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Abstract. The complexity function of an infinite word counts the number
of its factors. For any positive function f, its exponential rate of growth
Eo(f)is lim inf L log f(n). We define a new quantity, the word entropy
Ew(f), as the maximal exponential growth rate of a complexity function
smaller than f. This is in general smaller than Eo(f), and more difficult
to compute; we give an algorithm to estimate it. The quantity Ew (f) is
used to compute the Hausdorff dimension of the set of real numbers whose
expansions in a given base have complexity bounded by f.
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1 Definitions

Let A be the finite alphabet {0,1,...,q — 1}, If w € AN, and L(w) the set of
finite factors of w; for any non-negative integer n, we write L, (w) = L(w) N A™.
The classical complexity function is described for example in [2].

Definition 1. The complexity function of w € AN is defined for any non-
negative integer n by py(n) = | Ly (w)].

Our work concerns the study of infinite words w the complexity function of
which is bounded by a given function f from N to R*. More precisely, if f is
such a function, we put

W(f) = {w € A, pu(n) < f(n),¥n € N}.

Definition 2. If f is a function from N to R™, we call exponential rate of growth
of f the quantity

1
Eo(f) = lim inf —log f(n)
n—oo n
and word entropy of f the quantity
Ew(f)= sup Eo(pw).
weW(f)
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Of course, if Ey = 0 then Ey is zero also. Thus the study of Eyy is interesting
only when f has exponential growth: we are in the little-explored field of word
combinatorics in positive entropy, or exponential complexity. For an equivalent
theory in zero entropy, see [3,4].

2 First Properties of Ey and Ey

The basic study of these quantities is carried out in [5], where the following
results are proved.

If f is itself a complexity function (i.e. f = p, for some w € AY), then
Ew (f) = Eo(f). But in general Ew may be much smaller than Ey.

We define mild regularity conditions for f: f is said to satisfy (C) if the
sequence (f(n)),~, is strictly increasing, there exists ng € N such that Vn >
ng = f(2n) < f(n)?, f(n+1) < f(1)f(n), and the sequence (& log f(n)) _,
converges.

But for each 1 < @ < ¢, and ng € N such that 87t > ng + ¢ — 1, we define
the function f by f(1) =¢q, f(n) =n+qg—1for 1 <n <ng and f(n) = 6" for
n > ng. We have Ey(f) = logf and it is proved that

1
Ew(f) < —log(ng +q—1),
no
which can be made arbitrarily small, independently of 6, while f satisfies (C).

We define stronger regularity conditions for f.

Definition 3. We say that a function f from N to RT satisfies the conditions
(C*) if (i) for any n € N we have f(n+1) > f(n) > n+1; (ii) for any (n,n’) € N?
we have f(n+n') < f(n)f(n').

But even with (C*) we may have Ew (f) < Eo(f). Indeed, let f be the func-
tion defined by f(n) = [3™/?] for any n € N. Then it is easy to check that f
satisfies conditions (C*) and that Eo(f) = lim 1 log f(n) = log(v/3). On the

n—oo
other hand, we have f(1) =2, f(2) = 3; thus the language has no 00 or no 11,
and this implies that Ew (f) < log(%) < Ey(f).

At least, under these conditions, we have the important

Theorem 4. If f is a function from N to RT satisfying the conditions (Cx),
then Ew (f) > 5Eo(f)-

It is also shown in [5] that the constant  is optimal.
Finally, it will be useful to know that

Theorem 5. For any function f from N to RY, there exists w € W(f) such
that for any n € N we have p,(n) > exp(Ew (f)n).
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3 Algorithm

In general Eyy (f) is much more difficult to compute than Eq(f); now we will give
an algorithm which allows us to estimate with arbitrary precision Eyw (f) from
finitely many values of f, if we know already Ey(f) and have some information
on the speed with which this limit is approximated.

