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Abstract. An overlap in a word is a factor of the form axaxa, where
x is a (possibly empty) word and a is a single letter; these have been
well-studied since Thue’s landmark paper of 1906. In this note we con-
sider three new variations on this well-known definition and some conse-
quences.
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1 Introduction

An overlap is a word of the form axaxa, where x is a (possibly empty) word
and a is a single letter. Examples include alfalfa in English and entente in
French. Since Thue’s work [2,15,16] in the early 20th century, overlaps and their
avoidance have been well-studied in the literature (see, e.g., [12]).

Let μ be the morphism defined by μ(0) = 01 and μ(1) = 10. The Thue-Morse
word t is defined to be the infinite fixed point of μ starting with 0. We have
t = 0110100110010110 · · · . We recall two famous results about binary overlaps:

Theorem 1.

(a) The Thue-Morse word t is overlap-free [2,16].
(b) The number of binary overlap-free words of length n is Ω(nα) and O(nβ) for

real numbers 1 < α < β [3,4,7].

In this paper we consider three variants of overlaps and study their properties.

2 Definitions and Notation

Throughout, we use the variables a, b, c to denote single letters, and the variables
u, v, w, x, y, z to denote words. By |x| we mean the length of a word x, and by
xR we mean its reversal. The empty word is written ε.

If a word w can be written in the form w = xyz for (possibly empty) words
x, y, z, then we say that y is a factor of w. We say that a word x = x[1..n] has
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period p if x[i] = x[i + p] for 1 ≤ i ≤ n − p. We say that a word x is a (p/q)-
power, for integers p > q ≥ 1, if x has period q and length p. For example, the
word ionization is a (10/7)-power. A 2-power is called a square. Finally, we say
that a word z contains an α-power if z contains a factor x that is a (p/q)-power
for some p/q ≥ α. Otherwise we say that z avoids α-powers or is α-power free.
We say that a word z avoids (α + ε)-powers or is (α + ε)-power-free if, for all
p/q > α, z contains no factor that is a (p/q)-power. By xω we mean the infinite
word xxx · · · .

We recall the definition of three famous sequences. The Rudin-Shapiro
sequence r = (rn)n≥0 = 000100100001110100010 · · · is defined by the relations
r0 = 0, and r2n = rn, r4n+1 = rn, r8n+3 = 1 − rn, and r8n+7 = r2n+1 for
n ≥ 0. The Fibonacci sequence f = (fn)n≥0 = 010010100100101001010 · · · is
the fixed point of the morphism ϕ(0) = 01, ϕ(1) = 0. The Tribonacci sequence
T = (Tn)n≥0 = 01020100102010102010 · · · is the fixed point of the morphism
θ(0) = 01, θ(1) = 02, θ(2) = 0.

3 Overpals

In our first variation, we replace the second occurrence of axa in an overlap
with its reversal. Thus, an overpal is a word of the form axaxRa, where xR is
the reverse of the (possibly empty) word x and a is a single letter. The English
word tartrate contains an occurrence of an overpal corresponding to a = t and
x = ar. The order of an overpal axaxRa is defined to be |ax|.

We start with some results about binary words.

3.1 The Binary Case

Lemma 2. Every binary palindrome x of odd length 	 ≥ 7 contains an occur-
rence of either aaa, ababa, or abbabba, for some distinct letters a, b.

Proof. Let w be an odd-length palindrome of length ≥ 7. Then we can write w
in the form xabcdcbaxR for some letters a, b, c, d and x possibly empty. Then a
check of all 16 possibilities for a, b, c, d gives the result.

Theorem 3. A binary word contains an overpal if and only if it contains aaa,
ababa, or abbabba for letters a �= b.

Proof. Suppose w contains an overpal t = axaxRa. If |x| = 0, then t = aaa. If
|x| = 1, then t is either aaaaa or ababa. Otherwise |x| ≥ 2, so |t| ≥ 7, and the
result follows by Lemma 2. On the other hand, if w contains any of aaa, ababa,
or abbabba, then w contains an overpal.

