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Abstract In this work, a job-flow scheduling approach for Grid virtual

organizations (VOs) is proposed and studied. Users and resource providers prefer-

ences, VOs internal policies, resources geographical distribution along with local

private utilization impose specific requirements for efficient scheduling according to

different, usually contradictive, criteria. With increasing resources utilization level

the available resources set and corresponding decision space are reduced. In order to

improve overall scheduling efficiency, we propose an anticipation scheduling heuris-

tic. It includes a target (anticipated) pattern solution definition and a special replica-

tion procedure for efficient and feasible resources allocation. A proposed anticipation

algorithm is compared against conservative backfilling variations using such crite-

ria as average jobs response time (start and finish times) as well as users and VO

economic criteria (execution time and cost).
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1 Introduction and Related Works

In distributed environments with non-dedicated resources such as utility Grids the

computational nodes are usually partly utilized by local high-priority jobs coming

from resource owners. Thus, the resources available for use are represented with

a set of slots—time intervals during which the individual computational nodes are
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capable to execute parts of independent users’ parallel jobs. These slots generally

have different start and finish times and a performance difference. The presence of a

set of slots impedes the problem of coordinated selection of the resources necessary

to execute the job-flow from computational environment users. Resource fragmen-

tation also results in a decrease of the total computing environment utilization level

[1, 2].

Two established trends may be outlined among diverse approaches to distributed

computing. The first one is based on the available resources utilization and applica-

tion level scheduling [3]. As a rule, this approach does not imply any global resource

sharing or allocation policy. Another trend is related to the formation of user’s vir-

tual organizations (VO) and job-flow scheduling [4, 5]. In this case a metascheduler

is an intermediate chain between the users and local resource management and job

batch processing systems.

Uniform rules of resource sharing and consumption, in particular based on eco-

nomic models, make it possible to improve the job-flow level scheduling and resource

distribution efficiency. VO policy may offer optimized scheduling to satisfy both

users’ and VO common preferences. The VO scheduling problems may be formu-

lated as follows: to optimize users’ criteria or utility function for selected jobs [6, 7],

to keep resource overall load balance [8, 9], to have job run in strict order or main-

tain job priorities [10], to optimize overall scheduling performance by some custom

criteria [11, 12], etc.

VO formation and performance largely depends on mutually beneficial collab-

oration between all the related stakeholders. Thus, VO policies in general should

respect all members and the most important aspect of rules suggested by VO is their

fairness.

A number of works understand fairness as it is defined in the theories of coopera-

tive games and mechanism design, such as fair job-flow distribution [8], fair quotas

[13, 14] or fair user jobs prioritization [10]. The cyclic scheduling scheme (CSS) [15]

implements a fair scheduling optimization mechanism which ensures stakeholders

interests to some predefined extent. Thus, we elaborate a problem of parallel jobs

scheduling in heterogeneous computing environment with non-dedicated resources

considering users individual preferences and goals.

The downside of a majority centralized metascheduling approaches is that they

lose their efficiency and optimization features in distributed environments with a lim-

ited resources supply. For example, in [2] a traditional backfilling algorithm provides

better scheduling outcome when compared to different optimization approaches in

resource domain with a minimal performance configuration. The general root cause

is that in fact the same scarce set of resources (being efficient or not) have to be

used for a job-flow execution or otherwise some jobs might hang in the queue. And

under such conditions user jobs priority and ordering greatly influence the schedul-

ing results.
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A main contribution of this paper is a heuristic anticipation job-flow schedul-

ing approach which retains optimization features and efficiency even in distributed

computing environments with limited resources. The rest of the paper is organized

as follows. Section 2 presents a general CSS fair scheduling concept. The proposed

anticipation scheduling technique is presented in Sect. 3. Section 4 contains simula-

tion experiment setup and results of comparison with conservative backfilling vari-

ations. Finally, Sect. 5 summarizes the paper.

