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Abstract. The notion of repetition of factors in words is central to
combinatorics on words. A recent generalisation of this concept considers
repetitions under permutations: give an alphabet Σ and a morphism or
antimorphism f on Σ∗, whose restriction to Σ is a permutation, w is an
[f ]-repetition if there exists γ ∈ Σ∗ such that w = f i1(γ)f i2(γ) · · · f ik (γ),
for some k ≥ 2. In this paper, we extend a series of classical repetition
enforcing word equations to this general setting to obtain a series of word
equations whose solutions are [f ]-repetitions.

1 Introduction

The study of repetitive sequences in words is one of the central topics of combi-
natorics on words, with applications in e.g., pattern matching and stringology in
general, data compression, bioinformatics (see [10,13]). Part of the investigations
on this topic deal with repetition enforcing relations or equations. Basically, a
repetition enforcing relation for words is a relation, or a statement, that holds
only for words that can be expressed as repetitions (i.e., repeated concatena-
tion) of some (other) word. For instance, it is well known (see, e.g., [12]) that
a word w is a factor, other than prefix of suffix, of the word ww if and only if
w ∈ {t}+ for some shorter word t, i.e., w is a repetition. Another prominent
example of a repetition enforcing statement is the Theorem of Fine and Wilf [6]
(FWT): if α = u� and β = vk and α and β share a common prefix of length at
least |u| + |v| − gcd(|u|, |v|), then both u and v are repetitions of some word t,
i.e., u, v ∈ {t}+. The equation of Lyndon and Schützenberger [14] (LSE) is an
example of a repetition enforcing equation: if u� = vmwn holds, for some words
u, v, w and �,m, n ≥ 2, then there exists a word t such that u, v, w ∈ {t}+, so
u, v, w are repetitions of the same root.

Pseudo-repetitions were introduced [4,5], as a generalisation of classical rep-
etitions, inspired by molecular biology. A word w is a pseudo-repetition (more
precisely, f -repetition) if it equals a repeated concatenation of one of its prefixes
t and its image f(t) under some morphism or antimorphism (for short “anti-/
morphism”) f , thus w ∈ t{t, f(t)}+. To fit the biological motivation, in [5] f was
defined as an antimorphic involution (i.e., f2(w) = w for all words w). More
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interesting to us, if f is not restricted, pseudo-repetitions generalise not only rep-
etitions (when f is the identity morphism), but also palindromes (when f is the
mirror image); both these concepts are central in combinatorics on words, so their
generalisations are of intrinsic theoretical interest. Initial results (see [3,5]) con-
cerned generalisations of the FWT, of the LSE, and of other repetition enforcing
results to the setting of f -repetitions for antimorphic involutions f . For instance,
Czeizler et al. [3] introduced a different generalisation of LSE. They considered
equations of the form u1u2 · · ·u� = v1v2 · · · vmw1w2 · · ·wn, where ui ∈ {u, θ(u)}
for all 1 ≤ i ≤ �, vj ∈ {v, θ(v)} for all 1 ≤ j ≤ m, and wk ∈ {w, θ(w)} for all
1 ≤ k ≤ n, and studied under which conditions u, v, w ∈ {t, θ(t)}+ yield for some
word t. That is, they studied the case when u, v, w are generalised repetitions
(more precisely, θ-repetitions). A complete characterisation of the conditions
under which the aforementioned equation has only θ-repetitive solutions was
obtained in [17].

Going a step further, the case of f -repetitions (over an alphabet Σ) for an
anti-/morphism f that acts as a permutation on Σ (anti-/morphic permutation)
was considered in [15], where a series of results in the style of the FWT were
given. Introduced in [15], but only briefly studied in that paper, was also a more
general notion of repetition, that we will call here an [f ]-repetition. If f is an
anti-/morphic permutation and w = f i1(γ)f i2(γ) · · · f ik(γ), for some k ≥ 2, then
w is called [f ]-repetition of root γ. A variant of the FWT was shown for [f ]-
repetitions in the case when f is a morphism. This notion also appears in a series
of papers regarding avoidability of patterns under anti-/morphic permutations:
in [16] the avoidability of patterns of the form πi(x)πj(x)πk(x), i.e., [π]-cubes, for
π a variable that can be replaced by anti-/morphic permutations, was studied,
while in [2] the avoidability of general [π]-repetitions was considered. Finally,
algorithmic problems like deciding whether a word is an [f ]-repetition [7,8] or
whether a word contains [f ]-repetitions [1,9,18] for different types of functions
(including anti-/morphic permutations) were investigated. However, we are not
aware of any algorithmic results regarding [f ]-repetitions.

