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Abstract. Structure-Preserving Signatures (SPSs) are an important
cryptographic primitive that is useful for the design of modular cryp-
tographic protocols. It has be shown that in the most efficient Type-III
bilinear group setting such schemes have a lower bound of 3-element
signatures, which must include elements from both base groups, and a
verification overhead of at least 2 Pairing-Product Equations (PPEs).
In this work we show how to circumvent these lower bounds by con-
structing more efficient schemes than existing optimal schemes. Towards
this end, we first formally define the notion of Unilateral Structure-
Preserving Signatures on Diffie-Hellman pairs (USPSDH) as Type-III
SPS schemes with messages being Diffie-Hellman pairs and signatures
being elements of one of the base groups, i.e. unilateral. We construct
a number of new fully randomizable SPS schemes that are existentially
unforgeable against adaptive chosen-message attacks, and which yield
signatures consisting of only 2 elements from the shorter base group,
and which require only a single PPE for verification (not counting the
cost of verifying the well-formedness of the message). Thus, our signa-
tures are at least half the size of the best existing scheme for unilat-
eral messages. Our first scheme has a feature that permits controlled
randomizability which might be of independent interest. We also give
various optimal strongly unforgeable one-time schemes with 1-element
signatures, including a new scheme for unilateral messages that matches
the best existing scheme in every respect. We prove optimality of our
constructions by proving different lower bounds and giving some impos-
sibility results. We also show how to extend our schemes to sign a vector
of messages. Finally, we highlight how our schemes yield more efficient
instantiations of various cryptographic protocols, including variants of
attribute-based signatures and direct anonymous attestation, which is a
protocol deployed in practice. Our results offer value along two fronts: On
the theoretical side, our results serve as a workaround to bypass existing
lower bounds. On the practical side, our constructions could lead to more
efficient instantiations of various cryptographic protocols.
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1 Introduction

Structure-Preserving Signatures (SPSs) [3] are pairing-based digital signature
schemes whose messages, verification key and signatures are all group elements
from one or both base groups, and signature verification involves evaluating
Pairing-Product Equations (PPEs). Such schemes compose nicely with existing
popular tools such as Groth-Sahai proofs [37] and ElGamal encryption [23] and
hence they are a useful tool for the design of cryptographic protocols not relying
on random oracles [25]. They have numerous applications which include group
signatures, e.g. [3,41], blind signatures, e.g. [3,28], attribute-based signatures,
e.g. [24,31], tightly secure encryption, e.g. [2,38], malleable signatures, e.g. [10],
anonymous credentials, e.g. [17,27], network coding, e.g. [10], oblivious transfer,
e.g. [34], direct anonymous attestation, e.g. [13,32], and e-cash, e.g. [11].

Related Work. The term “structure-preserving signature” was coined by Abe
et al. [3] but earlier schemes conforming to the definition were given in [34,35].
The notion received a significant amount of attention and many studies regard-
ing lower bounds for the design of such schemes as well as new schemes matching
those bounds have been published. Abe et al. [3] constructed schemes based on
non-interactive intractability assumptions which work in the different bilinear
group settings. Abe et al. [4] showed that signature of such schemes in the Type-
III bilinear group setting (cf. Sect. 2.1) must have at least 3 elements, which must
come from both base groups, and require at least 2 PPEs for verification which
rules out the existence of schemes with unilateral signatures. They gave optimal
constructions and proved their security in the generic group model [43,45]. Abe
et al. [5] proved that it is impossible to base the security of an optimal Type-III
scheme on non-interactive intractability assumptions. Other Type-III construc-
tions were given in [6,21,30,36]. Recently, Ghadafi [32] gave a randomizable
scheme with signatures consisting of 3 elements from the shorther base group
which can also be regarded as a USPSDH scheme. Verification in his scheme
requires, besides checking the well-formedness of the message, the evaluation of
2 PPEs.

Constructions relying on standard assumptions, e.g. DLIN or DDH, were
given by [1,2,16,19,39–41]. It is well known that schemes based on standard
assumptions are less efficient than their counterparts relying on non-standard
assumptions or those proven directly in the generic group model.

Constructions in the Type-II setting (where there is an efficiently computable
isomorphism between the base groups in one direction) were given in [7,12,21].

Recently, fully structure-preserving schemes where even the secret key con-
sists of only group elements from the base groups were given in [8,36,46].

Our Techniques. All existing Type-III constructions for unilateral messages
have the common feature that one of the signature components involves an
exponent that is either the inverse or the square of some random field element
chosen as part of the signing. Hence, verification in these schemes relies on a
pairing involving two signature components and this is the reason that none of
these schemes has unilateral signatures. In fact, as proven by Abe et al. [4], it
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is impossible to have a Type-III scheme for unilateral messages with unilateral
signatures. We adopt a different approach to obtain schemes with short unilateral
signatures. First, we require that messages are Diffie-Hellman pairs [3,26] of
the form (Gm, H̃m) for some m ∈ Zp where ê : G × H −→ T is a bilinear
map (cf. Sect. 2.1) and G := 〈G〉 and H := 〈H̃〉. Also, unlike existing schemes,
none of the signature components in our schemes involves inverses or squares of
the randomness used in the signing. Instead, one of the signature components
involves the inverse of a field element from the secret key which can be cancelled
out in the verification by pairing the concerned signature component with the
corresponding public key which belongs to the opposite base group. This way
we obtain schemes with optimal unilateral signatures and which require optimal
number of verification equations. We remark that there exist Type-III schemes
for the same message space as ours yielding unilateral signatures, e.g. [30,32],
however, those schemes are not optimal.

