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Abstract. In our paper [A square root map on Sturmian words, Elec-
tron. J. Combin. 24.1 (2017)], we introduced a symbolic square root map.
Every optimal squareful infinite word s contains exactly six minimal
squares and can be written as a product of these squares: s = X2

1X2
2 · · · .

The square root
√

s of s is the infinite word X1X2 · · · obtained by delet-
ing half of each square. We proved that the square root map preserves
the languages of Sturmian words (which are optimal squareful words).
The dynamics of the square root map on a Sturmian subshift are well
understood. In our earlier work, we introduced another type of subshift
of optimal squareful words which together with the square root map
form a dynamical system. In this paper, we study these dynamical sys-
tems in more detail and compare their properties to the Sturmian case.
The main results are characterizations of periodic points and the limit
set. The results show that while there is some similarity it is possible for
the square root map to exhibit quite different behavior compared to the
Sturmian case.

1 Introduction

Kalle Saari showed in [5,6] that every Sturmian word contains exactly six min-
imal squares (that is, squares having no proper square prefixes) and that each
position of a Sturmian word begins with a minimal square. Thus a Sturmian
word s can be expressed as a product of minimal squares: s = X2

1X2
2X2

3 · · · .
In our earlier work [3], see also [2], we defined the square root

√
s of the word

s to be the infinite word X1X2X3 · · · obtained by deleting half of each square
X2

i . We proved that the words s and
√
s have the same language, that is, the

square root map preserves the languages of Sturmian words. More precisely, we
showed that if s has slope α and intercept ρ, then

√
s has intercept ψ(ρ), where

ψ(ρ) = 1
2 (ρ+1−α). The simple form of the function ψ immediately describes the

dynamics of the square root map in the subshift Ωα of Sturmian words of slope
α: all words in Ωα are attracted to the set {01cα, 10cα} of words of intercept
1 − α; here cα is the standard Sturmian word of slope α.

The square root map makes sense for any word expressible as a product of
squares. Saari defines in [6] an intriguing class of such infinite words which he
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calls optimal squareful words. Optimal squareful words are aperiodic infinite
words containing the least number of minimal squares such that every position
begins with a square. It turns out that such a word must be binary, and it must
contain exactly six minimal squares; less than six minimal squares forces the
word to be ultimately periodic. Moreover, the six minimal squares must be the
minimal squares of some Sturmian language; the set of optimal squareful words
is however larger than the set of Sturmian words. The six minimal squares of an
optimal squareful word take the following form for some integers a and b such
that a ≥ 1 and b ≥ 0:

02, (10a)2,

(010a−1)2, (10a+1(10a)b)2,

(010a)2, (10a+1(10a)b+1)2.

It is natural to ask if there are non-Sturmian optimal squareful words whose
languages the square root map preserves. In [3], we proved by an explicit con-
struction that such words indeed exist. The construction is as follows. The sub-
stitution

τ :
S �→ LSS
L �→ SSS

produces two infinite words Γ ∗
1 = SSSLSSLSS · · · and Γ ∗

2 = LSSLSSLSS · · ·
having the same language L. Let s̃ be a (long enough) reversed standard word in
some Sturmian language and L(s̃) be the word obtained from s̃ by exchanging its
first two letters. By substituting the language L by the substitution σ mapping
the letters S and L respectively to s̃ and L(s̃), we obtain a subshift Ω consisting
of optimal squareful words. We proved that the words Γ1 and Γ2, the σ-images
of Γ ∗

1 and Γ ∗
2 , are fixed by the square root map and, more generally, either√

w ∈ Ω or
√
w is periodic for all w ∈ Ω.

The aim of this paper is to study the dynamics of the square root map in the
subshift Ω in the slightly generalized case where τ(S) = LS2c and τ(L) = S2c+1

for some positive integer c and to see in which ways the dynamics differ from
the Sturmian case. Our main results are the characterization of periodic and
asymptotically periodic points and the limit set. We show that asymptotically
periodic points must be ultimately periodic points and that periodic points must
be fixed points; there are only two fixed points: Γ1 and Γ2. We prove that
any word in Ω that is not an infinite product of the words σ(S) and σ(L)
must eventually be mapped to a periodic word, thus having a finite orbit, while
products of the words σ(S) and σ(L) are always mapped to aperiodic words.
It follows from our results that the limit set of the square root map contains
exactly the words that are products of σ(S) and σ(L). In addition, we study the
injectivity of the square root map on Ω: only certain left extensions of the words
Γ1 and Γ2 may have more than one preimage.