2 Cyclic Alternative-Based Fair Scheduling Model
and Limited Resources

Scheduling of a job-flow using CSS is performed in time cycles known as scheduling

intervals, by job batches [15]. The actual scheduling procedure during each cycle

consists of two main steps. The first step involves a search for alternative execu-

tion scenarios for each job or simply alternatives [16]. During the second step the

dynamic programming methods [15] are used to choose an optimal alternatives’

combination (one alternative is selected for each job) with respect to the given VO

and user criteria. This combination represents the final schedule based on current

data on resources load and possible alternative executions.

An example for a user scheduling criterion may be a minimization of overall job

running time, a minimization of overall running cost, etc. This criterion describes

user’s preferences for that specific job execution.

Alongside with time (T) and cost (C) properties each job execution alternative has

a user utility (U) value: user evaluation against the scheduling criterion. We consider

a relative approach to represent a user utility U ∈ [0%, 100%]. Each alternative gets

its utility in relation to the “best” and the “worst” optimization criterion values user

could expect according to the job’s priority. And the more some alternative corre-

sponds to user’s preferences the smaller is the value of U → 0%.

For a fair scheduling model the second step VO optimization problem could be in

form of: C → max, lim U, i.e. maximize total job-flow execution cost, while respect-

ing user’s preferences to some extent.

First step of CSS requires allocation of a multiple alternatives nonintersecting
in terms of slots for each job. Otherwise irresolvable collisions for resources may

occur if different jobs will share the same time-slots. Sequential alternatives search

and resources reservation procedures help to prevent such scenario. However in an

extreme case when resources are limited or overutilized only at most one alternative

execution could be reserved for each job. In this case alternatives-based scheduling

result will be no different from FIFO resources allocation procedure without any

optimizations [2].



30 V. Toporkov et al.

3 Heuristic Anticipation Scheduling

3.1 General Scheme

In order to improve scheduling efficiency for job batch the following heuristic is

proposed. It consists of three main steps.

1. First, a set of all possible execution alternatives is found for each job not consid-

ering time slots intersections and without any resources reservation.

2. Second, CSS scheduling procedure is performed to select alternatives combina-

tion (one alternative for each job of the batch) optimal according to VO fair-

share policy. The resulting alternatives combination most likely corresponds to

an infeasible scheduling solution as possible time slots intersection will cause

collisions on resources allocation stage.

3. Third, a feasible resources allocation is performed by replicating alternatives

selected in step 2.

After these three steps are performed the resulting solution is both feasible and

efficient as it reflects scheduling pattern obtained from a near-optimal reference solu-

tion from step 2. The following subsections will discuss these scheduling steps in

more details.

3.2 Finding a Near Optimal Infeasible Scheduling Solution

CSS scheduling results are strongly depend on diversity of alternatives sets obtained

for batch jobs. As we need to find alternatives for an apriori infeasible reference

solution a reasonable diverse set of possible execution alternatives will do.

We used a modification of Algorithm searching for Extreme Performance

windows (AEP) [16] to allocate a diverse set of execution alternatives for each job.

Originally AEP scans through a whole list of available time slots and retrieves one

alternative execution optimal according to the user custom criterion. During this

scan, AEP estimates every possible and sufficient slots combination against user cri-

terion and selects the one with the best criterion value. In order to retrieve all possible

execution alternatives we save all distinct intermediate AEP search results to a ded-

icated list of possible alternatives.

After sets of possible execution alternatives are independently allocated for each

job a CSS scheduling optimization procedure selects an optimal alternatives combi-

nation according to VO and users criteria [15]. More details on alternatives combi-

nation selection procedure were provided in Sect. 2.
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3.3 Replication Scheduling and Resources Allocation

The resulting near-optimal scheduling solution in most cases is infeasible as selected

alternatives may share the same time slots and thus cause resource collisions. How-

ever we propose to use it as a reference solution and replicate into a feasible resources

allocation.

For the replication purpose a new Execution Similarity criterion is introduced. It

helps AEP [16] to find a window with minimum distance to a reference pattern alter-

native. Generally we define a distance between two different alternatives (windows)

as a relative difference or error between their significant criteria values. For exam-

ple if reference alternative has Cref total cost, and some candidate alternative cost is

Ccan, then the relative cost error EC is calculated as EC = |Cref −Ccan|

Cref
. If one need to

consider several criteria the distance D between two alternatives may be calculated

as a geometric distance in a parameters space: Dg =
√

E2
C + E2

T +⋯ + E2
U .

