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Preface

Welcome to the proceedings of QEST 2017, the 14th International Conference on
Quantitative Evaluation of Systems. QEST is a leading forum on quantitative evaluation
and verification of computer systems and networks, through stochastic models and mea-
surements. This year’s QEST was held in Berlin, Germany, and collocated with the 28th
Conference on Concurrency Theory (CONCUR 2017), the 15th International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS 2017), and the 14th
European Performance Engineering Workshop (EPEW 2017).

As one of the premier fora for research on quantitative system evaluation and
verification of computer systems and networks, QEST covers topics including classic
measures involving performance and reliability, as well as quantification of properties
that are classically qualitative, such as safety, correctness, and security. QEST wel-
comes measurement-based studies as well as analytic studies, diversity in the model
formalisms and methodologies employed, as well as development of new formalisms
and methodologies. QEST also has a tradition in presenting case studies, highlighting
the role of quantitative evaluation in the design of systems, where the notion of system
is broad. Systems of interest include computer hardware and software architectures,
communication systems, embedded systems, infrastructural systems, and biological
systems. Moreover, tools for supporting the practical application of research results in
all of the aforementioned areas are also of interest to QEST. In short, QEST aims to
encourage all aspects of work centered around creating a sound methodological basis
for assessing and designing systems using quantitative means.

This year’s edition of QEST comes with the novelty of special sessions on frontier
topics in the current research landscape. The two topics selected this year are Smart
Energy Systems over the Cloud and Machine Learning and Formal Methods.

The Program Committee (PC) consisted of 33 experts and we received a total of 58
submissions. Each submission was reviewed by three reviewers, either PC members or
external reviewers. Based on the reviews and the PC discussion phase, 20 full papers
and 4 tool demonstration papers were selected for the conference program. The two
special topics, Smart Energy Systems over the Cloud and Machine Learning and
Formal Methods, attracted several submissions, leading to two special sessions of three
papers each.

The program was greatly enriched with the QEST keynote talk of Romualdo
Pastor-Satorras (University of Catalunya, Spain), a joint keynote talk with Formats
2017 of Morten Bisgaard (GomSpace, Denmark) and the joint keynote talk with
Concur 2017 and Formats 2017 of Hongseok Yang (University of Oxford, UK). We
believe the overall result is a high-quality conference program of interest to QEST 2017
attendees and other researchers in the field.

We would like to thank a number of people. Firstly, thanks to all the authors who
submitted papers, as without them there simply would not be a conference. In addition,
we would like to thank the PC members and the additional reviewers for their hard



work and for sharing their valued expertise with the rest of the community, as well as
EasyChair for supporting the electronic submission and reviewing process. We are also
indebted to Alfred Hofmann and Anna Kramer for their help in the preparation of this
LNCS volume, and we thank Springer for kindly sponsoring the prize for the best
paper award. Also thanks to the Local Organization Chair and General Chair,
Katinka Wolter, for her dedication and excellent work. Finally, we would like to thank
Jane Hillston, chair of the QEST Steering Committee, for her guidance throughout the
past year, as well as the members of the QEST Steering Committee.

We hope that you find the conference proceedings rewarding and will consider
submitting papers to QEST 2018.

July 2017 Nathalie Bertrand
Luca Bortolussi
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Extending Parikh’s Theorem to Weighted
and Probabilistic Context-Free Grammars

Vijay Bhattiprolu1, Spencer Gordon2(B), and Mahesh Viswanathan2

1 Carnegie Mellon University, Pittsburgh, PA 15213, USA
vpb@cs.cmu.edu

2 University of Illinois at Urbana-Champaign, Urbana 61801, USA
{slgordo2,vmahesh}@illinois.edu

Abstract. We prove an analog of Parikh’s theorem for weighted
context-free grammars over commutative, idempotent semirings, and
exhibit a stochastic context-free grammar with behavior that can-
not be realized by any stochastic right-linear context-free grammar.
Finally, we show that every unary stochastic context-free grammar
with polynomially-bounded ambiguity has an equivalent stochastic right-
linear context-free grammar.

1 Introduction

Two words u, v over an alphabet Σ are said to be Parikh equivalent, if for each
a ∈ Σ, the number of occurrences of a in u and v are the same. The Parikh image
of a language L, is the set of Parikh equivalence classes of words in L. One of the
most celebrated results in automata theory, Parikh’s theorem [27], states that
for any context-free language L, there is a regular language L′ such that the
Parikh images of L and L′ are the same. For example, the context-free language
{anbn | n ≥ 0} has the same Parikh image as the regular language (ab)∗; both
the Parikh images only consist of those equivalence classes where the numbers
of as is equal to the number of bs. An important and immediate consequence
of this result is that every context-free language over the unary alphabet is
in fact regular. Parikh’s theorem has found many applications—in automata
theory to prove non-context-freeness of languages [13], decision problems for
membership, universality and inclusions involving context-free languages and
semi-linear sets [11,17–19]; in verification of subclasses and extensions of counter
machines [8,11,14,15,20,23,33,35,37]; automata and logics over unranked trees
with counting [2,34]; PAC-learning [23].

Weighted automata [10,32] are a generalization of classical automata (finite
or otherwise) in which each transition has an associated weight from a semiring.
Recall that a semiring is an algebra with two operations ⊕ and ⊗ such that
⊕ is a commutative monoid operation, ⊗ is a monoid operation, ⊗ distributes

V. Bhattiprolu—This work was started while this author was at the University of
Illinois, Urbana-Champaign.
M. Viswanathan—Partially suported by NSF CNS 1314485.

c© Springer International Publishing AG 2017
N. Bertrand and L. Bortolussi (Eds.): QEST 2017, LNCS 10503, pp. 3–19, 2017.
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4 V. Bhattiprolu et al.

over ⊕, and the identity of ⊕ is an anhilator for ⊗. Unlike classical automata
that compute Boolean-valued functions over words, weighted automata compute
more general functions over words—the weight of an accepting computation is
the product of the weights of its transitions, and the weight of a word is the
sum of the weights of all its accepting computations. Since the seminal paper of
Schützerberger [32], weighted automata have inspired a wealth of extensions and
further research (see [10] for a recent handbook compilation). Weighted automata
have found applications in verification [5,6,9,24], reasoning about competitive
ratio of online algorithms [1], digital image compression [7,16,21,22], in speech-
to-text processing [4,25,26], and data flow analysis [30,31]. A special case of
weighted automata are probabilistic automata [28,29] that model randomized
algorithms and stochastic uncertainties in the system environment.

In this paper, we investigate whether Parikh’s theorem can be generalized to
the weighted case. In particular we investigate if for any weighted context-free
grammar G there is a weighted right-linear grammar G′ such that for any Parikh
equivalence class C, the sum of the weights of words in C under G and G′ is
the same. It is easy to see that if the weight domain is not commutative (i.e., ⊗
is not a commutative operation) then Parikh’s theorem does not hold. Thus we
focus our attention on commutative weight domains.

Our first result concerns weight domains that are additionally idempotent,
which means that ⊕ is an idempotent operation. A classical example of such a
semiring is the min-plus or tropical semiring over the natural numbers where min
is the “addition” operation, and + is the “product” operation. We show that
Parikh’s theorem does indeed hold for weighted automata over commutative,
idempotent semirings.

Next, we show that our assumption about idempotence of semirings is nec-
essary. In particular, we give an example of a stochastic context-free grammar
G over the unary alphabet such that the function computed by G cannot be
realized by any stochastic right linear grammar.

Our last result concerns unary grammars that are polynomially ambiguous.
Recall that a grammar is polynomially ambiguous if there is a polynomial p such
that on any word of length n in the language, the number of derivation trees for
the word is bounded by p(n). We prove that Parikh’s theorem extends for such
grammars. Specifically, we show that, over the unary alphabet, any probability
function realized by a stochastic context-free grammar can also be realized by
a right-linear grammar. Though we present this result in the context of sto-
chastic grammars, the proof applies to any polynomially ambiguous weighted
context-free grammar over a semiring that is commutative, but not necessarily
idempotent.

The rest of the paper is organized as follows. We introduce the basic mod-
els and notation in Sect. 2. The Parikh’s theorem for weighted automata over
commutative, idempotent semirings is presented in Sect. 3. In Sect. 4, we present
an example unary stochastic context-free grammar, and show that there is no
stochastic right-linear grammar that is equivalent to it. Section 5 contains our
proof for Parikh’s theorem for polynomially ambiguous grammars. Eventhough
this proof is presented in the context of stochastic grammars, it is easy to see
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that it extends to any weighted context free grammar over a commutative (but
not necessarily idempotent) semiring. Finally, we present our conclusions and
directions for future work in Sect. 6.

2 Preliminaries

Strings. Let us fix a finite string/word w ∈ Σ∗ over Σ. For a subset Γ ⊆ Σ, w�Γ
will denote the string over Γ obtained by removing the symbols not in Γ from w.
The Parikh map, or Parikh image, of w ∈ Σ∗, denoted by Pk(w), is a mapping
from Σ to N, such that for a ∈ Σ, Pk(w)(a) is the number of occurrences of a
in w. The Parikh equivalence class of w, [w]Pk = {w′ | Pk(w′) = Pk(w)}, is
the set of all words with the same Parikh image as w. We can extend the Parikh
map to languages L ⊆ Σ∗, defining Pk(L) � {Pk(w) | w ∈ L}.

Context Free Grammars. We will consider context free grammars in Greibach
Normal Form . Formally (in this paper) a context-free grammar is G =
(V,Σ,P, S), where V and Σ are disjoint sets of variables (or non-terminals) and
terminals, respectively; S ∈ V is the start symbol; and P ⊆ V × ΣV∗ is a finite
set of productions where each production is of the form A → aβ with a ∈ Σ
and β ∈ V∗. Without loss of generality, we assume that every production in
the grammar is used in some derivation from S to a string in Σ∗. A sentence
is a string in (Σ ∪ V)∗. A right-linear grammar is a context-free grammar
where the productions have at most one non-terminal on the right-hand side,
i.e., P ⊆ V × (Σ({ε} ∪ V)). It is well known that a language is generated by a
right-linear grammar if and only if it is regular.

We will find it convenient to partition the variables of a grammar into those
that have exactly one derivation tree and those that have more than one. For-
mally, the set of single-derivation variables X ⊆ V is the smallest set con-
taining all variables A with exactly one production of the form A → a (with
a ∈ Σ) and having the property that if a variable A has exactly one production
of the form A → aα where a ∈ Σ and α ∈ X∗ then A ∈ X. The remaining
variables, i.e. Y = V \ X, are multiple-derivation variables.

Prioritized leftmost derivations. In this paper we will consider special derivation
sequences of a context-free grammar that expand the leftmost variable while
giving priority to single-derivation variables. We call these prioritized leftmost
(PLM) derivations, and we define them precisely next.

Definition 1. Consider a context-free grammar G = (V,Σ,P, S), where the
non-terminals V have been partitioned into the set of single-derivation variables
X and multiple-derivation variables Y. We say that αAβ rewrites in a single
prioritized leftmost derivation step to αγβ (denoted as αAβ ⇒plm αγβ) iff
∃π ∈ P, π = (A → γ) such that either

1. A ∈ X, α ∈ (Σ ∪ Y)∗, and β ∈ V∗, or
2. A ∈ Y, α ∈ Σ∗, and β ∈ (Σ ∪ Y)∗
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In other words, either A is the leftmost single-derivation variable in αAβ, or
A is the leftmost multiple-derivation variable and αAβ has no single-derivation
variables. If α ⇒plm β by application of π, we’ll write α

π=⇒plm β. Note that if
α ⇒plm β there is always a unique π such that α

π=⇒plm β.
A prioritized leftmost (PLM) derivation is a sequence ψ = α1, . . . , αn such

that α1 ⇒plm α2 ⇒plm · · · ⇒plm αn. The set of all PLM derivations is denoted
Derplm(G).

The language generated by G is L(G) �
{

α ∈ Σ∗
∣∣∣ S ⇒∗

plm α
}

where ⇒∗
plm

is the reflexive and transitive closure of ⇒plm. Finally, the parse of a word
w ∈ (Σ ∪ V)∗, denoted parseG(w), is the set of all PLM derivations yielding w:

parseG(w) � {α1, . . . , αn ∈ Derplm(G) | α1 = S and αn = w} .

Example 1. We present a simple example to illustrate the definitions. Consider
the grammar G = ({S,B} , {a, b} ,P, S) where P consists of the following pro-
ductions: π1 = S → aSB, π2 = S → aB, and π3 = B → b. The set of
single-derivation variables is {B} and the set of multiple-derivation variables is
{S}. An example of a prioritized leftmost derivation is

S
π1=⇒plm aSB

π3=⇒plm aSb
π2=⇒plm aaBb

π3=⇒plm aabb

The language generated by this grammar is {anbn | n ≥ 1}.

Derivation trees. The set of all derivation trees for G will be denoted as ΔG.
For a derivation tree τ , a node n in τ , and a path p from the root in τ , 	(τ),
	(n) and 	(p) will denote the label of the root, the node n, and the node reached
by path p in τ , respectively. For any node n in a tree τ and path p from the
root, we denote the subtree rooted at n by τ(n), and the subtree rooted at the
node reached by path p by τ(p). The frontier of a tree τ , denoted Fr(τ) is the
sentence 	(n1)	(n2) . . . 	(nk) where n1, . . . , nk are the leaves of τ in left-to-right
order.

For any variable A ∈ V, ΔG(A) � {τ ∈ ΔG | 	(τ) = A} is the subset
of derivation trees rooted at A. A tree τ for which Fr(τ) ∈ Σ∗ is called
a complete derivation tree , and the set of all complete derivation trees
rooted at A is ΔΣ

G(A) � {τ ∈ ΔG(A) | Fr(τ) ∈ Σ∗}. The set of all complete
derivation trees is ΔΣ

G � {τ ∈ ΔG | Fr(τ) ∈ Σ∗}. A tree τ ∈ ΔG(A) is said
to be an A-pumping tree if Fr(τ)�V = A. The set of A-pumping trees is
Δp

G(A) � {τ ∈ ΔG(A) | Fr(τ)�V = A}. The set of all pumping trees is given
by Δp

G = {τ ∈ ΔG | Fr(τ)�V ∈ V}.

Remark 1. In a context-free grammar (where all productions are “useful”), every
single-derivation variable is the root of exactly one complete derivation tree, and
every multiple-derivation variable is the root of at least two complete derivation
trees.
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Tree Notation. We will use the following notation on derivation trees. Let τ ∈
ΔG, n be a node in τ , and p be a path from the root in τ . The leftmost child
of the node reached by path p, will be the one reached by the path p · 0 with
the other children corresponding to the paths p · 1, p · 2, etc. For τ1 ∈ ΔG(	(n))
(τ1 ∈ ΔG(	(p))), τ [n �→ τ1] (τ [p �→ τ1]) denotes the derivation tree obtained by
replacing τ(n) (τ(p)) by the tree τ1. We denote by remp(τ) the tree obtained
by replacing τ(p) by the root of τ(p), i.e., by “removing” all the children of
p. Finally, for a rule A → aα with α = A1A2 · · · Ak, and trees τi ∈ ΔG(Ai),
Aaα(τ1, τ2, . . . τk) denotes the tree with root labeled A and children a, τ1, . . . τk

from left-to-right. Thus, Aa denotes the tree with root labeled A and one child
labeled a.

Cuts. Observe that, for any string α ∈ (V ∪ Σ)∗, there is a bijection between
derivation trees τ with Fr(τ) = α and PLM derivations in parseG(α). A set of
nodes separating the root of τ from all of the leaves in τ is a cut of τ . Now
consider the unique PLM derivation Ψ corresponding to τ . Every sentence in
Ψ corresponds to a cut C in τ . We call any such C a prioritized leftmost
(PLM) cut of τ . For a set of trees T and a variable A ∈ V, the Parikh
supremum of variable A in T , denoted by supPk(A, T ), is the maximum number
of occurrences of A in any PLM cut of any tree τ ∈ T . Observe that any PLM
derivation sequence corresponding to a tree τ in T can have at most supPk(A, T )
occurrences of the variable A in any sentence.

Ambiguity. We will say that a set of trees Γ is ambiguous if there are
two distinct trees τ1, τ2 such that Fr(τ1) = Fr(τ2); if Γ is not ambiguous,
we say it is unambiguous. The ambiguity function μG : N → N for a
grammar G is a function mapping every natural number n to the maximal
number of PLM derivations which a word of length n may have. Formally,
μG(n) = maxw∈L(G),|w|=n |parseG(w)|. A grammar is said to have exponen-

tial ambiguity if its ambiguity function is in 2Θ(n), and it is said to have
polynomially-bounded ambiguity , or to be polynomially ambiguous, if its
ambiguity function is in O(nd) for some d ∈ N0. Any grammar G has either
exponential ambiguity or polynomially-bounded ambiguity [36]. The following
characterization of polynomial ambiguity was proved in [36].

Theorem 1 [36]. A context-free grammar G has polynomially-bounded ambi-
guity if and only if Δp

G is unambiguous.

We conclude the preliminaries by recalling a classical result due to
Parikh [27].

Theorem 2 (Parikh’s Theorem [27]). For every context-free grammar G,
there is a right-linear context-free grammar G′ such that Pk(L(G)) = Pk(L(G′)).

2.1 Weighted and Stochastic Context-Free Grammars

Weighted context-free grammars define a function that associates a value in a
semiring with each string. Stochastic context-free grammars are special weighted
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context-free grammars that associate probabilities with strings. We recall these
classical definitions in this section. We begin by defining a semiring.

Semiring. A semiring is a structure D = (D,⊕,⊗, 0D, 1D) where (D,⊕, 0D)
is a commutative monoid with identity 0D, (D \ {0D} ,⊗, 1D) is a monoid with
identity 1D, ⊗ distributes over ⊕ (i.e., (a ⊕ b)⊗ c = (a ⊗ c)⊕(b ⊗ c) and a ⊗(b ⊕
c) = (a ⊗ b)⊕ (a ⊗ c), for every a, b, c ∈ D), and 0D is an annhilator for ⊗ (i.e.,
a ⊗ 0D = 0D ⊗ a = 0 for every a ∈ D). We abuse notation and use D to denote
the semiring and the underlying set where the meaning is clear from context.
We define D0 = D \ {0D}. When considering an abstract semiring D, we’ll write
0D and 1D for 0D and 1D respectively. An idempotent semiring satisfies the
additional requirement that for all a ∈ D, a⊕a = a. A commutative semiring
is one where ⊗ is commutative, i.e., (D \ {0D} ,⊗, 1D) is a commutative monoid
as well.

Example 2. Classical examples of a semiring are the tropical semiring
and the probability semiring. The tropical or min-plus semiring is (N ∪
{∞} ,min,+,∞, 0), where ∞ is taken to be larger than everything in N. It is
commutative and idempotent as min(a, a) = a for any a. The probability semi-
ring is ([0, 1],+,×, 0, 1), where [0, 1] is the set of reals between 0 and 1. It is
commutative as × is commutative. However, since the addition of two numbers
is not idempotent, the probability semiring is not idempotent.

Weighted context-free grammars. A weighted context-free grammar is a pair
(G,W) where G = (V,Σ,P, S) is a context-free grammar, and W : P → D assigns
a weight from D to each production in P, for some semiring D. (Note that W
may assign 0D to some productions in P.) The weight of a PLM derivation
ψ = α1

π1=⇒plm α2
π2=⇒plm · · · πn−1===⇒plm αn of G, is given by W(ψ) � ⊗n−1

i=1 W(πi).
For w ∈ Σ∗, W(w) � ⊕ψ∈parseG(w) W(ψ); we assume that if parseG(w) = ∅ (i.e.,
w �∈ L(G)) then W(w) = 0D. The semantics of a weighted grammar (G,W),
denoted [[G]]W : Σ∗ → D, is the function mapping each word to its weight in G,
i.e., [[G]]W(w) � W(w).

Example 3. Let G be the grammar described in Example 1. Consider a weight
function W that assigns weights from the tropical semiring, with the weight of
every production π ∈ P being equal to 1. Then the semantics of (G,W) is given
as [[G]]W(anbn) = 2n and [[G]]W(w) = 0, when w �∈ L(G).

Definition 2. The Parikh image of a weighted context-free grammar (G,W),
written as Pk [[G]]W is function defined as

Pk [[G]]W(w) �
⊕

w′∈[w]Pk

[[G]]W(w′)
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Stochastic Context-free Grammars. A stochastic context-free grammar is a
weighted context-free grammar (G = (V,Σ,P, S),W) where the weight domain
is the probability semiring ([0, 1],+,×, 0, 1), and for any A ∈ V and a ∈ Σ, we
have ∑

α∈V ∗:(A→aα)∈P

W(A → aα) ∈ [0, 1] .

3 A Parikh’s Theorem for Weighted CFGs

The main result of this section is that for any weighted context-free grammar
over an idempotent, commutative semiring (like the tropical semiring), there is a
Parikh equivalent weighted right-linear context-free grammar. Thus, this obser-
vation extends the classical result to weighted CFGs over idempotent semirings.

Theorem 3 (Weighted Parikh’s Theorem). For every weighted context-
free grammar (G,W) over an idempotent, commutative semiring, there exists a
Parikh-equivalent weighted right-linear grammar (G∗,W∗), that is, we have

Pk [[G]]W = Pk [[G∗]]W∗ .

Proof. The full proof can be found in [3]. Here we present the broad ideas.
Let G = (V,Σ,P, S) be a context-free grammar and let W : P → D be a

weight function over a commutative, idempotent weight domain D. Consider the
following homomorphism h : P∗ → Σ∗ defined as h(π) = a, where π = A →
aα ∈ P.

We begin by first constructing a weighted context-free grammar (G1,W1)
over the alphabet P, whose image under h gives us G. Formally, G1 =
(V,P,P1, S) has as productions P1 = {A → πα | ∃a ∈ Σ. π = A → aα ∈ P}.
In addition, take W1 to be W1(A → πα) = W(π). It is easy to see that
h(L(G1)) = L(G) by construction. Moreover, given W1 and W, we can con-
clude [[G]]W(w) =

⊕
ω∈P∗:h(ω)=w [[G1]]W1(ω).

By Parikh’s theorem (Theorem 2), there is a right-linear grammar G2 =
(V2,P,P2, S2) such that Pk(L(G2)) = Pk(L(G1)). Define the weight function
W2 as W2(A → πB) = W(π) to give us the weighted CFG (G2,W2). Using the
fact that ⊗ is commutative, and ⊕ is idempotent, we can prove that Pk [[G1]]W1 =
Pk [[G2]]W2 .

Finally, we consider the context free grammar G3 obtained by “applying
the homomorphism h” to G2. Formally, G3 = (V2,Σ,P3, S2), where P3 =
{A → h(π)B | A → πB ∈ P2}. The weight function W3 is defined in such a way
that weight of A → aB is the sum of the weights of all productions A → πB,
where h(π) = a, i.e.,

W3(A → aB) =
⊕

π:h(π)=a

W2(A → πB).
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(G3,W3) and (G2,W2) share the same relationship as (G,W) and (G1,W1).
That is, we have h(L(G2)) = L(G3) and [[G3]]W3(w) =

⊕
ω∈P∗:h(ω)=w [[G2]]W2(ω).

(G3,W3) is the desired weighted grammar, i.e., Pk [[G3]]W3 = Pk [[G]]W. ��
Corollary 1. If (G,W) is a weighted context-free grammar over an idempotent,
commutative weight domain and a unary alphabet, then there exists a weighted
right-linear context-free grammar (G′,W′) such that [[G′]]W′ = [[G]]W.

Example 4. Starting with the weighted grammar (G,W) from Example 3, the
construction used in the proof of Theorem3 would have P1 containing the fol-
lowing productions: S → π1SB, S → π2B, B → π3. The language of this
grammar is L(G1) =

{
πn

1 π2π
n+1
3

∣∣ n ≥ 0
}
.

One candidate for G2 would have as productions S → π1J, S → π2K,
J → π3S, and K → π3. The language is L(G2) = {(π1π3)nπ2π3 | n ≥ 0}.

In that case (G3,W3) would have productions and weights as follows:

W3(S → aJ) = 1 W3(S → aK) = 1
W3(J → bS) = 1 W3(K → b) = 1

The language of the underlying grammar would be L(G3) = {(ab)nab | n ≥ 0},
and

[[G3]]W3(w) =

{
2k if w = (ab)k for some k ≥ 1
0 otherwise

4 A Counterexample to Parikh’s Theorem for Stochastic
Grammars

Theorem 3 crucially relies on the semiring being idempotent. In this section, we
show that Theorem 3 fails to generalize if we drop the requirement of idempo-
tence. We give an example of a stochastic context-free grammar over the unary
alphabet that is not equivalent to any stochastic right-linear grammar. Before
presenting the example stochastic context-free grammar and proving the inex-
pressivity result, we recall some classical observations about unary stochastic
right linear grammars.

4.1 Properties of Unary Stochastic Right-Linear Grammars

Stochastic right-linear grammars satisfy pumping lemma type properties. Here
we recall such an observation for unary stochastic right-linear grammars.

Theorem 4 (Pumping Lemma). Let (G = (V, {a} ,P, S),W) be a stochastic
right-linear grammar over the unary alphabet. There is a number k, and real
numbers c0, c1, . . . ck with c0 + c1 + · · · + ck = 1 such that for every 	 ∈ N

[[G]]W(a�+k+1) =
k∑

i=0

ci [[G]]W(a�+i)
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Proof. The result is a consequence of the Cayley-Hamilton theorem and the fact
that 1 is an eigen value of stochastic matrices. We skip the proof as it is a
specialization of Theorem 2.8 in Chapter II.C in [28]. ��

Let (G,W) be a unary weighted context-free grammar. The generating func-
tion of such a grammar is P (x) =

∑∞
k=0 [[G]]W(ak)xk. We conclude this section

by observing that if G is right-linear, then its generating function must be a
rational function, i.e., P (x) is an algebraic fraction where both the numerator
and denominator are polynomials.

Theorem 5. Let (G,W) be a stochastic right-linear grammar over the unary
alphabet. Then the generating function P (x) =

∑∞
k=0 [[G]]W(ak)xk is a rational

function.

Proof. Observe that Theorem 4 says that the sequence 〈[[G]]W(an)〉n∈N
satisfies

a linear homogeneous recurrence with constant coefficients. Thus, its generating
function must be rational. ��

4.2 The Counterexample

We now present a unary weighted CFG and show that there is no weighted
right-linear CFG that is equivalent to it. Consider the grammar G∗ =
({S} , {a} , {(S → a), (S → aSS)} , S). Let p be some number in (0, 1). The
weight function W∗ is defined as follows: W∗(S → a) = 1 − p, and W∗(S →
aSS) = p. Taking cn to be the nth Catalan number, we can see that
[[G∗]]W∗(a2k+1) = ckpk(1 − p)k+1; this is because the probability of any PLM
derivation for a2k+1 is pk(1−p)k+1 and there are ck elements in parseG∗(a2k+1).
Taking bk = [[G∗]]W∗(ak), we have

bk =

{
c(k−1)/2p

(k−1)/2(1 − p)(k−1)/2+1 if k is odd
0 otherwise

Recall that the generating function for the Catalan numbers, C(z) =
∑

k≥0 ckzk,

is given by C(z) = 1−√
1−4z

2z . Based on the above observations, the generating
function for the grammar (G∗,W∗), P (z) =

∑
k≥0 bkzk can be written as follows.

P (z) =
∑
k≥0

bkzk =
∑
k≥0

b2k+1z
2k+1

= z
∑
k≥0

b2k+1

(
z2

)k
= z

∑
k≥0

ckpk(1 − p)k+1
(
z2

)k

= z(1 − p)
∑
k≥0

ck

(
z2p(1 − p)

)k

= z(1 − p)C(z2p(1 − p))
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= z(1 − p)
1 − √

1 − 4z2p(1 − p)
2z2p(1 − p)

=
1

2zp

(
1 −

√
1 − 4z2p(1 − p)

)

Having identified an expression for the generating function for (G∗,W∗), we
are ready to prove that there is no Parikh equivalent right-linear grammar for
(G∗,W∗). First notice that if a weighted grammar (G,W) is over the unary
alphabet, then [[G]]W = Pk [[G]]W. Therefore, to establish the result of this
section, it suffices to prove the statement that there is no right-linear gram-
mar that is equivalent to (G∗,W∗); this is the content of the next theorem.

Theorem 6. There is no stochastic right-linear grammar (G,W) such that
[[G]]W = [[G∗]]W∗ .

Proof. Given Theorem 5, it suffices to prove that the generating function P (z) for
(G∗,W∗) is not rational. Taking Q(z) =

√
1 − 4z2p(1 − p), we see that P (z) =

1
2zp (1 − Q(z)). Given this relationship, we can conclude that if P (z) is rational
function, then so is Q(z). Thus, our goal will be to prove that Q(z) is not a
rational function.

Assume for contradiction that Q(z) is rational. Then Q(z) = f(z)/g(z) where
f and g are both polynomials with greatest common divisor having degree 0.
Then Q2(z) = f2(z)/g2(z) and Q2(z)g2(z) =

(
1 − 4z2p(1 − p)

)
g2(z) = f2(z).

Thus, Q2(z) must divide f2(z). We observe that Q2(z) = (1−2z
√

p(1 − p))(1+
2z

√
p(1 − p)) is square-free so Q2(z) must divide f(z), and f(z) = Q2(z)h(z) for

some polynomial h. Substituting for f(z) in Q2(z)g2(z) = f2(z) and rearranging
we obtain Q2(z)g2(z) = (Q2(z))2h2(z) =⇒ g2(z) = Q2(z)h2(z), and by the
same argument as above, Q2(z) divides g(z). Thus, Q2(z) divides both f(z) and
g(z). Since Q2(z) is not a degree 0 polynomial, we contradict the assumption
that the greatest common divisor of f and g has degree 0. ��

5 Parikh’s Theorem for Unary Polynomially Ambiguous
Stochastic Grammars

The weighted stochastic context-free grammar (G∗,W∗) in Sect. 4.2 is expo-
nentially ambiguous; the ambiguity function μG∗ is bounded by the Catalan
numbers. Exponential ambiguity turns out to be critical to construct such coun-
terexamples. In this section, we prove that any unary stochastic context-free
grammar with polynomial ambiguity is equivalent to a unary stochastic right-
linear grammar. The proof of this result relies on an observation that in any PLM
cut in a complete derivation tree of a unary polynomially ambiguous grammar,
the number of occurences of any variable is bounded by a constant dependent
on the grammar. The unary alphabet assumption is crucial in obtaining such a
bound (Lemma 3). In the next two subsections we present a proof of this obser-
vation by first bounding the number of occurrences in cuts of pumping trees
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and then using it to bound it in complete derivation trees. In Sect. 5.3, we then
present the construction of the right-linear grammar. Though we present this
result in the context of stochastic grammars, it applies to any weighted CFG
over a commutative (but not necessarily idempotent) semiring.

In the rest of this section, let us fix a unary, polynomially ambiguous, context-
free grammar G = (V, {a} ,P, S) and a stochastic weight function Pr (for proba-
bility). We assume that the set of variables V is partitioned into single-derivation
variables X and multiple-derivation variables Y. As we have done throughout this
paper, we assume that every production in G is “useful”, that is, is used in some
complete derivation tree whose root is labeled S. Finally we will assume that m
is the maximum length of the right-hand side of any production in P.

5.1 Parikh Suprema in Pumping Trees

In this section we will bound the number of times a variable can appear in any
PLM cut of a pumping tree in G. We begin by observing some simple properties
about single-derivation variables X and multiple-derivation variables Y. Since
every production in the grammar is useful, we can conclude that there is a
unique complete derivation tree with root A if A ∈ X, and that there are at least
two complete derivation trees with root A if A ∈ Y, i.e., |ΔΣ

G(A)| = 1 if A ∈ X,
and |ΔΣ

G(A)| > 1 if A ∈ Y. Next, for A ∈ X, the unique τ ∈ ΔΣ
G(A) has the

following properties: (a) no node is labeled by a variable in Y; (b) each variable
in X labels at most one node along any path in τ . Property (b) holds because
if A ∈ X has a derivation A ⇒∗

plm αAβ, then A cannot have any complete
derivation tree and it would be useless. This also means that any pumping tree
τ ∈ Δp

G must have 	(τ) ∈ Y. These properties allow us to bound the size of the
unique complete derivation for variable A ∈ X.

Lemma 1. For any A ∈ X, the unique tree τ ∈ ΔΣ
G(A) has size at most m|X|.

Proof. Since only variables in X can appear as labels in τ and no variable appears
more than once in any path, the height of τ is ≤ |X|. Finally, since any node has
at most m children, we get the bound on the size of τ . ��

Next we prove that Lemma 1 allows one to bound the number of times any
single-derivation variable appears in any PLM cut of a pumping tree.

Lemma 2. For any A ∈ Y and B ∈ X, supPk(B,Δp
G(A)) ≤ m|X|+1.

Proof. Let τ ∈ Δp
G(A) be an arbitrary A-pumping tree, where A ∈ Y. Let C be

an arbitrary PLM cut of τ . We will prove a slightly stronger statement; we will
show that the total number of single-derivation variables in C is ≤ m|X|+1. This
will bound the Parikh supremum for any single-derivation variable.

Without loss of generality, assume that C has at least one node with label in
X. Amongst all nodes in C that are labeled by a variable in X, let n be the node
that is closest to the root, and if there are multiple such nodes, take n to be the
leftmost one. From the definition of PLM cuts, the following property holds for
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C and n: (a) any node to right of n in C that is labeled by a variable in X must
be a sibling of n, and (b) all nodes to the left of n in C labeled by variables of
X must be descendents of some left sibling (say n1) of n that is also labeled by
a variable in X. Thus, the number of nodes to the right of n (including n) in C

labeled by X is at most m, and, by Lemma 1, the number of nodes to the left of
n in C labeled by X is at most m|X|. Putting these together, the total number
of nodes in C labeled by some variable in X is at most m + m|X| ≤ m|X|+1. ��
Lemma 3. For any A ∈ V, and B ∈ Y, supPk(B,Δp

G(A)) ≤ 2.

Proof. Let τ be a A-pumping tree, for some variable A. Note that A must be a
multiple-derivation variable because of property (b) before Lemma1. Let C be
any PLM cut of τ . Since τ is an A-pumping tree it must contain A in its frontier.
Then there must be some node n in C such that the subtree τ(n) contains A
in its frontier. Let C = 	(n). Observe that C is a multiple-derivation variable
because a node labeled A ∈ Y is a descendent. Thus, there are two complete
derivation trees τC

1 , τC
2 with roots labeled C (Remark 1).

We’ll first show that there cannot be more than two occurrences of nodes
labeled C in C. Assume towards the contrary that there are at least three nodes
n1, n2, n3 in C with 	(n1) = 	(n2) = 	(n3) = C. Without loss of generality,
assume n1, n2, and n3 are in left-to-right order in τ and n ∈ {n1, n2, n3}. Since
n1, n2, n3 belong to a cut, they are not related by the ancestor/descendent rela-
tionship.

Let τ1 be the tree τ [n1 �→ τC
1 , n2 �→ τC

2 , n3 �→ τ(n)], and let τ2 be the
tree τ [n1 �→ τC

2 , n2 �→ τC
1 , n3 �→ τ(n)]. By construction, τ1 and τ2 are both

A-pumping trees with Fr(τ1) = Fr(τ2) and τ1 �= τ2. However, since G is poly-
nomially ambiguous, by Theorem1, the set of pumping trees is unambiguous,
giving us the desired contradiction.

Next, we show that there cannot be more than two nodes labeled B ∈ Y in
C, where B �= C. Assume that there are at least three nodes n1, n2, n3 in C with
	(n1) = 	(n2) = 	(n3) = B. Again assume n1, n2, and n3 are in left-to-right
order in τ . Further, since B ∈ Y, there are two complete derivation trees τB

1 and
τB
2 with root labeled B (Remark 1).

Observe that at least two nodes of {n1, n2, n3} must lie to one side of n in τ .
Without loss of generality we may assume that n1 and n2 are those nodes. Let
τ1 be the tree τ [n1 �→ τB

1 , n2 �→ τB
2 ], and let τ2 be the tree τ [n1 �→ τB

2 , n2 �→ τB
1 ].

Clearly, τ1, τ2 are A-pumping trees with Fr(τ1) = Fr(τ2), and τ1 �= τ2. ��

5.2 Parikh Suprema in Complete Derivation Trees

We will now use the results in Sect. 5.1 to bound the Parikh supremum of any
variable in a complete derivation tree of G. The key property we will exploit is
the fact that any complete derivation tree can be written as the “composition”
of a small number of pumping trees (see Fig. 1) such that any PLM cut is the
union of cuts in each of these pumping trees. The bounds on Parikh suprema
will then follow from the observations in Sect. 5.1.
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Fig. 1. A complete derivation tree for the grammar in Example 5 on the left and the
compressed tree data structure with removed pumping trees on the right.

We begin with some convenient notation. For a τ ∈ ΔG, let longestpath(τ)
denote the longest path from the root of τ to a node labeled 	(τ). If there are
multiple such paths, longestpath(τ) is the lexicographically-first path among
them. Note that longestpath(τ) can be ε if the root is the only node with label
	(τ) in τ . Let depth(τ) denote the length of the longest path from root to leaf
in τ .

We now describe two procedures compress and decompress. Let us fix a
complete derivation tree τ . The procedure compress returns a data structure of
pumping trees. These pumping trees are small in number and τ is the “compo-
sition” of these pumping trees. Let n be the lowest node in τ that has the same
label as the root. compress identifies the pumping tree obtained by removing
the children of n, and recursively compresses the subtrees rooted at the children
of n. Note that if n is the same as the root, then the pumping tree identified by
compress will just be the tree with one node.

compress(τ):

If τ = Aa for some A ∈ V, return τ
p ← longestpath(τ)
Let A, a and α be such that τ(p) = Aaα(τ(p · 1), . . . , τ(p · k))
τpump ← remp(τ)
Return [τpump, A → aα, compress(τ(p · 1)), . . . , compress(τ(p · k))]

The tree τ is the “composition” of pumping trees in the data structure
returned by compress. We describe this “composition operation” itself by an
algorithm decompress.

decompress(τc):

If τc = Aa for some A ∈ V, return τc

Let τc be of the form [τpump, A → aα, τ1
c , . . . , τk

c ]

τ ′ ← Aaα(decompress(τ1
c ), . . . , decompress(τk

c ))
Return τpump[longestpath(τpump) �→ τ ′]
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The following lemma characterizing the relationship between compress and
decompress is easy to see.

Lemma 4. For any complete derivation tree τ , τ = decompress(compress(τ)).

Example 5. Consider a grammar ({S,B,C} , {a} ,P, S) with productions

S → aSB|aBB|aB, B → aBC|a, C → a.

Consider the complete derivation tree shown on the left in Fig. 1. The output of
compress will be

[τ1, S → aBB, [τ2, B → a], Ba]

We will now show that the data structure returned by compress has a con-
stant number of pumping trees. Consider a call of compress(τ), where p is the
longestpath(τ). The key property that we exploit is the fact that the label 	(τ)
does not appear in the subtrees rooted at the children of p.

Lemma 5. For any complete derivation tree τ , the number of trees in the data
structure returned by compress(τ) is at most m|V|.

Proof. Let p = longestpath(τ), and let τ(p ·0), τ(p ·1), . . . , τ(p ·k) be the children
of τ(p). As observed before, the label 	(τ) does not appear in the subtrees τ(p ·
i). Thus, the depth of the recursion in compress is bounded by |V|. Finally,
observing that k ≤ m, we get the desired bound. ��

We are now ready to prove the main result of this section.

Lemma 6. For any variable A, supPk(A,ΔΣ
G) ≤ m|X|+|V|+1

Proof. By Lemma 5, we know that the number of trees in compress(τ) is at
most m|V|. Consider any PLM cut C of τ . Any node in C belongs to at most one
tree in compress(τ). Further for any τ1 ∈ compress(τ), C restricted to τ1 is a
PLM cut of τ1. Thus, C can be seen as the union of at most m|V| PLM cuts in
pumping trees. By Lemmas 2 and 3, the Parikh supremum of any variable in any
of these pumping trees is at most m|X|+1. These observations together establish
the bound. ��

5.3 Right-Linear SCFG for Polynomially Ambiguous SCFGs

For this section, let us fix k = m|V|+|X|+1. By Lemma 6, in any PLM derivation
of G, any variable appears at most k times at any step. Since k is a constant,
the right-linear grammar can simulate every PLM derivation of G by explicitly
keeping track of only k copies of any variable. This idea is very similar to the
one used in [12]. We now give the formal definition of the right-linear grammar
based on this intuition.

For a sentence α ∈ (Σ ∪ V)∗, we define �f(α) � α�Σα�Xα�Y. The stochastic
right-linear grammar (G1 = (V1, {a},P1, S1),Pr1) is formally defined as follows.
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1. V1 = {〈α〉 | α ∈ X∗Y∗such that for each A ∈ V. Pk(α)(A) ≤ k}. Thus, the
variables of G1 are sequences of single-derivation variables followed by
multiple-derivation variables from G in which each variable appears at most
k times.

2. S1 = 〈S〉
3. For any production π = (A → aβ) ∈ P and sentence α ∈ V∗ we define a

production
πα = (〈Aα〉 → a 〈�f(βα)〉)

corresponding to applying the production π as a PLM step from the sentence
Aα. The set P1 is defined as

P1 = {πα | π = (A → aβ) ∈ P ∧ 〈Aα〉 , 〈βα〉 ∈ V1}
4. Finally Pr1 is defined as Pr1(πα) = Pr(π) for all πα ∈ P1.

We first observe that (G1,Pr1) is a stochastic CFG. The proof is in [3]

Proposition 1. (G1,Pr1) is a stochastic CFG.

(G1,Pr1) is equivalent to (G,Pr). Its proof is in [3].

Theorem 7. For any unary, stochastic grammar (G,Pr) of polynomial ambi-
guity, there is a stochastic right-linear grammar (G1,Pr1) such that [[G]]Pr =
[[G1]]Pr1 .

6 Conclusions

In this paper we investigated whether Parikh’s theorem generalizes to weighted
automata. We proved that it does indeed when the weighted context-free gram-
mar is over a commutative, idempotent semiring. We showed that idempotence of
the weight domain is necessary by demonstrating that Parikh’s theorem does not
extend to unary, stochastic grammars. However, we proved that if the context-
free grammar is polynomially ambiguous, then idempotence of the weight domain
is not required for Parikh’s theorem to hold.

Our proof for Parikh’s theorem for commutative and idempotent semirings
extends (as is) to pushdown automata (as opposed to context-free grammars).
However, the same does not apply to our result for unary, polynomially ambigu-
ous grammars over non-idempotent rings. Our current proof subtly relies on the
“one state” property of context-free grammars. It would be interesting to see
how to generalize these ideas to the case of pushdown automata. Finally, sto-
chastic context-free grammars have a (weaker) semantics as language acceptors
— the grammar accepts a word if its weight is > 1

2 . Our results imply that every
unary language accepted by a polynomially ambiguous, stochastic context-free
grammar is also accepted by a probabilistic automata (with probability > 1

2 ).
It is open if this also holds when the grammar is exponentially ambiguous; our
counterexample in this paper only shows that there is no probabilistic automaton
that satisfies the stronger requirement that words are accepted with the same
probability.
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Abstract. Transient analysis of Markov Regenerative Processes
(MRPs) can be performed through the solution of Markov renewal equa-
tions defined by global and local kernels, which respectively character-
ize the occurrence of regenerations and transient probabilities between
them. To derive kernels from stochastic models (e.g., stochastic Petri
nets), existing methods exclusively address the case where at most one
generally-distributed timer is enabled in each state, or where regenera-
tions occur in a bounded number of events. In this work, we analyze the
state space of the underlying timed model to identify epochs between
regenerations and apply distinct methods to each epoch depending on
the satisfied conditions. For epochs not amenable to existing methods,
we propose an adaptive approximation of kernel entries based on par-
tial exploration of the state space, leveraging heuristics that permit to
reduce the error on transient probabilities. The case study of a polling
system with generally-distributed service times illustrates the effect of
these heuristics and how the approach extends the class of models that
can be analyzed.

Keywords: Non-markovian Petri Nets · Markov Regenerative Process ·
Enabling restriction · Stochastic state class · Non-deterministic analysis

1 Introduction

In quantitative evaluation of concurrent models, generally distributed (GEN)
durations support modeling validity but break the Markov property and rule
out efficient solution techniques for Continuous Time Markov Chains (CTMCs).
If the model guarantees that, always, with probability 1 (w.p.1), the Markov
property will be eventually satisfied at some regeneration point, then the under-
lying stochastic process belongs to the class of Markov Regenerative Processes
(MRPs) [12].
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MRPs attain a fortunate trade-off between expressivity of models and feasi-
bility of numerical solution, which is reduced to the evaluation of a global kernel
and a local kernel that characterize behavior in the sequencing of regeneration
points and in the epochs between them. However, numerical derivation of the
kernels has been solved only for some isolated sub-classes of MRP models [7].

Most works address the subclass where at most a single GEN timer is enabled
in each state (enabling restriction), so that each kernel component can be com-
puted by analyzing the CTMC subordinated to the activity interval of the active
GEN [1,6,9]. The method of supplementary variables [8,17] might in principle
encompass the case of multiple concurrently enabled GEN timers, but practi-
cal feasibility restrains applicability under the enabling restriction. Sampling at
equidistant time points [15,19] permits evaluation for models where all timers
have either deterministic (DET) or exponentially distributed (EXP) durations.

The method of stochastic state classes [18] enables quantitative evaluation
of stochastic processes with multiple concurrent GEN timers, possibly with
bounded support; in particular, for models that always reach a regeneration
within a bounded number of discrete events, which we call the bounded regener-
ation restriction, exact evaluation of kernels is performed enumerating stochastic
transient trees that cover the states between two subsequent regenerations [10].

For models that break both the enabling and the bounded regeneration
restriction, kernel components may be still defectively approximated by trun-
cation of stochastic transient trees [10], which may also serve to reduce com-
plexity for models under bounded regeneration. However, this faces an inherent
contrast. On the one hand, state space truncation has a different impact on the
final evaluation, depending on the probability of reaching truncation points. On
the other hand, when the analysis exploits regenerations to decompose state
space coverage, each epoch starts from a memoryless condition, which is not
able to distinguish whether the probability mass under analysis is relevant or
negligible.

In this paper, we exploit non-deterministic analysis to drive integration of
different solution techniques, exact and approximate, that are applicable to dif-
ferent regenerative epochs. To this end, we characterize the structure of the
state space through terminating and efficient non-deterministic analysis based on
the representation of timing domains with Difference Bounds Matrices (DBMs),
identifying regenerative epochs and solution techniques that can be applied for
kernel components corresponding to each regeneration (Sect. 3.1). This permits
integration of the consolidated technique of enabling restriction with exact and
approximate solution based on stochastic state classes (Sect. 3.2). Moreover, we
also introduce a novel technique that iteratively adapts the approximation of
each kernel component so as to optimize the impact of truncation on the defect
in the evaluation of transient probabilities (Sects. 3.3 and 3.4). The approach
permits to accurately evaluate transient probabilities of markings, and it is open
to further adaptation strategies and to integration of other solution techniques,
both numerical and simulative. Application is illustrated with reference to an
instance of the polling system problem [11,13] with generally distributed service
times and exhaustive service subordinated to a deterministic timeout (Sect. 4).
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To make the paper self-contained, we recall the formalism of Stochastic Time
Petri Nets (STPNs) and transient analysis of MRPs (Sect. 2). Finally, we draw
our conclusions and discuss future steps enabled (Sect. 5).

2 Preliminaries

2.1 Stochastic Time Petri Nets

Definition 1. An STPN is a tuple 〈P, T,A−, A+, A•,m0, U,EFT,LFT, F,W 〉:
P is the set of places; T is the set of transitions; A− ⊆ P × T , A+ ⊆ T × P ,
A• ⊆ P × T are the sets of precondition, postcondition, inhibitor arcs, respec-
tively; m0 ∈ N

P is the initial marking; U associates each transition t with an
update function U(t) : NP → N

P which, in turn, associates each marking with
a new marking; EFT : T → Q≥0 and LFT : T → Q≥0 ∪ {∞} associate each
transition with an earliest and a latest firing time, respectively; F associates
each transition t with a Cumulative Distribution Function (CDF) F (t) over
[EFT (t), LFT (t)]; and, W : T → R>0 associates each transition with a weight.

A place p is an input, output, inhibitor place for a transition t if 〈p, t〉 ∈ A−,
〈t, p〉 ∈ A+, 〈p, t〉 ∈ A•, respectively; precondition and postcondition arcs are
represented by arrows, while inhibitor arcs by dotted arrows. A transition t is
immediate (IMM) if EFTt = LFTt = 0 and timed otherwise; a timed transition
t is exponential (EXP) if Ft(x) = 1−e−λx over [0,∞] with λ ∈ R>0, and general
(GEN) if it has a non-exponential CDF; a GEN transition t is deterministic
(DET) if EFTt = LFTt > 0 and distributed otherwise; for each distributed
transition t, we assume that Ft is absolutely continuous and thus expressed as the
integral function of a Probability Density Function (PDF) ft, ruling out mixed
(continuous and discrete) distributions. IMM, EXP, GEN, DET transitions are
represented by thin black, thick white, thick black, thick gray bars, respectively.
Update functions and weights are annotated next to transitions as “place ←
expression” and “weight = value”, respectively.

The state of an STPN is a pair 〈m,φ〉, where m is a marking and φ : T → R≥0

associates each transition with a time-to-fire. A transition is enabled by a marking
if each of its input places contains at least one token and none of its inhibitor
places contains any token; an enabled transition t is firable in a state if its time-
to-fire is equal to zero. The next transition t to fire in a state s = 〈m,φ〉 is
selected among the set Tf,s of firable transitions in s with probability equal to
W (t)/

∑
ti∈Tf,s

W (ti). When t fires, s is replaced by s′ = 〈m′, φ′〉, where: m′ is
derived from m by (i) removing a token from each input place of t (yielding
marking m̃), (ii) adding a token to each output place of t (yielding marking
m̂), and (iii) applying the update function U(t) to m̂; φ′ is derived from φ
by (i) reducing the time-to-fire of persistent transitions (i.e., enabled by m, m̃,
m̂, m′) by the time elapsed in s; (ii) sampling the time-to-fire of each newly-
enabled transition tn (i.e., enabled by m′ but not by m̃) according to Ftn ; and,
(iii) removing the time-to-fire of disabled transitions (i.e., enabled by m but
not by m′).
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Given an initial marking m0 and an initial PDF fτ0 for the vector τ of the
times-to-fire of the enabled transitions, the STPN semantics induces a probability
space 〈Ωm0 ,Fτ0 ,Pm0,fτ0

〉, where Ωm0 is the set of outcomes (i.e., feasible timed
firing sequences of the model) and Pm0,fτ0

is a probability measure over them [16].
Note that Pm0,fτ0

is zero for outcomes that are not feasible under fτ0 .
Figure 1 shows a running example. The firing of restart enables gen1 and

makes reg, enab, and approx firable: the firing of reg enables gen2, which
fires w.p.1; the firing of enab enables the cycle exp1–exp2, which can fire an
unbounded number of times; the firing of approx enables the cycle gen3–gen4,
which can fire an unbounded number of times. In all three cases, gen1 is per-
sistent and will eventually fire w.p.1, bringing the STPN to the initial marking
Restart (note that the update function of gen1 flushes places E1, E2, G3, G4).

G1 Restart Select

G2 E1

E2

G3

G4

gen1

uni(2,4)
E1 ← 0
E2 ← 0
G3 ← 0
G4 ← 0

restart

det(1)

reg

weight = 1/3
enab

weight = 1/3

approx

weight = 1/3

gen2

uni(1,2)

exp1

exp(1)

exp2

exp(1)

gen3

erlang(2,1)

gen4

erlang(2,1)

Fig. 1. A simple STPN with multiple concurrent GEN, DET, and EXP transitions:
gen1 and gen2 have a uniform distribution over [2, 4] and [1, 2], respectively; gen3 and
gen4 have an Erlang distribution with shape 2 and rate 1; restart has firing time
equal to 1; exp1 and exp2 have an EXP distribution with rate 1.

2.2 Transient Analysis of Markov Regenerative Processes

The marking process {M(t), t ≥ 0}, where M(t) is the marking at time t, spec-
ifies the logic state of an STPN at each time instant. If the marking process
is an MRP [7], its transient evolution is completely characterized by: (i) the
initial probabilities of markings; (ii) a local kernel Lij(t) := P{M(t) = j, T1 >
t |M(0) = i}, where T1 is the time of the first regeneration after regeneration i,
characterizing the evolution between two subsequent regenerations (i.e., Lij(t)
is the probability that, starting from regeneration i at time 0, no regeneration is
reached within time t and the marking at time t is j); and, (iii) a global kernel
Gik(t) := P{M(T1) = k, T1 ≤ t |M(0) = i} characterizing the occurrence of
regenerations (i.e., Gik(t) is the probability that, starting from regeneration i at
time 0, the first regeneration is reached on marking k within time t).
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Transient probabilities of markings πij(t) := P{M(t) = j |M(0) = i} are the
solution of a set of Markov renewal equations defined by the kernels [5,12]:

πij(t) := P{M(t) = j |M(0) = i} = Lij(t) +
∑

k∈Θ

∫ t

0

gik(x)πkj(t − x) dx (1)

where gik(x) := dGik(x)/dx. While Eq. 1 can be solved numerically by dis-
cretization, kernels can be computed only for some sub-classes of MRP models.

The marking process of the STPN of Fig. 1 is an MRP since the firing of gen1,
which always occurs w.p.1. (possibly after an unbounded number of firings),
brings the process to the initial regeneration where restart is newly-enabled.

Analysis Under the Enabling Restriction. The enabling restriction [6,8]
assumes that at most a single GEN time-to-fire is enabled in each state, which
in turn implies that it is never the case that a GEN transition continues (per-
sists) at the firing of another GEN transition. If an MRP complies with the
enabling restriction, then in each regenerative epoch the process behaves either
as a CTMC, if only EXP transitions are enabled in the initial regeneration, or as
a CTMC subordinated to the activity interval of a GEN transition (i.e., the time
interval during which the transition is enabled), if a GEN transition is enabled in
the initial regeneration. In this case, the kernels can be computed from CTMC
transient probabilities through the method of [6,9].

The marking process of the STPN of Fig. 1 does not satisfy the enabling
restriction, since gen2, gen3, and gen4 may be enabled concurrently with gen1.

Analysis Under the Bounded Regeneration Restriction. The method
of stochastic state classes [10] permits computation of kernels for models with
multiple GEN times-to-fire concurrently enabled, also with overlapping activity
intervals, but for exact evaluation requires that: always, a regeneration is even-
tually reached within a bounded number of discrete events. We term this case
as the bounded regeneration restriction. The marking process of the STPN of
Fig. 1 does not satisfy the bounded regeneration restriction, since both cycles
exp1–exp2 and gen3–gen4 may fire an unbounded number of times while gen1
is persistent, without reaching a regeneration.

A stochastic state class samples the state of the MRP immediately after a
firing, encoding a marking and a joint domain and PDF for the absolute time
and for the times-to-fire of the enabled transitions.

Definition 2. A stochastic state class is a tuple Σ = 〈m,D, f〉 where: m is
a marking; D is the support of the random vector 〈τage, τ 〉, where τage is the
absolute time and τ is the vector of the remaining times-to-fire of the enabled
transitions; and, f is the PDF of 〈τage, τ 〉, which we term state density function.

Starting from an initial stochastic state class with τage = 0 and independently
distributed times-to-fire for the enabled transitions, enumeration of a reachability
relation among stochastic state classes yields a stochastic transient tree, where
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the support of the vector τ in each class is a Difference Bounds Matrix (DBM),
i.e., a linear convex polyhedron that represents the solution of a set of linear
inequalities constraining the difference between pairs of times-to-fire.

Definition 3. A stochastic state class Σ′ = 〈m′,D′, f ′〉 is the successor of a
stochastic state class Σ = 〈m,D, f〉 through a transition t with probability μ,
which we write Σ

t,μ⇒ Σ′, iff, given that the marking is m and the random vector
〈τage, τ 〉 is distributed over D according to f , t fires with probability μ, yielding
a marking m′ and a random vector 〈τ ′

age, τ
′〉 distributed over D′ according to f ′.

A stochastic state class is said to be regenerative if the Markov property is
satisfied immediately after the class is entered, which occurs iff all active GEN
times-to-fires have been enabled for a deterministic time [16]:

Definition 4. A stochastic state class Σ is termed regenerative if the time
elapsed from the enabling of each enabled GEN transition ti until the firing that
led to Σ is a deterministic value di ∈ R≥0, termed the enabling time of ti in Σ.

In exact regenerative transient analysis [10], stochastic state classes are enu-
merated from each regeneration until any regeneration is reached, yielding a set
of stochastic transient trees that are rooted in a regenerative stochastic state
class and contain non-regenerative successors reached before any regeneration.
Under the bounded regeneration restriction, each tree is finite, collecting all
stochastic state classes that capture the MRP behavior during a regenerative
epoch, with (regenerative) leaf nodes characterizing the global kernel and (non-
regenerative) inner nodes characterizing the local kernel. For any regenerative
stochastic state classes i, integration of the PDF of 〈τage, τ 〉 in the stochastic
state classes belonging to the tree rooted in i permits to compute the kernel
entries Lij(t) and gik(t) by summing up the measure of probability of states in
the classes of the transient stochastic tree rooted in i, for any non-regenerative
stochastic state class j, for any regenerative stochastic state class k, and for any
time t.

2.3 Non-deterministic Analysis

An STPN identifies a Time Petri Net (TPN) [3,14] with same outcomes Ωm0 .

Definition 5. A state class S = 〈m,D〉 is made of a marking m and a support
D for the vector τ of the remaining times-to-fire of the enabled transitions.

Starting from an initial marking m0 and an initial domain D0 for τ , enumer-
ation of the reachability relation among state classes yields a State Class Graph
(SCG), which represents the continuous set of executions Ωm0 and supports
correctness verification of the TPN model (non-deterministic analysis).

Definition 6. S′ = 〈m′,D′〉 is the successor of S = 〈m,D〉 through transition
t, i.e., S

t→ S′, iff, given that the marking is m and τ is supported over D, t
fires in S, yielding marking m′ and a new vector τ ′ supported over D′.
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If EFT (t) ∈ Q≥0 and LFT (t) ∈ Q≥0 ∪{∞} for every transition t, then the SCG
is finite provided that the model generates a finite number of markings [10],
which does not comprise a modeling limitation for most applicative scenarios.

3 Integration of Transient Solution Techniques for MRPs

Non-deterministic state space analysis of the underlying TPN of an STPN model
permits identification of regeneration epochs and verification of whether each
of them satisfies the enabling or bounded regeneration restrictions (Sect. 3.1),
driving integration of different solution techniques for the evaluation of kernels
(Sect. 3.2). For epochs that satisfy neither of the two restrictions, partial enumer-
ation of stochastic state classes supports approximated evaluation of the kernels,
resulting in a safe defective approximation of transient probabilities (Sect. 3.3).

3.1 Analysis of Regenerative Epochs

The set of states collected in a stochastic state class identifies a unique underlying
non-deterministic state class [18] that represents the marking and the support
of the vector of the remaining times-to-fire of the enabled transitions when the
class is entered. The association between non-deterministic and stochastic state
classes is one-to-many (possibly one-to-infinite) and preserves qualitative prop-
erties referred to the set of feasible outcomes Ωm0 , while abstracting from quan-
titative properties depending on the probability measure Pm0,fτ0

. Given that a
stochastic state class is regenerative if it satisfies Definition 4, which depends on
Ωm0 but not on Pm0,fτ0

, state classes can be used to identify regenerations.
To this end, the state space of the underlying TPN is covered by a set of

SCGs, which we call First-Epoch State Class Graphs (FESCGs), each rooted in
a regenerative state class and containing all non-regenerative successors reached
before any regeneration (which is also included in the graph). Enumeration of
FESCGs can suppress successor relations that correspond to null probability
events, i.e., firings that in any associated stochastic state class would be possible
in a null measure subset of the support.