Our Contribution. After defining USPSDH schemes in Sect. 2.4, we provide
the following contributions:-

• (Sect. 3) Two new fully randomizable SPS schemes that are existentially
unforgeable against a chosen-message attack. Our schemes yield unilateral
signatures consisting of only 2 elements and hence they are at least half the
size of the shortest existing Type-III SPS scheme. Verification in our schemes
requires, besides checking the well-formedness of the message, the evaluation
of a single PPE. Our first construction has a feature that permits controlled
randomizability (combined unforgeability) which might be of independent
interest.

• (Sect. 4) New optimal strongly EUF-CMA secure one-time schemes for a vec-
tor of messages with 1 element signatures, including a scheme for unilateral
messages matching the best existing scheme [6] in every measure.

• (Sect. 5) An optimal CMA-secure partially structure-preserving scheme that
simultaneously signs a Diffie-Hellman pair and a vector in Z

k
p.

• We highlight (in Sect. 6) some applications of our schemes which include effi-
cient instantiations of Direct Anonymous Attestation (DAA) [15] and variants
of attribute-based signatures [24,31,42] which outperform existing construc-
tions not relying on random oracles.

• We prove (in Sect. 7) the following lower bound/impossibility results:
(i) A lower bound of 2 elements for signatures of schemes secure against a

random-message attack for more than 1 signing query.
(ii) A lower bound of 2 elements for the verification key of optimal schemes.

This holds even when the adversary is restricted to 1 random-message
signing query.

(iii) The impossibility of strongly existentially-unforgeable schemes secure
against more than 1 chosen-message signing query.

Why are USPSDH Schemes Interesting? From our results, it is clear that
USPSDH signature schemes yield the shortest SPS signatures since they allow
one to circumvent the lower bounds in the Type-III setting. It is particularly



46 E. Ghadafi

interesting when the signatures are from the first base group as the bit size of
the elements of that group is at least half the size of those of the second group.

While traditional Type-III SPS schemes have shorter messages since message
components of those schemes lie in one of the base groups and not both, this
is a small price to pay to get smaller signatures and more efficient verification.
Even though the restriction that messages are Diffie-Hellman pairs imposed by
USPSDH schemes might give the false impression that these variants are less
general than traditional SPS schemes, we stress that such a restriction is not a
too strong one and USPSDH schemes suffice for many practical applications of
traditional SPS schemes. So besides serving as a workaround to circumvent the
lower bounds, such variants are useful in practice.

Being in the Type-III setting, (optimal) USPSDH schemes enjoy much bet-
ter efficiency (including shorter message sizes) than existing Type-II schemes
since the Type-III setting yields shorter group representations and better effi-
ciency. Note that verifying the well-formedness of the message only needs to
be performed once when verifying multiple signatures on the same message.
Consider, for example, attribute-based signatures [42] where the signer needs
to prove she has multiple attributes from (possibly different) attribute author-
ities. The same applies to applications requiring a user to prove that she has
multiple tokens/credentials/certificates from an authority or possibly different
authorities. Even when considering a single signature on the message, ours still
compare favorably to existing ones in many aspects as shown in Table 1, where
numbers superscripted with † are the number of pairings that can be precom-
puted, whereas numbers superscripted with ∗ are the cost needed to verify well-
formedness of the Diffie-Hellman message. The latter cost is constant when ver-
ifying multiple signatures on the same message. For all schemes listed, public
parameters do not include the default group generators. Note that the security
of all schemes in the table except for [3,26] which rely on non-interactive q-type
assumptions and [30] which relies on an interactive assumption is proven in the
generic group model.

Our schemes compare favorably even to some widely-used non-structure-
preserving schemes. For instance, ours are more efficient than the Camenisch-
Lysyanskaya scheme [18] and Waters’ scheme [20,47]. Also, the size of our sig-
natures and the verification key are the same as those of the recent scheme by
Pointcheval and Sanders [44]. Moreover, the (interactive) intractability assump-
tions underlying our schemes are comparable to those underlying [18,44].

Notation. We write y = A(x; r) when algorithm A on input x and randomness
r outputs y. We write y ← A(x) for the process of setting y = A(x; r) where
r is sampled at random. We also write y ← S for sampling y uniformly at
random from a set S. A function ν(.) : N → R

+ is negligible (in n) if for every
polynomial p(.) and all sufficiently large values of n, it holds that ν(n) < 1

p(n) . By
PPT we mean running in probabilistic polynomial time in the relevant security
parameter. By [k], we denote the set {1, . . . , k}. We will use capital letters for
group elements and small letters for field elements.
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Table 1. Efficiency comparison between our schemes and existing Type-III schemes

