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Abstract. The conjugation class of a special Sturmian morphism car-
ries a natural linear order by virtue of the two elementary conjugations
conja and conjb with the single letters a and b, with the standard mor-
phism of the class as the smallest element in this order. We show that a
lexicographic order on the morphisms of the given conjugation class can
be defined that matches the conjugation order.
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1 Motivation

Conjugation classes of special Sturmian morphisms carry a natural linear order
by virtue of the two elementary conjugations conja and conjb with the single
letters a and b (see [6]). For every morphism f in the class—except for the anti-
standard morphism—either conja ◦f or conjb ◦f belongs to the class and can be
identified as the successor of f . Starting from the standard morphism in the class
as the smallest element all the others can be iteratively reached in this way. The
largest element in the order is the anti-standard morphism in the class. Figure 1
shows a directed graph, containing five such conjugation classes—including the
trivial class of the identity morphism. The four non-trivial classes are aligned
along concentric circular arcs around the identity morphism.

In addition to these linear graphs, whose counter-clockwise circular arrows
are labeled with either conja or conjb, there are outward reaching arrows, which
are labeled with the four generators G, G̃,D, D̃ of the special Sturmian monoid
St0. From every inner node of the graph depart two arrows, labeled either G and
G̃ or D and D̃. Hence, there are 24 = 16 paths leading from the central node to
the nodes on the outermost arc. Intuitively these pathways can also be ordered
in a counter-clockwise manner. The intuition will be made precise in Sect. 4.

Our initial consideration is the following: Each conjugation class is ordered
counter-clockwise along the corresponding arc. Each node along this arc can also
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Fig. 1. The nodes along each of the concentric circular arcs form a complete conjugation
class of special Sturmian morphisms. Each morphism f is represented by the pair
(f(a), f(b)) of images of the letters a and b. The node (a, b) in the center represents
the Identity map. Then from inside outwards the conjugation classes of D, GD, GGD
and DGGD are displayed. The graph forms a subgraph of the Cayley graph of the
group Aut(F2) with respect to the generators G, G̃, D, D̃, conja, conjb (and E). Each
single conjugation class forms a linear graph, whose arrows are all labeled with one
of the conjugations conja or conjb. The outward reaching arrows, connecting nodes
on successive arcs, are labeled with the generators G, G̃, D, D̃ of the special Sturmian
monoid (= monoid of special positive automorphisms).

be reached along one or more pathways from the center. All the pathways from
the center to the nodes on the same arc can also be ordered in a counterclockwise-
outward right-to-left lexicographic manner as follows: For each node we postulate

that G←− precedes G̃←− or that D←− precedes D̃←−, in accordance with the counter-
clockwise arrangement of these arrows. Paths can be ordered lexicographically

from right to left (= from the center outward). D←− G←− G←− D←− precedes D̃←− G←− G←− D←−
precedes D←− G̃←− G←− D←− precedes D̃←− G̃←− G←− D←−, etc. The last path is D̃←− G̃←− G̃←− D̃←−.
Hence the question arises, whether the two orders match.
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In the strictest sense the orders do not match: The path D̃←− G̃←− G←− D←−
precedes the path D←− G←− G̃←− D←−. Yet the morphism DGG̃D with the node
label (babbaba, babba) precedes the morphism D̃G̃GD with the node label
(abbabab, abbab) in the conjugation order: conjb ◦ DGG̃D = D̃G̃GD. There is
a weaker sense, though, according to which the two orders match. In the con-
crete example, one may bring to bear that the morphisms G and G̃ commute.

Hence with D←− G̃←− G←− D←− there is an equivalent path to the node (babbaba, babba)

which is lexicographically smaller than D̃←− G̃←− G←− D←−, which is the smallest path
to the node (abbabab, abbab). Section 4 establishes a general result to that effect,
proving a conjecture made in [3].

The following section is of a preparatory nature and—among other things—it
inspects various commutative triangles and squares in Fig. 1, such as:

conja ◦ G = G ◦ conja = G̃ conjb ◦ D = D ◦ conjb = D̃

conja ◦ G̃ = G̃ ◦ conja conjb ◦ G̃ = G ◦ conjb
conja ◦ D̃ = D ◦ conja conjb ◦ D̃ = D̃ ◦ conjb.

