowed to Eve is restricted. These two systems dif-
fer in whether the restriction on the number of guesses is local to each session or
global over all r sessions. We refer to them as local and global (password-guessing)
triggers and denote them by LT and GT, respectively.

Formally, both triggers are parameterized by a password distribution P over
Wr (where W ⊆ {0, 1}∗ is a set of passwords) and the number of password
1 Each session corresponds to a single use of a password. The re-use of passwords is

modeled by password distributions that output multiple copies of the same password.

Per-Session Security: Password-Based Cryptography Revisited 417

guesses allowed, either locally for each of the sessions (a tuple q := (q1, . . . , qr))
or globally (a parameter q). Both LT (P, q) and GT (P, q) initially sample r
passwords (w1, . . . , wr) according to P. When a password guess (j, w) for the
jth session is received, both triggers change the state of this session to “broken”
if the password guess is correct and their respective constraint on the number of
password-guessing queries is satisfied. Both triggers LT (P, q) and GT (P, q) are
only accessible by Eve and are detailed in Algorithms 3 and 4.

Alg. 3. Local trigger LT (P, q)

(w1, . . . , wr) ← P
sj := 0 and �j := 0, for all
j ∈ {1, . . . , r}

on input (j, w) at ES

�j := �j + 1
sj := sj ∨ ((w = wj) ∧ (�j ≤ qj))
output (s1, . . . , sr) at ES

Alg. 4. Global trigger GT (P, q)

(w1, . . . , wr) ← P
sj := 0 for all j ∈ {1, . . . , r}
� := 0
on input (j, w) at ES

� := � + 1
sj := sj ∨ ((w = wj) ∧ (� ≤ q))
output (s1, . . . , sr) at ES

Combining the core systems and triggers given above via Definition 2 leads
to four downgradable resources: two with local restrictions, KEYr

LT(P,q) and
SECr

LT(P,q), where the number of password-guessing queries is restricted per ses-
sion; and two with a global restriction, KEYr

GT(P,q) and SECr
GT(P,q), where only

the total number of password-guessing queries is limited. To simplify the nota-
tion, we will often drop the parameters P, q, q when clear from the context. The
results presented in the next sections hold for any distribution P of r passwords,
including correlated distributions.

4 Password-Based Key Derivation

The simple protocol for deriving a key from a password via hashing as considered
in Sect. 3 can be proven to construct, from a pre-distributed password and a
random-oracle resources in each session, a downgradable key resource. Multiple
independent random oracles can be constructed from a single one via salting
(i.e., domain separation), a point that we will discuss in Sect. 6.4.

More formally, we model the shared passwords as an explicit resource denoted
PW. It is parameterized by a joint distribution P of r passwords. The resource
PW (P) first samples from the distribution P to obtain r passwords (w1, . . . , wr)
and then outputs (j, wj) at interface i ∈ {A,B} whenever it receives as input
(j, getpwd) at the same interface i. Note that Eve does not learn anything about
the sampled passwords except for the a priori known distribution P.

Each hash function is modeled as a random oracle available to all parties,
denoted by RO. Notably, we model the restriction on Eve’s computational power
by a restriction on the number of invocations of the random oracles that she is
allowed to do. (For a rationale behind this choice and how it allows to model
complexity amplification via iteration, see [11].) We consider either a tuple of ran-
dom oracles with local restrictions denoted [ROq1 , . . . ,ROqr

], where each random

418 G. Demay et al.

oracle has its own upper bound qj on the number of adversarial queries it allows;
or a tuple of random oracles with one global restriction denoted [RO, . . . ,RO]q,
where at most q adversarial queries are allowed in total.

The key-derivation protocol KD := (kd, kd) consists of both parties applying
a converter kd. Upon a key request (j, getkey) for the jth session, kd queries
PW (P) to retrieve the shared password wj for this session, then queries the jth

random oracle on wj and returns its output. The following simple lemma proved
in the full version shows that the protocol KD constructs downgradable keys.

Lemma 1 For the key derivation protocol KD := (kd, kd) described above, there
exists a simulator σkd such that for all distributions P of r passwords, for all
integers q := (q1, . . . , qr) and q, we have

[[ROq1 , . . . ,ROqr
] ,PW (P)]

(KD, σkd, 0)
KEYr

LT(P,q) and[
[RO, . . . ,RO]q ,PW (P)

] (KD, σkd, 0)
KEYr

GT(P,q) .

This lemma is very similar to [5, Theorem 3.3], although the results are
technically slightly different. While [5, Theorem 3.3] is stricter in terms of the
information given to the distinguisher (which obtains the passwords in clear),
our statement comes with an explicit composition guarantee.

5 Password-Based Message Authentication

We investigate the use of password-derived keys for message authentication using
MACs. We prove that such a construction meets the intuitive expectation that in
a multi-user setting, as long as a password for a particular session is not guessed,
the security (in this case: authenticity) in that session is maintained at the same
level as if a perfectly random key was used. We present these results partly to put
them in contrast with those on password-based encryption, where the situation is
more intricate. As a consequence, in this section we deliberately remain slightly
informal and postpone the full formal treatment to the full version [12].

Assumed resources. The construction statement shown below assumes the
availability of a password-derived key and an insecure communication channel
for each of the r considered sessions. For password-derived keys, we simply use
the downgradable resource KEYr

T which can be constructed e.g. via one of the
statements in Lemma 1 (here T stands for either LT or GT). The insecure chan-
nels are formalized as the resource INSECr which forwards any message sent by
Alice to Eve, while any message injected by Eve is forwarded to Bob.

MAC schemes as protocols. A MAC scheme is used by Alice and Bob in
the natural way (we denote their converters tag and vrf, respectively). When
tag receives as input a message m for the j-th session, it retrieves the key kj

associated to this session from the resource KEYr
T, computes the tag u according

to the MAC scheme and outputs to the insecure channel INSECr in the j-th

Per-Session Security: Password-Based Cryptography Revisited 419

session the message m‖u. On the other end of the channel, whenever vrf receives
a message and a tag m′‖u′ for the j ′-th session, it first retrieves the key kj′ from
KEYr

T, verifies the tag and outputs m′ only if the verification succeeds.

Constructed resource. The channel that Alice and Bob obtain by using the
protocol (tag, vrf) guarantees that any message that Bob receives for a partic-
ular session must have been sent before by Alice, unless this session was “bro-
ken.” This (core) unordered authenticated channel, denoted UAUTr takes an r-bit
string (s1, . . . , sr) as a switch value, specifying for each session j whether it is
broken (sj = 1), in which case Eve can send any message to Bob for this particu-
lar session, or not (sj = 0), in which case the messages that Eve can send to Bob
for session j are limited to those that Alice already sent. The channel UAUTr

does not offer any secrecy: messages input by Alice are directly forwarded to Eve.
The channel UAUTr only prevents Eve from to injecting a fresh message, it does
not prevent the injection of a legitimate message multiple times, the reordering
of legitimate messages, or the loss of some messages.

If the MAC scheme used by the protocol (tag, vrf) is weakly unforgeable,
then it constructs the downgradable unordered authenticated channel UAUTr

T

by using the downgradable key KEYr
T and the insecure channel INSECr. The

formal statement together with its proof are in the full version [12].

Theorem (Informal). There exists a simulator σMAC such that for every dis-
tribution P of r passwords, every number of queries q := (q1, . . . , qr) and q, and
any trigger T ∈ {LT (P, q) ,GT (P, q)},

[KEYr
T, INSECr]

((tag, vrf) , σMAC, ε)
UAUTr

T,

where the distinguishing advantage ε can be reduced to the weak unforgeability of
the underlying MAC scheme.

6 Password-Based Encryption

We investigate the use of password-derived keys for symmetric encryption. In a
multi-session setting, one may expect that as long as a password for a particular
session is not guessed, the confidentiality in that session is maintained. This
would, roughly speaking, correspond to a construction of (downgradable) secure
channels from authenticated channels and password-derived keys.

Alg. 5. Channel AUTr

on first input (j, c) at A
output (j, c) at B
output (j, c) at E

Assumed resources. We assume the availability
of a password-derived key and an authenticated
communication channel for each of the r sessions.
For the keys, we use the downgradable resource
KEYr

T, where T typically stands for either LT (P, q)
or GT (P, q). We also assume an authenticated chan-
nel AUTr described in Algorithm 5. The channel
AUTr takes in each session a message c at Alice’s
interface A, and outputs it at both Eve’s interface
E and Bob’s interface B.

420 G. Demay et al.

Fig. 2. Left: The assumed resource, a downgradable key KEYr
T and an authenticated

channel AUTr, with protocol converters enc and dec attached to interfaces A and
B, denoted encAdecB [KEYr

T,AUTr]. Right: The desired downgradable secure channel
SECr

T with simulator σ attached to interface E, denoted σESECr
T. The simulator σ

must emulate Eve’s interface in the left picture, i.e., key retrieval queries at E1,N, trig-
ger queries at E1,S and the authenticated channel at E2.

Using the authenticated channel UAUTr
T as constructed in Sect. 5 is also possible,

but requires to encompass a mechanism to decide when a message is delivered
to Bob based on Eve’s actions (similarly to UAUTr

T).

Encryption schemes as protocols. Given an encryption scheme (enc, dec),
the encryption protocol (formalized by converters enc and dec, respectively)
proceeds similarly to the message authentication protocol in Sect. 5. For each
transmitted message, both enc and dec obtain the key from KEYr

T, and the
ciphertexts are transmitted over the channel AUTr. Throughout this section, we
will assume the encryption scheme (enc, dec) to be correct.

Constructed resource. The channel that Alice and Bob wish to obtain by
using the protocol SE := (enc, dec) is the downgradable resource SECr

T described
in Sect. 3, which guarantees that any message sent by Alice for a particular
session is transmitted confidentially to Bob, unless this session was “broken”.

6.1 PBE for a Single Session

We start by focusing on PBE with a single session, where we are interested
in the possibility of constructing the downgradable secure channel2 SECLT(P,q)

from a downgradable key KEYLT(P,q) and an authenticated channel AUT using
the protocol SE = (enc, dec). According to Definition 1 we must thus find a
simulator σ that makes the systems according to Fig. 2 indistinguishable.

The commitment problem. In the real world, whenever a message m is
input at Alice’s interface A, the corresponding ciphertext is output at Eve’s
interface E2. On the other hand, in the ideal world only the length |m| of the
transmitted message m is output by the channel SECLT(P,q) to the simulator σ.

2 In the particular case of a single session, the local password-guessing trigger LT (P, q)
and the global one GT (P, q) are identical, for any P, q.

Per-Session Security: Password-Based Cryptography Revisited 421

The simulator must therefore emulate that a ciphertext was sent by only knowing
the length |m| of the transmitted message and not the message m itself.

A näıve simulation strategy could initially select a key k uniformly at random
and emulate the transmission of a ciphertext by encrypting a fresh random mes-
sage v of the correct length under key k, while password-guessing queries are sim-
ply forwarded to the trigger LT (P, q) of the downgradable channel SECLT(P,q).

This approach fails when the password is guessed and the session is broken.
In the real world, the distinguisher can retrieve the key k used for encryption
and check that a previously seen ciphertext c is indeed an encryption of the
transmitted message m. In contrast, in the ideal world the simulator σ can
retrieve the transmitted message m, but note that it cannot output the key k
that it chose at the beginning to simulate encryption since dec (k, c) = v is a
random message which (with overwhelming probability) is different from the
actual transmitted message m. The simulator σ must therefore “decommit” by
finding a key k′ such that the decryption of the simulated ciphertext c under
that key k′ yields the transmitted plaintext m, i.e., dec (k′, c) = m. However, it
is not hard to see that unless the key space of the encryption scheme contains
as many keys as there are messages (which is only true for impractical schemes
such as the one-time pad), it is highly unlikely that such a key even exists and
the simulation therefore fails.

Brute-force to the rescue. The previous paragraph only shows that one
particular simulation strategy fails. The source of the commitment problem is
that the simulator σ only breaks the session after having output the simulated
ciphertext. The key insight is that this does not have to be the case: consider a
simulator σLT which attempts to break the session before having to output any
ciphertext. Instead of faithfully forwarding the q password-guessing queries, the
simulator σLT initially exhausts all of the allowed q queries to optimally brute-
force the session by querying the q most likely passwords. If the brute-force
step fails, σLT encrypts a random message of the correct length and declares any
password guess as incorrect. If the brute-force step succeeds, σLT has access to
the transmitted message and can therefore perfectly simulate the corresponding
ciphertext, while password-guessing queries can easily be responded appropri-
ately.

In this setting with a single session, password-based encryption is therefore
possible with respect to the simulation strategy σLT sketched above. The gener-
alization of the above statement for multiple r sessions is discussed in Sect. 6.3.
The below corollary then follows by taking r = 1 in the result of Sect. 6.3.

Corollary (Informal). For every distribution P of a single password and every
integer q, there exists a simulator σLT such that

[
KEYLT(P,q),AUT

] (SE, σLT, ε)
SECLT(P,q),

where the distinguishing advantage ε can be reduced to the IND-CPA security of
the underlying encryption scheme.

422 G. Demay et al.

6.2 General Impossibility of PBE

The positive result for a single session can in general not be lifted to multiple
sessions. Our impossibility result consists of providing a lower bound on the
distinguishing advantage of a particular distinguisher D� in distinguishing the
systems encA decB [KEYr

T,AUTr] and σE SECr
T depicted in Fig. 2, for any trig-

ger system T with output space {0, 1}r and any simulator σ. The lower bound
depends on the properties of the trigger system T and while giving a clear
impossibility result for some triggers, for others it becomes moot. In particular,
while it gives a strong bound for the case of the global password-guessing trigger
GT (P, q), the bound is inconclusive for the local trigger LT (P, q) and indepen-
dently distributed passwords, where in Sect. 6.3 we show that password-based
encryption is actually possible.

The core of our impossibility result lies in exploiting the commitment problem
explained in Sect. 6.1. The simulator σ = σLT there avoids this commitment
problem by trying to break the session associated with the plaintext before having
to output the corresponding ciphertext. This works out if σ follows the optimal
strategy for breaking this particular session, since an arbitrary distinguisher
would no be able to do better. However, since σ does not a priori know which
session will have to be “decommitted”, the simulator σ must be able to follow
the optimal strategy for each session. This might be possible depending on the
trigger system T (such as in the case of LT (P, q) with independent passwords),
but in general following the optimal strategy for a particular session may prevent
σ from following the optimal strategy for another session. This is the case for
the trigger GT (P, q) where following the optimal strategy for a particular session
consists of exhausting all the q allowed password-guessing queries on this session.

The high level idea of the distinguisher D� is therefore to first force the
simulator to be committed to a ciphertext in every session; and second, to pick
a session j∗ uniformly at random and to follow the optimal strategy to break it.
To avoid the commitment problem, the simulator must in contrast try to break
the maximum number of sessions before simulating the ciphertexts since it does
not know which session j∗ will be chosen by the distinguisher.

Theorem 1. Let SE := (enc, dec) be a correct encryption scheme with key
space K := {0, 1}n and message space M ⊆ {0, 1}∗, and consider the associated
protocol SE := (enc, dec). Let T be a trigger system with output space {0, 1}r

and let M� denote a non-empty set of messages of fixed length � in M, for some
integer �. Then, there exists a distinguisher D� such that, for all simulators σ
and with δT := ΓT

opt − ΓT
avg ≥ 0, we have

ΔD�

(
encA decB [KEYr

T,AUTr] , σE SECr
T

)
≥ δT − |K|

|M�|
. (1)

The value ΓT
opt is the average advantage of optimal strategies per-session,

whereas ΓT
avg is the optimal advantage of a global strategy. The formal definitions

and a discussion on the bound obtained in (1) are in the full version.

Per-Session Security: Password-Based Cryptography Revisited 423

6.3 PBE with Local Assumptions

Our impossibility result does not apply to the particular case of the local pass-
word-guessing trigger LT (P, q) if the passwords are independently distributed,
allowing for the existence of password-based encryption under these assumptions.
Intuitively, since each session has its own restriction on the number of password-
guessing queries, the simulation strategy can optimally brute-force each session
independently to avoid the commitment problem, as in the simpler case of a
single session discussed in Sect. 6.1.

The next informal theorem states that under these assumptions PBE achieves
per-session confidentiality if the encryption scheme is IND-CPA secure. The
formal statement and its proof are postponed to the full version [12].

Theorem (informal). For every distribution P of r independent passwords
and every tuple of r integers q := (q1, . . . , qr), there exists a simulator σLT such
that [

KEYr
LT(P,q), AUT

r
] (SE, σLT, ε)

SECr
LT(P,q),

where ε can be reduced to the IND-CPA security of the encryption scheme.

6.4 Salting and PKCS #5

We examine in the full version [12] the well-known salting technique, a stan-
dard tool to achieve domain separation in password hashing. This technique
consists of prefixing all queries made to a single random oracle ROq, where q
is an upper bound on the number of queries made by Eve, by a distinct bit
string in each of the r sessions, making the queries from different sessions land
in different subdomains of the random oracle. In practice, a randomly chosen
bit string is used for every session, maintaining the same properties with high
probability. Indeed, the salting technique constructs r globally restricted ran-
dom oracles [RO, . . . ,RO]q but it cannot construct r locally restricted random
oracles [ROq1 , . . . ,ROqr

], at least not unless qj ≥ q for all j ∈ {1, . . . , r} (which
would render this construction uninteresting due to the blow-up in the number
of adversarial queries). Intuitively, since the prefixes used are public, a distin-
guisher can use the same prefix for all its q queries, thereby forcing the simulator
to query the same random oracle.

Consequences for local restrictions and PKCS #5. The above obser-
vation implies that relying on local query restrictions for multi-session security
of password-based encryption appears to be in general rather unrealistic. The
salting technique employed in PKCS #5 [15] (and more generally, any domain
separation technique which is public) fails to construct locally restricted random
oracles [ROq1 , . . . ,ROqr

] from a single random oracle ROq for any meaningful
values of q1, . . . , qr. As a consequence, we show in the full version that the same
arguments used to prove Theorem1 imply that PKCS #5 does provably not
achieve per-session confidentiality.

424 G. Demay et al.

7 Conclusion

The work of Bellare et al. [5] initiated the provable-security analysis of the tech-
niques used in the password-based cryptography standard [15] and its application
in password-based encryption. As discussed in Theorem 1, however, they do not
prove the desired per-session security guarantee for PBE.

Even though we show that the results of [5] carry over to a composable model
with per-session guarantees, this requires corresponding per-session assumptions
on the distribution of adversary computation, and the simulation strategy we use
is already quite peculiar: the simulator needs to know the password distribution
and it must also make all password-guessing attempts before simulating the
first ciphertext. This means that the constructed resource allows the attacker to
aggregate its entire “computational power” and spend it in advance rather than
distributed over the complete duration of the resource use, which results in a
weaker guarantee than one might expect.

Our general impossibility result in Theorem1 shows that bounding the adver-
sary’s queries per session, although an unrealistic assumption (as discussed in
Sect. 6.4), is necessary for a simulation-based proof of security of PBE. Other-
wise, a commitment problem akin to the one in adaptively secure public-key
encryption (PKE) surfaces. Does that mean that we should stop using PBE in
practice? In line with Damg̊ard’s [10] perspective on adaptively secure PKE,
where a similar commitment-problem occurred [22], we view this question as
being a fundamental research question still to be answered.3 On the one hand,
we lack an attack that would convincingly break PBE, but on the other hand
we also lack provable-security support, to the extent that we can even show the
impossibility in our model. Applications using these schemes should therefore be
aware of the potential risk associated with their use. We believe that pointing
out this commitment problem for PBE, analogously to adaptively secure PKE,
is an important contribution of this paper.

References

1. Abadi, M., Warinschi, B.: Password-based encryption analyzed. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 664–676. Springer, Heidelberg (2005). doi:10.1007/11523468 54

2. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard func-
tions. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 595–603. ACM
Press, June 2015

3. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possibility
results, impossibility results and the quest for a general definition. In: Abdalla,
M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234.
Springer, Cham (2013). doi:10.1007/978-3-319-02937-5 12

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 11

3 Also affected are functional encryption [3,6,17] and identity-based encryption [14].

http://dx.doi.org/10.1007/11523468_54
http://dx.doi.org/10.1007/978-3-319-02937-5_12
http://dx.doi.org/10.1007/3-540-45539-6_11

Per-Session Security: Password-Based Cryptography Revisited 425

5. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its application
to password-based cryptography. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 312–329. Springer, Heidelberg (2012). doi:10.1007/978-
3-642-32009-5 19

6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000). http://eprint.iacr.
org/2000/067

8. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005). doi:10.1007/11426639 24

9. Corrigan-Gibbs, H., Boneh, D., Schechter, S.: Balloon hashing: Provably space-
hard hash functions with data-independent access patterns (2016)

10. Damg̊ard, I.: A “proof-reading” of some issues in cryptography. In: Arge, L.,
Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
2–11. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73420-8 2

11. Demay, G., Gaži, P., Maurer, U., Tackmann, B.: Query-complexity amplification
for random oracles. In: Lehmann, A., Wolf, S. (eds.) ICITS 2015. LNCS, vol. 9063,
pp. 159–180. Springer, Cham (2015). doi:10.1007/978-3-319-17470-9 10

12. Demay, G., Gaži, P., Maurer, U., Tackmann, B.: Per-session security: Password-
based cryptography revisited. Cryptology ePrint Archive, Report 2016/166,
February 2016

13. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 33

14. Hofheinz, D., Matt, C., Maurer, U.: Idealizing identity-based encryption. In: Iwata,
T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 495–520. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48797-6 21

15. Kaliski, B.: PKCS #5: Password-based cryptography specification. RFC 2898,
September 2000

16. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001). doi:10.1007/3-540-
44987-6 29

17. Matt, C., Maurer, U.: A definitional framework for functional encryption. In: IEEE
28th IEEE CSF, pp. 217–231, July 2015

18. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002).
doi:10.1007/3-540-46035-7 8

19. Maurer, U.: Constructive cryptography – a new paradigm for security definitions
and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol.
6993, pp. 33–56. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27375-9 3

20. Maurer, U., Renner, R.: Abstract cryptography. In: Chazelle, B. (ed.) The Second
Symposium in Innovations in Computer Science, ICS 2011, pp. 1–21. Tsinghua
University Press, January 2011

21. Morris, R., Thompson, K.: Password security: A case history. Commun. ACM
22(11), 594–597 (1979)

http://dx.doi.org/10.1007/978-3-642-32009-5_19
http://dx.doi.org/10.1007/978-3-642-32009-5_19
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
http://dx.doi.org/10.1007/11426639_24
http://dx.doi.org/10.1007/978-3-540-73420-8_2
http://dx.doi.org/10.1007/978-3-319-17470-9_10
http://dx.doi.org/10.1007/3-540-39200-9_33
http://dx.doi.org/10.1007/978-3-662-48797-6_21
http://dx.doi.org/10.1007/3-540-44987-6_29
http://dx.doi.org/10.1007/3-540-44987-6_29
http://dx.doi.org/10.1007/3-540-46035-7_8
http://dx.doi.org/10.1007/978-3-642-27375-9_3

426 G. Demay et al.

22. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 8

23. O’Gorman, L.: Comparing passwords, tokens, and biometrics for user authentica-
tion. Proc. IEEE 91(12), 2021–2040 (2003)

24. Percival, C.: Stronger key derivation via sequential memory-hard functions. Self-
published, pp. 1–16 (2009)

25. Petsas, T., Tsirantonakis, G., Athanasopoulos, E., Ioannidis, S.: Two-factor
authentication: is the world ready? Quantifying 2FA adoption. In: Proceedings
of the Eighth European Workshop on System Security, p. 4. ACM (2015)

26. Tackmann, B.: A Theory of Secure Communication. Ph.D. thesis, ETH Zürich,
August 2014

http://dx.doi.org/10.1007/3-540-45708-9_8

AVR Processors as a Platform
for Language-Based Security

Florian Dewald, Heiko Mantel(B), and Alexandra Weber(B)

Computer Science Department, TU Darmstadt, Darmstadt, Germany
{dewald,mantel,weber}@mais.informatik.tu-darmstadt.de

Abstract. AVR processors are widely used in embedded devices. Hence,
it is crucial for the security of such devices that cryptography on AVR
processors is implemented securely. Timing-side-channel vulnerabilities
and other possibilities for information leakage pose serious dangers to the
security of cryptographic implementations. In this article, we propose
a framework for verifying that AVR assembly programs are free from
such vulnerabilities. In the construction of our framework, we exploit
specifics of the 8-bit AVR architecture to make the static analysis of
timing behavior reliable. We prove the soundness of our analysis against
a formalization of the official AVR instruction-set specification.