Lemma 1. Let u be an STPN, v be its underlying TPN, R be the set of succes-
sor relations Σ = 〈m,D, f〉 t,μ→ Σ′ = 〈m′,D′, f ′〉 in the stochastic transient tree
of u enumerated from a regenerative stochastic state class Σ0 = 〈m0,D0〉, and
S = 〈m, D̄〉 t→ S′ = 〈m′, D̄′〉 be a succession relation in the SCG of v enumer-
ated from a regenerative state class S0 = 〈m0, D̄0〉, such that D̄, D̄′, and D̄0 are
the projections of D, D′, and D0 that eliminate τage, respectively. A succession

relation Σ
t,μ→ Σ′ ∈ R has probability μ = 0 iff the projection of D that elimi-

nates DET and IMM timers, conditioned to the firing of transition t, has a null
measure in R

N , where N is the number of distributed times-to-fire in Σ and S.

Proof. Let Dt be D conditioned to the firing of t, i.e., Dt = D ∩ {τt ≤ τti ∀ ti ∈
E(m)}, where τt is the time-to-fire of t and E(m) is the set of transitions enabled
by m. Let D̂t be the projection of Dt that eliminates DET and IMM timers.
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(If) If D̂t has null measure in R
N , either (i) the STPN includes some transi-

tion associated with a mixed distribution, or (ii) μ = 0. By Definition 1, the CDF
of each GEN transition is absolutely continuous over its support, thus μ = 0.

(Only if) If, ab absurdo, D̂t had non-null measure in R
N , then the integral

over D̂t of the marginal distribution of distributed times-to-fire in Σ conditioned
to the firing of t would not be zero, yielding μ �= 0. ��

It is straightforward to show that a regenerative epoch complies with the
enabling restriction iff at most one GEN transition is enabled in each state class
of its FESCG. Conversely, compliance with the bounded regeneration restriction
depends on the presence of cycles in the FESCG.

Lemma 2. A regenerative epoch complies with the bounded regeneration restric-
tion iff its FESCG does not include any cycle.

Proof. (If) If, ab absurdo, a regenerative epoch did not satisfy the bounded
regeneration restriction, the STPN would allow a timed firing sequence made
of an unbounded number of firings that never visits a regeneration; given that
an STPN and its underlying TPN have the same set of timed firing sequences
Ωm0 , also the TPN would allow that behavior. Given that each state class is
associated with one or more stochastic state classes having the same marking
and time domain, there would exist a state class associated with an unbounded
number of stochastic state classes. As a consequence, the FESCG would include
a cycle.

(Only if) If, ab absurdo, the FESCG of a regeneration included a cycle, then,
by construction, that cycle would not visit any regenerative state class. Hence,
there would exist a timed firing sequence that would allow an unbounded number
of firings without visiting a regeneration, and the corresponding regenerative
epoch would not comply with the bounded regeneration restriction. ��

Figure 2 shows the SCG of the TPN underlying the STPN of Fig. 1, consisting
of 5 regenerative and 5 non-regenerative state classes. In particular: the FESCG
rooted in S3 includes S6 and S1, satisfying the bounded regeneration restriction
(it is cycle free) but not the enabling restriction (two GEN transitions are enabled
in S6); the FESCG rooted in S5 includes S8, S10, and S1, complying with the
enabling restriction but not with the bounded regeneration restriction (due to the
cycle S8–S10); and, the FESCG rooted in S4 includes S7, S9, and S1, satisfying
neither the bounded regeneration restriction (due to the cycle S7–S9) nor the
enabling restriction (two GEN transitions are enabled in S4, S7, and S9). Note
that the firing of transition gen1 in state class S3 would have probability zero
in any associated stochastic state class and thus it is suppressed.

3.2 An Algorithm for Transient Analysis of MRPs

Given an STPN with underlying MRP, the kernel entries of each regenera-
tive epoch can be derived through a different solution technique depending on
whether the epoch satisfies the bounded regeneration restriction, or the enabling
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Fig. 2. The SCG of the TPN underlying the STPN of Fig. 1: state classes are repre-
sented by rectangles labeled with the marking; successor relations between state classes
are represented by arrows labeled with the fired transition.

restriction, or neither of the two conditions. The applicable solution strategy can
be efficiently selected through non-deterministic analysis of the underlying TPN
of the model, by enumerating the SCG so as to identify the set Θ of regener-
ative state classes, the set Ψ of reachable markings, and the FESCG of each
regenerative state class i ∈ Θ:

– if the FESCG of i complies with the bounded regeneration restriction (e.g.,
the FESCG rooted in S3 in Fig. 2), Lij(t) and gik(t) are computed through
the exact regenerative transient analysis of [10], for any marking j ∈ Ψ , for
any regenerative state class k ∈ Θ, and for any time point t;

– if the FESCG of i satisfies the enabling restriction (e.g., the FESCG rooted
in S5 in Fig. 2), Lij(t) and gik(t) are derived through the method of [6,9];

– if the FESCG of i breaks both the enabling and the bounded regeneration
restrictions (e.g., the FESCG rooted in S4 in Fig. 2), Lij(t) and gik(t) can
still be estimated by stochastic simulation of the STPN model or they can be
approximated by numerical solution as developed in Sect. 3.3.

Note that in so doing the derivation of kernel entries always terminates (even for
models with an underlying marking process beyond the class of MRPs), provided
that the FESCG of each regenerative state class is finite, which in turn is guar-
anteed under the fairly general conditions mentioned in Sect. 2.3. Also note that,
in the present implementation, regenerative epochs that satisfy both the restric-
tions are analyzed through exact regenerative transient analysis, but analysis
under the enabling restriction could be applied as well; moreover, approximated
analysis or simulation might be applied also to regenerative epochs that satisfy
one or both the restrictions, as a way to reduce complexity of solution. In-depth
comparison and experimentation of the impact of different choices on accuracy
and complexity deserves further study.
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When kernel entries have been evaluated, transient probabilities of reachable
markings are finally derived by numerical integration of the Markov renewal
equations of Eq. 1.

3.3 Approximate Evaluation of the Kernels of an MRP

In general, and in particular for regenerative epochs that do not satisfy either the
bounded regeneration or the enabling restrictions, an approximation of kernel
entries can be derived by truncating the enumeration of the stochastic transient
tree computed in the exact regenerative transient analysis [10]. In this case,
following the steps of Sect. 2.2, the approximated kernel entries L̃hj(t) and g̃ik(x)
are computed on a subset of the classes in the stochastic transient tree of the
regenerative state class i, and they thus comprise an under-approximation of the
exact values Lhj(t) and gik(x). Specifically, denoting Δij := Lhj(t)− L̃hj(t) and
δik := gik(x) − g̃ik(x), we have Δij ≥ 0 and δik ≥ 0.

To characterize the impact of the approximation, the following Lemma pro-
vides a bound on εij(t) := πij(t) − π̃ij(t), with π̃ij(t) denoting the solution of
Eq. 1 obtained with approximated kernel entries:

π̃ij(t) = L̃ij(t) +
∑

k∈Θ

∫ t

0

g̃ik(x) π̃kj(t − x) dx (2)

Lemma 3. For each regenerative state class i ∈ Θ, marking j ∈ Ψ , and time t,
the error εij(t) is non-negative and upper-bounded:

0 ≤ εij(t) ≤ φi(t)+
∑

k∈Θ

∫ t

0

(g̃ik(x)εkj(t − x) + φi(x)(εkj(t − x) + π̃kj(t − x))) dx

(3)
where φi(t) :=

∑
j∈Ψ (Lij(t) − L̃ij(t)) +

∑
k∈Θ(gik(t) − g̃ik(t)).

Proof. By combining Eqs. 1 and 2, we obtain: εij(t) = Δij(t)+
∑

k∈Θ

∫ t

0
(g̃ik(t)+

δik(x)) · εkj(t − x) + δik(x)) · π̃kj(t − x)dx Since Δij(t) ≥ 0 and δik(t) ≥ 0,
φi(t) ≥ Δij(t) ∀ j ∈ Ψ and φi(t) ≥ δik(t) ∀ k ∈ Θ. The upper bound of Eq. 3 can
thus be obtained by replacing Δij(t) and δik(t) with φi(t).

To prove that εij(t) ≥ 0, εij(t) is rewritten as εij(t) = Aij(t) +
∑

k∈Θ∫ t

0
(g̃ik(x) · εkj(t − x)dx where Aij(t) := Δij(t) +

∑
k∈Θ

∫ t

0
δik(x)πkj(t − x)dx

Note that Aij ≥ 0, being Δij(t) ≥ 0, δik(x) ≥ 0, and being πkj(t − x) a prob-
ability. For any discretization step τ ∈ R>0, the expression of εij(t) can be
rewritten by replacing t = M · τ and x = m · τ , with m ∈ [0,M ]. By induction
on M , it is easily proven that ε(t) is monotonic non-decreasing with t. Moreover
εij(0) = Aij(0) ≥ 0, which proves that ε(t) ≥ 0. ��

Note that, since 0 ≤ π̃ij(t) for every markings i, j and time t, summation of
probabilities over all reachable markings provides a defective (i.e., lower than 1)
evaluation of the total probability mass properly allocated; the complement to
1 of this quantity thus comprises a safe upper bound on the maximum value of
each computed probability or summation over them.
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3.4 Heuristic Driven Approximation

The quantity φi(t) in Eq. 3 can be safely estimated as the sum of probabilities to
reach a truncation point in the partial enumeration of the stochastic transient
tree of regenerative class i. According to this, the bounds of Eq. 3 can be used to
define a truncation policy in the partial enumeration of regenerative epochs that
break both the enabling and the bounded regeneration restrictions (unrestricted
epochs) with a twofold aim: adapt the error accumulated on kernel entries of
each regeneration i to the impact that this epoch takes on the final error εij(t);
and drive the selection of truncation points within each stochastic transient tree
so as to control the trade-off between complexity of enumeration and accuracy
of approximation. However, exact implementation of this policy would require
repeated evaluation of approximated probabilities π̃ij(t), which in turn implies
a major numerical complexity for the solution of Volterra integral equations.
Lemma 3 can thus be more conveniently exploited as a ground for the definition of
efficient heuristics driving truncation within each regenerative epoch. Note that,
while this work emphasizes the use of approximation as a way to make feasible
the evaluation of kernel entries, approximation driven by efficient heuristics may
be applied also to reduce complexity in epochs that fit the bounded regeneration
or the enabling restrictions.

Partial exploration of unrestricted epochs is performed by initially enumer-
ating at most νstart nodes in each tree, and then by iteratively identifying a non-
regenerative leaf node and by enumerating at most νiter of its successors, until
the number of classes enumerated in unrestricted epochs is larger than a thresh-
old νmax (heuristic-based approximate analysis). Given that the upper-bound
of Eq. 3 suggests that the approximation error affects more those regenerative
epochs that are visited more often, at each iteration we enumerate the succes-
sors of the non-regenerative leaf node with the largest estimated probability to
be reached. Such estimate is evaluated by analyzing a Discrete Time Markov
Chain (DTMC) D specified as follows:

– D has a state for each regenerative state class i ∈ Θ and for each leaf node
j (either regenerative or non-regenerative) belonging to any tree Ti ∈ T
(regenerative and non-regenerative leaf nodes are absorbing in every tree);

– D has an arc from each state representing a regenerative state class i ∈ Θ to
each state representing a leaf node j in Ti, associated with probability μij ;

– if the epoch rooted in i is analyzed exactly, μij is equal to Gij(∞) under the
bounded regeneration restriction and to Gij(tn) under the enabling restric-
tion; otherwise, if the epoch rooted in i is analyzed in approximate manner,
μij is equal to G̃ij(∞) or to L̃ij(∞) depending on whether j corresponds to
a regenerative or non-regenerative stochastic state class, respectively.

Steady-state analysis of D yields the vector of state probabilities P : solu-
tion relies on a basic implementation of the evaluation of absorption probabil-
ities, which is not optimized with reference to either general techniques [2] or
special techniques that might exploit warm restart in the repeated solution of
DTMCs that are each a minor perturbation of the one solved at the previous
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iteration. Then, the steady-state probability of the states that correspond to non-
regenerative leaf nodes are normalized, obtaining the vector of state probabilities
P̄ , i.e., for each state l of the DTMC D that corresponds to a non-regenerative
leaf node in a tree Ti ∈ T , P̄l = Pl/

∑
h∈SL

Ph, where SL is the set of states
that correspond to non-regenerative leaf nodes in any tree Ti ∈ T . Finally, the
non-regenerative leaf node that corresponds to the state w with the largest prob-
ability P̄w is selected as the node to be expanded.

4 A Case Study

The approach was implemented on top of the Sirio API of the ORIS Tool [4]. Due
to the minimal state space, with a single epoch requiring approximation of kernel
entries, the STPN of Fig. 1 does not permit to best illustrate the potential of the
approach. Hence, experiments were performed on the STPN of Fig. 3, a variant
of a 3-station exhaustive-service polling system [11], where service sojourn is
bounded by a DET timeout, polling times have a GEN distribution, and service
times have an EXP or GEN distribution. For each station s ∈ {1, 2, 3}: place
Waitings encodes the number of pending service requests; places AtServices
and Vacants encode whether the station is being served or not, respectively;
and, place Pollings encodes the state where the server is polling station s. In
Fig. 3, all stations have no pending requests and the server is polling station 1.
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Fig. 3. STPN of a 3-station exhaustive-service polling system with server timeout.

The service at station s begins with the firing of transition startServices,
with uniform distribution over [1,2], and it may terminate either when the queue
of pending requests (Waitings) is empty or when timeouts fires after a DET
maximum duration of value 3. During the service interval, place Vacants is
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empty and transition serves is enabled, so that any number of requests can
be served. Transition arrives models the arrival of a new request as an EXP
distribution with mean 20. Since the EXP distribution has a null minimum value,
the maximum number of requests served during a service interval is limited
only by the relation between the timeout value and the minimum duration of
each service. Specifically, the number of requests served during a service interval
sojourn is unbounded for stations 1 and 3, and it is bounded to 3 for station 2
where each service requires at least 1 time unit.

The underlying marking process regenerates whenever the server arrives to
any station (i.e., at firing of emptys or startServices) or leaves it (i.e., at firing
of emptys or timeouts), which directly implies that starting from any reachable
state, w.p.1, a regeneration will be eventually reached, i.e. the process is an MRP.
The process behavior falls in different subclasses of MRP during service sojourns
at different stations. When the server is at station 1: the process satisfies the
enabling restriction, given that timeout1 is the only non-EXP transition enabled
in each state; but it does not satisfy the bounded regeneration restriction, as
for any natural number n, there exists a non-null probability that serve1 and
arrive1 are fired more than n times before the expiration of timeout1. When
the server is at station 2: the process satisfies the bounded regeneration restric-
tion, given that serve2 cannot be fired more than 3 times before the firing of
timeout2; but the enabling restriction is not satisfied as timeout2 and serve2
can be concurrently enabled. When the server is at station 3: the process falls
in the unrestricted case as timeout3 and serve3 are concurrently enabled, and
serve3 may fire an unbounded number of times before the firing of timeout3.

Transient analysis is performed through the approach of Sect. 3 with the fol-
lowing parameters: time limit tn = 30 (each station is served at least twice), time
step 0.1, νstart = 20 (number of stochastic state classes initially enumerated in
each unrestricted epoch), νiter = 20 (number of stochastic state classes enumer-
ated in each unrestricted epoch at each iteration), and νmax = 500 (threshold on
the total number of stochastic state classes enumerated in unrestricted epochs).
Overall, the analysis evaluates the kernel entries of 135 regenerative epochs: 99
through the analysis under the bounded regeneration restriction, 18 through
the analysis under the enabling restriction, and 18 through the heuristic-based
approximate analysis. On a machine equipped with an Intel i5-5200U 2.20 GHz
and 8 GB RAM, the evaluation takes nearly 40 min, spending less than 0.1 s
to perform non-deterministic analysis and classification of regenerative epochs;
nearly 40 s, 0.3 s, and 0.4 s to analyze the state space of regenerative epochs under
the bounded regeneration restriction, under the enabling restriction, and beyond
both restrictions, respectively; approximately 100 s, 180 s, and 2.5 s to evaluate
the kernel entries of regenerative epochs under the bounded regeneration restric-
tion, under the enabling restriction, and beyond both restrictions, respectively;
nearly 23 s to evaluate the heuristic criterion; and, approximately 34 min to solve
the Markov renewal equations. Numbers show that non-deterministic analysis
has relatively negligible computational complexity, and thus it can be efficiently
used to select the solution technique applied to each regenerative epoch. Notably,
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Fig. 4. (a) Average number of messages waiting to be served at time t at station s,
i.e., ws(t) ∀ s ∈ {1, 2, 3}, and in the overall system, i.e., w(t); (b) total error ε(tn)
(committed in the evaluation of transient probabilities of markings at the time limit
tn) as a function of the number of classes enumerated in unrestricted epochs; (c) total
error ε(t) obtained with 70 stochastic state classes enumerated in unrestricted epochs.

the heuristic criterion has a significantly lower cost with respect to the evalu-
ation of the kernel entries of restricted epochs, which much depends on the
number of encountered regenerations. Overall, results suggest that approximate
analysis could be applied also to epochs under enabling or bounded regeneration
restrictions to limit state space exploration and reduce evaluation complexity.

To illustrate possible rewards of interest, Fig. 4a plots the average num-
ber of messages waiting to be served at time t in each station and in the
overall system, i.e., wn(t) =

∑
j∈Ψ πij(t) · j(Waitingn) ∀n ∈ {1, 2, 3} and

w(t) =
∑

j∈Ψ πij(t)·
∑3

n=1 j(Waitingn), respectively, where i is the initial regen-
eration (i.e., a stochastic state class with the marking of Fig. 3, where all enabled
transitions are newly-enabled) and Ψ is the set of markings reached within tn.

To evaluate the impact of different heuristics in approximate analysis, we
evaluate the total defect in the evaluation of transient probabilities of mark-
ings, i.e., ε(t) :=

∑
j∈Ψ εij(t) where i is the initial regeneration and Ψ the set of

markings, which can be easily computed a posteriori as ε(t) = 1 −
∑

j∈Ψ πij(t).
Figure 4b plots the total error at the time limit tn = 30 as a function of the
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threshold νmax, comparing results with those obtained with a naive approximate
analysis that explores all stochastic transient trees of unrestricted epochs, enu-
merating νmax/U stochastic state classes in each tree, where U is the number
of unrestricted epochs. As expected, ε(tn) decreases as νmax increases, and the
two approaches achieve approximately the same values of ε(tn) for very small
values of νmax. Conversely, when νmax becomes larger than 60, the heuristic-
based analysis achieves significantly lower values of ε(tn), in the order of 8 ·10−2

for νmax = 100 and 7 · 10−3 from νmax = 200 on, with respect to values in the
order of 0.65 and 6 · 10−2 attained by naive analysis, respectively. Overall, these
results could be used to select a convenient value of νmax in a trade-off between
the result accuracy and the computational complexity.

Figure 4c plots the total error attained by the two approaches as a function
of time, with νmax = 100, νstart = 2, and increasing values of νiter. All curves
are around zero until time 5, due to the very low probability that the server
has reached station 3 by that time. From time 5 on, the error attained by naive
analysis rapidly increases, being nearly 0.21, 0.48, and 0.64 at t = 10, t = 20,
and t = 30, respectively. Conversely, ε(t) increases with a much smaller slope
for heuristic-based analysis. As expected, the cases with lower values of νiter
achieves better results; for instance, for νiter = 1, ε(t) is approximately equal
to 0.016, 0.049, and 0.083 at t = 10, t = 20, and t = 30, respectively. Values
of ε(t) slightly increase with νiter, though remaining nearly in the same order
of magnitude, showing that heuristic-based analysis yields sufficiently accurate
results while permitting to limit the computational cost.

5 Conclusions

We leverage the low computational cost of non-deterministic analysis to drive
the integration of different solution techniques in the evaluation of the kernels
of an MRP, distinguishing regenerative epochs that can be analyzed through
exact approaches from those that need approximate evaluation, due to infinite
sequences of discrete events that never visit a regeneration. For the latter epochs,
we present a novel approach based on the partial enumeration of stochastic state
classes, which are iteratively explored according to a heuristic criterion based on
the probability that a regeneration is reached. In so doing, the approximation
is limited to the kernel entries of a subset of regenerative epochs, and transient
probabilities of markings can be safely and accurately approximated.

Notably, the approximate analysis algorithm is designed to permit the inte-
gration of other solution techniques, which can be equivalently analytical or
simulative. Other heuristic criteria could be used as well to select the next
node to visit in partial enumeration of stochastic state classes, possibly tak-
ing into account an estimate of the mean time until when a regeneration is
reached. Experimental results show that the heuristic-based approximate analy-
sis provides accurate results while maintaining a moderate computational cost,
suggesting that approximation could be used also for regenerative epochs char-
acterized by finite stochastic transient trees, in order to reduce the number of
stochastic state classes needed to compute the kernels.
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Abstract. The Uniformization method computes the probability dis-
tribution of a CTMC of maximum rate μ at the time a general event
with PDF f(x) fires. Usually, f(x) is taken as the deterministic distri-
bution, leading to the computation of the CTMC probability at time
t, but Uniformization may be extended to use other distributions. The
extended Uniformization does not manipulate directly the distribution,
as the whole computation is based on the alpha-factors of f(x), and
the maximum CTMC rate μ. This tool paper describes alphaFactory, a
tool that computes the series of alpha-factors of a general distribution
function starting from f(x). The main goal of alphaFactory is to provide
a freely available implementation for the computation of alpha-factors,
to be used inside any extended Uniformization method implementation.
Truncation of the infinite series of alpha-factors is determined by a novel
error bound, which provides a reliable truncation point also in case of
defective PDFs. alphaFactory can be easily integrated into other existing
tools, and we show its integration inside the GreatSPN framework, to
solve Markov Regenerative Stochastic Petri Nets.

Keywords: Alpha-factors · General distributions · Markov Regenera-
tive Processes · Markov Regenerative Stochastic Petri Nets · GreatSPN ·
Extended Uniformization

1 Introduction

The Uniformization method in its basic form [16,21] computes the probability
distribution of a CTMC of maximum rate μ at a fixed time t. This method has
been widely applied to the computation of the transient solutions of systems in
many domains, systems expressed using a variety of formalisms (queuing net-
works, stochastic Petri nets, stochastic process algebra, . . . ). The Uniformization
method in its extended form [15] computes the probability distribution at time
t, with t distributed according to a random variable. A typical application of this
method is found in the steady-state solution of Markov Regenerative Stochastic
Petri Nets (MRSPN) [11], i.e. stochastic Petri nets where transitions have expo-
nential and generally-distributed delays, subject to the constraint that at most
c© Springer International Publishing AG 2017
N. Bertrand and L. Bortolussi (Eds.): QEST 2017, LNCS 10503, pp. 36–51, 2017.
DOI: 10.1007/978-3-319-66335-7 3



alphaFactory: A Tool for Generating the Alpha Factors 37

one general event is enabled in any state (so called enabling restriction). MRSPN
are a generalization of Deterministic and Stochastic Petri Nets (DSPN) [1]. Fur-
thermore, the computation of CTMC probabilities at time t, where t is gener-
ally distributed, is a central step in the computation of the subordinated Markov
chains of Markov Regenerative Processes (MRgP) [18].

The general event firing distribution can be described by its probability dis-
tribution function (PDF) f(x). Extended Uniformization does not manipulate
directly f(x), but instead the whole computation is based on the alpha-factors
of f(x) and the maximum CTMC rate μ. Intuitively, the alpha-factor α(m,μ)
of f(x) for a CTMC M of maximum rate μ is the probability of taking m steps
in the uniformized DTMC of M before the generally distributed event fires.
Alpha-factors form an infinite sequence for m ∈ N≥0, usually truncated accord-
ing to a certain error bound ε. For the deterministic case, the alpha-factors
reduce to a sequence of Poisson probabilities, which are usually computed with
the Fox-Glynn method [13,17] due to its numerical stability. For arbitrary gen-
eral distributions f(x), the problem of computing alpha-factors reduces to the
computation of an integral of the product of f(x) with a Poisson probability.
To allow a variety of general functions, the computation should do symbolic
integration of f(x).

Some applications also need a reliable support for defective PDFs, i.e. dis-
tribution functions f(x) with 0 <

(∫ ∞
0

f(x) dx
)

< 1. This makes the tool more
robust when the PDF definition has small numerical error which may happen,
for instance, when using fitted expolynomial distributions.

Contribution. This tool paper describes alphaFactory, a program that computes
the alpha-factors of general distribution functions from their probability distri-
bution function f(x) and the maximum CTMC rate μ. alphaFactory is written
in ISO C++ and has only the Boost-C++ library1 as a dependency.

alphaFactory provides a freely available implementation for the computation
of alpha-factors. The tool is designed to be used both as a standalone command
line program, or linked as a component into another program, using a simple
API. At its core the tool implements the definition and derivation of alpha-factors
provided by German in [15], with a new truncation point of the sequence that
is correct for both defective and non-defective PDFs. A proof of the correctness
of the new error bound is given in Sect. 5.

The paper also describes how the use of alphaFactory has allowed the exten-
sion of the GreatSPN framework [2] to include the solution of MRSPN. Indeed,
thanks to the use of alphaFactory the DSPN solver of GreatSPN [3] was easily
transformed into an MRSPN solver.

Existing Tools. There is a single tool that we know of which offers an imple-
mentation of Extended Uniformization and of the alpha-factors: SPNica [14].
SPNica is a Mathematica package written by R. German for solving MRSPN
and, according to our experience, it is a very reliable solver, which unfortunately

1 http://www.boost.org/.

http://www.boost.org/
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does not scale up to even moderately sized models (few hundreds of states):
indeed, by definition of the author himself [14], SPNica is a prototype, a proof of
concept. SPNica includes an implementation of the functions for alpha-factors
computation, but their use requires the availability of the proprietary Mathe-
matica framework. The software structure of alphaFactory is heavily influenced
by the design choices of SPNica, but alphaFactory does not have the dependency
on Mathematica as it is all implemented in ISO C++.

A second software that includes Extended Uniformization, again based on
the technique proposed by German in [15], is TimeNET [7,23], which supports
eDSPN Petri net models with general transitions (basically MRSPN nets). How-
ever, the alpha-factors module is not a separate independent component, and no
clear analysis of its characteristics were possible, The expression language for
general distributions supported by TimeNET is similar to that of SPNica, and
also to that of alphaFactory, because of the common SPNica source.

Extended Uniformization is an efficient technique for MRSPN, but there are
other tools that can solve MRSPN as a particular case of Non Markovian Sto-
chastic Petri Nets, where typically the enabling restriction of only one general
transition enabled in any state, is lifted. The tool WebSPN [6] represents non-
Markovian transitions using state-space expansion [19], either discrete (which
catches well the behaviour of low-variance distributions like the deterministic or
the uniform) or continuous (which catches well high-variance distributions, like
hyper-exponentials). In that case, the general distribution behaviour is approx-
imated using a larger state space, represented as a Kronecker product. Another
tool that supports general distributions is Oris [8], which again follows a differ-
ent approach than the one considered in this paper, based on representation and
manipulation of mathematical expressions and functions supported over polyhe-
dral and Difference Bound Matrix (DBM) domains [10]. The Oris approach is
particularly well suited for expolynomials distributions. Both WebSPN and Oris
have a more expensive solution than the one based on Extended Uniformization:
WebSPN in terms of larger state spaces, and Oris in computation time due to
the need of performing symbolic manipulation of functions. This is certainly not
surprising considering that these tools offer a solution for Petri nets with more
than one general transitions enabled in a state. Another approach that targets
MRSPN analysis is based on Laplace transform inversion, as described in [12].

Paper Outline. Section 2 recalls the Uniformization method and its extended
form, along with the alpha-factors definition, whose properties are recalled in
Sect. 3, extended to the defective distribution case. Section 4 describes the archi-
tecture of the tool, in particular the structure of the alpha-factors evaluation.
Sections 5 and 6 describe the computation of the error bound and the alpha-
factor algorithm. Section 7 describes how alphaFactory can be integrated into
existing tools, a possibility that is illustrated by the integration in GreatSPN;
An example of application of the tool to a real model is also shown. Finally,
Sect. 8 concludes the paper by identifying new possible research development
based on the availability of alphaFactory.
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2 Problem Definition

The Uniformization method [16,21] is used to compute the instantaneous and
accumulated transient probabilities of CTMCs. In its extended form [15] it is
defined as follows. Let Q be the infinitesimal generator of the CTMC, and let
γ = maxi (−Qi,i) be the maximum rate in any CTMC state. The uniformized
DTMC U of Q is then defined as 1

μQ + I, for an arbitrary μ ≥ γ.
Let g be the event that ends the transient evaluation of the CTMC. g can be

seen as an event that is concurrently enabled with the other events represented
by the CTMC Q. Let f(x) be the PDF of g. The PDF f(x) is required to be
integrable. Let F (x) be the CDF of g. Given an initial probability distribution π0

over the CTMC states, the instantaneous and accumulated transient probability
distribution at the time g fires are given by:

πinst
g = π0 ·

∞∑

m=0

Um · αf (m,μ), πacc
g = π0 ·

∞∑

m=0

Um · αF̄ (m,μ) (1)

The scalar term αf (m,μ) is the alpha-factor of the PDF f(x) for rate μ. The
scalar term αF̄ (m,μ) is the alpha-factor of the complementary CDF (CCDF)
for rate μ, where the complement CDF F̄ (x) is defined as (1 − F (x)). The term
πacc

g is also commonly referred to as the cumulative sojourn time distribution.
The alpha-factors are defined as:

αf (m,μ) =
∫ ∞

0

e−μx (μx)m

m!
· f(x) dx =

∫ ∞

0

β(m,μx) · f(x) dx

αF̄ (m,μ) =
∫ ∞

0

e−μx (μx)m

m!
· F̄ (x) dx =

∫ ∞

0

β(m,μx) · F̄ (x) dx (2)

for m ∈ N≥0, μ > 0, and with β(m,λ) =
λme−λ

m!
the m-th Poisson probability.

In many applications, f(x) is chosen to be distributed as a deterministic event
that happens at time t. Hence, its PDF is a Dirac impulse fdet(x) = δ(x − t),
and its CDF is the discontinuous function Fdet(x) = 1 if x ≤ t and 0 otherwise.
In this case, the integral can be simplified [22], leading to:

αfdet(m,μ) = e−μt (μt)m

m!
, αF̄det

(m,μ) =
1
μ

(

1 −
m∑

k=0

e−μt (μt)k

k!

)

(3)

However, we are interested in the computation of the alpha-factors as in Eq. (2),
which is more general. From an implementation point-of-view, the two most
relevant problems of computing Eq. (2) are the necessity of a symbolic integrator,
and the numerical stability of the formulas. Both will be treated in Sect. 4.

3 Properties of Alpha Factors

The work in [15, ch. 8] has derived some of the following properties of alpha-
factors, that we report. Let c =

∫ ∞
0

f(x) dx. Then:
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Property 1. The sum
∑∞

m=0 αf (m,μ) = c, for any μ > 0.

Property 2. The sequence of αf (m,μ) is 0: lim
m→∞ αf (m,μ) = 0.

Property 3. If c is finite and f(x) > 0,∀x ≥ 0, then it holds that: 0 < αf (m,μ) <
c for all m ≥ 0.

Property 1 is important because it gives the expected values of the entire
sequence of αf (m,μ). A non-defective PDF will generate a sequence of alpha-
factors αf (m,μ) that sums to 1. Alpha factors are upper bounded (Property 3)
and converge to 0 (Property 2). This allows to establish a truncation point M
to approximate the infinite sequence.

Accumulated alpha-factors are subject to these properties:

Property 4. The accumulated alpha factor αF̄ (m,μ) is given by:

αF̄ (m,μ) =
1
μ

(

1 −
m∑

n=0

αf (n, μ)

)

=
1
μ

∞∑

n=m+1

αf (n, μ)

It follows that the sequence of αF̄ (m,μ) converges to 0 when c = 1.

Property 4 is useful since the computation of the accumulated alpha-factors
can be derived from the sole sequence of αf (m,μ). Since we want to consider also
defective PDFs, we extend the previous statements (established in [15]) with the
following properties:

Property 5. The limit of αF̄ (m,μ) is
1 − c

μ
. Therefore, when c = 1 the sequence

of αF̄ (m,μ) converges to 0.

Proof. A proof of the limit is:

lim
m→∞ αF̄ (m,μ) =

1
μ

(

1 − lim
m→∞

m∑

k=0

αf (k, μ)

)

=
1 − c

μ

Derivation uses Properties 4 and 2. �

Property 6. The sum of the sequence of αF̄ (m,μ) is:

∞∑

m=0

(
αF̄ (m,μ) − 1 − c

μ

)
=

∫ ∞

0

x · f(x) dx = E[X]

where X is the nonnegative random variable whose distribution is described by
f(x). Therefore, the sum does not depend on the value of μ.
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Proof. The equivalence can be derived in this way:

∞∑

m=0

(
αF̄ (m,μ) − 1 − c

μ

)
=

1
μ

∞∑

m=0

((

1 −
m∑

k=0

αf (k, μ)

)

−
(

1 −
∞∑

k=0

αf (k, μ)

))

=
1
μ

∞∑

m=0

∞∑

k=m+1

αf (k, μ) =
1
μ

∞∑

m=1

m · αf (m,μ)

=
∞∑

m=1

∫ ∞

0

m

μ
· e−μx (μx)m

m!
· f(x) dx

=
∞∑

m=0

∫ ∞

0

β(m,μx) · x · f(x) dx

=
∫ ∞

0

x · f(x) dx = E[X]

Derivation uses Properties 4 and 1, and the trivial relation
∞∑

m=0

β(m,μx) = 1. �

Property 7. If c is finite and f(x) > 0,∀x ≥ 0, then it holds that:

αF̄ (m,μ) ≥ 1 − c

μ
, ∀m ≥ 0

Proof. Assuming f(x) ≥ 0 for x ≥ 0, it holds that: αf (m,μ) ≥ 0, for any m ≥ 0.
Therefore, Property 7 is a direct consequence of Property 4, which ensures that
αF̄ (m,μ) values are monotonically non-increasing, and Property 5, which gives
the limiting behaviour of the series. �

Property 5 shows that the sequence αF̄ (m,μ) may converge to a value that is
different from 0 for defective PDFs. Property 7 establishes a lower bound for
the sequence. A single truncation point for both the αf (m,μ) and the αF̄ (m,μ)
sequences can then be established based on the convergent behaviours of both.

4 Architecture of alphaFactory

alphaFactory is a small tool written in ISO C++ whose sole purpose is the com-
putation of the alpha-factors αf (m,μ) and αF̄ (m,μ), given the textual repre-
sentation of function f(x) and the rate μ. The tool is made of a single C++
compilation unit, plus a header file. A compile-time macro ALPHAFACTORSLIB
controls whether the tool is compiled as a standalone command-line program,
or linked inside another program. The main goal of alphaFactory is that of being
used inside numerical solvers that use Uniformization for the computation of
instantaneous/accumulated transient probabilities. The tool follows the formula
derivations found in [15, pp. 394–398]. For the sake of completeness, we report
the formulas of the transformation rules derived in that book.
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The language of the functions φ accepted by alphaFactory is the following:

φ ::= number | x | φ ◦ φ | Pow(φ, φ) | Exp(φ) | Log(φ) | I(ψ) | R(ψ,ψ) |
Uniform(ψ,ψ) | Triangular(ψ,ψ) | Erlang(ψ,ψ) |
TruncatedExp(ψ,ψ) | Pareto(ψ,ψ)

ψ ::= number | ψ ◦ ψ | Pow(ψ,ψ) | Exp(ψ) | Log(ψ)

where ◦ ∈ {+,−, ∗, /}. Number literals are floating point real numbers. The term
x is the integral variable. The functions Pow, Exp and Log are the power, the
exponential and the natural logarithm, respectively. The function I(φ) is a Dirac
delta unit impulse δ(x − φ). It represents the concentration of the probability
mass at single point φ, and it is interpreted as if the probability of a firing at
time φ is 1. The function R(a, b) is a rectangular signal that assumes value 1 over
the range [a, b], and 0 outside that range. The language ψ is just a simplified
language for algebraic expressions over constant terms.
The remaining elements of φ are non-primitive functions:

– Uniform(a, b) is the uniform distribution, defined as 1/(b − a) ∗ R(a, b).
– Triangular(a, b) is the triangular distribution, defined as:

4 ∗ (x − a)
(a − b)2

∗ R

(
a,

a + b

2

)
− 4 ∗ (x − b)

(a − b)2
∗ R

(
a + b

2
, b

)

– Erlang(λ, r) is the Erlang function with rate λ and r phases, defined as the

standard PDF of the Erlang distribution:
λr

(r − 1)!
∗ xr−1 ∗ e−λ∗x

– TruncatedExp(λ, t) is the exponential distribution of rate λ truncated at time
t, defined as: λ ∗ e−λ∗x ∗ R(0, t) + e−λ∗t ∗ I(t). It is obtained by multiplying
the exponential distribution with a rectangular signal R(0, t), so that after t
the distribution is truncated. To compensate the truncation, an impulse of
probability e−λ∗t happens at time t, so that the overall truncated exponential
is not a defective PDF.

– Pareto(k, s) is the Pareto distribution of real scale parameter k and shape

parameter s, s ∈ N>0, defined as:

{
s∗ks

xs+1 if x > k

0 if x ≤ k

These simple building blocks allow to define common distribution functions,
like expolynomials distributions.

The evaluation of a function f(x) starts by building the Abstract Syntax
Tree (AST) of the formula. The tool uses a recursive descent parser for this
task. ASTs are made by just three node types:

1. Term leaf nodes that contain real values.
2. Symbol leaf nodes that contain the integration variable x.
3. Function

nodes, that are n-ary operators for a single arithmetic operand. The func-
tion operand is one among {+,−, ∗, /, Pow, Exp, Log, I, R}, or a non-primitive
operand among {Uniform, Triangular, Erlang, TruncatedExp, Pareto}.
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Once the parser has finished, it is possible to manipulate the expression of
f(x) at the AST level. The tool has four main AST-manipulation functions:
evaluate(e), simplify(e), integrate(e) and moment(e, k).

• evaluate(e) does the numerical evaluation of e. The expression e must have
only constant terms or function, i.e. it cannot have the integration variable
x.

• simplify(e) implements polynomial simplification and rearrangement of the
expression argument e into a canonical form. It works by applying a fixed set
of transformation rules. Rules use pattern matching and node substitution,
and are encoded inside the function. For instance, the function x∗x is canon-
icalized as x2, or the function x0 is simplified as 1. The transformation rules
are:

simplify(ψ) → evaluate(ψ)
simplify(φ ∗ 1 or φ + 0) → φ
simplify(φ ∗ φ ∗ . . . ∗ φ) → φn

simplify(φ1 ∗ (φ2 + φ3)) → φ1 ∗ φ2 + φ1 ∗ φ3

simplify(φ0) → 1
simplify(φ1) → φ
simplify(any function φ) → recursively apply simplify on φ operands

The function is also responsible for the expansion of the non-primitive functions
Uniform(a, b), Triangular(a, b), Erlang(λ, r), TruncatedExp(λ, t) Pareto(k, s),
and operand reordering (terms in a product are always arranged following a
specified canonical order).

• integrate(e) computes the symbolic integral
∫ ∞
0

e(x) dx using AST manip-
ulation, assuming that the expression is in canonical form (obtained by
simplify). As before, it implements a set of transformation rules to com-
pute the symbolic result. The implemented rules are:

integrate(x) → 1
2 ∗ x2

integrate(t) → t ∗ x
integrate(ex) → ex

integrate(ek∗x) → 1
k ∗ ek∗x

integrate(xm) → 1
m+1 ∗ xm+1

integrate(c ∗ I(t)) → c
integrate(c ∗ x ∗ I(t)) → c ∗ t
integrate(c∗el∗x ∗xh ∗R(0, b)) → c∗(−l)−h−1 ∗(

Γ (h+1)−Γ (h+1,−b∗ l)
)

integrate(c ∗ R(a, b)) → integrate(c ∗ R(0, b)) − integrate(c ∗ R(0, a))
integrate(c ∗ φ) → c ∗ integrate(φ)
integrate(φ1 − φ2) → integrate(φ1) − integrate(φ2)
integrate(sum of φi) → sum of integrate(φi)

where c, t are constant terms, Γ (z) and Γ (s, z) are the complete and the upper
incomplete gamma functions, respectively. The rules are actually standard inte-
gration rules. A product with a rectangular signal R(a, b) is equivalent to com-
puting the integral over the [a, b] range instead of the [0,∞) range.
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• moment(e, k) is the moment generating function. It computes the k-th
moment of the random variable with PDF e as: evaluate(integrate(e∗xk)).

Once alphaFactory has built and simplified the AST e of the expression of
f(x), it starts by computing the 0 and 1 moments of f(x). The 0 moment, being
the area of f(x), is checked to be 1. If it is not, f(x) is a defective PDF, and a
warning message is printed. In some applications, defective PDFs are allowed, so
the tool does not stop for this condition. Property 1 also tells that the 0 moment
gives the sum of the sequence of αf (m,μ), which is used for error bound. The
first moment, being E[X], can be used to bound the sum of αF̄ (m,μ) for non-
defective PDFs (Property 6).

At this point, alpha-factors can be computed for AST e using the recursive
function alpha(m,μ, e). This function computes the m-th factor for a CTMC of
rate μ. The function alpha(m,μ, φ) applies these transformation rules to φ:

alpha(φ1 + φ2) → alpha(m,μ, φ1) + alpha(m,μ, φ2)
alpha(c ∗ I(a)) → c ∗ β(m,μ ∗ a)
alpha(I(a)) → β(m,μ ∗ a)
alpha(c ∗ R(a, b)) → alpha(m,μ, c ∗ R(0, b)) − alpha(m,μ, c ∗ R(0, a))
alpha(R(a, b)) → alpha(m,μ, R(0, b)) − alpha(m,μ, R(0, a))
alpha(c ∗ el∗x ∗ xh) → c ∗ γa(m,μ, h,−l, a)
alpha(c ∗ el∗x ∗ xh ∗ R(0, a)) → c ∗ γ∞(m,μ, h,−l)
alpha(Pareto(k, s)) → − e−µ∗km∗s∗μm

(m−s)∗m!

These formulas are directly derived by solving the integral of Eq. 2 over the
function argument, and are taken from [15, p. 396]. The rest of the evaluation
of the alpha-factors relies on four recursive functions β, γa, γ∞ and η, that are
needed to evaluate the integral terms symbolically. Memoization of the partially
evaluated results is employed to speed up the computation. The m-th Poisson
probability β(m,λ) function is implemented using the usual recursive relation:

β(m,λ) =

⎧
⎨

⎩

eλ if m = 0
λ ∗ β(m − 1, λ)

k
otherwise

The two γ factors are derived by integrating the expolynomial equations (6th

and 7th rules of alpha) with the Poisson function, expanding Eq. (2). The full
derivation can be found in [15, pp. 154–155]. This results in a recursive relation
for γ∞ and γa, defined as:

γ∞(m,μ, h, l) =

⎧
⎪⎨

⎪⎩

h!
(μ + l)h+1

if m = 0

m + h

m
∗ μ

μ + l
∗ γ∞(m − 1, μ, h, l) otherwise
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and:

γa(m,μ, h, l, a) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h!
(μ + l)h+1

(

1 −
m∑

i=0

β(i, (μ + l)a)

)

if m = 0

m + h

m
∗ μ

μ + l
∗ γa(m − 1, μ, h, l, a)

−η(m,μ, h, l, a) ∗ β(m, (μ + l) ∗ a)
otherwise

where γ∞(m,μ, h, l) is equivalent to γa(m,μ, h, l,∞). The η factor is defined as:

η(m,μ, h, l, a) =

⎧
⎪⎨

⎪⎩

ah

μ + l
if m = 0

η(m − 1, μ, h, l, a) ∗ μ

μ + l
otherwise

5 Bounds of α-Tails

Since the series of alpha-factors αf (m,μ) and αF̄ (m,μ) are infinite, defined for
all m ∈ N≥0, it is necessary to approximate the sequence up to a right truncation
point M . Using an accuracy parameter ε, the sequence of instantaneous alpha-
factors αf (m,μ) can be truncated at M :

∞∑

m=M+1

αf (m,μ) < ε ⇒
M∑

m=0

αf (m,μ) = c − ε

The relation, derived in [15, p. 152], is directly derived from Property 1, which
ensures that the sum of the entire sequence is c, and Property 2 which ensures
that the sequence converges to 0.

The right truncation point of the sequence of accumulated alpha-factors
αF̄ (m,μ) is slightly different, since they converge to 0 only for non-defective

PDFs (i.e. c = 1). In the general case, the sequence converges to
1 − c

μ
, as stated

in Property 5. Therefore, a truncation point M ′ can be set such that:

∞∑

m=M ′+1

(
αF̄ (m,μ) − 1 − c

μ

)
< ε ⇒

M ′
∑

m=0

(
αF̄ (m,μ) − 1 − c

μ

)
= E[X] − ε

using ε as an absolute error for the summation. Therefore, a method can be
devised that ensures that both sequences are truncated below the requested
accuracy ε using R = max(M,M ′) as the truncation point. This requires to
know both the 0-moment c and the first moment E[X] of the random var. X.

6 Alpha-Factors Computation Algorithm

After having introduced all the required elements, it is now possible to show
the core alpha-factors computation function. The pseudo-code of the method is
shown in Algorithm1.
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Algorithm 1. Pseudocode of the alpha-factors generation function.
Function compute alpha factors dbl(f, μ, ε):

e ← simplify(parse(f))
c ← moment(e, 0)
E[X] ← moment(e, 1)
errf ← c
err F̄ ← E[X] if E[X] �= ∞ else 0
m ← 0
valueF̄ ← 1

μ

while (errf > ε ∨ err F̄ > ε):
αf (m, μ) ← alpha(m, μ, e)

valueF̄ ← valueF̄ − αf (m,μ)

μ

αF̄ (m, μ) ← valueF̄

errf ← errf − αf (m, μ)
err F̄ ← err F̄ − (αF̄ (m, μ) − 1−c

μ

)

m ← m + 1
return 〈αf , αF̄ 〉

The algorithm is an implementation of the method defined in [15, p. 394],
with the new bound R described in Sect. 5. It starts by parsing the function and
building the AST. It then computes the first two moments, initializing the error
control variables errf and err F̄ with the moment values. The function than iter-
ates until both error thresholds are below ε. At each iteration, the alpha-factor
αf (m,μ) is computed. The accumulated alpha-factor αF̄ (m,μ) is derived implic-
itly by subtracting incrementally all the instantaneous alpha-factors, starting
from the initial value 1

μ . This follows Property 4. The algorithm than subtracts
the alpha-factors from the errf and err F̄ control variables, and repeats. Even
if it is true that the sequence of αF̄ (m,μ) can be completely derived from the
sequence of αf (m,μ), it is important to compute both together, in order to
establish the single truncation point R that guarantees that both sequence have
an absolute error below ε.

Numerical Precision. The alphaFactory implementation uses multi-precision
floating point. Floating point precision is controlled using the MPFLOAT
PRECISION constant, which is defaulted to 1024 bits. This allows to treat fac-
tors with large difference in magnitude, without a dangerous loss of precision.
Of course, a different strategy (like the one used by the previously mentioned
Fox-Glynn method) could be devised to improve the accuracy without resorting
to multi-precision arithmetic. In particular, the error control variables are sub-
ject to multiple subtractions, which could result in numerical instability without
enough precision. The strategy used by the Fox-Glynn method and many other
Uniformization methods is that of starting from the central value of the β(m,μ)
series, and the computing the left and right tails independently. Unfortunately, it
is hard to derive a single computational strategy that is at the same time general
w.r.t f(x) and that computes the values in a non-sequential order. However, if
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we restrict to some specific classes of general functions (like expolynomials), a
better strategy could be devised.

Tool Validation. The tool has been validated against the results computed by
SPNica and by a direct evaluation of the alpha-factor formulas in Mathemat-
ica. Results confirm the correctness of the tool on a benchmark of distributions.
The tool is also equipped with a small unit test, that runs using the test com-
mand line argument. The unit test verifies that the tool re-computes correctly
the alpha-factors from a small set of PDFs, and compares the obtained results
with the values computed by evaluating the corresponding formula integrals in
Mathematica.

6.1 Example of Running alphaFactory

Figure 1 shows four by three plots obtained running alphaFactory on four PDFs.

f(x) = Erlang(0.75, 4); μ = 1.25; ε = 10−7(A)

f(x) = Triangular(2, 6); μ = 0.85; ε = 10−7(C)

f(x) = 0.3 ∗ I(5) + 0.5 ∗ I(10); μ = 3.0; ε = 10−7(B)

f(x) =
27
10

e−3xx +
2
5
e−2xx2 +

1
10

e−1xx3; μ = 1.5(D)

c = 0.8; E[X] = 6.5; R = 63c = 1; E[X] = 5.33333; R = 51

c = 1; E[X] = 4; R = 19
c = 1; E[X] = 2.75; R = 45
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Fig. 1. Alpha-factor distributions generated by alphaFactory from four PDFs.

For each PDF three graphs are shown: the PDF itself and instantaneous and
accumulated alpha-factors (left to right). The plot header reports the computed
values for c, E[X], and the truncation point R. PDF (A) is an Erlang distribution
of rate 0.75 and 4 phases. Alpha factors are computed for a CTMC of rate
μ = 1.25, with accuracy ε = 10−7. Values for (A) are obtained running the tool
from the command line:

./alphaFactory 'Erlang(0.75, 4)' 1.25 0.0000001

The second line in the header of plot (A) reports the computed values for c and
E[X], and the truncation point R. PDF (B) is a linear combination of two Dirac



48 E.G. Amparore and S. Donatelli

impulses, which is intuitively a random choice between two deterministic events.
The combination is defective, as can be seen by the computed integral value
c = 0.8. PDF (C) is a triangular distribution, which is actually decomposed into
a polynomial combination of two rectangular signals. Finally, PDF (D) is an
expolynomial distribution. When run from the command line as a standalone
tool, alphaFactory first writes the two moments of the function, followed by the
number of factors and by a list of one factor per line. The generated alpha-factors
can be used directly inside a Extended Uniformization method, following Eq. (1).

7 Integration of alphaFactory into Other Softwares

As mentioned before, alphaFactory can be included in another software project as
a static library or as a C++ compilation unit, to be used non-interactively. The
Application Programming Interface of alphaFactory is minimal and it is made
by just two exported functions:

– verify alpha factors expr takes in input a character strings and verifies
if it is a valid input expression for the tool, if it is defective and if the tool
is capable of integrating that function. This function is useful for expression
validation, for instance during model loading, or within a graphical editor.

– compute alpha factors dbl(const char* fg, double mu, double eps)
computes the alpha factor distributions as in Eq. (2). The function returns a
pair of vectors, containing the values of αf (m,μ) and αF̄ (m,μ). Argument
mu is the uniformized CTMC rate. Argument eps specifies the computation
accuracy ε.

The minimalist API allows to integrate the tool into other softwares that use the
Uniformization method with a minimal effort. We have integrated alphaFactory
in our DSPN solver [3], making it capable of solving MRSPN models.

7.1 Integration of alphaFactory into GreatSPN

We now show a small example of an application of generalized functions in
MRSPN, solved with the help of alphaFactory. The tool has been integrated
inside the DSPN solver of GreatSPN [3], which is now capable of solving MRSPN
Petri net models with general transitions with the usual enabling restriction.
We consider the case [5] of a multi-utility company, who works in a specified
geographical area of about 2200 km2, with 531K inhabitants. The problem the
company is interested in is the optimal allocation of human resources, in order
to comply with the national regulation authority rules, which require that in
case of call from a client of a detected leak of gas, a technician must be on-site
in less than 1 h. When on site, the technician first secures the problem. Then,
he may decide to actually fix the problem, if there are no other open requests.
Otherwise, he leaves the site, sending an external plumber to do the fix.

Figure 2 shows the travelling time distribution and securing time distribu-
tion, extracted from the company log (about 600 samples). We used the Erlang
distribution for data fitting, deriving using the company logs an Erlang(1.15, 3)
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(a) Travelling time distribution.
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(b) Securing time distribution

Fig. 2. Data samples from which the general distributions were derived.

for the travelling time, and Erlang(1.6, 4) for the securing time. We do not have
precise timing for the repairing phase, but the company told us that the time is
usually in the order of 10–30 min. Hence, we modeled the repairing time with a
Uniform(10, 30).

Fig. 3. Simplified MRSPN of the multi-utility company repairmen problem used in [5].

The MRSPN model of the simplified multi-utility company is depicted in
Fig. 3. Distribution functions are written as annotations of the general transition
(black rectangles) in the graphical representation of the MRSPN. The functions
are passed verbatim to alphaFactory during the solution process. We run the
steady-state MRSPN solver on the model, for various client inter-arrival times
(IAT), to study the behaviour of the system and the load balance. The goal
of the analysis is to find the client IAT value where the probability of having
another client being served is below 10%.

Figure 4 shows the expected number of clients in the system (left) and the
probability distribution of finding the technician idle (right), for increasing values
of the client IAT. We observe that with a client IAT of ∼28 min the probability
of finding another client in queue is about 1. The probability drops rapidly, and
is below 0.1 with an inter-arrival time of 100 min. The probability of finding
the technician idle is about ∼74% when the client IAT is 100 min. We therefore
conclude that the target system load is at a client IAT value of about 100 min,
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Fig. 4. MRSPN performance indexes computed in steady-state.

considering the provided travelling time distributions and securing time distrib-
utions, when a single technician is available.

Overall, the MRSNP has 1116 markings. The steady state solution time for
a single run takes ∼0.2 s. In general, we may say that in most cases the cost
of running alphaFactory is negligible, since it needs to be run just once for each
f(x) and μ pair.

8 Conclusions and Future Works

This paper describes the tool alphaFactory, whose purpose is the generation of
the alpha-factors of a general distribution f(x). Alpha-factors are used by the
Extended Uniformization method to compute instantaneous/accumulated tran-
sient probabilities at time t, with t distributed as f(x). The main purpose of
alphaFactory is to make a standalone, re-usable component to ease the implemen-
tation of Extended Uniformization. This is mostly of interest for MRgP solvers,
MRSPN and DSPN tools, and tools that compute transient CTMC probabilities.

We plan to extend also our Phase-Mission systems [4,20] tools with alphaFac-
tory, to allow the definition of phases of general duration. This extension is use-
ful for many processes (like workflow processes) where phases are more naturally
describedwith uniformdistributions or distributions fitted fromdata.We also plan
to investigate the use of alphaFactory inside other tools that support more sophis-
ticated data structure representations, like state-spaces in Kronecker form [9].

Availability. The source code of alphaFactory is distributed under a modified
BSD license, and can be found at: https://github.com/amparore/alphaFactory.
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Abstract. A quantitative model checking technique is applied to com-
pute a day-ahead pricing for smart grids. In a smart grid system, smart
meters enable bidirectional communications between electricity providers
and customers. The providers can monitor the customers’ detailed elec-
tricity usage and by posting dynamically changing prices, they can shape
the energy demand. We propose a model checking based day-ahead pric-
ing technique and demonstrate the usefulness of the technique. Specif-
ically, we model the power demand changes of various types of loads
by first order differential equations while considering expected loads
and price changes as external forces. Complex requirements about the
customers’ energy usage, the current system state estimate, and the
expected load for the next day are described in an LTL based quan-
titative temporal logic, called LTLC. Day-ahead prices that can satisfy
the description are computed through the LTLC model checking.

1 Introduction

A smart grid is an energy delivery system with two-way communications between
electricity providers and customers. The two-way communication enabled by
smart meters allows the energy providers to measure the customers’ energy con-
sumption level and to post time dependent prices to the customers. In other
words, the bidirectional communication forms a feedback loop that enables the
electricity providers to shape the customers’ energy demand levels.

Smart meters are one of the key elements in the smart grid infrastructures.
They periodically record the electricity consumption levels and send the infor-
mation back to the energy provider at least at a daily interval. The provider
can build the customers’ energy usage profile in hour-to-hour details from the
report. In addition to the monitoring and reporting capabilities, smart meters
can display the providers’ time-dependent electricity prices. Smart devices at
home or customers themselves can either automatically or manually adjust their
scheduled electricity usage based on this price. These detailed demand monitor-
ing and price posting capabilities enable the electricity providers to shape the
customers’ energy consumption level to meet various requirements [3,8,17].
c© Springer International Publishing AG 2017
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In this paper, we propose a method to compute a pricing scheme for smart
grid systems. Assuming that the aggregate behaviors of smart grid systems are
expressed in dynamics equations, a pricing scheme that can shape the state
trajectories of the system to meet the requirements can be computed through a
quantitative model checking. Describing a goal in a temporal logic has several
advantages over directly implementing the goal in a code. Some of the merits
are: the approach is manageable in that one can easily update a goal without
worrying about rewriting the implementation; a complex goal can be intuitively
expressed and is less likely to have implementation errors; when the goal is not
achievable, its impossibility will be reported. One of the disadvantages in using
the technique is that the resulting constraint solving mechanism may be less
efficient than handwritten programs. The inefficiency can be somewhat relieved
by saving the feasible paths of intersection automata [4] offline.

To demonstrate the usefulness of the proposed technique, we developed a
non-trivial mathematical model of a smart grid system and could successfully
compute a pricing scheme against the model. Specifically, we model a smart grid
system by first order differential equations, describe requirements in a quantita-
tive temporal logic, called Linear Temporal Logic for Control (LTLC) [15], and
show that the model checking technique can find a pricing scheme that can shape
the demand to satisfy the requirements. Speaking of the pricing, we are focusing
on the day-ahead pricing scheme, where hourly electricity prices for the next
day will be posted together in advance [8]. Compared to the real-time pricing
scheme, where the price is determined based on the current measurement and
is enforced right away [3,17], the day-ahead pricing scheme has certain advan-
tages. For example, from the customer’s perspective, the real-time scheme leaves
a lot of uncertainty about the current electricity price and this scheme makes it
difficult to schedule their device usages in advance. Moreover, some tasks, like
laundry, are not flexible enough to be interrupted in the middle of the operation.

In addition to the day-ahead pricing scheme, we take into account the fact
that different types of devices may have different sensitivities to the price changes
and to the expected daily usage. For instance, refrigerators are turned on all the
time and their usage is insensitive to price changes and to the expected daily
usage. On the other hand, we may want to watch TV shows or news at specific
times of a day, but we are less likely to leave a TV on without watching when
the electricity is expensive. Hence, the demand for TV is sensitive to both. We
model the dynamics of each device usage by first order differential equations
with the expected device usage and the price change acting as two external
forces driving the system states. There is a previous work on finding an optimal
day-ahead pricing scheme considering that devices have different sensitivity to
prices [10]. In this paper, we will show that more complex requirements can be
easily described in our temporal logic, and a feasible pricing scheme or its non-
existence can be systematically computed through a model checking process.

Model checking is an automatic process of validating properties of concur-
rent systems with finite states [5,6,9,16]. It checks whether there are any com-
putations of a system that may violate a specification, commonly written in a
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temporal logic. One of the benefits of model checking techniques over simula-
tions or testings is that they can give the completeness about the result. In other
words, if a model checking result is true, it is based on the complete examination
of all possible cases. Moreover, if the result is false, it can report a counterex-
ample witnessing the violation. Recently, we have been progressively extending
the model checking techniques to target models with continuous variables. One
of the difficulties in handling such systems is that the infinite state space can-
not be enumerated. Coping with the difficulty, we have developed a technique
that can check the trajectories of probability mass functions (pmfs) of Markov
chains [14]. Later, we broadened the target to include general linear systems that
have external inputs as well as an initial state [13]. More recently, this technique
is extended once again to target hybrid systems [15].

Figure 1 shows an overview of the proposed a day-ahead pricing technique
for a smart grid system. The smart meters at customers’ home can show the
electricity price such that the customers or their devices can schedule the elec-
tricity usage. Detailed energy consumption levels are frequently reported back
to the energy provider. The energy profiler collects this information, builds an
electricity load profile [18], and produces expected energy consumption levels
for different device types. In our system model, this expected power consump-
tion level is considered as an external force that tends the actual power demand
towards it. The measured energy information is also fed into the state estimator,
such as Kalman filter [19], where the current state of the system can be esti-
mated. In this paper we assume that the energy profile and the state estimate
are already available and we will focus on how these information and the require-
ments about the demand can be incorporated into an LTLC description and how
a day-ahead pricing scheme can be computed by the LTLC model checking.

Model Checking Smart Meter

Customer Device

State Estimator

E
stim

ated State

E
nergy U

sage

Price Info.