Let us make a brief comparison with the Sturmian case to see that the obtained
results indicate that the square root map behaves somewhat differently on Ω.
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Themappingψ, defined above, is injective, so in the Sturmian case allwords have at
most one preimage. As ψ maps points strictly towards the point 1−α on the circle,
all points are asymptotically periodic (see Definition 17) and all periodic points are
fixed points. The fixed points are the two words 01cα and 10cα mentioned above,
and the limit set consists only of these two fixed points.

The paper is organized as follows. The following section gives needed results
on Sturmian words and standard words and it describes the construction of the
subshift Ω in full detail. In Sect. 3, we proceed to characterize the limit set and
to study injectivity. Section 4 contains results on periodic points.

2 Notation and Preliminary Results

Due to space constraints we refer the reader to [1] for basic notation, results
on words, and for basic concepts such as prefix, suffix, factor, language, primi-
tive word, conjugate, ultimately periodic word, aperiodic word, and subshift. We
distinguish finite words from infinite words by writing the symbols referring to
infinite words in boldface.

If w is a word such that w = u2, then we call w a square with square root u. A
square is minimal if it does not have a square as a proper prefix. If w is a word, then
by L(w) we denote the word obtained from w by exchanging its first two letters
(we will not apply L to too short words). The language of a subshift Ω is denoted
by L(Ω), and the shift operator on infinite words is denoted by T . We index words
from 0. We write u � v if the word u is lexicographically less than v. For binary
words over {0, 1}, we set 0 � 1.

2.1 Sturmian Words and Standard Words

Several proofs in [3] regarding Sturmian words and the square root map require
knowledge on continued fractions. In this paper, only some familiarity with con-
tinued fractions is required. We only recall that every irrational real number α
has a unique infinite continued fraction expansion:

α = [a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

(1)

with a0 ∈ Z and ak ∈ Z+ for k ≥ 1. The numbers ai are called the partial
quotients of α. An introduction to continued fractions in relation to Sturmian
words can be found in [2, Chap. 4].

We view here Sturmian words as the infinite words obtained as codings of
orbits of points in an irrational circle rotation with two intervals. For alternative
definitions and further details, see [1,4]. We identify the unit interval [0, 1) with
the unit circle T. Let α in (0, 1) be irrational. The map R : T → T, ρ �→ {ρ+α},
where {ρ} stands for the fractional part of the number ρ, defines a rotation on T.
Divide the circle T into two intervals I0 and I1 defined by the points 0 and 1−α.
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Then define the coding function ν by setting ν(ρ) = 0 if ρ ∈ I0 and ν(ρ) = 1
if ρ ∈ I1. The coding of the orbit of a point ρ is the infinite word sρ,α obtained
by setting its nth, n ≥ 0, letter to equal ν(Rn(ρ)). This word sρ,α is defined
to be the Sturmian word of slope α and intercept ρ. To make the definition
proper, we need to define how ν behaves in the endpoints 0 and 1 − α. We have
two options: either take I0 = [0, 1 − α) and I1 = [1 − α, 1) or I0 = (0, 1 − α]
and I1 = (1 − α, 1]. The difference is seen in the codings of the orbits of the
points {−nα}. This choice is largely irrelevant in this paper with the exception
of the definition of the mapping ψ in the next subsection. The only difference
between Sturmian words of slope [0; 1, a2, a3, . . .] and Sturmian words of slope
[0; a2+1, a3, . . .] is that the roles of the letters 0 and 1 are reversed. We make the
typical assumption that a1 ≥ 2 in (1). Since the sequence ({nα})n≥0 is dense in
[0, 1)—as is well-known—Sturmian words of slope α have a common language
(that is, the set of factors) denoted by L(α). The Sturmian words of slope α
form the Sturmian subshift Ωα, which is minimal and aperiodic.

