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Abstract. We study the set of finite words with zero palindromic defect,
i.e., words rich in palindromes. This set is factorial, but not recurrent.
We focus on description of pairs of rich words which cannot occur simul-
taneously as factors of a longer rich word.
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1 Introduction

In [14], Droubay, Justin and Pirillo observed that the number of distinct palin-
dromes occurring in a finite word w of length n does not exceed n + 1. This upper
bound motivated Brlek, Hamel, Nivat, and Reutenauer to define in [9] the notion
palindromic defect D(w) of a finite word w as the difference of the upper bound
n + 1 and the actual number of palindromic factors occurring in w. One can say
that the palindromic defect measures the number of “missing” palindromic factors
in the given word. A word with zero palindromic defect is usually shortly called rich
or full.

For an infinite word u the palindromic defect D(u) is naturally defined as the
supremum of the set {D(w) : w is a factor of u}. Many classes of words with the
defect zero have been found, for example Sturmian words, words coding symmet-
rical interval exchange and complementary symmetric Rote words (see [2,7,15]).

Palindromic defect is actively studied in the last decade. During these years
many nice properties of words with zero defect have been brought into light.
Some of them have been already proved, some of them are formulated as con-
jectures and are still open. Neither the basic question “What is the number of
rich words of a given length?” has been answered. This question is extremely
interesting as the set of rich words is a very naturally defined factorial language
which has superpolynomial and subexponential growth as was shown in [17] by
C. Guo, J. Shallit and A.M. Shur and in [30] by J. Rukavicka, respectively.

This article consists of three parts. In the first part, we present relevant
known results. In the last part we give a list of open questions connected to the
palindromic defect and we also recall a narrow connection to the well known
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conjecture of Hof, Knill, and Simon. The middle part contains a new result. It is
devoted to so-called compatible words, i.e., to the pairs of finite rich words which
can occur simultaneously as factors of a longer rich word. We believe that our
result may help to characterize words w with the following property: D(w) = 1
and D(u) = 0 for each proper factor u of w. A characterization of these words
seems to be the missing point in answering several open questions.

2 Preliminaries

2.1 Basic Notations and Definitions

Let A be a finite set, called an alphabet. Its elements are called letters. A finite
word w is an element of An for n ∈ N. The length of w is n and is denoted |w|.
The set of all finite words over A is denoted A∗. An infinite word over A is an
infinite sequence of letters from A.

A finite word w is a factor of a finite or infinite word v if there exist words p
and s such that v is a concatenation of p, w, and s, denoted v = pws. The word
p is said to be a prefix and s a suffix of v. The set of all factors of a word u is
the language of u and is denoted L(u). All factors of u of length n are denoted
by Ln(u).

An occurrence of w = w0w1 · · · wn−1 ∈ An in a word v = v0v1v2 . . . is an
index i such that vi · · · vi+n−1 = w. A factor w is unioccurrent in v if there is
exactly one occurrence of w in v. A complete return word of a factor w (in v)
is a factor f (of v) containing exactly two occurrences of w such that w is its
prefix and also its suffix. For instance, the word 010011010 is a complete return
word of 010.

The reversal or mirror mapping assigns to a word w ∈ A∗ the word w̃ with
the letters reversed, i.e.,

w̃ = wn−1wn−2 · · · w1w0 where w = w0w1 · · · wn−1 ∈ An.

A word is palindrome if w = w̃. We say that a language L ⊂ A∗ is closed under
reversal if for all w ∈ L we have w̃ ∈ L.

Given an infinite word u, its factor complexity Cu(n) is the count of its factors
of length n:

Cu(n) = #Ln(u) for all n ∈ N.

Let Pal(u) be the set of all palindromic factors of the infinite word u. The
palindromic complexity Pu(n) of u is given by

Pu(n) = #(Ln(u) ∩ P(u)) for all n ∈ N.

We omit the subscript u if there is no confusion.
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2.2 Fixed Points of Morphisms and Their Properties

A morphism ϕ is a mapping A∗ → B∗ where A and B are alphabets such that for
all v, w ∈ A∗ we have ϕ(vw) = ϕ(v)ϕ(w) (it is a homomorphism of the monoids
A∗ and B∗). Its action is extended to AN: if u = u0u1u2 . . . ∈ AN, then

ϕ(u) = ϕ(u0)ϕ(u1)ϕ(u2) . . . ∈ BN.