M
easured E

nergy

Electricity Provider Customer

E
xpected E

nergy

Load Profiler

Day−ahead PricesRequirements

Fig. 1. A diagram for a day-ahead pricing scheme. Based on the state estimate and
the expected energy consumption level for a day, day-ahead prices are computed by
the LTLC model checking.
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2 Smart Grid Model

To demonstrate the usefulness of the proposed method, in this section, we
develop a mathematical model for a smart grid system. We model the dynam-
ics of the electricity demand change by first order differential equations. These
continuous dynamics are reformulated in the state variable form and discretized.
The state variable form is a standard form on which many control techniques,
including our LTLC model checking algorithm, are developed. Finally, the result-
ing discrete state variable model is partitioned into related components.

We assume that the change of the demand is proportional to the difference
between the expected load and the current load. For example, suppose that there
is a popular TV show then customers are likely to turn on their TVs at that
time, which will make the load change proportional to the difference between the
current and the expected load. We also assume that the demand is negatively
propositional to price changes. That is, if the price is raised the demand will
be dropped. Hence, if customers know that the price of the electricity will be
cheaper at noon, they would shift their laundry or vacuuming towards noon.

The description above can be expressed in the first order differential equation
below

ė(t) = a · (�(t) − e(t)) − b · p(t), (1)

where e : IR → IR is the power consumption level, ė(t) is d
dte(t), � : IR → IR is

an input to the system representing the expected load based on the load pro-
file, p : IR → IR is another input to the system representing the change of the
electricity price, a ∈ IR is a constant representing the sensitivity of the demand
to the expected load, and b ∈ IR is a constant representing the sensitivity of the
demand to the price. Observe that the load change ė(t) is proportional to the
difference between the expected load and the current demand (�(t) − e(t)) and
negatively proportional to the price change p(t). Large value of a means that the
demand is sensitive to the expected load. TVs and heaters are examples of such
devices and refrigerators, laundry machines, and vacuum cleaners are examples
at the opposite side. As for the sensitivity to the price changes, b, customers are
likely to avoid using the devices with large b when the electricity is expensive.
Vacuuming and the laundry are such examples and refrigerators and heaters are
the devices at the other side of the spectrum.

Regarding the expected load �(t) in Eq. (1), depending on the device, the
shape of the expected load throughout a day will vary. This information can be
obtained from the load profile. p(t) in Eq. (1) is the change of the price not the
price itself. That is, a positive value of p(t) is the amount of price increase from
the nominal price and a negative value of p(t) is the amount of discount from
the nominal price. p(t) is the control input we want to find to shape the power
demand e(t) in the presence of the expected load �(t).

In this paper, we are considering the four representative load types Λ =
{KS,Ks, kS, ks}, where the capital letter K and the small letter k represent a
large and a small sensitivity of e(t) to the expected load respectively. Similarly,
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S and s represent e(t)’s large and small sensitivity to the price changes. More
types of nodes with other sensitivities can be added without difficulty. For each
σ ∈ Λ, the dynamics equations describing the demands are

ėσ(t) = aσ · (�σ(t) − eσ(t)) − bσ · pσ(t).

One of the objectives of the pricing policy for smart grids is to keep the
maximum demand below the maximum capacity of the infrastructure. In other
words, for all t ≥ 0,

∑
σ∈Λeσ(t) ≤ θ,

where θ is the maximum capacity of the infrastructure.
A harsh way to achieve this goal is to simply raise the price and force cus-

tomers to reduce their electricity usage. However, there is a more graceful solu-
tion like keeping the accumulated demands of each device type close to their
expected values. In addition, it is desirable to keep the accumulated price change
close to zero. In other words, while keeping the price near its nominal value, we
want to have the customers shift their electricity demand rather than reduce it.

To specify such requirements, we added the following 9 state variables: for
each σ ∈ Λ, Eσ : IR → IR, Lσ : IR → IR, and P : IR → IR representing the accu-
mulated demand, the accumulated expected load, and the accumulated price
respectively. These variables satisfy the following relations. For all σ ∈ Λ,

Ėσ(t) = eσ(t), L̇σ(t) = �σ(t), Ṗ (t) = p(t).

With the new state variables, the requirements can be written as follows. For all
σ ∈ Λ,

Eσ(24) =
∫ 24

0

eσ(t)dt � Lσ(24) =
∫ 24

0

�σ(t)dt , P (24) =
∫ 24

0

p(t)dt � 0.

These differential equations can be compactly rewritten in the state variable
form [7]. Let us first define a sub-state vector function and sub-system matrices
for each σ ∈ Λ.

xσ(t) =

⎡

⎣
eσ(t)
Eσ(t)
Lσ(t)

⎤

⎦ , Aσ =

⎡

⎣
−aσ 0 0

1 0 0
0 0 0

⎤

⎦ , Bσ =

⎡

⎣
aσ

0
1

⎤

⎦ .

Using the sub-matrices Aσ, and Bσ, the system matrices A ∈ IR13×13 and
B ∈ IR13×5 for the whole system can be defined as

A = diag([AKS , . . . , Aks , 0]), B = diag([BKS , . . . , Bks , 1]),

where diag(v) is a diagonal matrix whose diagonal is v.
Let the vector functions u : IR → IR5, y : IR → IR13, and x : IR → IR13 be

input, output, and state trajectories of the whole system defined as

u(t) = [�KS (t), �Ks(t), �kS (t), �ks(t), p(t)]T ,

x(t) = [xKS (t)T ,xKs(t)T ,xkS (t)T ,xks(t)T , P (t)]T ,

y(t) = x(t).
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Then, the input, output, and state trajectories satisfy the following system
dynamics equations in the state variable form.

ẋ(t) = A · x(t) + B · u(t), y(t) = C · x(t),

where C ∈ IR13×13 is the identity matrix.
We discretized the continuous dynamics equations in the state variable form

using the First Order Hold (FOH) method.1 Let the discrete system dynamics
equations be

x̄(t + 1) = Ā · x̄(t) + B̄ · ū(t), ȳ(t) = C̄ · x̄(t) + D̄ · ū(t),

where the vector functions ū : IN → IR5, ȳ : IN → IR13, and x̄ : IN → IR13 are the
discrete input, output, and state trajectories respectively.

Because the system matrices Ā ∈ IR13×13, B̄ ∈ IR13×5, C̄ ∈ IR13×13, and
D̄ ∈ IR13×5 are large and sparse to compactly describe in LTLC and to show
in the paper, we rewrite the non-zero elements into a system of difference equa-
tions of related components. The state variable representation can be partitioned
into the following set of difference equations.

ex
σ(t + 1) = aee

σ · ex
σ(t) + ble

σ · �u
σ(t) − bpe

σ · pu(t), ey
σ(t) = ex

σ(t) + dle
σ · �u

σ(t) − dpe
σ · pu(t),

Ex
σ(t + 1) = Ex

σ(t) + aeE
σ · ex

σ(t) + blE
σ · �u

σ(t) Ey
σ(t) = Ex

σ(t)+dlE
σ · �u

σ(t)−dpE
σ · pu(t),

−bpE
σ · pu(t),

Lx
σ(t + 1) = Lx

σ(t) + �u
σ(t), Ly

σ(t) = Lx
σ(t) + 0.5 · �u

σ(t),
P x(t + 1) = P x(t) + pu(t), P y(t) = P x(t) + 0.5 · pu(t),

where σ ∈ Λ and the superscript u, y, and x on the time functions represent
the input, output, and state respectively. Hence, ex

σ : IN → IR and ey
σ : IN → IR

are the state and the output trajectories for the demand, Ex
σ : IN → IR and

Ey
σ : IN → IR are the trajectories for the accumulated demand, and so on. Dis-

regarding the superscripts and the subscripts, the constants a, b, c, and d in the
equation above are from the matrices Ā, B̄, C̄, and D̄ respectively. To identify
the constants easily, we annotated them with two letter superscripts such that
the first letter represents the source variable and the second letter represents
the target variable. Table 1 shows the coefficients for the continuous and the
discretized models.

Table 1. Coefficients for the continuous time models and discrete time models.

σ = KS σ = Ks σ = kS σ = ks σ = KS σ = Ks σ = kS σ = ks

aσ 7.0000 6.0000 2.0000 0.0500

bσ 5.0000 1.0000 7.0000 0.0500

aee
σ 0.0009 0.0025 0.1353 0.9512 aeE

σ 0.1427 0.1663 0.4323 0.9754

bleσ 0.1426 0.1658 0.3738 0.0476 blEσ 0.9796 0.9724 0.8131 0.0486

bpeσ 0.1019 0.0276 1.3084 0.0476 bpEσ 0.6997 0.1621 2.8458 0.0486

dle
σ 0.8573 0.8337 0.5677 0.0246 dlE

σ 0.3775 0.3610 0.2162 0.0082

dpe
σ 0.6123 0.1390 1.9868 0.0246 dpE

σ 0.2697 0.0602 0.7566 0.0082

1 We used c2d function of MatlabR© to discretize the continuous dynamics.
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Fig. 2. Response of the system models to the expected power change and to the price
change (the unit for the price graph is $/KWh). The four graphs are σ = KS, σ = Ks,
σ = kS, and σ = ks.

Figure 2 shows how the models respond to the expected load changes and
to the price changes. The four graphs are for the load types σ = KS, σ = Ks,
σ = kS, and σ = ks. In the figures, the system is initially in the relaxed state,
meaning all state variables are zero, and the expected load is set to 1 GWh at
step 7. Later at step 15 the price is increased by 0.25 $/KWh. As expected,
the second graph and the fourth graph show that the controlled demands (sold
lines) do not change much from their uncontrolled counterparts (dashed line).
Regarding the sensitivity to the expected loads, the first and the second graphs
show that the controlled and the uncontrolled demands move quickly in response
to the changes in the expected load (dotted lines). However, as the third and
the fourth graphs show, the demand lines are slow in responding to the expected
load changes.

3 Specification on Smart Grid Models

In the previous section, we built a discrete time LTI model for a smart grid
system. In this section, we formally define a discrete time LTI model and define
its computation paths which are trajectories of the input, output, and state
variables. The syntax and the bounded semantics of the specification logic, called
LTLC, will follow the model definitions.

Definition 1. An LTI system M is a seven tuple M = 〈U, Y,X,A,B,C,D〉,
where U = {u1, . . . , unu}, Y = {y1, . . . , yny}, and X = {x1, . . . , xnx} are the sets
of input, output, and state variables, A ∈ IRnx×nx , B ∈ IRnx×nu , C ∈ IRny×nx ,
and D ∈ IRny×nu are system matrices. 	
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The input, output, and state trajectories can be defined as vector functions
x : IN → IRnx , u : IN → IRnu , and y : IN → IRny such that u(t)i = ui

at t for i = 1, . . . ,nu, y(t)i = yi at t for i = 1, . . . ,ny , and x(t)i = xi at
t for i = 1, . . . ,nx . Then, u, y, and x satisfy the following system dynamics
equations:

x(t + 1) = A · x(t) + B · u(t), y(t) = C · x(t) + D · u(t). (2)

Solving these equations, x and y can be explicitly expressed in terms of x(0)
and u as:

x(t) = At · x(0) +
t−1∑

i=0

At−i−1 · B · u(i), y(t) = C · x(t) + D · u(t). (3)

Definition 2. A computation path π of an LTI systemM = 〈U, Y,X,A,B,C,D〉
is a function π : IN → IRnu × IRny × IRnx such that π(t) = (u(t),y(t),x(t)), where
u, y, and x satisfy Eq. (2). 	


Linear Temporal Logic for Control (LTLC) is an LTL with the usual tem-
poral and logical operators, but the atomic propositions are linear (in)equalities
about input, output and state variables of a system. The computation paths
of LTLC are the trajectories of an LTI system and LTLC model checking is a
process of verifying whether all computation paths of a system satisfy a specifi-
cation. Observe that the state space is in IRn and there are uncountably many
computation paths.2 The LTLC model checking algorithm converts the quanti-
tative model checking problem into a series of feasibility checking problems and
checks if there is a computation path that violates the specification.

Definition 3. The syntax of LTLC is

φ ::= T | F |AP | ( φ ) | ¬ φ |φ ∧ ϕ |φ ∨ ϕ |φ → ϕ |φ ↔ ϕ |
Xφ |♦ φ |� φ |φUϕ |φ R ϕ,

AP ::= c1 · v1 + · · · + cn · vn �� d,

where ci, d ∈ IR, vi ∈ U ∪ Y ∪ X for i = 1, . . . , n, �� is one of <,≤,=,≥,
and >. 	


Implicitly, the meaning of an LTLC formula is as follows. An atomic propo-
sition c1 · v1 + · · · + cn · vn �� d at a state π(t) is true iff the (in)equality is true
when the variables are assigned with their corresponding values in π(t). In other
words, c1 · v1 + · · · + cn · vn �� d is true iff c1 · θπ(t)(v1) + · · · + cn · θπ(t)(vn) �� d,
where θπ(t) is the assignment function for a variable v such that θπ(t) is u(t)i of
π(t) if v = ui, y(t)i of π(t) if v = yi, or x(t)i of π(t) if v = xi.

Logical operators have their usual meaning: ¬φ is true at t iff φ is false at t;
φ ∧ ϕ is true at t iff φ is true at t and ϕ is true at t; and φ ∨ ϕ is true at t iff φ is
2 A state here is in the range of a computation path, the product of the input, output,

and state variables (IRnu×IRny×IRnx ), not just the state variables of the LTI system.
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true at t or ϕ is true at t. φ → ϕ is equivalent to ¬φ∨ϕ and φ ↔ ϕ is equivalent
to (φ → ϕ) ∧ (ϕ → φ).

Temporal operators can be interpreted as follows. Xφ is true at t iff φ is true
at the next time step t + 1; � φ is true at t iff φ is always true from t; and ♦ φ is
true at t iff φ eventually becomes true at some time t′ ≥ t. φ Uϕ is true at t iff
φ is true until ϕ eventually becomes true. To be specific, there is a time t′ ≥ t
when ϕ is true and φ is true at τ for t ≤ τ < t′. φ Rϕ is equivalent to ϕ U (φ∧ϕ),
except that φ is not required to hold eventually.

Formally, the semantics of an LTLC formula φ can be defined by the ternary
satisfaction relation |=⊂ Π × IN × Φ and the binary satisfaction relation |=⊂
M×Φ, where Π is the set of computation paths, Φ is the set of LTLC formulas,
and M is the set of LTI models.

Definition 4. The ternary satisfaction relation |=⊂ Π × IN × Φ is defined in
Fig. 3(a). 	


Fig. 3. (a) Ternary satisfaction relation |= and (b) bounded ternary satisfaction relation
|=b.

The missing operators in Definition 4 can be explained by the equivalence
relations. The following well-known relations are for the logical operators. φ →
ϕ ≡ ¬φ ∨ ϕ, φ ↔ ϕ ≡ (φ → ϕ) ∧ (ϕ → φ), and (φ) ≡ φ. For the temporal
operators � and ♦ , these relations hold: � φ ≡ F Rφ and ♦ φ ≡ T Uφ.

Using the ternary satisfaction relation, we can define the binary satisfaction
relation.

Definition 5. The binary satisfaction relation |=⊂ M × Φ is

M |= φ ⇔ π, 0 |= φ for all computation path π of M.
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The satisfaction relation |= is about computation paths with infinite length.
However, by allowing an arbitrary input, it is difficult to check whether all com-
putation paths satisfy a given specification to their infinite length. For practical
reasons, the LTLC model checking algorithm supports the bounded semantics [2].
In the bounded semantics, given a bound b, a computation path π satisfies a spec-
ification φ, if (1) a finite prefix of π with length up to b is enough to decide that
π satisfies φ or (2) π ends with a loop whose second cycle starts before or at the
bound b and π satisfies φ.

Formally, given a bound b, the bounded semantics of an LTLC formula φ can
be defined by the ternary satisfaction relation |=b⊂ Π × IN × Φ and the binary
satisfaction relation |=b⊂ M × Φ.

Definition 6. The ternary bounded satisfaction relation |=b⊂ Π × IN × Φ is
defined in Fig. 3(b). 	


To define the bounded binary satisfaction relation |=b, let us define a helper
function τs,p : IN → [0, s + p − 1] that maps a time step to an index for a loop-
ending computation path: τs,p(t) = t if t < s + p; otherwise τs,p(t) = s + (t −
s) mod p, where s, p ∈ IN such that s ≥ 0 and p ≥ 1. τs,p generates a loop-ending
index of period p starting from s. As an illustration, τ1,2(t) = 0, 1, 2, 1, 2, . . . when
t = 0, 1, 2, 3, 4, . . .. A computation path π is a loop-ending computation path if
π(t) = π(τs,p(t)) for t ≥ 0, where p is the period of the loop and s is its starting
index.

With the loop index function τ , the bounded binary satisfaction relation can
be defined as follows.

Definition 7. Given a bound b, the binary bounded satisfaction relation |=b⊂
M × Φ is:

M |=b φ ⇔
{

π, 0 |= φ if π(t) = π(τs,p(t)) for t ≥ 0 and s + p ≤ b
π, 0 |=b φ otherwise.

	

Given a model M , an LTLC specification φ, and a bound b, an LTLC model

checking is a process of deciding if M |=b φ. If the model checker found a coun-
terexample, it reports false with the counterexample witnessed. The counterex-
ample contains an initial state and a sequence of input that can lead to the
violation of the specification.

4 Day-Ahead Pricing by Model Checking

In smart grid systems, electricity providers can shape the customers’ energy
demand by posting different electricity prices at different times of a day. In this
section we will explain how to describe the discrete time model developed in
Sect. 2 and a goal about the electricity usage in LTLC-Checker [1]. Day-ahead
prices can be found by model checking the description.
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Suppose that the goal we want to achieve is (1) the total power demand
of all devices never exceed 1.65 GW, the capacity of the infrastructure, (2) the
price changes are always within ±0.1 $/KWh range of the nominal value, (3) the
accumulated price changes for a day never exceed ±0.1 $/KWh range, and (4)
the accumulated energy demand of each load type is within ±0.5 GWh range
of the accumulated expected load of the device for the day. We assume that
initially, the power demand for each device is close to its expected load and
choose the initial state estimates as ex

KS (0) = 0.01, ex
Ks(0) = 0.12, ex

kS (0) = 0,
ex
ks(0) = 0.44, and all the other states are 0.

We will divide the goal into smaller, manageable pieces and describe them in
LTLC. The pieces will be combined together to formulate the original goal later.
For the first condition, we introduce a new output variable ey representing the
total power consumption of all devices:

ey(t) =
∑

σ∈Λ

ey
σ(t) =

∑

σ∈Λ

ex
σ(t) + d�e

σ · �u
σ(t) − dpe

σ · pu(t).

The first condition can be expressed in LTLC as

φe = � ϕe, where ϕe = ey ≤ 1.65.

Observe that the time step t is dropped in the LTLC formula because t will be
provided during the model checking process like the ternary satisfaction relations
|= and |=b. The second condition can be expressed similarly as

φp = � ϕp, where ϕp = −0.1 ≤ pu ∧ pu ≤ 0.1.

The third and the fourth condition is about the accumulated price and the
accumulated energy at the end of the day. Let us define the conditions without
the temporal operators for now.

ϕP = −0.1 ≤ P x ∧ P x ≤ 0.1, ϕE =
∧

σ∈Λ

(Lx
σ − 0.5 ≤ Ey

σ ∧ Ey
σ ≤ Lx

σ + 0.5) .

The initial conditions can be written as

φi = ex
KS = 0.01 ∧ ex

Ks = 0.12 ∧ ex
kS = 0 ∧ ex

ks = 0.44 ∧ P x = 0 ∧ cx = 0 ∧
∧

σ∈Λ

(Ex
σ = 0 ∧ Lx

σ = 0) ,

where cx is a clock state that will be explained shortly after.
In addition to the conditions above, there are conditions enforced by the

physical constraints of the system: the power consumptions of each device type
should never be negative. The mathematical model of the system can produce a
negative power demand by increasing the price large. To avoid such anomalies,
we added the following LTLC formula

φ+ = � ϕ+, where ϕ+ =
∧

σ∈Λ

ey
σ ≥ 0.
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The always formulas in the first two conditions and in the physical constraints
prevent the use of the more efficient bounded ternary relation |=b. Because we are
only interested in 24 h, we can rewrite the always formulas using the U operator
and enjoy the efficiency of checking |=b as oppose to |=. For this purpose we
introduced a clock state

cx(t + 1) = cx(t) + dcu(t),

where dcu(t) = 1 for 0 ≤ t ≤ 24 and cx(0) = 0. With the clock, the three
conditions with the always operator can be collectively rewritten as

φs = ϕs U (cx ≥ 24), where ϕs = ϕe ∧ ϕp ∧ ϕ+ ∧ (dc = 1).

One problem with this specification is that the Right Hand Side (RHS) of U
formula is not enforced when its Left Hand Side (LHS) is satisfied. That is, at
the moment when cx becomes 24, ϕs is not enforced to be true. To fix this issue,
we separately enforced ϕs at the 24th step.

We need to specify the expected electricity usage of each device type for the
day. Because these numbers are given from the customer profile and there are
no simple formulas to describe them, we manually specify the expected loads for
each time step. The formula is

φt
� = X t

(
∧

σ∈Λ

�u
σ = �̂σ(t)

)

,

where X t is the string of X of length t, �̂σ(t) is the expected load from the profile
at time t for each σ ∈ Λ.

Finally, combining the subformulas together, we can write the goal as

φgoal = φi ∧ φs ∧
24∧

t=0

φt
� ∧ X 24(ϕP ∧ ϕE ∧ ϕs).

Figure 4 shows an LTLC description of the discrete model built in Sect. 2. In
the description a letter t, h, v or f representing TV, heater, vacuuming, and
refrigerator respectively, is suffixed for the device types KS, Ks, kS, and ks.
For example, et, eh, ev, and ef are for the variables ey

KS , ey
Ks , ey

kS , and ey
ks .

In addition, we put a letter x at the second letter position of the variable names
to indicate that the variables are a state variable. For instance, ext, exh, exv,
and exf are for the state variables ex

KS , ex
Ks , ex

kS , and ex
ks .

On the top level, LTLC-Checker description has a model section for a model
description and a specification section for the model checking problem. The
model section begins with optional constant definitions followed by system vari-
able definitions. Each system variable is annotated with the type of the variable,
one of input, output, and state.

With the system variables, one can define modes that comprise a set of system
dynamics equations in the mode section. The LHS of a dynamics equation can
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Fig. 4. LTLC description of the discrete dynamics of each device built in Sect. 2 (left)
and specification of the goal and expected electricity consumption level of each device
(right).



68 Y. Kwon et al.

be a state variable or an output variable. If a state variable is on the LHS of
a dynamics equation, its implicit time index is t + 1. Other types of variables
and state variables appearing on the RHS of an equation have time index t. For
example, the equation Lxt = Lxt + lt in Fig. 4 is for the difference equation
Lx
KS (t + 1) = Lx

KS (t) + �u
KS(t), and et = ext + 0.8573*lt - 0.6123*p is for

the difference equation ey
KS (t) = ex

KS (t) + 0.8573�u
KS(t) − 0.6123pu(t).

Definitions of edges can follow the mode definitions in the edge section. For
a general hybrid system model, the edges are decorated with a predicate formula
describing the mode switch condition. However, in this example with a single
mode, the only edge is the unconditional self-loop M -> M.

With a set of modes and a set of edges connecting the modes, a hybrid system
can be defined as a labeled directed graph. In the system block of Fig. 4, Sys =
({M}, {E}) defines a hybrid system as a pair of the set of modes and the set of
edges.

In Fig. 4, the specification section begins with an optional condition
block, where subformulas can be defined to build a more complex formula. The
logical operators ∧, ∨, ¬, →, and ↔ are /\, \/, ˜, ->, and <-> respectively
in the LTLC-Checker description. The temporal operators X , U , R , ♦ , and �
are X, U, R, <>, and [] respectively in the description of the checker. The first
condition Init defines the initial condition φi, Final defines the final condition
ϕP ∧φE , Safety defines the safety condition ϕs that needs to be satisfied all the
time, and Load defines the expected loads for the 24 h. Observe that in Load,
the X formulas are nested and the expected loads for the day can be sequentially
defined in columns. Load also piggybacked ϕP , ϕE , and ϕs at the 24th step.
Using the subformulas, Goal defines the goal φgoal .

The check block is the last element of the specification. In this block, the
bounded model checking problem is finally defined. In the last line of Fig. 4,
Sys |= ~Goal in 24 describes the model checking problem M |=24 ¬φgoal .

The model checking result was false and by applying the prices in the coun-
terexample, we could get the power consumption levels of Figs. 5 and 6. The third
graph in Fig. 6 shows the price changes from the counterexample. Figure 5 shows
how the electricity demand was shifted (solid line) from the uncontrolled con-
sumption level (dashed line) when the pricing scheme was applied. The dotted
lines in the graphs are the expected power consumption. The four graphs show
the electricity demand of load types KS, Ks, kS, and ks. The third graph has
the most dramatic load shift because this type is sensitive to the price changes
but insensitive to the expected loads.

The differences between the accumulated demands and the accumulated
expected loads (Ey

σ(24) − Ly
σ(24)) were 0.045, −0.0825, 0.2157, and −0.3065

(GWh) respectively from the top. Figure 6 also shows how these differences are
changing over time. The largest decrease occurred at the ks type because with
bks = 0.05, this device type is most insensitive to the expected load changes. kS
type has the largest increase and it is because this device type is sensitive to the
price changes and is insensitive to the expected load changes. As a result, it has
the largest load shift. Observe that all the changes in demand were within the
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Fig. 5. Power consumption levels of each load types: KS, Ks, kS, and ks. Solid lines
are controlled power demand, dashed lines are uncontrolled power consumption, and
dotted lines are expected power consumption.
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Fig. 6. Total power consumption level (1), the difference between the accumulated
demand and the accumulated expected load (2), and the price change (3).

range of ϕE . Moreover, the demand never went below zero. Hence, the trajecto-
ries satisfy X 24ϕE and φ+.

The first graph of Fig. 6 shows how the total power consumption levels of
all device change. Observe that the expected load (dotted line) and uncontrolled
demand (dashed line) exceeded the capacity limit of 1.65 GW, but the controlled
demand stayed below the limit and satisfied φe. The third graph shows the price
changes and they were always within the ±0.1 $/KWh range and satisfied φp.
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The accumulated price change was −0.1 $/KWh and it was also within the range
of ϕP , meaning X 24ϕP was satisfied.

Combining the results together, the computation path π obtained by apply-
ing the price changes in the counterexample satisfied the goal. In other words
π, 0 |=24 φgoal .

5 Conclusion

We have developed a method to compute a pricing scheme for smart grid systems
using a quantitative model checking technique. To demonstrate the usefulness of
the method, a smart grid system is modeled as a first order differential equation
and a day-ahead pricing scheme is computed successfully using a quantitative
model checking technique. Apart from the flexibility and the correctness, an
attractive merit of using a model checking technique is that it can provide the
impossibility of achieving the goal.

The example linear system model is designed such that the current electric-
ity demand level moves towards the expected power consumption level of that
time. The tendency is proportional to the difference between the expected power
consumption level and the current demand. Furthermore, the price change is
negatively affecting the power consumption level. We assumed some reasonable
sensitivity coefficients for different device types. We are developing techniques
that can estimate the system matrices directly from the price changes and the
measured electricity load changes [11,12].

With the progressive use of smart devices that can schedule their own opera-
tion time, the pricing scheme in controlling the customers’ energy consumption
level can only be more effective. We cannot overemphasize the importance of
evaluating the trajectories of system states systematically and finding a way to
control them to meet the requirements. Moreover, the current trend of installing
energy generating devices at the customers’ home can add another dimension to
consider in managing the smart grid systems. We believe, the proposed pricing
technique based on a quantitative model checking method can provide a flexible
and systematic way of controlling the complex smart grid systems.
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Abstract. We present a new framework for aggregated quantitative
modelling of a heterogeneous population of photovoltaic panels. We
are interested in the behaviour of photovoltaic panels as electric power
sources, and in an aggregated model that can capture how such a popula-
tion behaves when connected to the power grid. After an initial analysis
of the characteristics and behaviour of a single device, we propose two
Markov chain models for the aggregation of a heterogeneous population
of such devices. We study the dynamical behaviours of the aggregated
models, embedded within the dynamics of the grid frequency. A sim-
ulation study shows the effectiveness of the aggregated models when
compared to the physical system, and leads to conclude that population
heterogeneity is a desirable feature for the overall system dynamics.

1 Introduction

In recent years, both academia and industry have increased their interest and
attention on renewable energy sources. The growing trend toward environmen-
tal preservation, witnessed by the famous Kyoto protocol, the Paris Agreement
and the so called 2-degrees challenge, is leading scientists to focus on new tech-
nologies and their applications in power generation. Well known technologies are
e.g. wind power, solar energy and geothermal energy. Devices using these energy
sources are typically distributed over a large area rather than being concentrated
in a small production area, which leads to consider the issue of distributed gener-
ation. In the field of renewables, many studies are now focused on photovoltaics
(PV), which is nowadays the third most important renewable energy source,
after hydro and wind power, in terms on total installed capacity [1]. PV panels
produce electrical current from solar irradiation by virtue of the photovoltaic
effect of semiconductor materials. In this work we will interchangeably denote
photovoltaic panels as PV or solar panels.

Although models for a single PV cell or panel are well known in literature [2],
up to the authors’ knowledge there has not been any model encompassing the
connection between panels and grid. Large PV farms have been modelled and
studied as a whole, but a model dealing with distributed generation of power in
a large city, or a country, from household applications is still missing. This can
c© Springer International Publishing AG 2017
N. Bertrand and L. Bortolussi (Eds.): QEST 2017, LNCS 10503, pp. 72–87, 2017.
DOI: 10.1007/978-3-319-66335-7 5
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be due to many reasons: first of all because photovoltaic application for a single
home has a limited power to inject into the grid and therefore can be neglected;
secondly because often the power produced is consumed at the source (the house
itself), hence the net contribution to the wider grid is nearly null.

Nevertheless, the growing population of PV panels justifies the study, mod-
elling and control of this energy source. The power network, at a regional or
state level, must be prepared to deal with the volatility and unpredictability
intrinsically related to the production of renewable energy. As an example, PV
generated power – distributed over 1.5 million PV setups – has provided for
approximately 7.5% of Germany’s electricity demand, with peaks of 50% dur-
ing weekends and holidays [3]. Often the power production of such devices do
not follow usual demand patterns: the power production of a panel, in a clear
day, follows the irradiance of the sun, with a maximum at around midday, when
the power is usually injected into the grid, due to a lack of consumption. This
unbalanced flow, if not handled correctly, could lead to network issues, such as
blackouts [4]. Great care has been taken to proactively cope with the eclipse
occurred in March 2015: it was anticipated that a reduction of around 30 GW
could have been caused by the sun occlusion [5], which is about 10 times the
size of a blackout accident that can be resiliently handled by the grid.

In this paper, we present a new framework for modelling and abstraction of
a large population of photovoltaic panels. We firstly analyse the behaviour of
a single physical device when connected to the grid. The PV panel is equipped
with a sensor, to sample the network frequency, and with an internal counter
in order to ensure that the network frequency remains inside a certain range of
admissible values for a defined amount of time, before an action is taken. Two
quantities seem to be key to model the PV behaviour: the working interval of
network frequencies, and the internal time delay required for a safe connection to
the network. Each device in principle can have a different admissible frequency
range and a different time delay. In order to model this heterogeneity we present
two discrete-time Markov chains, one closer to the physical description with
(n+2) states, and the other more abstract with 3 states. These models are then
connected to the dynamics of the network frequency, giving an extended model
for the whole system, for which stability properties are studied.

The remainder of the paper is organised as follows. In Sect. 2 we describe
the behaviour of a single photovoltaic panel in frequency. The Markov chains
models and the frequency evolution are explained in Sect. 3. The performance
comparisons between the two models and a realistic model taken as benchmark
in Sect. 4. Conclusions are drawn in Sect. 5.

2 Description of the Physical System

In order to provide an aggregated model for a population of PV panels, we start
with the description of the behaviour of a single panel, as a function of the local
dynamics of the grid.

A panel has two working states, ON and OFF. It switches amongst these
two states according to two conditions: the local network frequency f(·) (whose
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nominal value is taken as f0 = 50 Hz) and an internal time delay τr, usually
given in seconds (cf. Table 1). The panel is connected to the grid and senses it
by sampling its frequency discretely in time. It can be in the ON mode if the
network frequency lies within a given local frequency interval If , otherwise it
must disconnect and transition onto the OFF mode. It is sensible to assume that
the ON-to-OFF switch happens within a negligible time interval [6,7], whereas
the OFF-to-ON switch cannot happen before a time delay τr, during which the
frequency f must dwell within If : this is in order to ensure that the network
frequency is stable enough to render the panel connection to the grid safe, and to
avoid chattering behaviours that can lead to overall network instability. During
this interval of time the panel keeps sampling the frequency and if it measures
it to be outside the working interval, the internal counter is reset. In order to
describe this functioning, one can imagine a PV panel as a device equipped with
an internal counter τ(k) at time k and a time threshold τr. This counter is set
off when the device is in the OFF state and the frequency enters the working
interval If . If the counter value reaches τr as f ∈ If , then the device can turn
to the ON state. If instead the frequency goes outside If while τ(k) < τr, then
the device resets its counter. As the PV panel senses the network frequency via
a digital sensor with a defined sampling rate, τr is a value given in number of
samples. In practice, the sampling time of a PV panel is in the order of 200 ms,
and τr is around 20 s. The internal clock τ can then be thought of as a counter,
and as such it will be modelled in this work.

Table 1. Behaviour of single photovoltaic panel within the power network at time
k. Key quantities are: panel state q ∈ {ON, OFF}; network frequency f ; operating
frequency band I; clock/counter τ and re-connection delay τr.

Current state q(k) Frequency Delay Next state q(k + 1)

OFF f(k) ∈ If τ(k) ≥ τr ON

ON f(k) ∈ If n.a. ON

ON f(k) /∈ If n.a. OFF

OFF f(k) ∈ If τ(k) < τr OFF

The power injected into the grid by the population of panels has non negli-
gible dynamical effects to the network frequency, which directly influences the
behaviour of single panels in a feedback loop.

Our aim is to develop a model for a large population of photovoltaic panels.
This cannot be modelled considering N identical PV panels, simply because in
reality it is not the case: different regulations, manufacturers, makes and age,
all render the population highly heterogeneous [6–8]. As such, this work focuses
on parameters heterogeneity as a key aspect: we deal with network frequency
thresholds and time delays, to model the more realistic situation where each
panel has a different working interval as well as a different counter. Another
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interesting part of the real system is its power output: the production of elec-
trical power is subject to many external factors, e.g. weather conditions, light
occlusions. However, here we will focus on a power production that is constant
in time. Time varying features can be added at a second stage, for example
modelling a power production as a stochastic process [9].

3 Markov Chain Model of a Population of PV Panels

Since the behaviour of each panel depends on a discrete sampling of the fre-
quency, we refer to a discrete-time framework and model the aggregation of
photovoltaic panels with a discrete-time Markov chain. Since the focus is on the
frequency thresholds and the delays of the panels, for simplicity we consider the
power production to be at its maximum nominal value whenever a panel is ON.

As an early simplifying assumption (to be shortly repealed in the next sub-
section), assume exact population homogeneity, meaning that every device shows
the same behaviour in time and is characterised by the same parameters. This
allows us to define a quantity P expressing the weighted power production as

P =
1
N

N∑

i=1

Pi,

where N is the total number of panels in the population, and Pi is the power
output of the single i-th panel. We can consider the normalised power production
R(k), at time k, as

R(k) =
1

NP

N∑

i=1

qi(k)Pi,

where qi(k) ∈ {0, 1} denotes whether the i-th device at time k is in the OFF or
ON state, respectively. Since we have assumed population homogeneity, all the
devices behave in accord, and R(k) ∈ {0, 1} at each time step k: we can then
consider R(k) as a Bernoulli random variable, and introduce

x(k) = E[R(k)] = P[R(k) = 1],

a variable defined as the expected value of R(k) at time k, which denotes the
probability of being in the ON state at that time. Furthermore, by the law of
total probability,

x(k + 1) = P[R(k + 1) = 1] = P[R(k + 1) = 1|R(k) = 1] · P[R(k) = 1]+
+ P[R(k + 1) = 1|R(k) = 0] · P[R(k) = 0].

Let us define a(k) = P[R(k + 1) = 0|R(k) = 1], so that P[R(k + 1) = 1|R(k) =
1] = (1 − a(k)), and let us introduce b(k) = P[R(k + 1) = 1|R(k) = 0]: the
previous equation can be rewritten as

x(k + 1) = P[R(k + 1) = 1] = (1 − a(k))x(k) + b(k)(1 − x(k)). (1)
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This relation describes how the probability of being ON gets updated at time
k. In the framework that we have adopted, the transition probability ON-to-
OFF (a(k)) and OFF-to-ON (b(k)) are governed by the value of the network
frequency f(k), namely whether or not f(k) ∈ If . Since we assumed population
homogeneity, these values binary: for instance, when f(k) ∈ If then a(k) = 0
whilst b(k) = 1. Since the power output is the sum of the PV devices turned
ON, it can be expressed as Pout(k) = NPx(k).

A Markov Model Without Delays

Let us now introduce heterogeneity over the frequency behaviours of different
panels, as expected in reality. Let us suppose that each panel has different fre-
quency thresholds (which we take to be constant in time): each panel reacts
to the network frequency distinctively, namely it disconnects/reconnects at a
different frequencies than other panels. We assume that these thresholds are
distributed continuously according to a known probability distribution - such
continuous statistics can be interpolated from discrete population data. Simi-
larly to the homogeneous case, we introduce a(k) and b(k) as the probability of
turning to the ON state or to the OFF state at the k + 1-th time step, start-
ing from the opposite condition at the k-th time step, respectively. Unlike the
homogeneous case where a and b were binary, in order to encompass population
heterogeneity we integrate the probability distribution function comprising the
frequency thresholds using the current value of network frequency f(k) as one
of the extrema: we thus obtain the portion of panels that are enabled to change
their state. Formally,

a(k) =
∫ f(k)

−∞
pdf0|1(u)du, b(k) =

∫ ∞

f(k)

pdf1|0(u)du,

where pdf0|1 is the probability density function of a random variable modelling
the transition from R(k) = 1 to R(k + 1) = 0, and analogously for pdf1|0.
Alternatively, a(k) and b(k) can be expressed via the cumulative distribution
function of the known probability distribution for the frequency thresholds.

The expression in (1) can be interpreted as a Markov chain with two states
and time varying transition probabilities, as depicted in Fig. 1. Here the edges

Fig. 1. A time in homogeneous Markov chain model for the aggregated dynamics,
without delays.
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representing the transitions between state ON and OFF are labelled with a(k)
and b(k), while the self loops are simply 1 − a(k) and 1 − b(k).

A Markov Model with Delays

We now introduce a framework to encompass delays in the aggregate model (cf.
Fig. 2): as observed in practice, panels cannot switch to the ON state instanta-
neously. As stated above, each panel has an internal counter for the OFF-to-ON
transition. We assume to sample the delays with a coarse sampling time of 1 s:
in this way we can lump together the panels which show delays in the same
sampling time. We then obtain probability transition values τi, which represent
the probability of switching on after i seconds. In order to pin down this idea,
we utilise n states, defined as wi i = 1, . . . , n, representing the i-th time step
when the network frequency sampled by the panel is within the given threshold,
but when the panel has still to turn to the ON state. In other words, the wi

state describes a device that has been waiting to turn on for i time steps. In
view of the discussions in Sect. 2, we focus on the case n � 1. In the i-th delay
state, there are three outgoing transitions: one towards the ON state, a second
towards state i + 1, and one back to the OFF state. The probability associated
with the third transition is 1 − b(k), which is the probability of sensing the net-
work frequency outside the working interval. The first outgoing probability is
τib(k): τi is the probability to have a time delay that permits the panel to go
from state wi to state ON, which can happen only if the frequency is within the
working interval (hence the multiplication by b(k)). We have tacitly assumed
that the probability distributions of the frequency thresholds and time delay are
independent. There can be, in reality, correlation between these two quantities,
in which case we need to compute integrals of joint probability distributions.

We assume that ∀i, τi ≥ τi+1 and that
∑

i τi = 1, so the terms resemble
a geometric distribution that can describe an arrival process or a waiting-time
random variable.

OFF ON

w1 w2 ... wn

b(k) 1 − b(k)

1 − b(k)

1 − b(k) τ1b(k)

τ2b(k)

τnb(k)

(1 − τ1)b(k) (1 − τ2)b(k)

a(k)
1 − a(k)1 − b(k)

(1 − τn)b(k)

Fig. 2. A Markovian model for the aggregated dynamics, with delays.



78 A. Peruffo et al.

The dynamics of the Markov chain in Fig. 2 can be summarised as
⎧
⎪⎪⎨

⎪⎪⎩

x(k + 1) = (1 − a(k))x(k) + b(k)
∑n

i=1 τiwi(k)
w1(k + 1) = b(k)[1 − x(k) − ∑n

i=1 wi(k)]
wi(k + 1) = b(k)(1 − τi−1)wi−1(k)
wn(k + 1) = b(k)[(1 − τn−1)wn−1(k) + (1 − τn)wn(k)],

(2)

where x(k) represents the probability of being in the ON state at time k. We
use this value as the portion of panels ON at time k; similarly, wi(k) is the
portion of panels waiting to turn ON for i time steps at time k; and a(k), b(k)
are the cdf ’s of the distributions of frequency thresholds in the population of
panels. Let us further explain the details of the model in (2). To model real-life
applications, we deal with an interval of time in which no panel switches on and
a subsequent time interval in which panels switch on according to a geometric
probability distribution. The latter time interval is described above with the wi

states. In order to encompass the time interval in which panels do not switch on
(which is around 20 s in real-life applications) we must include new states that
are “pure waiting states”, denoted pwj(·). Their number depends on the desired
delay and on the given sampling time: e.g. if the sampling time is 1 s and the
minimum desired delay is 20 s we add 20 new states. These states are such that
τj = 0, so to prevent the possibility to switch on, which boils down to a time
delay, as desired. These new equations do not invalidate the previous analysis
and for simplicity we will continue our analysis without them.

Abstraction of the Markov Model with Delays

Towards a simplified and more insightful analysis of the dynamics of the model
with delays, we aggregate the n waiting states into a single location, which
thus represents the sum of the portion of devices that are waiting to turn ON
and is associated with a new variable y(k) =

∑
i wi(k). To express the overall

dynamics, we rewrite the term
∑

i τiwi(k) as a function of y(k), and introduce
a term εk ∈ [0, 1] ∀k, such that

n∑

i=1

τiwi(k) = εk

n∑

i=1

wi(k), thus εk =
∑n

i=1 τiwi(k)∑n
i=1 wi(k)

.

The model now presents only three states, as depicted in Fig. 3, whose tran-
sition equations are

{
x(k + 1) = (1 − a(k))x(k) + b(k)εky(k)
y(k + 1) = b(k)(1 − x(k)) − b(k)εky(k) . (3)

The new model is smaller and easier to analyse. However, in general we do
not know the exact value of εk, so we seek a value for it that ensures that the
error between the two models decreases to zero with time. Define the abstraction
error e(k) as the difference between the element x(k) of each model: e(k) =
xn−s(k) − x3−s(k), where xn−s and x3−s denote the x component of the model
with n delay states and that with 3 states, respectively. We obtain
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OFF ON

WTBON

b(k)

1 − b(k)

b(k)εk

a(k)

1 − b(k)

1 − a(k)

b(k)(1 − εk)

Fig. 3. Abstraction of the Markov model with delays for aggregated dynamics.

|e(k + 1)| = |xn−s(k + 1) − x3−s(k + 1)|

= |(1 − a(k))x(k)n−s − b(k)

n∑

i=1

τiwi(k) − (1 − a(k))x(k)3−s + b(k)εky(k)|

= |(1 − a(k))e(k) + b(k)d(k)| ≤ (1 − a(k))|e(k)| + b(k)|d(k)|,

where d(k) = ε(k)y(k) − ∑n
i=1 τiwi(k) Notice that (1 − a(k)) ∈ [0, 1] ∀k, by

definition, which results in a term that does not increase with time. We study
the evolution of the second term, d(k): whilst d(k) ∈ [−1, 1] by definition, we
do not know its sign, which could change at each time step k. It can be shown
that |d(k)| is a contracting map if we select the value εk = τ1. This result
can be interpreted recalling the meaning of εk: it represents a weighted convex
combination of the wi; considering ε = τ1 results in the worst-case scenario,
where we utilise the maximum value among the τi.

In other words, choosing εk to be the constant value τ1 asymptotically
decreases the error e(k) between the two models to zero. Note that, know-
ing the values τi, we could estimate εk by estimating the states wi(k).
The estimation of the states wi(k) can be attained, as will be discussed in
Appendix.

We now illustrate more clearly how the frequency value affects the Markov
chains: a(k) can be written formally as

1 − a(k) =
∫ ∞

f(k)

pdf0|1(u)du = 1 − cdf0|1(f(k)),

and similarly for the term b(k). In order to simplify this nonlinear term, let us
linearise it as

1 − a(k) = 1 − cdf0|1(f(k)) � 1 − (k1f(k) − k′
2) = −k1f(k) + k2,

b(k) = 1 − cdf1|0(f(k)) � −k3f(k) + k4,
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where k2 = k′
2 + 1. We then obtain terms that are easier to study, which allows

us to derive conditions to guarantee the stability of the whole system. Note that
this approximation will require saturation within the interval [0, 1], and that this
is the exact form of the cdf in case of a uniform distribution. Model (3) then
becomes

{
x(k + 1) = (−k1f(k) + k2)x(k) + (−k3f(k) + k4)εky(k)
y(k + 1) = (−k3f(k) + k4)(1 − x(k) − εky(k)) . (4)

Overall Closed-Loop Model

As previously mentioned, the overall dynamical system under study comprises
both the population of panels and the network frequency. So far, we have built
aggregated models only for the population of solar panels: we are interested in
studying how the network frequency is influenced by the power production of PV
panels. We focus on an approximate version of frequency dynamics, proposing a
more realistic extension in a remark below. Consider

Δf(k + 1) = α1Δf(k) + β′
1ΔP (k),

where Δf(k) = f(k) − f0, and f0 represents the nominal value of the network
frequency, and f(k) the value of the frequency at time k, and where

ΔP (k) = PNx(k) − P0 = PN(x(k) − x0),

with P0 representing the power output of the population at time k = 0. We
obtain

f(k + 1) − f0 = α1(f(k) − f0) + β′
1PN(x(k) − x0).

Introducing terms β1 = β′
1PN , γ = (1 − α)f0 − β1x0, we get

f(k + 1) = α1f(k) + β1x(k) + γ. (5)

Embedding the frequency description Eq. (5) within the dynamics of the
Markov chain with n waiting states (2), results in

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f(k + 1) = α1f(k) + β1x(k) + γ
x(k + 1) = (1 − a(k))x(k) + b(k)

∑n
i=1 τiwi(k)

w1(k + 1) = b(k)[1 − x(k) − ∑n
i=1 wi(k)]

wi(k + 1) = b(k)(1 − τi−1)wi−1(k)
wn(k + 1) = b(k)[(1 − τn−1)wn−1(k) + (1 − τn)wn(k)],

(6)

and into the Markov chain with 3 states (4) to obtain
⎧
⎨

⎩

f(k + 1) = α1f(k) + β1x(k) + γ
x(k + 1) = (−k1f(k) + k2)x(k) + (−k3f(k) + k4)εky(k)
y(k + 1) = (−k3f(k) + k4)(1 − x(k) − εky(k))

. (7)
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Dynamical Analysis of Closed-Loop Model

We study the stability of the model in (7) with techniques that come from control
theory [10,11]. We are interested in the stability of the model, in the sense that
we want to understand the asymptotics of the model, and under which conditions
the network frequency will remain within certain (safe) operational bounds. In
particular, from Lyapunov stability theory we know that if the Jacobian of a
nonlinear system has stable eigenvalues (i.e. absolute value less than 1), then we
can decide the asymptotic stability of the system.

Besides stability, we investigate what characteristics the panels population
distributions of the frequency working thresholds must have to lead to distur-
bances rejection. More precisely, in an actual setup, if the grid frequency goes
below a certain safety threshold, a black out is forced by the network operator in
order to avoid severe damage to the network itself. The intuition leads to believe
that robustness is associated with high variance of population distributions: in
particular, dispersed values of disconnection thresholds means that less panels
will disconnect from a given external disturbance.

Let us compute the Jacobian of the vector field in (7), which is a matrix
formed by its partial derivatives, as

J(f, x, y) =

⎡

⎣
α1 β1 0

−k1x − k3εky −k1f + k2 εk(−k3f + k4)
−k3(1 − x − εky) k3f − k4 εk(k3f − k4)

⎤

⎦ . (8)

Its determinant and characteristic polynomial may be computed analytically,
however with a nontrivial algebraic expression. As such, in order to obtain
insight, we consider an identical distribution for a(k) and b(k), which leads to
parameters k1 = k3 and k2 = k4. This is a reasonable assumption if we consider
the semantics of these distributions: they describe the probability to switch ON
or OFF, which happens whenever the network frequency is greater or less than
a threshold. In practical terms, this means that the threshold related to the ON
switch on is the same as that of the OFF switch. The overall model becomes

⎧
⎨

⎩

f(k + 1) = α1f(k) + β1x(k) + γ
x(k + 1) = (−k1f(k) + k2)(x(k) + εky(k))
y(k + 1) = (−k1f(k) + k2)(1 − x(k) − εky(k))

,

which admits two equilibrium points (fE
1,2, x

E
1,2, y

E
1,2). The Jacobian is

J(f, x, y) =

⎡

⎣
α1 β1 0

−k1(x − εy) −k1f + k2 (−k1f + k2)ε
−k1(1 − x − εy) k1f − k2 (k1f − k2)ε

⎤

⎦ , (9)

and its associated characteristic 3-rd order polynomial is

z3 + ((k1f∗ + k2)(1 − ε) − α1)z2+
+ [β1k1(x∗ + εy∗) + α1(k1f∗ + k2)(ε − 1)]z − β1εk1(k1f∗ − k2).
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We now set conditions on parameters k1 and k2 to study the attractivity of the
equilibria. Leveraging Rouché arguments [12], we can synthesise the following
sufficient condition on the values of k1 and k2 where asymptotic stability is
guaranteed:

|(k1f∗ + k2)(1 − ε) − α1| + |β1k1(x∗ + εy∗) + α1(k1f∗ + k2)(ε − 1)|+
+ | − β1εk1(k1f∗ − k2)| < 1.

In order to practically reason on this condition, we need to define at least some of
the numerical values of its unknowns: in the following section we provide approx-
imate values to the unknowns, and accordingly manage to draw conclusions on
the stability of the characteristic polynomial.

Remark 1. A more realistic transfer function for the grid frequency would be a
second order model, namely

f(k) = a1f(k − 1) + a2f(k − 2) + b1x(k − 1) + b2x(k − 2).

In order to obtain this second-order model, we have referred to [13], and devel-
oped a simple model reproduce the frequency response, taking into account the
inertia of the system, the self-regulation of the load, and the primary regulation.
This was then discretised in time in order to be compatible with the current
framework. The stability structure and the following extended dynamical analy-
sis can be carried out in a similar way. For the sake of brevity and clarity we will
stick to the first order model in the following analysis, while in the simulation
we will use the second-order dynamics. ��

Extension of Dynamical Analysis to the Entire State Space

The analysis above holds as long as the frequency remains within certain bounds,
namely where the linear approximation of the cdf holds; we need also to take
into account other configurations of the system, when the frequency is outside
the interval and the evolution of the system changes. Given the switching nature
of the system, a hybrid system setup is a rather natural framework. The lineari-
sation of the cdf is in fact defined within an interval of frequencies, outside of
which a(k) and b(k) have a steady value of 0 or 1. We study those cases in the
following.

We focus our attention on the system with five configurations. Under the
assumption of the distributions of a(k) and b(k) to be identical, we argue that
we model a hybrid system with 5 different configurations; in case of different
distributions, the number of configurations may increase, so we do not study
them in full in this paper for brevity. Figure 4 shows the divisions into the five
different configurations.

Our interest is to analyse the connection between the various configurations
of the system and to understand the conditions to keep the frequency close to
the nominal value and to avoid its drift to zero.
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f0 − ν − η f0 − ν f0 + ν f0 + ν + ηf0

1 − a(k) = 1
b(k) = 1

1 − a(k) = 0
b(k) = 0

1 − a(k) = 0
b(k) = 0

145 2 3

Fig. 4. Schematic diagram of the 5 frequency configurations, indicated as circled num-
bers.

1. Configuration 1: this configuration describes the case where the network
frequency belongs to the set of values closest to the nominal value. Our system
becomes an LTI system, given the conditions 1 − a(k) ≡ 1 ≡ b(k), f(k) ∈
[f0 − ν, f0 + ν]: ⎧

⎨

⎩

f(k + 1) = α1fk + β1x(k) + γ
x(k + 1) = 1 · (x(k) + εky(k))

y(k + 1) = 1 · (1 − x(k) − εky(k))
(10)

There is only one equilibrium point, pE =
(

β1
1−α1

(1 − x0) + f0, 1, 0
)
. From

the analysis of the evolution matrix, the equilibrium is asymptotically stable.
If the contribution coming from β1

1−α1
(1−x0) is small enough, the equilibrium

remains inside the interval [f0 − ν, f0 + ν], whereas if the contribution is too
large the system will switch to Configuration 2.

2. Configuration 2: This is the case where the evolution matrix of the system
becomes non linear and time varying, with f(k) ∈ [f0 + ν, f0 + ν + η]. The
system may be written

⎧
⎨

⎩

f(k + 1) = α1f(k) + β1x(k) + γ
x(k + 1) = (1 − a(k))x(k) + b(k)εky(k)
y(k + 1) = b(k)(1 − x(k)) − b(k)εky(k)

and as we stated, we assume the same distribution for a(k) and b(k), which
we explicit 1 − a(k) = −k1f(k) + k2 = b(k) where k1, k2 > 0. To find the
equilibria we set that

f =
β1

1 − α1
x +

γ

1 − α1
, x + y = −k1f + k2,

and from these two equations we obtain

y =
(−k1β1

1 − α1
− 1

)
x − k1

1 − α1
γ + k2.

Substituting this value into the previous equation, we have

−k1β1

1 − α1

(
1 + ε

(−k1β1

1 − α1
− 1

))
x2+

+
[(

− k1
1 − α1

γ + k2

) (
1 − ε + 2ε

(−k1β1

1 − α1

))
− 1

]
x + ε(− k1

1 − α1
γ + k2)2.
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The solution of this 2-nd order equation can be found symbolically, however in
order to garner insight on its solutions, we set some indicative (and practically
meaningful) values for the variables ranges:

k1 ∼ 10, k2 ∼ 102, α1 ∼ 1 − α1 ∼ 10−1, ε ∼ 10−1, β1 ∼ N,

where N represents the number of solar panels, assumed to be N � 1. This
results in equation 103N2x2 − 2 · 103Nx + 103, which is endowed with two
coincident solutions, xE

1,2 = 1
N . This results in the following approximated

equilibrium point:

pE
1,2 �

(
1 + γ

1 − α1
, xE

1,2, 0
)

,

where the value of x is less than 1, giving a frequency to be less than the
value we found in configuration 1. The equilibrium could, in this case, be
inside the thresholds of Configuration 1 or remain inside Configuration 2
depending on the numerical values of the several parameters; we will discuss
this in Appendix.

We state that the equilibrium is attractive because we argue that the system
in configuration 1 presents variables f, x, y which are always greater or equal
than the ones in this configuration: a(k) and b(k) ∈ [0, 1] ∀k. Since the stability
is asymptotic in the first case, we conclude the asymptotic stability also in
this configuration.

3. Configuration 3: this configuration describes the behaviour of the sys-
tem when it is completely outside the range of the frequency thresholds,
i.e. 1−a(k) = 0 = b(k). The system becomes null, the frequency only evolves
with a decreasing exponential, i.e. the frequency will move towards the cases
discussed above.

4. Configuration 4: the analysis is similar to the one of configuration 2. In
this case it is important to notice that, since the frequency at the equilibrium
point is less than the nominal value, the system could move towards the con-
figuration 1, remain in the current configuration or slide towards a decreasing
frequency. This only depends on the numerical value of the parameters.

5. Configuration 5: the analysis is analogous to the configuration 3. The fre-
quency will drop to zero.

4 Experimental Evaluation of the Aggregated Models

In order to show the precision of the aggregated models, we set up rounds of
simulations comparing the two alternative models (that with n waiting states in
Fig. 2 and the one with three locations in Fig. 3) with the ground truth obtained
from an explicit simulation of the entire population of PV panels within the
power network (which we denote as the explicit model).

For the explicit model, each of the N panels has been given four different fre-
quency thresholds (disconnection and reconnection in over- and under-frequency)
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and a time delay (number of time steps the devices need to wait before turning to
ON). These parameters have been generated according to set probability distri-
butions (see below) for the population, which are then used in the computations
for the abstract models. We have set up the distributions of frequency thresh-
olds as uniform, and that for the time delay as geometric, and we set N = 106.
The assumption of a uniform pdf allows us to exactly define the variables ν,
η mentioned in the previous section, where more generally we utilised a linear
approximation of the cdf, e.g. b(k) = cdf1|0(f(k)) � −k1f(k)+k2. For simplicity,
Pi was set to be constant and equal to p̄ = 3 kW for each device. With reference
to the discussion in Remark 1, the frequency dynamics have been described by
a second-order difference equation, as

f(k + 1) = α1f(k) + α2f(k − 2) + β1x(k) + β2x(k − 1),

where the constants α1, α2, β1, β2 are set to make the transfer function stable.
Our two aggregated models are derived from the following simplifications:

1. Frequency thresholds: we have an exact description of the frequency thresh-
olds and a linear dependency from f(k) in the extended system;

2. Time delays: we have introduced 1 s time delays and defined waiting states
accordingly. We have defined a maximum possible delay as n, and in order to
cope with delays longer than n, we have set a self loop on the n-th state;

3. Lumped delays: we have lumped together the n waiting states, introducing
an approximation encoded in εk.

As motivated in the Introduction to this work, we have set up two specific
simulation scenarios:

1. Panels disconnecting in view of an external disturbance;
2. Effect of the distribution of frequency disconnection/reconnection thresholds,

in response to an external disturbance.

First Scenario. We set up a stable network with N devices initially in the
ON mode, when the grid relies on their power production to be stable and to
guarantee a reliable service to the load. The initial condition is set to x0 = 1,
and the grid frequency is set to the stable value, f0 = 50 Hz. At time t = 10 s we
inject an external disturbance, in order to create a frequency peak of 50.16 Hz,
and to observe the ensuing dynamics in the network.

The comparison among the three models is in Figs. 5 and 6, in terms of
network frequency response and portion of ON panels. On the one hand, we
observe from Fig. 5 that both the two abstract models seem to be a low-pass
filtered signal of the explicit one. The model with n delay states follows the
dynamics of the explicit one, and the model with one delay state follows that with
n states, thanks to the estimation of the quantity εk (as discussed in Appendix).
On the other hand, looking at Fig. 5 we note that the difference in terms of
percentage of active panels is always less than 2%. This difference is due to the
low-pass action of the abstract models, which leads to slower convergence to
the same equilibrium point as the explicit model. These figures show that our
abstract models can reflect the evolution of the explicit model in a reliable way.
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Fig. 5. Comparison of network frequency behaviour (left) and of ON population (right)
for the explicit model (blue, circles), the abstract model with n delay states (red,
crosses) and the abstract model with 3 states (green, triangles). (Color figure online)

Second Scenario. We run simulations to test if more variance in the reconnec-
tion/disconnection thresholds brings a more stable system, as intuition suggests.
Figure 6 shows that, as expected, a higher variance is desirable for the model
under consideration. In the explicit system, at time t = 10 s an external distur-
bance was injected in order to make the frequency jump to 50.16 Hz, value for
which a portion of devices will disconnect. Simulations run with 10 different val-
ues of variance (υ) for the uniform distributions, resulting in bigger oscillations
and longer time to get frequency back to the nominal value for small υ; values
of υ close to 5 makes the system almost insensible to the disturbance.

Fig. 6. Comparison of network frequency behaviour with different degrees of variance
in the frequency thresholds: smaller variance produces bigger oscillations. Simulations
run with the explicit model.

We have finally run simulations to display the effect of several frequency
evolution parameters in the Appendix, where we show how the different position
of the equilibria, as discussed in Sect. 3, affect the response of the system.
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5 Conclusions

We have presented a modelling framework for the aggregation of a population of
photovoltaic panels, and studied its dynamics when interacting within the elec-
tric grid and its frequency behaviour. We have provided experiments comparing
two models against a ground truth, where N photovoltaic panels were singularly
simulated: a scenario has shown how reliably the models behave in presence of
a massive network failure, another how population heterogeneity influences the
performances of the system.