Theorem 3 allows us to compute the generating function for the number of
binary words avoiding overpals.
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Corollary 4. The generating function for the number of binary words avoiding
overpals is

2x9 + 6x8 + 8x7 + 6x6 + 6x5 + 5x4 + 4x3 + 3x2 + 2x + 1
1 − x2 − x4

Corollary 4 was apparently first noticed by Colin Barker, in a remark posted
at the On-Line Encyclopedia of Integer Sequences about sequence A277277.

Proof. We use the DAVID IAN Maple package [10,11], implementing the Goulden-
Jackson cluster method [6], with the command

GJs(0,1,[0,0,0],[1,1,1],[0,1,0,1,0],[1,0,1,0,1],
[0,1,1,0,1,1,0],[1,0,0,1,0,0,1],x);

This gives us the above generating function counting the binary words avoid-
ing the patterns aaa, ababa, and abbabba.

Corollary 5. The number ovp2(n) of binary words of length n avoiding overpals
is, for n ≥ 6, equal to aαn + bβn + cγn + dδn where

a
.= 5.096825703528179989223010 b

.= 0.008747105471904132213320

are the real zeroes of the polynomial 25Z4 − 300Z3 + 1240Z2 − 1840Z + 16, and

c = 3 +
√

5
5

+ (2
√

5 − 2)1/2i d = 3 +
√

5
5

− (2
√

5 − 2)1/2i,

and α = ((1 +
√

5)/2)1/2 .= 1.27201964951406896425242246, β = −α, γ = iα−1,
δ = −iα−1.

Proof. From the generating function, we know that ovp2(n) satisfies the linear
recurrence ovp2(n) = ovp2(n−2)+ovp2(n−4) for n ≥ 10. Now we use standard
techniques to solve this linear recurrence.

Corollary 6. There are Θ(αn) binary words of length n containing no overpals.

We now turn to infinite words avoiding overpals. It is easy to construct a
periodic binary word avoiding overpals: namely, (0011)ω = 001100110011 · · · .
(To verify this, it suffices to enumerate its subwords of odd length ≤ 7 and check
that none of them are of the form aaa, ababa or abbabba.)

Theorem 7. The lexicographically least infinite binary word that avoids overpals
is x := 001(001011)ω.

Proof. To verify that x avoids overpals, it suffices to enumerate its subwords of
odd length ≤ 7. None are of the form aaa, ababa or abbabba.

http://oeis.org/A277277
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Suppose there is an infinite binary word w that is lexicographically less than
x, but contains no overpals. Let v be the shortest prefix of w such that v is
not a prefix of x. Suppose |v| = n. At position n there must be a 0 in v and
w and a 1 in x. This means there are four possibilities: (i) v = 000; (ii) v =
001(001011)i000 for some i ≥ 0; (iii) v = 001(001011)i00100 for some i ≥ 0; (iv)
v = 001(001011)i001010 for some i ≥ 0.

In cases (i) and (ii), v ends with the overpal 000, a contradiction. In case
(iii), consider the letter at position n + 1 of w. If it is 0, then v0 is a prefix of
w and ends with 000. If it is 1, then v1 is a prefix of w and ends with 1001001.
Both cases give a contradiction. In case (iv), v ends with the overpal 01010, a
contradiction.

We have shown there are ultimately periodic binary words avoiding overpals.
We now turn to aperiodic binary words.

Theorem 8. No (7/3)-power-free binary word contains an overpal.

Proof. Suppose it did. From Lemma 2 any odd-length palindrome in such a word
is of length 1, 3, or 5. A palindrome of length 1 cannot be an overpal. The only
overpals of length 3 are 000 and 111, each of which is a cube. Finally, the only
overpals of length 5 are 00000 and 01010 and their complements, each of which
contains a (7/3)-power.