Work σ vk PP M Randomizable #PPE #Pairings

G H G H G H

[26] 3 2 1 1 3 1 ̂GH No 3 + 1∗ 7 + 2∗

[3] 1 5 2 10 4 - - G Partially 2 8 + 4†

[3] 2 2 5 10 4 - - H Partially 2 8 + 4†

[4] 1 2 1 1 3 - - G × H No 2 5 + 2†

[4] 2 2 1 1 1 - - H Yes 2 4 + 1†

[30] 4 - - 2 - - ̂GH Yes 3 + 1∗ 6 + 2∗

[21] 1 1 2 2 - - - H No 2 4 + 1†

[21] 2 1 2 2 - - - H Yes 2 5 + 1†

[21] 3 2 1 - 2 - - G Yes 2 5 + 1†

[6] 1 3 1 - 1 1 - G Yes 2 4 + 2†

[6] 2 2 1 - 1 1 - G No 2 4 + 2†

[12] 1 2 2 - - - H Yes 2 3 + 2†

[36] 1 1 2 1 - - 1 H Yes 2 3 + 3†

[36] 2 1 2 1 - - 1 H No 2 4 + 3†

[32] 3 - - 2 - - ̂GH Yes 2 + 1∗ 5 + 2∗

Ours I 2 - - 2 - - ̂GH Yes1 1 + 1∗ 2 + 1† + 2∗

Ours II 2 - - 2 - - ̂GH Yes 1 + 1∗ 2 + 2∗

1Randomization requires possession of at least 2 distinct signatures on the
message.

2 Preliminaries

In this section we provide some preliminary definitions.

2.1 Bilinear Groups

A bilinear group is a tuple P := (G,H,T, p,G, H̃, ê) where G, H and T are groups
of a prime order p, and G and H̃ generate G and H, respectively. The function
ê is a non-degenerate bilinear map ê : G × H −→ T. For clarity, elements of H
will be accented with .̃ We use multiplicative notation for all the groups. We let
G

× := G\{1G} and H
× := H\{1H}. In this paper, we work in the efficient Type-

III setting [29], where G �= H and there is no efficiently computable isomorphism
between the groups in either direction. We assume there is an algorithm BG that
on input a security parameter κ, outputs a description of bilinear groups.

The message space of the schemes we consider is the set of elements of the
subgroup ̂GH of G × H defined as the image of the map ψ : x 	−→ (Gx, H̃x) for
x ∈ Zp. One can efficiently test whether (M, Ñ) ∈ ̂GH by checking ê(M, H̃) =
ê(G, Ñ). Such pairs were called Diffie-Hellman pairs in [3,26].
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2.2 Digital Signatures

A digital signature scheme DS over a bilinear group P generated by BG for a
message space M consists of the following algorithms:

KeyGen(P) on input P, it outputs a pair of secret/verification keys (sk, vk).
Sign(sk,m) on input sk and a message m ∈ M, it outputs a signature σ.
Verify(vk,m, σ) outputs 1 if σ is a valid signature on m w.r.t. vk and 0 other-
wise.

Besides the usual correctness requirement, we require existential unforgeability.

Definition 1 (Existential Unforgeability). A signature scheme DS over
a bilinear group generator BG is Existentially-Unforgeable against adaptive
Chosen-Message Attack (EUF-CMA) if for all κ ∈ N for all PPT adversaries
A, the following is negligible (in κ)

Pr
[P ← BG(1κ); (sk, vk) ← KeyGen(P); (σ∗,m∗) ← ASign(sk,·)(P, vk)

: Verify(vk,m∗, σ∗) = 1 ∧ m∗ /∈ QSign

]

,

where QSign is the set of messages queried to Sign.
Strong Existential Unforgeability against adaptive Chosen-Message Attack

(sEUF-CMA) requires that the adversary cannot even output a new signature
on a message that was queried to the sign oracle.

A weaker variant of EUF-CMA is Existential Unforgeability against a
Random-Message Attack (EUF-RMA) in which the sign oracle samples a mes-
sage uniformly from the message space and returns the message and a signature
on it. In one-time signatures, the adversary is restricted to a single signing query.

We consider schemes which are publicly re-randomizable where there is an
algorithm Randomize that on input (vk,m, σ) outputs a new signature σ′ on m.
A desirable property for such class of schemes is that randomized signatures are
indistinguishable from fresh signatures.

Definition 2 (Randomizability). A signature scheme DS over a bilinear
group generator BG is randomizable if for all κ ∈ N for all stateful adversaries
A the following probability is negligibly close to 1

2 .

Pr

[P ← BG(1κ); (sk, vk) ← KeyGen(P); (σ∗, m∗) ← A(P, sk, vk); σ0 ← Sign(sk, m∗);
σ1 ← Randomize(vk, m∗, σ∗); b ← {0, 1} : Verify(vk, m∗, σ∗) = 1 ∧ A(σb) = b

]

When the above is exactly 1
2 , we say the scheme has Perfect Randomizability.

2.3 Structure-Preserving Signatures

Structure-preserving signatures [3] are signature schemes defined over bilinear
groups where the messages, the verification key and signatures are all group
elements from either or both base groups, and verifying signatures only involves
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deciding group membership of the signature components and evaluating PPEs
of the form of Eq. (1).

∏

i

∏

j

ê(Ai, B̃j)ci,j = 1T, (1)

where Ai ∈ G and B̃j ∈ H are group elements appearing in P,m, vk, σ, whereas
ci,j ∈ Zp are constants.

Generic Signer. We refer to a signer that can only decide group membership,
evaluate the bilinear map ê, compute the group operations in groups G,H and
T, and compare group elements as a generic signer.

2.4 Unilateral Structure-Preserving Signatures on Diffie-Hellman
Pairs

We define Unilateral Structure-Preserving Signatures on Diffie-Hellman Pairs
(USPSDH) as Type-III SPS schemes with the following additional requirements:

(i) Messages are of the form (M, Ñ) ∈ ̂GH ⊂ G × H.
(ii) Either signatures are of the form σ = (S1, . . . , Sk) ∈ G

k and the ver-
ification key is vk = (Ỹ1, . . . , Ỹn) ∈ H

n or signatures are of the form
σ = (S̃1, . . . , S̃k) ∈ H

k and the verification key is vk = (Y1, . . . , Yn) ∈ G
n.