2 Special Sturmian Morphisms and Conjugation

Let F2 denote the free group generated by the two letters a and b. Following [4] we
consider the special Sturmian monoid St0 as a submonoid of the automorphism
group Aut(F2). It is generated by the four positive automorphisms G, G̃,D, D̃.
On the letters a and b they are defined as follows:

G(a) = a G̃(a) = a D(a) = ba D̃(a) = ab

G(b) = ab G̃(b) = ba D(b) = b D̃(b) = b.

Lemma 1. On the inverted letters a−1 and b−1 the morphisms G, G̃,D, G̃ have
the following images:

G(a−1) = a−1 G̃(a−1) = a−1 D(a−1) = a−1b−1 D̃(a−1) = b−1a−1

G(b−1) = b−1a−1 G̃(b−1) = a−1b−1 D(b−1) = b−1 D̃(b−1) = b−1

Proof. All four morphisms f have to satisfy f(a−1) = f(a)−1 as ε = f(aa−1) =
f(a)f(a−1), analogously for b. Thus, we obtain G(a−1) = G(a)−1 = a−1,
G(b−1) = G(b)−1 = (ab)−1 = b−1a−1 etc.

For some purposes it is useful to know the inverses of G, G̃,D, D̃ within the
group Aut(F2):

Lemma 2. The inverses of the special Sturmian morphisms G, G̃,D, D̃ within
the automorphism group Aut(F2) are given as follows on the letters and the
inverted letters:

G−1(a) = a G̃−1(a) = a D−1(a) = b−1a D̃−1(a) = ab−1

G−1(b) = a−1b G̃−1(b) = ba−1 D−1(b) = b D̃−1(b) = b

G−1(a−1) = a−1 G̃−1(a−1) = a−1 D−1(a−1) = a−1b D̃−1(a−1) = ba−1

G−1(b−1) = b−1a G̃−1(b−1) = ab−1 D−1(b−1) = b−1 D̃−1(b−1) = b−1
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Proof. All four inverses have to satisfy f−1(f(a)) = f(f−1(a)) = a and
f−1(f(b)) = f(f−1(b)) = b. So we check G−1(G(a)) = G−1(a) = a, G−1(G(b)) =
G−1(ab) = aa−1b = b, etc.

As indicated in Sect. 1 we verify now the equations behind the commutative
triangles and squares in Fig. 1, which we need later in Sect. 4.

Proposition 1. Let conjw : F2 → F2 denote the conjugation automorphism
with the element w, i.e., conjw(u) = w−1uw. Then the following equalities hold:
G̃G−1 = G−1G̃ = conja and D̃D−1 = D−1D̃ = conjb.

Proof. It suffices to verify G̃G−1 = conja and D̃D−1 = conjb on the letters a and
b and to take into consideration that G−1G̃ = G̃G−1 and D̃D−1 = D−1D̃. Thus
we verify G̃G−1(a) = G̃(a) = a = a−1aa = conja(a), G̃G−1(b) = G̃(a−1b) =
a−1ba = conja(b) and D̃D−1(a) = D̃(b−1a) = b−1ab = conjb(a), D̃D−1(b) =
D̃(b) = b = b−1bb = conjb(b).

Corollary 1. conja ◦ G̃ = G̃ ◦ conja and conjb ◦ D̃ = D̃ ◦ conjb.

Proof. Substituting conja = G̃G−1 and conjb = D̃D−1 we obtain:

conja ◦ G̃ = (G̃G−1) ◦ G̃ = G̃ ◦ (G−1G̃) = G̃ ◦ conja
conjb ◦ D̃ = (D̃D−1) ◦ D̃ = D̃ ◦ (D−1D̃) = D̃ ◦ conjb

Proposition 2. conjb ◦ G̃ = G ◦ conjb and conja ◦ D̃ = D ◦ conja.

Proof. We apply the morphisms to the letters a and b and compare both sides:

conjb(G̃(a)) = b−1G̃(a)b = b−1ab = G(b−1aaa−1b) = G(b−1ab) = G(conjb(a))

conjb(G̃(b)) = b−1G̃(b)b = b−1bab = G(b) = G(b−1bb) = G(conjb(b))

conja(D̃(a)) = a−1D̃(a)a = a−1aba = D(a) = D(a−1aa) = D(conja(a))

conja(D̃(b)) = a−1D̃(b)a = a−1ba = D(a−1bbb−1a) = D(a−1ba) = D(conja(b)).