Current research emphasis concerns variable power outputs (modelling uncer-
tainties such as weather, occlusions), and novel global control schemes.
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Abstract. Rechargeable batteries are omnipresent and will be used
more and more, for instance for wearables devices, electric vehicles or
domestic energy storage. However, batteries can deliver power only for
a limited time span. They slowly degrade with every charge-discharge
cycle. This degradation needs to be taken into account when consider-
ing the battery in long lasting applications. Some detailed models that
describe battery degradation processes do exist, however, these are com-
plex models and require detailed knowledge of many (physical) parame-
ters. Furthermore, these models are in general computationally intensive,
thus rendering them less suitable for use in larger system-wide models.
A model better suited for this purpose is the so-called Kinetic Battery
Model. In this paper, we explore how this model could be enhanced
to also cope with battery degradation, and with charging. Up till now,
battery degradation nor battery charging has been addressed in this con-
text. Using an experimental set-up, we explore how the KiBaM can be
used and extended for these purposes as well, thus allowing for better
integrated modeling studies.

Keywords: Kinetic battery model · Battery aging · Battery charging ·
Battery discharging · Measurements

1 Introduction

Batteries-powered devices are everywhere; smart-phones, laptops, wireless sen-
sors, wearables, electric cars and for local energy storage. According to McKinsey,
the Internet-of-Things (IoT) is expected to connect 1 trillion (1012) devices by
2025, many of which will be battery powered. According to the International
Energy Agency (IAE), in 2016, some 6.4% of Dutch cars was fully or hybrid
electric; in Norway this was even 29%! Throughout 2016, the world’s electric
car population grew to 2 million cars, almost a doubling compared to the end
of 2015. These developments clearly underline the importance of understanding
battery charging and discharging, as well as battery degradation processes.

Batteries are needed to provide portable power to all these devices. However,
batteries have a limited life span. Obviously, non-rechargeable batteries can be
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discharged only once before they need to be replaced. But, even rechargeable bat-
teries will not be usable after some time. How long a battery can be used depends
on many factors, such as battery type, discharge and charge current, depth of
discharge and temperature. It is hard to predict the lifetime of a battery for
any given workload pattern. Electro-chemical and electrical circuit models, that
require detailed knowledge of the used batteries, are available in the literature,
see for example [1,2]. In recent work, Wognsen et al. [3] propose an approach
to compare the impact workload patterns have on the battery life through the
Fourier Transform of the workload.

Although some theoretical work exists, little practical work is available in the
scientific literature on measuring battery degradation over time, and how such
degradation effects models or model parameters. In this paper we present the
results of an extensive measurement study on battery cells of the type are used
in nano-satellites of GomSpace (lithium ion 18650 cells) [4], which are also used
in Tesla electric vehicles [5]. These measurements are analyzed in the context
of a widely used battery model, the Kinetic Battery Model. The analysis gives
insight on how the degradation of the battery impacts the model parameters, and
on how to possibly extend this model to cope with the effects of degradation.
Furthermore, we also explicitly address the charging of such batteries; up till
now, in the literature, it has been assumed that the charging process proceeds
the same as discharging, with “just the flow of current flipped”. We show that
this is not exactly the case.

The rest of this paper is structured as follows. Section 2 gives a brief overview
of related work on battery degradation modeling. Section 3 introduces the
Kinetic Battery Model. In Sect. 4 the experimental set-up and the performed
experiments are described. The results of the experiments are presented in Sect. 5
and discussed in Sect. 6. Section 7 concludes the paper.

2 Battery (Degradation) Models

There are several types of battery models available in the scientific literature. We
provided an overview of the most widely used models, such as electro-chemical
models, electrical circuit models and analytical models in [6], with a focus on
predicting the duration of a single discharge cycle. These types of models are
also used to describe the long-term effects of battery degradation.

In [1], so-called capacity fading is modeled with an electro-chemical battery
model for a lithium-ion battery. This type of model requires a very detailed
knowledge of the physical characteristics of the battery, and is computationally
very intensive to use.

In [2] an electrical circuit model is made that models capacity fading due
to cycling (repeated charge–discharge), as well as the increase of the internal
resistance due to cycling. The model should be configured with data from the
battery data sheets. However, as also the authors mention, in general, it is very
hard to obtain all required parameters.

High-level analytical models, such as the Kinetic Battery Model (KiBaM)
[7], require much less knowledge of the battery, and can be easily combined with
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other models. For example, in [8], the KiBaM is extended to a random KiBaM
and combined with a Markovian task process that models the battery load. With
the combined model, one can compute the probability the battery is depleted
due to the defined load pattern. The KiBaM, nor the proposed extensions, do
take into account how the battery degrades; it is not known how the essential
parameters are effected.

In [3], a generic method for comparing the impact of different load profiles
on the wear of the battery is proposed. The load profiles are rated by analyzing
the Fourier transform of the load. With this analysis different load profiles can
be ranked from little impact on battery wear to large impact.

Fig. 1. The two-well Kinetic Battery
Model.

However, it is not possible to quan-
tify the wear with this method. In
order to do this, many more measure-
ments need to be performed. In this
paper, we investigate how the KiBaM-
parameters change when the battery
is repeatedly discharged. We take an
experimental approach. We wear the
battery by applying a relatively heavy
load to the battery. This gives us the
practical insight in how the battery
degrades over time.

3 The Kinetic Battery Model

The kinetic battery model (KiBaM) is a compact battery model that includes the
most important features of batteries, i.e., the rate-capacity effect and the recov-
ery effect. The model has been originally developed by Manwell and McGowan
in 1993 [7] for lead-acid batteries, but analysis has shown that it can also be
used in battery discharge modeling for other battery types [9].

3.1 Basic Dynamics

In the model, the battery charge is distributed over two wells: the available-
charge well and the bound-charge well (cf. Fig. 1). A fraction c of the total
capacity is considered to be in the available-charge well (denoted y1(t)), and a
fraction 1 − c in the bound-charge well (denoted y2(t)). The available-charge
well supplies electrons directly to the load (i (t)), whereas the bound-charge
well supplies electrons only to the available-charge well. The charge flows from
the bound-charge well to the available-charge well through a “valve” with fixed
conductance, k. The parameter k has the dimension 1/time and limits the rate at
which the charge can flow between the two charge wells. Next to this parameter,
the rate at which charge flows between the wells depends on the height difference
between the two wells. The heights of the two wells are given by: h1(t) = y1(t)/c
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and h2(t) = y2(t)/1 − c. The change of the charge in both wells is given by the
following system of differential equations:

⎧
⎨

⎩

dy1(t)
dt

= −i (t) + k(h2(t) − h1(t)),
dy2(t)

dt
= −k(h2(t) − h1(t)),

(1)

with initial conditions y1(0) = c ·C and y2(0) = (1− c) ·C, where C is the total
battery capacity. The battery is considered empty when it is observed that there
is no charge left in the available-charge well. As shown in [9], we can transform
the above equations to

⎧
⎪⎨

⎪⎩

dγ(t)
dt

= −i(t),

dδ(t)
dt

= 1
c i(t) − k′δ(t),

(2)

where k′ = k/(c(1 − c)), γ(t) = y1(t) + y2(t) and δ(t) = y2(t)/(1 − c) − y1(t)/c.
We can interpret γ(t) as the total charge remaining in the battery, and δ(t) as
the height difference between the the charge levels of the two wells. The initial
conditions transform into γ(0) = C and δ(0) = 0. The battery is empty when
γ(t) = (1 − c)δ(t).

3.2 KiBaM Constant Current Discharge

When we consider a constant current discharge, i.e., i(t) = Id, the differential
equations can easily be solved:

{
γ(t) = C − Idt,

δ(t) = Id
ck′

(
1 − e−k′t

)
.

(3)

The battery lifetime L, i.e., the time to empty the available charge well, for a
constant current discharge is given by:

L =
C

Id
− 1

k′

(
1 − c

c
+ W

(
1 − c

c
e

1−c
c −Ck′

Id

))

, (4)

where W(.) is the so-called Lambert W function [10]. By measuring the battery
lifetime, and the delivered energy, as a function of the discharge current, we can
determine the KiBaM parameters k, c and C by fitting (4) to the data.

3.3 KiBaM Charging

Battery charging normally is performed in two phases. First, the battery is
charged at a constant current. In this phase the voltage will slowly rise. When
the voltage reaches the maximum level, Vmax, the second phase starts, during
which the voltage is kept constant at Vmax and the charging current will drop.
We discuss the two charging phases in the context of the KiBaM model in the
following sections.
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KiBaM Constant Current Charging. In the KiBaM, the charging with a
constant current is very similar to discharging with a constant current. For a
constant charging current Ich the KiBaM equations are:

⎧
⎪⎪⎨

⎪⎪⎩

dy1(t)
dt

= Ich − k

(
y1(t)

c − y2(t)
1 − c

)

,

dy2(t)
dt

= k

(
y1(t)

c − y2(t)
1 − c

)

.
(5)

When we consider the battery fully empty at the start of the charging, the
initial conditions are y1(0) = 0 and y2(0) = 0. The constant current charging
phase ends when the available charge well is filled, thus y1 = cC. In terms of
δch(t) = y1(t)

c − y2(t)
1−c (δch(t) = −δ(t)) and γ(t) = y1(t)+y2(t), the equations are:

⎧
⎨

⎩

dγ(t)
dt

= Ich(t),
dδch(t)

dt
= Ich(t)

c − k′δch(t),
(6)

The initial conditions transform into δch(0) = 0 and γ(0) = 0. The condition for
the end of the constant current charging phase is γ(tlin) + (1 − c)δch(tlin) = C.
This condition can be interpreted as follows, at time t = tlin, the amount of
energy put into the battery is γ(tlin) and still (1−c)δch(tlin) needs to be charged.
The solutions for γ(t) and δch(t) are again easily obtained:

{
γ(t) = Icht,

δch(t) = Ich
ck′ (1 − e−k′t),

(7)

where we see that the equation for δ is the same as for discharging, cf. (3).
Under the above described conditions, the time it takes to fill the available

charge well, tlin, is similar to the discharging lifetime, cf. (4):

tlin =
C

Ich
− 1

k′

(
1 − c

c
+ W

(
1 − c

c
· e 1−c

c −Ck′
Ich

))

. (8)

We can estimate the charging parameters by measuring the duration of the
linear charging phase for different charge currents, and fitting the equation to
the results.

KiBaM Non-linear Charging. After the linear charging phase, the battery is
charged with a constant voltage and a decreasing current. In the KiBaM we can
interpret this as follows. The constant voltage keeps the level of the available
charge at its maximum. The rate at which the battery can accept additional
charge is limited by the flow between the two charge wells. This rate depends
on the height difference between the two wells, and thus will decrease when the
battery is further charged.
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Since the available charge does not change, we have dy1(t)
dt = 0. From the

KiBaM equations we therefore obtain:

i(t) = k

(
y1(t)

c
− y2(t)

1 − c

)

. (9)

In terms of δch(t) = y1(t)
c − y2(t)

1−c this yields:

i(t) = kδch(t) = k′c (1 − c) δch(t). (10)

The KiBaM equations in terms of δch(t) and γ(t) now are,
⎧
⎪⎨

⎪⎩

dγ(t)
dt

= i(t) = k′c(1 − c)δch(t),

dδch(t)
dt

= i(t)
c − k′δch(t) = −k′cδch(t),

(11)

From these equations it follows that

δ(t) = δ0e
−ck′t, (12)

where δ0 is the height difference between the two wells at the start of the non-
linear charging phase (Ilin); δ0 depends on the charging current in the linear
phase. From Eqs. (7) and (8) it follows that

δ0 =
Ilin
ck′

(
1 − e−ck′tlin

)
. (13)

If k′tlin is large, that is, if the height difference has approached its maximum
value during the linear charging phase, we obtain

δ0 =
Ilin
ck′ . (14)

The height difference decreases exponentially, and thus the charging current
should decrease exponentially. By fitting an exponential function to the measured
current we can estimate the factor ck′. This gives additional information on how
the KiBaM performs for charging the battery.

4 Experimental Set-Up

In the experiments we analyze 4 lithium-ion battery cells with a capacity of
2600 mAh, obtained from GomSpace (www.gomspace.com). The nano-satelite
battery packs consist of 4 to 8 of these battery cells. Table 1 gives an overview
of the key parameters, as provided in the datasheets.

www.gomspace.com
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Table 1. Parameters of the GomSpace lithium-ion batteries [4]

Parameter Value

Nominal capacity 2600 mAh

Maximum charge voltage 4.2 V

End of discharge voltage 3.0 V

Maximum discharge current 3.75 A

Maximum charge current 2.5 A

End of charge current 1.3 A

Charge temperature range −5–45 ◦C

Discharge temperature range −20–60 ◦C

The measurements are performed with the Cadex C8000 battery testing sys-
tem, cf. Fig. 2, which can test four batteries simultaneously. The tester is pro-
grammed to discharge and charge the cells in a controlled fashion according to
a user-defined load profile, while measuring the voltage, current and tempera-
ture. This data is logged each second, and is used for the analysis of the battery
properties. The experiments are conducted in a number of steps (phases):

1. In the first phase, KiBaM estimation measurements, the cells are discharged
and charged at various constant rates. The charge rates vary from 0.1 C to
0.9 C, while the discharge rates vary from 0.1 C to 1.4 C. Table 2 gives an
overview of the discharge and charge currents of the individual measurement
cycles. The data from these measurements will be used to estimate the para-
meters for the Kinetic Battery Model.

2. In the second phase, the degradation measurements, the cells are repeatedly
fully discharged at 1 C and charged at 0.5 C. This high load will result in

Fig. 2. Experimental set-up with the Cadex C8000 battery tester.
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Table 2. Discharge and charge currents for the parameter estimation measurements.

Test Discharge current Charge current Test Discharge current Charge current

1 0.1 C = 0.26 A 0.1 C = 0.26 A 7 0.7 C = 1.82 A 0.7 C = 1.82 A

2 0.2 C = 0.52 A 0.2 C = 0.52 A 8 0.8 C = 2.08 A 0.8 C = 2.08 A

3 0.3 C = 0.78 A 0.3 C = 0.78 A 9 0.9 C = 2.34 A 0.9 C = 2.34 A

4 0.4 C = 1.04 A 0.4 C = 1.04 A 10 1.0 C = 2.60 A 0.6 C = 1.56 A

5 0.5 C = 1.3 A 0.5 C = 1.3 A 11 1.2 C = 2.86 A 70.7 C = 1.82 A

6 0.6 C = 1.56 A 0.6 C = 1.56 A 12 1.4 C = 3.64 A 70.9 C = 2.34 A

a relative fast degradation of the cells. After 50 discharge-charge cycles, the
cycles of the first phase are repeated, in order to see whether and how the
battery parameters have changed.

3. The battery parameters will be determined after every such 50 repetitions,
until the cell capacity has dropped below 80% of its initial value. The results
of these experiments give an indication on how the cells degrade over time.

5 Measurement Results

In this section we discuss the results of the performed measurements. We start
with the degradation measurements in Sect. 5.1, since these results provide a
clear view on how the battery slowly degrades during the experiments. Then,
we analyze the change of the KiBaM parameters for discharging and charging
in Sects. 5.2 and 5.3, respectively.

5.1 Degradation Measurements

Figure 3 shows how the discharge capacity decreases as a function of the discharge
cycle number. In the first discharge cycle, on average, the batteries deliver 92.8%
of the nominal capacity (2600 Ah). In the subsequent cycles the discharge capac-
ity slowly drops. The decrease in capacity is more or less linear. We fit a linear
function, Cap(1−100) = α ·cycle+β, to the first 100 measurements with using the
nonlinear least squares method built in the Matlab fit function. The fit yields
the following estimates and 95% confidence intervals: α = −0.057 ± 0.0025 and
β = 92.8 ± 0.14. This means that the capacity, on average, drops 0.057% point
with every discharge-charge cycle.

After approximately 140 cycles the capacity decreases more rapidly. Battery
3 (yellow) now degrades clearly faster than the other 3 batteries. We fit another
line, Cap(151−200) = α · cycle + β, to the last 50 measurements, cycle 151 to
200. This yields, α = −0.41 ± 0.027 and β = 144.2 ± 4.8. This means that the
degradation is more than a factor 7 faster than in the first phase, with an average
of 0.41% point per cycle.
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Fig. 3. Capacity relative to the nominal capacity as a function of the cycle number.
(Color figure online)

Next to the capacity we investigate how the efficiency evolves when the bat-
tery is used. The efficiency, in percent, is determined as 100 · Edis,n/Ech,n−1,
where Edis,n is the delivered energy in cycle n, and Ech,n−1 is the charging
energy of cycle n − 1. The results are shown in Fig. 4. As for the capacity, we
see that the efficiency also degrades in two phases. Again we fit two lines to
the data. The first line is fit to the first 100 cycles. The efficiency starts at
89.3% ± 0.17. The efficiency degrades linearly with a rate of 0.020 ± 0.0028%
point per cycle. The second line is fit to the last 50 cycles. Here we see that the
efficiency degrades at a rate of 0.061± 0.022% point per cycle. This means that
the efficiency degrades 3 times faster at the end of the battery life than at the
beginning. Furthermore, we see that the variation of the measured efficiency is
much larger at the end of the battery lifetime.

Finally, we investigate the non-linear charge phase of the degradation mea-
surements. According to the KiBaM theory, the charge current should drop
exponentially during the non-linear charge phase, cf. Eq. (12). We fit a negative
exponential curve to the measured current. In Fig. 5, the exponent, which corre-
sponds to k′c, is plotted as a function of the cycle number. We see that the expo-
nent decreases as the number of discharge-charge cycles increases. We have fitted
a linear curve, y = α·x+β to the data. This fit yields α = −1.71·10−6±0.05·10−6

and β = 1.03·10−3±0.005·10−3. In the KiBaM, the decrease of the exponent k′c
is either caused by a decrease in k, i.e., the conductance between the available
and bound charge well, or by a decrease in c, i.e., the size of the available charge
well. The slower exponential drop of the charging current may also be a result
of the drop in the charging efficiency, which we discussed above. The charging
efficiency, however, is currently not included in the KiBaM.
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Fig. 4. Efficiency of charge discharge cycle as a function of the cycle number.

Fig. 5. The exponent for the non-linear charge phase as a function of the cycle number.

5.2 KiBaM Discharging Parameter Estimation

We started the battery degradation analysis with a series of measurements for
determining the KiBaM parameters. In these measurements the batteries are
discharged and charged at various constant currents, cf. Table 2. These measure-
ments have been repeated after every 50 cycles in the degradation measurements.
Figure 6(a) shows the measured discharge capacity of the four batteries for the
different discharge currents of the first series.
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The measurements at 0.9 C = 2.34 A discharging current have been performed
twice. The first run, which was the first experiment that was performed, resulted
for all batteries in a discharge capacity that was higher than expected. The
second run resulted in a capacity that was in line with the other experiments.
The reason for these results remains unclear.

For battery 3, we see a relative low capacity at the low discharge currents. We
expect that this is due to some internal damage or lower quality of the battery.
Battery 3 has a slightly lower performance throughout the experiments, as we
will see in the later results.

The measured delivered capacity (Cdel) in As as a function of the discharge
current (Id) is fitted to the function (cf. 4):

Cdel = Cnom − Id
k′

(
1 − c

c
+ W

(
1 − c

c
e

1−c
c −Cnomk′

Id

))

(15)

In the fitting procedure we use the parameter κ = 1/k′ instead of k′, since the
fitting algorithm was not stable when k′ was used directly. In the fit we ignored
the outliers of the first measurement and battery 3. The result is included in
Fig. 6(a). From the fit we obtained C = 9.67 · 103As ± 220 As, which is higher
than the nominal capacity of 2600 mAh = 9360 As. The other parameters are:
c = 0.90 ± 0.015 and κ = 9.36 · 103s ± 9.12 · 103s. The parameter κ has a very
large confidence interval, thus we cannot draw any strong conclusions on the
actual value of this parameter, nor for the parameter k = 1/κ.

After every 50 discharge-charge cycles another series of measurements is done
to determine the KiBaM parameters. The results are given in Figs. 6(b)–(e). In
these figures we see that, like in the degradation measurements, the capacity first
drops slowly in Figs. 6(b) to 6(d), and then drops dramatically in Fig. 6(e). In
all these measurement series, as in the results of the first series, battery 3 shows
a lower capacity for the low discharge currents. At high discharge currents, i.e.,
larger than 2.5A, all batteries perform less good than expected. When we include
these measurements in the fitting procedure the results for the parameters c and
κ are nearly meaningless, with extremely large confidence intervals. The degra-
dation of the battery clearly has a larger impact when high discharge currents
are applied.

When we discard the high current measurements in the fitting procedure,
the results are more in line with the analysis of the first measurement series
(cf. Sect. 5.2). The values of the fitted parameters and their confidence inter-
vals are given in Table 3(a). We see a decrease in the capacity of the battery,
as expected. Also, the parameter c slowly decreases, as the battery ages. This
means that the decrease in capacity affects the available charge more than the
bound charge. For the parameter κ it is, statistically speaking, impossible to tell
whether the battery degradation has any real impact, due to the large confidence
intervals.
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(a) series 1 (b) series 2

(c) series 3 (d) series 4

(e) series 5

Fig. 6. Measured discharge capacity as function of the discharge currents and a non-
linear least squares fit of the KiBaM for the 5 measurements series.
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5.3 KiBaM Charging Parameter Estimation

Next to the parameters for discharging, we also fit the KiBaM parameters to the
charging measurements. Figure 7 shows the energy put into the battery during
the linear charge phase of the five series. In all five figures we notice some devi-
ating measurements. These measurements coincide with the deviations in the
discharge results. Battery 3 again deviates at low currents, however, the linear
charge capacity is larger than for the other batteries at low currents, whereas
the discharge capacity was lower.

Table 3. KiBaM parameters and the 95% confidence
intervals based on a non-linear least squares fit of the (a)
discharge measurements (upper half), and (b) charge mea-
surements (lower half).

Experiment C(103 As) c κ (103 s)

(a) Discharge measurements
Series 1 9.67 ± 0.22 0.90 ± 0.015 9.36 ± 9.12
Series 2 9.25 ± 0.10 0.90 ± 0.019 4.37 ± 2.66
Series 3 9.23 ± 0.08 0.86 ± 0.019 3.76 ± 1.56
Series 4 9.26 ± 0.15 0.83 ± 0.027 4.43 ± 2.24
Series 5 8.67 ± 0.26 0.70 ± 0.080 2.85 ± 2.05
(b) Charge measurements
Series 1 9.38 ± 0.12 0.579 ± 0.076 1.74 ± 0.73
Series 2 9.22 ± 0.09 0.646 ± 0.031 2.57 ± 0.59
Series 3 9.18 ± 0.12 0.599 ± 0.045 2.37 ± 0.70
Series 4 9.09 ± 0.15 0.548 ± 0.057 2.22 ± 0.78
Series 5 8.57 ± 0.27 0.504 ± 0.071 2.62 ± 1.21

The outliers are again
discarded in the fitting
procedure. The curves
we fitted are given in
Fig. 7, and the para-
meters are given in
Table 3(b). Again, we
see that the capac-
ity decreases. The esti-
mated capacity is, how-
ever, smaller than for
discharging. The para-
meter c is much smaller
during charging than
during discharging. This
implies that the avail-
able charge well is much
smaller when the bat-
tery is charged. For
the parameter κ it is
again hard to draw
firm conclusions. The
estimated values for κ
are lower for charg-
ing than for discharging.
This suggests that the
flow between bound and
available charge is faster

during charging than during discharging. It difficult to interpret the differences
between the KiBaM parameters for discharging and charging within the context
of the chemical battery processes. However, our experiments do show that when
the KiBaM model is used, it appears not justified to just reverse the flow of
the current and keep the parameters the same when we switch from discharging
to charging.
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(a) series 1 (b) series 2

(c) series 3 (d) series 4

(e) series 5

Fig. 7. Measured linear charge capacity as function of the charge currents and a non-
linear least squares fit of the KiBaM for the 5 measurements series.
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6 Discussion

The measurements do bring forward three main points for improvements of the
KiBaM. First of all, the KiBaM does not take into account the efficiency, ε, of
the battery. This may be corrected by multiplying the charge current with a
factor ε in the KiBaM equations for charging, cf. Eq. (5). This correction will
account all losses to the charging process. In an equivalent manner, all losses can
be accounted to the discharging process by multiplying the discharge current
with 1/ε. Since it is not possible to determine the efficiency of charging and
discharging process separately either solution, or a mix, is valid.

The second improvement of the KiBaM is to use different parameters c and
k for charging and discharging. In the analysis we see that the parameter c is
clearly larger for discharging. One challenge in changing the parameter c, when
switching from charging to discharging, and vice versa, is how to redistribute
the charge in the battery over the available and bound charge wells. Since the
KiBaM model actually is a first order approximation of the continuous diffusion
model by Rakhmatov and Vrudhula [9,11], the most natural option seems to
be to keep the height of the available charge well constant, and redistribute the
charge accordingly. Due to the large confidence intervals for the parameter k,
we cannot draw any strong conclusions on how this parameter should change
between charging and discharging. However, changing this parameter can be
done without any additional challenges arising.

The third improvement to the KiBaM model deals with the battery degra-
dation. The experiments show a degradation of the capacity and efficiency of
the battery, as well as a change in the parameter c, both for charging and dis-
charging. It is not straightforward how to incorporate the degradation into the
KiBaM. As stated earlier, the rate of the battery degradation highly depends
on the discharge and charge rate and the depth of discharge. Since the degrada-
tion is a slow process, one can use the KiBaM with constant parameters when
considering a time scale of a couple of charge-discharge cycles. However, when
the battery is modeled over a longer period, the degradation must be taken into
account. This might be done with a multi-modal KiBaM, in which one switches
between different constant parameter sets as the battery degrades. In order to
know when to change parameter sets, more experiments are needed, in which
the batteries are discharged at various rates and to different depths of discharge.

Finally, our experiments clearly show the degradation of the battery over
time. Note that in the experiments we applied a relatively heavy load to the
battery, by discharging it fully in just one hour. Both this high discharge rate
and discharging to a very low state of charge have a negative impact on the
overall battery lifetime [3]. In most practical scenarios, a battery will not be
discharged at such high rates nor to such a low state of charge. Commercial
devices often discharge lithium-ion batteries only to 20% state of charge, in
order to preserve the battery. In order to translate the measured degradation to
a practical scenario further measurements and analysis are needed.
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7 Conclusion

In this paper we presented the results of a first experimental analysis of the
aging process for a set of lithium-ion 18650 cells. In the analysis we see that
these batteries degrade in two phases. In the first phase, of approximately 140
cycles, the capacity drops slowly at a rate of 0.057% point with every cycle. In the
second phase the degradation increases with a factor 7. Next to measuring the
degradation of the battery, we also estimated the KiBaM parameters at several
points during the degradation process, in order to learn how the parameters
change as the battery ages. Furthermore, our experiments show that the KiBaM
parameters are different for charging and discharging. The analysis resulted in
a number of proposals on how to extend the KiBaM to take into account the
results of the experiments. We do note, however, that more experimental work
is needed, with different workload scenarious and battery types, to make more
concrete proposals for such model extensions.
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Abstract. Standard performance evaluation methods for discrete-state
stochastic models such as Petri nets either generate the reachability
graph followed by a numerical solution of equations, or use some variant
of simulation. Both methods have characteristic advantages and disad-
vantages depending on the size of the reachability graph and type of
performance measure. The paper proposes a hybrid performance eval-
uation algorithm for Stochastic Petri Nets that integrates elements of
both methods. It automatically adapts its behavior depending on the
available size of main memory and number of model states. As such,
the algorithm unifies simulation and numerical analysis in a joint frame-
work. It is proved to result in an unbiased estimator whose variance tends
to zero with increasing simulation time; furthermore, its applicability is
demonstrated through case studies.

Keywords: Stochastic Petri nets · Multi-trajectory simulation · Hybrid
numerical analysis/simulation method

1 Introduction

Model-based systems engineering is an important tool for complex system
design, especially to predict non-functional properties in early design stages. This
requires a model such as a stochastic Petri net as well as an efficient evaluation
algorithm implemented in a user-friendly tool. This paper considers Stochastic
Petri Nets (SPN, [2]). A variety of evaluation methods are known from the liter-
ature, all with certain individual advantages, but for a non-expert user it is not
obvious which method should be used for his or her problem.

Perhaps the most significant classification of algorithms is the one between:
(1) numerical analysis that explores and stores the full state space and thus
suffers from large memory requirements that may exceed the given hardware;
c© Springer International Publishing AG 2017
N. Bertrand and L. Bortolussi (Eds.): QEST 2017, LNCS 10503, pp. 107–122, 2017.
DOI: 10.1007/978-3-319-66335-7 7
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as well as (2) simulation that stores and follows just one state and trajectory
of the system and thus may generate samples of interest only rarely for certain
performance measures. For the latter, there is no restriction on large state spaces
thus, but some simulation problems will take unacceptable computation time.

The idea behind the algorithm presented in this paper is to find a hybrid mix
of both methods: working similar to a numerical analysis as long as the memory
is sufficient, but not storing all states if a certain maximum is reached and thus
being able to handle any size like a simulation. We introduce a new algorithm
that follows many but not all simulation trajectories, and stores them inter-
nally as particles with a certain weight. Different settings of maximum particle
numbers lead to either an (adapted) standard numerical analysis or a standard
simulation. This allows to explore new trade-offs between considering all or a sin-
gle state in contrast to the two existing standard methods, which may be seen
then as the extreme cases of the proposed algorithm. Moreover, the algorithm
automatically adapts its behavior depending on whether the size of the under-
lying state space fits into the main memory. It thus combines the advantages
of simulation and numerical analysis without a-priori in-depth knowledge of the
modeler. However, the aim is not an algorithm that is faster than the existing
approaches, but a method that integrates their behavior and thus avoids the
decision which algorithm to use. The algorithm has been implemented as an
extension of TimeNET [19]. Experiments show that it is competitive both in
run time and accuracy in comparison to simulation and numerical analysis.

Considering a mathematical framework which allows treating simulation,
numerical analysis as well as the proposed multi-trajectory algorithm, unbiased-
ness and convergence of the resulting estimator are proved. As a side effect,
the possibility of configuring our algorithm with one simple numerical parame-
ter to behave either like a simulation or a numerical analysis can be seen as a
step towards a unified understanding of the two main methods in performance
evaluation.

We use the name multi-trajectory simulation here as there are multiple tra-
jectories of the same system model evaluated concurrently (and not multiple par-
ticles of one system as done in multi-particle simulation, for instance). This name
has been coined in previous work which keeps several possible trajectories of a
combat simulation [7]. However, the cited approach does not cover performance
evaluation in a rigorous mathematical way. Approximation and discretization
are used to decrease the number of trajectories (or particles). Heuristics merge
particles that are similar, and delete trajectories viewed as being less significant.

In the literature, the term “hybrid simulation” has been used both for simu-
lation of discrete/continuous state models as well as for methods that combine
analytical and simulative methods. In the latter related work, parts of the model
are evaluated by numerical analysis, and the local results are then fed into a sim-
ulation algorithm [3,14] using a decomposition / aggregation approach quite dif-
ferent from our algorithm. A related method working with several internal states
and trajectories (coined proxels) has been proposed in [10]. It aims at transient
evaluation of non-Markovian Petri net models and uses a time discretization.
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Weighted ensemble simulation [9] considers simulation of trajectories that rarely
pass from one attractor to another in a state space, and is applied to system
models in natural sciences. The approach is used to manage uncertainty in input
data as well as probabilistic model evolutions common in weather forecasting or
robotics motion planning. Importance splitting techniques in rare-event simula-
tion [11] are another area in which multiple trajectories are being considered,
which lead to the idea of the algorithm presented here. The RESTART algo-
rithm [17], for instance, uses a depth-first-like algorithm to search for promising
paths towards the state(s) of interest, and by discarding others that are assumed
to be ineffective.

The paper is structured as follows: some terminology for the later explana-
tion is introduced in Sect. 2, covering stochastic Petri nets and their quantitative
evaluation. Section 3 introduces the multi-trajectory method for the performance
evaluation of stochastic Petri nets. Subsequently, convergence results for the esti-
mator are proved in Sect. 4, after which Sect. 5 reports numerical results obtained
for a series of application examples, that were analyzed with an implementation
in the TimeNET tool. Finally, conclusions and future work are pointed out.

2 Performance Evaluation of Stochastic Petri Nets

Stochastic Petri nets can be defined as SPN = (P, T ,Pre,Post, λ,m0,RV ). We
denote by P the (finite) set of places (i.e., state variables, denoted by circles),
which may contain tokens. Each marking m of the Petri net is a vector of non-
negative, integer numbers of tokens for each place m ∈ N

|P |. The initial state of
the system is given by m0.

T specifies the (finite) set of transitions (depicted as rectangles). Pre
describes the multiplicities of the input arcs connecting places to transitions
Pre : P × T → N. Similarly, output arcs Post from transitions to places are
defined with their cardinality. Each transition tr has a firing rate λ(tr) of an
underlying exponential distribution. Finally, the measure(s) of interest to be
computed are given by reward variables RV .

The behavior of a Petri net is defined as follows: A transition tr is enabled
in a marking m if there are enough tokens available in each of its input places,
i.e., ∀p ∈ P : m(p) ≥ Pre(p, tr). Whenever a transition becomes newly enabled,
a remaining firing time (RFT) is randomly drawn from its associated exponen-
tial firing time distribution. The RFTs of all enabled transitions decrease with
identical speed until one of them reaches zero.

The fastest transition tr is fired, changing the current marking m to a new
one m ′ denoted as m tr−→m ′. The new marking is derived by removing the
necessary number of tokens from the input places and adding tokens to output
places with ∀p ∈ P : m ′(p) = m(p) − Pre(p, tr) + Post(p, tr).

If there is a transition tr enabled in marking m and its firing leads to marking
m ′, we say that m ′ is directly reachable from m . The set of all directly or
indirectly reachable states from m0 is the reachability set RS or state space of
the model. We assume models with a finite state space where the initial state
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Fig. 1. Suggested application regions of evaluation methods

m0 is directly or indirectly reachable from every other state such that the state
space is irreducible.

Performance measures rvar(t) ∈ RV are defined here as functions of the sto-
chastic process at time t and given by a rate part RateReward rvar (m t) returning
the amount of reward gained in marking m per time unit, plus the impulse part
ImpulseRewardrvar (m t, tr) [13] specifying the amount of reward associated to
firing transition tr in marking m t if the Petri net is in state m t at time t.

The stochastic process defined by such a model is a continuous-time, irre-
ducible Markov chain with finite state space and transitions isomorphic to the
reachability graph of the Petri net model [1,5]. Its infinitesimal generator matrix
Q with entries qi,j is given by the sum of all rates of exponential transitions tr
for which m i

tr−→mj (or zero if there is none). Diagonal entries of Q denote
outflow rates set to qj,j = −

∑
i�=j qj,i.

Stationary (steady-state) evaluation of performance measures is considered
in this paper, for which there is a set of standard methods known (cf. [18]).
Direct numerical analysis considers the full state space, solves for the invari-
ant measure π of the underlying Markov chain via πQ = 0, 1 =

∑
i πi, and

derives the performance measure values simply from π. The alternative is simu-
lation, estimating results by limT→∞ 1

T

∫ T

0
rvar(t) dt. Numerical analysis is hard

or impossible when the state space size becomes huge, while simulation runs into
unacceptable execution times for models in which significant samples can be gen-
erated only rarely. Figure 1 depicts regions of performance evaluation problems
and sketches suggested evaluation methods as well as the problem types covered
by application examples in Sect. 5.

3 A Hybrid Multi-trajectory Simulation Algorithm

The algorithm proposed in this paper is intended to cover the areas of simulation
and numerical analysis without a-priori knowledge about the problem region.
The idea is the following: instead of the two extremes of either following just one
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trajectory in the state space as done by simulation versus considering all states
at once as done in a numerical analysis, there should be a hybrid approach in
between that stores and follows some trajectories. If possible, this should allow
new trade-offs between available memory space, numerical accuracy and speed.

Our proposed multi-trajectory algorithm follows this scheme: we start with
one simulation particle1 for state m0 at simulation time t = 0 with weight 1.
The weight of each particle equals the probability that a simulation would have
arrived at the corresponding state until the current simulation step, given the
previous probabilistic decisions. It is thus similar to trajectory weights considered
in some rare-event simulation methods (e.g., [16]) to keep track of the amount
of splitting.

The algorithm maintains two sets (current Particles and next Particles ′)
with elements of the form p = (marking m ,particle weight w). In each step of
the main simulation loop, the algorithm iterates over the current set of particles
Particles. For each particle p ∈ Particles stored, two treatments are possible:

– Propagate: the particle is simply followed like in a standard simulation by
probabilistically choosing one of the subsequent states. The weight is kept
constant.

– Split: all possible subsequent states are computed similarly to an iterative
step in a numerical transient solution of a discrete-time Markov chain. The
weight of the particle is distributed over all descendant particles resulting from
a split by multiplying it with the enabled transition’s firing probabilities.

All created particles are stored in the next particle set Particles ′; if a particle with
an identical state (marking) already exists, their weights are simply added (the
particles are merged). For both cases, the simulation time is updated according
to the average sojourn time in each particle, which can be computed from the
delays of the enabled transitions.

For practical implementation reasons, the size of the particle sets needs to be
bounded by a number of N particles to be stored. If the state space size of the
model is larger than N , not every possible split will be executable. Obviously,
the question of whether to use propagation or splitting influences the algorithm’s
performance. Some simple heuristics have been considered in our experiments so
far [4]. The numerical results in Sect. 5 have been achieved with a heuristic that
splits if one of the enabled transition has been fired less than average so far, if
the weight of the particle is bigger than the average weight, or if the number of
existing particles is less than 3

4N [4]. We see considerable room for improvements
towards better heuristics in future work.

Algorithm 1 sketches the proposed program structure. It takes as input SPN,
the stochastic Petri net model including performance measure definitions rvar as
well as an initial state m0, and the maximum number of particles N . Its output
is the estimated value of performance measure rvar .

1 We use the term particle here to denote one simulation state as part of a larger set,
not in the sense of a multi-particle simulation in physics.
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MultiTrajectory (SPN, N)

(∗ initializations ∗)
State(rvar) := 0
SimTime := Reward := 0
Particles := {(m0, 1)} ;Particles ′ := {}

repeat (∗ main simulation loop ∗)
while |Particles| > 0 do

Select any p ∈ Particles ; Particles := Particles \ {p}
w := p.weight ; m := p.marking
Tena := set of all transitions enabled in marking m

(∗ rate reward and sojourn time ∗)
WeightSum :=

∑
tr∈Tena

λ(tr)
Reward += w

WeightSum
RateReward rvar (m)

SimTime += w
WeightSum

(∗ decision heuristic, here: only split if enough space ∗)
if |Particles| + |Particles ′| + |Tena | > N then (∗ don’t split ∗)

Select any tr ∈ Tena randomly
Tena := {tr} ; WeightSum := λ(tr)

(∗ fire transition(s) ∗)
for ∀tr ∈ Tena do

m ′ := FireTransition(m, tr)
if m ′ /∈ Particles ′ then (∗ add new particle ∗)

Particles ′ := Particles ′ ∪ {(m ′, 0)}
(∗ merge particle weight ∗)
Particles ′(m ′).weight += w

WeightSum
λ(tr)

(∗ impulse reward for fired transition ∗)
Reward += w

WeightSum
ImpulseReward rvar (m, tr)

(∗ full particle set finished ∗)
Particles := Particles ′ ; Particles ′ := {}
Collect measure sample with value Reward

SimTime

until simulation stop criterion is reached (confidence interval estimation)
return average of samples

Algorithm 1: Multi-trajectory simulation algorithm

The behavior of the algorithm depends significantly on the number of parti-
cles and size of state space: For N = 1, only one particle will be considered, for
which the weight will stay at 1. There will never be a split and the algorithm
behaves like a normal simulation with one single trajectory. Numerically exact
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firing probabilities of all enabled transitions are computed instead and used to
randomly select the next state.

If the algorithm is started with |RS | < N , particles for all markings m ∈ RS
of the Petri net can be stored, and the algorithm works similar to a numerical
algorithm variant as pointed out in Sect. 4. Settings of practical interest are thus
1 � |RS | < N and |RS | > N , which will be considered in the examples and
numerical results of Sect. 5.

Algorithm 1 assumes only one performance measure rvar for simplicity, but
any number can be computed concurrently. Intermediate variable Reward stores
accumulated reward [13], i.e., the integral over the reward function.

During the evaluation, SimTime keeps the current simulation time (start-
ing at 0) passed by all particles together on average; as such, marking hold-
ing (sojourn) times are not simply added to it, but weighted by the parti-
cle weights and computed for each particle using the enabled transitions’ fir-
ing rates. The set Particles ′ is organized to be rapidly searchable for a mark-
ing m to be part of it; for simplicity in the algorithm we denoted finding a
marking by m ∈ Particles ←→ ∃(m , .) ∈ Particles and the found particle
Particles(m) = (m , w) if such a particle exists.

The decision from when on samples should be collected to avoid an initial
transient bias, and how long samples have to be collected until a predefined
accuracy setting given by some confidence interval and relative error is reached,
is based on standard methods from the literature [12].

4 Unbiasedness and Convergence

The underlying stochastic process [5] of a well-specified stochastic Petri net
model (c.f. Sect. 2) is a time-homogeneous and ergodic continuous-time Markov
chain MC = {Xt}t∈T [15] with discrete and finite state space S, d = |S| <
∞. The mathematical analysis will be carried out in a discrete-time setting;
this is justified since a well-known alternative to the standard way of deriving
the steady-state numerical solution for the Petri net performance measures via
πQ = 0, 1 =

∑
i=1...d πi is to embed a discrete-time Markov chain EMC upon

each state transition of the original MC . While both state spaces S will be
identical, the one-step state transition probability matrix P = {pi,j} of the
EMC can be derived by

pi,j =

{
qi,j∑

k �=i qi,k
if i 
= j

0 else

and the steady-state solution of the EMC μ will be represented as a vector
in [0, 1]d, given by μ�P = μ�, 1 =

∑
i=1...d μi. The solution of the original

process can be computed by taking into account the state sojourn (holding)
times hi = 1∑

k �=i qi,k
= − 1

qi,i
and normalization, leading to πi = hiµi∑

k hkµk
.

In the following we consider this time-discrete, irreducible, aperiodic Markov
chain EMC = (Xt)t∈N0 on a finite state space S = {1, . . . , d} with time-invariant
transition matrix P ∈ [0, 1]d that results from such an embedding.
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The essential aim is then to calculate
∫

f dμ for a given f : S → R where f
corresponds to the performance measure rvar of the model and is expressed as
a vector in Rd such that the integral is given by μ�f . If μ can not be computed
explicitly, one may resort to simulation, using that, by the ergodic theorem if
X0 ∼ μ,2

FT =
1
T

T∑

t=1

f(Xt) →
∫

f dμ a.s. (1)

when the simulation time T → ∞; note that this implies convergence in quadra-
tic mean as well. Since

∑T
t=1 f(Xt) can be updated while the Markov chain is

simulated, the computation of FT requires only constant memory.
The analysis of the (multi-particle) simulation needs a mathematical frame-

work which allows to bridge numerical analysis and simulation. For this, recall
that an alternative to solving μ�P = μ� in the numerical analysis is to
start with some μ0 ∈ [0, 1]d whose entries some to 1, and iteratively compute
μ�

t+1 = μ�
t P until convergence (which is guaranteed by the Perron-Frobenius

theorem). We will now describe standard simulation and multi-trajectory algo-
rithm in a similar vector-matrix calculus for which we introduce the following
notation: ei ∈ Rd, i = 1, . . . , d will denote the canonical basis vectors of Rd

such that δ : S → {ei : i = 1, . . . , d}, x �→ δ(x) = ex is a bijective mapping
which is interpreted as mapping a state to the Dirac measure on S at that state.
Furthermore, we are going to denote the rows of the matrix P by pi ∈ Rd,
i = 1, . . . , d – and analogously for other matrices – such that P =

∑d
i=1 eip

�
i .

Now consider independent random variables Zt,i ∼ pi, t ∈ N, i = 1, . . . , d

and form the matrices Rt =
∑d

i=1 eiδ(Zt,i)�. Then, if X0 ∼ μ is independent of

the Zt,i, setting Xt = δ−1
(
δ(Xt−1)�Rt

)
for t ∈ N realizes the stationary Markov

chain, i.e. δ(Xt)� = δ(X0)�
∏t

s=1 Rs encodes the evolution of the chain through
Dirac measures (where here and in the following matrix products expand from
left to right). This is identical to a standard simulation that never splits, and
serves as the basis for the mathematical formulation of our algorithm.

The splitting can then be modelled as follows: let Dt,i ∈ {0, 1}, t ∈ N, i =
1, . . . , d be random decision variables that specify if particle i will be split at time
step t or not. We assume them to be random and depending only on the past,
i.e., the subsequent proofs will apply to all splitting heuristics which are based
only on the history of the process. Dt,i may thus depend only on X0 and Rs for
s < t; formally, we can form the filtration3 F0 = σ(X0), Ft = σ(X0, Rs : s ≤ t)
and require that Dt,i is Ft−1-measurable (i.e. predictable given the past) for

2 Assuming that the initial transient phase of the simulation has passed at t = 0.
3 A filtration is a growing sequence of σ-algebras which may be interpreted as con-

taining the information up to the corresponding time point.
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t ∈ N. Then, based on the rows rt,i = δ(Zt,i) ∈ Rd of Rt =
∑d

i=1 eir
�
t,i we define

random vectors st,i ∈ Rd by4

st,i =

{
E rt,i = pi , if Dt,i = 1
rt,i , if Dt,i = 0

(2)

for t ∈ N, i = 1, . . . , d. Setting St =
∑d

i=1 eis
�
t,i as well as ρ0 = δ(X0) and

ρ�
t = ρ�

t−1St = δ(X0)�
∏t

s=1 Ss for t ∈ N, we obtain a sequence of random
measures on S, like the deterministic measures μt in the numerical analysis,
or the random measures δ(Xt) encoding the Markov chain in the simulation
approach. In fact, St contains the one-step probabilities for all particles stored
in ρ with their weights, including any splits. Only states with ρi > 0 are actually
stored. If all states should be split, S = P as in the numerical analysis above;
if no states should be split, S = R as in the simulation approach. We are now
interested in the convergence of 1

T

∑T
t=1

∫
f dρt which should be compared with

(1) where we have replaced f(Xt) =
∫

f dδ(Xt) by
∫

f dρt = ρ�
t f .

Note that in case St = P for all t ∈ N, we have convergence to the equi-
librium: ρt → μ for t → ∞, such that

∫
f dρt →

∫
f dμ and thus also for its

Cesàro means one has 1
T

∑T
t=1

∫
f dρt →

∫
f dμ.

The intuition regarding the performance of the multi-trajectory simulation
is: for the rows st,i of St we have either st,i = rt,i if we do not split or st,i = pi if
we do. The latter is deterministic and thus generates no variance, so randomly
deciding whether to split or not will lead to a smaller variance than never split-
ting at all; since pi = E rt,i and the decision to split depends only on the past,
E st,i = pi as well.

Since the sequence of measures ρt will not be stationary in general, we will not
consider almost sure convergence but we will prove 1

T

∑T
t=1

∫
f dρt →

∫
f dμ in

quadratic mean by showing the variance to be smaller when splitting. For this,
the following lemma which is straightforward to prove provides the essential
estimate.

Lemma 1. Let u ∈ Rd be a deterministic vector, let v, ai ∈ Rd, i = 1, . . . , d
be a set of independent, square-integrable vectors, for i = 1, . . . , d set either
bi = 0 ∈ Rd or bi = ai, and form the matrices A =

∑d
i=1 eia

�
i ∈ Rd×d and

B =
∑d

i=1 eib
�
i , respectively. Furthermore assume EA = 0.

Then Eu�Av = Eu�Bv = 0 and Var(u�Av) = E(u�Av)2 ≥ E(u�Bv)2 =
Var(u�Bv).

We are now in the position to state and prove our main result.

Proposition 2. Let P be the (time-invariant) transition matrix of a time-dis-
crete, irreducible, aperiodic Markov chain on a finite state space S = {1, . . . , d}
with steady-state solution vector μ and fix f : S → R. Using the notation

4 E and Var denote expected value and variance of the subsequent terms.
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introduced above, let X0 ∼ μ, Zt,i ∼ pi, t ∈ N, i = 1, . . . , d be independent

random variables, Rt =
∑d

i=1 eiδ(Zt,i)�, Xt = δ−1
(
δ(Xt−1)�Rt

)
such that Xt,

t ∈ N0 realizes the Markov chain, F0 = σ(X0), Ft = σ(X0, Rs : s ≤ t),
Dt,i ∈ {0, 1} Ft−1-measurable random variables for t ∈ N, i = 1, . . . , d, and let
St =

∑d
i=1 eis

�
t,i, t ∈ N be defined via (2) as well as ρ�

t = δ(X0)�
∏t

s=1 Ss for
t ∈ N.

Then, considering the result FT = 1
T

∑T
t=1 f(Xt) after T ∈ N steps when

simulating the Markov chain, and the result GT = 1
T

∑T
t=1 ρ�

t f of the multi-
trajectory simulation, we have EFT = EGT = μ�f =

∫
f dμ = E f(X0) and

VarGT ≤ VarFT for all T ∈ N. Thus, from VarFT → 0 for T → ∞ one
concludes GT →

∫
f dμ in quadratic mean, i.e. E(GT − μ�f)2 → 0 for T → ∞.

Proof. By stationarity of the Markov chain, we have EFT = 1
T

∑T
t=1 E f(Xt) =

E f(X0). Also, by independence, E(rt,i | Ft−1) = E(rt,i) = pi, so, due to the
Ft−1-measurability of Dt,i,

E(st,i | Ft−1) = 1{Dt,i = 1}E(rt,i) + 1{Dt,i = 0}E(rt,i | Ft−1) = pi,

thus E(St | Ft−1) =
∑d

i=1 ei E(st,i | Ft−1) = P which implies

E ρ�
t = E

(

δ(X0)�
t∏

s=1

Ss

)

= EE
(

δ(X0)�
(t−1∏

s=1

Ss

)
St | Ft−1

)

= E
(

δ(X0)�
(t−1∏

s=1

Ss

)
E(St | Ft−1)

)

= E δ(X0)�
(t−1∏

s=1

Ss

)
P = (E ρt−1)�P

for all t ∈ N so that E δ(X0) = μ. Induction gives E ρ�
t = μ�P t = μ� and

thus EGT = 1
T

∑T
t=1 E ρ�

t f = μ�f which proves that the expected value of our
proposed algorithm results will be unbiased.

To derive the variance estimate, we will substitute Sk for Rk in FT one after
the other for k = 1, . . . , T , i.e. we set H0 = T FT as well as

Hk =
k−1∑

t=1

(

δ(X0)�
t∏

s=1

Ss

)

f +
(

δ(X0)�
k−1∏

s=1

Ss

)

Sk

(

I +
T∑

t=k+1

t∏

s=k+1

Rs

)

f

for k = 1, . . . , T with the last sum being empty for k = T such that HT = TGT ,
and prove VarHk ≤ VarHk−1 for k = 1, . . . , T . For the latter we are of course
going to use Lemma 1 applied for the conditional distribution given Fk−1.
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Observing that (similarly as above) for k = 1, . . . , T , E(Hk | Fk−1) equals

k−1∑

t=1

(

δ(X0)
�

t∏

s=1

Ss

)

f +

(

δ(X0)
�

k−1∏

s=1

Ss

)

E(Sk | Fk−1) E

(

I +
T∑

t=k+1

t∏

s=k+1

Rs

)

f

=

k−1∑

t=1

(

δ(X0)
�

t∏

s=1

Ss

)

f +

(

δ(X0)
�

k−1∏

s=1

Ss

)

P

(
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f such that A and B have zero (conditional) mean.

Lemma 1 (applied conditionally given Fk−1) thus gives the desired result
Var(Hk |Fk−1) ≤ Var(Hk−1 | Fk−1) and therefore also Var(Hk) ≤ Var(Hk−1).

Note that Proposition 2 indeed says that both FT and GT are unbiased esti-
mators of

∫
f dμ with the variance of GT never being larger than that of FT ;

however, from the proofs one may expect the variance of GT to be considerably
smaller than that of FT if one often splits particles.

In particular, symmetric (asymptotic) confidence intervals around FT derived
from the central limit theorem are also valid if translated to be symmetric around
GT but will be quite conservative. As the sequence ρt will not be stationary,
deriving sharp (asymptotic) confidence intervals around GT is non-trivial and
left for further research, as is a proof of almost sure convergence.

5 Application Examples and Numerical Results

The algorithm introduced in this paper has been implemented in the software
tool TimeNET [6,19] in a Master’s thesis [4]. It was based on the existing sim-
ulation module for eDSPNs [8], which follows a master-slave architecture with
several (6 as a standard) simulation slave processes running concurrently on the
host machine. This improves the statistical independence of samples in addition
to the used batch means method, and allows to exploit multi-core CPUs. All
Petri net analysis parts and computation of statistical measures from the raw
samples are reused, including initial transient detection as well as variance analy-
sis for confidence interval evaluation for the stopping criterion. The latter was
not changed for the current experiments; a new variance estimation method that
better matches our algorithm will have to be developed in the future. Significant
changes and additions to the program had to be done only to store the particles.

The goal of this section is to show exemplarily that the proposed algorithm
works well both for models that can be analyzed by standard simulation or by
numerical analysis methods as depicted in Fig. 1, i.e., the left and lower regions
of the picture. Two example models are evaluated for this reason: the first one
(dotted red, left side of the figure) showing that for models without rare events
and differing state space size, where simulation is usually faster than a numerical



118 A. Zimmermann et al.

Fig. 2. Example 1: SPN with varying state space size for K

analysis (at least when the state space size increases), the proposed algorithm
has the same advantages as a regular simulation: the run time does not increase
substantially with the state space size. The second example (chain-dotted blue,
bottom of Fig. 1) explores the horizontal dimension: a model with fixed state
space size is used, for which one parameter influences the “rareness” of events
of interest. For the chosen case it will be shown that our proposed algorithm
has the same advantage as numerical analysis: as long as the state space size is
manageable (fits into the main memory), the execution time does not increase
for harder problems which lead to very long simulation run times. We explicitly
do not cover the area marked “rare-event simulation” in Fig. 1, i.e., models which
are problematic both for numerical analysis as well as standard simulation. Our
future goal is to extend the algorithm with proper heuristics to let it also solve
such large rare-event models efficiently, but this is outside the scope of this paper.

All numerical results have been computed on a standard laptop computer
under Windows 7 Enterprise 64 Bit on a 2013 Intel Core i7-4600U CPU running
at 2.1 GHz, with 12 GByte RAM, 4MB Cache, and an SSD hard disk. This
processor has two cores and four logical processors, which are all used by the
simulation slave processes, while the numerical analysis (mainly spending its
time during the successive over-relaxation (SOR) iterative solution of global
balance equations) can only run on one core. All measured times are run times
as experienced by the tool user, not pure CPU times.

Figure 2 shows an abridged version of a model introduced in [4] to check the
applicability of the algorithm to an arbitrary, not too simplistic stochastic Petri
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Table 1. Numerical results and run times in seconds for the first example

K States Numeric analysis Simulation Multi-trajectory

Result Time Result Error Time Result Error Time

1 9 0.22951 1 0.230 0.4% 1 0.229 0.0% 1

3 165 0.34726 1 0.354 2.1% 1 0.347 0.0% 1

5 1 287 0.36208 1 0.361 0.2% 1 0.363 0.1% 2

7 6435 0.36403 1 0.365 0.4% 1 0.364 0.1% 2

10 43 758 0.36431 7 0.367 0.8% 1 0.360 1.3% 9

12 125970 0.36433 26 0.366 0.5% 1 0.361 1.0% 9

15 490 314 0.36433 161 0.367 0.7% 1 0.371 1.9% 9

17 1081575 0.36433 483 0.367 0.8% 1 0.372 2.2% 14

20 3 108 105 0.36433 2028 0.368 0.9% 1 0.365 0.3% 9

25 13 884 156 0.369 1 0.359 9

30 48 903 492 0.367 1 0.351 11

net. Transitions are set to either single or infinite server semantics with equal
probability. The firing delays of the model have been randomly selected in the
ranges [1 . . . 9] and [100 . . . 900] to avoid simplifying symmetries; only one para-
metrized model instance is considered5. The number of states is controlled by
parameter K, the initial number of tokens in place P4. We assume a performance
measure of interest as the probability of having at least one token in place P1,
being expressed by P{#P1>0} in TimeNET 4.3 syntax.

Precision has been increased for numerical analysis in all experiments to
10−15 because of some small result values. For normal and multi-trajectory sim-
ulation the following settings are used: confidence level 95% and relative error
5%.

The results for the first example are shown in Table 1, all run times are given
in seconds. The model has been chosen such that the state space size grows
moderately with increasing number of tokens K. Run time of numerical analysis
starts to grow considerably when the size exceeds 20.000 states. Several millions
of states can be handled until the memory is exceeded for K = 25, but the run
time rapidly becomes unacceptable compared to the simulation times. Standard
simulation is very fast and independent of the state space size. Its results are in
the desired range of accuracy. The proposed multi-trajectory algorithm is very
fast and almost exact until K = 7, which are the cases where the state space
fully fits into the chosen number of trajectories set to 104. After that, the speed

5 This and the later second experiment model file as well as more numerical results
are available at www.tu-ilmenau.de/sse/timenet/data-for-the-multi-trajectory-
algorithm to support reproducibility. TimeNET can be obtained from timenet.tu-
ilmenau.de.

http://www.tu-ilmenau.de/sse/timenet/data-for-the-multi-trajectory-algorithm
http://www.tu-ilmenau.de/sse/timenet/data-for-the-multi-trajectory-algorithm
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Fig. 3. Example 2: SPN with increasingly hard simulation by adapting transition delays

Table 2. Numerical results and run times in seconds for Example 2

ε Numeric analysis Simulation Multi-trajectory

Result Time Result Error Time Result Error Time

1 8.621E−01 1.3 9.18E−01 6.5% 1 9.37E−01 8.7% 2

10 1.000E−04 1.3 9.95E−05 0.5% 2 1.00E−04 0.0% 3

20 6.250E−06 2.2 6.43E−06 2.9% 26 6.25E−06 0.0% 3

50 1.600E−07 1.4 1.54E−07 3.8% 296 1.60E−07 0.0% 2

70 4.165E−08 1.3 3.96E−08 4.9% 838 4.16E−08 0.0% 3

100 1.000E−08 1.2 1.01E−08 0.8% 2418 1.00E−08 0.0% 3

120 4.823E−09 1.4 4.82E−09 0.0% 2

150 2.603E−09 1.2 2.60E−09 0.0% 3

200 6.250E−10 1.2 6.25E−10 0.0% 2

500 1.600E−11 1.2 1.60E−11 0.0% 2

1000 1.000E−12 1.2 1.00E−12 0.0% 2

is slower, but does not depend on the size. Accuracy is also in the desired range
of 5% relative error (Table 2).

The measurements support our claim that the run time of the proposed
algorithm does not increase substantially for a growing state space.

Figure 3 shows a second example to check how the algorithm behaves in cases
where a standard simulation becomes infeasible. It is based on [4,20], and the
measure of interest is the probability of having at least one token in place P4.
Computing this value by simulation is made increasingly hard by setting the
mean delays of the lower exponential transitions (T10, T21, T32, T43) to 1 and
the upper transitions’ delays to ε = 1 . . . 1000. For greater values of ε this is a
typical rare-event setting. The number of tokens has been chosen as N = 25,
resulting in a state space size of 23 751.

Experimental results are shown in Fig. 2 with 105 maximum particles for
the proposed algorithm. Both numerical analysis and multi-trajectory algorithm
have no problems in evaluating even hard problems, they are both very fast
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and the accuracy of the proposed algorithm is perfect except for the case ε =
1 which may be due to the stopping criterion. Standard simulation has the
expected accuracy, but its run time grows significantly with ε. The experiment
thus supports the claim that the new algorithm does not suffer from the rare-
event simulation run length as long as the state space of the model is not too
large, thus inheriting the advantage of numerical analysis for this case.

