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Abstract. In this paper, we study the Thue-Morse word on a ternary
alphabet. We establish some properties on special factors of this word
and prove that it is 2-balanced. Moreover, we determine its Abelian com-
plexity function.

Keywords: Infinite word · Factor · Morphism · Abelian complexity

Mathematics Subject Classification: 68R15 · 11B85

1 Introduction

Abelian complexity is a combinatorial notion used in the study of infinite words.
It counts the number of Parikh vectors of given length in a word. The study
of Abelian complexity was developed recently [6,7,9,16,17]. In particular, the
Abelian complexity of some words and some classes of words have been studied
[4,8,10,12,13,21,23].

The Thue-Morse word t2 on the binary alphabet {0, 1} is the infinite word gen-
erated by the morphism μ2 defined by μ(0) = 01, μ(1) = 10. The study of this
word goes back to the beginning of the twentieth century with the works of Thue
[19,20]. It was extensively studied during the last three decades [1–3,14]. In [17]
the authors have determined its Abelian complexity: for all n ≥ 1, ρab

t2 (n) = 2 if
n is odd and ρab

t2 (n) = 3 otherwise. The Thue-Morse word can be naturally gen-
eralized over an alphabet Aq of size q ≥ 3. More precisely, it is, on the alpha-
bet Aq = {0, 1, ..., q − 1}, the infinite word tq generated by the morphism μq

defined by: μq(k) = k(k + 1)...(k + q − 1), where the letters are expressed mod-
ulo q. A study of this word has been done in [18]. In this paper, we are interested
in the study of the Abelian complexity of the Thue-Morse word over the alphabet
A3 = {0, 1, 2}. More exactly, it is the word t3 generated by the morphism μ3

defined by μ3(0) = 012, μ3(1) = 120 and μ3(2) = 201.
The paper is organized as follows. After some definitions and notations, we

recall in Sect. 2 some useful results. In Sect. 3, we establish some combinatorial
properties of the word t3. We determine, in particular, its triprolongable factors,
then we show that it is 2-balanced. Lastly, in Sect. 4, we determine the Abelian
complexity function of t3.
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2 Definitions and Notations

Let A be a finite alphabet. The set of finite words over A is noted A∗ and ε rep-
resents the empty word. The set of non-empty finite words over A is denoted by
A+. For all u ∈ A∗, |u| designates the length of u and the number of occurrences
of a letter a in u is denoted |u|a. A word u of length n formed by repeating a
single letter x is denoted xn.

An infinite word is a sequence of letters of A, indexed by N. We denote by Aω

the set of infinite words on A. The set of finite or infinite words on A is denoted A∞.
Let u be a finite or infinite word and v a finite word on A. The word v is

called factor of u if there exists u1 ∈ A∗ and u2 ∈ A∞ such that u = u1vu2. The
factor v is called prefix (resp. suffix) if u1 (resp. u2) is the empty word. The set
of the prefixes (resp. the suffixes) of u is denoted pref(u) (resp. suff(u)).

Let u be an infinite word. The set of factors of length n of u is denoted Fn(u).
The set of all the factors of u is denoted F (u).

Let v be a factor of u and a be a letter of A. We say that v is right (resp.
left) prolongable by a, if va (resp. av) is also a factor of u. The word va (resp.
av) is called a right (resp. left) extension of v in u. The factor v is said to be
right (resp. left) special it admits at least two right (resp. left) extensions. If v
is both right special and left special, it is called bispecial.

An infinite word u is said to be recurrent if any factor of u appears infinitely
often. It is said to be uniformly recurrent if for any natural n, it exists a natural
n0 such that any factor of length n0 contains all the factors length n of u.

A morphism on A∗ is a map f : A∗ → A∗ such that f(uv) = f(u)f(v), for all
u, v ∈ A∗. A morphism f is said to be primitive if it exists a positive integer n
such that, for all letter a in A, fn(a) contains all the letters of A. It is k-uniform,
if |f(a)| = k for all a in A. A morphism f is said to be prolongable on a letter
a if f(a) = aw where w ∈ A+, and fn(w) is non empty for any natural n. A
morphism f defined on an alphabet A = {a1, a2, ..., ad} is said to be left (resp.
right) marked, if the first (resp. last) letters of f(ai) and f(aj) are different,
for all i �= j. If f is both left marked and right marked, it is said marked. An
infinite word u is generated by a morphism f if there exists a letter a such that
the words a, f(a), ..., fn(a), ... are longer and longer prefixes of u. We note
u = fω(a). An infinite word generated by a morphism is called purely morphic
word. Let u be an infinite purely morphic word and w, a factor of u verifying

|w| ≥ max{|f(a)| : a ∈ A}.