1 Introduction

AVR processors are popular microcontrollers for embedded devices [45]. These
processors are used, for instance, in the Internet of Things [47]. There are also
specialized AVR processors by Atmel for aerospace [8] and automotive [7] appli-
cations. Hence, AVR processors are an attractive target for attacks.

Cryptographic implementations for AVR microcontrollers are available
directly in hardware [4] and also in software. Cryptographic libraries for AVR
include, for instance, μNaCl [29], AVR-Crypto-Lib [19], and TinyECC [35]. The
current versions of these libraries differ in the level of security they provide
against side channels. For instance, the library μNaCl was developed with a
focus on avoiding side-channel vulnerabilities [29] while AVR-Crypto-Lib so far
does not contain protection mechanisms against side-channel attacks [19].

Hardware implementations of cryptography on AVR microcontrollers have
been attacked successfully through side-channel attacks [30,43]. Recently,
Ronen, O’Flynn, Shamir and Weingarten [47] mounted a side-channel attack
based on power consumption on smart light bulbs that contain the Atmel
ATmega2564RFR2 System on Chip. The attack exploited that the power con-
sumption of an AES encryption on the AVR microcontroller depends on the
secret AES key. Ronen, O’Flynn, Shamir and Weingarten recovered the entire
key and used it to authenticate compromised firmware for the smart light bulbs.

Side-channel attacks can be based on a multitude of execution characteristics
like cache behavior [36,44], power consumption [32,47] or running time [24,31].
Attacks that exploit the running time of an execution are particularly dangerous

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 427–445, 2017.
DOI: 10.1007/978-3-319-66402-6 25

428 F. Dewald et al.

because they can be mounted remotely without physical access to a system [16,
17]. In this article, we focus on such timing side channels.

Language-based techniques for detecting and mitigating timing side channels
exist for multiple programming languages [2,11,33,41,49]. However, the models
of time underlying the soundness proofs for these techniques do not capture
optimizations like caches or branch prediction faithfully. As a consequence, the
soundness proofs for these techniques are less effective in practice than one might
expect, e.g., on x86 processors [40]. On 8-bit AVR microcontrollers, the time
required to execute an instruction can be predicted statically. This is the feature
of AVR processors that we exploit in this article.

Based on the predictability of execution times, we propose a security type
system for AVR assembly. Our type system reliably verifies that there are no pos-
sibilities for information leakage in a timing-sensitive and flow-sensitive fashion.
We base our soundness proof on a formal operational semantics of AVR assembly
that reflects the execution times specified in the AVR instruction set manual [6].
Building on our security type system, we developed the Side-Channel FinderAVR

(SCFAVR), a tool for checking AVR assembly programs against timing-side-
channel vulnerabilities and other possibilities for information leakage.

We show that our type system can be used to check realistic programs by
applying SCFAVR to the implementations of the stream cipher Salsa20 and to
the Message-Authentication Code Poly1305 from the library μNaCl. To prove
the type system’s soundness, we developed a formal semantics for AVR assembly,
because none was available so far. We make our semantics available to others,1

such that they can use it for proving the soundness of program analyses for AVR.

2 Preliminaries

2.1 Timing-Side-Channel Vulnerabilities and Attacker Models

Timing-Side-Channel Vulnerabilities. Consider the following example program
with secret information stored in variable h.

if (h = 1) then sleep (1000) else skip;

If the variable h has value 1, the then-branch will be executed, and the program
will sleep for 1000 ms. If the variable h has a value other than 1, then the else-
branch will be executed, and the overall execution will be faster in this second
case. Such a dependency of a program’s execution time on secret information
is called a timing-side-channel vulnerability. If an attacker can observe the exe-
cution time of a program, then he can, indeed, exploit such vulnerabilities to
deduce critical secrets (as shown, e.g., in [31]).

1 The addendum to this article and the tool SCFAVR are available under
http://www.mais.informatik.tu-darmstadt.de/scf2017.html.

http://www.mais.informatik.tu-darmstadt.de/scf2017.html

AVR Processors as a Platform for Language-Based Security 429

Attacker Models. An attacker model defines what an attacker can observe during
a program execution. We consider a passive attacker who has knowledge of the
program’s code and can observe execution time as well as certain inputs and
outputs. There are multiple possibilities to define attacker models. In this article,
we model the visibility of information containers for an attacker by the security
levels L (visible) and H (secret and invisible to the attacker), and we assign
one level to each input (initial state of registers, etc.) and each output (final
state of registers, etc.) of a program. We call such an assignment of security
levels to information containers a domain assignment. We call two given states
indistinguishable to an attacker under a domain assignment if these states assign
identical values to each container labeled with L.

2.2 Static Analysis

Timing-Sensitive Information-Flow Analysis. An information-flow analysis
checks for the absence of undesired information flow in a program. The result-
ing security guarantee is usually captured by a variant of noninterference [26],
i.e., by a formally defined security property that requires secret information to
not influence the observations of an attacker. The choice of an execution model
and an attacker model influences which variant of noninterference is suitable [39].
Research on information-flow analyses goes back to Denning and Denning [20,21]
and Cohen [18]. A comprehensive survey of language-based information-flow
analyses has been provided by Sabelfeld and Myers in [48].

Information-flow analyses usually over-approximate the flow of secret infor-
mation to attacker-observable outputs. There are multiple approaches to analyz-
ing information-flow security. In this article, we focus on security type systems.
A security type system formalizes constraints on the sensitivity of data stored
in containers (e.g., in registers) during the execution of a program. If a program
satisfies these constraints for a domain assignment, then the program is called
typable under the domain assignment. A type system is sound with respect to a
security property if and only if all programs that are typable under some domain
assignment satisfy the security property under this domain assignment.

A timing-sensitive property takes the influence of secrets on the running time
of a program into account. The semantics on which a timing-sensitive security
property is based should, hence, capture the execution time of the program suffi-
ciently precisely. A timing-sensitive information flow analysis tries to anticipate
such dependences between running times and secrets (see, e.g., [2,49]).

Control Flow Analysis. Assembly languages have unstructured control flow. To
determine the control flow of AVR assembly code, we employ the approach and
notation that was proposed in [10] and has inspired many others (e.g., [37]). In
particular, we define the control-dependence region and junction point of each
program point using Safe Over Approximation Properties (SOAPs).

To distinguish branchings from loops, we base on the concept of natural
loops [3, Chap. 18.1]. Natural loops are defined based on the notions of domination
introduced by Prosser [46] and back edges in control flow graphs. A node n1 in a

430 F. Dewald et al.

control flow graph dominates a node n2, written n1 dom n2, if and only if all paths
from the root to n2 go trough n1. An edge from node n2 to node n1 in the control
flow graph of a program is a back edge if and only if n1 dom n2. The natural loop
of a back edge from n2 to n1 contains all execution points that are dominated by
n1 and from which n2 is reachable without passing n1.

2.3 AVR Assembly Instruction Set

The Atmel AVR 8-bit instruction set consists of 119 distinct instructions. The
instructions operate on memory, registers, and a stack. A dedicated status reg-
ister stores status flags, e.g., the carry flag indicating whether the most recently
executed instruction resulted in a carry.

Although 8-bit AVR microprocessors are widely used, they do not support
caching and branch prediction. Memory accesses take only one clock cycle, which
makes caches dispensable [34]. Most instructions are executed in one fixed num-
ber of clock cycles on 8-bit AVR processors. However, for conditional jumps, two
fixed execution times are possible, depending on the outcome of the branching
condition. If a jump is performed, then the instruction takes an additional clock
cycle. The behavior and execution time of the individual AVR instructions are
defined informally in the instruction set manual [6]. This description constitutes
the basis for our formalization of the semantics in Sect. 3.

2.4 Notation

We denote the i-th bit of the binary representation of v ∈ Z by v[i]. Given a
function r, we write r[x�→y] for the function resulting from updating r at x with
y. We use this notation also, if y is one bit too long with respect to rng(r). In this
case, we define the update by r[x�→y](x) = y′ where y′ results from y by dropping
the most significant bit in the binary representation. For Boolean values, we
define the notation r[x �→s True] := r[x �→ 1] and r[x �→s False] := r[x �→ 0].

3 Our Formal Semantics of AVR Assembly Programs

We show how to exploit the predictability of execution times on AVR processors
to obtain a faithful reference point for a sound security analysis. To this end, we
define a formal operational semantics for AVR assembly code based on [6].

3.1 Syntax

In AVR assembly, instructions are represented by mnemonics, i.e., keywords
that describe the purpose of the instruction. The mnemonics also determine the
number and types of the arguments in an instruction.

We define the syntax of AVR assembly instructions by the following
grammar:

INSTR := Simple | Unary Rd | Binary Rd Rr | Control epa | Immediate Rd k |
out k Rr | ld Rd Rs ∗ | st Rs Rr ∗ | ldd Rd Rs k | std Rs Rr k

AVR Processors as a Platform for Language-Based Security 431

where Simple ∈ {clc, cli, ret}, Unary ∈ {dec, inc, lsr, neg, pop, push, ror},
Binary ∈ {adc, add, and, cp, cpc, cpse, eor, mov, movw, mul, or, sbc, sub},
Control ∈ {brcc, brcs, breq, brne, call, jmp, rcall, rjmp}, and Immediate ∈
{adiw, andi, cpi, in, ldi, sbci, sbiw, subi}.

Each instruction consists of a mnemonic followed by at most three argu-
ments. The arguments can be basic execution points (epa in the grammar
above), registers (Rd,Rr,Rs), immediate values (k) or modifiers refining the
behavior of I/O instructions (∗). We define the set of basic execution points by
EPS0 := {(f, a) | f ∈ FUNC ∧ a ∈ N} where FUNC models the set of all function
identifiers (e.g., labels based on source-level function names). We define the set
of 8-bit registers by REG := {rn | n ∈ [0, 31]} ∪ {spl, spu}, where spl and spu are
special registers that store the lower and the upper part of the stack pointer,
respectively. To obtain 16-bit values, two registers can be used as a register pair.
One common use of register pairs is to store memory addresses in the pair r27
and r26, the pair r29 and r28, or the pair r31 and r30. These register pairs are
commonly referred to as X, Y, and Z, respectively. We reflect this in the syntax
by the set {X,Y,Z} of special (16 bit) registers where X captures the register
pair r27 and r26, Y captures the register pair r29 and r28, and Z captures the
register pair r31 and r30. We define the set of immediate values as Z and the set
of modifiers for I/O instructions by {+,−,#}.

We use the meta variable epa to range over EPS0, the meta variables Rd and
Rr to range over REG, the meta variable Rs to range over {X,Y,Z}, the meta
variable k to range over Z, and the meta variable ∗ to range over {+,−,#}.

A program from the set PROG := EPS0 ⇀ INSTR of all AVR assembly programs
is modeled as a mapping from basic execution points to instructions. We only
consider programs that satisfy a well-formedness criterion. We define the well-
formedness of programs as the conjunction of three requirements. Firstly, we
require each function to contain a unique return instruction ret. Secondly, we
require the arguments of all instructions to lie within the ranges specified in [6]
(e.g., register arguments for adiw and sbiw must be from the set {rn | n ∈
{24, 26, 28, 30}}). Thirdly, we require that the immediate arguments to all in
and out instructions are from the set {0x3f, 0x3e, 0x3d}, i.e., the addresses of
the status register, spu, and spl on an ATmega microcontroller [5].

In practice, valid arguments are ensured by correct compilers. All programs
we encountered, e.g., in our case study on μNaCl, had a unique return instruc-
tion. For programs with multiple return instructions, a unique return instruction
can be achieved by simple program rewriting.

3.2 Semantics

Our operational semantics is a small-step semantics at the granularity of AVR
instructions. We include timing information by annotating transitions between
execution states with the required number of clock cycles.

In our semantics, we use a function t : INSTR → N to capture the fixed amount
of clock cycles that each given instruction takes to execute. The definition of this

432 F. Dewald et al.

Table 1. Instructions i grouped by required clock cycles t(i)

function depends on the particular AVR processor. In Table 1, we define t for
ATmega microcontrollers with 16 bit PC based on the timing information in [6].

To model the states during the execution of a program on an 8-bit AVR
microcontroller, we define the set of values that can be represented in 8-bit
two’s complement notation as VAL8 := [−27, 27 − 1]. Furthermore, we define the
set ADDR of all addresses in the memory by ADDR := [0, MAXADDR]. We model the
contents of the registers by REG-VAL := REG → VAL8 and the contents of the
memory by MEM-VAL := ADDR → VAL8. We model the contents of the stack as
a list of 8-bit values from the set STACK-VAL := VAL∗

8, where the head of the
list represents the top-most element on the stack. Like x86 processors, AVR
microcontrollers use a dedicated register to store status flags. We model the
state of the carry flag and the zero flag by STAT-VAL := {C,Z} → {0, 1}, where
0 captures that a flag is not set and 1 captures that a flag is set.

We model the program counter and the call stack by EPS := EPS0 × EPS∗
0.

We call elements of EPS execution points. In an execution point ((f, a), fs),
fs models the call stack, and address a in function f models the program
counter. A program terminates if ret is executed with an empty call stack.
We model termination by ε. We define the set of possible execution states by
STATE := STAT-VAL × MEM-VAL × REG-VAL × STACK-VAL × (EPS ∪ {ε}). We define
the selector epselect : STATE → (EPS ∪ {ε}) to return the execution point of a
given state. Furthermore, we define the addition of a number to an execution
point by ((f, a), fs)+ep n = ((f, a+n), fs). We use the meta variables s, s′, t, and
t′ to range over STATE.

We model the possible runs of a program P ∈ PROG by the transition relation
⇓P⊆ STATE × STATE × N. We write (s, s′, n) ∈⇓P as s ⇓n

P s′ to capture that the
execution of P in state s terminates in state s′ after n clock cycles. Formally, we
define the relation using the derivation rules

s
c−→P s′ s′ ⇓c′

P s′′

s ⇓c+c′
P s′′ (Seq) s

c−→P s′ epselect(s′) = ε

s ⇓c
P s′ (Ter)

AVR Processors as a Platform for Language-Based Security 433

where we define the judgment t
c−→P t′ to capture that one execution step of

program P in state t takes c clock cycles and leads to state t′.
We define a small-step semantics with derivation rules for the judgment

t
c−→P t′. We make the full definition of the small-step semantics available online

(as part of the addendum of this article, see Footnote 1). Below we present the
rules (adc), (breq-t) and (breq-f) as examples:

P (ep) = adc Rd Rr r′ = r[Rd �→ r(Rd) + r(Rr) + sr(C)]
sr′ = sr[C �→s cf1 ∨ cf2][Z �→s r′(Rd) = 0] cf1 = (r(Rd)[7] ∧ r(Rr)[7])

cf2 = (r(Rr)[7] ∧ ¬r′(Rd)[7]) ∨ (¬r′(Rd)[7] ∧ r(Rd)[7])

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep +ep 1)

(adc)

P (ep) = breq epa sr(Z) �= 1

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r, st, ep +ep 1)

(breq-f)

P (ep) = breq epa sr(Z) = 1 ep = (ep0, fs) ep′ = (epa, fs)

(sr,m, r, st, ep)
t(P (ep))+br−−−−−−−−→P (sr,m, r, st, ep′)

(breq-t)

The AVR instruction adc Rd Rr stores the sum of the operands and the carry
flag in Rd. The instruction takes 1 clock cycle [6]. We capture the semantics of
adc in the semantics rule (adc). We define the resulting contents of register Rd
to be the sum of the original values of Rd, Rr, and C. We define the resulting
status flags by sr′, which maps C to 1 if there was a carry and which maps Z
to 1 if the sum is zero. We define the execution point of the resulting state by
ep+ep1. We capture the execution time of adc by the annotation t(P (ep)). Since
t(adc Rd Rr) = 1, this annotation captures the time faithfully.

The AVR instruction breq epa branches on the zero flag. It takes 2 clock
cycles if a jump to epa is performed (then-case, zero flag set) and 1 clock cycle
otherwise (else-case) [6]. We capture the semantics of breq by two semantics
rules. We capture the else-case by the rule (breq-f). We capture the condition
for the else-case by the premise sr(Z) �= 1 and the resulting execution point by
ep +ep 1. We capture the execution time by t(P (ep)), which is 1 by definition
of t. We capture the semantics of the then-case by the rule (breq-t). We capture
the condition for the then-case by the premise sr(Z) = 1 and the resulting
execution point by ep′, where ep′ consists of the target execution point epa and
the unmodified call stack. To capture the execution time, we define the constant
br = 1. We define the annotation of the judgment as t(P (ep))+br to reflect the
additional clock cycle that the instruction breq requires in the then-case.

Overall, the execution times of all non-branching instructions in our seman-
tics are captured completely by the function t. For all branching instructions in
our semantics, we add the constant br to the execution time t in the then-case
to reflect the additional clock cycle required to jump to the then-branch.

Based on our operational semantics, we define the successor-relation �P such
that ep1 �P ep2 ⇐⇒ ∃s1, s2 ∈ STATE : ∃n ∈ N : s1

n−→P s2∧epselect(s1) = ep1∧
epselect(s2) = ep2. We define the execution points that are reachable from an
execution point ep in program P by reachableP (ep) := {ep′ ∈ EPS | ep �+

P ep′}.

434 F. Dewald et al.

4 Timing-Sensitive Noninterference

We capture the security requirements for AVR assembly programs based on
a two-level security lattice. Its elements are security levels L and H with
�:= {(L,L), (L,H), (H,H)} and least upper bound operator �. The security
level L is used for attacker-visible information and H is used for confidential
information. Each information container is annotated with a security level by a
domain assignment.

Register and status-register domain assignments out of REG-DA := REG →
{L,H} and STAT-DA := {C,Z} → {L,H}, respectively, assign security levels
to each individual register and status register. Registers r, r′ ∈ REG-VAL are
indistinguishable with respect to rda ∈ REG-DA, written r ≈rda r′, if and only if
∀x ∈ REG : rda(x) = L ⇒ r(x) = r′(x), (and likewise ≈srda for status registers).

The whole memory is annotated with a single level from {L,H}. For md ∈
{L,H}, memories m,m′ ∈ MEM-VAL are indistinguishable if md = L ⇒ m = m′.

The stack is annotated by a stack domain assignment out of STACK-DA :=
{L,H}∗. Two stacks l, l′ ∈ STACK-VAL are indistinguishable with respect to a
stack domain assignment sda ∈ STACK-DA, written l �sda l′, if and only if the
stacks only differ in the contents of H elements until after the bottom-most L
element. They may differ arbitrarily below the bottom-most L element.

Finally, states s, s′ ∈ STATE are indistinguishable, written s ≈sda,md,rda,srda s′,
if and only if their components (except the execution points) are component-
wise indistinguishable. We use the meta variables da and da′ to range over
STACK-DA × {L,H} × REG-DA × STAT-DA and write da � da′ to abbreviate the
straight-forward notions of partial order on all components of da and da′.

We express timing-sensitive noninterference by the property TSNI.

Definition 1. A program P satisfies TSNI starting from eps ∈ EPS with initial
and finishing domain assignments da and da′ if and only if

∀s0, s
′
0,s1, s

′
1 ∈ STATE : ∀n, n′ ∈ N :

epselect(s0) = eps ∧ epselect(s′
0) = eps ∧

s0 ≈da s′
0 ∧ s0 ⇓n

P s1 ∧ s′
0 ⇓n′

P s′
1

⇒ s1 ≈da′ s′
1 ∧ n = n′

The initial and finishing domain assignments should be chosen to reflect which
inputs and outputs are visible to an attacker. If a program then satisfies TSNI,
an attacker cannot distinguish between two secret inputs to the program by
observing the program’s output or execution time. That is, TSNI guarantees
secure information flow and the absence of timing-side-channel vulnerabilities.

5 Timing-Sensitive Type System for AVR Assembly

We provide a security type system for checking AVR assembly programs
against timing-side-channel vulnerabilities. We define the type system such that

AVR Processors as a Platform for Language-Based Security 435

programs are only typable if their execution time does not depend on secret
information. Furthermore, our definition of the type system rules out undesired
direct and indirect information flow in typable programs.

5.1 Precomputation of Control-Dependence Regions

To check whether the control flow of a program influences attacker-observable
information or the running time, the control flow must be known. Since AVR
assembly is an unstructured language, the control dependencies of a program
are not structurally encoded in its syntax. To address this, we approximate
the control-dependence regions in a program using Safe Over Approximation
Properties (SOAPs). To be able to define typing rules that compare the execution
time of then- and else-branches, we distinguish between two control-dependence
regions for each branching.

Formally, we define the functions region1P , region2P : EPS → P(EPS) and junP :
EPS ⇀ EPS to be a safe over approximation of program P ’s control-dependence
regions if they satisfy the SOAPs in Fig. 1. That is, if the branches of each
branching instruction are captured by the two regions of the instruction, if the
regions of each instruction are disjoint, if a step in a region either leads to the
junction point or another point in the region, and if all regions that contain an
instruction without a successor have no junction point. In the following we only
consider functions regionthenP and regionelseP that satisfy the SOAPs.

Fig. 1. Safe overapproximation properties

We define regionP (ep) := region1P (ep)∪ region2P (ep). For a branching instruc-
tion at execution point ep we denote the region from {region1P , region2P } that con-
tains the branch target by regionthenP (ep) and the other region by regionelseP (ep).

To distinguish loops from branchings, we define the predicate loopP (ep) :=
∃ep′ ∈ regionP (ep) : ep �+

P ep′ contains a back edge, which captures whether
an execution point is the header of a natural loop. We assume that programs
contain only natural loops.

