The Word Entropy and How to Compute It

Sébastien Ferenczi^{1(⊠)}, Christian Mauduit¹, and Carlos Gustavo Moreira²

¹ Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille, I2M - UMR 7373, 163, avenue de Luminy, 13288 Marseille Cedex 9, France ssferenczi@gmail.com, mauduit@iml.univ-mrs.fr

² Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro, RJ 22460-320, Brazil

gugu@impa.br

Abstract. The complexity function of an infinite word counts the number of its factors. For any positive function f, its exponential rate of growth $E_0(f)$ is $\lim_{n\to\infty} \inf \frac{1}{n} \log f(n)$. We define a new quantity, the word entropy $E_W(f)$, as the maximal exponential growth rate of a complexity function smaller than f. This is in general smaller than $E_0(f)$, and more difficult to compute; we give an algorithm to estimate it. The quantity $E_W(f)$ is used to compute the Hausdorff dimension of the set of real numbers whose expansions in a given base have complexity bounded by f.

Keywords: Word complexity · Positive entropy

1 Definitions

Let A be the finite alphabet $\{0, 1, \ldots, q-1\}$, If $w \in A^{\mathbb{N}}$, and L(w) the set of finite factors of w; for any non-negative integer n, we write $L_n(w) = L(w) \cap A^n$. The classical complexity function is described for example in [2].

Definition 1. The complexity function of $w \in A^{\mathbb{N}}$ is defined for any nonnegative integer n by $p_w(n) = |L_n(w)|$.

Our work concerns the study of infinite words w the complexity function of which is bounded by a given function f from \mathbb{N} to \mathbb{R}^+ . More precisely, if f is such a function, we put

$$W(f) = \{ w \in A^{\mathbb{N}}, p_w(n) \le f(n), \forall n \in \mathbb{N} \}.$$

Definition 2. If f is a function from \mathbb{N} to \mathbb{R}^+ , we call exponential rate of growth of f the quantity

$$E_0(f) = \lim_{n \to \infty} \inf \frac{1}{n} \log f(n)$$

and word entropy of f the quantity

$$E_W(f) = \sup_{w \in W(f)} E_0(p_w).$$

© Springer International Publishing AG 2017

S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 157–163, 2017. DOI: 10.1007/978-3-319-66396-8_15

Of course, if $E_0 = 0$ then E_W is zero also. Thus the study of E_W is interesting only when f has exponential growth: we are in the little-explored field of *word combinatorics in positive entropy*, or exponential complexity. For an equivalent theory in zero entropy, see [3,4].

2 First Properties of E_0 and E_W

The basic study of these quantities is carried out in [5], where the following results are proved.

If f is itself a complexity function (i.e. $f = p_w$ for some $w \in A^{\mathbb{N}}$), then $E_W(f) = E_0(f)$. But in general E_W may be much smaller than E_0 .

We define mild regularity conditions for f: f is said to satisfy (\mathcal{C}) if the sequence $(f(n))_{n\geq 1}$ is strictly increasing, there exists $n_0 \in \mathbb{N}$ such that $\forall n \geq n_0 \Rightarrow f(2n) \leq f(n)^2$, $f(n+1) \leq f(1)f(n)$, and the sequence $\left(\frac{1}{n}\log f(n)\right)_{n\geq 1}$ converges.

But for each $1 < \theta \leq q$, and $n_0 \in \mathbb{N}$ such that $\theta^{n_0+1} > n_0 + q - 1$, we define the function f by f(1) = q, f(n) = n + q - 1 for $1 \leq n \leq n_0$ and $f(n) = \theta^n$ for $n > n_0$. We have $E_0(f) = \log \theta$ and it is proved that

$$E_W(f) \le \frac{1}{n_0} \log(n_0 + q - 1),$$

which can be made arbitrarily small, independently of θ , while f satisfies (C).

We define stronger regularity conditions for f.

Definition 3. We say that a function f from \mathbb{N} to \mathbb{R}^+ satisfies the conditions (\mathcal{C}^*) if (i) for any $n \in \mathbb{N}$ we have $f(n+1) > f(n) \ge n+1$; (ii) for any $(n, n') \in \mathbb{N}^2$ we have $f(n+n') \le f(n)f(n')$.

But even with (\mathcal{C}^*) we may have $E_W(f) < E_0(f)$. Indeed, let f be the function defined by $f(n) = \lceil 3^{n/2} \rceil$ for any $n \in \mathbb{N}$. Then it is easy to check that f satisfies conditions (\mathcal{C}^*) and that $E_0(f) = \lim_{n \to \infty} \frac{1}{n} \log f(n) = \log(\sqrt{3})$. On the other hand, we have f(1) = 2, f(2) = 3; thus the language has no 00 or no 11, and this implies that $E_W(f) \leq \log(\frac{1+\sqrt{5}}{2}) < E_0(f)$.