In this paper we analyse a series of [f ]-repetition enforcing word equations, for
an anti-/morphic permutation f . We first analyse the morphic case, and we show
that a series of classical repetition enforcing equations are extendible to this more
general setting. For instance we show that both fa(x)f b(y) = fc(y)fd(x) and
fa(u)f b(u) = xfc(u)y with x, y �= ε enforce x, y resp. u to be an [f ]-repetition
each with one root.

Our main result is an extension of the LSE: if f i1(u) . . . f ir (u)f j1(v) . . .
f js(v) = fk1(w) . . . fkt(w) for some r, s, t ≥ 2, then u, v, w are [f ]-
repetitions of the same root t. These results complement the generalised FWT
obtained in this setting in [15]. In the case when f is antimorphic, we show
that the equation fa(u)f b(u) = xfc(u)y may have solutions which are not [f ]-
repetitions. Thus, following the results of [3,5], we characterise exactly the equa-
tions fa1(u)fa2(u)fa3(u) = xf b1(u)f b2(u)y, withx, y �= ε, whose solutions are [f ]-
repetitions. We use this characterisation to show a result in the style of the FWT



74 J.D. Day et al.

and to define a class of extensions of the LSE that only have solutions which are
[f ]-repetitions.

The paper is organised as follows: we first give the basic definitions and
recall some preliminary results, then we present the results for the case when f
is a morphic permutation, and finally we present the results for when f is an
antimorphic permutation. Due to space restrictions some proofs are omitted.

2 Preliminaries

Let N be the set of natural numbers, N0 = N∪{0} and N≥k = {x ∈ N0 | x ≥ k}.
For n ∈ N, [n] denotes {1, . . . , n} and [n]0 = [n] ∪ {0}. For the set of integers Z,
a ≡k b holds if and only if a, b ∈ Z have the same remainder modulo k ∈ N and
Zk denotes the quotient ring of integers modulo k. For m,n ∈ N, let gcd(m,n)
denote their greatest common divisor.

Let Σ be a finite alphabet. In this paper Σ∗ denotes the set of all words over
Σ, ε the empty word, Σ+ := Σ∗\{ε}, and for the word’s length |w|, Σ≤k := {w ∈
Σ∗| |w| ≤ k}. For two words u and v, set du,v := gcd(|u|, |v|).

For some words x, y, u is a factor of w, if w = xuy; u is a prefix of w if x = ε
and a suffix if y = ε. A word u is said to occur strictly inside another word w if
u is a factor of w, other than a prefix or a suffix. Moreover, w = u−1v, whenever
v = uw. The powers of w are defined recursively by w0 = ε, wn = wwn−1 for
n ≥ 1. If w cannot be expressed as a power of another word, then w is said to
be primitive.

We say that f : Σ∗ → Σ∗ is a morphism (resp., antimorphism) if f(xy) =
f(x)f(y) (resp., f(xy) = f(y)f(x)) for any words x, y ∈ Σ∗. Note that, to define
an anti-/morphism it is enough to define f(a) for all a ∈ Σ. If f is a bijective
morphism (resp., antimorphism), then we call f a morphic (resp., antimoprhic)
permutation. If f is a permutation of Σ then ord(f) denotes the smallest positive
number such that ford(f)(a) = a for all a ∈ Σ. If f is a morphic permutation then
ford(f)(w) = w and if f is an antimorphic permutation then f2ord(f)(w) = w,
for all w ∈ Σ∗. This leads to the fact that the exponents of an anti-/morphic
permutation f can be considered to be elements of Zord(f)−1 resp. Z2ord(f)−1,
i.e. fa−b is for all a, b ∈ Z a well-defined iteration of f .