We remark that there exist schemes, e.g. [30,32], which conform to the above
requirements. Also, there are schemes, e.g. [3,26], which satisfy the first require-
ment but not the second.

3 Optimal EUF-CMA Secure Constructions

In this section, we give two new optimal constructions of USPSDH schemes.

3.1 Construction I

Here we give our first EUF-CMA secure construction. Given the description of
Type-III bilinear groups P output by BG(1κ), the scheme is as follows:

• KeyGen(P): Select x, y ← Z
×
p . Set sk := (x, y), vk := (X̃, Ỹ ) = (H̃x, H̃y) ∈

H
2.

• Sign(sk, (M, Ñ)): To sign (M, Ñ) ∈ ̂GH, select r ← Zp, and set R := Gr,

S :=
(

(Gx · M)r · G
) 1

y . Return σ := (R,S) ∈ G
2.

• Verify(vk, (M, Ñ), σ = (R,S)): Return 1 iff R,S ∈ G, (M, Ñ) ∈ ̂GH, and
ê(S, Ỹ ) = ê(R, X̃ · Ñ)ê(G, H̃).

Correctness of the scheme follows by inspection and is straightforward to verify.
The scheme is not strongly unforgeable since for instance given two distinct
signatures σ1 = (R1, S1) and σ2 = (R2, S2) on a message (M, Ñ), one can
without knowledge of the signing key compute a new signature σ′ = (R′, S′) on
the same message by computing e.g. (R′ := R2

1 · R−1
2 , S′ := S2

1 · S−1
2 ).
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Theorem 1. The scheme is EUF-CMA secure in the generic group model.1

Proof. We prove that no linear combinations (which represent Laurent polyno-
mials in the discrete logarithms) of the group elements the adversary sees in the
game correspond to a forgery on a new message.

At the start of the game, the only elements in H the adversary sees are H̃,
X̃, Ỹ which correspond to the discrete logarithms 1, x and y, respectively. Note
the signing oracle produces no new elements in H. Thus, at the i-th sign query
on (Mi, Ñi), Ñi can only be a linear combination of H̃, X̃, and Ỹ . Similarly, Mi

can only be a linear combination of G, {Rj}i−1
j=1, {Sj}i−1

j=1. Thus, we have

ni = ani + bnix + cniy mi = ami +

i−1
∑

j=1

bmi,j rj +

i−1
∑

j=1

cmi,j

(

rjx + rjmj + 1

y

)

Since we must have ni = mi to have (Mi, Ñi) ∈ ̂GH, we must have ami
= ani

,
bni

= cni
= 0, bmi,j

= cmi,j
= 0 for all j, i.e. messages correspond to constant

polynomials. Similarly, at the end of the game, (m∗, n∗) which is the discrete
logarithm of the forged message (M∗, Ñ∗) must be of the form m∗ = n∗ = am.

The forgery (R∗, S∗) can only be a linear combination of the group elements
from G, i.e. a linear combination of G, {Ri}q

i=1 and {Si}q
i=1. Thus, we have

r∗ = ar +
q

∑

i=1

br,iri +
q

∑

i=1

cr,i

(

rix + rimi + 1
y

)

s∗ = as +
q

∑

i=1

bs,iri +
q

∑

i=1

cs,i

(

rix + rimi + 1
y

)

For the forgery to be accepted, r∗ and s∗ must satisfy s∗y = r∗x + r∗m∗ + 1.
Therefore, we must have

asy +

q∑

i=1

bs,iriy +

q∑

i=1

cs,i

(
rix + rimi + 1

)
= arx +

q∑

i=1

br,irix +

q∑

i=1

cr,i

(
rix

2

y
+

rimix

y
+

x

y

)

+

(
ar +

q∑

i=1

br,iri +

q∑

i=1

cr,i

(
rix

y
+

rimi

y
+

1

y

))
m

∗
+ 1

There is no term in y or riy on the right-hand side so we must have as = 0, and
bs,i = 0 for all i. Also, there is no term in rix

2

y or x on the left-hand side so we
must have ar = 0 and cr,i = 0 for all i. Thus, we have

q
∑

i=1

cs,i (rix + rimi + 1) =
q

∑

i=1

br,irix +
q

∑

i=1

br,irim
∗ + 1 (2)

The monomial rix implies cs,i = br,i for all i, whereas the monomial ri implies
cs,imi = br,im

∗. Since we have cs,i = br,i, this means we have m∗ = mi for some
i. Hence, the signature (R∗, S∗) is on a message pair (Mi, Ñi) that was queried
to the sign oracle and thus is not a forgery on a new message. �
1 We remark that we have double verified all of our generic group proofs using the

recent generic group tool of Ambrona et al. [9].
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We now prove the following theorem regarding the randomizability/strong
unforgeability of the scheme.

Theorem 2. The scheme is strongly existentially-unforgeable against an adver-
sary that queries the signing oracle on each message once at most.