Corollary 9. The Thue-Morse word t contains no overpals.

Theorem 10. If μ(x) contains an overpal, then so does x.

Proof. Suppose μ(x) contains an overpal. Then it contains an occurrence of aaa,
ababa, or abbabba. However, it is easy to verify that neither aaa nor abbabba can
be the factor of a word that is an image under μ. For ababa to be the factor of
μ(x), it must be that x has the factor aaa, and hence an overpal.

Theorem 11. The orders of overpals occurring in the Fibonacci word f are
given, for n ≥ 1, by the n whose Fibonacci representation is accepted by the
following automaton.

Fig. 1. Automaton accepting orders of overpals in the Fibonacci word

There are infinitely many orders for which there is no overpal factor of f and
infinitely many for which there are.
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Proof. We use the automatic theorem-proving software Walnut [9] with the pred-
icate

def fiboverpal "?msd fib (n=0) | Ei (n>=1) & (At (t<=2*n) =>
F[i+t] = F[i+2*n-t]) & F[i]=F[i+n]":

Corollary 12. An overpal of order n exists in the Fibonacci word, for n ≥ 1,
if and only if there exists an integer m such that n = �mα + 1

2�, where α =
(1 +

√
5)/2.

Proof. The proof is in six steps.
Step 1: Define the infinite binary word p = (pi)i≥0, where pi = 1 if the Fibonacci
representation of i is accepted by the automaton in Fig. 1, and pi = 0 otherwise.
Using the usual extension of Cobham’s theorem to Fibonacci numeration sys-
tems, p is given by the image under the coding τ of the fixed point fω(0), where

f(0) = 01 f(1) = 2 f(2) = 34
f(3) = 05 f(4) = 6 f(5) = 0 f(6) = 34

and τ(0123456) = 1011010. This is obtained just by reading off the transitions
of the automaton, where the image of a state is 1 if the state is accepting, and
0 otherwise.
Step 2: Let h : {0, 1}∗ → {0, 1}∗ be the morphism sending 1 → 10110, 0 → 110.
A routine induction on n, which we omit, proves that

τ(f3n(0)) = τ(f3n(2)) = τ(f3n(3)) = τ(f3n(3)) = τ(f3n(4)) = τ(f3n(6)) = hn(1)

τ(f3n(1)) = hn(0)

τ(f3n+3(5)) = hn(101)

for n ≥ 0.
Step 3: We now use a result in a paper of Tan and Wen [14]. Define π : {0, 1}∗ →
{0, 1}∗ to be the morphism sending 0 → 1, 1 → 0. Define λ : {0, 1}∗ → {0, 1}∗

to be the morphism corresponding to π ◦ h2 ◦ π.
A cutting sequence Kq, r is defined as the infinite binary sequence generated

by the straight line y = qx + r as it cuts a square grid. See [14] for more on
cutting sequences. Let the fixed point of λ be generated by the cutting sequence
Kγ,β . Tan and Wen give us the slope γ, and the intercept β of this line. We
define the additional morphisms σ, ρ : {0, 1}∗ → {0, 1}∗, where σ sends 0 → 01,
1 → 0, and ρ sends 0 → 10, 1 → 0.

To get γ, we need to express λ as a composition of σ ◦ π, ρ ◦ π and π. We
hence write λ = ((σ ◦ π) ◦ π ◦ (ρ ◦ π) ◦ π ◦ (ρ ◦ π) ◦ π)2. Tan and Wen gives the
continued fraction expansion of the slope as γ = [0; 1, 1, 1, 1, 1, 1, 1] = 1/α, where
α = 1+

√
5

2 is the golden ratio.
To get β, we follow Tan and Wen to get the word u = 010010 that satifies