To define the linear conjugation order on the conjugation class of a special
Sturmian morphism, we recall the following known facts (e.g., see [2,4]).

1. The outer group Out(F2) = Aut(F2)/Inn(F2) of automorphisms of the free
group F2 modulo conjugations is isomorphic to the automorphism group
Aut(Z2) = GL2(Z) of the commutative image Z

2 of F2. This implies that
all conjugates of a given special Sturmian morphism f are characterized by

the fact that they share the same incidence matrix Mf =
( |f(a)|a |f(b)|a

|f(a)|b |f(b)|b
)

.

2. The incidence matrices of special Sturmian morphisms belong to the monoid

SL2(N), freely generated by the matrices MG = MG̃ = R =
(

1 1
0 1

)
and

MD = MD̃ = L =
(

1 0
1 1

)
. This implies that the representations of conjugate

morphisms share the same sequence of basic letters G and D and differ at
most in the distribution of diacritic ∼ marks attached to these letters.
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3. With every special Sturmian morphism f ∈ St0 we may associate the word
w = f(ab) = w1 . . . wn ∈ {a, b}∗. By conjugating the word w with its first
letter w1 we obtain the word w−1

1 ww1 = w2 . . . wnw1. By iterating these con-
jugations with the respective first letter we obtain a full cycle of n conjugated
words, namely w1 . . . wn, w2 . . . wnw1, . . . , wnw1, . . . wn−1.

4. All but one of these conjugated words (the bad conjugate) are images of the
type g(ab) of a special Sturmian morphism from the same conjugation class as
f , and these n−1 morphisms also exhaust the conjugation class. Removing the
bad conjugate from the full cycle of single-letter conjugations thereby induces
a linear order f1 < f2 < · · · < fn−1 on the conjugation class of f . Its initial
element f1 is a special standard morphism, i.e., f1 ∈ 〈G,D〉 and its terminal

element fn−1 is a special anti-standard morphism, i.e., fn−1 ∈
〈

G̃, D̃

〉
.

Definition 1. Consider a special standard morphism f1 ∈ 〈G,D〉 ⊂ St0 and
let n = |f1(ab)| denote the length of the image of the word ab. The linear order
f1 < f2 < · · · < fn−1 on the conjugation class of f1 (as described above) is called
conjugation order.

3 The Path Monoid and the Abacus Relations

In addition to the special Sturmian monoid St0 =
〈

G, G̃,D, D̃

〉
⊂ Aut(F2)

we consider the path monoid Σ∗ = {G, G̃,D, D̃}∗, freely generated over the
set Σ = {G, G̃,D, D̃} of four formal symbols, which we distinguish from the
four generating Sturmian morphisms G, G̃,D, D̃ themselves. The projection μ :
Σ∗ → St0 with

μ(G) = G,μ(G̃) = G̃, μ(D) = D,μ(D̃) = D̃,

mediating between the path monoid and the special Sturmian monoid, is well-
understood by virtue of the following result from [4] (proposition 2.1):

Proposition 3 (Kassel and Reutenauer). The special Surmian monoid has a
presentation of the form

St0 ∼=
〈

G, G̃,D, D̃ | GDkG̃ = G̃D̃kG,DGkD̃ = D̃G̃kD for all k ∈ N

〉
.

We will refer to these relations on paths as the abacus relations.

Definition 2. On the set Σ = {G, G̃,D, D̃} we introduce the total order G < G̃ <
D < D̃.1 This order induces a natural right-to-left lexicographic order on the free
monoid Σ∗. For any two words U, V ∈ Σ∗ consider the longest common suffix
Y , such that U = X1L1Y and V = X2L2Y for X1,X2 ∈ Σ∗ and L1, L2 ∈ Σ.
The two symbols L1 and L2 necessarily differ from each other. So we say U < V
iff L1 < L2.
1 The setting G̃ < D is arbitrary here. It could be likewise D < G̃ without consequences

for the content of the article.
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Lemma 3. The following permutations τ, τG , τD : Σ → Σ generate monoid
automorphisms on Σ∗:

τ(G) := G̃, τ(G̃) := G, τ(D) := D̃, τ(D̃) := D,

τG(G) := G̃, τG(G̃) := G, τG(D) := D, τG(D̃) := D̃,

τD(G) := G, τD(G̃) := G̃, τD(D) := D̃, τD(D̃) := D.