Other experiments showed that the proposed algorithm can be slower than
standard simulation in some cases with medium-size state space. This happens
when a simulation is very fast while the multi-trajectory algorithm spends unnec-
essary time in the particle computation. In the future we will explore algorithm
variants that adapt the maximum number of particles N during run time to
overcome this effect, as starting with a small N and gradually increasing it over
time ought to solve this issue.

6 Conclusion

A new algorithm for the performance evaluation of Markovian stochastic Petri
nets has been proposed in the paper. It uses elements of simulation as well as
numerical analysis and its convergence has been proved in a unified mathematical
framework. The algorithm can be applied to models for which one up to now had
to choose a priori which of the standard methods to apply. The two examples
show that the algorithm incorporates the advantages of simulation and numerical
analysis for models that are either small enough to be handled analytically, or
for which the performance measures and event generation is simple enough to
result in a fast simulation.

In the future, we plan to use methods from automatic rare-event Petri net
simulation to develop splitting heuristics of the algorithm. The goal is to make
the algorithm useful for automated rare-event simulation as well, as a step
towards a single method that should be applicable and automatically adapting
to the two main cases of model evaluation complexity. We will also investigate
if the advantages of the algorithm can be transferred to non-Markovian models,
and explore possible parallelization of the algorithm.

Acknowledgements. The authors would like to thank Florian Kelma and Thomas
Böhme, both from the Institute for Mathematics, Technische Universität Ilmenau, for
fruitful discussions on the mathematical treatment.
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Abstract. Recent developments in cloud architectures have originated
new models of online storage clouds based on data dispersal algorithms.
According to these algorithms the data is divided into several slices that
are distributed among remote and independent storage nodes. Ensur-
ing confidentiality in this context is crucial: only legitimate users should
access any part of information they distribute among storage nodes.

To the best of our knowledge, the security analysis and assessment
of existing solutions always assume homogeneous networks and honest-
but-curious nodes as attacker model. We analyze more complex scenarios
with heterogeneous network topologies and a passive attacker eavesdrop-
ping the channel between user and storage nodes.

We use parameterized Markov Decision Processes to model such a
class of systems and Probabilistic Model Checking to assess the like-
lihood of breaking the confidentiality. Even if, generally speaking, the
parameterized model checking is undecidable, in this paper, however, we
proved a Small Model Theorem that makes such a problem decidable
for the class of models adopted in this work. We discovered that confi-
dentiality is highly affected by parameters such as the number of slices
and the number of write and read requests. At design-time, the pre-
sented methodology helps to determine the optimal values of parameters
affecting the likelihood of a successful attack to confidentiality.

1 Introduction

Recent developments in cloud architectures have originated new models of stor-
age based on data dispersal algorithms, where data is divided into several slices
that are dispersed among remote and independent storage node [22,29,32]. The
main advantage of these techniques consists in their reliability since the disper-
sion is usually accompanied by redundancy. However, in this context, ensuring
confidentiality is equally important: only legitimate users should have access to
any part of the information that was dispersed among the independent storage
nodes. For this reason, many proposals for dispersed storage clouds are accom-
panied by a security analysis [9,10,35,36]. In these cases, the analysis usually
determines the probability that an intruder can rebuild a message based on the
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number of captured slices and are usually based on a number of assumptions:
(a) the intruder is an honest but curious provider or a dishonest entity which
succeeded in compromising one or more independent nodes; (b) all nodes are
homogeneous, in other words they all have the same probability to be com-
promised; (c) no assumption is made about the nature of the communication
channel. According to these assumptions several real world scenarios are not
considered.

The main original contribution of this paper consists in presenting an assess-
ment methodology for dispersed storage clouds that takes into account a scenario
where some of the previous assumptions have been relaxed while others have been
completely changed. Such assumptions are the following:

(1) the intruder is a passive eavesdropper that can spill individual slices from
the communication channel; indeed, being passive it does not compromise
the storage nodes but can act on the channels,

(2) the communication network is formed by a series of channels with different
characteristics (heterogeneous channels).

The proposed methodology relies on Parameterized Markov Decision
Processes to model such a class of systems and Probabilistic Model Checking as a
verification tool. First of all, the parameterized nature of such a scenario should
be noticed, where a single user decides to store a certain number of slices into
an arbitrary number of independent storage nodes through an arbitrary num-
ber of communication channels. The model checking problem for parameterized
systems is in general undecidable but this paper presents, as further original
contribution, a small model theorem for probabilistic systems that allows, for
the models at hand, a verification independent of the number of channels and
nodes. As a consequence, the outcome of the analysis is twofold: on one hand, it
assesses confidentiality, i.e. it produces a set of curves reporting the probability
of breaking the confidentiality varying with respect to the number of slices and
the number of write and read requests. On the other hand, it makes it possi-
ble to determine at design/configuration-time the value of critical parameters,
e.g. how often the message must be re-dispersed in order to maintain a given
confidentiality level.

Finally, this paper presents as a case study a real world example and this
is another contribution of this paper. Indeed, the case study consists in analyz-
ing dispersed storage cloud systems based on the AONT-RS schema [29]. This
schema has been adopted by real systems as Cleversafe [29] and CDStore [22].

2 Related Work

Formal verification of security requirements in communication protocols is a well-
established practice. In particular, model-checking [6,15,26,27] enables to verify
automatically all the possible interleaved runs of the protocols in the presence
of an adversary that can intercept, remove, modify the original messages as
well as inject new messages. In this respect, the Dolev-Yao intruder model [13]
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is considered the most general model (the worst case) as it assumes a non-
deterministic attacker in full control of the communication channels.

Traditionally, model checking can verify whether a system can be attacked or
not and are not suitable for verifying security protocols in systems characterized
by uncertainty or using randomized algorithms. We assume, instead, that every
component of a cloud system may be attacked with some probability, and we
wish to measure the likelihood of such attacks. This motivated us to define
custom probabilistic intruder models, in place of the Dolev-Yao intruder.

Our scenario requires the use of probabilistic model-checking that provides
a quantitative measure of security in terms of the probability of reaching a bad
state. Examples of probabilistic model-checking applications in security can be
found in the recent literature [3,5,21,25,37]. Probabilistic (as also the traditional
one) model-checking suffers in general the state-explosion problem, making the
verification of real-world security protocols and systems sometimes unfeasible.

One way to address this problem is to trade memory for computation by
statistically [19] measuring the probability to satisfy or to violate a property
over a set of traces generated by randomly sampling the model. This method in
general requires a large number of samples to measure the probability of a rare
event such as a security breach.

Another direction, that we have also pursued in this paper, is to find a suitable
abstraction technique [11] that reduces the description of the system to a feasible
state-space, still preserving the properties of interest. For example, distributed
systems consisting of several instances of identical communicating components
can benefit by proving a small model theorem that guarantees the existence of
a bound in the number of the identical components for which it is sufficient
to solve the verification problem to prove the correctness also for any larger
number of components. Although this approach, also referred to as parameterized
verification, has gained a lot of interest to verify (non-)deterministic systems [1,8,
17,34] to the best of our knowledge it is still scarcely explored in the probabilistic
setting [7,20].

This work extends a previous, incomplete, attempt to verify data dispersal
algorithms [3] that only considered the writing operation (i.e., the intruder could
not take advantage of further read operations of the same file). Furthermore,
from a theoretical point of view, the small probabilistic model theorem that we
prove here applies also to other systems with a parameterized number of nodes
or channels releasing a secret with a given probability.

Finally, let us remark that also the structure of the attacker may deter-
mine the feasibility of the verification of security properties. In our work we
have employed a passive intruder model, and indeed several authors agree that
this is enough when analyzing confidentiality requirements. For example, Li and
Pang [23], and Shmatikov [33] used passive intruders to verify anonymity of
protocols, a special case of confidentiality. The latter work also considers prob-
abilistic attacks. As far as we know, the use of a probabilistic passive attacker
model for the analysis of data confidentiality is original.
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3 The AONT-Based Dispersed Storage Clouds

Generally speaking, dispersed storage clouds usually deal with reliability and
security. Any user has some amount of cloud storage space assigned on indepen-
dent storage nodes. In order to assure reliability on the one hand and security
on the other, several authors have proposed schemata based on fragmentation,
erasure coding, and encryption [4,22,24,29].

From a purely abstract point of view, all these algorithms can be character-
ized by a set of parameters. Let x be the original file size (measured in bits) to
be dispersed and let l · q be the size of each fragment called slice (when q = 8, l
is the size of a slice in bytes). The parameters of interest are (n, k), where:

– n ≥ x
lq is the the number of slices after the transformation of the original file,

i.e. the number of slices to be dispersed;
– k ≤ n is the minimum number of slices to recover the original file; i.e., n − k

is the maximum number of lost (erased) slices that still enables file recovery;
– k − 1 is the maximum number of slices, that an intruder can eavesdrop, still

allowing file confidentiality.

One of the most popular schemata is represented by the All-Or-Nothing-
Transform Reed-Solomon (AONT-RS) [29]. Basically, AONT-RS consists in
applying the Reed-Solomon (RS) erasure code to AONT, as depicted in Fig. 1.

AONT. First of all, the data of x bits are encrypted through an AONT that
works as follows. A symmetric random key of α bits is chosen and used to encrypt
the message. A digest of the encrypted data is computed and XOR-ed with the
random key. The result is appended to the encrypted data, thus forming the
transformed message of length x+α bits. Any user who is able to collect all the
bits of the transformed message can also be able to retrieve the random key and,
thus, to decrypt the transformed message and obtain the plaintext. The miss of
any part of the transformed data does not allow the recovery of the random key
and, hence, any part of the plaintext. Moreover, AONT does not require any key
exchange, since the key is embedded with the transformed data, and it is easily
obtainable (only) after retrieving the entire amount of transformed data.

Slicer. It divides the encrypted data produced by AONT into k small fragments,
called slices, where k is also the dimension of the linear block code used and will
be explained later on. Data bits are collected in groups of q bits each; therefore,
each slice contains l = �x+α

kq � blocks of q bits.

document
(x bits)

random key
(α bits)

AONT Slicer Encoder Dispatcher

SP1 SP2
. .. SPm

cloud

x + α k · (l · q) n · (l · q)

l · n1 · q l · n2 · q l · nm · q

Fig. 1. Block diagram of AONT-RS (with data length expressed in bits)



A Probabilistic Small Model Theorem to Assess Confidentiality 127

Encoder. Here, data are subject to the full-length RS code with dimension k,
defined over the Galois field of order 2q with q > 1. After encoding, the number
of slices increases from k to n = 2q −1, where n > k due to redundancy added by
the code. Thanks to this redundancy, RS codes are able to recover a number of
erased symbols smaller than or equal to n − k independently of their positions,
while they cannot recover any number of erasures greater than n − k.

Dispatcher. It sends each of the n slices to one of the m independent storage
nodes (the service providers SP of Fig. 1) through the network. Each SP receives
a number of slices equal to ni, with

∑m
i=1 ni = n.

It is interesting to evidence the differences of this protocol with respect to
more standard secret-sharing schemes like that pioneering proposed in [31]. The
main difference is in the required redundancy: the protocol in [31] allows to dis-
perse a small secret (typically an encryption key) at the cost of generating a great
amount of data. On the contrary, in the AONT-RS techniques the redundancy
is fixed by the code rate, that is usually not smaller than 0.5. In this sense, the
AONT-RS approach may be more efficient.

4 Attack Scenarios

According to Fig. 1, the m SPs are distributed over the Internet, therefore users
must exploit network connectivity in order to dispatch the n slices over them.
In this work we assume the user is connected to the Internet from its local
area network (LAN) through a gateway or an edge router. Furthermore, the
protocol used by the Dispatcher may rely on end-to-end security techniques, like
Secure Sockets Layer/Transport Layer Security (SSL/TLS). Nevertheless, let us
investigate the worst case scenario where (1) the intruder can sniff the LAN, and
(2) end-to-end encryption does not apply or does not work. These assumptions
are reasonable because: (i) a LAN, especially if wireless, seems the most exposed
one to eavesdropping; (ii) SSL/TLS requires a public key infrastructure, the
related certificate management, and this may not be affordable in some cases
(e.g., when SPs are small and cheap storage nodes); (iii) SSL/TLS can be affected
by implementation bugs or other vulnerabilities [14,16].

In this work we focus on wireless attacks. The wireless LAN (WLAN) may
be open, or the attacker may be an insider of the network and possess all the
credentials. This occurs any time the user is in an open wireless network or in a
network protected via techniques based on pre-shared keys (e.g., WEP or WPA-
PSK), so that all the other users can successfully acquire all her/his packets.
Two scenarios will be analyzed: a user connected only to a WLAN, or a user
connected to both a WLAN and a wired LAN.

In wireless connections, packets are subjected to channel conditions such as
noise and signal degradation. Of course, a wireless attack depends on how far
the eavesdropper is from the source, since the channel quality decreases inversely
to the distance. Moreover, the legitimate receiver is authorized to ask for re-
transmission of lost packets (e.g. in presence of bad channel conditions), while
the eavesdropper cannot, otherwise it would be revealed.
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Fig. 2. Probability of correct reception in a WLAN (L = 200 bytes, ST = 12 dBm)

Let us consider a setting where errors affecting one slice are independent
of errors affecting another slice. This assumption is realistic in many real-world
WLAN deployments, e.g., in the presence of relatively fast fading (coherence time
not longer than the duration of a slice). Therefore, the probability that a single
slice attack is successful corresponds to the probability that a slice is received
by the attacker without errors. This probability depends on different parameters
which act on the wireless channel, and we are interested in evaluating it as a
function of the distance of the eavesdropper from the user. Let us denote by P
the channel packet error rate, and by Q = (1 − P ) the probability that a slice is
received without errors. The value of Q depends on the transmitted power ST

and on the path loss model. Examples are reported in [30], for the case of indoor
communications. Numerical values for P are given in [28], where data is collected
through a network simulator and packets with L = 200 bytes of application data
and ST = 12 dBm are considered. By assuming these parameters, Fig. 2 reports
the average values of the probability of correct reception for a distance between
8 m and 30 m, considering different data rates Rb, for a typical IEEE 802.11g
wireless connection.

5 Probabilistic Model Checking

To model the considered systems and attack scenarios, we use Markov Decision
Processes (MDPs, see e.g. [2, Chap. 10.5]).

Definition 1 (Markov Decision Processes). Assume a finite set of atomic
propositions AP. A MDP is a tuple M = (S,Act,Pr, ι, L) where:

– S = {s1, s2, . . .} is a finite set of states,
– Act = {α1, α2, . . .} is a finite set of actions,
– Pr : S × Act × S → [0, 1] is a probabilistic transition function such that, for

all states s ∈ S and actions α ∈ Act,
∑

s′∈S Pr(s, α, s′) ∈ {0, 1};
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– ι : S → [0, 1] is the initial distribution probability of states, such that∑
s∈S ι(s) = 1;

– L : S → 2AP is a labeling function.

The probabilistic transition function can be extended to sets of states as
follows: Pr(s, α, T ) =

∑
t∈T Pr(s, α, t), for all s ∈ S, α ∈ Act, and T ⊆ S.

Let us call parametric MDP any MDP M(p1, . . . , pw) whose transitions refer to
probabilities as parameters p1, . . . , pw. We will say that a MDP M′ instantiates
M(p1, . . . , pw) if there exist real values 0 ≤ q1, . . . , qw ≤ 1 such that M′ is
obtained from M by replacing pi with qi, for all i.

Definition 2 (Parallel composition). Given MDPs M1 = (S1,Act1,Pr1, ι1,
L1) and M2 = (S2,Act2,Pr2, ι2, L2), we write M1 ‖ M2 to denote the MDP
(S1 × S2,Act1 ∪ Act2,Pr, ι, L) obtained as follows:

– Pr((s, t), α, (s′, t′)) =

⎧
⎨

⎩

Pr1(s, α, s′) if α ∈ Act1 \ Act2, t = t′

Pr2(t, α, t′) if α ∈ Act2 \ Act1, s = s′

Pr1(s, α, s′) · Pr2(t, α, t′) if α ∈ Act1 ∩ Act2
– ι((s, s′)) = ι1(s) · ι2(s′), for all s ∈ S1, s

′ ∈ S2

– L((s, s′)) = L1(s) ∪ L2(s′)

We say that M1 ‖ M2 is the parallel composition of M1 and M2.

Let us write M[α/α′] to denote the MDP where action α has been replaced
by action α′. Formally: (S,Act,Pr, ι, L)[α/α′] = (S,Act′,Pr′, ι, L) where:

– Act′ = (Act \ {α}) ∪ {α′}, and

– Pr′(s, β, t) =
{

Pr(s, α′, t) if β = α,
Pr(s, β, t) else

To express properties of probabilistic systems, the probabilistic temporal
logic PCTL� [2, Chap. 10] can be used. We report its grammar:

Φ ::= true | p | Φ ∧ Φ | ¬Φ | PJ(ϕ)
ϕ ::= Φ | ϕ ∧ ϕ | ¬ϕ | Xϕ | Gϕ | Fϕ

where p ∈ AP and J ⊆ [0, 1] is a rational interval. Terms of Φ are state formulae,
while terms of ϕ are path formulae. Intuitively, formula Gϕ (resp. Fϕ) holds
w.r.t. some path iff every (resp. some) state visited along the path satisfies
sub-formula ϕ. Given an MDP M, we write M |= Φ expressing that all the
initial states of M satisfy Φ. Given a PCTL� path formula ϕ and an MDP
M, we write Pmax(ϕ,M) (resp. Pmin(ϕ,M)) denoting the maximum (resp.
minimum) probability with which the specification ϕ is satisfied. Such a value
can be computed in polynomial time w.r.t. its input [2, Chap. 10.5].

Given two MDPs M1 and M2, one can show that they are indistinguishable
if (i) every transition to equivalent states on one system is mimicked on the other
system, and (ii) equivalent states are reached with the same probability on the
two systems. This is captured by probabilistic bisimulation [2, Chap. 10.5].
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Definition 3 (Probabilistic bisimulation). Given MDPs (S1,Act1,Pr1,
ι1, L1) and (S2,Act2,Pr2, ι2, L2), a probabilistic bisimulation is any relation
R ⊆ S × S such that R(s, s′) iff L(s) = L(s′) and Pr(s, α, T ) = Pr(s′, α, T ),
for each action α ∈ Act, equivalence class T ∈ S/R, and s, s′ ∈ S, where
(S,Act,Pr, ι, L) = (S1,Act1,Pr1, ι1, L1) ‖ (S2,Act2,Pr2, ι2, L2).

The probabilistic bisimulation is an equivalence relation, thus given two states
s, t, let us write s ≈R t if R is a probabilistic bisimulation and R(s, t) holds. When
R is clear from the context, we may omit it. It is known that bisimilar MDPs
satisfy the same PCTL� formulae [2, Chap. 10.5].

Given two MDPs M1 and M2 and a sequence of action pairs Γ = α1/α′
1, . . . ,

αn/α′
n, let us write M1 ≈Γ M2 to denote that M1[α1/α′

1] . . . [αm/α′
m] ≈

M2[α1/α′
1] . . . [αm/α′

m]. We call the relation ≈Γ probabilistic bisimulation up-
to action replacement and intuitively denotes the fact that M1 and M2 are
bisimilar modulo a simple operation of renaming their actions.

Theorem 1. Given two MDPs M1, M2 such that M1 ≈ M2, then M1 |= Φ
iff M2 |= Φ, for any Φ ∈ PCTL�.

Corollary 1. Given two MDPs M1, M2 s.t. M1 ≈ M2, then Pmax(ϕ,M1) =
Pmax(ϕ,M2) and Pmin(ϕ,M1) = Pmin(ϕ,M2) for any ϕ ∈ PCTL�.

Property 1 (Associativity). Given MDPs M1 = (S1,Act1,Pr1, ι1, L1), M2 =
(S2,Act2,Pr2, ι2, L2), and M3 = (S3,Act3,Pr3, ι3, L3), then:

(M1 ‖ M2) ‖ M3 ≈ M1 ‖ (M2 ‖ M3)

Proof (Sketched). Assume s1, s
′
1 ∈ S1, s2, s

′
2 ∈ S2, and s3, s

′
3 ∈ S3. The prop-

erty is a consequence of the follogin facts: (1) (S1 × S2) × S3 is isomorphic
to S1 × (S2 × S3). (2) By product associativity (ι1(s1) · ι2(s2)) · ι3(s3) =
ι1(s1) ·(ι2(s2) ·ι3(s3)). (3) By set union associativity (L1(s1)∪L2(s2))∪L3(s3) =
(L1(s1) ∪ L2(s2)) ∪ L3(s3). (4) Finally, for any α ∈ Act and p ∈ [0, 1], one shows
by cases on the definition of Pr that Pr(((s1, s2), s3), α, ((s′

1, s
′
2), s

′
3)) = p iff

Pr((s1, (s2, s3)), α, (s′
1, (s

′
2, s

′
3))) = p.

Property 2 (Commutativity). Given two MDPs M1 = (S1,Act1,Pr1, ι1, L1) and
M2 = (S2,Act2,Pr2, ι2, L2) then:

M1 ‖ M2 ≈ M2 ‖ M1

Proof (Sketched). Assume s1 ∈ S1 and s2 ∈ S2. The property is a consequence
of the following facts: (1) S1 × S2 is isomorphic to S2 × S1. (2) By product
commutativity ι1(s1) · ι2(s2) = ι2(s2) · ι1(s1). (3) By set union L1(s1)∪L2(s2) =
L2(s2)∪L1(s1). (4) Finally, for any α ∈ Act and p ∈ [0, 1], one shows by cases on
the definition of Pr that Pr((s1, s2), α, (s′

1, s
′
2)) = p iff Pr((s2, s1), α, (s′

2, s
′
1)) = p.

6 Assessment Methodology

Here we describe the MDPs modeling user, links to storage nodes and attacker.
Later we show how the system can be verified for any number of links.
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6.1 Modeling

At every modification, the AONT-RS schema encrypts the file with a fresh and
random key. Then the data is encoded and dispersed. This means that a write
operation invalidates the slices of previous versions of the same file. On the other
side, a read operation gives a new opportunity to the attacker for collecting new
slices up to the threshold k. We refer to this model as write-once/read-many.

At a first sight, the considered model might resemble the threshold public
key encryption systems [12], where a private key is distributed among n decryp-
tion servers, so that at least k servers are needed for decryption. In reality,
between the two systems there are important differences. In particular, in the
AONT-based scheme we have only one user and the algorithm exploits symmet-
ric ciphering. The only analogy is on the concept of threshold that, however,
while in the case of threshold encryption is applied to the number of users that
aim to decipher, in the present case is applied to the number of recovered slices.

In Figs. 3, 4 and 5 we represent the relevant MDPs using straight variable
names for edge pre-conditions, while primed variable names are considered edge
post-conditions. When the edge does not have a synchronization label (resp. a
probability), we assume that the transition is asynchronous (resp. it has proba-
bility 1). When the boolean formula is omitted, we assume it is a tautology.

The user. Figure 3 shows the MDP User(d1, . . . , dm) where m is the number
of storage nodes. Its variables are: nw counts the number of written slices, c
tracks the next node to write to, nra counts the number of remaining read
attempts of the previously written message, nr1 . . .nrm count the slices to be
read from the node i, in this attempt of reading the message. Note that the
dispatch probabilities make a probability distribution, i.e.

∑
1≤i≤m di = 1. User

also reads variables ctr1, . . . , ctrm from MDPs Link1, . . . ,Linkm to know the
number of slices hosted by each node. User starts by dispatching the n slices
across the available m node links. When done, it goes to the reading stage, where
it loops n reads times reading back the previously written message.

nra′ = n reads

di : nw < n ∧
c′ = i

nw = n ∧ c = 0

[Wi]
c = i ∧ c′ = 0 ∧ nw′ = nw + 1 nra > 0 ∧

nra′ = nra − 1 ∧
nr′

1 = ctr1 ∧ . . .
∧ nr′

m = ctrm

nra = 0 ∧ nr1 = 0 ∧ . . . ∧ nrm = 0

nr1 = 0 ∧ . . . ∧ nrm = 0

[Ri]
nri > 0 ∧ nr′

i = nri − 1

Fig. 3. The User(d1, . . . , dm)

The node links. MDP Linkc
i (ai) depicted in Fig. 4 models any link to some

storage node that could host up to c slices. It stores in ctri the amount of hosted
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slices not known by the attacker so far, and uses a binary flag leaki to remember
whether the last written or read slice was intercepted by the intruder. Note that
only one of the m copies of Linki can have leaki = 1 at any time. This forces the
attacker to intercept the leaked slice before the user tries to write or read another
one (possibly leaking it again). Probability ai represents the likelihood of a slice
being intercepted when traveling between the user and the storage node, while
1 − ai is the probability of not being intercepted. The node link synchronizes
with the user through actions Ri and Wi, and with the attacker using action Li.

The Attacker. Attacker is the MDP modeling the intruder depicted in Fig. 5.
It has a single local variable ctra counting the number of collected slices so far.
The attack proceeds by collecting the slices leaked by the m copies of Linki in
the system. An attack is successful when ctra ≥ k.

leak′
i = 0

[Wi]
1 − ai : ctri < c ∧ leak′

i = 0 ∧
ctr′

i = ctri + 1

[Ri]
1 − ai : ctri > 0 ∧ leak′

i = 0 ∧
ctr′

i = ctri

[Wi]
ai : ctri < c ∧ leak1 = 0 ∧ . . . ∧ leakm = 0 ∧

leak′
i = 1 ∧ ctr′

i = ctri

[Ri]
ai : ctri > 0 ∧ leak1 = 0 ∧ . . . ∧ leakm = 0 ∧

leak′
i = 1 ∧ ctr′

i = ctri − 1

[Li] leaki = 0

Fig. 4. The Linkc
i (ai)

[Li]
ctra < n ∧ ctr′

a = ctra + 1

Fig. 5. The Attacker

6.2 Security Assessment Analysis

It is evident that assessing the security of dispersal cloud storage algorithms
is inherently a parameterized problem. Indeed, by allowing an arbitrarily large
number of read operations by the user, the attacker has probability 1 of inter-
cepting more than k slices (every read the attacker has one more chance of
intercepting the missing slices, until it intercepts all of them). Similarly, assum-
ing the secret is split into an arbitrarily large number of slices gives the attacker
a negligible probability of succeeding in his/her attack. Between these ends lie all
the parameters values of the actual implementations of AONT-based algorithms.
Very often such values are not bound to a clearly stated security metric.

Our approach exploits bounded and probabilistic model checking to com-
pute the likelihood of a successful attack, specified as a PCTL� formula, for
several parameter configurations. The collected data allow us to draw a multi-
dimensional graph relating the probability of a successful attack with the para-
meter values.

For any m ∈ N, the dispersal cloud storage algorithms is modeled by:

MAONT
m := User(d1, . . . , dm) ‖ Linkn

1 (a1) ‖ . . . ‖ Linkn
m(am) ‖ Attacker.
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Finally, the probabilistic model checker is repeatedly invoked to solve the fol-
lowing problem varying parameter values:

Pmax(F (ctra ≥ k),MAONT
m ) (1)

6.3 Small Model Theorem for Node Links

A small model theorem allows to verify a class of infinite state systems by only
checking a finite size system. The key observation is that, in a system where
slices are intercepted when traveling between user and storage nodes, two or
more node links with the same attack probability are indistinguishable from a
single node link having the same attack probability, modulo some technicalities.
In the case studies of Sect. 7 we will see that since the likelihood of intercepting a
slice is determined by the physical properties of the employed LAN, the number
of required node links for verifying real-world scenarios is usually very small.

Lemma 1 (Reduction). For any natural numbers c, d, i, j, k > 0 such that
i �= j, any probability a. Given the MDPs Linkc

i (a), Linkd
j (a), and Linkc+d

k (a):

Linkc
i (a) ‖ Linkd

j (a) ≈Γ Linkc+d
k (a)

where Γ = Ri/Rk, Rj/Rk,Wi/Wk,Wj/Wk, Li/Lk, Lj/Li.

Proof (Sketched). Fix Linkc
i (a) = (Si,Acti,Pri, ιi, Li),Linkd

j (a) = (Sj ,Actj ,
Prj , ιj , Lj),Linkc+d

k (a) = (Sk,Actk,Prk, ιk, Lk). One shows that there exists a
relation R ⊆ (Si × Sj) × Sk that is indeed a probabilistic bisimulation up-to
action replacing Γ . Take R := {((s, t), u) : s.ctri + t.ctrj = u.ctrk, s.leaki =
1 ⇐⇒ t.leakj = 1 ∨ u.leakk = 1}.

Call Prbig the probabilistic transition function of the composed MDP
Linkc

i (a) ‖ Linkd
j (a). Now one proves that the following commutative diagram

holds:

(s, t) (s′, t′)

u u′

Prbig

p

R

Prk

p

R

We first prove one direction. Fix any s, t, u such that R((s, t), u) and then reason
by cases on Prbig((s, t), α, (s′, t′)) = p.

– Case α = Ri (i.e. read on i): if p = a (i.e. a leaking happened) then s.ctri > 0,
s′.ctri = s.ctri − 1, s.leaki = t.leakj = t′.leakj = 0, s′.leaki = 1. By R((s, t), u)
we know that u.ctrk = s.ctri+t.ctrj and u.leakk = min(s.leaki+t.leakj , 1) = 0.
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Let us name u′ the (unique) state satisfying the following: u′.ctrk = u.ctrk −1
and u′.leakk = 1. It is evident that R((s′, t′), u′), concluding this branch of
the case. If p = 1 − a (i.e. no leaking happened) one similarly observes that
s.ctri > 0, s′.ctri = s.ctri, and s.leaki = t.leakj = s′.leak = t′.leak = 0.
Now, under our assumptions, let us define u′ to be the (unique) state where
u′.ctrk = u.ctrk = s′.ctri + t′.ctrj and u′.leakk = 0 = min(s′.leak + t′.leak, 1).
Observing that R((s′, t′), u′) ends this case.

– Case α = Rj (i.e. read on j): it is symmetric to the previous one.
– Cases α ∈ {Wi,Wj , Li, Lj} are straightforward to check following the reason-

ing for the case α = Ri.

Finally, fix any s, t, u such that R((s, t), u) and reason by cases on Prk(u, α, u′) =
p to show that the opposite direction holds. ��

Given a sorted list of numbers a1, . . . , am s.t. a1 ≤ . . . ≤ am, let us call its
distinction the list of indices i1, . . . , iq+1 satisfying the following:

– i1 = 1, iq+1 = m, and i1 < . . . < iq+1,
– ∀j ∈ [1, q].∀k ∈ [ij , ij+1 − 1]. aij = ak, and
– ∀j ∈ [1, q]. aij < aij+1 .

Such constraints mean that the list a1, . . . , am can be partitioned into q sub-
lists, each containing identical values, and each pair of lists containing distinct
values. For example, the distinction of the sorted list of probabilities 0.00, 0.00,
0.05, 0.10, 0.10, 0.10, 0.15, is the list of indices 1, 3, 4, 7.

The core theoretical contribution of this work shows that one can do para-
meterized probabilistic model checking of systems with any number of Links,
by considering only a finite number of them. Such number is often called cutoff.

Theorem 2 (Small Model Theorem). For any naturals m, c1, . . . , cm > 0
and probabilities a1, . . . , am. Given the MDPs Linkc1

1 (a1), . . . ,Linkcm
m (am). For

any MDP M and formula Φ ∈ PCTL� the following holds:

M ‖ Linkc1
1 (a1) ‖ . . . ‖ Linkcm

m (am) |= Φ ⇔
M ‖ Linkci1

1 (ai1) ‖ . . . ‖ Link
ciq
q (aiq ) |= Φ

where, for some 0 < q ≤ m, the list of indices i1, . . . , iq is a distinction of the list
a1, . . . , am (assume w.l.o.g. that the latter is sorted), the dispatch probabilities are
given by dij =

∑ij+1−1
k=ij

dk while the capacities are defined as cij =
∑ij+1−1

k=ij
ck.

Proof. Let us recursively apply Lemma 1. The latter reduces any pair of Links
with identical attack probabilities to a single Link. The procedure ends when all
the Links have distinct attack probabilities. By Lemma1, for every j ∈ [1, q], the
Link having attack probability aij has capacity cij (resp. dispatch probability
dij ) defined as the sum of the capacities (resp. of the dispatch probabilities) of all
the original Links with identical attack probability. By Lemma1 and Theorem 1
they satisfy the same PCTL� formulae. ��
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7 Case Studies

We analyse here two typical scenarios of real-world implementations of dispersal
cloud storage systems: (a) the user is connected to a wireless LAN, and (b) the
user is connected to two LANs, one wired and one wireless (combined scenario).

In our experiments we choose the number of slices n to range between 10
and 100, and the number of read events n reads between 1 and 31. As explained
in Sect. 4, the probability of an attack in the wireless network depends on the
distance of the attacker from the user. Here we set such a distance to 20 m
which, according to Fig. 2, corresponds to a probability of intercepting a slice
of 0.009 (resp. 0.148) for a network operating at 54 Mbps (resp. 48 Mbps). The
successful attack probability of the wired LAN is instead assumed to be zero.
Consequently, we can apply the small model theorem discussed in Sect. 6.3, and
reduce the actual number m of Links in the model checked system to a fixed
value, i.e. the number of different intercept probabilities in the system. Thus, m
equals the number of considered LANs. Finally, in the presented case studies we
consider a threshold k = 0.7 · n and for the combined scenario that slices are
routed more likely to the wired LAN (75%) than to the wireless LAN (25%).

To assess confidentiality in both scenarios we used SecMC1, an open-source
modular tool allowing to define model checking workflows. The tool repeatedly
invokes the PRISM model checker [18]. Each invocation instantiates a parametric
MDP and returns the probability of a successful attack (as defined by the security
metric (1)). Figure 6 plots the obtained results. In it, each line corresponds to
a given number of slices used to split the message, and every line relates the
likelihood of a successful attack to the number of read attempts by the client.

Our analysis reveals that while the considered cloud dispersal protocols pro-
tect against untrusted storage nodes, they do not ensure a high level of confi-
dentiality against an eavesdropper in the same wireless LAN of the user, in the
case that some storage nodes do not use end-to-end cryptography, or the imple-
mentation of the latter is broken. Fixing the same parameters n and n reads,
the measure of confidentiality may be several orders of magnitude bigger in the
case of 54 Mbps networks w.r.t. 48 Mbps. But, especially in the wireless sce-
nario, the probability of an attack grows too fast with the number of file reads.
Furthermore, in networks with 48 Mbps rate or lower, even using 100 or more
slices, it is enough to force the user to read the file 6 or more times to reach a
probability of reconstructing the file close to 100%.

The methodology can assess security metrics while designing cloud dispersal
algorithms. Assume the designer fixes this reference scenario: 54 Mbps wireless
LAN, an eavesdropper 20 m far from the user. Let assume that the probability
of an attack should be bounded by 10−21. This provided, the methodology sug-
gests to limit the number of reads before overwriting and redistributing the file
between 11 and 15 (resp. between 26 and 30) in case of 51 slices (resp. 91 slices).

The methodology proved to be quite feasible: the presented case studies
were run on a machine Intel Xeon E5520 2.27 Ghz Quad-core 48 GB RAM and

1 https://bitbucket.org/fcloseunivpm/secmc.

https://bitbucket.org/fcloseunivpm/secmc
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Fig. 6. Probabilities of a successful attack to confidentiality

required 52 h for the two wireless scenarios, and 151 h for the two combined
scenarios. Let us remark that the tool can certainly be improved to take advan-
tage of multi-core architectures, since every invocation of the model checker is
independent from the others.

8 Conclusions

We have introduced a novel formal probabilistic model to verify security proper-
ties of online storage clouds based on data dispersal algorithms. In our model we
have considered a client that can read and write in the storage nodes and a pas-
sive intruder that can steal individual slices from heterogeneous communication
channels without compromising the storage nodes.

From a theoretical point of view, we also provided a novel abstraction tech-
nique enabling us to use a relatively small probabilistic model with a fixed num-
ber of communication channels and storage nodes while the assessed security
metric scale to any arbitrary number of storage nodes.

Our methodology can be applied to (1) formally specify a custom security
metric for the system under consideration, and (2) certify at design time the
parameter assignments ensuring a given level of security, i.e., for which the com-
puted likelihood of a successful attack is below a given threshold value.
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Abstract. Diagnosis consists in deciding from a partial observation of
a system whether a fault has occurred. A system is diagnosable if there
exists a mechanism (a diagnoser) that accurately detects faults a finite
number of steps after their occurrence. In a regular setting, a diagnoser
builds an estimation of possible states of the system after an observa-
tion to decide if a fault has occurred. This paper addresses diagnos-
ability (deciding whether a system is diagnosable) and its cost for safe
Petri nets. We define an energy-like cost model for Petri nets: transitions
can consume or restore energy of the system. We then give a partial
order representation for state estimation, and extend the cost model and
the capacities of diagnosers. Diagnosers are allowed to use additional
energy to refine their estimations. In this setting, diagnosability is an
energy game, and checking diagnosability under energy constraints is in
2-EXPTIME.

1 Introduction

This paper addresses diagnosability of partially observable systems with disam-
biguation mechanisms, under energy constraints. We consider systems that can
consume and produce energy, and which energy consumption can be modeled
as weights attached to actions. In the standard diagnosis setting [17], faults are
occurrences of particular faulty events (complex fault patterns have also been
proposed in [14]). Systems under diagnosis are equipped with sensors (software
probes or physical equipments) that can signal some state changes or occurrences
of some actions, yielding partial observation of the system. The objective of diag-
nosis is to build monitors that receive observations from sensors and raise alarms
when a fault occurrence is certain. Cost of diagnosis has mainly been defined
as the cost needed to exploit sensors [5,18] in order to guarantee diagnosability.
However, real life systems need not be passive: when a fault is suspected, a mon-
itor can perform tests (read the status of a variable, use a calculator) to leverage
ambiguity. It is hence natural to consider active diagnosis, where monitors can
perform additional costly actions to get information. The question in this active
setting is then whether a non-diagnosable system is diagnosable with the help
of additional tests, while satisfying energy constraints.

The model used in this paper is finite safe Petri nets, with observable and
unobservable transitions, equipped with a cost model. The system starts with
an initial energy provision, and actions produce or consume energy. Optional
c© Springer International Publishing AG 2017
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energy consuming tests can be used to reduce ambiguity on the current state
of the system. Faults are a subset of transitions of the net, and they are con-
sidered permanent: once a faulty transition has been fired, the system remains
faulty. Observations are sequences of observable events. As we are working with
safe Petri nets, diagnosis can obviously be recast in a labeled transition sys-
tem setting. However, using Petri nets provides a compact way to represent the
state estimate that a diagnoser can build after an observation. We use observa-
tion guided unfolding to find processes that may have produced an observation.
Upon sensible restrictions, unfolding always terminates. One can also maintain
finite state estimates along arbitrary long observations. We then define when a
diagnosis can be produced by looking at properties of its processes. The exact
current state of a system is not always precisely known, as several processes
can correspond to the same observation. Additional ambiguity comes from the
fact that diagnosers do not observe what has effectively occurred since the last
observable event. Even with uncertainty on current state of a system, faults can
be detected: a fault has occurred with certainty iff all processes of its observa-
tion guided unfolding contain a fault. No fault has occurred if all processes of
the unfolding are fault free. If the unfolding contains both kind of processes,
then it is said ambiguous. With this structure, a system is diagnosable iff it can-
not remain ambiguous for an arbitrary long time. Diagnosability of a net is a
PSPACE-complete problem.

A natural question is whether increasing the power of diagnosers can make
a system diagnosable. This setting is useful when a system is built from pro-
prietary components that can not be modified, and one has to rely on every
possible observation to detect faults. We define disambiguation functions, that
bring additional information on the current state of the observed system, and
can be used to reduce the set of possible states the system can be in. The disam-
biguation functions proposed in this work are simple: they provide information
on the contents of a place (this models access to boolean variables), but disam-
biguation is not limited to this simple setting. We assume that tests cost energy,
and hence have to be used parsimoniously. The cost of disambiguation can be
easily integrated in the original cost model by assigning a negative weight to each
test. This situation can occur in automotive systems, where one cannot modify a
component to avoid ambiguity, and where power management is a concern. For
instance, in some ABS systems, a warning sign alights when the ABS is not oper-
ational. This can be caused by dirty sensors, hydraulic problems, or if the battery
level is too low to initialize the ABS calculator (which consumes a lot of power).
The latter case is a minor problem that is solved when the engine is started, but
if the battery level is really low, launching tests to know the exact status of the
ABS can exhaust the battery and prevent starting the car. Our active diagnosis
setting is the following: immediately after an observation, diagnosers are allowed
to use one disambiguation function to refine their state estimate. In addition,
use of tests must not exhaust the system’s energy. Diagnosability can hence be
redefined as the possibility to make a system diagnosable with the help of tests
without exhausting its energy. This question can be answered in terms of energy
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games with partial information. We build an arena that represents the behavior
of the diagnosed system, the possible sets of state estimates that a diagnoser
might build, and the remaining energy. Diagnosability with disambiguation and
an upper bounded energy budget (ULWUB diagnosability) is equivalent to a
partial observation co-Büchi game [7] between a system and a diagnoser: a sys-
tem with energy constraints is not diagnosable iff it can impose arbitrary long
ambiguity or energy exhaustion. As a consequence, ULWUB diagnosability is in
2-EXPTIME. Testing whether disambiguation can make a system diagnosable
without energy consideration is already in 2-EXPTIME.

This paper is organized as follows: Sect. 2 introduces the main notations of the
paper, and costs. Section 3 defines a partial order setting for diagnosis. Section 4
defines disambiguation, and shows that diagnosability with disambiguation is
in 2-EXPTIME, and that diagnosability with costly disambiguation and energy
constraints is also in 2-EXPTIME, before conclusion. Due to lack of space, proofs
are only sketched, and provided in a research report [13].

2 Models and Definition of the Diagnosis Problem

Definition 1. A Petri net is a tuple N = (P, T,•(), ()•, λ,m0), where P is a
set of places, T is a set of transitions, •() : T → 2P is a preset relation, and
()• : T → 2P is a postset relation, and λ : T →Σ associates labels to transitions.

A marking of net N is a function M : P → N. We only consider finite and
safe Petri nets, i.e. such that for every reachable marking M and for every place
p ∈ P , M(p) ≤ 1. Hence, markings can be seen as subsets of marked places,
and we write M ⊆ X when the set of marked places in M is contained in
X. The size of N is simply |P |. We partition alphabet Σ into observable and
unobservable actions, i.e. Σ = Σo � Σuo. A transition t ∈ T is observable iff
λ(t) ∈ Σo, and unobservable otherwise. Intuitively, only a part of the events that
occur during a run of the system is monitored and logged. This assumption is
sensible: some parts of a system usually have to be considered as black boxes,
and remain unobserved. This partial observation setting can also be a design
choice to maintain logs of reasonable sizes, use a small number of sensors,... We
also consider a subset Σf ⊆ Σuo of faulty actions, and say that t ∈ T is faulty
iff λ(t) ∈ Σf .
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Fig. 1. A Petri net (left) and the associated LTS (right). Circles are places, marked
places contain a token. Black rectangles are observable transitions and grey ones unob-
servable transitions. Σ = {a, b, f, u}, Σo = {a, b}, Σf = {f}.
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Petri nets have an interleaved semantics, defined as follows: a transition t ∈ T
is enabled (denoted by M [t〉) from marking M ⊆ P iff •t ⊆ M . Firing t from
M results in a marking M ′ = (M \ •t) � t•. This is denoted M [t〉M ′. We also
write M

t−→ M ′ when M [t〉M ′, and M
∗−→ M ′ when there exists a sequence of

transitions M [t1.t2...tn〉M ′. A run of N is a sequence ρ = m0
t1−→ M1 . . . Mn.

The set of reachable configurations from marking m0 is the set Reach(N ,m0)=
{M | m0

∗−→ M}. The labeling of a run ρ = m0
t1−→ M1 . . . Mn is the word

wρ = λ(t1).λ(t2) . . . λ(tn), and its observation is the word ΠΣo
(wρ), where ΠΣo

(.)
is the usual projection erasing all letters of Σ \ Σo. We denote by |ρ|Σo

the size
of ΠΣo

(wρ). We write M
a=⇒ M ′ iff there exists a run ρ from M to M ′ and

ΠΣo
(wρ) = a. Obviously, a net N defines a finite labeled transition system

LTSN = (Q = Reach(N ,m0), T, δ, q0 = m0), where δ ⊆ Q × T × Q is a
transition relation such that (q, t, q′) ∈ δ iff q

t−→ q′. The size of LTSN is in
O(2|P |).

Definition 2. A k-diagnoser is a mechanism D that accepts observations and
returns a value from {0, 1}, such that:

– for each non-faulty run ρ, D (ΠΣo
(ρ)) = 0, and

– for each faulty run such that at least k observable transitions have occurred
since the first occurrence of a fault, D (ΠΣo

(ρ)) = 1.

We say that a system is k-diagnosable if there exists no run ρ with k observa-
tions after a fault such that the observation of ρ has one faulty explanation and
one non-faulty. A system is diagnosable if it is k-diagnosable for some k ∈ N. A
slightly different definition of diagnosability is proposed by [4]: it says that for
every faulty run ρ, there exists a bound kρ such that a fault is detected at most
kρ steps after it occurs. In a regular setting, both definitions coincide, but in a
non-regular setting (e.g. for unbounded Petri nets) this is not always the case
(as shown in [10]). It is frequently assumed that diagnosers are regular, i.e. one
can compute an automaton that reads observations, and accepts all words such
that D(w) = 1. Upon acceptance, one can claim a fault occurred.

Definition 3. A net is diagnosable if it is k-diagnosable for some k ∈ N.

In a regular setting, a necessary and sufficient condition [17] for diagnosability
is existence of a bound K such that for every faulty run ρ, for every ρ′ = ρ.ρ1
with |ρ1|Σo

≥ K, every run ρ′′ such that ΠΣo
(ρ′)=ΠΣo

(ρ′′) is faulty.

Proposition 1. Deciding whether a Petri net N is diagnosable is PSPACE-
complete. Furthermore, this can be decided in O(22.|P |).

Proof (Sketch). One can search in PSPACE a pair of faulty/non-faulty runs with
equivalent observation, that end on a loop (yielding infinite non-diagnosable exe-
cutions). For the hardness part, one can reduce the problem of emptiness of the
intersection of regular languages to a diagnosability problem. The exponential
bound comes from the quadratic diagnosability decision procedure of [15] for
automata, that can be applied to LTSN . 
�
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We assume that systems follow some energy consumption schemes: perform-
ing some actions consume energy, some others restore energy. The system starts
with a known initial provision B0. We also assume that systems have limited
energy storage capacities (for instances batteries) and hence set an upper bound
Bmax for the amount of energy that can be stored by the system. A first question
to consider is whether the system is properly designed and does not exhaust its
energy provision, i.e. the remaining energy provision when the system does not
use tests is always maintained above 0. For this, we define a cost model, and
check that the system does not a priori consume more energy than it produces.

Definition 4. A cost model for a Petri net N is a map C : T → N that asso-
ciates integers to transitions of T .

Definition 5. Let N be a net, B0 ∈ N be an initial energy budget, Bmax ∈
N be an upper energy bound, and let C be a cost function. The accumulated
weight with initial provision B0 under weak upper bound Bmax along a path
ρ is denoted WB0↓Bmax

(ρ), and is defined inductively as WB0↓Bmax
(ρ) = r|ρ|,

with r0 = B0, ri+1 = min(ri + C(ti+1), Bmax). N satisfies the universal lower-
weak-upper-bound problem (ULWUB) iff, ∀ρ starting from m0 we have 0 ≤
WB0↓Bmax

(ρ) ≤ Bmax.

Informally, the accumulated weight along a run is the initial energy provi-
sion increased or decreased by the cost of each action at every step in ρ, and
bounded at each step by the maximal amount of energy the system can accu-
mulate. If a system is well designed, and abstracting away external energy losses
such as batteries aging, it should be able to run forever without exhausting its
energy budget. This property can be easily verified. It was already shown that
the ULWUB problem is polynomial for weighted automata [3], and consists in
detecting lassos ending with cycles of negative weight. This result applies to
LTSN . Assuming that the upper bound for the energy budget is an integer
smaller than 2|P | we have:

Proposition 2. The ULWUB problem is in PSPACE.

Proof (Sketch). We can reuse the techniques proposed by [3], i.e. detect paths
of length < 2|P | that end with a negative energy provision, or lassos that end
with a cycle of negative cumulated weight. One does not need to explore paths
of length greater than 2|P |, nor lassos of length 2|P |+1. This nondeterministic
exploration memorizes at most 2 markings of the system and maintains energy
budgets with O(|P |) bits, i.e., it is in PSPACE (w.r.t. the number of places
in N ). 
�

3 Diagnosis with Processes of a Net

The semantics of Petri nets can also be given in a non-interleaved setting with
processes, a partially ordered representation of transitions firings.



On the Cost of Diagnosis with Disambiguation 145

Definition 6. A process of a net N = (P, T,•(), ()•, λN ,m0) is a tuple ε =
(E,B, λ), where E is a set of events, B is a set of conditions, and λ : E → Σ is
a labeling of events. An event is a pair of the form e = (X, t), where X ⊆ B is
a set of conditions needed to execute e, and t a particular transition. Given an
event e = (X, t), we denote by t(e) = t the transition e refers to. To be consistent
with N , we have λ(e) = λN (t(e)). A condition is a pair of the form b = (e, p),
where e ∈ E and p ∈ P is a reference to a place of N . We denote by Place(b)
the place referred to in b.

In processes, events are occurrences of transitions firing, and conditions places
which contents is consumed/produced when firing a transition. Processes define
a partial ordering (antisymmetric, transitive, reflexive relation) among their ele-
ments. We write x ≺ y when x = (e, p) is a condition and y = (X, t) an event
such that x ∈ X, or when x = (X, t) is an event and y a condition of the form
y = (x, p). This way, a process also defines a partial order among its events: we
write e ≤ε e′ when e ≺∗ e′. Given an element x in a process, the set of its prede-
cessors is denoted ↓ x and is the set ↓ x = {y ∈ E ∪ B | y ≺∗ x}. Similarly, the
set of successors of x is denoted ↑ x and is the set ↑ x = {y ∈ E ∪ B | x ≺∗ y}. An
element x is minimal (resp. maximal) in a process iff ↓ x = {x} (resp. ↑ x = {x}).
Minimal and maximal elements in processes are conditions. We denote by min(ε)
the set of minimal places in ε and by max(ε) the set of maximal places in ε.
Processes are conflict-free: for every pair of distinct events e, e′ ∈ E, we have
•e ∩•e′ = ∅. Processes are also join-free: ∀e �= e′ ∈ E, e•∩ e′•= ∅.

Processes have been well studied (see for instance [8]) but for completeness,
we give an inductive construction technique for processes of a net N , starting
from marking m0. We assume a dummy event ⊥, and create a set of conditions
B0 = {(⊥, p) | p ∈ m0}. The initial process is ε0 = (∅, B0, λ0), where λ0 is
the empty map. Then, we iterate the following construction for each process
εi = (Ei, Bi, λi): we compute the set Maxi of maximal conditions in εi. Maxi

corresponds to the state (marking) of the system once all transitions appearing in
process εi have been executed. An occurrence of transition t can be appended to
εi as soon as •t ⊆ Place(Maxi). Intuitively, after executing εi, the places needed
by t to fire are filled. Note that more than one transition can satisfy this condi-
tion. When t can be appended to εi we can define ei+1 = (Maxi ∩ Place−1(•t), t),
the event consuming conditions from Maxi that are instances of places in •t, and
build the process εi+1 = (Ei ∪ ei+1, Bi ∪ {(ei+1, p) | p ∈ t•}, λi ∪ (ei+1 → λ(t))).

A linear extension of a process ε = (E,B, λ) is a sequence of events e1. . . . en

such that n = |E| and for every i < j, ej ⊀
∗ ei. A linearization of ε is a word

w = a1.a2 . . . an such that there exists a linear extension u of ε with λ(u) = w.
Intuitively, linearizations of ε are words that could be logged sequentially during
execution of ε. Processes are a compact way to represent executions of Petri nets.
For every run ρ = m0

t1−→ m1 . . .
tn−→ mn of N , there exists a unique process ερ

obtained by appending successively t1, . . . tn. Considering conditions as places,
and events as transitions, processes are occurrence nets, i.e. an acyclic, join-free
and conflict free type of net. We can hence safely talk about runs of a process
and denote by Confs(ε) ⊆ 2P the configurations that can be reached during
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executions of N represented by ε. Figure 2 shows two processes for the net of
Fig. 1, with Σo = {a, b}, Σuo = {u, f} and Σf = {f}. Conditions are represented
as circles, and events as rectangle. Black rectangles represent occurrences of
observable transitions, and grey rectangles of unobservable ones. The left process
corresponds to an observation a.b, and contains no fault, the right one to an
observation b.a, and contains a fault.

a u u

u b u b f a

Fig. 2. Two processes for the net of Fig. 1.

Definition 7. Let Σ = Σo � Σuo be a finite alphabet, N be a Petri net labeled
by Σ, and w ∈ Σ∗

o be an observation. A process ε of N is an explanation of w iff
ε = ερ for some run ρ = m0

t1−→ m1 . . .
tn−→ mn of N such that ΠΣo

(wρ) = w.

Hence, a process ε is an explanation of an observation w iff w is the projection
of a linearization a1 . . . a|w| of ε on Σo. Note that explanations can contain an
arbitrary number of occurrences of unobservable transitions occurring after or
concurrently with the last observable transition. Our objective is to define mech-
anisms that detect faults from partial observations after a finite number of steps
of the system. Moreover, we want these mechanisms to run with finite memory.
This is not always possible for general Petri nets [4], but for safe Petri nets,
sensible restrictions allow diagnosers to memorize finite suffixes of processes.

Let w ∈ Σ∗
o be the observation of some run of N . We can build inductively

a set Ew of processes that “explain” w as follows. We start from a set E
0
w that

contains process ε0 = (∅, B0, λ0). At each step, starting from a set of processes
E

i
w, one can select a process ε, and append to it either an unobservable transition,

or a transition labeled by the next letter to explain in w. The construction stops
when reaching a set of processes E

n
w that cannot be extended without adding

more observable events than in w.
As w is an observation of N , Ew contains at least one process. Due to con-

currency and choices, several transitions can usually be appended to a process.
Hence the observation guided construction above is non-deterministic. Every
unobservable transition can be appended to ε ∈ E

i
w if it is allowed from con-

figuration Max(ε), and an observable transition can be appended if it carries
the label of the next unexplained action in w. There can be several occurrences
of such transitions in a labeled net. As the set of appendable transitions may
contain conflicting transitions Ew can contain more than one process. Interested
readers can find an algorithm for the construction of Ew in [13].

Addition of an unobservable transition to a process ε ∈ E
i
w is not conditioned

by w. Hence, in general, process construction (w.r.t w) needs not stop. Indeed,
one can append successively an arbitrary number of unobservable transitions,
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and without restriction, the set of explanations Ew for observation w ∈ Σ∗
o may

not be finite. We hence define the following restriction:

Definition 8. A Petri net N =(P, T,•(), ()•, λ) with observable alphabet Σo ⊆ Σ
is boundedly silent iff there exists a bound K ∈ N such that for every marking
M ∈ Reach(N ), there exists no process ε = (E,B) that starts at M and such
that λ(t(E)) ⊆ (Σ \ Σo) and |ε| > K.

Requiring boundedly silent nets is a sensible assumption asking that systems
fire an observable event regularly. A similar notion exists for diagnosis of systems
described with automata: it requires that systems have no unobservable cycle.

Proposition 3. Let N be a boundedly silent Petri net, with bound K, and let
w ∈ Σ∗

o be an observation. Then, Ew is finite, and contains processes built in at
most (|w| + 1).K steps.

Proof (sketch). By induction on the length of w.

In [13], we give an effective procedure Unfold(N , w,m0) that unfolds a
boundedly silent net N starting from m0 to compute Ew. The algorithm pro-
ceeds inductively and returns all explanations of w provided by N . Every process
εi
w in Ew has exactly |w| observable transitions, and every observable transi-

tion of εi
w can be associated a letter of w that it explains. Note however that

processes are “saturated” by appending all unobservable transitions that may
have occurred without generating observations. Hence, some processes built by
our algorithm contain unobservable transitions that are not needed to explain
observation w. We can use the same algorithm to build a set of silent processes
depicting maximal unobservable behaviors, starting from any marking by calling
Unfold(N , ε,M).

If all processes in Ew contain faulty processes, then one can claim without
error that a fault has occurred. Similarly, if all processes in Ew are non-faulty,
then one can claim that the observed behavior is non-faulty. If Ew is composed
of faulty and non-faulty processes, then ambiguity remains on whether a fault
occurred. This is a standard setting in diagnosis. Another frequent assumption in
diagnosis is that systems are stopped immediately after occurrence of an observ-
able action. Our setting slightly differs, as saturating processes means that one
considers executions that have not yet produced an additional observation after
w. Though this does not make a huge difference in decidability or algorithms, this
setting seems more natural, especially in a context where unobserved additional
transitions might be concurrent with the occurrence of the last observable ones.
Let us comment this situation: let ε � ε′ be two explanations of w. Supposing
that ε is the actual behavior of N that led to observation w, then one cannot
decide whether some events in ε′ \ ε have occurred or not. This is a new source
of ambiguity: if ε contains no faulty transition, and ε′ is faulty, then ambiguity
arises from the fact that one cannot yet decide whether this faulty transition
has already occurred or not. Note also that future occurrence of a fault after ε
is not mandatory either, as after ε, N can still execute a non-faulty process ε′′

such that ε � ε′′ instead of ε′.
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u

a u u

Fig. 3. A process for the net of Fig. 1 wrt observation a. The frontier is denoted by
greyed conditions. The summary is the set of events and conditions in the dashed zone.

Building explanations online with observations results in ever growing
processes. However, remembering a whole process is not needed for fault detec-
tion. Indeed, the important information to keep from a process is whether a fault
has occurred, and the maximal conditions after observable events that must have
happened in this process. It suffices to find the possible configurations of a system
after an observation. This information can be memorized as a finite summary:

Definition 9. Let ε = (E,B, λ) be a process explaining w ∈ Σ∗
o . An event e

in ε must have occurred if λ(e) ∈ Σo, or ∃f, e ≤ f and f must have occurred.
We denote by Must(ε) the set of events that must have occurred in ε. The silent
part of ε is the restriction of ε to events in E′ = E\ ↓ Must(ε) and conditions
in •E′ ∪E′•. The execution frontier Frontier(ε) of process ε is the set of minimal
places in the silent part of ε. The summary of ε is denoted Sum(ε), and is the
restriction of ε to ↑ Frontier(ε).

Let us give the intuition behind the notions of frontier and summary of a
process. A frontier is a possible configuration that the system reaches when
executing the smallest possible subset of events containing all observable events
needed to explain w. This does not mean that after observing w the system is nec-
essarily in this state, as unobservable transitions may have occurred concurrently
with the last observable actions of w. Summaries capture parts of executions that
may have occurred. A summary is also a process, starting from Frontier(ε).
Considering processes as standard nets, we can prove that Frontier(ε) is a
marking of ε and hence also that Place(Frontier(ε)) is a marking of N (see [13]
for complete proof). Hence, up to a relabeling of minimal conditions in the
silent summary εS = Sum(ε), we have that εS is equivalent to some process
in Unfold(N , ε, F rontier(ε)). Moreover, remembering silent parts of processes
suffices to describe the set of possible configurations a system might be in after
an observation. Figure 3 illustrates the notions of frontier and summary on a
process of the net given in Fig. 1.

Proposition 4. Let ε be an explanation of observation w ∈ Σ∗
o , and εS be its

summary. Then for every marking M of εS, Place(M) is a marking that is
reachable via a run ρ of N such that λ(ρ) = w.

Proposition 5. Let ε be an explanation of word w ∈ Σ∗
o , and M be its frontier.

Then ε′ � ε is an explanation of w.a ∈ Σ∗
o iff there exists εa ∈ Unfold(N , a,M)

such that ε′ = ε ∪ εa (where union of processes means union component wise).
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When performing diagnosis, the important information to memorize in
processes is whether a fault has occurred, or may have occurred, and the con-
figurations the system might be in after some observation. Note that the set of
summaries obtained by pruning explanations for an observation is always finite.
Note also that Frontier(ε) is the minimal set of places in εS = Sum(ε). In
the rest of the paper, we will write εS

a−→ ε′ if εS is a summary with frontier
M , and ε′ ∈ Unfold(N , a,M) (one can execute observable action a from some
configuration in the state estimation contained in εS and obtain a process ε′.
Note that ε′ is not a summary, but can be projected to obtain ε′

S = Sum(ε′).
Note also that in general ε′ �� ε, as the execution chosen from M may differ from
the possible execution depicted by εS . The common part between εS and ε′

S is
εS ∩ ε′, and the part of ε′ that does not appear in εS is denoted ε′ \ εS .

