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Abstract. What is the common link, if there is any, between Church-
Rosser systems, prefix codes with bounded synchronization delay, and
local Rees extensions? The first obvious answer is that each of these
notions relates to topics of interest for WORDS: Church-Rosser sys-
tems are certain rewriting systems over words, codes are given by sets
of words which form a basis of a free submonoid in the free monoid
of all words (over a given alphabet) and local Rees extensions provide
structural insight into regular languages over words. So, it seems to be
a legitimate title for an extended abstract presented at the conference
WORDS 2017. However, this work is more ambitious, it outlines some
less obvious but much more interesting link between these topics. This
link is based on a structure theory of finite monoids with varieties of
groups and the concept of local divisors playing a prominent role. Parts
of this work appeared in a similar form in conference proceedings [6,10]
where proofs and further material can be found.

1 Introduction

Ceci n’est pas une introduction.1 The present paper does not claim to provide
any new results. Its purpose is to give an overview on a theory developed over
the past twenty years, having its origins in a construction derived from the
Habilitationsschrift of Thomas Wilke [27] which the first author was refereeing
in 1997. Inspired by this construction (which also appears in [27]), he distilled the
concept of a local divisor of a finite monoid without knowing that this concept
existed long before in commutative algebra [14] (denoted by Kurt Meyberg as
local algebra) and without giving any special name to it. The term local divisor
was coined 2012 in [9] only.2
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1 Following “La trahison des images” by René Magritte.
2 The pointer to [14] is due to Benjamin Steinberg and that a “local divisor” is a
monoid divisor in the usual sense was observed by Daniel Kirsten, first. Thanks!
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Originally, the concept was solely used as a tool to simplify existing proofs.
Still, this was particularly helpful in [3] which introduced this proof technique
to the semigroup community. However, over the last decade, it gave rise to new
results. Amazingly, it was powerful enough to solve long-standing open problems.
It is hard to formally pinpoint where the power of method comes from or why, on
the other hand, it has clear limitations. Let us conclude with an étale statement:
There are not enough local submonoids, so the role of local submonoids transfers
to local divisors and there are plenty of them. This seems to be useful.

2 Preliminaries

Throughout the paper A denotes a finite alphabet and M , N denote monoids.
If not stated otherwise, M and N will be finite. A divisor of a monoid M is a
monoid N which is a homomorphic image of a subsemigroup of M . A variety of
finite monoids is a nonempty family of finite monoids V which is closed under
taking divisors and finite direct products. A variety of finite groups is a variety
of finite monoids where each of the monoids is a group.

The largest group variety is G, the variety of all finite groups. If H is a variety
of finite groups, H denotes the class of finite monoids where all subgroups are
members of H. It turns out that for every group variety H, the class H is a
variety, see [11]. Actually, it is the greatest variety of finite monoids such that
H ∩ G = H. Clearly, G is the class of all finite monoids which we denote by
Mon. The most prominent subclass is 1, the variety of aperiodic monoids Ap.
Here, 1 denotes the smallest group variety, containing the trivial group {1} only.

Given a variety V, we denote by V(A∗) the set of languages L ⊆ A∗ such
that L = ϕ−1(ϕ(L)) for some homomorphism ϕ : A∗ → M where M ∈ V.
From formal language theory, we know that Mon(A∗) is the set of all regular
languages in A∗.

3 Church-Rosser Thue Systems

A semi-Thue system is a set of rewriting rules S ⊆ A∗ × A∗ over some alphabet
A. (For simplicity, throughout this paper, semi-Thue systems are assumed to be
finite.) A system S defines a finitely presented quotient monoid

A∗/S = A∗/ {� = r | (�, r) ∈ S} ,

and the system is called Church-Rosser (with respect to the length function) if
S is confluent and length-reducing. The interest in Church-Rosser systems stems
from the fact that we can compute irreducible normal forms in linear time (as
the system is finite and length-reducing) and that the irreducible normal forms
of two words u, v are identical if and only if u and v represent the same word in
A∗/S (as the system is confluent). Thus, if a monoid M has a presentation as
M = A∗/S, then the word problem of M is solvable in linear time. The notion of
a Church-Rosser language is an offspring of that observation and appeared first
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in Narendran’s PhD thesis [15], followed by a systematic study of that concept
in [13]. As a result, [13] defines a language class strictly larger than the class
of deterministic context-free languages for which the word problem is solvable
in linear time. The authors of this work also define a restricted class which is
incomparable with the class of (deterministic) context-free languages.