If ϕ is an endomorphism of A∗, we may find its fixed point, i.e., a word u
such that ϕ(u) = u. We are interested mainly in the case of u being infinite. A
morphism ϕ : A∗ → A∗ is primitive if there exists an integer k such that for
every a, b ∈ A the letter b occurs in ϕk(a).

Two morphisms ϕ,ψ : A∗ → B∗ are conjugate if there exists a word w ∈ B∗

such that

∀a ∈ A, ϕ(a)w = wψ(a) or ∀a ∈ A, wϕ(a) = ψ(a)w.

If ϕ is primitive, then the languages of fixed points of ϕ and ψ are the same.
A morphism ψ : A∗ → B∗ is of class P if ψ(a) = ppa for all a ∈ A where p

and pa are both palindromes (possibly empty). A morphism ϕ is of class P ′ if it
is conjugate to a morphism of class P .

The following examples illustrate the last few notions.

Example 1. Let ϕ : {a, b}∗ → {a, b}∗ be determined by ϕ :
a �→ abab,
b �→ aab.

The fixed

point of ϕ is

u = lim
k→+∞

ϕk(a) = abab
︸︷︷︸

ϕ(a)

aab
︸︷︷︸

ϕ(b)

abab
︸︷︷︸

ϕ(a)

aab
︸︷︷︸

ϕ(b)

abab
︸︷︷︸

ϕ(a)

. . .

The morphism ϕ is of class P ′ since it is conjugate to ψ given by ψ :
a �→ abab,
b �→ aba.

Indeed, we have abϕ(a) = ψ(a)ab and abϕ(b) = ψ(b)ab. To see that ψ is of class
P , i.e., it is of the form a �→ ppa and b �→ ppb, it suffices to set p = aba, pa = b
and pb = ε. The fixed point of ψ is

v = lim
k→+∞

ψk(a) = abab
︸︷︷︸

ψ(a)

aba
︸︷︷︸

ψ(b)

abab
︸︷︷︸

ψ(a)

aba
︸︷︷︸

ψ(b)

abab
︸︷︷︸

ψ(a)

. . .

We have L(u) = L(v).

Example 2. The two famous examples of infinite words, the Thue–Morse word
t and the Fibonacci word f , are both fixed points of a morphism.

The word t is fixed by the morphism ϕTM determined by ϕTM (0) = 01 and
ϕTM (1) = 10. Note that this morphism in fact has two fixed points, one being
the other one after replacing 0 with 1 and 1 with 0. The word t as given above
is the fixed points starting in 0.

The word f is fixed by the morphism ϕF defined by ϕF (0) = 01 and ϕF (1) = 0.

An (infinite) fixed point of a morphism of class P ′ clearly contains infinitely
many palindromes which is one motivation for this notion. Class P is introduced
in [19] in the context of discrete Schrödinger operators.
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3 The Study of Palindromic Defect

3.1 Characterizations of Words with the Zero Defect

We start by giving some of the known characterizations of infinite rich words.

Theorem 3. For an infinite word u with language closed under reversal the
following statements are equivalent:

1. D(u) is zero [9];
2. any prefix of u has a unioccurrent longest palindromic suffix [14];
3. for any palindromic factor w of u, every complete return word of w is a palin-

drome [16];
4. for any factor w of u, every factor of u that contains w only as its prefix and

w̃ only as its suffix is a palindrome [16];
5. for each n ∈ N we have C(n + 1) − C(n) + 2 = P(n) + P(n + 1) [11].

We generalized the previous theorem to infinite words with finite palindromic
defect, see [3,26]. In particular, we showed that an infinite word has a finite
palindromic defect D(u) if and only if the equality C(n+1)−C(n)+2 = P(n)+
P(n + 1) is valid for all n ∈ N up to finitely many exceptions. A surprising
observation that these exceptional indices allow to determine the value of the
palindromic defect was made by Brlek and Reutenauer. In [8] they proved for
infinite periodic words and conjectured for general words the following equality

2D(u) =
+∞
∑

n=0

(

Cu(n + 1) − Cu(n) + 2 − Pu(n + 1) − Pu(n)
)

. (1)

The conjecture was confirmed in [4] where we showed the following theorem.

Theorem 4. Equation (1) is true for any infinite word u whose language is
closed under reversal.