Let (dk) be a sequence of positive integers. Corresponding to (dk), we define
a sequence (sk) of standard words by the recurrence

sk = sdk

k−1sk−2

with initial values s−1 = 1, s0 = 0. The sequence (sk) converges to an infi-
nite word cα, which is a Sturmian word of intercept α and slope α, where α is
an irrational with continued fraction expansion [0; d1 + 1, d2, d3, . . .]. Thus stan-
dard words related to the sequence (dk) are called standard words of slope α.
The standard words are the basic building blocks of Sturmian words, and they
have rich and surprising properties. For this paper, we only need to know that
standard words are primitive and that the final two letters of a (long enough)
standard word are different. Actually, in connection to the square root map, it is
more natural to consider reversed standard words obtained by writing standard
words from right to left. If s is a standard word in L(α), then also the reversed
standard word s̃ is in L(α) because L(α) is closed under reversal. For more on
standard words, see [1, Chap. 2.2].

2.2 Optimal Squareful Words and the Square Root Map

An infinite word is squareful if its every position begins with a square. An infinite
word is optimal squareful if it is aperiodic and squareful and it contains the
least possible number of distinct minimal squares. In [6], Kalle Saari proves
that optimal squareful words contain six distinct minimal squares; a squareful
word containing at most five minimal squares is necessarily ultimately periodic.
Moreover, Saari shows that optimal squareful words are binary and that the six
minimal squares are of very restricted form. The square roots of the six minimal
squares of an optimal squareful word are

S1 = 0, S4 = 10a,

S2 = 010a−1, S5 = 10a+1(10a)b, (2)

S3 = 010a, S6 = 10a+1(10a)b+1,
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for some integers a and b such that a ≥ 1 and b ≥ 0. We call an optimal squareful
word containing the minimal square roots of (2) an optimal squareful word with
parameters a and b. Throughout this paper, we reserve this meaning for the
fraktur letters a and b. Furthermore, we agree that the symbols Si always refer
to the minimal square roots of (2).

Let s be an optimal squareful word and write it as a product of minimal squares:
s = X2

1X2
2 · · · (such a product is unique). The square root

√
s of s is the word

X1X2 · · · obtained by deleting half of each minimal square X2
i . We reserve the

notation n
√
s for the nth square root of s. We chose this notation for its simplicity;

thenth square root of a numberxwould typically be denoted by 2n
√

x.We often con-
sider square roots of finite words. We let Π(a, b) to be the language of all nonempty
words w such that w is a factor of some optimal squareful word with parameters a
and b and w is factorizable as a product of minimal squares (2). Let w ∈ Π(a, b),
that is, w = X2

1 · · · X2
n for minimal square roots Xi. Then we can define the square

root
√

w ofw by setting
√

w = X1 · · · Xn. The square rootmap (on infinitewords) is
continuous with respect to the usual topology on infinite words (see [1, Sect. 1.2.2]).
The following lemma, used later, sharpens this observation.

Lemma 1. Let u and v be two optimal squareful words with the same parame-
ters a and b. If u and v have a common prefix of length 
, then

√
u and

√
v

have a common prefix of length �
/2�.
Proof. Say u and v have a nonempty common prefix w. We may suppose that
w /∈ Π(a, b) as otherwise the claim is clear. Let z be the longest prefix of w
that is in Π(a, b) ∪ {ε}, and let X2 and Y 2 respectively be the minimal square
prefixes of the words T |z|(u) and T |z|(v). Hence

√
u begins with

√
zX and

√
v

begins with
√

zY . Since X and Y begin with the same letter, it is easy to see
that either X is a prefix of Y or Y is a prefix of X. By symmetry, we suppose
that X is a prefix of Y . It follows that

√
u and

√
v have a common prefix of

length |zX2|/2. By the maximality of z, we have |zX2| > |w| proving that
√
u

and
√
v have a common prefix of length �|w|/2�. 
�

Sturmian words are a proper subset of optimal squareful words. If s is a
Sturmian word of slope α having continued fraction expansion as in (1), then it
is an optimal squareful word with parameters a = a1 − 1 and b = a2 − 1. The
square root map is especially interesting for Sturmian words because it preserves
their languages. Define a function ψ : T → T as follows. For ρ ∈ (0, 1), we set

ψ(ρ) =
1
2
(ρ + 1 − α),

and we set

ψ(0) =

{

1
2 (1 − α), if 0 ∈ I0,

1 − α
2 , if 0 /∈ I0.