Proof. For Equality (2) in the proof of Theorem1 to hold, it is clear that S∗ (from
which the left-hand side of (2) is constructed) can only be a linear combination
of S∗

i part of the signature returned in response to the i-th signing query on the
message (M∗, Ñ∗) (if any). Similarly, R∗ can only be a linear combination of R∗

i .
Since the adversary can make at most one signing query on each message, we
have two cases. If the adversary made no signing query on (M∗, Ñ∗), a forgery
would contradict Theorem1. If the adversary made a signing query on (M∗, Ñ∗),
then since in this case q = 1, we have r∗ = ri since for (2) to hold, we must
have

∑q
i=1 cs,i = 1 which implies br,i = 1 and hence the signature (R∗, S∗) is

not new. �
Now consider the following special randomization algorithm for the scheme:

• Randomize†
(

vk, (M, Ñ), {σi = (Ri, Si)}2i=1

)

: For any two distinct signatures

σ1 and σ2, i.e. R1 �= R2, satisfying Verify(vk, (M, Ñ), σi) = 1 for all i ∈ [2].
To obtain a new signature σ′ on (M, Ñ), choose a ← Zp and let b = 1 − a.
Now compute R′ := Ra

1 · Rb
2, S′ := Sa

1 · Sb
2. Return σ′ := (R′, S′).

Theorem 3. Signatures output by Randomize† are perfectly indistinguishable
from those output by Sign on the same message.

Proof. In the Sign algorithm, r is chosen uniformly at random from Zp, whereas
in Randomize†, a (resp. b) is also chosen uniformly at random from Zp. Moreover,
for any possible r ∈ Zp such that R = Gr, there is a ∈ Zp such that r =
ar1 +(1−a)r2 for any r1, r2 ∈ Zp satisfying r1 �= r2. Therefore, the distributions
of signatures output by Randomize† and Sign are identical. �

The above observations makes it possible to achieve combined unforgeability
[36] where the same scheme can allow (at the discretion of the signer) either
strongly unforgeable signatures or ones that can be re-randomized.

3.2 Construction II

Here we give our second construction which yields publicly re-randomizable sig-
natures. Given the description of Type-III bilinear groups P output by BG(1λ),
the scheme is as follows:

• KeyGen(P): Select x, y ← Z
×
p . Set sk := (x, y) and vk := (X̃, Ỹ ) = (H̃x, H̃y) ∈

H
2.

• Sign(sk, (M, Ñ)): To sign (M, Ñ) ∈ ̂GH, select r ← Z
×
p , and set R := Gr,

S :=
(

Gx · M
) r

y . Return σ := (R,S) ∈ G
2.
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• Verify(vk, (M, Ñ), σ = (R,S)): Return 1 iff R ∈ G
×, S ∈ G, (M, Ñ) ∈ ̂GH,

and ê(S, Ỹ ) = ê(R, X̃ · Ñ).
• Randomize(vk, (M, Ñ), σ = (R,S)): Select r′ ← Z

×
p , and set R′ := Rr′

, S′ :=
Sr′

. Return σ′ := (R′, S′).

Note that R is information-theoretically independent of the message and hence
even when proving knowledge of signatures, this component of the signature can
be revealed in the clear after re-randomizing it which allows one to verify that
R �= 1G.

Correctness of the scheme follows by inspection and is straightforward to
verify. The scheme is perfectly randomizable as the distribution of re-randomized
signatures is identical to that of fresh signatures on the same message.

The proof of the following theorem is in the full version [33].

Theorem 4. The scheme is EUF-CMA secure in the generic group model.

4 Optimal sEUF-CMA Secure SPS One-Time Schemes

We give here new strongly unforgeable one-time Type-III schemes for unilateral
messages matching the optimal one-time scheme in [6] in every measure. By
transposing the groups, one can similarly sign messages in H

k. Obtaining a
scheme for a vector of Diffie-Hellman messages or a mixture of unilateral and
Diffie-Hellman messages from our scheme is straightforward. The scheme for
message space G

k is as follows:

• KeyGen(P): Select x1, . . . , xk, y ← Z
×
p . Set sk := (x1, . . . , xk, y) and vk :=

(X̃1, . . . , X̃k, Ỹ ) := (H̃x1 , . . . H̃xk , H̃y) ∈ H
k+1.

• Sign
(

sk, (M1, . . . ,Mk) ∈ G
k
)

: Return σ :=
(

Gx1 · M1 · ∏k
i=2 Mxi

i

) 1
y ∈ G.

• Verify(vk, (M1, . . . ,Mk), σ): Return 1 iff σ ∈ G, Mi ∈ G for i = 1, . . . , k, and
ê(σ, Ỹ ) = ê(G, X̃1)ê(M1, H̃)

∏k
i=2 ê(Mi, X̃i).

Correctness of the scheme follows by inspection. The Sign algorithm is deter-
ministic and hence for any message there is 1 potential signature. The proof of
the following theorem is in the full version [33].

Theorem 5. The scheme is sEUF-CMA secure against a one-time chosen-
message attack.

5 Optimal Partially Structure-Preserving Signature
Scheme for a Vector of Messages

We give here an optimal scheme for the message space ̂GH × Z
k
p. We call such

a variant partially structure-preserving since other than allowing some part of
the messages to not be group elements, the scheme conforms to the rest of the
requirements of structure-preserving signatures.

