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Abstract. The complexity function of an infiniteword counts the number
of its factors. For any positive function f , its exponential rate of growth
E0(f) is lim

n→∞
inf 1

n
log f(n). We define a new quantity, the word entropy

EW (f), as the maximal exponential growth rate of a complexity function
smaller than f . This is in general smaller than E0(f), and more difficult
to compute; we give an algorithm to estimate it. The quantity EW (f) is
used to compute the Hausdorff dimension of the set of real numbers whose
expansions in a given base have complexity bounded by f .
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1 Definitions

Let A be the finite alphabet {0, 1, . . . , q − 1}, If w ∈ AN, and L(w) the set of
finite factors of w; for any non-negative integer n, we write Ln(w) = L(w) ∩ An.
The classical complexity function is described for example in [2].

Definition 1. The complexity function of w ∈ AN is defined for any non-
negative integer n by pw(n) = |Ln(w)|.

Our work concerns the study of infinite words w the complexity function of
which is bounded by a given function f from N to R

+. More precisely, if f is
such a function, we put

W (f) = {w ∈ AN, pw(n) ≤ f(n),∀n ∈ N}.

Definition 2. If f is a function from N to R
+, we call exponential rate of growth

of f the quantity

E0(f) = lim
n→∞ inf

1
n

log f(n)

and word entropy of f the quantity

EW (f) = sup
w∈W (f)

E0(pw).
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Of course, if E0 = 0 then EW is zero also. Thus the study of EW is interesting
only when f has exponential growth: we are in the little-explored field of word
combinatorics in positive entropy, or exponential complexity. For an equivalent
theory in zero entropy, see [3,4].

2 First Properties of E0 and EW

The basic study of these quantities is carried out in [5], where the following
results are proved.

If f is itself a complexity function (i.e. f = pw for some w ∈ AN), then
EW (f) = E0(f). But in general EW may be much smaller than E0.

We define mild regularity conditions for f : f is said to satisfy (C) if the
sequence (f(n))n≥1 is strictly increasing, there exists n0 ∈ N such that ∀n ≥
n0 ⇒ f(2n) ≤ f(n)2, f(n + 1) ≤ f(1)f(n), and the sequence

(
1
n log f(n)

)
n≥1

converges.
But for each 1 < θ ≤ q, and n0 ∈ N such that θn0+1 > n0 + q − 1, we define

the function f by f(1) = q, f(n) = n + q − 1 for 1 ≤ n ≤ n0 and f(n) = θn for
n > n0. We have E0(f) = log θ and it is proved that

EW (f) ≤ 1
n0

log(n0 + q − 1),

which can be made arbitrarily small, independently of θ, while f satisfies (C).

We define stronger regularity conditions for f .

Definition 3. We say that a function f from N to R
+ satisfies the conditions

(C∗) if (i) for any n ∈ N we have f(n+1) > f(n) ≥ n+1; (ii) for any (n, n′) ∈ N
2

we have f(n + n′) ≤ f(n)f(n′).

But even with (C∗) we may have EW (f) < E0(f). Indeed, let f be the func-
tion defined by f(n) = �3n/2	 for any n ∈ N. Then it is easy to check that f
satisfies conditions (C∗) and that E0(f) = lim

n→∞
1
n log f(n) = log(

√
3). On the

other hand, we have f(1) = 2, f(2) = 3; thus the language has no 00 or no 11,
and this implies that EW (f) ≤ log(1+

√
5

2 ) < E0(f).

At least, under these conditions, we have the important

Theorem 4. If f is a function from N to R
+ satisfying the conditions (C∗),

then EW (f) > 1
2E0(f).

It is also shown in [5] that the constant 1
2 is optimal.

Finally, it will be useful to know that

Theorem 5. For any function f from N to R
+, there exists w ∈ W (f) such

that for any n ∈ N we have pw(n) ≥ exp(EW (f)n).
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3 Algorithm

In general EW (f) is much more difficult to compute than E0(f); now we will give
an algorithm which allows us to estimate with arbitrary precision EW (f) from
finitely many values of f , if we know already E0(f) and have some information
on the speed with which this limit is approximated.

We assume that f satisfies conditions C∗. We don’t loose too much gener-
ality with this assumption, since if the function f which satisfies the weaker
conditions C, we can replace it by the function f̃ given recursively by

f̃(n) := min{f(n), min
1≤k<n

f̃(k)f̃(n − k)},

which satisfies conditions C∗, such that f̃(n) ≤ f(n),∀n ∈ N and W (f̃) = W (f).