Besides these general properties, many examples of words with zero or finite
palindromic defect were found:

– In [12,27], another characterizations of rich words are given.
– In [13], the relation of rich words to so-called periodic-like words is exhibited.
– Links to another class of words, trapezoidal words, are shown in [24].
– Words coding symmetric interval exchange transformations are rich by [2].
– In [7], the authors show that words coding rotation on the unit circle with

respect to partition consisting of two intervals are rich.
– In [29], the authors show a connection of rich words with the Burrows–

Wheeler transform.
– In [32], we show that morphic images of episturmian words, a known class of

rich words, produces a word with finite palindromic defect.
– The articles [20,28,31] exhibit more examples of words with finite palindromic

defect (along with some examples of words with finite generalized palindromic
defect).
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3.2 Palindromic Defect of Fixed Points of Morphisms

We now focus on words that are fixed by a morphism with the assumption
that their language is closed under reversal. The main motivation to study their
palindromic defect is the following conjecture.

Conjecture 5 (Zero defect conjecture [6]). Let u be an aperiodic fixed point of a
primitive morphism having its language closed under reversal. We have D(u) = 0
or D(u) = +∞.

The Thue–Morse word t and the Fibonacci word f are examples of aperiodic
fixed points of a primitive morphism (see Example 2) having their language
closed under reversal. We have D(f) = 0 and D(t) = +∞.

Counterexamples to the conjecture were given in [1,10]. Thus, the current
statement of the conjecture is not true. There still might some refinement of
the current statement that is valid as there are many witnesses and the found
counterexamples seem to have some specific properties. Indeed, in [22] we prove
that the conjecture is true for a special class of morphisms. A morphism ϕ is
marked if there exists two morphisms ϕ1 and ϕ2, both being conjugate to ϕ,
such that

{last letter of ϕ1(a) : a ∈ A} = {first letter of ϕ2(a) : a ∈ A} = A.

In other words, the set of the last letters of the images of letters by ϕ1 is the
whole alphabet A and the set of the first letters of the images of letters by ϕ2 is
also the whole alphabet A.

For instance, ϕ = ϕTM : 0 �→ 01, 1 �→ 10 is marked (here ϕ = ϕ1 = ϕ2). For
ϕ = ϕF : 0 �→ 01, 1 �→ 0 we have ϕ = ϕ1 and ϕ2 : 0 �→ 10, 1 �→ 0. Thus, ϕF is
also marked.

If a morphism ϕ is conjugate to no other morphism except for ϕ itself, then
we say that ϕ is stationary. In other words, a morphism ϕ is stationary if the
longest common prefix and the longest common suffix of ϕ-images of all letters
are both empty words.

In [22] we show the following theorems:

Theorem 6. Let ϕ be a primitive marked morphism and let u be its fixed point
with finite palindromic defect. If all complete return words of all letters in u are
palindromes or ϕ is not stationary, then D(u) = 0.

Moreover, the binary alphabet allows for all of the assumptions to be
dropped:

Theorem 7. If u ∈ AN is a fixed point of a primitive morphism over binary
alphabet and D(u) < +∞, then D(u) = 0 or u is periodic.

We thus confirm that for a large class of fixed points of morphisms, their
palindromic defect is either zero or infinite.
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3.3 Enumeration of Rich Words

Let Rd(n) denote the number of rich words of length n over an alphabet with
d elements. As we have already mentioned, there is no closed-form formula
for Rd(n).

In [34], Vesti gives a recursive lower bound on Rd(n) and an upper bound on
R2(n). Both these estimates seem to be very rough.

In [17], Guo, Shallit and Shur constructed for each n a large set of binary rich
words of length n. They show that for any two sequences of integers 0 ≤ n1 ≤
n2 ≤ · · · ≤ nk and 0 ≤ m1 ≤ m2 ≤ · · · ≤ mk satisfying n =

∑k
i=1 nk +

∑k
i=1 mk,

the word an1bm1an1bm1 · · · ankbmk of length n is rich. This construction gives,
currently, the best lower bound on the number of binary rich words, namely
R2(n) ≥ C

√
n

p(n) where p(n) is a polynomial and the constant C ∼ 37. They also

conjectured that R2(n) = Θ
(

n
g(n)

)

√
n

for some infinitely growing function g(n).
The best upper bound is provided by Rukavicka in [30]. He shows that Rd(n)

has a subexponential growth on any alphabet. More precisely, for any cardinal-
ity d of the alphabet lim

n→∞
n
√

Rd(n) = 1. The result uses a specific factorization

of a rich word into distinct rich palindromes, called UPS-factorization (Unioc-
current Palindromic Suffix factorization).