A language L ⊆ A∗ is called Church-Rosser congruential, if there exists a
finite, confluent, and length-reducing semi-Thue system S ⊆ A∗ × A∗ such that
L is a finite union of congruence classes modulo S. If, in addition, the index
of S is finite (i.e., the monoid A∗/S of all congruence classes is finite) then L
is called strongly Church-Rosser congruential. Strongly Church-Rosser congru-
ential languages are necessarily regular. It was conjectured (but open for more
than 25 years until 2012) that all regular languages are (strongly) Church-Rosser
congruential. Some partial results were known before 2012 but commutativity in
the syntactic monoid seemed to be a major obstacle. For example, it is easy to
verify the conjecture provided the syntactic monoid is a finite non-Abelian sim-
ple group like A5. On the other hand, it is surprisingly hard to prove the result
for the Klein group Z/2Z × Z/2Z. Nevertheless, [7] proved a stronger result.
Given a regular language L ⊆ A∗ and any weight function γ : A → N\{0}, there
exists a finite confluent and weight-reducing semi-Thue system S such the quo-
tient monoid is A∗/S is finite and such that L is a (necessarily finite) union of
congruence classes. This result is indeed stronger because the mapping w �→ |w|
is just one particular weight function.

4 Star-Freeness and Bounded Synchronization Delay

The class of star-free languages over some alphabet A, denoted by SF(A∗), is the
least class of languages which contains all finite languages over A and which is
closed under both Boolean operations (finite union and complementation) and
concatenation. As the name suggests, we do not allow the Kleene star. Never-
theless, B∗ is star-free for all B ⊆ A. A fundamental result of Schützenberger
characterizes the class of star-free languages by aperiodic monoids [21]. That
is, a regular language belongs to SF(A∗) if and only if all subgroups in its syn-
tactic monoid are trivial. By slight abuse of notation, one usually abbreviates
this result by SF = Ap as a short version of SF(A∗) = Ap(A∗). Schützenberger
found another, but less prominent characterization of SF: the star-free languages
are exactly the class of languages which can be defined inductively by finite
languages and closure under finite union, concatenation, and the Kleene star
restricted to prefix codes of bounded synchronization delay [23]. This result is
abbreviated by SD = Ap.

A language K ⊆ A+ is called prefix code if it is prefix-free, i.e., u ∈ K and
uv ∈ K implies u = uv. A prefix-free language K is a code since every word
u ∈ K∗ admits a unique factorization u = u1 · · · uk with k ≥ 0 and ui ∈ K.
A prefix code K has bounded synchronization delay if for some d ∈ N and for
all u, v, w ∈ A∗ with uvw ∈ K∗ and v ∈ Kd, we have uv ∈ K∗. Note that the
condition implies that for all uvw ∈ K∗ with v ∈ Kd, we have w ∈ K∗, too.
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The idea is as follows: assume that a transmission of a code message is interrupted
and we receive a fragment of the form u′′vw where v ∈ Kd and w ∈ K∗. Then,
we know that the original message was of the form u′u′′vw with u′u′′v ∈ K∗ and
w ∈ K∗. Hence, we can decode w as part of the original message. With a delay
of d code words the decoding can be synchronized. For B ⊆ A and c ∈ A\B, the
star-free language B∗c is a prefix code of delay 1 and (B∗c)+ = (B ∪ {c})∗c is
star-free. The block code A2 is finite, but not of bounded synchronization delay.
Moreover, (A2)∗ is not star-free as its syntactic monoid is the cyclic group of
order two.