At least, under these conditions, we have the important

Theorem 4. If f is a function from \mathbb{N} to \mathbb{R}^+ satisfying the conditions $(\mathcal{C}*)$, then $E_W(f) > \frac{1}{2}E_0(f)$.

It is also shown in [5] that the constant $\frac{1}{2}$ is optimal.

Finally, it will be useful to know that

Theorem 5. For any function f from \mathbb{N} to \mathbb{R}^+ , there exists $w \in W(f)$ such that for any $n \in \mathbb{N}$ we have $p_w(n) \ge \exp(E_W(f)n)$.

3 Algorithm

In general $E_W(f)$ is much more difficult to compute than $E_0(f)$; now we will give an algorithm which allows us to estimate with arbitrary precision $E_W(f)$ from finitely many values of f, if we know already $E_0(f)$ and have some information on the speed with which this limit is approximated.

We assume that f satisfies conditions \mathcal{C}^* . We don't loose too much generality with this assumption, since if the function f which satisfies the weaker conditions \mathcal{C} , we can replace it by the function \tilde{f} given recursively by

$$\tilde{f}(n) := \min\{f(n), \min_{1 \le k < n} \tilde{f}(k)\tilde{f}(n-k)\},\$$

which satisfies conditions \mathcal{C}^* , such that $\tilde{f}(n) \leq f(n), \forall n \in \mathbb{N}$ and $W(\tilde{f}) = W(f)$.

Theorem 6. There is an algorithm which gives, starting from f and ε , a quantity h such that $(1 - \varepsilon)h \leq E_W(f) \leq h$. h depends explicitly on ε , $E_0(f)$, N, f(1), ..., f(N), for an integer N which depends explicitly on ε , $E_0(f)$, and an integer n_0 , larger than an explicit function of ε and $E_0(f)$, and such that

$$\frac{\log f(n)}{n} < (1 + \frac{E_0(f)\varepsilon}{210(4 + 2E_0(f))})E_0(f), \quad for \quad n_0 \le n < 2n_0.$$

We shall now give the algorithm. f is given and henceforth we omit to mention it in $E_0(f)$ and $E_W(f)$. Also given is $\varepsilon \in (0, 1)$.

Description of the algorithm

- Let

$$\delta := \frac{E_0 \varepsilon}{105(4 + 2E_0)} < \frac{\varepsilon}{210}.$$

- Let

$$K := \lceil \delta^{-1} \rceil + 1.$$

- Choose a positive integer

$$n_0 \ge K \lor \frac{4K^2}{420^3 E_0}$$

such that

$$\frac{\log f(n)}{n} < (1 + \frac{\delta}{2})E_0, \forall n \ge n_0;$$

in view of conditions C^* , this last condition is equivalent to $\frac{\log f(n)}{n} < (1 + \frac{\delta}{2})E_0, n_0 \le n < 2n_0.$

- Choose intervals so large that all the lengths of words we manipulate stay in one of them. Namely, for each $t \ge 0$, let

$$n_{t+1} := \exp(K((1+\delta)^2 E_0 n_t + E_0)).$$

We take

 $N := n_K.$

- Choose a set $Y \subset A^N$: for each possible Y, we define $L_n(Y) = \bigcup_{\gamma \in Y} L_{(\gamma)}$, $q_n(Y) := |L_n(Y)|$, for $1 \leq n \leq N$. We look at those Y for which $q_n(Y) \leq f(n), \forall n \leq N$, and choose one among them such that

$$\min_{1 \le n \le N} \frac{\log q_n(Y)}{n}$$

is maximum.

- By Lemma 7 below, on one of the large intervals we have defined, namely $[n_r, n_{r+1}], \frac{\log q_n(Y)}{n}$ will be almost constant. Let

$$h := \frac{\log q_{n_r}(Y)}{n_r}$$

Here is the lemma we needed; henceforth, Y is fixed and we omit to mention it in the $q_n(Y)$:

Lemma 7. There exists r < K, such that

$$\frac{\log q_{n_r}}{n_r} < (1+\delta) \frac{\log q_{n_{r+1}}}{n_{r+1}}.$$

Proof. Otherwise $\frac{\log q_{n_0}}{n_0} \ge (1+\delta)^K \frac{\log q_{n_K}}{n_K}$: as $K > \frac{1}{\delta}$, $(1+\delta)^K$ would be close to *e* for δ small enough, and is larger than $\frac{9}{4}$ as $\delta < \frac{1}{2}$; thus, as $\frac{\log q_{n_K}}{n_K} \ge E_W$ by the proof of Proposition 8 below, we have $\frac{\log q_{n_0}}{n_0} \ge \frac{9}{4}E_W$, but $q_{n_0} \le f(n_0)$ hence $\frac{\log q_{n_0}}{n_0} < (1+\frac{\delta}{2})E_0$, and this contradicts $E_0 \le 2E_W$, which is true by Theorem 4.