AEP with Execution Similarity scans through a whole list of available time slots,

for every possible slots combination calculates its distance from a reference alterna-

tive and selects the one with the minimum distance to a reference.

For a feasible job batch resources allocation AEP consequentially allocates for

each job a single execution window with a minimum distance to a reference alter-

native. Time slots allocated for the i-th job are reserved and excluded from the slot

list when AEP search algorithm is performed for the following jobs i + 1, i + 2,….

Thus, this procedure prevents any conflicts for resources and provides scheduling

solution which in some sense reflects near-optimal reference solution.

AEP and its modifications have a quadratic computational complexity with respect

to the number of available computing nodes [16]. It is performed twice for each job

(during alternatives search and replication steps), so the overall complexity linearly

depends on the job-flow capacity. At the same time dynamic scheduling scheme [15]

from the step 2 is pseudo-polynomial and additionally depends on a total budget allo-

cated for the job-flow execution.

3.4 Replication Reference Setup

Anticipated near-optimal scheduling solution provides a heuristic insight on how

each job should be executed with a reference to other users criteria, VO optimization

policy and a current computing domain composition and utilization level. Basically

this solution suggests what kind of resources should be allocated for each job in terms

of performance and cost. Thus, available resources can be consistently distributed

between the user jobs according to their performance or cost optimization targets.

At the same time the anticipated solution can’t provide any meaningful reference

on jobs’ start and finish times. As anticipation procedure independently allocates

a set of possible execution alternatives for each job, it does not consider resources
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reservation and utilization by other jobs. Thus, resulting anticipated jobs’ start and

finish times are randomly distributed on a whole scheduling interval with a bias

towards the interval’s start. In this way anticipation scheduling scheme can’t provide

neither adequate estimation on jobs’ starting times, nor the common jobs’ execution

order.

In order to improve the anticipated reference solution we use backfilling algo-

rithm to provide practical values for jobs start and finish times. Backfilling is able

to minimize the whole job-flow execution makespan as well as to generally follow

the initial jobs relative queue order [1]. These features make backfilling scheduling

solution a good reference target for the anticipation scheduling scheme. Thus, for

the replication step we set infeasible CSS solution as a reference for jobs execution

runtime and cost, and backfilling solution—for jobs start and finish times.

Additionally we introduce a finish time approximation coefficient Kt to relate the

anticipated finish times to backfilling reference solution. For example when Kt = 1
we use exact jobs finish times provided by backfilling as a reference for a replication

step. Kt = 0.5 means that we strive to execute the job-flow twice as faster compared

to backfilling. So just by changing Kt we are able stretch resulting anticipation solu-

tion on a desired time interval and at the same time preserve a general jobs execution

order provided by backfilling.

4 Simulation Study

4.1 Simulation Environment Setup

An experiment was prepared as follows using a custom distributed environment sim-

ulator [2, 15–17]. For our purpose, it implements a heterogeneous resource domain

model: nodes have different usage costs and performance levels. A space-shared

resources allocation policy simulates a local queuing system (like in GridSim or

CloudSim [18]) and, thus, each node can process only one task at any given simu-

lation time. The execution cost of each task depends on its running time which is

proportional to the dedicated nodes performance level. The execution of a single job

requires parallel execution of all its tasks.

Virtual organization and computing environment properties are the following.

The resource pool includes 25 heterogeneous computational nodes. A base cost of

a node is an exponential function of its performance value, so any two nodes of the

same resource type and performance have the same base cost. Effective node cost

during the scheduling interval is then calculated by adding a variable distributed

normally as ±0.6 of a base cost, simulating discounts or extra charges up to 60%.

The initial 5–10% resource load with owner jobs is distributed hyper-geometrically

over the whole scheduling interval.

The job batch properties are specified as follows. Jobs number in a batch is 75.