A possible state after an observation w ∈ Σ∗
o is a pair (V, εS) where εS is

a summary of some explanation ε of w, and V is a tag from {F,N,A} called
a verdict. Tag F stands for faulty, N stands for non-faulty, and A stands for
ambiguous. Tags are set as follows:

– V = N iff λ(ε) ∩ Σf = ∅: no fault have occurred in ε (even if occurrence of
some events in εS is uncertain, none of them is faulty),

– V = F iff λ(ε \ εS) ∩ Σf �= ∅: a fault occurred before any of the uncertain
events,

– V = A iff λ(ε \ εS) ∩ Σf = ∅ and λ(εS) ∩ Σf �= ∅: one event in ε is a fault in
the uncertain part of ε. There is no guarantee that this event was executed.

A state estimate after w ∈ Σ∗
o is a set of possible states SE = {(Vi, ε

i
S)}. State

estimate SE is said faulty if all possible states in SE carry tag F , and normal
if all verdicts in SE are N . Last, it is said ambiguous if at least one verdict
Vi is equal to A, or there exists two contradictory verdicts Vi = F and Vj =
N . So, ambiguity appears both when different verdicts originate from different
explanations, and when a possible state contains a faulty event which execution
is uncertain. As for summaries, state estimates can be maintained online with
observations. Let SE = {(V1, ε

1
S), . . . (Vk, εk

S)} be the state estimate obtained
after observation w, and let a ∈ Σo. The update of SE after observation a ∈ Σo

is the set SE′ = {(V ′
1 , ε1

′
S ), . . . (V ′

1 , εk′
S )} such that for every (V ′

i , εi′
S) of SE′ there

exists a possible state (Vi, ε
i
S) in SE such that εi

S
a−→ εa, εi′

S = Sum(εa) and:

– Vi = F implies V ′
i = F ,

– Vi ∈ {N,A} and λ(εa) ∩ Σf = ∅ implies V ′
i = N ,

– Vi ∈ {N,A} and λ(εa \ εi′
S) ∩ Σf �= ∅ implies V ′

i = F ,
– Vi ∈ {N,A} and λ(εa \ εi′

S) ∩ Σf = ∅ and λ(εi′
S) ∩ Σf �= ∅ implies V ′

i = A.

We write SE
a−→ SE′ when SE′ is the state estimate obtained from SE

after observation a. One can notice that if ε is an explanation for w, with a
frontier F and a summary εS , then as εS is the part of ε obtained by satura-
tion with unobservable transitions, any process of the form ε \ εS ∪ ε′

S replacing
εS by an unobservable summary ε′

S ∈ Unfold(N , ε, F ) is also an explanation
of w. Hence, state estimates should contain all processes that differ only via
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their summaries, which allows a compact representation (CSE) for state esti-
mates. Let SE = {(Vi, ε

i
S)}. SE can be represented as sets of pairs of the form

CSE = {(Vi,Mi)} where each Mi is the set of places in a frontier Fi appearing
in some summary of SE, and Vi is a verdict attached to some summary with
frontier Fi. Obviously, one can recover a state estimate from a compact repre-
sentation that is isomorphic to the original estimate (isomorphism is obtained
by relabeling minimal conditions) and diagnosis can safely resume from each Mi

for any extension of w, as shown in Proposition 5. A diagnoser that maintains
state estimates can claim that an observation corresponds to a faulty (resp.
non-faulty) behavior iff all verdicts are set to F (resp. N). A transition rela-
tion CSE

a−→ CSE′ among CSEs can be designed identically to the transition
relation among state estimates.

Proposition 6. Given a safe boundedly silent Petri net N , there exists only
a finite number (in O(23.2|P |

)) of compact representations of state estimates
reachable after an observation of an execution of N .

A diagnoser automaton for a safe boundedly silent net N is an automaton
DN = (SDN ,→DN , FDN ) such that SDN is the set of reachable compact state
estimates for N , →DN ⊆ SDN ×Σo ×SDN is the transition relation among CSEs.
DN is deterministic and of size in O(22

|P |
). It reads observable labels appearing

during executions of N , and raises an alarm when the reached state estimate is
faulty. Note that DN needs not be built a priori to perform diagnosis: one can
maintain a single state estimate online, which is updated at each occurrence of
a new observation, with a memory in O(2|P |). Building this doubly exponential
DN is not needed either to check diagnosability (Propostion 1). However, we
show in Sect. 4 that states of DN are needed to address disambiguation with
costs.

4 Disambiguation Under Budget Constraints

The main reason for non-diagnosability is unbounded ambiguity about the actual
run executed by a system. However, in safety critical systems, long uncertainty
about major failures is not acceptable. If the actual status of a system is not
known and a major failure is suspected, then safety checks must be performed,
even if this implies consuming more energy. We model these additional checks
as follows: after each observed action, diagnosers have the possibility to perform
one test to reduce ambiguity on the actual status of the system. For safe Petri
nets, where places can be seen as boolean variables, it seems natural to model
tests as mechanisms that provide information on the possible status of places.
We first consider whether disambiguation suffices to avoid ambiguity, and then
whether it can be performed without exhausting the system’s resources.
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Definition 10. A disambiguation function is a partial map d : 2P → 22
P

that,
given an actual marking, returns a set of possible markings of the system.

Disambiguation functions return a set of markings that correspond to a par-
tial observation of an actual (unknown) marking. The knowledge returned by
the disambiguation map is not necessarily a state estimation that a diagnoser
might have built. So, in general, disambiguation functions provide additional
information, that can be used to make a system diagnosable. A first example is
map id, that takes a marking M as argument, and returns set {M}. Another
example is the map dp that associates to every marking M all configurations
where p ∈ P is marked if M(p) = 1 and all configurations where p is not marked
otherwise. Such a function can be used to inform users on the status of a boolean
variable. The result returned by a disambiguation function is not only related to
the contents of a place and can encode a constraint on possible markings (e.g.
M(p1) = 0 ⇒ M(p2) = 1). In the sequel, we will assume that systems are pro-
vided with a finite set Dis = {d1, . . . , dn} of (costly) disambiguation functions,
and that a diagnoser uses at most one of them after every observation.

Let εS be a summary, and let d be a disambiguation function. We say that
εS is compatible with d in marking M if at least one configuration of εS is made
of places that belongs to d(M). Let εS be a summary, d be a disambiguation
function, and M be a marking such that εS is compatible with d in M . Then,
getting information using disambiguation provided by function d can help users
refine their estimation of the state of the system. The refinement of εS by d(M)
is denoted by εS\d(M), and is the projection of εS on successors of configurations
of εS that are compatible with information provided by d(M). It is computed
as follows: εS\d(M) = (Ed, Bd, λd) where Ed = E∩ ↑ Cond(εS , d,M), Bd =
B∩ ↑ Cond(εS , d,M), with Cond(εS , d,M) = {b ∈ B | ∃C ∈ Conf(εS), b ∈
C ∧ Place(C) ∈ d(M)}, and λd is the restriction of λ to Ed.

Of course, when a system is diagnosable, one does not need disambiguation
mechanisms to perform diagnosis. However, if a system is not diagnosable, the
questions of diagnosability with the help of tests makes sense. Recall that diagno-
sis can only be performed after some observation. If ambiguity remains after an
observation, then one can perform a test from Dis, or wait for a better moment
to reduce ambiguity. This situation is well captured as a strategy.

Definition 11. A strategy is a function σ : Σ∗
o → Dis∪{d⊥} that indicates, for

every observation w whether a disambiguation from Dis should occur (σ(w) ∈
Dis) or if no disambiguation shall be applied (σ(w) = d⊥).

The set of processes compatible with w and pruned by strategy σ is the set
of processes built inductively as follows: we first set E

0
w,σ = {Unfold(m0, ε,N )}

Then, we compute E
i+1
w,σ from E

i
w,σ as follows: we use disambiguation d =

σ(w[1..i+1]) prescribed by σ. Then, for every process εS ∈ E
i
w,σ, every ε′ ∈

Unfold(εS , wi,N ) if there exists M ∈ Confs(sum(ε′)) such that sum(ε′) is
compatible with d(M) we add ε′ to E

i+1
w,σ. As the application of disambiguation

only restricts the set of processes, the notions of summaries, possible states, state
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estimates and their compact representations (see Definition 9) can be used. One
can maintain finite sets of state estimates that are compatible with w and pruned
by a strategy σ. Similarly, as disambiguation applies after a new observation, a
finite set of representations of possible states reached by a net N together with a
verdict can be maintained online with occurrences observable actions with finite
memory. Diagnosability with disambiguation can now be formalized:

Given a Petri net N and a set of disambiguation functions Dis =
{d1, . . . , dn}, is there a strategy σ and a constant K ∈ N such that for every
faulty run ρ of N , and every run ρ′ = ρ.ρ1 such that |ρ′

1|Σo
> K every process

in E
|w|
w,σ (i.e. with w = ΠΣo

(ρ′) and pruned by strategy σ) is faulty?

Theorem 1. Given a Petri net N and a set of disambiguation functions Dis,
one can decide in 2-EXPTIME whether N is diagnosable with the help of Dis.

Proof (Sketch). We can define diagnosis with disambiguation as a partial infor-
mation co-Büchi game. A two players co-Büchi game with a winning condition
C is won by player 0 iff it has strategy such that only states in C are visited
infinitely often. We first build an arena which nodes contain: the actual marking
of the net, the fault status ({N,F}) of the system, and state estimates. The
game is turn-based. Nodes of this arena are either nodes of the diagnoser (player
1), or nodes of the system (player 0). From its node, a diagnoser can choose
one disambiguation function to refine its state estimation. From its nodes, the
system can choose any sequence of action containing a single observation, and
hence move to another node of the diagnoser. The partial information in the
game comes from the fact that the real state of the system is not known. In
this game, the system wins if status of faults can remain ambiguous forever, i.e.
it can produce a fault, and force the game to remain in nodes with ambiguous
state estimates. The complexity comes from the doubly exponential size of the
arena. 
�

The translation to a partial information co-Büchi game is interesting for rea-
sons to go beyond the simple complexity characterization. A partial information
co-Büchi game on an arena G can be translated to a perfect information par-
ity game over an arena GK that represents knowledge of players, and as parity
games are positional [11], it means that bounded memory strategies are suffi-
cient to make a system diagnosable with disambiguation. Usually, an additional
exponential cost has to be paid to solve partial information games [6]. However,
state estimates already contain knowledge of players. An additional exponential
blowup needs not be paid, and solving the game is “only” doubly exponential.
At first sight, diagnosis with disambiguation looks close to the diagnosis with
adaptive observable alphabet proposed by [5], and to the active diagnosis (see
for instance [12]) where some transitions can be disabled to make a system diag-
nosable. Adaptive observations and disambiguation are orthogonal techniques,
and our framework differs from active diagnosis as it does not modify the overall
behavior of the monitored system. We discuss these issues in conclusion.

Information on the current state of a system can be obtained by running
some tests, activating sensors, checking for the status of some component, etc.
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Such operations usually have a cost, for instance in terms of time or energy.
Fortunately, knowing precisely at every instant the current state of a system is
not needed to make it diagnosable. So, one does not have to perform the most
expensive tests at every step to ensure diagnosability. In the rest of the paper, we
assume that tests follow our energy consumption scheme, and consume energy.
We hence extend the cost function to consider the cost of tests. From now, we
will consider that a cost functions is a map C : T ∪ Dis → N that associates
integers to transitions of T and negative integers to elements of Dis. As tests
cost energy, they cannot be used systematically to disambiguate systems states.
The next question to consider is whether one can use tests to disambiguate state
estimates of a system without exhausting its energy.

The ULWUB diagnosability question is defined as follows: Given a non-
diagnosable Petri net N , Dis, C, B0 and Bmax, is there a strategy that makes N
diagnosable while maintaining the energy provision above 0 ? We assume that a
diagnoser does not know precisely the remaining energy provision of the system.
This assumption seems realistic to model examples such as the car ABS given in
introduction. It can however be relaxed, in which case information on remaining
energy can help reducing ambiguity. Hence, a diagnoser uses only its belief, i.e.,
its estimation of the possible state of the system and bounds for the remaining
energy. A diagnoser should take the same disambiguation decision for all states
with the same belief. In the rest of the paper, we show that this question can be
answered as an energy game, that can again be solved as a particular instance of
co-Büchi game. In a setting where tests have a cost, one may have to wait before
launching a test that could exhaust the energy budget of the system. Again, the
right moment to perform a test can be defined as a strategy.

Theorem 2. The ULWUB diagnosability is decidable in 2-EXPTIME.

Proof (sketch). We build an arena where nodes are nodes of the system, or nodes
of the diagnoser. As for disambiguation without budget constraints, the diagoser
can choose a test to disambiguate its state estimates. Nodes contain the current
state of the system, its fault status, the remaining energy provision. They also
contain state estimates, and for each summary in state estimates, an upper
and lower bound for remaining energy. In system nodes, the system can play
any sequence of actions with a single observable event. The current state, fault
status, and budget are adapted accordingly. The state and budget estimate are
also changed according to the possible executions and their costs. If remaining
energy is known, then it is represented in nodes as a single rational value, and is
used to reduce ambiguity on state estimates. From diagnoser nodes, the diagnoser
can choose a particular disambiguation function to refine its state estimate,
which decreases the actual energy budget and the upper/lower estimations by
the cost of this test. The diagnoser can also choose to avoid tests, and give
its turn to the system without refining its state estimate. If either the system
or the diagnoser exhaust the energy budget of the system, the game reaches a
particular exhaustion sink node that cannot be left. Then, in this arena, the
diagnoser cannot disambiguate faults with energy constraints iff the system has
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a strategy to remain in ambiguous or exhaustion nodes forever. This is again
a partial knowledge co-Büchi game over a doubly exponential size arena. As
for disambiguation, building the knowledge of players in our arena amounts to
building copies of state and budget estimates. Hence, an additional exponential
blowup needs not be paid, and solving the game is doubly exponential. 
�

5 Conclusion

This work is not the first one addressing diagnosis with Petri nets (see the survey
in [16]). An offline algorithm to build all explanations for an observation using
Petri net unfoldings is proposed in [9]. Fault detection is a simpler problem than
explanation reconstruction, that can be addressed online, as a part of each pos-
sible run can be forgotten when observations grow. A diagnosis framework for
general Petri nets is proposed in [1]. The authors exhibit examples of unbounded
Petri nets that are diagnosable, i.e., in which every fault can be detected within
a finite number of steps even if no general upper bound on the number of obser-
vations needed before detection exists. In this setting, diagnosers are no longer
regular. [10] represents systems as general Petri nets, and diagnosers as Petri nets
too, but do not address diagnosability. Diagnoser nets maintain sets of extended
markings, i.e. reachable markings augmented with finite vectors of fault status.
Extended markings are close to our state estimates, and their construction is
close to observation guided unfolding. However, the approach of [10] systemati-
cally enumerates all possible markings.

Our framework can be seen as active diagnosis, as diagnosers can perform
tests. In active diagnosis, diagnosers guide the observed system. They play the
role of a controller that prevents actions to avoid ambiguity in otherwise non-
diagnosable systems. The active diagnosability problem then consists in deciding
whether such a controller exists. It is EXPTIME-complete for automata [12].
In [2], active diagnosis is recast in a probabilistic setting. The main objective is
then to ensure safe active diagnosability, i.e. show existence of controller that
guarantees diagnosability while ensuring that non-faulty runs still have a strictly
positive probability. Active probabilistic diagnosability is EXPTIME-complete,
but safe active diagnosis is undecidable. Active diagnosis and disambiguation are
orthognal techniques. Active diagnosis forbids some controllable transitions to
recover diagnosability, which changes the behavior of the system. Disambiguation
brings additional information to diagnosers, but does not change the behavior of
the disambiguated system: for every run ρ of the arena over actions in Σ � Dis,
ΠΣ(ρ) is a run of the original net N . The dynamic masks of [5] are also a
form of active diagnosis. In this setting, the observable alphabet can be changed
dynamically to ensure diagnosability. Dynamic masks and disambiguation are
also uncomparable, as we do not change the set of observable actions but rather
introduce new actions to refine state estimation.

Cost of diagnosis was considered in [5,18]. In [18], a cost is computed for each
state of a finite transition system. It represents the effort needed to diagnose a
fault. Non-diagnosable systems have diverging costs, and a system is diagnosable
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if one can associate a finite cost to each state. The cost model considered assigns
a weight to each observable action, and the cost associated to a state is a sum
of discounted costs of observations for runs leaving this state with a particular
dynamic observation strategy (that may change the observable alphabet after
each observation). Similarly, [5] defines the cost of diagnosis in terms of weights
attached to sets of observable actions. The diagnosers and observers considered
are dynamic: the set of observed actions may change depending on the obser-
vation. Cost of diagnosis is then the maximal mean cost needed to perform the
observations required by the diagnoser. [5] show that checking existence of a
k-diagnoser with an optimal cost can be solved in O(|Σ|×m× 2n2 × 2k × 22

|Σ|
),

where n is the number of states and m the number of transitions in the con-
sidered automaton. Our framework for diagnosis with costs can be seen as a
quantitative game, as defined in [3]. However, in addition to quantitative con-
siderations, in diagnosis players have to meet/prevent ω-regular objectives. We
believe that the setting proposed in this paper easily adapts to most of the cost
constraints appearing in [3], such as strict upper and lower bounds on energy
level.

Using pieces of processes is a compact way to represent possible states of
a system. Summaries can be computed efficiently with unfolding techniques
(see [13] for details). However, in the worst cases, one may still need to enu-
merate all possible markings of a net. We believe that in practice this situation
does not occur for systems with concurrency, but this has to be demonstrated on
case studies, to measure the efficiency gain when working with a Petri net N and
its unfolding rather than directly from its LTS LTSN . In a similar way, in our
approach processes and summaries are partial order models, but observations are
linearizations. An immediate question is whether our setting can be extended
to a fully concurrent one where observations are partial orders too. The natural
notion of explanation is when an observed order O embeds into the ordering on
events depicted in a process ε of N . However, in this setting, diagnosers may
not work with finite memory. A possible extension of this work is then to find
sensible restrictions on nets that allow diagnosers that only need to memorize
summaries of processes and observations of bounded sizes.

Diagnosability with disambiguation and with ULWUB constraints are solved
as partial information co-Büchi games in 2-EXPTIME. As for active diagno-
sis [2,12] partial observation leads to an exponential blowup that does not have
to be paid twice when solving games. A future work is to find lower bounds.
We also plan to consider the impact of several hypotheses of this work on the
complexity of ULWUB diagnosability. For instance, if the diagnoser has access
to the remaining energy of the system, exhaustion state is not needed, and one
does not have to maintain energy estimation. This should not change the com-
plexity of the ULWUB diagnosability game, but at least reduces the size of the
arena.
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Abstract. A cloud provider hosts virtual machines of different types,
with different resource requirements. There are bounds on the total
amounts of each kind of resource that are available. Requests arrive in
batches of different sizes, and are accepted if all the VMs in the batch can
be accommodated; otherwise the request is blocked, with an associated
loss of revenue. The trade-offs between costs and benefits are evaluated
by means of an appropriate model, for which a novel solution is proposed.
The applicability of that solution is extended, by means of a simplifica-
tion, to very large-scale systems. Numerical examples and comparisons
with simulations are presented.

1 Introduction

A cloud provider may offer services of different types, with different patterns
of demand, resource requirements and charges. A job of a given type is run by
instantiating an appropriate Virtual Machine (VM), provided that the resources
it requires are available. There are bounds on the total amounts of different
resources, so that whether a VM can be instantiated or not, depends both on
the type of the new job and on the numbers and types of the other jobs already
running.

We are concerned with systems where user demands arrive in batches whose
sizes may be fixed or random, and may depend on type. Moreover, the nature
of the applications is such that users are not interested in partial acceptance:
either all VMs in a batch must be instantiated, or none. This is known as the
complete blocking policy, in contrast to the partial blocking policy whereby a part
of a batch may be accepted and the rest rejected.

There are many applications which require a batch of VMs in order to com-
plete a certain task within a certain period of time. These are often concerned
with the analysis of large volumes of data, such as those arising in the fields of
sociology, biology or high energy physics. In particular, the ‘MapReduce’ frame-
work (e.g., see [3]), allowing the deployment of batches of VMs, is widely used.

The trade-offs in this context are between the costs incurred by providing
resources, and the revenues obtained by running jobs. The problem is to decide
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what amounts of the various resources to provide, so as to maximize the aver-
age long-term profit (revenues minus costs) per unit time, or to achieve certain
quality-of-service objectives. To that end, we analyze and solve an Erlang-type
loss model with multi-class batch arrivals and complete blocking.

We assume that the demand parameters are given, and the system reaches
steady state during a period where those parameters remain fixed. In practice,
the resource provisioning policies would have to be supplemented by some mon-
itoring and parameter estimation technique that would detect when the traffic
parameters change. Such techniques exist (see below). It is also worth pointing
out that batch arrivals can, and have been, used to model bursty arrival streams.

The model that is addressed here has been considered before, but has not
been solved. In their 1995 paper [2], Choudhury, Cheung and Whitt claimed to
provide a product-form solution for both the partial blocking and the complete
blocking policies. That solution agreed with the results obtained by Kaufman and
Regge [9], for general distribution of batch sizes, and by van Doorn and Planken
[4], for geometrically distributed batches. However, both of those papers had
analyzed only the partial blocking case.

We agree that a product-form solution holds in systems with partial blocking
of batches, but will show that it does not hold in the case of complete blocking.
Therefore, that problem is still open. The purpose of the present paper is to fill
some of the gap by proposing and evaluating an accurate approximate solution
based on fixed-point iterations.

The rest of the existing literature on multi-class resource sharing deals mainly
with demands arriving one at a time in Poisson streams (i.e., no batches).
Much of the work is in the context of circuit-switched networks, e.g., Kelly [10],
Hampshire et al. [7], Kaufman [8], Roberts [14] and Ross [15]. In the telephony
field, the resources are the circuits available on various links, and the job types
are indexed by the set of links that can be reserved for a call. The optimal allo-
cation of VMs on servers hired from a cloud was explored in Ezhilchelvan and
Mitrani [6], and in Tan et al. [17]. Again, one-at-a-time Poisson arrivals were
assumed.

More distantly related is quite a large body of work on server allocation with
a single job type. Ezhilchelvan and Mitrani [5] showed that dynamic allocation
policies do not bring significant benefits over static ones. The trade-off between
performance and energy consumption was examined by Mazzucco et al. [11,12],
using models and empirical observations. Their focus, and also that of Bod́ık
et al. [1], was on estimating the traffic and reacting to changes in the parameters.

The model, and the profit maximization problem, are described in Sect. 2.
The solution presented by Choudhury et al. is shown to be erroneous in Sect. 3,
while Sect. 4 describes and evaluates the proposed fixed-point approximation.
Section 5 is concerned with very large-scale systems. A simplified version of the
fixed-point approximation is shown to be accurate and numerically stable. Some
conclusions and directions for future work are summarized in Sect. 6.
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2 The Model

The hosting infrastructure provides R different types of resources, such as CPUs,
memory, interconnection bandwidth, etc. The total amount of available resource
of type r is Dr, referred to as the ‘resource capacity’ of type r (r = 1, 2, . . . , R).
Those resources are shared by VMs, or jobs, of T different types. A job of type
j requires an amount dj,r of type r resource (j = 1, 2, . . . , T ; r = 1, 2, . . . , R). In
order to run a job, all its resource requirements must be satisfied. For every j,
at least one of the requirements dj,r is greater than 0, which imposes a limit on
the maximum number, mj , of type j jobs that can run in parallel:

mj = min
r

{⌊
Dr

dj,r

⌋}
, (1)

where �x� is the largest integer less than or equal to x.
Moreover, if Dr is replaced by the type r resource capacity currently avail-

able (determined by the numbers and types of jobs currently running), then (1)
provides a limit on the number of type j jobs that can be admitted at a given
moment.

Requests of type j arrive in an independent Poisson stream with rate λj . Each
such request consists of a batch of jobs, all of type j, whose size has an arbitrary
distribution dependant on j: there are k jobs in the batch with probability qj,k.
If there is at least one job in the batch that cannot be run because at least one
of the resources it requires cannot be provided, then the whole batch is rejected.
That is the complete blocking policy.

The probabilities qj,k can be arbitrary. However, a sensible batch size distri-
bution should be consistent with (1). In other words, there should be a limit,
Kj , on batch sizes of type j, such that Kj ≤ mj . Otherwise, some batches would
be rejected even if there are no other jobs present.

Service times for jobs of type j are assumed to be i.i.d. random variables
distributed exponentially with mean 1/μj (j = 1, 2, . . . , T ). The insensitivity
property of the Erlang model does not hold when jobs arrive in batches (see [8]).

Suppose that each unit of resource of type r costs cr to provide, and each job
of type j that is run brings in a revenue of vj . Denote by αj,k the steady-state
probability that an incoming batch of type j and size k is accepted. Then the
total steady-state average profit, V , that the system generates per unit time,
can be expressed as

V =
T∑

j=1

λj

Kj∑
k=1

qj,kαj,kkvj −
R∑

r=1

crDr. (2)

Clearly, increasing the resource capacities Dr leads to higher revenues, but
also higher costs. The profit optimization problem is to choose Dr so as to
maximize V . One could also consider a Quality-of-Service problem, which is to
find the minimum values of Dr for which the acceptance probabilities αj,k exceed
certain pre-defined targets. In both cases, it is necessary to solve the model in
order to determine αj,k.
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3 An Erroneous Solution

The technique used in Choudhury et al. [2] is to replace an incoming batch of
type j and size k (when qj,k > 0), by a single macro job that goes through a
series of k queues in tandem: in the first queue it uses kdj,r units of type r
resource and is served at rate kμj , regardless of how many other such macro
jobs are present; in the second queue it uses (k − 1)dj,r units of resource and is
served at rate (k − 1)μj ; this goes on until queue k, where it uses dj,r units of
resource and is served at rate μj . After that, the macro job departs.

In this formulation, which is equivalent to the one in terms of batches of
ordinary jobs, the system state is a vector of integers [nj,k,s], specifying the
numbers of macro jobs of type j and size k that are now in queue s of their series
of queues (i.e., they have k + 1 − s ordinary jobs remaining). The authors find
that, for both partial and complete blocking, the probabilities of those vectors
satisfy local balance, and therefore the steady-state distribution has product
form:

π(n) = G
T∏

j=1

Kj∏
k=1

k∏
s=1

(λjqj,k)nj,k,s

((k + 1 − s)μj)nj,k,snj,k,s!
, (3)

where n is the state vector [nj,k,s] and G is a normalization constant.
To demonstrate that this product form does not hold in the case of complete

blocking, we offer the following simple counter-example. Take a system with a
single resource type, a single job type, and a single batch size. The resource
capacity is 4, the resource requirement per job is 1 and the incoming batch size
is 3. The arrival and service rates are both 1.

There are now 3 queues in series, so the system state is a triple (n1, n2, n3).
The feasible states are (0,0,0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)
and (0, 0, 2). The state (0, 2, 0), for instance, is not feasible because if there
was a macro job in queue 2, consuming 2 resource units, then a new macro job
requiring 3 units would not have been admitted.

Consider the two states (0, 0, 1) and (1, 0, 1). If (3) is correct, then
their stationary probabilities are π(0, 0, 1) = G and π(1, 0, 1) = G/3. Hence,
π(0, 0, 1) = 3π(1, 0, 1). On the other hand, the only way of leaving state (1,0,1)
is by a service completion, either at queue 1, at rate 3, or at queue 3, at rate 1.
The total completion rate is 4. The only way of entering state (1, 0, 1) is by an
arrival of a new batch, at rate 1, when the system is in state (0, 0, 1). Therefore,
π(0, 0, 1) = 4π(1, 0, 1). This contradiction demonstrates that the solution (3) is
not correct.

The failure of the product form is due to the fact that, contrary to the
assertion in [2], local balance does not hold in the case of complete blocking. In
the above example, in states (1, 0, 1) and (0, 1, 1), a service completion at queue
3 (leading to states (1, 0, 0) and (0, 1, 0) respectively), cannot be balanced by an
arrival because in either case the new batch would be rejected. For that reason,
although in principle there might exist a different, as yet undiscovered product
form, we believe that this is very unlikely.
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In the absence of a tractable exact solution, we now turn to the task of finding
an accurate approximation.

4 A Fixed-Point Approximation

We propose treating each job type as if it was an isolated, one-dimensional
Markov process taking place within a static environment determined by the
other job types. More precisely, when considering jobs of type j, assume that all
jobs of other types in the system are consuming a fixed total amount, Zj,r, of type
r resource (r = 1, 2, . . . , R). In other words, type j operates in an environment
where the available resource of type r is Dr −Zj,r. Hence, the maximum number
of type j jobs that can be admitted, mj , is given by (1), with Dr replaced by
Dr − Zj,r.

Under the above assumption, the type j Markov process evolves on the state
space {0, 1, . . . ,mj}. Let πj(n) be the stationary probability of state n, i.e., the
probability that there are n type j jobs present. We can write a set of recurrence
relations for these probabilities by examining the flows across a cut separating
states 0, 1, . . . , n − 1 from states n, n + 1, . . . , mj . The relevant balance diagram
is illustrated in Fig. 1.

Fig. 1. Balance diagram for type j

The downward (i.e., to the left) flow across the cut contains just a single
transition, from state n, due to a departure; the corresponding rate is nμj . On
the other hand, if an arrival occurs in any state, i(i < n), and the size of the
incoming batch is at least n − i but does not exceed mj − i, then it contributes
to the upward (to the right) flow across the cut. Equating the two flows provides
a balance equation for each n:

nμjπj(n) = λj

n−1∑
i=0

πj(i)
mj−i∑

k=n−i

qj,k; n = 1, 2, . . . ,mj . (4)

The simplest way to solve these equations is to set πj(0) = 1, evaluate πj(n)
for n = 1, 2, . . . ,mj according to (4), and then re-normalize by dividing each of
them by their sum.
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Having computed the probabilities πj(n), the probability that an incoming
batch of type j and size k is accepted, is given by

αj,k =
mj−k∑
n=0

πj(n). (5)

The average number, Lj , of type j jobs present is equal to

Lj =
mj∑
n=1

nπj(n). (6)

Consequently, the average amount, zj,r, of type r resource consumed by jobs
of type j, is given by

zj,r = dj,rLj . (7)

In common with most models of this type, the above solution depends only
on the ratio ρj = λj/μj , and not on the individual values of those parameters.

We can now approximate the effect that type j has on the other job types
by treating its average consumption of resource r, zj,r as a fixed consumption of
resource r. This will form part of the environment in which another given job
type operates.

Suppose that we have somehow obtained an estimated vector, L = (L1, L2,
. . . , LT ), of the average numbers of jobs of different types in the system. Carry
out the following procedure.

1. For every j, compute the type r resource, Zj,r, consumed by job types other
than j:

Zj,r =
T∑

i=1,i �=j

zi,r, (8)

with zi,r being given by (7).
2. For every j, solve the isolated Markov process of type j and compute a new

value for Lj (and hence new values for zj,r and the acceptance probabilities
αj,k).

This procedure implements a mapping, f(·), from one vector of averages, call
it Lold, to another vector of averages, Lnew. Our approximate solution consists
in finding a vector, L∗, whose ‘new’ image is the same as the ‘old’ one. That is,
L∗ is a fixed point of the mapping f(·):

L∗ = f(L∗). (9)

At the fixed point L∗, the environments in which the different job types
operate are consistent with each other. That is, for every job type j, the resources
it consumes, zj,r, do not alter the resources consumed by the other job types,
Zj,r. In that sense, this fixed point is like a Nash equilibrium in multi-person
games.
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The acceptance probabilities corresponding to L∗ are substituted into (2) in
order to compute the profit V , or are used to see whether the QoS targets have
been met.

To compute L∗, we use an iterative schema of the form

L(i+1) = f(L(i)). (10)

These iterations start with some initial vector such as L(0) = (0, 0, . . . , 0),
and stop when two consecutive vectors are sufficiently close to each other. To
reduce the number of iterations, it is advisable that the evaluations are of the
Gauss-Seidel type, i.e. as soon as a new value for some Lj is obtained, the
corresponding value of zj,r is used in determining the environment for other job
types.

Note. Fixed-point approximations of queuing systems have been used in the
past, mainly in the context of open or closed networks. There, the decomposi-
tion is in terms of nodes and the fixed point equations attempt to capture the
interactions between them (e.g., see Sadre et al. [16], Whitt [18]). Kelly’s fixed-
point approximation for multi-class circuit-switched networks [10] is concerned
with shared resources, but does not model batch arrivals. The decomposition is
with respect to offered loads for individual units of resource. Kelly was able to
prove the existence of a fixed point by appealing to Brouwer’s theorem, and he
demonstrated convergence to it.

We have been unable to prove either the existence or the uniqueness of a
fixed point for our mapping f(·). This is due to the fact that Eq. (1) involves the
‘floor’ function �x�, which is not continuous. However, f(·) is uniformly bounded
and our experience with many examples has been that the iterations (10) always
converge.

As far as we are aware, a decomposition by job type, where the fixed point
equations capture different contributions to a shared environment, has not been
used before.

To examine the quality of the proposed approximation, consider an example
system with four job types, 1, 2, 3 and 4, or ‘small’, ‘medium’, ‘large’ and ‘very
large’. There is a single resource type and the individual resource requirements
of the four job types are d1 = 1, d2 = 2, d3 = 4 and d4 = 8. These numbers
are motivated by similarities with the T2 family of VM instances offered by the
Amazon EC2 (Elastic Computing Cloud) service (see [19]). The resource that is
being shared in this context is vCPUs (virtual CPUs).

Type 1 jobs arrive singly, at a rate of λ1 = 6 jobs per unit time. Their average
service times are 1/μ1 = 1. For type 2, the possible batch sizes are 1 or 2, with
equal probability (q2,1 = q2,2 = 0.5). The traffic parameters are λ2 = 4 and
1/μ2 = 1. Jobs of type 3 and type 4 arrive in batches of size 1, 2, or 3, with
probabilities 0.4, 0.3 and 0.3, respectively. Their arrival and service parameters
are λ3 = 2, 1/μ3 = 0.5, λ4 = 1, 1/μ4 = 0.5.



164 P. Ezhilchelvan and I. Mitrani

The cost incurred per unit of resource is c = 0.2, and the revenues brought in
by the different job types increase with the resource consumed: v1 = 1, v2 = 3,
v3 = 6, v4 = 10.
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Fig. 2. Estimated and simulated average profit

In Fig. 2, the estimated average profit is plotted against the offered resource
capacity, D. The three curves correspond to (a) the fixed-point approximation,
(b) a simulation of the model as described in Sect. 2 and (c) a simulation of a
system where the resource is not provided as a common pool, but is contained
within servers. In this last case, each server has 16 vCPUs. Thus, in order to
offer 128 vCPUs, one has to provide 8 servers. The discrete server system is
less efficient than the common pool, because, in order to instantiate a VM on
a server, all its resource requirement must be available on that server. It is not
enough to have some of the requirement available on one server and some on
another.

The two simulation graphs may be considered exact. Their confidence inter-
vals are too narrow to plot. The figure shows that the fixed-point approximation
tends to overestimate the average profit slightly. This is not surprising, since
replacing a random environment with a fixed one reduces the variance of the
process. The relative differences between approximated and simulated (common
pool) points are on the order of 5% or less.

The discrete server simulation confirms the intuition that system is less effi-
cient, but again the differences from the common pool are on the order of 5% or
less. In particular, all three graphs agree that the optimal resource capacity to
provide is 112 vCPUs, or 7 servers.
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The convergence of iterations (10) to the fixed point is very fast. The termi-
nation criterion in this example was that |L(i+1)

j − L
(i)
j | < 10−6 for all job types

j. The entire approximation graph took less than tenth of a second to compute,
and no point required more than 4 iterations.

We have also simulated a discrete server system where each server contains
8 vCPUs instead of 16. The differences between that system and the one shown
in the figure are negligible.

In the next example, all arrival rates are scaled up by a factor of 100:
(λ1, λ2, λ3, λ4) = (600, 400, 200, 100). The resource is again provided in a com-
mon pool, with scaled capacities ranging from 7000 to 10000. The other para-
meters, revenues and costs are kept as before. The aim of this exercise is to see
whether the fixed-point approximation is sufficiently robust to cope with the
much larger state space and offered loads. The estimated and simulated average
profits are displayed in Fig. 3.
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Fig. 3. System scaled up by a factor of 100

The accuracy of the approximation has increased. Not only does the model
predict the optimal resource allocation correctly, but the relative differences
between estimated and simulated profits are now less than 1%. This is not really
surprising, since the flows of traffic of various job types through the system
behave more and more like deterministic fluids when capacities and offered loads
increase.

We conclude that, for systems of this and similar sizes, it would be prefer-
able to use the fixed-point approximation even if an exact product-form solution
was available. The reason is that the complexity and numerical problems associ-
ated with computing the relevant normalization constants increase very quickly
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with the number of job types, the incoming batch sizes and the offered resource
capacities.

It should be acknowledged, however, that the fixed-point approximation also
has its limits of applicability. For example, if the system in Fig. 3 is scaled
up by another factor of 10, bringing the arrival rates to (λ1, λ2, λ3, λ4) =
(6000, 4000, 2000, 1000) and resource capacities in the region of 100000, our solu-
tion breaks down. The failure is not in the fixed-point iterations, but in the
one-dimensional solutions (4) which start experiencing numerical overflows.

It is thus desirable to develop another approximation which can be applied
to very large systems and produce reasonable estimates, albeit with some loss
of accuracy.

5 Very Large-Scale Systems

We have observed that the solution of an isolated job type ceases to work when
the resource capacities and the offered loads are on the order of tens of thousands
or more. For such large systems, a simpler and more robust approximation is
required.

With this in mind, we propose to represent the various batch arrivals of type
j by single ‘macro’ jobs with appropriately chosen resource requirements. Then,
for the purpose of the fixed-point solution, the isolated type j model becomes a
classic Erlang loss process. The benefit of this simplification is that the Erlang B
function, which provides the rejection probability, can be computed in a stable
manner for large values of the parameters.

The arrival rate and average service time of type j macro jobs are λj and
1/μj , respectively. To define the resource requirement of type r for a macro job
of type j, δj,r, we take the average over the possible type j batch sizes:

δj,r = dj,r

Kj∑
k=1

kqj,k. (11)

Hence, if all other job types consume a fixed amount, Zj,r, of type r resource,
then the maximum number of type j macro jobs that can be admitted into the
system is

mj = min
r

{⌊
Dr − Zj,r

δj,r

⌋}
. (12)

The probability, βj , that an incoming macro job of type j will be rejected, is
given by the Erlang-B function (e.g., see [13])

βj = B(mj , ρj) =
ρ

mj

j

mj !

[
mj∑
i=0

ρi

i!

]−1

. (13)

A numerically stable procedure for computing the function B(m, ρ) is pro-
vided by the recurrence relation

B(m, ρ) =
ρ
mB(m − 1, ρ)

1 + ρ
mB(m − 1, ρ)

, (14)
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starting with B(0, ρ) = 1 (e.g., see [6]).
The average number, Lj , of type j macro jobs in the system is then given by

Little’s result:
Lj = ρj(1 − βj). (15)

The average amount of type r resource that those jobs consume is zj,r = Ljδj,r.
We now have the necessary elements for carrying out the iterations described

in the previous section and finding the fixed-point vectors of average numbers
of macro jobs present, L∗

j , and corresponding rejection probabilities, β∗
j . The

average profit achieved per unit time is given by

V =
T∑

j=1

λjvj(1 − βj)
Kj∑
k=1

kqj,k −
R∑

r=1

crDr. (16)

To illustrate the efficacy and accuracy of this approximation, we have scaled
up the example with four job types introduced in the previous section. The arrival
rates are now (λ1, λ2, λ3, λ4) = (6000, 4000, 2000, 1000), and the single resource
capacity is varied in the range D ∈ (70000, 90000). All other parameters are as
before.

In Fig. 4, the average profits predicted by the macro fixed-point approxima-
tion are compared with those produced by simulation runs in each of which
a total of ten million batches of all types and sizes arrived into the system.
Computing the fixed-point was very fast and free from numerical problems. The
simulation runs were several orders of magnitude slower, because we wanted
narrow confidence intervals.
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Fig. 4. System scaled up by a factor of 1000
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The figure shows that the simplified approximation is remarkably accurate at
this scale. The two plots are almost indistinguishable. This confirms the tendency
observed earlier, that as the scale of the system increases, its behaviour agrees
more closely with the deterministic assumptions that underlie the fixed-point
approach.

6 Conclusions

We have addressed a practically relevant problem concerned with service provi-
sioning in public clouds. The multi-class model with batch arrivals and complete
blocking appeared to be solved, but we have shown that the existing solution is
incorrect. An alternative solution based on fixed-point iterations is introduced.
This replaces the multi-dimensional stochastic process with a number of single-
dimensional ones, using averages to model the interactions between them. The
accuracy of the fixed-point solution is good for small systems, and gets better
when the system size increases. A simplified version of that solution is shown to
apply to very large-scale systems.

The exact solution of the complete blocking model is still an open problem, as
is also the solution of the model where resources are provided in discrete servers,
rather than in common pools. Those problems are interesting and worthy of
further study. However, we feel that even if the exact solutions were available,
it would be better to tackle the task of optimizing a real-life system by using
the proposed approximations. They are easily implementable and sufficiently
accurate.

Other, more general models may be tackled by the methods described here.
For example, one may wish to operate a complete blocking policy for some job
types, and partial blocking for others. The one-dimensional solution for partial
blocking is different, but the fixed-point approach would still apply.
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2 Université de Nantes - LS2N, UMR 6004, Nantes, France
{benoit.delahaye,eric.monfroy,charlotte.truchet}@ls2n.fr
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Abstract. Parametric Interval Markov Chains (pIMCs) are a specifica-
tion formalism that extend Markov Chains (MCs) and Interval Markov
Chains (IMCs) by taking into account imprecision in the transition prob-
ability values: transitions in pIMCs are labeled with parametric intervals
of probabilities. In this work, we study the difference between pIMCs and
other Markov Chain abstractions models and investigate the two usual
semantics for IMCs: once-and-for-all and at-every-step. In particular, we
prove that both semantics agree on the maximal/minimal reachability
probabilities of a given IMC. We then investigate solutions to several
parameter synthesis problems in the context of pIMCs – consistency,
qualitative reachability and quantitative reachability – that rely on con-
straint encodings. Finally, we propose a prototype implementation of our
constraint encodings with promising results.

1 Introduction

Discrete time Markov chains (MCs for short) are a standard probabilistic mod-
eling formalism that has been extensively used in the litterature to reason about
software [7] and real-life systems [14]. However, when modeling real-life systems,
the exact value of transition probabilities may not be known precisely. Several
formalisms abstracting MCs have therefore been developed. Parametric Markov
chains [1] (pMCs for short) extend MCs by allowing parameters to appear in
transition probabilities. In this formalism, parameters are variables and transi-
tion probabilities may be expressed as polynomials over these variables. A given
pMC therefore represents a potentially infinite set of MCs, obtained by replacing
each parameter by a given value. pMCs are particularly useful to represent sys-
tems where dependencies between transition probabilities are required. Indeed,
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a given parameter may appear in several distinct transition probabilities, there-
fore requiring that the same value is given to all its occurences. Interval Markov
chains [15] (IMC for short) extend MCs by allowing precise transition proba-
bilities to be replaced by intervals, but cannot represent dependencies between
distinct transitions. IMCs have mainly been studied with two distinct semantics
interpretation. Under the once-and-for-all semantics, a given IMC represents
a potentially infinite number of MCs where transition probabilities are chosen
inside the specified intervals while keeping the same underlying graph structure.
The at-every-step semantics, which was the original semantics given to IMCs
in [15], does not require MCs to preserve the underlying graph structure of the
original IMC but instead allows an “unfolding” of the original graph structure
where different probability values may be chosen (inside the specified interval)
at each occurence of the given transition.

Model-checking algorithms and tools have been developed in the context of
pMCs [9,13,16] and IMCs with the once-and-for-all semantics [5,12]. State of the
art tools [9] for pMC verification compute a rational function on the parameters
that characterizes the probability of satisfying a given property, and then use
external tools such as SMT solving [9] for computing the satisfying parameter
values. For these methods to be viable in practice, the number of parameters
used is quite limited. On the other hand, the model-checking procedure for IMCs
presented in [5] is adapted from machine learning and builds successive refine-
ments of the original IMCs that optimize the probability of satisfying the given
property. This algorithm converges, but not necessarilly to a global optimum. It
is worth noticing that existing model checking procedures for pMCs and IMCs
strongly rely on their underlying graph structure. As a consequence, to the best
of our knowledge, no solutions for model-checking IMCs with the at-every-step
semantics have been proposed yet.

In this paper, we focus on Parametric interval Markov chains [11] (pIMCs for
short), that generalize both IMCs and pMCs by allowing parameters to appear in
the endpoints of the intervals specifying transition probabilities, and we provide
four main contributions.

First, we formally compare abstraction formalisms for MCs in terms of suc-
cinctness: we show in particular that pIMCs are strictly more succinct than both
pMCs and pIMCs when equipped with the right semantics. In other words, every-
thing that can be expressed using pMCs or IMCs can also be expressed using
pIMCs while the reverse does not hold. Second, we prove that the once-and-for-
all and the at-every-step semantics are equivalent w.r.t. rechability properties,
both in the IMC and in the pIMC settings. Notably, this result gives theoreti-
cal backing to the generalization of existing works on the verification of IMCs
to the at-every-step semantics. Third, we study the parametric verification of
fundamental properties at the pIMC level: consistency, qualitative reachability,
and quantitative reachability. Given the expressivity of the pIMC formalism, the
risk of producing a pIMC specification that is incoherent and therefore does not
model any concrete MC is high. We therefore propose constraint encodings for
deciding whether a given pIMC is consistent and, if so, synthesizing parameter
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values ensuring consistency. We then extend these encodings to qualitative reach-
ability, i.e., ensuring that given state labels are reachable in all (resp. none) of
the MCs modeled by a given pIMC. Finally, we focus on the quantitative reach-
ability problem, i.e., synthesizing parameter values such that the probability of
reaching given state labels satisfies fixed bounds in at least one (resp. all) MCs
modeled by a given pIMC. While consistency and qualitative reachability for
pIMCs have already been studied in [11], the constraint encodings we propose in
this paper are significantly smaller (linear instead of exponential). To the best of
our knowledge, our results provide the first solution to the quantitative reacha-
bility problem for pIMCs. Our last contribution is the implementation of all our
verification algorithms in a prototype tool that generates the required constraint
encodings and can be plugged to any SMT solver for their resolution. Due to
space limitation, proofs and detailed examples are given in [4].

2 Background

In this section we introduce notions and notations that will be used throughout
the paper. Given a finite set of variables X = {x1, . . . , xk}, we write Dx for the
domain of the variable x ∈ X and DX for the set of domains associated to the
variables in X. A valuation v over X is a set v = {(x, d)|x ∈ X, d ∈ Dx} of
elementary valuations (x, d) where for each x ∈ X there exists a unique pair of
the form (x, d) in v. When clear from the context, we write v(x) = d for the
value given to variable x according to valuation v. A rational function f over X
is a division of two (multivariate) polynomials g1 and g2 over X with rational
coefficients, i.e., f = g1/g2. We write Q the set of rational numbers and QX the
set of rational functions over X. The evaluation v(g) of a polynomial g under
the valuation v replaces each variable x ∈ X by its value v(x).

An atomic constraint over X is a Boolean expression of the form f(X) ��
g(X), with �� ∈ {≤,≥, <,>,=} and f and g two functions over variables in
X and constants. A constraint is linear if the functions f and g are linear. A
constraint over X is a Boolean combination of atomic constraints over X.

Given a finite set of states S, we write Dist(S) for the set of probability distri-
butions over S, i.e., the set of functions μ : S → [0, 1] such that

∑
s∈S μ(s) = 1.

We write I for the set containing all the interval subsets of [0, 1]. In the follow-
ing, we consider a universal set of symbols A that we use for labelling the states
of our structures. We call these symbols atomic propositions. We will use Latin
alphabet in state context and Greek alphabet in atomic proposition context.
Constraints. Constraints are first order logic predicates used to model and
solve combinatorial problems [19]. A problem is described with a list of variables,
each in a given domain of possible values, together with a list of constraints over
these variables. Such problems are then sent to solvers which decide whether the
problem is satisfiable, i.e., if there exists a valuation of the variables satisfying all
the constraints, and in this case computes a solution. Checking satisfiability of
constraint problems is difficult in general, as the space of all possible valuations
has a size exponential in the number of variables.
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Formally, a Constraint Satisfaction Problem (CSP) is a tuple Ω = (X,D,C)
where X is a finite set of variables, D = DX is the set of all the domains
associated to the variables from X, and C is a set of constraints over X. We say
that a valuation over X satisfies Ω if and only if it satisfies all the constraints in
C. We write v(C) for the satisfaction result of the valuation of the constraints C
according to v (i.e., true or false). In the following we call CSP encoding a scheme
for formulating a given problem into a CSP. The size of a CSP corresponds to
the number of variables and atomic constraints appearing in the problem. Note
that, in constraint programming, having less variables or less constraints during
the encoding does not necessarily imply faster solving time of the problems.

Discrete Time Markov Chains. A Discrete Time Markov Chain (DTMC
or MC for short) is a tuple M = (S, s0, p, V ), where S is a finite set of states
containing the initial state s0, V : S → 2A is a labelling function, and p : S →
Dist(S) is a probabilistic transition function. We write MC for the set containing
all the discrete time Markov chains.

A Markov Chain can be seen as a directed graph where the nodes correspond
to the states of the MC and the edges are labelled with the probabilities given
by the transition function of the MC. In this representation, a missing transition
between two states represents a transition probability of zero. As usual, given a
MC M, we call a path of M a sequence of states obtained from executing M,
i.e., a sequence ω = s1, s2, . . . s.t. the probability of taking the transition from
si to si+1 is strictly positive, p(si)(si + 1) > 0, for all i. A path ω is finite iff it
belongs to S∗, i.e., it represents a finite sequence of transitions from M.

Example 1. Figure 1 illustrates the Markov chain M1 = (S, s0, p, V ) ∈
MC where S = {s0, s1, s2, s3, s4}, the atomic proposition are restricted to
{α, β}, the initial state is s0, and the labelling function V corresponds to
{(s0, ∅), (s1, α), (s2, β), (s3, {α, β}), (s4, α)}. The sequences of states (s0, s1, s2),
(s0, s2), and (s0, s2, s2, s2), are three (finite) paths from the initial state s0 to
the state s2.

Reachability. A Markov chain M defines a unique probability measure P
M

over the paths from M. According to this measure, the probability of a finite
path ω = s0, s1, . . . , sn in M is the product of the probabilities of the transitions
executed along this path, i.e., PM(ω) = p(s0)(s1) · p(s1)(s2) · . . . · p(sn−1)(sn).
This distribution naturally extends to infinite paths (see [2]) and to sequences
of states over S that are not paths of M by giving them a zero probability.

Given a MC M, the overall probability of reaching a given state s from
the initial state s0 is called the reachability probability and written P

M
s0

(♦s) or
P

M(♦s) when clear from the context. This probability is computed as the sum
of the probabilities of all finite paths starting in the initial state and reach-
ing this state for the first time. Formally, let reachs0(s) = {ω ∈ S∗ | ω =
s0, . . . sn with sn = s and si �= s ∀0 ≤ i < n} be the set of such paths. We then
define P

M(♦s) =
∑

ω∈reachs0 (s)
P

M(ω) if s �= s0 and 1 otherwise. This notation
naturally extends to the reachability probability of a state s from a state t that
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is not s0, written P
M
t (♦s) and to the probability of reaching a label α ⊆ A

written P
M
s0

(♦α). In the following, we say that a state s (resp. a label α ⊆ A)
is reachable in M iff the reachability probability of this state (resp. label) from
the initial state is strictly positive.

Example 2 (Example 1 continued). In Fig. 1 the probability of the path (s0,
s2, s1, s1, s3) is 0.3 · 0.5 · 0.5 · 0.5 = 0.0375 and the probability of reaching
the state s1 is P

M1(♦s1) = p(s0)(s1) + Σ+∞
i=0 p(s0)(s2)·p(s2)(s2)i·p(s2)(s1) =

p(s0)(s1) + p(s0)(s2)·p(s2)(s1)·(1/(1 − p(s2)(s2))) = 1. Furthermore, the proba-
bility of reaching β corresponds to the probability of reaching the state s2.

Fig. 1. MC M1 Fig. 2. pMC I′ Fig. 3. IMC I

3 Markov Chains Abstractions

Modelling an application as a Markov Chain requires knowing the exact prob-
ability for each possible transition of the system. However, this can be difficult
to compute or to measure in the case of a real-life application (e.g., precision
errors, limited knowledge). In this section, we start with a generic definition
of Markov chain abstraction models. Then we recall three abstraction models
from the literature, respectively pMC, IMC, and pIMC, and finally we present
a comparison of these existing models in terms of succinctness.

Definition 1 (Markov chain Abstraction Model). A Markov chain
abstraction model (an abstraction model for short) is a pair (L, |=) where L is a
nonempty set and |= is a relation between MC and L. Let P be in L and M be in
MC we say that M implements P iff (M,P) belongs to |= (i.e., M |= P). When
the context is clear, we do not mention the satisfaction relation |= and only use
L to refer to the abstraction model (L, |=).

A Markov chain Abstraction Model is a specification theory for MCs. It con-
sists in a set of abstract objects, called specifications, each of which representing
a (potentially infinite) set of MCs – implementations – together with a satisfac-
tion relation defining the link between implementations and specifications. As
an example, consider the powerset of MC (i.e., the set containing all the possible
sets of Markov chains). Clearly, (2MC,∈) is a Markov chain abstraction model,
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which we call the canonical abstraction model. This abstraction model has the
advantage of representing all the possible sets of Markov chains but it also has
the disadvantage that some Markov chain abstractions are only representable
by an infinite extension representation. Indeed, recall that there exists subsets
of [0, 1] ⊆ R which cannot be represented in a finite space (e.g., the Cantor set
[6]). We now present existing MC abstraction models from the literature.

3.1 Existing MC Abstraction Models

Parametric Markov Chain is a MC abstraction model from [1] where a tran-
sition can be annotated by a rational function over parameters. We write pMC
for the set containing all the parametric Markov chains.

Definition 2 (Parametric Markov Chain). A Parametric Markov Chain
(pMC for short) is a tuple I = (S, s0, P, V, Y ) where S, s0, and V are defined as
for MCs, Y is a set of variables (parameters), and P : S × S → QY associates
with each potential transition a parameterized probability.

Let M = (S, s0, p, V ) be a MC and I = (S, s0, P, V, Y ) be a pMC. The
satisfaction relation |=p between MC and pMC is defined by M |=p I iff there
exists a valuation v of Y s.t. p(s)(s′) equals v(P (s, s′)) for all s, s′ in S.

Example 3. Figure 2 shows a pMC I ′ = (S, s0, P, V, Y ) where S, s0, and V are
similar to the same entities in the MC M from Fig. 1, the set of variable Y
contains only one variable p, and the parametric transitions in P are given by
the edge labelling (e.g., P (s0, s1) = 0.7, P (s1, s3) = p, and P (s2, s2) = 1 − p).
Note that the pMC I ′ is a specification containing the MC M from Fig. 1.

Interval Markov Chains extend MCs by allowing to label transitions with
intervals of possible probabilities instead of precise probabilities. We write IMC
for the set containing all the interval Markov chains.

Definition 3 (Interval Markov Chain [15]). An Interval Markov Chain
( IMC for short) is a tuple I = (S, s0, P, V ), where S, s0, and V are defined
as for MCs, and P : S × S → I associates with each potential transition an
interval of probabilities.

Example 4. Figure 3 illustrates IMC I = (S, s0, P, V ) where S, s0, and V are
similar to the MC given in Fig. 1. By observing the edge labelling we see that
P (s0, s1) = [0, 1], P (s1, s1) = [0.5, 1], and P (s3, s3) = [1, 1]. On the other hand,
the intervals of probability for missing transitions are reduced to [0, 0], e.g.,
P (s0, s0) = [0, 0], P (s0, s3) = [0, 0], P (s1, s4) = [0, 0].

In the literature, IMCs have been mainly used with two distinct semantics:
at-every-step and once-and-for-all. Both semantics are associated with distinct
satisfaction relations which we now introduce.

The once-and-for-all IMC semantics ([9,18,20]) is alike to the semantics for
pMC, as introduced above. The associated satisfaction relation |=o

I is defined
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as follows: A MC M = (T, t0, p, V M ) satisfies an IMC I = (S, s0, P, V I) iff
(T, t0, V

M ) = (S, s0, V
I) and for all reachable state s and all state s′ ∈ S,

p(s)(s′) ∈ P (s, s′). In this sense, we say that MC implementations using the once-
and-for-all semantics need to have the same structure as the IMC specification.

On the other hand, the at-every-step IMC semantics, first introduced in [15],
operates as a simulation relation based on the transition probabilities and state
labels, and therefore allows MC implementations to have a different structure
than the IMC specification. The associated satisfaction relation |=a

I is defined as
follows: A MC M = (T, t0, p, V M ) satisfies an IMC I = (S, s0, P, V I) iff there
exists a relation R ⊆ T × S such that (t0, s) ∈ R and whenever (t, s) ∈ R,
we have 1. the labels of s and t correspond: V M (t) = V I(s), 2. there exists a
correspondence function δ : T → (S → [0, 1]) s.t. (a) ∀t′ ∈ T if p(t)(t′) > 0 then
δ(t′) is a distribution on S (b) ∀s′ ∈ S : (Σt′∈T p(t)(t′) · δ(t′)(s′)) ∈ P (s, s′), and
(c) ∀(t′, s′) ∈ T ×S, if δ(t′)(s′) > 0, then (t′, s′) ∈ R. By construction, it is clear
that |=a

I is more general than |=o
I, i.e., that whenever M |=o

I I, we also have
M |=a

I I. The reverse is obviously not true in general, even when the underlying
graphs of M and I are isomorphic (see [4] for details).

Fig. 4. MC M2 satisfying the IMC I
from Fig. 3 with a different structure

Fig. 5. pIMC P

Example 5 (Example 4 continued). Consider the MC M1 with state space S from
Fig. 1 and the MC M2 with state space T from Fig. 4. They both satisfy the
IMC I with state space S given in Fig. 3. Furthermore, M1 satisfies I with the
same structure. On the other hand, for the MC M2 given in Fig. 4, the state
s3 from I has been “split” into two states t3 and t3′ in M2 and the state t1
from M2 “aggregates” states s1 and s4 in I. The relation R ⊆ T ×S containing
the pairs (t0, s0), (t1, s1), (t1, s4), (t2, s2), (t3, s3), and (t3′ , s3) is a satisfaction
relation between M2 and I.

Parametric Interval Markov Chains, as introduced in [11], abstract IMCs by
allowing (combinations of) parameters to be used as interval endpoints in IMCs.
Under a given parameter valuation the pIMC yields an IMC as introduced above.
pIMCs therefore allow the representation, in a compact way and with a finite
structure, of a potentially infinite number of IMCs. Note that one parameter
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can appear in several transitions at once, requiring the associated transition
probabilities to depend on one another. Let Y be a finite set of parameters and
v be a valuation over Y . By combining notations used for IMCs and pMCs the
set I(QY ) contains all parametrized intervals over [0, 1], and for all I = [f1, f2] ∈
I(QY ), v(I) denotes the interval [v(f1), v(f2)] if 0 ≤ v(f1) ≤ v(f2) ≤ 1 and the
empty set otherwise1. We write pIMC for the set containing all the parametric
interval Markov chains.

Definition 4 (Parametric Interval Markov Chain [11]). A Parametric
Interval Markov Chain (pIMC for short) is a tuple P = (S, s0, P, V, Y ), where
S, s0, V and Y are defined as for pMCs, and P : S × S → I(QY ) associates
with each potential transition a (parametric) interval.