Given the description of Type-III bilinear groups P output by BG(1κ), the
scheme is as follows:
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• KeyGen(P): Select x, y1, . . . , yk, z ← Z
×
p . Set X̃ := H̃x, Ỹi := H̃yi for all

i ∈ [k], Z̃ := H̃z. Set sk := (x, y1, . . . , yk, z) and vk := (X̃, Ỹ1, . . . , Ỹk, Z̃).
• Sign

(

sk,
(

(M, Ñ),u = (u1, . . . , uk)
)

)

: To sign a Diffie-Hellman pair (M, Ñ) ∈
̂GH and a vector u = (u1, . . . , uk) ∈ Z

k
p, select r ← Z

×
p , and set R := Gr,

S :=
(

M · Gx+
∑k

i=1 uiyi
) r

z . Return σ := (R,S) ∈ G
2.

• Verify
(

vk,
(

(M, Ñ),u
)

, σ = (R,S)
)

: Return 1 iff R ∈ G
×, (M, Ñ) ∈ ̂GH, and

ê(S, Z̃) = ê(R, Ñ · X̃ · ∏k
i=1 Ỹ ui

i ).

• Randomize
(

vk,
(

(M, Ñ),u
)

, σ = (R,S)
)

: Select r′ ← Z
×
p , and set R′ := Rr′

,

S′ := Sr′
. Return σ′ := (R′, S′).

Correctness of the scheme is straightforward to verify. The signatures are
perfectly randomizable. We now prove the following theorem.

Theorem 6. The scheme is EUF-CMA secure.

Proof. Let A be an adversary against the scheme. Using A, we can build an
adversary B against the unforgeability of Scheme II in Sect. 3.2. Adversary B
gets vk′ = (X̃ ′, Ỹ ′) from her game where she has access to a sign oracle. She
chooses y1, . . . , yk ← Zp and sets Ỹi := H̃yi for i = 1, . . . , k. She starts A on
the verification key vk := (X̃ := X̃ ′, Ỹ1, . . . , Ỹk, Z̃ := Ỹ ′). When receiving a
query on

(

(M, Ñ)i,ui

)

from A, B returns ⊥ if (M, Ñ)i /∈ ̂GH. Otherwise, she

forwards the message (M ′
i , Ñ

′
i) :=

⎛

⎝Mi · G

k∑
j=1

yjui,j

, Ñi · H̃
k∑

j=1
yjui,j

⎞

⎠ ∈ ̂GH to

her sign oracle and returns the signature she gets to A. Such a signature is a
valid signature on the message

(

(M, Ñ)i,ui

)

.

Eventually, when A outputs her forgery σ∗ on
(

(M∗, Ñ∗),u∗
)

, B returns
⎛

⎝

⎛

⎝M ′ := M∗ · G

k∑
j=1

yju∗
j

, Ñ ′ := Ñ∗ · H̃
k∑

j=1
yju∗

j

⎞

⎠ , σ∗

⎞

⎠ in her game. Thus, B

wins her game with the same advantage as that of A in her game. �

6 Applications

Here we highlight some applications of our new schemes.

Direct Anonymous Attestation (DAA). DAA [15] is a protocol deployed
in practice for realizing trusted computing. Bernhard et al. [14] introduced Ran-
domizable Weakly Blind Signature (RwBS) schemes as one of the building blocks
for their generic construction of DAA schemes. A RwBS scheme is similar to a
standard blind signature scheme [22] but unlike the latter, in the former the
signer never gets to see the signed message. DAA is outside of the scope of this
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paper but for the record we show that combining our publicly re-randomizable
scheme from Sect. 3.2 with the SXDH-based Groth-Sahai proofs [37] yields more
efficient RwBS schemes (and hence DAA schemes) not relying on random ora-
cles than existing ones [13,32]. The RwBS constructions in [13,32] combine SPS
schemes from [30,32], respectively, with SXDH-based Groth-Sahai proofs [37].
The underlying (less efficient) SPS schemes used in [13,32] have the same mes-
sage space as ours, and similarly to our schemes, enjoy fully randomizable uni-
lateral signatures.

The construction is based on the observation that since signing in those
schemes only requires the G component of the message, whereas verification
requires the H component of the message, it suffices for the user to only submit
the G component of the message along with a zero-knowledge proof of knowledge
of the H component when requesting signatures. The signer then has to accom-
pany the signature she returns with a zero-knowledge proof of correctness of the
returned signature. The final RwBS signature is then just a re-randomization of
the signature. The RwBS construction as well as the proofs (which can be found
in the full version [33]) are very similar to those in [13,32]. The difference lies
in the zero-knowledge proofs used in the signing protocol. Our RwBS scheme
yields signatures of size 2|G| and require 1 PPE equation (2 pairings in total) to
verify and hence is more efficient than those in [13,32].

Attribute-Based Signatures. Attribute-Based Signatures (ABS) [42] allow
signers to authenticate messages while enjoying fine-grained control over identi-
fying information. El Kaafarani et al. [24] introduced the notion of Decentralized
Traceable Attribute-Based Signatures (DTABS) which adds the traceability fea-
ture to standard ABS schemes while allowing attribute authorities to operate
in a decentralized manner. Ghadafi [31] revisited the latter notion and provided
strengthening of some of the security requirements as well as more efficient con-
structions. For security definitions and applications refer to [24,31,42].