We prove now that indeed h is a good approximation of the word entropy.

Proposition 8.

$$h \ge E_W$$

Proof. We prove that

$$\min_{1 \le n \le N} \frac{\log q_n}{n} \ge E_W.$$

We know by Theorem 5 that there is $\hat{w} \in W(f)$ with $p_n(\hat{w}) \ge \exp(E_W n)$, for all $n \ge 1$. For such a word \hat{w} , let $X := L_N(\hat{w}) \subset A^N$. We have, for each nwith $1 \le n \le N$, $L_n(X) = L_n(\hat{w})$ and $f(n) \ge \#L_n(\hat{w}) = p_n(\hat{w}) \ge \exp(E_W n)$. Thus X is one of the possible Y, and the result follows from the maximality of $\min_{1\le n\le N} \frac{\log q_n}{n}$. What remains to prove is the following proposition (which, understandably, does not use the maximality of $\min_{1 \le n \le N} \frac{\log q_n}{n}$).

Proposition 9.

$$(1-\varepsilon)h \le E_W.$$

Proof. Our strategy is to build a word w such that, for all $n \ge 1$,

$$\exp((1-\varepsilon)hn) \le p_n(w) \le f(n),$$

which gives the conclusion by definition of E_W . To build the word w, we shall define an integer m, and build successive subsets of $L_m(Y)$; for such a subset Z, we order it (lexicographically for example) and define w(Z) to be the *Champer*nowne word on Z: namely, if $Z = \{\beta_1, \beta_2, ..., \beta_t\}$, we build the infinite word

$$w(Z) := \beta_1 \beta_2 \dots \beta_t \beta_1 \beta_1 \beta_1 \beta_2 \beta_1 \beta_3 \dots \beta_{t-1} \beta_t \beta_1 \beta_1 \beta_1 \dots \beta_t \beta_t \beta_t \dots$$

made by concatenation of all words in Z followed by the concatenations of all pairs of words of Z followed by the concatenations of all triples of words of Z, etc.

The word w(Z) will satisfy $\exp((1-\varepsilon)hn) \le p_n(w(Z))$ for all n as soon as

$$|Z| \ge \exp((1-\varepsilon)hm),$$

since, for every positive integer k, we will have at least $|Z|^k$ factors of length km in w(Z).

The successive (decreasing) subsets Z of $L_m(Y)$ we build will all have cardinality at least $\exp((1-\varepsilon)hm)$, and the words w(Z) will satisfy $p_n(w(Z)) \leq f(n)$ for n in an interval which will increase at each new set Z we build, and ultimately contains all the integers.

We give only the main ideas of the remaining proof. In the first stage we define two lengths of words, \hat{n} and $m > \frac{\hat{n}}{2\varepsilon}$, which will be both in the interval $[n_r, n_{r+1}]$, and a set Z_1 of words of length m of the form $\gamma\theta$, for words γ of length \hat{n} , such that the word $\gamma\theta\gamma$ is in $L_{m+\hat{n}}(Y)$. This is done by looking precisely at twin occurrences of words.

occurrences of words. Let $\tilde{\varepsilon} = \frac{\varepsilon}{15} = \frac{7(4+2E_0)\delta}{E_0} > 14\delta$; then we can get such a set Z_1 with $|Z_1| \ge \exp((1-\tilde{\varepsilon})h(m+\hat{n}))$.

In the second stage, we define a new set $Z_2 \subset Z_1$ in which all the words have the same prefix γ_1 of length $6\tilde{\epsilon}hm$, and all the words have the same suffix γ_2 of length $6\tilde{\epsilon}hm$, with $|Z_2| \geq |Z_1| \exp(-12\tilde{\epsilon}hm - 2\delta h\hat{n})$, and $2\delta h\hat{n} \leq (1 - \tilde{\epsilon})\hat{n}$, thus

$$|Z_2| \ge \exp((1 - 13\tilde{\varepsilon})hm).$$

As a consequence of the definition of Z_2 , all words of Z_2 have the same prefix of length \hat{n} , which is a prefix γ_0 of γ_1 ; as Z_2 is included in Z_1 , any word of Z_2 is of the form $\gamma_0\theta$, and the word $\gamma_0\theta\gamma_0$ is in $L_{m+\hat{n}}(Y)$. At this stage we can prove

Claim. $p_{w(Z_2)}(n) \leq f(n)$ for all $1 \leq n \leq \hat{n} + 1$.