In [11] the authors introduced pIMCs where parametric interval endpoints are
limited to linear combination of parameters. In this paper we extend the pIMC
model by allowing rational functions over parameters as endpoints of parametric
intervals. Given a pIMC P = (S, s0, P, V, Y ) and a valuation v, we write v(P)
for the IMC (S, s0, Pv, V ) obtained by replacing the transition function P from
P with the function Pv : S × S → I defined by Pv(s, s′) = v(P (s, s′)) for all
s, s′ ∈ S. The IMC v(P) is called an instance of pIMC P. Finally, depending
on the semantics chosen for IMCs, two satisfaction relations can be defined
between MCs and pIMCs. They are written |=a

pI and |=o
pI and defined as follows:

M |=a
pI P (resp. |=o

pI) iff there exists an IMC I instance of P s.t. M |=a
I I (resp.

|=o
I).

Example 6. Consider the pIMC P = (S, 0, P, V, Y ) given in Fig. 5. The set of
states S and the labelling function are the same as in the MC and the IMC
presented in Figs. 1 and 3 respectively. The set of parameters Y has two elements
p and q. Finally, the parametric intervals from the transition function P are
given by the edge labelling (e.g., P (s1, s3) = [0.3, q], P (s2, s4) = [0, 0.5], and
P (s3, s3) = [1, 1]). Note that the IMC I from Fig. 3 is an instance of P (by
assigning the value 0.6 to the parameter p and 0.5 to q). Furthermore, as said
in Example 5, the Markov Chains M1 and M2 (from Figs. 1 and 4 respectively)
satisfy I, therefore M1 and M2 satisfy P.

In the following, we consider that the size of a pMC, IMC, or pIMC corre-
sponds to its number of states plus its number of transitions not reduced to 0,
[0, 0] or ∅. We will also often need to consider the predecessors (Pred), and the
successors (Succ) of some given states. Given a pIMC with a set of states S, a
state s in S, and a subset S′ of S, we write:

– Pred(s) = {s′ ∈ S | P (s′, s) /∈ {∅, [0, 0]}}
– Succ(s) = {s′ ∈ S | P (s, s′) /∈ {∅, [0, 0]}}

– Pred(S′) =
⋃

s′∈S′ Pred(s′)
– Succ(S′) =

⋃
s′∈S′ Succ(s′)

1 Indeed, when 0 ≤ v(f1) ≤ v(f2) ≤ 1 is not respected, the interval is inconsistent and
therefore empty.
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3.2 Abstraction Model Comparisons

IMC, pMC, and pIMC are three Markov chain Abstraction Models. In order
to compare their expressiveness and compactness, we introduce the comparison
operators 
 and ≡. Let (L1, |=1) and (L2, |=2) be two Markov chain abstraction
models containing respectively L1 and L2. We say that L1 is entailed by L2,
written L1 
 L2, iff all the MCs satisfying L1 satisfy L2 modulo bisimilarity.
(i.e., ∀M |=1 L1,∃M′ |=2 L2 s.t. M is bisimilar to M′). We say that L1 is
(semantically) equivalent to L2, written L1 ≡ L2, iff L1 
 L2 and L2 
 L1.
Definition 5 introduces succinctness based on the sizes of the abstractions.

Definition 5 (Succinctness). Let (L1, |=1) and (L2, |=2) be two Markov chain
abstraction models. L1 is at least as succinct as L2, written L1 ≤ L2, iff there
exists a polynomial p such that for every L2 ∈ L2, there exists L1 ∈ L1 s.t.
L1 ≡ L2 and |L1| ≤ p(|L2|).2 Thus, L1 is strictly more succinct than L2, written
L1 < L2, iff L1 ≤ L2 and L2 �≤ L1.

We start with a comparison of the succinctness of the pMC and IMC abstrac-
tions. Since pMCs allow the expression of dependencies between the probabilities
assigned to distinct transitions while IMCs allow all transitions to be indepen-
dant, it is clear that there are pMCs without any equivalent IMCs (regardless
of the IMC semantics used), therefore (IMC, |=o

I) �≤ pMC and (IMC, |=a
I) �≤ pMC

(see [4] for details). On the other hand, IMCs imply that transition probabilities
need to satisfy linear inequalities in order to fit given intervals. However, these
types of constraints are not allowed in pMCs. It is therefore easy to exhibit IMCs
that, regardless of the semantics considered, do not have any equivalent pMC
specification. As a consequence, pMC �≤ (IMC, |=o

I) and pMC �≤ (IMC, |=a
I).

We now compare pMCs and IMCs to pIMCs. Recall that the pIMC model
is a Markov chain abstraction model allowing to declare parametric interval
transitions, while the pMC model allows only parametric transitions (without
intervals), and the IMC model allows interval transitions without parameters.
Clearly, any pMC and any IMC can be translated into a pIMC with the right
semantics (once-and-for-all for pMCs and the chosen IMC semantics for IMCs).
This means that (pIMC, |=o

pI) is more succinct than pMC and pIMC is more succinct
than IMC for both semantics. Furthermore, since pMC and IMC are not comparable
due to the above results, we have that the pIMC abstraction model is strictly more
succinct than the pMC abstraction model and than the IMC abstraction model
with the right semantics. Our comparison results are presented in Proposition 1.
Further explanations and examples are given in [4].

Proposition 1. The Markov chain abstraction models can be ordered as fol-
lows w.r.t. succinctness: (pIMC, |=o

pI) < (pMC, |=p), (pIMC, |=o
pI) < (IMC, |=o

I) and
(pIMC, |=a

pI) < (IMC, |=a
I).

Note that (pMC, |=p) ≤ (IMC, |=o
I) could be achieved by adding unary con-

straints on the parameters of a pMC, which is not allowed here. However, this
would not have any impact on our other results.
2 |L1| and |L2| are the sizes of L1 and L2, respectively.
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4 Qualitative Properties

As seen above, pIMCs are a succinct abstraction formalism for MCs. The aim
of this section is to investigate qualitative properties for pIMCs, i.e., properties
that can be evaluated at the specification (pIMC) level, but that entail prop-
erties on its MC implementations. pIMC specifications are very expressive as
they allow the abstraction of transition probabilities using both intervals and
parameters. Unfortunately, as it is the case for IMCs, this allows the expression
of incorrect specifications. In the IMC setting, this is the case either when some
intervals are ill-formed or when there is no probability distribution matching the
interval constraints of the outgoing transitions of some reachable state. In this
case, no MC implementation exists that satisfies the IMC specification. Decid-
ing whether an implementation that satisfies a given specification exists is called
the consistency problem. In the pIMC setting, the consistency problem is made
more complex because of the parameters which can also induce inconsistencies
in some cases. One could also be interested in verifying whether there exists
an implementation that reaches some target states/labels, and if so, propose a
parameter valuation ensuring this property. Both the consistency and the consis-
tent reachability problems have already been investigated in the IMC and pIMC
setting [10,11]. In this section, we briefly recall these problems and propose new
solutions based on CSP encodings. Our encodings are linear in the size of the
original pIMCs whereas the algorithms from [10,11] are exponential.

4.1 Existential Consistency

A pIMC P is existential consistent iff there exists a MC M satisfying P (i.e.,
there exists a MC M satisfying an IMC I instance of P). As seen in Sect. 2,
pIMCs are equipped with two semantics: once-and-for-all (|=o

pI) and at-every-
step (|=a

pI). Recall that |=o
pI imposes that the underlying graph structure of

implementations needs to be isomorphic to the graph structure of the corre-
sponding specification. In contrast, |=a

pI allows implementations to have a differ-
ent graph structure. It therefore seems that some pIMCs could be inconsistent
w.r.t |=o

pI while being consistent w.r.t |=a
pI. On the other hand, checking the

consistency w.r.t |=o
pI seems easier because of the fixed graph structure.

In [10], the author firstly proved that both semantics are equivalent w.r.t.
existential consistency, and proposed a CSP encoding for verifying this property
which is exponential in the size of the pIMC. Based on this result of semantics
equivalence w.r.t. existential consistency from [10] we propose a new CSP encod-
ing, written C∃c, for verifying the existential consistency property for pIMCs.

Let P = (S, s0, P, V, Y ) be a pIMC, we write C∃c(P) for the CSP produced by
C∃c according to P. Any solution of C∃c(P) will correspond to a MC satisfying
P. In C∃c(P), we use one variable πp with domain [0, 1] per parameter p in Y ; one
variable θs′

s with domain [0, 1] per transition (s, s′) in {{s} × Succ(s) | s ∈ S};
and one Boolean variable ρs per state s in S. These Boolean variables will
indicate for each state whether it appears in the MC solution of the CSP (i.e.,
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Fig. 6. Variables in the CSP produced
by C∃c for the pIMC P from Fig. 5

Fig. 7. A solution to the CSP C∃c(P)
for the pIMC P from Fig. 5

in the MC satisfying the pIMC P). For each state s ∈ S, Constraints are as
follows:
(1) ρs, if s = s0
(3) ¬ρs ⇔ Σs′∈Pred(s)\{s}θs

s′ = 0, if s �= s0
(5) ρs ⇒ θs′

s ∈ P (s, s′), for all s′ ∈ Succ(s)

(2) ρs ⇔ Σs′∈Succ(s)θ
s′
s = 1

(4) ¬ρs ⇔ Σs′∈Succ(s)θ
s′
s = 0

Recall that given a pIMC P the objective of the CSP C∃c(P) is to construct
a MC M satisfying P. Constraint (1) states that the initial state s0 appears
in M. Constraint (3) ensures that for each non-initial state s, variable ρs is
set to false iff s is not reachable from its predecessors. Constraint (2) ensures
that if a state s appears in M, then its outgoing transitions form a probability
distribution. On the contrary, Constraint (4) propagates non-appearing states
(i.e., if a state s does not appear in M then all its outgoing transitions are set to
zero). Finally, Constraint (5) states that, for all appearing states, the outgoing
transition probabilities must be selected inside the specified intervals.

Example 7. Consider the pIMC P given in Fig. 5. Figure 6 describes the variables
in C∃c(P): one variable per transition (e.g., θ10, θ20, θ11), one Boolean variable per
state (e.g., ρ0, ρ1), and one variable per parameter (πp and πq). The following
constraints correspond to the Constraints (2), (3), (4), and (5) generated by
our encoding C∃c for the state 2 of P:

¬ρ2 ⇔ θ20 = 0
¬ρ2 ⇔ θ12 +θ22 +θ42 = 0

ρ2 ⇔ θ12+θ22+θ42 = 1
ρ2 ⇒ 0 ≤ θ12 ≤ πp

ρ2 ⇒ 0.2 ≤ θ22 ≤ πp

ρ2 ⇒ 0 ≤ θ42 ≤ 0.5

Finally, Fig. 7 describes a solution for the CSP C∃c(P). Note that given a
solution of a pIMC encoded by C∃c, one can construct a MC satisfying the
given pIMC by keeping all the states s s.t. ρs is equal to true and considering
the transition function given by the probabilities in the θs′

s variables. We now
show that our encoding works as expected.

Proposition 2. A pIMC P is existential consistent iff C∃c(P) is satisfiable.

Our existential consistency encoding is linear in the size of the pIMC instead
of exponential for the encoding from [11] which enumerates the powerset of the
states in the pIMC resulting in deep nesting of conjunctions and disjunctions.
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4.2 Qualitative Reachability

Let P = (S, s0, P, V, Y ) be a pIMC and α ⊆ A be a state label. We say that α
is existential reachable in P iff there exists an implementation M of P where
α is reachable (i.e., PM(♦α) > 0). In a dual way, we say that α is universal
reachable in P iff α is reachable in any implementation M of P. As for existential
consistency, we use a result from [10] that states that both pIMC semantics are
equivalent w.r.t. existential (and universal) reachability. We therefore propose a
new CSP encoding, written C∃r, that extends C∃c, for verifying these properties.
Formally, CSP C∃r(P) = (X ∪ X ′,D ∪ D′, C ∪ C ′) is such that (X,D,C) =
C∃c(P), X ′ contains one integer variable ωs with domain [0, |S|] per state s
in S, D′ contains the domains of these variables, and C ′ is composed of the
following constraints for each state s ∈ S:

(6) ωs = 1, if s = s0 (7) ωs �= 1, if s �= s0 (8) ρs ⇔ (ωs �= 0)
(9) ωs > 1 ⇒ ∨

s′∈Pred(s)\{s}(ωs = ωs′ + 1) ∧ (θs′
s > 0), if s �= s0

(10) ωs = 0 ⇔ ∧
s′∈Pred(s)\{s}(ωs′ = 0) ∨ (θs′

s = 0), if s �= s0

Recall first that CSP C∃c(P ) constructs a Markov chain M satisfying P.
Informally, for each state s in M the Constraints (6), (7), (9) and (10) in C∃r
ensure that ωs = k iff there exists in M a path from the initial state to s of
length k − 1 with non zero probability; and state s is not reachable in M from
the initial state s0 iff ωs equals to 0. Finally, Constraint (8) enforces the Boolean
reachability indicator variable ρs to bet set to true iff there exists a path with
non zero probability in M from the initial state s0 to s (i.e., ωs �= 0).

Let Sα be the set of states from P labeled with α. C∃r(P) therefore produces
a Markov chain satisfying P where reachable states s are such that ρs = true. As
a consequence, α is existential reachable in P iff C∃r(P) admits a solution such
that

∨
s∈Sα

ρs; and α is universal reachable in P iff C∃r(P) admits no solution
such that

∧
s∈Sα

¬ρs. This is formalised in the following proposition.

Proposition 3. Let P = (S, s0, P, V, Y ) be a pIMC, α ⊆ A be a state label,
Sα = {s | V (s) = α}, and (X,D,C) be the CSP C∃r(P).

– CSP (X,D,C ∪ ∨
s∈Sα

ρs) is satisfiable iff α is existential reachable in P
– CSP (X,D,C ∪ ∧

s∈Sα
¬ρs) is unsatisfiable iff α is universal reachable in P

As for the existential consistency problem, we have an exponential gain in
terms of size of the encoding compared to [11]: the number of constraints and
variables in C∃r is linear in terms of the size of the encoded pIMC.
Remark. In C∃r Constraints (3) inherited from C∃c are entailed by Con-
straints (8) and (10) added to C∃r. Thus, in a practical approach one may
ignore Constraints (3) from C∃c if they do not improve the solver performances.
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5 Quantitative Properties

We now move to the verification of quantitative reachability properties in pIMCs.
Quantitative reachability has already been investigated in the context of pMCs
and IMCs with the once-and-for-all semantics. Due to the complexity of allow-
ing implementation structures to differ from the structure of the specifications,
quantitative reachability in IMCs with the at-every-step semantics has, to the
best of our knowledge, never been studied. In this section, we propose our main
theoretical contribution: a theorem showing that both IMC semantics are equiv-
alent with respect to quantitative reachability, which allows the extension of all
results from [5,20] to the at-every-step semantics. Based on this result, we also
extend the CSP encodings introduced in Sect. 4 in order to solve quantitative
reachability properties on pIMCs regardless of their semantics.

5.1 Equivalence of |=o
I and |=a

I w.r.t Quantitative Reachability

Given an IMC I = (S, s0, P, V ) and a state label α ⊆ A, a quantitative reacha-
bility property on I is a property of the type P

I(♦α)∼p, where 0 < p < 1 and
∼ ∈ {≤, <,>,≥}. Such a property is verified iff there exists an MC M satisfying
I (with the chosen semantics) such that P

M(♦α)∼p.
As explained above, all existing techniques and tools for verifying quantita-

tive reachability properties on IMCs only focus on the once-and-for-all semantics.
Indeed, in this setting, quantitative reachability properties are easier to compute
because the underlying graph structure of all implementations is known. How-
ever, to the best of our knowledge, there are no works addressing the same prob-
lem with the at-every-step semantics or showing that addressing the problem in
the once-and-for-all setting is sufficiently general. The following theorem fills this
theoretical gap by proving that both semantics are equivalent w.r.t quantitative
reachability. In other words, for all MC M such that M |=a

I I and all state
label α, there exist MCs M≤ and M≥ such that M≤ |=o

I I, M≥ |=o
I I and

P
M≤(♦α) ≤ P

M(♦α) ≤ P
M≥(♦α). This is formalized in the following theorem.

Theorem 1. Let I = (S, s0, P, V ) be an IMC, α ⊆ A be a state label, ∼ ∈ {≤,
<,>,≥} and 0 < p < 1. I satisfies P

I(♦α)∼p with the once-and-for-all seman-
tics iff I satisfies P

I(♦α)∼p with the at-every-step semantics.

The proof is constructive (see [4]): we use the structure of the relation R
from the definition of |=a

I in order to build the MCs M≤ and M≥.

5.2 Constraint Encodings

Note that the result from Theorem 1 naturally extends to pIMCs. We there-
fore exploit this result to construct a CSP encoding for verifying quantitative
reachability properties in pIMCs. As in Sect. 4, we extend the CSP C∃c, that
produces a correct MC implementation for the given pIMC, by imposing that
this MC implementation satisfies the given quantitative reachability property.
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In order to compute the probability of reaching state label α at the MC level,
we use standard techniques from [2] that require the partitioning of the state
space into three sets S
, S⊥, and S? that correspond to states reaching α with
probability 1, states from which α cannot be reached, and the remaining states,
respectively. Once this partition is chosen, the reachability probabilities of all
states in S? are computed as the unique solution of a linear equation system
(see [2], Theorem 10.19, p. 766). We now explain how we identify states from
S⊥, S
 and S? and how we encode the linear equation system, which leads to
the resolution of quantitative reachability.

Let P = (S, s0, P, V, Y ) be a pIMC and α ⊆ A be a state label. We start by
setting S
 = {s | V (s) = α}. We then extend C∃r(P) in order to identify the set
S⊥. Let C′

∃r(P, α) = (X ∪X ′,D∪D′, C ∪C ′) be such that (X,D,C) = C∃r(P),
X ′ contains one Boolean variable λs and one integer variable αs with domain
[0, |S|] per state s in S, D′ contains the domains of these variables, and C ′ is
composed of the following constraints for each state s ∈ S:
(11) αs = 1, if α = V (s) (12) αs �= 1, if α �= V (s) (13) λs ⇔ (ρs ∧ (αs �= 0))

(14) αs > 1 ⇒ ∨s′∈Succ(s)\{s}(αs = αs′ + 1) ∧ (θs′
s > 0), if α �= V (s)

(15) αs = 0 ⇔ ∧s′∈Succ(s)\{s}(αs′ = 0) ∨ (θs′
s = 0), if α �= V (s)

Note that variables αs play a symmetric role to variables ωs from C∃r: instead
of indicating the existence of a path from s0 to s, they characterize the existence
of a path from s to a state labeled with α. In addition, due to Constraint (13),
variables λs are set to true iff there exists a path with non zero probability from
the initial state s0 to a state labeled with α passing by s. Thus, α cannot be
reached from states s.t. λs = false. Therefore, S⊥ = {s | λs = false}.

Finally, we encode the equation system from [2] in a last CSP encoding
that extends C′

∃r. Let C∃r̄(P, α) = (X ∪ X ′,D ∪ D′, C ∪ C ′) be such that
(X,D,C) = C′

∃r(P, α), X ′ contains one variable πs per state s in S with domain
[0, 1], D′ contains the domains of these variables, and C ′ is composed of the
following constraints for each state s ∈ S:

(16) ¬λs ⇒ πs = 0 (17) λs ⇒ πs = 1, if α = V (s)
(18) λs ⇒ πs = Σs′∈Succ(s)πs′θs

s′ , if α �= V (s)

As a consequence, variables πs encode the probability with which state s
eventually reaches α when s is reachable from the initial state and 0 otherwise.

Let p ∈ [0, 1] ⊆ R be a probability bound. Adding the constraint πs0 ≤ p
(resp. πs0 ≥ p) to the previous C∃r̄ encoding allows to determine if there exists a
MC M |=a

pI P such that PM(♦α) ≤ p (resp ≥ p). Formally, let ∼ ∈ {≤, <,≥, >}
be a comparison operator, we write �∼ for its negation (e.g., �≤ is >). This leads
to the following theorem.

Theorem 2. Let P = (S, s0, P, V, Y ) be a pIMC, α ⊆ A be a label, p ∈ [0, 1],
∼ ∈ {≤, <,≥, >} be a comparison operator, and (X,D,C) be C∃r̄(P, α):

– CSP (X,D,C ∪ (πs0 ∼ p)) is satisfiable iff ∃M |=a
pI P s.t. PM(♦α) ∼ p

– CSP (X,D,C ∪ (πs0 �∼ p)) is unsatisfiable iff ∀M |=a
pI P: PM(♦α) ∼ p
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6 Prototype Implementation

Our results have been implemented in a prototype tool3 which generates the
above CSP encodings, and CSP encodings from [11] as well. Given a pIMC
in a text format inspired from [20], our tool produces the desired CSP as a
SMT instance with the QF NRA logic (Quantifier Free Non linear Real-number
Arithmetic). This instance can then be fed to any solver accepting the SMT-
LIB format with QF NRA logic [3]. For our benchmarks, we chose Z3 [8] (latest
version: 4.5.0).

QF NRA does not deal with integer variables. In practice, logics mixing inte-
gers and reals are harder than those over reals only. Thus we obtained better
results by encoding integer variables into real ones. In our implementations each
integer variable x is declared as a real variable whose real domain bounds are its
original integer domain bounds; we also add the constraint x < 1 ⇒ x = 0. Since
we only perform incrementation of x this preserves the same set of solutions.

In order to evaluate our prototype, we extend the nand model from [17]4.
The original MC nand model has already been extended as a pMC in [9], where
the authors consider a single parameter p for the probability that each of the
N nand gates fails during the multiplexing. We extend this model to pIMC by
considering intervals for the probability that the initial inputs are stimulated
and we have one parameter per nand gate to represent the probability that it
fails. pIMCs in text format are automatically generated from the PRISM model.

Table 1 summarizes the size of the considered instances of the model (in terms
of states, transitions, and parameters) and of the corresponding CSP problems
(in terms of number of variables and constraints). In addition, we also present
the resolution time of the given CSPs using the Z3 solver. Our experiments were
performed on a 2.4 GHz Intel Core i5 processor with time out set to 10 min and
memory out set to 2 Gb.

Table 1. Benchmarks

Benchmark pIMC C∃c C∃r C∃r̄

#states #trans #par #var #cstr time #var #cstr time #var #cstr time

nand K=1; N=2 104 147 4 255 1,526 0.17s 170 1,497 0.19s 296 2,457 69.57s

nand K=1; N=3 252 364 5 621 3,727 0.24s 406 3,557 0.30s 703 5,828 31.69s

nand K=1; N=5 930 1,371 7 2,308 13,859 0.57s 1,378 12,305 0.51s 2,404 20,165 T.O.

nand K=1; N=10 7,392 11,207 12 18,611 111,366 9.46s 9,978 89,705 13.44s 17,454 147,015 T.O

7 Conclusion and Future Work

In this paper, we have compared several Markov Chain abstractions in terms
of succinctness and we have shown that Parametric Interval Markov Chain is a
3 All resources, benchmarks, and source code are available online as a Python library

at https://github.com/anicet-bart/pimc pylib.
4 Available online at http://www.prismmodelchecker.com.

https://github.com/anicet-bart/pimc_pylib
http://www.prismmodelchecker.com
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strictly more succinct abstraction formalism than other existing formalisms such
as Parametric Markov Chains and Interval Markov Chains. In addition, we have
proposed constraint encodings for checking several properties over pIMC. In the
context of qualitative properties such as existencial consistency or consistent
reachability, the size of our encodings is significantly smaller than other existing
solutions. In the quantitative setting, we have compared the two usual semantics
for IMCs and pIMCs and showed that both semantics are equivalent with respect
to quantitative reachability properties. As a side effect, this result ensures that
all existing tools and algorithms solving reachability problems in IMCs under the
once-and-for-all semantics can safely be extended to the at-every-step semantics
with no changes. Based on this result, we have then proposed CSP encodings
addressing quantitative reachability in the context of pIMCs regardless of the
chosen semantics. Finally, we have developed a prototype tool that automatically
generates our CSP encodings and that can be plugged to any constraint solver
accepting the SMT-LIB format as input.

We plan to develop our tool for pIMC verification in order to manage other,
more complex, properties (e.g., supporting the LTL-language in the spirit of what
Tulip [20] does). We also plan on investigating a practical way of computing and
representing the set of all solutions to the parameter synthesis problem.
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Abstract. Continuous-time Markov chains with alarms (ACTMCs)
allow for alarm events that can be non-exponentially distributed. Within
parametric ACTMCs, the parameters of alarm-event distributions are
not given explicitly and can be subject of parameter synthesis. An algo-
rithm solving the ε-optimal parameter synthesis problem for parametric
ACTMCs with long-run average optimization objectives is presented.
Our approach is based on reduction of the problem to finding long-
run average optimal strategies in semi-Markov decision processes (semi-
MDPs) and sufficient discretization of parameter (i.e., action) space.
Since the set of actions in the discretized semi-MDP can be very large,
a straightforward approach based on explicit action-space construction
fails to solve even simple instances of the problem. The presented algo-
rithm uses an enhanced policy iteration on symbolic representations
of the action space. The soundness of the algorithm is established for
parametric ACTMCs with alarm-event distributions satisfying four mild
assumptions that are shown to hold for uniform, Dirac, exponential,
and Weibull distributions in particular, but are satisfied for many other
distributions as well. An experimental implementation shows that the
symbolic technique substantially improves the efficiency of the synthesis
algorithm and allows to solve instances of realistic size.

1 Introduction

Mean-payoff is widely accepted as an appropriate concept for measuring long-run
average performance of systems with rewards or costs. In this paper, we study the
problem of synthesizing parameters for (possibly non-exponentially distributed)
events in a given stochastic system to achieve an ε-optimal mean-payoff. One
simple example of such events are timeouts widely used, e.g., to prevent deadlocks
or to ensure some sort of progress in distributed systems. In practice, timeout

The authors are partly supported by the Czech Science Foundation, grant No. 15-
17564S, by the DFG through the Collaborative Research Center SFB 912 – HAEC,
the Excellence Initiative by the German Federal and State Governments (cluster of
excellence cfAED), and the DFG-projects BA-1679/11-1 and BA-1679/12-1.

c© Springer International Publishing AG 2017
N. Bertrand and L. Bortolussi (Eds.): QEST 2017, LNCS 10503, pp. 190–206, 2017.
DOI: 10.1007/978-3-319-66335-7_12



Mean-Payoff Optimization in Continuous-Time Markov Chains 191

durations are usually determined in an ad-hoc manner, requiring a considerable
amount of expertise and experimental effort. This naturally raises the question
of automating this design step, i.e., is there an algorithm synthesizing optimal
timeouts?

The underlying stochastic model this paper relies on is provided by
continuous-time Markov chains with alarms (ACTMCs). Intuitively, ACTMCs
extend continuous-time Markov chains by generally distributed alarm events,
where at most one alarm is active during a system execution and non-alarm
events can disable the alarm. In parametric ACTMCs, every alarm distribution
depends on one single parameter ranging over a given interval of eligible values.
For example, a timeout is a Dirac-distributed alarm event where the parameter
specifies its duration. A parameter function assigning to every alarm a parame-
ter value within the allowed interval yields a (non-parametric) ACTMC. We aim
towards an algorithm that synthesizes a parameter function for an arbitrarily
small ε > 0 achieving ε-optimal mean-payoff.

Fig. 1. Dynamic power manager of a disk drive.

Motivating Example. To get some intuition about the described task, consider
a dynamic power management of a disk drive inspired by [28]. The behavior of
the disk drive can be described as follows (see Fig. 1): At every moment, the drive
is either active or asleep, and it maintains a queue of incoming I/O operations
of capacity N . The events of arriving and completing an I/O operation have
exponential distributions with rates 1.39 and 12.5, respectively. When the queue
is full, all newly arriving I/O operations are rejected. The I/O operations are
performed only in the active mode. When the drive is active and the queue
becomes empty, an internal clock is set to ds. If then no further I/O request
is received within the next ds time units, the sleep event changes the mode to
asleep. When the drive is asleep and some I/O operation arrives, the internal
clock is set to dw and after dw time the wakeup event changes the mode to active.
We annotate costs in terms of energy per time unit or instantaneous energy costs
for events. The power consumption is 4 and 2 per time unit in the states active
and asleep, respectively. Moving from asleep to active requires 4 units of energy.
Rejecting a newly arrived I/O request when the queue is full is undesirable,
penalized by costs of 6. All other transitions incur with cost 1. Obviously, the
designer of the disk drive controller has some freedom in choosing the delays
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ds and dw, i.e., they are free parameters of Dirac distribution. However, dw

cannot be lower than the minimal time required to wake up the drive, which is
constrained by the physical properties of the hardware used in the drive. Further,
there is also a natural upper bound on ds and dw given by the capacity of the
internal clock. Observe that if ds is too small, then many costly transitions from
asleep to active are performed; and if ds is too large, a lot of time is wasted in
the more power consuming active state. Similarly, if dw is too small, a switch to
the active mode is likely to be invoked with a few I/O operations in the queue,
and more energy could have been saved by waiting somewhat longer; and if dw

is too large, the risk of rejecting newly arriving I/O operations increases. Now
we may ask the following instance of an optimal parameter synthesis problem
we deal with in this paper:

What values should a designer assign to the delays ds and dw such that
the long-run average power consumption is minimized?

Contribution. The main result of our paper is a symbolic algorithm for
ε-optimal parameter synthesis that is generic in the sense that it is applicable to
all systems where the optimized alarm events satisfy four abstractly formulated
criteria. We show that these criteria are fulfilled, e.g., for timeout events modeled
by Dirac distributions, uniformly distributed alarms (used in, e.g., in variants
of the CSMA/CD protocol [5]), and Weibull distributions (used to model hard-
ware failures [25]). For a given ε > 0, our algorithm first computes a sufficiently
small discretization step such that an ε-optimal parameter function exists even
when its range is restricted to the discretized parameter values. Since the dis-
cretization step is typically very small, an explicit construction of all discretized
parameter values and their effects is computationally infeasible. Instead, our
algorithm employs a symbolic variant of the standard policy iteration technique
for optimizing the mean-payoff. It starts with some parameter function which is
gradually improved until a fixed point is reached. In each improvement step, our
algorithm computes a small candidate subset of the discretized parameter values
such that a possible improvement is realizable by one of these candidate values.
This is achieved by designing a suitable ranking function for each of the opti-
mized events, such that an optimal parameter value is the minimal value of the
ranking function in the interval of eligible parameter values. Then, the algorithm
approximates the roots of the symbolic derivative of the ranking function, and
constructs the candidate subset by collecting all discretized parameter values
close to the approximated roots. This leads to a drastic efficiency improvement,
which makes the resulting algorithm applicable to problems of realistic size.

Some proofs are omitted due to space constraints. Full details can be found
in the accompanied technical report [3].

Related Work. Synthesis of optimal timeouts guaranteeing quantitative prop-
erties in timed systems was considered in [11]. There are various parametric
formalisms for timed systems that deal with some sort of synthesis, such as
parametric timed automata [1,18,19], parametric one-counter automata [14],
parametric timed Petri nets [29], or parametric Markov models [15]. How-
ever, all works referenced above do not consider models with continuous-time
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distributions, thus they synthesize different parameters than we do. Contrary, the
synthesis of appropriate rates in CTMCs was efficiently solved in [8,10,16,17].
A special variant of ACTMC, where only alarms with Dirac distributions
are allowed, has been considered in [6,20,21]. Their algorithms synthesize ε-
optimal alarm parameters towards an expected reachability objective. Using a
simulation-based approach, the optimization environment of the tool TimeNET
is able to approximate locally optimal distribution parameters in stochastic Petri
nets, e.g., using methods as simulated annealing, hill climbing or genetic algo-
rithms. To the best of our knowledge, we present the first algorithm that approxi-
mates globally mean-payoff optimal parameters of non-exponential distributions
in continuous-time models.

The (non-parametric) ACTMCs form a subclass of Markov regenerative
processes (MRP) [2,9,24]. Alternatively, ACTMCs can be also understood as a
generalized semi-Markov processes (GSMPs) with at most one non-exponential
event enabled in each state or as bounded stochastic Petri nets (SPNs) [13] with
at most one non-exponential transition enabled in any reachable marking [9].
Note that ACTMCs are analytically tractable thanks to methods for subordi-
nated Markov-chain (SMC) that allow for efficient computation of transient and
steady-state distributions [9,22]. Recently, methods for computing steady-state
distributions in larger classes of regenerative GSMPs or SPNs have been pre-
sented in [23]. We did not incorporate this method into our approach as our
methods to compute sufficiently small discretization and approximation preci-
sions to guarantee ε-optimal mean-payoffs are not directly applicable for this
class of systems. To the best of our knowledge there are no efficient algorithms
with a guaranteed error for computation of steady-state distribution for a gen-
eral GSMP (or SPN). For some cases it is even known that the steady-state
distribution does not exist [7].

2 Preliminaries

Let N, N0, Q≥0, Q>0, R≥0, and R>0 denote the set of all positive integers, non-
negative integers, non-negative rational numbers, positive rational numbers, non-
negative real numbers, and positive real numbers, respectively. For a countable
set A, we denote by D(A) the set of discrete probability distributions over A,
i.e., functions μ : A → R≥0 where

∑
a∈A μ(a) = 1. The support of μ is the set of

all a ∈ A with μ(a) > 0. A probability matrix over some finite A is a function
M : A×A → R≥0 where M(a, ·) ∈ D(A) for all a ∈ A.

2.1 Continuous-Time Markov Chains with Alarms

A continuous-time Markov chain (CTMC) is a triple C = (S, λ, P ), where S is
a finite set of states, λ ∈ R>0 is a common exit rate1, and P is a probability
1 We can assume without restrictions that the parameter λ is the same for all states

of S since every CTMC can be effectively transformed into an equivalent CTMC
satisfying this property by the standard uniformization method (see, e.g., [26]).
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matrix over S. Transitions in C are exponentially distributed over the time, i.e.,
the probability of moving from s to s′ within time τ is P (s, s′) · (1 − e−λ·τ ).

We extend CTMCs by generally distributed events called alarms. A CTMC
with alarms (ACTMC) over a finite set of alarms A is a tuple

A =
(
S, λ, P,A, 〈Sa〉, 〈Pa〉, 〈Fa〉),

where (S, λ, P ) is a CTMC and 〈Sa〉, 〈Pa〉, and 〈Fa〉 are tuples defined as follows:
〈Sa〉 = (Sa)a∈A where Sa is the set of states where an alarm a ∈ A is enabled;
〈Pa〉 = (Pa)a∈A where Pa is a probability matrix of some alarm a ∈ A for
which Pa(s, s) = 1 if s ∈ S\Sa; and 〈Fa〉 = (Fa)a∈A where Fa is the cumulative
distribution function (CDF) according to which the ringing time of an alarm
a ∈ A is distributed. We assume that each distribution has finite mean and
Fa(0) = 0, i.e., a positive ringing time is chosen almost surely. Furthermore, we
require Sa ∩ Sa′ = ∅ for a �= a′, i.e., in each state at most one alarm is enabled.
The set of states where some alarm is enabled is denoted by Son, and we also
use Soff to denote the set S\Son. The pairs (s, s′) ∈ S×S with P (s, s′) > 0
and Pa(s, s′) > 0 are referred to as delay transitions and a-alarm transitions,
respectively.

Operational Behavior. Since in every state only one alarm is active, the
semantics of an ACTMC can be seen as an infinite CTMC amended with a timer
that runs backwards and is set whenever a new alarm is set or the alarm gets dis-
abled. A run of the ACTMC A is an infinite sequence (s0, η0), t0, (s1, η1), t1, . . .
where ηi is the current value of the timer and ti is the time spent in si. If
s0 ∈ Soff , then η0 = ∞. Otherwise, s0 ∈ Sa for some a ∈ A and the value of η0 is
selected randomly according to Fa. In a current configuration (si, ηi), a random
delay t is chosen according to the exponential distribution with rate λ. Then,
the time ti and the next configuration (si+1, ηi+1) are determined as follows:

– If si ∈ Sa and ηi ≤ t, then ti = ηi and si+1 is selected randomly according to
Pa(si, ·). The value of ηi+1 is either set to ∞ or selected randomly according
to Fb for some b ∈ A, depending on whether the chosen si+1 belongs to Soff

or Sb, respectively (note that it may happen that b = a).
– If t < ηi, then ti = t and si+1 is selected randomly according to P (si, ·).

Clearly, if si+1 ∈ Soff , then ηi+1 = ∞. Further, if si+1 ∈ Sb and si �∈ Sb

for some b ∈ A, then ηi+1 is selected randomly according to Fb. Otherwise,
ηi+1 = ηi − t (where ∞ − t = ∞).

Similarly as for standard CTMCs, we define a probability space over all runs
initiated in a given s0 ∈ S. We say that A is strongly connected if its underlying
graph is, i.e., for all s, s′ ∈ S, where s �= s′, there is a finite sequence s0, . . . , sn

of states such that s = s0, s′ = sn, and P (si, si+1) > 0 or Pa(si, si+1) > 0 (for
some a ∈ A) for all 0 ≤ i < n.

Note that the timer is set to a new value in a state s only if s ∈ Sa for some
a ∈ A, and the previous state either does not belong to Sa or the transition used
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to enter s was an alarm transition2. Formally, we say that s ∈ Sa is an a-setting
state if there exists s′ ∈ S such that either Pb(s′, s) > 0 for some b ∈ A, or
s′ �∈ Sa and P (s′, s) > 0. The set of all alarm-setting states is denoted by Sset. If
Sset ∩ Sa is a singleton for each a ∈ A, we say that the alarms in A are localized.

Cost Structures and Mean-Payoff for ACTMCs. We use the standard cost
structures that assign non-negative cost values to both states and transitions
(see, e.g., [27]). More precisely, we consider the following cost functions: R : S →
R≥0, which assigns a cost rate R(s) to every state s such that the cost R(s)
is paid for every time unit spent in s, and functions I, IA : S×S → R≥0 that
assign to each delay transition and each alarm-setting transition, respectively,
an instant execution cost. For every run ω = (s0, η0), t0, (s1, η1), t1, . . . of N we
define the associated mean-payoff by

MP(ω) = lim sup
n→∞

∑n
i=0

(R(si) · ti + J (si, si+1)
)

∑n
i=0 ti

.

Here, J (si, si+1) is either I(si, si+1) or IA(si, si+1) depending on whether ti < ηi

or not, respectively. We use E[MP] to denote the expectation of MP. In general,
MP may take more than one value with positive probability. However, if the
graph of the underlying ACTMC is strongly connected, almost all runs yield the
same mean-payoff value independent of the initial state [9].

2.2 Parametric ACTMCs

In ACTMCs, the distribution functions for the alarms are already fixed. For
example, if alarm a is a timeout, it is set to some concrete value d, i.e., the
associated Fa is a Dirac distribution such that Fa(τ) = 1 for all τ ≥ d and
Fa(τ) = 0 for all 0 ≤ τ < d. Similarly, if a is a random delay selected
uniformly in the interval [0.01, d], then Fa(τ) = 0 for all τ < 0.01 and
Fa(τ) = min{1, (τ − 0.01)/(d − 0.01)} for all τ ≥ 0.01. We also consider alarms
with Weibull distributions, where Fa(τ) = 0 for all τ ≤ 0 and Fa(τ) = 1−e−(τ/d)k

for all τ > 0, where k ∈ N is a fixed constant.3
In the above examples, we can interprete d as a parameter and ask what

parameter values minimize the expected long-run average costs. For simplicity,
we restrict our attention to distributions with only one parameter.4 A parametric
ACTMC is defined similarly as an ACTMC, but instead of the concrete distribu-
tion function Fa, we specify a parameterized distribution function Fa[x] together
with the interval [�a, ua] of eligible parameter values for every a ∈ A. For every

2 In fact, another possibility (which does not require any special attention) is that s
is the initial state of a run.

3 Note that a Weibull distribution with k = 1 is an exponential distribution.
4 In our current setting, distribution functions with several parameters can be accom-

modated by choosing the parameter to optimize and fixing the others. In some cases
we can also use simple extensions to synthesize, e.g., both d1 and d2 for the uniform
distribution in [d1, d2] (see Appendix B in [3]).
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d ∈ [�a, ua], we use Fa[d] to denote the distribution obtained by instantiating
the parameter x with d. Formally, a parametric ACTMC is a tuple

N =
(
S, λ, P,A, 〈Sa〉, 〈Pa〉, 〈Fa[x]〉, 〈�a〉, 〈ua〉)

where all components are defined in the same way as for ACTMC except for the
tuples 〈Fa[x]〉, 〈�a〉, and 〈ua〉 of all Fa[x], �a, and ua discussed above. Strong
connectedness, localized alarms, and cost structures are defined as for (non-
parametric) ACTMCs.

A parameter function for N is a function d : A → R such that d(a) ∈ [�a, ua]
for every a ∈ A. For every parameter function d, we use Nd to denote the
ACTMC obtained from N by replacing each Fa[x] with the distribution function
Fa[d(a)]. We allow only parametric ACTMCs that for each parametric function
yield ACTMC. When cost structures are defined on N , we use E[MPd] to denote
the expected mean-payoff in Nd. For a given ε > 0, we say that a parameter
function d is ε-optimal if

E[MPd] ≤ inf
d′

E[MPd′
] + ε,

where d′ ranges over all parameter functions for N .

2.3 Semi-Markov Decision Processes

A semi-Markov decision process (semi-MDP) is a tuple M = (M,Act , Q, t, c),
where M is a finite set of states, Act =

⊎
m∈M Actm is a set of actions where

Actm �= ∅ is a subset of actions enabled in a state m, Q : Act → D(M) is a
function assigning the probability Q(b)(m′) to move from m ∈ M to m′ ∈ M
executing b ∈ Actm, and functions t, c : Act → R≥0 provide the expected time
and costs when executing an action, respectively.5 A run in M is an infinite
sequence ω = m0, b0,m1, b1, . . . where bi ∈ Actmi

for every i ≥ 0. The mean-
payoff of ω is

MP(ω) = lim sup
n→∞

(∑n

i=0
c(bi)

)
/
(∑n

i=0
t(bi)

)
.

A (stationary and deterministic) strategy for M is a function σ : M → Act
such that σ(m) ∈ Actm for all m ∈ M . Applying σ to M yields the standard
probability measure Prσ over all runs initiated in a given initial state min. The
expected mean-payoff achieved by σ is denoted by E[MPσ

M]. An optimal6 strat-
egy achieving the minimal expected mean-payoff is guaranteed to exist, and it
is computable by a simple policy iteration algorithm (see, e.g., [27]).

κκκ-Approximations of Semi-MDPs. Let M = (M,Act , Q, t, c) be a semi-
MDP, and κ ∈ Q>0. We say that Qκ : Act → D(M) and tκ, cκ : Act → R≥0

5 For our purposes, the actual distribution of the time and costs spent before executing
some action is irrelevant, only their expectations matter, see Sect. 11.4 in [27].

6 This strategy is optimal not only among stationary and deterministic strategies, but
even among all randomized and history-dependent strategies.
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are κ-approximations of Q, t, c, if for all m,m′ ∈ M and b ∈ Actm it holds
that Q(b) and Qκ(b) have the same support, |Q(b)(m′) − Qκ(b)(m′)| ≤ κ,
|t(b) − tκ(b)| ≤ κ, and |c(b) − cκ(b)| ≤ κ. A κ-approximation of M is a semi-
MDP (M,Act , Qκ, tκ, cκ) where Qκ, tκ, cκ are κ-approximations of Q, t, c. We
denote by [M]κ the set of all κ-approximations of M.

3 Synthesizing ε-optimal Parameter Functions

In the following, we fix a strongly connected parametric ACTMC N =
(S, λ, P,A, 〈Sa〉, 〈Pa〉, 〈Fa[x]〉, 〈�a〉, 〈ua〉) with localized alarms and cost functions
R, I, and IA, and aim towards an algorithm synthesizing an ε-optimal parame-
ter function for N . Here, ε-optimality is understood with respect to the expected
mean-payoff. That is, we deal with the following computational problem:
ε-optimal parameter synthesis for parametric ACTMCs with localized alarms.

Input: ε ∈ Q>0, a strongly connected parametric ACTMC N with localized
alarms, rational transition probabilities, rate λ, bounds 〈�a〉,〈ua〉, and
cost functions R,I, and IA.

Output: An ε-optimal parameter function d.

3.1 The Set of Semi-Markov Decision Processes [MN 〈δ〉]κ
Our approach to solve the above problem is based on a reduction to the prob-
lem of synthesizing expected mean-payoff optimal strategies in semi-MDPs. Let
a ∈ A, and let s ∈ Sa ∩ Sset. Recall that N is localized and thus, s is the
uniquely defined a-setting state. Then, for every d ∈ [�a, ua], consider runs ini-
tiated in a configuration (s, η), where η is chosen randomly according to Fa[d].
Almost all such runs eventually visit a regenerative configuration (s′, η′) where
either s′ ∈ Soff or η′ is chosen randomly in s′ ∈ Sset, i.e., either all alarms are
disabled or one is newly set. We use Πs(d) to denote the associated probabil-
ity distribution over Sset ∪ Soff , i.e., Πs(d)(s′) is the probability of visiting a
regenerative configuration of the form (s′, η′) from s without previously visiting
another regenerative configuration. Further, we use es(d) and Θs(d) to denote
the expected accumulated costs and the expected time elapsed until visiting
a regenerative configuration, respectively. We use the same notation also for
s ∈ Soff , where Πs(d) = P (s, ·), es(d) = R(s)/λ+ P (s, ·) · IP , and Θs(d) = 1/λ
are independent of d. The semi-MDP MN = (Sset ∪ Soff ,Act , Q, t, c) is defined
over actions

Act =
{〈〈s, d〉〉 : d ∈ [�a, ua], s ∈ Sset ∩ Sa, a ∈ A

} ∪ {〈〈s, 0〉〉 : s ∈ Soff

}
,

where for all 〈〈s, d〉〉 ∈ Act we have Q(〈〈s, d〉〉) = Πs(d), t(〈〈s, d〉〉) = Θs(d), and
c(〈〈s, d〉〉) = es(d). Note that the action space of MN is dense and that Πs(d),
Θs(d), and es(d) might be irrational. For our algorithms, we have to ensure
a finite action space and rational probability and expectation values. We thus
define the δ-discretization of MN as MN 〈δ〉 = (Sset ∪ Soff ,Actδ, Qδ, tδ, cδ) for
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a given discretization function δ : Sset → Q>0. MN 〈δ〉 is defined as MN above,
but over the action space Actδ =

⋃
s∈Sset∪Soff

Actδ
s with

Actδ
s =

{〈〈s, d〉〉 : d = �a + i · δ(s) < ua, i ∈ N0

} ∪ {〈〈s, ua〉〉}

for s ∈ Sset ∩ Sa and Actδ
s = {〈〈s, 0〉〉} otherwise.

To ensure rational values of Πs(d), Θs(d), and es(d), we consider the set
of κ-approximations [MN 〈δ〉]κ of MN 〈δ〉 for any κ ∈ Q>0. Note that, as N is
strongly connected, every M ∈ [MN 〈δ〉]κ is also strongly connected.

3.2 An Explicit Parameter Synthesis Algorithm

Every strategy σ minimizing the expected mean-payoff in MN yields an optimal
parameter function dσ for N defined by dσ(a) = d where σ(s) = 〈〈s, d〉〉 for the
unique a-setting state s. A naive approach towards an ε-optimal parameter func-
tion minimizing the expected mean-payoff in N is to compute a sufficiently small
discretization function δ, approximation constant κ, and some M ∈ [MN 〈δ〉]κ
such that synthesizing an optimal strategy in M yields an ε-optimal parameter
function for N . As M is finite and contains only rational probability and expec-
tation values, the synthesis of an optimal strategy for M can then be carried
out using standard algorithms for semi-MDP (see, e.g., [27]). This approach is
applicable under the following mild assumptions:

1. For every ε ∈ Q>0, there are computable δ : Sset → Q>0 and κ ∈ Q>0 such
that for every M ∈ [MN 〈δ〉]κ and every optimal strategy σ for M, the
associated parameter function dσ is ε-optimal for N .

2. For all κ ∈ Q>0 and s ∈ Sset, there are computable rational κ-approximations
Πκ

s (d), Θκ
s (d), e

κ
s (d) of Πs, Θs, es.

Assumption 1 usually follows from perturbation bounds on the expected mean-
payoff using a straightforward error-propagation analysis. Assumption 2 can be
obtained, e.g., by first computing κ/2-approximations of Πs, Θs, and es for s ∈
Sset ∩Sa, considering a as alarm with Dirac distribution, and then integrate the
obtained functions over the probability measure determined by Fa[x] to get the
resulting κ-approximation (see also [6,9]). Hence, Assumptions 1 and 2 rule out
only those types of distributions that are rarely used in practice. In particular,
the assumptions are satisfied for uniform, Dirac, and Weibull distributions. Note
that Assumption 2 implies that for all δ : Sset → Q>0 and κ ∈ Q>0, there is a
computable M ∈ [MN 〈δ〉]κ. Usually, this naive explicit approach to parameter
synthesis is computationally infeasible due the large number of actions in M.

3.3 A Symbolic Parameter Synthesis Algorithm

Our symbolic parameter synthesis algorithm computes the set of states of some
M ∈ [MN 〈δ〉]κ (see Assumption 1) but avoids computing the set of all actions
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of M and their effects. The algorithm is obtained by modifying the standard
policy iteration [27] for semi-MDPs.

Standard Policy Iteration Algorithm. When applied to M, standard policy
iteration starts by picking an arbitrary strategy σ, which is then repeatedly
improved until a fixed point is reached. In each iteration, the current strategy
σ is first evaluated by computing the associated gain g and bias h.7 Then, for
each state s ∈ Sset, every outgoing action 〈〈s, d〉〉 is ranked by the function

Fκ
s [g,h](d) = eκ

s (d) − g · Θκ
s (d) + Πκ

s (d) · h (×)

where eκ
s , Θκ

s , and Πκ
s are the determining functions of M. If the action chosen

by σ at s does not have the best (minimal) rank, it is improved by redefining σ(s)
to some best-ranked action. The new strategy is then evaluated by computing its
gain and bias and possibly improved again. The standard algorithm terminates
when for all states the current strategy σ is no improvement to the previous.

Symbolic κ-approximations. In many cases, Πs(d), Θs(d), and es(d) for s ∈
Sset are expressible as infinite sums where the summands comprise elementary
functions such as polynomials or exp(·). Given κ, one may effectively truncate
these infinite sums into finitely many initial summands such that the obtained
expressions are differentiable in the interval [�a, ua] and yield the analytical κ-
approximations ΠΠΠκ

s (d), ΘΘΘκ
s (d), and eeeκ

s (d), respectively. Now we can analytically
approximate Fκ

s [g,h](d) by the value FFFκ
s [g,h](d) obtained from (×) by using the

analytical κ-approximations:

FFFκ
s [g,h](d) = eeeκ

s (d) − g · ΘΘΘκ
s (d) +ΠΠΠκ

s (d) · h. ()

This function is differentiable for d ∈ [�a, ua] when g and h are constant. Note
that the discretized parameters minimizing Fκ

s [g,h](d) are either close to �a, ua,
or roots of the derivative of FFFκ

s [g,h](d). Using the isolated roots and bounds
�a and ua, we identify a small set of candidate actions and explicitly evaluate
only those instead of all actions. Note, that ΠΠΠκ

s (d), ΘΘΘκ
s (d), eeeκ

s (d) may return
irrational values for rational arguments. Hence, they cannot be evaluated pre-
cisely even for the discretized parameter values. However, when Assumption 2
is fulfilled, it is safe to use rational κ-approximations Πκ

s (d), Θκ
s (d), e

κ
s (d) for

this purpose. Before we provide our symbolic algorithm, we formally state the
additional assumptions required to guarantee its soundness:

3. For all a ∈ A, s ∈ Sset ∩ Sa, δ : Sset → Q>0 and κ ∈ Q>0, there are analyti-
cal κ-approximations ΠΠΠκ

s , ΘΘΘκ
s , eeeκ

s of Πs, Θs, es, respectively, such that the
function FFFκ

s [g,h](d), where g ∈ Q and h : Sset ∪Soff → Q are constant, is dif-
ferentiable for d ∈ [�a, ua]. Further, there is an algorithm approximating the
roots of the derivative of FFFκ

s [g,h](d) in the interval [�a, ua] up to the absolute
error δ(s).

7 Here, it suffices to know that g is a scalar and h is a vector assigning numbers to
states; for more details, see Sects. 8.2.1 and 8.6.1 in [27].
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Algorithm 1. Symbolic policy iteration
input : A strongly connected parametric ACTMC N with localized alarms,

rational cost functions R, IP , IPa , and ε ∈ Q>0 such that
Assumptions 1–4 are fulfilled.

output: An ε-optimal parameter function d.

1 compute the sets Sset and Soff

2 compute δ, κ, and Πmin
s of Assumptions 1 and 4

3 let ξ = min{κ/4, Πmin
s /3 : where s ∈ Sset}

4 fix the functions Πξ
s , Θξ

s ,eξ
s of Assumption 2 determining Mξ ∈ [MN 〈δ〉]ξ

5 choose an arbitrary state s′ ∈ Sset ∪ Soff and a strategy σ′ for Mξ

6 repeat
7 σ := σ′

// policy evaluation

8 compute the gain, i.e., the scalar g := E[MPσ]

9 compute the bias, i.e., the vector h : S → Q satisfying h(s′) = 0 and for each
s ∈ Sset ∪ Soff , h(s) = eξ

s(d) − g · Θξ
s(d) + Πξ

s (d) · h, where σ(s) = 〈〈s, d〉〉
10 foreach a ∈ A and s ∈ Sset ∩ Sa do

// policy improvement

11 compute the set R of δ(s)/2-approximations of the roots of the
derivative of FFF ξ

s[g,h](d) in [
a, ua] using Assumption 3

12 C := {σ(s)} ∪ {〈〈s, d〉〉 ∈ Actδ
s : |d − r| ≤ 3 · δ(s)/2, for r ∈ R ∪ {
a, ua}}

13 B := argmin
〈〈s,d〉〉∈C

F ξ
s [g,h](d)

14 if σ(s) ∈ B then σ′(s) := σ(s)
15 else σ′(s) := 〈〈s, d〉〉 where 〈〈s, d〉〉 ∈ B

16 until σ = σ′

17 return dσ

4. For each s ∈ Sset (let a be the alarm of s) there is a computable constant
Πmin

s ∈ Q>0 such that for all d ∈ [�a, ua] and s′ ∈ Sset ∪ Soff we have that
Πs(d)(s′) > 0 implies Πs(d)(s′) ≥ Πmin

s .

Note that compared to Assumption 2, the κ-approximations of Assumption 3
are harder to construct: we require closed forms for ΠΠΠκ

s , ΘΘΘκ
s , and eeeκ

s making
the symbolic derivative of FFFκ

s [g,h](d) computable and suitable for effective root
approximation.

Symbolic Policy Iteration Algorithm. Algorithm1 closely mimics the stan-
dard policy iteration algorithm except for the definition of new precision ξ at
line 3 and the policy improvement part. The local extrema points of FFF ξ

s[g,h](d)
(cf. Eq. ()) in the interval [�a, ua] are identified by computing roots of its
symbolic derivative (line 11). Then, we construct a small set C of candi-
date actions that are close to these roots and the bounds �a, ua (line 12).
Each given candidate action is then evaluated using the function F ξ

s [g,h](d) =
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eξ
s(d) − g · Θξ

s(d) + Πξ
s (d) · h (cf. Eq. (×)). An improving candidate action is

chosen based on the computed values (lines 14–15).

Theorem 1 (Correctness of Algorithm 1). The symbolic policy iteration
algorithm effectively solves the ε-optimal parameter synthesis problem for para-
metric ACTMCs and cost functions that fulfill Assumptions 1–4.

Proof (Sketch). Since the number of actions of Mξ is finite, Algorithm1 ter-
minates. A challenging point is that we compute only approximate minima of
the function FFF ξ

s[g,h](d), which is different from the function F ξ
s [g,h](d) used to

evaluate the candidate actions. There may exist an action that is not in the can-
didate set C even if it has minimal F ξ

s [g,h](d). Hence, the strategy computed by
Algorithm1 is not necessarily optimal for Mξ. Fortunately, due to Assumption 1,
the strategy induces ε-optimal parameters for any parametric ACTMC if it is
optimal for some M′ ∈ [MN 〈δ〉]κ. Therefore, for each s ∈ Sset we construct Π ′

s,
Θ′

s, and e′
s determining such M′. Omitting the details, the functions Π ′

s, Θ′
s,

e′
s are constructed from Πξ

s , eξ
s, Θξ

s and slightly (by at most 2ξ) shifted ΠΠΠξ
s, eeeξ

s,
ΘΘΘξ

s. The constant ξ was chosen sufficiently small such that the shifted ΠΠΠξ
s, eeeξ

s,
ΘΘΘξ

s are still κ-approximations of Πs, Θs, es and the shifted ΠΠΠξ
s(d)(·) is a correct

distribution for each d ∈ [�a, ua]. The technical details of the construction are
provided in Appendix A of [3]. �

The following theorem implies that the explicit and symbolic algorithms are
applicable to parametric ACTMCs with uniform, Dirac, exponential, or Weibull
distributions. The proof is technical, see Appendix B of [3].

Theorem 2. Assumptions 1–4 are fulfilled for parametric ACTMCs with ratio-
nal cost functions where for all a ∈ A we have that Fa[x] is either a uniform,
Dirac, exponential, or Weibull distribution.

4 Experimental Evaluation

We demonstrate feasibility of the symbolic algorithm presented in Sect. 3 on
the running example of Fig. 1 and on a preventive maintenance model inspired
by [12]. The experiments were carried out8 using our prototype implementation
of the symbolic algorithm implemented in Maple [4]. Maple is appropriate
as it supports the root isolation of univariate polynomials with arbitrary high
precision due to its symbolic engine. The implementation currently supports
Dirac and uniform distributions only, but could be easily extended by other
distributions fulfilling Assumptions 1–4.

Disk Drive Model. In the running example of this paper (see Sect. 1 and Fig. 1)
we aimed towards synthesizing delays ds and dw such that the long-run average
power consumption of the disk drive is ε-optimal. Let us describe the impact

8 All the computations were run on a machine equipped with Intel CoreTM i7-3770
CPU processor at 3.40 GHz and 8GiB of DDR RAM.
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of choosing delay values ds and dw on the expected mean-payoff in more detail.
In Fig. 2 (left), we illustrate the trade-off between choosing different delays dw

depending on delays ds ∈ {0.1, 10} and queue sizes N ∈ {2, 8}. When the queue
is small, e.g., N = 2 (dashed curves), the expected mean-payoff is optimal for
large ds (here, ds = 10). Differently, when the queue size is large, e.g., N = 8
(solid curves), it is better to choose small ds (here, ds = 0.1) to minimize the
expected mean-payoff with dw chosen at the minimum of the solid curve at
around 3.6. This illustrates that the example is non-trivial.

Fig. 2. Results for the disk drive example: optimal expected mean-payoff (left), and
trade-off illustrated by the synthesized delay values (right)

The results of applying our synthesis algorithm for determining ε-optimal
delays ds and dw depending on different queue sizes N ∈ {1, ..., 8} with common
delay bounds � = 0.1 and u = 10 are depicted in Fig. 2 (right). From this
figure we observe that for increasing queue sizes, also the synthesized value dw

increases, whereas the optimal value for ds is u in case N < 6 and � otherwise.

Fig. 3. Statistics of the symbolic
algorithm applied to the disk drive
example

Fig. 4. Results and statistics of the
symbolic algorithm applied to the pre-
ventive maintenance example
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The table in Fig. 3 shows the running time of creation and solving of the
Maple models, as well as the largest polynomial degrees for selected queue
sizes N = {2, 4, 6, 8} and error bounds ε = {0.1, 0.01, 0.001, 0.0005}. In all cases,
discretization step sizes of 10−6 · 10−19 < δ(·) < 10−19 were required to obtain
results guaranteeing ε-optimal parameter functions. These small discretization
constants underpin that the ε-optimal parameter synthesis problem cannot be
carried out using the explicit approach (our implementation of the explicit algo-
rithm runs out of memory for all of the listed instances). However, the symbolic
algorithm evaluating roots of polynomials with high degree is capable to solve
the problem within seconds in all cases. This can be explained through the small
number of candidate actions we had to consider (always at most 200).

Fig. 5. Preventive maintenance of a server.

