
Srečko Brlek
Francesco Dolce
Christophe Reutenauer
Élise Vandomme (Eds.)

 123

LN
CS

 1
04

32

11th International Conference, WORDS 2017
Montréal, QC, Canada, September 11–15, 2017
Proceedings

Combinatorics on Words

Lecture Notes in Computer Science 10432

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Srečko Brlek • Francesco Dolce
Christophe Reutenauer • Élise Vandomme (Eds.)

Combinatorics on Words
11th International Conference, WORDS 2017
Montréal, QC, Canada, September 11–15, 2017
Proceedings

123

Editors
Srečko Brlek
Université du Québec à Montréal
Montreal, QC
Canada

Francesco Dolce
Université du Québec à Montréal
Montreal, QC
Canada

Christophe Reutenauer
Université du Québec à Montréal
Montreal, QC
Canada

Élise Vandomme
Université du Québec à Montréal
Montreal, QC
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-66395-1 ISBN 978-3-319-66396-8 (eBook)
DOI 10.1007/978-3-319-66396-8

Library of Congress Control Number: 2017949524

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume of Lecture Notes in Computer Science contains the proceedings
of the 11th International Conference WORDS 2017 which was organized by the
Laboratoire de Combinatoire et d’Informatique Mathématique (LaCIM) and held
during September 11–15, 2017, in Montreal, Canada. WORDS is the main conference
series devoted to the mathematical theory of words. In particular, the combinatorial,
algebraic and algorithmic aspects of words are emphasized. Input may also come from
other domains such as theoretical computer science, bioinformatics, digital geometry,
symbolic dynamics, numeration systems, text processing, number theory, etc.

The conference WORDS takes place every two years. The first conference of the
series was held in Rouen, France in 1997. Since then, the locations of WORDS
conferences have been: Rouen, France (1999), Palermo, Italy (2001), Turku, Finland
(2003 and 2013), Montreal, Canada (2005), Marseille, France (2007), Salerno, Italy
(2009), Prague, Czech Republic (2011), and Kiel, Germany (2015).

For the third time in the history of WORDS, a refereed proceedings volume has
been published in the Lecture Notes in Computer Science series of Springer. There
were 26 submissions, from 17 countries, and each of them was reviewed by at least two
reviewers. The selection process was undertaken by the Program Committee with the
help of generous reviewers. From these submissions, 21 papers were selected to be
published and presented at WORDS. In addition to the contributed papers, the present
volume also includes the abstracts of the lectures given by the five invited speakers:

– Štěpàn Holub (Charles University in Prague, Czech Republic): “Commutation and
Beyond”.

– Lila Kari (University of Waterloo, Canada): “DNA Words and Languages”,
– Anna Frid (Aix-Marseille University, France): “An Unsolved Problem on Palin-

dromes and Sturmian Words”,
– Volker Diekert (University of Stuttgart, Germany): “Church-Rosser Systems, Codes

with Bounded Synchronization Delay and Local Rees Extensions” (with Lukas
Fleischer),

– David Clampitt (Ohio State University, USA): “The Role of Combinatorics on
Words in Mathematical Music Theory”,

We take this opportunity to warmly thank all the invited speakers and all the authors
for their contributions. We are also grateful to all Program Committee members and the
additional reviewers for their hard work that led to the selection of papers published in
this volume. The reviewing process was facilitated by the EasyChair conference sys-
tem, created by Andrej Voronkov. Special thanks are due to Alfred Hofmann and Elke
Werner and the Lecture Notes in Computer Science team at Springer for having granted
us the opportunity to publish this special issue devoted to WORDS 2017 and for their
help during the final stage. We are also grateful to the Centre de Recherches
Mathématiques (CRM) for its support in the organization of WORDS 2017. Finally,

we are much obliged to a number of collaborators who contributed to the success of the
conference: the secretary, Johanne Patoine, and our students, Herman Goulet-Ouellet,
Nadia Lafrenière, Mélodie Lapointe and Émile Nadeau. Our warmest thanks for their
assistance in the organization of the event.

July 2017 Srečko Brlek
Francesco Dolce

Christophe Reutenauer
Élise Vandomme

VI Preface

Organization

WORDS 2017 was hosted by the Laboratoire de Combinatoire et d’Informatique
Mathématique (LaCIM) of the Université du Québec à Montréal, Canada.

Steering Committee

Valérie Berthé Université Paris Diderot, France
Srečko Brlek Université du Québec à Montréal, Canada
Julien Cassaigne Aix-Marseille Université, France
Maxime Crochemore King’s College London, UK
Aldo de Luca Università degli Studi di Napoli Federico II, Italy
Anna Frid Aix-Marseille Université, France
Juhani Karumäki (Chair) Turun yliopisto, Finland
Jean Néraud Université de Rouen, France
Dirk Nowotka Christian-Albrechts-Universität zu Kiel, Germany
Edita Pelantová České vysoké učenì technické v Praze, Czech Republic
Dominique Perrin Université Paris-Est Marne-la-Vallée, France
Antonio Restivo Università degli Studi di Palermo, Italy
Christophe Reutenauer Université du Québec à Montréal, Canada
Jeffrey Shallit University of Waterloo, Canada
Mikhail Volkov Ural Federal University, Russia

Program Committee

Elena Barcucci Università degli Studi di Firenze, Italy
Valérie Berthé Université Paris Diderot, France
Srečko Brlek (Chair) Université du Québec à Montréal, Canada
Arturo Carpi Università degli Studi di Perugia, Italy
Émilie Charlier Université de Liège, Belgium
Sylvie Hamel Université de Montréal, Canada
Juhani Karhumäki Turun yliopisto, Finland
Xavier Provençal Université Savoie Mont Blanc, France
Michaël Rao Université de Lyon, France
Christophe Reutenauer

(Chair)
Université du Québec à Montréal, Canada

Organizing Committee

Srečko Brlek (Chair) Université du Québec à Montréal, Canada
Francesco Dolce (Co-chair) Université du Québec à Montréal, Canada
Johanne Patoine (Secretary) Université du Québec à Montréal, Canada
Élise Vandomme (Co-chair) Université du Québec à Montréal, Canada

Additional Reviewers

Marilena Barnabei Università di Bologna, Italy
Alexandre Blondin Massé Université du Québec à Montréal, Canada
Alexander Burstein Howard University, USA
Maxime Crochemore King’s College London, UK
Alessandro De Luca Università degli Studi di Napoli Federico II, Italy
Sergi Elizalde Dartmouth College, USA
Luca Ferrari Università degli Studi di Firenze, Italy
Anna Frid Aix-Marseille Université, France
Amy Glen Murdoch University, Australia
Gábor Hetyei University of North Carolina Charlotte, USA
Matthieu Josuat-Verges Université Paris-Est Marne-la-Vallée, France
Jean-Philippe Labbé Freie Universität Berlin, Germany
Sébastien Labbé Université de Bordeaux, France
Marion Le Gonidec Université de la Réunion, France
Julien Leroy Université de Liège, Belgium
Florin Manea Christian-Albrechts-Universität zu Kiel, Germany
Victor Marsault Université de Liège, Belgium
Jay Pantone Dartmouth College, USA
Edita Pelantová České vysoké učenì technické v Praze, Czech Republic
Svetlana Puzynina Sobolev Institute of Mathematics, Russia
Narad Rampersad University of Winnipeg, Canada
Gwenaël Richomme Université Paul-Valéry Montpellier 3, France
Michel Rigo Université de Liège, Belgium
Aleksi Saarela Turun yliopisto, Finland
Joe Sawada University of Guelph, Canada
Patrice Séébold Université Paul-Valéry Montpellier 3, France
Jeffrey Shallit University of Waterloo, Canada
Wolgang Steiner Université Paris Diderot, France
Manon Stipulanti Université de Liège, Belgium
Élise Vandomme Université du Québec à Montréal, Canada
Laurent Vuillon Université Savoie Mont Blanc, France
Luca Zamboni Université de Lyon, France

VIII Organization

Invited Talks

Commutation and Beyond
(Extended Abstract)

Štěpán Holub

Department of Algebra, Charles University, Prague, Czech Republic
holub@karlin.mff.cuni.cz

Abstract. We survey some properties of simple relations between words.

Keywords: Periodicity forcing • Word equations

Supported by the Czech Science Foundation grant number 13-01832S.

DNA Words and Languages

Lila Kari

School of Computer Science, University of Waterloo, Canada
lila.kari@uwo.ca

The practical possibility of encoding symbolic information as “DNA words” and
“DNA languages”, and the fact that biochemical processes (Watson-Crick comple-
mentarity, cut-and-paste of DNA strands, etc.) can be used to perform arithmetic and
logic operations, led to the development of the fields of theoretical and experimental
DNA computing.

I will describe our work on defining and investigating new concepts in combina-
torcs on words and formal language theory that capture the biological reality of DNA-
and RNA-encoded information, as well as various bio-operations and their relation-
ships to traditional models of information and computation. Besides its potential sig-
nificance for the design of programmable DNA-based computational devices, the
impact of this research is that it creates a mutually enriching link between theoretical
computer science and molecular biology.

I will also describe our research into the mathematical properties of
naturally-occurring bioinformation by exploring the connection between the syntactical
structure of genomic sequences and species classification. In particular, I will present
our ongoing investigation into Chaos Game Representations of DNA sequences as
genomic signatures, and its applications to comparative genomics. The potential impact
of such an alignment-free universal classification method could be significant, given
that 86% of existing species on Earth and 91% of species in the oceans still await
classification.

An Unsolved Problem on Palindromes
and Sturmian Words

Anna Frid

Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
anna.frid@univ-amu.fr

I will center the talk around the following unsolved problem: Is it true that for any
aperiodic infinite word u and for any K > 0, there exists a factor of u which cannot be
represented as a concatenation of at most K palindromes? In other terms, is the
palindromic length of factors of any aperiodic infinite word unbounded?

We know that the answer is positive for all infinite words avoiding some power and
in fact for a wider class including in particular all morphic words [2]. We also know
that the answer is positive if we consider left or right greedy palindromic length instead
of the usual one [1]. Note that a greedy palindromic length can be much greater than
the usual one: for an easy example, we can remark that the usual palindromic length of
aaba is two, a aba, whereas its left greedy palindromic length is three: aa b a.

The existing proof for words avoiding a power is not constructive, and in fact, in
this talk I am going to discuss how a general constructive proof could look. It does not
exist even for the case of Sturmian words. Strictly speaking, I do not know even if the
answer to the problem is positive for a Sturmian word with unbounded elements of the
continued fraction expansion of the slope!

So, I am going to discuss why standard techniques for Sturmian words do not work
in this case (unless somebody finds a working technique before the conference!) and
what is missing to develop a constructive proof of the conjecture that for any aperiodic
infinite word u and for any K > 0, there exists a factor of u of palindromic length greater
than K.

References

1. Bucci, M., Richomme, G.: Greedy palindromic lengths, arXiv preprint, https://arxiv.org/abs/
1606.05660

2. Frid, A.E., Puzynina, S., Zamboni, L.Q.: On palindromic factorization of words. Adv. Appl.
Math. 50(5), 737–748 (2013)

https://arxiv.org/abs/1606.05660
https://arxiv.org/abs/1606.05660

Church-Rosser Systems, Codes
with Bounded Synchronization Delay

and Local Rees Extensions

Volker Diekert and Lukas Fleischer

FMI, University of Stuttgart, Stuttgart, Germany
{diekert,fleischer}@fmi.uni-stuttgart.de

In memoriam: Zoltàn Ésik (1951–2016)

Abstract. What is the common link, if there is any, between Church-Rosser
systems, prefix codes with bounded synchronization delay, and local Rees
extensions? The first obvious answer is that each of these notions relates to
topics of interest for WORDS: Church-Rosser systems are certain rewriting
systems over words, codes are given by sets of words which form a basis of a
free submonoid in the free monoid of all words (over a given alphabet) and local
Rees extensions provide structural insight into regular languages over words.
So, it seems to be a legitimate title for an extended abstract presented at the
conference WORDS 2017. However, this work is more ambitious, it outlines
some less obvious but much more interesting link between these topics. This
link is based on a structure theory of finite monoids with varieties of groups and
the concept of local divisors playing a prominent role. Parts of this work
appeared in a similar form in conference proceedings [6, 10] where proofs and
further material can be found.

Lukas Fleischer—Supported by the German Research Foundation (DFG) under grant DI 435/6-1.

The Role of Combinatorics on Words
in Mathematical Music Theory

David Clampitt

The Ohio State University, Columbus, Ohio, USA
clampitt.4@osu.edu

Abstract. Algebraic combinatorics on words plays an important role in math-
ematical music theory of the past three decades.

Keywords: Sturmian morphisms • Sturmian involution • Christoffel words •

Standard words • Central words • Three distance theorem • Diatonic scales •

Pentatonic scales • Modes • Guido of Arezzo • Zarlino

A subfield of mathematical music theory studies the properties of basic musical
materials, such as diatonic scales (the familiar do re mi scale is an example). The
musical octave, an interval between two pitches whose fundamental frequencies are in
the ratio 2:1, is effectively a musical equivalence relation: humans learn to recognize
pitches separated by octaves as functionally equivalent in most music (men and women
singing the same tune will sing in octaves, for example), and in Western music we give
the notes referring to such pitches the same name; music theorists speak of pitch
classes. Diatonic scales, as periodic patterns modulo the octave, may be represented as
circular words. Berstel and Perrin [1], in their essay “The origins of combinatorics on
words,” mention music as a field (along with astronomy) in which periodic discrete
phenomena occur, giving rise to circular words or necklaces. We might represent the
diatonic scale as the circular word hTTTSTTSi, where T stands for the interval tone and
S for the interval semitone. As a circular word it is equivalent to hTTSTTTSi, a more
familiar representation for musicians.

In 1989, Carey and Clampitt [3] defined well-formed scales, generalizing the
diatonic scale. We departed from the fact that the diatonic scale admits a generating
interval, in the sense that every note of a diatonic scale do re mi fa sol la ti is reachable
by extending multiples of intervals of a perfect fifth (P5) from fa: fa ! do ! sol ! re
! la ! mi ! ti. “Reachable” here means that some representative of the respective
diatonic pitch classes is met as we stack up perfect fifths. What is the definition of a
perfect fifth? That depends upon musical and historical context: in equal temperament,
to tune a piano, for example, we would theoretically use the frequency ratio 2

7
12; but a

more natural definition would be the frequency ratio 3/2. Since we are considering
scales as periodic modulo the octave, and combining perfect fifths means taking powers
of frequency ratios, we consider base-2 logarithms, and take multiples modulo 1 of
rational 7/12 or irrational log2 3

2. Mapping the diatonic pitch classes in generation order
to the integers mod 7 by fa $ 0, do $ 1, sol $ 2, re $ 3, la $ 4, mi $ 5, ti $ 6, we
note that taking multiples of perfect fifths and reducing them modulo 1 we arrange the
pitch class representatives in scale order, hfa sol la ti do re mii, and the mapping is

linear (an automorphism of the cyclic group of order 7), via multiplication by 2 modulo
7: 0 ! 0, 1 ! 2, 2 ! 4, 3 ! 6, 4 ! 1, 5 ! 3, 6 ! 3. Generalizing, we define
generated scales where this mapping, from generation order to scale order, is linear
modulo the cardinality of the scale, to be well-formed scales. We show that what
characterizes the cardinalities of well-formed scales for a given generating interval size
is that they are all and only those integers that are denominators of continued fraction
convergents or semi-convergents to the generating interval log-frequency ratio. Thus,
whether we take as generating interval 7

12 or log2
3
2,

4
7 is a continued fraction approxi-

mation to the generating interval, and the 7-note scale generated by the perfect fifth is
well-formed. Assuming log2 3

2 as the generating interval yields an infinite hierarchy of
well-formed scales, with cardinalities 2; 3; 5; 7; 12; 17; 29; 41; 53; . . ., including among
them tetraktys, pentatonic, and chromatic scales, of cardinalities 3, 5, and 12. The
characterizing theorem of course holds irrespective of the size of the generating interval
[5]. This conception touches on the Three Distances Theorem, due to V. Sós [8] and
others.

Cutting the circular word corresponding to the diatonic scale, the finite word
TTTSTTS is a Christoffel word, while TTSTTTS is a standard word. Indeed, applying
the special Sturmian morphisms GG~D and GGD of the monoid A� for A ¼ fa; bg to the
root word ab yields aaabaab and aabaaab, respectively. The application of word
theory in this framework brings about a treatment of the modes of the scales, repre-
sented by the conjugacy class of the Christoffel word [7]. Moreover, the standard
factorization often considered, reflecting the respective images of a and b, has a
musical meaning. Thus, the factorization of the Christoffel word GG~Dða; bÞ ¼
aaab; aab is a representation of what is known in music theory as the authentic division
of the Lydian mode of the diatonic scale, while the factorization of the standard word
GGDða; bÞ ¼ aaba; aab represents the authentic division of the Ionian (or major)
mode. Similarly for the other morphisms in the conjugation class. The one member
of the conjugacy class that is not the image of a special Sturmian morphism in the
conjugation class of GGD is the bad conjugate, baabaaa, which is similarly rejected by
the music theorists (Glarean in 1547 called this mode hyperaeolius reiectus [rejected]).

Standard words of length n have prefixes of length n� 2 which are central words.
Guido of Arezzo in the eleventh century conferred privileged status on the hexachord
ut re mi fa sol la, corresponding to the central word aabaa. Central words appear
frequently in medieval music treatises, as discussed in [4] and in [6]. In particular,
Guido presents the word aabaaabaa, but he emphasizes its dual under Sturmian
involution, discussed below, abaabaaba.

There is a duality introduced by Sturmian involution, the anti-automorphism of the
monoid of special Sturmian morphisms St0 that sends f to f � by fixing G and ~G and
exchanging D and ~D, reversing the order of the constituents [2]. This dual perspective
also has a musical interpretation, in terms of what Clampitt and Noll [7] call the
folding, a word formed by the pattern of falling perfect fifths and rising perfect fourths
that reaches the pitch class representatives of the scale within the modal octave. For
example, the word ab; abababb may be taken to represent the folding for the C major
scale, where the highest pitch B (ti) of the scale is followed by falling perfect 5th (a) to
E (mi), a rising perfect 4th (b) to A (la), falling perfect 5th (a) to D (re), rising 4th (b) to

XVI The Role of Combinatorics on Words in Mathematical Music Theory

G (sol), falling 5th (a) to the lowest note of the scale C (do), rising 4ths (b) to F (fa) and
to the excluded boundary note B-flat (just as the scale C D E F G A B (C

0
) needs an

excluded boundary pitch C
0
to complete it). The standard morphism GGD that results

in the scale pattern for the major scale, under Sturmian involution yields the Christoffel
morphism ~DGG, which applied to the root word ab results in the folding for the major
scale. The duality leads to music theoretical insights that would not be accessible
without the mathematical framework.

Finally, we will consider the musical interpretation of results in the contributed
paper to this conference by Clampitt and Noll, “Matching Lexicographic and Conju-
gation Orders of the Conjugation Class of a Special Sturmian Morphism.” This is
reflected in the reordering of the diatonic modes effected by Zarlino in 1571, which
brought the modes into conformity with the conjugation order of the morphisms,
which, as we show, is also the lexicographic order, properly defined, of the morphisms
of the conjugation class.

References

1. Berstel, J., Perrin, D.: The origins of combinatorics on words. Eur. J. Comb. 28(3), 996–1022
(2007)

2. Berthé, V., de Luca, A., Reutenauer, C.: On an involution of Christoffel words and sturmian
morphisms. Eur. J. Comb. 29(2), 535–553 (2008)

3. Carey, N., Clampitt, D.: Aspects of well-formed scales. Music Theory Spectr. 11(2), 187–206
(1989)

4. Carey, N., Clampitt, D.: Regions: A theory of tonal spaces in early medieval treatises.
J. Music Theory. 40(1), 113–147 (1996)

5. Carey, N., Clampitt, D.: Two theorems concerning rational approximations. J. Math. Music 6
(1), 61–66 (2012)

6. Clampitt, D., Noll, T.: Regions and standard modes. In: Chew, E., Childs, A., Chuan, C.H.
(eds.) MCM 2009. CCIS, vol. 38, pp. 81–92. Springer, Heidelberg (2009)

7. Clampitt, D., Noll, T.: Modes, the height-width duality, and handschin’s tone character. Music
Theory Online 17(1) (2011)

8. Sós, V.T.: On the distribution mod 1 of the sequence na. Ann. Univ. Sci. Budap. Rolando
Eötvös, Sect. Math. 1, 127–134 (1958)

The Role of Combinatorics on Words in Mathematical Music Theory XVII

Contents

Commutation and Beyond: Extended Abstract . 1
Štěpán Holub

Church-Rosser Systems, Codes with Bounded Synchronization
Delay and Local Rees Extensions . 6

Volker Diekert and Lukas Fleischer

Overpals, Underlaps, and Underpals . 17
Aayush Rajasekaran, Narad Rampersad, and Jeffrey Shallit

On Some Interesting Ternary Formulas . 30
Pascal Ochem and Matthieu Rosenfeld

Minimal Forbidden Factors of Circular Words . 36
Gabriele Fici, Antonio Restivo, and Laura Rizzo

A de Bruijn Sequence Construction by Concatenating Cycles
of the Complemented Cycling Register . 49

Daniel Gabric and Joe Sawada

On Words with the Zero Palindromic Defect . 59
Edita Pelantová and Štěpán Starosta

Equations Enforcing Repetitions Under Permutations. 72
Joel D. Day, Pamela Fleischmann, Florin Manea, and Dirk Nowotka

Matching Lexicographic and Conjugation Orders on the Conjugation
Class of a Special Sturmian Morphism . 85

David Clampitt and Thomas Noll

More on the Dynamics of the Symbolic Square Root Map
(Extended Abstract) . 97

Jarkko Peltomäki and Markus Whiteland

Study of Christoffel Classes: Normal Form and Periodicity 109
Mélodie Lapointe

On Arithmetic Index in the Generalized Thue-Morse Word 121
Olga G. Parshina

Abelian Complexity of Thue-Morse Word over a Ternary Alphabet 132
Idrissa Kaboré and Boucaré Kientéga

http://dx.doi.org/10.1007/978-3-319-66396-8_1
http://dx.doi.org/10.1007/978-3-319-66396-8_2
http://dx.doi.org/10.1007/978-3-319-66396-8_2
http://dx.doi.org/10.1007/978-3-319-66396-8_3
http://dx.doi.org/10.1007/978-3-319-66396-8_4
http://dx.doi.org/10.1007/978-3-319-66396-8_5
http://dx.doi.org/10.1007/978-3-319-66396-8_6
http://dx.doi.org/10.1007/978-3-319-66396-8_6
http://dx.doi.org/10.1007/978-3-319-66396-8_7
http://dx.doi.org/10.1007/978-3-319-66396-8_8
http://dx.doi.org/10.1007/978-3-319-66396-8_9
http://dx.doi.org/10.1007/978-3-319-66396-8_9
http://dx.doi.org/10.1007/978-3-319-66396-8_10
http://dx.doi.org/10.1007/978-3-319-66396-8_10
http://dx.doi.org/10.1007/978-3-319-66396-8_11
http://dx.doi.org/10.1007/978-3-319-66396-8_12
http://dx.doi.org/10.1007/978-3-319-66396-8_13

A Set of Sequences of Complexity 2nþ 1 . 144
J. Cassaigne, S. Labbé, and J. Leroy

The Word Entropy and How to Compute It . 157
Sébastien Ferenczi, Christian Mauduit, and Carlos Gustavo Moreira

First Steps in the Algorithmic Reconstruction of Digital Convex Sets 164
Paolo Dulio, Andrea Frosini, Simone Rinaldi, Lama Tarsissi,
and Laurent Vuillon

Variants Around the Bresenham Method . 177
J.-P. Borel

Combinatorics of Cyclic Shifts in Plactic, Hypoplactic, Sylvester,
and Related Monoids. 190

Alan J. Cain and António Malheiro

Palindromic Length in Free Monoids and Free Groups 203
Aleksi Saarela

Invariance: A Theoretical Approach for Coding Sets of Words Modulo
Literal (Anti)Morphisms. 214

Jean Néraud and Carla Selmi

Burrows-Wheeler Transform and Run-Length Enconding 228
Sabrina Mantaci, Antonio Restivo, Giovanna Rosone,
and Marinella Sciortino

A Permutation on Words in a Two Letter Alphabet 240
Niccolò Castronuovo, Robert Cori, and Sébastien Labbé

Symmetric Dyck Paths and Hooley’s D-Function . 252
José Manuel Rodríguez Caballero

Author Index . 263

XX Contents

http://dx.doi.org/10.1007/978-3-319-66396-8_14
http://dx.doi.org/10.1007/978-3-319-66396-8_15
http://dx.doi.org/10.1007/978-3-319-66396-8_16
http://dx.doi.org/10.1007/978-3-319-66396-8_17
http://dx.doi.org/10.1007/978-3-319-66396-8_18
http://dx.doi.org/10.1007/978-3-319-66396-8_18
http://dx.doi.org/10.1007/978-3-319-66396-8_19
http://dx.doi.org/10.1007/978-3-319-66396-8_20
http://dx.doi.org/10.1007/978-3-319-66396-8_20
http://dx.doi.org/10.1007/978-3-319-66396-8_21
http://dx.doi.org/10.1007/978-3-319-66396-8_22
http://dx.doi.org/10.1007/978-3-319-66396-8_23
http://dx.doi.org/10.1007/978-3-319-66396-8_23

Commutation and Beyond

Extended Abstract

Štěpán Holub(B)

Department of Algebra, Charles University, Prague, Czech Republic
holub@karlin.mff.cuni.cz

Abstract. We survey some properties of simple relations between
words.

Keywords: Periodicity forcing · Word equations

1 Commutation Forcing

Arguably, the core of the combinatorics on words folklore is the fact that two
words commute if and only if they are powers of the same word. In fact, the
claim that x and y commute would be written, by a combinatorist on words,
most probably as x, y ∈ t∗ (for some t), instead of xy = yx.

This fact has a fairly strong and well known generalization: any nontrivial
relation of two words forces commutation. This follows easily from the following
lemma.

Lemma 1. Let x and y do not commute and let z be the longest common prefix
of xy and yx. Then z is the longest common prefix of any pair of words u ∈
x{x, y}∗ and v ∈ y{x, y}∗ that are both at least as long as z.

Another folklore property of words is that every word has a unique primitive
root : for each word w there is a unique word r such that w is a power of r, and
r is a power of itself only. (Therefore, commutation is equivalent to having the
same primitive root.) This uniqueness can be also expressed by saying that if

sn = tm ,

then both s and t are powers of some r. Also this fact has several generalizations.
The first one is the theorem of Lyndon and Schützenberger [20] (which happens
to hold in free groups as well):

Theorem 2. If xnym = zp with n,m, p ≥ 2, then all words x, y and z commute.

A clever short proof of this classical result was given by Harju and Nowotka [14].
This theorem naturally raises a question: for which words w ∈ {x, y}+ the

equality w = zp, p > 2 implies that x and y commute? The answer is formulated
in the following result.

Š. Holub—Supported by the Czech Science Foundation grant number 13-01832S.

c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 1–5, 2017.
DOI: 10.1007/978-3-319-66396-8 1

2 Š. Holub

Theorem 3. Suppose that x, y ∈ A∗ do not commute and let X = {x, y}. Let
C be the set of all X-primitive words from X∗\X that are not primitive. Then
either C is empty or there is k ≥ 1 such that

C = {xiyxk−i | 0 ≤ i ≤ k} or C = {yixyk−i | 0 ≤ i ≤ k} .

A word is X-primitive if it is primitive when understood as a word over the
alphabet X.

A weaker version of the theorem was obtained in a paper by Lentin and
Schützenberger [19]. The full claim was proved in a paper by Barin-Le Rest and
Le Rest [2], and in the dissertation of Spehner [22]. Although very natural and
important, Theorem 3 seems to be not very well known.

Another generalization of Theorem 2 was given by Appel and Djorup [1] who
proved that words satisfying

xk
1x

k
2 · · · xk

n = yk (1)

commute if n ≤ k. This was further generalized by Harju and Nowotka [15].
For n > k, a natural question is whether the equality (1) can be simultaneously
satisfied by non-commuting words for several different exponents k. It turns out
that this is possible for two different exponents but not for three. For exponents
1 < k1 < k2 < k3, this was proved by Holub [16]. For 1 = k1 < k2 < k3, there
was only a limited knowledge [12], until the recent complete and elegant proof
by Saarela [21].

2 Periodicity Forcing

The equality (1) is related to the equality

xk
1x

k
2 · · · xk

n = yk
1yk

2 · · · yk
n .

Due to the symmetry, this equality is better seen not as a relation between words
but rather as a property of two morphisms g : ai �→ xi and h : ai �→ yi, viz. that
they agree on the word ak

1a
k
2 · · · ak

n. This idea leads to a concept of periodicity
forcing words and/or languages. A set of words L is said to be periodicity forcing
if the equality g(w) = h(w) for all w ∈ L implies (with g �= h) that both
morphisms g and h are periodic, that is, all their images commute. For two
morphisms g and h, g �= h, we can define their equality set as

Eq(g, h) = {w | w nonempty, g(w) = h(w)} .

Elements of equality sets of non-periodic morphisms are called equality words,
which is a complementary property to being periodicity forcing. The question
whether Eq(g, h) is nonempty, for given morphisms g and h, is known as the (in
general undecidable) Post Correspondence Problem. That is why the question
whether a given word or language is periodicity forcing is also known as the
Dual Post Correspondence Problem. The problem was explicitly or implicitly

Commutation and Beyond 3

studied in many particular cases, for example in relation with test sets [18].
Recently, the question was investigated also on a general level [5,6].

The most simple nontrivial version of the problem is the question on equal-
ity words over the binary alphabet. Although the binary Post Correspondence
Problem is decidable in polynomial time [13], classification of binary equality
words turns out to be surprisingly difficult. For instance, it is presently not
known whether abbaaaa is an equality word or not. Binary equality languages
were first studied by Čuĺık II and Karhumäki [3] almost forty years ago. Soon it
was shown that binary equality languages are generated either by one word, or
by two words, or are of a special form αγ∗β [7]. The latter possibility, however,
was conjectured to be impossible. The conjecture was confirmed in 2003 [16].
Moreover, it was shown that the only possible form of a two-generated binary
equality language is (up to the symmetry of letters) {aib, bai} [17].

There is a series of papers studying words that can be generators of binary
equality sets [4,8,10,11]. The current state of the art is captured in the Ph.D.
thesis of Jana Hadravová [9] by the Fig. 1 below. Coordinates represent the
number of a’s and b’s in the potential equality word. Black dots indicate that
there is a known equality set generator with this numbers of letters, and the
grey area delimits cases where all equality words are known. The asymmetry is

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 |w |b

|w |a

Fig. 1. Binary equality words

4 Š. Holub

given by the assumption that h(b) is not shorter than the other three images
g(a), g(b) and h(a).

Example 4. We give an example illustrating how to read the figure. No gener-
ator with ten b’s and twelve a’s is recorded in the figure. The corresponding
empty place is within the gray area which means that we can prove that no such
generator exists.

On the other hand, there is a dot for five b’s and six a’s. In fact, we know
three such generators: a6b5, b5a6 and (ab)5a. The coordinate (5, 6) is not in the
gray area, which means that we are not presently sure that there is no other
word (although we believe so).

Note that also (b5a6)2 is a binary equality word, which may seem to be at
odds with our first example. But that word is not a generator of an equality
language since any two morphisms agreeing on (b5a6)2 agree also on b5a6 as one
can easily see.

References

1. Appel, K.I., Djorup, F.M.: On the equation zn1 z
n
2 z

n
k = yn in a free semigroup.

Trans. Am. Math. Soc. 134(3), 461–470 (1968)
2. Barbin-Le Rest, E., Le Rest, M.: Sur la combinatoire des codes à deux mots. Theor.

Comput. Sci. 41, 61–80 (1985)
3. Karel Culik, I.I., Karhumäki, J.: On the equality sets for homomorphisms on free

monoids with two generators. RAIRO ITA 14(4), 349–369 (1980)
4. Czeizler, E., Holub, Š., Karhumäki, J., Laine, M.: Intricacies of simple word equa-

tions: an example. Internat. J. Found. Comput. Sci. 18(6), 1167–1175 (2007)
5. Day, J.D., Reidenbach, D., Schneider, J.C.: On the dual post correspondence prob-

lem. Int. J. Found. Comput. Sci. 25(8), 1033–1048 (2014)
6. Day, J.D., Reidenbach, D., Schneider, J.C.: Periodicity forcing words. Theor. Com-

put. Sci. 601, 2–14 (2015)
7. Ehrenfeucht, A., Karhumäki, J., Rozenberg, G.: On binary equality sets and a

solution to the test set conjecture in the binary case. J. Algebra 85(1), 76–85
(1983)

8. Hadravová, J.: A length bound for binary equality words. Commentat. Math. Univ.
Carol. 52(1), 1–20 (2011)

9. Hadravová, J.: Structure of equality sets. Ph.D. thesis, Charles University, Prague
(2015)

10. Hadravová, J., Holub, Š.: Large simple binary equality words. Int. J. Found. Com-
put. Sci. 23(06), 1385–1403 (2012)

11. Hadravová, J., Holub, Š.: Equation xiyjxk = uivjuk in Words. In: Dediu, A.-H.,
Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp.
414–423. Springer, Cham (2015). doi:10.1007/978-3-319-15579-1 32

12. Hakala, I., Kortelainen, J.: On the system of word equations xi
1x

i
2. . .x

i
m =

yi
1y

i
2. . .y

i
n(i = 1, 2, . . .) in a free monoid. Acta Informatica 34(3), 217–230 (1997)

13. Halava, V., Holub, Š.: Binary (generalized) post correspondence problem is in P.
Technical report 785, Turku Centre for Computer Science (2006)

14. Harju, T., Nowotka, D.: The equation xi = yjzk in a free semigroup. Semigroup
Forum 68(3), 488–490 (2004)

http://dx.doi.org/10.1007/978-3-319-15579-1_32

Commutation and Beyond 5

15. Harju, T., Nowotka, D.: On the equation xk = zk1
1 zk2

2 · · · zkn
n in a free semigroup.

Theor. Comput. Sci. 330(1), 117–121 (2005)
16. Holub, Š.: Local and global cyclicity in free semigroups. Theor. Comput. Sci.

262(1), 25–36 (2001)
17. Holub, Š.: A unique structure of two-generated binary equality sets. In: Ito, M.,

Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 245–257. Springer, Heidelberg
(2003). doi:10.1007/3-540-45005-X 21

18. Holub, Š., Kortelainen, J.: Linear size test sets for certain commutative languages.
Theor. Inform. Appl. 35(5), 453–475 (2001)

19. Lentin, A., Schützenberger, M.-P.: A combinatorial problem in the theory of
free monoids. In: Algebraic Theory of Semigroups. North-Holland Pub. Co.,
Amsterdam, New York (1979)

20. Lyndon, R.C., Schützenberger, M.-P.: The equation am = bncp in a free group.
Michigan Math. J. 9(4), 289–298 (1962)

21. Saarela, A.: Word equations where a power equals a product of powers. In: STACS:
Leibniz International Proceedings in Informatics, vol. 66, pp. 55:1–55:9. Dagstuhl,
Germany (2017)

22. Spehner, J.-P.: Quelques problèmes d’extension, de conjugaison et de presentation
des sous-monöıdes d’un monöıde libre. PhD thesis, Université Paris VII, Paris
(1976)

http://dx.doi.org/10.1007/3-540-45005-X_21

Church-Rosser Systems, Codes with Bounded
Synchronization Delay and Local

Rees Extensions

Volker Diekert and Lukas Fleischer(B)

FMI, University of Stuttgart, Stuttgart, Germany
{diekert,fleischer}@fmi.uni-stuttgart.de

In memoriam: Zoltàn Ésik (1951–2016)

Abstract. What is the common link, if there is any, between Church-
Rosser systems, prefix codes with bounded synchronization delay, and
local Rees extensions? The first obvious answer is that each of these
notions relates to topics of interest for WORDS: Church-Rosser sys-
tems are certain rewriting systems over words, codes are given by sets
of words which form a basis of a free submonoid in the free monoid
of all words (over a given alphabet) and local Rees extensions provide
structural insight into regular languages over words. So, it seems to be
a legitimate title for an extended abstract presented at the conference
WORDS 2017. However, this work is more ambitious, it outlines some
less obvious but much more interesting link between these topics. This
link is based on a structure theory of finite monoids with varieties of
groups and the concept of local divisors playing a prominent role. Parts
of this work appeared in a similar form in conference proceedings [6,10]
where proofs and further material can be found.

1 Introduction

Ceci n’est pas une introduction.1 The present paper does not claim to provide
any new results. Its purpose is to give an overview on a theory developed over
the past twenty years, having its origins in a construction derived from the
Habilitationsschrift of Thomas Wilke [27] which the first author was refereeing
in 1997. Inspired by this construction (which also appears in [27]), he distilled the
concept of a local divisor of a finite monoid without knowing that this concept
existed long before in commutative algebra [14] (denoted by Kurt Meyberg as
local algebra) and without giving any special name to it. The term local divisor
was coined 2012 in [9] only.2

L. Fleischer—Supported by the German Research Foundation (DFG) under grant
DI 435/6-1.

1 Following “La trahison des images” by René Magritte.
2 The pointer to [14] is due to Benjamin Steinberg and that a “local divisor” is a
monoid divisor in the usual sense was observed by Daniel Kirsten, first. Thanks!

c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 6–16, 2017.
DOI: 10.1007/978-3-319-66396-8 2

Church-Rosser Systems, Bounded Synchronization Delay, Rees Extensions 7

Originally, the concept was solely used as a tool to simplify existing proofs.
Still, this was particularly helpful in [3] which introduced this proof technique
to the semigroup community. However, over the last decade, it gave rise to new
results. Amazingly, it was powerful enough to solve long-standing open problems.
It is hard to formally pinpoint where the power of method comes from or why, on
the other hand, it has clear limitations. Let us conclude with an étale statement:
There are not enough local submonoids, so the role of local submonoids transfers
to local divisors and there are plenty of them. This seems to be useful.

2 Preliminaries

Throughout the paper A denotes a finite alphabet and M , N denote monoids.
If not stated otherwise, M and N will be finite. A divisor of a monoid M is a
monoid N which is a homomorphic image of a subsemigroup of M . A variety of
finite monoids is a nonempty family of finite monoids V which is closed under
taking divisors and finite direct products. A variety of finite groups is a variety
of finite monoids where each of the monoids is a group.

The largest group variety is G, the variety of all finite groups. If H is a variety
of finite groups, H denotes the class of finite monoids where all subgroups are
members of H. It turns out that for every group variety H, the class H is a
variety, see [11]. Actually, it is the greatest variety of finite monoids such that
H ∩ G = H. Clearly, G is the class of all finite monoids which we denote by
Mon. The most prominent subclass is 1, the variety of aperiodic monoids Ap.
Here, 1 denotes the smallest group variety, containing the trivial group {1} only.

Given a variety V, we denote by V(A∗) the set of languages L ⊆ A∗ such
that L = ϕ−1(ϕ(L)) for some homomorphism ϕ : A∗ → M where M ∈ V.
From formal language theory, we know that Mon(A∗) is the set of all regular
languages in A∗.

3 Church-Rosser Thue Systems

A semi-Thue system is a set of rewriting rules S ⊆ A∗ × A∗ over some alphabet
A. (For simplicity, throughout this paper, semi-Thue systems are assumed to be
finite.) A system S defines a finitely presented quotient monoid

A∗/S = A∗/ {� = r | (�, r) ∈ S} ,

and the system is called Church-Rosser (with respect to the length function) if
S is confluent and length-reducing. The interest in Church-Rosser systems stems
from the fact that we can compute irreducible normal forms in linear time (as
the system is finite and length-reducing) and that the irreducible normal forms
of two words u, v are identical if and only if u and v represent the same word in
A∗/S (as the system is confluent). Thus, if a monoid M has a presentation as
M = A∗/S, then the word problem of M is solvable in linear time. The notion of
a Church-Rosser language is an offspring of that observation and appeared first

8 V. Diekert and L. Fleischer

in Narendran’s PhD thesis [15], followed by a systematic study of that concept
in [13]. As a result, [13] defines a language class strictly larger than the class
of deterministic context-free languages for which the word problem is solvable
in linear time. The authors of this work also define a restricted class which is
incomparable with the class of (deterministic) context-free languages.

A language L ⊆ A∗ is called Church-Rosser congruential, if there exists a
finite, confluent, and length-reducing semi-Thue system S ⊆ A∗ × A∗ such that
L is a finite union of congruence classes modulo S. If, in addition, the index
of S is finite (i.e., the monoid A∗/S of all congruence classes is finite) then L
is called strongly Church-Rosser congruential. Strongly Church-Rosser congru-
ential languages are necessarily regular. It was conjectured (but open for more
than 25 years until 2012) that all regular languages are (strongly) Church-Rosser
congruential. Some partial results were known before 2012 but commutativity in
the syntactic monoid seemed to be a major obstacle. For example, it is easy to
verify the conjecture provided the syntactic monoid is a finite non-Abelian sim-
ple group like A5. On the other hand, it is surprisingly hard to prove the result
for the Klein group Z/2Z × Z/2Z. Nevertheless, [7] proved a stronger result.
Given a regular language L ⊆ A∗ and any weight function γ : A → N\{0}, there
exists a finite confluent and weight-reducing semi-Thue system S such the quo-
tient monoid is A∗/S is finite and such that L is a (necessarily finite) union of
congruence classes. This result is indeed stronger because the mapping w �→ |w|
is just one particular weight function.

4 Star-Freeness and Bounded Synchronization Delay

The class of star-free languages over some alphabet A, denoted by SF(A∗), is the
least class of languages which contains all finite languages over A and which is
closed under both Boolean operations (finite union and complementation) and
concatenation. As the name suggests, we do not allow the Kleene star. Never-
theless, B∗ is star-free for all B ⊆ A. A fundamental result of Schützenberger
characterizes the class of star-free languages by aperiodic monoids [21]. That
is, a regular language belongs to SF(A∗) if and only if all subgroups in its syn-
tactic monoid are trivial. By slight abuse of notation, one usually abbreviates
this result by SF = Ap as a short version of SF(A∗) = Ap(A∗). Schützenberger
found another, but less prominent characterization of SF: the star-free languages
are exactly the class of languages which can be defined inductively by finite
languages and closure under finite union, concatenation, and the Kleene star
restricted to prefix codes of bounded synchronization delay [23]. This result is
abbreviated by SD = Ap.

A language K ⊆ A+ is called prefix code if it is prefix-free, i.e., u ∈ K and
uv ∈ K implies u = uv. A prefix-free language K is a code since every word
u ∈ K∗ admits a unique factorization u = u1 · · · uk with k ≥ 0 and ui ∈ K.
A prefix code K has bounded synchronization delay if for some d ∈ N and for
all u, v, w ∈ A∗ with uvw ∈ K∗ and v ∈ Kd, we have uv ∈ K∗. Note that the
condition implies that for all uvw ∈ K∗ with v ∈ Kd, we have w ∈ K∗, too.

Church-Rosser Systems, Bounded Synchronization Delay, Rees Extensions 9

The idea is as follows: assume that a transmission of a code message is interrupted
and we receive a fragment of the form u′′vw where v ∈ Kd and w ∈ K∗. Then,
we know that the original message was of the form u′u′′vw with u′u′′v ∈ K∗ and
w ∈ K∗. Hence, we can decode w as part of the original message. With a delay
of d code words the decoding can be synchronized. For B ⊆ A and c ∈ A\B, the
star-free language B∗c is a prefix code of delay 1 and (B∗c)+ = (B ∪ {c})∗c is
star-free. The block code A2 is finite, but not of bounded synchronization delay.
Moreover, (A2)∗ is not star-free as its syntactic monoid is the cyclic group of
order two.

Schützenberger’s result Ap ⊆ SD is actually stronger than the well-known
SF = Ap because proving the inclusions SD ⊆ SF ⊆ Ap is relatively easy,
see [17, Chapter VIII], so SF = Ap follows from Ap ⊆ SD. A simple proof for
Ap = SD including an extension to infinite words (which was not known before)
was obtained much later in [5]. It could be achieved thanks to the same algebraic
decomposition into submonoids and local divisors.

5 Local Divisors

In this section e ∈ M denotes an idempotent, that is e2 = e. For such an
idempotent, the set Me = eMe forms a monoid with e as the identity element.
It is called the local monoid at e. A local divisor generalizes this concept by
considering any element c ∈ M and the set Mc = cM ∩ Mc. Note that eMe =
eM ∩ Me, so local monoids are indeed a special case of local divisors. The next
step is to define a multiplication ◦ on cM ∩ Mc by letting

xc ◦ cy = xcy

for all x, y ∈ M . A straightforward calculation shows that the structure (Mc, ◦, c)
defines a monoid with this operation where the neutral element of Mc is c.
This works for every c ∈ M . If c is a unit, then Mc is isomorphic to M . If c
is idempotent, then Mc is the local monoid at the idempotent c. However, in
general Mc does not appear as a subsemigroup in M .

The important fact is that Mc is always a divisor of M . Indeed, the mapping
λc : {x ∈ M | cx ∈ Mc} → Mc given by λc(x) = cx is a surjective homomor-
phism. Moreover, if c is not a unit, then 1 /∈ cM ∩ Mc, hence Mc � M . This
makes the construction suitable for induction.

6 Rees Extensions

Let N,L be monoids and ρ : N → L be any mapping. The Rees extension over
N,L, ρ is a classical construction for monoids [18,19], frequently described in
terms of matrices. It was used in the synthesis theory of Rhodes and Allen [20]
which says that we can represent every finite monoid as a divisor of iterated
Rees extensions, starting with groups. The “advantage” is that starting with a
variety of groups H, the construction produces monoids in H, only. This is not

10 V. Diekert and L. Fleischer

true for taking wreath products which are used in Krohn-Rhodes theory. For
example, the symmetric group over three elements is not nilpotent, but appears
as a subgroup of the wreath product of Z/3Z and Z/2Z. Our definition of a Rees
extension is similar, but not the same as the classical one. It avoids matrices and
it is exactly as in [16]. The carrier set is

Rees(N,L, ρ) = N ∪ (N × L × N) .

Let n1, n
′
1, n2, n

′
2 ∈ N and m,m′ ∈ L. Then the multiplication · on Rees(N,L, ρ)

is given by

n · n′ = nn′,
n · (n1,m, n2) · n′ = (nn1,m, n2n

′),
(n1,m, n2) · (n′

1,m
′, n′

2) = (n1,mρ(n2n
′
1)m

′, n′
2).

For a variety V of finite monoids let Rees(V) be the least variety which contains
V and which is closed under Rees extensions Rees(N,L, ρ). Almeida and Kĺıma
called a variety V bullet-idempotent if V = Rees(V), see [1]. They showed
Rees(V) ⊆ H where H = V ∩ G and asked whether all bullet-idempotent
varieties are of that form. The answer is “yes” [10] and can be proved by showing
the stronger result that so-called local Rees extensions suffice to capture all of H.
To define these objects, consider a finite monoid M (which is not a group), an
element c ∈ M , and a smaller submonoid N of M such that N and c generate M .
Then, let Mc be the local divisor at c and let ρc be the mapping ρc : N → Mc

with ρc(x) = cxc. The local Rees extension LocRees(N,Mc) is defined as the
Rees extension Rees(N,Mc, ρc). Thus, a local Rees extension is a special case
of a Rees extension. Still the result in [10] shows that H = LocRees(H). Here,
LocRees(H) denotes the least variety which contains the group variety H and
which is closed under local Rees extensions. Since Rees(V) ⊆ H for H = V∩G
we obtain

Rees(V) ⊆ H = LocRees(H) ⊆ Rees(V).

Hence, all varieties appearing in the line above coincide.

7 The Local Divisor Technique and Green’s Lemma

For a survey on the local divisor technique we refer to [4]. In general, there are
more local divisors than local monoids, so having information about the structure
in all local divisors tells us more about the structure of M than just looking at
the local monoids. Before we continue let us revisit Green’s Lemma as sort of a
“commercial break” for the local divisor technique in semigroup theory.

The following section is based on [2,8] and closely follows the presentation
in [8, Corollary 7.45] where full proofs are given. Green’s relations are classical.
There are three basic equivalence relations L, R, and J which relate elements
in a monoid M generating the same left- (resp. right-, resp. two-sided-) ideal.

xLy ⇐⇒ Mx = My, xRy ⇐⇒ xM = yM, xJ y ⇐⇒ MxM = MyM.

Church-Rosser Systems, Bounded Synchronization Delay, Rees Extensions 11

The other two relations are defined by H = L∩R and D = L◦R. In particular,

xDy ⇐⇒ ∃z : xLz ∧ zRy.

A standard exercise shows that J = D for finite monoids. (For infinite monoids
this false, in general.) As J is symmetric, J = D implies D = L◦R = R◦L. The
latter assertion is independent of that: L ◦ R = R ◦ L holds in infinite monoids,
too. Therefore, all relations above are equivalence relations. If G is any of them
and s ∈ M , then we write G(s) = {t ∈ M | sGt} for the equivalence class of s.

In the following, we assume that M is finite. If G is a subgroup of M with
neutral element e, then G is a subgroup in H(e); and H(e) itself is a group.
Now, Green’s Lemma says that the groups H(e) and H(f) are isomorphic if e
and f are idempotents belonging to the same D-class. The classical proof uses
D = L ◦ R. Hence, eRzLf for some z ∈ M . Then one shows that the right
multiplication ·v, mapping x to xv, induces a bijection Me → Mz, x �→ xv. By
symmetry, we obtain a bijection between H(e) and H(f) which turns out to be
an isomorphism of groups.

The proof is somewhat “mysterious” because the isomorphism passes through
H(z) which is not subgroup of M , in general. Using local divisors however,
the proof becomes fully transparent and reveals a more general fact. For this,
consider any two R-equivalent (or symmetrically L-equivalent) elements s and
t. Whether or not s or t are idempotent, we can define the local divisors Ms and
Mt. For sRt we can write t = sv and now, the right multiplication ·v defines an
isomorphism Ms → Mt. Moreover, as a set, H(s) is the group of units in Ms. In
the case that s = e is an idempotent Ms = Me is a local monoid and H(s) = H(e)
is a subgroup of M . Thus, as in the scenario of eRzLf with idempotents e and
f we see that three groups are isomorphic: H(e), H(z) as the group of units in
(zM ∩ Mz, ◦, z), and H(f). There is no mystery in Green’s Lemma if we view it
from a more general perspective.

8 The Common Theme: Local Divisor Proofs

Let us now discuss the common theme in Church-Rosser systems, bounded syn-
chronization delay, and Rees extensions. From an abstract viewpoint these deal
with properties P which can be defined for regular languages. Assume we know
that a property P of regular languages is true for all languages where the syntac-
tic monoid belongs to some variety of groups H. Then P holds for all languages
where the syntactic monoid belongs to H if and only if and we can show the
following implication for local Rees extensions LocRees(N,Mc):

P(N) ∧ P(Mc) =⇒ P(LocRees(N,Mc)). (1)

Actually, it is enough show an implication without mentioning LocRees(N,Mc):

P(N) ∧ P(Mc) =⇒ P(M). (2)

12 V. Diekert and L. Fleischer

The reason that we mention the “complicated” implication (1) is that the power
of the method lies in the underlying algebraic connection between N , Mc and
M which is best reflected by the local Rees extension. For simplicity of notation
we just focus on the equivalent condition (2). This implication is particularly
appealing for aperiodic monoids. Indeed, any nontrivial property which is closed
under taking submonoids must also hold for the trivial group {1}. So, the base
for the induction is trivial for the variety 1. In order to prove that P holds for
all aperiodic languages, one only needs to show (2). Sometimes this is very easy.
Remember SF = Ap, the probably most cited result of Schützenberger. The
inclusion SF ⊆ Ap is rather straightforward and the assertion 1(A∗) ⊆ SF(A∗)
is trivial since ∅ and its complement A∗ are star-free. Now proving, (2) is possible
within less than a page, see [12]. Almost the same holds for the less famous but
more general result Ap = SD, see [5].

What about Krohn-Rhodes theory? It goes beyond Ap, but the group case
is built-in! The theory says that every monoid can be constructed by iter-
ated wreath products, starting from finite simple groups and the so-called reset
monoid U2. According to [19, page 241] the monoid U2 is “essentially junk”
whereas the “groups are gems”. Showing (2) for the Krohn-Rhodes property
was done in [9] and led to a surprisingly easy proof of the Krohn-Rhodes decom-
position theorem.

Returning to prefix codes of bounded synchronization delay, it is worth men-
tioning that Schützenberger did not stop this line of research by showing that
Ap = SD. In [22] he was able to prove an analogue of Ap = SD for languages
where syntactic monoids have Abelian subgroups, only. For several years, no
such characterization was known beyond Ab.

8.1 Schützenberger’s SD Classes

Let H be a variety of finite groups. Consider a prefix code K with bounded syn-
chronization delay which can be written as a disjoint union K =

⋃ {Kg | g ∈ G}
where G ∈ H and each Kg is regular in A∗. The H-controlled star (more pre-
cisely, the G-controlled star) associates with such a disjoint union the following
language:

{ug1 · · · ugk ∈ K∗ | ugi ∈ Kgi ∧ g1 · · · gk = 1 ∈ G} .

Another view of the G-controlled star of K is the following: Let γK : K → G
be a mapping such that Kg = γ−1

K (g) and let γ : K∗ → G denote the canonical
extension of γK to a homomorphism from the free submonoid K∗ ⊆ A∗ to G,
then the G-controlled star of K is exactly the set γ−1(1). Let C be any class of
languages. We say that C is closed under H-controlled star if for all K and for
every group G ∈ H, the following closure property holds: if K =

⋃ {Kg | g ∈ G}
is a prefix code with bounded synchronization delay such that Kg ∈ C for all
g ∈ G, then the G-controlled star γ−1(1) is in C as well. By SDH(A∗) we denote
the smallest class of regular languages containing all finite subsets of A∗ and
being closed under finite union, concatenation, and H-controlled star.

Church-Rosser Systems, Bounded Synchronization Delay, Rees Extensions 13

Note that the definition of SDH(A∗) does not use any complementation.
Using different notation, Schützenberger showed that SDH(A∗) ⊆ H(A∗) in [22],
but he proved the converse inclusion only for H ⊆ Ab. The main result in [10]
states that SDH(A∗) = H(A∗) for all H. In retrospective, it is hard to say why
Schützenberger did not prove this general result. Perhaps he was not interested
in that, but we believe that this is unlikely because he proved half of it. More
likely, he tried to use the Krohn-Rhodes decomposition as in [22] which involves
wreath products and they may take you outside H. Perhaps, Krohn-Rhodes
theory was simply the wrong tool for this result. Local Rees extensions, on the
other hand, are perfectly suitable for this kind of applications.

8.2 Church-Rosser Thue Systems Revisited

In the following M , denotes a finite monoid. The results in Sect. 3 have their
origins in formal language theory and led to the notion of Church-Rosser con-
gruential languages. As mentioned before, for more than 25 years it was open
whether or not all regular languages are Church-Rosser congruential. A positive
answer was given in [7], and the corresponding theorem has a purely algebraic
formulation. It says that for each homomorphism ϕ from A∗ to M factorizes
through A∗/S where S is a finite confluent and length-reducing semi-Thue sys-
tem of finite index. Thus, ϕ(�) = ϕ(r) and |�| > |r| for all (�, r) ∈ S. Moreover,
A∗/S is a finite monoid.

For the inductive argument, one crucial idea is to consider weight functions γ :
A → N \{0}. The statement then becomes “for every weight function and every
homomorphism ϕ : A∗ → M there exists a finite confluent semi-Thue system S
of finite index such that ϕ(�) = ϕ(r) and γ(�) > γ(r) for all (�, r) ∈ S”. Instead
of weight-reducing systems we can also define the notions of Parikh-reducing
and subword-reducing systems. For a letter a and a word w ∈ A∗ we let |w|a
be the number of a’s which occur in w. This defines a canonical homomorphism
π : A∗ → N

A by π(w) = (a �→ |w|a). The vector π(w) is usually called the Parikh-
image of w. We say that S is Parikh-reducing if (�, r) ∈ S implies |�|a ≥ |r|a
for all a ∈ A and |�|a > |r|a for at least one a ∈ A. Clearly, a Parikh-reducing
system is weight-reducing for every weight function. In the following, when using
the term “subword” we mean “scattered subword”. More precisely, a word u is
called a subword of w if there exists a factorization u = a1 · · · ak such that
w ∈ A∗a1A

∗ · · · akA
∗. We say that S is subword-reducing if (�, r) ∈ S implies

� �= r and that r is a subword of �. Clearly, a subword-reducing system is Parikh-
reducing. The induction scheme (2) introduced in the beginning of Sect. 8 works
for all variants, but the group case is quite different. The trivial group leads to
the subword-reducing system {(a, 1) | a ∈ A}. Consequently, the result in [16]
speaks about subword-reducing systems and this is the strongest result. The
PhD thesis of Tobias Walter [26] shows that for all homomorphisms to Abelian
groups there exists a Parikh-reducing Church-Rosser system as desired, thereby
allowing him to construct such systems for all languages in Ab. Additionally, he
proves that for all regular languages L over a two letter alphabet there exists a
Parikh-reducing Church-Rosser system S of finite index such that L is recognized

14 V. Diekert and L. Fleischer

by A∗/S. This shows that the existence of Parikh-reducing presentations is not
limited to the variety Ab.

9 Conclusion and Open Problems

This extended abstract deals with the recurring theme of proving results for vari-
eties of finite monoids and their associated language classes. The most prominent
example is the variety Ap of aperiodic monoids, but our methods go beyond.
We have seen deep connections between apparently quite different objects where
the technique allows to transfer results from a group variety H to its closure H.

Let us conclude with some open problems, starting with the new perspective
on Church-Rosser systems given in the previous subsection.

For subword-reducing and Parikh-reducing Church-Rosser systems, only par-
tial results are known. To date, it is still open whether subword-reducing (resp.
Parikh-reducing) Church-Rosser systems exist for every regular language. It is
tempting to believe that Parikh-reducing systems exist for all regular languages,
but we refrain from any conjecture in this case.

The notion of local Rees extensions gives rise to various interesting combina-
torial problems concerning the complexity of Rees decompositions. For a finite
monoid M , a Rees decomposition tree of M is a rooted node-labeled tree such
that the following conditions are satisfied.

– The root has label M .
– Every inner node with label M ′ has two children labeled by N,M ′

c such that
M ′ is a divisor of the local Rees extension LocRees(N,M′

c).
– Every leaf is labeled by a group which divides M .

In [26], it was shown that if M is a monoid having n elements which are not
units, then there exists a decomposition tree of M having at most O(3n/3)
nodes. However, it is not clear whether this bound optimal. Actually, it is not
even known whether the size of the tree be bounded by a polynomial function.
Regardless of whether tight bounds can be obtained in the general case, it would
also be interesting to analyze subclasses of Mon. For example, it is easy to see
that for commutative monoids with a fixed number of generators, there indeed
is a polynomial bound. What happens if the number of generators is not fixed?

The starting point of our journey was the characterization of SD and SF
by aperiodic monoids. Having this theme in mind, another interesting question
about the limits of the method arises. In [25], Straubing showed that the so-
called Mal’cev product of Ap and a group variety H, denoted by Ap M©H,
corresponds to the closure of H(A∗) under concatenation product. Following the
proof of SD = Ap using local divisors, it is tempting to ask whether the local
divisor technique can also be applied to obtain a new, possibly more general
proof of Straubing’s result. In particular, it would be interesting to see whether
there is a natural language characterization of Ap M©H that relies on prefix codes
with bounded synchronization delay. A major obstacle to initial attempts is a
result of Steinberg [24] that Ap M©H is strictly contained in H for all non-trivial
group varieties H.

Church-Rosser Systems, Bounded Synchronization Delay, Rees Extensions 15

References

1. Almeida, J.M., Kĺıma, O.: On the irreducibility of pseudovarieties of semigroups.
J. Pure Appl. Algebra 220, 1517–1524 (2016)

2. Costa, A., Steinberg, B.: The schützenberger category of a semigroup. Semigroup
Forum 91(3), 543–559 (2015)

3. Diekert, V., Gastin, P.: Pure future local temporal logics are expressively complete
for Mazurkiewicz traces, pp. 232–241. Springer, Heidelberg (2004)

4. Diekert, V., Kufleitner, M.: A survey on the local divisor technique. CoRR,
abs/1410.6026 (2014)

5. Diekert, V., Kufleitner, M.: Omega-rational expressions with bounded synchroniza-
tion delay. Theory Comput. Syst. 56(4), 686–696 (2015)

6. Diekert, V., Kufleitner, M., Reinhardt, K., Walter, T.: Regular languages are
Church-Rosser congruential. In: Czumaj, A., Mehlhorn, K., Pitts, A., Watten-
hofer, R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 177–188. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31585-5 19

7. Diekert, V., Kufleitner, M., Reinhardt, K., Walter, T.: Regular languages are
Church-Rosser congruential. J. ACM 62(5), 39:1–39:20 (2015)

8. Diekert, V., Kufleitner, M., Rosenberger, G., Hertrampf, U.: Discrete Algebraic
Methods. Arithmetic, Cryptography, Automata and Groups. De Gruyter, Berlin
(2016)

9. Diekert, V., Kufleitner, M., Steinberg, B.: The Krohn-Rhodes theorem and local
divisors. Fundam. Inform. 116(1–4), 65–77 (2012)

10. Diekert, V., Walter, T.: Characterizing classes of regular languages using prefix
codes of bounded synchronization delay. In: Chatzigiannakis, I., Mitzenmacher,
M., Rabani, Y., Sangiorgi, D. (eds.) ICALP, LIPIcs, vol. 55, pp. 129:1–129:14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

11. Eilenberg, S.: Automata, Languages, and Machines. Academic Press Inc., Orlando
(1974)

12. Kufleitner, M.: Star-Free Languages and Local Divisors, pp. 23–28. Springer Inter-
national Publishing, Cham (2014)

13. McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal
languages. J. ACM 35(2), 324–344 (1988)

14. Meyberg, K.: Lectures on Algebras and Triple Systems. University of Virginia,
Charlottesville (1972)

15. Narendran, P.: Church-Rosser and related Thue systems. Ph.D. thesis, Department
of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy (1984)

16. Niemann, G., Otto, F.: The Church-Rosser languages are the deterministic variants
of the growing context-sensitive languages. Inf. Comput. 197(1–2), 1–21 (2005)

17. Perrin, D., Pin, J., Words, I.: Automata, Semigroups, Logic and Games, Pure and
Applied Mathematics, vol. 141. Elsevier Science, Amsterdam (2004)

18. Pin, J.-É.: Varieties of Formal Languages. Plenum Publishing Co., New York (1986)
19. Rhodes, J., Steinberg, B.: The q-theory of finite semigroups. Springer Monographs

in Mathematics, New York (2009)
20. Rhodes, J.L., Allen, D.: Synthesis of the classical and modern theory of finite

semigroups. Adv. Math. 11(2), 238–266 (1973)
21. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control

8, 190–194 (1965)
22. Schützenberger. M.P.: Sur les monoides finis dont les groupes sont commutatifs.

Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8(R-1),
55–61 (1974)

http://dx.doi.org/10.1007/978-3-642-31585-5_19

16 V. Diekert and L. Fleischer

23. Schützenberger, M.P.: Sur certaines opérations de fermeture dans les langages
rationnels, pp. 245–253 (1975)

24. Steinberg, B.: On aperiodic relational morphisms. Semigroup Forum 70(1), 1–43
(2005)

25. Straubing, H.: Aperiodic homomorphisms and the concatenation product of recog-
nizable sets. J. Pure Appl. Algebra 15(3), 319–327 (1979)

26. Walter, T.: Local divisors in formal languages. Dissertation, Institut für Formale
Methoden der Informatik, Universität Stuttgart (2016)

27. Wilke, T.: Classifying discrete temporal properties. In: Meinel, C., Tison, S. (eds.)
STACS 1999. LNCS, vol. 1563, pp. 32–46. Springer, Heidelberg (1999). doi:10.
1007/3-540-49116-3 3

http://dx.doi.org/10.1007/3-540-49116-3_3
http://dx.doi.org/10.1007/3-540-49116-3_3

Overpals, Underlaps, and Underpals

Aayush Rajasekaran1, Narad Rampersad2, and Jeffrey Shallit1(B)

1 School of Computer Science, University of Waterloo, Waterloo,
ON N2L 3G1, Canada

{arajasekaran,shallit}@uwaterloo.ca
2 Department of Math/Stats, University of Winnipeg, 515 Portage Ave., Winnipeg,

MB R3B 2E9, Canada
n.rampersad@uwinnipeg.ca

Abstract. An overlap in a word is a factor of the form axaxa, where
x is a (possibly empty) word and a is a single letter; these have been
well-studied since Thue’s landmark paper of 1906. In this note we con-
sider three new variations on this well-known definition and some conse-
quences.

Keywords: Overlap · Automata · Avoidability in words

1 Introduction

An overlap is a word of the form axaxa, where x is a (possibly empty) word
and a is a single letter. Examples include alfalfa in English and entente in
French. Since Thue’s work [2,15,16] in the early 20th century, overlaps and their
avoidance have been well-studied in the literature (see, e.g., [12]).

Let μ be the morphism defined by μ(0) = 01 and μ(1) = 10. The Thue-Morse
word t is defined to be the infinite fixed point of μ starting with 0. We have
t = 0110100110010110 · · · . We recall two famous results about binary overlaps:

Theorem 1.

(a) The Thue-Morse word t is overlap-free [2,16].
(b) The number of binary overlap-free words of length n is Ω(nα) and O(nβ) for

real numbers 1 < α < β [3,4,7].

In this paper we consider three variants of overlaps and study their properties.

2 Definitions and Notation

Throughout, we use the variables a, b, c to denote single letters, and the variables
u, v, w, x, y, z to denote words. By |x| we mean the length of a word x, and by
xR we mean its reversal. The empty word is written ε.

If a word w can be written in the form w = xyz for (possibly empty) words
x, y, z, then we say that y is a factor of w. We say that a word x = x[1..n] has
c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 17–29, 2017.
DOI: 10.1007/978-3-319-66396-8 3

18 A. Rajasekaran et al.

period p if x[i] = x[i + p] for 1 ≤ i ≤ n − p. We say that a word x is a (p/q)-
power, for integers p > q ≥ 1, if x has period q and length p. For example, the
word ionization is a (10/7)-power. A 2-power is called a square. Finally, we say
that a word z contains an α-power if z contains a factor x that is a (p/q)-power
for some p/q ≥ α. Otherwise we say that z avoids α-powers or is α-power free.
We say that a word z avoids (α + ε)-powers or is (α + ε)-power-free if, for all
p/q > α, z contains no factor that is a (p/q)-power. By xω we mean the infinite
word xxx · · · .

We recall the definition of three famous sequences. The Rudin-Shapiro
sequence r = (rn)n≥0 = 000100100001110100010 · · · is defined by the relations
r0 = 0, and r2n = rn, r4n+1 = rn, r8n+3 = 1 − rn, and r8n+7 = r2n+1 for
n ≥ 0. The Fibonacci sequence f = (fn)n≥0 = 010010100100101001010 · · · is
the fixed point of the morphism ϕ(0) = 01, ϕ(1) = 0. The Tribonacci sequence
T = (Tn)n≥0 = 01020100102010102010 · · · is the fixed point of the morphism
θ(0) = 01, θ(1) = 02, θ(2) = 0.

3 Overpals

In our first variation, we replace the second occurrence of axa in an overlap
with its reversal. Thus, an overpal is a word of the form axaxRa, where xR is
the reverse of the (possibly empty) word x and a is a single letter. The English
word tartrate contains an occurrence of an overpal corresponding to a = t and
x = ar. The order of an overpal axaxRa is defined to be |ax|.

We start with some results about binary words.

3.1 The Binary Case

Lemma 2. Every binary palindrome x of odd length 	 ≥ 7 contains an occur-
rence of either aaa, ababa, or abbabba, for some distinct letters a, b.

Proof. Let w be an odd-length palindrome of length ≥ 7. Then we can write w
in the form xabcdcbaxR for some letters a, b, c, d and x possibly empty. Then a
check of all 16 possibilities for a, b, c, d gives the result.

Theorem 3. A binary word contains an overpal if and only if it contains aaa,
ababa, or abbabba for letters a �= b.

Proof. Suppose w contains an overpal t = axaxRa. If |x| = 0, then t = aaa. If
|x| = 1, then t is either aaaaa or ababa. Otherwise |x| ≥ 2, so |t| ≥ 7, and the
result follows by Lemma 2. On the other hand, if w contains any of aaa, ababa,
or abbabba, then w contains an overpal.

Theorem 3 allows us to compute the generating function for the number of
binary words avoiding overpals.

Overpals, Underlaps, and Underpals 19

Corollary 4. The generating function for the number of binary words avoiding
overpals is

2x9 + 6x8 + 8x7 + 6x6 + 6x5 + 5x4 + 4x3 + 3x2 + 2x + 1
1 − x2 − x4

Corollary 4 was apparently first noticed by Colin Barker, in a remark posted
at the On-Line Encyclopedia of Integer Sequences about sequence A277277.

Proof. We use the DAVID IAN Maple package [10,11], implementing the Goulden-
Jackson cluster method [6], with the command

GJs(0,1,[0,0,0],[1,1,1],[0,1,0,1,0],[1,0,1,0,1],
[0,1,1,0,1,1,0],[1,0,0,1,0,0,1],x);

This gives us the above generating function counting the binary words avoid-
ing the patterns aaa, ababa, and abbabba.

Corollary 5. The number ovp2(n) of binary words of length n avoiding overpals
is, for n ≥ 6, equal to aαn + bβn + cγn + dδn where

a
.= 5.096825703528179989223010 b

.= 0.008747105471904132213320

are the real zeroes of the polynomial 25Z4 − 300Z3 + 1240Z2 − 1840Z + 16, and

c = 3 +
√

5
5

+ (2
√

5 − 2)1/2i d = 3 +
√

5
5

− (2
√

5 − 2)1/2i,

and α = ((1 +
√

5)/2)1/2 .= 1.27201964951406896425242246, β = −α, γ = iα−1,
δ = −iα−1.

Proof. From the generating function, we know that ovp2(n) satisfies the linear
recurrence ovp2(n) = ovp2(n−2)+ovp2(n−4) for n ≥ 10. Now we use standard
techniques to solve this linear recurrence.

Corollary 6. There are Θ(αn) binary words of length n containing no overpals.

We now turn to infinite words avoiding overpals. It is easy to construct a
periodic binary word avoiding overpals: namely, (0011)ω = 001100110011 · · · .
(To verify this, it suffices to enumerate its subwords of odd length ≤ 7 and check
that none of them are of the form aaa, ababa or abbabba.)

Theorem 7. The lexicographically least infinite binary word that avoids overpals
is x := 001(001011)ω.

Proof. To verify that x avoids overpals, it suffices to enumerate its subwords of
odd length ≤ 7. None are of the form aaa, ababa or abbabba.

http://oeis.org/A277277

20 A. Rajasekaran et al.

Suppose there is an infinite binary word w that is lexicographically less than
x, but contains no overpals. Let v be the shortest prefix of w such that v is
not a prefix of x. Suppose |v| = n. At position n there must be a 0 in v and
w and a 1 in x. This means there are four possibilities: (i) v = 000; (ii) v =
001(001011)i000 for some i ≥ 0; (iii) v = 001(001011)i00100 for some i ≥ 0; (iv)
v = 001(001011)i001010 for some i ≥ 0.

In cases (i) and (ii), v ends with the overpal 000, a contradiction. In case
(iii), consider the letter at position n + 1 of w. If it is 0, then v0 is a prefix of
w and ends with 000. If it is 1, then v1 is a prefix of w and ends with 1001001.
Both cases give a contradiction. In case (iv), v ends with the overpal 01010, a
contradiction.

We have shown there are ultimately periodic binary words avoiding overpals.
We now turn to aperiodic binary words.

Theorem 8. No (7/3)-power-free binary word contains an overpal.

Proof. Suppose it did. From Lemma 2 any odd-length palindrome in such a word
is of length 1, 3, or 5. A palindrome of length 1 cannot be an overpal. The only
overpals of length 3 are 000 and 111, each of which is a cube. Finally, the only
overpals of length 5 are 00000 and 01010 and their complements, each of which
contains a (7/3)-power.

Corollary 9. The Thue-Morse word t contains no overpals.

Theorem 10. If μ(x) contains an overpal, then so does x.

Proof. Suppose μ(x) contains an overpal. Then it contains an occurrence of aaa,
ababa, or abbabba. However, it is easy to verify that neither aaa nor abbabba can
be the factor of a word that is an image under μ. For ababa to be the factor of
μ(x), it must be that x has the factor aaa, and hence an overpal.

Theorem 11. The orders of overpals occurring in the Fibonacci word f are
given, for n ≥ 1, by the n whose Fibonacci representation is accepted by the
following automaton.

Fig. 1. Automaton accepting orders of overpals in the Fibonacci word

There are infinitely many orders for which there is no overpal factor of f and
infinitely many for which there are.

Overpals, Underlaps, and Underpals 21

Proof. We use the automatic theorem-proving software Walnut [9] with the pred-
icate

def fiboverpal "?msd fib (n=0) | Ei (n>=1) & (At (t<=2*n) =>
F[i+t] = F[i+2*n-t]) & F[i]=F[i+n]":

Corollary 12. An overpal of order n exists in the Fibonacci word, for n ≥ 1,
if and only if there exists an integer m such that n = �mα + 1

2�, where α =
(1 +

√
5)/2.

Proof. The proof is in six steps.
Step 1: Define the infinite binary word p = (pi)i≥0, where pi = 1 if the Fibonacci
representation of i is accepted by the automaton in Fig. 1, and pi = 0 otherwise.
Using the usual extension of Cobham’s theorem to Fibonacci numeration sys-
tems, p is given by the image under the coding τ of the fixed point fω(0), where

f(0) = 01 f(1) = 2 f(2) = 34
f(3) = 05 f(4) = 6 f(5) = 0 f(6) = 34

and τ(0123456) = 1011010. This is obtained just by reading off the transitions
of the automaton, where the image of a state is 1 if the state is accepting, and
0 otherwise.
Step 2: Let h : {0, 1}∗ → {0, 1}∗ be the morphism sending 1 → 10110, 0 → 110.
A routine induction on n, which we omit, proves that

τ(f3n(0)) = τ(f3n(2)) = τ(f3n(3)) = τ(f3n(3)) = τ(f3n(4)) = τ(f3n(6)) = hn(1)

τ(f3n(1)) = hn(0)

τ(f3n+3(5)) = hn(101)

for n ≥ 0.
Step 3: We now use a result in a paper of Tan and Wen [14]. Define π : {0, 1}∗ →
{0, 1}∗ to be the morphism sending 0 → 1, 1 → 0. Define λ : {0, 1}∗ → {0, 1}∗

to be the morphism corresponding to π ◦ h2 ◦ π.
A cutting sequence Kq, r is defined as the infinite binary sequence generated

by the straight line y = qx + r as it cuts a square grid. See [14] for more on
cutting sequences. Let the fixed point of λ be generated by the cutting sequence
Kγ,β . Tan and Wen give us the slope γ, and the intercept β of this line. We
define the additional morphisms σ, ρ : {0, 1}∗ → {0, 1}∗, where σ sends 0 → 01,
1 → 0, and ρ sends 0 → 10, 1 → 0.

To get γ, we need to express λ as a composition of σ ◦ π, ρ ◦ π and π. We
hence write λ = ((σ ◦ π) ◦ π ◦ (ρ ◦ π) ◦ π ◦ (ρ ◦ π) ◦ π)2. Tan and Wen gives the
continued fraction expansion of the slope as γ = [0; 1, 1, 1, 1, 1, 1, 1] = 1/α, where
α = 1+

√
5

2 is the golden ratio.
To get β, we follow Tan and Wen to get the word u = 010010 that satifies

λ(01) = u01v, λ(10) = u10v, vu is a palindrome, for some word v. We also define
un = λn−1(u)λn−2(u) · · · λ(u)u. Let |un|0 denote the number of zeroes in un.

22 A. Rajasekaran et al.

The value of β is given by the unique number x ∈ [−γ, 1 + γ) that satisfies
e2πix = limn→∞ e−2πi(|un|0+1)γ . We calculate this value as β = 1 − √

5/2.
Finally, Tan and Wen assert that if the fixed point of λ is given by Kγ,β , then

the fixed point of h is given by the cutting sequence K1/γ,−β/γ . Thus, hω(1) is
given by Kα,1−α/2.
Step 4: The Sturmian word se, f = (si) is the infinite binary word defined by
si = �e(i + 1) + f�−�ei + f�−�e�. We now use a classical result relating cutting
sequences to Sturmian words (e.g., p. 56 of [8]) to conclude that Kα,1−α/2 =
s1/α,(5−3α)/2.
Step 5: We shift this Sturmian word right by 1 position, getting the equality
s1/α,(5−3α)/2 = 1 · s1/α,−1/(2α).
Step 6: Finally, we use the usual connection between Sturmian words and Beatty
sequences (e.g., Lemma 9.1.3 of [1], generalized from characteristic words to the
more general setting of Sturmian words) to conclude that s1/α,−1/(2α) = b1b2 · · · ,
where bn = 1 if and only if there exists an integer m ≥ 1 such that n = �mα+ 1

2�.
Theorem 13. There are exactly four overpals in the Rudin-Shapiro sequence,
and they are given by 000, 111, 0100010, 1011101.

Proof. We use Walnut [9] to find the orders of overpals in the Rudin-Shapiro
sequence

eval RSOverpal "Ei (n>=1) & (At (t<=2*n) =>
(RS[i+t] = RS[i+2*n-t])) & (RS[i]=RS[i+n])":

The only accepted orders are 1 and 2. An exhaustive search yields the result.

3.2 Larger Alphabets

Understanding the words that avoid overpals over large alphabets is more chal-
lenging than the binary case. For one thing, there is no analogue of Lemma 2,
as the following result shows:

Theorem 14. Over a ternary alphabet, there are arbitrarily long odd-length
palindromes containing no overpals.

Proof. We know that μ2n(0) is a palindrome for all n ≥ 0, and furthermore,
since it is a prefix of t, it contains no overpals. Therefore, for all n ≥ 0, the
word μ2n(0)2μ2n(0) is a palindrome containing no overpals, and it is of length
22n+1 + 1.

Theorem 15.

(i) Every odd-length ternary palindrome of length ≥ 17 contains a 7
4 power.

(ii) There are arbitrarily large odd-length ternary palindromes avoiding (74 + ε)-
powers.

Overpals, Underlaps, and Underpals 23

Proof.

(i) It suffices to examine all ternary palindromes of length 17.
(ii) Dejean’s word [5] avoids (74 + ε)-powers and contains ternary palindromes of

all odd lengths.

Theorem 16. No infinite ternary word can avoid overpals and 41
22 -powers.

Proof. We use the usual tree-traversal technique. The tree has 120844 internal
nodes, and 241689 leaves. The longest such string is of length 228.

Conjecture 17. There is an infinite ternary word that avoids overpals and (4122 +ε)-
powers.

4 Underpals

A word is said to be an underpal if it is of the form axbxRa where x is a (possibly
empty) word and a, b are letters with a �= b. An example in English is the word
racecar, with a = r, x = ac, and b = e.

Theorem 18. A word contains an underpal if and only if it contains some word
of the form abia with a �= b and i odd.

Proof. Let a word contain an underpal z = axbxRa. Either x ends in b, or it
does not end in b.
Case 1: x ends in b. Then either x = bl for some l ≥ 1, or x = ycbl for some word
y and letter c �= b.
Case 1a: x = bl. Then z = abia for odd i = 2l + 1.
Case 1b: x = ycbl. Then z = aycblbblcyRa, which contains cbic with odd i =
2l + 1.
Case 2: x does not end in b. If x = ε, then z = abia, with odd i = 1. Otherwise
x = yc, which gives z = aycbcyRa, which contains cbic with odd i = 1.

Thus, a word that contains an underpal must contain an abia, with odd i,
and so a word that avoids such factors must avoid underpals.

For the converse, suppose w contains z = abia with a �= b and i odd. Then
z = ablbbla for some non-negative integer l. Since z is an underpal with x = bl,
the word w contains an underpal.

Theorem 19. The number of length-n words avoiding underpals over a k-letter
alphabet satisfies the recurrence fk(0) = 1, fk(1) = k, fk(n) = (k − 2)fk(n − 1) +
kfk(n − 2) + k.

Proof. Let Σ be an alphabet with |Σ| = k. For all p, define Lk,p ⊆ Σ∗ to be the
language of words of length p that avoid underpals.

24 A. Rajasekaran et al.

We now define two languages A1 and A2 as follows:

A1 = {can−1 : a �= c ∈ Σ}
A2 = {cx : x = albz ∈ Lk, n−1, a �= b, a �= c, b �= c, a, b, c ∈ Σ, l > 0, z ∈ Σ∗}

Note that |A1| = k(k − 1). Since we exclude unary words of the form an−1, the
number of words of the form x = albz is |Lk,n−1| − k = fk(n − 1) − k. We thus
get that |A2| = (k − 2)(fk(n − 1) − k).

Define A = A1 ∪ A2. All words in A are n-length words avoiding underpals
since they must avoid abia with i odd, and so A ⊆ Lk,n.

Define D ⊆ Lk,n−2 as follows:

D = {albz ∈ Lk,n−2, a �= b ∈ Σ, l > 0, lodd, z ∈ Σ∗}.

Next, we define the languages B1, B2 and B3 as follows:

B1 = {ccx : x = albz ∈ D, c ∈ Σ, c �= b}
B2 = {bax : x = albz ∈ D}
B3 = {ccx : x ∈ Lk, n−2, x �∈ D, c ∈ Σ}

Clearly |B1| = (k − 1) |D|, and |B2| = |D|, and |B3| = k(|Lk, n−2| − |D|).
Define B = B1 ∪B2 ∪B3. All words in B are n-length words avoiding under-

pals since they must avoid abia with i odd, and so B ⊆ Lk,n.
Thus, we get

A ∪ B ⊆ Lk,n. (1)

Consider any word z = d1d2 · · · dn ∈ Lk, n. Note that d2d3 · · · dn ∈ Lk,n−1 and
d3d4 · · · dn ∈ Lk,n−2. We divide these words z into two cases:
Case 1. d1 = d2. If z = d1d1a

lbx, for some a �= b ∈ Σ and even l ≥ 0, then
z ∈ B3. If z = d1d1a

lbx, for some a �= b ∈ Σ and odd l, then we consider d1.
If d1 �= b, then z ∈ B1. If d1 = b, then z contains balb, with odd l, and thus
z /∈ Lk, n. If z = dn

1 , then z ∈ B3.
Case 2: d1 �= d2. If z = d1d

n−1
2 , then z ∈ A1. If z = d1d

l
2bx, for some b �= d2 ∈ Σ

and even l > 0, then we consider d1. If d1 �= b, then z ∈ A2. If d1 = b, then
z = d1d2d

l−1
2 d1x, where l−1 is odd. In this case, z ∈ B2. If z = d1d

l
2bx, for some

b �= d2 ∈ Σ and odd l, then we consider the value of d1. If d1 �= b, then z ∈ A2.
If d1 = b, then z contains bdl

2b, with odd l, and thus z /∈ Lk, n. We thus see that
for all z ∈ Lk, n, z ∈ A ∪ B, and hence

Lk, n ⊆ A ∪ B. (2)

Combining Eqs. (1) and (2) gives us Lk, n = A ∪ B, which gives

fk(n) = |Lk, n| = |A ∪ B| . (3)

Since the words in A1 have exactly two different letters, while those in A2

have at least 3 different letters, the sets A1 and A2 are disjoint.

Overpals, Underlaps, and Underpals 25

The sets B1 and B2 are disjoint since they disagree on the first two letters.
The sets B1 and B3 are disjoint since they disagree on the last n−2 letters. The
sets B2 and B3 are disjoint since they disagree on the last n − 2 letters.

Note that for all words x = a1a2 · · · an ∈ A we have a1 �= a2. The only
words y = b1b2 · · · bn ∈ B for which b1 �= b2 are in B2, and are thus of the form
y = baalbz, for some a �= b ∈ Σ and z ∈ Σ∗. Such words y cannot be in A,
because A excludes all words with prefix bapb for all a �= b ∈ Σ, p > 0. This
shows that the sets A and B are disjoint.

We have

|A| = |A1|+ |A2| = k(k −1)+(k −2)(fk(n−1)−k) = (k −2)fk(n−1)+k. (4)

We also have

|B| = |B1|+ |B2|+ |B3| = (k−1) |D|+ |D|+k(|Lk, n−2|−|D|) = kfk(n−2). (5)

SinceAandB aredisjoint, |A ∪ B| = |A|+|B| = (k−2)fk(n−1)+kfk(n−2)+k.
Combining this with Eq. (3) gives us fk(n) = (k − 2)fk(n − 1) + kfk(n − 2) + k.
Finally, fk(0) = 1, since the empty string avoids underpals, and fk(1) = k, since
all strings of length 1 avoid underpals.