Then w can be decomposed in the form

p0f(a1)f(a2)...f(an)sn+1,

where

• n ≥ 0, a0, a1, ..., an+1 ∈ A;
• p0 is a suffix of f(a0) and sn+1 is a prefix of f(an+1).
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This decomposition is called synchronization [5].
Let u be an infinite word on an alphabet Aq = {a0, a1, ..., aq−1} and v, a

factor of u. The Parikh vector of v is the q-uplet ψ(w) = (|v|a0 , |v|a1 , ..., |v|aq−1).
We denote by Ψn(u), the set of the Parikh vectors of the factors of length n
of u:

Ψn(u) = {ψ(v) : v ∈ Fn(u)}.

The Abelian complexity of u is the application of N to N defined by: ρab(n) =
card(Ψn(u)). Let θ be a natural. An infinite word u is said to be θ-balanced if
for any letter a of A and any couple (v, w) of factors of u with the same length,
one has ||v|a − |w|a| ≤ θ.

Let u be an infinite word and v, a factor of u of length n. We denote by u[n]

the prefix of u of length n. The relative Parikh vector [22] of v is:

ψrel(v) = ψ(v) − ψ(u[n]).

The set of the relative Parikh vectors of the factors of u of length n will be
simply denoted:

Ψrel
n (u) = {ψrel(v) : v ∈ Fn(u)}.

This set has the same cardinal as Ψn(u). So,

ρab(n) = card(Ψrel
n (u)).

If u is θ-balanced, then all the components of relative Parikh vector are
bounded by θ [23].

Let us consider the alphabet A3 = {0, 1, 2}. The Thue-Morse word over A3

is the infinite word t3 generated by the morphism μ3 defined by μ3(0) = 012,
μ3(1) = 120, μ3(2) = 201:

t3 = lim
n−→+∞ μ

(n)
3 (0) = 012120201120201012201012120120201012201012120012...

Theorem 2.1 [11]. Let f be a primitive morphism, prolongable on a letter a.
Then, the infinite word fω(a), generated by f on a, is uniformly recurrent.

The morphism μ3 being primitive and prolongable on 0, the word t3 = μω
3 (0) is

uniformly recurrent.
In the following, we consider the alphabet A3 = {0, 1, 2}.

3 Triprolongable Factors and Balance

In this section, we establish some combinatorial properties of t3, then we show
that it is 2-balanced.

Recall the following useful lemma called synchronization lemma applied to
the morphism μ3.

Lemma 3.1 Let u be a factor of t3. Then, there exist some factors v, δ1 and δ2
of t3 such that u = δ1μ3(v)δ2 with |δ1|, |δ2| ≤ 2. This decomposition is unique
if |u| ≥ 7.
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Proposition 3.1 Let u be a factor of t3. Then, u is right (resp. left) tripro-
longable if and only if μ3(u) is right (resp. left) triprolongable.

Proof: Let u be a factor of t3, right triprolongable. Then, for any i ∈ A3, ui is
in t3. Therefore, μ3(u)i is in t3, since μ3(i) begins with i.

Conversely, let u be a factor of t3 such that μ3(u) is right triprolongable with
|u| ≥ 2 (the case |u| ≤ 1 is evident). Then, μ3(u)i is in t3, for all i ∈ A3. So, the
factor μ3(u)i ends by the first letter of the image of μ3(i), for all i ∈ A3; we use
here the unicity in the Lemma 3.1 since |μ3(u)i| ≥ 7. So, the factors μ3(u)012,
μ3(u)120 and μ3(u)201 are in t3. These three factors can be written respectively
μ3(u0), μ3(u1) and μ3(u2). This proves that u is right triprolongable in t3. We
proceed in the same way for the factors which are left triprolongable. �

For the following, we denote by BST (t3), the set of the factors of t3 which
are both right triprolongable left triprolongable.

As a consequence of Proposition 3.1, a factor u is in BST (t3) if and only if
μ3(u) is in BST (t3).

Proposition 3.2. Let u be an element of BST (t3). If |u| ≥ 3, it exists u′ in
BST (t3) such that u = μ3(u′).