The mapping ψ moves a point ρ on T towards the point 1−α by halving the
distance between the points ρ and 1 − α. The distance to 1 − α is measured in
the interval I0 or I1 depending on which of these intervals the point ρ belongs
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to. In [3], we proved the following result relating the intercepts of a Sturmian
word and its square root.

Theorem 2. Let sρ,α be a Sturmian word of slope α. Then √sρ,α = sψ(ρ),α.

Specific solutions to the word equation

X2
1X2

2 · · · X2
n = (X1X2 · · · Xn)2 (3)

in the Sturmian language L(α) play an important role. We are interested only
in the solutions of (3) where all words Xi are minimal square roots (2), i.e.,
primitive roots of minimal squares. Thus we give the following definition.

Definition 3. A nonempty word w is a solution to (3) if w can be written as
a product of minimal square roots w = X1X2 · · · Xn which satisfy the word
equation (3). The solution is primitive if w is primitive.

Consider for example the word S2S1S4 for a = 1 and b = 0. We have

(S2S1S4)2 = (01 · 0 · 10)2 = 01010 · 01010 = (01)2 · 02 · (10)2 = S2
2S2

1S2
4 ,

so the word S2S1S4 is a solution to (3).
In [3, Theorem 5.2], the following result was proved.

Theorem 4. If s̃ is a reversed standard word, then the words s̃ and L(s̃) are
primitive solutions to (3).

Solutions to (3) are important as they can be used to build fixed points of
the square root map. If (uk) is a sequence of solutions to (3) with the property
that u2

k is a proper prefix of uk+1 for k ≥ 1, then the infinite word w obtained
as the limit limk→∞ uk has arbitrarily long prefixes X2

1 · · · X2
n with the property

that X1 · · · Xn is a prefix of w. In other words, the word w is a fixed point of the
square root map. All known constructions of fixed points rely on this method.
For example, the two Sturmian words 01cα and 10cα of slope α and intercept
1 − α both have arbitrarily long squares u2 as prefixes, where u = L(s̃) for a
reversed standard word s̃ [3, Proposition 6.3]. In the next subsection, we see that
the dynamical system studied in this paper is also fundamentally linked to fixed
points obtained from solutions of (3).

The following lemma [3, Lemma 5.5] is of technical nature, but it conveys an
important message: under the assumptions of the lemma, swapping two adjacent
and distinct letters that do not occur as a prefix of a minimal square affects a
product of minimal squares only locally and does not change its square root.
This establishes the often-used fact that s̃s̃ and s̃L(s̃) are both in Π(a, b) and
have the same square root for a reversed standard word s̃. For example, if s̃ =
1001001010010, then

s̃s̃ = 1001001010 · 0101 · 00 · 1001010010 and
s̃L(s̃) = 1001001010 · 010010 · 1001010010,

so the change is indeed local and does not affect the square root. Notice that
every long enough standard word has S6 as a proper suffix.
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Lemma 5. Let u and v be words such that

– u is a nonempty suffix of S6,
– |v| ≥ |S5S6|,
– v begins with xy for distinct letters x and y,
– uv and L(v) are factors of some optimal squareful words with the same para-

meters.

Suppose there exists a minimal square X2 such that |X2| > |u| and X2 is a prefix
of uv or uL(v). Then there exist minimal squares Y 2

1 , . . ., Y 2
n such that X2 and

Y 2
1 · · · Y 2

n are prefixes of uv and uL(v) of the same length and X = Y1 · · · Yn.

2.3 The Subshift Ω

In this subsection, we define the main object of study of this paper. The results
presented were obtained in [3] in the case c = 1, the generalization being straight-
forward.

Let c be a fixed positive integer. Repeated application of the substitution

τ :
S �→ LS2c

L �→ S2c+1

to the letter S produces two infinite words

Γ ∗
1 = SS2c(LS2c)2c(S2c+1(LS2c)2c)2c · · · and

Γ ∗
2 = LS2c(LS2c)2c(S2c+1(LS2c)2c)2c · · ·

with the same language L. We set Ω∗ to be the minimal and aperiodic subshift
with language L.