Corollary 20. The number fk(n) of length-n words avoiding underpals over a
k-letter alphabet, for k ≥ 2 and n ≥ 0, is given by fk(n) = aαn + bβn + c, where

α =
k − 2 +

√
k2 + 4

2
a =

(k − 1)(3(k2 + 4) + (k + 6)
√

k2 + 4)
2(2k − 3)(k2 + 4)

β =
k − 2 − √

k2 + 4
2

b =
(k − 1)(3(k2 + 4) − (k + 6)

√
k2 + 4)

2(2k − 3)(k2 + 4)

c =
k

3 − 2k
.

Proof. By the usual techniques for handling linear recurrences, we know that
fk(n) = (k − 1)fk(n − 1) + 2fk(n − 2) − kfk(n − 3). This means that fk(n)
is expressible as a linear combination of the n’th powers of the zeroes of the
polynomial X3 + (1 − k)X2 − 2X + k. Solving the resulting linear system, using
Maple as an assistant, gives the result.

Remark 21. For k = 2 this simplifies to f2(n) = 2(n+3)/2 − 2 for n odd and
f2(n) = 3 · 2n/2 − 2 for n even.

The run length encoding of a binary word is the integer sequence giving the
lengths of maximal blocks of 0s and 1s. For example, the run length encoding of
0011101011 is 2, 3, 1, 1, 1, 2.

Theorem 22. A finite binary word avoids underpals if and only if its run length
encoding is of the form i1, i2, . . . , it where i2, i3, . . . , it−1 are all even. An infinite
binary word that does not end in aω for a ∈ {0, 1} avoids underpals if and only
if its run length encoding is of the form i1, i2, i3, . . . where i2, i3, . . . are all even.

26 A. Rajasekaran et al.

Theorem 23. The Fibonacci word has underpals of order n for exactly those n
accepted by the automaton below (Fig. 2).

Fig. 2. Automaton accepting orders of underpals in the Fibonacci word

Theorem 24. The Fibonacci word has both underpals and overpals of order n
for exactly those n accepted by the automaton below (Fig. 3).

Fig. 3. Automaton accepting orders for which there are both overpals and underpals
in the Fibonacci word

Theorem 25. Every binary word of length ≥ 17 avoiding underpals contains a
4th power.

Proof. By explicit enumeration of the 1022 binary words of length 17 avoiding
underpals.

Theorem 26. There is an infinite binary word avoiding underpals and avoiding
(4 + ε)-powers.

Proof. Let h be the doubling morphism 0 → 00 and 1 → 11. Applying h to the
Thue-Morse word t gives a binary word h(t) that contains no underpals and
avoids (4 + ε)-powers.

Theorem 27. Every ternary word of length ≥ 6 avoiding underpals has a
square.

Overpals, Underlaps, and Underpals 27

Proof. By enumerating all ternary words of length 6 avoiding underpals.

Theorem 28. There is an infinite ternary word avoiding underpals and (2+ε)-
powers.

Proof. Take any infinite squarefree word w over a ternary alphabet {0, 1, 2} and
apply the morphism h : 0 → 01, 1 → 10, 2 → 22. Then h(w) has no overlaps,
overpals, or underpals.

5 Underlaps

In analogy with overlaps, we can define underlaps. An underlap is a word of the
form axbxa with x a (possibly empty) word, and a, b letters with a �= b. Note
that x is a bispecial factor of the underlap. An example in English is the word
ginning, with a = g, x = in, and b = n.

Theorem 29.

(a) The only underlaps in the Thue-Morse sequence t are
{010, 101, 0011010, 0101100, 1010011, 1100101}.

(b) The only underlaps in the Fibonacci sequence are {010, 101, 00100}.
(c) The only underlaps in the Rudin-Shapiro sequence are

{010, 101, 00100, 01110, 10001, 11011, 0001000, 1110111}.
(d) The only underlaps in the Tribonacci sequence are

{010, 020, 101, 10201, 20102, 001020100}.
We now prove a theorem giving the relationship between underlaps and

underpals. These concepts actually coincide for binary words.

Theorem 30.

(a) If z contains an underpal, then it contains an underlap.
(b) If z is over a binary alphabet and contains an underlap, then it contains an

underpal.

Proof. (a) Suppose z contains an underpal. Then it can be written in the form
z = uaxbxRav where a �= b.
Case 1: If x contains some letter c �= b, write x = ycbi for some i ≥ 0. Then z
contains the word xbxR = ycbibbicyR, which contains the word cbibbic, which is
an underlap.
Case 2: Otherwise x = bi for some i ≥ 0. Then z contains the word axbxRa =
abibbia, which is an underlap.

(b) Now suppose z contains an underlap and is over the alphabet {0, 1}. Then
it can be written in the form z = uaxbxav where a �= b.
Case 1: x has no a’s. Since x is over a binary alphabet, it must be the case that
x = bi for some i ≥ 0. Then axbxa = abibbia, which is an underpal.

28 A. Rajasekaran et al.

Case 2: x has one a. Write x = biabj for some i, j ≥ 0. Then axbxa =
abiabjbbiabja = abiabi+j+1abja. If either i (resp., j) is odd, this contains abia
(resp., abja), which is an underpal. Otherwise i and j are both even, so i+ j +1
is odd and abi+j+1a is an underpal.
Case 3: x has two or more a’s. By identifying the first and last occurrences of a,
write x = biayabj . Then axbxa = abiayabjbbiayabja = abiayabi+j+1ayabja. If i
(resp., j) is odd, this contains abia (resp., abja), which is an underpal. Otherwise
i and j are both even, so i + j + 1 is odd and abi+j+1a is an underpal.

As an example of a word over the ternary alphabet that contains an underlap
but no underpal, consider 001120110.

Theorem 31. Every binary word of length ≥ 9 has either an overlap or an
underlap.

Proof. It suffices to examine all 512 binary words of length 9.

Theorem 32. There are exponentially many ternary words avoiding overlaps,
underlaps, overpals, and underpals.

Proof. Take any squarefree word w over a ternary alphabet {0, 1, 2} and apply
the morphism h : 0 → 01, 1 → 10, 2 → 22. Then h(w) has no overlaps, underlaps,
overpals, or underpals. Since there are exponentially many squarefree ternary
words (the best lower bound known is Ω(952n/53) [13]), the result follows.

References

1. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, Cambridge (2003)

2. Berstel, J.: Axel Thue’s papers on repetitions in words: a translation, No. 20. In:
Publications du Laboratoire de Combinatoire et d’Informatique Mathématique,
Université du Québec à Montréal, February 1995

3. Blondel, V.D., Cassaigne, J., Jungers, R.M.: On the number of α-power-free binary
words for 2<α ≤ 7/3. Theoret. Comput. Sci. 410, 2823–2833 (2009)

4. Cassaigne, J.: Counting overlap-free binary words. In: Enjalbert, P., Finkel,
A., Wagner, K.W. (eds.) STACS 1993. LNCS, vol. 665, pp. 216–225. Springer,
Heidelberg (1993). doi:10.1007/3-540-56503-5 24

5. Dejean, F.: Sur un théorème de Thue. J. Combin. Theor. Ser. A 13, 90–99 (1972)
6. Goulden, I., Jackson, D.: An inversion theorem for cluster decompositions of

sequences with distinguished subsequences. J. London Math. Soc. 20, 567–576
(1979)

7. Jungers, R.M., Protasov, V.Y., Blondel, V.D.: Overlap-free words and spectra of
matrices. Theor. Comput. Sci. 410, 3670–3684 (2009)

8. Lothaire, M.: Algebraic Combinatorics on Words, Encyclopedia of Mathematics
and its Applications. Cambridge University Press, Cambridge (2011)

9. Mousavi, H.: Automatic theorem proving in Walnut (2016). https://arxiv.org/abs/
1603.06017

10. Noonan, J., Zeilberger, D.: DAVID IAN Maple package (1999). http://www.math.
rutgers.edu/∼zeilberg/gj.html

http://dx.doi.org/10.1007/3-540-56503-5_24
https://arxiv.org/abs/1603.06017
https://arxiv.org/abs/1603.06017
http://www.math.rutgers.edu/~zeilberg/gj.html
http://www.math.rutgers.edu/~zeilberg/gj.html

Overpals, Underlaps, and Underpals 29

11. Noonan, J., Zeilberger, D.: The Goulden-Jackson cluster method: extensions, appli-
cations, and implementations. J. Differ. Equ. Appl. 5, 355–377 (1999)

12. Rampersad, N.: Overlap-free words and generalizations. Ph.D. thesis, University
of Waterloo (2008)

13. Sollami, M., Douglas, C.C., Liebmann, M.: An improved lower bound on the num-
ber of ternary squarefree words. J. Integer Sequences 19, 3 (2016). Article 16.6.7

14. Tan, B., Wen, Z.Y.: Invertible substitutions and Sturmian sequences. Eur. J. Comb.
24, 983–1002 (2003)

15. Thue, A.: Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7,
1–22 (1906). Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell,
editor, Universitetsforlaget, Oslo, 1977, pp. 139–158

16. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
vid. Selsk. Skr. Mat. Nat. Kl. 1, 1–67 (1912). Reprinted in Selected Mathematical
Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 413–
478

On Some Interesting Ternary Formulas

Pascal Ochem1(B) and Matthieu Rosenfeld2

1 LIRMM, CNRS, Université de Montpellier, Montpellier, France
ochem@lirmm.fr

2 LIP, ENS de Lyon, CNRS, UCBL, Université de Lyon, Lyon, France
matthieu.rosenfeld@ens-lyon.fr

Abstract. We show that, up to renaming of the letters, the only infinite
ternary words avoiding the formula ABCAB.ABCBA.ACB.BAC (resp.
ABCA.BCAB.BCB.CBA) have the same set of recurrent factors as the
fixed point of 0 �→ 012, 1 �→ 02, 2 �→ 1.

Also, we show that the formula ABAC.BACA.ABCA is 2-avoidable.
Finally, we show that the pattern ABACADABCA is unavoidable for
the class of C4-minor-free graphs with maximum degree 3. This disproves
a conjecture of Grytczuk.

Keywords: Combinatorics on words · Pattern avoidance

1 Introduction

A pattern p is a non-empty finite word over an alphabet Δ = {A,B,C, . . .} of
capital letters called variables. An occurrence of p in a word w is a non-erasing
morphism h : Δ∗ → Σ∗ such that h(p) is a factor of w. The avoidability index
λ(p) of a pattern p is the size of the smallest alphabet Σ such that there exists
an infinite word over Σ containing no occurrence of p.

A variable that appears only once in a pattern is said to be isolated. Following
Cassaigne [2], we associate a pattern p with the formula f obtained by replacing
every isolated variable in p by a dot. The factors between the dots are called
fragments.

An occurrence of a formula f in a word w is a non-erasing morphism h :
Δ∗ → Σ∗ such that the h-image of every fragment of f is a factor of w. As for
patterns, the avoidability index λ(f) of a formula f is the size of the smallest
alphabet allowing the existence of an infinite word containing no occurrence of
f . Clearly, if a formula f is associated with a pattern p, every word avoiding f
also avoids p, so λ(p) ≤ λ(f). Recall that an infinite word is recurrent if every
finite factor appears infinitely many times. If there exists an infinite word over Σ
avoiding p, then there exists an infinite recurrent word over Σ avoiding p. This
recurrent word also avoids f , so that λ(p) = λ(f). Without loss of generality,
a formula is such that no variable is isolated and no fragment is a factor of

This work was partially supported by the ANR project CoCoGro (ANR-16-CE40-
0005).

c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 30–35, 2017.
DOI: 10.1007/978-3-319-66396-8 4

On Some Interesting Ternary Formulas 31

another fragment. We say that a formula f is divisible by a formula f ′ if f does
not avoid f ′, that is, there is a non-erasing morphism h such that the image of
any fragment of f ′ by h is a factor of a fragment of f . If f is divisible by f ′,
then every word avoiding f ′ also avoids f . Let Σk = {0, 1, . . . , k − 1} denote the
k-letter alphabet. We denote by Σn

k the kn words of length n over Σk.
We say that two infinite words are equivalent if they have the same set of

factors. Let b3 be the fixed point of 0 �→ 012, 1 �→ 02, 2 �→ 1. A famous result
of Thue [1,4,5] can be stated as follows:

Theorem 1 [1,4,5]. Every bi-infinite ternary word avoiding AA, 010, and 212

is equivalent to b3.

In Sect. 2, we obtain a similar result for b3 by forbidding one ternary formula
but without forbidding explicit factors in Σ∗

3 .
In the remainder of the paper, we discuss a counterexample to a conjecture

of Grytczuk stating that every avoidable pattern can be avoided on graphs with
an alphabet of size that depends only on the maximum degree of the graph.

2 Formulas Closely Related to b3

For every letter c ∈ Σ3, σc : Σ∗
3 �→ Σ∗

3 is the morphism such that σc(a) = b,
σc(b) = a, and σc(c) = c with {a, b, c} = Σ3. So σc is the morphism that fixes c
and exchanges the two other letters.

We consider the following formulas.

– fb = ABCAB.ABCBA.ACB.BAC
– f1 = ABCA.BCAB.BCB.CBA
– f2 = ABCAB.BCB.AC
– f3 = ABCA.BCAB.ACB.BCB
– f4 = ABCA.BCAB.BCB.AC.BA

Theorem 2. Let f ∈ {fb, f1, f2, f3, f4}. Every ternary recurrent word avoiding
f is equivalent to b3, σ0(b3), or σ2(b3).

By considering divisibility, we can deduce that Theorem 2 holds for 72 ternary
formulas. Since b3, σ0(b3), and σ2(b3) are equivalent to their reverse, Theorem 2
also holds for the 72 reverse ternary formulas.

Proof. For 1 ≤ i ≤ 4, fb contains an occurrence of fi. Thus, every word avoiding
fi also avoids fb. Using Cassaigne’s algorithm, we have checked that b3 avoids
fi. By symmetry, σ0(b3) and σ2(b3) also avoid fi.

Let w be a ternary recurrent word w avoiding fb. Suppose for contradiction
that w contains a square uu. Then there exists a non-empty word v such that
uuvuu is a factor of w. Thus, w contains an occurrence of fb given by the
morphism A �→ u,B �→ u,C �→ v. This contradiction shows that w is square-
free.

32 P. Ochem and M. Rosenfeld

An occurrence h of a ternary formula over Σ3 is said to be basic if
{h(A), h(B), h(C)} = Σ3. As it is well-known, no infinite ternary word avoids
squares and 012. So, every infinite ternary square-free word contains the 6 fac-
tors obtained by letter permutation of 012. Thus, an infinite ternary square-free
word contains a basic occurrence of fb if and only if it contains the same basic
occurrence of ABCAB.ABCBA. Therefore, w contains no basic occurrence of
ABCAB.ABCBA.

A computer check shows that the longest ternary words avoiding fb, squares,
021020120, 102101201, and 210212012 have length 159. So we assume without
loss of generality that w contains 021020120.

Suppose for contradiction that w contains 010. Since w is square-free, w
contains 20102. Moreover, w contains the factor of 20120 of 021020120. So w
contains the basic occurrence A �→ 2, B �→ 0, C �→ 1 of ABCAB.ABCBA. This
contradiction shows that w avoids 010.

Suppose for contradiction that w contains 212. Since w is square-free, w
contains 02120. Moreover, w contains the factor of 021020 of 021020120. So w
contains the basic occurrence A �→ 0, B �→ 2, C �→ 1 of ABCAB.ABCBA. This
contradiction shows that w avoids 212.

Since w avoids squares, 010, and 212, Theorem 1 implies that w is equivalent
to b3. By symmetry, every ternary recurrent word avoiding fb is equivalent to
b3, σ0(b3), or σ2(b3).

3 Avoidability of ABACA.ABCA
and ABAC.BACA.ABCA

We consider the morphisms ma : 0 �→ 001, 1 �→ 101 and mb : 0 �→ 010, 1 �→ 110.
That is, ma(x) = x01 and mb(x) = x10 for every x ∈ Σ2.

We construct the set S of binary words as follows:

– 0 ∈ S.
– If v ∈ S, then ma(v) ∈ S and mb(v) ∈ S.
– If v ∈ S and v′ is a factor of v, then v′ ∈ S.

Let c(n) = |S ∪ Σn
2 | denote the factor complexity of S. By construction of S,

– c(3n) = 6c(n) for n ≥ 3,
– c(3n + 1) = 4c(n) + 2c(n + 1) for n ≥ 3,
– c(3n + 2) = 2c(n) + 4c(n + 1) for n ≥ 2.

Thus c(n) = Θ
(
nln 6/ ln 3

)
= Θ

(
n1+ln 2/ ln 3

)
.

Theorem 3. Let f ∈ {ABACA.ABCA,ABAC.BACA.ABCA}. The set of
words u such that u is recurrent in an infinite binary word avoiding f is S.

Proof. Let R be the set of words u such that u is recurrent in an infinite binary
word avoiding ABACA.ABCA. Let R′ be the set of words u such that u is

On Some Interesting Ternary Formulas 33

recurrent in an infinite binary word avoiding ABAC.BACA.ABCA. An occur-
rence of ABACA.ABCA is also an occurrence of ABAC.BACA.ABCA, so that
R′ ⊆ R.

Let us show that R ⊆ S. We study the small factors of a recurrent binary
word w avoiding ABACA.ABCA. Notice that w avoid the pattern ABAAA
since it contains the occurrence A �→ A, B �→ B, C �→ A of ABACA.ABCA.
Since w contains recurrent factors only, w also avoids AAA.

A computer check shows that the longest binary words avoiding
ABACA.ABCA, AAA, 1001101001, and 0110010110 have length 53. So we
assume without loss of generality that w contains 1001101001.

Suppose for contradiction that w contains 1100. Since w avoids AAA, w
contains 011001. Then w contains the occurrence A �→ 01, B �→ 1, C �→ 0 of
ABACA.ABCA. This contradiction shows that w avoids 1100.

Since w contains 0110, the occurrence A �→ 0, B �→ 1, C �→ 1 of
ABACA.ABCA shows that w avoids 01010. Similarly, w contains 1001 and
avoids 10101.

Suppose for contradiction that w contains 0101. Since w avoids 01010 and
10101, w contains 001011. Moreover, w avoids AAA, so w contains 10010110.
Then w contains the occurrence A �→ 10, B �→ 0, C �→ 1 of ABACA.ABCA.
This contradiction shows that w avoids 0101.

A binary word is a factor of the ma-image of some binary word if and only
if it avoids {000, 111, 0101, 1100}. Indeed, both kinds of binary words are char-
acterized by the same Rauzy graph with vertex set Σ3

2\{000, 111}. So w is the
ma-image of some binary word.

Obviously, the image by a non-erasing morphism of a word containing a
formula also contains the formula. Thus, the pre-image of w by ma also avoids
ABACA.ABCA. This shows that R ⊆ S.

Let us show that S ⊆ R′, that is, every word in S avoids
ABAC.BACA.ABCA. We suppose for contradiction that a finite word w ∈ S
avoids ABAC.BACA.ABCA and that ma(w) contains an occurrence h of
ABAC.BACA.ABCA.

The word ma(w) is of the form 	01	01	01	01 Thus, in ma(w):

– Every factor 00 is in position 0 (mod 3).
– Every factor 01 is in position 1 (mod 3).
– Every factor 11 is in position 2 (mod 3).
– Every factor 10 is in position 0 or 2 (mod 3), depending on whether a factor
1	0 is 100 or 110.

We say that a factor s is gentle if either |s| ≥ 3 or s ∈ {00, 01, 11}. By previous
remarks, all the occurrences of the same gentle factor have the same position
modulo 3.

First, we consider the case such that h(A) is gentle. This implies that the
distance between two occurrences of h(A) is 0 (mod 3). Because the repetitions
h(ABA), h(ACA), and h(ABCA) are contained in the formula, we deduce that

34 P. Ochem and M. Rosenfeld

– |h(AB)| = |h(A)| + |h(B)| ≡ 0 (mod 3).
– |h(AC)| = |h(A)| + |h(C)| ≡ 0 (mod 3).
– |h(ABC)| = |h(A)| + |h(B) + |h(C)| ≡ 0 (mod 3).

This gives |h(A)| ≡ |h(B)| ≡ |h(C)| ≡ 0 (mod 3). Clearly, such an occurrence
of the formula in ma(w) implies an occurrence of the formula in w, which is a
contradiction.

Now we consider the case such that h(B) is gentle. If h(CA) is also gentle,
then the factors h(BACA) and h(BCA) imply that |h(A)| ≡ 0 (mod 3). Thus,
h(A) is gentle and the first case applies. If h(CA) is not gentle, then h(CA) = 10,
that is, h(C) = 1 and h(A) = 0. Thus, ma(w) contains both h(BAC) = h(B)01
and h(BCA) = h(B)10. Since h(B) is gentle, this implies that 01 and 10 have
the same position modulo 3, which is impossible.

The case such that h(C) is gentle is symmetrical. If h(AB) is gentle, then
h(ABAC) and h(ABC) imply that |h(A)| ≡ 0 (mod 3). If h(AB) is not gentle,
then h(A) = 1 and h(B) = 0. Thus, ma(w) contains both h(ABC) = 01h(C)
and h(BAC) = 10h(C). Since h(C) is gentle, this implies that 01 and 01 have
the same position modulo 3, which is impossible.

Finally, if h(A), h(B), and h(C) are not gentle, then the length of the three
fragments of the formula is 2|h(A)|+|h(B)|+|h(C)| ≤ 8. So it suffices to consider
the factors of length at most 8 in S to check that no such occurrence exists.

This shows that S ⊆ R′. Since R′ ⊆ R ⊆ S ⊆ R′, we obtain R′ = R = S,
which proves Theorem 3.

4 A Counter-Example to a Conjecture of Grytczuk

Grytczuk [3] has considered the notion of pattern avoidance on graphs. This
generalizes the definition of nonrepetitive coloring, which corresponds to the
pattern AA. Given a pattern p and a graph G, λ(p,G) is the smallest number
of colors needed to color the vertices of G such that every non-intersecting path
in G induces a word avoiding p.

We think that the natural framework is that of directed graphs, and we
consider only non-intersecting paths that are oriented from a starting vertex to
an ending vertex. This way, λ(p) = λ

(
p,

−→
P

)
where

−→
P is the infinite oriented

path with vertices vi and arcs −−−→vivi+1, for every i ≥ 0. The directed graphs that
we consider have no loops and no multiple arcs, since they do not modify the
set of non-intersecting oriented paths. However, opposite arcs (i.e., digons) are
allowed. Thus, an undirected graph is viewed as a symmetric directed graph:
for every pair of distinct vertices u and v, either there exists no arc between
u and v, or there exist both the arcs −→uv and −→vu. Let P denote the infinite
undirected path. We are nitpicking about directed graphs because, even though
λ

(
AA,

−→
P

)
= λ(AA,P) = 3, there exist patterns such that λ

(
p,

−→
P

)
< λ(p, P).

For example, λ(ABCACB) = λ
(
ABCACB,

−→
P

)
= 2 and λ(ABCACB,P) = 3.

On Some Interesting Ternary Formulas 35

We do not attempt the hazardous task of defining a notion of avoidance for
formulas on graphs.

A conjecture of Grytczuk [3] says that for every avoidable pattern p, there
exists a function g such that λ(p,G) ≤ g(Δ(G)), where G is an undirected
graph and Δ(G) denotes its maximum degree. Grytczuk [3] obtained that his
conjecture holds for doubled patterns.

As a counterexample, we consider the pattern ABACADABCA which is
2-avoidable by the result in the previous section. Of course, ABACADABCA
is not doubled because of the variable D. Let us show that ABACADABCA is
unavoidable on the infinite oriented graph

−→
G with vertices vi and arcs −−−→vivi+1 and

−−−−−−−−→v100iv100i+2, for every i ≥ 0. Notice that
−→
G is obtained from

−→
P by adding the arcs

−−−−−−−−→v100iv100i+2. Suppose that
−→
G is colored with k colors. Consider the factors in the

subgraph
−→
P induced by the paths from v300ik+1 to v300ik+200k+1, for every i ≥ 0.

Since these factors have bounded length, the same factor appears on two disjoint
such paths pl and pr (such that pl is on the left of pr). Notice that pl contains
2k + 1 vertices with index ≡ 1 (mod 100). By the pigeon-hole principle, pl con-
tains three such vertices with the same color a. Thus, pl contains an occurrence
of ABACA such that A �→ a on vertices with index ≡ 1 (mod 100). The same is
true for pr. In

−→
G , the occurrences of ABACA in pl and pr imply an occurrence

of ABACADABCA since we can skip an occurrence of the variable A in pl
thanks to some arc of the form −−−−−−−−→v100jv100j+2.

This shows that ABACADABCA is unavoidable on
−→
G , which has maximum

degree 3.

References

1. Berstel, J.: Axel Thue’s papers on repetitions in words: a translation, vol. 20. Pub-
lications du LACIM. Université du Québec à Montréal (1994)

2. Cassaigne, J.: Motifs évitables et régularité dans les mots. Ph.D. thesis, Université
Paris VI (1994)

3. Grytczuk, J.: Pattern avoidance on graphs. Discrete Math. 307(11–12), 1341–1346
(2007)

4. Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl.
Christiania 7, 1–22 (1906)

5. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania 10, 1–67 (1912)

Minimal Forbidden Factors of Circular Words

Gabriele Fici(B), Antonio Restivo, and Laura Rizzo

Dipartimento di Matematica e Informatica, Università di Palermo,
Via Archirafi 34, Palermo, Italy

{gabriele.fici,antonio.restivo}@unipa.it, rizzolaura88@gmail.com

Abstract. Minimal forbidden factors are a useful tool for investigating
properties of words and languages. Two factorial languages are distinct
if and only if they have different (antifactorial) sets of minimal forbid-
den factors. There exist algorithms for computing the minimal forbidden
factors of a word, as well as of a regular factorial language. Conversely,
Crochemore et al. [IPL, 1998] gave an algorithm that, given the trie
recognizing a finite antifactorial language M , computes a DFA of the
language having M as set of minimal forbidden factors. In the same
paper, they showed that the obtained DFA is minimal if the input trie
recognizes the minimal forbidden factors of a single word. We generalize
this result to the case of a circular word. We also discuss combinatorial
properties of the minimal forbidden factors of a circular word. Finally,
we characterize the minimal forbidden factors of the circular Fibonacci
words.

Keywords: Minimal forbidden factor · Circular word · L-automaton

1 Introduction

Minimal forbidden factors are a useful combinatorial tool in several areas, rang-
ing from symbolic dynamics to string processing. They have many applications,
e.g. in text compression (where they are also known as antidictionaries) [1],
in bioinformatics (where they are also known under the name minimal absent
words) [2,3], etc. The theory of minimal forbidden factors is well developed,
both from the combinatorial and the algorithmic point of view (see, for instance,
[1,4–8]). In particular, there exist algorithms for computing the minimal forbid-
den factors of a single word [3,9–11], as well as of a regular factorial language [5].
Conversely, Crochemore et al. [6], gave an algorithm, called L-automaton that,
given a trie representing a finite antifactorial set M , builds a deterministic automa-
ton recognizing the language L whose set of minimal forbidden factors is M . The
automaton built by the algorithm is not, in general, minimal. However, if M is the
set of minimal forbidden factors of a single word w, then the algorithm builds the
factor automaton of w, i.e., the minimal deterministic automaton recognizing the
language of factors of w (see [6]).

The notion of a minimal forbidden factor has been recently extended to the
case of circular words [12–14]. A circular word can be seen as a sequence of
c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 36–48, 2017.
DOI: 10.1007/978-3-319-66396-8 5

Minimal Forbidden Factors of Circular Words 37

symbols drawn on a circle, where there is no beginning nor end. Although a
circular word can be formally defined as an equivalence class of the free monoid
under the relation of conjugacy, the fact that in a circular word there is no
beginning nor end leads to a less clear definition of notions as prefixes, suffixes,
factors. In this paper, we consider the set of factors of a circular word w as the
(infinite) set of words that appear as a factor in some power of w. Although this
set is infinite, we show that its set of minimal forbidden factors is always finite.

As a main result, we prove that if M is the set of minimal forbidden factors
of a circular word, then algorithm L-automaton with input a trie recognizing
M builds the minimal automaton representing the set of factors of the circular
word. To this end, we use combinatorial properties of the minimal forbidden
factors of a circular word.

Finally, we explore the case of circular Fibonacci words, and give a combi-
natorial characterization of their minimal forbidden factors.

2 Preliminaires

Let A be a finite alphabet, and let A∗ be the free monoid generated by A under
the operation of concatenation. The elements of A∗ are called words over A.
The length of a word w is denoted by |w|. The empty word, denoted by ε, is
the unique word of length zero and is the neutral element of A∗. If x ∈ A and
w ∈ A∗, we let |w|x denote the number of occurrences of x in w.

A prefix (resp. a suffix) of a word w is any word u such that w = uz (resp. w =
zu) for some word z. A factor of w is a prefix of a suffix (or, equivalently, a suffix
of a prefix) of w. A prefix/suffix/factor of a word is proper if it is nonempty and
does not coincide with the word itself. From the definitions, we have that ε is
a prefix, a suffix and a factor of any word. An occurrence of a factor u in w
is a factorization w = vuz. An occurrence of u is internal if both v and z are
nonempty. The set of factors of a word w is denoted by Fw.

The word w̃ obtained by reading w from right to left is called the reversal (or
mirror image) of w. A palindrome is a word w such that w̃ = w. In particular,
the empty word is a palindrome.

The conjugacy is the equivalence relation over A∗ defined by

w ∼ w′ iff ∃ u, v|w = uv,w′ = vu.

When the word w is conjugate to the word w′, we say that w is a rotation of
w′. An equivalence class [w] of the conjugacy relation is called a circular word.
A representative of a conjugacy class [w] is called a linearization of the circular
word [w]. Therefore, a circular word [w] can be viewed as the set consisting of
all the rotations of a word w.

A word w is a power of a word v if there exists a positive integer k > 1 such
that w = vk. Conversely, w is primitive if w = vk implies k = 1. Notice that a
word is primitive if and only if any of its rotations is. We can therefore extend
the definition of primitivity to circular words straightforwardly. Notice that a
word w (resp. a circular word [w]) is primitive if and only if |[w]| = |w|.

38 G. Fici et al.

Remark 1. A circular word can be seen as a word drawn on a circle, where there
is no beginning and no end. Therefore, the definitions of prefix/suffix/factor lose
their meaning for a circular word. In the literature, a factor of a circular word
[w] is often defined as a factor of any linearization w of [w]. Nevertheless, since
there is no beginning nor end, one can define a factor of w as a word that appears
as a factor of wk for some k. We will adopt this point of view in this paper.

2.1 Minimal Forbidden Factors

We now recall some basic facts about minimal forbidden factors. For further
details and references, the reader may see [7,12].

A language over the alphabet A is a set of finite words over A, that is, a
subset of A∗. A language is factorial if it contains all the factors of its words.
The factorial closure of a language L is the language consisting of all factors of
the words in L, that is, the language FL = ∪w∈LFw.

The counterparts of factorial languages are antifactorial languages. A lan-
guage is called antifactorial if no word in the language is a proper factor of
another word in the language. Dual to the notion of factorial closure, there also
exists the notion of antifactorial part of a language, obtained by removing the
words that are factors of another word in the language.

Definition 2. Given a factorial language L, the (antifactorial) language of min-
imal forbidden factors of L is defined as

ML = {aub|a, b ∈ A, aub /∈ L, au, ub ∈ L}.

Every factorial language L is uniquely determined by its (antifactorial) lan-
guage of minimal forbidden factors ML, through the equation

L = A∗\A∗MLA∗. (1)

The converse is also true, since by the definition of a minimal forbidden factor
we have

ML = AL ∩ LA ∩ (A∗\L). (2)

The previous equations define a bijection between factorial and antifactorial
languages.

In the case of a single word w, the set of minimal forbidden factors of w,
that we denote by Mw, is defined as the antifactorial language MFw

. Indeed, a
word aub, with a, b ∈ A and u ∈ A∗, is a minimal forbidden factor of a word w
if aub /∈ Fw and au, ub ∈ Fw.

For example, consider the word w = aabbabb over the alphabet A = {a, b}.
The set of minimal forbidden factors of w is Mw = {aaa, aba, bbb, baa, babba}.

Applying (1) and (2) to the language of factors of a single word, we have
that, given two words u and v, u = v if and only if Mu = Mv, that is, every
word is uniquely represented by its set of minimal forbidden factors.

An important property of the minimal forbidden factors of a word w, which
plays a crucial role in algorithmic applications, is that their number is linear in

Minimal Forbidden Factors of Circular Words 39

the size of w. Let w be a word of length n over an alphabet A of cardinality σ.
In [7] it is shown that the total number of minimal forbidden factors of w is
smaller than or equal to σn. Actually, O(σn) is a tight asymptotic bound for
the number of minimal forbidden factors of w whenever 2 ≤ σ ≤ n [12]. They
can therefore be stored on a trie1, whose number of nodes is linear in the size of
the word.

2.2 Automata for Minimal Forbidden Factors

Recall that a deterministic finite state automaton (DFA) is a 5-tuple A =
(Q,A, i, T, δ), where Q is the finite set of states, A is the current alphabet, i
is the initial state, T the set of terminal (or final) states, and δ : (Q × A) �→ Q
is the transition function. A word is recognized (or accepted) by A if reading
w from the initial state one ends in a final state. The language recognized (or
accepted) by A is the set of all words recognized by A. A language is regular if
it is recognized by some DFA. A DFA A is minimal if it has the least number of
states among all the DFA’s recognizing the same language as A. The minimal
DFA is unique.

It follows from basic closure properties of regular languages that the bijection
between factorial and antifactorial languages expressed by (1) and (2) preserves
regularity, that is, a factorial language is regular if and only if its language of
minimal forbidden factors is.

The factor automaton of a word w is the minimal DFA recognizing the (finite)
language Fw. The factor automaton of a word of length n has less than 2n states,
and can be built in O(n) time and space by an algorithm that also constructs the
failure function of the automaton [15]. The failure function of a state p (different
from the initial state) is a link to another state q defined as follows. Let u be a
nonempty word and p = δ(i, u). Then q = δ(i, u′), where u′ is the longest suffix
of u for which δ(i, u)
= δ(i, u′). It can be shown that this definition does not
depend on the particular choice of u [6]. An example of a factor automaton is
displayed in Fig. 1.

In [5], the authors gave a quadratic-time algorithm to compute the set of
minimal forbidden factors of a regular factorial language L. However, computing
the minimal forbidden factors of a single word can be done in linear time in the
length of the word. Algorithm MF-trie, described in [6] and presented in Fig. 2,
builds the trie of the set Mw having as input the factor automaton of w, together
with its failure function. Moreover, the states of the output trie recognizing the
set Mw are the same as those of the factor automaton of w, plus some sink
states, which are the terminal states with no outgoing edges, corresponding to
the minimal forbidden factors. An example is given in Fig. 3.

More recently, other algorithms have been introduced to compute the mini-
mal forbidden factors of a word. The computation of minimal forbidden factors
1 A trie representing a finite language L is a tree-like deterministic automaton recog-

nizing L, where the set of states is the set of prefixes of words in L, the initial state
is the empty word ε, the set of final states is a set of sink states, and the set of
transitions is {(u, a, ua)|a ∈ A}.

40 G. Fici et al.

0 1 2 3 4 5 6 7

8

a a b b a b b

b

b

b
a

Fig. 1. The factor automaton of the word w = aabbabb. It is the minimal DFA recog-
nizing Fw. Dashed edges correspond to the failure function links.

MF-trie (factor automaton A = (Q, A, i, T, δ) and its failure function f)
1. for each state p ∈ Q in width-first search from i and each a ∈ A
2. if δ(p, a) undefined and (p = i or δ(f(p), a) defined)
3. δ′(p, a) ← new sink;
4. else
5. if δ(p, a) = q and q not already reached
6. δ′(p, a) ← q;
7. return (Q, A, i, {sinks}, δ′);

Fig. 2. Algorithm MF-trie. It takes as input the factor automaton of a word w and
builds the trie of the set Mw.

0 1 2 3 4 5 6 7

8

a a b b

b

a a ab a

b
a

b

Fig. 3. The trie of the set Mw = {aaa, aba, bbb, baa, babba} of minimal forbidden factors
of the word w = aabbabb output by algorithm MF-trie when the input is the factor
automaton of w. The edges are labeled by single letters for convenience.

based on the construction of suffix arrays was considered in [9]; although this
algorithm has a linear-time performance in practice, the worst-case time com-
plexity is O(n2). New O(n)-time and O(n)-space suffix-array-based algorithms
were presented in [3,10,11]. A more space-efficient solution to compute all min-
imal forbidden factors in time O(n) was also presented in [16].

We have described algorithms for computing the set of minimal forbidden
factors of a given factorial language. We are now describing an algorithm per-
forming the reverse operation. Let M be an antifactorial language. We let L(M)

Minimal Forbidden Factors of Circular Words 41

L-automaton (trie T = (Q, A, i, T, δ′))
1. for each a ∈ A
2. if δ′(i, a) defined
3. set δ(i, a) = δ′(i, a);
4. set f(δ(i, a)) = i;
5. else
6. set δ(i, a) = i;
7. for each state p ∈ Q \ {i} in width-first search and each a ∈ A
8. if δ′(p, a) is defined
9. set δ(p, a) = δ′(p, a);

10. set f(δ(p, a)) = δ(f(p), a);
11. else if p /∈ T
12. set δ(p, a) = δ(f(p), a);
13. else
14. set δ(p, a) = p;
15. return (Q, A, i, Q \ T, δ);

Fig. 4. Algorithm L-automaton. It builds an automaton recognizing the language
L(M) of words avoiding an antifactorial language M on the input trie T accepting M .

denote the (factorial) language avoiding M , that is, the language of all the words
that do not contain any word of M as a factor. Clearly, from Eqs. (1) and (2), we
have that L(M) is the unique language whose set of minimal forbidden factors
is M , i.e., the unique language L such that ML = M .

For a finite antifactorial language M , algorithm L-automaton [6] builds a
DFA recognizing L(M). It is presented in Fig. 4. The algorithm runs in linear
time in the size of the trie storing the words of M . It uses a failure function f
defined in a way analogous to the one used for building the factor automaton.

The algorithm can be applied for retrieving a word from its set of minimal
forbidden factors, and this can be done in linear time in the length of the word,
since the size of the trie of minimal forbidden factors of a word is linear in the
length of the word. Notice that even if M is finite, the language L(M) can be
finite or infinite. Moreover, if L(M) is finite, it can be the language of factors of
a single word or of a set of words.

Algorithm L-automaton builds an automaton recognizing the language
L(M) of words avoiding a given antifactorial language M , but this automaton
is not, in general, minimal. However, the following result holds [6]:

Theorem 3. If M is the set of the minimal forbidden factors of a finite word
w, then the automaton output from algorithm L-automaton on the input trie
recognizing M , after removing sink states, is the factor automaton of w, i.e., it
is minimal.

To see that the minimality described in the previous theorem does not hold
in general, consider for instance the antifactorial language M = {aa, ba}. It can
be easily checked that the automaton output from algorithm L-automaton,

42 G. Fici et al.

after removing sink states, has three states, while the minimal automaton of the
language L(M) = {bn|n ≥ 0} ∪ {abn|n ≥ 0} has only two states.

We will prove in the next section that this minimality property still holds
true in the case of minimal forbidden factors of a circular word.

3 Minimal Forbidden Factors of a Circular Word

Given a word w, the language generated by w is the language w∗ = {wk|k ≥ 0} =
{ε, w,ww,www, . . .}. Analogously, the language L∗ generated by L ⊂ A∗ is the
set of all possible concatenations of words in L, i.e., L∗ = {ε}∪{w1w2 · · · wn|wi ∈
L for i = 1, 2, . . . , n}.

Let w be a word of length at least 2. The language w∗ generated by w is
not a factorial language, nor is the language generated by all the rotations of w.
Nevertheless, if we take the factorial closure of the language generated by w,
then of course we get a factorial language Fw∗ . Now, if z is conjugate to w,
then although w and z generate different languages, the factorial closures of the
languages they generate coincide, i.e., Fw∗ = Fz∗ . Moreover, for any power wk

of w, k > 0, one clearly has Fw∗ = F(wk)∗ .
Based on the previous discussion, and on Remark 1, we give the following

definition: We let the set of factors of a circular word [w] be the (factorial)
language Fw∗ , where w is any linearization of [w]. By the previous remark, this
definition is independent of the particular choice of the linearization. Moreover,
we can suppose that [w] is a primitive circular word.

The set of minimal forbidden factors of the circular word [w] is defined as
the set MFw∗ of minimal forbidden factors of the language Fw∗ , where w is
any linearization of [w]. We already showed that this is independent from the
particular choice of the linearization. To simplify the notation, in the remainder
of this paper we will let M[w] denote the set of minimal forbidden factors of the
circular word [w].

For instance, if [w] = [aabbabb], then we have

M[w] = {aaa, aba, bbb, aabbaa, babbab}.

Notice that M[w] does not coincide with the set of minimal forbidden factors
of the factorial closure of the language of all the rotations of w (see [12] for a
comparison between the two definitions).

Although Fw∗ is an infinite language, the set M[w] = MFw∗ of minimal
forbidden factors of [w] is always finite. More precisely, we have the following
structural lemma.

Lemma 4. Let [w] be a circular word and w any linearization of [w]. Then

M[w] = Mww ∩ A≤|w|. (3)

Proof. If aub, with a, b ∈ A and u ∈ A∗, is an element in Mww ∩ A≤|w|, then
clearly aub ∈ MFw∗ = M[w].

Minimal Forbidden Factors of Circular Words 43

Conversely, let aub, with a, b ∈ A and u ∈ A∗, be an element in M[w] =
MFw∗ . Then aub /∈ Fw∗ , while au, ub ∈ Fw∗ . So, there exists some letter b̄
different from b such that aub̄ ∈ Fw∗ and a letter ā different from a such that
āub ∈ Fw∗ . Therefore, au, āu, ub, ub̄ ∈ Fw∗ . It is readily verified that any word of
length at least |w|−1 cannot be extended to the right nor to the left by different
letters in MFw∗ . Hence |aub| ≤ |w|. Since au and ub are factors of some rotation
of w, we have au, ub ∈ Fww, whence aub ∈ Mww. �

The equality (3) was first introduced as the definition for the set of minimal
forbidden factors of a circular word in [14].

About the number of minimal forbidden factors of a circular words we have
the following bounds.

Lemma 5. Let [w] be a circular word over the alphabet A and let A(w) be the
set of letters of A that occur in w. Then

|A| ≤ |M[w]| ≤ |A| + (n − 1)|A(w)| − n. (4)

Proof. The inequality |A| ≤ |M[w]| follows from the fact that for each letter
a ∈ A there exists an integer na > 0 such that ana ∈ M[w]. For the upper
bound, we first observe that the minimal forbidden factors of length 1 of [w] are
precisely the elements of A\A(w). We now count the minimal forbidden factors
of length greater than one. Recall by Lemma 4 that M[w] = Mww ∩ A≤|w|. Let
ww = w1w2 · · · w2n. Consider a position i in ww such that n ≤ i < 2n. We claim
that there are at most |A| distinct elements of M[w] of length greater than one
whose longest proper prefixes have an occurrence ending in position i. Indeed,
by contradiction, let b ∈ A such that there exist ub, vb ∈ M[w] and both u and
v occur in ww ending in position i. This implies that ub and vb are one suffix of
another, against the minimality of the minimal forbidden factors. Since the letter
b must be different from the letter of ww occurring in position i+1, we therefore
have that the number of minimal forbidden factors obtained for i ranging from
n to 2n − 1 is at most n(|A(w)| − 1). For i such that 1 ≤ i < n (resp. i = 2n), if
an element ub ∈ M[w], b ∈ A, is such that u has an occurrence in ww ending in
position i, then u has also an occurrence ending in position i + n (resp. n), so it
has already been counted. Hence,

|M[w]| ≤ |A| − |A(w)| + n(|A(w)| − 1) = |A| + (n − 1)|A(w)| − n. �

We now give a result analogous to Theorem 3 in the case of circular words.

Theorem 6. If M is the set of the minimal forbidden factors of a primitive
circular word [w], then the automaton output from algorithm L-automaton
on the input trie T recognizing M , after removing sink states, is the minimal
automaton recognizing the language Fw∗ of factors of [w].

Proof. Let A = (Q,A, i,Q\T, δ) be the automaton output by algorithm
L-automaton with input the trie T recognizing the set of the minimal for-
bidden factors of a circular word [w]. Let w = w1w2 · · · wn be a linearization

44 G. Fici et al.

of [w]. The automaton A recognizes the language Fw∗ since its input recog-
nizes the language M[w] = MFw∗ . To prove that A is minimal, we have to
prove that any two states are distinguishable. Suppose by contradiction that
there are two nondistinguishable states p, q ∈ Q. By construction, p and q are
respectively associated with two proper prefixes, vp and vq, of words in MFw∗ ,
which, by Lemma 4, is equal to Mww ∩ A≤|w|. Therefore, vp and vq are factors
of w∗ of length ≤ |w|. Hence, they are both factors of w2. Let us then write
w2 = xvpy = x′vqy′, with x and x′ of minimal length.

Suppose first that there exists i such that xvp and x′vq both end in
w1w2 · · · wi. Then they are one suffix of another. Since p and q are nondistin-
guishable, there exists a word z such that xvpz and x′vqz end in a sink state, that
is, are elements of M[w]. This is a contradiction since M[w] is an antifactorial
set and xvpz and x′vqz are one suffix of another.

Suppose now that xvp ends in w1w2 · · · wi and x′vq ends in w1w2 · · · wj for
i
= j. Since p and q are nondistinguishable, for any word u one has that that
vpu ∈ Fw∗ if and only if vqu ∈ Fw∗ . Since Fw∗ is a factorial language, we
therefore have that there exists a word z of length |w| such that vpz and vqz are
both in Fw∗ . But this implies that z = wi+1wi+2 · · · wi = wj+1wj+2 · · · wj , and
this leads to a contradiction since w is primitive and therefore all its rotations
are distinct. �

4 Circular Fibonacci Words and Minimal Forbidden
Factors

In this section, we illustrate the combinatorial results discussed in the previous
section in the special case of the circular Fibonacci words.

The sequence (fn)n≥1 of Fibonacci words is defined recursively by f1 = b,
f2 = a and fn = fn−1fn−2 for n > 2. The length of the word fn is the Fibonacci
number Fn.

Let us recall some well-known properties of the Fibonacci words. For every
n ≥ 3, one can write fn = unab if n is odd or fn = unba if n is even, where un is
a palindrome. Moreover, since fn = fn−1fn−2 and the words un are palindromes,
one has that for every n ≥ 5

fn = unxy = un−1yxun−2xy = un−2xyun−1xy (5)

for letters x, y such that {x, y} = {a, b}. The first few Fibonacci words fn and
the first few words un are shown in Table 1.

Recall that a bispecial factor of a word w over the alphabet A = {a, b} is
a word v such that av, bv, va, vb are all factors of w. From basic properties of
Fibonacci words, it can be proved that for every n ≥ 4 the set of bispecial factors
of the word fn is {u3, u4, . . . , un−1}, while the set of bispecial factors of the word
fnfn is {u3, u4, . . . , un}.

The words fn (as well as the words fnfn) are balanced, that is, for every pair
of factors u and v of the same length, one has ||u|a − |va|| ≤ 1 (and therefore
also ||u|b − |vb|| ≤ 1).

Minimal Forbidden Factors of Circular Words 45

Table 1. The first few Fibonacci words fn and the first few words un.

f1 = b

f2 = a

f3 = ab

f4 = aba

f5 = abaab

f6 = abaababa

f7 = abaababaabaab

u3 = ε

u4 = a

u5 = aba

u6 = abaaba

u7 = abaababaaba

Table 2. The first few elements of the sequences f̂n and ĝn.

f̂3 = aa

f̂4 = bab

f̂5 = aabaa

f̂6 = babaabab

f̂7 = aabaababaabaa

ĝ3 = bb

ĝ4 = aaa

ĝ5 = babab

ĝ6 = aabaabaa

ĝ7 = babaababaabab

Let us now define the sequence of words (f̂n)n≥3 by f̂n = auna if n is odd,
f̂n = bunb if n is even. These words are known as singular words. Analogously,
we can define the sequence of words (ĝn)≥3 by ĝn = bunb if n is odd, ĝn = auna

if n is even. For every n, the word ĝn is obtained from the word f̂n by changing
the first and the last letter. The first few values of the sequences f̂n and ĝn are
shown in Table 2.

We will now describe the structure of the sets of minimal forbidden factors
of circular Fibonacci words in terms of the words f̂n and ĝn.

The first few sets M[fn] are displayed in Table 3. We have M[f1] = M[b] =
{a}, M[f2] = M[a] = {b} and M[f3] = M[ab] = {aa, bb}. The following theorem
gives a characterization of the sets M[fn] for n ≥ 4.

Table 3. The first few sets of minimal forbidden factors of the circular Fibonacci
words.

M[f1] ={a}
M[f2] ={b}
M[f3] ={aa, bb}
M[f4] ={bb, aaa, bab}
M[f5] ={bb, aaa, aabaa, babab}
M[f6] ={bb, aaa, babab, aabaabaa, babaabab}
M[f7] ={bb, aaa, babab, aabaabaa, aabaababaabaa, babaababaabab}

46 G. Fici et al.

Theorem 7. For every n ≥ 4, M[fn] = {ĝ3, ĝ4, . . . , ĝn, f̂n}.
Proof. By Lemma 4, M[fn] = Mfnfn ∩ A≤|fn|. Let xuy, u ∈ A∗, x, y ∈ A, be
in Mfnfn ∩ A≤|fn|. Then xu has an occurrence in fnfn followed by letter ȳ,
the complement of y, and uy has an occurrence in fnfn preceded by letter x̄,
the complement of x. Therefore, u is a bispecial factor of the word fnfn, hence
u ∈ {u3, u4, . . . , un}. Thus, an element in M[fn] is of the form αuiβ for some
3 ≤ i ≤ n and α, β ∈ A.

Claim. The singular word f̂n is a minimal forbidden factor of the word fnfn.

Proof: Let f̂n = xunx, x ∈ A. The word unx appears in fnfn only as a prefix
of one of the two occurrences of fn, so it appears in fnfn only preceded by the
letter x̄ different from x, hence xunx cannot be a factor of fnfn. Finally, the
word xun appears as a factor in fnfn since from (5) one can write

fnfn = unxyunxy = un−1y xun−2xyun−1y un−1yxun−2xy

= un−1y xuny un−1yxun−2xy.
(6)

Claim. The singular word f̂n is a factor of the word fn+1fn+1.

Proof: The first letter of f̂n is equal to the last letter of fn+1 and, by removing
the first letter from f̂n, one obtains a prefix of fn+1. Hence, f̂n is a factor of the
word fn+1fn+1.

Claim. For every 3 ≤ i ≤ n, the word ĝi is a minimal forbidden factor of the
word fnfn.

Proof: From the previous claim, it follows that for every 3 ≤ i ≤ n, the word
f̂i is factor of the word fnfn. Therefore ĝi cannot be a factor of fnfn otherwise
the word fnfn would not be balanced. Since removing the first or the last letter
from the word ĝi one obtains a factor of the word f̂i, the claim is proved.

Finally, from (5) and (6), for every 3 ≤ i ≤ n, the words xuiy and yuix are
factors of fnfn. This completes the proof. �

Notice that, by Lemma 4, for any circular word [w], one has that |w| is an
upper bound on the length of the minimal forbidden factors of [w]. The previous
theorem shows that this bound is indeed tight. However, the maximum length
of a minimal forbidden factor of a circular word [w] is not always equal to |w|.
For example, for w = aabbab one has M[w] = {aaa, bbb, aaba, abab, babb, bbaa}.

Corollary 8. For every n ≥ 2, the cardinality of M[fn] is n − 1.

By Theorem 6, if T is the trie recognizing the set {ĝ3, ĝ4, . . . , ĝn, f̂n}, then
algorithm L-automaton on the input trie T builds the minimal determin-
istic automaton recognizing Ff∗

n
. Since the automaton output by algorithm

L-automaton has the same set of states of the input trie T after removing
sink states, and since removing the last letter from each word ĝi results in a
prefix of f̂i, we have that the factor automaton of the circular Fibonacci word
[fn], that is, the minimal automaton recognizing Ff∗

n
, has exactly 2Fn −1 states

(see Fig. 5 for an example).

Minimal Forbidden Factors of Circular Words 47

0

1

2

3

4

5

6

7

8

a

b

a

a

b

a

b

b

a

a

a

b

0

1

2

3

4

5

6

7

8

a

b

a

a

b

b

a

a

b

a
ba

Fig. 5. The trie T recognizing the set M[f5] (top), and the automaton output by
algorithm L-automaton on the input trie T after removing sink states (bottom),
which is the minimal automaton recognizing Ff∗

5
. It has 9 = 2F5 − 1 states.

5 Conclusions and Open Problems

We proved that the automaton built by algorithm L-automaton on the input
trie recognizing the set of minimal forbidden factors of a circular word is min-
imal. More generally, it would be interesting to characterize those antifactorial
languages for which algorithm L-automaton builds a minimal automaton.

References

1. Crochemore, M., Mignosi, F., Restivo, A., Salemi, S.: Text compression using
antidictionaries. In: Wiedermann, J., Boas, P.E., Nielsen, M. (eds.) ICALP
1999. LNCS, vol. 1644, pp. 261–270. Springer, Heidelberg (1999). doi:10.1007/
3-540-48523-6 23

2. Chairungsee, S., Crochemore, M.: Using minimal absent words to build phylogeny.
Theor. Comput. Sci. 450, 109–116 (2012)

3. Barton, C., Héliou, A., Mouchard, L., Pissis, S.P.: Linear-time computation of
minimal absent words using suffix array. BMC Bioinform. 15, 388 (2014)

4. Béal, M., Mignosi, F., Restivo, A., Sciortino, M.: Forbidden words in symbolic
dynamics. Adv. Appl. Math. 25(2), 163–193 (2000)

5. Béal, M., Crochemore, M., Mignosi, F., Restivo, A., Sciortino, M.: Computing
forbidden words of regular languages. Fundam. Inform. 56(1–2), 121–135 (2003)

6. Crochemore, M., Mignosi, F., Restivo, A.: Automata and forbidden words. Inf.
Process. Lett. 67, 111–117 (1998)

http://dx.doi.org/10.1007/3-540-48523-6_23
http://dx.doi.org/10.1007/3-540-48523-6_23

48 G. Fici et al.

7. Mignosi, F., Restivo, A., Sciortino, M.: Words and forbidden factors. Theor. Com-
put. Sci. 273(1–2), 99–117 (2002)

8. Fici, G., Mignosi, F., Restivo, A., Sciortino, M.: Word assembly through minimal
forbidden words. Theor. Comput. Sci. 359(1), 214–230 (2006)

9. Pinho, A.J., Ferreira, P., Garcia, S.P.: On finding minimal absent words. BMC
Bioinform. 10(1), 137 (2009)

10. Fukae, H., Ota, T., Morita, H.: On fast and memory-efficient construction of an
antidictionary array. In: ISIT, pp. 1092–1096. IEEE (2012)

11. Barton, C., Heliou, A., Mouchard, L., Pissis, S.P.: Parallelising the computa-
tion of minimal absent words. In: Wyrzykowski, R., Deelman, E., Dongarra, J.,
Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp.
243–253. Springer, Cham (2016). doi:10.1007/978-3-319-32152-3 23

12. Crochemore, M., Fici, G., Mercas, R., Pissis, S.P.: Linear-time sequence compar-
ison using minimal absent words and applications. In: Kranakis, E., Navarro, G.,
Chávez, E. (eds.) LATIN 2016. LNCS, vol. 9644. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49529-2 25

13. Ota, T., Morita, H.: On antidictionary coding based on compacted substring
automaton. In: ISIT, pp. 1754–1758. IEEE (2013)

14. Ota, T., Morita, H.: On a universal antidictionary coding for stationary ergodic
sources with finite alphabet. In: ISITA, pp. 294–298. IEEE (2014)

15. Crochemore, M., Hancart, C.: Automata for matching patterns. In: Handbook of
Formal Languages. Springer 399–462(1997)

16. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Versatile succinct repre-
sentations of the bidirectional Burrows-Wheeler transform. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 133–144. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40450-4 12

http://dx.doi.org/10.1007/978-3-319-32152-3_23
http://dx.doi.org/10.1007/978-3-662-49529-2_25
http://dx.doi.org/10.1007/978-3-642-40450-4_12

A de Bruijn Sequence Construction
by Concatenating Cycles of the Complemented

Cycling Register

Daniel Gabric and Joe Sawada(B)

University of Guelph, Guelph, Canada
{dgabric,jsawada}@uoguelph.ca

Abstract. We present a new de Bruijn sequence construction based
on co-necklaces and the complemented cycling register (CCR). A co-
necklace is the lexicographically smallest string in an equivalence class of
strings induced by the CCR. We prove that a concatenation of the cycles
of the CCR forms a de Bruijn sequence when the cycles are ordered in
colexicographic order with respect to their co-necklace representatives.
We also give an algorithm that produces the de Bruijn sequence in O(1)-
time per bit. Finally, we prove that our construction has a discrepancy
bounded above by 2n.

1 Introduction

Let B(n) be the set of binary strings of length n. It is well known that the pure
cycling register, which takes a binary string and outputs its first bit, partitions
B(n) into equivalence classes under rotation. The lexicographically smallest rep-
resentative of each equivalence class is called a necklace. For n = 5, the eight
necklace equivalence classes are listed in columns as follows:

00000 00001 00011 00101 00111 01011 01111 11111.
00010 00110 01010 01110 10110 11110
00100 01100 10100 11100 01101 11101
01000 11000 01001 11001 11010 11011
10000 10001 10010 10011 10101 10111

The first string in each equivalence class is its necklace representative and the
necklaces are listed from left to right in lexicographic order. For each equivalence
class, observe that the string obtained by concatenating the first bit from each
string yields the longest aperiodic prefix of the necklace representative. Now
consider the string of length 25 = 32 obtained by concatenating these highlighted
bits (top down, then left to right):

0 00001 00011 00101 00111 01011 011111.

Amazingly, when considered cyclicly, this constructed string contains every
string in B(5) as a substring exactly once. Strings with this property for a given
n are called de Bruijn sequences.
c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 49–58, 2017.
DOI: 10.1007/978-3-319-66396-8 6

50 D. Gabric and J. Sawada

In this paper, we show a similar property with respect to the complemented
cycling register (CCR), which takes a binary string and outputs the complement
of the first bit. The CCR partitions B(n) into equivalence classes of size up to
2n. We call the lexicographically smallest string in each such equivalence class
a co-necklace. For n = 5, the four co-necklace equivalence classes are listed in
columns as follows:

00000 00010 00100 01010
00001 00101 01001 10101.
00011 01011 10011
00111 10111 00110
01111 01110 01101
11111 11101 11011
11110 11010 10110
11100 10100 01100
11000 01000 11001
10000 10001 10010

Observe that the co-necklace representative is positioned at the top of each
class, and the classes are ordered in lexicographic order with respect to the co-
necklaces. Within each equivalence class, each successive string is a left rotation
of the string above it after complementing the final bit. For each equivalence
class, let α denote the co-necklace and observe that the string obtained by con-
catenating together the first bit from each string yields the longest aperiodic
prefix of αα, where α denotes the complement of α. We call such a string a cycle
of the CCR. Consider the string obtained by concatenating these cycles of the
CCR (top down, then left to right):

0000011111 0001011101 0010011011 01.

This string is not a de Bruijn sequence since it contains the substring 11010 twice.
It also contains the substring 10100 twice and is missing 01010 and 10101. How-
ever, observe what happens if we list the equivalence classes in colexicographic
order with respect to the co-necklace representatives. This listing is obtained
by swapping the second and third classes from the previous lexicographic order
example. Using this colexicographic order and concatenating the CCR cycles
together yields the following de Bruijn sequence

0000011111 0010011011 0001011101 01.

Main result: The main result of this paper is to provide a simple proof that
this construction using co-necklaces and CCR cycles, for arbitrary n, yields a de
Bruijn sequence. We provide an algorithm to generate the co-necklaces of length
n in colexicographic order that runs in O(n)-amortized time per string. This
allows us to generate the de Bruijn sequence in O(1)-time per it. Additionally, we

A de Bruijn Sequence Construction by Concatenating Cycles 51

demonstrate that the constructed de Bruijn sequences have a very nice property:
they have discrepancy bounded above by 2n.

In the next subsection, we provide some history of de Bruijn sequence con-
structions and the complemented cycling register. Then in Sect. 2, we present
formal definitions of our key objects and notation. In Sect. 3, we prove our main
result which includes implementation details and an analysis. Finally in Sect. 4
we discuss an interesting property of our constructed de Bruijn sequences.

1.1 History

The lexicographic necklace concatenation approach was first presented by
Fredricksen and Maiorana [11]. An algorithm to generate necklaces in lexico-
graphic order [13] was shown to run in O(1)-amortized time per necklace [19]
which means the corresponding de Bruijn sequence can be generated in O(1)-
amortized time per bit. Rather surprisingly, it was only recently discovered that
a similar algorithm works for necklaces in colexicographic order [6]. Since neck-
laces can also be generated in colexicographic order in O(1)-time [21], the cor-
responding de Bruijn sequence can also be generated in O(1)-amortized time
per bit.

Other methods for generating de Bruijn sequences of order n include greedy
approaches and successor-based approaches. A major drawback of the greedy
approaches [2,7,10,17] is they all require an exponential amount of space. The
first successor-rule based approach was by Fredricksen [12] for the lexicograph-
ically smallest de Bruijn sequence, which also happens to be equivalent to
the lexicographic necklace concatenation approach. Additional successor based
approaches [8,9,16] generate de Bruijn sequences requiring O(n2)-time per bit.
In particular, the constructions by Etzion [9] and Huang [16] are also based on
the CCR. A more recent construction [20] based on the PCR requires O(n)-time
to compute each successive bit, and an optimization allows the entire sequence
to be generated in O(1)-amortized time per bit.

There is a well known correspondence between co-necklaces of order n and
necklaces of order n that contain an odd number of 1s. A discussion from [4]
describes how representatives from these equivalence classes can be generated in
O(1)-amortize time per string. However, there is no efficient algorithm known
to generate the lexicographically smallest representatives, the co-necklaes, in
either lexicographic or colexicographic order. The enumeration sequence for co-
necklaces A000016 was one of the first listed in the Online Encyclopedia of
Integer Sequences [1].

2 Background and Definitions

A necklace is the lexicographically smallest string in an equivlance class of strings
under rotation. Let α be the complement of the string α. We say that α is a co-
necklace if αα is a necklace. Let coneck(α) denote the set containing all length
n substrings of the circular string αα. For example,

coneck(00000) = {00000, 00001, 00011, 00111, 01111, 11111, 11110, 11100, 11000, 10000}.

52 D. Gabric and J. Sawada

Let coN(n) be the set of all co-necklaces of length n, so coN(5) =
{00000, 00010, 00100, 01010}. Clearly every distinct coneck set contains a co-
necklace, which is it’s lexicographically least element. It is also well known that
{coneck(α) | α ∈ coN(n)} is a partition of B(n) [4,9,15,18]. The number of
co-necklaces of length n is the same as the number of cycles of the CCR (with
respect to n) as well as the number of necklaces of length n with an odd number
of 1s and is given by the formula [14]

|coN(n)| =
1
2n

∑

odd d|n
φ(d)2n/d, (1)

where φ is Euler’s totient function.
Given a non-empty subset S of B(n), a universal cycle for S is a sequence of

length |S| that contains every string in S as a substring exactly once when the
string is viewed circularly. A universal cycle is a de Bruijn sequence in the case
that S = B(n).

The aperiodic prefix of α denoted by ap(α) is the shortest prefix
a1a2 · · · ai, i ∈ {1, 2, . . . , n} such that α = (a1a2 · · · ai)

n
i . We say α is periodic if

|ap(α)| < |α| and is aperiodic if |ap(α)| = |α|.
Lemma 1. If α = a1a2 · · · an is a binary string and αα is periodic, then |αα|

|ap(αα)|
is odd.

Proof. The proof is by contradiction. Assume αα is periodic and |αα|
|ap(αα)| = 2k

is even. Then αα = (ap(αα))2k = (ap(αα))k(ap(αα))k = αα, a contradiction. ��
Lemma 2. If α = a1a2 · · · an is a binary string and β = ap(αα), then β =
a1a2 · · · aia1a2 · · · ai for some 1 ≤ i ≤ n.

Proof. If αα is aperiodic, then β = αα = a1a2 · · · ana1a2 · · · an. If αα is periodic,
then ap(αα) = a1a2 · · · aj for some j ≤ n and by Lemma 1 the value j must be
even and αα = (a1a2 · · · aj)2k+1 = (a1a2 · · · aj)k(a1a2 · · · aj)(a1a2 · · · aj)k. Thus,
it follows that a1a2 · · · aj/2 = aj/2+1 · · · aj−1aj . ��

Let α = a1a2 · · · an and β = b1b2 · · · bn be two distinct binary strings of equal
length. Then α comes before β in colexicographic (colex) order if ai < bi for the
largest i where ai �= bi.

Lemma 3. If α = a1a2 · · · an and β = b1b2 · · · bn are consecutive co-necklaces
in colex order, where α comes before β and j is the smallest index where bj = 1,
then aj+1aj+2 · · · an = bj+1bj+2 · · · bn.

Proof. The proof is by contradiction. Suppose aj+1aj+2 · · · an �= bj+1bj+2 · · · bn.
Then there exists some largest i > j such that ai �= bi. Since α comes before
β in colex order, ai = 0 and bi = 1. However, since β is a co-necklace, then
γ = 0i−11bi+1bi+2 · · · bn will also be a co-necklace, since 0i is the largest run of
0’s in γ. But this means γ comes between α and β in colex order, which is a
contradiction. Thus aj+1aj+2 · · · an = bj+1bj+2 · · · bn. ��

A de Bruijn Sequence Construction by Concatenating Cycles 53

3 de Bruijn Sequence Construction

In this section we present a de Bruijn sequence construction obtained by concate-
nating the cycles of the CCR. The construction generalizes to produce universal
cycles for certain subsets of B(n).

Let α1, α2, . . . , αm be the first m co-necklaces of length n in colex order. Let

Um,n = ap(α1α1)ap(α2α2) · · · ap(αmαm).

When m = |coN(n)|, let DBn = Um,n.

Theorem 4. Let α1, α2, . . . , αm be the first m co-necklaces of order n
in colex order, where m ≥ 1. Then Um,n is a universal cycle for⋃m

k=1 coneck(αk) and αm is a suffix of Um,n.

Proof. The proof is by induction. In the base case when m = 1, α1 = 0n.
Clearly ap(α1α1) = 0n1n is a universal cycle that contains all the strings
in coneck(0n), and α1 = 1n is its suffix. For m ≥ 1, assume Um,n is
a universal cycle for

⋃m
k=1 coneck(αk) with suffix αm. Consider Um+1,n =

Um,nap(αm+1αm+1), where αm = a1a2 · · · an and αm+1 = 0j1bj+2bj+3 · · · bn

where j + 1 is the smallest index where bj+1 = 1. Let β = ap(αm+1αm+1) =
0j1bj+2bj+3 · · · b|β|. First we show that αm+1 is a suffix of Um+1,n. If αm+1αm+1

is aperiodic, then by definition αm+1 is a suffix of Um+1,n. If αm+1αm+1

is periodic, we know that αm appears as a suffix of Um,n by the inductive
hypothesis. Also by Lemma 3 we see that aj+2aj+3 · · · an = bj+2bj+3 · · · bn,
and this implies that a suffix of αm is (b1b2 · · · b|β|)k where αm+1αm+1 =
(b1b2 · · · b|β|)2k+1 (a result of Lemma 1). Lemma 2 tells us that αm+1 is a
suffix of αmβ = (b1b2 · · · b|β|)k+1, so αm+1 is a suffix of Um+1,n. Now
we prove that Um+1,n is a universal cycle for

⋃m+1
k=1 coneck(αk). By the

inductive hypothesis, Um+1,n will contain all the strings in
⋃m

k=1 coneck(αk)
except for possibly the strings {a2a3 · · · an0, a3a4 · · · an00, . . . , an0n−1} which
were involved in the wraparound. First, we show they still exist as sub-
string in the cyclic Um+1,n By Lemma 3, aj+2aj+3 · · · an = bj+2bj+3 · · · bn.
Because we already showed that αm+1 is a suffix of Um+1,n, this implies
that each string in {aj+2aj+3 · · · an0j+1, aj+3aj+4 · · · an0j+2, . . . , an0n−1} occurs
as a substring in the wrap-around of the cyclic Um+1,n. Furthermore,
the strings {a2a3 · · · an0, a3a4 · · · an00, . . . , aj+1 · · · an0j} exist within Um+1,n

because β has prefix 0j . Finally, we show that all strings in coneck(αm+1)
occur as a substring in Um+1,n. Those that are not trivially substrings
of β occur either in the wrap-around or have their prefix as a suffix in
Um,n and suffix in a prefix of β. The latter case covers each string in
{bj+2bj+3 · · · bn0j1, bj+3bj+4 · · · bn0j1bj+2, . . . , bx+1 · · · bn0j1bj+2 · · · bx}, where
x = n if |β| > n and x = |β| otherwise. Since the length n suffix of Um+1,n

54 D. Gabric and J. Sawada

is αm+1 = b1b2 · · · bn, and α1 = 0n, the strings {1j−10bj+2 · · · bn0, 1j−20
bj+2 · · · bn00 . . . , 0bj+2 · · · bn0j} occur in the wraparound of Um+1,n. Thus, every
string in

⋃m+1
k=1 coneck(αk) appears as a substring in the cyclic string Um+1,n.

Therefore since the length of Um+1,n is equal to |⋃m+1
k=1 coneck(αk)|, Um+1,n is

a universal cycle for
⋃m+1

k=1 coneck(αk). ��
Corollary 5. DBn is a de Bruijn sequence of order n.

3.1 Efficient Implementation

In order to construct DBn, we must first generate co-necklaces in colex order.
A näıve algorithm will consider all strings α ∈ B(n) in colex order and test if
αα is a necklace. Such a necklace test can be computed in O(n)-time [3]. Since
there are Θ(2n/n) co-necklaces of length n by Eq. 1 this approach will result in
each co-necklace being generated in O(n2)-amortized time. We will present an
algorithm that improves this method by a factor of n.

Our strategy is to apply a standard recursive algorithm to generate strings
in colex order, building the global string α = a1a2 · · · an from right to left one
bit at a time. Such an algorithm is given in Algorithm1 with the following
modifications optimized for co-necklace generation.

– Keep track of the length of the current run of 0s in the parameter curZero.
– Keep track of the longest substring of the form 0∗ in the parameter maxZero.
– Terminate the recursion when the length of the remaining prefix of α to be

completed, given by parameter t, is less than or equal to maxZero. This is
because a longest run of 0s must be at the start of any co-necklace.1 The
algorithm can be further optimized by keeping track of the current run of the
form 1∗. At this point, the prefix a1a2 · · · at is set to 0t and then we test if
αα is a co-necklace using the boolean function IsNecklace.

The function Print outputs the string passed as input and the function Max
returns the larger of its two integer inputs. After initializing an = 0, since all
co-necklaces end with 0, the initial call to generate all co-necklaces of length n
is GenerateConeck(n − 1, 1, 1).

Algorithm 1. An algorithm to generate all co-necklaces of length n in colex
order.

1: procedure GenerateConeck(t, curZero, maxZero)
2: if t ≤ maxZero then
3: a1a2 · · · at ← 0t

4: if IsNecklace(αα) then Print(αα)

5: else
6: at ← 0
7: GenerateConeck(t − 1, curZero + 1, Max(curZero + 1, maxZero))
8: at ← 1
9: GenerateConeck(t − 1, 0, maxZero)

1 Because a longest run of the form 0∗ or 1∗ must be at the start of a co-necklace, the
algorithm can be further optimized by keeping track of the longest current run of
the form 1∗. However, it will not affect the asymptotic analysis.

A de Bruijn Sequence Construction by Concatenating Cycles 55

Recall that IsNecklace can be implemented in O(n)-time and also note
that setting the prefix a1a2 · · · at also requires at most O(n)-time. Thus, since the
recursion always has a branch factor of two, the total work done by the algorithm
will be O(n) times the number of strings α generated before the necklace test.
An example computation tree for n = 6 is shown in Fig. 1. Each such string
α = a1a2 · · · an is constructed to have a longest run of 0s at the start of the
string and an = 0. Now observe that ana1a2 · · · an−1 is the prefix of a necklace
(called a prenecklace). In particular, ana1a2 · · · an−1 is clearly a necklace since
the longest number of 0s occurs uniquely at the start of the string. The number of
prenecklaces of length n is known to be Θ(2n/n) [4], which in turn is proportional
to the number of co-necklaces of length n as mentioned earlier. Thus, the total
work done by the algorithm is bounded by O(n) times the number of co-necklaces
of length n.

0

0 1

1 10 0

0 0 01 1 1

10 0 10 1

= a6

011110001110010110000110011010001010000010001100000100000000

Fig. 1. Computation tree for GenerateConeck for n = 6. Observe that the six co-
necklaces in coN(6) are listed in colex order: 000000, 000100, 001100, 000010, 001010,
000110.

Theorem 6. The set of all co-necklaces of length n can be listed in colex order
in O(n)-amortized time per string.

To apply the algorithm GenerateConeck to construct DBn, we only need
to determine p = |ap(αα)| for each co-necklace α, then pass a1a2 · · · ap to the
function Print instead of αα. A complete C implementation to generate DBn

is provided in the appendix. Since the value p can be computed in O(n) time,
we obtain the following corollary.

56 D. Gabric and J. Sawada

Corollary 7. The de Bruijn sequence DBn can be constructed in O(1)-
amortized time per bit.

It remains an open problem to generate co-necklaces in colex (or lexico-
graphic) order in O(1)-amortized time per string.

4 Discrepancy

In this section we focus on a measure studied by Cooper and Heitsch [5] known
as the discrepancy of a de Bruijn sequence. In particular, they show that the
discrepancy of the lexicographically smallest de Bruijn sequence, which happens
to be obtained via the necklace concatenation approach discussed earlier, is
Θ(2

n log n
n).

Let α be a binary string. Let diff (α) denote the absolute difference between
the number of 1s and number of 0s in α. Thus diff (011011) = 2 because there are
four 1s and two 0s, and the absolute difference is 2. The discrepancy of α, denoted
D(α), is defined to be the maximum value of diff (β) over all substrings β of α.
For example, the discrepancy of 101001110110 is 4 because diff (111011) = 4 and
111011 is a substring that results in the maximal difference.

Theorem 8. For all n ≥ 1, n ≤ D(DBn) < 2n.

Proof. Clearly n is the lower bound for the discrepancy of any de Bruijn
sequence, since they all must contain the substring 0n. All substrings contained
within ap(αα) for a co-necklace α clearly have difference less than n, unless
α = 0n in which case the difference is n. Any other substring will be of the form

σ ap(αiαi) ap(αi+1αi+1) · · · ap(αjαj)τ

for some i ≤ j where σ is a suffix of ap(αi−1αi−1) and τ is a prefix of
ap(αj+1αj+1). Thus since diff (ap(αα)) = 0, the difference of the substring must
be less than 2n. ��

In fact, D(DBn) approaches 2n as n gets large. Consider the substring of
DBn starting from α1 = 1n and ending with αj = 0i(1i−10)r where i(r+1) = n.
Note that αj is a co-necklace and αjαj is aperiodic, so such a substring exists.
The difference of the string between this prefix and suffix is 0, as outlined in
the proof of Theorem 8. Thus, the difference of the entire substring is given by
n + diff (αj) since αj has more 1s than 0s. Since diff (αj) = r(i − 1) − r − i, by
solving for r = n/i − 1 we get diff (αj) = i−2

i (n) − 2i + 2. Thus considering i to
be any constant, as n goes to infinity D(DBn) approaches n + i−2

i n.

A de Bruijn Sequence Construction by Concatenating Cycles 57

Appendix - C Code

#include <stdio.h>

#define MAX(a,b) (a)>(b)?(a):(b)

int N,b[1000];

//---

// Returns 0 if string is not necklace, and index of

// longest aperiodic prefix if is necklace

//---

int IsNecklace(int b[], int n) {

int i, p=1;

for (i=2; i<=n; i++) {

if (b[i-p] > b[i]) return 0;

if (b[i-p] < b[i]) p = i;

}

if (n % p != 0) return 0;

return p;

}

void Gen(int t, int curZero, int maxZero){

int i,p;

if(t <= maxZero){

for (i=N+1;i<=2*N;++i) b[i]=1-b[i-N];

p = IsNecklace(b,2*N);

for (i=1; i<=p; i++) printf("\%d", b[i]);

}

else {

b[t]=0;

Gen(t-1,curZero+1,MAX(curZero+1,maxZero));

b[t]=1;

Gen(t-1,0,maxZero);

}

}

int main(){

printf("Enter N:");scanf("\%d",&N);

b[N] = 0;

Gen(N-1,1,1);

printf("\n");

return 0;

}

References

1. The On-Line Encyclopedia of Integer Sequences (2010). https://oeis.org, sequence
A000016

https://oeis.org

58 D. Gabric and J. Sawada

2. Alhakim, A.: A simple combinatorial algorithm for de Bruijn sequences. Am.
Math. Monthly 117(8), 728–732 (2010). http://www.jstor.org/stable/10.4169/
000298910x515794

3. Booth, K.S.: Lexicographically least circular substrings. Inf. Process. Lett. 10(4/5),
240–242 (1980)

4. Cattell, K., Ruskey, F., Sawada, J., Serra, M., Miers, C.: Fast algorithms to gen-
erate necklaces, unlabeled necklaces, and irreducible polynomials over GF(2). J.
Algorithms 37(2), 267–282 (2000)

5. Cooper, J., Heitsch, C.: The discrepancy of the lex-least de Bruijn sequence. Dis-
crete Math. 310, 1152–1159 (2010)

6. Dragon, P.B., Hernandez, O.I., Williams, A.: The grandmama de Bruijn sequence
for binary strings. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN
2016. LNCS, vol. 9644, pp. 347–361. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49529-2 26

7. Eldert, C., Gray, H., Gurk, H., Rubinoff, M.: Shifting counters. AIEE Trans. 77,
70–74 (1958)

8. Etzion, T., Lempel, A.: Construction of de Bruijn sequences of minimal complexity.
IEEE Trans. Inf. Theory 30(5), 705–709 (1984)

9. Etzion, T.: Self-dual sequences. J. Comb. Theory Ser. A 44(2), 288–
298 (1987). http://www.sciencedirect.com/science/article/pii/0097316587900355
http://www.sciencedirect.com/science/article/pii/0097316587900355

10. Ford, L.: A cyclic arrangement of M -tuples. Report No. P-1071, Rand Corporation,
Santa Monica, 23 April 1957

11. Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn
sequences. Discrete Math. 23, 207–210 (1978)

12. Fredricksen, H.: Generation of the Ford sequence of length 2n, n large. J. Comb.
Theory Ser. A 12(1), 153–154 (1972). http://www.sciencedirect.com/science/
article/pii/009731657290091X

13. Fredricksen, H., Kessler, I.: An algorithm for generating necklaces of beads in
two colors. Discrete Math. 61(2), 181–188 (1986). http://www.sciencedirect.com/
science/article/pii/0012365X86900890

14. Golomb, S.W.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1981)
15. Hauge, E.R.: On the cycles and adjacencies in the complementary circulating

register. Discrete Math. 145(1), 105–132 (1995). http://www.sciencedirect.com/
science/article/pii/0012365X9400057P

16. Huang, Y.: A new algorithm for the generation of binary de Bruijn sequences.
J. Algorithms 11(1), 44–51 (1990). http://www.sciencedirect.com/science/article/
pii/019667749090028D

17. Martin, M.H.: A problem in arrangements. Bull. Am. Math. Soc. 40(12), 859–864
(1934)

18. Mayhew, G.L., Golomb, S.W.: Characterizations of generators for modified
de Bruijn sequences. Adv. Appl. Math. 13(4), 454–461 (1992). http://www.
sciencedirect.com/science/article/pii/019688589290021N

19. Ruskey, F., Savage, C., Wang, T.M.Y.: Generating necklaces. J. Algorithms 13,
414–430 (1992)

20. Sawada, J., Williams, A., Wong, D.: A surprisingly simple de Bruijn sequence
construction. Discrete Math. 339, 127–131 (2016)

21. Sawada, J., Williams, A., Wong, D.: Necklaces and Lyndon words in colexico-
graphic and reflected Gray code order (2017). Submitted manuscript

http://www.jstor.org/stable/10.4169/000298910x515794
http://www.jstor.org/stable/10.4169/000298910x515794
http://dx.doi.org/10.1007/978-3-662-49529-2_26
http://dx.doi.org/10.1007/978-3-662-49529-2_26
http://www.sciencedirect.com/science/article/pii/0097316587900355
http://www.sciencedirect.com/science/article/pii/0097316587900355
http://www.sciencedirect.com/science/article/pii/009731657290091X
http://www.sciencedirect.com/science/article/pii/009731657290091X
http://www.sciencedirect.com/science/article/pii/0012365X86900890
http://www.sciencedirect.com/science/article/pii/0012365X86900890
http://www.sciencedirect.com/science/article/pii/0012365X9400057P
http://www.sciencedirect.com/science/article/pii/0012365X9400057P
http://www.sciencedirect.com/science/article/pii/019667749090028D
http://www.sciencedirect.com/science/article/pii/019667749090028D
http://www.sciencedirect.com/science/article/pii/019688589290021N
http://www.sciencedirect.com/science/article/pii/019688589290021N

On Words with the Zero Palindromic Defect

Edita Pelantová1 and Štěpán Starosta2(B)

1 Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University in Prague, Prague, Czech Republic

edita.pelantova@fjfi.cvut.cz
2 Department of Applied Mathematics, Faculty of Information Technology,

Czech Technical University in Prague, Prague, Czech Republic
stepan.starosta@fit.cvut.cz

Abstract. We study the set of finite words with zero palindromic defect,
i.e., words rich in palindromes. This set is factorial, but not recurrent.
We focus on description of pairs of rich words which cannot occur simul-
taneously as factors of a longer rich word.

Keywords: Palindrome · Palindromic defect · Rich words

1 Introduction

In [14], Droubay, Justin and Pirillo observed that the number of distinct palin-
dromes occurring in a finite word w of length n does not exceed n + 1. This upper
bound motivated Brlek, Hamel, Nivat, and Reutenauer to define in [9] the notion
palindromic defect D(w) of a finite word w as the difference of the upper bound
n + 1 and the actual number of palindromic factors occurring in w. One can say
that the palindromic defect measures the number of “missing” palindromic factors
in the given word. A word with zero palindromic defect is usually shortly called rich
or full.

For an infinite word u the palindromic defect D(u) is naturally defined as the
supremum of the set {D(w) : w is a factor of u}. Many classes of words with the
defect zero have been found, for example Sturmian words, words coding symmet-
rical interval exchange and complementary symmetric Rote words (see [2,7,15]).

Palindromic defect is actively studied in the last decade. During these years
many nice properties of words with zero defect have been brought into light.
Some of them have been already proved, some of them are formulated as con-
jectures and are still open. Neither the basic question “What is the number of
rich words of a given length?” has been answered. This question is extremely
interesting as the set of rich words is a very naturally defined factorial language
which has superpolynomial and subexponential growth as was shown in [17] by
C. Guo, J. Shallit and A.M. Shur and in [30] by J. Rukavicka, respectively.

This article consists of three parts. In the first part, we present relevant
known results. In the last part we give a list of open questions connected to the
palindromic defect and we also recall a narrow connection to the well known
c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 59–71, 2017.
DOI: 10.1007/978-3-319-66396-8 7

60 E. Pelantová and Š. Starosta

conjecture of Hof, Knill, and Simon. The middle part contains a new result. It is
devoted to so-called compatible words, i.e., to the pairs of finite rich words which
can occur simultaneously as factors of a longer rich word. We believe that our
result may help to characterize words w with the following property: D(w) = 1
and D(u) = 0 for each proper factor u of w. A characterization of these words
seems to be the missing point in answering several open questions.

2 Preliminaries

2.1 Basic Notations and Definitions

Let A be a finite set, called an alphabet. Its elements are called letters. A finite
word w is an element of An for n ∈ N. The length of w is n and is denoted |w|.
The set of all finite words over A is denoted A∗. An infinite word over A is an
infinite sequence of letters from A.

A finite word w is a factor of a finite or infinite word v if there exist words p
and s such that v is a concatenation of p, w, and s, denoted v = pws. The word
p is said to be a prefix and s a suffix of v. The set of all factors of a word u is
the language of u and is denoted L(u). All factors of u of length n are denoted
by Ln(u).

An occurrence of w = w0w1 · · · wn−1 ∈ An in a word v = v0v1v2 . . . is an
index i such that vi · · · vi+n−1 = w. A factor w is unioccurrent in v if there is
exactly one occurrence of w in v. A complete return word of a factor w (in v)
is a factor f (of v) containing exactly two occurrences of w such that w is its
prefix and also its suffix. For instance, the word 010011010 is a complete return
word of 010.

The reversal or mirror mapping assigns to a word w ∈ A∗ the word w̃ with
the letters reversed, i.e.,

w̃ = wn−1wn−2 · · · w1w0 where w = w0w1 · · · wn−1 ∈ An.

A word is palindrome if w = w̃. We say that a language L ⊂ A∗ is closed under
reversal if for all w ∈ L we have w̃ ∈ L.

Given an infinite word u, its factor complexity Cu(n) is the count of its factors
of length n:

Cu(n) = #Ln(u) for all n ∈ N.