Proof. This is true for any permutation of Σ.

Proposition 4. Consider a special standard morphism f ∈ 〈G,D〉 and its con-
jugation class F ⊂ St0. Let W = μ−1(F) ⊂ Σ∗ denote the set of all words
representing these Sturmian morphisms. With respect to lexicographic order for
any two words U, V ∈ W the following holds:

U < V iff τ(V ) < τ(U).

Proof. Consider the evaluation ev : Σ → {0, 1} with ev(G) = ev(D) := 0 and
ev(G̃) = ev(D̃) := 1. Let m denote the common length of all words W ∈ W. We
define ev∗ : W → {0, 1, . . . 2m − 1} with ev∗(W1, ...,Wm) =

∑m
k=1 ev(Wk)2k−1.

The map ev∗ is an order-preserving bijection, i.e., we have U < V in lexico-
graphic order if and only if ev∗(U) < ev∗(V ) in the order of natural num-
bers. Furthermore, we have ev∗(τ(W )) = 2m − ev∗(W ) for any word W .
Hence, for any two words U, V ∈ W we have U < V iff ev∗(U) < ev∗(V ) iff
2m − ev∗(V ) < 2m − ev∗(U) iff ev∗(τ(V )) < ev∗(τ(U)) iff τ(V ) < τ(U).

4 Matching Lexicographic and Conjugation Order

Proposition 5. Consider a word W ∈ {G̃, D̃}∗ and the associated anti-standard
morphism f = μ(W ). The following equations hold:

conja ◦ f ◦ G = μ(τD(W )) ◦ G̃, conjb ◦ f ◦ D = μ(τG(W )) ◦ D̃.

Proof. Any anti-standard morphism f can be expressed in the form:

f = G̃nkD̃mk . . . G̃n1D̃m1

where k ≥ 0, nk,m1 ≥ 0 and n1, . . . , nk−1,m2, . . . , mk > 0. Iteratively applying
equations from Proposition 2 we obtain:

conja ◦ f ◦ G = conja ◦ G̃nkD̃mk . . . G̃n1D̃m1G

= G̃nk ◦ conja ◦ D̃mk . . . G̃n1D̃m1G

= G̃nkDmk ◦ conja . . . G̃n1D̃m1G

= G̃nkDmk . . . G̃n1Dm1 ◦ conja ◦ G

= G̃nkDmk . . . G̃n1Dm1G̃

= μ(τD(W )) ◦ G̃

The proof for the second equation is analogous.
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Proposition 6. Consider a word W ∈ {G,D}∗ and the associated standard
morphism f = μ(W ). The following equations hold:

f ◦ G̃ = conja ◦ μ(τD(W )) ◦ G, f ◦ D̃ = conjb ◦ μ(τG(W )) ◦ D.

Proof. Any standard morphism f can be expressed in the form:

f = GnkDmk . . . Gn1Dm1

where k ≥ 0, nk,m1 ≥ 0 and n1, . . . , nk−1,m2, . . . , mk > 0. Then applying the
lemma once, and iteratively applying the abacus relation and commutativity of
G and G̃:

conja ◦ μ(τD(W )) ◦ G = conja ◦ GnkD̃mk . . . Gn1D̃m1 ◦ G

= G̃Gnk−1D̃mk . . . Gn1D̃m1G

= Gnk−1(G̃D̃mkG)Gnk−1−1 . . . Gn1D̃m1G

= Gnk−1(GDmkG̃)Gnk−1−1 . . . Gn1D̃m1G

= GnkDmkGnk−1Dmk−1 . . . G̃Gn1−1D̃m1G

= GnkDmkGnk−1Dmk−1 . . . Gn1−1(G̃D̃m1G)
= GnkDmkGnk−1Dmk−1Gnk−2 . . . Gn1Dm1G̃

= f ◦ G̃

The proof for the second equation is analogous.