λ(01) = u01v, λ(10) = u10v, vu is a palindrome, for some word v. We also define
un = λn−1(u)λn−2(u) · · · λ(u)u. Let |un|0 denote the number of zeroes in un.
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The value of β is given by the unique number x ∈ [−γ, 1 + γ) that satisfies
e2πix = limn→∞ e−2πi(|un|0+1)γ . We calculate this value as β = 1 − √

5/2.
Finally, Tan and Wen assert that if the fixed point of λ is given by Kγ,β , then

the fixed point of h is given by the cutting sequence K1/γ,−β/γ . Thus, hω(1) is
given by Kα,1−α/2.
Step 4: The Sturmian word se, f = (si) is the infinite binary word defined by
si = �e(i + 1) + f�−�ei + f�−�e�. We now use a classical result relating cutting
sequences to Sturmian words (e.g., p. 56 of [8]) to conclude that Kα,1−α/2 =
s1/α,(5−3α)/2.
Step 5: We shift this Sturmian word right by 1 position, getting the equality
s1/α,(5−3α)/2 = 1 · s1/α,−1/(2α).
Step 6: Finally, we use the usual connection between Sturmian words and Beatty
sequences (e.g., Lemma 9.1.3 of [1], generalized from characteristic words to the
more general setting of Sturmian words) to conclude that s1/α,−1/(2α) = b1b2 · · · ,
where bn = 1 if and only if there exists an integer m ≥ 1 such that n = �mα+ 1

2�.
Theorem 13. There are exactly four overpals in the Rudin-Shapiro sequence,
and they are given by 000, 111, 0100010, 1011101.

Proof. We use Walnut [9] to find the orders of overpals in the Rudin-Shapiro
sequence

eval RSOverpal "Ei (n>=1) & (At (t<=2*n) =>
(RS[i+t] = RS[i+2*n-t])) & (RS[i]=RS[i+n])":

The only accepted orders are 1 and 2. An exhaustive search yields the result.

3.2 Larger Alphabets

Understanding the words that avoid overpals over large alphabets is more chal-
lenging than the binary case. For one thing, there is no analogue of Lemma 2,
as the following result shows:

Theorem 14. Over a ternary alphabet, there are arbitrarily long odd-length
palindromes containing no overpals.

Proof. We know that μ2n(0) is a palindrome for all n ≥ 0, and furthermore,
since it is a prefix of t, it contains no overpals. Therefore, for all n ≥ 0, the
word μ2n(0)2μ2n(0) is a palindrome containing no overpals, and it is of length
22n+1 + 1.

Theorem 15.

(i) Every odd-length ternary palindrome of length ≥ 17 contains a 7
4 power.

(ii) There are arbitrarily large odd-length ternary palindromes avoiding (74 + ε)-
powers.
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Proof.

(i) It suffices to examine all ternary palindromes of length 17.
(ii) Dejean’s word [5] avoids (74 + ε)-powers and contains ternary palindromes of

all odd lengths.

Theorem 16. No infinite ternary word can avoid overpals and 41
22 -powers.

Proof. We use the usual tree-traversal technique. The tree has 120844 internal
nodes, and 241689 leaves. The longest such string is of length 228.

Conjecture 17. There is an infinite ternary word that avoids overpals and (4122 +ε)-
powers.

4 Underpals

A word is said to be an underpal if it is of the form axbxRa where x is a (possibly
empty) word and a, b are letters with a �= b. An example in English is the word
racecar, with a = r, x = ac, and b = e.

Theorem 18. A word contains an underpal if and only if it contains some word
of the form abia with a �= b and i odd.

Proof. Let a word contain an underpal z = axbxRa. Either x ends in b, or it
does not end in b.
Case 1: x ends in b. Then either x = bl for some l ≥ 1, or x = ycbl for some word
y and letter c �= b.
Case 1a: x = bl. Then z = abia for odd i = 2l + 1.
Case 1b: x = ycbl. Then z = aycblbblcyRa, which contains cbic with odd i =
2l + 1.
Case 2: x does not end in b. If x = ε, then z = abia, with odd i = 1. Otherwise
x = yc, which gives z = aycbcyRa, which contains cbic with odd i = 1.