For an anti-/morphic permutation f , a word w ∈ Σ∗ is said to be an [f ]-
repetition if there exists t ∈ Σ+, k ≥ 2, and i1, . . . , ik ∈ Z such that w =
f i1(t)f i2(t) · · · f ik(t). In this case, t is called the root of the [f ]-repetition w.
If w is not an [f ]-repetition, then w is [f ]-primitive. For instance, the word
w = abcaab is [IdΣ]-primitive, where IdΣ is the identical morphism on Σ, and
[f ]-primitive for some morphism or antimorphism f with f(a) = b, f(b) = a and
f(c) = c. However, for the morphism f(a) = c, f(b) = a and f(c) = b, w =
abf(ab)ab = abcaab, thus, w is an [f ]-power in this setting; abbcab = abf2(ab)ab
is also an [f ]-repetition as well.

In the following, several classical repetition enforcing results are recalled. The
first one is folklore (see, e.g., [12]). The next three are classical results of Fine
and Wilf and Lyndon and Schützenberger, respectively.
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Theorem 1 (1-in-2). A word w ∈ Σ∗ is a repetition iff w occurs strictly
inside ww.

Theorem 2 (Fine and Wilf [6]). Let u, v ∈ Σ∗. If two words α ∈ u{u, v}∗
and β ∈ v{u, v}∗ have a common prefix of length at least |u|+ |v| − du,v, then u
and v are powers of a common word of length du,v. The bound |u|+ |v| − du,v is
optimal.

Theorem 3 (Lyndon and Schützenberger [14]). Let u, v, w ∈ Σ∗. Then
uv = vw if and only if there exist words p, q ∈ Σ∗, such that u = (pq)i, w = (qp)i,
and v = (pq)jp for some i, j ≥ 0 and pq is primitive.

Theorem 4 (Lyndon and Schützenberger [14]). If u� = vmwn for some
words u, v, w ∈ Σ∗ and �,m, n ≥ 2, then u, v, w ∈ {t}∗ for some word t ∈ Σ∗.

Theorem 2 was extended in [15] for [f ]-repetitions.

Theorem 5. Let u, v ∈ Σ∗ and f : Σ∗ → Σ∗ be a morphic permutation with
ord(f) = k + 1. Let S(u, v) = {u, f(u), . . . , fk(u), v, f(v), . . . , fk(v)}∗. If two
words α ∈ uS(u, v) and β ∈ vS(u, v) have a common prefix of length at least
|u|+ |v| − du,v, then there exists a t ∈ V ∗, such that u, v ∈ t{t, f(t), . . . , fk(t)}∗.

Theorem 3 was extended in the setting of anti-/morphic involutions in [5].
Theorem 4 was extended for [f ]-repetitions where f is an antimorphic involution
in a series of papers that culminated in [17], where a full characterisation of
the triples (�,m, n) for which u1u2 · · ·u� = v1v2 · · · vmw1w2 · · ·wn,, where ui ∈
{u, f(u)} for all 1 ≤ i ≤ �, vj ∈ {v, f(v)} for all 1 ≤ j ≤ m, and wk ∈ {w, f(w)}
for all 1 ≤ k ≤ n, has only solutions which are [f ]-repetitions was given.

3 The Morphic Case

In this section some well known equations which only have repetitions as solu-
tions are generalised to equations whose solutions are repetitions under morphic
permutations. These results are used to ultimately show that a version of The-
orem 4 holds for [f ]-repetitions in the case that f is a morphic permutation.

Some basic lemmas are first established, which provide some fundamental
combinatorial tools for proving the later results. They focus on two very well-
known equations, namely xy = xy and xy = yz with x, y, z ∈ Σ+, and describe
their solutions in this more general setting.

Lemma 6. Let x, y ∈ Σ+, f a morphic permutation on Σ∗, and a, b, c, d ∈
[ord(f)]0 with fa(x)f b(y) = fc(y)fd(x). Then there exists a t ∈ Σ+ such that
x, y are [f, t]-repetitions.

Proof. Theorem 5 can be applied for α = fa(x)f b(y), β = fc(y)fd(x),
u = fa(x), and v = fc(y). Clearly, α and β have a common prefix of length
|α| = |β| = |u| + |v|, it follows that there exists t such that fa(x), fc(y) ∈
t{t, f(t), . . . , ford(f)−1(t)}∗. Consequently, x, y are [f, t]-repetitions. 	
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While Lemma 6 provides a direct analogy to the standard setting, for which
the “repetition-enforcing” nature of the equation is folklore, it is also possible to
provide the following more specific insight which is essential to the proofs.