Proof: Let u in BST (t3) such that |u| ≥ 3. One verifies manually the proposition
for the case 3 ≤ |u| ≤ 6. Now suppose |u| ≥ 7. Then, the factor u can be written
in a unique way in the form u = δ1μ3(u′)δ2, where u′, δ1 and δ2 are factors of
t3. Let us verify that factors δ1 and δ2 are empty. As u is right triprolongable,
the factors δ20, δ21 and δ22 are in t3. So, one of the words δ2i, contains the
square of a letter. This is impossible because the image of no letter does contain
a square. In the same way, we show that δ1 is empty. Hence, u = μ3(u′). By
Proposition 3.1, u′ is in BST (t3). �

Theorem 3.1. The set BST (t3) is given by:

BST (t3) =
⋃

n≥0

{μn
3 (0), μn

3 (1), μn
3 (2), μn

3 (01), μn
3 (12), μn

3 (20)} ∪ {ε}.

Proof: Let u be an element of BST (t3) with length at least 3. By Proposition 3.3,
it exists u′ in BST (t3) such that u = μ3(u′). Hence, to obtain the set BST (t3), it
suffices to find its elements of length at most 2, since the others can be obtained
by applying successively μ3. These factors are 0, 1, 2, 01, 12 and 20. �

Corollary 3.1 Let u be a factor of t3 which is right triprolongable. If |u| = 3k

or |u| = 2 × 3k, k ≥ 0, then u is left triprolongable.

Proof: Let u be a factor of t3, right triprolongable and verifying |u| = 3k, k ≥ 1.
Then, u can be decomposed in the form δ1μ3(v)δ2 where v, δ1, δ2 ∈ F (t3). The
factor u being right triprolongable, δ2 is the empty word. So, u = δ1μ3(v). We
know that |δ1| ≤ 2 and |μ3(v)| is multiple of 3. The factor u being of length 3k

then δ1 is the empty word. Hence, u = μ3(v) where v is a right triprolongable
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factor of length 3k−1. By the same process, the factor v can be written v = μ3(v′),
where v′ is a right triprolongable factor of length 3k−2. In a successive way, we
succeed in u = μk

3(i), i ∈ A3. With Theorem 3.1, we conclude that u is left
triprolongable. We proceed in the same way for the factors of length 2 × 3k. �

Proposition 3.3. Let u be in BST (t3). Then, it exists a unique letter i in A3

such that iu (resp. ui) is right (resp. left) triprolongable.

Proof: Let us construct the set F (t3) ∩ (A3vA3) where v ∈ BST (t3). We give
those for which |v| ≤ 3, and by induction we show that for those of upper length,
the extensions respect the unicity. We have, for i ∈ A3:

F (t3) ∩ (A3iA3) = {0i1, 1i1, 2i0, 2i1, 2i2};
F (t3)∩ (A3i(i+1)A3) = {0i(i+1)2, 1i(i+1)2, 2i(i+1)0, 2i(i+1)1, 2i(i+1)2};
F (t3) ∩ (A3μ3(i)A3) = {0μ3(i)1, 1μ3(i)0, 1μ3(i)1, 1μ3(i)2, 2μ3(i)0, 2μ3(i)1};

where i + 1 is taken modulo 3.

Let us take a factor v = μn
3 (0) and suppose that the set F (t3) ∩ A3μ

n
3 (0)

contains a single right triprolongable factor. Even if it means changing letter,
let us take 0μn

3 (0) this factor. So, By Proposition 3.1, 2μn+1
3 (0) is a right tripro-

longable factor of t3. Let us verify that it is the only one. Suppose 0μn+1
3 (0) is

right triprolongable. Then, 1μn
3 (0) is right triprolongable. This contradicts the

recursion hypothesis. We proceed in the same way for the other factors. �

Proposition 3.4. Let u be a factor of t3, right triprolongable. If u is left special,
then it is left triprolongable.

Proof: Let u be a factor of t3, right triprolongable and left special. Then, u can
be written in the form δ1μ3(v1)δ2. As the factor u is right triprolongable, δ2 is
empty by Proposition 3.2. Furthermore, as u is left special, δ1 is empty; because
otherwise, δ1 would be proper suffix of the image of some letter and by this fact u
would be extended on left in a unique way. So, u can be synchronized in the form
u = μ3(v1), where v1 is a factor of t3. Since the morphism μ3 is marked, then v1
is left special. Moreover, it is right triprolongable by Proposition 3.1. Thus, v1
can be synchronized in the form v1 = μ3(v2), v2 ∈ F (t3). In a successive way, we
succeed in u = μk

3(vk) with k ≥ 0 and vk a right triprolongable factor, left special
and of length at most 2. Therefore, vk is left triprolongable by Theorem3.1. �

Proposition 3.5. For all positive natural n, t3 admits exactly three right (resp.
left) triprolongable factors of length n.