Let Pal(u) be the set of all palindromic factors of the infinite word u. The
palindromic complexity Pu(n) of u is given by

Pu(n) = #(Ln(u) ∩ P(u)) for all n ∈ N.

We omit the subscript u if there is no confusion.

On Words with the Zero Palindromic Defect 61

2.2 Fixed Points of Morphisms and Their Properties

A morphism ϕ is a mapping A∗ → B∗ where A and B are alphabets such that for
all v, w ∈ A∗ we have ϕ(vw) = ϕ(v)ϕ(w) (it is a homomorphism of the monoids
A∗ and B∗). Its action is extended to AN: if u = u0u1u2 . . . ∈ AN, then

ϕ(u) = ϕ(u0)ϕ(u1)ϕ(u2) . . . ∈ BN.

If ϕ is an endomorphism of A∗, we may find its fixed point, i.e., a word u
such that ϕ(u) = u. We are interested mainly in the case of u being infinite. A
morphism ϕ : A∗ → A∗ is primitive if there exists an integer k such that for
every a, b ∈ A the letter b occurs in ϕk(a).

Two morphisms ϕ,ψ : A∗ → B∗ are conjugate if there exists a word w ∈ B∗

such that

∀a ∈ A, ϕ(a)w = wψ(a) or ∀a ∈ A, wϕ(a) = ψ(a)w.

If ϕ is primitive, then the languages of fixed points of ϕ and ψ are the same.
A morphism ψ : A∗ → B∗ is of class P if ψ(a) = ppa for all a ∈ A where p

and pa are both palindromes (possibly empty). A morphism ϕ is of class P ′ if it
is conjugate to a morphism of class P .

The following examples illustrate the last few notions.

Example 1. Let ϕ : {a, b}∗ → {a, b}∗ be determined by ϕ :
a �→ abab,
b �→ aab.

The fixed

point of ϕ is

u = lim
k→+∞

ϕk(a) = abab
︸︷︷︸

ϕ(a)

aab
︸︷︷︸

ϕ(b)

abab
︸︷︷︸

ϕ(a)

aab
︸︷︷︸

ϕ(b)

abab
︸︷︷︸

ϕ(a)

. . .

The morphism ϕ is of class P ′ since it is conjugate to ψ given by ψ :
a �→ abab,
b �→ aba.

Indeed, we have abϕ(a) = ψ(a)ab and abϕ(b) = ψ(b)ab. To see that ψ is of class
P , i.e., it is of the form a �→ ppa and b �→ ppb, it suffices to set p = aba, pa = b
and pb = ε. The fixed point of ψ is

v = lim
k→+∞

ψk(a) = abab
︸︷︷︸

ψ(a)

aba
︸︷︷︸

ψ(b)

abab
︸︷︷︸

ψ(a)

aba
︸︷︷︸

ψ(b)

abab
︸︷︷︸

ψ(a)

. . .

We have L(u) = L(v).

Example 2. The two famous examples of infinite words, the Thue–Morse word
t and the Fibonacci word f , are both fixed points of a morphism.

The word t is fixed by the morphism ϕTM determined by ϕTM (0) = 01 and
ϕTM (1) = 10. Note that this morphism in fact has two fixed points, one being
the other one after replacing 0 with 1 and 1 with 0. The word t as given above
is the fixed points starting in 0.

The word f is fixed by the morphism ϕF defined by ϕF (0) = 01 and ϕF (1) = 0.

An (infinite) fixed point of a morphism of class P ′ clearly contains infinitely
many palindromes which is one motivation for this notion. Class P is introduced
in [19] in the context of discrete Schrödinger operators.

62 E. Pelantová and Š. Starosta

3 The Study of Palindromic Defect

3.1 Characterizations of Words with the Zero Defect

We start by giving some of the known characterizations of infinite rich words.

Theorem 3. For an infinite word u with language closed under reversal the
following statements are equivalent:

1. D(u) is zero [9];
2. any prefix of u has a unioccurrent longest palindromic suffix [14];
3. for any palindromic factor w of u, every complete return word of w is a palin-

drome [16];
4. for any factor w of u, every factor of u that contains w only as its prefix and

w̃ only as its suffix is a palindrome [16];
5. for each n ∈ N we have C(n + 1) − C(n) + 2 = P(n) + P(n + 1) [11].

We generalized the previous theorem to infinite words with finite palindromic
defect, see [3,26]. In particular, we showed that an infinite word has a finite
palindromic defect D(u) if and only if the equality C(n+1)−C(n)+2 = P(n)+
P(n + 1) is valid for all n ∈ N up to finitely many exceptions. A surprising
observation that these exceptional indices allow to determine the value of the
palindromic defect was made by Brlek and Reutenauer. In [8] they proved for
infinite periodic words and conjectured for general words the following equality

2D(u) =
+∞
∑

n=0

(

Cu(n + 1) − Cu(n) + 2 − Pu(n + 1) − Pu(n)
)

. (1)

The conjecture was confirmed in [4] where we showed the following theorem.

Theorem 4. Equation (1) is true for any infinite word u whose language is
closed under reversal.

Besides these general properties, many examples of words with zero or finite
palindromic defect were found:

– In [12,27], another characterizations of rich words are given.
– In [13], the relation of rich words to so-called periodic-like words is exhibited.
– Links to another class of words, trapezoidal words, are shown in [24].
– Words coding symmetric interval exchange transformations are rich by [2].
– In [7], the authors show that words coding rotation on the unit circle with

respect to partition consisting of two intervals are rich.
– In [29], the authors show a connection of rich words with the Burrows–

Wheeler transform.
– In [32], we show that morphic images of episturmian words, a known class of

rich words, produces a word with finite palindromic defect.
– The articles [20,28,31] exhibit more examples of words with finite palindromic

defect (along with some examples of words with finite generalized palindromic
defect).

On Words with the Zero Palindromic Defect 63

3.2 Palindromic Defect of Fixed Points of Morphisms

We now focus on words that are fixed by a morphism with the assumption
that their language is closed under reversal. The main motivation to study their
palindromic defect is the following conjecture.

Conjecture 5 (Zero defect conjecture [6]). Let u be an aperiodic fixed point of a
primitive morphism having its language closed under reversal. We have D(u) = 0
or D(u) = +∞.

The Thue–Morse word t and the Fibonacci word f are examples of aperiodic
fixed points of a primitive morphism (see Example 2) having their language
closed under reversal. We have D(f) = 0 and D(t) = +∞.

Counterexamples to the conjecture were given in [1,10]. Thus, the current
statement of the conjecture is not true. There still might some refinement of
the current statement that is valid as there are many witnesses and the found
counterexamples seem to have some specific properties. Indeed, in [22] we prove
that the conjecture is true for a special class of morphisms. A morphism ϕ is
marked if there exists two morphisms ϕ1 and ϕ2, both being conjugate to ϕ,
such that

{last letter of ϕ1(a) : a ∈ A} = {first letter of ϕ2(a) : a ∈ A} = A.

In other words, the set of the last letters of the images of letters by ϕ1 is the
whole alphabet A and the set of the first letters of the images of letters by ϕ2 is
also the whole alphabet A.

For instance, ϕ = ϕTM : 0 �→ 01, 1 �→ 10 is marked (here ϕ = ϕ1 = ϕ2). For
ϕ = ϕF : 0 �→ 01, 1 �→ 0 we have ϕ = ϕ1 and ϕ2 : 0 �→ 10, 1 �→ 0. Thus, ϕF is
also marked.

If a morphism ϕ is conjugate to no other morphism except for ϕ itself, then
we say that ϕ is stationary. In other words, a morphism ϕ is stationary if the
longest common prefix and the longest common suffix of ϕ-images of all letters
are both empty words.

In [22] we show the following theorems:

Theorem 6. Let ϕ be a primitive marked morphism and let u be its fixed point
with finite palindromic defect. If all complete return words of all letters in u are
palindromes or ϕ is not stationary, then D(u) = 0.

Moreover, the binary alphabet allows for all of the assumptions to be
dropped:

Theorem 7. If u ∈ AN is a fixed point of a primitive morphism over binary
alphabet and D(u) < +∞, then D(u) = 0 or u is periodic.

We thus confirm that for a large class of fixed points of morphisms, their
palindromic defect is either zero or infinite.

64 E. Pelantová and Š. Starosta

3.3 Enumeration of Rich Words

Let Rd(n) denote the number of rich words of length n over an alphabet with
d elements. As we have already mentioned, there is no closed-form formula
for Rd(n).

In [34], Vesti gives a recursive lower bound on Rd(n) and an upper bound on
R2(n). Both these estimates seem to be very rough.

In [17], Guo, Shallit and Shur constructed for each n a large set of binary rich
words of length n. They show that for any two sequences of integers 0 ≤ n1 ≤
n2 ≤ · · · ≤ nk and 0 ≤ m1 ≤ m2 ≤ · · · ≤ mk satisfying n =

∑k
i=1 nk +

∑k
i=1 mk,

the word an1bm1an1bm1 · · · ankbmk of length n is rich. This construction gives,
currently, the best lower bound on the number of binary rich words, namely
R2(n) ≥ C

√
n

p(n) where p(n) is a polynomial and the constant C ∼ 37. They also

conjectured that R2(n) = Θ
(

n
g(n)

)

√
n

for some infinitely growing function g(n).
The best upper bound is provided by Rukavicka in [30]. He shows that Rd(n)

has a subexponential growth on any alphabet. More precisely, for any cardinal-
ity d of the alphabet lim

n→∞
n
√

Rd(n) = 1. The result uses a specific factorization

of a rich word into distinct rich palindromes, called UPS-factorization (Unioc-
current Palindromic Suffix factorization).

4 Compatible Pairs

The set of rich words is a factorial language but it is not recurrent. Let us recall
that a language L ⊂ A∗ is recurrent if for any two words u, v ∈ L there exists
w ∈ L such that u is a prefix of w and v is a suffix of w. Using results of Glen
et al. [16], Vesti in [34] formulated a sufficient condition which prevents two rich
words u, v to be simultaneously factors of another rich word. His proposition uses
the notion of longest palindromic suffix of a factor u, denoted lps(u) and longest
palindromic prefix of a factor u, denoted lpp(u). We say that two finite words
are compatible if there exists a rich words having these two words as factors.

Proposition 8. Let u and v be two words such that

u �= v, u, v rich, lpp(u) = lpp(v) and lps(u) = lps(v). (2)

If a word w contains factors u and v, then w is not rich, i.e., u and v are not
compatible.

We give an example which demonstrates that a word w can be non-rich
without containing factors u and v satisfying (2).

Example 9. Consider the word w = 11010011, which is not rich. In fact, it is a
factor of the Thue–Morse word. As pointed out in [5], the length 8 is the shortest
length of a non-rich binary word.

Table 1 depicts all non-empty rich factors u of w together with the pairs
(lpp(u), lps(u)). The map u �→ (lpp(u), lps(u)) is injective. In other words, no
pair of factors u, v of the non-rich word w = 11010011 satisfies (2).

On Words with the Zero Palindromic Defect 65

Table 1. All non-empty rich factors u of w from Example 9 together with the pairs
(lpp(u), lps(u)).

Let us formulate another sufficient condition for non-richness of a word w.

Proposition 10. Let u and v be two words satisfying

u �= ṽ, u, v rich, lps(u) = lpp(v) and lps(v) = lpp(u). (3)

If a word w contains factors u and v, then w is not rich.

Proof. First we show (by contradiction) that the assumption (3) gives

u, ũ /∈ L(v) ∪ L(ṽ) and v, ṽ /∈ L(u) ∪ L(ũ). (4)

As the roles of v and u are symmetric, we have to discuss the following two cases:

(1) u ∈ L(v):
As v is rich, lps(v) is unioccurrent in v. Since lps(v) = lpp(u), we have that
lpp(u) occurs only as a suffix of v. Since u ∈ L(v), necessarily u = lpp(u) and
thus u is a palindrome. It follows that u = lps(u) = lpp(v) = lps(v). Richness
of v implies that lpp(v) and lps(v) are unioccurrent in v and consequently
v is a palindrome satisfying v = lpp(v) = u = ũ, which is a contradiction.

(2) ũ ∈ L(v):
Since lps(v) = lps(ũ) is unioccurrent in v, we have that ũ occurs only as a
suffix of v. Similarly, as lpp(v) = lpp(ũ) is unioccurrent in v, we get that ũ
occurs only as a prefix of v. It implies v = ũ, which is again a contradiction.

Obviously, the assumption (3) implies that u and v are not palindromes.
To prove the proposition itself (again by contradiction), we assume that w is

rich and let f denote the shortest factor of w such that f contains as its factor
u or ũ and f contains as its factor v or ṽ. Without loss of generality and due to
(4), we have to discuss the following two cases:

66 E. Pelantová and Š. Starosta

(1) u is a proper prefix and v is a proper suffix of f :
The word lps(f) is not longer than v; otherwise, we obtain a contradiction
with the choice of f as the shortest factor with the given property. Thus
lps(f) = lps(v). Similarly, lpp(f) = lpp(u). It means that lps(f) is not
unioccurrent in f—a contradiction.

(2) u is a proper prefix and ṽ is a proper suffix of f :
By the same argument as before, lps(f) = lps(ṽ) = lpp(v). It means that
lpp(v) = lps(u) occurs as a suffix of f and also as a suffix of u. Since u
is a proper prefix of f , the factor lpp(v) = lps(f) occurs in f twice—a
contradiction with the richness of f .

Example 11. We consider again the non-rich word w = 11010011. It contains
the factors u = 11010, v = 010011 such that lpp(u) = 11 = lps(v) and lps(u) =
010 = lpp(v). Also the pairs u′ = 1101001, v′ = 10011 and u′′ = 110100,
v′′ = 0011 satisfy (3).

We show that a pair of factors with the property (3) occurs in each non-rich
word.

Proposition 12. If w be is a non-rich word, then w has two factors u and v
such that

u �= ṽ, u, v rich, lps(u) = lpp(v) and lps(v) = lpp(u).

Proof. As w is not rich, it contains a complete return word r to a palindrome p
such that r is not a palindrome. Let r be the shortest non-palindromic return
word in w to a palindrome. Denote by t the first letter of r and find the longest
q such that tq is a prefix of r and q̃t is a suffix of v. Clearly, p is a prefix of tq
and p is a suffix of q̃t. Let us denote x and y the letters such that tqx is a prefix
of r and yq̃t. Obviously, x �= y.

– If q is empty, then r is a non-palindromic complete return word to the letter
t, i.e., the letter t does not occur in the factor f given by r = tft, i.e.,
f = t−1rt−1. Choose z ∈ {x, y} such that z �= t and put
u := the shortest prefix of r which ends with the letter z and
v := the shortest suffix of r which starts with the letter z.

In particular, both letters z and t are unioccurrent in u and also in v. It
means that lpp(u) = t = lps(v) and lps(u) = z = lpp(v). One of the words u
and v has length 2 and the second one is longer than 2. It implies that u �= ṽ.

– Let us assume that q �= ε. The word f = t−1rt−1 has a prefix qx and a suffix
yq̃. First we show

Claim: Occurrences of q and q̃ in f alternate and moreover each factor of f
starting with q and ending with q̃ without other occurrences of q and q̃ is a
palindrome.

Proof of the claim: Let w′ be arbitrary suffix of f such that |w′| > |q̃| and w′

has a prefix q. Clearly, f has a suffix q̃ and thus q̃ is a suffix of w′ as well. Let us

On Words with the Zero Palindromic Defect 67

denote p′ = lpp(q). Since q is rich, p′ is unioccurrent in q. But p′ occurs in w′ at
least twice, as q̃ is a suffix of w′. Let us denote r′ a complete return word to p′

in w′. From minimality of r, the complete return word r′ to p′ is a palindrome.
Therefore, w′ has prefixes p′, q and r′, their lengths satisfy |p′| ≤ |q| < |r′|. It
implies that q̃ is a suffix of the palindrome r′ and thus the first occurrence of q
in w′ is followed by the occurrence of q̃.

Since f is not a palindrome, the previous claim implies that q and q̃ occur also
as inner factors of f . It means that there exists a palindromic factor, say w′′,
of the word f such that q̃ is a prefix and q is a suffix of w′′ and |w′′| > |q|. Let
z denote the letter satisfying that q̃z is a prefix of w′′. Obviously, zq is a suffix
of w′′. Let us stress that z �= t, otherwise r would not be a complete return
word to the palindrome p. The letter z enables us to identify the factors v and
u announced in the proposition. Put

u := the shortest prefix of r = tft which ends with q̃z
v := the shortest suffix of r = tft which starts with zq.

To prove lpp(u) = lps(v), we apply the simple observation: If a word s′ is a prefix
of a word s and lpp(s) is a prefix of s′, then lpp(s) = lpp(s′).

In our situation: p = lpp(r) = lpp(u). Analogously, p = lps(r) = lps(v).
To show lps(u) = lpp(v), we use a simple consequence of the claim: Any

occurrence of �q in r, where � is a letter with � �= t, is preceded with an occurrence
of q̃�. Therefore, our definition of u guarantees that lps(u) is not longer than q̃z,
i.e., lps(u) = lps(q̃z). By the same reason, lpp(v) = lpp(zq). As lpp(zq) =
lps(q̃z), the equality lps(u) = lpp(v) is proven.

Obviously, u �= ṽ. Otherwise, we have a contradiction with the assumption
that tq is the longest prefix of r such that q̃t is a suffix of r.

The last proof has an interesting direct consequence on a binary alphabet. It
is based on the fact that the case q = ε is not possible on a binary alphabet and
the second case implies that q is not a palindrome. We state this consequence of
the construction in the second case as the following corollary.

Corollary 13. Let w ∈ {0, 1}∗ be a binary word. The word w is not rich if and
only if there exists a non-palindromic word q such that

0q0, 1q1, 0q̃1, 1q̃0 ∈ L(w).

5 Open Questions and Related Problems

We finish this article with a list of open questions that we deem important in
further understanding of the structure of rich words (and more generally, words
with finite palindromic defect).

– The subexponential upper bound on the number of rich words Rd(n) of length
n over d letters is based on the statement that any rich word of length n can

68 E. Pelantová and Š. Starosta

be factorized into at most c n
lnn distinct palindromes. In fact, the number of

palindromes is exaggerated, as the factorization does not take into considera-
tion that each of the palindromes is rich as well. Any asymptotic improvement
of the bound c n

lnn would improve the upper bound on Rd(n).
– To our knowledge, there are no result on morphisms preserving the set of rich

words. Such a class of morphisms preserving richness would allow to construct
a set of class other than the set constructed in [17] to obtain a lower bound on
R2(n). In particular, any fixed point of a primitive morphism which preserves
the set of rich words must be rich as well. In this point of view the following
question is also important.

– Theorem 6 confirms the validity of the zero defect conjecture only for marked
morphisms ϕ satisfying the following assumption: all complete return words
of all letters in u are palindromes or ϕ is not stationary. We have no example
that this peculiar assumption is really needed.

– We do not know how to decide whether two rich words u and v are factors
of a common rich word w. The related task is to identify a minimal non-rich
word, i.e., to look for a word which is not rich but any its proper factor is
rich.

Primitive morphisms that preserve the set of rich words are included in a
larger set of morphisms having infinitely many palindromic factors in their fixed
points. An infinite word having infinitely many palindromic factors is usually
called palindromic. A very useful property of morphisms in this larger set is
given by the following conjecture.

Conjecture 14 (Class P conjecture [19]). Let u be a palindromic fixed point of
a primitive morphism ϕ. There exists a morphism of class P ′ such that its fixed
point has the same language as u.

The original statement of the conjecture in [19] is ambiguous and allows
for more interpretations, see also [21] or [18]. The above given statement of
Conjecture 14 follows from two results. First, for binary alphabet the question
is solved by B. Tan in [33]: if a fixed point of a primitive morphism ϕ over a
binary alphabet contains infinitely many palindromes, then ϕ or ϕ2 is of class P ′.
Second, in [23], S. Labbé shows that the analogy of the previous result cannot be
generalized for multiliteral alphabet: there exists a word w over ternary alphabet
which is a palindromic fixed point of a primitive morphism and not being fixed
by any morphism of class P ′. However, the authors of [18] note that the language
of the word w may indeed be generated by a morphism of class P .

At this moment only partial answers to Conjecture 14 are known: as already
mentioned, the binary case is solved ([33]); for larger alphabets an affirmative
answer is provided only for some special classes of morphisms.

In [25], we confirm the conjecture for morphisms fixing a codings a non-
degenerate exchange of 3 intervals. In [21], the authors prove the validity of
the conjecture for marked morphisms. Moreover, they show that a power of the
marked morphism itself is in class P ′. The technique and results used in the

On Words with the Zero Palindromic Defect 69

proofs of the latter fact is crucial in showing the defect conjecture for marked
morphisms in [22].

Palindromicity of a fixed point u is linked to the symmetry of the language
L(u), namely the closedness under reversal. One direction of this connection is
trivial: If a fixed point of a primitive morphism contains infinitely many palin-
dromes, then its language is closed under reversal. The non-trivial converse is
shown in [21] for marked morphisms. The mentioned results and computer exper-
iments lead to the formulation of the following conjecture.

Conjecture 15. Let ϕ : A∗ → A∗ be a primitive morphism having a fixed point u.
Its language L(u) is closed under reversal if and only if u is palindromic.

A proof in full generality of this conjecture has applications in algorithmic
analysis of the language of a given morphism. Specifically, it allows for an efficient
test whether the language of a fixed point is closed under reversal. For marked
primitive morphisms, such an algorithm may be devised based on the following
results of [21]:

1. Every marked morphism has a so-called well-marked power (see [21] for a
definition). If the fixed point of the morphism is palindromic, then this power
is of class P ′.

2. Conjecture 15 is true for marked morphisms.

Overall, closedness under reversal of the language generated by a marked primi-
tive morphism is equivalent to palindromicity of the language which is equivalent
to the well-marked power being in class P ′. Therefore, given a marked primitive
morphism, the test whether the language it generates is closed under reversal
consists of find the well-marked power and checking if this power is in class P ′.
Since both these tasks can be performed efficiently in a straightforward manner,
the whole test can be easily executed.

In the view of this special case, Conjecture 15 may be seen as a first step to
provide an efficient test of closedness under reversal for the language generated
by any primitive morphism for which the class P conjecture holds.

Acknowledgements. The authors acknowledge financial support by the Czech Sci-
ence Foundation grant GAČR 13-03538S.

References

1. Bašić, B.: On highly potential words. Eur. J. Combin. 34(6), 1028–1039 (2013)
2. Baláži, P., Masáková, Z., Pelantová, E.: Factor versus palindromic complexity of

uniformly recurrent infinite words. Theoret. Comput. Sci. 380(3), 266–275 (2007)
3. Balková, L., Pelantová, E., Starosta, Š.: Infinite words with finite defect. Adv.

Appl. Math. 47(3), 562–574 (2011)
4. Balková, L., Pelantová, E., Starosta, Š.: Proof of the Brlek-Reutenauer conjecture.

Theoret. Comput. Sci. 475, 120–125 (2013)

70 E. Pelantová and Š. Starosta

5. Massé, A.B., Brlek, S., Frosini, A., Labbé, S., Rinaldi, S.: Reconstructing words
from a fixed palindromic length sequence. In: Ausiello, G., Karhumäki, J., Mauri,
G., Ong, L. (eds.) TCS 2008. IIFIP, vol. 273, pp. 101–114. Springer, Boston, MA
(2008). doi:10.1007/978-0-387-09680-3 7

6. Blondin Massé, A., Brlek, S., Garon, A., Labbé, S.: Combinatorial properties of
f -palindromes in the Thue-Morse sequence. Pure Math. Appl. 19(2–3), 39–52
(2008)

7. Blondin Massé, A., Brlek, S., Labbé, S., Vuillon, L.: Palindromic complexity of
codings of rotations. Theoret. Comput. Sci. 412(46), 6455–6463 (2011)

8. Brlek, S., Reutenauer, C.: Complexity and palindromic defect of infinite words.
Theoret. Comput. Sci. 412(4–5), 493–497 (2011)

9. Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of
infinite words. Int. J. Found. Comput. Sci. 15(2), 293–306 (2004)

10. Bucci, M., Vaslet, E.: Palindromic defect of pure morphic aperiodic words. In:
Proceedings of the 14th Mons Days of Theoretical Computer Science (2012)

11. Bucci, M., De Luca, A., Glen, A., Zamboni, L.Q.: A connection between palin-
dromic and factor complexity using return words. Adv. Appl. Math. 42(1), 60–74
(2009)

12. Bucci, M., De Luca, A., Glen, A., Zamboni, L.Q.: A new characteristic property
of rich words. Theoret. Comput. Sci. 410(30–32), 2860–2863 (2009)

13. Bucci, M., Luca, A., Luca, A.: Rich and periodic-like words. In: Diekert,
V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 145–155. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02737-6 11

14. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de Luca and Rauzy. Theoret. Comput. Sci. 255(1–2), 539–553 (2001)

15. Droubay, X., Pirillo, G.: Palindromes and Sturmian words. Theoret. Comput. Sci.
223(1–2), 73–85 (1999)

16. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J.
Combin. 30(2), 510–531 (2009)

17. Guo, C., Shallit, J., Shur, A.M.: Palindromic rich words and run-length encodings.
Inf. Process. Lett. 116(12), 735–738 (2016)

18. Harju, T., Vesti, J., Zamboni, L.Q.: On a question of Hof, Knill and Simon on
palindromic substitutive systems. Monatsh. Math. 179(3), 379–388 (2016)

19. Hof, A., Knill, O., Simon, B.: Singular continuous spectrum for palindromic
Schrödinger operators. Commun. Math. Phys. 174, 149–159 (1995)

20. Jajcayová, T., Pelantová, E., Starosta, Š.: Palindromic closures using multiple anti-
morphisms. Theoret. Comput. Sci. 533, 37–45 (2014)

21. Labbé, S., Pelantová, E.: Palindromic sequences generated from marked mor-
phisms. Eur. J. Combin. 51, 200–214 (2016)

22. Labbé, S., Pelantová, E., Starosta, Š.: On the zero defect conjecture. Eur. J. Comb.
62, 132–146 (2017)

23. Labbé, S.: A counterexample to a question of Hof, Knill and Simon. Electron. J.
Combin. 21 (2014). Paper #P3.11

24. de Luca, A., Glen, A., Zamboni, L.Q.: Rich, sturmian, and trapezoidal words.
Theoret. Comput. Sci. 407(1), 569–573 (2008)

25. Masáková, Z., Pelantová, E., Starosta, Š.: Exchange of three intervals: substitutions
and palindromicity. Eur. J. Combin. 62, 217–231 (2017)

26. Pelantová, E., Starosta, Š.: Languages invariant under more symmetries: overlap-
ping factors versus palindromic richness. Discret. Math. 313, 2432–2445 (2013)

27. Pelantová, E., Starosta, Š.: Palindromic richness for languages invariant under
more symmetries. Theor. Comput. Sci. 518, 42–63 (2014)

http://dx.doi.org/10.1007/978-0-387-09680-3_7
http://dx.doi.org/10.1007/978-3-642-02737-6_11

On Words with the Zero Palindromic Defect 71

28. Pelantová, E., Starosta, Š.: Constructions of words rich in palindromes and
pseudopalindromes. Discret. Math. Theoret. Comput. Sci. 18(3), 1–26 (2016)

29. Restivo, A., Rosone, G.: Balancing and clustering of words in the Burrows-Wheeler
transform. Theoret. Comput. Sci. 412(27), 3019–3032 (2011)

30. Rukavicka, J.: On number of rich words (2017). Preprint available at
arXiv:1701.07778

31. Starosta, Š.: Generalized Thue-Morse words and palindromic richness. Kybernetika
48(3), 361–370 (2012)

32. Starosta, Š.: Morphic images of episturmian words having finite palindromic defect.
Eur. J. Combin. 51, 359–371 (2016)

33. Tan, B.: Mirror substitutions and palindromic sequences. Theoret. Comput. Sci.
389(1–2), 118–124 (2007)

34. Vesti, J.: Extensions of rich words. Theoret. Comput. Sci. 548, 14–24 (2014)

http://arxiv.org/abs/1701.07778

Equations Enforcing Repetitions
Under Permutations

Joel D. Day, Pamela Fleischmann(B), Florin Manea, and Dirk Nowotka

Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
{jda,fpa,flm,dn}@informatik.uni-kiel.de

Abstract. The notion of repetition of factors in words is central to
combinatorics on words. A recent generalisation of this concept considers
repetitions under permutations: give an alphabet Σ and a morphism or
antimorphism f on Σ∗, whose restriction to Σ is a permutation, w is an
[f]-repetition if there exists γ ∈ Σ∗ such that w = f i1(γ)f i2(γ) · · · f ik (γ),
for some k ≥ 2. In this paper, we extend a series of classical repetition
enforcing word equations to this general setting to obtain a series of word
equations whose solutions are [f]-repetitions.

1 Introduction

The study of repetitive sequences in words is one of the central topics of combi-
natorics on words, with applications in e.g., pattern matching and stringology in
general, data compression, bioinformatics (see [10,13]). Part of the investigations
on this topic deal with repetition enforcing relations or equations. Basically, a
repetition enforcing relation for words is a relation, or a statement, that holds
only for words that can be expressed as repetitions (i.e., repeated concatena-
tion) of some (other) word. For instance, it is well known (see, e.g., [12]) that
a word w is a factor, other than prefix of suffix, of the word ww if and only if
w ∈ {t}+ for some shorter word t, i.e., w is a repetition. Another prominent
example of a repetition enforcing statement is the Theorem of Fine and Wilf [6]
(FWT): if α = u� and β = vk and α and β share a common prefix of length at
least |u| + |v| − gcd(|u|, |v|), then both u and v are repetitions of some word t,
i.e., u, v ∈ {t}+. The equation of Lyndon and Schützenberger [14] (LSE) is an
example of a repetition enforcing equation: if u� = vmwn holds, for some words
u, v, w and �,m, n ≥ 2, then there exists a word t such that u, v, w ∈ {t}+, so
u, v, w are repetitions of the same root.

Pseudo-repetitions were introduced [4,5], as a generalisation of classical rep-
etitions, inspired by molecular biology. A word w is a pseudo-repetition (more
precisely, f -repetition) if it equals a repeated concatenation of one of its prefixes
t and its image f(t) under some morphism or antimorphism (for short “anti-/
morphism”) f , thus w ∈ t{t, f(t)}+. To fit the biological motivation, in [5] f was
defined as an antimorphic involution (i.e., f2(w) = w for all words w). More

D. Nowotka—Research supported by DFG grant NO 872/3-2 (jda, dn), DFG grant
MA 5725/1-2 (flm), BMBF HPSV grant 01IH15006A (fpa).

c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 72–84, 2017.
DOI: 10.1007/978-3-319-66396-8 8

Repetition Enforcing 73

interesting to us, if f is not restricted, pseudo-repetitions generalise not only rep-
etitions (when f is the identity morphism), but also palindromes (when f is the
mirror image); both these concepts are central in combinatorics on words, so their
generalisations are of intrinsic theoretical interest. Initial results (see [3,5]) con-
cerned generalisations of the FWT, of the LSE, and of other repetition enforcing
results to the setting of f -repetitions for antimorphic involutions f . For instance,
Czeizler et al. [3] introduced a different generalisation of LSE. They considered
equations of the form u1u2 · · ·u� = v1v2 · · · vmw1w2 · · ·wn, where ui ∈ {u, θ(u)}
for all 1 ≤ i ≤ �, vj ∈ {v, θ(v)} for all 1 ≤ j ≤ m, and wk ∈ {w, θ(w)} for all
1 ≤ k ≤ n, and studied under which conditions u, v, w ∈ {t, θ(t)}+ yield for some
word t. That is, they studied the case when u, v, w are generalised repetitions
(more precisely, θ-repetitions). A complete characterisation of the conditions
under which the aforementioned equation has only θ-repetitive solutions was
obtained in [17].

Going a step further, the case of f -repetitions (over an alphabet Σ) for an
anti-/morphism f that acts as a permutation on Σ (anti-/morphic permutation)
was considered in [15], where a series of results in the style of the FWT were
given. Introduced in [15], but only briefly studied in that paper, was also a more
general notion of repetition, that we will call here an [f]-repetition. If f is an
anti-/morphic permutation and w = f i1(γ)f i2(γ) · · · f ik(γ), for some k ≥ 2, then
w is called [f]-repetition of root γ. A variant of the FWT was shown for [f]-
repetitions in the case when f is a morphism. This notion also appears in a series
of papers regarding avoidability of patterns under anti-/morphic permutations:
in [16] the avoidability of patterns of the form πi(x)πj(x)πk(x), i.e., [π]-cubes, for
π a variable that can be replaced by anti-/morphic permutations, was studied,
while in [2] the avoidability of general [π]-repetitions was considered. Finally,
algorithmic problems like deciding whether a word is an [f]-repetition [7,8] or
whether a word contains [f]-repetitions [1,9,18] for different types of functions
(including anti-/morphic permutations) were investigated. However, we are not
aware of any algorithmic results regarding [f]-repetitions.

In this paper we analyse a series of [f]-repetition enforcing word equations, for
an anti-/morphic permutation f . We first analyse the morphic case, and we show
that a series of classical repetition enforcing equations are extendible to this more
general setting. For instance we show that both fa(x)f b(y) = fc(y)fd(x) and
fa(u)f b(u) = xfc(u)y with x, y �= ε enforce x, y resp. u to be an [f]-repetition
each with one root.

Our main result is an extension of the LSE: if f i1(u) . . . f ir (u)f j1(v) . . .
f js(v) = fk1(w) . . . fkt(w) for some r, s, t ≥ 2, then u, v, w are [f]-
repetitions of the same root t. These results complement the generalised FWT
obtained in this setting in [15]. In the case when f is antimorphic, we show
that the equation fa(u)f b(u) = xfc(u)y may have solutions which are not [f]-
repetitions. Thus, following the results of [3,5], we characterise exactly the equa-
tions fa1(u)fa2(u)fa3(u) = xf b1(u)f b2(u)y, withx, y �= ε, whose solutions are [f]-
repetitions. We use this characterisation to show a result in the style of the FWT

74 J.D. Day et al.

and to define a class of extensions of the LSE that only have solutions which are
[f]-repetitions.

The paper is organised as follows: we first give the basic definitions and
recall some preliminary results, then we present the results for the case when f
is a morphic permutation, and finally we present the results for when f is an
antimorphic permutation. Due to space restrictions some proofs are omitted.

2 Preliminaries

Let N be the set of natural numbers, N0 = N∪{0} and N≥k = {x ∈ N0 | x ≥ k}.
For n ∈ N, [n] denotes {1, . . . , n} and [n]0 = [n] ∪ {0}. For the set of integers Z,
a ≡k b holds if and only if a, b ∈ Z have the same remainder modulo k ∈ N and
Zk denotes the quotient ring of integers modulo k. For m,n ∈ N, let gcd(m,n)
denote their greatest common divisor.

Let Σ be a finite alphabet. In this paper Σ∗ denotes the set of all words over
Σ, ε the empty word, Σ+ := Σ∗\{ε}, and for the word’s length |w|, Σ≤k := {w ∈
Σ∗| |w| ≤ k}. For two words u and v, set du,v := gcd(|u|, |v|).

For some words x, y, u is a factor of w, if w = xuy; u is a prefix of w if x = ε
and a suffix if y = ε. A word u is said to occur strictly inside another word w if
u is a factor of w, other than a prefix or a suffix. Moreover, w = u−1v, whenever
v = uw. The powers of w are defined recursively by w0 = ε, wn = wwn−1 for
n ≥ 1. If w cannot be expressed as a power of another word, then w is said to
be primitive.

We say that f : Σ∗ → Σ∗ is a morphism (resp., antimorphism) if f(xy) =
f(x)f(y) (resp., f(xy) = f(y)f(x)) for any words x, y ∈ Σ∗. Note that, to define
an anti-/morphism it is enough to define f(a) for all a ∈ Σ. If f is a bijective
morphism (resp., antimorphism), then we call f a morphic (resp., antimoprhic)
permutation. If f is a permutation of Σ then ord(f) denotes the smallest positive
number such that ford(f)(a) = a for all a ∈ Σ. If f is a morphic permutation then
ford(f)(w) = w and if f is an antimorphic permutation then f2ord(f)(w) = w,
for all w ∈ Σ∗. This leads to the fact that the exponents of an anti-/morphic
permutation f can be considered to be elements of Zord(f)−1 resp. Z2ord(f)−1,
i.e. fa−b is for all a, b ∈ Z a well-defined iteration of f .

For an anti-/morphic permutation f , a word w ∈ Σ∗ is said to be an [f]-
repetition if there exists t ∈ Σ+, k ≥ 2, and i1, . . . , ik ∈ Z such that w =
f i1(t)f i2(t) · · · f ik(t). In this case, t is called the root of the [f]-repetition w.
If w is not an [f]-repetition, then w is [f]-primitive. For instance, the word
w = abcaab is [IdΣ]-primitive, where IdΣ is the identical morphism on Σ, and
[f]-primitive for some morphism or antimorphism f with f(a) = b, f(b) = a and
f(c) = c. However, for the morphism f(a) = c, f(b) = a and f(c) = b, w =
abf(ab)ab = abcaab, thus, w is an [f]-power in this setting; abbcab = abf2(ab)ab
is also an [f]-repetition as well.

In the following, several classical repetition enforcing results are recalled. The
first one is folklore (see, e.g., [12]). The next three are classical results of Fine
and Wilf and Lyndon and Schützenberger, respectively.

Repetition Enforcing 75

Theorem 1 (1-in-2). A word w ∈ Σ∗ is a repetition iff w occurs strictly
inside ww.

Theorem 2 (Fine and Wilf [6]). Let u, v ∈ Σ∗. If two words α ∈ u{u, v}∗
and β ∈ v{u, v}∗ have a common prefix of length at least |u|+ |v| − du,v, then u
and v are powers of a common word of length du,v. The bound |u|+ |v| − du,v is
optimal.

Theorem 3 (Lyndon and Schützenberger [14]). Let u, v, w ∈ Σ∗. Then
uv = vw if and only if there exist words p, q ∈ Σ∗, such that u = (pq)i, w = (qp)i,
and v = (pq)jp for some i, j ≥ 0 and pq is primitive.

Theorem 4 (Lyndon and Schützenberger [14]). If u� = vmwn for some
words u, v, w ∈ Σ∗ and �,m, n ≥ 2, then u, v, w ∈ {t}∗ for some word t ∈ Σ∗.

Theorem 2 was extended in [15] for [f]-repetitions.

Theorem 5. Let u, v ∈ Σ∗ and f : Σ∗ → Σ∗ be a morphic permutation with
ord(f) = k + 1. Let S(u, v) = {u, f(u), . . . , fk(u), v, f(v), . . . , fk(v)}∗. If two
words α ∈ uS(u, v) and β ∈ vS(u, v) have a common prefix of length at least
|u|+ |v| − du,v, then there exists a t ∈ V ∗, such that u, v ∈ t{t, f(t), . . . , fk(t)}∗.

Theorem 3 was extended in the setting of anti-/morphic involutions in [5].
Theorem 4 was extended for [f]-repetitions where f is an antimorphic involution
in a series of papers that culminated in [17], where a full characterisation of
the triples (�,m, n) for which u1u2 · · ·u� = v1v2 · · · vmw1w2 · · ·wn,, where ui ∈
{u, f(u)} for all 1 ≤ i ≤ �, vj ∈ {v, f(v)} for all 1 ≤ j ≤ m, and wk ∈ {w, f(w)}
for all 1 ≤ k ≤ n, has only solutions which are [f]-repetitions was given.

3 The Morphic Case

In this section some well known equations which only have repetitions as solu-
tions are generalised to equations whose solutions are repetitions under morphic
permutations. These results are used to ultimately show that a version of The-
orem 4 holds for [f]-repetitions in the case that f is a morphic permutation.

Some basic lemmas are first established, which provide some fundamental
combinatorial tools for proving the later results. They focus on two very well-
known equations, namely xy = xy and xy = yz with x, y, z ∈ Σ+, and describe
their solutions in this more general setting.

Lemma 6. Let x, y ∈ Σ+, f a morphic permutation on Σ∗, and a, b, c, d ∈
[ord(f)]0 with fa(x)f b(y) = fc(y)fd(x). Then there exists a t ∈ Σ+ such that
x, y are [f, t]-repetitions.

Proof. Theorem 5 can be applied for α = fa(x)f b(y), β = fc(y)fd(x),
u = fa(x), and v = fc(y). Clearly, α and β have a common prefix of length
|α| = |β| = |u| + |v|, it follows that there exists t such that fa(x), fc(y) ∈
t{t, f(t), . . . , ford(f)−1(t)}∗. Consequently, x, y are [f, t]-repetitions. 	

76 J.D. Day et al.

While Lemma 6 provides a direct analogy to the standard setting, for which
the “repetition-enforcing” nature of the equation is folklore, it is also possible to
provide the following more specific insight which is essential to the proofs.

Lemma 7. Let x, y ∈ Σ+ with x = x1x2 such that |x1| = |x2|, f a morphic
permutation on Σ∗, and a, b, c ∈ [ord(f)]0 with

yx1x2 = fa(x1)f b(x2)fc(y)

Then there exists a t ∈ Σ+ such that x, y, fa(x1)f b(x2) are [f, t]-repetitions.

Lemma 8. Let x, y ∈ Σ+, f a morphic permutation on Σ∗ and a, b, c, d ∈
[ord(f)]0. The equation

fa(x)f b(y) = fc(y)fd(z)

holds if and only if there exist u, v ∈ Σ∗, i, s, r, q ∈ N0 with

x = uv, z = fq(v)fq+r(u), and y = fs+r(uv) . . . fs+ir(uv)fs+(i+1)r(u).

If Theorem 3 holds for three words x, y, z (i.e., xy = yz) then the words
x and z are conjugate, x ∼ z for short. It is well known that the conjugacy
relation is an equivalence relation. When working in the setting of equations
under morphic permutations, this relation can be extended to f -conjugacy. For
a morphic permutation f , the words x, y ∈ Σ∗ are said to be f-conjugate (written
x ∼f y) if there exist a, b, c, d ∈ [ord(f)]0 such that fa(x)f b(y) = fc(y)fd(z) –
so if they satisfy the equation addressed in Lemma 8. It can be seen that x ∼f y
follows from x ∼ y. More interestingly however, while ∼f is symmetrical and
reflexive, it is not transitive (unless f is the identical morphism). Accordingly,
∼f is an equivalence if and only if f is the identity morphism.

The following lemma extends another fundamental result mentioned in The-
orem 1, and may be proved by reducing to the case considered by Lemma 6 (see
Fig. 1).

Fig. 1. x, y reoccur each twice within fc(y), such that - except for permutation applica-
tion - the pattern xy = yx occurs (shown by the dotted and dashed lines), so Lemma 6
may be applied.

Lemma 9. Let f : Σ∗ → Σ∗ be a morphic permutation and a, b, c ∈ [ord(f)]0.
If u ∈ Σ∗ is [f]-primitive, then for x, y ∈ Σ∗ with

fa(u)f b(u) = xfc(u)y

either x = ε or y = ε follows.

Repetition Enforcing 77

Lemma 7 can be extended in a similar fashion.

Lemma 10. Let f : Σ∗ → Σ∗ be a morphic permutation and a, b, c, d ∈
[ord(f)]0. If u ∈ Σ∗ is [f]-primitive and u = u1u2, with |u1| = |u2|, then for
x, y ∈ Σ∗ with

fa(u)f b(u) = xfc(u1)fd(u2)y

either x = ε or y = ε follows.

In the rest of this section it will be shown that Lyndon and Schützenberger’s
result can be reproven without any additional restrictions in the setting of repe-
titions under morphic permutations. In this setting, the LSE is defined for words
u, v, w ∈ Σ+ by

fa1(u) . . . far (u)fc1(v) . . . fcs(v) = f b1(w) . . . f bt(w), (1)

for r, s, t ∈ N≥2, ai, bk, cj ∈ [ord(f)]0, i ∈ [r], k ∈ [s], j ∈ [t], and a mor-
phic permutation f on Σ∗. For simplicity, the following notations are sometimes
used: α1 = fa1(u) . . . far (u), α2 = fc1(v) . . . fcs(v), and β = f b1(w) . . . f bt(w).
The intention is to show that there exists a word t such that u, v, w ∈
{t, f(t), . . . , ford(f)−1(t)}∗, and thus that the equation, when augmented by the
presence of morphic permutations, remains a repetition enforcing relation.

In order to show that indeed u, v, and w are [f]-repetitions with the same
root under these conditions, the proof is divided into various cases. To begin
with, the cases in which the us and vs “fit” exactly inside the ws and vice-versa
are given.

Lemma 11. If Eq. 1 holds for r, s, t ≥ 2, and |u| | |w| or |v| | |w| holds, then
u, v, w are [f]-repetitions.

Lemma 12. If Eq. 1 holds for r, s, t ≥ 2, and |w| | |u| or |w| | |v| holds, then
u, v, w are [f]-repetitions.

The following lemma demonstrates how, in some cases, the extension of the
FWT (Theorem 5), may be applied. This is straightforward if the theorem may
be applied from both endpoints, in opposite directions, showing first that u and
w share an f -root and then that v and w share an f -root. In fact, as the lemma
states, it is sufficient to be able to apply the theorem in just one direction –
although this requires more effort to prove.

Lemma 13. In Eq. 1, if α1 and β have a common prefix of length at least |w|+
|u| − du,w or α2 and β have common suffix of length at least |w| + |v| − dv,w,
then u, v, and w are [f]-repetitions.

Following from Lemma 13 (see also Fig. 2), it is now possible to show that
the equation is repetition enforcing provided r, s and t are large enough.

Theorem 14. If Eq. 1 holds with r, s, t at least 3 or with t ≥ 4 and r, s at least
2, then one of the conditions of Lemma 13 also holds. Hence, there exists a word
t such that u, v, w ∈ {t, f(t), . . . , ford(f)−1(t)}∗.

78 J.D. Day et al.

Fig. 2. If the parts of permutations of u and the one permutation of v are each long
enough, Theorem 5 can be applied from either side.

Recalling the original LSE (Theorem 4), the claim is nearly proven for the
permutation setting as well. It remains to prove the cases for r, s, t being 2,
respectively. In order to accomplish this, the following auxiliary result is needed.

Lemma 15. Let w1, w2, be in Σ+, f a permutation, and a, b, c, d ∈ N. If
w1f

a(w2) = f b(x)fc(w2)fd(x) holds, then there exists a suffix x′ of a permuta-
tion of x and there exists n1, . . . , nr ∈ N for r ∈ N with

w2 = x′fn1(x) . . . fnr (x).

Remark 16. For fa(w1)w2 = f b(x)fc(w1)fd(x) an analogous result can be
obtained.

The case that r = s = t = 2 is one of the most straightforward remaining
cases, and is addressed first.

Lemma 17. If Eq. 1 holds for r = s = t = 2, then u, v, and w are [f]-repetitions.

Proof. Consider w.l.o.g. 2|u| > |w|. Choose u1, u2 ∈ Σ+ with fa2(u) = u1u2

such that u1 ∈ Suff(f b1(w)) and u2 ∈ Pref(f b2(w)). This implies f b1(w) =
fa1−a2(u1)fa1−a2(u2) u1 and

f b2−b1+a1−a2(u1)f b2−b1+a1−a2(u2)f b2−b1(u1) = f b2(w) = u2f
c1(v)fc2(v).

By this 2|u1| = 2|v| follows. Moreover, since f b2−b1(u1) and fc2(v) are suffixes
of f b2(w), f b2−b1(u1) = fc2(v) holds. Substituting this result in f b2(w) leads to

f b2−b1+a1−a2(u1)f b2−b1+a1−a2(u2) = u2f
c1−c2+b2−b1(u1)

By Lemma 6 follows the existence of a γ ∈ Σ∗ such that u1, u2 are [f, γ]-
repetitions and consequently u, v, and w are [f]-repetitions as well (Fig. 3).

Fig. 3. In the case of r = s = t = 2 the pattern u1u2 = u2u1 - neglecting the
permutations - occurs in the second w.

Repetition Enforcing 79

Lemma 18. If Eq. 1 holds for t = 3 and r = s = 2 then u, v, and w are [f]-
repetitions. Similarly, f Eq. 1 holds for r = 2 and s = t = 3, then u, v, and w
are [f]-repetitions.

Lemma 19. If Eq. 1 holds for s = t = 2 and r ≥ 3 then u, v, and w are [f]-
repetitions.

Lemma 20. If Eq. 1 holds for t = 2 and r, s ≥ 3 then u, v, and w are [f]-
repetitions.

From the preceding lemmas, we can conclude with the following main result.

Theorem 21. If Eq. 1 holds for t, r, s ≥ 2 then u, v, and w are [f]-repetitions.

4 The Antimorphic Case

Firstly, note that the results of Lemma 9 do not hold in the case of antimorphic
permutations.

Remark 22. Consider the equation fa(w)f b(w) = xfc(w)y, where f is an anti-
morphism. The following counterexamples show that this equation is not repeti-
tion enforcing, no matter the values of a, b, c; in all cases, Σ = {a, b} and f is the
mirror image on Σ∗. Let w = aaba, which is not a [f]-repetition. However, for a
even and b, c odd, fa(w)f b(w) = aabaabaa = aabfc(w)a holds. By Lemma 25,
it follows immediately that the equation fa(w)f b(w) = xfc(w)y when a is odd
and b, c even, a, c odd and b even, and a, c even and b odd, may have solutions
which are not [f]-repetitions. If a, b are even and c odd, for the same w and
f , we have fa(w)f b(w) = aabaaaba = afc(w)aba. Again, it is an immediate
consequence that when a, b are odd and c is even then fa(w)f b(w) = xfc(w)y
may have solutions which are not [f]-repetitions.

Following the ideas of [11], an extension of Lemma 9 to the antimorphic case
can be obtained by considering equations of the form

fa1(w)fa2(w)fa3(w) = xf b1(w)f b2(w)y

for f antimorphic permutation on Σ, a1, a2, a3, b1, b2 ∈ N0, w, x, y ∈ Σ∗, 0 <
|x|, |y| < |w|. Our goal is to identify under which restrictions on a1, a2, a3, b1, b2

the equation above enforces (for some f that makes the equality between the
sides of the equation hold) that x, y, w are [f]-repetitions.

The main difference to the morphic case is that when iterating an antimorphic
permutation f , f i(w) preserves the order of letters of w when i is even, and
reverses it when i is odd; in the morphic case, the order was preserved for
all exponents. Therefore, it seems a good approach to classify the equations
considered above by the parity of their exponents. In the following, e (from
even) and o (from odd) are used for 0 and 1 resp., for convenience. Moreover for
each number a let a denote its residue class modulo 2.

80 J.D. Day et al.

Definition 23. Define the set of all these equations by

E := {fa1(w)fa2(w)fa3(w) = xf b1(w)f b2(w)y | f antimorphic permutation,

w, x, y ∈ Σ∗, 0 < |x|, |y| < |w|, a1, a2, a3, b1, b2 ∈ N0}.

The equations

E :fa1(w)fa2(w)fa3(w) = xf b1(w)f b2(w)y and

E′ :fa′
1(w)fa′

2(w)fa′
3(w) = x′f b′1(w)f b′2(w)y′

are called equivalent (E ∼ E′) if (a1, a2, a3, b1, b2) = (a′
1, a

′
2, a

′
3, b

′
1, b

′
2) A class

of equivalent equations will be denoted by the quintuple (a1, a2, a3 | b1, b2). Such
a class (resp., quintuple) is called repetition enforcing if every equation in the
class it defines has only solutions which are [f]-repetitions.

Remark 24. Note that ∼ is an equivalence relation. Thus, the quotient set E/∼
is well defined. Since the elements of E are defined by five parameters, which are
further reduced by the factorization w.r.t. ∼ to their canonical representative
from Z2, then E has only 32 elements. Since all equivalent equations are associ-
ated to the same quintuple of elements of Z2, these quintuples can be used as
canonical representatives for the classes of E/∼.

In order to further group together classes of equation, it is worth noting the
following.

Lemma 25. Let f be an antimorphic permutation on Σ. Consider the equations

f i1(w) · · · f ik(w) = xf j1(w) · · · f jk−1(w)y, 0 < |x|, |y| < |w| (2)

f i1−1(u) · · · f ik−1(u) = xf j1−1(u) · · · f jk−1−1(u)y, 0 < |x|, |y| < |u| (3)

f ik+1(w) · · · f i1+1(w) = f(y)f jk−1+1(w) · · · f j1+1(w)f(x),0< |x|, |y|< |w| (4)

f ik(u) · · · f i1(u) = f(y)f jk−1(u) · · · f j1(u)f(x), 0 < |x|, |y| < |u| (5)

All the solutions of equation (i) are [f]-repetitions if and only if all solutions of
equation (j) are [f]-repetitions, with 1 ≤ i, j ≤ 4.

Following the ideas of Lemma 25, it makes sense to define the following
relation.

Definition 26. Two elements E = (a1, a2, a3 | b1, b2) and E′ = (a′
1, a

′
2, a′

3 |
b′1, b

′
2) of E/∼ are called dual (E1⧟E2) if either E = E′ or one of the following

cases holds (all the sums below are done in Z2):

1. (a′
1, a

′
2, a

′
3 | b′1, b

′
2) = (a3 + 1, a2 + 1, a1 + 1 | b2 + 1, b1 + 1) (equating to the

application of f to E)
2. (a′

1, a
′
2, a

′
3 | b′1, b

′
2) = (a1 + 1, a2 + 1, a3 + 1 | b1 + 1, b2 + 1) (equating to

fz(w) = fz−1(f(w)) for z ∈ Z2)

Repetition Enforcing 81

3. (a′
1, a

′
2, a

′
3 | b′1, b

′
2) = (a3, a2, a1 | b2, b1) (equating to the application of 1.

and 2.)

Remark 27. Since ⧟ is also an equivalence relation the above mentioned 32
classes can be reduced to the following 10 classes of (E/∼)/⧟

(1) [(e, e, e | e, e)] [(e, e, e | e, o)] (2)
(3) [(e, e, e | o, o)] [(e, e, o | e, e)] (4)
(5) [(e, e, o | e, o)] [(e, e, o | o, e)] (6)
(7) [(e, e, o | o, o)] [(e, o, e | e, e)] (8)
(9) [(e, o, e | e, o)] [(o, e, o | e, e)] (10)

The following lemma is a direct consequence of Lemma 25.

Lemma 28 (Duality Lemma). Let C be a class of (E/∼)/⧟ and E1, E2 be
in C. If E1 is repetition-enforcing than E2 as well.

For eight of the ten classes of (E/∼)/⧟ it is shown that they are repetition-
enforcing. In the remaining cases, counter-examples will be given.

Lemma 29. Classes 3 (represented by (e, e, e | o, o)) and 7 (represented by
(e, e, o | o, o)) are not repetition-enforcing.

Proof. Equations of these classes that have solutions which are not [f]-repetitions
can be obtained by extending the examples in Remark 22.

Consider w = aaba and f the mirror image on Σ = {a, b}. Although w is not
an [f]-repetition, the following holds: www = aabaaabaaaba = af(w)f(w)aba,
so class 3 is not repetition enforcing.

Also, the following holds wwf(w) = aabaaabaabaa = af(w)f(w)baa, so
class 7 is not repetition enforcing.

For some classes the repetition enforcement can be proven by Lemma 9 from
the morphic case (Fig. 4). This is possible since the word f b1(w) occurs inside
fa1(w)fa2(w) and a1, a2, b1 are even (for short, e occurs in ee) in all equations
contained in the classes 1, 2, 4, and 5. In class 10 we again have that e occurs in ee:
fa2(w) is a factor of f b1(w)f b2(w), and a2, b1, b2 are all even. Class 8 may appear
to be different but in fact it contains a similar structure. The characteristic of
the aforementioned pattern is, that - neglecting the permutations for a moment
- a word is split into w = xy and x occurs also as a suffix and y also as an infix.
Having a deeper look into the representative of class 8 reveals that a prefix x of
f b1(w) is a suffix of fa1(w) and a suffix y of f b2(w) is a prefix of fa3(w) with
|xy| = |w|. So, fa1−a3(y) is a prefix of fa1(w). Therefore, fa1(w) is a factor
of fa1−a3(w)f b1(w) and a1, a1 − a3, b1 are all even. Accordingly, the following
lemma holds.

82 J.D. Day et al.

Fig. 4. With the aforementioned abbreviations e and o for an arbitrary even resp. odd
permutation of f the classes 1, 2, 4, and 5 are given by the first picture. Class 10
is represented by the second picture and the picture below shows that the necessary
1-in-2 pattern (here visualised as a grey T) occurs if the middle part is ignored.

Lemma 30. The classes 1, 2, 4, 5, 8 and 10 are repetition-enforcing.

Before showing that class 9 is also repetition enforcing, several more defini-
tions are needed. If w = f i1(s)f i2(s) · · · f ik(s), for some s ∈ Σ∗ and k ≥ 1, and
ij �≡2 ij+1 for all 1 ≤ j ≤ k − 1, then w is called an alternating [f, s]-repetition.
If the word w is an alternating [f, s]-repetition for some s, but this word s is not
important to us, then we just say that w is an alternating [f]-repetition.

It can be shown that if w is an alternating [f, s]-repetition then
fa1(w)fa2(w)fa3(w) is also an alternating [f, s]-repetition, where a1 ≡2 a3 �≡2

a2. Indeed, assume a1, a3 are even, and a2 is odd (the other case is similar). If
w = f i1(s)f i2(s) · · · f ik(s), for some s ∈ Σ∗ and k ≥ 1, and ij �≡2 ij+1 for all
1 ≤ j ≤ k − 1, then

fa1(w)fa2(w)fa3(w) =fa1+i1(s) · · · fa1+ik(s)·
fa2+ik(s) · · · fa2+i1(s)·
fa3+i1(s) · · · fa3+ik(s).

As a1 + ik has a different parity then a2 + ik, and a2 + i1 has a different parity
then a3 + i1, the claim follows.

Next, it is shown that class 9 is repetition enforcing, and, moreover, that if
w is a solution of an equation from the respective class, then w is an alternating
[f, s]-repetition for some word s.

Lemma 31. Class 9 is repetition-enforcing. More precisely, if

fa1(w)fa2(w)fa3(w) = xf b1(w)f b2(w)y

with x, y �= ε and (a1, a2, a3 | b1, b2) in class 9, then there exists s ∈ Σ∗ such that
xf b1(w) and w are alternating [f, s]-repetitions.

The fact that class 6 is also repetition-enforcing follows now.

Repetition Enforcing 83

Lemma 32. Class 6 is repetition-enforcing.

Proof. Consider the equation E : fa1(w)fa2(w)fa3(w) = xf b1(w)f b2(w)y cor-
responding to the representative of class 6. Then y is a suffix of fa3(w). Thus
f b2−a3(y) is a prefix of f b2(w) (as b2 − a3 is odd and f b2(w) = f b2−a3(fa3(w))).
By the alignment of f b2(w) inside fa2(w)fa3(w), It follows that f b2−a3(y) is a
suffix of fa2(w). Therefore, y is a prefix of fa2+a3−b2(w) and a2 +a3 − b2 is odd.
Therefore, we get that fa2(w)fa3(w) occurs inside f b1(w)f b2(w)fa2+a3−b2(w),
which leads to an equation represented by (o, e, o | e, o), so from class 9. Such
equations are repetition enforcing, by Lemma 32.

To conclude this section we propose a series of applications of our repetition
enforcing results. In the first one, a repetition enforcing result in the style of
FWT is presented.

Theorem 33. Let u, v ∈ Σ+ such that |u| < |v|. Let f be an antimorphic per-
mutation of Σ and α = f i1(u)f i2(u) · · · f ik(u), β = f j1(v)f j2(v) · · · f jp(v) be
two words such that: k, p ≥ 3, jt �≡2 jt+1 for all 1 ≤ t ≤ p − 1, and the common
prefix of α and β is longer than 2|v| + |u|. Then there exists γ ∈ Σ+ such that
v, u ∈ {f i(γ) | 0 ≤ i ≤ 2ord(f)}+.

The second application shows that an extension of the LSE is repetition
enforcing.

Theorem 34. Let f be an antimorphic permutation of an alphabet Σ. Consider
the equation:

f i1(u) . . . f ir (u)f j1(v) . . . f js(v) = fk1(w) . . . fkt(w),

with r, s ≥ 3, t ≥ 6, and ip �≡2 ip+1 for 1 ≤ p ≤ r−1, jp �≡2 jp+1 for 1 ≤ p ≤ s−1,
kp �≡2 kp+1 for 1 ≤ p ≤ t − 1. Then there exists γ such that u, v, w ∈ {f i(γ) |
0 ≤ i ≤ 2ord(f)}+.

5 Further Directions

In this paper we presented a series of equations on words whose solutions are
necessarily repetitions under anti-/morphic permutations. The main problem
that still remains open is to characterise exactly the triples (r, s, t) for which the
equation

f i1(u) . . . f ir (u)f j1(v) . . . f js(v) = fk1(w) . . . fkt(w),

with f antimorphic permutation, has only solutions which are [f]-repetitions.
While Theorem 21 shows that the classical result of Lyndon and Schützenberger
is preserved in the generalised case of morphic permutations, we expect that in
the case of antimorphic permutations the results obtained in [17] for restricted
case of antimorphic involutions should still hold.

84 J.D. Day et al.

References

1. Chiniforooshan, E., Kari, L., Xu, Z.: Pseudopower avoidance. Fund. Inf. 114(1),
55–72 (2012)

2. Currie, J., Manea, F., Nowotka, D.: Unary patterns with permutations. In:
Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 191–202. Springer, Cham (2015).
doi:10.1007/978-3-319-21500-6 15

3. Czeizler, E., Czeizler, E., Kari, L., Seki, S.: An extension of the Lyndon-
Schützenberger result to pseudoperiodic words. Inf. Comput. 209, 717–730 (2011)

4. Czeizler, E., Kari, L., Seki, S.: On a special class of primitive words. In: Ochmański,
E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 265–277. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85238-4 21

5. Czeizler, E., Kari, L., Seki, S.: On a special class of primitive words. Theoret.
Comput. Sci. 411(3), 617–630 (2010)

6. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math.
Soc. 16, 109–114 (1965)

7. Gawrychowski, P., Manea, F., Mercaş, R., Nowotka, D., Tiseanu, C.: Finding
pseudo-repetitions. In: Proceedings of STACS 2013, LIPIcs, vol. 20, pp. 257–268
(2013)

8. Gawrychowski, P., Manea, F., Nowotka, D.: Discovering hidden repetitions in
words. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921,
pp. 210–219. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39053-1 24

9. Gawrychowski, P., Manea, F., Nowotka, D.: Testing generalised freeness of words.
In: Proceedings of STACS 2014, LIPIcs, vol. 25, pp. 337–349 (2014)

10. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

11. Kari, L., Masson, B., Seki, S.: Properties of pseudo-primitive words and their appli-
cations. Internat. J. Found. Comput. Sci. 22(2), 447–471 (2011)

12. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

13. Lothaire, M.: Applied Combinatorics on Words. Cambridge University Press,
New York (2005)

14. Lyndon, R.C., Schützenberger, M.P.: The equation am = bncp in a free group.
Mich. Math. J. 9(4), 289–298 (1962)

15. Manea, F., Mercaş, R., Nowotka, D.: Fine and Wilf’s theorem and pseudo-
repetitions. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol.
7464, pp. 668–680. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32589-2 58

16. Manea, F., Müller, M., Nowotka, D.: Cubic patterns with permutations. J. Comput.
Syst. Sci. 81(7), 1298–1310 (2015)

17. Manea, F., Müller, M., Nowotka, D., Seki, S.: The extended equation of lyndon
and Schützenberger. J. Comput. Syst. Sci. 85, 132–167 (2017)

18. Xu, Z.: A minimal periods algorithm with applications. In: Amir, A., Parida, L.
(eds.) CPM 2010. LNCS, vol. 6129, pp. 51–62. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-13509-5 6

http://dx.doi.org/10.1007/978-3-319-21500-6_15
http://dx.doi.org/10.1007/978-3-540-85238-4_21
http://dx.doi.org/10.1007/978-3-642-39053-1_24
http://dx.doi.org/10.1007/978-3-642-32589-2_58
http://dx.doi.org/10.1007/978-3-642-13509-5_6
http://dx.doi.org/10.1007/978-3-642-13509-5_6

Matching Lexicographic and Conjugation
Orders on the Conjugation Class of a Special

Sturmian Morphism

David Clampitt1(B) and Thomas Noll2

1 The Ohio State University, Columbus, OH, USA
clampitt.4@osu.edu

2 Escola Superior de Música de Catalunya, Barcelona, Spain
thomas.mamuth@gmail.com

Abstract. The conjugation class of a special Sturmian morphism car-
ries a natural linear order by virtue of the two elementary conjugations
conja and conjb with the single letters a and b, with the standard mor-
phism of the class as the smallest element in this order. We show that a
lexicographic order on the morphisms of the given conjugation class can
be defined that matches the conjugation order.

Keywords: Sturmian morphisms · Sturmian involution · Christoffel
words · Standard words and their conjugates

1 Motivation

Conjugation classes of special Sturmian morphisms carry a natural linear order
by virtue of the two elementary conjugations conja and conjb with the single
letters a and b (see [6]). For every morphism f in the class—except for the anti-
standard morphism—either conja ◦f or conjb ◦f belongs to the class and can be
identified as the successor of f . Starting from the standard morphism in the class
as the smallest element all the others can be iteratively reached in this way. The
largest element in the order is the anti-standard morphism in the class. Figure 1
shows a directed graph, containing five such conjugation classes—including the
trivial class of the identity morphism. The four non-trivial classes are aligned
along concentric circular arcs around the identity morphism.

In addition to these linear graphs, whose counter-clockwise circular arrows
are labeled with either conja or conjb, there are outward reaching arrows, which
are labeled with the four generators G, G̃,D, D̃ of the special Sturmian monoid
St0. From every inner node of the graph depart two arrows, labeled either G and
G̃ or D and D̃. Hence, there are 24 = 16 paths leading from the central node to
the nodes on the outermost arc. Intuitively these pathways can also be ordered
in a counter-clockwise manner. The intuition will be made precise in Sect. 4.

Our initial consideration is the following: Each conjugation class is ordered
counter-clockwise along the corresponding arc. Each node along this arc can also
c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 85–96, 2017.
DOI: 10.1007/978-3-319-66396-8 9

86 D. Clampitt and T. Noll

Fig. 1. The nodes along each of the concentric circular arcs form a complete conjugation
class of special Sturmian morphisms. Each morphism f is represented by the pair
(f(a), f(b)) of images of the letters a and b. The node (a, b) in the center represents
the Identity map. Then from inside outwards the conjugation classes of D, GD, GGD
and DGGD are displayed. The graph forms a subgraph of the Cayley graph of the
group Aut(F2) with respect to the generators G, G̃, D, D̃, conja, conjb (and E). Each
single conjugation class forms a linear graph, whose arrows are all labeled with one
of the conjugations conja or conjb. The outward reaching arrows, connecting nodes
on successive arcs, are labeled with the generators G, G̃, D, D̃ of the special Sturmian
monoid (= monoid of special positive automorphisms).

be reached along one or more pathways from the center. All the pathways from
the center to the nodes on the same arc can also be ordered in a counterclockwise-
outward right-to-left lexicographic manner as follows: For each node we postulate

that G←− precedes G̃←− or that D←− precedes D̃←−, in accordance with the counter-
clockwise arrangement of these arrows. Paths can be ordered lexicographically

from right to left (= from the center outward). D←− G←− G←− D←− precedes D̃←− G←− G←− D←−
precedes D←− G̃←− G←− D←− precedes D̃←− G̃←− G←− D←−, etc. The last path is D̃←− G̃←− G̃←− D̃←−.
Hence the question arises, whether the two orders match.

Matching Lexicographic and Conjugation Orders 87

In the strictest sense the orders do not match: The path D̃←− G̃←− G←− D←−
precedes the path D←− G←− G̃←− D←−. Yet the morphism DGG̃D with the node
label (babbaba, babba) precedes the morphism D̃G̃GD with the node label
(abbabab, abbab) in the conjugation order: conjb ◦ DGG̃D = D̃G̃GD. There is
a weaker sense, though, according to which the two orders match. In the con-
crete example, one may bring to bear that the morphisms G and G̃ commute.

Hence with D←− G̃←− G←− D←− there is an equivalent path to the node (babbaba, babba)

which is lexicographically smaller than D̃←− G̃←− G←− D←−, which is the smallest path
to the node (abbabab, abbab). Section 4 establishes a general result to that effect,
proving a conjecture made in [3].

The following section is of a preparatory nature and—among other things—it
inspects various commutative triangles and squares in Fig. 1, such as:

conja ◦ G = G ◦ conja = G̃ conjb ◦ D = D ◦ conjb = D̃

conja ◦ G̃ = G̃ ◦ conja conjb ◦ G̃ = G ◦ conjb
conja ◦ D̃ = D ◦ conja conjb ◦ D̃ = D̃ ◦ conjb.

2 Special Sturmian Morphisms and Conjugation

Let F2 denote the free group generated by the two letters a and b. Following [4] we
consider the special Sturmian monoid St0 as a submonoid of the automorphism
group Aut(F2). It is generated by the four positive automorphisms G, G̃,D, D̃.
On the letters a and b they are defined as follows:

G(a) = a G̃(a) = a D(a) = ba D̃(a) = ab

G(b) = ab G̃(b) = ba D(b) = b D̃(b) = b.

Lemma 1. On the inverted letters a−1 and b−1 the morphisms G, G̃,D, G̃ have
the following images:

G(a−1) = a−1 G̃(a−1) = a−1 D(a−1) = a−1b−1 D̃(a−1) = b−1a−1

G(b−1) = b−1a−1 G̃(b−1) = a−1b−1 D(b−1) = b−1 D̃(b−1) = b−1

Proof. All four morphisms f have to satisfy f(a−1) = f(a)−1 as ε = f(aa−1) =
f(a)f(a−1), analogously for b. Thus, we obtain G(a−1) = G(a)−1 = a−1,
G(b−1) = G(b)−1 = (ab)−1 = b−1a−1 etc.

For some purposes it is useful to know the inverses of G, G̃,D, D̃ within the
group Aut(F2):

Lemma 2. The inverses of the special Sturmian morphisms G, G̃,D, D̃ within
the automorphism group Aut(F2) are given as follows on the letters and the
inverted letters:

G−1(a) = a G̃−1(a) = a D−1(a) = b−1a D̃−1(a) = ab−1

G−1(b) = a−1b G̃−1(b) = ba−1 D−1(b) = b D̃−1(b) = b

G−1(a−1) = a−1 G̃−1(a−1) = a−1 D−1(a−1) = a−1b D̃−1(a−1) = ba−1

G−1(b−1) = b−1a G̃−1(b−1) = ab−1 D−1(b−1) = b−1 D̃−1(b−1) = b−1

88 D. Clampitt and T. Noll

Proof. All four inverses have to satisfy f−1(f(a)) = f(f−1(a)) = a and
f−1(f(b)) = f(f−1(b)) = b. So we check G−1(G(a)) = G−1(a) = a, G−1(G(b)) =
G−1(ab) = aa−1b = b, etc.

As indicated in Sect. 1 we verify now the equations behind the commutative
triangles and squares in Fig. 1, which we need later in Sect. 4.

Proposition 1. Let conjw : F2 → F2 denote the conjugation automorphism
with the element w, i.e., conjw(u) = w−1uw. Then the following equalities hold:
G̃G−1 = G−1G̃ = conja and D̃D−1 = D−1D̃ = conjb.

Proof. It suffices to verify G̃G−1 = conja and D̃D−1 = conjb on the letters a and
b and to take into consideration that G−1G̃ = G̃G−1 and D̃D−1 = D−1D̃. Thus
we verify G̃G−1(a) = G̃(a) = a = a−1aa = conja(a), G̃G−1(b) = G̃(a−1b) =
a−1ba = conja(b) and D̃D−1(a) = D̃(b−1a) = b−1ab = conjb(a), D̃D−1(b) =
D̃(b) = b = b−1bb = conjb(b).

Corollary 1. conja ◦ G̃ = G̃ ◦ conja and conjb ◦ D̃ = D̃ ◦ conjb.

Proof. Substituting conja = G̃G−1 and conjb = D̃D−1 we obtain:

conja ◦ G̃ = (G̃G−1) ◦ G̃ = G̃ ◦ (G−1G̃) = G̃ ◦ conja
conjb ◦ D̃ = (D̃D−1) ◦ D̃ = D̃ ◦ (D−1D̃) = D̃ ◦ conjb

Proposition 2. conjb ◦ G̃ = G ◦ conjb and conja ◦ D̃ = D ◦ conja.

Proof. We apply the morphisms to the letters a and b and compare both sides:

conjb(G̃(a)) = b−1G̃(a)b = b−1ab = G(b−1aaa−1b) = G(b−1ab) = G(conjb(a))

conjb(G̃(b)) = b−1G̃(b)b = b−1bab = G(b) = G(b−1bb) = G(conjb(b))

conja(D̃(a)) = a−1D̃(a)a = a−1aba = D(a) = D(a−1aa) = D(conja(a))

conja(D̃(b)) = a−1D̃(b)a = a−1ba = D(a−1bbb−1a) = D(a−1ba) = D(conja(b)).

To define the linear conjugation order on the conjugation class of a special
Sturmian morphism, we recall the following known facts (e.g., see [2,4]).

1. The outer group Out(F2) = Aut(F2)/Inn(F2) of automorphisms of the free
group F2 modulo conjugations is isomorphic to the automorphism group
Aut(Z2) = GL2(Z) of the commutative image Z

2 of F2. This implies that
all conjugates of a given special Sturmian morphism f are characterized by

the fact that they share the same incidence matrix Mf =
(|f(a)|a |f(b)|a

|f(a)|b |f(b)|b
)

.

2. The incidence matrices of special Sturmian morphisms belong to the monoid

SL2(N), freely generated by the matrices MG = MG̃ = R =
(

1 1
0 1

)
and

MD = MD̃ = L =
(

1 0
1 1

)
. This implies that the representations of conjugate

morphisms share the same sequence of basic letters G and D and differ at
most in the distribution of diacritic ∼ marks attached to these letters.

Matching Lexicographic and Conjugation Orders 89

3. With every special Sturmian morphism f ∈ St0 we may associate the word
w = f(ab) = w1 . . . wn ∈ {a, b}∗. By conjugating the word w with its first
letter w1 we obtain the word w−1

1 ww1 = w2 . . . wnw1. By iterating these con-
jugations with the respective first letter we obtain a full cycle of n conjugated
words, namely w1 . . . wn, w2 . . . wnw1, . . . , wnw1, . . . wn−1.

4. All but one of these conjugated words (the bad conjugate) are images of the
type g(ab) of a special Sturmian morphism from the same conjugation class as
f , and these n−1 morphisms also exhaust the conjugation class. Removing the
bad conjugate from the full cycle of single-letter conjugations thereby induces
a linear order f1 < f2 < · · · < fn−1 on the conjugation class of f . Its initial
element f1 is a special standard morphism, i.e., f1 ∈ 〈G,D〉 and its terminal

element fn−1 is a special anti-standard morphism, i.e., fn−1 ∈
〈

G̃, D̃

〉
.

Definition 1. Consider a special standard morphism f1 ∈ 〈G,D〉 ⊂ St0 and
let n = |f1(ab)| denote the length of the image of the word ab. The linear order
f1 < f2 < · · · < fn−1 on the conjugation class of f1 (as described above) is called
conjugation order.

3 The Path Monoid and the Abacus Relations

In addition to the special Sturmian monoid St0 =
〈

G, G̃,D, D̃

〉
⊂ Aut(F2)

we consider the path monoid Σ∗ = {G, G̃,D, D̃}∗, freely generated over the
set Σ = {G, G̃,D, D̃} of four formal symbols, which we distinguish from the
four generating Sturmian morphisms G, G̃,D, D̃ themselves. The projection μ :
Σ∗ → St0 with

μ(G) = G,μ(G̃) = G̃, μ(D) = D,μ(D̃) = D̃,

mediating between the path monoid and the special Sturmian monoid, is well-
understood by virtue of the following result from [4] (proposition 2.1):

Proposition 3 (Kassel and Reutenauer). The special Surmian monoid has a
presentation of the form

St0 ∼=
〈

G, G̃,D, D̃ | GDkG̃ = G̃D̃kG,DGkD̃ = D̃G̃kD for all k ∈ N

〉
.

We will refer to these relations on paths as the abacus relations.

Definition 2. On the set Σ = {G, G̃,D, D̃} we introduce the total order G < G̃ <
D < D̃.1 This order induces a natural right-to-left lexicographic order on the free
monoid Σ∗. For any two words U, V ∈ Σ∗ consider the longest common suffix
Y , such that U = X1L1Y and V = X2L2Y for X1,X2 ∈ Σ∗ and L1, L2 ∈ Σ.
The two symbols L1 and L2 necessarily differ from each other. So we say U < V
iff L1 < L2.
1 The setting G̃ < D is arbitrary here. It could be likewise D < G̃ without consequences

for the content of the article.

90 D. Clampitt and T. Noll

Lemma 3. The following permutations τ, τG , τD : Σ → Σ generate monoid
automorphisms on Σ∗:

τ(G) := G̃, τ(G̃) := G, τ(D) := D̃, τ(D̃) := D,

τG(G) := G̃, τG(G̃) := G, τG(D) := D, τG(D̃) := D̃,

τD(G) := G, τD(G̃) := G̃, τD(D) := D̃, τD(D̃) := D.

Proof. This is true for any permutation of Σ.

Proposition 4. Consider a special standard morphism f ∈ 〈G,D〉 and its con-
jugation class F ⊂ St0. Let W = μ−1(F) ⊂ Σ∗ denote the set of all words
representing these Sturmian morphisms. With respect to lexicographic order for
any two words U, V ∈ W the following holds:

U < V iff τ(V) < τ(U).

Proof. Consider the evaluation ev : Σ → {0, 1} with ev(G) = ev(D) := 0 and
ev(G̃) = ev(D̃) := 1. Let m denote the common length of all words W ∈ W. We
define ev∗ : W → {0, 1, . . . 2m − 1} with ev∗(W1, ...,Wm) =

∑m
k=1 ev(Wk)2k−1.

The map ev∗ is an order-preserving bijection, i.e., we have U < V in lexico-
graphic order if and only if ev∗(U) < ev∗(V) in the order of natural num-
bers. Furthermore, we have ev∗(τ(W)) = 2m − ev∗(W) for any word W .
Hence, for any two words U, V ∈ W we have U < V iff ev∗(U) < ev∗(V) iff
2m − ev∗(V) < 2m − ev∗(U) iff ev∗(τ(V)) < ev∗(τ(U)) iff τ(V) < τ(U).

4 Matching Lexicographic and Conjugation Order

Proposition 5. Consider a word W ∈ {G̃, D̃}∗ and the associated anti-standard
morphism f = μ(W). The following equations hold:

conja ◦ f ◦ G = μ(τD(W)) ◦ G̃, conjb ◦ f ◦ D = μ(τG(W)) ◦ D̃.

Proof. Any anti-standard morphism f can be expressed in the form:

f = G̃nkD̃mk . . . G̃n1D̃m1

where k ≥ 0, nk,m1 ≥ 0 and n1, . . . , nk−1,m2, . . . , mk > 0. Iteratively applying
equations from Proposition 2 we obtain:

conja ◦ f ◦ G = conja ◦ G̃nkD̃mk . . . G̃n1D̃m1G

= G̃nk ◦ conja ◦ D̃mk . . . G̃n1D̃m1G

= G̃nkDmk ◦ conja . . . G̃n1D̃m1G

= G̃nkDmk . . . G̃n1Dm1 ◦ conja ◦ G

= G̃nkDmk . . . G̃n1Dm1G̃

= μ(τD(W)) ◦ G̃

The proof for the second equation is analogous.

Matching Lexicographic and Conjugation Orders 91

Proposition 6. Consider a word W ∈ {G,D}∗ and the associated standard
morphism f = μ(W). The following equations hold:

f ◦ G̃ = conja ◦ μ(τD(W)) ◦ G, f ◦ D̃ = conjb ◦ μ(τG(W)) ◦ D.

Proof. Any standard morphism f can be expressed in the form:

f = GnkDmk . . . Gn1Dm1

where k ≥ 0, nk,m1 ≥ 0 and n1, . . . , nk−1,m2, . . . , mk > 0. Then applying the
lemma once, and iteratively applying the abacus relation and commutativity of
G and G̃:

conja ◦ μ(τD(W)) ◦ G = conja ◦ GnkD̃mk . . . Gn1D̃m1 ◦ G

= G̃Gnk−1D̃mk . . . Gn1D̃m1G

= Gnk−1(G̃D̃mkG)Gnk−1−1 . . . Gn1D̃m1G

= Gnk−1(GDmkG̃)Gnk−1−1 . . . Gn1D̃m1G

= GnkDmkGnk−1Dmk−1 . . . G̃Gn1−1D̃m1G

= GnkDmkGnk−1Dmk−1 . . . Gn1−1(G̃D̃m1G)
= GnkDmkGnk−1Dmk−1Gnk−2 . . . Gn1Dm1G̃

= f ◦ G̃

The proof for the second equation is analogous.

Proposition 7. Consider a non-anti-standard special Sturmian morphism f ∈
St0 and let F ⊂ St0 denote the conjugation class of f . Consider the smallest
representative U ∈ μ−1(f) of f in lexicographic order. Let W ∈ {G̃, D̃}∗ denote
the maximal anti-standard prefix of U such that U = WLX with a letter L ∈
{G,D} and some suffix X ∈ Σ∗. Then the word U ′ = τL(W)L̃X is the smallest
representative of the successor of f ′ of f in conjugation order.

Proof. For a moment we consider the special case where X is empty. We then
have to show that every word V L̃ ∈ {G, G̃,D, D̃}∗, which is lexicographically
larger then WL and smaller than τL(W)L̃ represents a Sturmian morphism,
which—in conjugation order—either precedes or coincides with f .

We look at the case where L = G. The proof for L = D is completely
analogous. For nk,m1 ≥ 0 and n1, . . . , nk−1,m2, . . . , mk > 0 we obtain the
following general form for WL and τG(W)L̃:

WL = G̃nkD̃mk . . . G̃n1D̃m1G, τG(W)L̃ = G̃nkDmk . . . G̃n1Dm1 G̃

Now we consider a word V satisfying WL < V L̃ < τL(W)L̃. It is specified by
the exponents lj > 0 and lj+1, . . . , lk, hj+1, . . . , hk ≥ 0 as follows:

V = (G̃nk−lkGlk)(D̃mk−hkDhk) . . .

. . . (G̃nj+1−lj+1Glj+1)(D̃mj+1−hj+1Dhj+1)(G̃nj−ljGlj)Dmj G̃nj−1Dmj−1 . . . G̃n1Dm1 .

92 D. Clampitt and T. Noll

The index j marks the right-most factor in V , where there is a nontrivial power
of G. Powers of D̃ can only occur on the left side of the factor with index j,
where they have no influence on the following calculation. If they were to be to
the right of that index, the resulting word would be lexicographically larger than
τL(W)L̃, contrary to the assumption.

We substitute V L̃ with the help of suitable abacus relations until the final L̃
is replaced by L. This implies that the substitution is smaller or equal to WL.

V L̃ = . . . (G̃nj−lGl)Dmj G̃nj−1Dmj−1 . . . G̃n1Dm1 G̃
= . . . G̃nj−lGl−1(GDmj G̃)G̃nj−1−1Dmj−1 . . . G̃n1Dm1 G̃
∼= . . . G̃nj−lGl−1(G̃D̃mjG)G̃nj−1−1Dmj−1 . . . G̃n1Dm1 G̃
∼= . . . G̃nj−lGl−1G̃D̃mj G̃nj−1−1(GDmj−1 G̃)G̃nj−2−1 . . . G̃n1Dm1 G̃
∼= . . . G̃nj−lGl−1G̃D̃mj G̃nj−1−1(G̃D̃mj−1G)G̃nj−2−1 . . . G̃n1Dm1 G̃

...
∼= . . . G̃nj−lGl−1G̃D̃mj G̃nj−1D̃mj−1 G̃nj−2 . . . G̃n1−1(GDm1 G̃)
∼= . . . G̃nj−lGl−1G̃D̃mj G̃nj−1D̃mj−1 G̃nj−2 . . . G̃n1−1(G̃D̃m1G)

The calculation remains valid if the exponent m1 of the rightmost power of
D̃ vanishes. In this case the abacus relation reduces to G̃G ∼= GG̃. If the suffix X
is not empty, nothing in the above argument changes.

Corollary 2. Consider a non-standard special Sturmian morphism f ∈ St0 and
let F ⊂ St0 denote the conjugation class of f . Consider the largest representative
U ∈ μ−1(f) of f in lexicographic order. Let W ∈ {G,D}∗ denote the maximal
standard prefix of U such that U = W L̃X with a letter L̃ ∈ {G̃, D̃} and some
suffix X ∈ {G, G̃,D, D̃}∗. Then the word U ′ = τL(W)LX is the largest represen-
tative of the predecessor of f ′ of f in conjugation order.

Proof. This follows from the application of Proposition 4 to Proposition 7.