436 F. Dewald et al.

5.2 Typing Rules

Given a program P with control-dependence regions regionthenP and regionelseP ,
we define the typability of P with respect to an initial domain assignment, a
finishing domain assignment, and a security environment. We define a security
environment to be a function se : EPS → {L,H} that assigns a security level
to every execution point in the program. Moreover, we define the type system
such that se maps all execution points to H whose execution depends on secret
information. Finally, we define a program to be typable if domain assignments
for all intermediate states in the program execution exist such that, for each
execution point epi, a judgment of the form

P, regionthenP , regionelseP , se, epi :
(sdaepi , mdepi , rdaepi , srdaepi) � (sda′

epj
, md′

epj
, rda′

epj
, srda′

epj
)

is derivable that relates the domain assignments of epi to domain assignments
that are at most as restrictive as the domain assignments of all successors of epi.

Definition 2. A program P with control-dependence regions regionthenP and
regionelseP is typable with starting execution point eps, initial domain assignments
daeps , finishing domain assignments daf , and security environment se, written

P, regionthenP , regionelseP , se, eps : daeps � daf ,

if and only if for every ep ∈ reachableP (eps) there exist domain assignments
daep such that for all epi, epj ∈ reachableP (eps) ∪ {eps}, both,
1. if epi �P epj then ∃da′

epj
: da′

epj
� daepj ∧ P, · · · , epi : daepi � da′

epj
.

2. if there exists no epk ∈ reachableP (eps) such that epi �P epk then daepi �
daf and P, · · · , epi : daepi � daepi is derivable.

Note that our definition of typability imposes constraints on domain assignments
of consecutive execution points (see Condition 1 in Definition 2) as well as on
domain assignments upon termination (see Condition 2 in Definition 2).

We define the derivability of the typing judgment P, · · · , epi : daepi � da′
epj

by typing rules for the individual AVR instructions. In this section we present
the rules (t-adc), (t-brZ-l), and (t-brZ-h), defined in Fig. 2. We make the full
definition of the type system available online (see Footnote 1).

We define the derivable typing judgments for execution points that point
to adc instructions by the typing rule (t-adc). In this typing rule, we raise the
security levels of the registers and status flags modified by adc to the least upper
bound of the security levels of the summands, the carry flag and the security
environment. By raising the security levels, we ensure the absence of flows from
H summands, carry, or branching conditions to an L sum, carry, or zero flag.

We define the derivable typing judgments for the instructions breq and brne,
which jump conditionally on the zero flag, by two typing rules. By the typing
rule (t-brZ-l) we define the derivable judgments for jumps that only depend on L

AVR Processors as a Platform for Language-Based Security 437

P (ep) = adc Rd Rr
erg = rda(Rd) � rda(Rr) � se(ep) � srda(C)

rda′ = rda[Rd �→ erg] srda′ = srda[C �→ erg][Z �→ erg]

P, · · · , ep : (sda, md, rda, srda) � (sda, md, rda′, srda′)
(t-adc)

∃instr ∈ {breq, brne} : P (ep) = instr epa
se(ep) � srda(Z) = L

P, · · · , ep : (sda, md, rda, srda) � (sda, md, rda, srda)
(t-brZ-l)

∃instr ∈ {breq, brne} : P (ep) = instr epa
¬loopP (ep) se(ep) � srda(Z) = H se(ep) = H
∀ep′ ∈ regionP (ep) : se(ep′) = H sda′ = lift(sda,H)

branchtimethenP (ep) + br = branchtimeelseP (ep)

P, · · · , ep : (sda, md, rda, srda) � (sda′, md, rda, srda)
(t-brZ-h)

Fig. 2. Selected typing rules

information. We capture the condition that the jump only depends on L infor-
mation by a premise that requires the security environment and the zero flag to
have the security level L. That is, the execution of the conditional jump instruc-
tion and the condition for jumping are required to only depend on L information.
We define the derivable judgments such that they do not modify any security
levels, because a conditional jump instruction does not modify any information.
By the typing rule (t-brZ-h), we define the derivable judgments for jumps that
depend on H information. We forbid loops depending on H information to avoid
leakage to the number of iterations. We allow branchings on H information under
the following conditions. The security environment must reflect the dependence
of the branches on H information. The security levels of the stack must reflect
that the height of the stack could differ across the branches (expressed using the
function lift that lifts all elements of sda to H recursively). Finally, the execution
time required for the else-branch must be equal to the time for jumping to and
executing the then-branch. We capture the time required for the jump by br.
We capture the time required to execute a branch by the function branchtimerP ,
where r ∈ {then, else}.

Definition 3. The function branchtimerP is defined recursively as

branchtimerP (ep) :=
∑

epi∈regionrP (ep)
epi �=ep

(
t(P (epi)) − branchtimethenP (epi)

)

We define the function branchtimer(ep0) of a non-nested branching ep0, such that
it sums up the execution time of all instructions inside the branching. A recursion
is not required, as for all ep′ ∈ regionr(ep0) it holds that regionthen(ep′) = ∅. Now
assume ep1 and ep2 are branching instructions with ep2 ∈ regionr(ep1). Then
only one branch of ep2 is executed, but the positive part of branchtimer(ep1)
sums up the execution time of both branches of ep2. We take care of this by

438 F. Dewald et al.

subtracting the execution time of the then-branch. By typability, it is ensured
that both branches of ep2 execute in the same time, making the execution time
of ep1 independent of the branch taken at ep2.

Example 1. The following control flow graph is annotated with execution times.

The then-branches are white, the else-branches are gray. Consider the
paths from Node 4 to 12. They don’t contain nested branches. We get
branchtimethenP (4) = 2 and branchtimeelseP (4) = 3. For the paths from Node 0
to Node 13, there is one nested branching, namely the previously considered
branching at Node 4. We get

branchtimethenP (0) = 1 + 1 + 1 + 2 + 1 + 1 + 1 −
∑

epi∈regionthen
P (0)

branchtimethenP (epi)

= 1 + 1 + 1 + 2 + 1 + 1 + 1 − branchtimethenP (4) = 6

Only branchtimethenP (4) is subtracted because all other points in the region have
0 branchtime. 1 + br is counted as 1 because br is handled in the typing rule. ♦

5.3 Soundness

We ensure that our security type system provides reliable security guarantees
about AVR programs. To this end, we prove the following soundness theorem.

Theorem 1 (Soundness). If P, regionthenP , regionelseP , se, eps : daeps � daf ,
then P satisfies TSNI starting from eps with the initial and finishing domain
assignments daeps and daf .

Proof Sketch. We apply an unwinding technique and prove local respect and
step consistency for each typable AVR assembly instruction in our semantics. To
prove that no secret information interferes with the execution time, we formulate
and prove a lemma stating that secret-dependent branches are constant-time.��

Theorem 1 states that the type system is sound with respect to the property
TSNI. That is, all typable programs are free of timing-side-channel vulnerabilities
with respect to TSNI. We make the full proof available online (as part of the
addendum of this article, see Footnote 1).

Proving the soundness of a security type system with respect to a security
property is an established technique used, e.g., in [2,9,33,51]. In general, timing-
side-channel vulnerabilities might occur in practice despite soundness proofs [40].
This criticism does not apply to our approach because our semantics is based
on the explicit specification of execution times in [6].

AVR Processors as a Platform for Language-Based Security 439

6 Automatically Analyzing AVR Assembly Programs

We create the Side-Channel FinderAVR (SCFAVR) to automatically analyze AVR
programs with respect to timing-side-channel vulnerabilities. From now we omit
the superscript of SCFAVR. We make the tool available online (see Footnote 1).

To demonstrate the capabilities of SCF, we apply it to a self-implemented
primitive and to off-the-shelf implementations from the crypto library μNaCl.

6.1 The Side-Channel FinderAVR

Our analysis of AVR assembly programs consists of three steps that are illus-
trated in Fig. 3. The dashed box represents the parts of the analysis that we
automate in SCF. The first step is to parse the analysis inputs. We convert the
inputs, namely an AVR program (1) and a configuration file (2), to an internal
representation. The configuration file specifies a starting execution point and
initial and finishing domain assignments. The second step is to precompute (3)
the control-dependence regions of the AVR assembly program. The third step is
the timing-sensitive information flow analysis (4) of the program. If the analysis
is successful, we report the success (5). Otherwise, we return a failure report (6).

well-formed
program

configuration

parser
pre-

computation
type

checking
failure
report

success
report

(1)

(2)

(3) (4)

(5)

(6)

SCFAVR

Fig. 3. Data flow diagram of the analysis process in SCF

Implementation. The tool SCF is our implementation of this three-step analysis
procedure in roughly 1,250 lines of Python code. SCF takes as the first input
an object dump file of the program to analyze. The object dump file can be
generated with the AVR compiler toolchain and contains the full program in
assembly form. We implement a simple regex-based parser to transform an object
dump file into a program representation according to our syntax in Sect. 3.1. As
the second input, SCF takes the analysis configuration in JSON format. Our
parser infers the registers of function arguments from high-level code according
to the AVR calling conventions [23] and the given configuration file.

We implement the precomputation according to the SOAPs for control-
dependence regions from Sect. 5.1. Our implementations is based on a method
from [25] and uses the graph library NetworkX [27] to compute dominators.

To realize the information-flow analysis in the third step, we implement our
type system from Sect. 5.2. We represent each instruction as a class that contains
the corresponding typing rule and the corresponding execution time according

440 F. Dewald et al.

to our definition of t for ATmega processors in Table 1. We implement type
checking as a fixed-point iteration.

If there is no error detected during type checking, we report the result
SUCCESS. Otherwise, we report a failure. We provide an error message that spec-
ifies the origin of the failure. The concrete error messages are:

– LOOP_ON_SECRET_DATA, if there is a loop in a high security environment,
– TIMING_LEAK, if there is a violation of a branchtime condition,
– INFORMATION_LEAK, if the inferred domain assignments are more restrictive

than allowed by the given configuration.

6.2 Timing-Side-Channel Analysis of µNaCl

We demonstrate how to analyze real-world cryptographic implementations with
SCF at the example of μNaCl. μNaCl [29] is specifically made for AVR micro-
controllers and was developed with a focus on providing constant-time imple-
mentations of cryptographic primitives. We analyze the constant-time string-
comparison primitive from μNaCl and an alternative implementation of string
comparison that is vulnerable to timing-side-channel attacks. We also analyze
the μNaCl default stream cipher Salsa20 and its variant XSalsa20, and the μNaCl
default Message-Authentication Code Poly1305. We expected these implemen-
tations to be secure because side channels were a focus in the development of
μNaCl [29]. Our analysis with SCF confirms that these implementations are
secure with respect to the timing-sensitive property TSNI. The analysis is fully
automatic and does not require any source code modifications2 to μNaCl.

String Comparison. Consider the following two implementations of string com-
parison where n is the length of the strings to be compared.

for(i = n; i != 0; i--)
if(x[i-1] != y[i-1])

break;
return i;

crypto_uint16 d = 0;
for(i = 0; i < n; i++)

d |= x[i]^y[i];
return (1&((d-1)>>8))-1;

The first implementation aborts the comparison at the first mismatch. The
second implementation always iterates over the entire string. If the implemen-
tations are used, e.g., to verify passwords, the first implementation leaks the
amount of correct characters in the password via a timing channel, while the
second implementation is constant-time.

Using SCF, one can check for such vulnerabilities automatically. We analyzed
the implementations for n = 16. Since either of the source-level inputs could be
the actual password, we run SCF with the security level H for both inputs. In
the parsing phase, this domain assignment is translated according to the calling
conventions, so that registers r22 to r25 are initially H. To check for timing side

2 All crypto functions in µNaCl satisfy the assumption of a unique return instruction.

AVR Processors as a Platform for Language-Based Security 441

channels, we assume that the attacker cannot observe the output directly but
only the timing. Hence, we also set the security level of the result to H. On the
first program, SCF detects a vulnerability. The output of SCF looks as follows.

"result_code ":3,
"execution_point ":{

"address ":"0 x1a", "function ":" verify_leaky_16 "},
"result ":" LOOP_ON_SECRET_DATA "

SCF points to the address at which the vulnerability was detected and also hints
at the reason, namely a loop on secret data. The address “0x1a” points to the
if -statement that leads to early abortion of the string comparison.

On the second implementation of string comparison, SCF reports a successful
analysis. The implementation is typable. By Theorem 1, the implementation is
secure against timing-side-channel vulnerabilities with respect to TSNI.

The second implementation of string comparison is used in μNaCl. We suc-
cessfully analyzed the μNaCl string comparison functions crypto verify16 and
crypto verify32 that both use the second implementation. Both functions are
secure with respect to TSNI.

Salsa20 and Poly1305. SCF is also able to analyze more complex cryptographic
implementations than a password verification. We apply SCF to the implemen-
tations of Salsa20, XSalsa20, and Poly1305 in the library μNaCl.

The cipher Salsa20 [13] is part of the eSTREAM portfolio of stream ciphers.
The specification of Salsa20 avoids S-box lookups and integer multiplications as
sources of potential timing vulnerabilities. We analyze the μNaCl implementa-
tions of Salsa20 and XSalsa20 (a variant with a longer nonce [14]). The parame-
ters of both, the Salsa20 and XSalsa20 implementations, are the secret key k, a
nonce n, the location for the cipher output c, and the message length clen.

We consider the key k and the nonce n secret and assign security level H.
Furthermore, we consider an attacker who can only observe the timing of an
execution, and we assign the level H to the cipher output stored in c and to
the return value (status) of the functions. We consider the message length clen
visible to the attacker and assign level L. The analysis of Salsa20 and XSalsa20
with SCF is successful, i.e., the functions are secure with respect to TSNI.

Poly1305 [15] is a MAC (Message-Authentication Code) based on secret-
key encryption. While the original definition of Poly1305 is based on AES, the
implementation in μNaCl is based on Salsa20. The parameters of the Poly1305
implementation in μNaCl are the secret key k, the message in, the message
length inlen, and the location for the resulting authenticator out.

We analyze the μNaCl implementation of Poly1305 with SCF. Again we
consider only the message length inlen visible to the attacker. SCF reports a
successful analysis. The function is typable and hence satisfies TSNI.

Analysis Setup. From version 20140813 of μNaCl we analyzed crypto verify16,
crypto verify32, crypto stream salsa20, crypto stream xsalsa20, as well
as crypto onetimeauth poly1305. We obtained the object dump using avr-gcc

442 F. Dewald et al.

in version 4.8.1 and avr-objdump. We removed the flag --mcall-prologues
from the μNaCl makefile to obtain the full assembly code.

7 Related Work

Timing Side Channels. Already in 1996, Kocher [31] described how to extract
a secret key from a cryptosystem by measuring the running time. Brumley and
Boneh [17] showed that timing attacks can be carried out remotely, which makes
them particularly dangerous. In general, timing vulnerabilities can be due to dif-
ferent factors, e.g., secret-dependent branches with different execution times [31],
branch prediction units [1], or caches [12]. In this article, we consider a platform
without optimizations like branch prediction units and caches.

Timing vulnerabilities can be avoided by design as, e.g., in μNaCl [29] or
transformed out of existing implementations [2,11,33,41]. The use of program
transformations does not always lead to implementations without timing-side-
channel vulnerabilities in practice [40]. For the secure design of selected imple-
mentations from μNaCl, we certify timing-sensitive noninterference based on the
official specification of execution times in [6].

Side-Channels on AVR Microcontrollers. Hardware cryptographic engines on
AVR microcontrollers have been successfully attacked through side channels by
Kizhvatov [30], O’Flynn and Chen [43], and Ronen et al. [47].

An alternative to hardware-accelerated cryptography are cryptographic
implementations in software, e.g., in cryptographic libraries like μNaCl [29]. For
an informed use of software implementations, reliable security guarantees are
desirable. Our tool SCF can check AVR assembly programs and provide such
guarantees. It complements existing techniques like the ChipWhisperer tool-
box [42] that supports mounting side-channel attacks on AVR microcontrollers.

Timing-Sensitive Information Flow Analysis. Timing-sensitive security type sys-
tems were developed for an imperative programming language and a while lan-
guage already by Volpano and Smith [49] in 1997 and by Agat [2] in 2000. Agat’s
type system was extended to a JavaCard-like bytecode language by Hedin and
Sands [28]. For an intermediate language in the CompCert verified C compiler,
timing-sensitive information flow was considered by Barthe et al. [9]. Agat [2]
and Köpf and Mantel [33] propose type systems that transform programs to
remove timing-side-channel vulnerabilities. Our type system for AVR assembly
is not transforming. However, the AVR instruction set contains a nop command
that could be used to realize a transforming type system.

Recently, Zhang, Askarov, and Myers [50] proposed a timing-sensitive type
system that takes into account a contract for the interaction of programs with
the hardware design. To check whether hardware adheres to such a contract,
Zhang, Wang, Suh, and Myers [51] introduce a hardware design language with
type annotations and a corresponding timing-sensitive security type system.

Existing tools for timing-sensitive program analysis include Side Channel
Finder [38] for Java, which checks for secret-dependent loops and branchings

AVR Processors as a Platform for Language-Based Security 443

using a type system, and CacheAudit [22] for x86 binaries, which quantifies the
leakage through cache-based timing channels using abstract interpretation.

To our knowledge, we propose the first information flow analysis and analysis
tool for checking AVR assembly programs against timing side channels.

8 Conclusion

In this article, we have shown how an analysis framework for timing side channels
in real-world crypto implementations can be realized. We proposed a security
type system, a timing-sensitive operational semantics, a soundness result for our
type system, and our tool SCF for automatically verifying the absence of infor-
mation leaks (including timing side channels) in AVR programs. We exploited
the predictability of execution times on 8-bit AVR processors and showed how
AVR can be used as a platform for language-based approaches to timing-sensitive
information flow analysis. SCF is an academic prototype, but - as we have shown
- it is suitable for verifying real-world crypto implementations from μNaCl.

Based on this initial step, we plan to increase the coverage of our framework
from currently 36% of the 8-bit AVR instruction set to the entire 8-bit AVR
instruction set. We plan to grow SCF so that it can be broadly applied to off-the-
shelf AVR assembly programs. With the extended SCF, the verification of entire
crypto libraries will be an interesting direction. Another interesting direction
would be to consider attackers who exploit hardware features (e.g., interrupts).

Acknowledgements. We thank the anonymous reviewers for their constructive com-
ments. We also thank Ximeng Li, Johannes Schickel, and Artem Starostin for helpful
discussions. This work has been funded by the DFG as part of Project E3 “Secure
Refinement of Cryptographic Algorithms” within the CRC 1119 CROSSING.

References

1. Acıiçmez, O., Koç, Ç.K., Seifert, J.-P.: Predicting secret keys via branch prediction.
In: CT-RSA, pp. 225–242 (2007)

2. Agat, J.: Transforming out timing leaks. In: POPL, pp. 40–53 (2000)
3. Appel, A.W.: Modern Compiler Implementation in Java. Cambridge University

Press, Cambridge (2002)
4. Atmel Corporation: Atmel ATmega2564RFR2/ATmega1284RFR2/ATmega644RFR2

Datasheet. Rev. 42073B-MCU Wireless-09/14 (2014)
5. Atmel Corporation: Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V

Datasheet. Rev. 2549Q-AVR-02/2014 (2014)
6. Atmel Corporation: Atmel AVR 8-bit Instruction Set: Instruction Set Manual. Rev.

0856K-AVR-05/2016 (2016)
7. Atmel Corporation: Automotive AVR Microcontrollers (2016). http://www.atmel.

com/products/microcontrollers/avr/Automotive AVR.aspx. Accessed 21 Mar 2017
8. Atmel Corporation: Rad Tolerant Devices (2016). http://www.atmel.com/

products/rad-hard/rad-tolerant-devices/. Accessed 21 Mar 2017
9. Barthe, G., Betarte, G., Campo, J.D., Luna, C., Pichardie, D.: System-level Non-

interference for Constant-time Cryptography. In: CCS, pp. 1267–1279 (2014)

http://www.atmel.com/products/microcontrollers/avr/Automotive_AVR.aspx
http://www.atmel.com/products/microcontrollers/avr/Automotive_AVR.aspx
http://www.atmel.com/products/rad-hard/rad-tolerant-devices/
http://www.atmel.com/products/rad-hard/rad-tolerant-devices/

444 F. Dewald et al.

10. Barthe, G., Pichardie, D., Rezk, T.: A certified lightweight non-interference java
bytecode verifier. In: Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 125–140.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71316-6 10

11. Barthe, G., Rezk, T., Warnier, M.: Preventing timing leaks through transactional
branching instructions. ENTCS 153(2), 33–55 (2006)

12. Bernstein, D.J.: Cache-timing attacks on AES. Technical report, University of Illi-
nois at Chicago (2005)

13. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O.
(eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidel-
berg (2008). doi:10.1007/978-3-540-68351-3 8

14. Bernstein, D.J.: Extending the Salsa20 nonce. In: SKEW (2011)
15. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,

Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). doi:10.1007/11502760 3

16. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23822-2 20

17. Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw.
48(5), 701–716 (2005)

18. Cohen, E.S.: Information transmission in sequential programs. In: Foundations of
Secure Computation, pp. 297–335. Academic Press(1978)

19. Das Labor: AVR-Crypto-Lib (2014). http://avrcryptolib.das-labor.org/trac.
Accessed 23 Mar 2017

20. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

21. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

22. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: Cacheaudit: a tool for the
static analysis of cache side channels. ACM TISSEC 18(1), 4:1–4:32 (2015)

23. Editors of the GCC Wiki: GCC Wiki page on avr-gcc: Calling Convention (2016).
https://gcc.gnu.org/wiki/avr-gcc#Calling Convention. Accessed 15 Apr 2017

24. Fardan, N.J.A., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: S&P, pp. 526–540 (2013)

25. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM TOPLAS 9(3), 319–349 (1987)

26. Goguen, J.A., Meseguer, J.: Security policies and security models. In: S&P, pp.
11–20 (1982)

27. Hagberg, A.A., Schult, D.S., Swart, P.J.: Exploring network structure, dynamics,
and function using NetworkX. In: SciPy, pp. 11–15 (2008)

28. Hedin, D., Sands, D.: Timing aware information flow security for a javacard-like
bytecode. ENTCS 141(1), 163–182 (2005)

29. Hutter, M., Schwabe, P.: NaCl on 8-Bit AVR microcontrollers. In: Youssef, A.,
Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp.
156–172. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38553-7 9

30. Kizhvatov, I.: Side channel analysis of AVR XMEGA crypto engine. In: WESS,
pp. 8:1–8:7 (2009)

31. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

http://dx.doi.org/10.1007/978-3-540-71316-6_10
http://dx.doi.org/10.1007/978-3-540-68351-3_8
http://dx.doi.org/10.1007/11502760_3
http://dx.doi.org/10.1007/978-3-642-23822-2_20
http://avrcryptolib.das-labor.org/trac
https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention
http://dx.doi.org/10.1007/978-3-642-38553-7_9
http://dx.doi.org/10.1007/3-540-68697-5_9

AVR Processors as a Platform for Language-Based Security 445

32. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

33. Köpf, B., Mantel, H.: Transformational typing and unification for automatically
correcting insecure programs. Int. J. Inf. Sec. 6(2), 107–131 (2007)

34. Kucuk, G., Basaran, C.: Reducing energy dissipation of wireless sensor processors
using silent-store-filtering MoteCache. In: Vounckx, J., Azemard, N., Maurine, P.
(eds.) PATMOS 2006. LNCS, vol. 4148, pp. 256–266. Springer, Heidelberg (2006).
doi:10.1007/11847083 25

35. Liu, A., Ning, P.: TinyECC: a configurable library for elliptic curve cryptography
in wireless sensor networks. In: IPSN, pp. 245–256 (2008)

36. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: S&P, pp. 605–622 (2015)

37. Lortz, S., Mantel, H., Starostin, A., Bähr, T., Schneider, D., Weber, A.: Cassandra:
Towards a Certifying App. Store for Android. In: SPSM, pp. 93–104 (2014)

38. Lux, A., Starostin, A.: A tool for static detection of timing channels in java. J.
Crypt. Eng. 1(4), 303–313 (2011)

39. Mantel, H.: Information flow and noninterference. In: van Tilborg, H.C.A. Jajo-
dia, S. (eds.) Encyclopedia of Cryptography and Security, 2nd edn. pp. 605–607.
Springer, Heidelberg (2011)

40. Mantel, H., Starostin, A.: Transforming out timing leaks, more or less. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 447–467.
Springer, Cham (2015). doi:10.1007/978-3-319-24174-6 23

41. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: automatic detection and removal of control-flow side channel attacks. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer,
Heidelberg (2006). doi:10.1007/11734727 14

42. O’Flynn, C., Chen, Z.: ChipWhisperer: an open-source platform for hardware
embedded security research. In: COSADE, pp. 243–260 (2014)

43. O’Flynn, C., Chen, Z.: Power analysis attacks against IEEE 802.15.4 Nodes. In:
COSADE, pp. 55–70 (2016)

44. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. IACR
Cryptol. ePrint Arch. 2002(169), 1–23 (2002)

45. Pastrana, S., Tapiador, J., Suarez-Tangil, G., Peris-López, P.: AVRAND: a
software-based defense against code reuse attacks for AVR embedded devices. In:
Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.) DIMVA 2016. LNCS, vol. 9721,
pp. 58–77. Springer, Cham (2016). doi:10.1007/978-3-319-40667-1 4

46. Prosser, R.T.: Applications of Boolean matrices to the analysis of flow diagrams.
In: EJCC, pp. 133–138 (1959)

47. Ronen, E., O’Flynn, C., Shamir, A., Weingarten, A.O.: IoT goes nuclear: creating
a zigbee chain reaction. In: S&P, pp. 195–212 (2017)

48. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

49. Volpano, D., Smith, G.: Eliminating covert flows with minimum typings. In: CSFW,
pp. 156–168 (1997)

50. Zhang, D., Askarov, A., Myers, A.C.: Language-based control and mitigation of
timing channels. In: PLDI, pp. 99–109 (2012)

51. Zhang, D., Wang, Y., Suh, G.E., Myers, A.C.: A hardware design language for
timing-sensitive information-flow security. In: ASPLOS, pp. 503–516 (2015)

http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/11847083_25
http://dx.doi.org/10.1007/978-3-319-24174-6_23
http://dx.doi.org/10.1007/11734727_14
http://dx.doi.org/10.1007/978-3-319-40667-1_4

A Better Composition Operator for Quantitative
Information Flow Analyses

Kai Engelhardt(B)

CSE, UNSW, Sydney, Australia
kaie@cse.unsw.edu.au

Abstract. Given a description of the quantitative information flow (qif)
for components, how can we determine the qif of a system composed from
components? We explore this fundamental question mathematically and
provide an answer based on a new composition operator. We investigate
its properties and prove that it generalises existing composition oper-
ators. We illustrate the results with a fresh look on Chaum’s dining
cryptographers. We show that the new operator enjoys various conve-
nient algebraic properties and that it is well-behaved under composition
refinement.

