
A de Bruijn Sequence Construction
by Concatenating Cycles of the Complemented

Cycling Register

Daniel Gabric and Joe Sawada(B)

University of Guelph, Guelph, Canada
{dgabric,jsawada}@uoguelph.ca

Abstract. We present a new de Bruijn sequence construction based
on co-necklaces and the complemented cycling register (CCR). A co-
necklace is the lexicographically smallest string in an equivalence class of
strings induced by the CCR. We prove that a concatenation of the cycles
of the CCR forms a de Bruijn sequence when the cycles are ordered in
colexicographic order with respect to their co-necklace representatives.
We also give an algorithm that produces the de Bruijn sequence in O(1)-
time per bit. Finally, we prove that our construction has a discrepancy
bounded above by 2n.

1 Introduction

Let B(n) be the set of binary strings of length n. It is well known that the pure
cycling register, which takes a binary string and outputs its first bit, partitions
B(n) into equivalence classes under rotation. The lexicographically smallest rep-
resentative of each equivalence class is called a necklace. For n = 5, the eight
necklace equivalence classes are listed in columns as follows:

00000 00001 00011 00101 00111 01011 01111 11111.
00010 00110 01010 01110 10110 11110
00100 01100 10100 11100 01101 11101
01000 11000 01001 11001 11010 11011
10000 10001 10010 10011 10101 10111

The first string in each equivalence class is its necklace representative and the
necklaces are listed from left to right in lexicographic order. For each equivalence
class, observe that the string obtained by concatenating the first bit from each
string yields the longest aperiodic prefix of the necklace representative. Now
consider the string of length 25 = 32 obtained by concatenating these highlighted
bits (top down, then left to right):

0 00001 00011 00101 00111 01011 011111.

Amazingly, when considered cyclicly, this constructed string contains every
string in B(5) as a substring exactly once. Strings with this property for a given
n are called de Bruijn sequences.
c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 49–58, 2017.
DOI: 10.1007/978-3-319-66396-8 6

50 D. Gabric and J. Sawada

In this paper, we show a similar property with respect to the complemented
cycling register (CCR), which takes a binary string and outputs the complement
of the first bit. The CCR partitions B(n) into equivalence classes of size up to
2n. We call the lexicographically smallest string in each such equivalence class
a co-necklace. For n = 5, the four co-necklace equivalence classes are listed in
columns as follows:

00000 00010 00100 01010
00001 00101 01001 10101.
00011 01011 10011
00111 10111 00110
01111 01110 01101
11111 11101 11011
11110 11010 10110
11100 10100 01100
11000 01000 11001
10000 10001 10010

Observe that the co-necklace representative is positioned at the top of each
class, and the classes are ordered in lexicographic order with respect to the co-
necklaces. Within each equivalence class, each successive string is a left rotation
of the string above it after complementing the final bit. For each equivalence
class, let α denote the co-necklace and observe that the string obtained by con-
catenating together the first bit from each string yields the longest aperiodic
prefix of αα, where α denotes the complement of α. We call such a string a cycle
of the CCR. Consider the string obtained by concatenating these cycles of the
CCR (top down, then left to right):

0000011111 0001011101 0010011011 01.

This string is not a de Bruijn sequence since it contains the substring 11010 twice.
It also contains the substring 10100 twice and is missing 01010 and 10101. How-
ever, observe what happens if we list the equivalence classes in colexicographic
order with respect to the co-necklace representatives. This listing is obtained
by swapping the second and third classes from the previous lexicographic order
example. Using this colexicographic order and concatenating the CCR cycles
together yields the following de Bruijn sequence

0000011111 0010011011 0001011101 01.

Main result: The main result of this paper is to provide a simple proof that
this construction using co-necklaces and CCR cycles, for arbitrary n, yields a de
Bruijn sequence. We provide an algorithm to generate the co-necklaces of length
n in colexicographic order that runs in O(n)-amortized time per string. This
allows us to generate the de Bruijn sequence in O(1)-time per it. Additionally, we

A de Bruijn Sequence Construction by Concatenating Cycles 51

demonstrate that the constructed de Bruijn sequences have a very nice property:
they have discrepancy bounded above by 2n.

In the next subsection, we provide some history of de Bruijn sequence con-
structions and the complemented cycling register. Then in Sect. 2, we present
formal definitions of our key objects and notation. In Sect. 3, we prove our main
result which includes implementation details and an analysis. Finally in Sect. 4
we discuss an interesting property of our constructed de Bruijn sequences.