Theorem 1. Consider a conjugation class F = {f1 < · · · < fn−1} ⊂ St0 of
special Sturmian morphisms in conjugation order. Let W = μ−1(F) ⊂ Σ∗ denote
the set of all their representing words. W = W1 � · · · � Wn−1, where Wk =
μ−1(fk), for k = 1, . . . , n − 1. Let Uk, Vk ∈ Wk denote the lexicographically
smallest and largest elements of Wk, respectively. Then the following holds:

1. τ(Wk) = Wn−k and τ(Uk) = Vn−k for k = 1, . . . , n − 1.
2. U1 < U2 < · · · < Un−1 and V1 < V2 < · · · < Vn−1 in lexicographic order.

Figure 2 illustrates the theorem with an example.

Matching Lexicographic and Conjugation Orders 93

Fig. 2. The complete 20-element conjugation class of the special standard morphism
GDGDG is listed row by row in terms of all representing words (left side) and in terms
of the pairs (f(a), f(b)) of images of the letters a and b (right side). The rows are
ordered according to the conjugation order. Within each row the equivalent words are
lexicographically ordered. Smallest representatives are placed to the left, largest words
are placed to the right. The thick polygon traverses the 32 = 25 words in lexicographic
order. On this trajectory the smallest words are traversed in conjugation order. The
same is true for the largest words.

5 Dualizing the Network

Berthé et al. [2] introduce Sturmian involution, an anti-automorphism of the
monoid St0 that sends f in St0 to f∗ by fixing G and G̃ while exchanging D
and D̃. They relate conjugation order on the morphisms fi to the lexicographic
order on words f∗

i (ab), where f1 is a standard morphism and f∗
1 is a Christoffel

morphism. They show that with a < b, f∗
1 (ab) < f∗

2 (ab) < · · · < f∗
n−1(ab).

Another perspective on the lexicographic ordering, via the Burrows-Wheeler
Transform, is available in [5]. In this section we revisit and illustrate the finding
of [2] by constructing an isography between the diagram in Fig. 1 and a dualized
diagram to be fed from the former by applying Sturmian involution to all its
components.

The Sturmian monoid St0 generates the subgroup ST0 = M−1(SL2(Z)) of
index 2 within Aut(F2), of all group automorphisms with incidence matrices of
determinant 1. ST0 acts on itself from the left via λ : ST0 × ST0 → ST0 with
λg(f) = g ◦ f and from the right via ρ : ST0 × ST0 → ST0 where ρg(f) = f ◦ g.

94 D. Clampitt and T. Noll

In order to manage the right action ρ in terms of conventional function applica-
tion we consider the generating transformations and the conjugations separately:

ρG = Γ, ρG̃ = Γ̃ , ρD = Δ, ρD̃ = Δ̃, ρconja = χa, ρconjb = χb : ST0 → ST0 with:

Γ (f) = f ◦ G Δ(f) = f ◦ D χa(f) = conjf(a),

Γ̃ (f) = f ◦ G̃ Δ̃(f) = f ◦ D̃ χb(f) = conjf(b).

Lemma 4. The transformations Γ, Γ̃ ,Δ, Δ̃ satisfy the equations:

Γ̃ΔkΓ = ΓΔ̃kΓ̃ and Δ̃Γ kΔ = ΔΓ̃ kΔ̃

Proof. Γ̃ΔkΓ = ρGDkG̃
∼= ρG̃D̃kG = ΓΔ̃kΓ̃ . Analogously for Δ̃Γ kΔ.

Here we regard Sturmian Involution as an anti-automorphism ∗ : ST0 → ST0

generated by G∗ = G, G̃∗ = G̃, D∗ = D̃, D̃∗ = D. Applying the anti-
automorphism ∗ to all components of the left action λ naturally yields a trans-
formation into the right action ρ (see diagram below):

ST0 × ST0

ST0 × ST0

ST0

ST0

�

�

�

�
�
�

���

�
�

�
���

λ

ρ

∗∗ ∗

The diagram in Fig. 3 is the result of a thorough application of Sturmian invo-
lution to all components (nodes and arrows) of the diagram in Fig. 1. Thereby
we may revisit the relations between the generators and the conjugations: from
Sect. 2.

Proposition 8.

χa ◦ Γ = Γ ◦ χa = Γ̃ χb ◦ Δ = Δ ◦ χb = Δ̃ ⇔ χb−1 ◦ Δ̃ = Δ̃ ◦ χb−1 = Δ

χa ◦ Γ̃ = Γ̃ ◦ χa χb ◦ Γ = Γ̃ ◦ χb ⇔ χb−1 ◦ Γ̃ = Γ ◦ χb−1

χa ◦ Δ = Δ̃ ◦ χa χb ◦ Δ̃ = Δ̃ ◦ χb ⇔ χb−1 ◦ Δ̃ = Δ̃ ◦ χb−1

Proof. These relations arise from translating the analogous relations (Proposition
1, Corollary 1, Proposition 2) from the left action λ to the right action ρ:

f ◦ conja ◦ G = [Γ ◦ χa](f) and f ◦ G ◦ conja = [χa ◦ Γ](f) and f ◦ G̃ = Γ̃ (f)

f ◦ conjb ◦ D = [Δ ◦ χb](f) and f ◦ D ◦ conjb = [χb ◦ Δ](f) and f ◦ D̃ = Δ̃(f)

f ◦ conjb ◦ G̃ = [Γ̃ ◦ χb](f) and f ◦ G ◦ conjb = [χb ◦ Γ](f)

f ◦ conja ◦ G̃ = [Γ̃ ◦ χa](f) and f ◦ G̃ ◦ conja = [χa ◦ Γ̃](f)

f ◦ conja ◦ D̃ = [Δ̃ ◦ χa](f) and f ◦ D ◦ conja = [χa ◦ Δ](f)

f ◦ conjb ◦ D̃ = [Δ̃ ◦ χb](f) and f ◦ D̃ ◦ conjb = [χb ◦ Δ̃](f)

Matching Lexicographic and Conjugation Orders 95

Fig. 3. We obtain the diagram in this Figure from the isographic diagram in Fig. 1
by replacing their node and arrow labels as follows: (1) Each node label (f(a), f(b))
is replaced by (f∗(a), f∗(b)); (2) each arrow label conja or conjb is replaced by χa

or χb−1 = χb
−1, respectively; (3) each arrow label G or G̃ is replaced by Γ or Γ̃ ,

respectively; (4) each arrow label D or D̃ is replaced by Δ̃ or Δ, respectively.

Our insight about the incidence of the lexicographic order of the smallest
(or largest) paths with the conjugation order for each conjugation class is faith-
fully transferred along the duality. The conjugation order has another meaning
though, in so far as the conjugating elements are no longer the letters a and b.
Also the lexicographic order of the paths has to be modified in view of the Stur-
mian involution. After involution it is induced by the order G < G̃ < D̃ < D on Σ.
In Fig. 3 we observe that the node labels of each conjugation class (f∗(a), f∗(b))
are lexicographically ordered. They are aligned along the corresponding arc in
the left-to-right ordering of the images f∗(ab) which is induced by the ordered
alphabet {a < b}. With the final considerations we intend to relate this order
to the right-to-left lexicographic order of the words encoding paths. To that end
we need to define a suitable lexicographic order on a given conjugation class:

Definition 3. Consider a conjugation class F ⊂ St0 of special Sturmian mor-
phisms. We say that its elements are in left-to-right lexicographic order: {f1 ≺

96 D. Clampitt and T. Noll

· · · ≺ fn−1} iff their images of the word ab ∈ {a < b}∗ are in left-to-right
lexicographic order: {f1(ab) < · · · < fn−1(ab)}.
Lemma 5. For any special Sturmian morphism f ∈ St0 one has f(ab) < f(ba)
with respect to the left-to-right lexicographic order in {a < b}∗.

Proof. For special standard words one has f(a)f(b) = cab and f(b)f(a) = cba,
where c is the associated central word (see [1]). Hence f(ab) < f(ba). Conjugation
with the prefixes w of c preserves the order relation: conjwf(ab) < conjwf(ba).
And this exhausts the conjugation class of f .

Corollary 3. For all f ∈ St0 one has

Γ (f(a), f(b)) ≺ Γ̃ (f(a), f(b)) and Δ̃(f(a), f(b)) ≺ Δ(f(b), f(a))

Proof. For any f ∈ St0 we have

Γ (f(a), f(b)) ≺ Γ̃ (f(a), f(b)) iff (f(a), f(ab)) ≺ (f(a), f(ba)) iff f(ab) < f(ba)
Δ̃(f(a), f(b)) ≺ Δ(f(a), f(b)) iff (f(ab), f(b)) ≺ (f(ba), f(b)) iff f(ab) < f(ba)

The condition f(ab) < f(ba) is always satisfied by virtue of Lemma 5.

From this result we may finally conclude, that the inherited conjugation order
after the application of Sturmian involution coincides with the lexicographic
order ≺ from Definition 3.

References

1. Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.V.: Combinatorics on words:
Christoffel Words and Repetitions in Words. CRM Monograph Series, vol. 27. Amer-
ican Mathematical Society, Providence, RI (2009)

2. Berthé, V., de Luca, A., Reutenauer, C.: On an involution of Christoffel
words and Sturmian morphisms. European J. Combin. 29(2), 535–553 (2008).
http://dx.doi.org/10.1016/j.ejc.2007.03.001

3. Clampitt, D.: Lexicographic orderings of modes and morphisms. In: Pareyón,
G., Pina-Romero, S., August́ın-Aquino, O.A., Emilio, L.P. (eds.) The Musical-
Mathematical Mind: Patterns and Transformations. Computational Music Sci-
ence, pp. 91–99. Springer, Berlin (2017). https://books.google.ca/books?id=
9kAavgAACAAJ

4. Kassel, C., Reutenauer, C.: Sturmian morphisms, the braid group B4, Christoffel
words and bases of F2. Ann. Mat. Pura Appl. 186(2), 317–339 (2007). http://
dx.doi.org/10.1007/s10231-006-0008-z

5. Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and Stur-
mian words. Inf. Process. Lett. 86(5), 241–246 (2003). http://dx.doi.org/10.1016/
S0020-0190(02)00512-4

6. Séébold, P.: On the conjugation of standard morphisms. Theoret. Comput. Sci.
195(1), 91–109 (1998). http://dx.doi.org/10.1016/S0304-3975(97)00159-X. Mathe-
matical foundations of computer science (Cracow, 1996)

http://dx.doi.org/10.1016/j.ejc.2007.03.001
https://books.google.ca/books?id=9kAavgAACAAJ
https://books.google.ca/books?id=9kAavgAACAAJ
http://dx.doi.org/10.1007/s10231-006-0008-z
http://dx.doi.org/10.1007/s10231-006-0008-z
http://dx.doi.org/10.1016/S0020-0190(02)00512-4
http://dx.doi.org/10.1016/S0020-0190(02)00512-4
http://dx.doi.org/10.1016/S0304-3975(97)00159-X

More on the Dynamics of the Symbolic Square
Root Map

(Extended Abstract)

Jarkko Peltomäki1,2(B) and Markus Whiteland2

1 Turku Centre for Computer Science TUCS, Turku, Finland
2 Department of Mathematics and Statistics, University of Turku, Turku, Finland

{jspelt,mawhit}@utu.fi

Abstract. In our paper [A square root map on Sturmian words, Elec-
tron. J. Combin. 24.1 (2017)], we introduced a symbolic square root map.
Every optimal squareful infinite word s contains exactly six minimal
squares and can be written as a product of these squares: s = X2

1X2
2 · · · .

The square root
√

s of s is the infinite word X1X2 · · · obtained by delet-
ing half of each square. We proved that the square root map preserves
the languages of Sturmian words (which are optimal squareful words).
The dynamics of the square root map on a Sturmian subshift are well
understood. In our earlier work, we introduced another type of subshift
of optimal squareful words which together with the square root map
form a dynamical system. In this paper, we study these dynamical sys-
tems in more detail and compare their properties to the Sturmian case.
The main results are characterizations of periodic points and the limit
set. The results show that while there is some similarity it is possible for
the square root map to exhibit quite different behavior compared to the
Sturmian case.

1 Introduction

Kalle Saari showed in [5,6] that every Sturmian word contains exactly six min-
imal squares (that is, squares having no proper square prefixes) and that each
position of a Sturmian word begins with a minimal square. Thus a Sturmian
word s can be expressed as a product of minimal squares: s = X2

1X2
2X2

3 · · · .
In our earlier work [3], see also [2], we defined the square root

√
s of the word

s to be the infinite word X1X2X3 · · · obtained by deleting half of each square
X2

i . We proved that the words s and
√
s have the same language, that is, the

square root map preserves the languages of Sturmian words. More precisely, we
showed that if s has slope α and intercept ρ, then

√
s has intercept ψ(ρ), where

ψ(ρ) = 1
2 (ρ+1−α). The simple form of the function ψ immediately describes the

dynamics of the square root map in the subshift Ωα of Sturmian words of slope
α: all words in Ωα are attracted to the set {01cα, 10cα} of words of intercept
1 − α; here cα is the standard Sturmian word of slope α.

The square root map makes sense for any word expressible as a product of
squares. Saari defines in [6] an intriguing class of such infinite words which he
c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 97–108, 2017.
DOI: 10.1007/978-3-319-66396-8 10

98 J. Peltomäki and M. Whiteland

calls optimal squareful words. Optimal squareful words are aperiodic infinite
words containing the least number of minimal squares such that every position
begins with a square. It turns out that such a word must be binary, and it must
contain exactly six minimal squares; less than six minimal squares forces the
word to be ultimately periodic. Moreover, the six minimal squares must be the
minimal squares of some Sturmian language; the set of optimal squareful words
is however larger than the set of Sturmian words. The six minimal squares of an
optimal squareful word take the following form for some integers a and b such
that a ≥ 1 and b ≥ 0:

02, (10a)2,

(010a−1)2, (10a+1(10a)b)2,

(010a)2, (10a+1(10a)b+1)2.

It is natural to ask if there are non-Sturmian optimal squareful words whose
languages the square root map preserves. In [3], we proved by an explicit con-
struction that such words indeed exist. The construction is as follows. The sub-
stitution

τ :
S �→ LSS
L �→ SSS

produces two infinite words Γ ∗
1 = SSSLSSLSS · · · and Γ ∗

2 = LSSLSSLSS · · ·
having the same language L. Let s̃ be a (long enough) reversed standard word in
some Sturmian language and L(s̃) be the word obtained from s̃ by exchanging its
first two letters. By substituting the language L by the substitution σ mapping
the letters S and L respectively to s̃ and L(s̃), we obtain a subshift Ω consisting
of optimal squareful words. We proved that the words Γ1 and Γ2, the σ-images
of Γ ∗

1 and Γ ∗
2 , are fixed by the square root map and, more generally, either√

w ∈ Ω or
√
w is periodic for all w ∈ Ω.

The aim of this paper is to study the dynamics of the square root map in the
subshift Ω in the slightly generalized case where τ(S) = LS2c and τ(L) = S2c+1

for some positive integer c and to see in which ways the dynamics differ from
the Sturmian case. Our main results are the characterization of periodic and
asymptotically periodic points and the limit set. We show that asymptotically
periodic points must be ultimately periodic points and that periodic points must
be fixed points; there are only two fixed points: Γ1 and Γ2. We prove that
any word in Ω that is not an infinite product of the words σ(S) and σ(L)
must eventually be mapped to a periodic word, thus having a finite orbit, while
products of the words σ(S) and σ(L) are always mapped to aperiodic words.
It follows from our results that the limit set of the square root map contains
exactly the words that are products of σ(S) and σ(L). In addition, we study the
injectivity of the square root map on Ω: only certain left extensions of the words
Γ1 and Γ2 may have more than one preimage.

Let us make a brief comparison with the Sturmian case to see that the obtained
results indicate that the square root map behaves somewhat differently on Ω.

More on the Dynamics of the Symbolic Square Root Map 99

Themappingψ, defined above, is injective, so in the Sturmian case allwords have at
most one preimage. As ψ maps points strictly towards the point 1−α on the circle,
all points are asymptotically periodic (see Definition 17) and all periodic points are
fixed points. The fixed points are the two words 01cα and 10cα mentioned above,
and the limit set consists only of these two fixed points.

The paper is organized as follows. The following section gives needed results
on Sturmian words and standard words and it describes the construction of the
subshift Ω in full detail. In Sect. 3, we proceed to characterize the limit set and
to study injectivity. Section 4 contains results on periodic points.

2 Notation and Preliminary Results

Due to space constraints we refer the reader to [1] for basic notation, results
on words, and for basic concepts such as prefix, suffix, factor, language, primi-
tive word, conjugate, ultimately periodic word, aperiodic word, and subshift. We
distinguish finite words from infinite words by writing the symbols referring to
infinite words in boldface.

If w is a word such that w = u2, then we call w a square with square root u. A
square is minimal if it does not have a square as a proper prefix. If w is a word, then
by L(w) we denote the word obtained from w by exchanging its first two letters
(we will not apply L to too short words). The language of a subshift Ω is denoted
by L(Ω), and the shift operator on infinite words is denoted by T . We index words
from 0. We write u � v if the word u is lexicographically less than v. For binary
words over {0, 1}, we set 0 � 1.

2.1 Sturmian Words and Standard Words

Several proofs in [3] regarding Sturmian words and the square root map require
knowledge on continued fractions. In this paper, only some familiarity with con-
tinued fractions is required. We only recall that every irrational real number α
has a unique infinite continued fraction expansion:

α = [a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

(1)

with a0 ∈ Z and ak ∈ Z+ for k ≥ 1. The numbers ai are called the partial
quotients of α. An introduction to continued fractions in relation to Sturmian
words can be found in [2, Chap. 4].

We view here Sturmian words as the infinite words obtained as codings of
orbits of points in an irrational circle rotation with two intervals. For alternative
definitions and further details, see [1,4]. We identify the unit interval [0, 1) with
the unit circle T. Let α in (0, 1) be irrational. The map R : T → T, ρ �→ {ρ+α},
where {ρ} stands for the fractional part of the number ρ, defines a rotation on T.
Divide the circle T into two intervals I0 and I1 defined by the points 0 and 1−α.

100 J. Peltomäki and M. Whiteland

Then define the coding function ν by setting ν(ρ) = 0 if ρ ∈ I0 and ν(ρ) = 1
if ρ ∈ I1. The coding of the orbit of a point ρ is the infinite word sρ,α obtained
by setting its nth, n ≥ 0, letter to equal ν(Rn(ρ)). This word sρ,α is defined
to be the Sturmian word of slope α and intercept ρ. To make the definition
proper, we need to define how ν behaves in the endpoints 0 and 1 − α. We have
two options: either take I0 = [0, 1 − α) and I1 = [1 − α, 1) or I0 = (0, 1 − α]
and I1 = (1 − α, 1]. The difference is seen in the codings of the orbits of the
points {−nα}. This choice is largely irrelevant in this paper with the exception
of the definition of the mapping ψ in the next subsection. The only difference
between Sturmian words of slope [0; 1, a2, a3, . . .] and Sturmian words of slope
[0; a2+1, a3, . . .] is that the roles of the letters 0 and 1 are reversed. We make the
typical assumption that a1 ≥ 2 in (1). Since the sequence ({nα})n≥0 is dense in
[0, 1)—as is well-known—Sturmian words of slope α have a common language
(that is, the set of factors) denoted by L(α). The Sturmian words of slope α
form the Sturmian subshift Ωα, which is minimal and aperiodic.

Let (dk) be a sequence of positive integers. Corresponding to (dk), we define
a sequence (sk) of standard words by the recurrence

sk = sdk

k−1sk−2

with initial values s−1 = 1, s0 = 0. The sequence (sk) converges to an infi-
nite word cα, which is a Sturmian word of intercept α and slope α, where α is
an irrational with continued fraction expansion [0; d1 + 1, d2, d3, . . .]. Thus stan-
dard words related to the sequence (dk) are called standard words of slope α.
The standard words are the basic building blocks of Sturmian words, and they
have rich and surprising properties. For this paper, we only need to know that
standard words are primitive and that the final two letters of a (long enough)
standard word are different. Actually, in connection to the square root map, it is
more natural to consider reversed standard words obtained by writing standard
words from right to left. If s is a standard word in L(α), then also the reversed
standard word s̃ is in L(α) because L(α) is closed under reversal. For more on
standard words, see [1, Chap. 2.2].

2.2 Optimal Squareful Words and the Square Root Map

An infinite word is squareful if its every position begins with a square. An infinite
word is optimal squareful if it is aperiodic and squareful and it contains the
least possible number of distinct minimal squares. In [6], Kalle Saari proves
that optimal squareful words contain six distinct minimal squares; a squareful
word containing at most five minimal squares is necessarily ultimately periodic.
Moreover, Saari shows that optimal squareful words are binary and that the six
minimal squares are of very restricted form. The square roots of the six minimal
squares of an optimal squareful word are

S1 = 0, S4 = 10a,

S2 = 010a−1, S5 = 10a+1(10a)b, (2)

S3 = 010a, S6 = 10a+1(10a)b+1,

More on the Dynamics of the Symbolic Square Root Map 101

for some integers a and b such that a ≥ 1 and b ≥ 0. We call an optimal squareful
word containing the minimal square roots of (2) an optimal squareful word with
parameters a and b. Throughout this paper, we reserve this meaning for the
fraktur letters a and b. Furthermore, we agree that the symbols Si always refer
to the minimal square roots of (2).

Let s be an optimal squareful word and write it as a product of minimal squares:
s = X2

1X2
2 · · · (such a product is unique). The square root

√
s of s is the word

X1X2 · · · obtained by deleting half of each minimal square X2
i . We reserve the

notation n
√
s for the nth square root of s. We chose this notation for its simplicity;

thenth square root of a numberxwould typically be denoted by 2n
√

x.We often con-
sider square roots of finite words. We let Π(a, b) to be the language of all nonempty
words w such that w is a factor of some optimal squareful word with parameters a
and b and w is factorizable as a product of minimal squares (2). Let w ∈ Π(a, b),
that is, w = X2

1 · · · X2
n for minimal square roots Xi. Then we can define the square

root
√

w ofw by setting
√

w = X1 · · · Xn. The square rootmap (on infinitewords) is
continuous with respect to the usual topology on infinite words (see [1, Sect. 1.2.2]).
The following lemma, used later, sharpens this observation.

Lemma 1. Let u and v be two optimal squareful words with the same parame-
ters a and b. If u and v have a common prefix of length
, then

√
u and

√
v

have a common prefix of length �
/2�.
Proof. Say u and v have a nonempty common prefix w. We may suppose that
w /∈ Π(a, b) as otherwise the claim is clear. Let z be the longest prefix of w
that is in Π(a, b) ∪ {ε}, and let X2 and Y 2 respectively be the minimal square
prefixes of the words T |z|(u) and T |z|(v). Hence

√
u begins with

√
zX and

√
v

begins with
√

zY . Since X and Y begin with the same letter, it is easy to see
that either X is a prefix of Y or Y is a prefix of X. By symmetry, we suppose
that X is a prefix of Y . It follows that

√
u and

√
v have a common prefix of

length |zX2|/2. By the maximality of z, we have |zX2| > |w| proving that
√
u

and
√
v have a common prefix of length �|w|/2�.
�

Sturmian words are a proper subset of optimal squareful words. If s is a
Sturmian word of slope α having continued fraction expansion as in (1), then it
is an optimal squareful word with parameters a = a1 − 1 and b = a2 − 1. The
square root map is especially interesting for Sturmian words because it preserves
their languages. Define a function ψ : T → T as follows. For ρ ∈ (0, 1), we set

ψ(ρ) =
1
2
(ρ + 1 − α),

and we set

ψ(0) =

{

1
2 (1 − α), if 0 ∈ I0,

1 − α
2 , if 0 /∈ I0.

The mapping ψ moves a point ρ on T towards the point 1−α by halving the
distance between the points ρ and 1 − α. The distance to 1 − α is measured in
the interval I0 or I1 depending on which of these intervals the point ρ belongs

102 J. Peltomäki and M. Whiteland

to. In [3], we proved the following result relating the intercepts of a Sturmian
word and its square root.

Theorem 2. Let sρ,α be a Sturmian word of slope α. Then √sρ,α = sψ(ρ),α.

Specific solutions to the word equation

X2
1X2

2 · · · X2
n = (X1X2 · · · Xn)2 (3)

in the Sturmian language L(α) play an important role. We are interested only
in the solutions of (3) where all words Xi are minimal square roots (2), i.e.,
primitive roots of minimal squares. Thus we give the following definition.

Definition 3. A nonempty word w is a solution to (3) if w can be written as
a product of minimal square roots w = X1X2 · · · Xn which satisfy the word
equation (3). The solution is primitive if w is primitive.

Consider for example the word S2S1S4 for a = 1 and b = 0. We have

(S2S1S4)2 = (01 · 0 · 10)2 = 01010 · 01010 = (01)2 · 02 · (10)2 = S2
2S2

1S2
4 ,

so the word S2S1S4 is a solution to (3).
In [3, Theorem 5.2], the following result was proved.

Theorem 4. If s̃ is a reversed standard word, then the words s̃ and L(s̃) are
primitive solutions to (3).

Solutions to (3) are important as they can be used to build fixed points of
the square root map. If (uk) is a sequence of solutions to (3) with the property
that u2

k is a proper prefix of uk+1 for k ≥ 1, then the infinite word w obtained
as the limit limk→∞ uk has arbitrarily long prefixes X2

1 · · · X2
n with the property

that X1 · · · Xn is a prefix of w. In other words, the word w is a fixed point of the
square root map. All known constructions of fixed points rely on this method.
For example, the two Sturmian words 01cα and 10cα of slope α and intercept
1 − α both have arbitrarily long squares u2 as prefixes, where u = L(s̃) for a
reversed standard word s̃ [3, Proposition 6.3]. In the next subsection, we see that
the dynamical system studied in this paper is also fundamentally linked to fixed
points obtained from solutions of (3).

The following lemma [3, Lemma 5.5] is of technical nature, but it conveys an
important message: under the assumptions of the lemma, swapping two adjacent
and distinct letters that do not occur as a prefix of a minimal square affects a
product of minimal squares only locally and does not change its square root.
This establishes the often-used fact that s̃s̃ and s̃L(s̃) are both in Π(a, b) and
have the same square root for a reversed standard word s̃. For example, if s̃ =
1001001010010, then

s̃s̃ = 1001001010 · 0101 · 00 · 1001010010 and
s̃L(s̃) = 1001001010 · 010010 · 1001010010,

so the change is indeed local and does not affect the square root. Notice that
every long enough standard word has S6 as a proper suffix.

More on the Dynamics of the Symbolic Square Root Map 103

Lemma 5. Let u and v be words such that

– u is a nonempty suffix of S6,
– |v| ≥ |S5S6|,
– v begins with xy for distinct letters x and y,
– uv and L(v) are factors of some optimal squareful words with the same para-

meters.

Suppose there exists a minimal square X2 such that |X2| > |u| and X2 is a prefix
of uv or uL(v). Then there exist minimal squares Y 2

1 , . . ., Y 2
n such that X2 and

Y 2
1 · · · Y 2

n are prefixes of uv and uL(v) of the same length and X = Y1 · · · Yn.

2.3 The Subshift Ω

In this subsection, we define the main object of study of this paper. The results
presented were obtained in [3] in the case c = 1, the generalization being straight-
forward.

Let c be a fixed positive integer. Repeated application of the substitution

τ :
S �→ LS2c

L �→ S2c+1

to the letter S produces two infinite words

Γ ∗
1 = SS2c(LS2c)2c(S2c+1(LS2c)2c)2c · · · and

Γ ∗
2 = LS2c(LS2c)2c(S2c+1(LS2c)2c)2c · · ·

with the same language L. We set Ω∗ to be the minimal and aperiodic subshift
with language L.

Fix integers a and b such that a ≥ 1 and b ≥ 0, and let α be an irrational
with continued fraction expansion [0; a + 1, b + 1, . . .]. Let w to be a word such
that w ∈ {s̃k, L(s̃k)} where s̃k is a reversed standard word of slope α such that
|s̃k| > |S6|.1 Let then σ be the substitution mapping S to w and L to L(w). By
substituting the letters S and L in words of Ω∗, we obtain a new minimal and
aperiodic subshift σ(Ω∗), which we denote by ΩA. We also set Γ1 = σ(Γ ∗

1) and
Γ2 = σ(Γ ∗

2). The subshift ΩA is generated by both of the words Γ1 and Γ2. The
words Γ1 and Γ2 differ only by their first two letters. This difference is often
irrelevant to us, so we let Γ to stand for either of these words. Further, we let
the symbol γk to stand for the word σ(τk(S)) and γk to stand for σ(τk(L)).

It is easy to see that Γ1 = limk→∞ γ2k and Γ2 = limk→∞ γ2k. In what fol-
lows, we often consider infinite products of γk and γk, and we wish to argue
independently of the index k. Hence we make a convention that γ and γ respec-
tively stand for γk and γk for some k ≥ 0. The words γ and γ are primitive; see
[3, Lemma 8.2]. For simplification, we abuse notation and write S for γ0 and L

1 Without this condition the subshift Ω, defined below, does not consist of optimal
squareful words; see the remark after [3, Lemma 8.3].

104 J. Peltomäki and M. Whiteland

for γ0. It will always be clear from context if letters S and L or words S and L
are meant.

It can be shown that the words of ΩA are optimal squareful words with
parameters a and b; see [3, Lemma 8.3]. Therefore the square root map is defined
for words in ΩA. The square root map on ΩA has the following crucial properties.

Lemma 6. The following properties hold:

–
√

γγ = γ,
–

√
γγ = γ,

–
√

γγ = γ, and
–

√
γγ = γ.

Proof. The proof of [3, Proposition 8.1] works essentially as it is.
�
Lemma 6 shows that the words Γ1 and Γ2 are fixed points of the square root

map. Namely, the word γk+2 has γ2
k as a prefix and γk+2 has γ2

k as a prefix.
Thus by Lemma 6, we have, e.g.,

√

Γ1 =
√

lim
k→∞

γ2
2k = lim

k→∞
γ2k = Γ1.

The words in ΩA can be (uniquely) written as a product of the words S and L
up to a shift. Consider a word w in ΩA and write w = T �(w′) for some w′ ∈
ΩA ∩ {S,L}ω and
 such that 0 ≤
 < |S|. There are four distinct possibilities
(types):

(A)
 = 0,
(B)
 > 0 and the prefix of w of length |S| −
 is in Π(a, b),
(C)
 > 0 and the prefix of w of length 2|S| −
 is in Π(a, b), or
(D) none of the above applies.

These possibilities are mutually exclusive: cases (B) and (C) cannot simultane-
ously apply because S,L /∈ Π(a, b).2 In our earlier paper, we proved the following
theorem, see [3, Theorem 8.7].3

Theorem 7. Let w ∈ ΩA. If w is of type (A),(B), or (C), then
√
w ∈ ΩA. If

w is of type (D), then
√
w is periodic with minimal period conjugate to S.

Thus to make ΩA a proper dynamical system, we need to adjoin a periodic
part to it. Let

ΩP = {T �(Sω) : 0 ≤
 < |S|},

and define Ω = ΩA ∪ ΩP . Clearly Ω is compact and
√

ΩA ⊆ Ω by Theorem 7.
Further, as the proof of Theorem 7 in [3] applies to arbitrary products of S and
L, it follows that

√
w is periodic with minimal period conjugate to S if w ∈ ΩP .

2 If S or L were in Π(a, b), then they would be nonprimitive as solutions to (3).
3 In the proof of [3, Theorem 8.7] only the case c = 1 was considered. This is of no

consequence as the proof given applies to arbitrary product ofs the words S and L.

More on the Dynamics of the Symbolic Square Root Map 105

Thus
√

ΩP ⊆ ΩP , and the pair (Ω,
√·) is a valid dynamical system. Notice further

that Lω ∈ ΩP ; it is a special property of a reversed standard word s̃ that s̃ and
L(s̃) are conjugates, see [3, Proposition 2.6].

Let us recall next what is known about the structure of the words in Ω. The
word Γ is by definition an infinite product of the words γk and γk for all k ≥ 0.
Thus all words in ΩA are (uniquely) factorizable as products of γk and γk up to a
shift. Let us for convenience denote by Ωγ the set Ω∩{γ, γ}ω consisting of words of
Ω that are infinite products of γ and γ. The following lemma describes two impor-
tant properties of factorizations of words of ΩA as products of γ and γ. This result
is an immediate property of the substitution τ that generates Ω∗.

Lemma 8. Consider a factorization of a word in ΩA ∩ Ωγ as a product of γ
and γ. Such factorization has the following properties:

– Between two occurrences of γ there is always γ2c or γ4c+1.
– Between two occurrences of γγ4c+1γ there is always γ2c or (γ2cγ)4 · γ−1.

We also need to know how certain factors synchronize or align in a product
of γ and γ. The proof is a straightforward application of the elementary fact
that a primitive word cannot occur nontrivially in its square.

Lemma 9 (Synchronizability Properties). Let w ∈ Ωγ . If z is a word in
{γγ, γγ, γγ} occurring at position
 of w, then the prefix of w of length
 is a
product of γ and γ.4

The preceding lemma shows that if w is a word in ΩA, then for each k there
exists a unique
 such that 0 ≤
 < |γk| and T �(w) ∈ Ωγk

. We then say that the
γk-factorization of w starts at the position
 of w.

Let us conclude this subsection by making a remark regarding the subshift
Ω∗. It is possible to define a counterpart for the square root map of Ω. Write a
word w of Ω∗ as a product of pairs of the letters S and L: w = X1X

′
1 ·X2X

′
2 · · · ,

where XiX
′
i ∈ {SS, SL,LS,LL}. We define the square root

√
w of w to be the

word X1X2 · · · . Based on the above, it is not difficult to see that σ(
√
w) =

√

σ(w) for w ∈ Ω∗. In other words, the square root map for words in ΩS ∩ ΩA

has the same dynamics as the square root map in Ω∗.

3 The Limit Set and Injectivity

In this section, we consider what happens for words of Ω when the square root
map is iterated. We extend Theorem 7 and show that also the words of type
(B) and type (C) are eventually mapped to a periodic word. In fact, we prove a
stronger result: the number of steps required is bounded by a constant depending
only on the word S. These results enable us to characterize the limit set as the
set ΩS . In other words, asymptotically the square root map on Ω has the same
dynamics as the counterpart mapping on Ω∗ ∪ {Sω, Lω}. We also show that the

4 In general, e.g., the word γ2 can be a factor of γ3.

106 J. Peltomäki and M. Whiteland

square root map is mostly injective on ΩA, only certain left extensions of Γ may
have two preimages.

Let us first look at an example. Let a = 1, b = 0, and S = 01010010. Set
w = T 4(S2u) for some S2u ∈ ΩS ∩ ΩA. The word w is of type (C) as the word
T 4(S2), which equals 00 · 1001010010, is in Π(a, b). Now

√
w = 010010 · √

u and√
w ∈ ΩA by Theorem 7. So

√
w is of type (B), and 2

√
w = 010 · 2

√
u. Still we

have 2
√
w ∈ ΩA. It is clear now that 2

√
w is not of type (A) or (B). The word 2

√
u

begins with S or L, and neither 010 · S nor 010 · L is in Π(a, b), so 2
√
w is not of

type (C) either. Thus it is of type (D), so 3
√
w is periodic. The minimal period of

3
√
w is readily checked to be 01010010, that is, 3

√
w = Sω. With some effort it can

be verified that in this particular case 3
√
v is periodic for all v ∈ Ω \ ΩS . Notice

that the parameter c is irrelevant to all of the preceding arguments.

Theorem 10. There exists an integer n, depending only on the word S, such
that n

√
w ∈ {Sω, Lω} for all w ∈ Ω \ ΩS.

Theorem 10 can be proven using the following two lemmas, the first of which
is the important Embedding Lemma.

Lemma 11 (Embedding Lemma). Let w ∈ Ω and u1 and u2 to respectively
be the prefixes of w and

√
w of length |S|.

(i) If w begins with 0 and u1 �= u2, then u1 � u2.
(ii) If w begins with 1 and u1 �= u2, then u1 � u2.

Lemma 12. Let w be any of the words SS, SL, LS, or LL. If
 is an odd
integer such that 0 <
 < |S|, then T �(w) /∈ Π(a, b).

Proof. Let
 be an odd integer such that 0 <
 < |S|. Since |T �(w)| = |S2| −
,
we see that |T �(w)| is odd. Thus it is impossible that T �(w) ∈ Π(a, b).
�

Next we turn our attention to injectivity. The results provided next give
sufficient information to characterize the limit set. There is a slight imperfection
in the following results. Namely, we are unable to characterize the preimage of
the periodic part ΩP , and we believe no nice characterization exists. First of all,
the words Sω and Lω must have several preimages, periodic and aperiodic, by
Theorem 10. Secondly, if w in ΩA is of type (D), then not only is

√
w periodic

with minimal period conjugate to S but the square root of any word in ΩA

that shares a prefix of length 3|S| with w is periodic with the same minimal
period.5 Therefore here we only focus on characterizing preimages of words in
the aperiodic part ΩA.

The next theorem says that the square root map is not injective on ΩA but is
almost injective: only words of restricted form may have more than one preimage
and even then there is at most two preimages. In the Sturmian case, all words
have at most one preimage.

5 See the proof of [3, Theorem 8.7] for precise details.

More on the Dynamics of the Symbolic Square Root Map 107

Theorem 13. If w is a word in ΩA having two preimages u and v in Ω under
the square root map, then u = zSΓ1 and v = zSΓ2 where zS is a suffix of some
γk such that z ∈ Π(a, b).

Theorem 13 can be proven using the following lemma.

Lemma 14. Suppose that u and v are words in Ωγ such that
√
u =

√
v. If

u = γγ · · · and v = γγ · · · , then u = γγγ2cγ · · · and v = γγγ2cγ · · · and both u
and v must be preceded by γγ2c−1 in Ω.

The limit set Λ is the set of words that have arbitrarily long chains of preim-
ages, that is,

Λ =
∞
⋂

n=0

n
√

Ω.

In the Sturmian case, the limit set contains only the two fixed points of the
square root map. For the subshift Ω, the limit set is much larger. In fact, the
limit set contains all words that are products of the words S and L.

Theorem 15. We have Λ = ΩS.

4 Periodic Points

In this section, we characterize the periodic points of the square root map in Ω.
The result is that the only periodic points are fixed points. We further charac-
terize asymptotically periodic points and show that all asymptotically periodic
points are ultimately periodic points.

Recall that a word w is a periodic point of the square root map with period
n if n

√
w = w.

Theorem 16. If w is a periodic point in Ω, then w ∈ {Γ1,Γ2, S
ω, Lω}.

The case with the Sturmian periodic points is similar: periodic points are
fixed points and the fixed points are obtained as limits from solutions of (3).

Next we consider the dynamical notion of an asymptotically periodic point
and characterize asymptotically periodic points in Ω.

Definition 17. Let (X, f) be a dynamical system. A point x in X is asymptot-
ically periodic if there exists a periodic point y in X such that

lim
n→∞ d(fn(x), fn(y)) = 0.

If this is the case, then we say that the point x is asymptotically periodic to y.

The following proposition essentially says that if a word in Ω is asymptoti-
cally periodic, then it is an ultimately periodic point. The situation is opposite to
the Sturmian case where all words are asymptotically periodic and only periodic
points are ultimately periodic points.

108 J. Peltomäki and M. Whiteland

Proposition 18. If w ∈ ΩS, then w is asymptotically periodic if and only if
w ∈ {Γ1,Γ2, S

ω, Lω}, that is, if and only if w is a periodic point. If w ∈ Ω \ΩS,
then w is asymptotically periodic to Sω or Lω.

Acknowledgments. The work of the first author was supported by the Finnish Cul-
tural Foundation by a personal grant. He also thanks the Department of Computer
Science at Åbo Akademi for its hospitality. The second author was partially supported
by the Vilho, Yrjö and Kalle Väisälä Foundation. Jyrki Lahtonen deserves our thanks
for fruitful discussions.

References

1. Lothaire, M.: Algebraic Combinatorics on Words. No. 90 in Encyclopedia of Math-
ematics and Its Applications. Cambridge University Press, Cambridge (2002)

2. Peltomäki, J.: Privileged Words and Sturmian Words. Ph.D. dissertation, Turku
Centre for Computer Science, University of Turku (2016). http://www.doria.fi/
handle/10024/124473

3. Peltomäki, J., Whiteland, M.: A square root map on Sturmian words. Electron. J.
Comb. 24(1) (2017). Article No. P1.54

4. Pytheas Fogg, N.: Sturmian Sequences. In: Berthé, V., Ferenczi, S., Mauduit, C.,
Siegel, A. (eds.) Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture
Notes in Mathematics, vol 1794. Springer, Berlin, Heidelberg (2002)

5. Saari, K.: On the frequency and periodicity of infinite words. Ph.D. dissertation,
Turku Centre for Computer Science, University of Turku (2008). http://users.utu.
fi/kasaar/pubs/phdth.pdf

6. Saari, K.: Everywhere α-repetitive sequences and Sturmian words. Eur. J. Comb.
31, 177–192 (2010)

http://www.doria.fi/handle/10024/124473
http://www.doria.fi/handle/10024/124473
http://users.utu.fi/kasaar/pubs/phdth.pdf
http://users.utu.fi/kasaar/pubs/phdth.pdf

Study of Christoffel Classes: Normal Form
and Periodicity

Mélodie Lapointe(B)

Laboratoire de Combinatoire et d’Informatique Mathématique,
Université du Québec à Montréal, Montréal, Canada

lapointe.melodie@courrier.uqam.ca

Abstract. We characterize the left normal forms of conjugates of
Christoffel words and compute their minimal period. This answers two
open questions in Reutenauer (2015).

Keywords: Christoffel words · Sturmian factors · Normal form · Min-
imal period

1 Introduction

Christoffel words appeared at the end of the 19th century in the works of Markoff
and Christoffel. The terminology “Christoffel word” was coined in 1990 by
Berstel [1]. Some characterizations of Sturmian sequences have been extended
to Christoffel words by inspecting their conjugates [5,6]. Variants of Christof-
fel words, such as central words and standard words [2,9], have been extensively
studied [10–13]. They also have several applications in various field such as num-
ber theory, discrete geometry, symbolic dynamics and combinatorics on words.

The present article is motivated by the article [14] on periods of conjugates
of Christoffel word. The (left) normal form of sturmian factors was introduced
in [14]; this factorization is based on the fact that the minimal period of a
sturmian factor is the length of some Christoffel factor, as shown by de Luca
and De Luca [11]. The normal form of a sturmian factor w is w = scnp, such
that c is a Christoffel word with palindromic factorization v′u′, s is a proper
suffix of u′ and p is a proper prefix of c; in this case, the minimal period of w is
|c|. Some periodic properties of conjugates of Christoffel words can be deduced
from this factorization. The left normal form exist and is unique for all sturmian
factor which are not a power of a letter [14]. In the same article, some classes
of Christoffel words are characterized by their left normal form e.g. left special
sturmian factor, central word, right special Sturmain word, bispecial sturmian
factor and power of Christoffel word.

In a related work by Currie and Saari [7], the set of minimal periods of
the factors of any Sturmian sequence is determined. They show that this set is
essentially the set of lengths of standard words (equivalently Christoffel words)
which are factors of the sequence. For this, they establish a result [7, Lemma 6]

c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 109–120, 2017.
DOI: 10.1007/978-3-319-66396-8 11

110 M. Lapointe

which gives a period for each conjugate of a Christoffel word; however they don’t
give the minimal period of each conjugate, as it is done here in Corollary 7. Also,
Hegedus and Nagy [8] defines explicitly the set of all non-trivial weak period of
circular Christoffel words P (w) i.e. if q ∈ P (w), then there exist at least one
conjugate c of w such that q is a period of c.

The main result is a description of the normal forms of the conjugates of
a Christoffel words (Theorem 6) and a characterization of these words by their
normal forms (Theorem 10). This answers two problems in [14, p.55]; namely,
in Proposition 11.2 of this article, several classes of sturmian factors (special,
palindromes) are characterized through property of their normal form; however,
the characterization of conjugate’s of Christoffel words is missing.

In Sect. 2, we recall some basic definitions and results concerning combina-
torics of words. In Sect. 3, we compute some periods that appears in the con-
jugates of a Christoffel words. In Sect. 4, we explicit the left normal form of
conjugates of Christoffel words and give a formula for their minimal period. In
Sect. 5, we characterize the left normal form of conjugates of Christoffel word.

2 Preliminaries

An alphabet is a nonempty finite set A whose elements are called letters. A finite
sequence a1a2 . . . an of elements of A is called a word over A. The set of all words
over A is denoted by A∗. The concatenation is the binary operation on two words
u, v ∈ A∗ such that u · v = uv. The empty sequence, called the empty word, is
denoted by ε. Let w = a1a2 . . . an be a word in A∗. The length of w, denoted by
|w|, is the number of letters in w, that is |w| = n. Recall that, the length of ε is
0. The number of occurrences of the letter x in w is denoted by |w|x (x ∈ A).
The reversal of w, denoted by R(w), is R(w) = anan−1 . . . a2a1. A word such
that w = R(w) is called a palindrome. The set of all palindrome in A∗ is denoted
by PALA.

A word u is a factor of w if there exist x, y ∈ A∗ such that w = xuy. The
set of all factors of w is denoted by Fact(w). If x = ε, then u is a prefix of w
and if y = ε, then u is a suffix of w. A prefix (resp. suffix) is called proper if
y �= ε (resp. x �= ε). The prefix (resp. suffix) of w of length i is denoted by
Prefi(w) (resp. Sufi(w)). A word w is balanced if for all x, y ∈ Fact(w) and
|x| = |y|, ||x|a − |y|a| ≤ 1. We call factorization of a word w a pair (u, v) such
that w = uv; sometimes, we simply write a factorization as uv.

Two words w and v are conjugates if there exist two words x, y ∈ A∗ such
that w = xy and v = yx. The mapping C : A∗ → A∗ is defined by C(a1 . . . an) =
a2 . . . ana1. Observe that Ci(w) = yx if w = xy and x ∈ Prefi mod |w|(w), ∀i ∈ Z.

We say that a word w = a1a2 . . . an has a period p if ai = ai+p for all
i ∈ {1, . . . , n − p}. A period is nontrivial if 0 < p < n. A word w is periodic if it
has a nontrivial period p. The next lemma is useful.

Lemma 1 [10]. A palindrome w has a nontrivial period p if and only if w has
a palindrome suffix or prefix of length |w| − p.

Study of Christoffel Classes: Normal Form and Periodicity 111

Consider a lattice path, which is a sequence of elementary steps in the plane;
each elementary step is [(x, y), (x + 1, y)] (horizontal step) or [(x, y), (x, y + 1)]
(vertical step). Let p and q be relatively prime integers. Consider the segment
from (0, 0) to (p, q) and the lattice path l between them located below the seg-
ment such that the polygon delimited by the segment and the lattice path has
no interior integer point.

Let A = {a, b} be a binary alphabet. The lower Christoffel word of slope
q/p is the word in A∗ encoding l, where a (resp. b) codes a horizontal (resp.
vertical) step. The upper Christoffel word of slope q/p is defined in the same
way by taking the lattice path above the segment instead of the one below the
segment. Figure 1, show the upper and the lower Christoffel word of slope 7/13.
We say that a word is a Christoffel word if it is a lower or an upper Christoffel
word. A Christoffel word is proper if its length is at least 2. The only non proper
Christoffel words are a and b. Let us denote by C the set of all Christoffel words.

Fig. 1. The lower (resp. upper) Christoffel word of slope 7/13 is aabaabaabaabaabaabab
(resp. babaabaabaabaabaabaa)

Now, let us recall some useful properties of Christoffel words. Let w be a
Christoffel word. The word R(w) is also in C. Moreover, w and R(w) are conju-
gates. All proper Christoffel words can be written as xmy with m a palindrome,
x, y ∈ A and x �= y. Each proper Christoffel words has a unique standard fac-
torization (u, v) such that u, v ∈ C [4]. They have another factorization called
palindromic factorization (v′, u′) such that u′, v′ ∈ PALA and |u| = |u′| and
|v| = |v′|. For example, the standard factorization of the lower Christoffel words
of slopes 7/13 (see Fig. 1) is (aab, aabaabaabaabaabab) and its palindromic fac-
torization is (aabaabaabaabaabaa, bab).

The Christoffel tree [3] is the complete binary tree where the root is labelled
by (a, ab, b) and each vertex (u, uv, v) has two children given by the following
rules: the left child is (u, uuv, uv) and the right child is (uv, uvv, v). The mid-
dle term of each node is the Christoffel word given by this node and the two
other words describe its standard factorization. Each proper lower Christoffel
word appears exactly once as middle element in the Christoffel tree. Let w be a
Christoffel word and (u, v) its standard factorization. The construction rules of

112 M. Lapointe

the Christoffel tree implies that for every node in the tree except the root, u is
a proper prefix of v or v is a proper suffix of u.

If w is a proper Christoffel word such that |w| > 2, one has either |u| < |v| or
|u| > |v|. In the first case, one has w = utα with t maximum (α is shorter than
u and even a proper suffix of u) and in the second w = βvt with t maximum (β
is shorter than v and even a proper prefix of u). We denote this by t(w). One
has t = �|v|/|u|� if |u| < |v| and t = �|u|/|v|� if |v| < |u|. Moreover, α is the
second element of the standard factorization of u and β is the first element in
the standard factorization of v.

If |w| > 2, then t(w) ≥ 2. Moreover, ∀i ≤ t, the words u, v, uiα and βvi

are Christoffel words. For example, if w is the lower Christoffel word in Fig. 1,
then u is a prefix of v, w = (aab)6ab and aab, ab, (aab)5ab, (aab)4ab, (aab)3ab,
(aab)2ab and aabab are Christoffel words.

If |w| = 2, then |u| = |v| and neither u nor v is a prefix or a suffix of the
other one. Furthermore, w does not have conjugates which are not Christoffel
words, since w = ab or w = ba in this case.

A word over {a, b} is called a Sturmian factor if it is balanced. The following
statements were proved in [14]. Let m be a sturmian factor which is not a power
of a letter. The left normal form of m is (s, cn, p), where c ∈ C with palindromic
factorization c = (v′, u′), n ≥ 1, s is a proper suffix of u′ and p is a proper
prefix of c. Equivalently, if |c| is a period of m and s is shorter than u′, then
s is a proper suffix of u′. Also, if |c| is a period of m and p is shorter than
c, then p is a proper prefix of c. The left normal form of sturmian factor is
unique. For example, if m = ba2ba2ba2ba2baba2ba2, then the left normal form of
w is (b, (a2ba2ba2ba2bab)1, a2ba2). There is also the right normal form (s, cn, p)
of m where s is a proper prefix of c and p is a proper prefix of v′. In the left
normal form, if p is a proper prefix of v′, then the left and the right normal form
coincide. Otherwise, the right normal form of m is (s′, R(c)n, p′) with s′ = sv′

and p = v′p′. Moreover, the reversal of the left (resp. right) normal form (s, cn, p)
of m is (R(p), R(c)n, R(s)): it is the right (resp. left) normal of R(m), since R(c)
is a Christoffel word with palindromic factorization (u′, v′).

The normal form of m gives information about its minimal period: since c
is an unbordered factor of m, the minimal period of m is exactly |c| and c is a
periodic pattern of m. Note that conjugates of Christoffel words are sturmian
factors, so that they have a unique left normal form (See [14] Sect. 11 for more
information.).

3 Period in Conjugates of Christoffel Words

The conjugacy relation is an equivalence relation. To represent each class in the
relation, let us take the Christoffel word such that |u| < |v| in its standard fac-
torization (u, v); this is possible since each conjugacy class has a lower Christoffel
word w and an upper Christoffel word R(w) conjugate to it.

The function R is an involution, so that R = R−1.

Study of Christoffel Classes: Normal Form and Periodicity 113

Lemma 2. C = RC−1R

Proof. Let w = a1 . . . an be any word.

RC−1R(w) = RC−1R(a1 . . . an) = RC−1(an . . . a1) = R(a1an . . . a2) = C(w).

�
Corollary 3. If w is a proper Christoffel word and (u, v) is its standard factor-
ization, then

∀i ∈ Z, Ci(w) = RC|v|−i(w).

Proof. Let j = |v|. We first prove that w = RCj(w). Suppose that u and v
are both proper Christoffel words. Then w = xw1yxw2y = xw2xyw1y with
w1, w2, w1xyw2 ∈ PALA and v = xw2y. Thus,

RCj(w) = RCj(xw2xyw1y) = R(yw1yxw2x) = xw2xyw1y = w

since |xw2x| = |v| = j. If |u| or |v| is not a proper Christoffel word, then clearly
RCj(w) = w. By Lemma 2, we have C = RC−1R = RC−1R−1, thus

Ci(w) = RC−iR(w) = RC−iRRCj(w) = RCj−i(w)

since w = RCj(w). Hence, Ci(w) = RCj−i(w).
�
In particular, the conjugacy class of Christoffel words is closed under reversal.

Lemma 4. Let w be a Christoffel word of length at least 3 and (u, v) its
standard factorization with |u| < |v|. If w = xy with |x| = k|u| + 1 and
k ∈ {0, 1, . . . , �|v|/|u|} and if p is the prefix of w of length |v| − (k|u| + 1),
then the word yp has a nontrivial period of length |v| − k|u|.

Note that k|u|+1 < |v|+1 ≤ |w|, since gcd(|u|, |v|) = 1. So, |v|−(k|u|+1) ≥ 0.

Proof. Suppose first that u is proper so that v is proper too. Note that the word
w can be written as w = a1 . . . a|v|a|v|+1 . . . a|w|. Recall that w = xw1yxw2y =
xw2xyw1y with w1, w2, w1xyw2 ∈ PALA and x �= y such that x, y ∈ A.

Next, we prove that yp = ak|u|+2 . . . a|w|a1 . . . a|v|−(k|u|+1) is a palindrome for
all 0 ≤ k ≤ �|v|/|u|. If k = 0, then yp = a2 . . . a|w|a0 . . . a|v|−1 and yp is equal
to w2xyw1yxw2. Thus, yp is a palindrome since w1 and w2 are palindromes. If
0 < k ≤ �|v|/|u|, the word ak|u|+1 . . . a|w|a0 . . . a|v|−(k|u|+2) is a factor of the
palindrome yp where a prefix and a suffix of length k|u| is removed, then it is a
palindrome.

Finally, we check that the suffix w′ = a|v|+2 . . . a|w|a1 . . . a|v|−(k|u|+1) of yp
is also a palindrome. If k = 0, then w′ = a|v|+2 . . . a|w|a1 . . . a|v|−1 and we have
w′ = w1xyw2 which is a palindrome since it is the central word of w. Also,
we have |u| and |v| are periods of w′, then by Lemma 1, the prefixes of length
|w′| − k|u| for all 0 < k ≤ �|v|/|u| are palindromes.

We have yp a palindrome with a palindrome suffix w′, hence, by Lemma 1

|yp| − |w′| = 2|v| − 2k|u| + |u| − 2 − (|v| − k|u| + |u| − 2) = |v| − k|u|
is a period of yp. Therefore, the period is nontrivial since |yp| > |v| − k|u|.

We leave the case when |u| = 1 to the reader.
�

114 M. Lapointe

Lemma 5. Let w be a Christoffel word of length at least 3 and (u, v) its
standard factorization with |u| < |v|. Let k ∈ {0, 1, . . . , �|v|/|u|}. For all
i ∈ {k|u| + 1, . . . , |v| − k|u| − 1}, Ci(w) has the nontrivial period |v| − k|u|.
Proof. The words Ci(w) are exactly the factors of length |w| of the word yp
defined in Lemma 4. Since the word yp has a period |v|−k|u|, then its factors of
length |w| also have the same period which is nontrivial since |w| = |u| + |v| >
|v| − k|u|.
�

The previous result is useful for identifying many periods of conjugates of
Christoffel words, but these words may have other periods. For example, the
word abaaaba is conjugate to the Christoffel word (baa, baaa), but abaaaba has
a period of length 6, which is not given by Lemma5. In Sect. 4, we prove that
the smallest period given for each word by Lemma5 is its minimal period.

4 Left Normal Form and Minimal Period

Before stating the results, observe that if w is a Christoffel word, then its normal
form is (ε, w, ε), so that we disregard this case in the sequel. Every conjugates of
Christoffel word of length 1 and 2 are also Christoffel word, so we ignore those
words. Recall that a Christoffel word and it reversal have the same conjugates
so we suppose that its standard factorization satisfied |u| < |v|: indeed, if this is
not true for w, then it is true for the Christoffel word R(w).

Theorem 6. Let w be a Christoffel word of length at least 3 and (u, v) its stan-
dard factorization. We assume that |u| < |v| and that w = utα where t = t(w).
The left normal form of the conjugates of w which are not Christoffel words is
(s, cn, p) with one of the following conditions:

n c ps
1 ukα or R(ukα) uj or R(uj)
t u or R(u) α or R(α)

t − 1 u uα

with 0 ≤ j ≤ � t
2 and k = t − j.

Proof. Let Ci(w) be a conjugate of w which is not a Christoffel word, then i �= 0
and i �= |v| by Corollary 3. We consider 5 cases depending on the value of i.

1. If 1 ≤ i ≤ |v|/2, then Ci(w) = s(ut−jα)p with j − 1 = �i/|u|� as in Fig. 2(a):
u = u1u2, p = uj−1u1 and s = u2. Observe that if u2 = ε, then u1 = u. Moreover,
ut−jα is a Christoffel word and its palindromic factorization is (v′, u′) such that
|u′| = |u| and |v′| = |ut−j−1α|. The word s is a proper factor of u, hence s is a
proper suffix of u′.

Also, j ≤ �t/2�, since

j =
⌈

i

|u|
⌉

≤
⌈ |v|

2|u|
⌉

≤
⌈

t

2

⌉
.

Study of Christoffel Classes: Normal Form and Periodicity 115

Thus, p is a proper prefix of ut−jα, since gcd(|u|, |v|) = 1 which means that
j−1 < t−j and u2 �= ε. Finally, we conclude that the left normal form is (s, c, p)
with c = ut−jα and ps = uj .

2. If |v|/2 < i ≤ |v|−1, we have that Ci(w) = RC|v|−i(w) by Corollary 3. We have
1 ≤ |v| − i < |v|/2, therefore the left normal form of C|v|−i(w) is (s1, ut−jα, p1)
as in the previous case and j = �(|v| − i)/|u|� ≤ �t/2�. Hence, the right normal
form of Ci(w) is (R(p1), R(ut−jα), R(s1)). If R(p1) is a proper suffix of v′,
then the left normal form of Cj(w)is (s, c, p) = (R(p1), R(ut−jα), R(s1)) and
ps = R(s1)R(p1) = R(uj). Otherwise, R(p1) = p′

1v
′ since |R(ut−jα)| is a period

of Cj(w) by Lemma 5. Hence, the left normal form of Cj(w) is (s, c, p) = (p′
1,

v′R(ut−j−1α)u′, v′R(s1)) = (p′
1, u

t−jα, v′R(s1)) with p′
1 = R(u1)R(uj−2)u′ and

ps = v′R(s1)p′
1 = v′R(s1)R(u1)R(u)j−2u′ = uj .

From now on, let (u′
2, u

′
1) be the palindromic factorization of u and (u1, u2)

be the standard factorization of u; u2 = α (see Sect. 2). Also, recall that u is a
Christoffel word and |u| is a period of Ci(w) by Lemma 5.

3. If |w| − |α| ≤ i ≤ |w| − 1, then α = p1s1 (p1 may be empty, but not s1) as in
Fig. 2(b). Observe that p1 is a proper prefix of u, since |p1| < |α| < |u|. There is
two cases to consider:

– If |s1| < |u′
1|, then s1 is a proper suffix of u′

1, hence the left normal form of
Ci(w) is (s, cn, p) = (s1, ut, p1) and n = t, c = u, ps = α.

– Otherwise, |s1| ≥ |u′
1|, s1 is a proper suffix of u, since |s1| ≤ |α| < |u|. Also,

|p1| < |u′
2|, since |s1| + |p1| < |u| = |u′

1| + |u′
2|. Thus, p1 is a proper prefix

of u′
2 and (s1, ut, p1) is the right normal form of Ci(w). Now, we have that

s1 = s′
1u

′
1 and the left normal form of Ci(w) is (s, ct, p) = (s′

1, R(u)t, u′
1p1).

w · · ·u · · ·u u α

i
p1 s1 c = ut−jα

(a) 1 ≤ i ≤ |v|
2

w · · ·u · · ·u u α

i
p1 s1c = ut

|u|

(b) |w| − |α| ≤ |w| − 1

w · · ·u · · ·u u α

i
p2 s2c = ut−1

|u|
|α|

(c) |v| + 1 ≤ i ≤ |v| + |α|

w · · ·u · · ·u u α

i
p1 s1c = ut−1

|u|

(d) |v| + |α| < i < |w| − |α|

Fig. 2. Represent a conjugates Ci(w) of w in different cases of Theorem 6

116 M. Lapointe

Recall that α = u2, thus |α| ≥ |s1| ≥ |u′
1| = |u1|. Suppose that |u1| < |α|, the

standard factorization of α is (u1, δ) by Sect. 2 and is palindromic factorization
is (δ′, u′

1) with |δ′| = |δ| and |u′
1| = |u1|. Hence, α = δ′u′

1 = p1s1. Now,
|s1| ≥ |u′

1|, then p1 is a prefix of δ′ and δ′ = p1s
′
1. Thus,

ps = u′
1p1s

′
1 = u′

1δ
′ = R(α).

Suppose now, that |u1| = |α|. Then, u1 = x, α = y and {x, y} = {a, b}.
Hence, the right normal form of Ci(w) is (y, (xy)t, ε) and the left normal
form of Ci(w) is (ε, (yx)t, y) and ps = y = R(α).

4. If |v| + 1 ≤ i ≤ |v| + |α|, then |u| − |α| ≤ |s2| ≤ |u| − 1, since |s2| = |w| − i
(|s2| ≥ |w| − (|v| + |α|) = |u| − |α| and |s2| ≤ |w| − (|v| + 1) = |u| − 1) as in
Fig. 2(c). Moreover, |s2| ≥ |u′

1|, since |u| = |u′
1| + |α|. The reversal of Ci(w) is

C|v|−i(w) = C|w|+|v|−i(w) by Corollary 3. Hence, |w|−|α| ≤ |w|+|v|−i ≤ |w|−1.
Thus, the left normal form of C|v|−i(w) is given by the case 3. Let (s1, ut, p1)
be the left or right normal form of C|v|−i(w). If |u′

1| > |α|, then s1 is always a
proper suffix of u′

1, since |s1| ≤ |α|. Otherwise, |u′
1| ≤ |α| and |s1| can be greater

than |u′
1|. Suppose that |s1| ≥ |u′

1|, then

|w| + |v| − i ≤ |w| − |u′
1| ⇒ i ≤ |u′

1| + |v| = |w| − |α|,
since |w| = |u| + |v| = |u′

1| + |α| + |v| ⇒ |u′
1| + |v| = |w| − |α|. Thus, Ci(w)

is already given by case 3. Therefore, the only unsolve case is when s1 is a
proper prefix of u′

1. Hence, the left normal form of C|v|−i(w) is (s1, ut, p1) with
p1s1 = α. Therefore, the right normal form of Ci(w) is (R(p1), R(u)t, R(s1))).
Observe that |p1|+ |s1| = |α| = |u2| = |u′

2| and s1 �= ε, thus p1 is a proper prefix
of u′

2 and R(p1) is a proper suffix of R(u′
2). Thus, the left and the right normal

form coincide. The left normal form of Ci(w) is (s, cn, p) = (R(p1), R(u)t, R(s1))
and ps = R(s1)R(p1) = R(p1s1) = R(α).

5. If |v| + |α| < i < |w| − |α|, we have u = γ1γ2, p1 = γ1 and s1 = γ2α as in
Fig. 2(d) (γ1 and γ2 are not empty). Observe that |α| < |s1| < |u| − |α|, since
|s1| = |w| − i < |w| − |v| − |α| = |u| − |α|. Moreover, |u1| = |u| − |α|, thus
|s1| < |u1| = |u′

1|. Also, p1 is a proper prefix of u, since γ2 is not empty. Thus,
the left normal form of Ci(w) is (s, cn, p) = (s1, ut−1, p1) and n = t − 1, c = u
and ps = uα.
�

Knowing the left normal form, we also know the minimal period (see Sect. 2).
Moreover, the right normal form can be deduced from Theorem6.

Corollary 7. Let w be a Christoffel word of length at least 3 and (u, v) its
standard factorization. If |u| < |v|, then the minimal period of Ci(w) is

pmin(Ci(w)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|w| if i ∈ {0, |v|}
|v| +

(
1 −

⌈
i

|u|
⌉)

|u| if 1 ≤ i ≤ |v|/2

|v| +
(
1 −

⌈
|v|−i
|u|

⌉)
|u| if |v|/2 ≤ i ≤ |v| − 1

|u| if |v| + 1 ≤ i ≤ |w|.

Study of Christoffel Classes: Normal Form and Periodicity 117

Proof. This follows from the proof of Theorem6. Recall that v = ut−1α with
t = t(w). Hence, |v| = |(t−1)|u|+ |α| and |α| = |v|−(t−1)|u|. For 1 ≤ i ≤ |v|/2,
the minimal period is |c| where c = ut−jα and j = �i/|u|�. Therefore,

|c| = (t − j)|u| + |α|
= (t − j)|u| + |v| − (t − 1)|u|
= |v| + (1 − j)|u|.

For |v|/2 < i ≤ |v| − 1, the minimal period is |c|, where c = ut−jα or c =
R(ut−jα) and j = �(|v|− i)/|u|�. The length of ut−jα or R(ut−jα) is equal, thus
as in the previous case c = |v| + (1 − j)|u|. For |v| < i < |w|, the minimal period
is |c| = |u|.
�

The minimal period in the interval [0, |v|] and [|v|+1, |w|] are symmetric (see
Fig. 3). We deduce this symmetry from Corollary 3, since the minimal period of
w and R(w) is equal. Also, the conjugates Ci(w) for |v| < i < |w| have always
the same minimal period.

 0

 5

 10

 15

 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

m
in

im
al

 p
er

io
d

i

 0

 5

 10

 15

 20

0 1 2 3 4 5 6 7 8 9 10 11

m
in

im
al

 p
er

io
d

i

Fig. 3. Minimal period of conjugates of aabaabaabaabaabaabab and aababaababab

Corollary 8. Let w be a Christoffel word of length at least 3 and (u, v) its
standard factorization. If u and v are proper Christoffel words, then the number
of nontrivial minimal period of the conjugacy class of w is �t(w)/2�. Otherwise,
it is �t(w)/2� − 1.

Proof. Suppose that |u| < |v|. If |u| = 1, then there is no conjugate such that
the left normal form is (s, un, p) or (s,R(u)n, p) which means that no conjugates
has |u| as period. Otherwise, there is |u| − 1 conjugates that have a minimal
period of length |u|. Corollary 7 give us �t(w)/2� distinct minimal periods for
the |v| − 1 other conjugates. Thus, if u and v are proper Christoffel word, there
is �t(w)/2� distinct minimal period and �t(w)/2� + 1 otherwise.
�

Standard words are particular conjugates of Christoffel words. A word s is
standard if s = gyx for some Christoffel word xgy with x, y ∈ {a, b} and x �= y.
Hence, the standard word associate to w is C(w).

118 M. Lapointe

Corollary 9. Let s be a standard word conjugate to the Christoffel word w and
(u, v) its standard factorization. If |u| < |v|, then the minimal period of s is |v|.
Otherwise, the minimal period of s is |u|.
Proof. This is straightforward by Corollary 7, since s = C(w).
�

Corollary 9 is a generalization of a result in [10], where de Luca gives the
minimal period of Standard words, when the standard factorization of w =
C−1(s) satisfy |v| > |u|.

5 Normal Form of Conjugates of Christoffel Words

Now we want to characterize, among all left normal forms, those which represent
conjugates of Christoffel words.

Theorem 10. Let (s, cn, p) be the left normal form of a sturmian factor m,
which is not the power of a letter. Assume that the standard factorization of c
is (u, v). Then m is conjugate to a Christoffel word, without being a Christoffel
word, if and only if one of the following is satisfied:

a. n = 1, ps = uj or vj for some j > 1;
b. n ≥ 1, ps ∈ {u, v, uv2}.

The cases ps = u2v don’t happens, since the left normal form is not symmetric.

Proof. Suppose that m is conjugate to a Christoffel word w, without being a
Christoffel word. Let (x, y) be the standard factorization of w. We may assume
that |x| < |y|, replacing w by R(w) if necessary. Write w = xtα, t = t(w). Recall
that the word α is a Christoffel word and it is a proper prefix of the word x.
Moreover, the standard factorization of x is (u1, α). Then by Theorem 6, the left
normal form of m is one of the following form:

i. n = 1 and either c = xiα, ps = xj or c = R(xiα), ps = R(xj). In the first
case, the standard factorization of c is (u, v) = (x, xi−1α), then ps = xj = uj .
In the second case, the standard factorization of c is (u, v) =
(R(xi−1α), R(x)) and ps = R(xj) = vj . Also, j > 0 otherwise ps = ε and
m is a Christoffel word. We may assume that j > 1 since the case j = 1 is
cover by the case (b).

ii. n = t and either c = x, ps = α or c = R(x), ps = R(α). In the first
case, the standard factorization of x = c is (u1, α), thus α = v since the
standard factorization is unique. Hence, ps = v. In the second case, the
standard factorization of c = R(x) is (R(α), R(u1)), thus R(α) = u, since
the standard factorization is unique. Hence, ps = u.

iii. n = t − 1 and c = x and ps = xα. The standard factorization of c = x is
(u1, α) = (u, v), since the standard factorization is unique. Hence, ps = xα =
uvv.

Study of Christoffel Classes: Normal Form and Periodicity 119

Conversely, suppose that (s, cn, p) is the left normal form of m with c =
(u, v) its standard factorization. The words u, v and c are Christoffel words and
they form the Christoffel triplet (u, c, v). We want to prove that (s, cn, p) is a
conjugates to a Christoffel word without being a Christoffel word. First, (s, cn, p)
cannot be a Christoffel word since ps �= ε.

If n = 1 and ps = uj , the word psc = ujuv is a Christoffel word since the jth

right child of (u, uv, v) is the triplet (u, uj+1v, ujv). The word psc is conjugate
to scp, thus scp is a conjugate to a Christoffel word. If ps = vj , the word cps is
a Christoffel word by similar arguments, then scp is a conjugate to a Christoffel
word.

If n ≥ 1 and ps = v. We want to prove that the word cnps = (uv)nv is a
Christoffel word. The triplet (u, c, v) is in the Christoffel tree. His left child is
the triplet (uv, uvv, v) and applied n times the right child rules give the triplet
(uv, (uv)nv, (uv)n−1v). Therefore, the word cnps is a Christoffel word and scnp
is a Christoffel word conjugates. Similarly, one proves that scnp is a Christoffel
word, if ps = u.

If ps = uv2, apply the right child rules on the triplet (u, uv, v) and we obtain
the triplet (uv, uv2, v) and applying n time the left child rule gives the triplet (uv,
(uv)nuv2, uv2). Hence, the word cnps is a Christoffel word and scnp = (uv)nuv2

is a conjugates to a Christoffel word.
�
If (s, c, p) is left normal form of a conjugate of a Christoffel word with ps = uj

or ps = vj , then j ≤ t(w) otherwise |p| > |c| and p is not a proper prefix of c.
For example, the left normal form of abaabaabaabaabaabaab is (a, (ba.a)6, b) with
ps = ba.

Corollary 11. Let (s, cn, p) be the left normal form of some conjugate of the
Christoffel word w. Then c or R(c) is a factor of w.

Proof. This is a consequence of Theorem 10.
�

(a, ab, b)

(a, aab, ab)

(aab, aabab, ab)

(aab, aabaabab, aabab)

(aab, aabaabaabab, aabaabab)

(aab, aabaabaabaabab, aabaabaabab)

Fig. 4. The Christoffel tree before the word w = aabaabaabaabab. The framed node
are the Christoffel words that appear in the left normal form of a conjugates of w

120 M. Lapointe

The word c or R(c) are some ancestor of w or R(w) in the Christoffel tree as
in Fig. 4. Let w be a Christoffel word and (u, v) its standard factorization with
|u| < |v|. Recall that w = utα with t = t(w). The word c or its reversal are the
last �t(w)/2� Christoffel words between (u, uα, α) and (u,w, v) or the Christoffel
word (u′, u, α).

Acknowledgments. I would like to thank Christophe Reutenauer, Srecko Brlek,
Alexandre Blondin Massé and Sébastien Labbé for their suggestions and their help-
ful comments. I was supported by NSERC (Canada).

References

1. Berstel, J.: Tracé de droites, fractions continues et morphismes itérés. Mots, pp.
298–309 (1990)

2. Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.: Combinatorics on words:
Christoffel words and repetitions in words. CRM Monograph Series, 27. Ameri-
can Mathematical Society, Providence (2009)

3. Berstel, J., de Luca, A.: Sturmian words, Lyndon words and trees. Theoret. Com-
put. Sci. 178(1–2), 171–203 (1997)

4. Borel, J.P., Laubie, F.: Quelques mots sur la droite projective réelle. J. Théor.
Nombres Bordeaux 5, 15–27 (1993)

5. Borel, J.P., Reutenauer, C.: On Christoffel classes. RAIRO Theor. Inf. Appl. 40(1),
15–27 (2006)

6. Chuan, W.F.: α-words and factors of characteristic sequences. Discrete Math. 177,
33–50 (1997)

7. Currie, J.D., Saari, K.: Least periods of factors of infinite words. Theor. Inform.
Appl. 43(1), 165–178 (2009)

8. Hegedüs, L., Nagy, B.: On periodic properties of circular words. Discrete Math.
339(3), 1189–1197 (2016)

9. Lothaire, M.: Combinatorics on Words. Addison Wesley, Boston (1983)
10. de Luca, A.: Sturmian words: structure, combinatorics, and their arithmetics.

Theor. Comput. Sci. 183, 45–82 (1997)
11. de Luca, A., Luca, A.D.: Some caracterizations of finite Sturmian words. Theor.

Comput. Sci. 356, 557–5573 (2006)
12. de Luca, A., Mignosi, F.: Some combinatorial properties of Sturmian palindromes.

Theor. Comput. Sci. 136(2), 541–546 (1994)
13. Pirillo, G.: A curious characteristic property of standard Sturmian words. In:

Crapo, H., Senato, D. (eds.) Algebraic Combinatorics and Computer Science, pp.
541–546. Springer, Milano (2001)

14. Reutenauer, C.: Studies on finite Sturmian words. Theor. Comput. Sci. 591, 106–
133 (2015)

On Arithmetic Index in the Generalized
Thue-Morse Word

Olga G. Parshina1,2(B)

1 Sobolev Institute of Mathematic SB RAS, 4 Acad. Koptyug Avenue,
630090 Novosibirsk, Russia

parolja@gmail.com
2 Institut Camille Jordan, Université de Lyon, Université Claude Bernard Lyon 1,

43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

Abstract. Let q be a positive integer. Consider an infinite word ω =
w0w1w2 · · · over an alphabet of cardinality q. A finite word u is called
an arithmetic factor of ω if u = wcwc+dwc+2d · · · wc+(|u|−1)d for some
choice of positive integers c and d. We call c the initial number and d
the difference of u. For each such u we define its arithmetic index by
�logq d� where d is the least positive integer such that u occurs in ω as
an arithmetic factor with difference d. In this paper we study the rate of
growth of the arithmetic index of arithmetic factors of a generalization of
the Thue-Morse word defined over an alphabet of prime cardinality. More
precisely, we obtain upper and lower bounds for the maximum value of
the arithmetic index in ω among all its arithmetic factors of length n.

Keywords: Arithmetic index · Arithmetic progression · Thue-Morse
word

1 Introduction

One of the main characteristics of a given word is the subword complexity which
counts the number of its distinct factors of each fixed length. We are interested in
studying of so-called arithmetic factors. In other words, for a given infinite word
ω = w0w1w2 · · · over a finite alphabet Σ we are studying the structure of its
arithmetic closure – the set Aω = {wcwc+dwc+2d · · · wc+(n−1)d|c ≥ 0, d, n ≥ 1}.
Elements of Aω are arithmetic subsequences or arithmetic factors with initial
number c and difference d of the word ω. Of special interest are arithmetic
factors having period 1, which are called arithmetic progressions. According to
the classical Van der Waerden theorem [13], the arithmetic closure of each infinite
word ω over an alphabet of cardinality q for every positive integer n contains an
arithmetic progression of length n. A point of interest is to determine an upper
bound on the minimal difference, with which the arithmetic progression of length n

This work was performed within the framework of the LABEX MILYON (ANR-10-
LABX-0070) of Universite de Lyon, within the program “Investissements d’Avenir”
(ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 121–131, 2017.
DOI: 10.1007/978-3-319-66396-8 12

122 O.G. Parshina

appears in the arithmetic closure of a given word. The first result of the paper (see
Theorem 1) concerns the distribution of words with period 1 in case ω is an infinite
word over an alphabet of prime cardinality generalising the classical Thue-Morse
word originally introduced by Thue in [11] (see also [1]). For a prime q and for
every positive integer n this theorem provides the maximal length of an arithmetic
progression with difference d < qn in the generalized Thue-Morse word over the
alphabet of cardinality q and extends the earlier result on the generalized Thue-
Morse word over the alphabet of cardinality 3 obtained by the author in [10].

The next question appearing in this context concerns the distribution of
arithmetic subsequences with period 2. In the case of binary alphabet such sub-
sequences have period 01, and we call them alternating subsequences. There is
a conjecture, that in the Thue-Morse word alternating sequences are “the hard-
est to find”, i.e. if d is the difference of the first occurrence of the alternating
sequence of length n in the Thue-Morse word as an arithmetic factor, and h is
the difference of the first arithmetic occurrence of some binary word of length n
in the Thue-Morse word, then d is great or equal to h.

To carry out computer experiments and to check the conjecture we introduce
the notion of arithmetic index. More precisely, given a positive integer q and an
infinite q-automatic word ω, for every finite word u from its arithmetic closure
we seek to determine the least positive integer d such that u occurs in ω with
difference d. We call the q-ary representation of the difference d the arithmetic
index of u in ω.

Computer experiments show that the set of words of the maximal arithmetic
index in the Thue-Morse word contains alternating sequences, but they are not
the sole members of this set. Describing this set even for a particular word did
not appear to be an easy task. In this paper we try to determine upper and
lower bounds on the rate of growth of the arithmetic index in case when ω
is the generalized Thue-Morse word over the alphabet of prime cardinality. An
upper bound is determined using the result on lengths of arithmetic progressions
formulated in Theorem 1; a lower bound is obtained using the subword and
arithmetical complexities of the word.

2 Preliminaries

Let q be a positive integer and Σ a finite alphabet of cardinality q. An infinite
word over Σ is an infinite sequence ω = w0w1w2 · · · with wi ∈ Σ for every i ∈ N.
A finite word u over Σ is said to be a factor of ω if u = wjwj+1 · · · w|u|+j−1 for
some j ∈ N.

For each positive integer d, let Aω(d) = {wcwc+dwc+2d · · · wc+(k−1)d|c, k ∈ N}
be the set of all arithmetic subsequences in the word ω of difference d. Elements
of Aω(d) are called arithmetic factors or arithmetic subwords of ω.

The arithmetic closure of ω is the set Aω =
∞⋃

d=1

Aω(d) consisting of all its

arithmetic factors, and the function aω(n) = |Aω ∩ Σn| counting the number
of distinct arithmetic factors of each fixed length n occurring in ω is called the

On Arithmetic Index in the Generalized Thue-Morse Word 123

arithmetical complexity of ω. The notion of arithmetical complexity was intro-
duced by Avgustinovich, Fon-der-Flaass and Frid in [2]. Since Aω(1) coincides
with the set of factors of ω, it follows trivially that aω(n) ≥ pω(n). But aside
from this basic inequality, there is no general relationship between the rates of
growth of these two complexity functions. For instance, there exist infinite words
of linear factor complexity and whose arithmetical complexity grows linearly or
exponentially, as seen in [2]; arithmetical complexity of Sturmian words, which
have subword complexity equals n + 1, grows as O(n3) (see [5]). A characteriza-
tion of uniformly recurrent words having linear arithmetical complexity one can
see in [7]. The question about lowest possible complexity among uniformly recur-
rent words was studied in [3]. A family of words with various sub-polynomial
growths of arithmetical complexity was constructed in [8].

For a given infinite word ω and a finite word u ∈ Aω we are interested in
the least positive integer d such that u belongs to Aω(d). We denote the length
of the q-ary representation of such a minimal difference as iω(u) and call this
quantity the arithmetic index of u in ω. For each positive integer n, we consider
the function Iω(n) = max

u∈Aω∩Σn
iω(u). Let us note, that this function is defined

over the set of arithmetic factors of ω.
In this we study the growth rate of the arithmetic index for a generalization

of the Thue-Morse word defined over an alphabet Σq = {0, 1, ..., q − 1}, where
q is a prime number. Let Sq : N → Σ+

q be the function which assigns to each
natural number x its base-q expansion. The length of this word is denoted by
|Sq(x)|. Also let sq(x) be the sum modulo q of the digits in q-ary expansion of x.

In other words, if x =
n−1∑

i=0

xi · qi, then Sq(x) = xn−1 · · · x1x0 and sq(x) =
n−1∑

i=0

xi

mod q. We define the generalized Thue-Morse word ωq = w0w1w2w3 · · · over the
alphabet Σq by wi = sq(i) ∈ Σq. We note that this generalization differs from
the one given in [12]. In case q = 2, we recover the classical Thue-Morse word
which is known to be arithmetic universal, i.e. aω2(n) = 2n, as it is shown in [2],
moreover, using results of the paper it is easy to deduce that aωq

(n) = qn. In
case q = 3, the generalized Thue-Morse word over ternary alphabet is given by:

ω3 = 012120201120201012201012120 · · ·

A lower and an upper bounds on the rate of growth of the function Iωq
(n) =

max
u∈Aωq ∩Σn

q

iωq
(u) are obtained in the paper. The upper bound grows as O(n log n),

the lower one grows linearly.

3 Upper Bound on Arithmetic Index in ωq

An upper bound is based on the distribution of arithmetic progressions – arith-
metic subsequences consisting of the same symbols – in the generalized Thue-
Morse word formulated below.

124 O.G. Parshina

3.1 Theorem on Arithmetic Progressions in ωq

Let Lω(c, d) be the function which outputs the length of an arithmetic progres-
sion with initial number c and difference d for positive integers c and d in an
infinite word ω. The function Lω(d) = max

c
Lω(c, d) gives the length of the maxi-

mal arithmetic progression with the difference d in ω. Let us note, that for us the
symbol of the alphabet on which the function Lω(c, d) reaches its maxima is of
no importance, since the set of arithmetic factors of the generalized Thue-Morse
word is closed under adding a constant to each symbol.

Theorem 1. Let q be a prime number and ωq be the generalized Thue-Morse
word over the alphabet Σq. For all integers n ≥ 1 the following holds:

max
d<qn

Lωq
(d) =

{
qn + 2q, n ≡ 0 mod q,

qn, otherwise.

Moreover, the maximum is reached with the difference d = qn − 1 in both cases.

Proof (of Theorem 1). Since the theorem is a generalization of the main result
of [10], the technique of proving is similar to one presented there.

As the first step it should be proved that for a fixed n the inequality d �= qn−1
implies Lωq

(d) ≤ qn. During the proof we have to manipulate with values q − 1
and q − 2, thus let us use the notations q̇ := q − 1, q̈ := q − 2.

Case of d �= qn − 1. Let us note that subsequences of the ωq which are com-
posed of letters with indices having the same remainder of the division by q are
equivalent to the word itself, so we do not need to consider differences which are
divisible by q.

Lemma 1. Let q be a prime number and ωq be the generalized Thue-Morse
word over Σq. For any positive integer n and d ≤ qn −1 the length of the longest
arithmetic progression with difference d in ωq is not greater than qn.

Proof. Every number can be represented in the following way: c = y · qn + x,
where x, y are arbitrary positive integers, x < qn. Let us call x the suffix of c.

Consider a set X = {0, 1, 2, ..., qn − 1}, its cardinality is |X| = qn. As far as
each difference d and suffix x belong to X and d is prime to |X|, the set X is
an additive cyclic group, and d is a generator of X, thus for every x ∈ X the set
{x + i · d}qn−1

i=0 is precisely X. To proof the statement for this case, it is enough
to provide for each d �= qn − 1 an element x ∈ X with the following properties:

(a) x + d < qn;
(b) sq(x + d) �= sq(x).

Indeed, consider the initial number of the form c = y ·qn +x with x satisfying
(a) and (b) and y being an arbitrary positive integer. Because of (a), c + d =
y · qn +(x+d). Hence, sq(c) = sq(y)+ sq(x) mod q, sq(c+d) = sq(y)+ sq(x+d)
mod q, and because of (b), sq(c + d) �= sq(c). That means, if we consider an

On Arithmetic Index in the Generalized Thue-Morse Word 125

arithmetic subsequence with difference d starting with any symbol of generalizing
Thue-Morse word and having length qn + 1, then it will contain a symbol with
the index of the form c mentioned above and thus at least two different symbols
of the alphabet Σq. This implies that the arithmetic progression in this case has
length less or equal to qn.