Proposition 7. Consider a non-anti-standard special Sturmian morphism f ∈
St0 and let F ⊂ St0 denote the conjugation class of f . Consider the smallest
representative U ∈ μ−1(f) of f in lexicographic order. Let W ∈ {G̃, D̃}∗ denote
the maximal anti-standard prefix of U such that U = WLX with a letter L ∈
{G,D} and some suffix X ∈ Σ∗. Then the word U ′ = τL(W )L̃X is the smallest
representative of the successor of f ′ of f in conjugation order.

Proof. For a moment we consider the special case where X is empty. We then
have to show that every word V L̃ ∈ {G, G̃,D, D̃}∗, which is lexicographically
larger then WL and smaller than τL(W )L̃ represents a Sturmian morphism,
which—in conjugation order—either precedes or coincides with f .

We look at the case where L = G. The proof for L = D is completely
analogous. For nk,m1 ≥ 0 and n1, . . . , nk−1,m2, . . . , mk > 0 we obtain the
following general form for WL and τG(W )L̃:

WL = G̃nkD̃mk . . . G̃n1D̃m1G, τG(W )L̃ = G̃nkDmk . . . G̃n1Dm1 G̃

Now we consider a word V satisfying WL < V L̃ < τL(W )L̃. It is specified by
the exponents lj > 0 and lj+1, . . . , lk, hj+1, . . . , hk ≥ 0 as follows:

V = (G̃nk−lkGlk)(D̃mk−hkDhk) . . .

. . . (G̃nj+1−lj+1Glj+1)(D̃mj+1−hj+1Dhj+1)(G̃nj−ljGlj )Dmj G̃nj−1Dmj−1 . . . G̃n1Dm1 .
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The index j marks the right-most factor in V , where there is a nontrivial power
of G. Powers of D̃ can only occur on the left side of the factor with index j,
where they have no influence on the following calculation. If they were to be to
the right of that index, the resulting word would be lexicographically larger than
τL(W )L̃, contrary to the assumption.

We substitute V L̃ with the help of suitable abacus relations until the final L̃
is replaced by L. This implies that the substitution is smaller or equal to WL.

V L̃ = . . . (G̃nj−lGl)Dmj G̃nj−1Dmj−1 . . . G̃n1Dm1 G̃
= . . . G̃nj−lGl−1(GDmj G̃)G̃nj−1−1Dmj−1 . . . G̃n1Dm1 G̃
∼= . . . G̃nj−lGl−1(G̃D̃mjG)G̃nj−1−1Dmj−1 . . . G̃n1Dm1 G̃
∼= . . . G̃nj−lGl−1G̃D̃mj G̃nj−1−1(GDmj−1 G̃)G̃nj−2−1 . . . G̃n1Dm1 G̃
∼= . . . G̃nj−lGl−1G̃D̃mj G̃nj−1−1(G̃D̃mj−1G)G̃nj−2−1 . . . G̃n1Dm1 G̃

...
∼= . . . G̃nj−lGl−1G̃D̃mj G̃nj−1D̃mj−1 G̃nj−2 . . . G̃n1−1(GDm1 G̃)
∼= . . . G̃nj−lGl−1G̃D̃mj G̃nj−1D̃mj−1 G̃nj−2 . . . G̃n1−1(G̃D̃m1G)

The calculation remains valid if the exponent m1 of the rightmost power of
D̃ vanishes. In this case the abacus relation reduces to G̃G ∼= GG̃. If the suffix X
is not empty, nothing in the above argument changes.

Corollary 2. Consider a non-standard special Sturmian morphism f ∈ St0 and
let F ⊂ St0 denote the conjugation class of f . Consider the largest representative
U ∈ μ−1(f) of f in lexicographic order. Let W ∈ {G,D}∗ denote the maximal
standard prefix of U such that U = W L̃X with a letter L̃ ∈ {G̃, D̃} and some
suffix X ∈ {G, G̃,D, D̃}∗. Then the word U ′ = τL(W )LX is the largest represen-
tative of the predecessor of f ′ of f in conjugation order.

Proof. This follows from the application of Proposition 4 to Proposition 7.

Theorem 1. Consider a conjugation class F = {f1 < · · · < fn−1} ⊂ St0 of
special Sturmian morphisms in conjugation order. Let W = μ−1(F) ⊂ Σ∗ denote
the set of all their representing words. W = W1 � · · · � Wn−1, where Wk =
μ−1(fk), for k = 1, . . . , n − 1. Let Uk, Vk ∈ Wk denote the lexicographically
smallest and largest elements of Wk, respectively. Then the following holds:

1. τ(Wk) = Wn−k and τ(Uk) = Vn−k for k = 1, . . . , n − 1.
2. U1 < U2 < · · · < Un−1 and V1 < V2 < · · · < Vn−1 in lexicographic order.