1.1 History

The lexicographic necklace concatenation approach was first presented by
Fredricksen and Maiorana [11]. An algorithm to generate necklaces in lexico-
graphic order [13] was shown to run in O(1)-amortized time per necklace [19]
which means the corresponding de Bruijn sequence can be generated in O(1)-
amortized time per bit. Rather surprisingly, it was only recently discovered that
a similar algorithm works for necklaces in colexicographic order [6]. Since neck-
laces can also be generated in colexicographic order in O(1)-time [21], the cor-
responding de Bruijn sequence can also be generated in O(1)-amortized time
per bit.

Other methods for generating de Bruijn sequences of order n include greedy
approaches and successor-based approaches. A major drawback of the greedy
approaches [2,7,10,17] is they all require an exponential amount of space. The
first successor-rule based approach was by Fredricksen [12] for the lexicograph-
ically smallest de Bruijn sequence, which also happens to be equivalent to
the lexicographic necklace concatenation approach. Additional successor based
approaches [8,9,16] generate de Bruijn sequences requiring O(n2)-time per bit.
In particular, the constructions by Etzion [9] and Huang [16] are also based on
the CCR. A more recent construction [20] based on the PCR requires O(n)-time
to compute each successive bit, and an optimization allows the entire sequence
to be generated in O(1)-amortized time per bit.

There is a well known correspondence between co-necklaces of order n and
necklaces of order n that contain an odd number of 1s. A discussion from [4]
describes how representatives from these equivalence classes can be generated in
O(1)-amortize time per string. However, there is no efficient algorithm known
to generate the lexicographically smallest representatives, the co-necklaes, in
either lexicographic or colexicographic order. The enumeration sequence for co-
necklaces A000016 was one of the first listed in the Online Encyclopedia of
Integer Sequences [1].

2 Background and Definitions

A necklace is the lexicographically smallest string in an equivlance class of strings
under rotation. Let α be the complement of the string α. We say that α is a co-
necklace if αα is a necklace. Let coneck(α) denote the set containing all length
n substrings of the circular string αα. For example,

coneck(00000) = {00000, 00001, 00011, 00111, 01111, 11111, 11110, 11100, 11000, 10000}.

52 D. Gabric and J. Sawada

Let coN(n) be the set of all co-necklaces of length n, so coN(5) =
{00000, 00010, 00100, 01010}. Clearly every distinct coneck set contains a co-
necklace, which is it’s lexicographically least element. It is also well known that
{coneck(α) | α ∈ coN(n)} is a partition of B(n) [4,9,15,18]. The number of
co-necklaces of length n is the same as the number of cycles of the CCR (with
respect to n) as well as the number of necklaces of length n with an odd number
of 1s and is given by the formula [14]

|coN(n)| =
1
2n

∑

odd d|n
φ(d)2n/d, (1)

where φ is Euler’s totient function.
Given a non-empty subset S of B(n), a universal cycle for S is a sequence of

length |S| that contains every string in S as a substring exactly once when the
string is viewed circularly. A universal cycle is a de Bruijn sequence in the case
that S = B(n).

The aperiodic prefix of α denoted by ap(α) is the shortest prefix
a1a2 · · · ai, i ∈ {1, 2, . . . , n} such that α = (a1a2 · · · ai)

n
i . We say α is periodic if

|ap(α)| < |α| and is aperiodic if |ap(α)| = |α|.
Lemma 1. If α = a1a2 · · · an is a binary string and αα is periodic, then |αα|

|ap(αα)|
is odd.

Proof. The proof is by contradiction. Assume αα is periodic and |αα|
|ap(αα)| = 2k

is even. Then αα = (ap(αα))2k = (ap(αα))k(ap(αα))k = αα, a contradiction. ��
Lemma 2. If α = a1a2 · · · an is a binary string and β = ap(αα), then β =
a1a2 · · · aia1a2 · · · ai for some 1 ≤ i ≤ n.

Proof. If αα is aperiodic, then β = αα = a1a2 · · · ana1a2 · · · an. If αα is periodic,
then ap(αα) = a1a2 · · · aj for some j ≤ n and by Lemma 1 the value j must be
even and αα = (a1a2 · · · aj)2k+1 = (a1a2 · · · aj)k(a1a2 · · · aj)(a1a2 · · · aj)k. Thus,
it follows that a1a2 · · · aj/2 = aj/2+1 · · · aj−1aj . ��

Let α = a1a2 · · · an and β = b1b2 · · · bn be two distinct binary strings of equal
length. Then α comes before β in colexicographic (colex) order if ai < bi for the
largest i where ai �= bi.