If sq(d) �= 0, thenx = 0fits. In other caseweuse the inequation d �= qn−1which
means that Sq(d) = dn−1 · · · d1d0 has at least one letter dj , j ∈ {0, 1, ..., n − 1}:
dj �= q̇. There are two possibilities:

1. There exists at least one index j such that dj < q̇ and dj−1 = q̇.
In this case x = qj−1 fits. Indeed, c has the q-ary representation Sq(y)Sq(x),
where all symbols xi are zeros except xj−1 = 1, thus sq(c) = sq(y) + 1. The
difference d has the representation dn−1 · · · dj q̇dj−2 · · · d0, and the sum of its

digits equals zero modulo q. More precisely,
n−1∑

i=0,i �=j−1

di + q̇ ≡ 0 mod q, or

n−1∑

i=0,i �=j−1

di − 1 ≡ 0 mod q. When we add d to c, we obtain the number c + d

with representation Sq(y)dn−1 · · · (dj +1)0dj−2 · · · d0, where dj +1 ≤ q̇. Then
sq(c) = sq(y)+ sq(d)+1− q̇ = sq(y)+2, which differs from sq(c) = sq(y)+1.

2. For every j the fact dj �= q̇ implies that all symbols having indices less than
j are not equal to q̇.
If j > 0, then d1, d0 �= q̇, and d0 �= 0 since d is not divisible by q. In this case
a suitable x is q − d0, because sq(x + d) = sq(1 − d0) �= sq(q − d0) = sq(x).
But there is no x satisfying (a) and (b) in the case j = 0, i.e. then
Sq(d) = q̇ · · · q̇

︸ ︷︷ ︸
n − 1

d0. However, we can take x with q-ary representation of the

form Sq(x) = xn−1 · · · x1q̇, where xi ∈ Σq are arbitrary, and claim that for
arbitrary value of y we obtain the number with the sum of digits different
from sq(c) = sq(y)+ sq(x) after at most two additions of the difference. Con-
sider these two steps. After adding to c with Sq(c) = Sq(y) xn−1 · · · x1q̇ and
sq(c) = sq(y) +

∑n−1
i=1 xi + q̇ the difference of the form q̇ · · · q̇d0 we obtain the

number c + d with Sq(c + d) = Sq(y + 1)xn−1 · · · x1ḋ0. Its sum of digits is
sq(y+1)+

∑n−1
i=1 xi+ḋ0, and if it differs from sq(c), then this x fits. If the values

sq(c) and sq(c + d) are equal, then the following holds: sq(y + 1) + d0 ≡ sq(y)
mod q. This implies that q-ary representation of y ends with 0 q̇ · · · q̇

︸ ︷︷ ︸
q̇−d0

, and thus

q-ary representation of y + 1 ends with zero. After the next addition of the
difference there are two cases. If 2d0 ≥ q, we obtain Sq(y +2)xn−1 · · · x1(˙2d0)
with s(y + 2) = s(y + 1) + 1 and sq(c + 2d) = sq(y + 1) +

∑n−1
i=1 xi + 2d0

mod q, which implies d0 = q̇, but this is not the case. If 2d0 < q, we
obtain the number of the form Sq(c + 2d) = Sq(y + 2)xn−1 · · · x2ẋ1(˙2d0)
with sq(c + 2d) = sq(y + 1) +

∑n−1
i=1 xi + 2d0 − 1, which implies d0 ≡ 0 mod

q and contradicts the fact d0 �= 0.

126 O.G. Parshina

Thus there are q(n − 1) different values for x, such that for every positive
integer c with the suffix x either sq(c + d) �= sq(c), or sq(c + 2d) �= sq(c + d).
That means that every arithmetic progression with the difference d with Sq(d) =
q̇ · · · q̇
︸ ︷︷ ︸
n-1

d0, d0 �= 0, d0 �= q̇ is not be longer than qn.

Since all possible values of difference d �= qn − 1 are considered, the lemma
is proved.

Case of d=qn − 1. We start with the following lemma.

Lemma 2. Let q be a prime number and ωq be the generalized Thue-Morse word
over Σq. Let d = qn − 1, c = z · q2n + y · qn + x, where x + y = qn − 1, z is a
non-negative integer, then

max
z

Lωq
(c, d) =

{
x + q + 1, n ≡ 0 mod q,

x + 1, otherwise.

Proof. For descriptive reasons let us introduce a scheme where one can see q-ary
representations of c + id and values of sq(c + id) for each value of i, and let us
give some comments on that.

i Sq(c + id) sq(c + id)
0 Sq(z) yn−1 · · · y1y0 xn−1 · · ·x1x0 nq̇ + sq(z)
...

...
...

...
...

...
... +x · d ...

...
...

...
...

...
...

x Sq(z) q̇ · · · q̇ q̇ 0 · · · 0 0 nq̇ + sq(z)
x + 1 Sq(z) q̇ · · · q̇ q̇ q̇ · · · q̇ q̇ 2nq̇ + sq(z)
x + 2 Sq(z + 1) 0 · · · 0 0 q̇ · · · q̇ q̈ nq̇ − 1 + sq(z + 1)

...
...

...
...

...
...

... +(q − 2) · d ...
...

...
...

...
...

...
x + q Sq(z + 1) 0 · · · 0 q̈ q̇ · · · q̇ 0 nq̇ − 1 + sq(z + 1)

x + q + 1 Sq(z + 1) 0 · · · 0 q̇ q̇ · · · q̈ q̇ nq̇ + q̈ + sq(z + 1)

Values in the third column are sums modulo q.
Since d = qn − 1, we can regard the action c + d as two simultaneous actions:

x−1 and y+1. Thus, while the suffix of c+id is greater then zero, the sum of digits
in Sq(c + id) equals q̇n. This value holds during the first x additions of d (when
i = 0, 1, .., x), and on the step number x the length of the arithmetic progression
is x + 1.

On the next step (i = x+1) the sum of digits in result’s q-ary representation
becomes 2q̇n + sq(z). To preserve the required property of progression members
we need q̇n ≡ 2q̇n mod q, i.e., n ≡ 0 mod q.

On Arithmetic Index in the Generalized Thue-Morse Word 127

After the next addition of the difference, z increases to z + 1, y becomes 0,
x = qn − 2 and the sum modulo q of digits in this number q-ary representation
becomes sq(z+1)+sq(x) = sq(z+1)+nq̇−1. We may choose a suitable z to hold
the homogeneity of the progression, e.g. if sq(z) = 1 we need sq(z + 1) = 2, and
z may be equal to 1. The value of the sum modulo q holds during the following
q − 2 editions of d, and we get into the situation of y = q − 2, x = qn − q̇.

After the next addition y becomes q̇, and x = qn −q−1. Now sq(y)+sq(x) =
nq̇ + q̈ mod q and is not equal to its previous value nq̇ − 1.

Hence, in the case of q|n the length of an arithmetic progression is x + q + 1
and it is x + 1 otherwise. The lemma is proved.

Lemma 3. Let q be a prime number, and ωq be the generalized Thue-Morse
word over Σq. Let n ≡ 0 mod q, d = qn − 1, c = z · q2n + y · qn + x, y = qn − q̇,
x = q̇, and z be an arbitrary non-negative integer, then max

z
Lωq

(c, d) = qn +2q.

Proof. The sum modulo q of digits in Sq(c) is equal to sq(z) + nq̇ + 1, and by
arguments similar to the ones used in Lemma 2, this value is not changing while
the suffix of c + id is greater or equal to zero, i.e. during q̇ steps; then we get
into a situation when y = x = 0 and z is increased by 1. We may set z to be a
zero to hold the homogeneity of a progression on this step.

After the next addition we get into conditions of Lemma 2 with x = qn − 1,
which provides us with an arithmetical progression of length qn + q.

Now we subtract d from the initial c to make sure that sq(c−d) �= sq(c) and we
cannot obtain longer arithmetical progression. Indeed, c−d = z·q2n+(qn−q̇)·qn+q
and the sum of digits in its q-ary representation is nq̇ − q̇ +1, while in c it is nq̇ +1.
Hence the length of this progression is 1 + q̇ + qn + q=qn + 2q, and the lemma is
proved.

Now let us prove that we can not construct an arithmetical progression with
the difference d = qn − 1 longer than qn + 2q.

Here we represent the initial number c of the progression this way: c =
y · qn + x, x < qn.

The case of initial number c with xj + yj = q̇, j = 0, 1, ..., n − 1 is described
in Lemma 2. In other case there is at least one index j such that xj + yj �= q̇.
We choose j which is the minimal. There are q · q̇ possibilities of values (yj , xj):
(0, 0), (0, 1), ..., (0, q̈), (1, 0), ..., (q̇, q̇).

Integers y and x have q-ary representations Sq(y) = ys−1 · · · yj+l+1q̇ · · · q̇yj · · ·
y0 and Sq(x) = xn−1 · · · xj+m+10 · · · 0xj · · · x0, where 0 ≤ l ≤ s − j, 0 ≤ m ≤
n − j, yj+l+1 �= q̇, and xj+m+1 �= 0.

We add qj+1 ·d to c. If l �= 0, the block q̇ · · · q̇ in Sq(y) transforms to the block
of zeros; if m �= 0, the block of zeros in Sq(x) transforms to the block q̇ · · · q̇,
yj+l+1 increases by one, and xj+m+1 decreases by one. To hold the homogeneity
we need l and m to be equal modulo q.

There are two different cases.

1. If xj < q̇ − yj , then after (xj + 1) · qj additions of the difference we obtain
the number with q-ary representation ys−1 · · · yj+l+2(yj+l+1 + 1)0 · · · 0(yj +
xj + 1)yj−1 · · · y0 xn−1 · · · xj+m+2

128 O.G. Parshina

˙xj+m+1q̇ · · · q̇q̈q̇xj−1 · · · x0 with the sum of digits sq(y) + sq(x) + q̇ �= sq(y) +
sq(x) = sq(c). Thus the length of an arithmetic progression is not greater
than qj(q + xj + 1) ≤ qn if j < n − 1.

2. If xj > q̇ − yj , we add (q − yj) · qj · d and obtain a number of the form
ys−1 · · · yj+l+2(yj+l+1 + 1)0 · · · 010yj−1 · · · y0
xn−1 · · · xj+m+2 ˙xj+m+1q̇ · · · q̇(xj − q + yj)xj−1 · · · x0 with the sum of digits
sq(y)+1− lq̇+1−yj +sq(x)+mq̇−1−q+yj = sq(y)+sq(x)+1. The length
of an arithmetic progression in this case is not greater than qj(2q − yj) ≤ qn,
if j < n − 1.

Example 1. Let us consider an example for q = 5, m = l = 3, n = 6, j = 1,
(yj , xj) = (1, 1), d = 15624, S5(d) = 444444.

number S5 s5

c = 97396881 144413200011 1
+ 44444400

c + 25 · d 200013144411 1
+ 4444440

c + 30 · d 200023144401 1
+ 4444440

c + 35 · d 200033144341 0

The case j = n − 1 needs a special consideration.
The way of acting is the same: we add x·d to c and nullify x by that, then add

d necessary number of times. Thus the worst case is then Sq(x) = xn−1q̇ · · · q̇
and Sq(y) = ys−1 · · · ynyn−10 · · · 0. The length of an arithmetic progression is
x+2 < qn+2 if n ≡ 0 mod q and x+1 ≤ qn otherwise. But since yn−1+xn−1 �= q̇,
there are two cases to consider, let us introduce schemes for both.

1. r = yn−1 + xn−1 < q̇.

i Sq(c + id) sq(c + id)
0 ys−1 · · · yn yn−1 0 · · · 0 xn−1 q̇ · · · q̇ q̇ nq̇ − q̇ + r + yn + ... + ys−1

...
...

...
...

...
...

... +x · d ...
...

...
...

...
...

...
x ys−1 · · · yn r q̇ · · · q̇ 0 0 · · · 0 0 nq̇ − q̇ + r + yn + ... + ys−1

x + 1 ys−1 · · · yn r q̇ · · · q̇ q̇ q̇ · · · q̇ q̇ 2nq̇ − q̇ + r + yn + ... + ys−1

x + 2 ys−1 · · · yn(r + 1) 0 · · · 0 q̇ q̇ · · · q̇ q̈ nq̇ + r + yn + ... + ys−1

2. r = yn−1 + xn−1 > q̇. Here we denote by y′
s−1 · · · y′

n symbols ys−1 · · · yn

transformed after increasing yn by 1 on the step x; to hold the homogeneity
their sum should be equal to ys−1 + ... + yn mod q.

On Arithmetic Index in the Generalized Thue-Morse Word 129

i Sq(c + id) sq(c + id)
0 ys−1 · · · yn yn−1 0 · · · 0 xn−1 q̇ · · · q̇ q̇ nq̇ − q̇ + r + yn + ... + ys−1

...
...

...
...

...
...

... +x · d ...
...

...
...

...
...

...
x y′

s−1 · · · y′
n (r − q) q̇ · · · q̇ 0 0 · · · 0 0 nq̇ − q̇ + r + y′

n + ... + y′
s−1

x + 1 y′
s−1 · · · y′

n (r − q) q̇ · · · q̇ q̇ q̇ · · · q̇ q̇ 2nq̇ − q̇ + r + y′
n + ... + y′

s−1

x + 2 y′
s−1 · · · y′

n (r − q + 1) 0 · · · 0 q̇ q̇ · · · q̇ q̈ nq̇ + r + y′
n + ... + y′

s−1

Hence all possible cases have been considered and the theorem is proved.

3.2 Upper Bound on the Arithmetic Index for ωq

Let q be a prime, n be a positive integer, and u be a finite word over the alphabet
Σq of length m, where qn−1 ≤ m < qn. The goal is to find its occurrence in ωq

as an arithmetic factor. To reach the goal we use an arithmetic factor of ωq of
the form 0m−1β1 · · · βm, where each βi ∈ Σq and β1 �= 0. Lemma 3 provides us
with its initial symbol c and difference d = qn − 1.

Then we define a basis {bi}m
i=1

b1 = 0 0 0 · · · 0 β1;
b2 = 0 0 0 · · · β1 β2;

...
...

...
bm = β1β2β3 · · · βm−1 βm,

where all basis elements are arithmetic factors of ωq with the difference d, and
their initial numbers are c1 = c, ci+1 = c + i · d, i = 1, ...,m − 1. The word u

can be represented in the following form: u =
m⊕

i=1

αi · bi with αi ∈ Σq for every

i = 1, 2, ...,m, where
⊕

means symbol-to-symbol addition modulo q.
Then let us construct the initial number cu of the arithmetic factor u with

q-ary representation Sq(cu) = Sq(c1) · · · Sq(c1)
︸ ︷︷ ︸

α1

· · · Sq(cm) · · · Sq(cm)
︸ ︷︷ ︸

αm

. According

to Lemma 3 the length of each Sq(ci) is not greater than 2n + q. To sim-
plify the process let us put zeros left to the nonzero symbol with the max-
imal index in every Sq(ci) when it is necessary. Hence the length of Sq(cu)
is not greater than (2n + q)mq̇. Then we construct the difference du with
Sq(du) = 0 · · · 0︸ ︷︷ ︸

n+q

q̇ · · · q̇
︸ ︷︷ ︸

n

· · · 0 · · · 0︸ ︷︷ ︸
n+q

q̇ · · · q̇
︸ ︷︷ ︸

n

of the same length, and the word u is

guaranteed to appear in ωq as an arithmetic factor with difference du and initial
number cu.

130 O.G. Parshina

The worst case is when all basis elements in the representation of u are
taken with coefficients q̇. In this case the length of Sq(du) = (2n + q)q̇ · m =
(2	logq m
 + q)q̇ · m, which is the upper bound on the function of arithmetic
index in ωq. Thus we proved the following inequality:

Iωq
(m) ≤ (2	logq m
 + q)q̇ · m

4 Lower Bound on Arithmetic Index

Consider the set Aω(d) of all arithmetic subsequences with the difference d in
the word ω over the alphabet Σq. Define a function Aω(d,m) = |Aω(d) ∩ Σm

q |
counting the number of different arithmetic factors with difference d and of
length m in ω. Clearly, |Aω(1) ∩ Σm

q | = pω(m) and, more general, Aω(d,m) =
|Aω(d) ∩ Σm

q | ≤ d · pω(m).
Obtaining a lower bound on the function Iω(m) is equivalent to obtaining

the lower bound on x in the following inequality:

aω(m) ≤
x∑

d=1

Aω(d,m) ≤
x∑

d=1

d · pω(m). Thus x + 1
2 ≥

√
1
4 + 2aω(m)

pω(m)

We are interested in the integer part of logq x. The value 	logq(x + 0.5)

is either 	logq x
 or 	logq x
 + 1, and 	logq x
 + 1 ≥ 	logq(x + 1

2)
 ≥
	logq

√
1
4 + 2aω(m)

pω(m)
.
Thus Iω(m) ≥ 	logq x
 ≥ 	 1

2 logq
2aω(m)
pω(m) − 1

The Thue-Morse word and its generalization are fixed points of uniform mor-
phisms, their subword complexity is known to grow linearly [6], i.e. pωq

(m) ≤
C · m for a positive integer C. As mentioned in Sect. 2, aωq

(m) = qm, thus the
lower bound on the function of arithmetic index in ωq is

Iωq
(m) ≥ 0.5(m − C logq m) .

The subword complexity of ω2 was computed in 1989 by Brlek [4] and de
Luca and Varricino [9]. Using their result we can set the constant C to be 4 in
this case, and the lower bound can be written in the following way:

Iω2(m) ≥ 1
2
m − 2 logq m .

5 Conclusion

To sum up, the upper bound on the function of arithmetic index grows as
O(m log m), the lower bound grows as O(m). The formula for computing the
lower bound can be applied to words with known subword and arithmetic com-
plexities; the upper bound is more difficult to compute and requires deeper
knowledge of the word structure.

According to computer experiments, which were carried out for the Thue-
Morse sequence, the real growth of the function Iω2(m) is closer to the lower

On Arithmetic Index in the Generalized Thue-Morse Word 131

bound. Moreover, both theoretical reasoning and computer data show, that alter-
nating arithmetic subsequences have the maximal arithmetic index. But they are
not the only subsequences contained in the set of words with extremal arithmetic
index; this set is going to be described for ωq and then for other automatic words.

References

1. Allouche, J.P., Shallit, J.: The ubiquitous Prouhet-Thue-Morse sequence. In: Ding,
C., Helleseth, T., Niederreiter, H. (eds.) Sequences and their Applications. Dis-
crete Mathematics and Theoretical Computer Science, pp. 1–16. Springer, London
(1999)

2. Avgustinovich, S.V., Fon-Der-Flaass, D.G., Frid, A.E.: Arithmetical complexity of
infinite words. In: Words, Languages and Combinatorics III, Kyoto 2000, pp. 51–62.
World Science Publisher, River Edge (2003). doi:10.1142/9789812704979 0004

3. Avgustinovich, S.V., Cassaigne, J., Frid, A.E.: Sequences of low arithmetical com-
plexity. Theor. Inform. Appl. 40(4), 569–582 (2006). doi:10.1051/ita:2006041

4. Brlek, S.: Enumeration of factors in the Thue-Morse word. Discrete Appl. Math.
24(1–3), 83–96 (1989). doi:10.1016/0166-218X(92)90274-E. First Montreal Con-
ference on Combinatorics and Computer Science (1987)

5. Cassaigne, J., Frid, A.E.: On the arithmetical complexity of Sturmian words. The-
oret. Comput. Sci. 380(3), 304–316 (2007). doi:10.1016/j.tcs.2007.03.022

6. Ehrenfeucht, A., Lee, K.P., Rozenberg, G.: Subword complexities of various classes
of deterministic developmental languages without interactions. Theor. Comput.
Sci. 1(1), 59–75 (1975)

7. Frid, A.E.: Sequences of linear arithmetical complexity. Theor. Comput. Sci.
339(1), 68–87 (2005). doi:10.1016/j.tcs.2005.01.009

8. Frid, A.E.: On possible growths of arithmetical complexity. Theor. Inform. Appl.
40(3), 443–458 (2006). doi:10.1051/ita:2006021

9. de Luca, A., Varricchio, S.: Some combinatorial properties of the Thue-Morse
sequence and a problem in semigroups. Theor. Comput. Sci. 63(3), 333–348 (1989).
doi:10.1016/0304-3975(89)90013-3

10. Parshina, O.G.: On arithmetic progressions in the generalized Thue-Morse word.
In: Manea, F., Nowotka, D. (eds.) WORDS 2015. LNCS, vol. 9304, pp. 191–196.
Springer, Cham (2015). doi:10.1007/978-3-319-23660-5 16

11. Thue, A.: Über die gegenseitige lage gleicher teile gewisser zeichenreichen. Skr.
Vid.-Kristiana I. Mat. Naturv. Klasse 1, 1–67 (1912)

12. Tromp, J., Shallit, J.: Subword complexity of a generalized Thue-Morse word.
Inform. Process. Lett. 54(6), 313–316 (1995). doi:10.1016/0020-0190(95)00074-M

13. Van der Waerden, B.: Beweis einer baudetschen vermutung. Nieuw Arch. Wisk.
15, 212–216 (1927)

http://dx.doi.org/10.1142/9789812704979_0004
http://dx.doi.org/10.1051/ita:2006041
http://dx.doi.org/10.1016/0166-218X(92)90274-E
http://dx.doi.org/10.1016/j.tcs.2007.03.022
http://dx.doi.org/10.1016/j.tcs.2005.01.009
http://dx.doi.org/10.1051/ita:2006021
http://dx.doi.org/10.1016/0304-3975(89)90013-3
http://dx.doi.org/10.1007/978-3-319-23660-5_16
http://dx.doi.org/10.1016/0020-0190(95)00074-M

Abelian Complexity of Thue-Morse Word
over a Ternary Alphabet

Idrissa Kaboré(B) and Boucaré Kientéga

UFR–Sciences et Techniques, Université NAZI BONI,
01 BP 1091 Bobo-Dioulasso 01, Burkina Faso

ikaborei@yahoo.fr, boucarekientaga@yahoo.fr

Abstract. In this paper, we study the Thue-Morse word on a ternary
alphabet. We establish some properties on special factors of this word
and prove that it is 2-balanced. Moreover, we determine its Abelian com-
plexity function.

Keywords: Infinite word · Factor · Morphism · Abelian complexity

Mathematics Subject Classification: 68R15 · 11B85

1 Introduction

Abelian complexity is a combinatorial notion used in the study of infinite words.
It counts the number of Parikh vectors of given length in a word. The study
of Abelian complexity was developed recently [6,7,9,16,17]. In particular, the
Abelian complexity of some words and some classes of words have been studied
[4,8,10,12,13,21,23].

The Thue-Morse word t2 on the binary alphabet {0, 1} is the infinite word gen-
erated by the morphism μ2 defined by μ(0) = 01, μ(1) = 10. The study of this
word goes back to the beginning of the twentieth century with the works of Thue
[19,20]. It was extensively studied during the last three decades [1–3,14]. In [17]
the authors have determined its Abelian complexity: for all n ≥ 1, ρab

t2 (n) = 2 if
n is odd and ρab

t2 (n) = 3 otherwise. The Thue-Morse word can be naturally gen-
eralized over an alphabet Aq of size q ≥ 3. More precisely, it is, on the alpha-
bet Aq = {0, 1, ..., q − 1}, the infinite word tq generated by the morphism μq

defined by: μq(k) = k(k + 1)...(k + q − 1), where the letters are expressed mod-
ulo q. A study of this word has been done in [18]. In this paper, we are interested
in the study of the Abelian complexity of the Thue-Morse word over the alphabet
A3 = {0, 1, 2}. More exactly, it is the word t3 generated by the morphism μ3

defined by μ3(0) = 012, μ3(1) = 120 and μ3(2) = 201.
The paper is organized as follows. After some definitions and notations, we

recall in Sect. 2 some useful results. In Sect. 3, we establish some combinatorial
properties of the word t3. We determine, in particular, its triprolongable factors,
then we show that it is 2-balanced. Lastly, in Sect. 4, we determine the Abelian
complexity function of t3.
c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 132–143, 2017.
DOI: 10.1007/978-3-319-66396-8 13

Abelian Complexity of Ternary Thue-Morse Word 133

2 Definitions and Notations

Let A be a finite alphabet. The set of finite words over A is noted A∗ and ε rep-
resents the empty word. The set of non-empty finite words over A is denoted by
A+. For all u ∈ A∗, |u| designates the length of u and the number of occurrences
of a letter a in u is denoted |u|a. A word u of length n formed by repeating a
single letter x is denoted xn.

An infinite word is a sequence of letters of A, indexed by N. We denote by Aω

the set of infinite words on A. The set of finite or infinite words on A is denoted A∞.
Let u be a finite or infinite word and v a finite word on A. The word v is

called factor of u if there exists u1 ∈ A∗ and u2 ∈ A∞ such that u = u1vu2. The
factor v is called prefix (resp. suffix) if u1 (resp. u2) is the empty word. The set
of the prefixes (resp. the suffixes) of u is denoted pref(u) (resp. suff(u)).

Let u be an infinite word. The set of factors of length n of u is denoted Fn(u).
The set of all the factors of u is denoted F (u).

Let v be a factor of u and a be a letter of A. We say that v is right (resp.
left) prolongable by a, if va (resp. av) is also a factor of u. The word va (resp.
av) is called a right (resp. left) extension of v in u. The factor v is said to be
right (resp. left) special it admits at least two right (resp. left) extensions. If v
is both right special and left special, it is called bispecial.

An infinite word u is said to be recurrent if any factor of u appears infinitely
often. It is said to be uniformly recurrent if for any natural n, it exists a natural
n0 such that any factor of length n0 contains all the factors length n of u.

A morphism on A∗ is a map f : A∗ → A∗ such that f(uv) = f(u)f(v), for all
u, v ∈ A∗. A morphism f is said to be primitive if it exists a positive integer n
such that, for all letter a in A, fn(a) contains all the letters of A. It is k-uniform,
if |f(a)| = k for all a in A. A morphism f is said to be prolongable on a letter
a if f(a) = aw where w ∈ A+, and fn(w) is non empty for any natural n. A
morphism f defined on an alphabet A = {a1, a2, ..., ad} is said to be left (resp.
right) marked, if the first (resp. last) letters of f(ai) and f(aj) are different,
for all i �= j. If f is both left marked and right marked, it is said marked. An
infinite word u is generated by a morphism f if there exists a letter a such that
the words a, f(a), ..., fn(a), ... are longer and longer prefixes of u. We note
u = fω(a). An infinite word generated by a morphism is called purely morphic
word. Let u be an infinite purely morphic word and w, a factor of u verifying

|w| ≥ max{|f(a)| : a ∈ A}.

Then w can be decomposed in the form

p0f(a1)f(a2)...f(an)sn+1,

where

• n ≥ 0, a0, a1, ..., an+1 ∈ A;
• p0 is a suffix of f(a0) and sn+1 is a prefix of f(an+1).

134 I. Kaboré and B. Kientéga

This decomposition is called synchronization [5].
Let u be an infinite word on an alphabet Aq = {a0, a1, ..., aq−1} and v, a

factor of u. The Parikh vector of v is the q-uplet ψ(w) = (|v|a0 , |v|a1 , ..., |v|aq−1).
We denote by Ψn(u), the set of the Parikh vectors of the factors of length n
of u:

Ψn(u) = {ψ(v) : v ∈ Fn(u)}.

The Abelian complexity of u is the application of N to N defined by: ρab(n) =
card(Ψn(u)). Let θ be a natural. An infinite word u is said to be θ-balanced if
for any letter a of A and any couple (v, w) of factors of u with the same length,
one has ||v|a − |w|a| ≤ θ.

Let u be an infinite word and v, a factor of u of length n. We denote by u[n]

the prefix of u of length n. The relative Parikh vector [22] of v is:

ψrel(v) = ψ(v) − ψ(u[n]).

The set of the relative Parikh vectors of the factors of u of length n will be
simply denoted:

Ψrel
n (u) = {ψrel(v) : v ∈ Fn(u)}.

This set has the same cardinal as Ψn(u). So,

ρab(n) = card(Ψrel
n (u)).

If u is θ-balanced, then all the components of relative Parikh vector are
bounded by θ [23].

Let us consider the alphabet A3 = {0, 1, 2}. The Thue-Morse word over A3

is the infinite word t3 generated by the morphism μ3 defined by μ3(0) = 012,
μ3(1) = 120, μ3(2) = 201:

t3 = lim
n−→+∞ μ

(n)
3 (0) = 012120201120201012201012120120201012201012120012...

Theorem 2.1 [11]. Let f be a primitive morphism, prolongable on a letter a.
Then, the infinite word fω(a), generated by f on a, is uniformly recurrent.

The morphism μ3 being primitive and prolongable on 0, the word t3 = μω
3 (0) is

uniformly recurrent.
In the following, we consider the alphabet A3 = {0, 1, 2}.

3 Triprolongable Factors and Balance

In this section, we establish some combinatorial properties of t3, then we show
that it is 2-balanced.

Recall the following useful lemma called synchronization lemma applied to
the morphism μ3.

Lemma 3.1 Let u be a factor of t3. Then, there exist some factors v, δ1 and δ2
of t3 such that u = δ1μ3(v)δ2 with |δ1|, |δ2| ≤ 2. This decomposition is unique
if |u| ≥ 7.

Abelian Complexity of Ternary Thue-Morse Word 135

Proposition 3.1 Let u be a factor of t3. Then, u is right (resp. left) tripro-
longable if and only if μ3(u) is right (resp. left) triprolongable.

Proof: Let u be a factor of t3, right triprolongable. Then, for any i ∈ A3, ui is
in t3. Therefore, μ3(u)i is in t3, since μ3(i) begins with i.

Conversely, let u be a factor of t3 such that μ3(u) is right triprolongable with
|u| ≥ 2 (the case |u| ≤ 1 is evident). Then, μ3(u)i is in t3, for all i ∈ A3. So, the
factor μ3(u)i ends by the first letter of the image of μ3(i), for all i ∈ A3; we use
here the unicity in the Lemma 3.1 since |μ3(u)i| ≥ 7. So, the factors μ3(u)012,
μ3(u)120 and μ3(u)201 are in t3. These three factors can be written respectively
μ3(u0), μ3(u1) and μ3(u2). This proves that u is right triprolongable in t3. We
proceed in the same way for the factors which are left triprolongable. �

For the following, we denote by BST (t3), the set of the factors of t3 which
are both right triprolongable left triprolongable.

As a consequence of Proposition 3.1, a factor u is in BST (t3) if and only if
μ3(u) is in BST (t3).

Proposition 3.2. Let u be an element of BST (t3). If |u| ≥ 3, it exists u′ in
BST (t3) such that u = μ3(u′).

Proof: Let u in BST (t3) such that |u| ≥ 3. One verifies manually the proposition
for the case 3 ≤ |u| ≤ 6. Now suppose |u| ≥ 7. Then, the factor u can be written
in a unique way in the form u = δ1μ3(u′)δ2, where u′, δ1 and δ2 are factors of
t3. Let us verify that factors δ1 and δ2 are empty. As u is right triprolongable,
the factors δ20, δ21 and δ22 are in t3. So, one of the words δ2i, contains the
square of a letter. This is impossible because the image of no letter does contain
a square. In the same way, we show that δ1 is empty. Hence, u = μ3(u′). By
Proposition 3.1, u′ is in BST (t3). �

Theorem 3.1. The set BST (t3) is given by:

BST (t3) =
⋃

n≥0

{μn
3 (0), μn

3 (1), μn
3 (2), μn

3 (01), μn
3 (12), μn

3 (20)} ∪ {ε}.

Proof: Let u be an element of BST (t3) with length at least 3. By Proposition 3.3,
it exists u′ in BST (t3) such that u = μ3(u′). Hence, to obtain the set BST (t3), it
suffices to find its elements of length at most 2, since the others can be obtained
by applying successively μ3. These factors are 0, 1, 2, 01, 12 and 20. �

Corollary 3.1 Let u be a factor of t3 which is right triprolongable. If |u| = 3k

or |u| = 2 × 3k, k ≥ 0, then u is left triprolongable.

Proof: Let u be a factor of t3, right triprolongable and verifying |u| = 3k, k ≥ 1.
Then, u can be decomposed in the form δ1μ3(v)δ2 where v, δ1, δ2 ∈ F (t3). The
factor u being right triprolongable, δ2 is the empty word. So, u = δ1μ3(v). We
know that |δ1| ≤ 2 and |μ3(v)| is multiple of 3. The factor u being of length 3k

then δ1 is the empty word. Hence, u = μ3(v) where v is a right triprolongable

136 I. Kaboré and B. Kientéga

factor of length 3k−1. By the same process, the factor v can be written v = μ3(v′),
where v′ is a right triprolongable factor of length 3k−2. In a successive way, we
succeed in u = μk

3(i), i ∈ A3. With Theorem 3.1, we conclude that u is left
triprolongable. We proceed in the same way for the factors of length 2 × 3k. �

Proposition 3.3. Let u be in BST (t3). Then, it exists a unique letter i in A3

such that iu (resp. ui) is right (resp. left) triprolongable.

Proof: Let us construct the set F (t3) ∩ (A3vA3) where v ∈ BST (t3). We give
those for which |v| ≤ 3, and by induction we show that for those of upper length,
the extensions respect the unicity. We have, for i ∈ A3:

F (t3) ∩ (A3iA3) = {0i1, 1i1, 2i0, 2i1, 2i2};
F (t3)∩ (A3i(i+1)A3) = {0i(i+1)2, 1i(i+1)2, 2i(i+1)0, 2i(i+1)1, 2i(i+1)2};
F (t3) ∩ (A3μ3(i)A3) = {0μ3(i)1, 1μ3(i)0, 1μ3(i)1, 1μ3(i)2, 2μ3(i)0, 2μ3(i)1};

where i + 1 is taken modulo 3.

Let us take a factor v = μn
3 (0) and suppose that the set F (t3) ∩ A3μ

n
3 (0)

contains a single right triprolongable factor. Even if it means changing letter,
let us take 0μn

3 (0) this factor. So, By Proposition 3.1, 2μn+1
3 (0) is a right tripro-

longable factor of t3. Let us verify that it is the only one. Suppose 0μn+1
3 (0) is

right triprolongable. Then, 1μn
3 (0) is right triprolongable. This contradicts the

recursion hypothesis. We proceed in the same way for the other factors. �

Proposition 3.4. Let u be a factor of t3, right triprolongable. If u is left special,
then it is left triprolongable.

Proof: Let u be a factor of t3, right triprolongable and left special. Then, u can
be written in the form δ1μ3(v1)δ2. As the factor u is right triprolongable, δ2 is
empty by Proposition 3.2. Furthermore, as u is left special, δ1 is empty; because
otherwise, δ1 would be proper suffix of the image of some letter and by this fact u
would be extended on left in a unique way. So, u can be synchronized in the form
u = μ3(v1), where v1 is a factor of t3. Since the morphism μ3 is marked, then v1
is left special. Moreover, it is right triprolongable by Proposition 3.1. Thus, v1
can be synchronized in the form v1 = μ3(v2), v2 ∈ F (t3). In a successive way, we
succeed in u = μk

3(vk) with k ≥ 0 and vk a right triprolongable factor, left special
and of length at most 2. Therefore, vk is left triprolongable by Theorem3.1. �

Proposition 3.5. For all positive natural n, t3 admits exactly three right (resp.
left) triprolongable factors of length n.

Proof: It is known that 0, 1 and 2 are the right triprolongable factors of length 1.
Let us show that any right triprolongable factor of length n is suffix of a unique
right triprolongable factor of length n + 1.

Let w be a right triprolongable factor of length n. If w admits a unique
extension a on left, then aw is a right triprolongable factor since t3 is recurrent.
If it admits at least two left extensions, then w is in BST (t) by Proposition 3.4
and only one of its left extensions is right triprolongable by Proposition 3.3.

Abelian Complexity of Ternary Thue-Morse Word 137

Thus, the number of right triprolongable factors of length n + 1 is equal to the
number of right triprolongable factors of length n in t3. In the same way, we
treat the case of the left triprolongable factors. �

The following remark is a consequence of Proposition 3.5.

Remark 3.1. Let u be a right (resp. left) triprolongable factor of t3. If the
length of u is 3k, k ≥ 1, then it exists a right (resp. left) triprolongable factor v
of t3 such that u = μ3(v).

Proposition 3.6. For all positive natural n, the right (resp. left) triprolongable
factors of length n begin (resp. end) with different letters.

Proof: We proceed by induction on n. Suppose all the right triprolongable factors
of t3 of length at most n begin with different letters. Let u1 and u2 be two factors
of t3, right triprolongable of length n. We distinguish the two following cases.

Case 1: n is multiple of 3. Then, it exists some factors v1 and v2 of t3 such that
u1 = μ3(v1) and u2 = μ3(v2). Suppose there exists a letter a of A3 such that au1

and au2 are right triprolongable. Even if it means changing letter, let us take
a = 0. Thus, the factors 120u1 and 120u2 are right triprolongable in t3. These
factors can be written respectively μ3(1v1) and μ3(1v2). By Proposition 3.1, 1v1
and 1v2 are right triprolongable factors. This fact contradicts the hypothesis of
induction since 1v1 and 1v2 are of length lower than n.

Case 2: n − 1 is multiple of 3. Then, there exist some factors v1 and v2 of t3,
right triprolongable such that u1 = iμ3(v1) and u2 = jμ3(v2). As i and j are
suffix of images of letters, they have each a unique left extension. Since they are
different by hypothesis, the extensions are different.

Case 3: n − 2 is multiple of 3. We proceed similarly like previous cases. �

Theorem 3.2. The word t3 is 2-balanced.

Proof: Let u1 and u2 be two factors of length n ≥ 7 of t3. Then, u1 and u2 can be
synchronized in a unique way in the forms u1 = δ1μ3(v1)δ2 and u2 = δ‘1μ3(v2)δ‘2,
v1, v2, δ1, δ2, δ′

1, δ′
2 ∈ F (t3). Let us put αi = |δ1|i + |δ2|i, βi = |δ′

1|i + |δ′
2|i, for

all i ∈ A3. Consider the following cases.

Case 1: n is multiple of 3. Then, u1 (resp. u2) can be written uniquely in the
form μ3(v), ijμ3(v)k or iμ3(v)jk, with i, j, k ∈ A3 and v ∈ F (t3). Consider the
different forms taken by u1 and u2.

• Suppose u1 = μ3(v1) and u2 = μ3(v2). Then, we have ψ(u1) = ψ(u2) and we
have:

||u1|i − |u2|i| = 0,

for any letter i.

138 I. Kaboré and B. Kientéga

• Suppose u1 = μ3(v1) and u2 = iμ3(v2)jk. Write u1 in the form μ3(v′
1)μ3(a),

a ∈ A3. Thus, we have |v′
1| = |v2|. As the letters have the same number of

occurrences in image of each letter, we have |μ3(a)|i = 1, for all i ∈ A3.
Moreover, βi ≤ 2, for all i ∈ A3 since jk is the prefix of the image of some
letter. Thus,

||u1|i − |u2|i| = ||μ3(a)|i − βi| ≤ 1.

• Suppose u1 = ijμ3(v1)k and u2 = lμ3(v2)mn, i, j, k, l, m, n ∈ A3. As
previously, one verifies that αi, βi ≤ 2, for all i ∈ A3. Thus,

||u1|i − |u2|i| = |αi − βi| ≤ 2.

By taking u1 = 101212 and u2 = 010120, we observe that the bound 2 is
reached.

Case 2: n − 1 is multiple of 3. Then, u1 (resp. u2) is of the form iμ3(v), μ3(v)k
or ijμ3(v)kl, i, j, k, l ∈ A3, v ∈ F (t3).

• Suppose u1 = iμ3(v1) and u2 = μ3(v2)j. Then, we have |v1| = |v2|. So
|αi − βi| ≤ 1, for all i ∈ A3.

• Suppose u1 = ijμ3(v1)kl and u2 = i′j′μ3(v2)k′l′, where ij and i′j′ (resp.
kl and k′l′) are suffix (resp. prefix) of images of letters. Then, note that
(i, k) �= (j, l) and (i′, k′) �= (j′, l′). Thus, |v1| = |v2|. By analogy with the
previous case, one verifies that αi, βi ≤ 2. Therefore,

||u1|i − |u2|i| = |αi − βi| ≤ 2,

for all i ∈ A3. By taking u1 = 01μ3(12)01 and u2 = 20μ3(01)20 we observe
that the bound 2 is reached.

• Suppose u1 = i′μ3(v1) and u2 = ijμ3(v2)kl. Then, we write u1 in the form
i′μ3(v′

1)μ3(a), a ∈ A3 and v′ ∈ F (t3). Thus, |v′
1| = |v2| and αi, βi ≤ 2. So

||u1|i − |u2|i| = |αi − βi| ≤ 2.

Case 3: n − 2 is multiple of 3. Suppose u1 (resp. u2) can be written in the form
ijμ3(v1), iμ3(v1)k or μ3(v1)kl (resp. ijμ3(v2), iμ3(v2)k or μ3(v2)kl). Then, we
have |v1| = |v2|. In a similar way as previous cases, one verifies that |αi −βi| ≤ 2,
for i ∈ A3. �

4 Abelian Complexity

In this section we give an explicit formula of the Abelian complexity function
ρab of t3. We show that the sequence (ρab(n))n≥2 of the word t3 is 3-periodic.

Proposition 4.1. For all k ≥ 1, ρab(3k) = 7.

Abelian Complexity of Ternary Thue-Morse Word 139

Proof: Let u be a factor of t3 of length 3k, k ≥ 1. Then, u synchronizes in the
form μ3(v), iμ3(v)jk or ijμ3(v)k with i, j, k ∈ A3, ij, jk ∈ {01, 12, 20} and
v ∈ F (t3). As u is chosen arbitrary one verifies that these three forms are taken
by u. As the prefix t3[3k] begins with the image of some letter, it is in the form
μ3(v). For the sequel, we note t3[3k] = μ3(v1). We have three cases to discuss.

Case 1: The factor u is in the form μ3(v2). Then, |v1| = |v2| and so ψrel(u) =
(0, 0, 0).

Case 2: The factor u is in the form iμ3(v2)jk. Then, we have:

ψ(u) = (|v2| + |ijk|0, |v2| + |ijk|1, |v2| + |ijk|2).
Let us show that the set of the values taken by ijk is

{001, 012, 020, 101, 112, 120, 201, 212, 220}.

By Proposition 3.5, for any integer k ≥ 1, t3 possesses exactly 3 right tripro-
longeable factors of length 3k. Let us denote by R1, R2 and R3 the right tripro-
longeable factors of length 3k − 3. As these factors begin with different letters,
we can suppose, even if it means changing the indexes, that 0R1, 1R2 and 2R3

are the right triprolongeable factors of t3 of length 3k − 2. Therefore, the words
0R101, 0R112, 0R120, 1R201, 1R212, 1R220, 2R301, 2R312 and 2R320 are fac-
tors of t3 of length 3k. Hence, ijk browses the announced set. So, ψ(ijk) takes
all the values of the following set

{(2, 1, 0), (1, 1, 1), (2, 0, 1), (1, 2, 0), (0, 2, 1), (0, 1, 2), (1, 0, 2)}.

Write the prefix t3[n] in the form μ3(v′
1)μ3(l), l ∈ A3. Then, |v′

1| = |v2| and
ψ(μ3(l)) = (1, 1, 1). Thus, for all the factors u of length 3k, ψrel(u) = ψ(ijk) −
ψ(μ3(l)) takes all the values of the set

{(1, 0, −1), (0, 0, 0), (1, −1, 0), (0, 1, −1), (−1, 1, 0), (−1, 0, 1), (0, −1, 1)}.

Case 3: The factor u is in the form ijμ3(v2)k. Then

ψ(u) = (|v2| + |ijk|0, |v2| + |ijk|1, |v2| + |ijk|2).
By proceeding in a similar way as in the case 2 and by using the left tripro-
longable factors, we verify that the set of values taken by ijk is

{010, 011, 012, 120, 121, 122, 200, 201, 202}.

Consequently, for all the factors u satisfying these conditions, ψrel(u) takes all
the values of the set

{(1, 0, −1), (0, 0, 0), (1, −1, 0), (0, 1, −1), (−1, 1, 0), (−1, 0, 1), (0, −1, 1)}.

After all, we have:

Ψrel
n (t3) = {(1, 0,−1), (0, 0, 0), (1,−1, 0), (0, 1,−1), (−1, 1, 0), (−1, 0, 1), (0,−1, 1)}.

�

140 I. Kaboré and B. Kientéga

Proposition 4.2. For all k ≥ 1, ρab(3k + 1) = 6.

Proof: Let u be a factor of t3 of length 3k + 1, k ≥ 1. Then, u synchronizes in
the form iμ3(v), μ3(v)j or ijμ3(v)kl, i, j, k, l ∈ A3, ij, kl ∈ {01, 12, 20} and
v ∈ F (t3). The prefix t3[3k+1] is in the form μ3(v1)i, i ∈ A3. We have:

Case 1: i = 0. Then, t3[3k+1] = μ3(v1)0. Let us determine Ψrel
3k+1(t3).

• Let v2 be a factor of t3 such that u = iμ3(v2). By using the left triprolongable
factors of length 3k, we verify that the values taken by i are 0, 1 and 2. Con-
sequently, ψrel(u) takes all the values of {(0, 0, 0), (−1, 1, 0), (−1, 0, 1)}. In
the same way, we verify that if u = μ3(v2)j, ψrel(u) browses all the elements
of the set {(0, 0, 0), (−1, 1, 0), (−1, 0, 1)}.

• Let u be a factor of t3 with the form u = ijμ3(v2)kl. We write t3[3k+1] in
the form μ3(v′

1)μ3(m)0, m ∈ A3. It is known that each factor of the form
ijμ3(v2)kl is the left extension of a factor of the form jμ3(v2)kl whose the
set of values taken by jkl is

{001, 012, 020, 101, 112, 120, 201, 212, 220}.

Thus, those taken by ijkl is

{2001, 2012, 2020, 0101, 0112, 0120, 1201, 1212, 1220}.

So, ψrel(u) browses all the elements of the set

{(0, −1, 1), (−1, 1, 0), (0, 0, 0), (−2, 1, 1), (−1, 0, 1), (0, 1, −1)}.

Finally, we get

Ψrel
3k+1(t3) = {(0, −1, 1), (−1, 1, 0), (0, 0, 0), (−2, 1, 1), (−1, 0, 1), (0, 1, −1)}.

Case 2: i = 1. Then, t3[3k+1] = μ3(v1)1. Consider the different forms of u.

• Let u be a factor of t3 of the form u = iμ3(v2). As in the case 1, we verify
that i takes the values 0, 1 and 2. Therefore, ψrel(u) browses all the elements
of {(0, 0, 0), (1, −1, 0), (0, −1, 1)}.

• Let u be a factor of t3 of the form u = ijμ3(v2)kl. Then, we write t3[3k+1] in
the form t3[3k+1] = μ3(v′

1)μ3(m)1, m ∈ A3. By proceeding in a similar way
as in the case 1, we verify that the set of values taken by ijkl is

{2001, 2012, 2020, 0101, 0112, 0120, 1201, 1212, 1220}.

Thus, ψrel(u) browses all of the elements of the set

{(1, 0, −1), (1, −1, 0), (0, 0, 0), (−1, 0, 1), (0, −1, 1), (1, −2, 1)}.

Abelian Complexity of Ternary Thue-Morse Word 141

After all, we have:

Ψrel
3k+1(t3) = {(1, 0, −1), (1, −1, 0), (0, 0, 0), (−1, 0, 1), (0, −1, 1), (1, −2, 1)}.

Case 3: i = 2. Then, t3[3k+1] = μ3(v1)2. By proceeding in a similar way as
in the previous case we get:

Ψrel
3k+1(t3) = {(1, 1, −2), (0, 1, −1), (1, 0, −1), (−1, 1, 0), (0, 0, 0), (1, −1, 0)}. �

Proposition 4.3. For all k ≥ 1, ρab(3k + 2) = 6.

Proof: Let u be a factor of length 3k + 2 of t3, k ≥ 1. Then, u can be written in
the form iμ3(v2)j, ijμ3(v2) or μ3(v2)kl, i, j, k, l ∈ A3, v2 ∈ F (t3). Otherwise,
the prefix t3[3k+2] is in the form μ3(v1)ij.

Case 1: ij = 01. Then, t3[3k+1] = μ3(v1)01. Let us determine the set Ψrel
3k+2(t3).

• Let u be a factor of t3 of the form iμ3(v2)j. Then, v1 and v2 have the
same length. So, ψrel(u) = ψ(ij) − ψ(01). With right triprolongable fac-
tors of length k − 1, we verify that the set of values taken by ij is
{00, 01, 02, 10, 11, 12, 20, 21, 22}. So, ψrel(u) takes all the values of the set

{(1, −1, 0), (0, 0, 0), (0, −1, 1), (−1, 1, 0), (−1, 0, 1), (−1, −1, 2)}.

• Let u be a factor of t3 of the form ijμ3(v2). Then, v1 and v2 have the same
length. So, ψrel(u) = ψ(ij)−ψ(01). The factor ij is the suffix of the image of
a letter. It takes the values 01, 12 and 20. Thus, ψrel(u) takes all the values
of the set

{(0, 0, 0), (0, −1, 1), (−1, 0, 1)}.

In a same way, we verify that if u has the form μ3(v2)kl, ψrel(u) takes all the
values of the set {(0, 0, 0), (0, −1, 1), (−1, 0, 1)}.
Finally, we get:

Ψrel
3k+2(t3) = {(1, −1, 0), (0, 0, 0), (0, −1, 1), (−1, 1, 0), (−1, 0, 1), (−1, −1, 2)}

Case 2: ij = 12. Then, t3[3k+2] = μ3(v1)12. Let us determine the set Ψrel
3k+2(t3).

• Let u be a factor of t3 of the form u = iμ3(v2)j. As in the previous case
the set of values taken by ij is {00, 01, 02, 10, 11, 12, 20, 21, 22}. Therefore,
ψrel(u) takes all the values of the set

{(2, −1, −1), (1, 0, −1), (0, 1, −1), (0, 0, 0), (0, −1, 1), (1, −1, 0)}.

• Let u be a factor of t3 of the form u = ijμ3(v2). Then, we show as in the case
1 that ψrel(u) takes all the values of the set {(1, 0, −1), (1, −1, 0), (0, 0, 0)}.
After all, we have

Ψrel
3k+2(t3) = {(2, −1, −1), (1, 0 ,−1), (0, 1, −1), (0, 0, 0), (0, −1, 1), (1, −1, 0)}.

142 I. Kaboré and B. Kientéga

Case 3: ij = 20. Then, t3[3k+2] = μ3(v1)20. As in the previous cases we verify
that:

Ψrel
3k+2(t3) = {(1, 0, −1), (0, 1, −1), (0, 0, 0), (−1, 2, −1), (−1, 1, 0), (−1, 0, 1)} �

Theorem 4.1. The Abelian complexity function of t3 is given by:

ρab
t3 (n) =

⎧
⎪⎪⎨

⎪⎪⎩

1 si n = 0
3 si n = 1
7 si n = 3k, k ≥ 1
6 sinon

Proof: The result follows from Propositions 4.1, 4.2 and 4.3. �

The ternary Thue-Morse word t3 is 3-automatic. Its Abelian complexity is the
eventually periodic word (ρab(n))n≥0 = 136(766)ω. Thus, we note that the word
t3 responds to the conjecture of Parreau, Rigo, Rowland and Vandomme: Any k-
automatic word admits a l-Abelian complexity function which is k-automatic. The
reader can find this conjecture and more information on the concepts in [15].

References

1. Allouche, J.P., Arnold, A., Berstel, J., Brlek, S., Jockush, W., Plouffe, S., Sagan,
B.E.: A relative of the thue-morse sequence. Disc. Math. 139, 455–461 (1995)

2. Allouche, J.P., Peyrière, J., Wen, Z.-X., Wen, Z.-Y.: Hankel determinants of the
thue-morse sequense. Ann. Inst. Fourier 48(1), 1–27 (1998)

3. Allouche, J.P., Shallit, J.: The Ubiquitous Prouhet-Thue-Morse Sequence. In: Ding,
C., Helleseth, T., Niederreiter, H. (eds.) Sequences and their Applications. Dis-
crete Mathematics and Theoretical Computer Science, pp. 1–16. Springer, London
(1999)

4. Balkovà, L., Břinda, K., Turek, O.: Abelian complexity of infinite words associated
with non-simple parry number. Theor. Comput. Sci. 412, 6252–6260 (2011)

5. Cassaigne, J.: Facteurs spéciaux. Bull. Belg. Math. 4, 67–88 (1997)
6. Cassaigne, J., Kaboré, I.: Abelian complexity and frequencies of letters in infinite

words. Int. J. Found. Comput. Sci. 27(05), 631–649 (2016)
7. Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.Q.: Avoiding abelian powers

in binary wordswith bounded abelian complexity. Int. J. Found. Comput. Sci.
22(2011), 905–920 (2011)

8. Chen, J., Lü, X., Wu, W.: On the k-abelian complexity of the cantor sequence.
arXiv: 1703.04063 (2017)

9. Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. Math. Syst.
Theo. 7, 138–153 (1973)

10. Curie, J., Rampersad, N.: Recurrent words with constant abelian complexity. Adv.
Appl. Math. 47, 116–124 (2011)

11. Gottschalk, W.H.: Substitution on minimal sets. Trans. Amer. Math. Soc. 109,
467–491 (1963)

12. Lü, X., Chen, J., Wen, Z., Wu, W.: On the abelian complexity of the rudin-shapiro
sequence. J. Math. Anal. Appl. 451, 822–838 (2017)

http://arxiv.org/abs/1703.04063

Abelian Complexity of Ternary Thue-Morse Word 143

13. Madill, B., Rampersad, N.: The abelian complexity of the paperfolding word. Disc.
Math. 313, 831–838 (2013)

14. Massé, A.B., Brlek, S., Garon, A., Labbé, S.: Combinatorial properties of f -
palindromes in the thue-morse sequence. Pure Math. Appl. 19, 39–52 (2008)

15. Parreau, A., Rigo, M., Rowland, E., Vandomme, E.: A new approach to the
2−regularity of the l−abelian complexity of 2−automatic sequences. Electron. J.
Combin. 22, 1–27 (2015)

16. Richomme, G., Saari, K., Zamboni, L.Q.: Balance and abelian complexity of the
tribonacci word. Adv. Appl. Math. 45, 212–231 (2010)

17. Richomme, G., Saari, K., Zamboni, L.Q.: Abelian complexity in minimal subshifts.
J. London Math. Soc. 83, 79–95 (2011)

18. Štarosta, S.: Generalised thue-morse word and palindromic richness. Kybernetika
48(3), 361–370 (2012)

19. Thue, A.: Über unendliche zeichenreihen. Norske Vid. Selsk. Skr. Mat. Nat. Kl. 7,
1–22 (1906)

20. Thue, A.: Über die gegenseilige lage gleicher teile gewisser zeichenreihen. Norske
Vid. Selsk. Skr. Mat. Nat. Kl. 1, 139–158 (1912)

21. Turek, O.: Balance and abelian complexity of a certain class of infinite ternary
words. RAIRO Theor. Inf. Appl. 44, 313–337 (2010)

22. Turek, O.: Abelian complexity and abelian co-decomposition. Theor. Comput. Sci.
469, 77–91 (2013)

23. Turek, O.: Abelian complexity of the tribonacci word. J. Integer Seq. 18, 212–231
(2015)

A Set of Sequences of Complexity 2n + 1

J. Cassaigne1,2,3, S. Labbé1,2,3(B), and J. Leroy1,2,3

1 Institut de mathématiques de Marseille, CNRS UMR 7373, Campus de Luminy,
Case 907, 13288 Marseille Cedex 09, France

julien.cassaigne@math.cnrs.fr, sebastien.labbe@labri.fr
2 CNRS, LaBRI, UMR 5800, 33400 Talence, France

j.leroy@ulg.ac.be
3 Institut de mathématique, Université de Liège, Allée de la découverte 12 (B37),

4000 Liège, Belgium

Abstract. We prove the existence of a ternary sequence of factor com-
plexity 2n + 1 for any given vector of rationally independent letter fre-
quencies. Such sequences are constructed from an infinite product of two
substitutions according to a particular Multidimensional Continued Frac-
tion algorithm. We show that this algorithm is conjugate to a well-known
one, the Selmer algorithm. Experimentations (Baldwin, 1992) suggest
that their second Lyapunov exponent is negative which presages finite
balance properties.

Keywords: Substitutions · Factor complexity · Selmer · Continued
fraction · Bispecial

1 Introduction

Words of complexity 2n+1 were considered in [2] with the condition that there is
exactly one left and one right special factor of each length. These words are called
Arnoux-Rauzy sequences and are a generalization of Sturmian sequences on a
ternary alphabet. It is known that the frequencies of any Arnoux-Rauzy word
are well defined and belong to the Rauzy Gasket [3], a fractal set of Lebesgue
measure zero. Thus the above condition on the number of special factors is very
restrictive for the possible letter frequencies.

Sequences of complexity p(n) ≤ 2n+1 include Arnoux-Rauzy words, codings
of interval exchange transformations and more [12]. For any given letter frequen-
cies one can construct sequences of factor complexity 2n + 1 by the coding of a
3-interval exchange transformation. It is known that these sequences are unbal-
anced [14]. Thus the question of finding balanced ternary sequences of factor
complexity 2n+1 for all letter frequencies remains. This article intends to give a
positive answer to this question for almost all vectors of letter frequencies (with
respect to Lebesgue measure).

J. Leroy—FNRS post-doctoral fellow.

c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 144–156, 2017.
DOI: 10.1007/978-3-319-66396-8 14

A Set of Sequences of Complexity 2n + 1 145

In recent years, multidimensional continued fraction algorithms were used to
obtain ternary balanced sequences with low factor complexity for any given letter
frequency vector. Indeed the Brun algorithm leads to balanced sequences [10] and
it was shown that the Arnoux-Rauzy-Poincaré algorithm leads to sequences of
factor complexity p(n) ≤ 5

2n + 1 [5].
In 2015, the first author introduced a new Multidimensional Continued Frac-

tion algorithm [9] based on the study of Rauzy graphs. In this work, we formal-
ize the algorithm, its matrices, substitutions and associated cocycles and S-adic
words. We show that S-adic words obtained from these substitutions have com-
plexity 2n + 1. We also show that the algorithm is conjugate to the Selmer
algorithm, a well-known Multidimensional Continued Fraction algorithm. We
believe that almost all sequences generated by the algorithm are balanced.

2 A Bidimensional Continued Fraction Algorithm

On Λ = R
3
≥0, the bidimensional continued fraction algorithm introduced by the

first author [9] is

FC(x1, x2, x3) =

{
(x1 − x3, x3, x2), if x1 ≥ x3;
(x2, x1, x3 − x1), if x1 < x3.

More information on Multidimensional Continued Fraction Algorithms can be
found in [8,13].

2.1 The Matrices

Alternatively, the map FC can be defined by associating nonnegative matrices
to each part of a partition of Λ into Λ1 ∪ Λ2 where

Λ1 = {(x1, x2, x3) ∈ Λ | x1 ≥ x3},

Λ2 = {(x1, x2, x3) ∈ Λ | x1 < x3}.

The matrices are given by the rule M(x) = Ci if and only if x ∈ Λi where

C1 =

⎛
⎝ 1 1 0

0 0 1
0 1 0

⎞
⎠ and C2 =

⎛
⎝ 0 1 0

1 0 0
0 1 1

⎞
⎠.

The map FC on Λ and the projective map fC on Δ = {x ∈ Λ | ‖x‖1 = 1} are
then defined as:

FC(x) = M(x)−1x and fC(x) =
FC(x)

‖FC(x)‖1 .

Many of its properties can be found in [11] and the density function of the
invariant measure of fC was computed in [1].

146 J. Cassaigne et al.

2.2 The Cocycle

The algorithm FC defines a cocycle Mn : Λ → SL(3,Z) by

M0(x) = I and Mn(x) = M(x)M(FCx)M(F 2
Cx) · · · M(Fn−1

C x)

satisfying the cocycle property Mn+m(x) = Mn(x) · Mm(Fn
Cx).

For example starting with x = (1, e, π)T , the first iterates (approximate to
the nearest hundredth) under FC are⎛
⎝1.00

2.72
3.14

⎞
⎠ FC−−→

⎛
⎝2.72

1.00
2.14

⎞
⎠ FC−−→

⎛
⎝0.58

2.14
1.00

⎞
⎠ FC−−→

⎛
⎝2.14

0.58
0.42

⎞
⎠ FC−−→

⎛
⎝1.72

0.42
0.58

⎞
⎠ FC−−→

⎛
⎝1.14

0.58
0.42

⎞
⎠

The associated cocycle at x = (1, e, π)T when n = 5 is

M5(x) = M(x)M(FCx)M(F 2
Cx)M(F 3

Cx)M(F 4
Cx)

= C2C1C2C1C1

=

⎛
⎝ 0 1 0

1 0 0
0 1 1

⎞
⎠

⎛
⎝ 1 1 0

0 0 1
0 1 0

⎞
⎠

⎛
⎝ 0 1 0

1 0 0
0 1 1

⎞
⎠

⎛
⎝ 1 1 0

0 0 1
0 1 0

⎞
⎠

⎛
⎝ 1 1 0

0 0 1
0 1 0

⎞
⎠ =

⎛
⎝ 0 1 1

1 2 1
1 2 2

⎞
⎠.

2.3 The Substitutions

Let A = {1, 2, 3}. The substitutions on A∗ are given by the rule σ(x) = ci if and
only if x ∈ Λi for i = 1, 2 where

c1 =

⎧⎨
⎩

1 �→ 1
2 �→ 13
3 �→ 2

and c2 =

⎧⎨
⎩

1 �→ 2
2 �→ 13
3 �→ 3

One may check that Ci is the incidence matrix of ci for i = 1, 2. For any word
w ∈ A∗, we denote −→w = (|w|1, |w|2, |w|3) ∈ N

3 where |w|i means the number
of occurrences of the letter i in w. Therefore, for all x ∈ Λ, σ(x) : A∗ → A∗

is a monoid morphism such that its incidence matrix is M(x), i.e.,
−−−−−→
σ(x)(w) =

M(x) · −→w .

2.4 S-adic Words

Let S be a set of morphisms. A word w is said to be S-adic if there is a
sequence s = (τn : A∗

n+1 → A∗
n)n∈N ∈ SN and a sequence a = (an) ∈ ∏

n∈N
An

such that w = limn→+∞ τ0τ1 · · · τn−1(an). The pair (s,a) is called an S-adic
representation of w and the sequence s a directive sequence of w. The S-
adic representation is said to be primitive whenever the directive sequence s
is primitive, i.e., for all r ≥ 0, there exists r′ > r such that all letters of Ar

occur in all images τrτr+1 · · · τr′−1(a), a ∈ Ar′ . Observe that if w has a prim-
itive S-adic representation, then w is uniformly recurrent. For all n, we set
w(n) = limm→+∞ τnτn+1 · · · τm−1(am).

A Set of Sequences of Complexity 2n + 1 147

2.5 S-adic Words Associated with the Algorithm FC

The algorithm FC defines the function σn : Λ → End(A∗), σn(x) = σ(Fn
Cx)

When the sequence (σn(x))n∈N contains infinitely many occurrences of c1 and
c2, this defines a C-adic word, C = {c1, c2},

W (x) = lim
n→∞ σ0(x)σ1(x) · · · σn(x)(1).

Indeed, let wn = σ0(x) · · · σn(x)(1). As c1 and c2 occur infinitely often, there
exist infinitely many indices m such that σm+1(x) = c1 and σm+2(x) = c2. For
all n ≥ m + 2, let z = σm+3(x) · · · σn(x)(1). Since {1, 2}A∗ is stable under both
c1 and c2, we have z ∈ {1, 2}A∗, so that c1c2(z) ∈ {13, 12}A∗. Then 1 is a proper
prefix of c1c2(z) = σm+1(x) · · · σn(x)(1), and therefore wm is a proper prefix of
wn. It follows that the limit of (wn) exists.

For example, using vector x = (1, e, π)T , we have

σ(x)σ(FCx)σ(F 2
Cx)σ(F 3

Cx)σ(F 4
Cx) = c2c1c2c1c1 =

⎧⎪⎨
⎪⎩

1 �→ 23
2 �→ 23213
3 �→ 2313

,

whose incidence matrix is M5(x). The associated infinite C-adic word is

W (x) = 2323213232323132323213232321323231323232 · · · .

Lemma 1. Let x ∈ Δ. The following conditions are equivalent.

(i) the entries of x are rationally independent,
(ii) the directive sequence of W (x) is primitive,
(iii) the directive sequence of W (x) does not belong to C∗{c21, c

2
2}ω.

Furthermore, the vector of letter frequencies of 1, 2 and 3 in W (x) is x.

Proof. Let us first prove that (ii) and (iii) are equivalent. Assume that s = (τn) ∈
C∗{c21, c

2
2}ω. Then there exists r ∈ N such that for all i ∈ N, τr+2i = τr+2i+1,

and τr+2iτr+2i+1 is either c21 or c22. Observe that c21(1) = 1, c22(3) = 3, and
c21(3) = c22(1) = 13. Let r′ > r. If r′ − r is even, then τrτr+1 . . . τr′−1(1) does not
contain the letter 2. If r′ − r is odd, then τrτr+1 . . . τr′−1(2) does not contain the
letter 2. Therefore the directive sequence s is not primitive.

Conversely, if s 	∈ C∗{c21, c
2
2}ω, then s contains infinitely many occurrences of

words in {c1c
2i+1
2 cj

1c
k
2c

l
1c

m
2 , c2c

2i+1
1 cj

2c
k
1c

l
2c

m
1 : i ∈ N, j, k, l,m ∈ N\{0}}. It can be

checked that all the matrices of these substitutions have positive entries, so that
s is primitive.

Let us now assume that (iii) does not hold. Then, as above, there exists
r ∈ N such that for all i ∈ N, τr+2i = τr+2i+1. Note that, if y = (y1, y2, y3), then
C−2

1 y = (y1 − y2 − y3, y2, y3) and C−2
2 y = (y1, y2, y3 − y1 − y2). In both cases,

the middle entry is unchanged, and the sum of the two other entries decreases
by at least y2. Let F r

C(x) = (y1, y2, y3) and F r+2i
C (x) = (z1, z2, z3). Then z2 = y2

148 J. Cassaigne et al.

and z1 + z3 ≤ y1 + y3 − iy2. This is possible for all i only if y2 = 0, and then
�′F r

C(x) = 0, where �′ is the row vector �′ = (0, 1, 0). Then �x = 0 where
� = �′M(F r−1

C (x))−1 . . . M(x)−1 is a nonzero integer row vector, showing that
the entries of x are rationally dependent.

Finally, let us assume that (iii) holds and (i) does not hold. Observe first that,
if F r

C(x) has a zero entry for some r, then either F r
C(x) or F r+1

C (x) has a zero
middle entry, and from this point on the directive sequence can be factored over
{c21, c

2
2}, contradicting (iii). From now on we assume that all entries of Fn

C(x)
are positive for all n

Let �0 be a nonzero integer row vector such that �0x = 0. The directive
sequence can be factored over {c1c

k
2c1, c2c

k
1c2 : k ∈ N}. Let us consider the

sequence (nm) such that n0 = 0 and τnm
. . . τnm+1−1 is in this set for all m ∈ N.

Let �m = �0M(x) . . . M(Fnm−1
C (x)). Then �m is a nonzero integer row vector

such that �mFnm

C (x) = 0, and �m+1 is either �mC1C
k
2C1 or �mC2C

k
1C2 for

some k.
Assume that �m = (a, b, c). Then �m+1 is one of

�mC1C
2k
2 C1 = (a′, a′ + b, a′ + c) with a′ = a + kb,

�mC1C
2k+1
2 C1 = (a′ − b, a′, a′ − c) with a′ = a + (k + 1)b + c,

�mC2C
2k
1 C2 = (c′ + a, c′ + b, c′) with c′ = c + kb,

�mC2C
2k+1
1 C2 = (c′ − a, c′, c′ − b) with c′ = c + (k + 1)b + a.

Define Dm as the difference between the maximum and the minimum entry of
�m. Note that, as Fnm

C (x) has positive entries, the maximum entry of �m is posi-
tive and the minimum entry is negative. Then Dm = max(|b−a|, |c−b|, |c−a|). In
the first two cases Dm+1 = max(|b|, |c|, |c−b|). If a is (inclusively) between b and
c, which must then have opposite signs, then Dm+1 = Dm = |c − b|. Otherwise
Dm+1 < Dm. Similarly, in the other two cases Dm+1 = max(|a|, |b|, |b − a|), and
Dm+1 = Dm if c is inclusively between a and b, while Dm+1 < Dm otherwise.

The sequence of positive integers (Dm) is non-increasing. To reach a contra-
diction, we need to show that it decreases infinitely often.

If for large enough m all transitions between �m and �m+1 are of the first
type, then (iii) is not satisfied. Similarly, if for large enough m all transitions
are of the third type, then (iii) is not satisfied. So we must either have infinitely
often transitions of the second or fourth type, or infinitely often a transition of
the first type followed by a transition of the third type.

Assume first that the transition between �m and �m+1 is of the second type.
Then �m+1 = (a′ − b, a′, a′ − c) and �m+2 is one of

�m+1C1C
2k′
2 C1 = (a′′, a′′ + a′, a′′ + a′ − c) with a′′ = a′ − b + k′a′,

�m+1C1C
2k′+1
2 C1 = (a′′ − a′, a′′, a′′ − a′ + c) with a′′ = a′ − b + (k′ + 1)a′ + a′ − c,

�m+1C2C
2k′
1 C2 = (c′′ + a′ − b, c′′ + a′, c′′) with c′′ = a′ − c + k′a′,

�m+1C2C
2k′+1
1 C2 = (c′′ − a′ + c, c′′, c′′ − a′) with c′′ = a′ − c + (k′ + 1)a′ + a′ − b.

A Set of Sequences of Complexity 2n + 1 149

If Dm+1 = Dm, then a is between b and c which must have opposite signs.
Then a′ is strictly between a′ − b and a′ − c, which implies in all four cases that
Dm+2 < Dm+1. So we always have Dm+2 < Dm.

The case where the transition between �m and �m+1 is of the fourth type is
similar. Assume now that this transition is of the first type, and the transition
between �m+1 and �m+2 is of the third type. Then �m+1 = (a′, a′ + b, a′ + c) and
�m+2 = (c′′ + a′, c′′ + a′ + b, c′′) with c′′ = a′ + c + k′(a′ + b). If Dm+1 = Dm,
then a is between b and c which must have opposite signs, so that a′ is strictly
between a′ +b and a′ +c, which implies that Dm+2 < Dm+1. So again we always
have Dm+2 < Dm, and this concludes the proof.

3 Factor Complexity of Primitive C-adic Words

Let w be a (infinite) word over some alphabet A. We let Fac(w) denote the
set of factors of w, i.e., Fac(w) = {u ∈ A∗ | ∃i ∈ N : wi · · ·wi+|u|−1 = u}. The
extension set of u ∈ Fac(w) is the set E(u,w) = {(a, b) ∈ A×A | aub ∈ Fac(w)}.
We represent it by an array of the form

E(u,w) =

· · · j · · ·
· · ·
i ×

· · ·
,

where a symbol × in position (i, j) means that (i, j) belongs to E(u,w). When
the context is clear we omit the information on w and simply write E(u). We also
represent it as an undirected bipartite graph, called the extension graph, whose
set of vertices is the disjoint union of π1(E(u,w)) and π2(E(u,w)) (π1 and π2

respectively being the projection on the first and on the second component)
and its edges are the pairs (a, b) ∈ E(u,w). A factor u of w is said to be
bispecial whenever #π1(E(u,w)) > 1 and #π2(E(u,w)) > 1. A bispecial factor
u ∈ Fac(w) is said to be ordinary if there exists (a, b) ∈ E(u,w) such that
E(u,w) ⊂ ({a} × A) ∪ (A × {b}).

To simplify proofs, we consider C′ = {c11, c22, c122, c211, c121, c212}, where

c11 = c21 :

⎧⎪⎨
⎪⎩

1 �→ 1
2 �→ 12
3 �→ 13

c122 = c1c
2
2 :

⎧⎪⎨
⎪⎩

1 �→ 12
2 �→ 132
3 �→ 2

c121 = c1c2c1 :

⎧⎪⎨
⎪⎩

1 �→ 13
2 �→ 132
3 �→ 12

c22 = c22 :

⎧⎪⎨
⎪⎩

1 �→ 13
2 �→ 23
3 �→ 3

c211 = c2c
2
1 :

⎧⎪⎨
⎪⎩

1 �→ 2
2 �→ 213
3 �→ 23

c212 = c2c1c2 :

⎧⎪⎨
⎪⎩

1 �→ 23
2 �→ 213
3 �→ 13

.

150 J. Cassaigne et al.

Any (primitive) C-adic word is a (primitive) C′-adic word and conversely. We
let ε denote the empty word. We have the following result, where uniqueness
follows from the fact that τ(A) is a code.

Lemma 2 (Synchronization). Let w be a C′-adic word with directive
sequence (τn)n∈N ∈ C′N. If u ∈ Fac(w) is a non-empty bispecial factor, then

1. If τ0 = c11, there is a unique word v ∈ Fac(w(1)) such that u = τ0(v)1.
2. If τ0 = c22, there is a unique word v ∈ Fac(w(1)) such that u = 3τ0(v).
3. If τ0 = c122, there is a unique word v ∈ Fac(w(1)) such that u ∈ 2τ0(v){1, ε}.
4. If τ0 = c211, there is a unique word v ∈ Fac(w(1)) such that u ∈ {3, ε}τ0(v)2.
5. If τ0 = c121, there is a unique word v ∈ Fac(w(1)) such that u ∈

{2, ε}τ0(v){1, 13}.
6. If τ0 = c212, there is a unique word v ∈ Fac(w(1)) such that u ∈

{3, 13}τ0(v){2, ε}.
Furthermore, v is a bispecial factor of w(1) and is shorter than u.

Let w, u and v be as in Lemma 2. The word v is called the bispecial antecedent
of u under τ0. Similarly, u is called a bispecial extended image of v under τ0. Since
the bispecial antecedent of a non-empty bispecial word is always shorter, for any
bispecial factor u of w, there is a unique sequence (ui)0≤i≤n such that

– u0 = u, un = ε and ui 	= ε for all i < n;
– for all i < n, ui+1 ∈ Fac(w(i+1)) is the bispecial antecedent of ui.

All bispecial factors of the sequence (ui)0≤i<n are called the bispecial descendants
of ε in w(n).

As any bispecial factor of a primitive C-adic word is a descendant of the
empty word, to understand the extension sets of any bispecial word in w, we
need to know the possible extension sets of ε in w(n) and to understand how
the extension set of a bispecial factor governs the extension sets of its bispecial
extended images.

Lemma 3. If w is a primitive C-adic word with directive sequence (τn)n∈N ∈
C′N, then the extension set of ε is one of the following, depending on τ0.

τ0 = c11 1 2 3
1 × × ×
2 ×
3 ×

τ0 = c122 1 2 3
1 × ×
2 × ×
3 ×

τ0 = c121 1 2 3
1 × ×
2 ×
3 × ×

τ0 = c22 1 2 3
1 ×
2 ×
3 × × ×

τ0 = c211 1 2 3
1 ×
2 × × ×
3 ×

τ0 = c212 1 2 3
1 ×
2 × ×
3 × ×

A Set of Sequences of Complexity 2n + 1 151

Proof. The directive sequence being primitive, all letters of A occur in w(1). The
result then follows from the fact that all morphisms τ in C′ are either left proper
(τ(A) ⊂ aA∗ for some letter a) or right proper (τ(A) ⊂ A∗a for some letter a).

The next lemma describes how the extension set of a bispecial word deter-
mines the extension set of any of its bispecial extended images.

Lemma 4. Let w be a C′-adic word with directive sequence (τn)n∈N ∈ C′N. If
u ∈ Fac(w) is the bispecial extended image of v ∈ Fac(w(1)) and if x, y ∈ A∗ are
such that u = xτ0(v)y, then

1. if τ0(A) ⊂ iA∗ for some letter i ∈ A, we have

E(u,w) = {(a, b) | ∃(a′, b′) ∈ E(v,w(1)) : τ0(a′) ∈ A∗ax ∧ τ0(b′)i ∈ ybA∗};

2. if τ0(A) ⊂ A∗i for some letter i ∈ A, we have

E(u,w) = {(a, b) | ∃(a′, b′) ∈ E(v,w(1)) : iτ0(a′) ∈ A∗ax ∧ τ0(b′) ∈ ybA∗}.

Proof. Let us prove the first equality, the second one being symmetric.
For the inclusion ⊇, consider (a′, b′) ∈ E(v) such that τ0(a′) ∈ A∗ax and

τ0(b′)i ∈ ybA∗. Let c ∈ A be such that a′vb′c is a factor of w(1). Then τ0(a′vb′c) ∈
τ0(a′vb′)iA∗ ⊆ A∗axτ0(v)ybA∗ is a factor of w and we have (a, b) ∈ E(u).

For the inclusion ⊆, consider (a, b) ∈ E(u). Using Lemma 2, the word ax
(resp., yb) is the suffix (resp., prefix) of a word τ0(x′), x′ ∈ A+ (resp., τ0(y′),
y′ ∈ A+) such that x′vy′ ∈ Fac(w(1)). Furthermore, still using Lemma 2, x
is a strict suffix of τ0(a′), where x′ ∈ A∗a′ and y is a prefix of τ0(b′), where
y′ ∈ b′A∗. If y is a strict prefix of τ0(b′), then (a′, b′) is an extension of v such
that τ0(a′) ∈ A∗ax and τ0(b′) ∈ ybA∗. Otherwise, if τ0(b′) = y, we have b = i
since τ0(A) ⊂ iA∗ and (a′, b′) is an extension of v such that τ0(a′) ∈ A∗ax and
τ0(b′)i = yi, which concludes the proof.

Lemma 4 can be more easily understood using the tabular representation
of the extension sets. Indeed, for the first case (τ0(A) ⊂ iA∗), the extensions
of u = xτ(v)y can be obtained as follows: (1) replace any left extensions a by
τ(a) and any right extension b by τ(b)i; (2) remove the suffix x from the left
extensions whenever it is possible (otherwise, delete the row) and remove the
prefix y from the right extensions whenever it is possible (otherwise, delete the
column); (3) keep only the last letter of the left extensions and the first letter
of the right extensions; (4) permute and merge the rows and columns with the
same label. The second case (τ0(A) ⊂ A∗i) is similar.

Let us make this more clear on an example and consider the extension set
E(v) = {(1, 3), (2, 1), (2, 2), (2, 3), (3, 2)}. This extension set corresponds to the
extension set of the empty word whenever the last applied substitution is c211

152 J. Cassaigne et al.

(see Lemma 3). Using Lemma 4, the extension sets of 2c122(v) and 2c121(v)1 are
obtained as follows (arrow labels indicate above step number):

E(v)
1 2 3

1 ×
2 × × ×
3 ×

(1)−−→

E(c122(v))
12 132 2

212 ×
2132 × × ×

22 ×

(2) and (3)−−−−−−−→

E(2c122(v))
1 1 2

1 ×
3 × × ×
2 ×

(4)−−→

E(2c122(v))
1 2

1 ×
2 ×
3 × ×

E(v)
1 2 3

1 ×
2 × × ×
3 ×

(1)−−→

E(c121(v))
131 1321 121

13 ×
132 × × ×
12 ×

(2) and (3)−−−−−−−→

E(2c121(v)1)
3 3 2

.
3 × × ×
1 ×

(4)−−→
E(2c121(v)(1)

2 3
1 ×
3 × ×

The proof of Proposition 6 will essentially consists in describing how ordinary
bispecial words occur. The next lemma allows to understand when bispecial
words have ordinary bispecial extended images.

Lemma 5. Let w be a C′-adic word with directive sequence (τn)n∈N ∈ C′N. Let
u ∈ Fac(w) be a non-empty bispecial factor and v be its bispecial antecedent. We
have the following.

1. If τ0 ∈ {c11, c22}, then E(u) = E(v);
2. if v = ε and τ0 ∈ {c121, c212}, then u is ordinary;
3. if τ0 ∈ {c122, c121, c212}, if E(v) ⊆ (A×{1, 2})∪{(a, 3)} for some letter a ∈ A

with E(v) ∩ {(a, 1), (a, 2)} 	= ∅ and if E(v)\{(a, 3)} is the extension set of an
ordinary bispecial word, then u is ordinary;

4. if τ0 ∈ {c211, c121, c212}, if E(v) ⊆ ({2, 3}×A)∪{(1, a)} for some letter a ∈ A
with E(v) ∩ {(2, a), (3, a)} 	= ∅ and if E(v)\{(1, a)} is the extension set of an
ordinary bispecial word, then u is ordinary;

5. if v is ordinary, then u is ordinary

Proof. Items 1 and 5 directly follow from Lemma 4. Item 2 can be checked by
hand using Lemmas 3 and 4. Let us prove Item 3, Item 4 being symmetric.

Let us say that two extension sets E and E′ are equivalent whenever there
exist two permutations p1 and p2 of A such that E = {(p1(a), p2(b)) | (a, b) ∈
E′}. If τ0 = c122, then u ∈ {2σ(v), 2σ(v)1} by Lemma 2. We make use of
Lemma 4. If u = 2σ(v), then the extension set of u is equivalent to the one
obtained from E(v) by merging the columns with labels 1 and 2. If u = 2σ(v)1,
then the extension set of u is equivalent to the one obtained from E(v) by
deleting the column with label 3. In both cases, u is ordinary.

The same reasoning applies when τ0 ∈ {c121, c212}: depending on the word x
such that u ∈ A∗σ(v)x, either we delete the column with label 3, or we merge
the columns with labels 1 and 2.

Recall that an infinite word is a tree word if the extension graph of any of
its bispecial factors is a tree. Obviously, if u is an ordinary bispecial word, its

A Set of Sequences of Complexity 2n + 1 153

extension graph is a tree. If w ∈ AN is a tree word in which all letters of A
occur, then w has factor complexity p(n) = (Card(A) − 1)n + 1 for all n [6].

Proposition 6. Any primitive C-adic word is a uniformly recurrent tree word.
In particular, any primitive C-adic word has factor complexity p(n) = 2n + 1.

Proof. Any primitive C-adic word has a primitive C-adic representation, hence
is uniformly recurrent.

To show that the extension graphs of all bispecial factors are trees, we make
use of Lemma 5. If u is a bispecial factor of w, it is a descendant of ε ∈ Fac(w(n))
for some n. If τn ∈ {c11, c22}, then from Lemmas 3 and 5, all descendants of ε
are ordinary. The extension graph of u is thus a tree.

For τn ∈ {c122, c211, c121, c212}, we represent the extension sets of the descen-
dants of ε in the graphs represented in Figs. 1 and 2. Observe that the situation
is symmetric for c122 and c211 and for c121 and c212 so we only represent the
graphs for c122 and c121. Furthermore, in these graphs, we do not represent the
extension sets of ordinary bispecial factors as the property of being ordinary is
preserved by taking bispecial extended images (Lemma 5). Given an extension
set of some bispecial word v, if u is a bispecial extended image of v such that
u = xτ(v)y, we label the edge from E(v) to E(u) by x · τ · y. Finally, for all v,
we have E(c11(v)1) = E(v) and E(3c22(v)) = E(v), but for the sake of clarity,
we do not draw the loops labeled by c11 · 1 and by 3 · c22. We conclude the proof
by observing that the extension graphs of all descendants are trees.

Fig. 1. Non-ordinary bispecial descendants of ε ∈ Fac(w(n)) whenever τn = c122.

Fig. 2. Non-ordinary bispecial descendants of ε ∈ Fac(w(n)) whenever τn = c121.

4 Selmer Algorithm

Selmer algorithm [13] (also called the GMA algorithm in [4]) is an algorithm
which subtracts the smallest entry to the largest. Here we introduce a semi-
sorted version of it which keeps the largest entry at index 1. On Γ = {x =
(x1, x2, x3) ∈ R

3
≥0 | max(x2, x3) ≤ x1 ≤ x2 + x3}, it is defined as

FS(x1, x2, x3) =

{
(x2, x1 − x3, x3) if x2 ≥ x3,

(x3, x2, x1 − x2) if x2 < x3.

154 J. Cassaigne et al.

The partition of Γ into Γ1 ∪ Γ2 is

Γ1 = {(x1, x2, x3) ∈ Γ | x2 ≥ x3},

Γ2 = {(x1, x2, x3) ∈ Γ | x2 < x3}.

For semi-sorted Selmer algorithm, the matrices and associated substitutions are

S1 =

⎛
⎝0 1 1

1 0 0
0 0 1

⎞
⎠ , S2 =

⎛
⎝0 1 1

0 1 0
1 0 0

⎞
⎠ and s1 =

⎧⎨
⎩

1 �→ 2
2 �→ 1
3 �→ 31

, s2 =

⎧⎨
⎩

1 �→ 3
2 �→ 12
3 �→ 1

.

The matrices are given by the rule M(x) = Si if and only if x ∈ Γi. The map FS

on Γ is then defined as: FS(x) = M(x)−1x. The substitutions on A∗ are given
by the rule σ(x) = si if and only if x ∈ Γi for i = 1, 2.

5 Conjugacy of FC and FS

The numerical computation of Lyapunov exponents made in [11] indicate that
exponents for the unsorted Selmer algorithm and FC have statistically equal
values. The next proposition gives an explanation for this observation.

Proposition 7. Algorithms FC : Λ → Λ and FS : Γ → Γ are topologically
conjugate.

Proof. Let z : Λ → Γ be the homeomorphism defined by x �→ Zx with

Z =

⎛
⎝1 1 1

1 1 0
0 1 1

⎞
⎠ .