Lemma 7. Let x, y ∈ Σ+ with x = x1x2 such that |x1| = |x2|, f a morphic
permutation on Σ∗, and a, b, c ∈ [ord(f)]0 with

yx1x2 = fa(x1)f b(x2)fc(y)

Then there exists a t ∈ Σ+ such that x, y, fa(x1)f b(x2) are [f, t]-repetitions.

Lemma 8. Let x, y ∈ Σ+, f a morphic permutation on Σ∗ and a, b, c, d ∈
[ord(f)]0. The equation

fa(x)f b(y) = fc(y)fd(z)

holds if and only if there exist u, v ∈ Σ∗, i, s, r, q ∈ N0 with

x = uv, z = fq(v)fq+r(u), and y = fs+r(uv) . . . fs+ir(uv)fs+(i+1)r(u).

If Theorem 3 holds for three words x, y, z (i.e., xy = yz) then the words
x and z are conjugate, x ∼ z for short. It is well known that the conjugacy
relation is an equivalence relation. When working in the setting of equations
under morphic permutations, this relation can be extended to f -conjugacy. For
a morphic permutation f , the words x, y ∈ Σ∗ are said to be f-conjugate (written
x ∼f y) if there exist a, b, c, d ∈ [ord(f)]0 such that fa(x)f b(y) = fc(y)fd(z) –
so if they satisfy the equation addressed in Lemma 8. It can be seen that x ∼f y
follows from x ∼ y. More interestingly however, while ∼f is symmetrical and
reflexive, it is not transitive (unless f is the identical morphism). Accordingly,
∼f is an equivalence if and only if f is the identity morphism.

The following lemma extends another fundamental result mentioned in The-
orem 1, and may be proved by reducing to the case considered by Lemma 6 (see
Fig. 1).

Fig. 1. x, y reoccur each twice within fc(y), such that - except for permutation applica-
tion - the pattern xy = yx occurs (shown by the dotted and dashed lines), so Lemma 6
may be applied.

Lemma 9. Let f : Σ∗ → Σ∗ be a morphic permutation and a, b, c ∈ [ord(f)]0.
If u ∈ Σ∗ is [f ]-primitive, then for x, y ∈ Σ∗ with

fa(u)f b(u) = xfc(u)y

either x = ε or y = ε follows.
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Lemma 7 can be extended in a similar fashion.

Lemma 10. Let f : Σ∗ → Σ∗ be a morphic permutation and a, b, c, d ∈
[ord(f)]0. If u ∈ Σ∗ is [f ]-primitive and u = u1u2, with |u1| = |u2|, then for
x, y ∈ Σ∗ with

fa(u)f b(u) = xfc(u1)fd(u2)y

either x = ε or y = ε follows.

In the rest of this section it will be shown that Lyndon and Schützenberger’s
result can be reproven without any additional restrictions in the setting of repe-
titions under morphic permutations. In this setting, the LSE is defined for words
u, v, w ∈ Σ+ by

fa1(u) . . . far (u)fc1(v) . . . fcs(v) = f b1(w) . . . f bt(w), (1)

for r, s, t ∈ N≥2, ai, bk, cj ∈ [ord(f)]0, i ∈ [r], k ∈ [s], j ∈ [t], and a mor-
phic permutation f on Σ∗. For simplicity, the following notations are sometimes
used: α1 = fa1(u) . . . far (u), α2 = fc1(v) . . . fcs(v), and β = f b1(w) . . . f bt(w).
The intention is to show that there exists a word t such that u, v, w ∈
{t, f(t), . . . , ford(f)−1(t)}∗, and thus that the equation, when augmented by the
presence of morphic permutations, remains a repetition enforcing relation.

In order to show that indeed u, v, and w are [f ]-repetitions with the same
root under these conditions, the proof is divided into various cases. To begin
with, the cases in which the us and vs “fit” exactly inside the ws and vice-versa
are given.

Lemma 11. If Eq. 1 holds for r, s, t ≥ 2, and |u| | |w| or |v| | |w| holds, then
u, v, w are [f ]-repetitions.

Lemma 12. If Eq. 1 holds for r, s, t ≥ 2, and |w| | |u| or |w| | |v| holds, then
u, v, w are [f ]-repetitions.