1 Introduction

In the area of quantitative information flow (qif) analysis, we concern ourselves
with measuring or deriving the amount of information leaking from systems. A
popular model of systems in qif is that of channel matrices which contain precise
descriptions of the probabilities of observing certain public outputs given certain
secret inputs.

We refer to the survey by Smith [27] for further motivation of this general direc-
tion in qif research. Compared to the literature, we use a slightly different defini-
tion of channels to prepare for the various composition operators later. Our change
is similar to a move from opaque states as they are common in automata theory
on the one hand to program states as mappings from variable names to values as
they are common in treatments of program semantics on the other hand.

In Sect. 2 we define our model including the new operator �� and argue that it
is a reasonable choice for a composition operator. We do so by showing firstly that
�� offers a new and arguably elegant decomposition of the well-known dining cryp-
tographers example. This decomposition uses simple laws from a channel algebra
for equality between channels. In Sect. 3 a more interesting algebra emerges when
replacing equality by composition refinement, a leakage-reducing notion of refine-
ment on channels. We prove that �� again enjoys interesting properties. We show
in Sect. 4 that �� subsumes various existing composition operators and that its
algebraic laws specialise to laws for the existing operators.

2 Mix Composition

Notation. We write B = {0, 1} for the Booleans. By [0, 1] we denote the closed
real interval between 0 and 1. For a, b ∈ N we define a..b = { x ∈ N | a ≤ x ≤ b }.
c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 446–463, 2017.
DOI: 10.1007/978-3-319-66402-6 26

A Better Composition Operator for Quantitative Information Flow Analyses 447

We write f ↓S for the domain restriction λs : S.f(s) of function f by set S.
Our channels map named inputs to named outputs. These names correspond
to wires in circuits and variables in programs. Each name is associated with a
domain of possible values. To compose channels we require the names of their
wires/variables so we know which of their inputs and outputs hook up. Formally,
if Sk is a set for each k ∈ K, we write

⊗
k∈K Sk for the set of functions f : K −→⋃

k∈K Sk satisfying f(k) ∈ Sk for all k ∈ K. All our logarithms are base 2.
Binary operators that are commutative and associative such as our forthcoming
composition operator are implicitly lifted to indexed families of arguments, just
as + is lifted to

∑
, only that we don’t use a separate symbol.

Channels. Not surprisingly, functions in
⊗

k∈K Sk resemble states in program
semantics. Programs or system components transform states to states according
to their function. In qif research, programs and systems are commonly called
channels and they map (secret) input states to distributions of (observable)
output states.

We assume that secret inputs have some prior distribution which is known
to observers. A channel can then be understood as mapping each prior to a
posterior distribution on the outputs, which in turn can be understood as a
distribution of distributions of inputs. We also assume that the channel itself is
known to observers. We define channels formally.

Definition 1 (Channel). Let V be a set we call variables. Let X = (Xw)w∈V
be a family of nonvoid finite sets, the domains of variables. Given a set V of
variables, we denote their joint domain

⊗
v∈V Xv by d(V).

A (V,X)-channel (I,O, c) (from inputs named I to outputs named O) con-
sists of a finite set I ⊆ V of input variables, a finite set O ⊆ V of output
variables, and a channel matrix c ∈ [0, 1]d(I)×d(O) such that each row adds up to
one, that is: ∀x ∈ d(I)

(∑
y∈d(O) cx,y = 1

)
.

Denote the set of (V,X)-channels from inputs named I to outputs named O
by CV,X (I,O). A channel is called deterministic when its matrix contains only
zeros and ones.

Note that I and O need not be disjoint. We often identify channels with their
channel matrices, assuming that the input and output names are understood.
Next we define a small set of basic channels that will be useful in later exam-
ples and algebraic laws. Write OI,O for the unit channel in CV,X (I,O) that maps
inputs named I to outputs named O in a uniform manner, i.e., (OI,O)x,y = 1

|d(O)|
for all x ∈ d(I) and y ∈ d(O). A special case are the unit channels where O = ∅.
They have no designated output variables. Hence their channel matrices are
column vectors full of ones. These are the only unit channels that are determin-
istic. Let IV denote the identity channel in CV,X (V, V) with the matrix given
by (IV)x,y = δx,y where δ is the Kronecker delta. Identity channels are deter-
ministic. Renaming channels are a generalisation of identity channels. Firstly, as
the name suggests, renaming channels can rename the variables. Secondly, they
allow a widening of the output variables’ domains. More formally, if I,O ⊆ V

448 K. Engelhardt

and f : d(I) −→ d(O) is injective, we define the renaming channel (from I to
O using f) Rf

I,O ∈ CV,X (I,O) by (Rf
I,O)x,y = δf(x),y. We omit the injection if

it is the identity function. We write Rf
i,o for Rf

{i},{o}. We write injections f as
expressions in the variables.

Example 2. Let V = {i, o} and Xi = Xo = B. A 1-bit copying channel from i
to o would be written as Ri,o. Its channel matrix is the identity matrix (1 0

0 1).
Next consider a channel A ∈ CV,X ({i}, {o}) given by the matrix

(1/3 2/3
0 1

)
. For

instance, the probability of observing output o = 1 of channel A when the secret
input is i = 0 is A0,1 = 2/3.

Consider the distribution π = (1/4, 3/4) on the Booleans. Multiplying prior
π as a row vector with A’s channel matrix yields the posterior distribution
πA = (1/12, 11/12) which means that with π as prior we expect to observe the
output o = 1 with probability 11/12. Multiplying each cell of A’s matrix with
the prior probability of its row according to π yields the joint matrix

(
1/12 2/12
0 3/4

)
,

i.e., a distribution on input/output pairs. Normalising the columns results in(
1 2/11
0 9/11

)
. Its column labelled y = {o 	→ b} for b ∈ B can now be read as a

distribution on the secret input, given the output is y. For instance, if y(o) = 1,
the input must have been {i 	→ 0} with probability 2/11.

Next we define our new composition operator.

Definition 3 (Mix-composition). Let A ∈ CV,X (I,O) and B ∈ CV,X (J, P).
We call them ��-compatible if, for all x ∈ d(I ∪ J) there exists a y ∈ d(O ∪ P)
such that both Ax↓I ,y↓O

and Bx↓J ,y↓P
are positive. If A and B are ��-compatible

we define their mix-composition as the channel A �� B ∈ CV,X (I ∪ J,O ∪ P) by

(A �� B)x,y =
Ax↓I ,y↓O

Bx↓J ,y↓P∑
z∈d(O∪P) Ax↓I ,z↓O

Bx↓J ,z↓P

,

for all x ∈ d(I ∪ J) and y ∈ d(O ∪ P).

Note that our mix composition unifies

– inputs of the same name to model components sharing input variables and
– outputs with the same name to model that two components collude on such

outputs. The components implicitly rule out contradicting observations with
��-compatibility ensuring that there is at least one consistent observation per
secret input.

In the remainder we typically assume ��-compatibility for our results.

Example 4. Let Xi = Xo = B. Consider the two 1-bit channels A = Ri,o and

B = R(o=¬i)
i,o ∈ CV,X ({i}, {o}). (The expression (o = ¬i) is shorthand for the

injection λb : d({i}).{o 	→ ¬b(i)}.) Their channel matrices are (1 0
0 1) and (0 1

1 0),

respectively. But their attempted �� composition matrix
(

A0,0B0,0 A0,1B0,1

A1,0B1,0 A1,1B1,1

)
=

(0 0
0 0) indicates that they are not ��-compatible. Intuitively A and B attempt to

collude on outputs but fail to agree.

A Better Composition Operator for Quantitative Information Flow Analyses 449

We collect some sanity checks in1 our

Proposition 5. When channels are ��-compatible

1. mix composition is well-defined, commutative, and associative;
2. mix composition of deterministic channels is again deterministic;
3. mix composition is idempotent when restricted to deterministic channels.

Example 6. To see that mix composition is not necessarily idempotent on arbi-
trary channels, recall channel A from Example 2. We compute the channel matrix
of A �� A as

(1/5 4/5
0 1

)
the top row of which is clearly different from A’s. The same

example demonstrates that in general row normalisation is required. Without it,
the “channel” matrix of A �� A had been

(1/9 4/9
0 1

)
with row sum 5/9 for the top

row.

An exact version of Proposition 5.3 is

Proposition 7. Let A ∈ CV,X (I,O). Mix composition is idempotent on A iff
each row of A has a unique non-zero value:

A �� A = A ⇔ ∀x ∈ d(I) (∃v ∈ (0, 1] (∀y ∈ d(O) (Ax,y ∈ {0, v}))) .

Iterated self-composition of channels has limits that are non-trivial when the
condition for idempotence is not met. Roughly speaking, self-composition is a
form of amplification resembling established results in complexity theory such
as the amplification lemma for BPP. In the limit, only the maximal values in
each row survive—everything else becomes zero.

Proposition 8. Let A ∈ CV,X (I,O). Define A(k) = ��k
i=1 A for all k ∈ N. The

limit limk→∞ A(k) exists and is given by the channel matrix with cells

A(∞)
x,y =

{
1

|{ y′∈d(O) | Ax,y′=maxy′′∈d(O) Ax,y′′ }| if Ax,y = maxy′∈d(O) Ax,y′

0 otherwise.

In many practical cases, row normalisation is not required when computing mix
compositions.

Proposition 9. If A and B are deterministic and ��-compatible, or if their
output names are disjoint, then row normalisation is not required, that is, (A ��
B)x,y = Ax↓I ,y↓O

· Bx↓J ,y↓P
, for all x ∈ d(I ∪ J) and y ∈ d(O ∪ P).

A simple distributivity result holds whenever a particular channel in the com-
position is deterministic.

Proposition 10. Let A ∈ CV,X (I,O) be deterministic. Let B ∈ CV,X (J, P) and
C ∈ CV,X (K,Q). Then A �� (B �� C) = (A �� B) �� (A �� C).

1 Proofs are given in the Appendix.

450 K. Engelhardt

Example 11. To see that determinism of A is required in general for the distribu-
tivity result to hold, recall once again channel A from Example 2. In Example 6
we showed that A
= A �� A. Next we note that A �� O{i},∅ = A and that
O{i},∅ �� O{i},∅ = O{i},∅. Clearly, A �� (O{i},∅ �� O{i},∅) = A
= A �� A = (A ��
O{i},∅) �� (A �� O{i},∅).

Proposition 12. II �� IJ = II∪J

The other fundamental channel composition operator is sequential, or cascading,
composition.

Definition 13. For A ∈ CV,X (I,M) with channel matrix c and B ∈ CV,X (M,O)
with channel matrix d we define their sequential composition A;B ∈ CV,X (I,O)
by the channel matrix cd.

2.1 Example: Dining Cryptographers

Chaum [7] introduced the dining cryptographers problem and offered a protocol
as solution which has been studied to the extent that adding to the existing
body of analyses induces a considerable amount of guilt. Here we investigate a
slight variation of the problem insofar as we study the effect of collusion among
the n cryptographers.

Let us write ⊗ for exclusive-or, ⊕ and � for addition, resp., subtraction
modulo n.

A gaggle of n cryptographers named 0..n − 1 sit around a dinner table in
clockwise order. When it’s time to pay, the waiter informs them that the bill
has already been paid. Either exactly one of the cryptographers paid for the
dinner or the NSA did. The problem is to figure out whether the NSA paid or
not, without compromising the anonymity of the paying cryptographer if the
NSA didn’t.

Chaum’s protocol solves the problem as follows. Each cryptographer m
secretly flips a coin. The outcome cm is then shared only with the cryptog-
rapher m ⊕ 1 immediately to their left. Each cryptographer m then announces
the exclusive-or of three Boolean values: the two known coin values, cm and
cm	1, and whether m paid. The exclusive-or of all announcements is true if one
of the cryptographers paid and false if the NSA paid.

We begin by describing some of the variables and their domains. The coins
named c0, . . . , cn−1 ∈ V have Boolean domains, that is, Xcm = B for m ∈
0..n − 1. Who paid, named p ∈ V, ranges over Xp = 0..n, where the value n
denotes that the NSA paid. The announcements, named a0, . . . , an−1 ∈ V also
have Boolean domains. We model each cryptographer m as a channel C(m) ∈
CV,X ({p, cm	1, cm}, {am}) with the channel matrix given by

C(m)
x,y = δx(cm�1)⊗x(cm)⊗(x(p)=m),y(am) .

This matrix has 22(n + 1) rows and two columns. We note that C(m) is deter-
ministic. The view of an outside observer is

DCn =
n−1
��

m=0
C(m) ∈ CV,X ({p, c0, . . . , cn−1}, {a0, . . . , an−1}) .

A Better Composition Operator for Quantitative Information Flow Analyses 451

(See Fig. 1.) Its channel matrix has 2n(n+1) rows and 2n columns and, as a mix
composition of deterministic channels, is deterministic.

C(0)

a0

�� C(1)

a0

�� . . . �� C(n−1)

an−1

p
c0
c1...

...
cn−2

cn−1

Fig. 1. Dining cryptographers as mix composition.

Cryptographer i observes not only DCn but also the two coins ci and ci	1.
In other words, cryptographer i’s view of the situation is Ci = DCn �� I{ci,ci�1}.
(Technically, i also observes whether p = i but that’s already captured by the
exclusive-or of its own three outputs, ai, ci, and ci	1. An output that is a function
of other outputs can be safely omitted.)

(a) (b)

i

k

Fig. 2. Two colluding cryptographers i and k can eliminate one contiguous section, (a)
or (b), as potential payers.

When considering two colluding cryptographers who pool their knowledge,
we expect them to be able to divide the remaining cryptographers into two
groups: (a) those to the right of i and to the left of k and (b) those to the left
of i and to the right of k. (See Fig. 2.) The interesting result is that, in case
one of the remaining cryptographers paid, the colluding cryptographers acquire
(distributed) knowledge to which of the groups, (a) or (b), the payer belongs,
thereby eliminating all members of the other group from the possible payers.

452 K. Engelhardt

If one of the two groups is empty then it cannot contain the payer, meaning that
i and k learn less.

As a channel, i and k together have the view Ci �� Ck. Note that if i and k
are adjacent (and n > 2) then they observe three coins—otherwise they observe
four coins. Intuitively, this already implies that the information leaked in the
former situation is less than that leaked in the latter. Using Proposition 5 we
simplify as follows.

Ci �� Ck = DCn �� I{ci,ci�1} �� DCn �� I{ck,ck�1}
= DCn �� I{ci,ci�1} �� I{ck,ck�1}

which, with Proposition 12, simplifies to

= DCn �� I{ci,ci�1,ck,ck�1} .

3 Channel Refinement with Mix Composition

We briefly recall the relevant definitions of leakage-related notions. Details and
pointers to their origin can again be found e.g. in [27]. The (multiplicative)
min-capacity of a channel A ∈ CV,X (I,O), denoted ML(A), is the maximum
min-entropy leakage of A over all priors π: supπ log(V [π,A]

V [π]). As proved by Braun
et al. [6], the min-capacity of A can be computed as the logarithm of the sum of
the column maximums of A, and it is always realised on a uniform prior π, so
we have ML(A) = log

∑
y∈d(O) maxx∈d(I) Ax,y.

Example 14 (Dining Cryptographers cont’d). Returning to the example in
Sect. 2.1, we compute the min-capacities of various channels in case the number
of cryptographers is n = 4.

Each individual cryptographer’s channel has the same ML(C(m)) � 1.0
because the channel is deterministic and has two columns. As a determinis-
tic channel with 24 non-zero columns, the channel DC4 has the min-capacity
4.0. Once we add, say, cryptographer 1’s observation we obtain ML(DC4 ��
I{c0,c1}) � 5.58. Adding a second adjacent cryptographer’s observation (as
on the left of Fig. 3), say cryptographer 2’s, the min-capacity goes up to
ML(DC4 �� I{c0,c1,c2}) = 6.0 whereas with a second cryptographer sitting oppo-
site (as on the right of Fig. 3) ML(DC4 �� I{c0,c1,c2,c3}) goes up to approx. 6.32.

A more general notion of the leakage of channels is that of g-leakage [2]. We
recall the relevant definitions here, adapted to our channels.

Definition 15. Given a non-void set W of guesses and a finite set of inputs I,
a gain function is a function g : W ×d(I) −→ [0, 1]. The value g(w, x) represents
the gain of the attacker when the secret value is x and he makes a guess w on
x. Given a gain function g and a prior π on d(I), the prior g-vulnerability
is Vg(π) = maxw∈W

∑
x∈d(I) π(x)g(w, x). Given A ∈ CV,X (I,O), the poste-

rior g-vulnerability is Vg(π,A) =
∑

y∈d(O) maxw∈W
∑

x∈d(I) π(x)Ax,yg(w, x).
The prior and posterior g-entropy is Hg(π) = − log Vg(π), resp., Hg(π,A) =
− log Vg(π,A). The g-leakage is their difference Lg(π,A) = Hg(π) − Hg(π,A).

A Better Composition Operator for Quantitative Information Flow Analyses 453

Fig. 3. Different seating arrangements of otherwise equal cryptographers result in dif-
ferent leakage from the collusion.

Example 16 (Dining Cryptographers cont’d). Continuing on from Example 14,
we compute the g-leakage of various channels. An adversary curious about who
paid observes just cryptographer m. We assume a uniform prior, guesses W =
0..n, and a gain function given by g(w, x) = δw,x(p): the adversary gains 1 iff
she guesses the payer exactly. That observing just one cryptographer is futile is
indicated by Lg(π,C(m)) = 0. This remains unchanged if the model is modified
such that the adversary only guesses whether the NSA paid or not, using W = B

and gB(w, x) = δw,x(p)=n. With that goal the adversary is better off observing
all n cryptographers. Assuming again a uniform prior we obtain VgB

(π) = n/n+1

and VgB
(π,DCn) = 1 which results in LgB

(π,DCn) = log(n+1/n). Returning to
the task of guessing who paid, but removing the gain in case it was the NSA, we
consider W = 0..n−1 and calculate again that this is futile: Lg(π,DCn) = 0. This
remains unchanged when we also remove the gain for cryptographer m and study
what leaks to m about who paid (other than him and the NSA): with W = 0..n−
1 \ {m} we have Lg(π,Cm) = 0. Even if two adjacently seated cryptographers
collude (as on the left of Fig. 3), we still have Lg(π,Cm �� Cm⊕1) = 0 if n > 3
and both are removed from the guesses. If, however, they are separated on both
sides by at least one cryptographer (as on the right of Fig. 3) then we find that
Lg(π,Cm �� Cm⊕2) > 0.

This completes the illustration of the fact that there’s no obvious way to calculate
relevant vulnerability measures of ��-composed systems from the vulnerabilities
of their components. We follow McIver et al. [21] in defining a robust leakage
order on channels with the same inputs. The order is based on another familiar
composition operator, sequential composition.

Definition 17. Let A ∈ CV,X (I,O) and B ∈ CV,X (I,M). We say that A refines
B (written B � A) if there exists a (post-processing) channel C ∈ CV,X (M,O)
such that A = B;C. We write A ≡ B whenever A and B refine each other.

As shown by MvIver et al. [21]2, A � B iff the g-leakage of A is never smaller
than that of B, for any prior π and gain function g.

We list some immediate consequences of these definitions.

2 and then discovered by Geoffrey Smith to be already contained in [5].

454 K. Engelhardt

Proposition 18. Unit channels are the top elements in the refinement order
and the neutral elements of mix composition. Identity channels are the bottom
elements in the refinement order and weak zeros of mix composition. More for-
mally, let A ∈ CV,X (I,O). Let Q ⊆ V be finite. Let J ⊆ I.

II � A (1)
A � OI,Q (2)
II ≡ II �� A (3)

OJ,Q �� A ≡ A (4)

More interestingly, we have that �� is monotone w.r.t. composition refinement if
no outputs are fused.