Figure 2 illustrates the theorem with an example.
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Fig. 2. The complete 20-element conjugation class of the special standard morphism
GDGDG is listed row by row in terms of all representing words (left side) and in terms
of the pairs (f(a), f(b)) of images of the letters a and b (right side). The rows are
ordered according to the conjugation order. Within each row the equivalent words are
lexicographically ordered. Smallest representatives are placed to the left, largest words
are placed to the right. The thick polygon traverses the 32 = 25 words in lexicographic
order. On this trajectory the smallest words are traversed in conjugation order. The
same is true for the largest words.

5 Dualizing the Network

Berthé et al. [2] introduce Sturmian involution, an anti-automorphism of the
monoid St0 that sends f in St0 to f∗ by fixing G and G̃ while exchanging D
and D̃. They relate conjugation order on the morphisms fi to the lexicographic
order on words f∗

i (ab), where f1 is a standard morphism and f∗
1 is a Christoffel

morphism. They show that with a < b, f∗
1 (ab) < f∗

2 (ab) < · · · < f∗
n−1(ab).

Another perspective on the lexicographic ordering, via the Burrows-Wheeler
Transform, is available in [5]. In this section we revisit and illustrate the finding
of [2] by constructing an isography between the diagram in Fig. 1 and a dualized
diagram to be fed from the former by applying Sturmian involution to all its
components.

The Sturmian monoid St0 generates the subgroup ST0 = M−1(SL2(Z)) of
index 2 within Aut(F2), of all group automorphisms with incidence matrices of
determinant 1. ST0 acts on itself from the left via λ : ST0 × ST0 → ST0 with
λg(f) = g ◦ f and from the right via ρ : ST0 × ST0 → ST0 where ρg(f) = f ◦ g.
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In order to manage the right action ρ in terms of conventional function applica-
tion we consider the generating transformations and the conjugations separately:

ρG = Γ, ρG̃ = Γ̃ , ρD = Δ, ρD̃ = Δ̃, ρconja = χa, ρconjb = χb : ST0 → ST0 with:

Γ (f) = f ◦ G Δ(f) = f ◦ D χa(f) = conjf(a),

Γ̃ (f) = f ◦ G̃ Δ̃(f) = f ◦ D̃ χb(f) = conjf(b).

Lemma 4. The transformations Γ, Γ̃ ,Δ, Δ̃ satisfy the equations:

Γ̃ΔkΓ = ΓΔ̃kΓ̃ and Δ̃Γ kΔ = ΔΓ̃ kΔ̃

Proof. Γ̃ΔkΓ = ρGDkG̃
∼= ρG̃D̃kG = ΓΔ̃kΓ̃ . Analogously for Δ̃Γ kΔ.

Here we regard Sturmian Involution as an anti-automorphism ∗ : ST0 → ST0

generated by G∗ = G, G̃∗ = G̃, D∗ = D̃, D̃∗ = D. Applying the anti-
automorphism ∗ to all components of the left action λ naturally yields a trans-
formation into the right action ρ (see diagram below):

ST0 × ST0

ST0 × ST0

ST0

ST0

�

�

�

�
�
�

���

�
�

�
���

λ

ρ

∗∗ ∗

The diagram in Fig. 3 is the result of a thorough application of Sturmian invo-
lution to all components (nodes and arrows) of the diagram in Fig. 1. Thereby
we may revisit the relations between the generators and the conjugations: from
Sect. 2.

Proposition 8.