Theorem 6. There is an algorithm which gives, starting from f and ε, a quan-
tity h such that (1 − ε)h ≤ EW (f) ≤ h. h depends explicitely on ε, E0(f), N ,
f(1), ..., f(N), for an integer N which depends explicitely on ε, E0(f), and an
integer n0, larger than an explicit function of ε and E0(f), and such that

log f(n)
n

< (1 +
E0(f)ε

210(4 + 2E0(f))
)E0(f), for n0 ≤ n < 2n0.

We shall now give the algorithm. f is given and henceforth we omit to mention
it in E0(f) and EW (f). Also given is ε ∈ (0, 1).

Description of the algorithm

– Let

δ :=
E0ε

105(4 + 2E0)
<

ε

210
.

– Let

K := �δ−1	 + 1.

– Choose a positive integer

n0 ≥ K ∨ 4K2

4203E0

such that

log f(n)
n

< (1 +
δ

2
)E0,∀n ≥ n0;

in view of conditions C∗, this last condition is equivalent to log f(n)
n <

(1 + δ
2 )E0, n0 ≤ n < 2n0.
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– Choose intervals so large that all the lengths of words we manipulate stay in
one of them. Namely, for each t ≥ 0, let

nt+1 := exp(K((1 + δ)2E0nt + E0)).

We take

N := nK .

– Choose a set Y ⊂ AN : for each possible Y , we define Ln(Y ) = ∪γ∈Y L(γ),
qn(Y ) := |Ln(Y )|, for 1 ≤ n ≤ N . We look at those Y for which qn(Y ) ≤
f(n),∀n ≤ N , and choose one among them such that

min
1≤n≤N

log qn(Y )
n

is maximum.
– By Lemma 7 below, on one of the large intervals we have defined, namely

[nr, nr+1],
log qn(Y )

n will be almost constant. Let

h :=
log qnr

(Y )
nr

.

Here is the lemma we needed; henceforth, Y is fixed and we omit to mention
it in the qn(Y ):

Lemma 7. There exists r < K, such that

log qnr

nr
< (1 + δ)

log qnr+1

nr+1
.

Proof. Otherwise log qn0
n0

≥ (1 + δ)K log qnK

nK
: as K > 1

δ , (1 + δ)K would be close

to e for δ small enough, and is larger than 9
4 as δ < 1

2 ; thus, as log qnK

nK
≥ EW by

the proof of Proposition 8 below, we have log qn0
n0

≥ 9
4EW , but qn0 ≤ f(n0) hence

log qn0
n0

< (1+ δ
2 )E0, and this contradicts E0 ≤ 2EW , which is true by Theorem 4.

We prove now that indeed h is a good approximation of the word entropy.

Proposition 8.

h ≥ EW .

Proof. We prove that

min
1≤n≤N

log qn

n
≥ EW .

We know by Theorem 5 that there is ŵ ∈ W (f) with pn(ŵ) ≥ exp(EW n), for
all n ≥ 1. For such a word ŵ, let X := LN (ŵ) ⊂ AN . We have, for each n
with 1 ≤ n ≤ N , Ln(X) = Ln(ŵ) and f(n) ≥ #Ln(ŵ) = pn(ŵ) ≥ exp(EW n).
Thus X is one of the possible Y , and the result follows from the maximality of
min1≤n≤N

log qn
n .
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What remains to prove is the following proposition (which, understandably,
does not use the maximality of min1≤n≤N

log qn
n ).

Proposition 9.

(1 − ε)h ≤ EW .

Proof. Our strategy is to build a word w such that, for all n ≥ 1,

exp((1 − ε)hn) ≤ pn(w) ≤ f(n),

which gives the conclusion by definition of EW . To build the word w, we shall
define an integer m, and build successive subsets of Lm(Y ); for such a subset Z,
we order it (lexicographically for example) and define w(Z) to be the Champer-
nowne word on Z: namely, if Z = {β1, β2, ..., βt}, we build the infinite word

w(Z) := β1β2 . . . βtβ1β1β1β2β1β3 . . . βt−1βtβ1β1β1 . . . βtβtβt . . .

made by concatenation of all words in Z followed by the concatenations of all
pairs of words of Z followed by the concatenations of all triples of words of Z,
etc.

The word w(Z) will satisfy exp((1 − ε)hn) ≤ pn(w(Z)) for all n as soon as

|Z| ≥ exp((1 − ε)hm),

since, for every positive integer k, we will have at least |Z|k factors of length km
in w(Z).