Theorem 19. If A � A′ and B � B′ and neither A and B nor A′ and B′ share
output names, then A �� B � A′ �� B′.

Example 20. To see that �� is in general not �-monotone when output names
are shared, recall channel A from Example 2. Let B ∈ CV,X ({i}, {p}) = A; Ro,p.
Clearly A ≡ B. Let us compare A �� A to A �� B =

(1/9 2/9 2/9 4/9
0 0 0 1

)
. Both ��

compositions are defined, that is, A is compatible with itself and B. Solving
(A �� A);X = A �� B for X yields the unique solution X =

(1/3 2/3 2/3 −2/3
0 0 0 1

)
,

which is not a channel matrix because −2/3 /∈ [0, 1]. Hence A �� A
� A �� B.

The equation (A �� B);X = A �� A is solved by X =

(
9/25 16/25
9/25 16/25
9/25 16/25
0 1

)

, which is

a channel matrix, hence A �� B � A �� A.

Combining Theorem 19 with Proposition 18. (2) yields

Corollary 21. Let A ∈ CV,X (I,O) and B ∈ CV,X (J, P). Then

A �� B � A �� OJ\I,∅ ,

provided O ∩ P = ∅.
Refining a channel to a mix composition means that the former refines to each
of the components of the latter when a little care is taken with extra inputs.

Theorem 22. Let A ∈ CV,X (I,O), B ∈ CV,X (J, P), and C ∈ CV,X (K,Q) such
that I = J ∪ K. Then

A � B �� C ⇒ A � B �� OI\J,∅ ∧ A � C �� OI\K,∅ ,

provided P ∩Q = ∅. The converse implication holds if, moreover, A is determin-
istic.

A Better Composition Operator for Quantitative Information Flow Analyses 455

4 Operator Comparison

In this section we compare mix composition to a number of composition opera-
tors studied in the literature. Mix composition generalises the parallel composi-
tion operators, ‖ and × defined, e.g., by Kawamoto et al. [16]. We rephrase their
definition, adapted to our channels.

Definition 23. Given A ∈ CV,X (I,O), B ∈ CV,X (I, P), and C ∈ CV,X (J, P)
with I ∩ J = O ∩ P = ∅ define the

– parallel composition with shared inputs A‖B ∈ CV,X (I,O ∪ P) of A and B
by (A‖B)x,y = Ax,y↓O

Bx,y↓P
, and

– the parallel composition (with distinct inputs) A × C ∈ CV,X (I ∪ J,O ∪ P) of
A and C by (A × C)x,z = Ax↓I ,z↓O

Cx↓J ,z↓P
.

From this definition it is obvious that we have

Corollary 24. – Parallel composition with shared inputs ‖ is �� restricted to
channels with the same input names and disjoint output names.

– Parallel composition (with distinct inputs) × is �� restricted to channels with
disjoint input names and disjoint output names.

Oftentimes, the operators ‖ and × are sufficient and more convenient to use than
��. Technically, they always are sufficient unless outputs are fused, as we show
next.

Proposition 25. If A and B have disjoint output names then

A �� B = (A × OJ\I,∅)‖(B × OI\J,∅) .

The results proved for �� above specialise to the following.

Corollary 26. Let A ∈ CV,X (I,O), B ∈ CV,X (I, P), C ∈ CV,X (I,Q), D ∈
CV,X (J,R), E ∈ CV,X (K,S) such that I, J , K, O, P , Q, and S are pair-wise
disjoint.

A ≡ A‖OI,∅ A ≡ A × O∅,∅
A‖B ≡ B‖A A × D ≡ D × A

(A‖B)‖C ≡ A‖(B‖C) (A × D) × E ≡ A × (D × E)
A‖B � A A × D � A × OJ,∅

A � A′ ∧ B � B′ ⇒ A‖B � A′‖B′

A � A′ ∧ D � D′ ⇒ A × D � A′ × D′

A � A1‖A2 ⇒ A � A1 ∧ A � A2

A � D1 × D2 ⇒ A � D1 × OI\X,∅ ∧ A � D2 × OI\Y,∅

If A is also deterministic we have:

A � A1 ∧ A � A2 ⇒ A � A1‖A2

A � D1 × OI\X,∅ ∧ A � D2 × OI\Y,∅ ⇒ A � D1 × D2

456 K. Engelhardt

While mix composition subsumes the two parallel composition operators, ‖ and
×, there are compositions that cannot be expressed with �� alone. The obvious
example is sequential composition. But those two together are rather powerful.

A first example is the non-standard sequential composition operator defined
by Barthe and Köpf [3] called adaptive composition by Espinoza and Smith [10].
It differs from the usual sequential composition in that the second component
receives not only the output but also the input of the first as input.

Definition 27. Let A ∈ CV,X (I,M) and B ∈ CV,X (I ∪ M,O). Provided I ∩
M = ∅, define the adaptive composition A � B ∈ CV,X (I,O) by (A � B)i,o =∑

m∈d(M) Ai,mBi∪m,o, for all i ∈ d(I) and o ∈ d(O).

Another operator mentioned in [10] models repeated independent runs of a chan-
nel. To prevent the copies of the channel from colluding we need to disambiguate
their output names with distinct tags, e.g., numbers.

Definition 28. Let A ∈ CV,X (I,O) and n ∈ N such that (i, o) ∈ V and X(i,o) =
Xo, for all i ∈ 1..n and o ∈ O.

Define the n repeated independent runs of A channel A(n) ∈ CV,X (I, 1..n×O)
by (A(n))x,y =

∏n
i=1 Ax,λo:O.y(i,o), for all x ∈ d(I) and y ∈ d(1..n × O).

Adaptive composition can be expressed using “;”, “‖” and identity channels.
To express n repeated independent runs we require n renaming channels to
disambiguate the copies of the output names.

Proposition 29. A � B = (II‖A);B and A(n) = ‖n
i=1(A;RO,{i}×O).

5 Related Work

In their seminal paper Goguen and Meseguer lamented that

Most of the models given in the literature [. . .] are not mathematically
rigorous enough to support meaningful determinations of the kind needed;
some do not support a sufficiently general view of security (for example,
they may fail to handle breaches of security by cooperating multiple users).
[12, p. 12]

We argue that �� is better at modelling colluding adversaries by allowing
selectively shared inputs and outputs—a feature absent in the usual definitions
of ‖ and ×.

Gray and Syverson [13] extended with temporal operators the epistemic logic
with probabilities of Halpern and Tuttle [15] to lay the foundation for a rigorous
analysis of probabilistic channels. Their work is however concerned only with
perfect security, that is, no leakage whatsoever.

In possibilistic settings, some recent works have presented preliminary find-
ings for notions of refinement that preserve information-flow security properties
[20,26]. For probabilistic systems McIver et al. [25] present rely-guarantee rules.

A Better Composition Operator for Quantitative Information Flow Analyses 457

Kawamoto et al. [16] explain how to decompose channels using ‖ and × to
then compute upper and lower bounds on measures of leakage such as g-leakage
and min-entropy from the corresponding measures of the component channels.
At the time of writing, the most recent version of this paper [17] mentions a
connection to refinement including our Theorem 19 albeit without proof and
based on a different (faulty) definition of �.

The abstract channels as introduced by McIver et al. [24] are too abstract
for our purposes. After abstracting from the names of outputs, we can no longer
model fused outputs as we did, e.g., when describing two colluding neighbours in
the dining cryptographers example. The programs considered in [22,23] lack any
form of parallel composition although ‖ is defined and discussed in the appendix
of the latter.

All these concurrent composition operators resemble the distributed knowl-
edge of two agents observing different channels as described e.g. in [11] but in a
probabilistic setting. The literature on knowledge in probabilistic worlds however
appears to have gone in different research directions. Halpern and O’Neill [14]
characterised notions of perfect secrecy for various classes of systems including
ones with probabilistic choice. Clarkson et al. [8,9] incorporate how an attacker’s
beliefs can change over time while observing intermediate outputs.

6 Future Work and Conclusion

Future directions for this line of work include:

– investigating further the role of collusion, that is, common output names.
So far these clashes are typically either a nuisance or a triviality. Do they
make for a more powerful or more elegant algebra similar to how predicate
transformers that ignore Dijkstra’s healthiness conditions make for a cleaner
refinement algebra of sequential programs?

– exploring the concept of channel algebra further. Our channel model and
�� composition may be steps in the right direction but are these the only
necessary ingredients?

– finding bounds on various leakage measures for �� compositions similar to the
results in [16] for ‖ and ×.

– lifting channel algebra to the level of a programming language, resulting in
leakage-sensitive refinement laws for programs.

– mechanising channel algebra in a theorem prover to facilitate evaluation on
less trivial examples. We wrote a simple implementation of channels and
operations on them, and used it for all our examples, but this library is not
yet hooked up with a theorem prover for algebraic reasoning. The companion
project for possibilistic compositional refinement is much more progressed in
that respect [26]. Some of the infrastructure of that project could be recycled
for the qif version.

– investigating how stages of verified compilers such as CompCert [19] and
CakeML [18] affect leakage and how to enforce leakage bound preservation
by compilation with the help of code transformations [1,4].

458 K. Engelhardt

We feel that we have so far only scratched the surface of the possibilities opened
up by the slight change of channel model and the addition of the �� operator.
The latter appears to be a better parallel composition operator, generalising all
existing ones and allowing for selective sharing, compared to the all-or-nothing
of ‖ and ×. This paper attempts to make a case for adopting the channel model
and the �� operator, thereby expressing little more than the author’s prefer-
ences. To the best of our knowledge, some of the results are new, including
Theorem 22, or correctly stated and proved for the first time in this generality,
such as Theorem 19. Besides the dining cryptographers, we have analysed a few
more examples such as the combined leakage of two C bit masking assignments,
all of which benefit from the new model and ��.

Acknowledgement. For helpful discussions and comments on preliminary versions
of this paper I would like to thank Carroll Morgan and Ron van der Meyden. I thank
the anonymous referees for their detailed and most useful comments.

A Proofs

Proof (of Proposition 5). Let A ∈ CV,X (I,O) and B ∈ CV,X (J, P) be ��-
compatible.

1. For well-definedness of A �� B it suffices to see that the denominator Dx =∑
z∈d(O∪P) Ax↓I ,z↓O

Bx↓J ,z↓P
is non-zero, for all x ∈ d(I ∪ J). It is then clear

that it normalises each row vector to sum one. Let x ∈ d(I ∪ J). For the
denominator to be zero it is required that Ax↓I ,z↓O

Bx↓J ,z↓P
= 0, for all z ∈

d(O ∪ P). But that contradicts our assumption of ��-compatibility.
Commutativity and associativity of �� follow from the same properties of
multiplication.

2. If A and B are both deterministic then there’s exactly one 1 in each of their
rows, which, together with ��-compatibility implies that there is exactly one
z ∈ d(O ∪ P) for which Ax↓I ,z↓O

= Bx↓J ,z↓P
= 1. Whence A �� B is also

deterministic.
3. Each channel is ��-compatible with itself. If A is also deterministic, then we

have Ax,y = A2
x,y = (A �� A)x,y. ��

Proof (of Proposition 7). If there are two different non-zero cells in a row of A,
then the smaller one will decrease in A �� A by the normalisation involved. On
the other hand, if there’s just one such non-zero value, then the normalisation
has no effect on that row.

��
Proof (of Proposition 8). This follows on from the observation in the previous
proof. The limit must satisfy A(∞) �� A(∞) = A(∞).

��

A Better Composition Operator for Quantitative Information Flow Analyses 459

Proof (of Proposition 9). Let A ∈ CV,X (I,O) and B ∈ CV,X (J, P). For the first
claim, suppose A and B are deterministic and ��-compatible. As per Proposi-
tion 5. 2, A �� B is deterministic, too. This implies that row normalisation is
not required.

Finally, in case A’s and B’s output names are disjoint, i.e., O ∩ P = ∅ holds
(*), we check that A and B are ��-compatible and that the denominator is one
whenever the row sums of A and B are.

∑

z∈d(O∪P)

Ax↓I ,z↓O
· Bx↓J ,z↓P

(*)
=

∑

c∈d(O)

∑

d∈d(P)

Ax↓I ,c · Bx↓J ,d

=
∑

c∈d(O)

⎛

⎝Ax↓I ,c

∑

d∈d(P)

Bx↓J ,d

⎞

⎠

=
∑

c∈d(O)

Ax↓I ,c = 1 ��

Proof (of Proposition 10). By associativity and commutativity of ��, as well as
idempotence on deterministic channels, we have that A �� (B �� C) = A �� A ��
B �� C = (A �� B) �� (A �� C). ��
Proof (of Proposition 12). Let x, y ∈ d(I ∪ J).

(II �� IJ)x,y = (II)x↓I ,y↓I
(IJ)x↓J ,y↓J

= δx↓I ,y↓I
δx↓J ,y↓J

= δx↓I∪x↓J ,y↓I∪y↓J

= δx,y = (II∪J)x,y ��
Proof (of Proposition 18). Each proof requires finding one or two post-processing
channels. We provide them in the following table.

claim � �
(1) A
(2) OO,Q

(3) II �� A II �� OO\I,∅
(4) IO �� OQ\O,∅ IO �� O∅,Q\O

E.g., for the “�”-direction of claim (3), we propose to use the post-processing
channel II �� A, that is, we claim that II ; (II �� A) = II �� A and hence
II � II �� A. ��
Proof (of Theorem 19). Let I, J,O, P,O′, P ′ ⊆ V such that O∩P = O′ ∩P ′ = ∅.
Let A ∈ CV,X (I,O), A′ ∈ CV,X (I,O′), B ∈ CV,X (J, P), and B′ ∈ CV,X (J, P ′)
such that A � A′ and B � B′. Let D ∈ CV,X (O,O′) and E ∈ CV,X (P, P ′) such
that A;D = A′ and B;E = B′. Let x ∈ d(I ∪ J) and z ∈ d(O′ ∪ P ′). We show
that ((A �� B); (D �� E))x,z = (A′ �� B′)x,z. Note that, by Proposition 5, none
of the three mix compositions requires row normalisation.

((A �� B); (D �� E))x,z =
∑

y∈d(O∪P)

(A �� B)x,y(D �� E)y,z

460 K. Engelhardt

=
∑

a∈d(O)

∑

b∈d(P)

Ax↓I ,aBx↓J ,bDa,z↓O′ Eb,z↓P ′

=
∑

a∈d(O)

∑

b∈d(P)

Ax↓I ,aDa,z↓O′ Bx↓J ,bEb,z↓P ′

=
∑

a∈d(O)

Ax↓I ,aDa,z↓O′ ·
∑

b∈d(P)

Bx↓J ,bEb,z↓P ′

= (AD)x↓I ,z↓O′ · (BE)x↓J ,z↓P ′

= A′
x↓I ,z↓O′ · B′

x↓J ,z↓P ′ = (A′ �� B′)x,z

We conclude that (A �� B); (D �� E) = A′ �� B′ and hence A �� B � A′ �� B′.��
Proof (of Theorem 22). “⇒:” follows by two applications of Theorem 19 once
we realise that B �� OI\J,∅ = B �� OK,∅ and C �� OI\K,∅ = C �� OJ,∅.

“⇐:” For the converse, suppose A is deterministic, A � B �� OI\J,∅, and A �
C �� OI\K,∅. Let E ∈ CV,X (O,P) and F ∈ CV,X (O,Q) satisfy A;E = B �� OI\J,∅
and A;F = C �� OI\K,∅. Define D ∈ CV,X (O,P ∪ Q) by Do,z = Eo,z↓P

Fo,z↓Q
.

Let x ∈ d(I); let z ∈∈ d(P ∪ Q). Define p = z ↓P and q = z ↓Q. We show that
(A;D)x,z = (B �� C)x,z.

(A;D)x,z =
∑

o∈d(O)

Ax,oDo,z =
∑

o∈d(O)

Ax,oEo,z↓P
Fo,z↓Q

using that Ax,o = A2
x,o, which follows from Ax,o ∈ {0, 1}:

=
∑

o∈d(O)

A2
x,o · Eo,z↓P

Fo,z↓Q

using that Ax,o = 0 or Ax,o′ = 0 for all o′
= o:

=
∑

o∈d(O)

Ax,o

∑

o′∈d(O)

Ax,o′Eo,z↓P
Fo′,z↓Q

=

⎛

⎝
∑

o∈d(O)

Ax,oEo,z↓P

⎞

⎠
∑

o∈d(O)

Ax,oFo,z↓Q

= (A;E)x,z↓P
· (A;F)x,z↓Q

= (B �� OI\J,∅)x,z↓P
· (C �� OI\K,∅)x,z↓Q

= Bx↓J ,z↓P
· (OI\J,∅)x↓(I\J),∅ · Cx↓K ,z↓Q

· (OI\K,∅)x↓(I\K),∅
= Bx↓J ,z↓P

· Cx↓K ,z↓Q
= (B �� C)x,z

It follows that A;D = B �� C and hence A � B �� C. ��
Proof (of Proposition 25).

(A �� B)x,y = Ax↓I ,y↓O
· Bx↓J ,y↓P

A Better Composition Operator for Quantitative Information Flow Analyses 461

= Ax↓I ,y↓O
· (OJ\I,∅)x↓(J\I),∅ · Bx↓J ,y↓P

· (OJ\I,∅)x↓(I\J),∅
= (A × OJ\I,∅)x,y↓O

· (B × OJ\I,∅)x,y↓P

= ((A × OJ\I,∅)‖(B × OJ\I,∅))x,y ��

Proof (of Proposition 29). First let x ∈ d(I) and y ∈ d(O).

(A � B)x,y =
∑

m∈d(M)

Ax,mBx∪m,y

=
∑

m∈d(M)

Ax,mBx∪m,y

=
∑

m′∈d(I∪M)

δx,m′↓I
Ax,m′↓O

Bm′,y

=
∑

m′∈d(I∪M)

(II)x,m′↓I
Ax,m′↓O

Bm′,y

=
∑

m′∈d(I∪M)

(II‖A)x,m′Bm′,y = ((II‖A);B)x,y

Now let y ∈ d(1..n × O).

(A(n))x,y =
n∏

i=1

Ax,λo:O.y(i,o)

=
n∏

i=1

∑

m∈d(O)

Ax,mδm,λo:O.y(i,o)

=
n∏

i=1

∑

m∈d(O)

Ax,m(RO,{i}×O)m,y↓{i}×O

=
n∏

i=1

(A; RO,{i}×O)x,y↓{i}×O
= ‖n

i=1(A; RO,{i}×O)x,y ��

References

1. Agat, J.: Transforming out timing leaks. In: Wegman, M.N., Reps, T.W. (eds.)
POPL 2000, Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Boston, Massachusetts, USA, 19–21 Janu-
ary, 2000, pp. 40–53. ACM (2000), http://doi.acm.org/10.1145/325694.325702

2. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring infor-
mation leakage using generalized gain functions. In: Chong, S. (ed.) 25th IEEE
Computer Security Foundations Symposium, CSF 2012, Cambridge, MA, USA,
25–27 June 2012, pp. 265–279. IEEE Computer Society (2012), http://dx.doi.org/
10.1109/CSF.2012.26

http://doi.acm.org/10.1145/325694.325702
http://dx.doi.org/10.1109/CSF.2012.26
http://dx.doi.org/10.1109/CSF.2012.26

462 K. Engelhardt

3. Barthe, G., Köpf, B.: Information-theoretic bounds for differentially private mech-
anisms. In: Proceedings of the 2011 IEEE 24th Computer Security Founda-
tions Symposium, CSF 2011, pp. 191–204 (2011), http://dx.doi.org/10.1109/CSF.
2011.20

4. Barthe, G., Rezk, T., Warnier, M.: Preventing timing leaks through transactional
branching instructions. In: Cerone, A., Wiklicky, H. (eds.) Proceedings of the Third
Workshop on Quantitative Aspects of Programming Languages (QAPL 2005).
ENTCS, vol. 153(2), pp. 33–55 (2006), https://doi.org/10.1016/j.entcs.2005.10.031

5. Blackwell, D.: Comparison of experiments. In: Neyman, J. (ed.) Proceedings of
the Second Berkeley Symposium on Mathematical Statistics and Probability,
pp. 93–102. Univ. of Calif. Press (1951), http://projecteuclid.org/euclid.bsmsp/
1200500222

6. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage for
one-try attacks. In: Proceedings of the 25th Conference on Mathematical Founda-
tions of Programming Semantics (MFPS 2009). ENTCS, vol. 249, pp. 75–91 (2009),
http://dx.doi.org/10.1016/j.entcs.2009.07.085

7. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Crypto. 1(1), 65–75 (1988)

8. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Belief in information flow. In: 18th
IEEE Computer Security Foundations Workshop, (CSFW-18 2005), 20–22, Aix-en-
Provence, France, pp. 31–45. IEEE Computer Society (2005), http://dx.doi.org/
10.1109/CSFW.2005.10

9. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Quantifying information flow with
beliefs. J. Comput. Secur. 17(5), 655–701 (2009), http://dx.doi.org/10.3233/
JCS-2009-0353

10. Espinoza, B., Smith, G.: Min-entropy as a resource. Inf. Comput., 226, 57–75
(2013). Blakey, Coecke, B., Mislove, M., Pavlovic, D.: Information Security as a
Resource (special Issue), http://dx.doi.org/10.1016/j.ic.2013.03.005

11. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT-Press (1995)

12. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 26–28 April 1982, pp.
11–20 (1982), http://ieeexplore.ieee.org/document/6234468

13. Gray III., J.W., Syverson, P.F.: A logical approach to multilevel security of proba-
bilistic systems. Distrib. Comput. 11(2), 73–90 (1998), http://dx.doi.org/10.1007/
s004460050043

14. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur. (TISSEC) 12(1), 5 (2008)

15. Halpern, J.Y., Tuttle, M.R.: Knowledge, probability, and adversaries. J. ACM
40(4), 917–960 (1993), http://doi.acm.org/10.1145/153724.153770

16. Kawamoto, Y., Chatzikokolakis, K., Palamidessi, C.: Compositionality results
for quantitative information flow. In: Norman, G., Sanders, W. (eds.) QEST
2014. LNCS, vol. 8657, pp. 368–383. Springer, Cham (2014). doi:10.1007/
978-3-319-10696-0 28

17. Kawamoto, Y., Chatzikokolakis, K., Palamidessi, C.: On the compositionality of
quantitative information flow. CoRR abs/1611.00455 (2016), http://arxiv.org/abs/
1611.00455

http://dx.doi.org/10.1109/CSF.2011.20
http://dx.doi.org/10.1109/CSF.2011.20
https://doi.org/10.1016/j.entcs.2005.10.031
http://projecteuclid.org/euclid.bsmsp/1200500222
http://projecteuclid.org/euclid.bsmsp/1200500222
http://dx.doi.org/10.1016/j.entcs.2009.07.085
http://dx.doi.org/10.1109/CSFW.2005.10
http://dx.doi.org/10.1109/CSFW.2005.10
http://dx.doi.org/10.3233/JCS-2009-0353
http://dx.doi.org/10.3233/JCS-2009-0353
http://dx.doi.org/10.1016/j.ic.2013.03.005
http://ieeexplore.ieee.org/document/6234468
http://dx.doi.org/10.1007/s004460050043
http://dx.doi.org/10.1007/s004460050043
http://doi.acm.org/10.1145/153724.153770
http://dx.doi.org/10.1007/978-3-319-10696-0_28
http://dx.doi.org/10.1007/978-3-319-10696-0_28
http://arxiv.org/abs/1611.00455
http://arxiv.org/abs/1611.00455