The following lemma demonstrates how, in some cases, the extension of the
FWT (Theorem 5), may be applied. This is straightforward if the theorem may
be applied from both endpoints, in opposite directions, showing first that u and
w share an f -root and then that v and w share an f -root. In fact, as the lemma
states, it is sufficient to be able to apply the theorem in just one direction –
although this requires more effort to prove.

Lemma 13. In Eq. 1, if α1 and β have a common prefix of length at least |w|+
|u| − du,w or α2 and β have common suffix of length at least |w| + |v| − dv,w,
then u, v, and w are [f ]-repetitions.

Following from Lemma 13 (see also Fig. 2), it is now possible to show that
the equation is repetition enforcing provided r, s and t are large enough.

Theorem 14. If Eq. 1 holds with r, s, t at least 3 or with t ≥ 4 and r, s at least
2, then one of the conditions of Lemma 13 also holds. Hence, there exists a word
t such that u, v, w ∈ {t, f(t), . . . , ford(f)−1(t)}∗.
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Fig. 2. If the parts of permutations of u and the one permutation of v are each long
enough, Theorem 5 can be applied from either side.

Recalling the original LSE (Theorem 4), the claim is nearly proven for the
permutation setting as well. It remains to prove the cases for r, s, t being 2,
respectively. In order to accomplish this, the following auxiliary result is needed.

Lemma 15. Let w1, w2, be in Σ+, f a permutation, and a, b, c, d ∈ N. If
w1f

a(w2) = f b(x)fc(w2)fd(x) holds, then there exists a suffix x′ of a permuta-
tion of x and there exists n1, . . . , nr ∈ N for r ∈ N with

w2 = x′fn1(x) . . . fnr (x).

Remark 16. For fa(w1)w2 = f b(x)fc(w1)fd(x) an analogous result can be
obtained.

The case that r = s = t = 2 is one of the most straightforward remaining
cases, and is addressed first.

Lemma 17. If Eq. 1 holds for r = s = t = 2, then u, v, and w are [f ]-repetitions.

Proof. Consider w.l.o.g. 2|u| > |w|. Choose u1, u2 ∈ Σ+ with fa2(u) = u1u2

such that u1 ∈ Suff(f b1(w)) and u2 ∈ Pref(f b2(w)). This implies f b1(w) =
fa1−a2(u1)fa1−a2(u2) u1 and

f b2−b1+a1−a2(u1)f b2−b1+a1−a2(u2)f b2−b1(u1) = f b2(w) = u2f
c1(v)fc2(v).

By this 2|u1| = 2|v| follows. Moreover, since f b2−b1(u1) and fc2(v) are suffixes
of f b2(w), f b2−b1(u1) = fc2(v) holds. Substituting this result in f b2(w) leads to

f b2−b1+a1−a2(u1)f b2−b1+a1−a2(u2) = u2f
c1−c2+b2−b1(u1)

By Lemma 6 follows the existence of a γ ∈ Σ∗ such that u1, u2 are [f, γ]-
repetitions and consequently u, v, and w are [f ]-repetitions as well (Fig. 3).

Fig. 3. In the case of r = s = t = 2 the pattern u1u2 = u2u1 - neglecting the
permutations - occurs in the second w.
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Lemma 18. If Eq. 1 holds for t = 3 and r = s = 2 then u, v, and w are [f ]-
repetitions. Similarly, f Eq. 1 holds for r = 2 and s = t = 3, then u, v, and w
are [f ]-repetitions.

Lemma 19. If Eq. 1 holds for s = t = 2 and r ≥ 3 then u, v, and w are [f ]-
repetitions.

Lemma 20. If Eq. 1 holds for t = 2 and r, s ≥ 3 then u, v, and w are [f ]-
repetitions.

From the preceding lemmas, we can conclude with the following main result.

Theorem 21. If Eq. 1 holds for t, r, s ≥ 2 then u, v, and w are [f ]-repetitions.

4 The Antimorphic Case

Firstly, note that the results of Lemma 9 do not hold in the case of antimorphic
permutations.