We verify that Ci is conjugate to Si through matrix Z for i = 1, 2:

S1Z =

⎛
⎝1 2 1

1 1 1
0 1 1

⎞
⎠ = ZC1 and S2Z =

⎛
⎝1 2 1

1 1 0
1 1 1

⎞
⎠ = ZC2.

Thus we have z ◦ FC = FS ◦ z.

An infinite word u ∈ AN is said to be finitely balanced if there exists a
constant C > 0 such that for any pair v, w of factors of the same length of u,
and for any letter i ∈ A, ||v|i − |w|i| ≤ C.

Based on [7, Theorem 6.4], and considering that computer experiments
suggest that the second Lyapunov exponent of Selmer algorithm is negative
(θ1 ≈ log(1.200) ≈ 0.182 and θ2 ≈ log(0.9318) ≈ −0.0706 in [4, p. 1522],
θ1 ≈ 0.18269 and θ2 ≈ −0.07072 in [11]), we believe that the following con-
jecture holds.

Conjecture 8. For almost every x ∈ Δ, the word W (x) is finitely balanced.

A Set of Sequences of Complexity 2n + 1 155

5.1 Substitutive Conjugacy

Let zl and zr be the following two substitutions:

zl :

⎧⎨
⎩

1 �→ 12
2 �→ 123
3 �→ 13

and zr :

⎧⎨
⎩

1 �→ 21
2 �→ 231
3 �→ 31

.

The substitution zl is left proper while zr is right proper. Moreover they are
conjugate through the equation

zl(w) · 1 = 1 · zr(w) for every w ∈ A∗.

Notice that Z is the incidence matrix of both zl and zr.
The substitutions ci are not conjugate to si but are related through substi-

tutions zl and zr for i = 1, 2:

s1 ◦ zl = zr ◦ c1 = (1 �→ 21, 2 �→ 2131, 3 �→ 231),
s2 ◦ zr = zl ◦ c2 = (1 �→ 123, 2 �→ 1213, 3 �→ 13).

We deduce that

Proposition 9. S-adic sequences when S = {s1, s2} restricted to the application
of the semi-sorted Selmer algorithm FS on totally irrational vectors x ∈ Γ have
factor complexity 2n + 1.

The problem of finding an analogue of FC in dimension d ≥ 4 (i.e. projective
dimension d − 1), generating S-adic sequences with complexity (d − 1)n + 1 for
almost every vector of letter frequencies is still open.

Acknowledgments. We are thankful to Valérie Berthé for her enthusiasm toward
this project and for the referees for their thorough reading and pertinent suggestions.

References

1. Arnoux, P., Labbé, S.: On some symmetric multidimensional continued fraction
algorithms. Ergodic Theor. Dyn. Syst., 1–26 (2017). doi:10.1017/etds.2016.112

2. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n+1.
Bull. Soc. Math. France 119(2), 199–215 (1991)

3. Arnoux, P., Starosta, Š.: The Rauzy gasket. In: Barral, J., Seuret, S. (eds.) Fur-
ther Developments in Fractals and Related Fields, pp. 1–23. Birkhäuser/Springer,
New York (2013). doi:10.1007/978-0-8176-8400-6 1, Trends in Mathematics

4. Baldwin, P.R.: A convergence exponent for multidimensional continued-fraction
algorithms. J. Stat. Phys. 66(5–6), 1507–1526 (1992)

5. Berthé, V., Labbé, S.: Factor complexity of S-adic words generated by the Arnoux-
Rauzy-Poincaré algorithm. Adv. Appl. Math. 63, 90–130 (2015). doi:10.1016/j.
aam.2014.11.001

6. Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, R.G.: Acyclic,
connected and tree sets. Monatsh. Math. 176(4), 521–550 (2015). doi:10.1007/
s00605-014-0721-4

http://dx.doi.org/10.1017/etds.2016.112
http://dx.doi.org/10.1007/978-0-8176-8400-6_1
http://dx.doi.org/10.1016/j.aam.2014.11.001
http://dx.doi.org/10.1016/j.aam.2014.11.001
http://dx.doi.org/10.1007/s00605-014-0721-4
http://dx.doi.org/10.1007/s00605-014-0721-4

156 J. Cassaigne et al.

7. Berthé, V., Delecroix, V.: Beyond substitutive dynamical systems: S-adic expan-
sions. In: Numeration and Substitution 2012, pp. 81–123 (2014). RIMS Kôkyûroku
Bessatsu, B46, Res. Inst. Math. Sci. (RIMS), Kyoto

8. Brentjes, A.J.: Multidimensional Continued Fraction Algorithms. Mathematisch
Centrum, Amsterdam (1981)

9. Cassaigne, J.: Un algorithme de fractions continues de complexité linéaire, DynA3S
meeting, LIAFA, Paris, 12th October 2015. http://www.irif.fr/dyna3s/Oct2015

10. Delecroix, V., Hejda, T., Steiner, W.: Balancedness of Arnoux-Rauzy and
Brun words. In: Karhumäki, J., Lepistö, A., Zamboni, L. (eds.) WORDS
2013. LNCS, vol. 8079, pp. 119–131. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40579-2 14

11. Labbé, S.: 3-dimensional Continued Fraction Algorithms Cheat Sheets, November
2015. http://arxiv.org/abs/arxiv:1511.08399

12. Leroy, J.: An S-adic characterization of minimal subshifts with first difference of
complexity 1 ≤ p(n + 1) − p(n) ≤ 2. Discrete Math. Theor. Comput. Sci. 16(1),
233–286 (2014)

13. Schweiger, F.: Multidimensional Continued Fractions. Oxford University Press,
New York (2000)

14. Zorich, A.: Deviation for interval exchange transformations. Ergodic Theor. Dyn.
Syst. 17(6), 1477–1499 (1997)

http://www.irif.fr/dyna3s/Oct2015
http://dx.doi.org/10.1007/978-3-642-40579-2_14
http://dx.doi.org/10.1007/978-3-642-40579-2_14
http://arxiv.org/abs/arxiv:1511.08399

The Word Entropy and How to Compute It

Sébastien Ferenczi1(B), Christian Mauduit1, and Carlos Gustavo Moreira2

1 Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de
Marseille, I2M - UMR 7373, 163, avenue de Luminy, 13288 Marseille Cedex 9, France

ssferenczi@gmail.com, mauduit@iml.univ-mrs.fr
2 Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110,

Rio de Janeiro, RJ 22460-320, Brazil
gugu@impa.br

Abstract. The complexity function of an infiniteword counts the number
of its factors. For any positive function f , its exponential rate of growth
E0(f) is lim

n→∞
inf 1

n
log f(n). We define a new quantity, the word entropy

EW (f), as the maximal exponential growth rate of a complexity function
smaller than f . This is in general smaller than E0(f), and more difficult
to compute; we give an algorithm to estimate it. The quantity EW (f) is
used to compute the Hausdorff dimension of the set of real numbers whose
expansions in a given base have complexity bounded by f .

Keywords: Word complexity · Positive entropy

1 Definitions

Let A be the finite alphabet {0, 1, . . . , q − 1}, If w ∈ AN, and L(w) the set of
finite factors of w; for any non-negative integer n, we write Ln(w) = L(w) ∩ An.
The classical complexity function is described for example in [2].

Definition 1. The complexity function of w ∈ AN is defined for any non-
negative integer n by pw(n) = |Ln(w)|.

Our work concerns the study of infinite words w the complexity function of
which is bounded by a given function f from N to R

+. More precisely, if f is
such a function, we put

W (f) = {w ∈ AN, pw(n) ≤ f(n),∀n ∈ N}.

Definition 2. If f is a function from N to R
+, we call exponential rate of growth

of f the quantity

E0(f) = lim
n→∞ inf

1
n

log f(n)

and word entropy of f the quantity

EW (f) = sup
w∈W (f)

E0(pw).

c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 157–163, 2017.
DOI: 10.1007/978-3-319-66396-8 15

158 S. Ferenczi et al.

Of course, if E0 = 0 then EW is zero also. Thus the study of EW is interesting
only when f has exponential growth: we are in the little-explored field of word
combinatorics in positive entropy, or exponential complexity. For an equivalent
theory in zero entropy, see [3,4].

2 First Properties of E0 and EW

The basic study of these quantities is carried out in [5], where the following
results are proved.

If f is itself a complexity function (i.e. f = pw for some w ∈ AN), then
EW (f) = E0(f). But in general EW may be much smaller than E0.

We define mild regularity conditions for f : f is said to satisfy (C) if the
sequence (f(n))n≥1 is strictly increasing, there exists n0 ∈ N such that ∀n ≥
n0 ⇒ f(2n) ≤ f(n)2, f(n + 1) ≤ f(1)f(n), and the sequence

(
1
n log f(n)

)
n≥1

converges.
But for each 1 < θ ≤ q, and n0 ∈ N such that θn0+1 > n0 + q − 1, we define

the function f by f(1) = q, f(n) = n + q − 1 for 1 ≤ n ≤ n0 and f(n) = θn for
n > n0. We have E0(f) = log θ and it is proved that

EW (f) ≤ 1
n0

log(n0 + q − 1),

which can be made arbitrarily small, independently of θ, while f satisfies (C).

We define stronger regularity conditions for f .

Definition 3. We say that a function f from N to R
+ satisfies the conditions

(C∗) if (i) for any n ∈ N we have f(n+1) > f(n) ≥ n+1; (ii) for any (n, n′) ∈ N
2

we have f(n + n′) ≤ f(n)f(n′).

But even with (C∗) we may have EW (f) < E0(f). Indeed, let f be the func-
tion defined by f(n) = �3n/2	 for any n ∈ N. Then it is easy to check that f
satisfies conditions (C∗) and that E0(f) = lim

n→∞
1
n log f(n) = log(

√
3). On the

other hand, we have f(1) = 2, f(2) = 3; thus the language has no 00 or no 11,
and this implies that EW (f) ≤ log(1+

√
5

2) < E0(f).

At least, under these conditions, we have the important

Theorem 4. If f is a function from N to R
+ satisfying the conditions (C∗),

then EW (f) > 1
2E0(f).

It is also shown in [5] that the constant 1
2 is optimal.

Finally, it will be useful to know that

Theorem 5. For any function f from N to R
+, there exists w ∈ W (f) such

that for any n ∈ N we have pw(n) ≥ exp(EW (f)n).

Word Entropy 159

3 Algorithm

In general EW (f) is much more difficult to compute than E0(f); now we will give
an algorithm which allows us to estimate with arbitrary precision EW (f) from
finitely many values of f , if we know already E0(f) and have some information
on the speed with which this limit is approximated.

We assume that f satisfies conditions C∗. We don’t loose too much gener-
ality with this assumption, since if the function f which satisfies the weaker
conditions C, we can replace it by the function f̃ given recursively by

f̃(n) := min{f(n), min
1≤k<n

f̃(k)f̃(n − k)},

which satisfies conditions C∗, such that f̃(n) ≤ f(n),∀n ∈ N and W (f̃) = W (f).

Theorem 6. There is an algorithm which gives, starting from f and ε, a quan-
tity h such that (1 − ε)h ≤ EW (f) ≤ h. h depends explicitely on ε, E0(f), N ,
f(1), ..., f(N), for an integer N which depends explicitely on ε, E0(f), and an
integer n0, larger than an explicit function of ε and E0(f), and such that

log f(n)
n

< (1 +
E0(f)ε

210(4 + 2E0(f))
)E0(f), for n0 ≤ n < 2n0.

We shall now give the algorithm. f is given and henceforth we omit to mention
it in E0(f) and EW (f). Also given is ε ∈ (0, 1).

Description of the algorithm

– Let

δ :=
E0ε

105(4 + 2E0)
<

ε

210
.

– Let

K := �δ−1	 + 1.

– Choose a positive integer

n0 ≥ K ∨ 4K2

4203E0

such that

log f(n)
n

< (1 +
δ

2
)E0,∀n ≥ n0;

in view of conditions C∗, this last condition is equivalent to log f(n)
n <

(1 + δ
2)E0, n0 ≤ n < 2n0.

160 S. Ferenczi et al.

– Choose intervals so large that all the lengths of words we manipulate stay in
one of them. Namely, for each t ≥ 0, let

nt+1 := exp(K((1 + δ)2E0nt + E0)).

We take

N := nK .

– Choose a set Y ⊂ AN : for each possible Y , we define Ln(Y) = ∪γ∈Y L(γ),
qn(Y) := |Ln(Y)|, for 1 ≤ n ≤ N . We look at those Y for which qn(Y) ≤
f(n),∀n ≤ N , and choose one among them such that

min
1≤n≤N

log qn(Y)
n

is maximum.
– By Lemma 7 below, on one of the large intervals we have defined, namely

[nr, nr+1],
log qn(Y)

n will be almost constant. Let

h :=
log qnr

(Y)
nr

.

Here is the lemma we needed; henceforth, Y is fixed and we omit to mention
it in the qn(Y):

Lemma 7. There exists r < K, such that

log qnr

nr
< (1 + δ)

log qnr+1

nr+1
.

Proof. Otherwise log qn0
n0

≥ (1 + δ)K log qnK

nK
: as K > 1

δ , (1 + δ)K would be close

to e for δ small enough, and is larger than 9
4 as δ < 1

2 ; thus, as log qnK

nK
≥ EW by

the proof of Proposition 8 below, we have log qn0
n0

≥ 9
4EW , but qn0 ≤ f(n0) hence

log qn0
n0

< (1+ δ
2)E0, and this contradicts E0 ≤ 2EW , which is true by Theorem 4.

We prove now that indeed h is a good approximation of the word entropy.

Proposition 8.

h ≥ EW .

Proof. We prove that

min
1≤n≤N

log qn

n
≥ EW .

We know by Theorem 5 that there is ŵ ∈ W (f) with pn(ŵ) ≥ exp(EW n), for
all n ≥ 1. For such a word ŵ, let X := LN (ŵ) ⊂ AN . We have, for each n
with 1 ≤ n ≤ N , Ln(X) = Ln(ŵ) and f(n) ≥ #Ln(ŵ) = pn(ŵ) ≥ exp(EW n).
Thus X is one of the possible Y , and the result follows from the maximality of
min1≤n≤N

log qn
n .

Word Entropy 161

What remains to prove is the following proposition (which, understandably,
does not use the maximality of min1≤n≤N

log qn
n).

Proposition 9.

(1 − ε)h ≤ EW .

Proof. Our strategy is to build a word w such that, for all n ≥ 1,

exp((1 − ε)hn) ≤ pn(w) ≤ f(n),

which gives the conclusion by definition of EW . To build the word w, we shall
define an integer m, and build successive subsets of Lm(Y); for such a subset Z,
we order it (lexicographically for example) and define w(Z) to be the Champer-
nowne word on Z: namely, if Z = {β1, β2, ..., βt}, we build the infinite word

w(Z) := β1β2 . . . βtβ1β1β1β2β1β3 . . . βt−1βtβ1β1β1 . . . βtβtβt . . .

made by concatenation of all words in Z followed by the concatenations of all
pairs of words of Z followed by the concatenations of all triples of words of Z,
etc.

The word w(Z) will satisfy exp((1 − ε)hn) ≤ pn(w(Z)) for all n as soon as

|Z| ≥ exp((1 − ε)hm),

since, for every positive integer k, we will have at least |Z|k factors of length km
in w(Z).

The successive (decreasing) subsets Z of Lm(Y) we build will all have cardi-
nality at least exp((1−ε)hm), and the words w(Z) will satisfy pn(w(Z)) ≤ f(n)
for n in an interval which will increase at each new set Z we build, and ultimately
contains all the integers.

We give only the main ideas of the remaining proof. In the first stage we define
two lengths of words, n̂ and m > n̂

2ε , which will be both in the interval [nr, nr+1],
and a set Z1 of words of length m of the form γθ, for words γ of length n̂, such
that the word γθγ is in Lm+n̂(Y). This is done by looking precisely at twin
occurrences of words.

Let ε̃ = ε
15 = 7(4+2E0)δ

E0
> 14δ; then we can get such a set Z1 with

|Z1| ≥ exp((1 − ε̃)h(m + n̂)).

In the second stage, we define a new set Z2 ⊂ Z1 in which all the words have
the same prefix γ1 of length 6ε̃hm, and all the words have the same suffix γ2 of
length 6ε̃hm, with |Z2| ≥ |Z1| exp(−12ε̃hm − 2δhn̂), and 2δhn̂ ≤ (1 − ε̃)n̂, thus

|Z2| ≥ exp((1 − 13ε̃)hm).

As a consequence of the definition of Z2, all words of Z2 have the same prefix
of length n̂, which is a prefix γ0 of γ1; as Z2 is included in Z1, any word of Z2

is of the form γ0θ, amd the word γ0θγ0 is in Lm+n̂(Y).

162 S. Ferenczi et al.

At this stage we can prove

Claim. pw(Z2)(n) ≤ f(n) for all 1 ≤ n ≤ n̂ + 1.

Let us shrink again our set of words.

Lemma 10. For a given subset Z of Z2, there exists Z ′ ⊂ Z, |Z ′| ≥ (1 −
exp(−(j −1)E0

2))j |Z|, such that the total number of factors of length n̂+ j of all
words γ0θγ0 such that γ0θ is in Z ′ is at most f(n̂ + j) − j.

We start from Z2 and apply successively Lemma 10 from j = 2 to j = 6ε̃m,
getting 6ε̃m − 1 successive sets Z ′; at the end, we get a set Z3 such that the
total number of factors of length n̂ + j of words γ0θγ0 for γ0θ in Z3 is at most
f(n̂ + j) − j for j = 2, . . . , 6ε̃m, and |Z3|

|Z2| is at least

Π2≤j≤6ε̃m−n̂(1 − exp(−(j − 1)
E0

2
))j ≥ Πj≥2(1 − exp(−(j − 1)

E0

2
))j ,

which implies after computations that

|Z3| ≥ exp((1 − 14ε̃)hm).

We can now bound the number of short factors by using the factors we have
just deleted and properties of γ0, γ1 and γ2.

Claim. pw(Z3)(n) ≤ f(n) for all 1 ≤ n ≤ 6ε̃m.

We shrink our set again.
Let m ≥ n > 6ε̃m; in average a factor of length n of a word in Z3 occurs in

at most m|Z3|
f(n) elements of Z3. We consider the f(n)

mn2 factors of length n which

occur the least often. In total, these factors occur in at most m|Z3|
f(n)

f(n)
mn2 = |Z3|

n2

elements of Z3. We remove these words from Z3, for all m ≥ n > 6ε̃m, obtaining
a set Z4 with |Z4| ≥ exp((1 − 15ε̃)hm).

We can now control medium length factors, using again the missing factors
we have just created, and γ1 and γ2, but not γ0.

Claim. pw(Z4)(n) ≤ f(n) for all 1 ≤ n ≤ m.

Finally we put Z5 = Z4 if |Z4| ≤ exp((1 − 4ε̃)hm), otherwise we take for Z5

any subset of Z4 with �exp((1 − 4ε̃)hm)	 elements. In both cases we have

|Z5| ≥ exp((1 − ε)hm).

For the long factors, we use mainly the fact that there are many missing
factors of length m, but we need also some help from γ1 and γ2.

Claim. pw(Z5)(n) ≤ f(n) for all n.

In view of the considerations at the beginning of the proof of Proposition 9,
Claim 3 completes the proof of that proposition, and thus of Theorem 6.

Word Entropy 163

4 Application

We define

C(f) = {x =
∑

n≥0

wn

qn+1
∈ [0, 1], w(x) = w0w1 · · · wn · · · ∈ W (f)}.

We are interested in the Hausdorff dimensions of this set, see [1] for definitions;
indeed, the main motivation for studying the word entropy is Theorem 4.8 of [5]:

Theorem 11.
The Hausdorff dimension of C(f) is equal to EW (f)/ log q.

References

1. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications.
Wiley, Chichester (1990)

2. Ferenczi, S.: Complexity of sequences and dynamical systems. Discrete Math.
206(1–3), 145–154 (1999). http://dx.doi.org/10.1016/S0012-365X(98)00400-2,
(Tiruchirappalli 1996)

3. Mauduit, C., Moreira, C.G.: Complexity of infinite sequences with zero entropy.
Acta Arith. 142(4), 331–346 (2010). http://dx.doi.org/10.4064/aa142-4-3

4. Mauduit, C., Moreira, C.G.: Generalized Hausdorff dimensions of sets of real num-
bers with zero entropy expansion. Ergodic Theor. Dynam. Syst. 32(3), 1073–1089
(2012). http://dx.doi.org/10.1017/S0143385711000137

5. Mauduit, C., Moreira, C.G.: Complexity and fractal dimensions for infinite
sequences with positive entropy (2017)

http://dx.doi.org/10.1016/S0012-365X(98)00400-2
http://dx.doi.org/10.4064/aa142-4-3
http://dx.doi.org/10.1017/S0143385711000137

First Steps in the Algorithmic Reconstruction
of Digital Convex Sets

Paolo Dulio1, Andrea Frosini2, Simone Rinaldi3, Lama Tarsissi4(B),
and Laurent Vuillon4

1 Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

paolo.dulio@polimi.it
2 Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze,

Viale Morgagni 65, 50134 Firenze, Italy
andrea.frosini@unifi.it

3 Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche,
Università di Siena, Via Roma, 56, 53100 Siena, Italy

rinaldi@unisi.it
4 Laboratoire de Mathématiques, Université de Savoie Mont Blanc,

CNRS UMR 5127, 73376 Le Bourget du Lac, France
lama.tarsissi@uiv-smb.fr, laurent.vuillon@univ-smb.fr

Abstract. Digital convex (DC) sets plays a prominent role in the frame-
work of digital geometry providing a natural generalization to the con-
cept of Euclidean convexity when we are dealing with polyominoes, i.e.,
finite and connected sets of points. A result by Brlek, Lachaud, Provençal
and Reutenauer (see [4]) on this topic sets a bridge between digital con-
vexity and combinatorics on words: the boundary word of a DC poly-
omino can be divided in four monotone paths, each of them having a
Lyndon factorization that contains only Christoffel words.

The intent of this paper is to provide some local properties that a
boundary words has to fulfill in order to allow a single point modifica-
tions that preserves the convexity of the polyomino.

Keywords: Digital convexity · Discrete geometry · Discrete tomogra-
phy · Reconstruction problem

1 Introduction

Digital convex sets play a prominent role in the framework of digital geometry
providing a natural generalization to the concept of Euclidean convexity. It is not
so easy to define digital convex sets because for example in the papers of Sklansky
[9] and Minsky and Papert [9] digital convex sets may contain many connected
components. In order to have exactly one connected component, Chaudhuri and
Rosenfeld [5] impose implicitly that a digital convex set must be a polyomino.
Recall that a polyomino P is a simply connected union of unit squares, that is a
union of unit squares without holes. In fact the two authors propose the notion
c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 164–176, 2017.
DOI: 10.1007/978-3-319-66396-8 16

First Steps in the Algorithmic Reconstruction of Digital Convex Sets 165

of DL-convexity (where DL means digital line) and by definition a region is DL-
convex if, for any two squares belonging to it, there exists a digital straight line
between them all of whose squares belong to the region. Thus for Chaudhuri and
Rosenfeld the region must be a polyomino. Debled-Rennesson, Rémy and Rouyer-
Degli have worked on the arithmetical properties of discrete segments in order to
detect the convexity of polyominoes (see [8]). Another nice result on this topic
using a bridge between digitally convex notion and combinatorics on words is
stated by Brlek, Lachaud, Provençal and Reutenauer (see [4]). Indeed, a poly-
omino P is described by its boundary word b. The boundary word b can be divided
in 4 monotone paths and we compute the Lyndon factorization of each path. If
each of these factorizations contains only Christoffel words then we have a digi-
tally convex polyomino. We will recall these definitions and use technics to address
the following problem: how to give a sequence of single square modifications of
a digitally convex polyomino in order to remain at each step in the set of digi-
tally convex polyominoes? This approach is usual in discrete tomography where
we would like to reconstruct a polyomino from the horizontal and vertical projec-
tions. For example, if we consider HV -convex polyominoes which are polyominoes
formed by horizontal and vertical bars of squares, Barcucci et al. [1] shown that the
enumeration of all solutions with given projections could be done using switching
components. Switching components are local modifications on the boundary of the
polyomino which preserve the horizontal and vertical projections. In this paper,
we point out the positions where by a single modification of a square the digital
convexity of the whole polyomino is maintained. These local decompositions allow
us to detect the possible positions of a switching component. And this is crucial
in order to make only modifications in the set of digitally convex polyominoes.

2 Preliminaries

Let A be a finite alphabet and w be the word obtained by the concatenation
of finite letters of A. We write w = l1l2 . . . ln where n represents the length of
w and denoted by |w|. For all l ∈ A, the number of occurrences of this letter
in a word w is denoted: |w|l. The set of finite words is denoted A∗, the empty
word is denoted by ε and by convention A+ = A∗\{ε}. The word w̃ = ln . . . l2l1
is the reversal of w = l1l2 . . . ln, where w is called a palindrome if w̃ = w. Let p
represent the period of the word w such that wi+p = wi for all 1 ≤ i ≤ |w| − p.
The following notation wk = wk−1.w represents the kth power of w ∈ A∗, where
w0 = ε. A word w is said primitive if it is not the power of a nonempty word.

Two words w and w′ in A∗ are conjugate if there exists u, v ∈ A∗, such that:
w = uv and w′ = vu. The set of all circular permutations of a word w of its
letters is equivalent to the conjugacy class of the word that is defined as the set
of all the conjugates of w.

We call w′ = w[i, j] a factor of w if it is a subword of w of length j − i + 1,
starting from the ith position of w to its jth position, where 1 ≤ i < j. For
brevity sake, we write w[i] in place of w[i, i]. Respectively, if w = uv where u
and v are nonempty words in A∗, u is called prefix of w and v is its suffix.

166 P. Dulio et al.

2.1 Digital Convexity and Convexity on Polyominoes

Kim and Rosenfeld introduced different characterizations of discrete convex sets,
where a set in Euclidean geometry is convex if and only if for any pair of points
p1, p2 in a region R, the line segment joining them is completely included in R.
In discrete geometry on square grids, this notion refers to the convexity of unit
squares.

Let x = (x1, x2) be an an element of Z
2, we define two norms: ||x||1 =

∑2
i=1 |xi| and ||x||∞ = max{|x1|, |x2|} to study the connectedness in Z

2.

Definition 1. A sequence of points p0, p1, . . . , pn ∈ Z
2 is k−connected ; k ∈ N

∗

if ||pi − pi−1||∞ ≤ 1 and ||pi − pi−1||1 ≤ k.

Definition 2. A path P is k−connected if ∀ x, y ∈ P , ∃ p0, p1, . . . , pn points
that are k−connected such that p0 = x, pn = y and pi ∈ P ∀i.

Example of 1−connected path, Example of 2−connected path.

In this paper, we deal with polyominoes that are defined as following:

Definition 3. We call P ∈ Z
2 a polyomino if P is a 1−connected and finite

with Z
2/P also 1−connected.

Given a finite subset S of Z2, its convex hull is defined as the intersection of
all Euclidean convex sets containing S. We say that a polyomino P is digitally
convex if the convex hull denoted conv(P) and Z

2 are in P . In other words:
conv(P) ∩ Z

2 ∈ P .
In Sect. 3, we define the boundary of a polyomino and we give a second

equivalent definition for the convexity.

2.2 Christoffel and Lyndon Words

Now we provide the basic definitions and some known results about Christoffel
and Lyndon words:

Christoffel Words. In 1771, Jean Bernoulli [2] was the first to give the defi-
nition of Christoffel words in the discrete plane and in 1990 Jean Berstel gave
them this name with respect to Elwin. B. Christoffel (1829–1900).
Let a, b be two co-prime numbers, i.e. gcd(a, b) = 1. The Lower Christoffel path
of slope a/b is the 1−connected path joining the origin O(0, 0) to the point (b, a)
and respecting the following characteristics:

First Steps in the Algorithmic Reconstruction of Digital Convex Sets 167

1. it is the nearest path below the Euclidean line segment joining these two
points;

2. there are no points of Z × Z between the path and line segment.

Analogously, the Upper Christoffel path is the path that lies above the line
segment. By convention, the Christoffel path is exactly the Lower Christoffel
path.

The Christoffel word of slope a/b, denoted C(ab), is a word defined on a
binary alphabet A = {0, 1} that codes the path. We obtain the Christoffel word
by assigning a 0 for each horizontal step and a 1 for each vertical one for the
Christoffel path of slope a/b. We get that the fraction a

b is exactly: |w|1
|w|0 . The

following result is known.

Property 1. Let w = C
(
a
b

)
be the Christoffel word of slope a/b, we write w =

0w′1, where w′ is a palindrome.

We name w′ the central part of w. Note that the lower and upper Christoffel
words have the same central part.
We define the morphism ρ : A∗ −→ Q ∪ {∞} by:

ρ(ε) = 1 and ρ(w) =
|w|1
|w|0 ∀ w
= ε ∈ A∗;

where 1
0 = ∞. This morphism determines the slope for each given word in A∗.

Example 1. Consider the line segment joining the origin O(0, 0) to the point
(8, 5). We have a = 5, b = 8 and n = a + b = 13. The Christoffel word of slope
5/8 is: C(58) = 00100101001010.

O(0,0)

(8,5)

0 0

1 0 0

1 0

1 0 0

1 0

1

O(0,0)

(8,5)

1

0 1

0 0 1

0 1

0 0 1

0 0

Fig. 1. The Lower and Upper Christoffel word of slope 5/8 are 0010010100101 and
1010010100100, respectively.

The word w = C(58) = 0 01001010010 1, where the central part 01001010010
is a palindrome.

Another definition for the Christoffel word of slope a/b was introduced by
Christoffel [7].

168 P. Dulio et al.

Definition 4. Suppose a and b are relatively prime and (b, a)
= (0, 1). The label
of a point (i, j) on the Christoffel path of slope a

b is the number ia−jb
b . That is,

the label of (i, j) is the vertical distance from the point (i, j) to the line segment
from (0, 0) to (b, a).

Lemma 1. Suppose w is a Christoffel word of slope a/b with a and b relatively
prime. If s

b and t
b are two consecutive labels, as defined in Definition 4, on the

Christoffel path from (0, 0) to (b, a), then t ≡ s + a mod (a + b). Moreover, t
takes as values each integer 0, 1, 2, . . . , a + b − 1 exactly once.

This part shows that every Christoffel word can be expressed as the product
of two Christoffel words in a unique way. This factorization is called the standard
factorization and was introduced by Jean-Pierre Borel and Laubie [3] (Fig. 2).

Definition 5. The maximal point of a given Christoffel word w, is the point P
of w closest to the line segment. Analogously, the minimal point Q of w is the
furthest from the line segment.

By Lemma 1, we obtain that the maximal and minimal points of a Christoffel
word are obtained when t takes the values 1 and −1, respectively.

Definition 6. The standard factorization of the Christoffel word w = C(ab) of
slope a/b is the factorization w = (w1, w2), where w1 encodes the portion of the
Christoffel path from (0, 0) to P and w2 encodes the portion from P to (b, a).

Example 2. The standard factorization of the Christoffel word of slope 5/8 is:
C(58) = (00100101, 00101) and is shown in the Fig. 2.

O(0,0)

w1 Q

P
w2

(8,5)

Fig. 2. The standard factorization of C(5
8
) = (00100101, 00101).

Theorem 1 (Borel, Laubie [3]). A nontrivial Christoffel word w (i.e. different
from (0)n or (1)n) has a unique factorization w = (w1, w2) with w1 and w2

Christoffel words.

First Steps in the Algorithmic Reconstruction of Digital Convex Sets 169

Lyndon Words. In 1954, Roger Lyndon introduced the Lyndon words by
defining an order relation over all the words in A∗. The Standard lexicographic
sequence order denoted <l is defined as the alphabetic order defined in a dic-
tionary. Hence for the two words w = 00101 and w′ = 01001, we have w <l w′.
The order relation between w and w′ can be defined as follows:

w <l w′ if w′ = w.u where u ∈ A∗, or

w = v0z and w′ = v1z′ where v, z and z′ ∈ A∗.

Definition 7. Let w = uv with u, v ∈ A+, w is a Lyndon word if it is the
smallest between all its conjugates with respect to the lexicographic order.

Note that Lyndon words are always primitive.

Example 3. The word w = 00101 of length 5 is a Lyndon word since it is the
minimal element of the set of all conjugates of w. Hence, we can write: 00101 =
min{00101, 01010, 01001, 10100, 10010}. While 0010100101 is not a Lyndon word
since it is not primitive.

An important factorization is deduced from the definition of Lyndon words
and given by the following theorem by Chen, Fox and Lyndon in [6]

Theorem 2. Every non-empty word w admits a unique factorization as a lexico-
graphically decreasing sequence of Lyndon words. We write w = wn1

1 wn2
2 . . . wnk

k ,
such that wk <l · · · <l w2 <l w1, ni ≥ 1 and wi are Lyndon words for all
1 ≤ i ≤ k.

3 Theoretical Results

The definition of (digital) convexity of a connected set S implies that the set
can be described by a word on a four letters alphabet Σ that codes its border,
say Bd(S). Each of the four letters in Σ = {1, 1, 0, 0} provides a step along
the border in one of the four different directions North, South, East and West,
respectively.

To reach a standard coding of the border of Bd(S), it can be noticed that
a convex set touches the border of its minimal bounding rectangle in four bars,
called (N)orth, (S)outh, (E)ast and (W)est foot. Moving counterclockwise on the
border of the set, let us denote the ending corner of each foot by N , W , S and E
according to the correspondent foot, as shown in Fig. 3. The word Bd(S) starts
from W and runs clockwise along the border of S in a closed path: Bd(S) can
be factorized into four non-void sub-paths WN , NE, ES and SW each using
only two of the four steps in Σ to connect the related points; such a factorization
is called standard. We say that a word in {0, 1} is WN -convex if it is the NW
path of a convex set. The NE, ES, and SW convexity can be defined similarly.
Obviously, a path is convex if its standard factorization is made by four paths
that are NW , NE, ES, and SW convex.

170 P. Dulio et al.

W

S

N

E

Fig. 3. A convex polyomino and its standard factorization. The word w ∈ {0, 1}∗

coding the WN path is w = 1110110110100100001.

3.1 Perturbations on the WN Paths

From now on, we will consider the WN path only, assuming that all the prop-
erties hold for the other three paths up to rotations. In [4], the authors charac-
terized the words that are border of a convex connected set by means of Lyndon
and Christoffel words:

Property 2. A word w is WN -convex iff its unique Lyndon factorization
wn1

1 wn2
2 . . . wnk

k is such that all wi are primitive Christoffel words.

Such a result highlights the fact that a WN convex path is composed by line
segments, i.e. Christoffel words, having a decreasing slope, so that they respect
the lexicographical order and produce a Lyndon factorization. Furthermore, in
the same paper, the authors pointed out that such a decomposition can be
obtained in linear time.

In order to define a procedure that reconstructs convex sets from projections,
we are interested in finding a set of loci of a WN convex path where it is possible
to add one single point without loosing the convexity.

Let us consider a primitive Christoffel word w and define min(w) to be the
length of the prefix that reaches its minimal point as in Definition 5.

As an example, let w = 00100101 be a primitive Christoffel word; its minimal
point is atposition (4, 1) reachedby theprefix00100ofw, somin(w) = |00100| = 5.
Since we assume w to be primitive, then min(w) is unique. Figure 4 shows a WN
path and the minimal points of the Christoffel words.

By definition, we remark that if k = min(w), then w[k] = 0, and w[k+1] = 1.
The following property states that if we flip the elements of w at positions k and
k+1 the obtained word w′ is not a Christoffel word; on the other hand, it can be
split into two words w′[1, k] and w′[k + 1, n], with n = |w′|, that are Christoffel
words. Furthermore, position k is the only one allowing such a decomposition:

First Steps in the Algorithmic Reconstruction of Digital Convex Sets 171

w1

2

3

4

w

w

w

Fig. 4. A WN path and its decomposition into four Christoffel words w1, w2, w3,
and w4 related to four line segments. The four minimal points of each segment are
highlighted.

Proposition 1. Let w be a primitive Christoffel word of length n and k =
min(w).

(i) The words u = w[1, k − 1] 1 and v = 0 w[k + 2, n], are two Christoffel words;
(ii) for each k′ different from k, the words u′ = w[1, k′−1]1 and v′ = 0w[k′+2, n]

are not both Christoffel words.

The proof is a direct consequence of Property 1 and Lemma 1. We point out
the following immediate and useful consequence:

Corollary 1. Let w, u and v be as in Property 1. It holds

(i) ρ(u) > ρ(v);
(ii) ρ(w[1, k′]1) > ρ(u), for each k′
= k(= min(w)), and w[k′] = 0. A symmetric

result holds for v.

3.2 Definition of the split Operator

Proposition 1 allows us to define a split operator, that acts on the Christoffel
word w and provides as output the concatenation of the two words u and v, by
simply flipping the sequence 01 at position k and k+1 of w into the sequence 10,
i.e., split(w) = u v. From now on, we consider the extension of the operator to
sequences of Christoffel words, and we index it with the (index of the) sub-word
where the split takes place, i.e., if w = w1 w2 . . . wn is a sequence of primitive
Christoffel words, then splitk(w) = w1w2 . . . split(wk) . . . wn. Consecutive appli-
cations of the split operator to the word w will be indexed by the sequence of
the indexes of the involved sub-words.

172 P. Dulio et al.

Given two words p1 and p2 of the same length l, we say that p1 is greater than
or equal to p2 (p1 ≥ p2), if for each k ≤ l it holds |p1[1 · · · k]|1 ≥ |p2[1 · · · k]|1.
The “≥” relation is a natural partial ordering on words.

As an immediate consequence we have:

Property 3. Let w = w1 w2 . . . wn be a sequence of Christoffel words. It holds:

(i) splitk(w) ≥ w, with k ≤ n;
(ii) the split operator commutes with respect to successive applications, i.e.,

splitk,h(w) = splith,k(w).

Attention must be paid when we are dealing with sequences of Christoffel
words that are paths of a convex polyomino: the split operator provides an

(b)(a)

(c)

w’ w’’

w2

w’
w’’

w 2

w’
w’’

w

w1

3

Fig. 5. Three WN paths of a convex polyomino: (a) the Lyndon factorization and
the global convexity are preserved; (b), the global convexity is preserved, but not the
Lyndon factorization that has to be modified including w′′ in w2, i.e., w′

2 = w′′ w2 =
(01)(0101011); (c) the global WN convexity is lost. Observe that the word w′′w2 =
(001)(0010010010010010100100100100101) is not a Christoffel word. So, we need a
second split in w2 and the addition of a further point to obtain a WN path back.

First Steps in the Algorithmic Reconstruction of Digital Convex Sets 173

efficient way to add one point on a line segment of the border of the polyomino
without loosing the convexity on that segment, but it does not guarantee either
to preserve the Lyndon factorization of the related word or its convexity.

We can classify the perturbations performed by the split operator on the
factor wi (i.e. split(wi) = ui vi) of the Lyndon decomposition of a convex path
into three different types, according to the values of the slopes of the consecutive
Lyndon factors after the perturbation:

(a) the Lyndon factorization and the global convexity are preserved (see
Fig. 5 (a)), i.e., the two new factors ui and vi globally preserve the slope
decreasing of the line segments of the path;

(b) the Lyndon factorization is not preserved but the obtained path is still
convex (see Fig. 5 (b)), i.e., wi−1uiviwi+1, with wi+1 eventually void, is not
a Lyndon factorization, so it does not preserve the slope decreasing of the
line segments of the path, while the new Lyndon factorization does;

(c) neither the Lyndon factorization nor the convexity are preserved (see
Fig. 5 (c)), i.e., wi−1uiviwi+1, with wi+1 eventually void, is not a Lyndon
factorization. Furthermore, the new Lyndon factorization is not composed
by Christoffel words only.

3.3 Commutativity of the split Operator

In what follow, we are interested in showing under which assumptions the com-
mutative behavior of the split operator is preserved in a WN path (as already
underlined, by symmetry the found results hold for the remaining three kinds of
paths). In particular, we are going to show that, if the split operator produces
perturbations of type (a) on two consecutive Christoffel words in a same octant
of a WN path, then the result of the two successive applications is independent
from their appliance order.

Theorem 3. Let w1 and w2 be two consecutive Christoffel words in the same
octant of a WN path of a polyomino, and let split(w1) = u1 v1 and split(w2) =
u2 v2. If ρ(v1) > ρ(w2) and ρ(w1) > ρ(u2) (i.e. the split operator provides two
perturbations of type (a) on w1 and w2), then it holds ρ(v1) > ρ(u2).

Proof. Let ρ(u2) = b
a and ρ(v1) = b′

a′ , and assume without loss of generality
that w1 and w2 lie in the upper octant, i.e., a > b, and a′ > b′. Since the split
operator acts on min(w1) and min(w2), then it holds

b − 1
a − 1

< ρ(w2) <
b

a
, and

b′ − 1
a′ − 1

< ρ(w1) <
b′

a′ . (1)

Let us proceed by contradiction, assuming that ρ(v1) < ρ(u2), i.e.,ab′ < ba′. We
first prove that the inequality

b′ − 1
a′ − 1

<
b − 1
a − 1

(2)

is always satisfied: several cases have to be considered according to the mutual
dimensions of the four parameters a, a′, b, and b′:

174 P. Dulio et al.

Case (1) a = a′. From a = a′ it follows b′ < b and consequently b′ − 1 < b − 1,
so Inequality 2 holds. The case b = b′ is symmetrical.

Case (2) a < a′. Two subcases arise: if b′ < b, then we have b′ − 1 < b− 1. Since
we also have a − 1 < a′ − 1, then Inequality 2 again is a direct consequence.
On the other hand, let b′ > b. In this case we show that a contradiction
arises, i.e., ρ(w1) < ρ(u2), against the hypothesis.
The Christoffel tree is isomorphic to the Stern-Brocot tree that contains all
the irreducible fractions. The fractions are distributed all over the tree using
the Farey addition, which is:

a

b
⊕ c

d
=

a + c

b + d
.

Let the two Christoffel words w1 and w2, of slopes respectively ρ(w1) and ρ(w2),
be split into Christoffel sub-words as w1 = u1 v1 and w2 = u2 v2, as shown in
Fig. 6.

w

w

u =

v =

a
b

a’

b’

c

c’

d

d’

1

2

u =

v =

1

1

2

2

Fig. 6. The split of the Christoffel words w1 and w2 into (u1, v1) and (u2, v2).

We let, ρ(u1) = c′
d′ , ρ(v1) = b′

a′ , ρ(u2) = b
a , and ρ(v2) = c

d .
Using the construction of the Stern-Brocot tree, we know that there exist

k, t ∈ N such that c′ = b′ − k and d′ = a′ − t.
Since, by assumption, b′ > b and a′ > a, there also exist k′, t′ ∈ N such that

b = b′ − k′ and a = a′ − t′.
The following inequalities hold:

b′

a′ <
b

a
ab′ < a′b

a′b′ − a′b < a′b′ − ab′

b′ − b

a′ − a
<

b′

a′

k′

t′
<

b′

a′

2a′k′ − 2b′t′ < 0.

First Steps in the Algorithmic Reconstruction of Digital Convex Sets 175

Reminding that we assumed to be confined in the first octant where the slopes
of the Christoffel words are less than 1, then b < a implies b′ − k′ < a′ − t′.
Therefore: −(a′ − t′) < −(b′ − k′) and, since by the Stern-Brocot tree we have
c′
d′ ⊕ k

t = b′
a′ , then k

t < 1 and consequently k < t, then we get

−k(a′ − t′) < −t(b′ − k′) i.e. − k(a′ − t′) + t(b′ − k′) < 0.

The inequalities gathered up to now lead to the following ones: ρ(w1) = b′+c′
a′+d′ =

2b′−k
2a′−t and ρ(u2) = b

a = b′−k′
a′−t′ that are enough to prove that ρ(w1) < ρ(u2) always

holds against the hypothesis. In fact

2b′a′ − 2b′t′ − ka′ + kt′ < 2a′b′ − 2a′k′ − b′t + k′t
2a′k′ − 2b′t′ − k(a′ − t′) + t(b′ − k′) < 0

which is always true since 2a′k′ − 2b′t′ < 0 and −k(a′ − t′) + t(b′ − k′) < 0.

Case (3) a > a′. As above, two subcases arise:

– if b < b′, then since 1
a < 1

a′ we get b
a < b′

a′ , i.e., a contradiction to the initial
hypothesis.

– The other case concerns b > b′. Let us consider a = a′ + h and b = b′ + k (see
Fig. 7), and consequently Inequality 2 can be written as

b′ + k − 1
a′ + h − 1

− b′ − 1
a′ − 1

> 0. (3)

Since by hypothesis, we have b′
a′ = b−k

a−h < b
a , hence ab − ak − ab + hb < 0 and

b
a < k

h as shown in Fig. 7. Therefore the following relations hold:

k

h
>

b

a
>

b′

a′ >
b′ − 1
a′ − 1

.

By the last one, it holds k(a′−1) > h(b′−1) and consequently ka′−hb′−k+h >
0 that is equivalent to Inequality 3.

b

k

b’

a

ha’

u

v1

2

Fig. 7. An example of the case a > a′ and b > b′ in the proof of Theorem 3.

176 P. Dulio et al.

In the 3 cases, and assuming that ρ(v1) > ρ(u2), we obtain Inequality 2. The
following inequalities are deduced:

b′ − 1
a′ − 1

<
b − 1
a − 1

< ρ(w2) <
b′

a′ <
b

a
< ρ(w1)

and, comparing with the first inequality of the second chain in Inequality 1, we
get a contradiction. ��
Corollary 2. After performing a sequence of perturbations of type (a) in a WN
path, then the obtained path is still a WN path.

This last result can be rephrased by saying that the split operator commutes
in case of perturbations of type (a) inside the same octant. A further analysis
has to be carried on in presence of perturbations of type (b), both in the same
octant and in the whole quadrant.

Acknowledgment. This study has been partially supported by INDAM - GNCS
Project 2017.

References

1. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex poly-
ominoes from horizontal and vertical projections. Theoret. Comput. Sci. 155(2),
321–347 (1996). http://dx.doi.org/10.1016/0304-3975(94)00293–2

2. Bernoulli, J.: Sur une nouvelle espèce de calcul, pp. 255–284. Recueil pour les
astronomes

3. Borel, J.P., Laubie, F.: Quelques mots sur la droite projective réelle. J. Théor.
Nombres Bordeaux 5(1), 23–51 (1993). http://jtnb.cedram.org/item?id=JTNB
1993 5 1 23 0

4. Brlek, S., Lachaud, J.O., ProvenÃSS, X., Reutenauer, C.: Lyndon+christoffel = dig-
itally convex. Pattern Recogn. 42(10), 2239–2246 (2009). Selected papers from the
14th IAPR International Conference on Discrete Geometry for Computer Imagery
2008, http://www.sciencedirect.com/science/article/pii/S0031320308004706

5. Chaudhuri, B.B., Rosenfeld, A.: On the computation of the digital convex hull and
circular hull of a digital region. Pattern Recogn. 31(12), 2007–2016 (1998)

6. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus, IV: the quo-
tient groups of the lower central series. Ann. Math. 68(2), 81–95 (1958).
http://dx.doi.org/10.2307/1970044

7. Christoffel, E.: Observatio arithmetica. Annali di Matematica 6, 145–152 (1875)
8. Debled-Rennesson, I., Jean-Luc, R., Rouyer-Degli, J.: Detection of the discrete con-

vexity of polyominoes. In: Borgefors, G., Nyström, I., Baja, G.S. (eds.) DGCI
2000. LNCS, vol. 1953, pp. 491–504. Springer, Heidelberg (2000). doi:10.1007/
3-540-44438-6 40

9. Sklansky, J.: Recognition of convex blobs. Pattern Recogn. 2(1), 3–10 (1970)

http://dx.doi.org/10.1016/0304-3975(94)00293--2
http://jtnb.cedram.org/item?id=JTNB_1993__5_1_23_0
http://jtnb.cedram.org/item?id=JTNB_1993__5_1_23_0
http://www.sciencedirect.com/science/article/pii/S0031320308004706
http://dx.doi.org/10.2307/1970044
http://dx.doi.org/10.1007/3-540-44438-6_40
http://dx.doi.org/10.1007/3-540-44438-6_40

Variants Around the Bresenham Method

J.-P. Borel(B)

XLim, UMR 6172 - Université de Limoges - CNRS, 123 Avenue Albert Thomas,
87060 Limoges Cedex, France

borel@unilim.fr

Abstract. We present various ways of representing a segment in black-
ing or not some pixels on a computer screen. These methods include
well-known classical cases, such as the one proposed by Bresenham, or
the concept of Cutting Sequence. Our method relies on the concept of
active multi-pixel. The sequence of pixels in black or in various levels of
gray is coded on some alphabet, which depends on the multi-pixel, and
the structure of these encodings is discussed.

Keywords: Discrete geometry · Freeman codes · Bresenham method

AMS classification. 68R15.

1 Introduction

1.1 Drawing Lines

A screen can be schematized as a grid of small unit square pixels P, naturally
white but which can be colored in various ways. The most natural way to repre-
sent a segment is to blacken the squares encountered by this segment. It is not
the one that is chosen in practice, probably for aesthetic reasons. The method
adopted dates back to the 1960s and was proposed by Bresenham: a pixel P is
blacked when the line (with a slope lower than 1) encounters the small horizontal
segment joining the midpoints of the horizontal sides of the square (See Fig. 1
ex. 2), and similarly with the small vertical segment for slopes greater than 1.

In practice, it will also be considered that the pixel can be grayed with various
levels of gray in finite number.

In the following, we will consider dynamically the segments, starting at the
origin (0, 0) and ending in some integer point (q, p), or half-lines originating
from (0, 0) and of any slope, whether rational or not. This slope will always be
positive, the other cases will naturally deduce from it. We use lines for these two
cases.

The unit pixels composing the screen grid are considered to be centered at
the integer points. The hypothesis of putting the integer points at the vertices
of the squares can also be made, and the results adapted.

Partially supported by Region Nouvelle Aquitaine.

c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 177–189, 2017.
DOI: 10.1007/978-3-319-66396-8 17

178 J.-P. Borel

1.2 Our Concept: The Active Multi-pixel

Definition 1. An active multi-pixel is an increasing sequence of closed sets:

(0, 0) ∈ An ⊂ . . . ⊂ A2 ⊂ A1.

In practice, n corresponds to the maximum level, that is, black.
When n = 1, which corresponds to a single level of gray that will be black,

we will call it an active pixel.
When n = 1 and A ⊂ P, we will call it a strict active pixel.

1.3 Representation of a Segment Using an Active Multi-pixel

The line is drawn by blackening the starting pixel at the origin and then with
the gray level i the center pixel (n,m) as soon as the segment passes through the
translated set Ai +

−−−−→
(n,m), the i being the maximum index with this property.

In the case of an active pixel, all the pixels corresponding to the translates
of the active pixels crossed by the segment are blackened.

1.4 Coding the Lines

The line can then be described by the finite or infinite sequence of the symbols
corresponding to the translations going from one colored pixel to the next one,
adding if necessary the gray level when n ≥ 2. Thus the alphabet used is therefore
a subset of T× {1, 2, . . . , n} where T is the set of translations of positive integer
vectors. We obtain what is conventionally called the Freeman Code, [9], denoted
here by FC, each letter in this finite or infinite sequence coding the translations,
and possibly being indexed by the level of gray.

Subsequently, movements - which are translations of an integer vector - can
be viewed in geographical terms from the four elementary movements: N for to
the North, i.e., upwards, S, E, W which combine. These codes are known in two
very classical cases, linked to the question of the possible neighbors of a pixel:

– the case with four neighbors, where the possible movements are N, S, E, W.
This corresponds to the simplest case and appears at first, [9]. In the case
which is ours (positive slope and movement to the right and upwards), only
N and E are used;

– the case with eight neighbors, where we also allow the diagonal movements
NE, NW, SW and SE, as found in [16]. Here too we need only N, E and NE.

In the following we will encounter more complex cases:

– the case with sixteen neighbors, where we add to the previous ones the eight
possible movements of the rider in the chess game, NNE, NNO, etc. As before
we need only movements N, E, NE, ENE, NNE. In practice, we will symbolize
these five movements by the letters a, b, c, d, e respectively.

Similar approaches are found in many authors, for example in [8] or [17], as well
as higher dimensional analogues, [5]. In all cases we describe the line using a
word that codes it, and we get discrete lines in the sense of Réveilles [15].

Around the Bresenham Method 179

2 Some Examples

2.1 General Examples

We give some examples of drawing for the segment joining the integer points
(0, 0) and (5, 2), the chosen active multi-pixel is given on the right.

Fig. 1. Strict active pixels

The corresponding FC are respectively abaaaba, and acaca in the last two
cases.

Fig. 2. Active pixels

180 J.-P. Borel

The FC is dad in the first case, and we need more letters for the
others. We denote by f, g the translations SSE and SE respectively. Then
bbfbbfbbgbbfbbgbbfbbfbb is a possible code in the second case (others are possi-
ble). The third one needs a new letter for the translation SSSE. The second and
third active pixels can be used for drawing bold lines (Fig. 2).

Fig. 3. Strict active multi-pixels with two levels of gray

Here letters must be indexed by the level of gray FC (1 = gray et 2 = black),
and we get the FC a2b1a2a2a1b2a2 et a1b1a2a2a1b1a2 (Fig. 3).

Fig. 4. Active multi-pixels with three levels of gray

2.2 Cutting Sequence

It is a matter of considering the active square pixel A = P, as given in the
first example of Fig. 1. In practice, therefore, the pixels encountered by the line
are blackened. The associated FC has been widely studied in a slightly different
context, it is called classically Cutting Sequence, denoted here by CS, even if this
term is normally used for the case where the origin is put on a vertex of the unit
square. The reader will find in [1] or [2] broad presentations of this concept.

It is easy to build the CS, using the two following results.

Around the Bresenham Method 181

Proposition 1. Let u be the CS of the segment ending at the integer point (q, p).
Then the CS of the segment ending at (nq, np) is equal to un.

Proposition 2. The CS of the segment ending at (q, p) is the word of length
|u| = p + q which can be obtained starting from the word aqbp and iterating the
following process:

– take the word aqbp;
– replace it by the new word obtained by the 3-2-decimation of its third power;
– stop when the new word is the same as the former one;
– if this last word is not a palindrome, then compare it with its reverse or mirror

word (i.e., the word obtained by writing the letters in the reverse order) and
replace any block ab corresponding to a block ba in the reverse word by c.

The 3-2-decimation of the word u consists in keeping only the letters a whose
rank between the a’s of the word (u) is equal to 2 modulo 3, and making the
same for the letters b.

This method is similar to those given in [10] or [3].

2.3 Bresenham Method

It consists in using as an active pixel the diamond, which connects the middles of
the four edges of the unit square, as in Example 2 of Fig. 1. Indeed, crossing the
vertical segment or crossing the diamond are equivalent properties for a straight
line with a slope lower than 1, and we have the corresponding result when the
slope is higher.

The computation of the FC can be done from the previous case, but with a
small modification: in fact, it is the image by a simple transducer of u2, see [4],
where u is the classical CS, i.e., putting the origin on a vertex. This classic CS
is obtained as before, but by taking 2-2 or 3-3-decimation.

2.4 A Particular Case: The Strict Active Pixel

It is clear that when the active pixel A is contained in the unit square P, then the
blackened or grayed pixels are among the blackened pixels of the CS. Thus we can
only indicate for each of these pixels whether it is blackened or not (n = 1) or what
is its level of gray, which amounts to coding this level on the alphabet {0, 1, . . . , n}.
For the segment that links (0, 0) to (q, p) it is therefore of length p + q.

3 Properties of Active Pixels

For simplicity, active pixels with no intermediate gray levels will only be consid-
ered in this section.

182 J.-P. Borel

3.1 Equivalent Pixels

Definition 1. The positive convex hull of an active pixel A is the intersection
of the closed half-planes containing A, whose boundary line has a positive or zero
slope.

Two active pixels with the same positive convex hull are said to be equivalent.

It means that we add to the classical convex hull the SW et NE corners, as
it can be seen on Fig. 5 below.

Fig. 5. An example

A line or a segment of positive slope passes through an active pixel if and
only if it passes through its positive convex hull. The FC of a segment or of an
half-lines depends therefore only on the positive convex hull ˜A of A. The two
will then be confused in the following.

Fig. 6. Four equivalent active pixels

The second pixel in Fig. 6 corresponds to the classic case of the diamond (see
for example [12]) and the fourth is its positive convex hull. It corresponds to the
classical case of the four neighbors [16], as well as to the Bresenham method, as
seen on the first form, [7].

3.2 Diameters

Definition 2. The diameter seen from the angle θ of an active pixel is the length
of its orthogonal projection on the line of polar angle θ + π

2 . It is denoted by δθ.

Around the Bresenham Method 183

We give three examples.

• When A is a disk its diameters δθ does not depend on θ.
• When A = P is the unit square δθ = sin θ + cos θ, so when 0 ≤ θ ≤ π

2 the
diameters vary between 1 and

√
2, see Fig. 7.

• When we take the diamond, δθ = max(sin θ, cos θ) and the diameters vary
between 1/

√
2 and 1, see also Fig. 7.

Diameters δθ of equivalent active pixels are obviously the same for 0 ≤ θ ≤ π
2 .

4 The Size of the Languages

Here, too, will be only considered to simplify strict active pixels. The results
may be generalized, the constraint then holds on the exterior part A1, and must
be written in a slightly different way.

4.1 FC of a Line

Proposition 3. The FC of any segment linking two integer points or any half-
line starting from an integer point is written on a finite alphabet, unless it is
empty.

A segment meets the two active pixels associated with its extremities, so its
FC is non-empty and of course finite. The same is true for an half-line with
rational slope. Finally, for an half-line with an irrational slope, two cases may
occur essentially:

– A is the point (0, 0), and the FC is empty or does not exist;
– A contains a small open disk around the origin, and the line encounters an

infinite number of translated active pixels, with a bounded return time. It
implies that the FC uses a finite number of letters.

4.2 FC in the Neighborhood of a Line

Proposition 4. For any positive number ρ, there exists some neighborhood ρ ± ε
and some finite alphabet A such that all the FC of any segment or half-line whose
slope belongs to this interval can be written using A.

4.3 The Set of All the FC

Proposition 5. The set of all FC of segments and half-lines can be written on
a unique finite alphabet A if and only if the diameters δθ of the active pixel A
satisfy:

– δ− π
4

=
√

2;

– δπ
4

≥
√
2
2 .

184 J.-P. Borel

Then we can choose A = {a, b, c, d, e}, corresponding to the five elementary
moves E, N, NE, ENE, NNE.

The first condition means exactly that the two points (−1/2,−1/2) and
(1/2, 1/2) belongs to the convex hull of the active strict pixel, that is to say
that A reaches the four edges of the unit square P.

The proof of this Proposition uses the notion of visible active pixel: a trans-
lated active pixel A +

−−−→
(q, p) is visible from A when there exists some segment

linking these two active pixels and not crossing any other translated active pixel.
We easily get that the FC only uses the alphabet of visible active pixels, and

a density argument shows that all its letters must be used for some segments or
half-lines. Then some elementary geometrical considerations gives Proposition 5.

The active strict pixel A given in Fig. 5 is an example of a five letters alphabet.
In this case each occurence of the letter d or e correspond to some discontinuity
in the drawing.

4.4 Some Examples

• For any CS we need letters a and b except for horizontal or vertical segments
or half-lines. Letter c only appears when the line passes though a semi-integrer
point, i.e., a point on the grid. It corresponds to a segment or half-line with
an odd rational slope, i.e., with odd numerator and denominator.

• For Bresenham Method, the letters a and c both appears for a slope between 0
and 1, and the letter b appears only for rational slope with an odd numerator
and an even denominator. If we choose to remove the point (1/2, 1) from the
diamond, letter b no longer appears.
For a slope greater to 1 we get the same result permuting letters a and b.

• If we consider the disk of diameter 1 as the strict active pixel, the three letters
a, b, c are needed for all FC, except for rational slope with sufficiently small
numerator and denominator in irreducible form.

5 How to Compute the Freeman Code

5.1 Automatic Computation of the FC

We have seen before in Proposition 2 that the CS can be easily computed, so we
are interested in the possibility to use this CS to compute the FC associated with
arbitrary active multi-pixel. However, it is not possible except in some special
cases.

Theorem 1. There exist a given transducer T , depending only on the active
multi-pixel, such that the FC of any line is the image by T of its CS u (half-line)
or some power un (segment) if and only if the following properties are true:

– the global part A1 of the active multi-pixel satisfies the properties of Proposi-
tion 5;

Around the Bresenham Method 185

– for all 1 ≤ i ≤ n the sets Ai are polygons whose vertices have rational coor-
dinates with odd denominators.

This result is proven in [4], in a sligthly different context and for a strict active
pixel only. The general proof is similar.

5.2 The General Case: The Matrix of Factors

We consider only strict active pixels for simplicity reasons. The dynamical system
corresponding to any line is an intervalle exchange transformation, the number of
intervals involved being the number of different letters. These transformations
have been introduced by Keane and Rauzy in the 70’s, see [11] or [14], and
intensively studied. Using this general principle, we can get the FC corresponding
to any strict active pixel.

The process is shown in the case corresponding to the segment joining (7, 3),
and when the active pixel is the disk of diameter 1, generalization is easy.

Step 1: build a square matrix of letters, putting seven times letter a then
three times letter b vertically in the first column, and shifting upward the b’s in
the successive columns:

a a a b a a b a a b
a a b a a a b a a b
a a b a a b a a a b
a a b a a b a a b a
a b a a a b a a b a
a b a a b a a a b a
a b a a b a a b a a
b a a a b a a b a a
b a a b a a a b a a
b a a b a a b a a a

The coefficients ci,j of this matrix are equal to b when i + 3j ≡ 1, 2, 3 (mod 10)
and a elsewhere. Rows are exactly the factors of length 10 of the parallel
half-lines, written in lexicographic order. Such a matrix is connected with the
Burrows-Wheeler transformation, and has been studied by many authors, see
[6,13] for example. We get easily the following properties.

Proposition 6. – Two consecutive rows differ exactly on a block ab (in the
upper row) which gives a block ba (in the lower row). Then the corresponding
intermediate row is given by replacing this block by a single letter c.

– The classical CS corresponds to the common part of the consecutive rows
ending by different letters. In our case, it corresponds to the third and the
forth rows, which gives aabaabaa for the classical CS.

– The CS corresponds to the row in the middle when p + q is odd, or the inter-
mediate row between the two middle rows when p + q is even.

186 J.-P. Borel

Step 2: As said in Proposition 6 we get the CS by taking the two middle rows
(p + q = 10 is even), so here we take the fifth and the sixth rows:

a b a a a b a a b a
a b a a b a a a b a

and we replace the block by c, so the CS is:

a b a a c a a b a

Step 3: For a given strict active pixel, look at its diameter δarctan 3
7
, in our

example 1 as we have chosen the unit disk. The key point of this method is
to show that we have to cancel (in our case) exactly one letter on each side,
so we underline the two extremal letters a and b in the first column, then the
corresponding ones in the others columns:

a a a b a a b a a b
a a b a a a b a a b
a a b a a b a a a b
a a b a a b a a b a
a b a a a b a a b a
a b a a b a a a b a
a b a a b a a b a a
b a a a b a a b a a
b a a b a a a b a a
b a a b a a b a a a

Then look at the two middle rows, as p + q = 10 is even:

a b a a a b a a b a
a b a a b a a a b a

and replace all the two letters-blocks whose second letter is underlined in any of
these two lines by the letter c. Then we get the FC:

a c a c a c a

6 The Role of Diameters

6.1 The Average Visual Thickness

If we consider a continuous black line (segment) of length � and width δ, then
its black surface is equal to the product � × δ. The surface of a discrete line -
union of black pixels - is equal to the number N of black pixels, each unit pixel

Around the Bresenham Method 187

being of surface 1. If we consider that the visual effect of a gray pixel at level i
is the ratio i/n, we get the global visual effect, or visual surface, of the line:

1
n

n
∑

i=1

Ni

where Ni is the number of gray pixels at the level i.
It is natural to say that the length of the discrete line is the distance between

the centers of the two pixels blackened at the extremes. Choose the following
definition, by analogy to the continuous case:

Definition 3. Using the previous notations, the mean visual thickness of a dis-
crete line is the ratio between its visual area and its length:

1
n�

n
∑

i=1

Ni.

Then we get:

Proposition 7. The average visual thickness of a discrete line of polar angle θ
and obtained using an active multi-pixel Ai is:

N
∑

i=1

δθ,i + O(
1
�′)

where �′ is the length of the associated irreducible segment.

Roughly speaking we have to count the integer points inside a rectangle,
which can be made by looking at the orthogonal projection of these points on
the direction of polar angle θ + π

2 . These projections are regularly spaced by 1
� .

6.2 Size of the Diameters

More generally, if we look only at strict active pixels satisfying to Proposition 5:

– when the three letters alphabet {a, b, c} can be used, the diameters δθ take
any value in the domain whose limits are the curves f1(θ) = sin θ + cos θ and
f2(θ) = max(sin θ; cos θ): the number of blackened pixels is clearly between
p + q et max{p; q};

– when we use the five letters alphabet, the upper limit is the same, i.e., f1, and
the lower limit is f3(θ) = max(| cos θ − sin θ|; 1

2 (cos θ + sin θ)), corresponding
to the diamond whose diagonals have lengths

√
2 and

√
2
2 .

These three curves can be seen on Fig. 7.

188 J.-P. Borel

Fig. 7. Octogonal strict active pixel and variations of the diameters (bold curve)

6.3 Irregularity of the Thickness

We expect that the thickness of the representation of a line should not depend
on its inclination. If we limit ourselves to the case of a strict active pixel, this
means that its diameter must not depend on the polar angle θ. This is clear for
the disk of diameter 1. On the other hand, it is then not possible to build the
FC from the CS by a simple process, as we have seen in Theorem 1.

In both classical cases CS or FC corresponding to Bresenham Method, the ratio
between the maximal and the minimal values of the diameters is equal to

√
2.

It is therefore interesting to find a strict active pixel for which the variation of
δθ is small, and whose calculation of the FC from the CS is easy, using Theorem 1.
It is therefore a polygon with few sides and fairly regular to be round enough.
A compromise is to take the octagon build on the one third middle segment of
each of the four edges of P. In that case we have (bold curve in Fig. 7):

δθ =
1
3
(sin θ + cos θ) +

2
3

max(sin θ; cos θ).

The ratio between the maximal and the minimal value of the diameters is
equal

√
5
2 , which corresponds to a global variation of 11,8%, which can be com-

pared to 41,2% in the two classical cases CS and Bresenham Method. Remark
that for any octagon we get at least 8,2%. Moreover, we can build the FC from
the CS using a transducer with 11 states, following the method given in [4].

References

1. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory and Applications.
Cambridge University Press, Cambridge (2003)

2. Berstel, J., Seébold, P.: Sturmian words. In: Lothaire, M. (ed.) Algebraic Combi-
natorics on Words. Cambridge University Press, Cambridge (2002)

Around the Bresenham Method 189

3. Borel, J.P.: How to build Billiard words using decimations. RAIRO-Inf. Theor.
Appl. 44(1), 59–77 (2010)

4. Borel, J.P.: Various Methods for drawing Digitized Lines (2016)
5. Borel, J.P., Reutenauer, C.: Palindromic factors of Billiard words. Theoret. Com-

put. Sci. 340(2), 334–348 (2005)
6. Borel, J.P., Reutenauer, C.: On Christoffel classes. RAIRO-Inf. Theor. Appl. 40,

15–27 (2006)
7. Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Syst. J.

4(1), 25–30 (1965)
8. Crisp, D., Moran, W., Pollington, A., Shive, P.: Substitution invariant cutting

sequences. J. Théorie des Nombres Bordeaux 5, 123–137 (1993)
9. Freeman, H.: On the encoding of arbitrary geometric configuration. IRE Trans.

Electron. Comput. 10, 260–268 (1961)
10. Justin, J., Pirillo, G.: Decimations and Sturmian words. Theor. Inform. Appl. 31,

271–290 (1997)
11. Keane, M.: Intervalle exchange transformations. Math. Z. 141, 25–31 (1975)
12. Koplowitz, J.: On the performance of chain codes for quantization of line drawings.

IEEE Trans. Pattern Anal. Mach. Intell. PAMI-3, 357–393 (1981)
13. Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and Sturmian

words. Inform. Proc. Lett. 86, 241–246 (2003)
14. Rauzy, G.: Echanges d’intervalles et transformations induites. Acta Arith. 34, 315–

328 (1979)
15. Reveilles, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique.

Ph.D. thesis, University Louis Pasteur - Strasbourg, France (1991)
16. Rosenfeld, A.: Digital straight line segments. IEEE Trans. Comput. 32(12), 1264–

1269 (1974)
17. Series, C.: The geometry of Markoff numbers. Math. Intell. 7, 20–29 (1985)

Combinatorics of Cyclic Shifts in Plactic,
Hypoplactic, Sylvester, and Related Monoids

Alan J. Cain(B) and António Malheiro

Departamento de Matemática and Centro de Matemática e Aplicações, Faculdade de
Ciências e Tecnologia, Universidade Nova de Lisboa, 2829–516 Caparica, Portugal

{a.cain,ajm}@fct.unl.pt

Abstract. The cyclic shift graph of a monoid is the graph whose vertices
are elements of the monoid and whose edges link elements that differ by
a cyclic shift. For certain monoids connected with combinatorics, such
as the plactic monoid (the monoid of Young tableaux) and the sylvester
monoid (the monoid of binary search trees), connected components con-
sist of elements that have the same evaluation (that is, contain the same
number of each generating symbol). This paper discusses new results
on the diameters of connected components of the cyclic shift graphs of
the finite-rank analogues of these monoids, showing that the maximum
diameter of a connected component is dependent only on the rank. The
proof techniques are explained in the case of the sylvester monoid.

Keywords: Cyclic shift · Plactic monoid · Sylvester monoid · Binary
search tree · Cocharge

1 Introduction

In a monoid M , two elements s and t are related by a cyclic shift, denoted s ∼ t,
if and only if there exist x, y ∈ M such that s = xy and t = yx. In the plactic
monoid (the monoid of Young tableaux, denoted plac; see [9, Chap. 5]), elements
that have the same evaluation (that is, which contain the same number of each
symbol) can be obtained from each other by iterated application of cyclic shifts
[8, Sect. 4]. Furthermore, in the plactic monoid of rank n (denoted placn), it is
known that 2n − 2 applications of cyclic shifts are sufficient [3, Theorem 17].

To restate these results in a new form, define the cyclic shift graph K(M) of
a monoid M to be the undirected graph with vertex set M and, for all s, t ∈ M ,
an edge between s and t if and only if s ∼ t. Connected components of K(M)
are ∼∗-classes (where ∼∗ is the reflexive and transitive closure of ∼), since they

A.J. Cain—The first author was supported by an Investigador FCT fellowship
(IF/01622/2013/CP1161/CT0001).
Both authors—This work was partially supported by the Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Technology) through the project
UID/MAT/00297/2013 (Centro de Matemática e Aplicações), and the project
PTDC/MHC-FIL/2583/2014.

c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 190–202, 2017.
DOI: 10.1007/978-3-319-66396-8 18

Combinatorics of Cyclic Shifts 191

consist of elements that are related by iterated cyclic shifts. Thus the results
discussed above say that each connected component of K(plac) consists of pre-
cisely the elements with a given evaluation, and that the diameter of a connected
component of K(placn) is at most 2n − 2. Note that connected components are
of unbounded size, despite there being a bound on diameters that is dependent
only on the rank.

The plactic monoid is celebrated for its ubiquity, appearing in many diverse
contexts (see the discussion and references in [9, Chap. 5]). It is, however, just
one member of a family of ‘plactic-like’ monoids that are closely connected with
combinatorics. These monoids include the hypoplactic monoid (the monoid of
quasi-ribbon tableaux) [7,10], the sylvester monoid (binary search trees) [5], the
taiga monoid (binary search trees with multiplicities) [11], the stalactic monoid
(stalactic tableaux) [6,11], and the Baxter monoid (pairs of twin binary search
trees) [4]. These monoids, including the plactic monoid, arise in a parallel way.
For each monoid, there is a so-called insertion algorithm that allows one to
compute a combinatorial object (of the corresponding type) from a word over
the infinite ordered alphabet A = {1 < 2 < 3 < . . .}; the relation that relates
pairs of words that give the same combinatorial object is a congruence (that
is, it is compatible with multiplication in the free monoid A∗). The monoid
arises by factoring the free monoid A∗ by this congruence; thus elements of the
monoid (equivalence classes of words) are in one-to-one correspondence with
the combinatorial objects. Table 1 lists these monoids and their corresponding
objects.

Table 1. Monoids and corresponding combinatorial objects.

Monoid Symbol Combinatorial object Citation

Plactic plac Young tableau [9, Chap. 5]

Hypoplactic hypo Quasi-ribbon tableau [10]

Stalactic stal Stalactic tableau [6]

Sylvester sylv Binary search tree [5]

Taiga taig Binary search tree with multiplicities [11, Sect. 5]

Baxter baxt Pair of twin binary search trees [4]

Analogous questions arise for the cyclic shift graph of each of these monoids.
In a forthcoming paper [1], the present authors make a comprehensive study
of connected components in the cyclic shift graphs of each of these monoids.
For several of these monoids, it turns out that each connected component of
its cyclic shift graph consists of precisely the elements with a given evaluation,
and that the diameters of connected component in the rank-n case are bounded
by a quantity dependent on the rank. (Again, it should be emphasized that
there is no bound on the size of these connected components.) In each case, the
authors either establish the exact value of the maximum diameter or give bounds;

192 A.J. Cain and A. Malheiro

Table 2. Properties of connected component of the cyclic shift graph for rank-n
monoids: whether they are characterized by evaluation, and known values and bounds
for their maximum diameters.

Monoid Char. by evaluation Maximum diameter

Known value Conjecture Known bounds

Lower Upper

placn Y ? n − 1 n − 1 2n − 3

hypon Y n − 1 — — —

staln N

{
n − 1 if n < 3

n if n ≥ 3
— — —

sylvn Y ? n − 1 n − 1 n

taign Y ? n − 1 n − 1 n

baxtn N ? ? ? ?

Table 2 summarizes the results from [1]. Also, although these monoids are mul-
tihomogeneous (words in A∗ representing the same element contain the same
number of each symbol), the authors also exhibit a rank 4 multihomogeneous
monoid for which there is no bound on the diameter of connected components.
Thus it seems to be the underlying combinatorial objects that ensure the bound
on diameters. This also is of interest because cyclic shifts are a possible gener-
alization of conjugacy from groups to monoids; thus the combinatorial objects
are here linked closely to the algebraic structure of the monoid.

The present paper illustrates these results by focussing on the sylvester
monoid (denoted sylv or sylvn in the rank-n case). (The authors previously proved
that each connected component of K(sylv) consists of precisely the elements with
a given evaluation [2, Sect. 3].) Sect. 2 recalls the definition and necessary facts
about the sylvester monoid. Section 3 gives a complete proof that there is a con-
nected component in K(sylvn) with diameter at least n − 1; this establishes the
lower bound on the maximum diameter shown in Table 2. The complete proof
that every connected component of K(sylvn) has diameter at most n, establish-
ing the upper bound on the maximum diameter shown in Table 2, is very long
and complicated. Thus Sect. 4 gives the proof for connected components consist-
ing of elements that contain each symbol from {1, . . . , k} (for some k) exactly
once; this avoids many of the complexities of the general case.

2 Binary Search Trees and the Sylvester Monoid

This section gathers the relevant definitions and background on the sylvester
monoid; see [5] for further reading.

Combinatorics of Cyclic Shifts 193

Recall that A denotes the infinite ordered alphabet {1 < 2 < . . .}. Fix
a natural number n and let An = {1 < 2 < . . . < n} be the set of the first n
natural numbers, viewed as a finite ordered alphabet. A word u ∈ A∗ is standard
if it contains each symbol in {1, . . . , |u|} exactly once.

A (right strict) binary search tree (BST) is a rooted binary tree labelled by
symbols from A, where the label of each node is greater than or equal to the
label of every node in its left subtree, and strictly less than the label of every
node in its right subtree. An example of a binary search tree is:

4

2

1

1

4

5

5

5

6

7

. (1)

The following algorithm inserts a new symbol into a BST, adding it as a leaf
node in the unique place that maintains the property of being a BST.

Algorithm 1. Input: A binary search tree T and a symbol a ∈ An.
If T is empty, create a node and label it a. If T is non-empty, examine the

label x of the root node; if a ≤ x, recursively insert a into the left subtree of the
root node; otherwise recursively insert a into the right subtree of the root note.
Output the resulting tree.

For u ∈ A∗, define Psylv(u) to be the right strict binary search tree obtained
by starting with the empty tree and inserting the symbols of the word u
one-by-one using Algorithm1, proceeding right-to-left through u. For example,
Psylv(5451761524) is (1). Define the relation ≡sylv by

u ≡sylv v ⇐⇒ Psylv(u) = Psylv(v),

for all u, v ∈ A∗. The relation ≡sylv is a congruence, and the sylvester monoid,
denoted sylv, is the factor monoid A∗/≡sylv; the sylvester monoid of rank n,
denoted sylvn, is the factor monoid A∗

n/≡sylv (with the natural restriction of
≡sylv). Each element [u]≡sylv (where u ∈ A∗) can be identified with the binary
search tree Psylv(u). The monoid sylv is presented by 〈A |Rsylv〉, where

Rsylv = {(cavb, acvb) : a ≤ b < c, v ∈ A∗};

the monoid sylvn is presented by 〈An |Rsylv〉, where the set of defining relations
Rsylv is naturally restricted to A∗

n × A∗
n. Notice that sylv and sylvn are multiho-

mogeneous.
A reading of a binary search tree T is a word formed from the symbols that

appear in the nodes of T , arranged so that the child nodes appear before parents.
A word w ∈ A∗ is a reading of T if and only if Psylv(w) = T . The words in [u]≡sylv

are precisely the readings of Psylv(u).

194 A.J. Cain and A. Malheiro

A binary search tree T with k nodes is standard if it has exactly one node
labelled by each symbol in {1, . . . , k}; clearly T is standard if and only if all of
its readings are standard words.

The left-to-right postfix traversal, or simply the postfix traversal, of a rooted
binary tree T is the sequence that ‘visits’ every node in the tree as follows: it
recursively performs the postfix traversal of the left subtree of the root of T ,
then recursively performs the postfix traversal of the right subtree of the root of
T , then visits the root of T . The left-to-right infix traversal, or simply the infix
traversal, of a rooted binary tree T is the sequence that ‘visits’ every node in the
tree as follows: it recursively performs the infix traversal of the left subtree of the
root of T , then visits the root of T , then recursively performs the infix traversal
of the right subtree of the root of T . Thus the postfix and infix traversals of any
binary tree with the same shape as (1) visit nodes as shown on the left and right
below:

The following result is immediate from the definition of a binary search tree,
but it is used frequently:

Proposition 2. For any binary search tree T , if a node x is encountered before
a node y in an infix traversal, then x ≤ y.

In this paper, a subtree of a binary search tree will always be a rooted subtree.
Let T be a binary search tree and x a node of T . The complete subtree of T at
x is the subtree consisting of x and every node below x in T . The path of left
child nodes in T from x is the path that starts at x and enters left child nodes
until a node with empty left subtree is encountered.

Let B be a subtree of T . Then B is said to be on the path of left child nodes
from x if the root of B is one of the nodes on this path. The left-minimal subtree
of B in T is the complete subtree at the left child of the left-most node in B;
the right-maximal subtree of B in T is the complete subtree at the right child
of the right-most node in B.

In diagrams of binary search trees, individual nodes are shown as round, while
subtrees are shown as triangles. An edge emerging from the top of a triangle is
the edge running from the root of that subtree to its parent node. A vertical
edge joining a node to its parent indicates that the node may be either a left or
right child. An edge emerging from the bottom-left of a triangle is the edge to
that subtree’s left-minimal subtree; an edge emerging from the bottom-right of
a triangle is the edge to that subtree’s right-maximal subtree.

Combinatorics of Cyclic Shifts 195

3 Lower Bound on Diameters

Let u ∈ A∗
n be a standard word. The cocharge sequence of u, denoted cochseq(u),

is a sequence (of length u) calculated from u as follows:

1. Draw a circle, place a point ∗ somewhere on its circumference, and, starting
from ∗, write u anticlockwise around the circle.

2. Label the symbol 1 with 0.
3. Iteratively, after labelling some i with k, proceed clockwise from i to i + 1. If

the symbol i + 1 is reached before ∗, label i + 1 by k + 1. Otherwise, if the
symbol i + 1 is reached after ∗, label i + 1 by k.

4. The sequence whose i-th term is the label of i is cochseq(u).

For example, for the word u = 1246375, the labelling
process is shown on the right, and it follows that
cochseq(u) = (0, 0, 0, 1, 1, 2, 2). Notice that the first term
of a cocharge sequence is always 0, and that each term
in the sequence is either the same as its predecessor or
greater by 1. Thus the i-th term in the sequence always
lies in the set {0, 1, . . . , i − 1}.

The usual notion of ‘cocharge’ is obtained by summing the cocharge sequence
(see [9, Sect. 5.6]).

Lemma 3. 1. Let u ∈ A∗
n and a ∈ An \ {1} be such that ua is a standard

word. Then cochseq(ua) is obtained from cochseq(au) by adding 1 to the a-th
component.

2. Let x, y ∈ A∗
n be such that xy ∈ A∗

n is a standard word. Then corresponding
components of cochseq(xy) and cochseq(yx) differ by at most 1.

Proof. Consider how a is labelled during the calculation of cochseq(ua) and
cochseq(au):

cochseq(ua) :

∗

u

a cochseq(au) :

∗
a

u

196 A.J. Cain and A. Malheiro

In the calculation of cochseq(ua), the symbol a − 1 receives a label k, and
then a is reached after ∗ is passed; hence a also receives the label k. In the
calculation of cochseq(au), the symbols 1, . . . , a − 1 receive the same labels as
they do in the calculation of cochseq(ua), but after labelling a − 1 by k the
symbol a is reached before ∗ is passed; hence a receives the label k +1; after this
point, labelling proceeds in the same way. This proves part (1). For part (2),
notice that one of x and y does not contain the symbol 1; the result is now an
immediate consequence of part (1).

Proposition 4. Let u, v ∈ A∗
n be standard words such that u ≡sylv v. Then

cochseq(u) = cochseq(v).

Proof. It suffices to prove the result when w and w′ differ by a single application
of a defining relation (cavb, acvb) ∈ Rsylv where a ≤ b < c. In this case, w =
pcavbq and w′ = pacvbq, where p, q, v ∈ A∗

n and a, b, c ∈ An with a ≤ b < c.
Since w and w′ are standard words, a < b.

Consider how labels are assigned to the symbols a, b, and c when calculating
the cocharge sequence of w:

cochseq(w) :

∗

c
a b

Among these three symbols, a will receive a label first, then b, then c. Thus,
after a, the labelling process will pass ∗ at least once to visit b and only then
visit c. Thus if we interchange a and c, we do not alter the resulting labelling.
Hence cochseq(w) = cochseq(w′).

For any standard binary tree T in sylvn, define cochseq(T) to be cochseq(u)
for any standard word u ∈ A∗

n such that T = Psylv(u). By Proposition 4,
cochseq(T) is well-defined.

Proposition 5. The connected component of K(sylvn) consisting of standard
elements has diameter at least n − 1.

Proof. Let t = 12 · · · (n − 1)n and u = n(n − 1) · · · 21, and let

T = Psylv(t) =

n

n − 1

2

1

and U = Psylv(u) =

1

2

n − 1

n

Combinatorics of Cyclic Shifts 197

Since T and U have the same evaluation, they are ∼∗-related by [2, Sect. 3], and so
in the same connected component of K(sylvn). Let T = T0, T1, . . . , Tm−1, Tm = U
be a path in K(sylvn) from T to U . Then for i = 0, . . . , m − 1, we have Ti ∼ Ti+1.
That is, there are words ui, vi ∈ A∗

n such that Ti = Psylv(uivi) and Ti+1 =
Psylv(viui). By Lemma 3(2), cochseq(Ti) and cochseq(Ti+1) differ by adding 1
or subtracting 1 from certain components. Hence corresponding components of
cochseq(T) and cochseq(U) differ by at most m. Since cochseq(T) = (0, 0, . . . , 0, 0)
and cochseq(U) = (0, 1, . . . , n − 2, n − 1), it follows that m ≥ n − 1. Hence T and
U are a distance at least n − 1 apart in K(sylvn).

4 Upper Bounds on Diameters

Proposition 6. Any two standard elements of sylvn are a distance at most n
apart in K(sylvn).

Proof. Since sylvm embeds into sylvn for all m ≤ n, and since K(sylvm) is the
subgraph of K(sylvn) induced by sylvm, this result follows from Lemma 8 below.

Lemma 8 proves that in K(sylvn) there is a path of length at most n between
two standard elements with the same number of nodes. First, however, the strat-
egy used to construct such a path is illustrated in the following example.

Example 7. Let

T =
4

2

1 3

5 , U =
1

4

3

2

5

∈ sylv5

The aim is to build a sequence T = T0 ∼ T1 ∼ T2 ∼ T3 ∼ T4 ∼ T5 = U . Consider
the postfix traversal of U . The 5 steps in this traversal are shown below on the
right, together with the relevant cases in the proof of Lemma8. The parts of U
that have been visited already at each step are outlined. The idea is that the
h-th cyclic shift leads to a tree Th where copies of the outlined parts of U appear
on the path of left child nodes from the root of Th. Note that cyclic shifts never
break up the subwords (outlined) that represent the already-built subtrees. (The
difficulty in the general proof is showing that a suitable cyclic shift exists at each
step.)