Schützenberger’s result Ap ⊆ SD is actually stronger than the well-known
SF = Ap because proving the inclusions SD ⊆ SF ⊆ Ap is relatively easy,
see [17, Chapter VIII], so SF = Ap follows from Ap ⊆ SD. A simple proof for
Ap = SD including an extension to infinite words (which was not known before)
was obtained much later in [5]. It could be achieved thanks to the same algebraic
decomposition into submonoids and local divisors.

5 Local Divisors

In this section e ∈ M denotes an idempotent, that is e2 = e. For such an
idempotent, the set Me = eMe forms a monoid with e as the identity element.
It is called the local monoid at e. A local divisor generalizes this concept by
considering any element c ∈ M and the set Mc = cM ∩ Mc. Note that eMe =
eM ∩ Me, so local monoids are indeed a special case of local divisors. The next
step is to define a multiplication ◦ on cM ∩ Mc by letting

xc ◦ cy = xcy

for all x, y ∈ M . A straightforward calculation shows that the structure (Mc, ◦, c)
defines a monoid with this operation where the neutral element of Mc is c.
This works for every c ∈ M . If c is a unit, then Mc is isomorphic to M . If c
is idempotent, then Mc is the local monoid at the idempotent c. However, in
general Mc does not appear as a subsemigroup in M .

The important fact is that Mc is always a divisor of M . Indeed, the mapping
λc : {x ∈ M | cx ∈ Mc} → Mc given by λc(x) = cx is a surjective homomor-
phism. Moreover, if c is not a unit, then 1 /∈ cM ∩ Mc, hence Mc � M . This
makes the construction suitable for induction.

6 Rees Extensions

Let N,L be monoids and ρ : N → L be any mapping. The Rees extension over
N,L, ρ is a classical construction for monoids [18,19], frequently described in
terms of matrices. It was used in the synthesis theory of Rhodes and Allen [20]
which says that we can represent every finite monoid as a divisor of iterated
Rees extensions, starting with groups. The “advantage” is that starting with a
variety of groups H, the construction produces monoids in H, only. This is not
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true for taking wreath products which are used in Krohn-Rhodes theory. For
example, the symmetric group over three elements is not nilpotent, but appears
as a subgroup of the wreath product of Z/3Z and Z/2Z. Our definition of a Rees
extension is similar, but not the same as the classical one. It avoids matrices and
it is exactly as in [16]. The carrier set is

Rees(N,L, ρ) = N ∪ (N × L × N) .

Let n1, n
′
1, n2, n

′
2 ∈ N and m,m′ ∈ L. Then the multiplication · on Rees(N,L, ρ)

is given by

n · n′ = nn′,
n · (n1,m, n2) · n′ = (nn1,m, n2n

′),
(n1,m, n2) · (n′

1,m
′, n′

2) = (n1,mρ(n2n
′
1)m

′, n′
2).

For a variety V of finite monoids let Rees(V) be the least variety which contains
V and which is closed under Rees extensions Rees(N,L, ρ). Almeida and Kĺıma
called a variety V bullet-idempotent if V = Rees(V), see [1]. They showed
Rees(V) ⊆ H where H = V ∩ G and asked whether all bullet-idempotent
varieties are of that form. The answer is “yes” [10] and can be proved by showing
the stronger result that so-called local Rees extensions suffice to capture all of H.
To define these objects, consider a finite monoid M (which is not a group), an
element c ∈ M , and a smaller submonoid N of M such that N and c generate M .
Then, let Mc be the local divisor at c and let ρc be the mapping ρc : N → Mc

with ρc(x) = cxc. The local Rees extension LocRees(N,Mc) is defined as the
Rees extension Rees(N,Mc, ρc). Thus, a local Rees extension is a special case
of a Rees extension. Still the result in [10] shows that H = LocRees(H). Here,
LocRees(H) denotes the least variety which contains the group variety H and
which is closed under local Rees extensions. Since Rees(V) ⊆ H for H = V∩G
we obtain

Rees(V) ⊆ H = LocRees(H) ⊆ Rees(V).

Hence, all varieties appearing in the line above coincide.