Proof: It is known that 0, 1 and 2 are the right triprolongable factors of length 1.
Let us show that any right triprolongable factor of length n is suffix of a unique
right triprolongable factor of length n + 1.

Let w be a right triprolongable factor of length n. If w admits a unique
extension a on left, then aw is a right triprolongable factor since t3 is recurrent.
If it admits at least two left extensions, then w is in BST (t) by Proposition 3.4
and only one of its left extensions is right triprolongable by Proposition 3.3.



Abelian Complexity of Ternary Thue-Morse Word 137

Thus, the number of right triprolongable factors of length n + 1 is equal to the
number of right triprolongable factors of length n in t3. In the same way, we
treat the case of the left triprolongable factors. �

The following remark is a consequence of Proposition 3.5.

Remark 3.1. Let u be a right (resp. left) triprolongable factor of t3. If the
length of u is 3k, k ≥ 1, then it exists a right (resp. left) triprolongable factor v
of t3 such that u = μ3(v).

Proposition 3.6. For all positive natural n, the right (resp. left) triprolongable
factors of length n begin (resp. end) with different letters.

Proof: We proceed by induction on n. Suppose all the right triprolongable factors
of t3 of length at most n begin with different letters. Let u1 and u2 be two factors
of t3, right triprolongable of length n. We distinguish the two following cases.

Case 1: n is multiple of 3. Then, it exists some factors v1 and v2 of t3 such that
u1 = μ3(v1) and u2 = μ3(v2). Suppose there exists a letter a of A3 such that au1

and au2 are right triprolongable. Even if it means changing letter, let us take
a = 0. Thus, the factors 120u1 and 120u2 are right triprolongable in t3. These
factors can be written respectively μ3(1v1) and μ3(1v2). By Proposition 3.1, 1v1
and 1v2 are right triprolongable factors. This fact contradicts the hypothesis of
induction since 1v1 and 1v2 are of length lower than n.

Case 2: n − 1 is multiple of 3. Then, there exist some factors v1 and v2 of t3,
right triprolongable such that u1 = iμ3(v1) and u2 = jμ3(v2). As i and j are
suffix of images of letters, they have each a unique left extension. Since they are
different by hypothesis, the extensions are different.

Case 3: n − 2 is multiple of 3. We proceed similarly like previous cases. �

Theorem 3.2. The word t3 is 2-balanced.

Proof: Let u1 and u2 be two factors of length n ≥ 7 of t3. Then, u1 and u2 can be
synchronized in a unique way in the forms u1 = δ1μ3(v1)δ2 and u2 = δ‘1μ3(v2)δ‘2,
v1, v2, δ1, δ2, δ′

1, δ′
2 ∈ F (t3). Let us put αi = |δ1|i + |δ2|i, βi = |δ′

1|i + |δ′
2|i, for

all i ∈ A3. Consider the following cases.

Case 1: n is multiple of 3. Then, u1 (resp. u2) can be written uniquely in the
form μ3(v), ijμ3(v)k or iμ3(v)jk, with i, j, k ∈ A3 and v ∈ F (t3). Consider the
different forms taken by u1 and u2.

• Suppose u1 = μ3(v1) and u2 = μ3(v2). Then, we have ψ(u1) = ψ(u2) and we
have:

||u1|i − |u2|i| = 0,

for any letter i.
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• Suppose u1 = μ3(v1) and u2 = iμ3(v2)jk. Write u1 in the form μ3(v′
1)μ3(a),

a ∈ A3. Thus, we have |v′
1| = |v2|. As the letters have the same number of

occurrences in image of each letter, we have |μ3(a)|i = 1, for all i ∈ A3.
Moreover, βi ≤ 2, for all i ∈ A3 since jk is the prefix of the image of some
letter. Thus,

||u1|i − |u2|i| = ||μ3(a)|i − βi| ≤ 1.

• Suppose u1 = ijμ3(v1)k and u2 = lμ3(v2)mn, i, j, k, l, m, n ∈ A3. As
previously, one verifies that αi, βi ≤ 2, for all i ∈ A3. Thus,

||u1|i − |u2|i| = |αi − βi| ≤ 2.