198 A.J. Cain and A. Malheiro

Lemma 8. Let T,U ∈ sylvn be standard and have n nodes. Then there is a
sequence T = T0, T1, . . . , Tn = U with Th ∼ Th+1 for h = 0, . . . , n − 1.

Proof. This proof is only concerned with standard BSTs; thus for brevity nodes
are identified with their labels. Notice that each of T and U has exactly one
node labelled by each symbol in An.

Consider the left-to-right postfix traversal of U ; there are exactly n steps in
this traversal. Let uh be the node visited at the h-th step of this traversal.

For h = 1, . . . , n, let Uh = {u1, . . . , uh} and let U�
h be the set of nodes in

Uh that do not lie below any other node in Uh. Since a later step in a postfix

Combinatorics of Cyclic Shifts 199

traversal is never below an earlier one, it follows that uh ∈ U�
h for all h. Let Bh

be the subtree of U consisting of uh and every node that is below uh.
The aim is to construct inductively the required sequence. Let h = 1, . . . , n

and suppose U�
h = {ui1 , . . . , uik} (where i1 < . . . < ik = h). Then the tree Th

will satisfy the following conditions:

P1 The subtree Bik appears at the root of Th.
P2 The subtrees Bik , . . . , Bi1 appear, in that order (but not necessarily consec-
utively), on the path of left child nodes from the root of Th.

(Note that conditions P1 and P2 do not apply to T0.)

Base of induction. Set T0 = T . Take any reading of T0 and factor it as wu1w
′.

Let T1 = Psylv(w′wu1). Clearly T1 has root node u1. Since B1 consists only of
the node u1 (since u1 is the first node in U visited by the postfix traversal and is
thus a leaf node), T1 satisfies P1. Further, T1 trivially satisfies P2. Finally, note
that T0 ∼ T1. (For an illustration, see the definition of T1 in Example 7.)

Induction step. The remainder of the sequence of trees is built inductively. Sup-
pose that the tree Th satisfies P1 and P2; the aim is to find Th+1 satisfying P1
and P2 with Th ∼ Th+1. There are four cases, depending on the relative positions
of uh and uh+1 in U :

1. uh is a left child node and uh+1 is in the right subtree of the parent of uh;
2. uh is the right child of uh+1, and uh+1 has non-empty left subtree;
3. uh is the left child of uh+1 (which implies, by the definition of the postfix

traversal, that uh+1 has empty right subtree);
4. uh is the right child of uh+1, and uh+1 has empty left subtree.

Case 1. Suppose that, in U , the node uh is a left child node and uh+1 is in
the right subtree of the parent of uh. (For an illustration of this case, see the
step from T2 to T3 in Example 7.) Then Bh+1 consists only of the node uh+1,
since by the definition of a postfix traversal uh+1 is a leaf node. Furthermore,
U�
h+1 = U�

h ∪ {uh+1}.
By P1, Bh appears at the root of Th. By Proposition 2 applied to U , the

symbol uh+1 is greater than every node of Bh, so uh+1 must be in the right-
maximal subtree of Bh in Th.

As shown in Fig. 1, let λ be a reading of the left-minimal subtree of Bh.
Let δ be a reading of the right-maximal subtree of Bh outside of the complete
subtree at uh+1. Let α and β be readings of the left and right subtrees of uh+1,
respectively. Note that the subtrees Bi for ui ∈ U�

h are contained in λ.
Thus Th = Psylv(αβuh+1δλBh). Let Th+1 = Psylv(δλBhαβuh+1); note that

Th ∼ Th+1.
In computing Th+1, the symbol uh+1 is inserted first and becomes the root

node. Since Bh+1 consists only of the node uh+1, the tree Th+1 satisfies P1. Since
every symbol in Bh and λ is strictly less that every symbol in α, β, or δ, the
trees Bh and λ are re-inserted on the path of left child nodes from the root of

200 A.J. Cain and A. Malheiro

Bh

λ δ

ui+1

α β

ui+1

Bh

λ

Bh+1Th = = Th+1∼

Fig. 1. Induction step, case 1.

Th+1. Thus all the subtrees Bi for ui ∈ U�
h+1 are on the path of left child nodes

from the root, and so Th+1 satisfies P2.

Case 2. Suppose that in U , the node uh is the right child of uh+1, and uh+1

has non-empty left subtree. (For an illustration of this case, see the step from
T3 to T4 in Example 7.) Let ug be the left child of uh+1. Thus Bh+1 consists of
uh+1 with left subtree Bg and right subtree Bh. By the definition of the postfix
traversal, ug was visited before the h-th step, but no node above ug has been
visited. That is, ug ∈ U�

h . Hence U�
h+1 =

(
U�
h \ {ug, uh}) ∪ {uh+1}.

By P1, Bh appears at the root of Th; by P2, Bg is next subtree Bij on the
path of left child nodes from the root of Th (and is thus in the left-minimal
subtree of Bh). By Proposition 2 applied to U , the symbol uh+1 is the unique
symbol that is greater than every node of Bg and less than every node of Bh.
Then the node uh+1 may be in one of two places in Th, leading to the two
sub-cases below. In both cases, as shown in Fig. 2, let λ be a reading of the left
subtree of Bg and let δ be a reading of the right-maximal subtree of Bh; note
that the subtrees Bi for ui ∈ U�

h \ {ug, uh} are contained in λ.

1. Suppose uh+1 is the unique node on the path of left child nodes between Bg

and Bh. In this case, as shown in Fig. 2(top), Th = Psylv(λBguh+1δBh). Let
Th+1 = Psylv(δBhλBguh+1); note that Th ∼ Th+1.

2. Suppose uh+1 is the unique node in the right-maximal subtree of Bg and
there are no nodes between Bg and Bh on the path of left child nodes. In
this case, as shown in Fig. 2(bottom), Th = Psylv(uh+1λBgδBh). Let Th+1 =
Psylv(λBgδBhuh+1); note that Th ∼ Th+1.

Bh

ui+1

Bg

λ

δ

ui+1

Bg

λ

Bh

δ

Bh+1

Th = = Th+1∼

Bh

Bg

λ ui+1

δ

ui+1

Bg

λ

Bh

δ

Bh+1

Th = = Th+1∼

Fig. 2. Induction step, case 2, two sub-cases.

Combinatorics of Cyclic Shifts 201

Bh

λ δ

ui+1

β

ui+1

Bh

λ

Bh+1

Th = = Th+1∼

Fig. 3. Induction step, case 3.

Bh

ui+1

λ

δ

ui+1

λ Bh

δ

Bh+1Th = = Th+1∼

Bh

λ

ui+1

ζ

δ

ui+1

ζ

λ

Bh

δ

Bh+1Th = = Th+1∼

Fig. 4. Induction step, case 4, two sub-cases.

In computing Th+1, for both sub-cases, the symbol uh+1 is inserted first and
becomes the root node. Every symbol in Bg and λ is less than uh+1, so these trees
are re-inserted into the left subtree of uh+1. Every symbol in Bh and δ is greater
than uh+1, so these trees are re-inserted into the right subtree of uh+1. Since
Bh+1 consists of uh+1 with Bg as its left subtree and Bh as its right subtree, the
subtree Bh+1 appears at the root and so Th+1 satisfies P1. All the other subtrees
Bi for ui ∈ U�

h+1 are contained in λ, so Th+1 satisfies P2.

Case 3. Suppose uh is the left child of uh+1. Then, by the definition of the
postfix traversal, uh+1 has empty right subtree in U , and so Bh+1 consists of
uh+1 with left subtree Bh and right subtree empty. (For an illustration of this
case, see the step from T1 to T2 in Example 7.) Proceeding in a similar way
to the previous cases, one sees that, as in Fig. 3, Th = Psylv(βuh+1δλBh). Let
Th+1 = Psylv(δλBhβuh+1); then Th ∼ Th+1 and Th+1 satisfies P1 and P2.

Case 4. Suppose that, in U , the node uh is the right child of uh+1, and uh+1

has empty left subtree. (For an illustration of this case, see the step from T4 to
T5 in Example 7.) Thus Bh+1 consists of the node uh+1 with empty left subtree
and right subtree Uh. Proceeding in a similar way to the previous cases, one sees
that there are two sub-cases, as in Fig. 4:

1. Th = Psylv(λuh+1δBh). Let Th+1 = Psylv(δBhλuh+1).
2. Th = Psylv(ζuh+1λδBh). Let Th+1 = Psylv(λδBhζuh+1).

In both sub-cases, Th ∼ Th+1 and Th+1 satisfies P1 and P2.

202 A.J. Cain and A. Malheiro

Conclusion. Thus there is a sequence T = T0, T1, . . . , Tn = U with Th ∼ Th+1

and Th+1 satisfying P1 and P2 for h = 0, . . . , h − 1. In particular, Tn satisfies
P1 and so the subtree Bn = U appears in Tn, with its root at the root of Tn.
Hence Tn = U .

References

1. Cain, A.J., Malheiro, A.: Combinatorics of cyclic shifts in plactic, hypoplactic,
sylvester, and related monoids (in preparation)

2. Cain, A.J., Malheiro, A.: Deciding conjugacy in sylvester monoids and other homo-
geneous monoids. Int. J. Algebra Comput. 25(5), 899–915 (2015). doi:10.1007/
978-3-642-40579-2 11

3. Choffrut, C., Mercaş, R.: The lexicographic cross-section of the plactic monoid
is regular. In: Karhumäki, J., Lepistö, A., Zamboni, L. (eds.) WORDS
2013. LNCS, vol. 8079, pp. 83–94. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40579-2 11

4. Giraudo, S.: Algebraic and combinatorial structures on pairs of twin binary trees.
J. Algebra 360, 115–157 (2012). doi:10.1016/j.jalgebra.2012.03.020

5. Hivert, F., Novelli, J.C., Thibon, J.Y.: The algebra of binary search trees. Theoret.
Comput. Sci. 339(1), 129–165 (2005). doi:10.1016/j.tcs.2005.01.012

6. Hivert, F., Novelli, J.C., Thibon, J.Y.: Commutative combinatorial Hopf algebras.
J. Algebraic Combin. 28(1), 65–95 (2007). doi:10.1007/s10801-007-0077-0

7. Krob, D., Thibon, J.Y.: Noncommutative symmetric functions IV: quantum linear
groups and hecke algebras at q = 0. J. Algebraic Combin. 6(4), 339–376 (1997).
doi:10.1023/A:1008673127310

8. Lascoux, A., Schützenberger, M.P.: Le monöıde plaxique. In: Noncommutative
structures in algebra and geometric combinatorics, pp. 129–156. No. 109 in
Quaderni de “La Ricerca Scientifica”, CNR, Rome (1981). http://igm.univ-mlv.
fr/berstel/Mps/Travaux/A/1981-1PlaxiqueNaples.pdf

9. Lothaire, M.: Algebraic Combinatorics on Words. No. 90 in Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, Cambridge (2002)

10. Novelli, J.C.: On the hypoplactic monoid. Discrete Math. 217(1–3), 315–336
(2000). doi:10.1016/S0012-365X(99)00270-8

11. Priez, J.B.: A lattice of combinatorial Hopf algebras: binary trees with multiplici-
ties. In: Formal Power Series and Algebraic Combinatorics. The Association. Dis-
crete Mathematics & Theoretical Computer Science, Nancy (2013). http://www.
dmtcs.org/pdfpapers/dmAS0196.pdf

http://dx.doi.org/10.1007/978-3-642-40579-2_11
http://dx.doi.org/10.1007/978-3-642-40579-2_11
http://dx.doi.org/10.1007/978-3-642-40579-2_11
http://dx.doi.org/10.1007/978-3-642-40579-2_11
http://dx.doi.org/10.1016/j.jalgebra.2012.03.020
http://dx.doi.org/10.1016/j.tcs.2005.01.012
http://dx.doi.org/10.1007/s10801-007-0077-0
http://dx.doi.org/10.1023/A:1008673127310
http://igm.univ-mlv.fr/berstel/Mps/Travaux/A/1981-1PlaxiqueNaples.pdf
http://igm.univ-mlv.fr/berstel/Mps/Travaux/A/1981-1PlaxiqueNaples.pdf
http://dx.doi.org/10.1016/S0012-365X(99)00270-8
http://www.dmtcs.org/pdfpapers/dmAS0196.pdf
http://www.dmtcs.org/pdfpapers/dmAS0196.pdf

Palindromic Length in Free Monoids
and Free Groups

Aleksi Saarela(B)

Department of Mathematics and Statistics, University of Turku,
20014 Turku, Finland

amsaar@utu.fi

Abstract. Palindromic length of a word is defined as the smallest num-
ber n such that the word can be written as a product of n palindromes.
It has been conjectured that every aperiodic infinite word has factors of
arbitrarily high palindromic length. A stronger variant of this conjecture
claims that every aperiodic infinite word has also prefixes of arbitrarily
high palindromic length. We prove that these two conjectures are equiva-
lent. More specifically, we prove that if every prefix of a word is a product
of n palindromes, then every factor of the word is a product of 2n palin-
dromes. Our proof quite naturally leads us to compare the properties of
palindromic length in free monoids and in free groups. For example, the
palindromic lengths of a word and its conjugate can be arbitrarily far
apart in a free monoid, but in a free group they are almost the same.

Keywords: Combinatorics on words · Palindrome · Free group

1 Introduction

Palindromes are a common topic in combinatorics on words. Some examples of
subtopics are palindromic richness [11] and palindrome complexity [1]. In this
article, we are interested in palindromic factorizations of words. Every word can
be trivially written as a product of palindromes, because every letter is a palin-
drome. However, studying minimal palindromic factorizations is a highly non-
trivial topic that has been studied in many articles, for example by Ravsky [15].
The length of a minimal palindromic factorization of a word, that is, the smallest
number n such that the word can be written as a product of n palindromes, is
called the palindromic length of the word.

Frid, Puzynina and Zamboni [10] made the following conjecture about the
palindromic lengths of factors of infinite words.

Conjecture 1. Every aperiodic infinite word has factors of arbitrarily high palin-
dromic length.

They also proved the conjecture for a large class of words, including all words
that are k-power-free for some k. They actually proved that all words in this class
have not only factors but also prefixes of arbitrarily high palindromic length. This
leads to the following stronger version of the conjecture.
c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 203–213, 2017.
DOI: 10.1007/978-3-319-66396-8 19

204 A. Saarela

Conjecture 2. Every aperiodic infinite word has prefixes of arbitrarily high palin-
dromic length.

Let us mention here some related results, many of which have been inspired
by the conjectures. The complexity of determining the palindromic length of a
word is known to be O(n log n) [8,14]. Words of palindromic length at most two
are sometimes called symmetric or palindrome pairs, and they have appeared
in many articles [5,6,12,13]. Variations of palindromic length called left greedy
palindromic length and right greedy palindromic length were defined and studied
by Bucci and Richomme [7].

In this article, we prove the equivalence of Conjectures 1 and 2. More specif-
ically, we prove that the maximal palindromic length of factors of a word can
be at most twice as large as the maximal palindromic length of prefixes of the
word, and this result is at least very close to optimal. We also give other results
on palindromic length. Conjecture 1 remains a very interesting open problem.

Palindromes and palindromic length can also be defined in a free group in
a natural way. To avoid confusion, we talk about FG-palindromes and FG-
palindromic length in the case of free groups. These concepts were studied by
Bardakov, Shpilrain and Tolstykh [3]. They proved that in every nonabelian free
group, there are elements with arbitrarily high FG-palindromic length. Palin-
dromic length has been defined and studied in many other groups as well, see,
for example, the paper by Bardakov and Gongopadhyay about finitely generated
solvable groups [2] or the paper by Fink about wreath products [9].

Because a free monoid of words is a subset of a free group, both the ordinary
palindromic length and FG-palindromic length are defined for words. However,
there does not seem to be any research on the relation of these two concepts. We
take the first steps in this direction, inspired by the fact that some of our results
on palindromic length can be formulated by using free groups and, specifically,
inverses of palindromes. We prove that the ratio of the palindromic length and
the FG-palindromic length of a word can be arbitrarily large, and we study the
relation of palindromic length, FG-palindromic length, conjugacy, and edit dis-
tance. Combinatorial and algorithmic analysis of FG-palindromic length seems
like an interesting topic for future research.

2 Preliminaries

Throughout the article, let Σ be an alphabet. The set of all words over Σ is
denoted by Σ∗ and it is a free monoid. The empty word is denoted by ε and the
length of a word w ∈ Σ∗ by |w|.

The set of all infinite words over Σ is denoted by Σω. An infinite word w is
ultimately periodic if there are words u, v ∈ Σ∗ such that w = uvω = uvvv · · · .
If w is not ultimately periodic, it is aperiodic.

The set of factors of a finite or infinite word w is denoted by Fact(w) and
the set of prefixes by Pref(w).

If a1, . . . , an ∈ Σ, then the reverse of the word w = a1 · · · an is wR = an · · · a1.
If w = wR, then w is a palindrome.

Palindromic Length in Free Monoids and Free Groups 205

The palindromic length of a word w, denoted by |w|pal, is the smallest number
n such that w can be written as a product of n palindromes. Because every letter
is a palindrome, |w|pal ≤ |w|. The palindromic length of ε is zero, the palindromic
length of every nonempty palindrome is one, and the palindromic length of every
other word is at least two.

Example 3. The reverse of the word reverses is sesrever, so it is not a palin-
drome. It is a product of the two palindromes rever and ses, so its palindromic
length is two.

The palindromic width of a language L is

|L|pal = sup{|u|pal | u ∈ L}
(this terminology actually comes from studying palindromicity in groups; the
case of free groups is discussed below). Conjecture 1 can now be reformulated
as claiming that |Fact(w)|pal = ∞ for every aperiodic infinite word w, and
Conjecture 2 can be reformulated as claiming that |Pref(w)|pal = ∞ for every
aperiodic infinite word w.

The free monoid Σ∗ can be extended to a free group. For any subset S of the
free group, let S∗ be the monoid generated by S, let S−1 be the set of inverses
of elements of S, and let S±1 = S ∪ S−1. For example, (Σ±1)∗ is the whole free
group, and (Σ∗)±1 is the set of all words and their inverses. The term “word”
always refers to an element of Σ∗.

Every element x of the free group (Σ±1)∗ can be written uniquely in a reduced
form x = a1 · · · an, where n ≥ 0, a1, . . . , an ∈ Σ±1, and ai−1ai �= ε for all
i ∈ {2, . . . , n}. The reverse of x is then xR = an · · · a1. This is an extension of
the definition of the reverse of a word. If x = xR, then x is an FG-palindrome.
A word is an FG-palindrome if and only if it is a palindrome.

Reversal is an antimorphism, that is, (xy)R = yRxR for all x, y ∈ (Σ±1)∗.
It follows that if x = a0 · · · an, where a0, . . . , an ∈ Σ±1 (but not necessarily
ai−1ai �= ε for all i ∈ {1, . . . , n}), and if ai = an−i for all i ∈ {0, . . . , n}, then x
is an FG-palindrome. The converse is not true; for example, the empty word is
an FG-palindrome, but it can be written as aa−1, which does not “look like” a
palindrome.

The FG-palindromic length of an element x is the smallest number n such
that x can be written as a product of n FG-palindromes. This definition is not
compatible with the definition of palindromic length, because there are words
whose palindromic length is larger than their FG-palindromic length.

Example 4. The palindromic length of abca is four, but it is a product of three
FG-palindromes:

abca = aba · a−2 · aca.

When studying palindromicity in free groups (and not in free monoids),
FG-palindromes are usually called just palindromes, but in this article, the term
“palindrome” always refers to a word. Similarly, FG-palindromic length is some-
times called just palindromic length, but because it is different from the usual
palindromic length of words, it is important to use different terms in this article.

206 A. Saarela

3 Palindromic Lengths of Factors and Prefixes

We start with an easy lemma, which was also proved in [12]. Lemmas of similar
flavor can be found in [4].

Lemma 5. Let x, y ∈ Σ∗. If two of the words x, y, xy are palindromes, then
the third one is a product of two palindromes.

Proof. If x and y are palindromes, then the claim is clear.
If x and xy are palindromes, then xy = (xy)R = yRxR = yRx, so y and yR

are conjugates, meaning that there are words p, q such that y = pq and yR = qp.
Then qp = yR = (pq)R = qRpR, so q = qR and p = pR, and thus y = pq is a
product of two palindromes.

If y and xy are palindromes, then the claim can be proved in a symmetric
way. Alternatively, we can notice that yR and yRxR are palindromes, so xR is
a product of two palindromes by the previous case, and therefore also x is a
product of two palindromes. �	

If x is a product of m palindromes and y is a product of n palindromes,
then xy is a product of m + n palindromes, so we have the inequality |xy|pal ≤
|x|pal + |y|pal. The following generalization of Lemma 5 gives two other similar
“triangle inequalities” for palindromic length.

Lemma 6. Let x, y ∈ Σ∗. Then

|y|pal ≤ |x|pal + |xy|pal and |x|pal ≤ |y|pal + |xy|pal.
Proof. We prove the first inequality by induction on |xy| (the second inequality
is symmetric). The cases where |x| = 0 or |y| = 0 are clear. Let us assume that
|x|, |y| > 0 and |y′|pal ≤ |x′|pal + |x′y′|pal whenever |x′y′| < |xy|. Let |x|pal = m
and |xy|pal = n. Let x = p1 · · · pm and xy = q1 · · · qn, where every pi and every
qi is a nonempty palindrome. There are two (similar) cases: |p1| ≤ |q1| and
|p1| > |q1|.

If |p1| ≤ |q1|, then q1 = p1r for some word r, and r = st for some palindromes
s, t by Lemma 5. Let x′ = p2 · · · pm. Then x′y = stq2 · · · qn. By the induction
hypothesis,

|y|pal ≤ |x′|pal + |x′y|pal ≤ (m − 1) + (n + 1) = |x|pal + |xy|pal.
If |p1| > |q1|, then p1 = q1r for some word r, and r = st for some palindromes

s, t by Lemma 5. Let x′ = stp2 · · · pm. Then x′y = q2 · · · qn. By the induction
hypothesis,

|y|pal ≤ |x′|pal + |x′y|pal ≤ (m + 1) + (n − 1) = |x|pal + |xy|pal.
This completes the induction. �	

Now we are ready to prove the main result of this section and the equivalence
of Conjectures 1 and 2.

Palindromic Length in Free Monoids and Free Groups 207

Theorem 7. Let w be a finite or infinite word. Then

|Fact(w)|pal ≤ 2|Pref(w)|pal.

Proof. Let y be any factor of w. There is a word x such that xy is a prefix of w.
Then |x|pal, |xy|pal ≤ |Pref(w)|pal, and

|y|pal ≤ |x|pal + |xy|pal ≤ 2|Pref(w)|pal
by Lemma 6. �	
Corollary 8. Conjectures 1 and 2 are equivalent.

Proof. For an aperiodic infinite word w, the condition |Pref(w)|pal = ∞ implies
|Fact(w)|pal = ∞, because Pref(w) ⊆ Fact(w), and the condition |Fact(w)|pal =
∞ implies |Pref(w)|pal = ∞ by Theorem 7. Therefore Conjectures 1 and 2 are
equivalent. �	

The next example shows that the inequality |Fact(w)|pal ≤ 2|Pref(w)|pal in
Theorem 7 is almost optimal. We do not know whether it could be replaced by
|Fact(w)|pal ≤ 2|Pref(w)|pal − 1.

Example 9. Let {a1, . . . , an−1, b1, . . . , bn−1} be an alphabet and let

A = a1 · · · an−1 and B = b1 · · · bn−1.

It is quite easy to see that all prefixes of the infinite word

w = (AARBBR)ω = ((a1 · · · an−1)(an−1 · · · a1)(b1 · · · bn−1)(bn−1 · · · b1))ω

have palindromic length at most n. On the other hand, w has the factor

u = ARBBRAARB

= (an−1 · · · a1)(b1 · · · bn−1)(bn−1 · · · b1)(a1 · · · an−1)(an−1 · · · a1)(b1 · · · bn−1),

and we can show that u has palindromic length 2n − 1. To see this, let u =
p1 · · · pk, where every pi is a palindrome. We first note that u contains every
letter exactly three times. Every letter appears an even number of times in
every palindrome of even length, so every letter must appear in at least one pi

of odd length. But u does not contain a factor of the form aba for any letters
a, b, so it does not have palindromic factors of odd length, except the letters.
Therefore, for every letter a, there exists i such that pi = a. This means that the
sequence p1, . . . , pk contains at least 2n − 2 letters. It follows that k ≥ 2n − 1.

4 Binary Alphabet

In Example 9, we used an alphabet whose size depended on the parameter n.
This raises the question of whether similar examples could be constructed using

208 A. Saarela

an alphabet of fixed sized, preferably a binary alphabet. It would be convenient
if, for any alphabet {a1, . . . , an}, we could give a morphism h : {a1, . . . , an}∗ →
{a, b}∗ that preserves palindromic lengths of words, and approximately preserves
palindromic widths of sets of factors and prefixes. Then we could use this mor-
phism also later to turn n-ary examples into binary ones. The first idea might
be to define h(ai) = abia for all i. This morphism preserves palindromicity, but
it can significantly reduce the palindromic length of a word. A better morphism
is given in the next lemma.

Lemma 10. Let us define a morphism

h : {a1, . . . , an}∗ → {a, b}∗, h(ai) = abia5bia.

Let u be a finite word and w a finite or infinite word over {a1, . . . , an}. Then

|h(u)|pal = |u|pal,
|Fact(w)|pal ≤ |Fact(h(w))|pal ≤ |Fact(w)|pal + 6,

|Pref(w)|pal ≤ |Pref(h(w))|pal ≤ |Pref(w)|pal + 3.

Proof. First, we prove that |h(u)|pal ≤ |u|pal. If u = p1 · · · pk, where every pi is
a palindrome, then h(u) = h(p1) · · · h(pk) and every h(pi) is a palindrome. The
claim follows.

Second, we prove that |u|pal ≤ |h(u)|pal. Let h(u) = q1 · · · qk, where every qi

is a palindrome. We are going to define a factorization u = p1 · · · pk such that
every pi is a palindrome. The informal idea is to define the words pi so that, for
a letter c in u, if the centermost letter in the image h(c) is inside qj , then c will
be inside pj . This means that either |pj | ≤ 1 or qj = xh(pj)y, where x is either
a suffix of a2bia or the inverse of a prefix of abia2 for some i, and y is either a
prefix of abia2 or the inverse of a suffix of a2bia for some i. If pj = aj0 · · · ajm ,
where m ≥ 1 and ji ∈ {1, . . . , n} for all i, then

qj = x′a3bj0a

(m−1∏
i=1

abjia5bjia

)
abjma3y′,

where x′, y′ ∈ {a, b}∗ do not contain a3 as a factor. Because qj is a palindrome,
it must be ji = jm−i for all i, so also pj is a palindrome. The claim follows.

Third, we prove that

|Fact(w)|pal ≤ |Fact(h(w))|pal
If v is a factor of w of palindromic length k, then h(v) is a factor of h(w) of
palindromic length k. The claim follows.

Finally, we prove that

|Fact(h(w))|pal ≤ |Fact(w)|pal + 6.

Every factor of h(w) is of the form xh(v)y, where v is a factor of w, x is a suffix
of abia5bia for some i, and y is a prefix of abia5bia for some i. Then

|xh(v)y|pal ≤ |x|pal + |h(v)|pal + |y|pal ≤ |v|pal + 6.

Palindromic Length in Free Monoids and Free Groups 209

The claim follows.
The inequalities about the sets of prefixes can be proved in a similar way. �	

Example 11. If w is the word of Example 9 and h is the morphism of Lemma 10,
then the palindromic lengths of all prefixes of the binary infinite word h(w) are
at most n + 3, but h(w) has a factor of palindromic length 2n − 1.

5 Palindromic Jumps

In this section, we are going to prove a generalization of Lemma 6, which might be
useful when studying palindromic lengths of factors. Let w = a0a1a2 · · · (w could
also be a finite word). In the following, it is convenient to think that the positions
between the letters of w are labeled so that the position before a0 is 0, the position
between a0 and a1 is 1, and so on. We say that (i, j) is a palindromic jump in w if
either i ≤ j and ai · · · aj−1 is a palindrome or j ≤ i and aj · · · ai−1 is a palindrome.
If i ≤ j, then (i, j) is a forward palindromic jump, and if j ≤ i, then (i, j) is a
backward palindromic jump.

If we can get from position i to position j with n forward palindromic jumps,
then the factor between positions i and j is a product of n palindromes. The
inequality |y|pal ≤ |x|pal + |xy|pal in Lemma 6 means that if we can get from
position |x| in the word xy to position 0 with m backward palindromic jumps,
and we can get from position 0 to position |xy| with n forward palindromic jumps,
then we can get from position |x| to position |xy| with m+n forward palindromic
jumps. It follows that any sequence of m backward palindromic jumps followed
by n forward palindromic jumps can be converted into a sequence of m + n
forward palindromic jumps. In the following theorem, we will generalize this
by proving that any sequence of n palindromic jumps can be converted into a
sequence of n forward palindromic jumps. So if we can get from position i to
position j with n palindromic jumps, then the factor between positions i and j
has palindromic length at most n.

Theorem 12. Let w = a0a1a2 · · · . Let k0, . . . , kn ≥ 0 and k0 ≤ kn. If (ki−1, ki)
is a palindromic jump in w for all i ∈ {1, . . . , n}, then ak0 · · · akn−1 is a product
of n palindromes.

Proof. We can assume that ki−1 �= ki for all i ∈ {1, . . . , n}. The proof is by
induction on L = |k0 − k1| + · · · + |kn−1 − kn|. If L = kn − k0, then the sequence
k0, . . . , kn is increasing and the claim is clear. Let us assume that L > kn − k0
and that the claim is true for all values smaller than L. There is a number j
such that either kj < kj−1, kj+1 or kj > kj−1, kj+1. By Lemma 5, there is a
number k such that (kj−1, k), (k, kj+1) are palindromic jumps in w and either
kj−1 ≤ k ≤ kj+1 or kj+1 ≤ k ≤ kj−1. Let k′

j = k and k′
i = ki for all i �= j. Then

|k′
0 − k′

1| + · · · + |k′
n−1 − k′

n| < L and every (k′
i−1, k

′
i) is a palindromic jump in

w, so ak0 · · · akn
is a product of n palindromes by the induction hypothesis. �	

210 A. Saarela

Example 13. Consider the word abaca. Then (0, 3) is a forward palindromic
jump, because aba is a palindrome, (3, 2) is a backward palindromic jump,
because a is a palindrome, and (2, 5) is a forward palindromic jump, because
aca is a palindrome. By Theorem 12, abaca is a product of three palindromes,
which is of course very easy to see directly as well. The proof of Theorem 12
would convert the sequence (0, 3), (3, 2), (2, 5) of palindromic jumps either into
the sequence (0, 1), (1, 2), (2, 5), which corresponds to the factorization a · b ·aca,
or to the sequence (0, 3), (3, 4), (4, 5), which corresponds to the factorization
aba · c · a.

6 Palindromes and Inverses of Palindromes

From now on, we view the word monoid Σ∗ as a subset of the free group (Σ±1)∗.
If x, y ∈ Σ∗, then y = x−1xy, so the inequality |y|pal ≤ |x|pal + |xy|pal of
Lemma 6 can be formulated as follows: If y = p1 · · · pmq1 · · · qn, where every pi

is the inverse of a palindrome and every qi is a palindrome, then y is a product
of m + n palindromes. This raises the following questions:

– If a word is a product of n elements of (Σ∗)±1 that are palindromes or inverses
of palindromes, is the word necessarily a product of n palindromes?

– If a word is a product of n FG-palindromes, is the word necessarily a product
of n palindromes?

The answer to both of these questions is negative, as is shown by the word

abca = aba · a−2 · aca,

which was already mentioned in Example 4. However, in Theorem 14 we prove a
weaker result. This is essentially a reformulation of Theorem 12. We could also
have proved Theorem 14 first and then Theorem 12 as a consequence.

Theorem 14. Let w = p1 · · · pn, where w is a word and every pi is either a
palindrome or the inverse of a palindrome. If pi · · · pj ∈ (Σ∗)±1 whenever 1 ≤
i ≤ j ≤ n, then w is a product of n palindromes.

Proof. For all i ∈ {0, . . . , n}, let qi = p1 · · · pi. Let R = {qi | qi ∈ Σ∗} and
S = {q−1

i | q−1
i ∈ Σ∗}. Let r be a longest word in R and s be a longest word in S.

First we are going to show that every qi ∈ R is a prefix of r. If qi = xay and
qj = xbz, where x, y, z are words, a, b are different letters, and i < j, then

pi+1 · · · pj = q−1
i qj = y−1a−1bz /∈ (Σ∗)±1,

which is a contradiction. Therefore, one of qi, qj is a prefix of the other. This
means that every qi ∈ R is a prefix of r.

Then we are going to show that every q−1
i ∈ S is a suffix of s. If q−1

i = xaz
and q−1

j = ybz, where x, y, z are words, a, b are different letters, and i < j, then

pi+1 · · · pj = q−1
i qj = xab−1y−1 /∈ (Σ∗)±1,

Palindromic Length in Free Monoids and Free Groups 211

which is a contradiction. Therefore, one of q−1
i , q−1

j is a suffix of the other. This
means that every q−1

i ∈ S is a suffix of s.
Let w = sr. Then (|sqi−1|, |sqi|) is a palindromic jump in w for all i ∈

{1, . . . , n}. The claim follows from Theorem 12. �	

7 Conjugates and Edit Distance

In this section, we will compare palindromic length and FG-palindromic length
and show that they can be very different. We prove that FG-palindromic length
has some nice properties that the ordinary palindromic length does not have:
The FG-palindromic lengths of conjugates are almost the same, and if two ele-
ments are close to each other as measured by edit distance, then also their
FG-palindromic lengths are close to each other.

Theorem 15. For every conjugacy class of a free group, there is a number k
such that the FG-palindromic lengths of all elements in the conjugacy class are
in {2k − 1, 2k}.
Proof. Of all the members of a conjugacy class, let x be one with minimal FG-
palindromic length. Let k be such that the FG-palindromic length of x is in
{2k − 1, 2k}. Then x = p1 · · · p2k, where every pi is an FG-palindrome (we can
add the empty palindrome if necessary). For every conjugate yxy−1 of x we have

yxy−1 = y(p1 · · · p2k)y−1 =
k∏

i=1

yp2i−1p2iy
−1 =

k∏
i=1

yp2i−1y
R(yR)−1p2iy

−1.

Here the two elements yp2i−1y
R and (yR)−1p2iy

−1 = (y−1)Rp2iy
−1 are FG-

palindromes for all i ∈ {1, . . . , k}, so yxy−1 is a product of 2k FG-palindromes.
This proves the claim. �	

All conjugates of a product of two palindromes are also products of two
palindromes, but a conjugate of a product of three palindromes can have arbi-
trarily high palindromic length, as is shown in the next example. This means
that Theorem 15 does not hold for palindromic length.

Example 16. Let {a1, . . . , an, b, c} be an alphabet and let A = a1 · · · an. The
word

ARAbc = (an · · · a1)(a1 · · · an)bc

has palindromic length three, but its conjugate

AbcAR = (a1 · · · an)bc(an · · · a1)

has palindromic length 2n + 2. On the other hand, Theorem 15 guarantees that
AbcAR is a product of four FG-palindromes. In fact, it is a product of three
FG-palindromes:

AbcAR = AbAR · (AR)−1A−1 · AcAR.

This also shows that the ratio of the palindromic length and the FG-palindromic
length of a word can be arbitrarily large.

212 A. Saarela

The edit distance (or Levenshtein distance) of two words can be defined as
the smallest number of deletions, insertions and substitutions of letters that are
required to transform the first word into the second word. A similar definition
can be given for elements of a free group. Formally, we define the FG-edit distance
of x, y ∈ (Σ±1)∗ as follows:

– If x = y, the FG-edit distance is zero.
– If x = uav �= y = ubv, where u, v ∈ (Σ±1)∗ and a, b ∈ Σ±1 ∪{ε}, the FG-edit

distance is one.
– Otherwise, the FG-edit distance is the smallest number n for which there are

x0, . . . , xn ∈ (Σ±1)∗ such that x0 = x, xn = y, and the edit distance of xi−1

and xi is one for all i ∈ {1, . . . , n}.

The FG-edit distance of two words can be smaller than their ordinary edit
distance. For example, the edit distance of ε and ab is two, but the FG-edit
distance of ε = aa−1 and ab is one.

Next we will prove that if two elements are close to each other as mea-
sured by FG-edit distance, then also their FG-palindromic lengths are close to
each other. The idea is that if we want to make a deletion, insertion or sub-
stitution in the middle of an element, we can first take a suitable conjugate,
then make the deletion, insertion or substitution at the end of the element, and
finally take another suitable conjugate. None of these operations can change the
FG-palindromic length by much.

Theorem 17. If the FG-edit distance of x and y is d, then the difference of
their FG-palindromic lengths is at most 2d + 1.

Proof. First, consider the case d = 1. Let x = uav and y = ubv, where u, v ∈
(Σ±1)∗ and a, b ∈ Σ±1∪{ε}. Let the FG-palindromic length of x be 2k−l, where
l ∈ {0, 1}. Then the FG-palindromic length of vua is at most 2k by Theorem 15,
the FG-palindromic length of vub = vua · a−1 · b is at most 2k + 2, and the
FG-palindromic length of ubv is at most 2k + 2 by Theorem 15. This proves the
claim for d = 1. The general case follows by iterating the above procedure. �	

The next example shows that Theorem 17 does not hold for palindromic
length.

Example 18. Consider the word AbcAR that appeared in Example 16. It is within
edit distance one of a palindrome, but its palindromic length is 2n + 2. On
the other hand, Theorem 17 guarantees that AbcAR is a product of four FG-
palindromes. In fact, it is a product of three FG-palindromes, as we saw in
Example 16.

8 Conclusion

In this article, we have studied palindromic length. In free monoids, we have com-
pared the maximal palindromic lengths of factors and prefixes, proved the equiv-
alence of two well-known conjectures, and given alternative equivalent ways to

Palindromic Length in Free Monoids and Free Groups 213

define palindromic length. In free groups, we have studied the relations between
palindromic length, FG-palindromic length, conjugates, and edit distance. There
are many open questions:

– Conjecture 1 remains open.
– The fact that the FG-palindromic length of a word can be much smaller than

the palindromic length suggests the following question: Does there exist an
aperiodic infinite word such that the FG-palindromic lengths of its factors
are bounded by a constant?

– There are several small questions about the optimality of various results.
For example, are there words such that all of their prefixes have palindromic
length at most n but some of their factors have palindromic length 2n? In
the binary case, can we do better than using Lemma 10?

– We could also look at combinatorial and algorithmic questions related to FG-
palindromic length. Finding an algorithm for determining the FG-palindromic
length was mentioned as an open problem already in [3].

References

1. Allouche, J.P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity.
Theoret. Comput. Sci. 291(1), 9–31 (2003)

2. Bardakov, V.G., Gongopadhyay, K.: Palindromic width of finitely generated solv-
able groups. Comm. Algebra 43(11), 4809–4824 (2015)

3. Bardakov, V.G., Shpilrain, V., Tolstykh, V.: On the palindromic and primitive
widths of a free group. J. Algebra 285(2), 574–585 (2005)

4. Blondin Massé, A., Brlek, S., Labbé, S.: Palindromic lacunas of the Thue-Morse
word. In: Proceedings of GASCom, pp. 53–67 (2008)

5. Borchert, A., Rampersad, N.: Words with many palindrome pair factors. Electron.
J. Comb. 22(4), P4.23 (2015)

6. Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of
infinite words. Int. J. Found. Comput. Sci. 15(2), 293–306 (2004)

7. Bucci, M., Richomme, G.: Greedy palindromic lengths (Preprint). http://arxiv.
org/abs/1606.05660

8. Fici, G., Gagie, T., Kärkkäinen, J., Kempa, D.: A subquadratic algorithm for
minimum palindromic factorization. J. Discrete Algorithms 28, 41–48 (2014)

9. Fink, E.: Palindromic width of wreath products. J. Algebra 471, 1–12 (2017)
10. Frid, A.E., Puzynina, S., Zamboni, L.Q.: On palindromic factorization of words.

Adv. Appl. Math. 50(5), 737–748 (2013)
11. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J.

Comb. 30(2), 510–531 (2009)
12. Guo, C., Shallit, J., Shur, A.M.: On the combinatorics of palindromes and antipalin-

dromes (Preprint). http://arxiv.org/abs/1503.09112
13. Holub, Š., Müller, M.: Fully bordered words. Theoret. Comput. Sci. 684, 53–58

(2017)
14. I, T., Sugimoto, S., Inenaga, S., Bannai, H., Takeda, M.: Computing palindromic

factorizations and palindromic covers on-line. In: Kulikov, A.S., Kuznetsov, S.O.,
Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 150–161. Springer, Cham
(2014). doi:10.1007/978-3-319-07566-2 16

15. Ravsky, O.: On the palindromic decomposition of binary words. J. Autom. Lang.
Comb. 8(1), 75–83 (2003)

http://arxiv.org/abs/1606.05660
http://arxiv.org/abs/1606.05660
http://arxiv.org/abs/1503.09112
http://dx.doi.org/10.1007/978-3-319-07566-2_16

Invariance: A Theoretical Approach for Coding
Sets of Words Modulo Literal (Anti)Morphisms

Jean Néraud(B) and Carla Selmi

Laboratoire d’Informatique, de Traitement de l’Information et des Systèmes,
Université de Rouen, Avenue de l’Université, 76800 Saint-Étienne-du-Rouvray, France

neraud.jean@free.fr, carla.selmi@univ-rouen.fr

Abstract. Let A be a finite or countable alphabet and let θ be lit-
eral (anti)morphism onto A∗ (by definition, such a correspondence is
determinated by a permutation of the alphabet). This paper deals with
sets which are invariant under θ (θ-invariant for short). We establish an
extension of the famous defect theorem. Moreover, we prove that for the
so-called thin θ-invariant codes, maximality and completeness are two
equivalent notions. We prove that a similar property holds for some spe-
cial families of θ-invariant codes such as prefix (bifix) codes, codes with
a finite (two-way) deciphering delay, uniformly synchronous codes and
circular codes. For a special class of involutive antimorphisms, we prove
that any regular θ-invariant code may be embedded into a complete one.

Keywords: Antimorphism · Bifix · Circular · Code · Complete · Deci-
phering delay · Defect · Delay · Embedding · Equation · Literal · Max-
imal · Morphism · Prefix · Synchronizing delay · Variable length code ·
Verbal synchronizing delay · Word

1 Introduction

During the last decade, in the free monoid theory, due to their powerful appli-
cations, in particular in DNA-computing, one-to-one morphic or antimorphic
correspondences play a particularly important part. Given a finite or countable
alphabet, say A, any such mapping is a substitution which is fully determined by
extending a unique permutation of A, to a mapping onto A∗ (the free monoid
that is generated by A). The resulting mapping is commonly referred to as literal
(or letter-to-letter) moreover, in the case of a finite alphabet, it is well known
that, with respect to the composition, some power of such a correspondence is
the identity (classically, in the case where this power corresponds to the square,
we say that the correspondence is involutive).

In that special case of involutive morphisms or antimorphisms -we write
(anti)morphisms for short, lots of successful investigations have been done for
extending the now classical combinatorical properties on words: we mention the
study of the so-called pseudo-palindromes [3,5], or that of pseudo-repetitions
[4,9,13]. The framework of some peculiar families of codes [12] and equations in
c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 214–227, 2017.
DOI: 10.1007/978-3-319-66396-8 20

A Theoretical Approach for Coding Sets 215

words [6,7] have been also concerned. Moreover, in the larger family of one-to-
one (anti)morphisms, a nice generalization of the famous theorem of Fine and
Wilf [14, Theorem 1.2.5] has been recently established in [8].

Equations in words are also the starting point of the study in the present
paper, where we adopt the point of view from [14, Chap. 9]. Let A be a finite
or countable alphabet; a one-to-one literal (anti)morphism onto A∗, namely θ,
being fixed, consider a finite collection of unknown words, say Z. In view of
making the present foreword more readable, in the first instance we take θ as an
involutive literal substitution (that is θ2 = idA∗). We assign that the words in Z
and their images by θ to satisfy a given equation, and we are interested in the
cardinality of any set T , whose elements allow by concatenation to compute all
the words in Z. Actually, such a question might be more complex than in the
classical configuration, where θ does not interfer: it is well known that in that
classical case, according to the famous defect theorem [14, Theorem 1.2.5], the
words in Z may be computed as the concatenation of at most |Z|−1 words that
don’t satisfy any non-trivial equation. With the terminology of [10,14], T , the
set of such words is a code, or equivalently T ∗, the submonoid that it generates,
is free: more precisely, with respect to the inclusion of sets it is the smallest free
submonoid of A∗ that contains Z.

Along the way, for solving our problem, applying the defect theorem to the
set X = Z ∪ θ(Z) might appear as natural. Such a methodology garantees the
existence of a code T , with |T | ≤ |X| − 1, and such that T ∗ is the smallest
free submonoid of A∗ that contains X. Unfortunately, since both the words in
Z and θ(Z) are expressed as concatenations of words in T , among the elements
of T ∪ θ(T) non-trivial equations can remain; in other words, by applying that
methodology, the initial problem would be transferred among the words in T ∪
θ(T). This situation is particularly illustrated by [13, Proposition 3], where the
authors prove that, given an involutive antimorphism θ, the solutions of the
equation xy = θ(y)x are x = (uv)iu, y = vu, where the elements u, v of T satisfy
the non-trivial equation vu = θ(u)θ(v).

In the general case where θ is a literal one-to-one (anti)morphism, we note
that the union, say Y , of the sets θi(T), for all i ∈ ZZ, is itself θ-invariant,
therefore an alternative methodology will consist in asking for some code Y
which is invariant under θ, and such that Y ∗ is the smallest free submonoid of
A∗ that contains X =

⋃
i∈ZZ θi(Z). By the way, it is straightforward to prove that

the intersection of an arbitrary family of θ-invariant free submonoids is itself a
θ-invariant free submonoid. In the present paper we prove the following result:

Theorem 1. Let A be a finite or countable alphabet, let θ be a literal
(anti)morphism onto A∗, and let X be a finite θ-invariant set. If X it is not
a code, then the smallest θ-invariant free submonoid of A∗ that contains X is
generated by a θ-invariant code Y which satisfies |Y | ≤ |X| − 1.

For illustrating this result in term of equations, we refer to [6,7], where the
authors considered generalizations of the famous equation in three unknowns
of Lyndon-Shützenberger [14, Sect. 9.2]. They proved that, an involutive

216 J. Néraud and C. Selmi

(anti)morphism θ being fixed, given such an equation with sufficiently long mem-
bers, a word t exists such that any 3-uple of “solutions” can be expressed as a
concatenation of words in {t} ∪ {θ(t)}. With the notation of Theorem 1, the
elements of the θ-invariant set X are x, y, z, θ(x), θ(y), θ(z) and those of Y are t
and θ(t): we verify that Y is a θ-invariant code with |Y | ≤ |X| − 1.

In the sequel, we will continue our investigation by studying the proper-
ties of complete θ-invariant codes: a subset X of A∗ is complete if any word of
A∗ is a factor of some words in X∗. From this point of view, a famous result
from Schützenberger states that, for the wide family of the so-called thin codes
(which contains regular codes) [10, Sect. 2.5], maximality and completeness are
two equivalent notions. In the framework of invariant codes, we prove the fol-
lowing result:

Theorem 2. Let A be a finite or countable alphabet. Given a thin θ-invariant
code X ⊆ A∗, the three following conditions are equivalent:

(i) X is complete
(ii) X is a maximal code
(iii) X is maximal in the family of the θ-invariant codes.

In the proof, the main feature consists in establishing that a non-complete
θ-invariant code X cannot be maximal in the family of θ-invariant codes: actu-
ally, the most delicate step lays upon the construction of a convenient θ-invariant
set Z ⊆ A∗, with X ∩ Z = ∅ and such that X ∪ Z remains itself a θ-invariant
code.

It is well known that the preceding result from Schützenberger has been suc-
cessfully extended to some famous families of thin codes, such as prefix (bifix,
uniformly synchronous, circular) codes (cf [10, Proposition 3.3.8], [10, Proposi-
tion 6.2.1], [10, Theorem 10.2.11], [15, Corollary 3.13] and [11, Theorem 3.5])
and codes with a finite deciphering delay (f.d.d. codes, for short) [10, Theorem
5.2.2]. From this point of view, we will examine the behavior of corresponding
families of θ-invariant codes. Actually we establish a result similar to the pre-
ceding Theorem 2 in the framework of the family of prefix (bifix, f.d.d., two-way
f.d.d, uniformly synchronized, circular codes). In the proof, a construction very
similar to the previous one may be used in the case of prefix, bifix, f.d.d., two-
way f.d.d codes. At the contrary, investigating the behavior of circular codes
with regards to the question necessitates the computation of a more sofisticated
set; moreover the family of uniformly synchronized codes itself impose to make
use of a significantly different methodology.

In the last part of our study, we address to the problem of embedding a
non-complete θ-invariant code into a complete one. For the first time, this ques-
tion was stated in [2], where the author asked whether any finite code can be
imbedded into a regular one. A positive answer was provided in [1], where was
established a formula for embedding any regular code into a complete one. From
the point of view of θ-invariant codes, we obtain a positive answer only in the
case where θ is an involutive antimorphism which is different of the so-called
miror image; actually the general question remains open.

A Theoretical Approach for Coding Sets 217

We now describe the contents of the paper. Section 2 contains the prelimi-
naries: the terminology of the free monoid is settled, and the definitions of some
classical families of codes are recalled. Theorem 1 is established in Sect. 3, where
an original example of equation is studied. The proof of Theorem 2 is done in
Sect. 3, and extensions for special families of θ-invariant codes are studied in
Sect. 4. The question of embedding a regular θ-invariant code into a complete
one is examined in Sect. 5.

2 Preliminaries

We adopt the notation of the free monoid theory: given an alphabet A, we
denote by A∗ the free monoid that it generates. Given a word w, we denote
by |w| its length, the empty word, that we denote by ε, being the word with
length 0. We denote by wi the letter of position i in w: with this notation we
have w = w1 · · · w|w|. We set A+ = A∗\{ε}. Given x ∈ A∗ and w ∈ A+, we say
that x is a prefix (suffix) of w if a word u exists such that w = xu (w = ux).
Similarly, x is a factor of w if a pair of words u, v exist such that w = uxv. Given
a non-empty set X ⊆ A∗, we denote by P (X) (S(X), F (X)) the set of the words
that are prefix (suffix, factor) of some word in X. Clearly, we have X ⊆ P (X)
(S(X), F (X)). A set X ⊆ A∗ is complete iff F (X∗) = A∗. Given a pair of words
w,w′, we say that it overlaps if words u, v exist such that uw′ = wv or w′u = vw,
with 1 ≤ |u| < |w| and 1 ≤ |v| < |w′|; otherwise, the pair is overlapping-free (in
such a case, if w = w′, we simply say that w is overlapping-free).

It is assumed that the reader has a fundamental understanding with the main
concepts of the theory of variable length codes: we only recall some of the main
definitions and we suggest, if necessary, that he (she) report to [10]. A set X is
a variable length code (a code for short) iff any equation among the words of X
is trivial, that is, for any pair of sequences of words in X, namely (xi)1≤i≤m,
(yj)1≤i≤n, the equation x1 · · · xm = y1 · · · yn implies m = n and xi = yi for each
integer i ∈ [1,m]. By definition X∗, the submonoid of A∗ which is generated
by X, is free. Equivalently, X∗ satisfies the property of equidivisibility, that is
(X∗)−1X∗ ∩ X∗(X∗)−1 = X∗.

Some famous families of codes that have been studied in the literature: X
is a prefix (suffix, bifix) code iff X �= {ε} and X ∩ XA+ = ∅ (X ∩ A+X =
∅,X ∩XA+ = X ∩A+X = ∅). X is a code with a finite deciphering delay (f.d.d.
code for short) if it is a code and if a non-negative integer d exists such that
X−1X∗ ∩ XdA+ ⊆ X+. With this condition, if another integer d′ exists such
that we have X∗X−1∩A+Xd′ ⊆ X+, we say that X is a two-way f.d.d. code. X is
a uniformly synchronized code if it is a code and if a positive integer k exists such
that, for all x, y ∈ Xk, u, v ∈ A+: uxyv ∈ X∗ =⇒ ux, xv ∈ X∗. X is a circular
code if for any pair of sequences of words in X, namely (xi)1≤i≤m, (yj)1≤j≤n,
and any pair of words s, p, with s �= ε, the equation x1 · · · xm = sy2 · · · ynp, with
y1 = ps, implies m = n, p = ε and xi = yi for each i ∈ [1,m].

218 J. Néraud and C. Selmi

In the whole paper, we consider a finite or countable alphabet A and a map-
ping θ which satisfies each of the three following conditions:

(a) θ is a one-to-one correspondence onto A∗

(b) θ is literal, that is θ(A) ⊆ A
(c) either θ is a morphism or it is an antimorphism (it is an antimorphism if

θ(ε) = ε and θ(xy) = θ(y)θ(x), for any pair of words x, y); for short in any
case we write that θ is an (anti)morphism.

In the case where A is a finite set, it is well known that a positive integer n
exists such that θn = idA∗ . In the whole paper, we are interested in the family
of sets X ⊆ A∗ that are invariant under the mapping θ (θ-invariant for short),
that is θ(X) = X.

3 A Defect Effect for Invariant Sets

Informally, the famous defect theorem says that if some words of a set X satisfy
a non-trivial equation, then these words may be written upon an alphabet of
smaller size. In this section, we examine whether a corresponding result may be
stated in the frameword of θ-invariant sets. The following property comes from
the definition:

Proposition 1. Let M be a submonoid of A∗ and let S ⊆ A∗ be such that
M = S∗. Then M is θ-invariant if and only if S is θ-invariant.

Clearly the intersection of a non-empty family of θ-invariant free submonoids of
A∗ is itself a θ-invariant free submonoid. Given a submonoid M of A∗, recall
that its minimal generating set is (M\{ε})\(M\{ε})2.

Theorem 2. Let A be a finite or countable alphabet, let X ⊆ A∗ be a θ-invariant
set and let Y be the minimal generating set of the smallest θ-invariant free
submonoid of A∗ which contains X. If X is not a code, then we have |Y | ≤
|X| − 1.

Proof. With the notation of Theorem 2, since Y is a code, each word x ∈ X has
a unique factorization upon the words of Y , namely x = y1 · · · yn, with yi ∈ Y
(1 ≤ i ≤ n). In a classical way, we say that y1 (yn) is the initial (terminal)
factor of x (with respect to such a factorization). At first, we shall establish the
following lemma:

Lemma 3. With the preceding notation, each word in Y is the initial (terminal)
factor of a word in X.

Proof. By contradiction, assume that a word y ∈ Y that is never initial of any
word in X exists. Set Y0 = (Y \{y}){y}∗ and Yi = θi(Y0), for each integer i ∈ ZZ.
In a classical way (cf e.g. [14, p. 7]), since Y is a code, Y0 itself is a code. Since
θi is a one-to-one correspondence, for each integer i ∈ ZZ, Yi is a code, that is
Y ∗
i is a free submonoid of A∗. Consequently, the intersection, namely M , of the

A Theoretical Approach for Coding Sets 219

family (Y ∗
i)i∈ZZ is itself a free submonoid of A∗. Moreover we have θ(M) ⊆ M

(indeed, given a word w ∈ M , θ(w) �∈ Yi implies w �∈ Yi−1) therefore, since θ is
onto, we obtain θ(M) = M . Let x be an arbitrary word in X. Since X ⊆ Y ∗,
and according to the definition of y, we have x = (y1yk1)(y2yk2) · · · (ynykn), with
y1, · · · yn ∈ Y \{y} and k1, · · · kn ≥ 0. Consequently x belongs to Y ∗

0 , therefore
we have X ⊆ Y ∗

0 . Since X is θ-invariant, this implies X = θ(X) ⊆ Y ∗
i for each

i ∈ ZZ, thus X ⊆ M .
But the word y belongs to Y ∗ and doesn’t belong to Y ∗

0 thus it doesn’t belong
to M . This implies X ⊆ M � Y ∗: a contradiction with the minimality of Y ∗. �

Proof of Theorem 2. Let α be the mapping from X onto Y which, with every
word x ∈ X, associates the initial factor of x in its (unique) factorization over
Y ∗. According to Lemma 3, α is onto. We will prove that it is not one-to-one.
Classically, since X is not a code, a non-trivial equation may be written among its
words, say: x1 · · · xn = x′

1 · · · x′
m, with xi, x

′
j ∈ X x1 �= x′

1 (1 ≤ i ≤ n, 1 ≤ j ≤
m). Since Y is a code, a unique sequence of words in Y , namely y1, · · · , yp exists
such that: x1 · · · xn = x′

1 · · · x′
m = y1 · · · yp. This implies y1 = α(x1) = α(x′

1) and
completes the proof. �

In what follows we discuss some interpretation of Theorem 2 with regards to
equations in words. For this purpose, we assume that A is finite, thus a positive
integer n exists such that θn = idA∗ . Consider a finite set of words, say Z,
and denote by X the union of the sets θi(Z), for i ∈ [1, n]; assume that a non-
trivial equation holds among the words of X, namely x1 · · · xm = y1 · · · yp. By
construction X is θ-invariant therefore, according to Theorem 2, a θ-invariant
code Y exists such that X ⊆ Y ∗, with |Y | ≤ |X| − 1. This means that each of
the words in X can be expressed by making use of at most |X|−1 words of type
θi(u), with u ∈ Y and 1 ≤ i ≤ n. It will be easily verified that the examples
from [6,7,13] corroborate this fact, moreover below we mention an original one:

Example 4. Let θ be a literal antimorphism such that θ3 = idA∗ . Consider two
different words x, y, with |x| > |y|, which satisfy the following equation:

xθ(y) = θ2(y)θ(x).

With these conditions, a pair of words u, v exists such that x = uv, θ2(y) = u,
thus y = θ(u), moreover we have v = θ(v) and u = θ(u) = θ2(u). With the
preceding notation, we have Z = {x, y}, X = Z ∪ θ(Z) ∪ θ2(Z), Y = {u} ∪
{v} ∪ {θ(u)} ∪ {θ(v)} ∪ {θ2(u)} ∪ {θ2(v)}. It follows from y = θ(y) = θ2(y) that
X = {x} ∪ {θ(x)} ∪ {θ2(x)} ∪ {y}.

– At first, assume that no word t exists such that u, v ∈ t+. In a classical way,
we have uv �= vu, thus X = {x, θ(x), θ2(x), y} and Y = {u, v}. We verify that
|Y | ≤ |X| − 1.

– Now, assume that we have u, v ∈ t+. We obtain X = Z = {x, y} and Y = {t}.
Once more we have |Y | ≤ |X| − 1.

220 J. Néraud and C. Selmi

4 Maximal θ-Invariant Codes

Given set X ⊆ A∗, we say that it is thin if A∗ �= F (X). Regular codes are well
known examples of thin codes. From the point of view of maximal codes, below
we recall one of the famous result stated by Schützenberger:

Theorem 5. [10, Theorem 2.5.16] Let X be an thin code. Then the following
conditions are equivalent:

(i) X is complete
(ii) X is a maximal code.

The aim of this section is to examine whether a corresponding result may be
stated in the family of thin θ-invariant codes.

In the case where |A| = 1, we have θ = idA∗ , moreover the codes are all the
singletons in A+. Therefore any code is θ-invariant, maximal and complete. In
the rest of the paper, we assume that |A| ≥ 2.
Some notations. Let X be a non-complete θ-invariant code, and let y �∈ F (X∗).
Without loss of generality, we may assume that the initial and the terminal
letters of y are different (otherwise, substitute to y the word aya, with a, a ∈ A
and a �= a), we may also assume that |y| ≥ 2. Set:

y = axa, z = a|y|ya|y| = a|y|axaa|y|. (1)

Since θ is a literal (anti)morphism, for each integer i ∈ ZZ, a pair of different
letters b, b and a word x′ exist such that |x′| = |x| = |y| − 2, and:

θi(z) = b
|y|

θi(y)b|y| = b
|y|

bx′bb|y|. (2)

Given two (not necessarily different) integers i, j ∈ ZZ, we will accurately study
how the two words θi(z), θj(z) may overlap.

Lemma 6. With the notation in (2), let u, v ∈ A+ and i, j ∈ ZZ such that
|u| ≤ |z| − 1 and θi(z)v = uθj(z). Then we have |u| = |v| ≥ 2|y|, moreover a
letter b and a unique positive integer k (depending of |u|) exist such that we have
θi(z) = ubk, θj(z) = bkv, with k ≤ |y|.

Proof. According to (2), we set θi(z) = b
|y|

bx′bb|y| and θj(z) = c|y|cx′′cc|y|,
with b, b, c, c ∈ A and b �= b, c �= c. Since θ is a literal (anti)morphism, we have
|θi(z)| = |θj(z)| thus |u| = |v|; since we have 1 ≤ |u| ≤ 3|y| − 1, exactly one of
the following cases occurs:

Case 1: 1 ≤ |u| ≤ |y| − 1. With this condition, we have (θi(z))|u|+1 = b =
c = (uθj(z))|u|+1 and (θi(z))|y|+1 = b = c = (uθj(z))|y|+1, which contradicts
b �= b.
Case 2: |u| = |y|. This condition implies (θi(z))|u|+1 = b = c = (uθj(z))|u|+1

and (θi(z))2|y| = b = c = (uθj(z))2|y|, which contradicts b �= b.

A Theoretical Approach for Coding Sets 221

Case 3: |y| + 1 ≤ |u| ≤ 2|y| − 1. We obtain (θi(z))2|y| = b = c = (uθj(z))2|y|
and (θi(z))2|y|+1 = b = c = (uθj(z))2|y|+1 which contradicts b �= b.
Case 4: 2|y| ≤ |u| ≤ 3|y| − 1. With this condition, necessarily we have b = c,
therefore an integer k ∈ [1, |y|] exists such that θi(z) = ubk and θj(z) = bkv.

�

Set Z = {θi(z)|i ∈ ZZ}. Since y /∈ F (X∗) and since X is θ-invariant, for any
integer i ∈ ZZ we have θi(z) �∈ F (X∗), hence we obtain Z ∩ F (X∗) = ∅. By
construction, all the words in Z have length |z| moreover, as a consequence of
Lemma 6:

Lemma 7. With the preceding notation, we have A+ZA+ ∩ ZX∗Z = ∅.
Proof. By contradiction, assume that z1, z2, z3 ∈ Z, x ∈ X∗ and u, v ∈ A+ exist
such that uz1v = z2xz3. By comparing the lengths of the words u and v with
|z|, exactly one of the three following cases occurs:

Case 1: |z| ≤ |u| and |z| ≤ |v|. With this condition, we have z2 ∈ P (u) and
z3 ∈ S(v), therefore the word z1 is a factor of x: this contradicts Z∩F (X∗) = ∅.
Case 2: |u| < |z| ≤ |v|. We have in fact u ∈ P (z2) and z3 ∈ S(v). We are in
the condition of Lemma 6: the words z2, z1 overlap. Consequently, u ∈ A+

and b ∈ A exist such that z2 = ubk and z1 = bkz′
1, with 1 ≤ k ≤ |y|. But

by construction we have |uz1| = |z2xz3| − |v|: since we assume |v| ≥ |z|,
this implies |uz1| ≤ |z2xz3| − |z| = |z2x|, therefore we obtain uz1 = ubkz′

1 ∈
P (z2x). It follows from z2 = ubk that z′

1 ∈ P (x). Since z1 ∈ Z and according
to (2), i ∈ ZZ and b ∈ A exist such that we have z1 = bkz′

1 = b|y|θi(y)b
|y|

.
Since by Lemma 6 we have |z′

1| = |u| ≥ 2|y|, we obtain θi(y) ∈ F (z′
1), which

contradicts y /∈ F (X∗).
Case 3: |v| < |z| ≤ |u|. Same arguments on the reversed words lead to a
conclusion similar to that of Case 2.
Case 4: |z| > |u| and |z| > |v|. With this condition, both the pairs of words
z2, z1 and z1, z3 overlap. Once more we are in the condition of Lemma 6:
letters c, d, words u, v, s, t, and integers h, k exist such that the two following
properties hold:

z2 = uch, z1 = chs, |u| = |s| ≥ 2|y|, h ≤ |y|, (3)
z1 = tdk, z3 = dkv, |v| = |t| ≥ 2|y|, k ≤ |y|. (4)

It follows from uz1v = z2xz3 that uz1v = (uch)x(dkv), thus z1 = chxdk. Once
more according to (2), i ∈ ZZ and c ∈ A exist such that we have z1 = c|y|θi(y)c|y|.
Since we have h, k ≤ |y|, this implies d = c moreover θi(y) is a factor of x. Once
more, this contradicts y /∈ F (X∗) (Fig. 1). �

222 J. Néraud and C. Selmi

u v

z

zx 3

1

z
2

b z’
1

k

Fig. 1. Proof of Lemma 7: Case 2

Thanks to Lemma 7 we will prove some meaningful results in Sect. 5.
Presently, we will apply it in a special context:

Corollary 8. With the preceding notation, X∗Z is a prefix code.

Proof. Let z1, z2 ∈ Z, x1, x2 ∈ X∗, u ∈ A+, such that x1z1u = x2z2. For any
word z3 ∈ Z, we have (z3x1)z1(u) = z3x2z2, a contradiction with Lemma 7. �

We are now ready to prove the main result of the section:

Theorem 9. Let A be a finite or countable alphabet and let X ⊆ A∗ be a thin
θ-invariant code. Then the following conditions are equivalent:

(i) X is complete
(ii) X is a maximal code
(iii) X is maximal in the family θ-invariant codes.

Proof. Let X be a θ-invariant code. According to Theorem 5, if X is thin and
complete, then it is a maximal code, therefore X is maximal in the family of θ-
invariant codes. For proving the converse, we consider a set X which is maximal
in the family of θ-invariant codes.

Assume that X is not complete and let y �∈ F (X∗). Define the word z as in
(1) and consider the set Z = {θi(z)|i ∈ ZZ}. At first, we will prove that X ∪ Z
remains a code. In view of that, we consider an arbitrary equation between the
words in X∪Z. Since X is a code, without loss of generality, we may assume that
at least one element of Z has at least one occurrence in one of the two sides of this
equation. As a matter of fact, with such a condition and since Z ∩ F (X∗) = ∅,
two sequences of words in X∗, namely (xi)1≤i≤n, (x′

j)1≤j≤p and two sequences of
words in Z, namely (zi)1≤i≤n−1, (z′

j)1≤j≤p−1 exist such that the equation takes
the following form:

x1z1x2z2 · · · xn−1zn−1xn = x′
1z

′
1x

′
2z

′
1 · · · x′

p−1z
′
p−1x

′
p. (5)

Without loss of generality, we assume n ≥ p. At first, according to Corollary 8,
necessarily, we have x1 = x′

1, therefore Eq. (5) is equivalent to: z1x2z2 · · · xn−1zn−1

xn = z′
1x

′
2z

′
2 · · · x′

p−1z
′
p−1x

′
p, however, since all the words in Z have a common

A Theoretical Approach for Coding Sets 223

length, we have z1 = z′
1 hence our equation is equivalent to x2z2 · · · xn−1zn−1xn =

x′
2z

′
2 · · · x′

p−1z
′
p−1x

′
p. Consequently, by applying iteratively the result of

Corollary 8, we obtain: x2 = x′
2, · · · , xp = x′

p, which implies xp+1zp+1 · · ·
zn−1xn = ε, thus n = p. In other words Eq. (5) is trivial, thus X ∪ Z is a code.

Next, since θ is one-to-one and since we have θ(X∪Z) ⊆ θ(X)∪θ(Z) = X∪Z,
the code X∪Z is θ-invariant. It follows from z ∈ Z\X that X is strictly included
in X ∪Z: this contradicts the maximality of X in the whole family of θ-invariant
codes, and completes the proof of Theorem 9. �

Example 10. Let A = {a, b, c}. Consider the antimorphism θ which is gen-
erated by the permutation σ(a) = b, σ(b) = c, σ(c) = a and let X =
{ab, cb, ca, ba, bc, ac}; it can be easily verified that X is a θ-invariant code.
Since we have c3 �∈ F (X∗), by setting y = c3b and z = b4 · c3b · a4

we are in Condition (1). The corresponding set Z is {θi(z)|i ∈ ZZ} =
{b4cb3c4, a4c3ac4, a4ba3b4, c4b3cb4, c4ac3a4, b4a3ba4}. Since X ∪ Z is a prefix set,
this guarantees that X ∪ Z remains a θ-invariant code.

5 Maximality in Some Families of θ-Invariant Codes

In the literature, statements similar to Theorem 5 were established in the frame-
work of some special families of thin codes. In this section we will draw similar
investigations with regards to θ-invariant codes. We will establish the following
result:

Theorem 11. Let A be a finite or countable alphabet and let X ⊆ A∗ be a
thin θ-invariant prefix (resp. bifix, f.d.d., two-way f.d.d, uniformly synchronized,
circular) code. Then the following conditions are equivalent:

(i) X is complete
(ii) X is a maximal code
(iii) X is maximal in the family of prefix (bifix, f.d.d., two-way f.d.d, uniformly

synchronized, circular) codes
(iv) X is maximal in the family θ-invariant codes
(v) X is maximal in the family of θ invariant prefix (bifix, f.d.d., two-way f.d.d,

uniformly synchronized, circular) codes.

Sketch proof. According to Theorem 9, and thanks to [10, Proposition 3.3.8],
[10, Proposition 6.2.1], [10, Theorem 5.2.2], [15, Corollary 3.13] and [11, Theorem
3.5], if X is complete then it is maximal in the family of θ-invariant codes and
maximal in the family of θ-invariant prefix (bifix, f.d.d., two-way f.d.d, uniformly
synchronized, circular) codes. Consequently, the proof of Theorem 11 comes
down to establish that if X is not complete, then it cannot be maximal in the
family of θ-invariant prefix (bifix, f.d.d., wo-way f.d.d, uniformly synchronized,
circular) codes.

224 J. Néraud and C. Selmi

(1) We begin by θ-invariant prefix codes. At first, we assume that θ is an
antimorphism. Since X ∩ XA+ = ∅, and since θ is injective, we have
θ(X) ∩ θ(XA+) = ∅, thus X ∩ A+X = ∅, hence X is also a suffix code.
Assume that X is not complete. According to [10, Proposition 3.3.8],
it is non-maximal in both the families of prefix codes and suffix codes.
Therefore a pair of words y, y′ ∈ A+\X exists such X ∪ {y} (X ∪ {y′})
remains a prefix (suffix) code. By construction X ∪ {yy′} remains a code
which is both prefix and suffix.
Set Y = {θi(yy′)|i ∈ ZZ}: since all the words in Y have same positive
length, Y is a prefix code. From the fact that θ is one-to-one, for any
integer i ∈ ZZ we obtain θi({yy′}) ∩ θi(P (X)) = θi(X) ∩ P (θi(yy′)) =
∅, consequently X ∪ Y remains a prefix code. By construction, Y is θ-
invariant and it is not included in X, thus X is not a maximal prefix
code.
In the case where θ is a morphism, the preceding arguments may be
simplified. Actually, a word y ∈ A+\X exists such that X ∪ {y} remains
a prefix code, therefore by setting Y = {θi(y)|i ∈ ZZ}, X ∪ Y remains a
prefix code.

(2) (sketch) The preceding arguments may be applied for proving that in any
case, if X is a non-complete bifix code, then it is maximal.

(3, 4) (sketch) In the case where X is a (two-way) f.d.d.-code, according to
[10, Proposition 5.2.1], similar arguments leads to a similar conclusion.

(5) In the case where X is a θ-invariant uniformly synchronized code with
verbal delay k ([10, Sect. 10.2]), we must make use of different arguments.
Actually, according to [15, Theorem 3.10], a complete uniformly synchro-
nized code X ′ exists, with synchronizing delay k, and such that X � X ′.
More precisely, X ′ is the minimal generating set of the submonoid M
of A∗ which is defined by M = (X2kA∗ ∩ A∗X2k) ∪ X∗. According to
Proposition 1 in the present paper, X ′ is θ-invariant. Since X is strictly
included in X ′, it cannot be maximal in the family of θ-invariant uni-
formly synchronized codes with delay k.

(6) It remains to study the case where X is a non-complete θ-invariant
circular code. Let y �∈ F (X∗) and let z and Z be computed as in
Sect. 3: this guarantees that X ∪ Z is a θ-invariant set. For proving that
X ∪ Z is a circular code, by contradiction we assume that some words
y1, · · · yn, y′

1, · · · , y′
m ∈ X ∪ Z (with m + n minimal), p ∈ A∗ and s ∈ A+,

exist such that the following equation holds:

y1y2 · · · yn = sy′
2y

′
3 · · · y′

mp and y′
1 = ps. (6)

Once more since X is a code, and since Z∩F (X∗) = ∅, without loss of generality
we assume that at least one integer i ∈ ZZ exists such that yi ∈ Z; similarly, at
least one integer j ∈ [1,m] exists such that y′

j ∈ Z. By construction, we have
yi ∈ F (y′

j · · · y′
my′

1 · · · y′
j · · · y′

my′
1 · · · y′

j); consequently, since all the words in Z
have the same length, a pair of integers h, k ∈ [1,m] and a pair of words u, v
exist such that uyiv ∈ y′

hX∗y′
k. According to Lemma 7, necessarily we have

A Theoretical Approach for Coding Sets 225

either u = ε or v = ε; this implies yi = y′
h or yi = y′

k, which contradicts the
minimality of m + n, therefore X ∪ Z is a circular code. �

6 Embedding a Regular Invariant Code into a Complete
One

In this section, we consider a non-complete regular θ-invariant code X and we
are interested in the problem of computing a complete one, namely Y , such
that X ⊆ Y . Historically, such a question appears for the first time in [2],
where the author asked for the possibility of embedding a finite code into a
regular complete one. With regards to θ-invariant codes, it seems natural to
generalize the formula from [1] by making use of the code Z that was introduced
in Sect. 4. More precisely we would consider the set X ′ = X ∪ (ZU)∗Z, with
U = A∗\(X∗ ∪ A∗ZA∗). Unfortunately, with such a construction we observe
that some pairs of words in Z may overlap, therefore a non-trivial equation
could hold among the words of X ′.

Nevertheless, we shall see that in the very special case where θ is an involutive
antimorphism, convenient invariant overlapping-free words can be computed.
Denote by θ0 the antimorphism which is generated by the identity onto A; in
other words, with every word w = w1 · · · wn ∈ A∗ (with wi ∈ A, for 1 ≤ i ≤ n),
it associates θ0(w) = wn · · · w1.

Proposition 12. Let A be a finite alphabet and let θ be an antimorphism onto
A∗, with θ �= θ0. If θ is involutive, then any non-complete regular θ-invariant
code can be embedded into a complete one.

Proof. Let X be such that θ(X) = X. Assume that X is not complete. We will
construct an overlapping-free word t /∈ F (X∗) such that θ(t) = t. At first, we
consider a word x such that x �∈ F (X∗) and |x| ≥ 2. Without loss of generality,
we assume that x is overlapping-free (otherwise, as in [10, Proposition 1.3.6], a
word s exists such that xs is overlapping-free). If θ(x) = x, then we set t = x,
otherwise let y = cx, where c stands for the initial letter of x. Once more,
without loss of generality we assume that y is overlapping-free. By construction
we have y ∈ ccA+, thus |y| ≥ 3 and y1 = y2 = c. If θ(y) = y, then we set t = y.
Now assume θ(y) �= y; according to the condition of Proposition 12, we have
θ|A �= idA, therefore a pair of letters a, b exists such that the following property
holds:

a �= b, b �= c, θ(a) = b, θ(b) = a. (7)

Set t = a|y|bθ(y)yab|y|. By construction, we have θ(t) = t, moreover the following
property holds:

Claim. t is an overlapping-free word.

226 J. Néraud and C. Selmi

Proof. Let u, v ∈ A∗ such that ut = tv, with 1 ≤ |u| ≤ |t| − 1. According to the
length of u, exactly one of the following cases occurs:

Case 1: 1 ≤ |u| ≤ |y|. With this condition, we obtain t|y|+1 = b = (ut)|y|+1 =
a: a contradiction with a �= b.
Case 2: |y| + 1 ≤ |u| ≤ 2|y|. This condition implies θ(y1) = t2|y|+1 = a,
therefore we obtain c = y1 = θ(a) = b: a contradiction with (7).
Case 3: |u| = 2|y|+1. We have y = a|y|: since we have |y| ≥ 3, this contradicts
the fact that y is overlaping-free.
Case 4: |u| = 2|y| + 2. We have t2|y|+3 = y2 = c = (ut)2|y|+3 = a. It follows
from y1 = y2 = c that y = a|y|: once more this contradicts the fact that y is
overlapping-free.
Case 5: 2|y| + 3 ≤ |u| ≤ 3|y| + 2. By construction, we have t|u|+|y| = b =
(ut)|uy| = a, a contradiction with (7).
Case 6: 3|y|+3 ≤ |u| ≤ |t|−1 = 4|y|+1. We obtain t|u|+1 = b = (ut)|u|+1 = a:
once more this contradicts (7).
In any case we obtain a contradiction: this establishes the claim.

Since we have t �∈ F (X∗), and since t is overlapping-free, the classical method
from [1] may be applied without any modification to ensure that X may embed-
ded into a complete code, say X ′. Recall that it computes in fact a code X ′ as
X ∪ V , with V = t(Ut)∗ and U = A∗\(X∗ ∪ A∗tA∗). Moreover, since θ(t) = t, it
is straightforward to verify that θ(X ′) = X ′ (Fig. 2). �

u y

a ba

a a ba

(y) θ

θ
1

a

y v(y) θ

(y)

Fig. 2. Proof of Proposition 12: Case 2 with |y| = 3 and |u| = 5

With regards to the antimorphism θ0, necessarily the words w, θ0(w) overlap,
therefore the preceding methodology seems to be unreliable in the most general
case. We finish our paper by stating the following open problem:
Problem. Let A be a finite alphabet and let θ be an (anti)morphism onto A∗.
Given a non-complete regular θ-invariant code X ⊂ A∗, can we compute a
complete regular θ-invariant code Y such that X ⊆ Y ?

A Theoretical Approach for Coding Sets 227

References

1. Ehrenfeucht, A., Rozenberg, S.: Each regular code is included in a regular maximal
one. Theor. Inform. Appl. 20, 89–96 (1985)

2. Restivo, A.: On codes having no finite completion. Discrete Math. 17, 309–316
(1977)

3. Bucci, M., de Luca, A., De Luca, A., Zamboni, L.Q.: On θ-episturmian words. Eur.
J. Comb. 30, 473–479 (2009)

4. Darshini, C.A.D.P., Rajkumar Dare, V., Venkat, I., Subramanian, K.G.: Factors
of words under an involution. J. Math. Inf. 1, 52–59 (2013–2014)

5. de Luca, A., De Luca, A.: Pseudopalindrome closure operators in free monoids.
Theoret. Comput. Sci. 362, 282–300 (2006)

6. Czeizler, El., Czeizler, Eu., Kari, L., Seki, S.: An extension of the Lyndon-
Schützenberger result to pseudoperiodic words. Inf. Comput. 209, 717–730 (2011)

7. Manea, F., Müller, M., Nowotka, D., Seki, S.: Generalised Lyndon-Schützenberger
equations. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS
2014. LNCS, vol. 8634, pp. 402–413. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44522-8 34

8. Manea, F., Mercaş, R., Nowotka, D.: Fine and Wilf’s theorem and pseudo-
repetitions. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol.
7464, pp. 668–680. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32589-2 58

9. Gawrychowski, P., Manea, F., Mercas, R., Nowotka, D., Tiseanu, C.: Finding
pseudo-repetitions. In: Portier, N., Wilke, T. (eds) 30th International Symposium
on Theoretical Aspects of Computer Science (STACS 2013). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 20, pp. 257–268. Dagstuhl, Germany
(2013). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik

10. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press, New York (2010)

11. Néraud, J.: Completing circular codes in regular submonoids. Theoret. Comput.
Sci. 391, 90–98 (2008)

12. Kari, L., Mahalingam, K.: DNA codes and their properties. In: Mao, C., Yokomori,
T. (eds.) DNA 2006. LNCS, vol. 4287, pp. 127–142. Springer, Heidelberg (2006).
doi:10.1007/11925903 10

13. Kari, L., Mahalingam, K.: Watson-Crick conjugate and commutative words. In:
Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 273–283. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-77962-9 29

14. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1983). 2nd edn. in Cambridge University Press 1997

15. Bruyère, V.: On maximal codes with bounded synchronization delay. Theoret.
Comput. Sci. 204, 11–28 (1998)

http://dx.doi.org/10.1007/978-3-662-44522-8_34
http://dx.doi.org/10.1007/978-3-662-44522-8_34
http://dx.doi.org/10.1007/978-3-642-32589-2_58
http://dx.doi.org/10.1007/11925903_10
http://dx.doi.org/10.1007/978-3-540-77962-9_29

Burrows-Wheeler Transform and Run-Length
Enconding

Sabrina Mantaci1(B), Antonio Restivo1(B), Giovanna Rosone2(B),
and Marinella Sciortino1(B)

1 University of Palermo, Palermo, Italy
{sabrina.mantaci,antonio.restivo,marinella.sciortino}@unipa.it

2 University of Pisa, Pisa, Italy
giovanna.rosone@unipi.it

Abstract. In this paper we study the clustering effect of the Burrows-
Wheeler Transform (BWT) from a combinatorial viewpoint. In particu-
lar, given a word w we define the BWT-clustering ratio of w as the ratio
between the number of clusters produced by BWT and the number of the
clusters of w. The number of clusters of a word is measured by its Run-
Length Encoding. We show that the BWT-clustering ratio ranges in]0, 2].
Moreover, given a rational number r ∈]0, 2], it is possible to find infinitely
many words having BWT-clustering ratio equal to r. Finally, we show how
the words can be classified according to their BWT-clustering ratio. The
behavior of such a parameter is studied for very well-known families of
binary words.

Keywords: Burrows-Wheeler transform · Run-length encoding · Clus-
tering effect

1 Introduction

Burrows-Wheeler Transform is a popular method used for text compression
(cf. [1,3]). It produces a permutation of the characters of an input word w
in order to obtain a word easier to compress. Actually compression algorithms
based on BWT take advantage of the fact that the word output of BWT shows
a local similarity (occurrences of a given symbol tend to occur in clusters) and
then turns out to be highly compressible. Several authors refer to such a prop-
erty as the “clustering effect” of BWT . The aim of this paper is to study such
a clustering effect of BWT from the point of view of combinatorics on words.

In order to measure the amount of local similarity, or clustering, in a word
we consider its Run-Length Encoding (RLE). RLE is another fundamental
string compression technique: it replaces in a word occurrences of repeated
equal symbols with a single symbol and a non-negative integer (run length)

Partially supported by the project MIUR-SIR CMACBioSeq (“Combinatorial meth-
ods for analysis and compression of biological sequences”) grant no. RBSI146R5 and
by the Gruppo Nazionale per il Calcolo Scientifico (GNCS-INDAM).

c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 228–239, 2017.
DOI: 10.1007/978-3-319-66396-8 21

BWT and RLE 229

counting the number of times the symbol is repeated. RLE can be consid-
ered an efficient compression scheme when the input data is highly repeti-
tive. In a more formal way, every word w over the alphabet Σ has a unique
expression of the form w = wl1

1 wl2
2 · · · wlk

k with li ∈ N and wi ∈ Σ and
wi �= wi+1 for i = 1, 2, . . . , k. The run-length encoding of w is the sequence
rle(w) = (w1, l1)(w2, l2) · · · (wk, lk). For instance if w = aaabbbbbccbbbb the
run-length encoding is rle = (a, 3)(b, 5)(c, 2)(b, 4). We set ρ(w) = |rle(w)|,
i.e., ρ(w) is the number of maximal runs of equal letters in w. For instance,
ρ(aaabbbbbccbbbb) = 4. It is straightforward that 1 ≤ ρ(w) ≤ |w|. The quantity
|w|/ρ(w) provides a measure of the amount of local similarity of the word w, in
the sense that the lower is the value ρ(w) with respect to |w|, the greater is the
length of the runs of individual symbols in w.

In this paper we are interested to investigate the “clustering effect” of BWT ,
extending some results presented in [8]. For this aim we introduce for any word
its BWT -clustering ratio

γ(w) =
ρ(bwt(w))

ρ(w)

where bwt(w) denotes the output of BWT on the input word w. Our first result
(Theorem 7) states that, for any word w, 0 < γ(w) ≤ 2. This means that, if
the number of runs increases after the application of the BWT (“un-clustering
effect”), in the worst case the number of runs in the output is at most twice
the number of runs in the original word. In other words, whereas the “clustering
effect” for some words w could be very high (γ(w) close to 0), the “un-clustering
effect” is in any case moderate. The fact that the worst case is not too bad
provides an additional formal motivation of usefulness of BWT in Data Com-
pression.

We further prove (Theorem 8) that, for any rational number r, with 0 < r ≤ 2,
there exists a word w such that γ(w) = r.