Thus, a word that contains an underpal must contain an abia, with odd i,
and so a word that avoids such factors must avoid underpals.

For the converse, suppose w contains z = abia with a �= b and i odd. Then
z = ablbbla for some non-negative integer l. Since z is an underpal with x = bl,
the word w contains an underpal.

Theorem 19. The number of length-n words avoiding underpals over a k-letter
alphabet satisfies the recurrence fk(0) = 1, fk(1) = k, fk(n) = (k − 2)fk(n − 1) +
kfk(n − 2) + k.

Proof. Let Σ be an alphabet with |Σ| = k. For all p, define Lk,p ⊆ Σ∗ to be the
language of words of length p that avoid underpals.
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We now define two languages A1 and A2 as follows:

A1 = {can−1 : a �= c ∈ Σ}
A2 = {cx : x = albz ∈ Lk, n−1, a �= b, a �= c, b �= c, a, b, c ∈ Σ, l > 0, z ∈ Σ∗}

Note that |A1| = k(k − 1). Since we exclude unary words of the form an−1, the
number of words of the form x = albz is |Lk,n−1| − k = fk(n − 1) − k. We thus
get that |A2| = (k − 2)(fk(n − 1) − k).

Define A = A1 ∪ A2. All words in A are n-length words avoiding underpals
since they must avoid abia with i odd, and so A ⊆ Lk,n.

Define D ⊆ Lk,n−2 as follows:

D = {albz ∈ Lk,n−2, a �= b ∈ Σ, l > 0, lodd, z ∈ Σ∗}.

Next, we define the languages B1, B2 and B3 as follows:

B1 = {ccx : x = albz ∈ D, c ∈ Σ, c �= b}
B2 = {bax : x = albz ∈ D}
B3 = {ccx : x ∈ Lk, n−2, x �∈ D, c ∈ Σ}

Clearly |B1| = (k − 1) |D|, and |B2| = |D|, and |B3| = k(|Lk, n−2| − |D|).
Define B = B1 ∪B2 ∪B3. All words in B are n-length words avoiding under-

pals since they must avoid abia with i odd, and so B ⊆ Lk,n.
Thus, we get

A ∪ B ⊆ Lk,n. (1)

Consider any word z = d1d2 · · · dn ∈ Lk, n. Note that d2d3 · · · dn ∈ Lk,n−1 and
d3d4 · · · dn ∈ Lk,n−2. We divide these words z into two cases:
Case 1. d1 = d2. If z = d1d1a

lbx, for some a �= b ∈ Σ and even l ≥ 0, then
z ∈ B3. If z = d1d1a

lbx, for some a �= b ∈ Σ and odd l, then we consider d1.
If d1 �= b, then z ∈ B1. If d1 = b, then z contains balb, with odd l, and thus
z /∈ Lk, n. If z = dn

1 , then z ∈ B3.
Case 2: d1 �= d2. If z = d1d

n−1
2 , then z ∈ A1. If z = d1d

l
2bx, for some b �= d2 ∈ Σ

and even l > 0, then we consider d1. If d1 �= b, then z ∈ A2. If d1 = b, then
z = d1d2d

l−1
2 d1x, where l−1 is odd. In this case, z ∈ B2. If z = d1d

l
2bx, for some

b �= d2 ∈ Σ and odd l, then we consider the value of d1. If d1 �= b, then z ∈ A2.
If d1 = b, then z contains bdl

2b, with odd l, and thus z /∈ Lk, n. We thus see that
for all z ∈ Lk, n, z ∈ A ∪ B, and hence

Lk, n ⊆ A ∪ B. (2)

Combining Eqs. (1) and (2) gives us Lk, n = A ∪ B, which gives

fk(n) = |Lk, n| = |A ∪ B| . (3)

Since the words in A1 have exactly two different letters, while those in A2

have at least 3 different letters, the sets A1 and A2 are disjoint.
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The sets B1 and B2 are disjoint since they disagree on the first two letters.
The sets B1 and B3 are disjoint since they disagree on the last n−2 letters. The
sets B2 and B3 are disjoint since they disagree on the last n − 2 letters.