7 The Local Divisor Technique and Green’s Lemma

For a survey on the local divisor technique we refer to [4]. In general, there are
more local divisors than local monoids, so having information about the structure
in all local divisors tells us more about the structure of M than just looking at
the local monoids. Before we continue let us revisit Green’s Lemma as sort of a
“commercial break” for the local divisor technique in semigroup theory.

The following section is based on [2,8] and closely follows the presentation
in [8, Corollary 7.45] where full proofs are given. Green’s relations are classical.
There are three basic equivalence relations L, R, and J which relate elements
in a monoid M generating the same left- (resp. right-, resp. two-sided-) ideal.

xLy ⇐⇒ Mx = My, xRy ⇐⇒ xM = yM, xJ y ⇐⇒ MxM = MyM.
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The other two relations are defined by H = L∩R and D = L◦R. In particular,

xDy ⇐⇒ ∃z : xLz ∧ zRy.

A standard exercise shows that J = D for finite monoids. (For infinite monoids
this false, in general.) As J is symmetric, J = D implies D = L◦R = R◦L. The
latter assertion is independent of that: L ◦ R = R ◦ L holds in infinite monoids,
too. Therefore, all relations above are equivalence relations. If G is any of them
and s ∈ M , then we write G(s) = {t ∈ M | sGt} for the equivalence class of s.

In the following, we assume that M is finite. If G is a subgroup of M with
neutral element e, then G is a subgroup in H(e); and H(e) itself is a group.
Now, Green’s Lemma says that the groups H(e) and H(f) are isomorphic if e
and f are idempotents belonging to the same D-class. The classical proof uses
D = L ◦ R. Hence, eRzLf for some z ∈ M . Then one shows that the right
multiplication ·v, mapping x to xv, induces a bijection Me → Mz, x �→ xv. By
symmetry, we obtain a bijection between H(e) and H(f) which turns out to be
an isomorphism of groups.

The proof is somewhat “mysterious” because the isomorphism passes through
H(z) which is not subgroup of M , in general. Using local divisors however,
the proof becomes fully transparent and reveals a more general fact. For this,
consider any two R-equivalent (or symmetrically L-equivalent) elements s and
t. Whether or not s or t are idempotent, we can define the local divisors Ms and
Mt. For sRt we can write t = sv and now, the right multiplication ·v defines an
isomorphism Ms → Mt. Moreover, as a set, H(s) is the group of units in Ms. In
the case that s = e is an idempotent Ms = Me is a local monoid and H(s) = H(e)
is a subgroup of M . Thus, as in the scenario of eRzLf with idempotents e and
f we see that three groups are isomorphic: H(e), H(z) as the group of units in
(zM ∩ Mz, ◦, z), and H(f). There is no mystery in Green’s Lemma if we view it
from a more general perspective.

8 The Common Theme: Local Divisor Proofs

Let us now discuss the common theme in Church-Rosser systems, bounded syn-
chronization delay, and Rees extensions. From an abstract viewpoint these deal
with properties P which can be defined for regular languages. Assume we know
that a property P of regular languages is true for all languages where the syntac-
tic monoid belongs to some variety of groups H. Then P holds for all languages
where the syntactic monoid belongs to H if and only if and we can show the
following implication for local Rees extensions LocRees(N,Mc):

P(N) ∧ P(Mc) =⇒ P(LocRees(N,Mc)). (1)

Actually, it is enough show an implication without mentioning LocRees(N,Mc):

P(N) ∧ P(Mc) =⇒ P(M). (2)
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The reason that we mention the “complicated” implication (1) is that the power
of the method lies in the underlying algebraic connection between N , Mc and
M which is best reflected by the local Rees extension. For simplicity of notation
we just focus on the equivalent condition (2). This implication is particularly
appealing for aperiodic monoids. Indeed, any nontrivial property which is closed
under taking submonoids must also hold for the trivial group {1}. So, the base
for the induction is trivial for the variety 1. In order to prove that P holds for
all aperiodic languages, one only needs to show (2). Sometimes this is very easy.
Remember SF = Ap, the probably most cited result of Schützenberger. The
inclusion SF ⊆ Ap is rather straightforward and the assertion 1(A∗) ⊆ SF(A∗)
is trivial since ∅ and its complement A∗ are star-free. Now proving, (2) is possible
within less than a page, see [12]. Almost the same holds for the less famous but
more general result Ap = SD, see [5].