The most efficient existing DTABS construction not relying on random ora-
cles is the one in [31] which uses the optimal structure-preserving signature
scheme from [4] and yields signatures of size (27|P| + 19) · |G| + (22|P| + 15) ·
|H| + (β + 3) · |p|, where |P| is the number of attributes in the signing policy P,
i.e. the number of rows of the span program matrix, whereas β is the number of
columns. By instantiating the generic DTABS construction from [31] with the
same tools as the instantiations in [31] with the exception of using our partially
structure-preserving signature scheme from Sect. 5 to instantiate the tagged sig-
nature building block (where the verification key of the user is the Diffie-Hellman
component of the message, whereas the attributes are the Zp component), we
obtain a construction of DTABS not relying on random oracles with signatures
of size (17|P| + 24) · |G| + (14|P| + 18) · |H| + (β + 3) · |p| which is shorter than
all existing constructions. Security of the instantiation follows from that of the
generic construction of [31]. See the full version [33] for details.
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7 Lower Bounds and Impossibility Results

Here we prove some lower bounds and impossibility results for USPSDH schemes.

Impossibility of One-Element Signatures. We prove that there is no
generic-signer USPSDH scheme with one-element signatures that is EUF-RMA
secure against q > 1 signing queries.

Theorem 7. There is no generic-signer USPSDH scheme with one-element sig-
natures that is unforgeable against a random-message attack for q > 1 signing
queries.

Proof. Consider the case where the signature σ = S ∈ G, whereas the verification
key vk = (X̃1, . . . , X̃n) ∈ H

n. The proof for the opposite case is similar.
We first prove that it is redundant for a USPSDH scheme (for a single Diffie-

Hellman pair) with one-element signatures to have more than 1 verification equa-
tion (not counting the cost for verifying the well-formedness of the message).

Lemma 1. One verification equation is sufficient for a one-element signature
scheme.

Proof. Such a scheme has verification equations of the form of Eq. (3).
∏

ê(S, X̃i)ai,�

∏

ê(M, X̃i)bi,� ê(S, Ñ)c� ê(M, Ñ)d� = Z�T (3)

Each of those equations is linear in S. Thus, we can compute a single non-trivial
equation linear in S (which uniquely determines S) as a linear combination of
all equations and use it for verification. If there is no such combination, the
equations must be linearly dependent and hence some of them are redundant.
By excluding those, we can reduce them to a single equation linear in S. �
For the scheme to be (perfectly) correct (and publicly verifiable), signatures
must verify w.r.t. the (fixed) verification key and (fixed) public parameters (if
any). By taking the discrete logarithms of the group elements in the (single)
verification equation, we can write the verification equation as

s(
n

∑

i=1

aixi + cm) + m(
n

∑

i=1

bixi + dm) = z (4)

This implies that there exists at most one potential signature for the message.
Since the signing algorithm is generic, a signature σi on (Mi, Ñi) has the form
σi = Mα

i · Gβ for some (fixed) α, β ∈ Zp. Now given signatures σ1 and σ2 on
distinct random messages (M1, Ñ1), (M2, Ñ2), respectively, we have σ1 = Mα

1 ·Gβ

and σ2 = Mα
2 · Gβ . By computing σ∗ := σγ

1 · σ(1−γ)
2 we obtain a valid forgery on

the message (M∗, Ñ∗) :=
(

Mγ
1 · M

(1−γ)
2 , Ñγ

1 · Ñ
(1−γ)
2

)

for any γ ∈ Zp. �
Lower Bounds on the Size of the Verification Key. We prove here that a
generic-signer EUF-RMA secure USPSDH scheme with one-element signatures
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must have at least 2 group elements (excluding the default group generators G
and H̃) in the verification key. WLOG, we assume that any public group elements
(other than the default group generators) part of the public parameters (if any)
are counted as part of the verification key.

Theorem 8. A generic-signer EUF-RMA secure one-time USPSDH scheme
(with one-element signatures) must have at least 2 elements in the verification
key.

Proof. Consider the case where σ = S ∈ G and vk = X̃ ∈ H. The proof for the
opposite case is similar. Such a scheme has a verification equation (not counting
the check for the well-formedness of the message) of the following form

ê(S, X̃)aê(S, H̃)bê(M, X̃)cê(M, H̃)dê(S, Ñ)uê(M, Ñ)v = ZT (5)

This means that s the discrete logarithm of the signature S has the form

s =
z − m(cx + d + vm)

ax + b + um

A generic signer (who does not know the discrete logarithm m of the mes-

sage) computes the signature S as S := M
α(x)
α′(x) · G

β(x)
β′(x) for some polynomials

α, α′, β, β′ ∈ Zp[x]. Note that none of those polynomials has a term in m. Our
proof strategy is to first eliminate some pairings from Eq. (5) which can not be
computed by a generic signer which serves to simplify the proof. Note that with-
out knowledge of the discrete logarithm of the message m, it is hard for a generic
signer to construct a non-trivial signature S where its discrete logarithm s con-
tains the message m in a term in the denominator. Thus, WLOG we can assume
that we have u = 0 in Eq. (5). Similarly, it is hard for a generic signer without
knowledge of m to construct a signature that contains a term with degree >1 in
m (since none of the above polynomials have a term in m). Therefore, we can
also WLOG assume that v = 0 in Eq. (5).2

We now show that any USPSDH scheme with a verification equation of the
form of Eq. (6) cannot be secure.