Lemma 3. If α = a1a2 · · · an and β = b1b2 · · · bn are consecutive co-necklaces
in colex order, where α comes before β and j is the smallest index where bj = 1,
then aj+1aj+2 · · · an = bj+1bj+2 · · · bn.

Proof. The proof is by contradiction. Suppose aj+1aj+2 · · · an �= bj+1bj+2 · · · bn.
Then there exists some largest i > j such that ai �= bi. Since α comes before
β in colex order, ai = 0 and bi = 1. However, since β is a co-necklace, then
γ = 0i−11bi+1bi+2 · · · bn will also be a co-necklace, since 0i is the largest run of
0’s in γ. But this means γ comes between α and β in colex order, which is a
contradiction. Thus aj+1aj+2 · · · an = bj+1bj+2 · · · bn. ��

A de Bruijn Sequence Construction by Concatenating Cycles 53

3 de Bruijn Sequence Construction

In this section we present a de Bruijn sequence construction obtained by concate-
nating the cycles of the CCR. The construction generalizes to produce universal
cycles for certain subsets of B(n).

Let α1, α2, . . . , αm be the first m co-necklaces of length n in colex order. Let

Um,n = ap(α1α1)ap(α2α2) · · · ap(αmαm).

When m = |coN(n)|, let DBn = Um,n.

Theorem 4. Let α1, α2, . . . , αm be the first m co-necklaces of order n
in colex order, where m ≥ 1. Then Um,n is a universal cycle for⋃m

k=1 coneck(αk) and αm is a suffix of Um,n.

Proof. The proof is by induction. In the base case when m = 1, α1 = 0n.
Clearly ap(α1α1) = 0n1n is a universal cycle that contains all the strings
in coneck(0n), and α1 = 1n is its suffix. For m ≥ 1, assume Um,n is
a universal cycle for

⋃m
k=1 coneck(αk) with suffix αm. Consider Um+1,n =

Um,nap(αm+1αm+1), where αm = a1a2 · · · an and αm+1 = 0j1bj+2bj+3 · · · bn

where j + 1 is the smallest index where bj+1 = 1. Let β = ap(αm+1αm+1) =
0j1bj+2bj+3 · · · b|β|. First we show that αm+1 is a suffix of Um+1,n. If αm+1αm+1

is aperiodic, then by definition αm+1 is a suffix of Um+1,n. If αm+1αm+1

is periodic, we know that αm appears as a suffix of Um,n by the inductive
hypothesis. Also by Lemma 3 we see that aj+2aj+3 · · · an = bj+2bj+3 · · · bn,
and this implies that a suffix of αm is (b1b2 · · · b|β|)k where αm+1αm+1 =
(b1b2 · · · b|β|)2k+1 (a result of Lemma 1). Lemma 2 tells us that αm+1 is a
suffix of αmβ = (b1b2 · · · b|β|)k+1, so αm+1 is a suffix of Um+1,n. Now
we prove that Um+1,n is a universal cycle for

⋃m+1
k=1 coneck(αk). By the

inductive hypothesis, Um+1,n will contain all the strings in
⋃m

k=1 coneck(αk)
except for possibly the strings {a2a3 · · · an0, a3a4 · · · an00, . . . , an0n−1} which
were involved in the wraparound. First, we show they still exist as sub-
string in the cyclic Um+1,n By Lemma 3, aj+2aj+3 · · · an = bj+2bj+3 · · · bn.
Because we already showed that αm+1 is a suffix of Um+1,n, this implies
that each string in {aj+2aj+3 · · · an0j+1, aj+3aj+4 · · · an0j+2, . . . , an0n−1} occurs
as a substring in the wrap-around of the cyclic Um+1,n. Furthermore,
the strings {a2a3 · · · an0, a3a4 · · · an00, . . . , aj+1 · · · an0j} exist within Um+1,n

because β has prefix 0j . Finally, we show that all strings in coneck(αm+1)
occur as a substring in Um+1,n. Those that are not trivially substrings
of β occur either in the wrap-around or have their prefix as a suffix in
Um,n and suffix in a prefix of β. The latter case covers each string in
{bj+2bj+3 · · · bn0j1, bj+3bj+4 · · · bn0j1bj+2, . . . , bx+1 · · · bn0j1bj+2 · · · bx}, where
x = n if |β| > n and x = |β| otherwise. Since the length n suffix of Um+1,n

54 D. Gabric and J. Sawada

is αm+1 = b1b2 · · · bn, and α1 = 0n, the strings {1j−10bj+2 · · · bn0, 1j−20
bj+2 · · · bn00 . . . , 0bj+2 · · · bn0j} occur in the wraparound of Um+1,n. Thus, every
string in

⋃m+1
k=1 coneck(αk) appears as a substring in the cyclic string Um+1,n.