We assume that f satisfies conditions C*. We don’t loose too much gener-
ality with this assumption, since if the function f which satisfies the weaker
conditions C, we can replace it by the function f given recursively by

f(n) := min{f(n), min f(k)f(n - k)},

1<k<n
which satisfies conditions C*, such that f(n) < f(n),Vn € N and W(f) = W(f).

Theorem 6. There is an algorithm which gives, starting from f and e, a quan-
tity h such that (1 —e)h < Ew (f) < h. h depends explicitely on e, Eo(f), N,
f), ..., f(N), for an integer N which depends explicitely on &, Eqo(f), and an
integer ng, larger than an explicit function of € and Eo(f), and such that

Ing(’fL) < (1 + EO(f)€

n 3100 1 2B,y LoV for mo < < 2no.

We shall now give the algorithm. f is given and henceforth we omit to mention
it in Eo(f) and Ew (f). Also given is € € (0,1).
Description of the algorithm

— Let
FEye €
b= < —.
105(4 + 2E,) 210
— Let
K:=[51+1.
— Choose a positive integer
4K?
>KV ———
"0 =Y 003 E,
such that
log f(n)

)
— < (1+ §)E07Vn > no;

in view of conditions C*, this last condition is equivalent to w <

(1+ $)Eg,no < n < 2no.
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— Choose intervals so large that all the lengths of words we manipulate stay in
one of them. Namely, for each ¢ > 0, let

ner1 i= exp(K((1+6)* Eony + Ey)).
We take
N = ng.

— Choose a set Y C AN: for each possible Y, we define L, (Y) = Uyey L),
gn(Y) := |L,(Y)], for 1 < n < N. We look at those Y for which ¢, (V) <
f(n),¥n < N, and choose one among them such that

log ¢, (Y)
1<n<N n

is maximum.
— By Lemma 7 below, on one of the large intervals we have defined, namely

[Py a1, % will be almost constant. Let
log ¢, (Y
o 10840, (V)
e

Here is the lemma we needed; henceforth, Y is fixed and we omit to mention
it in the ¢, (Y):

Lemma 7. There exists r < K, such that

log g», log gy,
qu,,<(1+5) gq7+1.
Uz Np41
Proof. Otherwise bgﬂ% > (1+ 5);{%: as K > 1, (14 6)% would be close

to e for § small enough, and is larger than % as § < %; thus, as bgﬂ% > Ew by

the proof of Proposition 8 below, we have bgﬂ% > 2Ew, but ¢,, < f(no) hence
0 < (14 §)Fy, and this contradicts Ey < 2Eyw, which is true by Theorem 4.

We prove now that indeed h is a good approximation of the word entropy.
Proposition 8.
h> Ew.
Proof. We prove that

log g, S

min

Ey.
1<n<N n

We know by Theorem 5 that there is @ € W(f) with p, (@) > exp(Ewn), for
all n > 1. For such a word o, let X := Ly(w) C AN. We have, for each n
with 1 <n < N, L,(X) = L,(0) and f(n) > #L,(0) = p,(0) > exp(Ewn).

Thus X is one of the possible Y, and the result follows from the maximality of

log gn
pran

minj<np<N
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What remains to prove is the following proposition (which, understandably,
does not use the maximality of min;<,<n log%).
Proposition 9.
(1-e)h < Ew.
Proof. Our strategy is to build a word w such that, for all n > 1,
exp((1 —)hn) < pp(w) < f(n),

which gives the conclusion by definition of Eyy. To build the word w, we shall
define an integer m, and build successive subsets of L, (Y); for such a subset Z,
we order it (lexicographically for example) and define w(Z) to be the Champer-
nowne word on Z: namely, if Z = {31, B, ..., B}, we build the infinite word

w(Z) == B1Pa...Be1B1BBL B3 - Be—1BeBr 1By - BeBifBy - - -

made by concatenation of all words in Z followed by the concatenations of all
pairs of words of Z followed by the concatenations of all triples of words of Z,
etc.

The word w(Z) will satisfy exp((1 — e)hn) < p,(w(Z)) for all n as soon as
1Z] = exp((1 — €)hm),

since, for every positive integer k, we will have at least | Z|* factors of length km
in w(Z).