Fix integers a and b such that a ≥ 1 and b ≥ 0, and let α be an irrational
with continued fraction expansion [0; a + 1, b + 1, . . .]. Let w to be a word such
that w ∈ {s̃k, L(s̃k)} where s̃k is a reversed standard word of slope α such that
|s̃k| > |S6|.1 Let then σ be the substitution mapping S to w and L to L(w). By
substituting the letters S and L in words of Ω∗, we obtain a new minimal and
aperiodic subshift σ(Ω∗), which we denote by ΩA. We also set Γ1 = σ(Γ ∗

1 ) and
Γ2 = σ(Γ ∗

2 ). The subshift ΩA is generated by both of the words Γ1 and Γ2. The
words Γ1 and Γ2 differ only by their first two letters. This difference is often
irrelevant to us, so we let Γ to stand for either of these words. Further, we let
the symbol γk to stand for the word σ(τk(S)) and γk to stand for σ(τk(L)).

It is easy to see that Γ1 = limk→∞ γ2k and Γ2 = limk→∞ γ2k. In what fol-
lows, we often consider infinite products of γk and γk, and we wish to argue
independently of the index k. Hence we make a convention that γ and γ respec-
tively stand for γk and γk for some k ≥ 0. The words γ and γ are primitive; see
[3, Lemma 8.2]. For simplification, we abuse notation and write S for γ0 and L

1 Without this condition the subshift Ω, defined below, does not consist of optimal
squareful words; see the remark after [3, Lemma 8.3].



104 J. Peltomäki and M. Whiteland

for γ0. It will always be clear from context if letters S and L or words S and L
are meant.

It can be shown that the words of ΩA are optimal squareful words with
parameters a and b; see [3, Lemma 8.3]. Therefore the square root map is defined
for words in ΩA. The square root map on ΩA has the following crucial properties.

Lemma 6. The following properties hold:

–
√

γγ = γ,
–

√
γγ = γ,

–
√

γγ = γ, and
–

√
γγ = γ.

Proof. The proof of [3, Proposition 8.1] works essentially as it is. 
�
Lemma 6 shows that the words Γ1 and Γ2 are fixed points of the square root

map. Namely, the word γk+2 has γ2
k as a prefix and γk+2 has γ2

k as a prefix.
Thus by Lemma 6, we have, e.g.,

√

Γ1 =
√

lim
k→∞

γ2
2k = lim

k→∞
γ2k = Γ1.

The words in ΩA can be (uniquely) written as a product of the words S and L
up to a shift. Consider a word w in ΩA and write w = T �(w′) for some w′ ∈
ΩA ∩ {S,L}ω and 
 such that 0 ≤ 
 < |S|. There are four distinct possibilities
(types):

(A) 
 = 0,
(B) 
 > 0 and the prefix of w of length |S| − 
 is in Π(a, b),
(C) 
 > 0 and the prefix of w of length 2|S| − 
 is in Π(a, b), or
(D) none of the above applies.

These possibilities are mutually exclusive: cases (B) and (C) cannot simultane-
ously apply because S,L /∈ Π(a, b).2 In our earlier paper, we proved the following
theorem, see [3, Theorem 8.7].3

Theorem 7. Let w ∈ ΩA. If w is of type (A),(B), or (C), then
√
w ∈ ΩA. If

w is of type (D), then
√
w is periodic with minimal period conjugate to S.

Thus to make ΩA a proper dynamical system, we need to adjoin a periodic
part to it. Let

ΩP = {T �(Sω) : 0 ≤ 
 < |S|},

and define Ω = ΩA ∪ ΩP . Clearly Ω is compact and
√

ΩA ⊆ Ω by Theorem 7.
Further, as the proof of Theorem 7 in [3] applies to arbitrary products of S and
L, it follows that

√
w is periodic with minimal period conjugate to S if w ∈ ΩP .