By taking u1 = 101212 and u2 = 010120, we observe that the bound 2 is
reached.

Case 2: n − 1 is multiple of 3. Then, u1 (resp. u2) is of the form iμ3(v), μ3(v)k
or ijμ3(v)kl, i, j, k, l ∈ A3, v ∈ F (t3).

• Suppose u1 = iμ3(v1) and u2 = μ3(v2)j. Then, we have |v1| = |v2|. So
|αi − βi| ≤ 1, for all i ∈ A3.

• Suppose u1 = ijμ3(v1)kl and u2 = i′j′μ3(v2)k′l′, where ij and i′j′ (resp.
kl and k′l′) are suffix (resp. prefix) of images of letters. Then, note that
(i, k) �= (j, l) and (i′, k′) �= (j′, l′). Thus, |v1| = |v2|. By analogy with the
previous case, one verifies that αi, βi ≤ 2. Therefore,

||u1|i − |u2|i| = |αi − βi| ≤ 2,

for all i ∈ A3. By taking u1 = 01μ3(12)01 and u2 = 20μ3(01)20 we observe
that the bound 2 is reached.

• Suppose u1 = i′μ3(v1) and u2 = ijμ3(v2)kl. Then, we write u1 in the form
i′μ3(v′

1)μ3(a), a ∈ A3 and v′ ∈ F (t3). Thus, |v′
1| = |v2| and αi, βi ≤ 2. So

||u1|i − |u2|i| = |αi − βi| ≤ 2.

Case 3: n − 2 is multiple of 3. Suppose u1 (resp. u2) can be written in the form
ijμ3(v1), iμ3(v1)k or μ3(v1)kl (resp. ijμ3(v2), iμ3(v2)k or μ3(v2)kl). Then, we
have |v1| = |v2|. In a similar way as previous cases, one verifies that |αi −βi| ≤ 2,
for i ∈ A3. �

4 Abelian Complexity

In this section we give an explicit formula of the Abelian complexity function
ρab of t3. We show that the sequence (ρab(n))n≥2 of the word t3 is 3-periodic.

Proposition 4.1. For all k ≥ 1, ρab(3k) = 7.
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Proof: Let u be a factor of t3 of length 3k, k ≥ 1. Then, u synchronizes in the
form μ3(v), iμ3(v)jk or ijμ3(v)k with i, j, k ∈ A3, ij, jk ∈ {01, 12, 20} and
v ∈ F (t3). As u is chosen arbitrary one verifies that these three forms are taken
by u. As the prefix t3[3k] begins with the image of some letter, it is in the form
μ3(v). For the sequel, we note t3[3k] = μ3(v1). We have three cases to discuss.

Case 1: The factor u is in the form μ3(v2). Then, |v1| = |v2| and so ψrel(u) =
(0, 0, 0).

Case 2: The factor u is in the form iμ3(v2)jk. Then, we have:

ψ(u) = (|v2| + |ijk|0, |v2| + |ijk|1, |v2| + |ijk|2).
Let us show that the set of the values taken by ijk is

{001, 012, 020, 101, 112, 120, 201, 212, 220}.

By Proposition 3.5, for any integer k ≥ 1, t3 possesses exactly 3 right tripro-
longeable factors of length 3k. Let us denote by R1, R2 and R3 the right tripro-
longeable factors of length 3k − 3. As these factors begin with different letters,
we can suppose, even if it means changing the indexes, that 0R1, 1R2 and 2R3

are the right triprolongeable factors of t3 of length 3k − 2. Therefore, the words
0R101, 0R112, 0R120, 1R201, 1R212, 1R220, 2R301, 2R312 and 2R320 are fac-
tors of t3 of length 3k. Hence, ijk browses the announced set. So, ψ(ijk) takes
all the values of the following set

{(2, 1, 0), (1, 1, 1), (2, 0, 1), (1, 2, 0), (0, 2, 1), (0, 1, 2), (1, 0, 2)}.

Write the prefix t3[n] in the form μ3(v′
1)μ3(l), l ∈ A3. Then, |v′

1| = |v2| and
ψ(μ3(l)) = (1, 1, 1). Thus, for all the factors u of length 3k, ψrel(u) = ψ(ijk) −
ψ(μ3(l)) takes all the values of the set

{(1, 0, −1), (0, 0, 0), (1, −1, 0), (0, 1, −1), (−1, 1, 0), (−1, 0, 1), (0, −1, 1)}.