Note that for all words x = a1a2 · · · an ∈ A we have a1 �= a2. The only
words y = b1b2 · · · bn ∈ B for which b1 �= b2 are in B2, and are thus of the form
y = baalbz, for some a �= b ∈ Σ and z ∈ Σ∗. Such words y cannot be in A,
because A excludes all words with prefix bapb for all a �= b ∈ Σ, p > 0. This
shows that the sets A and B are disjoint.

We have

|A| = |A1|+ |A2| = k(k −1)+(k −2)(fk(n−1)−k) = (k −2)fk(n−1)+k. (4)

We also have

|B| = |B1|+ |B2|+ |B3| = (k−1) |D|+ |D|+k(|Lk, n−2|−|D|) = kfk(n−2). (5)

SinceAandB aredisjoint, |A ∪ B| = |A|+|B| = (k−2)fk(n−1)+kfk(n−2)+k.
Combining this with Eq. (3) gives us fk(n) = (k − 2)fk(n − 1) + kfk(n − 2) + k.
Finally, fk(0) = 1, since the empty string avoids underpals, and fk(1) = k, since
all strings of length 1 avoid underpals.

Corollary 20. The number fk(n) of length-n words avoiding underpals over a
k-letter alphabet, for k ≥ 2 and n ≥ 0, is given by fk(n) = aαn + bβn + c, where

α =
k − 2 +

√
k2 + 4

2
a =

(k − 1)(3(k2 + 4) + (k + 6)
√

k2 + 4)
2(2k − 3)(k2 + 4)

β =
k − 2 − √

k2 + 4
2

b =
(k − 1)(3(k2 + 4) − (k + 6)

√
k2 + 4)

2(2k − 3)(k2 + 4)

c =
k

3 − 2k
.

Proof. By the usual techniques for handling linear recurrences, we know that
fk(n) = (k − 1)fk(n − 1) + 2fk(n − 2) − kfk(n − 3). This means that fk(n)
is expressible as a linear combination of the n’th powers of the zeroes of the
polynomial X3 + (1 − k)X2 − 2X + k. Solving the resulting linear system, using
Maple as an assistant, gives the result.

Remark 21. For k = 2 this simplifies to f2(n) = 2(n+3)/2 − 2 for n odd and
f2(n) = 3 · 2n/2 − 2 for n even.

The run length encoding of a binary word is the integer sequence giving the
lengths of maximal blocks of 0s and 1s. For example, the run length encoding of
0011101011 is 2, 3, 1, 1, 1, 2.

Theorem 22. A finite binary word avoids underpals if and only if its run length
encoding is of the form i1, i2, . . . , it where i2, i3, . . . , it−1 are all even. An infinite
binary word that does not end in aω for a ∈ {0, 1} avoids underpals if and only
if its run length encoding is of the form i1, i2, i3, . . . where i2, i3, . . . are all even.
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Theorem 23. The Fibonacci word has underpals of order n for exactly those n
accepted by the automaton below (Fig. 2).

Fig. 2. Automaton accepting orders of underpals in the Fibonacci word

Theorem 24. The Fibonacci word has both underpals and overpals of order n
for exactly those n accepted by the automaton below (Fig. 3).

Fig. 3. Automaton accepting orders for which there are both overpals and underpals
in the Fibonacci word

Theorem 25. Every binary word of length ≥ 17 avoiding underpals contains a
4th power.

Proof. By explicit enumeration of the 1022 binary words of length 17 avoiding
underpals.

Theorem 26. There is an infinite binary word avoiding underpals and avoiding
(4 + ε)-powers.