2 If S or L were in Π(a, b), then they would be nonprimitive as solutions to (3).
3 In the proof of [3, Theorem 8.7] only the case c = 1 was considered. This is of no

consequence as the proof given applies to arbitrary product ofs the words S and L.
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Thus
√

ΩP ⊆ ΩP , and the pair (Ω,
√·) is a valid dynamical system. Notice further

that Lω ∈ ΩP ; it is a special property of a reversed standard word s̃ that s̃ and
L(s̃) are conjugates, see [3, Proposition 2.6].

Let us recall next what is known about the structure of the words in Ω. The
word Γ is by definition an infinite product of the words γk and γk for all k ≥ 0.
Thus all words in ΩA are (uniquely) factorizable as products of γk and γk up to a
shift. Let us for convenience denote by Ωγ the set Ω∩{γ, γ}ω consisting of words of
Ω that are infinite products of γ and γ. The following lemma describes two impor-
tant properties of factorizations of words of ΩA as products of γ and γ. This result
is an immediate property of the substitution τ that generates Ω∗.

Lemma 8. Consider a factorization of a word in ΩA ∩ Ωγ as a product of γ
and γ. Such factorization has the following properties:

– Between two occurrences of γ there is always γ2c or γ4c+1.
– Between two occurrences of γγ4c+1γ there is always γ2c or (γ2cγ)4 · γ−1.

We also need to know how certain factors synchronize or align in a product
of γ and γ. The proof is a straightforward application of the elementary fact
that a primitive word cannot occur nontrivially in its square.

Lemma 9 (Synchronizability Properties). Let w ∈ Ωγ . If z is a word in
{γγ, γγ, γγ} occurring at position 
 of w, then the prefix of w of length 
 is a
product of γ and γ.4

The preceding lemma shows that if w is a word in ΩA, then for each k there
exists a unique 
 such that 0 ≤ 
 < |γk| and T �(w) ∈ Ωγk

. We then say that the
γk-factorization of w starts at the position 
 of w.

Let us conclude this subsection by making a remark regarding the subshift
Ω∗. It is possible to define a counterpart for the square root map of Ω. Write a
word w of Ω∗ as a product of pairs of the letters S and L: w = X1X

′
1 ·X2X

′
2 · · · ,

where XiX
′
i ∈ {SS, SL,LS,LL}. We define the square root

√
w of w to be the

word X1X2 · · · . Based on the above, it is not difficult to see that σ(
√
w) =

√

σ(w) for w ∈ Ω∗. In other words, the square root map for words in ΩS ∩ ΩA

has the same dynamics as the square root map in Ω∗.

3 The Limit Set and Injectivity

In this section, we consider what happens for words of Ω when the square root
map is iterated. We extend Theorem 7 and show that also the words of type
(B) and type (C) are eventually mapped to a periodic word. In fact, we prove a
stronger result: the number of steps required is bounded by a constant depending
only on the word S. These results enable us to characterize the limit set as the
set ΩS . In other words, asymptotically the square root map on Ω has the same
dynamics as the counterpart mapping on Ω∗ ∪ {Sω, Lω}. We also show that the

4 In general, e.g., the word γ2 can be a factor of γ3.
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square root map is mostly injective on ΩA, only certain left extensions of Γ may
have two preimages.

Let us first look at an example. Let a = 1, b = 0, and S = 01010010. Set
w = T 4(S2u) for some S2u ∈ ΩS ∩ ΩA. The word w is of type (C) as the word
T 4(S2), which equals 00 · 1001010010, is in Π(a, b). Now

√
w = 010010 · √

u and√
w ∈ ΩA by Theorem 7. So

√
w is of type (B), and 2

√
w = 010 · 2

√
u. Still we

have 2
√
w ∈ ΩA. It is clear now that 2

√
w is not of type (A) or (B). The word 2

√
u

begins with S or L, and neither 010 · S nor 010 · L is in Π(a, b), so 2
√
w is not of

type (C) either. Thus it is of type (D), so 3
√
w is periodic. The minimal period of

3
√
w is readily checked to be 01010010, that is, 3

√
w = Sω. With some effort it can

be verified that in this particular case 3
√
v is periodic for all v ∈ Ω \ ΩS . Notice

that the parameter c is irrelevant to all of the preceding arguments.