A Better Composition Operator for Quantitative Information Flow Analyses 463

18. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified imple-
mentation of ML. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2014, San Diego, CA, USA, 20–21 January 2014, pp. 179–192. ACM (2014), http://
doi.acm.org/10.1145/2535838.2535841

19. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009), http://doi.acm.org/10.1145/1538788.1538814

20. Mantel, H.: Preserving information flow properties under refinement. In: 2001 IEEE
Symposium on Security and Privacy, Oakland, California, USA, 14–16 May 2001,
pp. 78–91. IEEE Computer Society (2001), http://dx.doi.org/10.1109/SECPRI.
2001.924289

21. McIver, A., Meinicke, L., Morgan, C.: Compositional closure for bayes risk in prob-
abilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223–235.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14162-1 19

22. McIver, A., Meinicke, L., Morgan, C.: Hidden-Markov program algebra with itera-
tion. Math. Struct. Comput. Sci. 25(2), 320–360 (2015), https://doi.org/10.1017/
S0960129513000625

23. McIver, A., Morgan, C., Rabehaja, T.M.: Abstract hidden Markov models: a
monadic account of quantitative information flow. In: 30th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, 6–10 July
2015, pp. 597–608. IEEE Computer Society (2015), https://doi.org/10.1109/LICS.
2015.61

24. McIver, A., Morgan, C., Smith, G., Espinoza, B., Meinicke, L.: Abstract channels
and their robust information-leakage ordering. In: Abadi, M., Kremer, S. (eds.)
POST 2014. LNCS, vol. 8414, pp. 83–102. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54792-8 5

25. McIver, A., Rabehaja, T.M., Struth, G.: Probabilistic rely-guarantee calculus (v3).
CoRR abs/1409.0582 (2015), http://arxiv.org/abs/1409.0582

26. Murray, T.C., Sison, R., Pierzchalski, E., Rizkallah, C.: Compositional verifica-
tion and refinement of concurrent value-dependent noninterference. In: IEEE 29th
Computer Security Foundations Symposium, CSF 2016, Lisbon, Portugal, 27 June–
1 July 2016, pp. 417–431. IEEE Computer Society (2016), http://dx.doi.org/10.
1109/CSF.2016.36

27. Smith, G.: Recent developments in quantitative information flow (invited tutor-
ial). In: Proceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), LICS 2015, pp. 23–31 (2015), http://dx.doi.org/10.
1109/LICS.2015.13

http://doi.acm.org/10.1145/2535838.2535841
http://doi.acm.org/10.1145/2535838.2535841
http://doi.acm.org/10.1145/1538788.1538814
http://dx.doi.org/10.1109/SECPRI.2001.924289
http://dx.doi.org/10.1109/SECPRI.2001.924289
http://dx.doi.org/10.1007/978-3-642-14162-1_19
https://doi.org/10.1017/S0960129513000625
https://doi.org/10.1017/S0960129513000625
https://doi.org/10.1109/LICS.2015.61
https://doi.org/10.1109/LICS.2015.61
http://dx.doi.org/10.1007/978-3-642-54792-8_5
http://dx.doi.org/10.1007/978-3-642-54792-8_5
http://arxiv.org/abs/1409.0582
http://dx.doi.org/10.1109/CSF.2016.36
http://dx.doi.org/10.1109/CSF.2016.36
http://dx.doi.org/10.1109/LICS.2015.13
http://dx.doi.org/10.1109/LICS.2015.13

Analyzing the Capabilities of the CAN Attacker

Sibylle Fröschle1(B) and Alexander Stühring2

1 OFFIS & University of Oldenburg, Oldenburg, Germany
froeschle@informatik.uni-oldenburg.de

2 University of Oldenburg, Oldenburg, Germany
alexander.stuehring@informatik.uni-oldenburg.de

Abstract. The modern car is controlled by a large number of Electronic
Control Units (ECUs), which communicate over a network of bus sys-
tems. One of the most widely used bus types is called Controller Area
Network (CAN). Recent automotive hacking has shown that attacks with
severe safety impact are possible when an attacker manages to gain access
to a safety-critical CAN. In this paper, our goal is to obtain a more sys-
tematic understanding of the capabilities of the CAN attacker, which can
support the development of security concepts for in-vehicle networks.

1 Introduction

The modern car is controlled by a large number of Electronic Control Units
(ECUs), which communicate over an internal network of bus systems. One of
the most widely used bus types is called Controller Area Network (CAN). Recent
automotive hacking [3,8,11] has shown that attacks with severe safety impact
are possible when an attacker manages to gain access to a safety-critical CAN.
Usually such an attack will require several stages. For example (c.f. Fig. 1): first,
the attacker gains remote code execution on the telematics ECU via its cellular
interface by exploiting a software vulnerability; this gives him access to the
infotainment CAN. Second, the attacker compromises the gateway ECU that
separates the infotainment CAN from the powertrain CAN. Third, he injects
cyber-physical messages into the powertrain CAN: e.g. he can abuse messages
that tell the power steering ECU to change the steering angle; such messages
are usually sent from the Park Assist ECU during automatic parking.

There is currently much activity on how to complement automotive safety
processes by security. Draft norms such as SAE J3061 prescribe a concept phase
in which a cybersecurity concept must be developed that shows how risk is
reduced to an acceptable level. In the example above, the cybersecurity concept
might take a security-in-depth approach where the telematics and gateway ECU
are hardened by traditional security mechanisms while the last stage is defended
by CAN-specific IDS and/or safety measures, which e.g. enforce that certain
commands (such as those that steer during automatic parking) are only executed
at low speed. Measures to prevent the worst at the last stage are desired since
they take weight from the outer layers concerning their safety integrity levels.

c© Springer International Publishing AG 2017
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, pp. 464–482, 2017.
DOI: 10.1007/978-3-319-66402-6 27

Analyzing the Capabilities of the CAN Attacker 465

Fig. 1. Stages in automotive hacking

Thereby motivated, our focus here is on the last stage: once an attacker has
made it to the last stage, what exactly are his capabilities? And how can they
be captured in terms of abstract categories that can be used for a model-based
evaluation of an automotive security concept? Since CAN is a broadcast network
it is obvious that the attacker can eavesdrop and insert messages but less clear
whether he can also delete or modify messages (such as the Dolev-Yao attacker).

Our contributions are as follows: (1) We motivate and define a threat model
for the CAN attacker (Sect. 2.3). (2) We explore the capabilities of this CAN
attacker (Sect. 3). Inspired by [14] we started out by systematically exploring
whether and how the CAN attacker can realize the categories of the Dolev Yao
attacker. This led us to identifying 6 categories of attacks that seem best suited
for controller networks. Altogether, we show that by abusing error handling and
configuration options at controller level the attacker has considerable power: he
can silence or impersonate a target node as well as suppress and modify messages
under certain conditions. For each basic category we show concrete attacks and
demonstrate by experiment their feasibility. Many of our attacks are new. (3) We
discuss the implications of these capabilities for automotive vehicles (Sect. 4).
After presenting related work (Sect. 2.1) and the necessary background on CAN
(Sect. 2.2) we proceed according to these contributions.

2 Background and Problem Statement

2.1 Related Work

Attacks on CAN. Security threats to automotive CAN networks have first been
investigated by Hoppe et al. [5], based on automotive hardware in a lab. Koscher
et al. [8] provide a comprehensive security analysis of two types of modern auto-
mobiles, which demonstrated the first attacks on real CAN networks with severe
safety impact. While these attacks still required physical access to the cars via
e.g. the OBDII diagnosis port, in another paper [3] it was shown that such
attacks can also be done by hacking into the vehicle via its extensive attack sur-
face. Since then many more attacks have been demonstrated by security experts

466 S. Fröschle and A. Stühring

such as Miller and Valasek [11,20]. In [19] we have investigated what effect
injecting sensor data has on a driving assistance system. Klebeberger et al. have
pointed out in [7] that mechanisms implemented for safety, e.g. fault detection
mechanisms may be abused by an attacker. In a recent paper [4] Cho and Shin
have presented a bus-off attack, where similarly to one of our (independently
designed) attacks collisions force a target ECU into bus-off.

IDS for CAN. There are several suggestions of how IDS (Intrusion Detection
Systems) can be devised for in-vehicle networks. In [5] Hoppe et al. discuss IDS
based on message frequency, obvious misuse of message-IDs, and other communi-
cation characteristics. Other approaches are based on entropy-based anomalies in
the network [12], anomalies in the message frequency or other metrics [11,13,17],
or are specification-based [9]. It remains to be investigated whether reliable IDS
can be devised against attacks that are based on the generation of errors.

Crypto for CAN. The EVITA project has provided the first comprehensive secu-
rity architecture for in-vehicle networks. The architecture is anchored in hard-
ware security modules (HSMs), and realizes crypto-based security services such
as secure boot, secure storage, and secure communication between in-vehicle
components as well as for vehicle-to-x-communication [1]. Moreover, the hard-
ware components have been evaluated for their use in the real-time critical in-
vehicle environment [21]. By now most providers of automotive electronic com-
ponents offer embedded security solutions such as automotive controllers with
embedded HSMs or add-on security chips. Furthermore, cryptographic schemes
for lightweight authentication over CAN have been developed (c.f. [15] and ref-
erences therein).

However, it is not clear yet how the available components will be configured
and employed as part of a comprehensive in-vehicle security concept that is
economical, real-time suitable, and usable. Steps towards this are put forward
in [10], and pursued by the SeSaMo project for embedded systems [16].

2.2 CAN - Controller Area Network

Controller Area Network (CAN) [2,6] is a bitstream-oriented broadcast bus with
a maximal bit rate of 1 Mbit/s. The CAN protocol covers the physical layer and
the data link layer. The physical layer can have one of two values: dominant or
recessive. If two or more nodes transmit dominant and recessive bits at the same
time then the resulting bus level will be dominant. This is for example realized
by a wired-AND implementation. Hence, the dominant level is represented by
a logical 0, and the recessive level by a logical 1. This electrical characteristic
plays an important role for arbitration and error signalling.

Message Transfer. Each sender transmits their message without a destination
address; rather every message contains an identifier (ID), which indicates the
meaning of the message. All nodes connected to the bus receive the message and
decide by filtering on its ID whether the message is to be ignored or processed.
The ID also assigns a priority to the message: the message with the smallest
value of the ID has the highest priority.

Analyzing the Capabilities of the CAN Attacker 467

Fig. 2. A CAN network

Fig. 3. Format of a data frame in extended format

CAN defines four different types of messages, called frames. The following
two are particularly relevant here: a Data Frame carries data with a payload
between 0 and 8 bytes; an Error Frame is transmitted to signal a bus error.
Figure 3 depicts the format of a Data Frame (in Extended Format). The frame
starts with the Start of Frame (SOF) Field, which is a single dominant bit. Then
follows the Arbitration Field, which consists of a 29 bit Identifier and fixed-form
fields. The Control Field contains the Data Length Code (DLC), which records
the number of bytes in the Data Field. Then follows the Data Field with 0 to 8
bytes of data. The CRC Field contains a cyclic redundancy check code calculated
over the previous fields; followed by the CRC Delimiter : a single recessive bit. All
receivers will acknowledge the successful receipt of the message. This is realized
by the Ack Field : the transmitter sends a recessive bit in the Ack Slot while a
receiver acknowledges a message by superscribing the Ack Slot by a dominant
bit. The frame is concluded with the End of Frame consisting of 7 recessive bits.

Data Frames are always preceded by an Interframe Space (IFS). The IFS
consists of a fixed period of 3 recessive bits, called Intermission, in which no
node is allowed to transmit a new frame, and is followed by a period Bus Idle of
arbitrary length. In the latter any node can start to transmit a message (unless
it is in an error state).

To resolve contention when more than one node wants to transmit, CAN uses
bitwise arbitration: during transmission of the Arbitration Field every transmit-
ter monitors the signal on the bus and compares it to the value of the bit it
has transmitted itself. If the values are equal then the node will continue to
send. If the node has sent a recessive bit but monitors a dominant bit on the

468 S. Fröschle and A. Stühring

ECU 1 011 000 0 0 1 1 0 0

11 000 1 Receive ModeECU 2

Identi fierSOF

Bus 011 000 0 0 1 1 0 0

Collision

Fig. 4. Bitwise arbitration

Error
Active

start Error
Passive

Bus
Off

REC > 127 or

TEC > 127

REC ≤ 127 and

TEC ≤ 127

T
E
C
>

25
5NormalModeRequest

and 128 occurrences of

11 consecutive recessive bits

Fig. 5. Fault confinement

bus, it will withdraw from sending and become a receiver. Since the value 0 is
represented by a dominant level thereby the conflict is resolved according to the
priority - without losing information or time. An example is provided in Fig. 4.
Frames that have lost arbitration or frames that are corrupted by errors will
usually be retransmitted automatically (according to bitwise arbitration) until
the transmission is successful.

To ensure that the nodes remain synchronized during the transmission of
a message CAN uses the method of bit stuffing : after five consecutive bits of
identical value are transmitted a complementary bit is inserted to enforce a
change of signal level to synchronize on. Stuff bits are automatically inserted
and removed by the transmitting and receiving controllers.

Error Handling and Fault Confinement. CAN provides several mechanisms
for error detection, and distinguishes between five error types. The following
three will be relevant later. When a node transmits a bit it also monitors the
bus; a node detects a bit error when the monitored bit is different from the
transmitted bit. (There are some exceptions as e.g. during arbitration.) All nodes
also check whether bit stuffing is observed, and whether the form of fixed-form
bit fields is observed. This will lead to a stuff, and form error respectively.

A node can be in one of three error states: error-active, error-passive, or
bus-off. Figure 5 depicts the transitions between these error states. The transi-
tions are governed by two error counters that CAN nodes keep: the Transmit
Error Counter (TEC) and the Receive Error Counter (REC). The counters are
increased and decreased according to 12 rules specified in the CAN standard.
Roughly, a node will increase its TEC by 8 when it detects an error during
transmission, and decrease it by 1 after a successful transmission. A node will
increase its REC by 1 when it detects an error during receiving, and further by 8
when it becomes clear (during error signalling) that it detected the error earlier
than the other nodes. Decreasing is similarly as for transmission.

When an error-active node detects an error then it signals this by 6 dominant
bits (Active Error Flag). This deliberately violates bit stuffing so that the other
nodes will also detect an error. An error-passive node signals an error by 6
recessive bits, and then waits for 6 bits of equal polarity on the bus (Passive
Error Flag). The violation of bit stuffing will only be noticed by other nodes
when the error-passive node is a transmitter, otherwise the passive error flag

Analyzing the Capabilities of the CAN Attacker 469

will not disturb the bus. Both error-active and error-passive nodes complete
their Error Frame with the Error Delimiter of 8 recessive bits. (C.f. Fig. 6.)

Fig. 6. Active error frame. A passive error frame is similar only that the superposition
field can be longer than 12 bits: the node will wait for 6 bits of equal polarity

Moreover, after an error-passive node has been in the role of a transmitter
it will extend the Intermission period by a Suspend Transmission period of 8
recessive bits before transmitting a further message (while it can receive).

2.3 Threat Model and Problem Statement

As motivated in Sect. 1 we are concerned with an attacker who has already
compromised a node, say NA, (such as the gateway ECU) in a safety-critical
target CAN, say CT , (such as the powertrain CAN). The goal of this attacker is
not to hack into other nodes on CT but rather to induce them to perform cyber-
physical actions conveyed via CT from his node NA. Hence, we assume: (1) The
CAN attacker can host his own code on the compromised node NA. However, we
assume platform integrity for all other nodes of the target CAN.

Moreover, we assume that the CAN attacker has compromised NA remotely,
and thus: (2) The CAN attacker has no physical access to the vehicle instances
that will be affected by his attack. He will launch his attack via malware on NA

(which might be remotely controlled or not).
However, the attacker can prepare his attack with full access to a vehicle

of the type he wishes to target. Security experts have demonstrated that in-
depth knowledge about in-vehicle networks can be obtained by buying a car and
reverse-engineering it. Stuxnet is also a point in case for sophisticated attack
preparation. Hence, an automotive security concept should be based on the fol-
lowing overapproximation: (3) The CAN attacker can prepare his attack off-line
under a white box assumption and access to an instance of the vehicle type he
wishes to attack. We assume he has full knowledge of message scheduling and
architecture of the in-vehicle network.

Automotive hacking so far has injected messages from a task layer (c.f. Fig. 2).
However, if an attacker has compromised an ECU he usually also has access to
lower software layers such as the interface to the CAN controller and config-
uration. So unless NA is equipped with special security features, we assume:
(4) The attacker code can contain any command that controls CAN communica-
tion. This includes the basic functions for sending and receiving CAN messages
but also standard functionality for controlling configuration and status registers.
Hence, we assume the CAN attacker can make full use of the interface provided
by the CAN controller of NA.

470 S. Fröschle and A. Stühring

We consider the following problem: Given a target CAN CT with a compro-
mised node NA and any number of honest nodes, which capabilities does the
CAN attacker have apart from eavesdropping and inserting messages?

3 Attacker Capabilities

We now analyse the capabilities of the CAN attacker starting out from straight-
forward denial-of-service attacks to more targeted attacks. A detailed descrip-
tion of the experiments, the data, and a market analysis on features of CAN
controllers is available on https://vhome.offis.de/pi/downloads/esorics2017/.

1. Blocking Messages by Priority. Similarly to a standard network attacker,
the CAN attacker can disturb the target network by flooding it with messages.
However, since CAN is priority-based the impact of flooding depends on the
priorities of the messages involved.

Attack 1 (Flood to Block). Let M be a message such that M is not sent by
any honest node, and let LP(M) be the set of all messages with priority lower
than M . Then the attacker can block all messages in LP(M): he simply floods
the bus with the message M from his node NA.

When message M is flooded M will be ready for arbitration every time
the bus becomes idle. Hence, messages by honest nodes can only win arbitra-
tion if they have a priority higher than M . Flooding with a message that is
already allocated and regularly sent by an honest node would lead to bit errors
(c.f. Sect. 3(4)). Our experiments show that the blocking indeed works reliably.
Note that by flooding the bus with M such that ID(M) = 0x0 the attacker can
block all messages of honest nodes (provided that 0x0 is not already allocated).

2. Disrupting the Target Network. If the CAN attacker seeks to disrupt all
behaviour on the target bus he can make use of functions that change the oper-
ating mode or the configuration of the CAN controller. Most CAN controllers
have a feature that allows the attacker to induce a stream of dominant bits on
the bus.

Example 1 (Test Mode). Many CAN controllers can be operated in a Test Mode,
in which the state of the Rx pin of the CAN controller is clocked onto the Tx
pin (c.f. Fig. 2). This mode is intended for testing the controller during circuit
development. Invoking the Test Mode on a controller that is connected via a
transceiver to a running CAN bus has a simple effect: once a dominant bit is
received the transceiver continuously applies the dominant level on the bus.

Example 2 (GPIO Configuration). Usually, the Rx and Tx pins connecting the
built-in CAN controller on the microcontroller to the transceiver are GPIO (Gen-
eral Purpose Input/Output) pins. They can either be assigned to a component

https://vhome.offis.de/pi/downloads/esorics2017/

Analyzing the Capabilities of the CAN Attacker 471

Fig. 7. Typical course of Attack 2, where NT is a transmitter, and NH is a receiver.
Key to error codes: 0 × 82 is a stuff error in bit 28–21 of the Identifier Field; 0 × 53 is
a form error due to “dominant for more than 7 bit times after active error flag”

such as the CAN controller or driven manually. The CAN attacker can access
the GPIO configuration, disconnect the CAN controller from the IO pins, and
interface directly with the CAN transceiver. This allows him to continuously
send a dominant bit to the transceiver.

Our market analysis has shown that out of 23 microcontroller series with in-
built CAN controller only one does not provide one of these features (7 support
Test Mode, 18 GPIO configuration). We formulate and implement the attack
based on the Test Mode, but the GPIO technique could be employed similarly.

Attack 2 (Disrupt by Dominant Bits). Say the attacker wishes to disrupt
the target CAN so that no messaging is possible at all. He simply invokes the Test
Mode on his node NA. He can stop the attack at any time by setting the operating
mode back to normal. The bus communication will immediately be restored, but
typically one node will be bus-off, and therefore remain silent.

Once the attacker has invoked the Test Mode on NA, and once one of the
honest nodes has transmitted a dominant bit the behaviour on the bus will be
reduced to a stream of dominant bits. A valid CAN frame can never contain
more than 5 consecutive dominant bits: this either violates bit stuffing or the
format of fixed-form fields. Hence, after at most 5 dominant bits each honest
node will detect an error, and send an error frame. An error frame is completed
with the Error Delimiter, which consists of 8 recessive bits. Since there are only
dominant bits on the bus CAN fault confinement kicks in: after each additional 8
consecutive dominant bits each node will increase its error counter by 8. Hence,
all honest nodes will quickly become error-passive (when their REC or TEC
reaches 128). Nodes that were acting as transmitters when they first detected an

472 S. Fröschle and A. Stühring

error will further go into bus-off (when their TEC reaches 256). Although there
can be several transmitters during arbitration and it is possible that several nodes
become bus-off in a well-scheduled CAN system with a usual load of about 80%
one would expect that typically one node will be bus-off.

In each of the 10 experiments we conducted the receivers reach error-passive
at 501+

−1 us after occurrence of the first error. The one transmitter either goes
error-passive at the same time or after another 32+

−1 us. The latter applies when
the transmitter detects a stuff error during arbitration; in this case the error
counter is not increased as usual due to an exception of the CAN protocol [2].
Bus-off is reached by the transmitter after another 509+

−2 us. (Note that 512 ∼
16×8 bit-time.) Figure 7 shows a typical course of the attack. After the attacker
resets to normal operating mode the error-passive nodes will be able to transmit
their messages (at most subject to a suspension period of 8 bits) while the bus-off
node will remain silent.

3. Silencing a Target Node by Dominant Bits. The disrupt attack is
straightforward to implement and typically forces one node into the bus-off state
in ≈ 1 ms (or 260 bit-time). However, the attack neither directs which node nor
whether any node will become bus-off. Say the attacker wishes to silence a target
node NT . If he manages to synchronize the activation of the stream of dominant
bits with the transmission of a message by NT then he can force NT bus-off in
a targeted fashion. It turns out that there are several techniques to synchronize
the attack with the transmission of a particular message.

Example 3 (ID Ready). Many CAN controllers have a feature called ID Ready
Interrupt : an interrupt that is triggered as soon as the ID of a frame has been
received while the rest of the frame is still in transit. Once the interrupt is raised
the ID can be read from a register and compared to that of a target message, say
MT . A subsequent action of the attacker such as switching on the Test Mode will
take effect while the rest of the message is still being transmitted. Our market
analysis shows that 5 series of microcontrollers of 23 in total offer this feature.

Example 4 (Scheduling). If the CAN controller does not provide the ID Ready
Interrupt he can make use of CAN message scheduling: CAN messages are typ-
ically sent with a fixed periodicity. Say message MT has a period of t ms. The
attacker waits to receive an instance of MT , and can now predict that the next
MT will arrive after t ms plus some jitter. This will only work if the scheduling
is precise up to the length of MT .