Proof. Let h be the doubling morphism 0 → 00 and 1 → 11. Applying h to the
Thue-Morse word t gives a binary word h(t) that contains no underpals and
avoids (4 + ε)-powers.

Theorem 27. Every ternary word of length ≥ 6 avoiding underpals has a
square.
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Proof. By enumerating all ternary words of length 6 avoiding underpals.

Theorem 28. There is an infinite ternary word avoiding underpals and (2+ε)-
powers.

Proof. Take any infinite squarefree word w over a ternary alphabet {0, 1, 2} and
apply the morphism h : 0 → 01, 1 → 10, 2 → 22. Then h(w) has no overlaps,
overpals, or underpals.

5 Underlaps

In analogy with overlaps, we can define underlaps. An underlap is a word of the
form axbxa with x a (possibly empty) word, and a, b letters with a �= b. Note
that x is a bispecial factor of the underlap. An example in English is the word
ginning, with a = g, x = in, and b = n.

Theorem 29.

(a) The only underlaps in the Thue-Morse sequence t are
{010, 101, 0011010, 0101100, 1010011, 1100101}.

(b) The only underlaps in the Fibonacci sequence are {010, 101, 00100}.
(c) The only underlaps in the Rudin-Shapiro sequence are

{010, 101, 00100, 01110, 10001, 11011, 0001000, 1110111}.
(d) The only underlaps in the Tribonacci sequence are

{010, 020, 101, 10201, 20102, 001020100}.
We now prove a theorem giving the relationship between underlaps and

underpals. These concepts actually coincide for binary words.

Theorem 30.

(a) If z contains an underpal, then it contains an underlap.
(b) If z is over a binary alphabet and contains an underlap, then it contains an

underpal.

Proof. (a) Suppose z contains an underpal. Then it can be written in the form
z = uaxbxRav where a �= b.
Case 1: If x contains some letter c �= b, write x = ycbi for some i ≥ 0. Then z
contains the word xbxR = ycbibbicyR, which contains the word cbibbic, which is
an underlap.
Case 2: Otherwise x = bi for some i ≥ 0. Then z contains the word axbxRa =
abibbia, which is an underlap.

(b) Now suppose z contains an underlap and is over the alphabet {0, 1}. Then
it can be written in the form z = uaxbxav where a �= b.
Case 1: x has no a’s. Since x is over a binary alphabet, it must be the case that
x = bi for some i ≥ 0. Then axbxa = abibbia, which is an underpal.



28 A. Rajasekaran et al.

Case 2: x has one a. Write x = biabj for some i, j ≥ 0. Then axbxa =
abiabjbbiabja = abiabi+j+1abja. If either i (resp., j) is odd, this contains abia
(resp., abja), which is an underpal. Otherwise i and j are both even, so i+ j +1
is odd and abi+j+1a is an underpal.
Case 3: x has two or more a’s. By identifying the first and last occurrences of a,
write x = biayabj . Then axbxa = abiayabjbbiayabja = abiayabi+j+1ayabja. If i
(resp., j) is odd, this contains abia (resp., abja), which is an underpal. Otherwise
i and j are both even, so i + j + 1 is odd and abi+j+1a is an underpal.

As an example of a word over the ternary alphabet that contains an underlap
but no underpal, consider 001120110.

Theorem 31. Every binary word of length ≥ 9 has either an overlap or an
underlap.

Proof. It suffices to examine all 512 binary words of length 9.

Theorem 32. There are exponentially many ternary words avoiding overlaps,
underlaps, overpals, and underpals.

Proof. Take any squarefree word w over a ternary alphabet {0, 1, 2} and apply
the morphism h : 0 → 01, 1 → 10, 2 → 22. Then h(w) has no overlaps, underlaps,
overpals, or underpals. Since there are exponentially many squarefree ternary
words (the best lower bound known is Ω(952n/53) [13]), the result follows.
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