The successive (decreasing) subsets Z of L,,(Y") we build will all have cardi-
nality at least exp((1 —¢)hm), and the words w(Z) will satisfy p,(w(Z)) < f(n)
for n in an interval which will increase at each new set Z we build, and ultimately
contains all the integers.

We give only the main ideas of the remaining proof. In the first stage we define
two lengths of words, n and m > 2%, which will be both in the interval [n,., n,41],
and a set Z; of words of length m of the form ~6, for words 7 of length 7, such
that the word 6y is in L;,14(Y). This is done by looking precisely at twin
occurrences of words.

7(442F0)$

Let € = 1—55 = 5 = > 146§; then we can get such a set Z; with

|Z1] = exp((1 — €)h(m +7)).

In the second stage, we define a new set Zy C Z; in which all the words have
the same prefix 1 of length 6hm, and all the words have the same suffix v, of
length 66hm, with |Z3| > | Z1| exp(—12éhm — 26hn), and 25hi < (1 — &), thus

|Z2| > exp((1 — 13&)hm).

As a consequence of the definition of Z5, all words of Z5 have the same prefix
of length 7, which is a prefix vg of v1; as Zs is included in Z;, any word of Zs
is of the form 700, amd the word o607 is in Ly, +4(Y).
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At this stage we can prove
Claim. py(z,)(n) < f(n) forall 1 <n <n+ 1.
Let us shrink again our set of words.

Lemma 10. For a given subset Z of Za, there exvists Z' C Z, |Z'| > (1 —
exp(—(j — 1)%))j|Z|, such that the total number of factors of length i+ j of all
words vob0vyo such that o0 is in Z' is at most f(i+j) — j.

We start from Z5 and apply successively Lemma 10 from j = 2 to j = 6ém,
getting 6ém — 1 successive sets Z’; at the end, we get a set Z3 such that the
total number of factors of length n + j of words 6~y for 76 in Z3 is at most
fh+j)—jforj=2,...,6ém, and % is at least

E
< jcozm—n(1 —exp(—(j — 1) 20

)i > Isa(1 — exp(—(j — 1)22)),

2

which implies after computations that
|Z3| > exp((1 — 14€)hm).

We can now bound the number of short factors by using the factors we have
just deleted and properties of vy, v1 and ~s.

Claim. py(z,)(n) < f(n) for all 1 <n < 6ém.

We shrink our set again.
Let m > n > 6ém; in average a factor of length n of a word in Z3 occurs in

T'}‘(TZL?)" elements of Z3. We consider the % factors of length n which

occur the least often. In total, these factors occur in at most %% = ‘Z—;”l
elements of Z3. We remove these words from Z3, for all m > n > 6ém, obtaining
a set Zy with |Z4| > exp((1 — 15&)hm).

We can now control medium length factors, using again the missing factors

we have just created, and v; and 2, but not ~.

at most

Claim. py(z,)(n) < f(n) for all 1 <n < m.

Finally we put Z5 = Z, if |Z4| < exp((1 — 4&)hm), otherwise we take for Zs
any subset of Z4 with [exp((1 — 4&)hm)]| elements. In both cases we have

Z5] = exp((1 — g)hm).

For the long factors, we use mainly the fact that there are many missing
factors of length m, but we need also some help from v; and 7.

Claim. py(z5)(n) < f(n) for all n.

In view of the considerations at the beginning of the proof of Proposition 9,
Claim 3 completes the proof of that proposition, and thus of Theorem 6.
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4 Application

We define

Cf)={z =Y 0 €[0,1],w(z) = wow; -~ w, - € W(f)}.
n>0

We are interested in the Hausdorff dimensions of this set, see [1] for definitions;
indeed, the main motivation for studying the word entropy is Theorem 4.8 of [5]:

Theorem 11.
The Hausdorff dimension of C(f) is equal to Ew (f)/loggq.
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