Therefore since the length of Um+1,n is equal to |⋃m+1
k=1 coneck(αk)|, Um+1,n is

a universal cycle for
⋃m+1

k=1 coneck(αk). ��
Corollary 5. DBn is a de Bruijn sequence of order n.

3.1 Efficient Implementation

In order to construct DBn, we must first generate co-necklaces in colex order.
A näıve algorithm will consider all strings α ∈ B(n) in colex order and test if
αα is a necklace. Such a necklace test can be computed in O(n)-time [3]. Since
there are Θ(2n/n) co-necklaces of length n by Eq. 1 this approach will result in
each co-necklace being generated in O(n2)-amortized time. We will present an
algorithm that improves this method by a factor of n.

Our strategy is to apply a standard recursive algorithm to generate strings
in colex order, building the global string α = a1a2 · · · an from right to left one
bit at a time. Such an algorithm is given in Algorithm1 with the following
modifications optimized for co-necklace generation.

– Keep track of the length of the current run of 0s in the parameter curZero.
– Keep track of the longest substring of the form 0∗ in the parameter maxZero.
– Terminate the recursion when the length of the remaining prefix of α to be

completed, given by parameter t, is less than or equal to maxZero. This is
because a longest run of 0s must be at the start of any co-necklace.1 The
algorithm can be further optimized by keeping track of the current run of the
form 1∗. At this point, the prefix a1a2 · · · at is set to 0t and then we test if
αα is a co-necklace using the boolean function IsNecklace.

The function Print outputs the string passed as input and the function Max
returns the larger of its two integer inputs. After initializing an = 0, since all
co-necklaces end with 0, the initial call to generate all co-necklaces of length n
is GenerateConeck(n − 1, 1, 1).

Algorithm 1. An algorithm to generate all co-necklaces of length n in colex
order.

1: procedure GenerateConeck(t, curZero, maxZero)
2: if t ≤ maxZero then
3: a1a2 · · · at ← 0t

4: if IsNecklace(αα) then Print(αα)

5: else
6: at ← 0
7: GenerateConeck(t − 1, curZero + 1, Max(curZero + 1, maxZero))
8: at ← 1
9: GenerateConeck(t − 1, 0, maxZero)

1 Because a longest run of the form 0∗ or 1∗ must be at the start of a co-necklace, the
algorithm can be further optimized by keeping track of the longest current run of
the form 1∗. However, it will not affect the asymptotic analysis.

A de Bruijn Sequence Construction by Concatenating Cycles 55

Recall that IsNecklace can be implemented in O(n)-time and also note
that setting the prefix a1a2 · · · at also requires at most O(n)-time. Thus, since the
recursion always has a branch factor of two, the total work done by the algorithm
will be O(n) times the number of strings α generated before the necklace test.
An example computation tree for n = 6 is shown in Fig. 1. Each such string
α = a1a2 · · · an is constructed to have a longest run of 0s at the start of the
string and an = 0. Now observe that ana1a2 · · · an−1 is the prefix of a necklace
(called a prenecklace). In particular, ana1a2 · · · an−1 is clearly a necklace since
the longest number of 0s occurs uniquely at the start of the string. The number of
prenecklaces of length n is known to be Θ(2n/n) [4], which in turn is proportional
to the number of co-necklaces of length n as mentioned earlier. Thus, the total
work done by the algorithm is bounded by O(n) times the number of co-necklaces
of length n.

0

0 1

1 10 0

0 0 01 1 1

10 0 10 1

= a6

011110001110010110000110011010001010000010001100000100000000

Fig. 1. Computation tree for GenerateConeck for n = 6. Observe that the six co-
necklaces in coN(6) are listed in colex order: 000000, 000100, 001100, 000010, 001010,
000110.

Theorem 6. The set of all co-necklaces of length n can be listed in colex order
in O(n)-amortized time per string.