ê(S, X̃)aê(S, H̃)bê(M, X̃)cê(M, H̃)d = ZT (6)

Since the verification key (and the public parameters) contain only X̃, G, and
H̃, we have ZT = ê(G, H̃)eê(G, X̃)f . Note that the exponents a, b, c, d, e, f ∈ Zp

are all public. By taking the discrete logarithms of the group elements, we can
write the verification equation as

s(ax + b) + m(cx + d) = e + fx (7)

2 Refer to the full version [33] for more justification and discussions on why such
assumptions do not affect the generality of our proof and how similar cases also
apply to other SPS settings.
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Note here if a = b = 0, the equation is independent of the signature S. Similarly,
if c = d = 0, the verification equation is independent of the message (M, Ñ).
Therefore, neither of those cases should occur as otherwise it is obvious that
such a scheme is not secure. We now have four cases as follows:

• Case bc �= ad: Given a signature σ = S on a random message (M, Ñ), pick
any α ← Zp \ {1} and let

am := ea(α−1)−bf(α−1)
bc−ad and as := − ec(α−1)−df(α−1)

bc−ad

By computing σ∗ = S∗ := Gas · Sα, one obtains a valid forgery on
(

M∗, Ñ∗)

:=
(

Gam · Mα, H̃amÑα
)

.
• Case bc = ad �= 0: Given a signature σ = S on a random message (M, Ñ),

pick any α ← Z
×
p and compute σ∗ = S∗ := Gα · S, which is a valid forgery

on
(

M∗, Ñ∗) :=
(

G
−bα

d · M, H̃
−bα

d · Ñ
)

.
• Case bc = ad = 0, a �= 0 and c �= 0: Here we have that b = d = 0. Given

a signature σ = S on a random message (M, Ñ), σ∗ = S∗ := G
−cα

a · S is a
valid forgery on

(

M∗, Ñ∗) :=
(

Gα · M, H̃α · Ñ
)

for any α ∈ Z
×
p .

• Case bc = ad = 0, b �= 0 and d �= 0: Here we have that a = c = 0. Given
a signature σ = S on a random message (M, Ñ), σ∗ = S∗ := G

−dα
b · S is a

valid forgery on
(

M∗, Ñ∗) :=
(

Gα · M, H̃α · Ñ
)

for any α ∈ Z
×
p .

This concludes the proof. �
We now show that the lower bounds for the verification key proved in The-

orem 8 holds even if we allow the (generic-signer) signature to have 2 elements.

Theorem 9. There is no EUF-RMA one-time USPSDH scheme with two-
element signatures, 1 PPE verification equation and one-element verification
key.

Proof. Consider the case where the signature σ = (R,S) ∈ G
2 whereas the

verification key vk := X̃ ∈ H. The proof for the opposite case is similar. Such a
scheme has a verification equation of the form of Eq. (8).

ê(R, X̃)aê(R, Ñ)bê(R, H̃)cê(S, X̃)dê(S, H̃)uê(M, X̃)v ê(M, H̃)w = ZT (8)

As argued in the proof of Theorem8, since the signing algorithm is generic,
WLOG neither R nor S can have a degree >1 of m (the discrete logarithm of
the message) or have a term in m in the denominator. It is obvious that a scheme
with both signature components independent of the message is insecure. Thus, at
least one component of the signature must depend on the message. WLOG, let’s
assume that S depends on the message while R is independent of the message.
If it is the other way around, we just need to replace the term ê(R, Ñ)b with
ê(S, Ñ)b in Eq. (8) and the proof is similar. If both components of the signature
depend on the message, Eq. (8) can be simplified by setting b = 0 which is a
special case of the cases we prove.
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Since we only have X̃,G, H̃ in the verification key (and the public parame-
ters), we have ZT = ê(G, H̃)eê(G, X̃)f . Note a, b, c, d, e, f, u, v, w ∈ Zp are all
public. By taking discrete logarithms, we can write the verification equation as

r(ax + bm + c) + s(dx + u) + m(vx + w) = e + fx (9)

We start by listing 3 trivial forgery cases as follows:

1. Case a = b = c = 0 or d = u = 0: This means the verification equation is
independent of one of the signature components and thus we are back into
the one-element signature case which is already proven by Theorem 8.

2. Case a = d = f = v = 0: This means the verification equation is independent
of the verification key (and hence σ is independent of sk).

3. Case b = v = w = 0: This means the verification equation is independent of
the message m and hence the signature is valid on any other message.

Excluding the above obvious forgery cases, we can find a forgery
by solving the following system of equations in the 9 unknowns
αm, βm, αr, βr, γr, αs, βs, γs, δs

uαs + eγs − e + bαrαm + cαr + wαm = 0 dαs + fγs − f + aαr + vαm = 0

uβs − wγs + bβrαm + bαrβm + cβr + wβm = 0 uδs − cγs + bγrαm + cγr = 0

dδs − aγs + aγr = 0 dβs − vγs + aβr + vβm = 0

γs − γrβm = 0 βrβm = 0

This is a system of 8 equations in 9 unknowns and we get two family of
solutions depending on whether βm = 0 (where forgeries require no signing
queries) or βm �= 0 (where forgeries require a single random-message signing
query). Refer to the full version [33] for the full proof. �

Impossibility of sEUF-CMA Secure Schemes. The following theorem
whose proof is in the full version [33] proves that there is no generic-signer
USPSDH scheme that is sEUF-CMA against an adversary making q > 1 sign-
ing queries. We note, however, that there exist sEUF-RMA secure schemes and
sEUF-CMA secure schemes, e.g. Scheme I, against an adversary that is not
allowed multiple queries on the same message.

Theorem 10. There is no generic-signer USPSDH scheme that is sEUF-CMA
secure against an adversary making q > 1 signing queries.
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