The successive (decreasing) subsets Z of Lm(Y ) we build will all have cardi-
nality at least exp((1−ε)hm), and the words w(Z) will satisfy pn(w(Z)) ≤ f(n)
for n in an interval which will increase at each new set Z we build, and ultimately
contains all the integers.

We give only the main ideas of the remaining proof. In the first stage we define
two lengths of words, n̂ and m > n̂

2ε , which will be both in the interval [nr, nr+1],
and a set Z1 of words of length m of the form γθ, for words γ of length n̂, such
that the word γθγ is in Lm+n̂(Y ). This is done by looking precisely at twin
occurrences of words.

Let ε̃ = ε
15 = 7(4+2E0)δ

E0
> 14δ; then we can get such a set Z1 with

|Z1| ≥ exp((1 − ε̃)h(m + n̂)).

In the second stage, we define a new set Z2 ⊂ Z1 in which all the words have
the same prefix γ1 of length 6ε̃hm, and all the words have the same suffix γ2 of
length 6ε̃hm, with |Z2| ≥ |Z1| exp(−12ε̃hm − 2δhn̂), and 2δhn̂ ≤ (1 − ε̃)n̂, thus

|Z2| ≥ exp((1 − 13ε̃)hm).

As a consequence of the definition of Z2, all words of Z2 have the same prefix
of length n̂, which is a prefix γ0 of γ1; as Z2 is included in Z1, any word of Z2

is of the form γ0θ, amd the word γ0θγ0 is in Lm+n̂(Y ).
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At this stage we can prove

Claim. pw(Z2)(n) ≤ f(n) for all 1 ≤ n ≤ n̂ + 1.

Let us shrink again our set of words.

Lemma 10. For a given subset Z of Z2, there exists Z ′ ⊂ Z, |Z ′| ≥ (1 −
exp(−(j −1)E0

2 ))j |Z|, such that the total number of factors of length n̂+ j of all
words γ0θγ0 such that γ0θ is in Z ′ is at most f(n̂ + j) − j.

We start from Z2 and apply successively Lemma 10 from j = 2 to j = 6ε̃m,
getting 6ε̃m − 1 successive sets Z ′; at the end, we get a set Z3 such that the
total number of factors of length n̂ + j of words γ0θγ0 for γ0θ in Z3 is at most
f(n̂ + j) − j for j = 2, . . . , 6ε̃m, and |Z3|

|Z2| is at least

Π2≤j≤6ε̃m−n̂(1 − exp(−(j − 1)
E0

2
))j ≥ Πj≥2(1 − exp(−(j − 1)

E0

2
))j ,

which implies after computations that

|Z3| ≥ exp((1 − 14ε̃)hm).

We can now bound the number of short factors by using the factors we have
just deleted and properties of γ0, γ1 and γ2.

Claim. pw(Z3)(n) ≤ f(n) for all 1 ≤ n ≤ 6ε̃m.

We shrink our set again.
Let m ≥ n > 6ε̃m; in average a factor of length n of a word in Z3 occurs in

at most m|Z3|
f(n) elements of Z3. We consider the f(n)

mn2 factors of length n which

occur the least often. In total, these factors occur in at most m|Z3|
f(n)

f(n)
mn2 = |Z3|

n2

elements of Z3. We remove these words from Z3, for all m ≥ n > 6ε̃m, obtaining
a set Z4 with |Z4| ≥ exp((1 − 15ε̃)hm).

We can now control medium length factors, using again the missing factors
we have just created, and γ1 and γ2, but not γ0.

Claim. pw(Z4)(n) ≤ f(n) for all 1 ≤ n ≤ m.

Finally we put Z5 = Z4 if |Z4| ≤ exp((1 − 4ε̃)hm), otherwise we take for Z5

any subset of Z4 with �exp((1 − 4ε̃)hm)	 elements. In both cases we have

|Z5| ≥ exp((1 − ε)hm).

For the long factors, we use mainly the fact that there are many missing
factors of length m, but we need also some help from γ1 and γ2.

Claim. pw(Z5)(n) ≤ f(n) for all n.

In view of the considerations at the beginning of the proof of Proposition 9,
Claim 3 completes the proof of that proposition, and thus of Theorem 6.
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4 Application

We define

C(f) = {x =
∑

n≥0

wn

qn+1
∈ [0, 1], w(x) = w0w1 · · · wn · · · ∈ W (f)}.

We are interested in the Hausdorff dimensions of this set, see [1] for definitions;
indeed, the main motivation for studying the word entropy is Theorem 4.8 of [5]:

Theorem 11.
The Hausdorff dimension of C(f) is equal to EW (f)/ log q.
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