What about Krohn-Rhodes theory? It goes beyond Ap, but the group case
is built-in! The theory says that every monoid can be constructed by iter-
ated wreath products, starting from finite simple groups and the so-called reset
monoid U2. According to [19, page 241] the monoid U2 is “essentially junk”
whereas the “groups are gems”. Showing (2) for the Krohn-Rhodes property
was done in [9] and led to a surprisingly easy proof of the Krohn-Rhodes decom-
position theorem.

Returning to prefix codes of bounded synchronization delay, it is worth men-
tioning that Schützenberger did not stop this line of research by showing that
Ap = SD. In [22] he was able to prove an analogue of Ap = SD for languages
where syntactic monoids have Abelian subgroups, only. For several years, no
such characterization was known beyond Ab.

8.1 Schützenberger’s SD Classes

Let H be a variety of finite groups. Consider a prefix code K with bounded syn-
chronization delay which can be written as a disjoint union K =

⋃ {Kg | g ∈ G}
where G ∈ H and each Kg is regular in A∗. The H-controlled star (more pre-
cisely, the G-controlled star) associates with such a disjoint union the following
language:

{ug1 · · · ugk ∈ K∗ | ugi ∈ Kgi ∧ g1 · · · gk = 1 ∈ G} .

Another view of the G-controlled star of K is the following: Let γK : K → G
be a mapping such that Kg = γ−1

K (g) and let γ : K∗ → G denote the canonical
extension of γK to a homomorphism from the free submonoid K∗ ⊆ A∗ to G,
then the G-controlled star of K is exactly the set γ−1(1). Let C be any class of
languages. We say that C is closed under H-controlled star if for all K and for
every group G ∈ H, the following closure property holds: if K =

⋃ {Kg | g ∈ G}
is a prefix code with bounded synchronization delay such that Kg ∈ C for all
g ∈ G, then the G-controlled star γ−1(1) is in C as well. By SDH(A∗) we denote
the smallest class of regular languages containing all finite subsets of A∗ and
being closed under finite union, concatenation, and H-controlled star.
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Note that the definition of SDH(A∗) does not use any complementation.
Using different notation, Schützenberger showed that SDH(A∗) ⊆ H(A∗) in [22],
but he proved the converse inclusion only for H ⊆ Ab. The main result in [10]
states that SDH(A∗) = H(A∗) for all H. In retrospective, it is hard to say why
Schützenberger did not prove this general result. Perhaps he was not interested
in that, but we believe that this is unlikely because he proved half of it. More
likely, he tried to use the Krohn-Rhodes decomposition as in [22] which involves
wreath products and they may take you outside H. Perhaps, Krohn-Rhodes
theory was simply the wrong tool for this result. Local Rees extensions, on the
other hand, are perfectly suitable for this kind of applications.

8.2 Church-Rosser Thue Systems Revisited

In the following M , denotes a finite monoid. The results in Sect. 3 have their
origins in formal language theory and led to the notion of Church-Rosser con-
gruential languages. As mentioned before, for more than 25 years it was open
whether or not all regular languages are Church-Rosser congruential. A positive
answer was given in [7], and the corresponding theorem has a purely algebraic
formulation. It says that for each homomorphism ϕ from A∗ to M factorizes
through A∗/S where S is a finite confluent and length-reducing semi-Thue sys-
tem of finite index. Thus, ϕ(�) = ϕ(r) and |�| > |r| for all (�, r) ∈ S. Moreover,
A∗/S is a finite monoid.