Remark 22. Consider the equation fa(w)f b(w) = xfc(w)y, where f is an anti-
morphism. The following counterexamples show that this equation is not repeti-
tion enforcing, no matter the values of a, b, c; in all cases, Σ = {a, b} and f is the
mirror image on Σ∗. Let w = aaba, which is not a [f ]-repetition. However, for a
even and b, c odd, fa(w)f b(w) = aabaabaa = aabfc(w)a holds. By Lemma 25,
it follows immediately that the equation fa(w)f b(w) = xfc(w)y when a is odd
and b, c even, a, c odd and b even, and a, c even and b odd, may have solutions
which are not [f ]-repetitions. If a, b are even and c odd, for the same w and
f , we have fa(w)f b(w) = aabaaaba = afc(w)aba. Again, it is an immediate
consequence that when a, b are odd and c is even then fa(w)f b(w) = xfc(w)y
may have solutions which are not [f ]-repetitions.

Following the ideas of [11], an extension of Lemma 9 to the antimorphic case
can be obtained by considering equations of the form

fa1(w)fa2(w)fa3(w) = xf b1(w)f b2(w)y

for f antimorphic permutation on Σ, a1, a2, a3, b1, b2 ∈ N0, w, x, y ∈ Σ∗, 0 <
|x|, |y| < |w|. Our goal is to identify under which restrictions on a1, a2, a3, b1, b2

the equation above enforces (for some f that makes the equality between the
sides of the equation hold) that x, y, w are [f ]-repetitions.

The main difference to the morphic case is that when iterating an antimorphic
permutation f , f i(w) preserves the order of letters of w when i is even, and
reverses it when i is odd; in the morphic case, the order was preserved for
all exponents. Therefore, it seems a good approach to classify the equations
considered above by the parity of their exponents. In the following, e (from
even) and o (from odd) are used for 0 and 1 resp., for convenience. Moreover for
each number a let a denote its residue class modulo 2.
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Definition 23. Define the set of all these equations by

E := {fa1(w)fa2(w)fa3(w) = xf b1(w)f b2(w)y | f antimorphic permutation,

w, x, y ∈ Σ∗, 0 < |x|, |y| < |w|, a1, a2, a3, b1, b2 ∈ N0}.

The equations

E :fa1(w)fa2(w)fa3(w) = xf b1(w)f b2(w)y and

E′ :fa′
1(w)fa′

2(w)fa′
3(w) = x′f b′1(w)f b′2(w)y′

are called equivalent (E ∼ E′) if (a1, a2, a3, b1, b2) = (a′
1, a

′
2, a

′
3, b

′
1, b

′
2) A class

of equivalent equations will be denoted by the quintuple (a1, a2, a3 | b1, b2). Such
a class (resp., quintuple) is called repetition enforcing if every equation in the
class it defines has only solutions which are [f ]-repetitions.

Remark 24. Note that ∼ is an equivalence relation. Thus, the quotient set E/∼
is well defined. Since the elements of E are defined by five parameters, which are
further reduced by the factorization w.r.t. ∼ to their canonical representative
from Z2, then E has only 32 elements. Since all equivalent equations are associ-
ated to the same quintuple of elements of Z2, these quintuples can be used as
canonical representatives for the classes of E/∼.

In order to further group together classes of equation, it is worth noting the
following.

Lemma 25. Let f be an antimorphic permutation on Σ. Consider the equations

f i1(w) · · · f ik(w) = xf j1(w) · · · f jk−1(w)y, 0 < |x|, |y| < |w| (2)

f i1−1(u) · · · f ik−1(u) = xf j1−1(u) · · · f jk−1−1(u)y, 0 < |x|, |y| < |u| (3)

f ik+1(w) · · · f i1+1(w) = f(y)f jk−1+1(w) · · · f j1+1(w)f(x),0< |x|, |y|< |w| (4)

f ik(u) · · · f i1(u) = f(y)f jk−1(u) · · · f j1(u)f(x), 0 < |x|, |y| < |u| (5)

All the solutions of equation (i) are [f ]-repetitions if and only if all solutions of
equation (j) are [f ]-repetitions, with 1 ≤ i, j ≤ 4.

Following the ideas of Lemma 25, it makes sense to define the following
relation.