Case 3: The factor u is in the form ijμ3(v2)k. Then

ψ(u) = (|v2| + |ijk|0, |v2| + |ijk|1, |v2| + |ijk|2).
By proceeding in a similar way as in the case 2 and by using the left tripro-
longable factors, we verify that the set of values taken by ijk is

{010, 011, 012, 120, 121, 122, 200, 201, 202}.

Consequently, for all the factors u satisfying these conditions, ψrel(u) takes all
the values of the set

{(1, 0, −1), (0, 0, 0), (1, −1, 0), (0, 1, −1), (−1, 1, 0), (−1, 0, 1), (0, −1, 1)}.

After all, we have:

Ψrel
n (t3) = {(1, 0,−1), (0, 0, 0), (1,−1, 0), (0, 1,−1), (−1, 1, 0), (−1, 0, 1), (0,−1, 1)}.

�
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Proposition 4.2. For all k ≥ 1, ρab(3k + 1) = 6.

Proof: Let u be a factor of t3 of length 3k + 1, k ≥ 1. Then, u synchronizes in
the form iμ3(v), μ3(v)j or ijμ3(v)kl, i, j, k, l ∈ A3, ij, kl ∈ {01, 12, 20} and
v ∈ F (t3). The prefix t3[3k+1] is in the form μ3(v1)i, i ∈ A3. We have:

Case 1: i = 0. Then, t3[3k+1] = μ3(v1)0. Let us determine Ψrel
3k+1(t3).

• Let v2 be a factor of t3 such that u = iμ3(v2). By using the left triprolongable
factors of length 3k, we verify that the values taken by i are 0, 1 and 2. Con-
sequently, ψrel(u) takes all the values of {(0, 0, 0), (−1, 1, 0), (−1, 0, 1)}. In
the same way, we verify that if u = μ3(v2)j, ψrel(u) browses all the elements
of the set {(0, 0, 0), (−1, 1, 0), (−1, 0, 1)}.

• Let u be a factor of t3 with the form u = ijμ3(v2)kl. We write t3[3k+1] in
the form μ3(v′

1)μ3(m)0, m ∈ A3. It is known that each factor of the form
ijμ3(v2)kl is the left extension of a factor of the form jμ3(v2)kl whose the
set of values taken by jkl is

{001, 012, 020, 101, 112, 120, 201, 212, 220}.

Thus, those taken by ijkl is

{2001, 2012, 2020, 0101, 0112, 0120, 1201, 1212, 1220}.

So, ψrel(u) browses all the elements of the set

{(0, −1, 1), (−1, 1, 0), (0, 0, 0), (−2, 1, 1), (−1, 0, 1), (0, 1, −1)}.

Finally, we get

Ψrel
3k+1(t3) = {(0, −1, 1), (−1, 1, 0), (0, 0, 0), (−2, 1, 1), (−1, 0, 1), (0, 1, −1)}.

Case 2: i = 1. Then, t3[3k+1] = μ3(v1)1. Consider the different forms of u.

• Let u be a factor of t3 of the form u = iμ3(v2). As in the case 1, we verify
that i takes the values 0, 1 and 2. Therefore, ψrel(u) browses all the elements
of {(0, 0, 0), (1, −1, 0), (0, −1, 1)}.

• Let u be a factor of t3 of the form u = ijμ3(v2)kl. Then, we write t3[3k+1] in
the form t3[3k+1] = μ3(v′

1)μ3(m)1, m ∈ A3. By proceeding in a similar way
as in the case 1, we verify that the set of values taken by ijkl is

{2001, 2012, 2020, 0101, 0112, 0120, 1201, 1212, 1220}.

Thus, ψrel(u) browses all of the elements of the set

{(1, 0, −1), (1, −1, 0), (0, 0, 0), (−1, 0, 1), (0, −1, 1), (1, −2, 1)}.
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After all, we have:

Ψrel
3k+1(t3) = {(1, 0, −1), (1, −1, 0), (0, 0, 0), (−1, 0, 1), (0, −1, 1), (1, −2, 1)}.

Case 3: i = 2. Then, t3[3k+1] = μ3(v1)2. By proceeding in a similar way as
in the previous case we get:

Ψrel
3k+1(t3) = {(1, 1, −2), (0, 1, −1), (1, 0, −1), (−1, 1, 0), (0, 0, 0), (1, −1, 0)}. �

Proposition 4.3. For all k ≥ 1, ρab(3k + 2) = 6.