χa ◦ Γ = Γ ◦ χa = Γ̃ χb ◦ Δ = Δ ◦ χb = Δ̃ ⇔ χb−1 ◦ Δ̃ = Δ̃ ◦ χb−1 = Δ

χa ◦ Γ̃ = Γ̃ ◦ χa χb ◦ Γ = Γ̃ ◦ χb ⇔ χb−1 ◦ Γ̃ = Γ ◦ χb−1

χa ◦ Δ = Δ̃ ◦ χa χb ◦ Δ̃ = Δ̃ ◦ χb ⇔ χb−1 ◦ Δ̃ = Δ̃ ◦ χb−1

Proof. These relations arise from translating the analogous relations (Proposition
1, Corollary 1, Proposition 2) from the left action λ to the right action ρ:

f ◦ conja ◦ G = [Γ ◦ χa](f) and f ◦ G ◦ conja = [χa ◦ Γ ](f) and f ◦ G̃ = Γ̃ (f)

f ◦ conjb ◦ D = [Δ ◦ χb](f) and f ◦ D ◦ conjb = [χb ◦ Δ](f) and f ◦ D̃ = Δ̃(f)

f ◦ conjb ◦ G̃ = [Γ̃ ◦ χb](f) and f ◦ G ◦ conjb = [χb ◦ Γ ](f)

f ◦ conja ◦ G̃ = [Γ̃ ◦ χa](f) and f ◦ G̃ ◦ conja = [χa ◦ Γ̃ ](f)

f ◦ conja ◦ D̃ = [Δ̃ ◦ χa](f) and f ◦ D ◦ conja = [χa ◦ Δ](f)

f ◦ conjb ◦ D̃ = [Δ̃ ◦ χb](f) and f ◦ D̃ ◦ conjb = [χb ◦ Δ̃](f)
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Fig. 3. We obtain the diagram in this Figure from the isographic diagram in Fig. 1
by replacing their node and arrow labels as follows: (1) Each node label (f(a), f(b))
is replaced by (f∗(a), f∗(b)); (2) each arrow label conja or conjb is replaced by χa

or χb−1 = χb
−1, respectively; (3) each arrow label G or G̃ is replaced by Γ or Γ̃ ,

respectively; (4) each arrow label D or D̃ is replaced by Δ̃ or Δ, respectively.

Our insight about the incidence of the lexicographic order of the smallest
(or largest) paths with the conjugation order for each conjugation class is faith-
fully transferred along the duality. The conjugation order has another meaning
though, in so far as the conjugating elements are no longer the letters a and b.
Also the lexicographic order of the paths has to be modified in view of the Stur-
mian involution. After involution it is induced by the order G < G̃ < D̃ < D on Σ.
In Fig. 3 we observe that the node labels of each conjugation class (f∗(a), f∗(b))
are lexicographically ordered. They are aligned along the corresponding arc in
the left-to-right ordering of the images f∗(ab) which is induced by the ordered
alphabet {a < b}. With the final considerations we intend to relate this order
to the right-to-left lexicographic order of the words encoding paths. To that end
we need to define a suitable lexicographic order on a given conjugation class:

Definition 3. Consider a conjugation class F ⊂ St0 of special Sturmian mor-
phisms. We say that its elements are in left-to-right lexicographic order: {f1 ≺
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· · · ≺ fn−1} iff their images of the word ab ∈ {a < b}∗ are in left-to-right
lexicographic order: {f1(ab) < · · · < fn−1(ab)}.
Lemma 5. For any special Sturmian morphism f ∈ St0 one has f(ab) < f(ba)
with respect to the left-to-right lexicographic order in {a < b}∗.

Proof. For special standard words one has f(a)f(b) = cab and f(b)f(a) = cba,
where c is the associated central word (see [1]). Hence f(ab) < f(ba). Conjugation
with the prefixes w of c preserves the order relation: conjwf(ab) < conjwf(ba).
And this exhausts the conjugation class of f .

Corollary 3. For all f ∈ St0 one has

Γ (f(a), f(b)) ≺ Γ̃ (f(a), f(b)) and Δ̃(f(a), f(b)) ≺ Δ(f(b), f(a))

Proof. For any f ∈ St0 we have

Γ (f(a), f(b)) ≺ Γ̃ (f(a), f(b)) iff (f(a), f(ab)) ≺ (f(a), f(ba)) iff f(ab) < f(ba)
Δ̃(f(a), f(b)) ≺ Δ(f(a), f(b)) iff (f(ab), f(b)) ≺ (f(ba), f(b)) iff f(ab) < f(ba)

The condition f(ab) < f(ba) is always satisfied by virtue of Lemma 5.

From this result we may finally conclude, that the inherited conjugation order
after the application of Sturmian involution coincides with the lexicographic
order ≺ from Definition 3.
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