4 Compatible Pairs

The set of rich words is a factorial language but it is not recurrent. Let us recall
that a language L ⊂ A∗ is recurrent if for any two words u, v ∈ L there exists
w ∈ L such that u is a prefix of w and v is a suffix of w. Using results of Glen
et al. [16], Vesti in [34] formulated a sufficient condition which prevents two rich
words u, v to be simultaneously factors of another rich word. His proposition uses
the notion of longest palindromic suffix of a factor u, denoted lps(u) and longest
palindromic prefix of a factor u, denoted lpp(u). We say that two finite words
are compatible if there exists a rich words having these two words as factors.

Proposition 8. Let u and v be two words such that

u �= v, u, v rich, lpp(u) = lpp(v) and lps(u) = lps(v). (2)

If a word w contains factors u and v, then w is not rich, i.e., u and v are not
compatible.

We give an example which demonstrates that a word w can be non-rich
without containing factors u and v satisfying (2).

Example 9. Consider the word w = 11010011, which is not rich. In fact, it is a
factor of the Thue–Morse word. As pointed out in [5], the length 8 is the shortest
length of a non-rich binary word.

Table 1 depicts all non-empty rich factors u of w together with the pairs
(lpp(u), lps(u)). The map u �→ (lpp(u), lps(u)) is injective. In other words, no
pair of factors u, v of the non-rich word w = 11010011 satisfies (2).
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Table 1. All non-empty rich factors u of w from Example 9 together with the pairs
(lpp(u), lps(u)).

Let us formulate another sufficient condition for non-richness of a word w.

Proposition 10. Let u and v be two words satisfying

u �= ṽ, u, v rich, lps(u) = lpp(v) and lps(v) = lpp(u). (3)

If a word w contains factors u and v, then w is not rich.

Proof. First we show (by contradiction) that the assumption (3) gives

u, ũ /∈ L(v) ∪ L(ṽ) and v, ṽ /∈ L(u) ∪ L(ũ). (4)

As the roles of v and u are symmetric, we have to discuss the following two cases:

(1) u ∈ L(v):
As v is rich, lps(v) is unioccurrent in v. Since lps(v) = lpp(u), we have that
lpp(u) occurs only as a suffix of v. Since u ∈ L(v), necessarily u = lpp(u) and
thus u is a palindrome. It follows that u = lps(u) = lpp(v) = lps(v). Richness
of v implies that lpp(v) and lps(v) are unioccurrent in v and consequently
v is a palindrome satisfying v = lpp(v) = u = ũ, which is a contradiction.

(2) ũ ∈ L(v):
Since lps(v) = lps(ũ) is unioccurrent in v, we have that ũ occurs only as a
suffix of v. Similarly, as lpp(v) = lpp(ũ) is unioccurrent in v, we get that ũ
occurs only as a prefix of v. It implies v = ũ, which is again a contradiction.

Obviously, the assumption (3) implies that u and v are not palindromes.
To prove the proposition itself (again by contradiction), we assume that w is

rich and let f denote the shortest factor of w such that f contains as its factor
u or ũ and f contains as its factor v or ṽ. Without loss of generality and due to
(4), we have to discuss the following two cases:
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(1) u is a proper prefix and v is a proper suffix of f :
The word lps(f) is not longer than v; otherwise, we obtain a contradiction
with the choice of f as the shortest factor with the given property. Thus
lps(f) = lps(v). Similarly, lpp(f) = lpp(u). It means that lps(f) is not
unioccurrent in f—a contradiction.

(2) u is a proper prefix and ṽ is a proper suffix of f :
By the same argument as before, lps(f) = lps(ṽ) = lpp(v). It means that
lpp(v) = lps(u) occurs as a suffix of f and also as a suffix of u. Since u
is a proper prefix of f , the factor lpp(v) = lps(f) occurs in f twice—a
contradiction with the richness of f .

Example 11. We consider again the non-rich word w = 11010011. It contains
the factors u = 11010, v = 010011 such that lpp(u) = 11 = lps(v) and lps(u) =
010 = lpp(v). Also the pairs u′ = 1101001, v′ = 10011 and u′′ = 110100,
v′′ = 0011 satisfy (3).

We show that a pair of factors with the property (3) occurs in each non-rich
word.

Proposition 12. If w be is a non-rich word, then w has two factors u and v
such that

u �= ṽ, u, v rich, lps(u) = lpp(v) and lps(v) = lpp(u).