Example 5 (Preceded IDs [4]). In [4] Cho and Shin define a preceded ID of a
message MT as the ID of a message that has completed its transmission right
before the start of MT . The attacker waits to receive the preceded ID message,
and can now predict that MT will be sent after 3 bit of Intermission. They also
show that in real automotive CAN traffic preceded IDs often exist. Moreover,
they show that preceded IDs can be fabricated when a target message MT does
not have them. This technique allows them to synchronize very precisely on the
first bit of a target message.

Analyzing the Capabilities of the CAN Attacker 473

We formulate and implement the attack based on ID Ready and Test Mode.

Attack 3 (Silence Target by Dominant Bits). Say the attacker wishes
to silence a target node, say NT . He can achieve this as follows. He chooses a
message MT that is sent by NT . In the task on NA the attacker enables the ID
Ready Interrupt, and programs the ISR that handles the interrupt as follows:
the ISR compares whether the received ID matches ID(MT). If this is true then
the Test Mode will be invoked for ca. 280 bit-time. Then the operating mode is
switched back to normal operation.

In all of our 10 experiments NT goes bus-off at 1010+
−1 us (or 253 bit-time)

after occurrence of the first error. The course of the attack is similar to that
depicted in Fig. 7 but without the offset due to the exception of stuff errors
during arbitration: the first error is consistently a bit error in the DLC field.

4. Silencing a Target Node by Collisions. Arbitration in CAN is based on
the assumption that it won’t happen that two nodes send a data frame with the
same ID at the same time: they would both win arbitration, and an error would
occur in the DLC or Data Field unless they contain exactly the same payload.
More precisely, letting i be the first bit position where the two frames differ,
a bit error will be detected by the node that sends the frame with a recessive
bit at position i. Figure 8 gives an example. In a real CAN system messages are
allocated so that each ID is mapped to a unique node, from which messages
with this ID will be sent. However, collisions can be deliberately caused by an
attacker to force a target node into bus-off.

Fig. 8. The frames mT and mA will lead to a collision when they are transmitted at
the same time. The sender of mT will detect a bit error at the 4th bit of the DLC Field

Attack 4 (Silence Target by Collisions). Say the attacker wishes to silence
target node NT . He picks a message mT that NT sends in a regular interval. He
composes a message mA such that sending mA and mT at the same time will
raise a bit error at NT . Hence, the attacker chooses mA such that mA has the
same ID as mT and there is a first bit position i at which mA differs from mT in
that mA has a dominant bit while mT has a recessive bit. (This must necessarily
be in the DLC or Data Field.) He then floods mA from his node NA.

474 S. Fröschle and A. Stühring

Fig. 9. Typical course of Experiment 4. Key to error codes: 0x0B is a bit error in the
DLC Field; 0x57 is a form error in the Error Delimiter

Fig. 10. Special situation of a form error in the Error Delimiter of NT

The course of this attack is more complex, and goes over several stages. We
explain the course of the attack when the TECs of NA and NT are initially 0.

Stage 1: Initially, both NA and NT are in the error-active state. Then as soon
as NT tries to transmit mT there will be a collision (due to flooding of mA). NT

will detect a bit error at position i as intended, and signal an active error flag.
As a consequence all other bus nodes, including NA, will also detect an error
and signal error flags. Both NA and NT will increase their TECs by 8. After
the Intermission period of 3 recessive bits NA and NT will try to retransmit
mA, and mT respectively. This will again lead to a collision. This continues until
both NA and NT go into error-passive (when their TECs reach ≥128, i.e. after
16 transmission attempts).

Stage 2: Both NA and NT are error-passive. They will both try to retransmit
mA and mT at the same time, possibly after a Suspend Transmission period.
Again NT will detect a bit error. But this time NT will signal a passive error flag.
NA’s transmission will continue to dominate the bus, and neither NA nor any
other node will detect an error. NA will transmit mA successfully, and decrease
its TEC by 1. In contrast, NT will increase its TEC by 8.

Analyzing the Capabilities of the CAN Attacker 475

Stage 3: NA is now error-active again. NT remains error-passive, and tries to
complete its passive error flag while NA is still transmitting mA. The attacker
can now profit from a “blind spot” of the CAN protocol [22] when the bus load
is 100%. By how error signalling is defined NT can complete its passive error
flag only when it first detects 6 consecutive equal bits on the bus. This will only
happen with the 5th bit of the EOF Field of mA. As a consequence mA (or
a message of higher priority) will start to be transmitted while NT is still in
the field Error Delimiter of 8 recessive bits. This will cause a form error at NT .
(C.f. Fig. 10) Moreover, due to the flooding of mA this situation will occur again
and again whenever NT tries to complete the next error frame. Hence, NT will
quickly go bus-off: when its TEC reaches ≥256, i.e. after 15 such form errors.

We have conducted 10 experiments (with the TECs NA and NT initially 0)
that confirm that a target node can be forced bus-off in this way. In the 10
experiments the time from the first collision to bus-off of NT ranges from 8,8 ms
to 13,9 ms. The variation results from how many and which regular messages of
the other nodes are interspersed. However, modulo the pattern of interspersed
messages all experiments follow exactly the course explained above. Figure 9
shows the precise course of one of the experiments.

If the initial value of the TECs of NA and NT is not 0 the stages of the
attack can be slightly different. However, Attack 4 is robust: we have confirmed
by experiment that it works even in the worst initial situation when TEC (NA) �
TEC (NT). The flooding of mA could easily be spotted by an IDS. However, the
attack can be optimized to proceed more covertly: assume or ensure (by resetting
TEC (NA) to 0) that TEC (NA) ≤ TEC (NT); use the technique of preceded IDs
to precisely synchronize on the arrival of mT rather than flooding to cause the
first collision. Send one mA synchronized with mT . After mA has finally been
transmitted successfully send another mA followed by a stream of messages that
are as inconspicuous as possible but keep the bus busy until NT is bus-off. The
second mA is only necessary when TEC (NA) < TEC (NT): when NA finally
manages to transmit the first mA, NT might receive it successfully while in
Suspend Transmission.

5. Suppressing a Target Message. In the previous two attacks the attacker
deliberately causes an error while a target message MT is being transmitted by
a node NT . Although this has the effect of suppressing this instance of MT , the
CAN features automatic retransmission and failure confinement together make
it impossible to suppress MT with a long-lasting effect while keeping NT alive:
either the automatic retransmission of MT will be successful or NT will accu-
mulate errors and go bus-off. However, the newest version of the CAN standard
[6] makes automatic retransmission optional: it may be disabled, or limited to a
certain number of attempts. This can be exploited in the following attack:

Attack 5 (Suppress a Target Message). Say the attacker wishes to suppress
a target message MT . Provided that the honest node that sends MT , say NT ,
has disabled automatic retransmission, he can achieve this as follows. In the
task on NA the attacker enables the ID Ready Interrupt, and programs the ISR

476 S. Fröschle and A. Stühring

that handles the interrupt as follows: the ISR compares whether the received ID
matches ID(MT). If this is true the Test Mode will be invoked for ca. 6 bit times.
Then the operating mode is switched back to normal.

The attack proceeds exactly as Attack 3 apart from that now the Test Mode
is invoked for only a few bits: just enough to prevent the successful transmission
of MT . Without retransmission the bus behaviour will be immediately back to
normal. When the next MT arrives it will again be captured by the ID Ready
Interrupt and suppressed. NT will increase its TEC with every suppression,
and might go bus-off after a number of intervals. The exact number of intervals
depends on how precise the suppression is, and on the number of messages (other
than MT) successfully sent by NT : every successful transmission will decrease
the TEC by 1. In every of our 10 experiments we manage to suppress 50 intervals
of MT . NT goes bus-off only after 1000+

−0, 6 ms from the first arrival MT . Other
variants of this attack not based on configuration features seem also possible;
e.g. use the technique of preceded IDs to precisely synchronize on MT and a
collision to suppress it.

6. Modification Attacks. So far, we have only seen denial-of-service attacks
against the target bus, a target node, as well as blocking and suppression of mes-
sages. However, the attacker is also capable of composite modification attacks:

Attack 6 (Impersonate Target Node). Say the attacker wishes to imper-
sonate a target node NT . He can achieve this in two phases: first, he silences
NT by one of the ‘Silence Target Node’ attacks. Second, he injects the pattern of
messages usually sent by NT but modified by forged values.

Naturally, Attack 6 can also be used when the attacker wishes to modify a
particular message. Another way to achieve message modification, which does
not require NT to be forced bus-off, is this:

Attack 7 (Modify Target Message by Suppress and Inject). Say the
attacker wishes to modify a target message MT . Provided that the node that
sends MT has disabled automatic retransmission, he can achieve this as follows:
he runs one of the ‘Suppress Target Message’ attacks against MT and after each
suppression he injects a new instance of MT with his own forged payload.

In [19] we have employed yet another way to modify messages. Messages with
data such as a particular sensor value are often not read on each arrival by higher
layers but rather periodically from a dedicated receive buffer; it is allowed that
a message can be overwritten by a new one with the latest sensor reading. But
then a message MT can be modified by deliberate buffer overwrite: the attacker
hooks a new instance of MT with his own payload onto the real instance of MT .
The disadvantage (for the attacker) is that this method will lead to messages
with conflicting values on the bus, which can be detected by an IDS.

Analyzing the Capabilities of the CAN Attacker 477

Summary and Attacker Model. We provide a summary in Fig. 11. For each
attack we record time (how fast can the attack goal be reached?) or duration
(how long can the effect be sustained?), which traces it leaves on the bus (in
view of IDS), and which conditions are necessary to implement it. Most of our
attacks only leave error traces on the bus, and it remains an open problem
whether an IDS can be constructed to detect them reliably. This will require
more research into which error patterns typically occur in real CAN systems. One
further challenge is that our attacks can be varied so that the error patterns they
produce will be less regular than the fastest or most straightforward versions we
have discussed here.

Cat. Attack t or d traces on bus conditions

B 1 Block any d flooding suitable M

D 2 Disrupt any d errors only config

SN 3 Dominant Bits t ≈ 260 bit-t errors only config & synch-M

SN 4∗ Collisions t ≈ 16 msg-t ≤ 16 errors synch-B

SM 5 Dominant Bits d ≈ 32 periods periodic errors config & synch-M & rt-off

SM 5’ Collisions d ≈ 32 periods periodic errors synch-B & rt-off

IN 6 3 & Inject d ≈ 260 bit-t errors only config & synch-M

IN 6∗ 4∗ & Inject t ≈ 16 msg-t ≤ 16 errors synch-B

MM 7 5 & Inject d ≈ 32 periods periodic errors config & synch-M & rt-off

MM 7’ 5’ & Inject d ≈ 32 periods periodic errors synch-B & rt-off

MB 8 [19] Buffer any d conflicting MT buffer overwrite

d . . . duration t . . . time to achieve bit-t . . . bit-time mesg-t . . . time of a message
config . . . access to configuration synch-B . . . synchronization on first bit of message
synch-M . . . synchronization on message rt-off . . . retransmission off

Fig. 11. Overview. 4∗ is the optimal variant of 4; 5′ is the collision variant of 5

The impersonation attacks can easily be detected by the target node itself:
while NT cannot transmit messages while in bus-off it can receive messages, and
hence, recognize when another node sends messages allocated to itself. How-
ever, NT has no way of signalling this to other nodes unless there is an addi-
tional uncompromised channel available. This is similar for the (MM) modifi-
cation attacks: although NT could try to send a warning over the target CAN
the attacker could suppress the respective message. Altogether, we derive the
abstract model for the CAN attacker shown in Fig. 12. Finally, note that (I),
(IN), (MM), and (MB) can be prevented by securing the messages (i.e. the pay-
load) cryptographically but this is not possible for the other attacks.

478 S. Fröschle and A. Stühring

1. Eavesdrop on all messages transmitted on the target CAN (E). IDS? No.
2. Insert any message into the target CAN at any time (I). (But transmission will be

subject to arbitration.) IDS? No, if injection follows the usual message pattern.
3. Block a set of target messages LP(M) for any duration, where M is a message not

sent by honest nodes (B). IDS? Yes, can detect flooding of M on bus.
4. Disable the target CAN for any duration (D). IDS? Open (only errors).
5. Silence a target node NT (SN). IDS? Open (only/mainly errors).
6. Suppress any target message MT up to ≈ 32 intervals if automatic retransmission

is disabled on NT (SM). IDS? Open (only errors).
7. Impersonate a target node NT (IN). IDS? Open (only/mainly errors); or by sig-

nalling from NT if an additional uncompromised channel is available.
8. Modify any target message MT up to ≈ 32 intervals if automatic retransmission is

disabled on NT (MM). IDS? open (only errors); or by signalling from NT if an
additional uncompromised channel is available.

9. Modify any target message MT if buffer overwrite is possible (MB). IDS? Yes,
can detect conflicting messages on bus.

Fig. 12. Capabilities of the CAN attacker

4 Cyber-Physical Implications

We now discuss the implications of our attacks for automotive vehicles. For this
we make use of the insights gained by automotive hacking for real vehicles: for
the Ford Escape 2010 and Toyota Prius 2010 [11], the Jeep Cherokee [20], and
the vehicle of [8]. It turns out that the Jeep and the Toyota both use a Renesas
V850ES/FJ3-uController, which has the GPIO reconfiguration option, for at
least some of their ECUs. We focus on cyber-physical attacks that manipulate
steering and braking.

Steering has been manipulated based on Advanced Driving Assistance Sys-
tems (ADAS) such as Park Assist. Park Assist mainly involves two ECUs: the
Park Assist Module (PAM) and the Electric Power Steering Module (EPSM),
which controls the servo motor attached to the steering wheel. When park assis-
tance is activated the PAM calculates the steering movement based on sensor
inputs and sends messages over the in-vehicle network that ask the EPSM to
realize the steering motion. These messages typically specify directly the required
steering wheel angle. Some safety measures might be in place that prevent the
EPSM from executing the request in any context.

For example, the EPSM of the Toyota only accepts requests to change the
steering angle when the vehicle is in reverse gear and at low speed. Data such as
current gear and speed are typically broadcast in regular intervals on the CAN
bus to make sensor readings accessible to ECUs such as PAM and EPSM. It
turns out that the EPSM of the Toyota obtains the data for the safety checks
via the same CAN bus as the steering commands. Miller and Valasek managed
to override these checks as follows: a forged message for current gear was hooked
in front of the steering message while forged speed values had to be continuously
injected. This led to some ECUs become unresponsive. (C.f. [11].)

Analyzing the Capabilities of the CAN Attacker 479

Example 6 (Steer Toyota covertly at any speed: avoid flooding). A more subtle
attack could make use of the ‘Impersonate Node’ attack: the attacker silences the
ECU responsible for broadcasting the current gear, and the ECU for broadcast-
ing the current speed respectively. He then injects forged gear and speed packets
that mimic the usual patterns of sending them. It is plausible that the impact of
silencing these ECUs is no worse than the ECUs becoming unresponsive in the
attack by Miller & Valasek (which was perhaps due to collisions). Moreover, if
these ECUs do not use automatic retransmission for the gear and speed packets
a ‘Modify Message’ attack is also possible, which might avoid any side effects.

The PAM of the Jeep Cherokee sends a CAN message with the following
information: status, i.e. park assist on or off, torque to be applied, and a counter
value. The message is not only sent when Park Assist is active but in a regular
interval. This allows the EPSM to recognize when messages are injected that are
conflicting with those sent by the real PAM, in which case Park Assist will go
offline. Valasek and Miller have subverted this safety measure as follows: they
first start a diagnosis session with the PAM, which will stop it from sending
messages. However, since a diagnosis session can only be opened at low speed
this restricts their attack to a speed of no higher than 5 mph. (C.f. [20].)

Example 7 (Steer Jeep at any speed: without diagnosis session). The attack
can be improved by employing one of the ‘Impersonate Node’ attacks. This will
silence the PAM without having to open a diagnosis session. Hence, the speed
constraint does not apply (unless there are further checks), and the attack will
remain covertly when IDS against diagnostic messages is used.

One of the most severe attacks against a vehicle is to disable its brakes while
driving. Most vehicles have a diagnostic command that induces the ABS ECU
to bleed or release the brakes with the effect that the driver cannot apply the
brakes at all. ‘Disabling brakes’ has first been realized in [8], and also against
the Ford [11] and the Jeep Cherokee [20] based on such commands. In the Ford
and the Jeep this only works at low speed, enforced by the diagnostic session
that needs to be opened first.

Example 8 (ABS: protected by direct line to sensor). It seems plausible at first
that ‘disabling brakes’ can be leveraged to full speed by forging speed packets
by means of an ‘Impersonate Node’ or ‘Modify Message’ attack as discussed in
Example 6. However, it seems unlikely that this is possible: the wheel speed
sensor is usually directly connected to the ABS ECU, and speed packets are
broadcast from there to other ECUs. Hence, one would expect that the ABS
ECU itself cannot be fooled by wrong speed packets forged over CAN.

Another potentially severe attack is to suddenly engage the brakes while
driving. This has also been implemented based on diagnostic messages [8,11].
Another way to realize this is to exploit cyber-physical messages that are part
of Collision Prevention Systems (CPS) [11,20]. Such systems can send messages
to the ABS ECU that induce it to brake. This has been demonstrated against

480 S. Fröschle and A. Stühring

both the Toyota and the Jeep. The Jeep has a safety measure analogous to that
for Park Assist: the CPS module sends a message regularly, and the ABS ECU
checks whether there are conflicting messages, in which case the ABS turns off
CPS entirely. Valasek and Miller override this safety feature as before, by putting
the CPS ECU into a diagnostic session, which restricts the attack to low speed.

Example 9 (Sudden brakes for Jeep at full speed). Analogously to Example 7
this attack could be improved by an ‘Impersonate Node’ Attack: to work with-
out speed constraint and only based on messages that are used during normal
operation.

Messages that are part of CPS have to work at any speed, and hence, a safety
measure based on speed checks is not an option here. The same is true for Lane
Keep Assist (LKA). Lane Keep Assist will detect when the vehicle is in danger
to veer from the lane, and intervene in the steering to correct this. This system
involves the LKA module, a camera that detects the lines of the lane, and the
EPSM. Similarly to Park Assist the LKA module transmits a steering request
to the EPSM. While the Toyota’s camera is directly connected to the driving
support ECU the Jeep’s Forward Facing Camera Module (FFCM) is a node on
the CAN bus. The following demonstrates that even if cyber-physical messages
are cryptographically protected one still has to guard against indirect attacks
based on sensor data transmitted over a bus.

Example 10 (Steer Jeep by Faking the Environment). Silence the FFCM by a
bus-off attack. Then play in a pattern of FFCM messages that mimic the values
sent when the vehicle ventures off the lane. The LKA system will “correct” the
steering correspondingly.

5 Conclusions

We have derived an abstract model for the CAN attacker, and demonstrated
its usefulness by a discussion of potential implications for real cars. In future
we will employ this model in our model-based safety and security analysis [18].
We do not consider this model to be static. In particular, it has to be extended
by cryptographic mechanisms that might be available and timing information.
Also, we expect there will be more Disrupt Attacks, e.g. based on a change of
bit rate or polarity. However, we hope that the categories are stable.

Our analysis has revealed new attacks: all our attacks are new apart from the
obvious ‘Flood to Block’. Bus-off by collisions has also been shown in [4]. How-
ever, our (independently designed) Attack 4 works much faster: it only needs one
interval compared to approx. 17 in [4]. The analysis has shown several directions
for further experimental exploration such as a more systematic understanding of
synchronization, and how real error traces look like in view of IDS. We will also
explore whether small changes to CAN such as removing the ‘blind spot’ would
make it easier to detect some types of attacks.

Analyzing the Capabilities of the CAN Attacker 481

Acknowledgement. This work is supported by the Niedersächsisches Vorab of the
Volkswagen Foundation and the Ministry of Science and Culture of Lower Saxony
as part of the Interdisciplinary Research Center on Critical Systems Engineering for
Socio-Technical Systems.

References

1. Apvrille, L., El Khayari, R., Henniger, O., Roudier, Y., Schweppe, H., Seudié, H.,
Weyl, B., Wolf. M.: Secure automotive on-board electronics network architecture.
In: FISITA 2010 World Automotive Congress, vol. 8 (2010)

2. Bosch. CAN Standard. Bosch (1991)
3. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,

Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental
analyses of automotive attack surfaces. In: 20th USENIX Security, SEC 2011, p. 6
(2011)

4. Cho, K.-T., Shin, K.G.: Error handling of in-vehicle networks makes them vulner-
able. In: 2016 ACM SIGSAC Computer and Communications Security, CCS 2016,
pp. 1044–1055. ACM (2016)

5. Hoppe, T., Kiltz, S., Dittmann, J.: Security threats to automotive CAN networks
– practical examples and selected short-term countermeasures. In: Harrison, M.D.,
Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 235–248. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-87698-4 21

6. ISO. Road vehicles controller area network (can) – Part 1: Data link layer and
physical signalling. ISO 11898-1:2015 (2015)

7. Kleberger, P., Olovsson, T., Jonsson, E.: Security aspects of the in-vehicle network
in the connected car. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 528–
533 (2011)

8. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental security
analysis of a modern automobile. In: IEEE Security and Privacy (2010)

9. Larson, U.E., Nilsson, D.K., Jonsson, E.: An approach to specification-based attack
detection for in-vehicle networks. In: 2008 IEEE Intelligent Vehicles Symposium,
pp. 220–225. IEEE (2008)

10. Lima, A., Rocha, F., Völp, M., Esteves-Veŕıssimo, P.: Towards safe and secure
autonomous and cooperative vehicle ecosystems. In: Cyber-Physical Systems Secu-
rity and Privacy, CPS-SPC 2016, pp. 59–70. ACM (2016)

11. Miller, C., Valasek, C.: Adventures in automotive networks and control
units (2013) http://www.ioactive.com/pdfs/IOActive Adventures in Automotive
Networks and Control Units.pdf

12. Müter, M., Asaj, N.: Entropy-based anomaly detection for in-vehicle networks. In:
Intelligent Vehicles Symposium, pp. 1110–1115. IEEE (2011)

13. Müter, M., Groll, A., Freiling, F.C.: A structured approach to anomaly detection
for in-vehicle networks. In: Information Assurance and Security (IAS) 2010, pp.
92–98. IEEE (2010)

14. Pöpper, C., Tippenhauer, N.O., Danev, B., Capkun, S.: Investigation of signal
and message manipulations on the wireless channel. In: Atluri, V., Diaz, C. (eds.)
ESORICS 2011. LNCS, vol. 6879, pp. 40–59. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-23822-2 3

http://dx.doi.org/10.1007/978-3-540-87698-4_21
http://www.ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf
http://www.ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf
http://dx.doi.org/10.1007/978-3-642-23822-2_3
http://dx.doi.org/10.1007/978-3-642-23822-2_3

482 S. Fröschle and A. Stühring

15. Radu, A.-I., Garcia, F.D.: A lightweight authentication protocol. In: Askoxylakis,
I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016, Part II. LNCS,
vol. 9879, pp. 283–300. Springer, Cham (2016). doi:10.1007/978-3-319-45741-3 15

16. Sojka, M., Krec, M., Hanzálek, Z.: Case study on combined validation of safety &
security requirements. In: SIES 2014, pp. 244–251. IEEE (2014)

17. Song, H.M., Kim, H.R., Kim, H.K.: Intrusion detection system based on the analy-
sis of time intervals of CAN messages for in-vehicle network. In: Information Net-
working (ICOIN) 2016, pp. 63–68. IEEE (2016)

18. Strathmann, T., Fröschle, S.: Towards a model-based safety and security analysis.
In: Model-Based Development of Embedded Systems (MBEES) (2017)

19. Stühring, A., Ehmen, G., Fröschle, S.: Analyzing the impact of manipulated sensor
data on a driver assistance system using OP2TiMuS. In: Design, Automation and
Test in Europe (DATE 2016) (2016)

20. Valasek, C., Miller, C.: Remote exploitation of an unaltered passenger vehicle,
August 2015. http://illmatics.com/Remote%20Car%20Hacking.pdf

21. Wolf, M., Gendrullis, T.: Design, implementation, and evaluation of a vehicular
hardware security module. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp.
302–318. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31912-9 20

22. Yang, F.: A bus off case of can error passive transmitter. EDN Technical paper
(2009)

http://dx.doi.org/10.1007/978-3-319-45741-3_15
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://dx.doi.org/10.1007/978-3-642-31912-9_20

Erratum to: Per-Session Security:
Password-Based Cryptography Revisited

Grégory Demay, Peter Gaži, Ueli Maurer, and
Björn Tackmann

Erratum to:
Chapter “Per-Session Security: Password-Based
Cryptography Revisited” in: S.N. Foley et al. (Eds.):
Computer Security – ESORICS 2017, Part I, LNCS 10492,
https://doi.org/10.1007/978-3-319-66402-6_24

The footnote at the end of the title page has been corrected by the authors. Correctly it
reads:
G. Demay—Work done while author was at ETH Zürich and supported by the Zurich
Information Security and Privacy Center.
P. Gaži—Work done while author was at ETH Zürich and IST Austria, in part sup-
ported by the ERC grants 259668-PSPC and 682815-TOCNeT.
B. Tackmann—Work done while author was at ETH Zürich and UC San Diego, in part
supported by SNF fellowship P2EZP2-155566 and NSF grant CNS-1228890.