To apply the algorithm GenerateConeck to construct DBn, we only need
to determine p = |ap(αα)| for each co-necklace α, then pass a1a2 · · · ap to the
function Print instead of αα. A complete C implementation to generate DBn

is provided in the appendix. Since the value p can be computed in O(n) time,
we obtain the following corollary.

56 D. Gabric and J. Sawada

Corollary 7. The de Bruijn sequence DBn can be constructed in O(1)-
amortized time per bit.

It remains an open problem to generate co-necklaces in colex (or lexico-
graphic) order in O(1)-amortized time per string.

4 Discrepancy

In this section we focus on a measure studied by Cooper and Heitsch [5] known
as the discrepancy of a de Bruijn sequence. In particular, they show that the
discrepancy of the lexicographically smallest de Bruijn sequence, which happens
to be obtained via the necklace concatenation approach discussed earlier, is
Θ(2

n log n
n).

Let α be a binary string. Let diff (α) denote the absolute difference between
the number of 1s and number of 0s in α. Thus diff (011011) = 2 because there are
four 1s and two 0s, and the absolute difference is 2. The discrepancy of α, denoted
D(α), is defined to be the maximum value of diff (β) over all substrings β of α.
For example, the discrepancy of 101001110110 is 4 because diff (111011) = 4 and
111011 is a substring that results in the maximal difference.

Theorem 8. For all n ≥ 1, n ≤ D(DBn) < 2n.

Proof. Clearly n is the lower bound for the discrepancy of any de Bruijn
sequence, since they all must contain the substring 0n. All substrings contained
within ap(αα) for a co-necklace α clearly have difference less than n, unless
α = 0n in which case the difference is n. Any other substring will be of the form

σ ap(αiαi) ap(αi+1αi+1) · · · ap(αjαj)τ

for some i ≤ j where σ is a suffix of ap(αi−1αi−1) and τ is a prefix of
ap(αj+1αj+1). Thus since diff (ap(αα)) = 0, the difference of the substring must
be less than 2n. ��

In fact, D(DBn) approaches 2n as n gets large. Consider the substring of
DBn starting from α1 = 1n and ending with αj = 0i(1i−10)r where i(r+1) = n.
Note that αj is a co-necklace and αjαj is aperiodic, so such a substring exists.
The difference of the string between this prefix and suffix is 0, as outlined in
the proof of Theorem 8. Thus, the difference of the entire substring is given by
n + diff (αj) since αj has more 1s than 0s. Since diff (αj) = r(i − 1) − r − i, by
solving for r = n/i − 1 we get diff (αj) = i−2

i (n) − 2i + 2. Thus considering i to
be any constant, as n goes to infinity D(DBn) approaches n + i−2

i n.

A de Bruijn Sequence Construction by Concatenating Cycles 57

Appendix - C Code

#include <stdio.h>

#define MAX(a,b) (a)>(b)?(a):(b)

int N,b[1000];

//---

// Returns 0 if string is not necklace, and index of

// longest aperiodic prefix if is necklace

//---

int IsNecklace(int b[], int n) {

int i, p=1;

for (i=2; i<=n; i++) {

if (b[i-p] > b[i]) return 0;

if (b[i-p] < b[i]) p = i;

}

if (n % p != 0) return 0;

return p;

}

void Gen(int t, int curZero, int maxZero){

int i,p;

if(t <= maxZero){

for (i=N+1;i<=2*N;++i) b[i]=1-b[i-N];

p = IsNecklace(b,2*N);

for (i=1; i<=p; i++) printf("\%d", b[i]);

}

else {

b[t]=0;

Gen(t-1,curZero+1,MAX(curZero+1,maxZero));

b[t]=1;

Gen(t-1,0,maxZero);

}

}

int main(){

printf("Enter N:");scanf("\%d",&N);

b[N] = 0;

Gen(N-1,1,1);

printf("\n");

return 0;

}

References

1. The On-Line Encyclopedia of Integer Sequences (2010). https://oeis.org, sequence
A000016

https://oeis.org

58 D. Gabric and J. Sawada

2. Alhakim, A.: A simple combinatorial algorithm for de Bruijn sequences. Am.
Math. Monthly 117(8), 728–732 (2010). http://www.jstor.org/stable/10.4169/
000298910x515794

3. Booth, K.S.: Lexicographically least circular substrings. Inf. Process. Lett. 10(4/5),
240–242 (1980)

4. Cattell, K., Ruskey, F., Sawada, J., Serra, M., Miers, C.: Fast algorithms to gen-
erate necklaces, unlabeled necklaces, and irreducible polynomials over GF(2). J.
Algorithms 37(2), 267–282 (2000)