Definition 26. Two elements E = (a1, a2, a3 | b1, b2) and E′ = (a′
1, a

′
2, a′

3 |
b′1, b

′
2) of E/∼ are called dual (E1⧟E2) if either E = E′ or one of the following

cases holds (all the sums below are done in Z2):

1. (a′
1, a

′
2, a

′
3 | b′1, b

′
2) = (a3 + 1, a2 + 1, a1 + 1 | b2 + 1, b1 + 1) (equating to the

application of f to E)
2. (a′

1, a
′
2, a

′
3 | b′1, b

′
2) = (a1 + 1, a2 + 1, a3 + 1 | b1 + 1, b2 + 1) (equating to

fz(w) = fz−1(f(w)) for z ∈ Z2)
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3. (a′
1, a

′
2, a

′
3 | b′1, b

′
2) = (a3, a2, a1 | b2, b1) (equating to the application of 1.

and 2.)

Remark 27. Since ⧟ is also an equivalence relation the above mentioned 32
classes can be reduced to the following 10 classes of (E/∼)/⧟

(1) [(e, e, e | e, e)] [(e, e, e | e, o)] (2)
(3) [(e, e, e | o, o)] [(e, e, o | e, e)] (4)
(5) [(e, e, o | e, o)] [(e, e, o | o, e)] (6)
(7) [(e, e, o | o, o)] [(e, o, e | e, e)] (8)
(9) [(e, o, e | e, o)] [(o, e, o | e, e)] (10)

The following lemma is a direct consequence of Lemma 25.

Lemma 28 (Duality Lemma). Let C be a class of (E/∼)/⧟ and E1, E2 be
in C. If E1 is repetition-enforcing than E2 as well.

For eight of the ten classes of (E/∼)/⧟ it is shown that they are repetition-
enforcing. In the remaining cases, counter-examples will be given.

Lemma 29. Classes 3 (represented by (e, e, e | o, o)) and 7 (represented by
(e, e, o | o, o)) are not repetition-enforcing.

Proof. Equations of these classes that have solutions which are not [f ]-repetitions
can be obtained by extending the examples in Remark 22.

Consider w = aaba and f the mirror image on Σ = {a, b}. Although w is not
an [f ]-repetition, the following holds: www = aabaaabaaaba = af(w)f(w)aba,
so class 3 is not repetition enforcing.

Also, the following holds wwf(w) = aabaaabaabaa = af(w)f(w)baa, so
class 7 is not repetition enforcing.

For some classes the repetition enforcement can be proven by Lemma 9 from
the morphic case (Fig. 4). This is possible since the word f b1(w) occurs inside
fa1(w)fa2(w) and a1, a2, b1 are even (for short, e occurs in ee) in all equations
contained in the classes 1, 2, 4, and 5. In class 10 we again have that e occurs in ee:
fa2(w) is a factor of f b1(w)f b2(w), and a2, b1, b2 are all even. Class 8 may appear
to be different but in fact it contains a similar structure. The characteristic of
the aforementioned pattern is, that - neglecting the permutations for a moment
- a word is split into w = xy and x occurs also as a suffix and y also as an infix.
Having a deeper look into the representative of class 8 reveals that a prefix x of
f b1(w) is a suffix of fa1(w) and a suffix y of f b2(w) is a prefix of fa3(w) with
|xy| = |w|. So, fa1−a3(y) is a prefix of fa1(w). Therefore, fa1(w) is a factor
of fa1−a3(w)f b1(w) and a1, a1 − a3, b1 are all even. Accordingly, the following
lemma holds.
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Fig. 4. With the aforementioned abbreviations e and o for an arbitrary even resp. odd
permutation of f the classes 1, 2, 4, and 5 are given by the first picture. Class 10
is represented by the second picture and the picture below shows that the necessary
1-in-2 pattern (here visualised as a grey T) occurs if the middle part is ignored.

Lemma 30. The classes 1, 2, 4, 5, 8 and 10 are repetition-enforcing.

Before showing that class 9 is also repetition enforcing, several more defini-
tions are needed. If w = f i1(s)f i2(s) · · · f ik(s), for some s ∈ Σ∗ and k ≥ 1, and
ij �≡2 ij+1 for all 1 ≤ j ≤ k − 1, then w is called an alternating [f, s]-repetition.
If the word w is an alternating [f, s]-repetition for some s, but this word s is not
important to us, then we just say that w is an alternating [f ]-repetition.