Proof: Let u be a factor of length 3k + 2 of t3, k ≥ 1. Then, u can be written in
the form iμ3(v2)j, ijμ3(v2) or μ3(v2)kl, i, j, k, l ∈ A3, v2 ∈ F (t3). Otherwise,
the prefix t3[3k+2] is in the form μ3(v1)ij.

Case 1: ij = 01. Then, t3[3k+1] = μ3(v1)01. Let us determine the set Ψrel
3k+2(t3).

• Let u be a factor of t3 of the form iμ3(v2)j. Then, v1 and v2 have the
same length. So, ψrel(u) = ψ(ij) − ψ(01). With right triprolongable fac-
tors of length k − 1, we verify that the set of values taken by ij is
{00, 01, 02, 10, 11, 12, 20, 21, 22}. So, ψrel(u) takes all the values of the set

{(1, −1, 0), (0, 0, 0), (0, −1, 1), (−1, 1, 0), (−1, 0, 1), (−1, −1, 2)}.

• Let u be a factor of t3 of the form ijμ3(v2). Then, v1 and v2 have the same
length. So, ψrel(u) = ψ(ij)−ψ(01). The factor ij is the suffix of the image of
a letter. It takes the values 01, 12 and 20. Thus, ψrel(u) takes all the values
of the set

{(0, 0, 0), (0, −1, 1), (−1, 0, 1)}.

In a same way, we verify that if u has the form μ3(v2)kl, ψrel(u) takes all the
values of the set {(0, 0, 0), (0, −1, 1), (−1, 0, 1)}.
Finally, we get:

Ψrel
3k+2(t3) = {(1, −1, 0), (0, 0, 0), (0, −1, 1), (−1, 1, 0), (−1, 0, 1), (−1, −1, 2)}

Case 2: ij = 12. Then, t3[3k+2] = μ3(v1)12. Let us determine the set Ψrel
3k+2(t3).

• Let u be a factor of t3 of the form u = iμ3(v2)j. As in the previous case
the set of values taken by ij is {00, 01, 02, 10, 11, 12, 20, 21, 22}. Therefore,
ψrel(u) takes all the values of the set

{(2, −1, −1), (1, 0, −1), (0, 1, −1), (0, 0, 0), (0, −1, 1), (1, −1, 0)}.

• Let u be a factor of t3 of the form u = ijμ3(v2). Then, we show as in the case
1 that ψrel(u) takes all the values of the set {(1, 0, −1), (1, −1, 0), (0, 0, 0)}.
After all, we have

Ψrel
3k+2(t3) = {(2, −1, −1), (1, 0 ,−1), (0, 1, −1), (0, 0, 0), (0, −1, 1), (1, −1, 0)}.
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Case 3: ij = 20. Then, t3[3k+2] = μ3(v1)20. As in the previous cases we verify
that:

Ψrel
3k+2(t3) = {(1, 0, −1), (0, 1, −1), (0, 0, 0), (−1, 2, −1), (−1, 1, 0), (−1, 0, 1)} �

Theorem 4.1. The Abelian complexity function of t3 is given by:

ρab
t3 (n) =

⎧
⎪⎪⎨

⎪⎪⎩

1 si n = 0
3 si n = 1
7 si n = 3k, k ≥ 1
6 sinon

Proof: The result follows from Propositions 4.1, 4.2 and 4.3. �

The ternary Thue-Morse word t3 is 3-automatic. Its Abelian complexity is the
eventually periodic word (ρab(n))n≥0 = 136(766)ω. Thus, we note that the word
t3 responds to the conjecture of Parreau, Rigo, Rowland and Vandomme: Any k-
automatic word admits a l-Abelian complexity function which is k-automatic. The
reader can find this conjecture and more information on the concepts in [15].
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8. Chen, J., Lü, X., Wu, W.: On the k-abelian complexity of the cantor sequence.
arXiv: 1703.04063 (2017)

9. Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. Math. Syst.
Theo. 7, 138–153 (1973)

10. Curie, J., Rampersad, N.: Recurrent words with constant abelian complexity. Adv.
Appl. Math. 47, 116–124 (2011)

11. Gottschalk, W.H.: Substitution on minimal sets. Trans. Amer. Math. Soc. 109,
467–491 (1963)
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