Previous results suggest that the parameter γ(w) could be an interesting
tool for the study (or classification) of finite words. In particular, we derive a
characterization of Christoffel words w in terms of γ(w) and we determine the
possible values of γ(w) for a de Bruijn word w.

Finally in Sect. 5 we show the results of some statistical experiments that
classify words in terms of their BWT -clustering ratio γ.

2 Burrows-Wheeler Transform

Let Σ = {a1, a2, . . . , aσ} be a finite ordered alphabet with a1 < a2 < . . . < aσ,
where < denotes the standard lexicographic order. We denote by Σ∗ the set of
words over Σ. Given a finite word w = w1w2 · · · wn ∈ Σ∗ with each wi ∈ Σ, the
length of w, denoted |w|, is equal to n. We denote by alph(w) the subset of Σ
containing all the letters that appear in w. Given a finite word w = w1w2 · · · wn

with each wi ∈ Σ, a factor of a word w is written as w[i, j] = wi · · · wj with
1 ≤ i ≤ j ≤ n. A factor of type w[1, j] is called a prefix, while a factor of

230 S. Mantaci et al.

type w[i, n] is called a suffix. We also denote by w[i] the i-th letter in w for any
1 ≤ i ≤ n.

We say that two words x, y ∈ Σ∗ are conjugate, if x = uv and y = vu,
where u, v ∈ Σ∗. Conjugacy between words is an equivalence relation over
Σ∗. The conjugacy class (w) of w ∈ Σn (or necklace) is the set of all words
wiwi+1 · · · wnw1 · · · wi−1, for any 1 ≤ i ≤ n. A necklace can be also thought as
a cyclic word.

A nonempty word w ∈ Σ∗ is primitive if w = uh implies w = u and h = 1.
A Lyndon word is a primitive word which is the minimum in its conjugacy

class, with respect to the lexicographic order relation.
The Burrows-Wheeler Transform (BWT) can be described as follows: given

a word w ∈ Σ∗, the output of BWT is the pair (bwt(w), I), where:

– bwt(w) is the permutation of the letters in the input word w obtained by
considering the matrix M containing the lexicographically sorted list of the
conjugates of w, and by concatenating the letters of the last column L of
matrix M .

– I is the index of the row of M containing the original word w.

Note that if two words v and w are conjugate then bwt(v) = bwt(w), i.e.
the output of BWT is the same up to the second component of the pair. Note
also that the first column F of the matrix M is the sequence of lexicographically
sorted symbols of w.

The Burrows-Wheeler transform is reversible by using the properties (cf. [3])
described in the following proposition.

Proposition 1. Let (L, I) be a pair produced by the BWT applied to a word
w. Let F be the sequence of the sorted letters of L = bwt(w). The following
properties hold:

1. for all i = 1, . . . , n, i �= I, the letter F [i] follows L[i] in the original string w;
2. for each letter c, the r-th occurrence of c in F corresponds to the r-th occur-

rence of c in L;
3. the first letter of w is F [I].

From the above properties it follows that the BWT is reversible in the sense
that, given L and I, it is possible to reconstruct the original string w. Note that
when I = 1, one can build the Lyndon conjugate of the original word.

Actually, according to Property 2 of Proposition 1, we can define a permu-
tation τ : {1, . . . , n} → {1, . . . , n} where τ gives the correspondence between the
positions of letters of F and L. The permutation τ is also called FL-mapping.

The permutation τ also represents the order in which we have to rearrange
the elements of F to reconstruct the original word w. Hence, starting from I, we
can recover the word w as follows:

w[i] = F [τ i−1(I)] , where τ0(x) = x, and τ i(x) = τ(τ i−1(x)),with 1 ≤ i ≤ n.

BWT and RLE 231

F L
↓ ↓
a a a b a a b a a b a a b a a b
a a b a a a b a a b a a b a a b
a a b a a b a a a b a a b a a b
a a b a a b a a b a a a b a a b
a a b a a b a a b a a b a a a b
a a b a a b a a b a a b a a b a
a b a a a b a a b a a b a a b a
a b a a b a a a b a a b a a b a
a b a a b a a b a a a b a a b a
a b a a b a a b a a b a a a b a
a b a a b a a b a a b a a b a a
b a a a b a a b a a b a a b a a
b a a b a a a b a a b a a b a a
b a a b a a b a a a b a a b a a
b a a b a a b a a b a a a b a a
b a a b a a b a a b a a b a a a

(a)

F L
↓ ↓
a a a a b a a b b a b a b b b b
a a a b a a b b a b a b b b b a
a a b a a b b a b a b b b b a a
a a b b a b a b b b b a a a a b
a b a a b b a b a b b b b a a a
a b a b b b b a a a a b a a b b
a b b a b a b b b b a a a a b a
a b b b b a a a a b a a b b a b
b a a a a b a a b b a b a b b b
b a a b b a b a b b b b a a a a
b a b a b b b b a a a a b a a b
b a b b b b a a a a b a a b b a
b b a a a a b a a b b a b a b b
b b a b a b b b b a a a a b a a
b b b a a a a b a a b b a b a b
b b b b a a a a b a a b b a b a

(b)

Fig. 1. On the left (a) the matrix of all lexicographic sorted conjugates of the
Lyndon word aaabaabaabaabaab. In this case the output of BWT is the pair
(bbbbbaaaaaaaaaaa, 1). On the right (b) the matrix M of the word aaaabaabbababbbb.
For such a word BWT outputs the pair (baabababbabababa, 1)

Example 2. Let us consider the words examined in Fig. 1.
Given the pair (bbbbbaaaaaaaaaaa, 1) the permutation τ between the posi-

tions of F = aaaaaaaaaaabbbbb and L = bbbbbaaaaaaaaaaa is the following:

τ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5

)

So, we can reconstruct the word w = aaabaabaabaabaab.
If we consider the pair (baabababbabababa, 1) the permutation τ between

F = aaaaaaaaaaabbbbb and L = baabababbabababa is:

τ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 3 5 7 10 12 14 16 1 4 6 8 9 11 13 15

)

So, the recovered word is w = aaaabaabbababbbb.

3 BWT -Clustering Ratio of a Word

The Run-Length Encoding is a fundamental string compression technique that
replaces in a word occurrences of repeated equal symbols with a single symbol
and a non negative integer (run length) counting the number of times the symbol
is repeated. Formally, every word w over the alphabet Σ has a unique expression
of the form w = wl1

1 wl2
2 · · · wlk

k with li ∈ N and wi ∈ Σ and wi �= wi+1 for
i = 1, 2, . . . , k. The run-length encoding of a word w, denoted by rle(w), is a
sequence of pairs (wi, li) such that wiwi+1 · · · wi+li−1 is a maximal run of a letter
wi (i.e., wi = wi+1 = · · · = wi+li−1, wi−1 �= wi and wi+li �= wi), and all such
maximal runs are listed in rle(w) in the order they appear in w. We denote by

232 S. Mantaci et al.

ρ(w) = |rle(w)| i.e., is the number of pairs in w, or equivalently the number of
equal-letter runs (also called clusters) in w.

Moreover we denote by ρ(w)ai
the number of pairs (wj , lj) in rle(w) where

wj = ai.
It is clear that for all w ∈ Σ∗ one has that |alph(w)| ≤ ρ(w) ≤ |w|. Notice

also that if w = uv then ρ(w) ≤ ρ(u) + ρ(v), that is, ρ is sub-additive.
In this section we introduce a parameter that gives a measure on how much

the application of the BWT to a given word modifies the number of its clusters.

Definition 3. The BWT -clustering ratio of a word w is

γ(w) =
ρ(bwt(w))

ρ(w)

Example 4. Let us compute the BWT -clustering ratio for the words considered
in Fig. 1. If w = aaabaabaabaabaab we have that ρ(w) = 10 and ρ(bwt(w)) =
ρ(bbbbbaaaaaaaaaaa) = 2. So, γ(w) = 1/5.

Let us consider w = aaaabaabbababbbb. In this case we have that ρ(w) = 8.
Since bwt(w) = baabababbabababa then ρ(bwt(w)) = 14. So, γ(w) = 7/4.

Remark 5. We note that if w is not a primitive word (i.e., w = vk for some
k > 1) one can prove that ρ(vk) ≤ kρ(v). Moreover, in [9] it has been proved
that if bwt(v) = v1v2 · · · vn, where vi ∈ Σ, then bwt(vk) = vk

1vk
2 · · · vk

n. So,
ρ(bwt(vk)) = ρ(bwt(v)). This implies that γ(vk) ≥ 1

kγ(v). In particular, it was
proved (cf. [8]) that if v is a Lyndon word (different from a single letter), then
γ(vk) = 1

kγ(v).

Remark 6. We recall that if u and v are conjugate words, then bwt(u) = bwt(v).
On the other hand, one has that |ρ(u) − ρ(v)| ≤ 1 and, within the conjugacy
class, a power of a Lyndon word is one of the conjugates having least number
of clusters. Since we are interested in evaluating how the number of clusters
produced by BWT can grow compared to the number of clusters in the input
necklace, we can consider words that are power of a Lyndon word as input of
the parameter γ. Moreover, due to the property described in Remark 5 we can
limit our attention to Lyndon words.

The following theorem, also reported in [8], shows that the number of clusters
can at most be doubled by the BWT .

Theorem 7. Given a Lyndon word w, we have that 0 < γ(w) ≤ 2.

Proof. Let Σ = {a1, a2, . . . , aσ} with a1 < a2 < · · · < aσ and let rle(w) =
(b1, l1), (b2, l2), . . . , (bk, lk), where b1, b2, . . . bk ∈ Σ.

Recall that when computing bwt(w), the column F of the matrix of sorted
conjugates of w has the form a

|w|a1
1 a

|w|a2
2 · · · a|w|aσ

σ . It is then naturally defined a
parsing of the column L according to the runs (a1, |w|a1)(a2, |w|a2) · · · (aσ, |w|aσ

)
of F . We denote by uai

the factor in L = bwt(w) associated to the run (ai, |w|ai
)

BWT and RLE 233

of F , i.e. all the letters that in the original words precede an occurrence of the
letter ai. Then we can write bwt(w) = ua1ua2 · · · uaσ

.
Consider any block uaj

. In this block there are at most as many letters
different from aj as the number of different runs of aj in w. In fact, in w, aj

is preceded by a letter different from aj itself only in the beginning of each of
its runs. So the greatest possible number of runs contained in uaj

is achieved
when all the letters different from aj are spread in the block, never one next to
another, producing on uaj

a number of runs rle(uaj
) at most equal to 2ρ(w)aj

.
This happens for each block, then

ρ(bwt(w)) ≤
σ∑

i=1

ρ(uai
) ≤

σ∑
i=1

2 · ρ(w)ai
= 2

σ∑
i=1

ρ(w)ai
= 2 ρ(w).

��
In the following theorem we show that for any positive rational number r

smaller than or equal to 2, it is possible to construct a binary word such that
its BWT -clustering ratio is equal to r.

Theorem 8. For any r ∈ Q ∩ (0, 2], there exists a Lyndon word w ∈ {a, b}∗

having γ(w) = r.

Proof. Let p and q two coprime positive integers such that r = p
q . Let k be an

integer such that k ≥ 2.
Let us define fi = a2i−1b2i−1 for i = 2, 3, . . . , k and f1 = abb. Let h be an

integer such that h ≥ 1.
We can define a family of words

vh,k = (fk)hfk−1 · · · f1 = (a2k−1b2k−1)ha2k−3b2k−3 · · · a3b3ab2.

Since each fi has two clusters, the first an a-cluster and the second a b-cluster,
ρ(vh,k) = 2h + 2k − 2.

We now compute ρ(bwt(vh,k)).
First of all we consider the case h = 1. In fact, bwt(v) can be factored in two

parts: the first one corresponding to all the conjugates starting with a, and the
second one corresponding to all the conjugates starting with b.

The first part starts with the only conjugate that has a2k−1b as prefix, then
the one with a2k−2b, then the two conjugates that start with a2k−3b (from the
rightmost to the leftmost), and so on. From this we can see that the first part
of bwt(v1,k) is baba3 · · · ba2(k−1)−1bak−1 that has 2k clusters.

For the second part, we have exactly all the conjugates starting in the second
part of each fi. In particular, there are k conjugates starting with ba. All these
conjugates are cyclicly preceded by b. Then we have all the conjugates starting
with bba. The lexicographically smallest in this group is the one corresponding
to the block f1, then we have the conjugates corresponding to the other fi from
the leftmost to the rightmost. Such conjugates are lexicographically followed by

234 S. Mantaci et al.

the conjugates starting with bbba that correspond to the blocks from fk to f2
and so on. This means that the second part of bwt(v1,k) is bkab2k−3ab2k−5a · · · ba
that has 2k clusters. It follows that

bwt(v1,k) = baba3 · · · ba2(k−1)−1bak−1bkab2k−3ab2k−5a · · · ba,

that has 2k + 2k clusters. So ρ(bwt(v1,k)) = 4k.
Finally, one can prove that for any h ≥ 1, ρ(bwt(vh,k) = ρ(bwt(v1,k).
In fact, bwt(vh,k) is obtained by concatenating

bhahba2h+1ba2h+3 · · · ba2h+2k−5bak−2+h

and
bk−1+hab2k−5+2hab2k−7+2ha · · · b1+2habhah.

So, the thesis follows since

γ(vh,k) =
4k

2h + 2k − 2
=

2k

h + k − 1
=

p

q
.

It is then sufficient to find suitable integer solutions to unknown h and k to
the above equation. ��
Example 9. Let us consider the rational number 6/5 (>1). In this case a solution
to the equation

2k

h + k − 1
=

6
5

is k = 3 and h = 3. In fact one can verify that if w = (a5b5)3a3b3abb then
bwt(w) = b3a3ba7ba4b5ab7ab3a3, so ρ(w) = 10 and ρ(bwt(w)) = 12.

On the other hand if we consider the rational number 4/5 (< 1) a solution
to

2k

h + k − 1
=

4
5

is k = 2 and h = 4. One can verify that w = (a3b3)4abb and bwt(w) =
b4a4ba4b5ab4a4, so ρ(w) = 10 and ρ(bwt(w)) = 8.

Corollary 10. For any rational number 0 < r ≤ 2, there are infinitely many
words w with γ(w) = r.

Proof. The solutions of the equation

2k

h + k − 1
=

p

q

corresponds to the integer solutions to all of the following systems:
{

2k = lp
h + k − 1 = lq

for any choice of l that gives integer solutions to h and k. In particular, if p
is even, any integer value of l is allowed, if p is odd, only even values of l are
allowed.

BWT and RLE 235

4 Special Cases on Binary Alphabet

In this section we give some characterization and properties of families of words
over two letters alphabets well known in combinatorics on words, according to
their BWT -clustering ratio γ.

4.1 Clusters in Christoffel Words

In this subsection we take into account the BWT -clustering ratio of a class of
words over a binary alphabet known in literature as Christoffel words (cf. [2,6]).
We start by giving the definition of a class of words strictly related to them, i.e.
the Standard words. There exist many equivalent definitions of Standard words.
Here we use the one that makes evident their relationships with the notion of
characteristic Sturmian word.

Let d1, d2, . . . , dn, . . ., n ≥ 1 be a sequence of natural integers, with d1 ≥ 0 and
di > 0 for i = 2, . . . , n, Consider the sequence of words {sn}n≥0 recursively
defined by:

s0 = b, s1 = a, and sn+1 = sn
dnsn−1 for n ≥ 1.

Each finite word sn is called a standard word. It is univocally determined by
the (finite) directive sequence (d1, d2, . . . , dn). Such sequences are very impor-
tant, since their limit, for n → ∞ converges to infinite words called characteristic
Sturmian words, well known in literature for its numerous and interesting com-
binatorial properties.

For any standard word w, the Lyndon word in its class is also called Christof-
fel word. We are now considering Christoffel words since, as usual, we take the
Lyndon word for each class. For instance the word aaabaabaabaabaab considered
in Fig. 1(a) is a Christoffel word.

The following proposition gives a new characterization of Christoffel words
in terms of the γ ratio.

Proposition 11. A word w is a Christoffel word ⇐⇒ γ(w) = 1
min{|w|a,|w|b} .

Proof. Let w be a Christoffel word and suppose that |w|b = h and |w|a = k with
h < k (the other case has an analogous proof). Then no b in w appears next to
another b, therefore w has 2h clusters, i.e. ρ(w) = 2|w|b. On the other side in
[9] it has been proved that any conjugate of a standard word (in particular any
Christoffel word) has a totally clustered bwt; in particular bwt(w) = bhak, i.e.
ρ(bwt(w)) = 2. Therefore

γ(w) =
2
2h

=
1

|w|b .

Suppose now that γ(w) = 1/|w|b, that is

ρ(bwt(w))
ρ(w)

=
1

|w|b .

236 S. Mantaci et al.

Then ρ(bwt(w)) · |w|b = ρ(w) ≤ 2|w|b, i.e. ρ(bwt(w)) ≤ 2.
But on binary words ρ(bwt(w)) ≥ 2, then ρ(bwt(w)) = 2 and this is true if

and only if w is a Christoffel word (cf [9]). ��
Remark 12. For any ε > 0 there exists a Christoffel word w such that γ(w) < ε.
In fact let us consider a Christoffel word where |w| = 2n + 1, |w|b = n and
|w|a = n + 1. By Proposition 11 γ(w) = 1

n . For n sufficiently large, 1/n < ε.

4.2 Clusters in Binary de Bruijn Words

In this section we consider another famous class of words called de Bruijn words.
In particular here we consider de Bruijn words over a binary alphabet.

A de Bruijn word of order n on an alphabet Σ of size k is a cyclic word in which
every word of length n on Σ occurs exactly once as a factor. By Remark 6, in the
following when we refer to a de Bruijn word we mean the corresponding Lyndon
word in its necklace. Such a word is denoted by B(k, n) and has length kn, which

is also the number of distinct factors of length n on Σ. There are (k!)kn−1

kn many
distinct de Bruijn words B(k, n). In particular for two letters alphabets, all de

Bruijn words B(2, n) have length 2n, and there are 22
n−1

2n many distinct de Bruijn
words B(2, n).

One can verify that the word aaaabaabbababbbb considered in Fig. 1(b) is a
de Bruijn word of order 4 over the alphabet {a, b}, since every word in {a, b}4
appears once in the corresponding cyclic word.

In the following proposition, also reported in [8], we find the number of runs
of a de Bruijn word of order n on a binary alphabet. Note that this result can
be inferred by using some combinatorial properties analyzed in [4].

Proposition 13. Let B(2, n) be any de Bruijn word of order n over a binary
alphabet. Then ρ(B(2, n)) = 2n−1.

Proof. We first consider the runs of a’s. First of all there is no run ai with
i > n otherwise an would be a word of length n that appears more than once
in B(2, n). The run an is a particular word of length n, then, by definition, it
appears exactly once as a factor in B(2, n) (in particular as factor of banb).

The words ban−1 and an−1b also appear once, but since they are factors of
banb, we have no runs of a’s of length n − 1.

For any 1 ≤ i ≤ n−2 consider the runs of the form ai. They appear as factors
of all the words of the form baibw where w is any word of length n−i−2. Each of
the words baibw appear exactly once. There are 2n−i−2 of such words, therefore
there are 2n−i−2 runs ai. We have overall:

1 +
n−2∑
i=1

2n−i−2 = 1 +
n−3∑
i=0

2i = 1 + 2n−2 − 1 = 2n−2

So there are 2n−2 runs of a’s. For the same reason there are 2n−2 runs of b’s,
then overall 2 · 2n−2 = 2n−1 runs. ��

BWT and RLE 237

Remark 14. As a byproduct of the theorem proved by Higgins in [5] (cf. also [10])
we have that if B(n, k) is a de Bruijn word of order n, then bwt(B(k, n)) ∈ Gkn−1

,
where G is the set of all sequences of Σ of length |Σ| obtained by permuting all
the letters in Σ. In particular, if k = 2, bwt(B(2, n)) ∈ {ab, ba}2n−1

.

The following theorem is a consequence of Proposition 13 and of the above
remark.

Theorem 15. If w is a binary de Bruijn word then:

1 +
4

|w| ≤ γ(w) ≤ 2 − 4
|w| .

Proof. Recall that any binary de Bruijn word of order n has length 2n, with
n ≥ 2.

As remarked above, by Higgins’s Theorem, bwt(w) ∈ {ab, ba}2n−1
. Moreover,

one can note that ba must be the prefix and the suffix of bwt(B(2, n)), since for
any word its bwt cannot start with the smallest symbol and cannot end with
the biggest symbol. Since, as proved in [8], ρ(bwt(B(2, n))) < |B(2, n)| = 2n,
then bwt(w) �= (ba)2

n−1
then both aa and bb must be factors of bwt(B(2, n)).

So, the upper bound follows because ρ(bwt(w)) ≤ 2n − 2. The lower bound on
the number of runs is reached when bwt(w) = b(aabb)2

n−2−1aba. In this case
this value is 2n−1 + 2. Then, the thesis follows.

5 Experimental Results

It is commonly said that the application of BWT as a preprocessing to the appli-
cation of a statistical compressor is useful since BWT tends to cluster together
equal letters that appear in equal contexts, generating a so called “clustering
effect”. In this paper we highlight that this is not always the case, that is, there
are words that are “un-clustered” by the BWT , that is, the application of BWT
generate on such words a greater number of shorter clusters.

The BWT -clustering ratio γ allows to classify words into BWT-good words,
if 0 < γ(w) < 1, and BWT-bad words, if 1 < γ(w) ≤ 2. The qualities good and
bad reflects a good or bad behavior of BWT with respect to clustering, that is a
good requirement for compression. For instance, since for any Christoffel word w,
γ(w) < 1, then Christoffel words are BWT -good. On the other hand, any binary
Bruijn word is BWT -bad.

Of course, the other special case is when this ratio is 1, i.e. the words, called
BWT-neutral, where the BWT has no effect in terms of clustering. Among these
words we can find fixed points (i.e. words w such that bwt(w) = w), that are
studied in [7].

In this section, we show some experiments that highlight the distribution of
the BWT -neutral, BWT -good and BWT -bad binary words when the length
is fixed. In particular, table in Fig. 2 shows such a distribution for all Lyndon
words w of length 16 and 24.

238 S. Mantaci et al.

length number of words γ(w) = 1 γ(w) < 1 γ(w) > 1 γ(w) = 2
16 4.080 1.160 1.247 1.673 142
24 698.870 156.652 237.636 304.582 4.362

Fig. 2. Distribution of Lyndon words of length 16 and 24

Fig. 3. Lyndon words of length 16 and 24

On the other hand, table in Fig. 4 shows such a distribution for all Lyndon
words w of length 16, 20, 24 and 28. With the same number of occurrences of
letter a and letter b.

For completeness, the graphs in Figs. 3 and 5 show the number of Lyndon
words of length 16 and 24 as a function of the BWT-clustering ratio. It is interest-
ing to point out that the graphs show that the trend does not change substantially

length number of words γ(w) = 1 γ(w) < 1 γ(w) > 1 γ(w) = 2
16 800 224 239 337 26
20 9.225 2.183 3.042 4.000 129
24 112.632 23.866 38.884 49.882 666
28 1.432.613 288.485 504.505 639.623 3.556

Fig. 4. Distribution of Lyndon words of length 16, 20, 24 and 28. With the same number
of letters a and b

Fig. 5. Lyndon words of length 16 and 24 with the same number of letters a and b

BWT and RLE 239

when words having the same number of a and b are considered. A possible further
work could be to develop an analytic study of this behavior.

Acknowledgements. We thank the anonymous reviewers for providing us with many
helpful comments and suggestions.

References

1. Adjeroh, D., Bell, T., Mukherjee, A.: The Burrows-Wheeler Transform: Data Com-
pression, Suffix Arrays, and Pattern Matching. Springer, New York (2008)

2. Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.: Combinatorics on Words:
Christoffel Words and Repetitions in Words. CRM Monograph Series, vol. 27.
American Mathematical Soc., Providence (2008)

3. Burrows, M., Wheeler, D.J.: A block sorting data compression algorithm. Tech.
report, DIGITAL System Research Center (1994)

4. Fredricksen, H.: A survey of full length nonlinear shift register cycle algorithms.
SIAM Rev. 24(2), 195–221 (1982)

5. Higgins, P.M.: Burrows-Wheeler transformations and de Bruijn words. Theoret.
Comput. Sci. 457, 128–136 (2012)

6. Lothaire, M.: Applied Combinatorics on Words. Encyclopedia of Mathematics and
its Applications. Cambridge University Press, New York (2005)

7. Mantaci, S., Restivo, A., Rosone, G., Russo, F., Sciortino, M.: On fixed points of
the Burrows-Wheeler Transform. Fundamenta Informaticae 154, 277–288 (2017)

8. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M., Versari, L.: Measuring the
clustering effect of BWT via RLE. Theor. Comput. Sci. (in press)

9. Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and Sturmian
words. Inf. Process. Lett. 86, 241–246 (2003)

10. Perrin, D., Restivo, A.: Words. In: Bona, M. (ed.) Handbook of Enumerative Com-
binatorics. CRC Press (2015)

A Permutation on Words in a Two Letter
Alphabet

Niccolò Castronuovo1, Robert Cori2(B), and Sébastien Labbé3

1 Dipartimento di Matematica, Università di Ferrara, Ferrara, Italy
niccol.castronuovo@unife.it

2 LaBRI, Université de Bordeaux, Bordeaux, France
robert.cori@labri.fr

3 CNRS, LaBRI, UMR 5800, 33400 Talence, France
sebastien.labbe@labri.fr

Abstract. We define a permutation Γn on the set of words with n occur-
rences of the letter a and n+1 occurrences of the letter b. The definition
of this permutation is based on a factorization of these words that allows
to associate a non crossing partition to them. We prove that all the cycles
of this permutation are of odd lengths. We will prove also other proper-
ties of this permutation Γn, one of them allows to build a family of strips
of stamps.

Keywords: Dyck words · Permutations · Strips of stamps

1 Introduction

In this section we define a transformation Γn on the family of words on the
alphabet A = {a, b} having one more occurrence of the letter b than that of the
letter a. This transformation will be generalized to all words in A∗ in Sect. 6,
however the more interesting properties are obtained mainly for the restricted
family considered in this section. The terminology and notation for words follow
that of Lothaire’s books [10,11].

Words in a 2-Letter Alphabet

We consider the mapping δ from the set A∗ of words to the ring Z of integers
such that for any word w, δ(w) is equal to |w|a − |w|b, where |w|x denotes the
number of occurrences of the letter x in the word w.

A Dyck word is a word containing the same number of occurrences of letters
a and b and such that no prefix of it contains more occurrences of b than that
of a. Hence a Dyck word f is such that δ(f) = 0 and δ(u) ≥ 0 for any prefix u
of f . We use the convention that the empty word is a Dyck word.

The following very simple Lemma introduces a decomposition of words in A∗.
It was called Catalan decomposition in [4] since it allows to prove bijectively that
the number cn of Dyck words of length 2n satisfies (n + 1)cn =

(
2n
n

)
. This shows

that cn is the Catalan number.
c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 240–251, 2017.
DOI: 10.1007/978-3-319-66396-8 22

A Permutation on Words 241

Lemma 1. For any word f on the two letter alphabet A, there exists a unique
decomposition:

f = u1 b u2 b · · · up bw a vq a vq−1 · · · a v1 (1)

such that p, q ≥ 0 and u1, u2, · · · , up, v1, v2, · · · , vq, w are Dyck words.

Proof. It is easy to check that ui is such that u1 b u2 b · · · b ui b is the short-
est prefix of f whose image by δ is equal to −i. Similarly vj is such that
a vj a vj−1 · · · a v1 is the shortest suffix of f whose image by δ is equal to j.
If f is a Dyck word then p = q = 0 and w = f .

Example 2. This Lemma may be illustrated by the decomposition of the word
f = b a a b b b a b a as:

f = b (a a b b) b (a b) a ,

Here p = 2, q = 1, the words u1, v1 are both empty, u2 = a a b b, and w = a b.

Denote An the set of words of length m = 2n + 1 on the alphabet A = {a, b}
having n occurrences of the letter a. If f is a word in An, the decomposition
given by Lemma 1 is such that p = q + 1. We denote Dn the set of words w in
An such that δ(w′) ≥ 0 for any prefix w′ �= w of w. These words are Dyck words
to which is added an occurrence of the letter b at their ends. Note that a word
f ∈ An is in Dn if and only if in the decomposition given in Lemma1 we have
p = 1 and q = 0.
The above decomposition also allows to prove:

Lemma 3 (Cyclic Lemma [7]). Any word w of An has exactly one conjugate
in Dn that is a decomposition into two factors f = u v such that v u ∈ Dn.

Proof. Indeed given the decomposition of f in Eq. (1) one has:

u = u1 b u2 b · · · up b and v = w avq a vq−1 · · · a v1

Definition of Γn

Definition 4. Let f = f1 f2 · · · fm be a word of An, where fi ∈ A. The pivot of
f is the positive integer j equal to the length of u1 b u2 b · · · b up b in the decom-
position of f given by Lemma 1. The map Γn is the function from An into itself
such that:

Γn(f) := f1 f2 · · · f j−1 b f j+1 · · · fm (2)

where the letter f i is b when fi = a and is a when fi = b.

For our example we have that the pivot of f is 6 and:

Γn(b a a b b b a b a) = a b b a a b b a b

If f is a word in Dn then f = u1b where u1 is a Dyck word. Hence we have
that the pivot of f is equal to m, the length of f.

242 N. Castronuovo et al.

Properties of Γn

The two main results of this paper are:

Theorem 5. The mapping Γn is a permutation of the words in An. The cycles
of this permutation have odd lengths.

Theorem 6. For each cycle C of the permutation Γn let πi(C) be the number
of words in C such that i is the pivot of w. Then all the πi(C) are equal.

The paper is organized as follows. In the next section we consider some com-
binatorial objects that correspond bijectively to words in An. We then prove
Theorems 1 and 2, in the next two sections. After that we show how to build a
strip of stamps from the pair w,Γn(w) in Sect. 5. We generalize the transforma-
tion Γ such that it acts on all words of A∗ in Sect. 6 and suggest how the two
main results of the paper could be generalized for all words.

2 Combinatorial Objects Corresponding to An

In this section we propose three combinatorial objects on which the transfor-
mation Γn may be applied. The third one will be useful in the proofs given in
Sects. 3 and 4.

2-Colored Chord Diagrams with a Pivot

A simple way to represent graphically a word f in An is to draw a circle and
put m = 2n + 1 points numbered in increasing order clockwise. Then color the
point i in white when fi = a and in black when fi = b.

We now show that given a 2-coloring of 2n + 1 points on a circle such that
n are colored white and n + 1 are colored black we can draw n chords in the
cycle such that each chord joins a white point to a black one and no two chords
cross (in particular no two chords have a common vertex). The set of chords P is
obtained by drawing iteratively a chord between two points using the following
algorithm:

Algorithm: Building the chord diagram from the 2-coloring

1. For any white point i immediately followed by a black one j while turning
clockwise (hence j = i + 1 or j = 1 if i = 2n + 1), draw the chord {i, j}.

2. Then repeat the following action: find a white point i and a black one j, both
not adjacent to a chord, such that going clockwise from i to j one meets only
points adjacent to a chord then join i to j by a chord.

3. When step 2 cannot be repeated any more one ends with a unique black
point, the pivot of f (Fig. 1).

The fact that this algorithm ends with a unique chord diagram, independently
of the choices made for the points i, j in step 2 of the algorithm is obtained by
considering two facts. The first is the decomposition described in Eq. (1). The
second is that in a Dyck word each occurrence of the letter a is matched with an
occurrence of a letter b such that the word between them is a Dyck word (which
may be empty).

A Permutation on Words 243

9
1

2

3

45

6

7

8
9

1

2

3

45

6

7

8

Fig. 1. The diagram of the word b a a b b b a b a in A4

Non Crossing Partitions

A chord diagram may be considered as a non crossing partition where all the
blocks contain two elements (the points adjacent to a chord), except a block
which contains only one element (the pivot). This may also be seen as an invo-
lution α in Sm such that α(p) = p for the pivot p and α(i) = j if {i, j} is a chord
of the diagram (Fig. 2).

b a a b b b a b a
1 2 3 4 5 6 7 8 9

Fig. 2. The partition built from the word f in An

The partition associated to the word b a a b b b a b a is denoted P0. It consists of
4 blocks with 2 elements and one singleton block: {1, 9}, {2, 5}, {3, 4}, {7, 8}, {6}.

Pairs Consisting of a Dyck Word and an Integer

In the rest of the paper, we will often associate to each word f in An a pair
consisting of a word g in Dn and an integer k. This is done by considering the
decomposition of f given by Lemma 1:

f = u1 b u2 b · · · up bw a vq a vq−1 · · · a v1

then using Lemma 3 to obtain the word g in Dn by:

g = w avq a vq−1 · · · a v1 u1 b u2 b · · · up b.

The pivot of f is equal to the length of the word u1 b u2 b · · · up b.
For our example f = b a a b b b a b a we have g = a b a b a a b b b and k = 6.

244 N. Castronuovo et al.

3 Length of the Cycles of Γn

In this section we prove Theorem 5. We first obtain the following:

Lemma 7. Let w ∈ An and w′ = Γn(w) then the pivot p of w is the length of
the longest prefix u′ of w′ that ends with an occurrence of the letter b and for
which δ(u′) is the maximum value of δ on those prefixes of w′ which end with b.

Proof. Since w and w′ have the same length, to each prefix u of w corresponds
a prefix u′ of w′ of the same length. If the length of u is less than p then
δ(u′) = −δ(u), if this length is greater than or equal to p then δ(u′) = −δ(u)−2.
When |u| = p, the value of δ(u) is minimal. Denote −k this minimal value, then
k ≥ 1 since δ(w) = −1. Since p is the length of the shortest prefix of w attaining
the minimal value of δ(u) it is clear that the maximal value of δ(x) for a prefix x
of w′ is k−1. This maximal value is attained by the prefix u′ of w′ of length p−1.
For the prefixes y of w′ ending with an occurrence of the letter b, the maximal
value of δ(y) is k − 2. It is attained by the prefix u′b and may be attained by a
prefix v′ of w′ ending with b, but this prefix would be shorter than u′b.

Corollary 8. The transformation Γn is a permutation on An.

Proof. From the above Lemma one can easily show that for any word w′ in An

there exists a unique word w such that w′ = Γn(w). Indeed one can find from w′

the pivot p of the word w using the characterization given by this Lemma and
then obtain w replacing each occurrence of a in w′ by an occurrence of b and
each occurrence of b which is not in the position of the pivot by an occurrence
of a.

We now prove that the cycles of Γn have odd lengths. Our main tool is the
use of the map γ defined in [2] where it is proved that it is a permutation on
words in Dn which has cycles of odd lengths.

This map γ was defined in [2] as the composition of two involutions. We give
here a direct definition, using the Cyclic Lemma in the following way.

Recall that for a word w, the word w is obtained from w replacing each
occurrence of a by an occurrence of b and each occurrence of b by an occurrence
of a.

Definition 9. For f = f ′ b ∈ Dn, the word γ(f) is the unique conjugate of the
word f

′
b belonging to Dn.

It is also possible to give a description of γ in terms of what we call the principal
prefix of a word f in Dn; this principal prefix is the prefix of f for which the map δ
attains its maximum value for the first time. If the word f has decomposition u v b
where u is its principal prefix, then we have (see Proposition 4 in [2]) γ(f) = v b u.

Now we wish to describe the corresponding action of the map Γn over the
set of pairs (f, i) where f is an element of Dn and i is an integer such that

A Permutation on Words 245

1 ≤ i ≤ 2n + 1. In what follows we will denote ⊕m the operation on the set
En = {1, 2, · · · , 2n + 1}, where m = 2n + 1 defined for any pair i, j by:

i ⊕m j =
{

i + j if i + j ≤ m
i + j − m otherwise

Notice that this operation is the sum mod m where the set {0, . . . , m−1} of the
representatives of the classes in Z/mZ is replaced by {1, . . . , m}.

Proposition 10. Let (f, i) ∈ Dn × {1, 2, ...,m}. Then

Γn(f, i) = (γ(f), i ⊕m p(f))

where p(f) is the length of the principal prefix of f .

Proof. In order to compute Γn(f, i) it is convenient to write f = u v b where the
length |v b| of the word v b is equal to i. Then consider w = v b u, the word of An

represented by (f, i). Let w′ = Γn(w) = v b u. Then Γn(f, i), may be represented
by (f ′, i′) where f ′ is the conjugate of w′ belonging to Dn. Since w and u v b
are conjugate, f ′ is also the conjugate of u v b belonging to Dn. Hence using the
definition of γ(f) and the Cyclic Lemma, we have that f ′ = γ(f).

We now determine i′. For that we consider three sequences of integers δj , δ′
j

and εj .

– The sequence δ1, δ2, · · · , δm is such that δj = δ(w(j)), where w(j) is the prefix
of w of length j.

– The sequence of integers δ′
1, δ

′
2, · · · , δ′

m is such that δ′
j = δ(w′(j)), where w′(j)

is the prefix of w′ of length j. Since w = v b u and w′ = v bu we have:

δ′
j =

{−δj if j < i
−δj − 2 if j ≥ i

(3)

– The sequence of integers ε1, ε2, · · · , εm is such that εj = δ(f (j)), where f (j)

is the prefix of f of length j. Since f = u v b and w = v b u, we have:

εj =
{−δi + δi+j if j ≤ m − i

−δi − 1 + δj−(m−i) if m − i < j
(4)

To end the proof Proposition 10 we notice that i is the smallest index where
the sequence δ1, δ2, · · · , δm attains its minimal value, i′ is the smallest index
where the sequence δ′

1, δ
′
2, · · · , δ′

m attains its minimal value, p(f) is the smallest
index where the sequence ε1, ε2, · · · , εm attains its maximal value. Hence we
have to play with the Eqs. (3) and (4) to obtain i′ = i⊕m p(f). This will be done
in an extended version of this paper.

We now prove the second part of Theorem 1: As a consequence of the previous
theorem we have the following result.

246 N. Castronuovo et al.

Corollary 11. The cycles of Γn have odd lengths.

Proof. Consider a word w ∈ An or, equivalently, the corresponding pair (f, i) ∈
Dn × [1, 2, ...,m]. Consider the orbit of w under the action of Γn. Let � be
the length of the cycle containing f under the action of the map γ. Then by
Proposition 10 the length of the cycle of Γn containing (f, i) is a multiple of �.
The main result of [2] states that all the cycles of γ have odd cardinality, hence
� is odd. Let p∗(w) be given by:

p∗(w) = p(w) ⊕m p(γ(w)) ⊕m p(γ2(w)) ⊕m · · · ⊕m p(γ�−1(w)).

Then Γ �
n(w, i) is equal to (w, i ⊕m p∗(w)). And for any integer k:

Γ k�
n (w, i) = (w, i ⊕m kp∗(w)).

Hence the cycle of Γn containing u has length k� such that k is the smallest
positive integer satisfying kp∗(w) ≡ 0 (mod m). This gives for the length of the
cycle of Γn:

�m

gcd(m, p∗(w))

This number is odd since � and m = 2n + 1 are both odd numbers.

4 Pivots in the Orbits of Γn

In this section we prove Theorem 6, this follows directly from:

Proposition 12. Let w in An and C the cycle of Γn containing w then the
number of times 1 appears as the pivot of an element of C is equal to the number
of times 2 appears as the element of a pivot of C.

Proof. To do that we consider the following automata with outputs. In this
automata the transitions translate the action of Γn on the first two letters of the
word w on which Γn acts. The output is equal to the pivot if it is 1 or 2; it is
the empty word when the pivot is not equal to one of these values. The states
represent the first two letters of the words on which Γn acts. If the pivot is not

aa bb

ab

ba

ε

ε

2

1

εε

Fig. 3. The automata used in the proof of Proposition 12

A Permutation on Words 247

1 or 2 then the transition goes from u to u. The pivot could be 1 only if the first
two letters u of the word w are b a it could be 2 only if these first two letters
are b b. The transitions in these two cases go to b b and a b. The whole action
of a cycle of Γn corresponds to a circuit in this automata, clearly each circuit
contains the same number of outputs 2 than that of outputs 1.

Example 13. Let n = 7 and w = a a a b a b b b a a b a b b b, then w may be repre-
sented by (f, 15), where f = w since w ∈ D7.

The length � of the cycle of γ containing f is 21, and that of Γ7 containing
w is 105. The value of p∗(w) is 3, since m = 15 we have gcd(m, p∗(w)) = 3.
However the values of the first 21 pivots are

15, 3, 8, 2, 7, 10, 4, 9, 14, 8, 11, 1, 10, 15, 3, 12, 2, 5, 1, 4, 9

the next ones are obtained are obtained adding 3 (mod 15) to these numbers,
then adding 6, 9 and 12. The first 13 transitions on the automata are:

aa → bb → aa → bb → ab → ba → ab → ba → ab → ba → ab → ba → bb → aa

And the corresponding output is 2, 1, this will be repeated 7 times for the whole
cycle of Γ7.

From Proposition 12 we prove Theorem 2:

Corollary 14. In a cycle of Γn all the integers i such that 1 ≤ i ≤ 2n+1 appear
the same number of times as a pivot.

Proof. Indeed what was done for 1, 2 in Proposition 12 may be done for any pair
i, i + 1 showing i and i + 1 appear the same number of times as a pivot.

Remark 15. Using Γn on a word w ∈ An we may define a sequence of integers
pi such that 1 ≤ pi ≤ 2n + 1 each pi being the pivot of Γ i

n(w). The length of
this sequence is the length of the cycle of Γn. Notice that in this sequence each j
between 1 and 2n+1 appears the same number of times. It reminds the so called
Difference Sets which are and important object in the chapters of Combinatorics
concerning Configurations and Block Designs (see [3,12]).

5 Folding of a Strip of Stamps Associated to an Element
of Fn

In this section we show how to build a folding of a strip of stamps using the
transformation Γ . The folding problem is a classical in enumerative combina-
torics since the contribution of J. Touchard [13], where a presentation of it is
given. We denote En = {1, 2, · · · , 2n + 1}. As shown in Sect. 2, to any word f in
An we associate an element of the set Fn consisting of non crossing partitions
with n blocks with 2 elements and a singleton block. We will build a folding of
strip of stamps by using the partitions P and Γn(P).

248 N. Castronuovo et al.

We first prove the following result:

Theorem 16. Let f in An and let P, P ′ ∈ Fn be the partitions associated to f
and f ′ = Γn(f), let G(P) be the graph with vertex set En and whose edges are
the pairs of vertices (i, j) such that {i, j} is a block of P or of P ′. Then G(P)
is a path joining the pivot of P to the pivot of P ′.

This Theorem may be illustrated on the example of the partition P0 con-
sidered above, which gives the graph drawn in Fig. 4, where the edges coming
from P0 are represented by thick segments while those coming from Γn(P0) are
represented by dashed ones.

9
1

2

3

45

6

7

8

Fig. 4. The graph G(P0)

The proof of this Theorem will be given in an extended version of this paper. It
proceeds by induction on n considering a word w = w′ a bw” of length 2n + 3 and
the word w′ w” of length 2n + 1. The main point in the proof is to describe how to
get G(w) from G(w′ w”) and showing that if G(w′ w”) is a path then so is G(w).

Corollary 17. For any P in Fn, the pair (P, Γn(P)) defines a folding of a strip
of (numbered) stamps of length m = 2n + 1 where the first stamp is on top.

Proof. In order to obtain a folding of a strip of stamps like it is usually repre-
sented (see [9] page 277) one has to draw a representation of the partitions P
and P ′ = Γn(P) as follows:

– Consider m = 2n + 1 rows numbered from 1 to m from top to bottom of the
figure.

– For each block {i, j} in P drow a vertical segment on the left of the figure
from row i to row j and two horizontal segments in these rows, going in the
east direction starting from the end of the vertical segment.

– Draw a horizontal segment in the row p corresponding to the pivot of P Since
P is non crossing all these n + 1 segments do not intersect.

– Draw a similar set of segments in order to represent P ′ on the right of the
figure with horizontal segments going in the west direction.

– Glue together the horizontal segments on the same row.

A Permutation on Words 249

This construction is illustrated in Fig. 5.

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

5

6

7

1

2

8

9

3

4

Fig. 5. The folding of the strip of stamps corresponding to P0

By Theorem 16 the Figure obtained in this way is a path from the row corre-
sponding to the pivot of P to that corresponding to the pivot of P ′. It is possible
to recover the graph G(P) considering the labels of the rows met along this path.

Notice that given a folding of a strip of stamps of length 2n + 1 one can build
two partitions P and Q reversing the procedure described in the proof. It seems
to be difficult to give a characterization of the foldings such that Q = Γn(P).

From Partitions to Permutations

It is tempting to represent a partition P in Fn by a permutation α on m = 2n+1
elements having n cycles of length 2 corresponding to the blocks of P and a fixed
point corresponding to the pivot of P . For instance the partition P0 gives the
permutation α0 which representation by cycles is:

α0 = (1, 9) (2, 5) (3, 4) (6) (7, 8).

All the permutations obtained in this way are involutions with a unique fixed
point. The fact that P is non crossing can be translated into the fact that the
genus of α is 0 (see [5] for the definition of the genus of a permutation). A recent
using of non crossing partitions in relation to the Cyclic Lemma is done in [1].

The genus of a permutation α is the non-negative integer g(α) given by:

m + 1 − 2g(α) = z(α) + z(α−1ζm),

where ζm is the the circular permutation such that for all i, ζm(i) = i+1 (where
m + 1 means 1) and where z is the function that associates each permutation
with its number of cycles.

250 N. Castronuovo et al.

Since the permutation α associated to P is an involution with n + 1 cycles,
the previous equation reduces to:

2g(α) = n + 1 − z(αζm).

Using the construction in Corollary 17 we have

Proposition 18. There is a bijection between the foldings of a strip of stamps
of length m where the stamp 1 is on top and the pairs of involutions (α, β) on
m elements satisfying the following conditions:

– if m is odd α and β have a unique fixed point, if m is even α has 2 fixed
points and β has no fixed point.

– α(1) = 1 and g(α) = g(β) = 0.
– The permutation αβ obtained by the composition of α and β has a unique

cycle.

Proof. We can associate to the two involutions satisfying the first two conditions
above two partitions P and Q in Fn. The construction given above builds a figure
which represents a folding of a strip of stamps. If m is odd the graph which edges
are the blocks of P and Q is a path between the pivot of P and that of Q. this
corresponds to the fact that αβ has a unique cycle. If m is even then the graph
is a path between the two fixed points of α.

Meanders studied in [6,8] have strong relations to strip of stamps foldings
and can also be described in terms of involutions of genus 0.

6 Generalizing Γn to All Words in A∗

We may generalize Γn to build a transformation Γ on all words in A∗. We use
the decomposition given by Eq. (1) as follows:

Definition 19. Let f be a word in A∗ and let k = |δ(w)|, by Eq. (1) we have:
f = u1 b u2 b · · · up bw a vq a vq−1 · · · a v1 Then the pivots of f are given by:

– if p > q then k = p − q and the pivots are the k occurrences of b appearing
just after the words up−q+1, up−q+2, . . . , up.

– if p < q then k = q − p and the pivots are the k occurrences of a appearing
just before vq−p+1, vq−p+2, . . . , vq.

– if p = q there are no pivots.

Γ (f) is obtained from f by transforming all the occurrences of a into occur-
rences of b and all the occurrences of b into occurrences of a except for those
who are pivots.

Remark 20. It is clear that Γn is the restriction of Γ on An. The words w such
that δ(w) = 0 have no pivot and are in cycles of Γ of lengths 2. The words in
a∗ and b∗ are fixed points. It is not difficult to prove that Γ is a permutation.

A Permutation on Words 251

Theorem 2 can be generalized to Γ . Its proof uses an automata obtained
from that of Fig. 3 by adding for k > 1 a loop on state b b with output 1, 2 when
1 and 2 are both pivots. Theorem 1 is no more true for Γ . However we have the
following:

Conjecture. The cycles of Γ containing words of odd lengths are also of odd
lengths. Those containing words of even lengths with an odd number of occur-
rences of a are also of even lengths. Those containing words of even lengths with
an even number of occurrences of a may have either odd or even length.

Acknowledgement. We are very grateful for the many valuable comments of the
reviewers which improved the article presentation.

References

1. Armstrong, C., Mingo, J.A., Speicher, R., Wilson, J.C.H.: The non-commutative
cycle lemma. J. Combin. Theory Ser. A 117(8), 1158–1166 (2010)

2. Barnabei, M., Bonetti, F., Castronuovo, N., Cori, R.: Some permutations on Dyck
words. Theoret. Comput. Sci. 635, 51–63 (2016)

3. Baumert, L.D.: Cyclic Difference Sets. LNM, vol. 182. Springer, Heidelberg (1971).
doi:10.1007/BFb0061260

4. Chottin, L., Cori, R.: Une preuve combinatoire de la rationalité d’une série
génératrice associée aux arbres. RAIRO Inform. Théor. 16(2), 113–128 (1982)

5. Cori, R., Hetyei, G.: Counting genus one partitions and permutations. Sém. Lothar.
Combin. 70, 29 (2013). Art. B70e

6. Di Francesco, P., Golinelli, O., Guitter, E.: Meanders: a direct enumeration app-
roach. Nucl. Phys. B 482(3), 497–535 (1996)

7. Dvoretzky, A., Motzkin, T.: A problem of arrangements. Duke Math. J. 14, 305–
313 (1947)

8. Lando, S.K., Zvonkin, A.K.: Plane and projective meanders. Theoret. Comput.
Sci. 117(1–2), 227–241 (1993)

9. Legendre, S.: Foldings and meanders. Australas. J. Combin. 58, 275–291 (2014)
10. Lothaire, M.: Combinatorics on words. In: Encyclopedia of Mathematics and its

Applications, vol. 17. Addison-Wesley Publishing Co., Reading (1983)
11. Lothaire, M.: Algebraic combinatorics on words. In: Encyclopedia of Mathematics

and its Applications, vol. 90. Cambridge University Press, Cambridge (2002)
12. Storer, T.: Cyclotomy and difference sets. In: Lectures in Advanced Mathematics,

no. 2. Markham Publishing Co., Chicago (1967)
13. Touchard, J.: Contribution à l’étude du problème des timbres poste. Can. J. Math.

2, 385–398 (1950)

http://dx.doi.org/10.1007/BFb0061260

Symmetric Dyck Paths and Hooley’s Δ-Function

José Manuel Rodŕıguez Caballero(B)

Université du Québec à Montréal, Montréal, QC, Canada
rodriguez caballero.jose manuel@uqam.ca

Abstract. Hooley [6] introduced the function

Δ(n) := max
u∈R

{d|n : u < log d � u + 1} ,

where log is the natural logarithm. Changing the base of the logarithm
from e to an arbitrary real number λ > 1, we define

Δλ(n) := max
u∈R

{d|n : u < logλ d � u + 1} .

The aim of this paper is to express Δλ(n) as the height of a symmetric
Dyck path defined in terms of the distribution of the divisors of n.

Keywords: Dyck path · Palindrome · Hooley’s Δ-function

1 Introduction

Hooley’s Δ-function,

Δ(n) := max
u∈R

{d|n : u < log d � u + 1} ,

was introduced in [6], where log is the natural logarithm. The applications of
Hooley’s Δ-function are widely spread in number theory, from Erdös’s statistical
theory of the distribution of divisors of a normal integer (see [4]) to Waring’s
problem (see [6]). This function corresponds to the integer sequence A226898
in [10]. It is natural to extend Hooley’s Δ-function to an arbitrary real number
λ > 1 by means of the formula

Δλ(n) := max
u∈R

{d|n : u < logλ d � u + 1} , (1)

where logλ d := log d
log λ .

Höft [5] used symmetric Dyck paths in number theory in order to study the
sum of divisors σ(n) by means of what he1 calls the “symmetric representation
1 Höft described his own research as follows (personal communication, March 24,
2017): “My work in this context has been to find formulas, develop Mathemat-
ica code to compute the sequences and their associated irregular triangles, and use
those to computationally verify conjectures for initial segments of some sequences.
In addition, I tried to find ‘elementary’ arguments for conjectures stated in OEIS
about the ‘symmetric representation of sigma’ and to prove in special cases that the
area defined by two adjacent Dyck paths actually equals sigma (thus justifying the
phrase used in OEIS in those cases)”.

c© Springer International Publishing AG 2017
S. Brlek et al. (Eds.): WORDS 2017, LNCS 10432, pp. 252–261, 2017.
DOI: 10.1007/978-3-319-66396-8 23

Symmetric Dyck Paths and Hooley’s Δ-Function 253

of sigma”. In the present paper, we will introduce a symmetric Dyck path 〈〈n〉〉λ

associated to an integer n � 1 and a real number λ > 1 by means of the following
definition.

Definition 1. Consider a real number λ > 1 and a 2-letter alphabet Σ = {a, b}.
(i) Given a finite set of positive real numbers S, the λ-class of S is the word

〈〈S〉〉λ := w0 w1 w2 ... wk−1 ∈ Σ∗, (2)

such that each letter is given by

wi :=
{

a if μi ∈ S,
b if μi ∈ λS,

(3)

for all 0 � i � k − 1, where μ0, μ1, ..., μk−1 are the elements of the
symmetric difference S�λS written in increasing order, i.e.

λS := {λ s : s ∈ S} ,

S�λS = {μ0 < μ1 < ... < μk−1} . (4)

(ii) If S is the set of divisors of n, then we will write 〈〈n〉〉λ := 〈〈S〉〉λ. The word
〈〈n〉〉λ will be called the λ-class of n.

The aim of this paper is to prove that 〈〈n〉〉λ and Δλ(n) are related by the
following theorem.

Theorem 2. Let λ > 1 be a real number. For any integer n � 1 the following
statements hold.

(i) The word 〈〈n〉〉λ is a symmetric Dyck path.

(ii) The height of the Dyck path 〈〈n〉〉λ is height (〈〈n〉〉λ) = Δλ(n).

(iii) If n
λ �∈ Z then the cardinality of the set of solutions of the inequalities

d1 < d2 < ... < dh < λd1, (5)

where d1, d2, ..., dh are divisors of n and h = Δλ(n), coincides with the number
of maximum-height-peaks in the Dyck path 〈〈n〉〉λ.

2 Preliminaries

Throughout this paper we will mainly work with the 2-letter alphabet Σ = {a, b},
although we will consider another letter in the proof of Proposition 12. The
definitions that we will introduce in this section are well-known in the theory of
formal languages and Dyck paths.

254 J.M.R. Caballero

A word w ∈ Σ∗ is said to be a Dyck path (or a Dyck word) if

(i) |w|a = |w|b,
(ii) |u|a � |u|b, for each prefix u of w,

where |w|x is the number of occurrences of the letter x ∈ Σ in the word w.
Dyck paths are just well-formed parentheses, but we preferred to use the

symbols a and b in place of the parentheses in order to avoid ambiguities in the
notation. Nevertheless, if there is no risk of confusion, we will use “(” and “)”
in place of a and b, respectively.

The (graphical) representation of a Dyck path w ∈ Σ∗ is the lattice path
in the complex plane, starting at z = 0 and ending at z = |w|, consisting of
up steps 1 +

√−1 and down steps 1 − √−1 associated to the letters a and b
respectively, reading the word w from left to right. An example of this graphical
representation is shown in Fig. 1. We prefer to use the term “Dyck path” rather
than “Dyck word” in order to follow Höft’s terminology from [5]. Also, it is more
natural to talk about the “height of a lattice path” than the “height of a word”.

The height of a Dyck path w is

height (w) := max {|u|a − |u|b : u prefix of w} .

A maximum-height-peak in a Dyck path w is a prefix u of w satisfying |u|a −
|u|b = height(w).

3 Auxiliary Results About Arbitrary Dyck Paths

The word 〈〈S〉〉λ given in Definition 1(i) will be our main tool to study the
inequalities

s1 < s2 < ... < sh < λs1, (6)

with s1, s2, ..., sh belonging to a finite set S of positive real numbers. We will
distinguish two cases, corresponding to the values of λ.

Definition 3. Let S be a finite set of positive real numbers. A real number λ > 1
is said to be regular (with respect to S) if S and λS are disjoint. Otherwise, λ
is said to be singular (with respect to S).

Remark 4. Notice that for any finite set of real numbers S, there are only finitely
many singular values of λ.

It is natural to extend the definition of the generalization of Hooley’s
Δ-function given in (1) as follows.

Definition 5. Let λ > 1 be a real number. Define the Hooley Δλ-function of a
finite set S of positive real numbers by the expression

Δλ(S) := max {h : ∃s1, s2, ..., sh ∈ S; s1 < s2 < ... < sh < λs1} .

Symmetric Dyck Paths and Hooley’s Δ-Function 255

Lemma 6. For each integer n � 1,

Δλ(n) = Δλ (S) ,

where S is the set of divisors of n and Δλ(n) is given by (1).

Proof. In virtue of (1), there exist d1, d2, ..., dh ∈ S, with h = Δλ (n), satisfying

λu < d1 < d2 < d3 < ... < dh � λu+1, (7)

for some u ∈ R. The inequality λu < d1 implies dh � λu+1 < λd1. So, the
inequalities (5) hold. Using Definition 5 we conclude that Δλ(n) � Δλ (S).

In virtue of Definition 5, there exist d1, d2, ..., dh ∈ S, with h = Δλ (S),
satisfying (5). For all ε > 0 small enough (see Remark 13), the inequalities (7)
hold for u = logλ (d1 − ε). Hence, Δλ (S) � Δλ(n).

Therefore, Δλ(n) = Δλ (S). 	

Lemma 7. Let S be a finite set of positive real numbers. Consider an arbitrary
real number λ > 1 and suppose that λ is regular. Consider μi, with 0 � i �
k − 1, from (4). Let u = w0 w1 ... wj be a prefix of 〈〈S〉〉λ = w0 w1 ... wk−1, where
each wi, with 0 � i � k − 1, is a letter. Define the sets

Au := {i ∈ Z : 0 � i � j and wi = a} ,

Bu := {i ∈ Z : 0 � i � j and wi = b} .

(i) The map ω : Bu −→ Au given by i �→ i′, where μi = λμi′ , is well-defined.
(ii) The map ω is injective.
(iii) There are exactly |u|a − |u|b integer values of i satisfying 0 � i � j, μi ∈ S

and μj < λμi.

Proof. The sets S and λS are disjoint, because λ is regular.
Proof of (i). Take i ∈ Bu. By definition of Bu, μi ∈ λS, i.e. μi = λ s for some
s ∈ S. Using that S�λS = S ∪ λS, there is some integer i′ satisfying 0 � i′ < i
and μi′ = s (this is no necessarily true if λ is singular). In particular, i′ ∈ Au.

Now, suppose that there is another integer i′′ satisfying μi = λμi′′ . Then
λμi′′ = λμi′ . So, i′′ = i′. Therefore, the function ω is well-defined.
Proof of (ii). Suppose that ω(i1) = ω(i2). Then λμi1 = λμi2 . So, i1 = i2. Hence,
ω is injective.
Proof of (iii). By definition of Au, there are exactly |u|a integers i such that
0 � i � j, μi ∈ S. The equality #Bu = #ω (Bu) implies that there are exactly
|u|b integers i such that 0 � i � j, μi ∈ S and λμi � μj .

Therefore, there are exactly |u|a − |u|b integers i such that 0 � i � j, μi ∈ S
and μj < λμi. 	

The next result provides a link between the height of the Dyck path 〈〈S〉〉λ

and the inequalities (6), with s1, s2, ..., sh ∈ S, provided that λ is regular.

256 J.M.R. Caballero

Lemma 8. Let S be a finite set of positive real numbers. Consider an arbitrary
real number λ > 1. Suppose that λ is regular.

(i) The word 〈〈S〉〉λ is a Dyck path.
(ii) For any prefix u of 〈〈S〉〉λ there is a solution s1, s2, ..., sh ∈ S of the inequal-

ities (6) with |u|a − |u|b = h.
(iii) The height of the Dyck path 〈〈S〉〉λ is height (〈〈S〉〉λ) = Δλ(S).
(iv) The number of maximum-height-peaks in 〈〈S〉〉λ coincides with the cardinal

of the set of solutions of the inequalities (6) with s1, s2, ..., sh ∈ S and
h = Δλ(S).

Proof. We have S ∪ λS = S�λS, because λ is regular. Consider μi, with
0 � i � k − 1 from (4).

Proof of (i). Define the function α : S ∪ λS −→ S ∪ λS by s �→ λ s, λ s �→ s,
where s is an arbitrary element from S. Notice that α is well-defined because S
and λS are disjoint. It is clear that α is an involution such that α (S) = λS and
α (λS) = S. Hence, the number of 0 � i � k − 1 satisfying μi ∈ λS coincides
with the number of 0 � i � k − 1 satisfying μi ∈ S. Applying (3) we conclude
that |〈〈S〉〉λ|a = |〈〈S〉〉λ|b.

By Lemma 7, |u|a � |u|b for each nonempty prefix u of 〈〈S〉〉λ. Therefore,
〈〈S〉〉λ is a Dyck path.
Proof of (ii). Take a nonempty prefix u = w0 w1 ... wj of 〈〈S〉〉λ = w0 w1 ... wk−1,
where each wi is a letter. In virtue of Lemma 7, there are precisely h := |u|a−|u|b
elements s1, s2, ..., sh ∈ S such that

s1 < s2 < ... < sh � μj < λs1 < λs2 < ... < λ sh.

In particular, the inequalities (6) hold.
Proof of (iii). Combining the statement (ii) of this lemma and Definition 5, we
obtain that height (〈〈S〉〉λ) � Δλ(S).

By Definition 5, there are s1, s2, ..., sh ∈ S, with h = Δλ (S), satisfying the
inequalities (6). Let j be the unique integer such thatμj = sh. Define the nonempty
prefix u := w0 w1 ... wj of 〈〈S〉〉λ = w0 w1 ... wk−1, where each wi is a letter. The
inequality |u|a − |u|b � h follows by Lemma 7. Hence, height (〈〈S〉〉λ) � Δλ(S).

Therefore, height (〈〈S〉〉λ) = Δλ(S).
Proof of (iv). Combining the parts (ii) and (iii) of this lemma, it follows that the
cardinality of the set of solutions of the inequalities (6) with s1, s2, ..., sh ∈ S
and h = Δλ(S), is at least the number of maximum-height-peaks in 〈〈S〉〉λ.

Each solution of the inequalities (6) with s1, s2, ..., sh ∈ S and h = Δλ(S)
corresponds to a unique value of sh (this is no longer true if h < Δλ(S)). Consider
one of these solutions and let j be the unique integer such that μj = sh. Define
the nonempty prefix u := w0 w1 ... wj of 〈〈S〉〉λ = w0 w1 ... wk−1, where each wi

is a letter. In virtue of Lemma 7, u is a maximum-height-peak in 〈〈S〉〉. Hence,
the cardinality of the set of solutions of the inequalities (6) with s1, s2, ..., sh ∈ S
and h = Δλ(S) is at most the number of maximum-height-peaks in 〈〈S〉〉λ.

Symmetric Dyck Paths and Hooley’s Δ-Function 257

Therefore, the cardinality of the set of solutions of the inequalities (6) with
s1, s2, ..., sh ∈ S and h = Δλ(S) coincides with the number of maximum-height-
peaks in 〈〈S〉〉λ. 	

Example 9. For S = {1, 2, 3, 6, 7} and λ = e (Euler’s number), the Dyck path
〈〈S〉〉λ is represented in Fig. 1.

Fig. 1. Representation of 〈〈1, 2, 3, 6, 7〉〉e = (() () (()))

This Dyck word can be computed using the following inequalities.

S � e S = {1 < 2 < e 1 < 3 < e 2 < 6 < 7 < e 3 < e 6 < e 7}
〈〈1, 2, 3, 6, 7〉〉e = a a b a b a a b b b

Lemma 10. The step function]1,+∞[−→ Z given by λ �→ Δλ (S), is contin-
uous from the left, i.e. for any λ > 1,

lim
λ′→λ−

Δλ′ (S) = Δλ (S) . (8)

Proof. Let λ > 1 be a fixed real number. We recall that the expression (8) means
that for any ε > 0 there is δ > 0 such that for any λ′ ∈]1,+∞[, if λ−δ < λ′ < λ
then |Δλ (S) − Δλ′ (S)| < ε.

Take an arbitrary λ′ ∈]1, λ[. By Definition 5, there are s1, s2, ..., sh ∈ S, with
h = Δλ′(S), satisfying

s1 < s2 < ... < sh < λ′ s1. (9)

Using the fact that λ′ < λ, we obtain (6). Hence, Δλ(S) � Δλ′(S).
By Definition 5, there are s1, s2, ..., sh ∈ S, with h = Δλ(S), satisfying (6).

For all real numbers λ′ near enough (see Remark 13) to λ and constrained by the
inequality λ′ < λ, we guarantee that sh < λ′ s1 < λs1. So, (9) follows. Hence,
Δλ(S) � Δλ′(S).

We conclude that Δλ(S) = Δλ′(S) holds for all real numbers λ′ near enough
to λ and constrained by the inequality λ′ < λ. Therefore, the function λ �→
Δλ (S) is continuous from the left. 	

Lemma 11. If w := u b a v is a Dyck path, for two word u, v ∈ (Σ)∗, then
w′ := u v is also an Dyck path and height (w) = height (w′).

258 J.M.R. Caballero

Proof. Suppose that w is a Dyck path. We have that |w|a − |w|b = 0, because
w is a Dyck path. Using that |w′|a = |w|a − 1 and |w′|b = |w|b − 1, the equality
|w′|a − |w′|b = |w|a − |w|b = 0 follows.

Let p′ be a nonempty prefix of w′. Suppose that p′ is a prefix of u. Then,
the word p := p′ is a prefix of w. So |p|a − |p|b � 0, because |w| is a Dyck word.
Hence, |p′|a − |p′|b = |p|a − |p|b � 0.

Now, suppose that p′ is not a prefix of u. Then p′ = u v̂ for some nonempty
prefix v̂ of v. So, the word p := u b a v̂ is a prefix of w. Using that w is a Dyck
path, we obtain |p|a − |p|b � 0. The equalities |p′|a = |p|a − 1 and |p′|b = |p|b − 1
imply that |p′|a − |p′|b = |p|a − |p|b � 0.

Therefore, w′ is a Dyck path.
The only prefixed of w that we did not used in the above argument are

p = u b and p = u b a, but in both cases we have height(p) � height(w). Hence,
height(w) = height(w′). 	

Proposition 12. Consider a finite set of positive real numbers S. For any real
number λ > 1, the following statements hold.

(i) The word 〈〈S〉〉λ is a Dyck path.
(ii) The height of the Dyck path 〈〈S〉〉λ is height (〈〈S〉〉) = Δλ(S).

Proof. The proposition holds if λ is regular, because of Lemma 8. From now on,
assume that λ is singular.

Consider the 3-letter alphabet Γ = {a, b, c}. Define the word

�S�λ := u0 u1 u2 ... ur−1 ∈ Γ ∗,

whose letters are given by

ui :=

⎧⎨
⎩

a if νi ∈ S\ (λS) ,
b if νi ∈ (λS) \S,
c if νi ∈ S ∩ λS,

for all 0 � i � r − 1, where ν0, ν1, ..., νr−1 are the elements of the union S ∪ λS
written in increasing order, i.e.

S ∪ λS = {ν0 < ν1 < ... < νr−1} .

By Definition 1, the word 〈〈S〉〉λ can be obtained from �S�λ just deleting all
the occurrences of the letter c. In virtue of the continuity and the monotony
of the function]1,+∞[−→]0,+∞[given by λ �→ λ s, with s ∈ S arbitrary, it
follows that, for all λ′ ∈]1, λ[, the word 〈〈S〉〉λ′ can be obtained from �S�λ just
substituting all the occurrences of the letter c by the word b a, provided that λ′

is near enough to λ (see Remark 13). So, the word 〈〈S〉〉λ can be obtained from
the word 〈〈S〉〉λ′ just deleting some factors of the form b a, for any λ′ ∈]1, λ[
near enough to λ. By Lemma 11, 〈〈S〉〉λ is a Dyck path and height (〈〈S〉〉λ) =
height (〈〈S〉〉λ′), for each λ′ ∈]1, λ[near enough to λ.

By Lemma 8, height (〈〈S〉〉λ′) = Δλ′ (S) for each regular value λ′ ∈]1,+∞[.
By Lemma 10, Δλ′ (S) = Δλ (S) for all λ′ ∈]1, λ[near enough to λ. Therefore,
height (〈〈S〉〉λ) = Δλ (S). 	

Symmetric Dyck Paths and Hooley’s Δ-Function 259

Remark 13. Formalization is only required in analysis when we are dealing with
pathological objects, e.g. a conditional convergent series which is not absolutely
convergent, a nonuniformly convergent sequence of functions which is pointwise
convergent, etc. When there is no risk of confusion, as in all analytical arguments
throughout this paper, we can use informal statements like “ε > 0 small enough”
and “λ′ is near enough to λ”. These meta-mathematical statements can be easily
formalized using ε − δ language, but this formalization makes the argument
unnecessarily harder to read. A way to formalize these statements preserving
their simplicity is to use nonstandard analysis.

4 Symmetric Dyck Paths

Definition 14. A Dyck path w ∈ Σ∗ is symmetric if for each 0 � i � k − 1,
either

(i) wi = a and wk−1−i = b, or
(ii) wi = b and wk−1−i = a,

where w = w0 w1 ... wk−1 and each wi is a letter for all 0 � i � k − 1.

Using the theory of f -palindromes (see [1]), we can rephrase Definition 14
as follows: a Dyck path w is symmetric if and only if w is an f -palindrome (i.e.
w̃ = f(w)), where w̃ is the mirror image of w and f is the morphism a �→ b and
b �→ a.

We now proceed to prove our main result.

Proof (of Theorem 2). Let S be the set of divisors of n.
Proof of (i). By Proposition 12, 〈〈n〉〉 is a Dyck path.

The function β :]0,+∞[−→]0,+∞[, given by x �→ λ n
x , is strictly decreasing

(in particular β is injective). It is straightforward to check that β (S) = λS,
β (λS) = S and β (S ∩ λS) = S ∩ λS.

Consider μi, with 0 � i � k − 1, from (4). We have that β (μi) = μk−1−i for
all 0 � i � k −1, because β restricted to S�λS is a strictly decreasing bijection
S�λS −→ S�λS. Furthermore, for any i, satisfying 0 � i � k − 1, either

(i) for some d|n we have μi = d ∈ S and μk−1−i = β (d) ∈ λS, or
(ii) for some d|n we have μi = λ d ∈ λS and μk−1−i = β (λ d) ∈ S,

because β (S ∩ (S�λS)) = (λS) ∩ (S�λS) and β ((λS) ∩ (S�λS)) = S ∩
(S�λS).

In virtue of (3), for all i, satisfying 0 � i � k − 1, either

(i) wi = a and wk−1−i = b, or
(ii) wi = b and wk−1−i = a,

260 J.M.R. Caballero

where 〈〈s〉〉 = w0 w1 ... wk−1 and each wi is a letter for all 0 � i � k − 1. Using
Definition 14, we conclude that the Dyck path 〈〈n〉〉λ is symmetric.
Proof of (ii). By Proposition 12, the height of 〈〈S〉〉λ is Δλ (S). By Lemma 6,
Δλ (S) = Δλ (n). Hence, the height of 〈〈n〉〉 is precisely Δλ (n).
Proof of (iii). Let λ > 1 be a real number such that n

λ �∈ Z. Suppose that λ is
singular. There are two divisors of n, denoted d and d′, satisfying d = λ d′. Then
n
λ = d′ n

d ∈ Z. By reductio ad absurdum, λ is regular.
In virtue of Lemma 8, the number of maximum-height-peaks in 〈〈n〉〉λ coin-

cides with the cardinality of the set of solutions of the inequalities (5) with
h = Δλ(n), where d1, d2, ..., dh are divisors of n. 	

Example 15. Using Proposition 2 we can derive that Δ(126) = 4, because the
height of the symmetric Dyck path 〈〈126〉〉e is 4. This Dyck path is represented
in Fig. 2.

Fig. 2. Representation of 〈〈126〉〉e = (() () (() (()()()) ()) () ()).

The three maximum-height-peaks in 〈〈126〉〉e correspond to the following solu-
tions of the inequalities (5), with h = Δ (n),

6 < 7 < 9 < 14 < e 6,

7 < 9 < 14 < 18 < e 7,

9 < 14 < 18 < 21 < e 9.

5 Final Remarks

Kassel and Reutenauer [7] proved that, for any integer n � 1, there is a unique
polynomial Pn(q) such that for any prime power q = p�, the number of ideals of
codimension2 n of the group algebra Fq [Z ⊕ Z] is precisely (q −1)2 Pn(q), where
Z⊕Z is the free abelian group of rank 2 and Fq is the finite field with q elements.

The polynomials Pn(q) are related to identity (9.2) in [3] (see [8]),

(q)2∞
(t−2 q)2∞ (t2 q)2∞

= 1 +
(
t − t−1

) ∑
N�1

qN
∑
ω|N

(
t2N/ω−ω − t−2N/ω+ω

)
,

2 Let k be a field and R be a k-algebra. The codimension of an ideal I of R is the
dimension of the quotient R/I as a vector space over k.

Symmetric Dyck Paths and Hooley’s Δ-Function 261

where ω runs by the odd divisors of N and (a)∞ =
∏

n�0 (1 − a qn) is the q-
Pochhammer symbol. Notice that we can write

∑
ω|N

(
t2N/ω−ω − t−2N/ω+ω

)
=

k−1∑
i=0

(−1)μi−1 tμk−1−i

tμi
,

where each μi, with 0 � i � k − 1, is from (4) taking S as the set of divisors
of N and λ = 2.

Combining this observation with Theorem 2 and the generating function of
Pn(q) due to Kassel and Reutenauer [8], it follows that the largest coefficient
of Pn(q) is precisely3 Δ2(n). A complete proof of this result, without explicitly
involving symmetric Dyck paths, can be found in [9].

Acknowledgement. The author thanks S. Brlek, C. Kassel and C. Reutenauer for
they valuable comments and suggestions concerning this research. Also, the author
want to express his gratitude to H. F. W. Höft for the useful exchanges of information.

References

1. Blondin-Massé, A., Brlek, S., Garon, A., Labbé, S.: Combinatorial properties of f -
palindromes in the Thue-Morse sequence. Pure Math. Appl. 19(2–3), 39–52 (2008)

2. Erdös, P., Nicolas, J.L.: Méthodes probabilistes et combinatoires en théorie des
nombres. Bull. Sci. Math. 2, 301–320 (1976)

3. Fine, N.J.: Basic Hypergeometric Series and Applications, vol. 27. American Math-
ematical Soc., Providence (1988)

4. Hall, R.R., Tenenbaum, G.: Divisors. Cambridge Tracts in Mathematics, vol. 90.
Cambridge University Press, Cambridge (1988).

5. Höft, H.F.W.: On the symmetric spectrum of odd divisors of a number. https://
oeis.org/A241561/a241561.pdf

6. Hooley, C.: On a new technique and its applications to the theory of numbers.
Proc. London Math. Soc. 3(1), 115–151 (1979)

7. Kassel, C., Reutenauer, C.: Counting the ideals of given codimension of the algebra
of Laurent polynomials in two variables. arXiv preprint arXiv:1505.07229 (2015)

8. Kassel, C., Reutenauer, C.: Complete determination of the zeta function of
the Hilbert scheme of n points on a two-dimensional torus. arXiv preprint
arXiv:1610.07793 (2016)

9. Rodŕıguez Caballero, J.M.: On a function introduced by Erdös and Nicolas (To
appear)

10. Sloane, N.J.A., et al.: The on-line encyclopedia of integer sequences (2012)

3 The function Δ2(n) was introduced by Erdös and Nicolas [2], using the notation
F (n), before Hooley’s paper [6].

https://oeis.org/A241561/a241561.pdf
https://oeis.org/A241561/a241561.pdf
http://arxiv.org/abs/1505.07229
http://arxiv.org/abs/1610.07793

Author Index

Borel, J.-P. 177

Cain, Alan J. 190
Cassaigne, J. 144
Castronuovo, Niccolò 240
Clampitt, David 85
Cori, Robert 240

Day, Joel D. 72
Diekert, Volker 6
Dulio, Paolo 164

Ferenczi, Sébastien 157
Fici, Gabriele 36
Fleischer, Lukas 6
Fleischmann, Pamela 72
Frosini, Andrea 164

Gabric, Daniel 49

Holub, Štěpán 1

Kaboré, Idrissa 132
Kientéga, Boucaré 132

Labbé, Sébastien 144, 240
Lapointe, Mélodie 109
Leroy, J. 144

Malheiro, António 190
Manea, Florin 72
Mantaci, Sabrina 228
Mauduit, Christian 157
Moreira, Carlos Gustavo 157

Néraud, Jean 214
Noll, Thomas 85
Nowotka, Dirk 72

Ochem, Pascal 30

Parshina, Olga G. 121
Pelantová, Edita 59
Peltomäki, Jarkko 97

Rajasekaran, Aayush 17
Rampersad, Narad 17
Restivo, Antonio 36, 228
Rinaldi, Simone 164
Rizzo, Laura 36
Rodríguez Caballero, José Manuel 252
Rosenfeld, Matthieu 30
Rosone, Giovanna 228

Saarela, Aleksi 203
Sawada, Joe 49
Sciortino, Marinella 228
Selmi, Carla 214
Shallit, Jeffrey 17
Starosta, Štěpán 59

Tarsissi, Lama 164

Vuillon, Laurent 164

Whiteland, Markus 97

	Preface
	Organization
	Invited Talks
	Commutation and Beyond (Extended Abstract)
	DNA Words and Languages
	An Unsolved Problem on Palindromes and Sturmian Words
	Church-Rosser Systems, Codes with Bounded Synchronization Delay and Local Rees Extensions
	The Role of Combinatorics on Words in Mathematical Music Theory
	Contents
	Commutation and Beyond
	1 Commutation Forcing
	2 Periodicity Forcing
	References

	Church-Rosser Systems, Codes with Bounded Synchronization Delay and Local Rees Extensions
	1 Introduction
	2 Preliminaries
	3 Church-Rosser Thue Systems
	4 Star-Freeness and Bounded Synchronization Delay
	5 Local Divisors
	6 Rees Extensions
	7 The Local Divisor Technique and Green's Lemma
	8 The Common Theme: Local Divisor Proofs
	8.1 Schützenberger's SD Classes
	8.2 Church-Rosser Thue Systems Revisited

	9 Conclusion and Open Problems
	References

	Overpals, Underlaps, and Underpals
	1 Introduction
	2 Definitions and Notation
	3 Overpals
	3.1 The Binary Case
	3.2 Larger Alphabets

	4 Underpals
	5 Underlaps
	References

	On Some Interesting Ternary Formulas
	1 Introduction
	2 Formulas Closely Related to b3
	3 Avoidability of ABACA.ABCA and ABAC.BACA.ABCA
	4 A Counter-Example to a Conjecture of Grytczuk
	References

	Minimal Forbidden Factors of Circular Words
	1 Introduction
	2 Preliminaires
	2.1 Minimal Forbidden Factors
	2.2 Automata for Minimal Forbidden Factors

	3 Minimal Forbidden Factors of a Circular Word
	4 Circular Fibonacci Words and Minimal Forbidden Factors
	5 Conclusions and Open Problems
	References

	A de Bruijn Sequence Construction by Concatenating Cycles of the Complemented Cycling Register
	1 Introduction
	1.1 History

	2 Background and Definitions
	3 de Bruijn Sequence Construction
	3.1 Efficient Implementation

	4 Discrepancy
	References

	On Words with the Zero Palindromic Defect
	1 Introduction
	2 Preliminaries
	2.1 Basic Notations and Definitions
	2.2 Fixed Points of Morphisms and Their Properties

	3 The Study of Palindromic Defect
	3.1 Characterizations of Words with the Zero Defect
	3.2 Palindromic Defect of Fixed Points of Morphisms
	3.3 Enumeration of Rich Words

	4 Compatible Pairs
	5 Open Questions and Related Problems
	References

	Equations Enforcing Repetitions Under Permutations
	1 Introduction
	2 Preliminaries
	3 The Morphic Case
	4 The Antimorphic Case
	5 Further Directions
	References

	Matching Lexicographic and Conjugation Orders on the Conjugation Class of a Special Sturmian Morphism
	1 Motivation
	2 Special Sturmian Morphisms and Conjugation
	3 The Path Monoid and the Abacus Relations
	4 Matching Lexicographic and Conjugation Order
	5 Dualizing the Network
	References

	More on the Dynamics of the Symbolic Square Root Map
	1 Introduction
	2 Notation and Preliminary Results
	2.1 Sturmian Words and Standard Words
	2.2 Optimal Squareful Words and the Square Root Map
	2.3 The Subshift

	3 The Limit Set and Injectivity
	4 Periodic Points
	References

	Study of Christoffel Classes: Normal Form and Periodicity
	1 Introduction
	2 Preliminaries
	3 Period in Conjugates of Christoffel Words
	4 Left Normal Form and Minimal Period
	5 Normal Form of Conjugates of Christoffel Words
	References

	On Arithmetic Index in the Generalized Thue-Morse Word
	1 Introduction
	2 Preliminaries
	3 Upper Bound on Arithmetic Index in q
	3.1 Theorem on Arithmetic Progressions in q
	3.2 Upper Bound on the Arithmetic Index for q

	4 Lower Bound on Arithmetic Index
	5 Conclusion
	References

	Abelian Complexity of Thue-Morse Word over a Ternary Alphabet
	1 Introduction
	2 Definitions and Notations
	3 Triprolongable Factors and Balance
	4 Abelian Complexity
	References

	A Set of Sequences of Complexity 2n+1
	1 Introduction
	2 A Bidimensional Continued Fraction Algorithm
	2.1 The Matrices
	2.2 The Cocycle
	2.3 The Substitutions
	2.4 S-adic Words
	2.5 S-adic Words Associated with the Algorithm FC

	3 Factor Complexity of Primitive C-adic Words
	4 Selmer Algorithm
	5 Conjugacy of FC and FS
	5.1 Substitutive Conjugacy

	References

	The Word Entropy and How to Compute It
	1 Definitions
	2 First Properties of E0 and EW
	3 Algorithm
	4 Application
	References

	First Steps in the Algorithmic Reconstruction of Digital Convex Sets
	1 Introduction
	2 Preliminaries
	2.1 Digital Convexity and Convexity on Polyominoes
	2.2 Christoffel and Lyndon Words

	3 Theoretical Results
	3.1 Perturbations on the WN Paths
	3.2 Definition of the split Operator
	3.3 Commutativity of the split Operator

	References

	Variants Around the Bresenham Method
	1 Introduction
	1.1 Drawing Lines
	1.2 Our Concept: The Active Multi-pixel
	1.3 Representation of a Segment Using an Active Multi-pixel
	1.4 Coding the Lines

	2 Some Examples
	2.1 General Examples
	2.2 Cutting Sequence
	2.3 Bresenham Method
	2.4 A Particular Case: The Strict Active Pixel

	3 Properties of Active Pixels
	3.1 Equivalent Pixels
	3.2 Diameters

	4 The Size of the Languages
	4.1 FC of a Line
	4.2 FC in the Neighborhood of a Line
	4.3 The Set of All the FC
	4.4 Some Examples

	5 How to Compute the Freeman Code
	5.1 Automatic Computation of the FC
	5.2 The General Case: The Matrix of Factors

	6 The Role of Diameters
	6.1 The Average Visual Thickness
	6.2 Size of the Diameters
	6.3 Irregularity of the Thickness

	References

	Combinatorics of Cyclic Shifts in Plactic, Hypoplactic, Sylvester, and Related Monoids
	1 Introduction
	2 Binary Search Trees and the Sylvester Monoid
	3 Lower Bound on Diameters
	4 Upper Bounds on Diameters
	References

	Palindromic Length in Free Monoids and Free Groups
	1 Introduction
	2 Preliminaries
	3 Palindromic Lengths of Factors and Prefixes
	4 Binary Alphabet
	5 Palindromic Jumps
	6 Palindromes and Inverses of Palindromes
	7 Conjugates and Edit Distance
	8 Conclusion
	References

	Invariance: A Theoretical Approach for Coding Sets of Words Modulo Literal (Anti)Morphisms
	1 Introduction
	2 Preliminaries
	3 A Defect Effect for Invariant Sets
	4 Maximal -Invariant Codes
	5 Maximality in Some Families of -Invariant Codes
	6 Embedding a Regular Invariant Code into a Complete One
	References

	Burrows-Wheeler Transform and Run-Length Enconding
	1 Introduction
	2 Burrows-Wheeler Transform
	3 BWT-Clustering Ratio of a Word
	4 Special Cases on Binary Alphabet
	4.1 Clusters in Christoffel Words
	4.2 Clusters in Binary de Bruijn Words

	5 Experimental Results
	References

	A Permutation on Words in a Two Letter Alphabet
	1 Introduction
	2 Combinatorial Objects Corresponding to An
	3 Length of the Cycles of n
	4 Pivots in the Orbits of n
	5 Folding of a Strip of Stamps Associated to an Element of Fn
	6 Generalizing n to All Words in A*
	References

	Symmetric Dyck Paths and Hooley's -Function
	1 Introduction
	2 Preliminaries
	3 Auxiliary Results About Arbitrary Dyck Paths
	4 Symmetric Dyck Paths
	5 Final Remarks
	References

	Author Index