Proof. As w is not rich, it contains a complete return word r to a palindrome p
such that r is not a palindrome. Let r be the shortest non-palindromic return
word in w to a palindrome. Denote by t the first letter of r and find the longest
q such that tq is a prefix of r and q̃t is a suffix of v. Clearly, p is a prefix of tq
and p is a suffix of q̃t. Let us denote x and y the letters such that tqx is a prefix
of r and yq̃t. Obviously, x �= y.

– If q is empty, then r is a non-palindromic complete return word to the letter
t, i.e., the letter t does not occur in the factor f given by r = tft, i.e.,
f = t−1rt−1. Choose z ∈ {x, y} such that z �= t and put
u := the shortest prefix of r which ends with the letter z and
v := the shortest suffix of r which starts with the letter z.

In particular, both letters z and t are unioccurrent in u and also in v. It
means that lpp(u) = t = lps(v) and lps(u) = z = lpp(v). One of the words u
and v has length 2 and the second one is longer than 2. It implies that u �= ṽ.

– Let us assume that q �= ε. The word f = t−1rt−1 has a prefix qx and a suffix
yq̃. First we show

Claim: Occurrences of q and q̃ in f alternate and moreover each factor of f
starting with q and ending with q̃ without other occurrences of q and q̃ is a
palindrome.

Proof of the claim: Let w′ be arbitrary suffix of f such that |w′| > |q̃| and w′

has a prefix q. Clearly, f has a suffix q̃ and thus q̃ is a suffix of w′ as well. Let us
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denote p′ = lpp(q). Since q is rich, p′ is unioccurrent in q. But p′ occurs in w′ at
least twice, as q̃ is a suffix of w′. Let us denote r′ a complete return word to p′

in w′. From minimality of r, the complete return word r′ to p′ is a palindrome.
Therefore, w′ has prefixes p′, q and r′, their lengths satisfy |p′| ≤ |q| < |r′|. It
implies that q̃ is a suffix of the palindrome r′ and thus the first occurrence of q
in w′ is followed by the occurrence of q̃.

Since f is not a palindrome, the previous claim implies that q and q̃ occur also
as inner factors of f . It means that there exists a palindromic factor, say w′′,
of the word f such that q̃ is a prefix and q is a suffix of w′′ and |w′′| > |q|. Let
z denote the letter satisfying that q̃z is a prefix of w′′. Obviously, zq is a suffix
of w′′. Let us stress that z �= t, otherwise r would not be a complete return
word to the palindrome p. The letter z enables us to identify the factors v and
u announced in the proposition. Put

u := the shortest prefix of r = tft which ends with q̃z
v := the shortest suffix of r = tft which starts with zq.

To prove lpp(u) = lps(v), we apply the simple observation: If a word s′ is a prefix
of a word s and lpp(s) is a prefix of s′, then lpp(s) = lpp(s′).

In our situation: p = lpp(r) = lpp(u). Analogously, p = lps(r) = lps(v).
To show lps(u) = lpp(v), we use a simple consequence of the claim: Any

occurrence of �q in r, where � is a letter with � �= t, is preceded with an occurrence
of q̃�. Therefore, our definition of u guarantees that lps(u) is not longer than q̃z,
i.e., lps(u) = lps(q̃z). By the same reason, lpp(v) = lpp(zq). As lpp(zq) =
lps(q̃z), the equality lps(u) = lpp(v) is proven.

Obviously, u �= ṽ. Otherwise, we have a contradiction with the assumption
that tq is the longest prefix of r such that q̃t is a suffix of r.

The last proof has an interesting direct consequence on a binary alphabet. It
is based on the fact that the case q = ε is not possible on a binary alphabet and
the second case implies that q is not a palindrome. We state this consequence of
the construction in the second case as the following corollary.

Corollary 13. Let w ∈ {0, 1}∗ be a binary word. The word w is not rich if and
only if there exists a non-palindromic word q such that

0q0, 1q1, 0q̃1, 1q̃0 ∈ L(w).

5 Open Questions and Related Problems

We finish this article with a list of open questions that we deem important in
further understanding of the structure of rich words (and more generally, words
with finite palindromic defect).