Let us shrink again our set of words.

Lemma 10. For a given subset Z of Z_2 , there exists $Z' \subset Z$, $|Z'| \ge (1 - \exp(-(j-1)\frac{E_0}{2}))^j |Z|$, such that the total number of factors of length $\hat{n} + j$ of all words $\gamma_0 \theta \gamma_0$ such that $\gamma_0 \theta$ is in Z' is at most $f(\hat{n} + j) - j$.

We start from Z_2 and apply successively Lemma 10 from j = 2 to $j = 6\tilde{\varepsilon}m$, getting $6\tilde{\varepsilon}m - 1$ successive sets Z'; at the end, we get a set Z_3 such that the total number of factors of length $\hat{n} + j$ of words $\gamma_0\theta\gamma_0$ for $\gamma_0\theta$ in Z_3 is at most $f(\hat{n} + j) - j$ for $j = 2, \ldots, 6\tilde{\varepsilon}m$, and $\frac{|Z_3|}{|Z_2|}$ is at least

$$\Pi_{2 \le j \le 6\tilde{\varepsilon}m-\hat{n}}(1 - \exp(-(j-1)\frac{E_0}{2}))^j \ge \Pi_{j \ge 2}(1 - \exp(-(j-1)\frac{E_0}{2}))^j,$$

which implies after computations that

$$|Z_3| \ge \exp((1 - 14\tilde{\varepsilon})hm).$$

We can now bound the number of short factors by using the factors we have just deleted and properties of γ_0 , γ_1 and γ_2 .

Claim. $p_{w(Z_3)}(n) \leq f(n)$ for all $1 \leq n \leq 6\tilde{\varepsilon}m$.

We shrink our set again.

Let $m \ge n > 6\tilde{\varepsilon}m$; in average a factor of length n of a word in Z_3 occurs in at most $\frac{m|Z_3|}{f(n)}$ elements of Z_3 . We consider the $\frac{f(n)}{mn^2}$ factors of length n which occur the least often. In total, these factors occur in at most $\frac{m|Z_3|}{f(n)}\frac{f(n)}{mn^2} = \frac{|Z_3|}{n^2}$ elements of Z_3 . We remove these words from Z_3 , for all $m \ge n > 6\tilde{\varepsilon}m$, obtaining a set Z_4 with $|Z_4| \ge \exp((1-15\tilde{\varepsilon})hm)$.

We can now control medium length factors, using again the missing factors we have just created, and γ_1 and γ_2 , but not γ_0 .

Claim. $p_{w(Z_4)}(n) \leq f(n)$ for all $1 \leq n \leq m$.

Finally we put $Z_5 = Z_4$ if $|Z_4| \le \exp((1 - 4\tilde{\varepsilon})hm)$, otherwise we take for Z_5 any subset of Z_4 with $[\exp((1 - 4\tilde{\varepsilon})hm)]$ elements. In both cases we have

$$|Z_5| \ge \exp((1-\varepsilon)hm).$$

For the long factors, we use mainly the fact that there are many missing factors of length m, but we need also some help from γ_1 and γ_2 .

Claim. $p_{w(Z_5)}(n) \leq f(n)$ for all n.

In view of the considerations at the beginning of the proof of Proposition 9, Claim 3 completes the proof of that proposition, and thus of Theorem 6.

4 Application

We define

$$C(f) = \{x = \sum_{n \ge 0} \frac{w_n}{q^{n+1}} \in [0, 1], w(x) = w_0 w_1 \cdots w_n \cdots \in W(f)\}$$

We are interested in the Hausdorff dimensions of this set, see [1] for definitions; indeed, the main motivation for studying the word entropy is Theorem 4.8 of [5]:

Theorem 11.

The Hausdorff dimension of C(f) is equal to $E_W(f)/\log q$.

References

- 1. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (1990)
- 2. Ferenczi, S.: Complexity of sequences and dynamical systems. Discrete Math. 206(1–3), 145–154 (1999). http://dx.doi.org/10.1016/S0012-365X(98)00400-2, (Tiruchirappalli 1996)
- 3. Mauduit, C., Moreira, C.G.: Complexity of infinite sequences with zero entropy. Acta Arith. 142(4), 331–346 (2010). http://dx.doi.org/10.4064/aa142-4-3
- Mauduit, C., Moreira, C.G.: Generalized Hausdorff dimensions of sets of real numbers with zero entropy expansion. Ergodic Theor. Dynam. Syst. 32(3), 1073–1089 (2012). http://dx.doi.org/10.1017/S0143385711000137
- 5. Mauduit, C., Moreira, C.G.: Complexity and fractal dimensions for infinite sequences with positive entropy (2017)