Theorem 10. There exists an integer n, depending only on the word S, such
that n

√
w ∈ {Sω, Lω} for all w ∈ Ω \ ΩS.

Theorem 10 can be proven using the following two lemmas, the first of which
is the important Embedding Lemma.

Lemma 11 (Embedding Lemma). Let w ∈ Ω and u1 and u2 to respectively
be the prefixes of w and

√
w of length |S|.

(i) If w begins with 0 and u1 �= u2, then u1 � u2.
(ii) If w begins with 1 and u1 �= u2, then u1 � u2.

Lemma 12. Let w be any of the words SS, SL, LS, or LL. If 
 is an odd
integer such that 0 < 
 < |S|, then T �(w) /∈ Π(a, b).

Proof. Let 
 be an odd integer such that 0 < 
 < |S|. Since |T �(w)| = |S2| − 
,
we see that |T �(w)| is odd. Thus it is impossible that T �(w) ∈ Π(a, b). 
�

Next we turn our attention to injectivity. The results provided next give
sufficient information to characterize the limit set. There is a slight imperfection
in the following results. Namely, we are unable to characterize the preimage of
the periodic part ΩP , and we believe no nice characterization exists. First of all,
the words Sω and Lω must have several preimages, periodic and aperiodic, by
Theorem 10. Secondly, if w in ΩA is of type (D), then not only is

√
w periodic

with minimal period conjugate to S but the square root of any word in ΩA

that shares a prefix of length 3|S| with w is periodic with the same minimal
period.5 Therefore here we only focus on characterizing preimages of words in
the aperiodic part ΩA.

The next theorem says that the square root map is not injective on ΩA but is
almost injective: only words of restricted form may have more than one preimage
and even then there is at most two preimages. In the Sturmian case, all words
have at most one preimage.

5 See the proof of [3, Theorem 8.7] for precise details.
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Theorem 13. If w is a word in ΩA having two preimages u and v in Ω under
the square root map, then u = zSΓ1 and v = zSΓ2 where zS is a suffix of some
γk such that z ∈ Π(a, b).

Theorem 13 can be proven using the following lemma.

Lemma 14. Suppose that u and v are words in Ωγ such that
√
u =

√
v. If

u = γγ · · · and v = γγ · · · , then u = γγγ2cγ · · · and v = γγγ2cγ · · · and both u
and v must be preceded by γγ2c−1 in Ω.

The limit set Λ is the set of words that have arbitrarily long chains of preim-
ages, that is,

Λ =
∞
⋂

n=0

n
√

Ω.

In the Sturmian case, the limit set contains only the two fixed points of the
square root map. For the subshift Ω, the limit set is much larger. In fact, the
limit set contains all words that are products of the words S and L.

Theorem 15. We have Λ = ΩS.

4 Periodic Points

In this section, we characterize the periodic points of the square root map in Ω.
The result is that the only periodic points are fixed points. We further charac-
terize asymptotically periodic points and show that all asymptotically periodic
points are ultimately periodic points.

Recall that a word w is a periodic point of the square root map with period
n if n

√
w = w.

Theorem 16. If w is a periodic point in Ω, then w ∈ {Γ1,Γ2, S
ω, Lω}.

The case with the Sturmian periodic points is similar: periodic points are
fixed points and the fixed points are obtained as limits from solutions of (3).

Next we consider the dynamical notion of an asymptotically periodic point
and characterize asymptotically periodic points in Ω.

Definition 17. Let (X, f) be a dynamical system. A point x in X is asymptot-
ically periodic if there exists a periodic point y in X such that

lim
n→∞ d(fn(x), fn(y)) = 0.

If this is the case, then we say that the point x is asymptotically periodic to y.

The following proposition essentially says that if a word in Ω is asymptoti-
cally periodic, then it is an ultimately periodic point. The situation is opposite to
the Sturmian case where all words are asymptotically periodic and only periodic
points are ultimately periodic points.
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Proposition 18. If w ∈ ΩS, then w is asymptotically periodic if and only if
w ∈ {Γ1,Γ2, S

ω, Lω}, that is, if and only if w is a periodic point. If w ∈ Ω \ΩS,
then w is asymptotically periodic to Sω or Lω.
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