Nodes quantity needed for a job is an integer number distributed evenly on [2, 5].
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Node reservation time is an integer number distributed evenly on [100, 600]. Job

budget varies in the way that some of jobs can pay as much as 160% of base cost

whereas some may require a discount. Every request contains a specification of a

custom criterion which is one of the following: job execution runtime or overall
execution cost.

During each experiment a VO resource domain and a job batch were generated

and the following scheduling algorithms were simulated and studied.

First we ran a conservative backfilling algorithm BFs to obtain an exemplary job-

flow scheduling solution. Conservative backfilling consequently starts each job as

soon as possible on condition it does not delay execution of higher priority jobs. Next,

we ran a conservative backfilling modification BFf , which instead of minimizing

jobs’ start times, performs jobs’ finish time minimization with the same restriction

to delay high priority jobs. For this purpose we used AEP algorithm with a finish

time minimization criterion to find and allocate suitable resources for each job.

Finally we performed anticipation scheduling procedure ANT with a C → max,

limUa = 10% policy and different approximation coefficient valuesKt ∈ {0, 0.1, 0.5,
1, 1.1, 1.5, } (see Sect. 3.4).

4.2 Simulation Results

More then 2000 scheduling cycles were simulated to obtain average job-flow schedul-

ing results for BFs,BFf and ANT . Figures 1 and 2 show average job-flow starting and

finishing times as a function of Kt parameter.

First it should be noted that BFf algorithm at average provided 2% earlier jobs

start times and 7% earlier finish times compared to a simple BFs implementation.

Thus, considered backfilling modification BFf provides an even higher scheduling

standard for an anticipation scheme. At the same time ANT provided earlier jobs

Fig. 1 Simulation results: average job execution start time
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Fig. 2 Simulation results: average job execution finish time

Fig. 3 Simulation results: average job execution cost

finishing times compared to BFs for all 0 < Kt ≤ 1. When Kt > 1 by Kt definition

ANT jobs finish times are as expected longer then in a reference backfilling solution.

It can be observed on Figs. 1 and 2 that by decreasing Kt in ANTjob-flow average

start and finish times are decreasing and tends to BFf result. In an extreme case when

Kt = 0 and no job-flow optimization is performed, BFf advantage is less then 1%.

With 0 < Kt ≤ 1 values ANT with a 2–7% longer job-flow finishing time is still able

to perform job-flow scheduling optimization (Figs. 3 and 4).

Figure 3 shows average jobs execution cost for jobs with a cost minimization

(ANTC) and runtime minimization (ANTT ) criteria obtained by ANT and BFf . As

expected with Kt = 0 ANTC,ANTT and BFf have the same jobs execution cost as no

job-flow optimization is performed by ANT . However when 0 < Kt ≤ 1 ANT allo-

cates resources according to scheduling policies and hence ANTC jobs has 1–2% less

execution cost compared to backfilling and 2–4% less compared to ANTT . A similar

picture is presented on Fig. 4 for an average jobs’ execution runtime. With a rela-
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Fig. 4 Simulation results: average job execution runtime

tively small values Kt < 0.8 ANTT provides up to 6% shorter jobs runtime compared

to backfilling and 20% shorter compared to ANTC jobs. With increasing Kt ANTT
advantage over backfilling increases and reaches 22% when Kt = 1.5.

Summarizing the results, anticipation scheduling algorithm is able to perform an

efficient and fair resources allocation and provide competitive job-flow execution

completion time. This achieved by a replication procedure which uses backfilling

and CSS scheduling results combination as a reference target solution.

5 Conclusions and Future Work

In this paper we study the problem of a fair job batch scheduling with a relatively

limited resources supply. We introduce a heuristic scheduling scheme which uses

combination of a fair share scheduling policy with a common backfilling algorithm

as a reference to allocate a feasible accessible solution.

Computer simulation was performed to study anticipation scheduling scheme and

to evaluate its efficiency. The obtained results show that the new heuristic approach

provides flexible solutions for different fair scheduling scenarios while job-flow exe-

cution time is only 2–7% longer compared to backfilling.

Future work will be focused on replication algorithm study and its possible appli-

cation to fulfil complex user preferences expressed in a resource request.
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