– The subexponential upper bound on the number of rich words Rd(n) of length
n over d letters is based on the statement that any rich word of length n can
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be factorized into at most c n
lnn distinct palindromes. In fact, the number of

palindromes is exaggerated, as the factorization does not take into considera-
tion that each of the palindromes is rich as well. Any asymptotic improvement
of the bound c n

lnn would improve the upper bound on Rd(n).
– To our knowledge, there are no result on morphisms preserving the set of rich

words. Such a class of morphisms preserving richness would allow to construct
a set of class other than the set constructed in [17] to obtain a lower bound on
R2(n). In particular, any fixed point of a primitive morphism which preserves
the set of rich words must be rich as well. In this point of view the following
question is also important.

– Theorem 6 confirms the validity of the zero defect conjecture only for marked
morphisms ϕ satisfying the following assumption: all complete return words
of all letters in u are palindromes or ϕ is not stationary. We have no example
that this peculiar assumption is really needed.

– We do not know how to decide whether two rich words u and v are factors
of a common rich word w. The related task is to identify a minimal non-rich
word, i.e., to look for a word which is not rich but any its proper factor is
rich.

Primitive morphisms that preserve the set of rich words are included in a
larger set of morphisms having infinitely many palindromic factors in their fixed
points. An infinite word having infinitely many palindromic factors is usually
called palindromic. A very useful property of morphisms in this larger set is
given by the following conjecture.

Conjecture 14 (Class P conjecture [19]). Let u be a palindromic fixed point of
a primitive morphism ϕ. There exists a morphism of class P ′ such that its fixed
point has the same language as u.

The original statement of the conjecture in [19] is ambiguous and allows
for more interpretations, see also [21] or [18]. The above given statement of
Conjecture 14 follows from two results. First, for binary alphabet the question
is solved by B. Tan in [33]: if a fixed point of a primitive morphism ϕ over a
binary alphabet contains infinitely many palindromes, then ϕ or ϕ2 is of class P ′.
Second, in [23], S. Labbé shows that the analogy of the previous result cannot be
generalized for multiliteral alphabet: there exists a word w over ternary alphabet
which is a palindromic fixed point of a primitive morphism and not being fixed
by any morphism of class P ′. However, the authors of [18] note that the language
of the word w may indeed be generated by a morphism of class P .

At this moment only partial answers to Conjecture 14 are known: as already
mentioned, the binary case is solved ([33]); for larger alphabets an affirmative
answer is provided only for some special classes of morphisms.

In [25], we confirm the conjecture for morphisms fixing a codings a non-
degenerate exchange of 3 intervals. In [21], the authors prove the validity of
the conjecture for marked morphisms. Moreover, they show that a power of the
marked morphism itself is in class P ′. The technique and results used in the



On Words with the Zero Palindromic Defect 69

proofs of the latter fact is crucial in showing the defect conjecture for marked
morphisms in [22].

Palindromicity of a fixed point u is linked to the symmetry of the language
L(u), namely the closedness under reversal. One direction of this connection is
trivial: If a fixed point of a primitive morphism contains infinitely many palin-
dromes, then its language is closed under reversal. The non-trivial converse is
shown in [21] for marked morphisms. The mentioned results and computer exper-
iments lead to the formulation of the following conjecture.

Conjecture 15. Let ϕ : A∗ → A∗ be a primitive morphism having a fixed point u.
Its language L(u) is closed under reversal if and only if u is palindromic.

A proof in full generality of this conjecture has applications in algorithmic
analysis of the language of a given morphism. Specifically, it allows for an efficient
test whether the language of a fixed point is closed under reversal. For marked
primitive morphisms, such an algorithm may be devised based on the following
results of [21]:

1. Every marked morphism has a so-called well-marked power (see [21] for a
definition). If the fixed point of the morphism is palindromic, then this power
is of class P ′.

2. Conjecture 15 is true for marked morphisms.

Overall, closedness under reversal of the language generated by a marked primi-
tive morphism is equivalent to palindromicity of the language which is equivalent
to the well-marked power being in class P ′. Therefore, given a marked primitive
morphism, the test whether the language it generates is closed under reversal
consists of find the well-marked power and checking if this power is in class P ′.
Since both these tasks can be performed efficiently in a straightforward manner,
the whole test can be easily executed.

In the view of this special case, Conjecture 15 may be seen as a first step to
provide an efficient test of closedness under reversal for the language generated
by any primitive morphism for which the class P conjecture holds.
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2. Baláži, P., Masáková, Z., Pelantová, E.: Factor versus palindromic complexity of

uniformly recurrent infinite words. Theoret. Comput. Sci. 380(3), 266–275 (2007)
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