For the inductive argument, one crucial idea is to consider weight functions γ :
A → N \{0}. The statement then becomes “for every weight function and every
homomorphism ϕ : A∗ → M there exists a finite confluent semi-Thue system S
of finite index such that ϕ(�) = ϕ(r) and γ(�) > γ(r) for all (�, r) ∈ S”. Instead
of weight-reducing systems we can also define the notions of Parikh-reducing
and subword-reducing systems. For a letter a and a word w ∈ A∗ we let |w|a
be the number of a’s which occur in w. This defines a canonical homomorphism
π : A∗ → N

A by π(w) = (a �→ |w|a). The vector π(w) is usually called the Parikh-
image of w. We say that S is Parikh-reducing if (�, r) ∈ S implies |�|a ≥ |r|a
for all a ∈ A and |�|a > |r|a for at least one a ∈ A. Clearly, a Parikh-reducing
system is weight-reducing for every weight function. In the following, when using
the term “subword” we mean “scattered subword”. More precisely, a word u is
called a subword of w if there exists a factorization u = a1 · · · ak such that
w ∈ A∗a1A

∗ · · · akA
∗. We say that S is subword-reducing if (�, r) ∈ S implies

� �= r and that r is a subword of �. Clearly, a subword-reducing system is Parikh-
reducing. The induction scheme (2) introduced in the beginning of Sect. 8 works
for all variants, but the group case is quite different. The trivial group leads to
the subword-reducing system {(a, 1) | a ∈ A}. Consequently, the result in [16]
speaks about subword-reducing systems and this is the strongest result. The
PhD thesis of Tobias Walter [26] shows that for all homomorphisms to Abelian
groups there exists a Parikh-reducing Church-Rosser system as desired, thereby
allowing him to construct such systems for all languages in Ab. Additionally, he
proves that for all regular languages L over a two letter alphabet there exists a
Parikh-reducing Church-Rosser system S of finite index such that L is recognized
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by A∗/S. This shows that the existence of Parikh-reducing presentations is not
limited to the variety Ab.

9 Conclusion and Open Problems

This extended abstract deals with the recurring theme of proving results for vari-
eties of finite monoids and their associated language classes. The most prominent
example is the variety Ap of aperiodic monoids, but our methods go beyond.
We have seen deep connections between apparently quite different objects where
the technique allows to transfer results from a group variety H to its closure H.

Let us conclude with some open problems, starting with the new perspective
on Church-Rosser systems given in the previous subsection.

For subword-reducing and Parikh-reducing Church-Rosser systems, only par-
tial results are known. To date, it is still open whether subword-reducing (resp.
Parikh-reducing) Church-Rosser systems exist for every regular language. It is
tempting to believe that Parikh-reducing systems exist for all regular languages,
but we refrain from any conjecture in this case.

The notion of local Rees extensions gives rise to various interesting combina-
torial problems concerning the complexity of Rees decompositions. For a finite
monoid M , a Rees decomposition tree of M is a rooted node-labeled tree such
that the following conditions are satisfied.

– The root has label M .
– Every inner node with label M ′ has two children labeled by N,M ′

c such that
M ′ is a divisor of the local Rees extension LocRees(N,M′

c).
– Every leaf is labeled by a group which divides M .

In [26], it was shown that if M is a monoid having n elements which are not
units, then there exists a decomposition tree of M having at most O(3n/3)
nodes. However, it is not clear whether this bound optimal. Actually, it is not
even known whether the size of the tree be bounded by a polynomial function.
Regardless of whether tight bounds can be obtained in the general case, it would
also be interesting to analyze subclasses of Mon. For example, it is easy to see
that for commutative monoids with a fixed number of generators, there indeed
is a polynomial bound. What happens if the number of generators is not fixed?

The starting point of our journey was the characterization of SD and SF
by aperiodic monoids. Having this theme in mind, another interesting question
about the limits of the method arises. In [25], Straubing showed that the so-
called Mal’cev product of Ap and a group variety H, denoted by Ap M©H,
corresponds to the closure of H(A∗) under concatenation product. Following the
proof of SD = Ap using local divisors, it is tempting to ask whether the local
divisor technique can also be applied to obtain a new, possibly more general
proof of Straubing’s result. In particular, it would be interesting to see whether
there is a natural language characterization of Ap M©H that relies on prefix codes
with bounded synchronization delay. A major obstacle to initial attempts is a
result of Steinberg [24] that Ap M©H is strictly contained in H for all non-trivial
group varieties H.
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