5. Cooper, J., Heitsch, C.: The discrepancy of the lex-least de Bruijn sequence. Dis-
crete Math. 310, 1152–1159 (2010)

6. Dragon, P.B., Hernandez, O.I., Williams, A.: The grandmama de Bruijn sequence
for binary strings. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN
2016. LNCS, vol. 9644, pp. 347–361. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49529-2 26

7. Eldert, C., Gray, H., Gurk, H., Rubinoff, M.: Shifting counters. AIEE Trans. 77,
70–74 (1958)

8. Etzion, T., Lempel, A.: Construction of de Bruijn sequences of minimal complexity.
IEEE Trans. Inf. Theory 30(5), 705–709 (1984)

9. Etzion, T.: Self-dual sequences. J. Comb. Theory Ser. A 44(2), 288–
298 (1987). http://www.sciencedirect.com/science/article/pii/0097316587900355
http://www.sciencedirect.com/science/article/pii/0097316587900355

10. Ford, L.: A cyclic arrangement of M -tuples. Report No. P-1071, Rand Corporation,
Santa Monica, 23 April 1957

11. Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn
sequences. Discrete Math. 23, 207–210 (1978)

12. Fredricksen, H.: Generation of the Ford sequence of length 2n, n large. J. Comb.
Theory Ser. A 12(1), 153–154 (1972). http://www.sciencedirect.com/science/
article/pii/009731657290091X

13. Fredricksen, H., Kessler, I.: An algorithm for generating necklaces of beads in
two colors. Discrete Math. 61(2), 181–188 (1986). http://www.sciencedirect.com/
science/article/pii/0012365X86900890

14. Golomb, S.W.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1981)
15. Hauge, E.R.: On the cycles and adjacencies in the complementary circulating

register. Discrete Math. 145(1), 105–132 (1995). http://www.sciencedirect.com/
science/article/pii/0012365X9400057P

16. Huang, Y.: A new algorithm for the generation of binary de Bruijn sequences.
J. Algorithms 11(1), 44–51 (1990). http://www.sciencedirect.com/science/article/
pii/019667749090028D

17. Martin, M.H.: A problem in arrangements. Bull. Am. Math. Soc. 40(12), 859–864
(1934)

18. Mayhew, G.L., Golomb, S.W.: Characterizations of generators for modified
de Bruijn sequences. Adv. Appl. Math. 13(4), 454–461 (1992). http://www.
sciencedirect.com/science/article/pii/019688589290021N

19. Ruskey, F., Savage, C., Wang, T.M.Y.: Generating necklaces. J. Algorithms 13,
414–430 (1992)

20. Sawada, J., Williams, A., Wong, D.: A surprisingly simple de Bruijn sequence
construction. Discrete Math. 339, 127–131 (2016)

21. Sawada, J., Williams, A., Wong, D.: Necklaces and Lyndon words in colexico-
graphic and reflected Gray code order (2017). Submitted manuscript

http://www.jstor.org/stable/10.4169/000298910x515794
http://www.jstor.org/stable/10.4169/000298910x515794
http://dx.doi.org/10.1007/978-3-662-49529-2_26
http://dx.doi.org/10.1007/978-3-662-49529-2_26
http://www.sciencedirect.com/science/article/pii/0097316587900355
http://www.sciencedirect.com/science/article/pii/0097316587900355
http://www.sciencedirect.com/science/article/pii/009731657290091X
http://www.sciencedirect.com/science/article/pii/009731657290091X
http://www.sciencedirect.com/science/article/pii/0012365X86900890
http://www.sciencedirect.com/science/article/pii/0012365X86900890
http://www.sciencedirect.com/science/article/pii/0012365X9400057P
http://www.sciencedirect.com/science/article/pii/0012365X9400057P
http://www.sciencedirect.com/science/article/pii/019667749090028D
http://www.sciencedirect.com/science/article/pii/019667749090028D
http://www.sciencedirect.com/science/article/pii/019688589290021N
http://www.sciencedirect.com/science/article/pii/019688589290021N

	A de Bruijn Sequence Construction by Concatenating Cycles of the Complemented Cycling Register
	1 Introduction
	1.1 History

	2 Background and Definitions
	3 de Bruijn Sequence Construction
	3.1 Efficient Implementation

	4 Discrepancy
	References