It can be shown that if w is an alternating [f, s]-repetition then
fa1(w)fa2(w)fa3(w) is also an alternating [f, s]-repetition, where a1 ≡2 a3 �≡2

a2. Indeed, assume a1, a3 are even, and a2 is odd (the other case is similar). If
w = f i1(s)f i2(s) · · · f ik(s), for some s ∈ Σ∗ and k ≥ 1, and ij �≡2 ij+1 for all
1 ≤ j ≤ k − 1, then

fa1(w)fa2(w)fa3(w) =fa1+i1(s) · · · fa1+ik(s)·
fa2+ik(s) · · · fa2+i1(s)·
fa3+i1(s) · · · fa3+ik(s).

As a1 + ik has a different parity then a2 + ik, and a2 + i1 has a different parity
then a3 + i1, the claim follows.

Next, it is shown that class 9 is repetition enforcing, and, moreover, that if
w is a solution of an equation from the respective class, then w is an alternating
[f, s]-repetition for some word s.

Lemma 31. Class 9 is repetition-enforcing. More precisely, if

fa1(w)fa2(w)fa3(w) = xf b1(w)f b2(w)y

with x, y �= ε and (a1, a2, a3 | b1, b2) in class 9, then there exists s ∈ Σ∗ such that
xf b1(w) and w are alternating [f, s]-repetitions.

The fact that class 6 is also repetition-enforcing follows now.
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Lemma 32. Class 6 is repetition-enforcing.

Proof. Consider the equation E : fa1(w)fa2(w)fa3(w) = xf b1(w)f b2(w)y cor-
responding to the representative of class 6. Then y is a suffix of fa3(w). Thus
f b2−a3(y) is a prefix of f b2(w) (as b2 − a3 is odd and f b2(w) = f b2−a3(fa3(w))).
By the alignment of f b2(w) inside fa2(w)fa3(w), It follows that f b2−a3(y) is a
suffix of fa2(w). Therefore, y is a prefix of fa2+a3−b2(w) and a2 +a3 − b2 is odd.
Therefore, we get that fa2(w)fa3(w) occurs inside f b1(w)f b2(w)fa2+a3−b2(w),
which leads to an equation represented by (o, e, o | e, o), so from class 9. Such
equations are repetition enforcing, by Lemma 32.

To conclude this section we propose a series of applications of our repetition
enforcing results. In the first one, a repetition enforcing result in the style of
FWT is presented.

Theorem 33. Let u, v ∈ Σ+ such that |u| < |v|. Let f be an antimorphic per-
mutation of Σ and α = f i1(u)f i2(u) · · · f ik(u), β = f j1(v)f j2(v) · · · f jp(v) be
two words such that: k, p ≥ 3, jt �≡2 jt+1 for all 1 ≤ t ≤ p − 1, and the common
prefix of α and β is longer than 2|v| + |u|. Then there exists γ ∈ Σ+ such that
v, u ∈ {f i(γ) | 0 ≤ i ≤ 2ord(f)}+.

The second application shows that an extension of the LSE is repetition
enforcing.

Theorem 34. Let f be an antimorphic permutation of an alphabet Σ. Consider
the equation:

f i1(u) . . . f ir (u)f j1(v) . . . f js(v) = fk1(w) . . . fkt(w),

with r, s ≥ 3, t ≥ 6, and ip �≡2 ip+1 for 1 ≤ p ≤ r−1, jp �≡2 jp+1 for 1 ≤ p ≤ s−1,
kp �≡2 kp+1 for 1 ≤ p ≤ t − 1. Then there exists γ such that u, v, w ∈ {f i(γ) |
0 ≤ i ≤ 2ord(f)}+.

5 Further Directions

In this paper we presented a series of equations on words whose solutions are
necessarily repetitions under anti-/morphic permutations. The main problem
that still remains open is to characterise exactly the triples (r, s, t) for which the
equation

f i1(u) . . . f ir (u)f j1(v) . . . f js(v) = fk1(w) . . . fkt(w),

with f antimorphic permutation, has only solutions which are [f ]-repetitions.
While Theorem 21 shows that the classical result of Lyndon and Schützenberger
is preserved in the generalised case of morphic permutations, we expect that in
the case of antimorphic permutations the results obtained in [17] for restricted
case of antimorphic involutions should still hold.
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E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 265–277. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85238-4 21

5. Czeizler, E., Kari, L., Seki, S.: On a special class of primitive words. Theoret.
Comput. Sci. 411(3), 617–630 (2010)

6. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math.
Soc. 16, 109–114 (1965)
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