The full version is available at https://eprint.iacr.org/2016/166.

The updated online version of this chapter can be found at
https://doi.org/10.1007/978-3-319-66402-6_24

© Springer International Publishing AG 2018
S.N. Foley et al. (Eds.): ESORICS 2017, Part I, LNCS 10492, p. E1, 2017.
https://doi.org/10.1007/978-3-319-66402-6_28

https://doi.org/10.1007/978-3-319-66402-6_24
https://eprint.iacr.org/2016/166
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-66402-6_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-66402-6_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-66402-6_28&domain=pdf
https://doi.org/10.1007/978-3-319-66402-6_24

Author Index

Ahmed, Muhammad Ejaz II-135
Albrecht, Martin R. I-29
Alcaraz, Cristina II-402
Alderman, James I-47
Alimohammadifar, Amir II-265
Alsulami, Bander I-65
Aly, Abdelrahaman II-475
Ariu, Davide I-370
Armknecht, Frederik II-324
Attrapadung, Nuttapong II-532
Au, Man Ho II-456
Audinot, Maxime I-83

Backes, Michael II-62
Baldimtsi, Foteini I-103
Balliu, Musard I-124
Barbosa, Manuel I-146
Bardas, Alexandru G. I-167
Bauer, Matthew S. I-187
Bayatbabolghani, Fattaneh II-552
Benenson, Zinaida II-324
Benhamouda, Fabrice I-206
Bertino, Elisa II-419
Beunardeau, Marc I-224
Bichhawat, Abhishek I-242
Bidner, David II-191
Biggio, Battista I-370
Biskup, Joachim II-381
Blanton, Marina II-552
Blazy, Sandrine I-260
Bordoni, Lorenzo I-278
Brendel, Jacqueline I-297
Buldas, Ahto I-315

Capkun, Srdjan II-21
Catalano, Dario I-146
Chabanne, Hervé I-334
Chadha, Rohit I-187
Chandra, Swarup I-352
Cho, Geumhwan II-135
Chothia, Tom II-513
Chow, Sherman S.M. II-494

Christou, Giorgos II-362
Connolly, Aisling I-224
Conti, Mauro I-278
Contini, Matteo I-370
Corda, Roberto I-370
Corona, Igino I-370
Crampton, Jason I-47
Cremers, Cas I-389

Daidakulov, Andrey II-98
Dauber, Edwin I-65
Debbabi, Mourad II-265
Dehnel-Wild, Martin I-389
DeLoach, Scott A. I-167
Demay, Grégory I-408
Deng, Robert H. II-229
Dewald, Florian I-427
Dhooghe, Siemen II-475

Eisenbarth, Thomas II-80
Elovici, Yuval II-98
Emura, Keita II-532
Engelhardt, Kai I-446
Eskofier, Björn II-324
Etalle, Sandro I-1

Farley, Naomi I-47
Ferradi, Houda I-206, I-224
Filios, Alexandros II-21
Fiore, Dario I-146
Fischer, Clément II-153
Fischlin, Marc I-297
Fröschle, Sibylle I-464

Gao, Debin II-210
Garcia, Flavio D. II-513
Garg, Deepak I-242
Gazeau, Ivan II-1
Gaži, Peter I-408
Géraud, Rémi I-206, I-224
Gervais, Arthur II-21

Ghadafi, Essam II-43
Greenstadt, Rachel I-65
Grosse, Kathrin II-62
Gruss, Daniel II-191
Gulmezoglu, Berk II-80
Guri, Mordechai II-98

Hammer, Christian I-242
Hanaoka, Goichiro II-532
Harang, Richard I-65
Heiderich, Mario II-116
Herley, Cormac I-11
Hugel, Rodolphe I-334

Ioannidis, Sotiris II-362

Jain, Jinank I-242
Jarraya, Yosr II-265
Jeong, Jaehoon (Paul) II-135
Jun, Kwang-Sung II-286

Kalu, Aivo I-315
Kantarcioglu, Murat I-352
Karande, Vishal I-352
Katzenbeisser, Stefan II-437
Keuffer, Julien I-334
Khan, Latifur I-352
Kim, Hyoungshick II-135
Kim, Soyoung II-135
Kohnhäuser, Florian II-437
Kordy, Barbara I-83
Kourai, Kenichi II-305
Kremer, Steve II-1
Kumar, Amrit II-153

Laud, Peeter I-315
Lee, Sora II-135
Lenders, Vincent II-21
Leslie, David II-174
Lin, Zhiqiang I-352
Lipp, Moritz II-191
Liu, Joseph K. II-456
Liu, Weijie II-210
Lo, David II-229
Lobo, Jorge II-419
Lopez, Javier II-402

Ma, Jack P.K. II-494
Ma, Siqi II-229

Maiti, Rajib Ranjan II-247
Majumdar, Suryadipta II-265
Mancoridis, Spiros I-65
Mangard, Stefan II-191
Manoharan, Praveen II-62
Mantel, Heiko I-427
Markatos, Evangelos II-362
Maurer, Ueli I-408
Maurice, Clémentine II-191
McDaniel, Patrick II-62
Meng, Xiaozhu II-286
Mennink, Bart II-475
Mereu, Mauro I-370
Miller, Barton P. II-286
Milner, Kevin I-389
Miyama, Shohei II-305
Morgner, Philipp II-324
Müller, Christian II-324
Mureddu, Guido I-370
Mustafa, Mustafa Asan II-475

Naccache, David I-206, I-224
Nishide, Takashi II-344

Omote, Kazumasa II-344
Oqaily, Momen II-265
Orsini, Emmanuela I-29
Oruaas, Mart I-315
Osada, Genki II-344
Ou, Xinming I-167

Papadopoulos, Dimitrios I-103
Papadopoulos, Panagiotis II-362
Papadopoulos, Stavros I-103
Papernot, Nicolas II-62
Paterson, Kenneth G. I-29
Peer, Guy I-29
Pichardie, David I-260
Pinchinat, Sophie I-83
Piras, Luca I-370
Pourzandi, Makan II-265
Preneel, Bart II-475
Preuß, Marcel II-381

Rajani, Vineet I-242
Reiter, Michael K. II-210
Riess, Christian II-324
Ring, Matthias II-324
Roli, Fabio I-370

484 Author Index

Rubio, Juan E. II-402
Rullo, Antonino II-419

Sabelfeld, Andrei I-124
Saxena, Prateek II-153
Scafuro, Alessandra I-103
Schaller, André II-437
Schoepe, Daniel I-124
Schulz, Steffen II-437
Schwarz, Michael II-191
Schwenk, Jörg II-116
Serra, Edoardo II-419
Sherfield, Chris II-174
Siby, Sandra II-247
Smart, Nigel P. I-29, II-174
Solewicz, Yosef II-98
Späth, Christopher II-116
Spolaor, Riccardo I-278
Sridharan, Ragav II-247
Stühring, Alexander I-464
Sun, Cong II-229
Sun, Shi-Feng II-456
Sunar, Berk II-80
Sundaramurthy, Sathya Chandran I-167
Symeonidis, Iraklis II-475
Syverson, Paul I-18

Tackmann, Björn I-408
Tai, Raymond K.H. II-494
Tanaka, Keisuke II-532
Thomas, Sam L. II-513
Thung, Ferdian II-229
Thuraisingham, Bhavani I-352
Tippenhauer, Nils Ole II-247
Tople, Shruti II-153
Triandopoulos, Nikos I-103
Trieu, Alix I-260

Vasiliadis, Giorgos II-362
Vergnaud, Damien I-224
Viswanathan, Mahesh I-187

Wang, Lingyu II-265
Weber, Alexandra I-427

Yamada, Kotoko II-532
Yuen, Tsz Hon II-456

Zankl, Andreas II-80
Zhang, Yihua II-552
Zhao, Yongjun II-494

Author Index 485

	Preface
	Organization
	Contents -- Part I
	Contents -- Part II
	From Intrusion Detection to Software Design
	1 Preamble
	2 A Journey in Intrusion Detection
	3 Writing Supervisable Software
	References

	Justifying Security Measures --- a Position Paper
	1 Introduction
	2 Heads I'm Right, Tails You've Just Been Lucky so Far
	2.1 The Importance of Being Literal

	3 Never Waste a Good Crisis: Passwords
	3.1 What Constitutes a Compelling Argument for a Security Measure?
	3.2 What Evidence Would Prove Us Wrong?

	4 Conclusion
	References

	The Once and Future Onion
	1 Introduction
	1.1 Predecessors to Onion Services
	1.2 Basic Overview of Tor Design and Onion Services

	2 The Alliuminated Web
	3 Evolution of Onion Services
	4 John Jacob Onionheimer Schmidt
	5 Onions Everywhere
	6 Conclusion
	References

	Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts
	1 Introduction
	2 Ring-LWE Key Encapsulation
	2.1 IND-CPA Secure PKE
	2.2 IND-CCA Secure PKE
	2.3 LIMA: A CCA-Secure Key Encapsulation Mechanism

	3 Security Proofs
	3.1 Hard Problems
	3.2 Provable Security of the Basic Encryption Scheme
	3.3 Provable Security of Our IND-CCA Secure PKE Scheme
	3.4 Provable Security of LIMA

	References

	Tree-Based Cryptographic Access Control
	1 Introduction
	2 Background and Notation
	3 Our Construction
	3.1 Defining the Enforcement Structure
	3.2 Instantiating a KAS on Our Enforcement Structure
	3.3 Summary and Discussion

	4 Optimizing the Enforcement Structure and Mapping
	4.1 The FindTree Heuristic
	4.2 The Order Filter Sort Heuristic

	5 Evaluation
	6 Flexible Access Management
	7 Conclusion
	References

	Source Code Authorship Attribution Using Long Short-Term Memory Based Networks
	1 Introduction
	2 Related Work
	3 Source Code Obfuscation
	4 Abstract Syntax Tree
	5 Model Architecture
	5.1 Embedding Layer
	5.2 Subtree Layer
	5.3 Softmax Layer

	6 Experimental Setup
	6.1 Data Collection
	6.2 Training Models

	7 Evaluation
	7.1 Model Complexity
	7.2 Author Classification
	7.3 Scaling Author Classification
	7.4 Top Authors Predication

	8 Conclusions and Future Work
	References

	Is My Attack Tree Correct?
	1 Introduction
	2 Motivating Example
	3 Formal Modeling
	3.1 Transition Systems
	3.2 Attack Trees

	4 Correctness Properties of Attack Trees
	4.1 Definitions
	4.2 Illustration on the Running Example
	4.3 Relevance of the Correctness Properties

	5 Complexity Issues
	5.1 Checking Admissibility (Column 1 of Table1)
	5.2 Checking the Meet property (Column 2 of Table1)
	5.3 Checking the Under-Match property (Column 3 of Table1)
	5.4 Checking the Over-Match property (Column 4 of Table1)

	6 Conclusion and Future Work
	References

	Server-Aided Secure Computation with Off-line Parties
	1 Introduction
	2 Preliminaries
	3 Problem Formulation
	3.1 Security Definition
	3.2 Our General Approach

	4 Garbled Circuit Protocol
	5 Mixed Protocol
	5.1 Re-Encryption Protocol

	6 Experimental Evaluation
	References

	We Are Family: Relating Information-Flow Trackers
	1 Introduction
	2 Security Framework
	2.1 Language
	2.2 Semantics
	2.3 Defining Secrecy
	2.4 Security Conditions

	3 Enforcement Framework
	4 Staged Information-Flow Control
	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion
	References

	Labeled Homomorphic Encryption
	1 Introduction
	2 Labeled HE
	3 A Construction of Labeled HE for Quadratic Polynomials
	4 Multi-user Labeled HE
	5 Statistics Using labHE
	6 Applications and Evaluation
	6.1 Implementation and Micro-Benchmarks
	6.2 Outsourcing Privacy Preserving Statistics
	6.3 Privacy Preserving GAS

	7 Conclusions
	References

	MTD CBITS: Moving Target Defense for Cloud-Based IT Systems
	1 Introduction
	2 Our MTD Approach
	2.1 Threat Model
	2.2 Background
	2.3 MTD CBITS Implementation
	2.4 Instance Replacement Implementation

	3 Feasibility Analysis
	3.1 eCommerce Deployment
	3.2 MediaWiki with Wikipedia DB Dumps

	4 Security Analysis
	4.1 Attack Windows and Attack Surface
	4.2 Adaptation Points Placement
	4.3 Attack Windows Example

	5 Discussion and Limitations
	6 Related Work
	7 Conclusions
	References

	Modular Verification of Protocol Equivalence in the Presence of Randomness
	1 Introduction
	2 Protocols
	2.1 Terms, Equational Theories and Frames
	2.2 Syntax
	2.3 Semantics

	3 Compositional Equivalence of Single Session Protocols
	3.1 Disjoint Data
	3.2 Disjoint Primitives
	3.3 Difficulties Arising from Randomization
	3.4 Proof Sketch for Theorem 1
	3.5 Shared Primitives Through Tagging

	4 Compositional Equivalence for Multi-session Protocols
	5 Conclusions and Future Work
	References

	Non-interactive Provably Secure Attestations for Arbitrary RSA Prime Generation Algorithms
	1 Introduction
	2 Outline of the Approach
	3 Model and Analysis
	3.1 Preliminaries and Notations
	3.2 Multi-prime Attestation Scheme (u=1)
	3.3 Multi-modulus Attestation Scheme (u 2, = 2)
	3.4 General Attestation Scheme

	4 Security and Parameter Choice
	4.1 Security
	4.2 Typical Parameters and Complexity Analysis

	5 Compressing the Attestation
	6 Parameter Settings
	7 Conclusion and Further Research
	References

	Reusing Nonces in Schnorr Signatures
	1 Introduction
	1.1 Intuition and General Outline of the Idea

	2 Preliminaries
	2.1 Schnorr's Signature Scheme
	2.2 Security Model

	3 Our Scheme: Using Multiple q's
	3.1 Our Signature Scheme
	3.2 Security

	4 Provably Secure Pre-Computations
	4.1 Brief Overview of Speed-Up Techniques
	4.2 The E-BPV Pre-computation Scheme
	4.3 Lim and Lee Precomputation Scheme

	5 Implementation Results
	6 Heuristic Security
	7 Conclusion
	References

	WebPol: Fine-Grained Information Flow Policies for Web Browsers
	1 Introduction
	2 Overview
	3 WebPol policy model
	3.1 Policies as Event Handlers
	3.2 Integration with the Web Browser

	4 Examples
	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Verifying Constant-Time Implementations by Abstract Interpretation
	1 Introduction
	2 The Verasco Abstract Interpreter
	3 Verifying Constant-Time Security
	3.1 The While Language
	3.2 Constant-Time Security
	3.3 Reducing Security to Safety
	3.4 Abstract Interpreter
	3.5 Correctness of the Abstract Interpreter

	4 Implementation and Experiments
	4.1 Memory Separation
	4.2 Cryptographic Algorithms

	5 Related Work
	6 Conclusion
	References

	Mirage: Toward a Stealthier and Modular Malware Analysis Sandbox for Android
	1 Introduction
	2 Related Work
	3 Sandbox Requirements
	4 Mirage: Our System Architecture
	4.1 Methods Hooking Layer
	4.2 Events Player
	4.3 Coordinator and Logger
	4.4 Data Collection App

	5 A Representative Case Study: Tackling Evasion Attacks Based on Sensors with Mirage
	5.1 Threat Model
	5.2 Artifacts Analysis
	5.3 Module Implementation

	6 Evaluation
	7 Discussion
	8 Conclusion
	References

	Zero Round-Trip Time for the Extended Access Control Protocol
	1 Introduction
	1.1 Striving for Zero Round-Trip Time
	1.2 Contribution

	2 Protocol Description
	2.1 The Extended Access Protocol
	2.2 The 0RTT EAC Protocol
	2.3 Discussion

	3 Overview over Security Analysis
	3.1 Game-Based Approach
	3.2 Security Model
	3.3 Cryptographic Assumptions
	3.4 Analysis

	4 Variations
	4.1 Diffie-Hellman Variant
	4.2 Pre-shared Key Variant
	4.3 Error Handling

	5 Conclusion
	References

	Server-Supported RSA Signatures for Mobile Devices
	1 Introduction
	2 State of the Art
	3 New Scheme
	3.1 Description of the Scheme
	3.2 Employed Detection Mechanisms

	4 Robust Implementation
	4.1 Server's Key: Client-Specific or Common?

	5 Proofs of Security
	5.1 Security of the Composition Procedure
	5.2 Security Against Malicious Servers
	5.3 Security Against Device Read
	5.4 Security Against Memory Read

	6 An Instantiation of Security Parameters
	7 Practical Implementation
	References

	Verifiable Document Redacting
	1 Introduction
	2 Our Protocol for Redacting Documents
	2.1 High Level Description
	2.2 The Verifiable Document Redacting Protocol

	3 Verifiable Computation
	3.1 Public Verifiability
	3.2 Quadratic Arithmetic Programs
	3.3 The Pinocchio Protocol
	3.4 Making a Proof a zk-SNARK
	3.5 Expressivity of zk-SNARK Schemes
	3.6 Security

	4 An Instantiation of the VDR Scheme
	4.1 The Arithmetic Circuit Design
	4.2 Experimental Results

	5 Conclusion
	A Appendix
	References

	Securing Data Analytics on SGX with Randomization
	1 Introduction
	2 Background
	2.1 Intel SGX
	2.2 Machine Learning

	3 Secure Data Analytics
	3.1 Threat Model
	3.2 Overview
	3.3 Primitives
	3.4 Learning Algorithms

	4 Implementation
	5 Evaluation
	5.1 Quantification of Privacy Guarantee
	5.2 Datasets
	5.3 Results and Discussion
	5.4 Security Evaluation

	6 Related Works
	7 Conclusion
	References

	DeltaPhish: Detecting Phishing Webpages in Compromised Websites
	1 Introduction
	2 Phishing Webpage Detection
	3 DeltaPhish
	3.1 Browser Automation
	3.2 HTML-Based Classification
	3.3 Snapshot-Based Classification
	3.4 Classifier Fusion

	4 Experimental Evaluation
	4.1 Experimental Setting
	4.2 Experimental Results

	5 Conclusions and Future Work
	References

	Secure Authentication in the Grid: A Formal Analysis of DNP3: SAv5
	1 Introduction
	2 The DNP3 Standard
	2.1 System and Sub-protocols
	2.2 Protocol Descriptions
	2.3 Threat Model and Security Properties

	3 Formal Model of SAv5 in Tamarin
	3.1 Symbolic Modelling Assumptions
	3.2 Complexity of the Protocol
	3.3 Protocol Modelling in Tamarin

	4 Analysis and Results
	4.1 Modelling the Threat Model and Security Properties
	4.2 Analysis in Tamarin
	4.3 Results

	5 Recommendations
	6 Related Work
	7 Conclusions
	References

	Per-Session Security: Password-Based Cryptography Revisited
	1 Introduction
	1.1 Motivation of This Work
	1.2 Our Contributions
	1.3 Related Work

	2 Preliminaries
	3 Transformable Systems
	4 Password-Based Key Derivation
	5 Password-Based Message Authentication
	6 Password-Based Encryption
	6.1 PBE for a Single Session
	6.2 General Impossibility of PBE
	6.3 PBE with Local Assumptions
	6.4 Salting and PKCS #5

	7 Conclusion
	References

	AVR Processors as a Platform for Language-Based Security
	1 Introduction
	2 Preliminaries
	2.1 Timing-Side-Channel Vulnerabilities and Attacker Models
	2.2 Static Analysis
	2.3 AVR Assembly Instruction Set
	2.4 Notation

	3 Our Formal Semantics of AVR Assembly Programs
	3.1 Syntax
	3.2 Semantics

	4 Timing-Sensitive Noninterference
	5 Timing-Sensitive Type System for AVR Assembly
	5.1 Precomputation of Control-Dependence Regions
	5.2 Typing Rules
	5.3 Soundness

	6 Automatically Analyzing AVR Assembly Programs
	6.1 The Side-Channel FinderAVR
	6.2 Timing-Side-Channel Analysis of NaCl

	7 Related Work
	8 Conclusion
	References

	A Better Composition Operator for Quantitative Information Flow Analyses
	1 Introduction
	2 Mix Composition
	2.1 Example: Dining Cryptographers

	3 Channel Refinement with Mix Composition
	4 Operator Comparison
	5 Related Work
	6 Future Work and Conclusion
	A Proofs
	References

	Analyzing the Capabilities of the CAN Attacker
	1 Introduction
	2 Background and Problem Statement
	2.1 Related Work
	2.2 CAN - Controller Area Network
	2.3 Threat Model and Problem Statement

	3 Attacker Capabilities
	4 Cyber-Physical Implications
	5 Conclusions
	References

	Erratum to: Per-Session Security: Password-Based Cryptography Revisited
	Erratum to: Chapter “Per-Session Security: Password-Based Cryptography Revisited” in: S.N. Foley et al. (Eds.): Computer Security – ESORICS 2017, Part I, LNCS 10492, https://doi.org/10.1007/978-3-319-66402-6_24

	Author Index