Preventive Maintenance. As depicted in Fig. 5, we consider a slightly modi-
fied model of a server that is susceptible to software faults [12]. A rejuvenation
is the process of performing preventive maintenance of the server after a fixed
period of time (usually during night time) to prevent performance degradation
or even failure of the server. The first row of states in Fig. 5 represents the normal
behavior of the server. Jobs arrive with rate 2 and are completed with rate 3. If
job arrives and queue is full, it is rejected what is penalized by cost 6. Degrada-
tion of server is modeled by delay transitions of rates 1 leading to degrad states
of the second row or eventually leading to the failed state. The failure causes
rejection of all jobs in the queue and incurs cost 4 for each rejected job. After
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the failure is reported (delay event with rate 3), the repair process is initiated
and completed after two exponentially distributed steps of rate 1. The repair can
also fail with a certain probability (rate 0.1), thus after uniformly distributed
time, the repair process is restarted. After each successful repair, the server is
initialized by an exponential event with rate 3. The rejuvenation procedure is
enabled after staying in normal or degrad states for time do. Then the rejuvena-
tion itself is initiated after all jobs in the queue are completed. The rejuvenation
procedure behaves similarly as the repair process, except that it is two times
faster (all rates are multiplied by two).

First, we want to synthesize the value of the delay after which the rejuve-
nation is enabled, i.e., we aim towards the optimal schedule for rejuvenation.
Furthermore, we synthesize the shifts dp and dq of the uniform distributions
with length 2 associated with rejuvenation and repair, respectively, i.e., the corre-
sponding uniform distribution function is Fx[dx](τ) = min{1,max{0, τ −dx/2}},
where x ∈ {p, q}. The interval of eligible values is [0.1, 10] for all synthesized
parameters. Similarly as for previous example we show results of experiments
for queue sizes N = {2, 4, 6, 8} and error bounds ε = {0.1, 0.01, 0.001, 0.0001} in
Fig. 4. The CPU time of model creation grows (almost quadratically) to the num-
ber of states, caused by multiplication of large matrices in Maple. As within the
disk-drive example, we obtained the solutions very fast since we had to consider
small number of candidate actions (always at most 500).

Optimizations in the Implementation. For the sake of a clean presentation
in this paper, we established global theoretical upper bounds on δ and κ sufficient
to guarantee ε-optimal solutions, see Appendix B of [3]. The theoretical bounds
assume the worst underlying transition structure of a given ACTMC. In the
prototype implementation, we applied some optimizations mainly computing
local upper bounds for each state in the constructed semi-MDP. Also, to achieve
better perturbation bounds on the expected mean-payoff, i.e., to compute bounds
on expected time and cost to reach some state from all other states, we rely on
techniques presented in [6,20]. Using these optimizations, for instance in the
experiment of disk drive model, some discretization bounds δ were improved
from 2.39 · 10−239 to 7.03 · 10−19. Note that even with these optimizations, the
explicit algorithm for parameter synthesis would not be feasible as, more than
1018 actions would have to be considered for each state. This would clearly exceed
the memory limit of state-of-the art computers.
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Abstract. Interval Markov decision processes (IMDPs) generalise
classical MDPs by having interval-valued transition probabilities. They
provide a powerful modelling tool for probabilistic systems with an addi-
tional variation or uncertainty that prevents the knowledge of the exact
transition probabilities. In this paper, we consider the problem of multi-
objective robust strategy synthesis for interval MDPs, where the aim is to
find a robust strategy that guarantees the satisfaction of multiple prop-
erties at the same time in face of the transition probability uncertainty.
We first show that this problem is PSPACE-hard. Then, we provide a
value iteration-based decision algorithm to approximate the Pareto set
of achievable points. We finally demonstrate the practical effectiveness
of our proposals by applying them on several real-world case studies.

1 Introduction

Interval Markov Decision Processes (IMDPs) extend the classical Markov Deci-
sion Processes (MDPs) by including uncertainty over the transition probabilities.
Instead of a single value for the probability of taking a transition, IMDPs allow
ranges of probabilities given as closed intervals. IMDPs are thus a powerful mod-
elling tool for probabilistic systems with an additional variation or uncertainty
concerning the knowledge of exact transition probabilities. They are well suited
to represent realistic stochastic systems that, for instance, evolve in unknown
environments with bounded behaviour or do not preserve the Markov property.

Since their introduction (under the name of bounded-parameter MDPs) [15],
IMDPs have been receiving a lot of attention in the formal verification com-
munity. They are particularly viewed as the appropriate abstraction model for
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uncertain systems with large state spaces, including continuous dynamical sys-
tems, for the purpose of analysis, verification, and control synthesis. Several
model checking and control synthesis techniques have been developed [31,32,34]
causing a boost in the applications of IMDPs, ranging from verification of con-
tinuous stochastic systems (e.g., [22]) to robust strategy synthesis for robotic
systems (e.g., [24–26,34]).

In recent years, there has been an increasing interest in multi-objective strat-
egy synthesis for probabilistic systems [5,10,13,14,21,27,29,30,33]. The goal is
first to provide a complete trade-off analysis of several, possibly conflicting, quan-
titative properties and then to synthesise a strategy that guarantees the desired
behaviour. Such properties, for instance, ask to “find a robot strategy that max-
imises psafe, the probability of successfully completing a track by safely maneu-
vering between obstacles, while minimising ttravel, the total expected travel
time”. This example has competing objectives: maximising psafe, which requires
the robot to be conservative, and minimising ttravel, which causes the robot to
be reckless. In such contexts, the interest is in the Pareto curve of the possible
solution points: the set of all pairs of (psafe, ttravel) for which an increase in the
value of psafe must induce an increase in the value of ttravel, and vice versa. Given
a point on the curve, the computation of the corresponding strategy is asked.

Existing multi-objective synthesis frameworks are limited to MDP models.
The algorithms use iterative methods (similar to value iteration) for the com-
putation of the Pareto curve and rely on reductions to linear programming
for strategy synthesis. As discussed above, MDPs, however, are constrained to
single-valued transition probabilities, posing severe limitations for many real-
world systems.

In this paper, we present a novel technique for multi-objective strategy syn-
thesis for IMDPs. Our aim is to synthesise a robust strategy that guarantees
the satisfaction of the multi-objective property, despite the additional uncer-
tainty over the transition probabilities. Our approach views the uncertainty as
making adversarial choices among the available transition probability distribu-
tions induced by the intervals, as the system evolves along state transitions. We
refer to this as the controller synthesis semantics. We first analyse the problem
complexity, proving that it is PSPACE-hard and then develop a value iteration-
based decision algorithm to approximate the Pareto curve. We present promising
results on a variety of case studies, obtained by prototypical implementations of
all algorithms, to show the effectiveness of our approach.

Related Work. Related work can be grouped into two main categories: uncertain
Markov model formalisms and model checking/synthesis algorithms.

Firstly, regarding the modelling frameworks, various probabilistic modelling
formalisms with uncertain transitions are studied in the literature. Interval
Markov Chains (IMC s) [19,20] or abstract Markov chains [12] extend stan-
dard discrete-time Markov Chains (MCs) with interval uncertainties. They do
not feature the non-deterministic choices of transitions. Uncertain MDPs [32]
allow more general sets of distributions to be associated with each transition,
not only those described by intervals. They usually are restricted to rectangular
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uncertainty sets requiring that the uncertainty is linear and independent for any
two transitions of any two states. Parametric MDPs [16], to the contrary, allow
such dependencies as every probability is described as a rational function of a
finite set of global parameters. IMDPs extend IMC s by inclusion of nondeter-
minism and are a subset of uncertain MDPs and parametric MDPs.

Secondly, regarding the algorithms, several verification methods for uncertain
Markov models have been proposed. The problems of computing reachability
probabilities and expected total reward for IMC s and IMDPs were first investi-
gated in [8,35]. Then, several of their PCTL and LTL model checking algorithms
were introduced in [2,6,8,22,32,34], respectively. As regards to strategy synthe-
sis algorithms, the work in [16,28] considered synthesis for parametric MDPs
and MDPs with ellipsoidal uncertainty in the verification community. In the
control community, such synthesis problems were mostly studied for uncertain
Markov models in [15,28,35] with the aim to maximise expected finite-horizon
(un)discounted rewards. All these works, however, consider solely single objec-
tive properties, and their extension to multi-objective synthesis is not trivial.

Multi-objective model checking of probabilistic models with respect to var-
ious quantitative objectives has been recently investigated in a few works. The
works in [11,13,14,21] focused on multi-objective verification of ordinary MDPs.
In [7], these algorithms were extended to the more general models of 2-player
stochastic games. These models, however, cannot capture the continuous uncer-
tainty in the transition probabilities as IMDPs do. For the purposes of synthesis
though, it is possible to transform an IMDP into a 2-player stochastic game;
nevertheless, such a transformation raises an extra exponential factor to the
complexity of the decision problem. This exponential blowup has been avoided
in our setting.

2 Preliminaries

For a set X, denote by Disc(X) the sets of discrete probability distributions
over X. A discrete probability distribution ρ is a function ρ : X → R≥0 such that∑

x∈X ρ(x) = 1; for X ′ ⊆ X, we write ρ(X ′) for
∑

x∈X′ ρ(x). Given ρ ∈ Disc(X),
we denote by Supp(ρ) the set {x ∈ X | ρ(x) > 0 }, and by δx, where x ∈ X, the
Dirac distribution such that δx(y) = 1 for y = x, 0 otherwise. For a distribution
ρ, we also write ρ = { (x, px) | x ∈ X } where px is the probability of x.

For a vector x ∈ R
n we denote by xi, its i-th component, and we call x a

weight vector if xi ≥ 0 for all i and
∑n

i=1 xi = 1. The Euclidean inner product
x · y of two vectors x,y ∈ R

n is defined as
∑n

i=1 xi · yi. For a set of vectors
S = {s1, . . . , st} ⊆ R

n, we say that s ∈ R
n is a convex combination of elements

of S, if s =
∑t

i=1 wi · si for some weight vector w ∈ R
t
≥0. Furthermore, we

denote by S↓ the downward closure of the convex hull of S which is defined as
S↓ = {y ∈ R

n | y ≤ z for some convex combination z of S }. For a given convex
set X, we say that a point x ∈ X is on the boundary of X, denoted by x ∈ ∂X,
if for every ε > 0 there is a point y /∈ X such that the Euclidean distance
between x and y is at most ε. Given a downward closed set X ∈ R

n, for any
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z ∈ R
n such that z ∈ ∂X or z /∈ X, there is a weight vector w ∈ R

n such that
w · z ≥ w · x for all x ∈ X [3]. We say that w separates z from X↓. Given
a set Y ⊆ R

k, we call a vector y ∈ Y Pareto optimal in Y if there does not
exist a vector z ∈ Y such that y ≤ z and y �= z. We define the Pareto set or
Pareto curve of Y to be the set of all Pareto optimal vectors in Y , i.e., Pareto
set Y = {y ∈ Y | y is Pareto optimal }.

2.1 Interval Markov Decision Processes

We now define Interval Markov Decision Processes (IMDPs) as an extension of
MDPs, which allows for the inclusion of transition probability uncertainties as
intervals. IMDPs belong to the family of uncertain MDPs and allow to describe
a set of MDPs with identical (graph) structures that differ in distributions asso-
ciated with transitions. Formally,

Definition 1 (IMDPs). An Interval Markov Decision Process (IMDP) M is
a tuple (S, s̄,A, I ), where S is a finite set of states, s̄ ∈ S is the initial state,
A is a finite set of actions, and I : S × A × S → I ∪ {[0, 0]} is a total interval
transition probability function where I = { [a, b] | 0 < a ≤ b ≤ 1 }.
Given s ∈ S and a ∈ A, we call ha

s ∈ Disc(S) a feasible distribution reach-
able from s by a, denoted by s

a−→ ha
s , if, for each state s′ ∈ S, we have

ha
s(s′) ∈ I (s, a, s′). We denote the set of feasible distributions for state s

and action a by Ha
s , i.e., Ha

s = { ha
s ∈ Disc(S) | s

a−→ ha
s } and we denote

the set of available actions at state s ∈ S by A(s), i.e., A(s) = { a ∈
A | Ha

s �= ∅ }. We assume that A(s) �= ∅ for all s ∈ S. We define the
size of M, written |M|, as the number of non-zero entries of I , i.e., |M| =
|{ (s, a, s′, ι) ∈ S × A × S × I | I (s, a, s′) = ι }| ∈ O(|S|2 · |A|).

A path ξ in M is a finite or infinite sequence of alternating states and
actions ξ = s0a0s1 . . ., ending with a state if finite, such that for each i ≥ 0,
I (si, ai, si+1) ∈ I. The i-th state (action) along the path ξ is denoted by ξ[i]
(ξ(i)) and, if the path is finite, we denote by last(ξ) its last state. The sets of all
finite and infinite paths in M are denoted by FPaths and IPaths, respectively.

The nondeterministic choices between available actions and feasible distrib-
utions present in an IMDP are resolved by strategies and natures, respectively.

Definition 2 (Strategy and Nature in IMDPs). Given an IMDP M, a
strategy is a function σ : FPaths → Disc(A) such that for each ξ ∈ FPaths,
σ(ξ) ∈ Disc(A(last(ξ)). A nature is a function π : FPaths × A → Disc(S) such
that for each ξ ∈ FPaths and a ∈ A(s), π(ξ, a) ∈ Ha

s where s = last(ξ). The sets
of all strategies and all natures are denoted by Σ and Π, respectively.

Given a finite path ξ of an IMDP, a strategy σ, and a nature π, the system
evolution proceeds as follows: let s = last(ξ). First, an action a ∈ A(s) is chosen
probabilistically by σ. Then, π resolves the uncertainties and chooses one fea-
sible distribution ha

s ∈ Ha
s . Finally, the next state s′ is chosen according to the

distribution ha
s , and the path ξ is extended by s′.
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A strategy σ and a nature π induce a probability measure over paths as fol-
lows. The basic measurable events are the cylinder sets of finite paths, where the
cylinder set of a finite path ξ is the set Cylξ = { ξ′ ∈ IPaths | ξ is a prefix of ξ′ }.
The probability Prσ,π

M of a state s′ is defined to be Prσ,π
M [Cyls′ ] = δs̄(s′) and

the probability Prσ,π
M [Cylξas′ ] of traversing a finite path ξas′ is defined to be

Prσ,π
M [Cylξas′ ] = Prσ,π

M [Cylξ] · σ(ξ)(a) · π(ξ, a)(s′). Then, Prσ,π
M extends uniquely

to the σ-field generated by cylinder sets.
In order to model additional quantitative measures of an IMDP, we associate

rewards to the enabled actions. This is done by means of reward structures.

Definition 3 (Reward Structure). A reward structure for an IMDP is a
function r : S × A → R that assigns to each state-action pair (s, a), where s ∈ S
and a ∈ A(s), a reward r(s, a) ∈ R. Given a path ξ and k ∈ N ∪ {∞}, the total
accumulated reward in k steps for ξ over r is r[k](ξ) =

∑k−1
i=0 r(ξ[i], ξ(i)).

Note that we allow negative rewards in this definition, but that due to later
assumptions their use is restricted.

s

t u

a, 3 b, 1
[
1 3
,

2 3
]

[ 1
10 , 1][

2
5
,
3
5
]

[ 14 , 23 ]

a, 0

[1, 1] b, 0

[1, 1]

Fig. 1. An example of IMDP.

As an example of IMDP with a reward
structure, consider the IMDP M depicted in
Fig. 1. The set of states is S = {s, t, u} with s
being the initial one. The set of actions is A =
{a, b}, and the non-zero transition probabil-
ity intervals are I (s, a, t) = [13 , 2

3 ], I (s, a, u) =
[ 1
10 , 1], I (s, b, t) = [25 , 3

5 ], I (s, b, u) = [14 , 2
3 ],

I (t, a, t) = I (u, b, u) = [1, 1], and I (t, b, t) =
I (u, a, u) = [0, 0]. The underlined numbers
indicate the reward structure r such that
r(s, a) = 3, r(s, b) = 1, and r(t, a) = r(u, b) = 0. Note that since Hb

t = Ha
u = ∅,

then r(t, b) and r(u, a) are undefined.

3 Multi-objective Robust Strategy Synthesis for IMDPs

In this paper, we consider two main classes of properties for IMDPs; the proba-
bility of reaching a target and the expected total reward. The reason that we focus
on these properties is that their algorithms usually serve as the basis for more
complex properties. For instance, they can be easily extended to answer queries
with linear temporal logic properties as shown in [11]. To this aim, we lift the
satisfaction definitions of these two classes of properties from MDPs in [13,14]
to IMDPs by encoding the notion of robustness for strategies.

Note that all proofs are contained in the extended version of the paper [17].

Definition 4 (Reachability Predicate & its Robust Satisfaction). A
reachability predicate [T ]≤k

∼p consists of a set of target states T ⊆ S, a rela-
tional operator ∼ ∈ {≤,≥}, a rational probability bound p ∈ [0, 1] ∩ Q and a
time bound k ∈ N∪ {∞}. It indicates that the probability of reaching T within k
time steps satisfies ∼ p.
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Robust satisfaction of [T ]≤k
∼p by IMDP M under strategy σ ∈ Σ is denoted by

M�σ |=Π [T ]≤k
∼p and indicates that the probability of the set of all paths that reach

T under σ satisfies the bound ∼ p for every choice of nature π ∈ Π. Formally,
M�σ |=Π [T ]≤k

∼p iff Prσ
M(�≤k T ) ∼ p where Prσ

M(�≤k T ) = optπ∈Π Prσ,π
M { ξ ∈

IPaths | ∃i ≤ k : ξ[i] ∈ T } and opt = min if ∼ = ≥ and opt = max if ∼ = ≤.
Furthermore, σ is referred to as a robust strategy.

Definition 5 (Reward Predicate & its Robust Satisfaction). A reward
predicate [r]≤k

∼r consists of a reward structure r, a time bound k ∈ N ∪ {∞}, a
relational operator ∼ ∈ {≤,≥} and a reward bound r ∈ Q. It indicates that the
expected total accumulated reward within k steps satisfies ∼ r.

Robust satisfaction of [r]≤k
∼r by IMDP M under strategy σ ∈ Σ is denoted by

M�σ |=Π [r]≤k
∼r and indicates that the expected total reward over the set of all

paths under σ satisfies the bound ∼ r for every choice of nature π ∈ Π. Formally,
M�σ |=Π [r]≤k

∼r iff ExpTotσ,k
M [r] ∼ r where ExpTotσ,k

M [r] = optπ∈Π

∫
ξ
r[k]ξ dPrσ,π

M
and opt = min if ∼ = ≥ and opt = max if ∼ = ≤. Furthermore, σ is referred
to as the robust strategy.

For the purpose of algorithm design, we also consider weighted sum of rewards.

Definition 6 (Weighted Reward Sum). Given a weight vector w ∈ R
n,

vector of time bounds k = (k1, . . . , kn) ∈ (N ∪ {∞})n and reward structures
r = (r1, . . . , rn) for IMDP M, the weighted reward sum w · r[k] over a path
ξ is defined as w · r[k](ξ) =

∑n
i=1 wi · ri[k](ξ). The expected total weighted

sum is defined as ExpTotσ,k
M [w · r] = maxπ∈Π

∫
ξ
w · r[k](ξ) dPrσ,π

M for bounds ≤
and accordingly minimises over natures for ≥; for a given strategy σ, we have:
ExpTotσ,k

M [w · r] =
∑n

i=1 wi · ExpTotσ,ki

M [ri].

3.1 Multi-objective Queries

Multi-objective properties for IMDPs essentially require multiple predicates to
be satisfied at the same time under the same strategy for every choice of the
nature. We now explain how to formalise multi-objective queries for IMDPs.

Definition 7 (Multi-objective Predicate). A multi-objective predicate is
a vector ϕ = (ϕ1, . . . , ϕn) of reachability or reward predicates. We say that ϕ
is satisfied by IMDP M under strategy σ for every choice of nature π ∈ Π,
denoted by M�σ |=Π ϕ if, for each 1 ≤ i ≤ n, it is M�σ |=Π ϕi. We refer to σ
as a robust strategy. Furthermore, we call ϕ a basic multi-objective predicate if it
is of the form ([r1]

≤k1
≥r1

, . . . , [rn]≤kn

≥rn
), i.e., it includes only lower-bounded reward

predicates.

We formulate multi-objective queries for IMDPs in three ways, namely syn-
thesis queries, quantitative queries and Pareto queries. Due to lack of space, we
only focus on the synthesis queries and discuss the other types of queries in [17,
Appendix C].
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Definition 8 (Synthesis Query). Given an IMDP M and a multi-objective
predicate ϕ, the synthesis query asks if there exists a robust strategy σ ∈ Σ such
that M�σ |=Π ϕ.

Note that the synthesis queries check for the existence of a robust strategy that
satisfies a multi-objective predicate ϕ for every resolution of nature. In order to
avoid unusual behaviours in strategy synthesis such as infinite total expected
reward, we restrict the usage of rewards by assuming reward-finiteness for the
strategies that satisfy the reachability predicates in ϕ.

Assumption 1 (Reward-finiteness). Suppose that an IMDP M and a
synthesis query ϕ are given. Let ϕ = ([T1]≤k1∼p1

, . . . , [Tn]≤kn∼pn
, [rn+1]

≤kn+1∼rn+1 , . . . ,

[rm]≤km∼rm
). We say that ϕ is reward-finite if for each n + 1 ≤ i ≤ m such that

ki = ∞, sup{ExpTotσ,ki

M [ri] | M�σ |=Π ([T1]≤k1∼p1
, . . . , [Tn]≤kn∼pn

) } < ∞.

Due to lack of space, we provide in [17, Appendix B] a method to check for
this assumption, a preprocessing procedure that removes actions with non-zero
rewards from the end components of the IMDP, and a proof for its correctness.
Therefore, in the rest of the paper, we assume that all queries are reward-finite,
and the IMDP does not include actions with non-zero rewards in its end com-
ponents. Furthermore, for the soundness of our analysis we also require that
for any IMDP M and ϕ given as in Assumption 1: (i) each reward structure
ri assigns only non-negative values; (ii) ϕ is reward-finite; and (iii) for indices
n + 1 ≤ i ≤ m such that ki = ∞, either all ∼is are ≤ or all are ≥.

3.2 Robust Strategy Synthesis

We first study the computational complexity of multi-objective robust strategy
synthesis problem for IMDPs. Formally,

Theorem 9. Given an IMDP M and a multi-objective predicate ϕ, the problem
of synthesising a strategy σ ∈ Σ such that M�σ |=Π ϕ is PSPACE-hard.

As the first step towards derivation of a solution approach for the robust
strategy synthesis problem, we need to convert all reachability predicates to
reward predicates and therefore, to transform an arbitrarily given query to a
query over a basic predicate on a modified IMDP. This can be simply done by
adding, once for all, a reward of one at the time of reaching the target set and also
negating the objective of predicates with upper-bounded relational operators.
We correct and extend the procedure in [14] to reduce a general multi-objective
predicate on an IMDP model to a basic form.

Proposition 10. Given an IMDP M = (S, s̄,A, I ) and a multi-objective
predicate ϕ = ([T1]≤k1∼1p1

, . . . , [Tn]≤kn∼npn
, [rn+1]

≤kn+1∼n+1rn+1 , . . . , [rm]≤km∼mrm
), let M′ =

(S′, s̄′,A′, I ′) be the IMDP whose components are defined as follows: S′ =
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S × 2{1,...,n}; s̄′ = (s̄, ∅); A′ = A × 2{1,...,n}; and for all s, s′ ∈ S, a ∈ A,
and v, v′, v′′ ⊆ {1, . . . , n},

I ′((s, v), (a, v′), (s′, v′′)) =

{
I (s, a, s′) if v′ = { i | s ∈ Ti } \ v and v′′ = v ∪ v′,
[0, 0] otherwise.

Now, let ϕ′ = ([rT1 ]
≤k1+1
≥p′

1
, . . . , [rTn

]≤kn+1
≥p′

n
, [r̄n+1]

≤kn+1

≥r′
n+1

, . . . , [r̄m]≤km

≥r′
m

) where, for
each i ∈ {1, . . . , n},

p′
i =

{
pi if ∼i = ≥,

−pi if ∼i = ≤;
and rTi

((s, v), (a, v′)) =

⎧
⎪⎨

⎪⎩

1 if i ∈ v′ and ∼i = ≥,

−1 if i ∈ v′ and ∼i = ≤,

0 otherwise;

and, for each j ∈ {n + 1, . . . ,m},

r′
j =

{
rj if ∼j = ≥,

−rj if ∼j = ≤;
and r̄j((s, v), (a, v′)) =

{
rj(s, a) if ∼j = ≥,

−rj(s, a) if ∼j = ≤.

Then ϕ is satisfiable in M if and only if ϕ′ is satisfiable in M′.

We therefore need to only consider the basic multi-objective predicates of the
form ([r1]

≤k1
≥r1

, . . . , [rn]≤kn

≥rn
) for the purpose of robust strategy synthesis. For a

basic multi-objective predicate, we define its Pareto curve as follows.

Definition 11 (Pareto Curve of a Multi-objective Predicate). Given an
IMDP M and a basic multi-objective predicate ϕ = ([r1]

≤k1
≥r1

, . . . , [rn]≤kn

≥rn
), we

define the set of achievable values with respect to ϕ as AM,ϕ = { (r1, . . . , rn) ∈
R

n | ([r1]
≤k1
≥r1

, . . . , [rn]≤kn

≥rn
) is satisfiable }. We define the Pareto curve of ϕ to be

the Pareto curve of AM,ϕ and denote it by PM,ϕ.

To illustrate the transformation presented in Proposition 10, consider again
the IMDP depicted in Fig. 1. Assume that the target set is T = {t} and con-
sider the property ϕ = ([T ]≤1

≥ 1
3
, [r]≤1

≥ 1
4
). The reduction converts ϕ to the property

ϕ′ = ([rT ]≤2

≥ 1
3
, [r]≤1

≥ 1
4
) on the modified M′ depicted in Fig. 2a. We show two dif-

ferent reward structures r̄ and rT besides each action, respectively. In Fig. 2b
we show the Pareto curve for this property. As we see, until required probability
1
3 to reach T , the maximal reward value is 3. Afterwards, the reward obtainable
linearly decreases, until at required probability 2

5 it is just 1. For higher required
probabilities, the problem becomes infeasible. The reason for this behaviour is
that, up to minimal probability 1

3 , action a can be chosen in state s, because the
lower interval bound to reach t is 1

3 , which in turn leads to a reward of 3 being
obtained. For higher reachability probabilities required, choosing action b with
a certain probability is required, which however provides a lower reward. There
is no strategy with which t is reached with a probability larger than 2

5 .
It is not difficult to see that the Pareto curve is in general an infinite set,

and therefore, it is usually not possible to derive an exact representation of it
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Fig. 2. Example of IMDP transformation. (a) The IMDP M′ generated from M shown
in Fig. 1. (b) Pareto curve for the property ([rT ]≤2

max, [r]
≤1
max).

in polynomial time. However, it can be shown that an ε-approximation of it can
be computed efficiently [11]. In the rest of this section, we describe an algorithm
to solve the synthesis query. We follow the well-known normalisation approach
in order to solve the multi-objective predicate which is essentially based on
normalising multiple objectives into one single objective. It is known that the
optimal solution of the normalised (single-objective) predicate, if it exists, is the
Pareto optimal solution of the multi-objective predicate [9].

The robust synthesis procedure is detailed in Algorithm1. It basically aims
to construct a sequential approximation to the Pareto curve PM,ϕ while the
quality of approximations gets better and more precise along the iterations. In
other words, along the course of Algorithm 1 a sequence of weight vectors w are
generated and corresponding to each of them, a w-weighted sum of n objectives
is optimised through lines 6–7. The optimal strategy σ is then used to generate
a point g on the Pareto curve PM,ϕ. We collect all these points in the set X.
The multi-objective predicate ϕ is satisfiable once we realise that r belongs to
X↓.

The optimal strategies for the multi-objective robust synthesis queries are
constructed following the approach of [14] and as a result of termination of
Algorithm 1. In particular, when Algorithm1 terminates, a sequence of points
g1, . . . ,gt on the Pareto curve PM,ϕ are generated each of which corresponds
to a deterministic strategy σgj for the current point gj . The resulting optimal
strategy σopt is subsequently constructed from these using a randomised weight
vector α ∈ R

t satisfying ri ≤ ∑t
j=1 αi · gi

j [17, Appendix E].

Remark 12. It is worthwhile to mention that the synthesis query for IMDPs
cannot be solved on the MDPs generated from IMDPs by computing all feasible
extreme transition probabilities and then applying the algorithm in [14]. The lat-
ter is a valid approach provided the cooperative semantics is applied for resolving
the two sources of nondeterminism in IMDPs. With respect to the competitive
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Algorithm 1. Algorithm for solving robust synthesis queries

Input: An IMDP M, multi-objective predicate ϕ = ([r1]
≤k1
≥r1

, . . . , [rn]≤kn
≥rn

)
Output: true if there exists a strategy σ ∈ Σ such that M�σ |=Π ϕ, false if not.

1 begin
2 X := ∅; r := (r1, . . . , rn);
3 k := (k1, . . . , kn); r := (r1, . . . , rn);
4 while r /∈ X↓ do
5 Find w separating r from X↓;

6 Find strategy σ maximising ExpTotσ,k
M [w · r];

7 g := (ExpTotσ,ki
M [ri])1≤i≤n;

8 if w · g < w · r then
9 return false;

10 X := X ∪ {g};

11 return true;

semantics needed here, one can instead transform IMDPs to 2 1
2 -player games [1]

and then along the lines of the previous approach apply the algorithm in [7].
Unfortunately, the transformation to (MDPs or) 21

2 -player games induces an
exponential blowup, adding an exponential factor to the worst case time com-
plexity of the decision problem. Our algorithm avoids this by solving the robust
synthesis problem directly on the IMDP so that the core part, i.e., lines 6–7 of
Algorithm 1 can be solved with time complexity polynomial in |M|.

Algorithm 2 represents a value iteration-based algorithm which extends the
value iteration-based algorithm in [14] and adjusts it for IMDP models by encod-
ing the notion of robustness. The core difference is indicated in lines 6 and 16
where the optimal strategy is computed so as to be robust against any choice of
nature.

Theorem 13. Algorithm1 is sound, complete and has runtime exponential in
|M|, k, and n.

Remark 14. It is worthwhile to mention that our robust strategy synthesis app-
roach can also be applied to MDPs with richer formalisms for uncertainties such
as likelihood or ellipsoidal uncertainties while preserving the computational com-
plexity. In particular, in every inner optimisation problem in Algorithm1, the
optimality of a Markovian deterministic strategy and nature is guaranteed as
long as the uncertainty set is convex, the set of actions is finite and the inner
optimisation problem which minimises/maximises the objective function over the
choices of nature achieves its optimum (cf. [31, Proposition 4.1]). Furthermore,
due to the convexity of the generated optimisation problems, the computational
complexity of our approach remains intact.
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Algorithm 2. Value iteration algorithm to solve lines 6–7 of Algorithm 1
Input: An IMDP M, weight vector w, reward structures r = (r1, . . . , rn), time-bound

vector k ∈ (N ∪ {∞})n, threshold ε

Output: strategy σ maximising ExpTotσ,k
M [w · r], g := (ExpTot

σ,ki
M [ri])1≤i≤n

1 begin

2 x := 0; x1 := 0; . . . ; xn := 0; y := 0; y1 := 0; . . . ; yn := 0;

3 σ∞(s) := ⊥ for all s ∈ S

4 while δ > ε do

5 foreach s ∈ S do

6 ys := max
a∈A(s)

(
∑

{ i|ki=∞ } wi · ri(s, a) + min
ha
s∈Ha

s

∑
s′∈S ha

s (s
′) · xs′ );

7 σ∞(s) := arg max
a∈A(s)

(
∑

{ i|ki=∞ } wi · ri(s, a) + min
ha
s∈Ha

s

∑
s′∈S ha

s (s
′) · xs′ )

8 h̄
σ∞(s)
s (s′) := argminha

s∈Ha
s

∑
s′∈S ha

s (s
′) · xs′

9 δ := maxs∈S(ys − xs); x := y;

10 while δ > ε do

11 foreach s ∈ S and i ∈ {1, . . . , n} where ki = ∞ do

12 yi
s := ri(s, σ

∞(s)) +
∑

s′∈S h̄
σ∞(s)
s (s′) · xi

s′ ;

13 δ := maxn
i=1 maxs∈S(y

i
s − xi

s); x
1 := y1; . . . ; xn := yn;

14 for j = max{ kb < ∞ | b ∈ {1, . . . , n} } down to 1 do

15 foreach s ∈ S do

16 ys := maxa∈A(s)(
∑

{ i|ki≥j } wi · ri(s, a) + minha
s∈Ha

s

∑
s′∈S ha

s (s
′) · xs′ );

17 σj(s) := arg max
a∈A(s)

(
∑

{ i|ki≥j } wi · ri(s, a) + min
ha
s∈Ha

s

∑
s′∈S ha

s (s
′) · xs′ );

18 h̄
σj(s)
s (s′) := argminha

s∈Ha
s

∑
s′∈S ha

s (s
′) · xs′ ;

19 foreach i ∈ {1, . . . , n} where ki ≥ j do

20 yi
s := ri(s, σ

j(s)) +
∑

s′∈S h̄
σj(s)
s (s′) · xi

s′ ;

21 x := y; x1 := y1; . . . ; xn := yn;

22 for i = 1 to n do

23 gi := yi
s̄;

24 σ acts as σj in jth step when j < maxi∈{1,...,n} ki and as σ∞ afterwards;

25 return σ,g

4 Case Studies

We implemented the proposed multi-objective robust strategy synthesis algo-
rithm and applied them to two case studies: (1) motion planning for a robot with
noisy continuous dynamics and (2) autonomous nondeterministic tour guides
drawn from [4,18]. All experiments completed in few seconds on a standard
laptop PC.
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(a) Robot Environment (b) Pareto Curve

Fig. 3. Robotic Scenario. (a) Environment map, with black obstacles and gray target
area. (b) Pareto curve for the property ([rp]≤∞

max, [rd]≤∞
min ).

4.1 Robot Motion Planning Under Uncertainty

In robot motion planning, designers often seek a plan that simultaneously satis-
fies multiple objectives [23], e.g., maximising the chances of reaching the target
while minimising the energy consumption. These objectives are usually in conflict
with each other; hence, presenting the Pareto curve, i.e., the set of achievable
points with optimal trade-off between the objectives, is helpful to the designers.
They can then choose a point on the curve according to their desired guaran-
tees and obtain the corresponding plan (strategy) for the robot. In this case
study, we considered such a motion planning problem for a noisy robot with
continuous dynamics in an environment with obstacles and a target region, as
depicted in Fig. 3a. The robot’s motion model was a single integrator with addi-
tive Gaussian noise. The initial state of the robot was on the bottom-left of the
environment. The objectives were to reach the target safely while reducing the
energy consumption, which is proportional to the travelled distance.

We approached this problem by first abstracting the motion of the noisy
robot in the environment as an IMDP M and then computing strategies on
M as in [24–26]. The abstraction was achieved by partitioning the environment
into a grid and computing local (continuous) controllers to allow transitions from
every cell to each of its neighbours. The cells and the local controllers were then
associated to the states and actions of the IMDP , respectively, resulting in 204
states (cells) and 4 actions per state. The boundaries of the environment were
also associated with a state. Note that the transition probabilities between cells
were raised by the noise in the dynamics and their ranges were due to variation
of the possible initial robot (continuous) state within each cell.

The IMDP states corresponding to obstacles (including boundaries) were
given deterministic self-transitions, modelling robot termination as the result of
a collision. To allow for the computation of the probability of reaching target, we
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included an extra state in the IMDP with a deterministic self-transition and then
added incoming deterministic transitions to this state from the target states. A
reward structure rp, which assigns a reward of 1 to these transitions and 0 to all
the others, in fact, computes the probability of reaching the target. To capture
the travelled distance, we defined a reward structure rd assigning a reward of 0
to the state-action pairs with self-transitions and 1 to the other pairs.

(a) ϕ1 (b) ϕ2 (c) ϕ3

Fig. 4. Robot sample paths under strategies for ϕ1, ϕ2, and ϕ3

The two robot objectives then can be expressed as: ([rp]≤∞
max, [rd]

≤∞
min ) – see [17,

Appendix C] for Pareto queries. We first computed the Pareto curve for the prop-
erty, which is shown in Fig. 3b, to find the set of all achievable values (optimal
trade-offs) for the reachability probability and expected travelled distance. The
Pareto curve shows that there is clearly a trade-off between the two objectives.
To achieve high probability of reaching target safely, the robot needs to travel a
longer distance, i.e., spend more energy, and vice versa. We chose three points
on the curve and computed the corresponding robust strategies for

ϕ1 = ([rp]
≤∞
≥0.95, [rd]

≤∞
≤50), ϕ2 = ([rp]

≤∞
≥0.90, [rd]

≤∞
≤45), ϕ3 = ([rp]

≤∞
≥0.66, [rd]

≤∞
≤25).

We then simulated the robot under each strategy 500 times. The statistical
results of these simulations are consistent with the bounds in ϕ1, ϕ2, and ϕ3. The
collision-free robot trajectories are shown in Fig. 4. These trajectories illustrate
that the robot is conservative under ϕ1 and takes a longer route with open
spaces around it to go to target in order to be safe (Fig. 4a), while it becomes
reckless under ϕ3 and tries to go through a narrow passage with the knowledge
that its motion is noisy and could collide with the obstacles (Fig. 4c). This risky
behaviour, however, is required in order to meet the bound on the expected
travelled distance in ϕ3. The sample trajectories for ϕ2 (Fig. 4b) demonstrate
the stochastic nature of the strategy. That is, the robot probabilistically chooses
between being safe and reckless in order to satisfy the bounds in ϕ2.
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4.2 The Model of Autonomous Nondeterministic Tour Guides

Our second case study is inspired by “Autonomous Nondeterministic Tour
Guides” (ANTG) in [4,18], which models a complex museum with a variety
of collections. We note that the model introduced in [4] is an MDP. In this case
study, we use an IMDP model by inserting uncertainties into the MDP. Due to
the popularity of the museum, there are many visitors at the same time. Dif-
ferent visitors may have different preferences of arts. We assume the museum
divides all collections into different categories so that visitors can choose what
they would like to visit and pay tickets according to their preferences. In order
to obtain the best experience, a visitor can first assign certain weights to all
categories denoting their preferences to the museum, and then design the best
strategy for a target. However, the preference of a sort of arts to a visitor may
depend on many factors including price or length of queue at that moment etc.,
hence it is hard to assign fixed values to these preferences. In our model we allow
uncertainties of preferences such that their values may lie in an interval.

Fig. 5. The ANTG case study: model and analysis (Color figure online)

For simplicity we assume all collections are organised in an n × n square
with n ≥ 10, with (0, 0) being the south-west corner of the museum and (n −
1, n − 1) the north-east one. Let c = n−1

2 ; note that (c, c) is at the centre of
the museum. We assume all collections at (x, y) are assigned with a weight
interval [3, 4] if max{|x − c|, |y − c|} ≤ n

10 , with a weight 2 if n
10 < max{|x −

c|, |y − c|} ≤ n
5 , and a weight 1 if max{|x − c|, |y − c|} > n

5 . In other words,
we expect collections in the centre to be more popular and subject to more
uncertainties than others. Furthermore, we assume that people at each location
(x, y) have four nondeterministic choices of moving to (x′, y′) in the north east,
south east, north west, and south west of (x, y) (limited to the boundaries of the
museum). The outcome of these choices, however, is not deterministic. That is,
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deciding to go to (x′, y′) takes the visitor to either (x, y′) or (x′, y) depending
on the weight intervals of (x, y′) and (x′, y). Thus, the actual outcome of the
move is probabilistic to north, south, east or west. To obtain an IMDP , weights
are normalised. For instance, if the visitor chooses to go to the north east and
on (x, y + 1) there is a weight interval of [3, 4] and on (x + 1, y) there is a
weight interval of [2, 2], it will go to (x, y+1) with probability interval [ 3

3+2 , 4
4+2 ]

and to (x + 1, y) with probability interval [ 2
2+4 , 2

2+3 ]. Therefore a model with
parameter n has n2 states in total and roughly 4n2 transitions, a few of which
are associated with uncertain transition probabilities. An instance of the museum
model for n = 14 is depicted in Fig. 5a. In this instantiation, we assume that
the visitor starts in the lower left corner (marked yellow) and wants to move
to the upper right corner (marked green) with as few steps as possible. On the
other hand, it wants to avoid moving to the black cells, because they correspond
to exhibitions which are closed. For closed exhibitions located at x = 2, the
visitor receive a penalty of 2, for those at x = 5 it receives a penalty of 4, for
x = 8 one of 16 and for x = 11 one of 64. Therefore, there is a tradeoff between
leaving the museum as fast as possible and minimising the penalty received.
With rs being the reward structure for the number of steps and rp denoting
the penalty accumulated, ([rs]

≤∞
≤40, [rp]

≤∞
≤70) requires that we leave the museum

within 40 steps but with a penalty of no more than 70. The red arrows indicate
a strategy which has been used when computing the Pareto curve by our tool.
Here, the tourist mostly ignores closed exhibitions at x = 2 but avoids them
later. In [17, Appendix D], we provide a few more strategies occurring during the
computation. We provide the Pareto curve for this situation in Fig. 5b. With an
increasing step bound considered acceptable, the optimal accumulated penalty
decreases. This is expected, since with a larger step bound, the visitor has more
time to walk around more of the closed exhibitions, thus facing a lower penalty.

5 Concluding Remarks

In this paper, we have analysed IMDPs under controller synthesis semantics in
a dynamic setting; we discussed the multi-objective robust strategy synthesis
problem for IMDPs, aiming for strategies that satisfy a given multi-objective
predicate under all resolutions of the uncertainty in the transition probabilities.
We showed that this problem is PSPACE-hard and introduced a value iteration-
based decision algorithm to approximate the Pareto set. We finally presented the
effectiveness of the proposed algorithms on several real-world case studies.

Even though we focused here on IMDPs with multi-objective reachability
and reward properties, the proposed robust synthesis algorithm can also handle
MDPs with convex uncertain sets and any ω-regular properties such as LTL.
For future work, we aim to explore the upper bound of the time complexity of
the multi-objective robust strategy synthesis which is left open in this paper.
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Abstract. Synchronisation is an emergent phenomenon observable in
nature. Natural synchronising systems have inspired the development
of protocols for achieving coordination in a diverse range of distributed
dynamic systems. Spontaneously synchronising systems can be mathe-
matically modelled as coupled oscillators. In this paper we present a novel
approach using model checking to reason about achieving synchrony for
different models of synchronisation. We describe a general, formal pop-
ulation model where oscillators interact at discrete moments in time,
and whose cycles are sequences of discrete states. Using the probabilistic
model checker Prism, we investigate the influence of various parame-
ters of the model on the likelihood of, and time required for, achieving
synchronisation.

1 Introduction

Synchronisation is an emergent phenomenon observable throughout nature;
pacemaker cells in the sinoatrial node of the heart synchronise to set the rate
and rhythm of a heartbeat, and populations of fireflies synchronise their flash-
ing to attract mates [6]. These decentralised natural systems have inspired the
development of protocols for achieving synchrony in a diverse range of artificial
decentralised systems; in particular swarm robotic systems and wireless sensor
networks (WSNs). Applications include detecting faults in members of a robotic
swarm [8], synchronising the duty cycles of sensor nodes in a network [19], auto-
tuning mobile networks to save energy [4], and coordinating data dissemination
for a WSN [5].

The cyclic behaviour of systems where synchrony spontaneously occurs can
be modelled as networks of coupled oscillators with similar frequencies. Oscilla-
tors are coupled when some process results in the transferral of energy between
them. In some systems oscillators are coupled such that their oscillations have
a continuous influence on each other. The strength of the coupling between
oscillators is determined by some global constant. When the mutual agitation
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of oscillators takes place only at discrete instances in time the oscillators are
pulse-coupled [15,17]. At some distinguished point in the oscillation cycle a
pulse-coupled oscillator fires and influences other nearby oscillators. An oscil-
lator that is perturbed by another oscillator shifts or resets the phase of its own
oscillation cycle to more closely match that of its neighbour. Over time this
can lead to all oscillators matching phase, and synchronisation is achieved if all
oscillators fire synchronously. In nature, the oscillation cycle of oscillators often
includes a refractory period. The refractory period is an interval in the oscilla-
tion cycle during which its phase cannot be perturbed by other firing oscillators.
This refractory period can prevent spurious mutual stimulation of the oscilla-
tors, which could lead to perpetual asynchrony. The introduction of a refractory
period to oscillators in artificial systems not only helps to achieve synchrony, but
can also be thought of as a period during which robots in a swarm, or nodes in
a WSN, can turn off their wireless antennas and save energy.

The emergence of synchronisation in robot swarms, WSNs, and other dis-
tributed and dynamic systems is often investigated by designing and analysing
simulations. Simulations can give detailed insight into how global behaviours
of these systems emerge over time. Formal approaches can complement simula-
tions, where desirable properties for the system can be unambiguously formu-
lated, and rigorously checked against some formal model of the system, often
finding corner cases that may not be covered even by a large number of tests
of a simulation. Model checking has been successfully applied to qualitatively,
and quantitatively, analyse control algorithms and protocols for both swarm sys-
tems [2,11,14] and WSNs [7,13]. In particular, model checking has been used to
formally investigate the emergence of synchronisation in networks of oscillators.
A general model of synchronisation for oscillators was introduced in [3], where
oscillators were modelled as timed automata [1], and a model checking algorithm
was used to determine the reachability of a synchronised state for distinguished
runs of the model. More recently, Heidarian et al. [13] also used timed automata
to exhaustively analyse a specific clock synchronisation protocol.

Our contribution in this paper is the development of a formal and general
model for oscillator synchronisation, which is parameterised by a synchronisation
model and a configuration for both oscillators and the network. In contrast to
previous applications of model checking to detect synchronisation, our model is
discrete. That is, the oscillators interact at discrete moments in time, and their
oscillation cycles are defined as sequences of discrete states. Given an instanti-
ation of our general model we automatically generate a discrete time Markov
chain (DTMC). We discuss the results of model checking two instantiations of
our model with regards to energy consumption.

In Sect. 2 we present the dynamics of individual oscillators with discrete oscil-
lation cycles. We formally define our general, parameterised population model
for a network of oscillators in Sect. 3, and describe how we construct the corre-
sponding DTMC in Sect. 4. We discuss the results of checking synchronisation
properties for two concrete instantiations of our formal model in Sect. 5. Con-
cluding remarks and suggestions for further work are given in Sect. 6.
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2 Discrete Oscillator Model

We consider a fully-connected network of N pulse-coupled oscillators with iden-
tical dynamics over discrete time. We denote the set of these oscillators by
O = {1, . . . , N}, where each i ∈ O corresponds to a single pulse-coupled oscilla-
tor. The value or phase of an oscillator i in O at time t is denoted by φi(t). The
phase of an oscillator progresses through a sequence of discrete integer values
bounded by some T ≥ 1.

Definition 1. The evolution function is a strictly increasing function evol :
{1, . . . , T} → N with evol(Φ) ≥ Φ for all Φ ∈ {1, . . . , T}, that maps the current
phase of an oscillator to its phase in the next discrete time step.

We now introduce the update function and firing predicate, which respectively
denote the updated phase of an oscillator i at time t after one time step, and
the firing of oscillator i at time t,

updatei(t) = evol(φi(t)), firei(t) = updatei(t) > T.

The precise evolution of phase over time for an oscillator i is then given by

φi(t + 1) =

{
1 if firei(t)
updatei(t) otherwise,

where phase increases over time until evol(φi(t)) > T , at which point oscilla-
tor i fires, that is, φi(t + 1) becomes 1 and the oscillator attempts to broadcast
a firing signal to all other oscillators coupled to it. The phase progression of an
uncoupled oscillator is cyclic, and we refer to one cycle as an oscillation cycle.

An oscillator’s firing signal perturbs the phase of all coupled oscillators; we
use αi(t) to denote the number of all other oscillators in O that are coupled to i
and will broadcast their firing signal at time t. Furthermore, we define μ ∈ [0, 1]
to be the probability that a broadcast failure occurs when an oscillator fires, that
is, the attempt to broadcast its firing signal fails (the oscillator still resets its
phase to 1). Note that μ is a global parameter, hence the chance of broadcast
failure is identical for all oscillators. Observe that αi(t) is defined globally even
though the model is not deterministic, however we defer the reader to the detailed
discussion of probabilities in the following section.

Definition 2. The perturbation function is an increasing function pert :
{1, . . . , T} × N × R

+ → N that maps the phase of an oscillator i, the num-
ber of oscillators that have fired and perturbed i, and a real value defining the
strength of the coupling between oscillators, to an integer value corresponding to
the induced perturbation to phase.

We refine the update function to include the perturbation to phase induced by
the firing of other oscillators that are coupled to oscillator i at time t, giving
updatei(t) = evol(φi(t)) + pert(φi(t), αi(t), ε). We can introduce a refractory
period into the oscillation cycle of each oscillator. A refractory period is an
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interval of discrete values [1, R] ⊆ [1, T ] where 0 ≤ R ≤ T is the size of the
refractory period, such that if φi(t) is inside the interval, for some oscillator i at
time t, then i cannot be perturbed by other oscillators to which it is coupled.
If R = 0 then we set [1, R] = ∅, and there is no refractory period at all. To be
consistent with the literature we only consider refractory periods that occur at
the start of the oscillation cycle.

Definition 3. The refractory function ref : {1, . . . , T} × N → N is defined as
ref(Φ,Δ) = 0 if Φ ∈ [1, R], or ref(Φ,Δ) = Δ otherwise.

Given Δ, a degree of perturbance to the phase of an oscillator, and Φ, the phase
of that oscillator, ref(Φ,Δ) returns 0 if Φ is in the refractory period defined by R,
or Δ otherwise. We again amend the update function to include the refractory
function, giving updatei(t) = evol(φi(t)) + ref(φi(t),pert(φi(t), αi(t), ε)).

3 Population Model

Let O = {1, . . . , N} be a fully connected network of N identical oscillators with
phases in the range 1, . . . , T , whose dynamics are determined by the functions
evol and pert, with a refractory period defined by R, coupled with strength ε ∈
[0, 1], and where the probability of broadcast failure is μ ∈ [0, 1]. The population
model of the network O is defined by S = (N,T,R, ε, evol,pert, μ).

Since all oscillators in our model are behaviourally identical we do not need
to distinguish between oscillators sharing the same phase, and can reason about
groups of oscillators, instead of individuals. The global state of the model is
therefore a tuple, where each element nΦ of the tuple 〈n1, . . . , nT 〉 corresponds
to the number of oscillators sharing a phase value of Φ. The population model
does not account for the introduction of additional oscillators to a network, or the
loss of existing coupled oscillators. That is, the population N remains constant.

Definition 4. A global state of a population model S = (N,T,R, ε, evol,pert, μ)
is a T -tuple π ∈ {0, . . . , N}T , where π = 〈n1, . . . , nT 〉 and

∑T
Φ=1 nΦ = N . The

set of all global states of S is Γ (S), or simply Γ when S is clear from the context.

Example 1. Figure 1 shows three global states for an instantiated popula-
tion model, S = (5, 6, 2, 0.15, evol,pert, 0.1), where the synchronisation model
described in [8] is instantiated by defining the evolution function as evol(Φ) =
Φ + 1, and the perturbation function as pert(Φ,α, ε) = [Φ · α · ε], where [x]
denotes x rounded to the nearest integer. The label for each node nΦ is the
number of oscillators with phase Φ. We omit the label if nΦ = 0. Oscillators
at node n6 are about to fire, and oscillators at nodes n1 and n2 are in their
refractory period, and cannot be perturbed by the firing of other oscillators.
The global states can be denoted by π0 = 〈0, 1, 0, 2, 2, 0〉, π1 = 〈0, 0, 1, 0, 2, 2〉,
and π2 = 〈5, 0, 0, 0, 0, 0〉. Later we will explain how transitions between these
global states are made. Note that directional arrows indicate cyclic direction,
and do not represent transitions.

With every global state π we associate a non-empty set of failure vectors,
where each failure vector is a tuple of broadcast failures that could occur in π.
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Definition 5. A failure vector is a T -tuple B ∈ ({0, . . . , N}∪{	})T . We denote
the set of all possible failure vectors by B.
Given a failure vector B = 〈b1, . . . , bT 〉, bΦ ∈ {0, . . . , N} indicates the number of
broadcast failures that occur for all oscillators with a phase of Φ. If bΦ = 	 then
no oscillators with a phase of Φ fire, for all 1 ≤ Φ ≤ T . Semantically, bΦ = 0 and
bΦ = 	 differ in that the former indicates that all (if any) oscillators with phase
Φ fire and no broadcast failures occur, while the latter indicates that all (if any)
oscillators with a phase of Φ do not fire. If no oscillators fire at all in a global
state then we have only one possible failure vector, namely {	}T .

3.1 Transitions

Later in this section we will describe how we can calculate the set of all possible
failure vectors for a global state, and thereby identify all of its successor states.
However we must first show how we can calculate the single successor state of a
global state π, given some failure vector B.

Absorptions. For real deployments of synchronisation protocols it is often the
case that the duration of a single oscillation cycle will be at least several seconds
[8,18]. The perturbation induced by the firing of a group of oscillators may lead
to groups of other oscillators to which they are coupled firing in turn. The firing
of these other oscillators may then cause further oscillators to fire, and so forth,
leading to a “chain reaction”, where each group of oscillators triggered to fire is
absorbed by the initial group of firing oscillators. Since the whole chain reaction
of absorptions may occur within just a few milliseconds, and in our model the
oscillation cycle is a sequence of discrete states, when a chain reaction occurs
the phases of all perturbed oscillators are updated at one single time step.

Since we are considering a fully connected network of oscillators, two oscil-
lators sharing the same phase will have their phase updated to the same
value in the next time step. They will always perceive the same number of
other oscillators firing. Therefore, for each phase Φ we define the function
αΦ : Γ × B → {1, . . . , N}, where αΦ(π,B) is the number of oscillators with a
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Fig. 1. Evolution of the global state over three discrete time steps.
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phase greater than Φ perceived to be firing by oscillators with phase Φ, in some
global state, incorporating the broadcast failures defined in the failure vector B.
This allows us to encode the aforementioned chain reactions of firing oscillators.
Note that our encoding of chain reactions results in a global semantics that dif-
fers from typical parallelisation operations, for example, the construction of the
crossproduct of the individual oscillators.

Given a global state π = 〈n, . . . , nT 〉 and a failure vector B = 〈b1, . . . , bT 〉,
the following mutually recursive definitions show how we calculate the values
α1(π,B), . . . , αT (π,B), and how functions introduced in the previous section
are modified to indicate the update in phase, and firing, of all oscillators sharing
the same phase Φ. Observe that to calculate any αΦ(B, π) we only refer to
definitions for phases greater than Φ and the base case is Φ = T , that is, values
are computed from T down to 1.

updateΦ(π, B) = evol(Φ) + ref(Φ, pert(Φ, αΦ(π, B), ε))

fireΦ(π, B) = updateΦ(π, B) > T

αΦ(π, B) =

⎧
⎪⎨

⎪⎩

0 if Φ = T

αΦ+1(π,B) + nΦ+1 − bΦ+1 if Φ<T, bΦ+1 �= � and fireΦ+1(π,B)

αΦ+1(π, B) otherwise

Transition Function. We now define the transition function that maps phase
values to their updated values in the next time step. Note that since we no
longer differentiate between different oscillators with the same phase we only
need to calculate a single value for their evolution and perturbation.

Definition 6. The phase transition function τ : Γ × {1, . . . , T} × B → N maps
a global state, a phase Φ, and some possible failure vector B for π, to the updated
phase in the next discrete time step, with respect to the broadcast failures defined
in B, and is defined as

τ(π, Φ,B) =

{
1 if fireΦ(π,B)
updateΦ(π,B) otherwise.

Lemma 1. The range of the function τ is bound by T . That is, for any π, for
any possible failure vector B for π, and for all Φ ∈ {1, . . . , T}, we have that
1 ≤ τ(π, Φ,B) ≤ T .

Proof. By construction.

Let UΦ(π,B) be the set of phase values Ψ where all oscillators with phase Ψ in
π will have their phase updated to Φ in the next time step, with respect to the
broadcast failures defined in B. Formally,

UΦ(π,B) = {Ψ | Ψ ∈ {1, . . . , T} ∧ τ(π, Ψ,B) = Φ}.

We can now calculate the successor state of a global state π and define how the
model evolves over time.
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Definition 7. The successor function succ : Γ × B → Γ maps a global state π
and a failure vector B to a state π′, and is defined as succ(〈n1, . . . , nT 〉, B) =
〈n′

1, . . . , n
′
T 〉, where n′

Φ =
∑

Ψ∈UΦ(π,B) nΨ for 1 ≤ Φ ≤ T .

Example 2. Consider the global state π0 of Fig. 1 where no oscillators will fire
since n6 = 0. We therefore have one possible failure vector for π0, namely B =
{	}6. Since no oscillators fire the dynamics of the oscillators are determined
solely by evol, and all oscillators simply increase their phase by 1 in the next
time step. Now consider the global state π1 and B = 〈	, 	, 0, 0, 0, 1〉, a possible
failure vector for π1, indicating that oscillators with phases of 3 to 6 will fire and
one broadcast failure will occur for one of the two oscillators that will fire with
phase 6. Despite the broadcast failure occurring, a chain reaction will occur as
the firing of the single oscillator with phase 6 will perturb the two oscillators with
phase 5 to fire also. The combined perturbation induced by the firing of all three
oscillators will cause the final oscillator with phase 3 to fire. All oscillators are
therefore absorbed into the initial group of firing oscillators. Since fire6(π1, B)
holds we have that α5(π1, B) = α6(π1, B)+n6−b6 = 0+2−1 = 1. Similarly since
fire5(π1) holds we have that α4(π1, B) = α5(π1, B) + n5 = 1 + 2 = 3. We then
continue calculating αΦ(π1, B) for 3 ≥ Φ ≥ 1, and conclude that U1(π1, B) =
{6, 5, 4, 3} and U6(π1, B) = U5(π1, B) = U4(π1, B) = ∅. Since R = 2 we have
that U3(π1, B) = {2} and U2(π1, B) = {1}. We calculate the successor of π1 as
π2 = succ(〈0, 0, 1, 0, 2, 2〉, B) = 〈n6+n5+n4+n3, n1, n2, 0, 0, 0〉 = 〈5, 0, 0, 0, 0, 0〉.
Lemma 2. The number of oscillators is invariant during transitions, i.e., the
successor function only creates tuples that are states of the given model. For-
mally, let π = 〈n1, . . . , nT 〉 and π′ = 〈n′

1, . . . , n
′
T 〉 be two states of a model S

such that π′ = succ(π,B), where B is some possible failure vector for π. Then∑T
Φ=1 nΦ =

∑T
Φ=1 n′

Φ = N.

Proof. By construction.

3.2 Failure Vector Calculation

We construct all possible failure vectors for a global state by considering every
group of oscillators in decreasing order of phase. At each stage we determine if the
oscillators would fire. If they fire then we consider each outcome where any, all,
or none of the firings result in a broadcast failure. We then add a corresponding
value to a partially calculated failure vector and consider the next group of
oscillators with a lower phase. If the oscillators do not fire then there is nothing
left to do, since by Definition 1 we know that evol is strictly increasing, and
by Definition 2 we know that pert is increasing, therefore all oscillators with a
lower phase will also not fire. We can then pad the partial failure vector with 	
appropriately to indicate that no failure could happen since no oscillators fired.

Table 1 illustrates how a possible failure vector for global state π1 in Fig. 1 is
iteratively constructed. The first three columns respectively indicate the current
iteration i, the global state π1 with the currently considered oscillators indicated,
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Table 1. Construction of a possible failure vector for a global state π1 = 〈0, 0, 1, 0, 2, 2〉.

Iteration (i) π1 Failure vector B Fired Branches

0 〈0, 0, 1, 0, 2, 2〉 〈〉 – false

1 〈0, 0, 1, 0, 2, 2〉 〈1〉 true true

2 〈0, 0, 1, 0, 2, 2〉 〈0, 1〉 true true

3 〈0, 0, 1, 0, 2, 2〉 〈0, 0, 1〉 true false

4 〈0, 0, 1, 0, 2, 2〉 〈0, 0, 0, 1〉 true true

5 〈0, 0, 1, 0, 2, 2〉 〈�, �, 0, 0, 0, 1〉 false –

and the elements of the failure vector B computed so far. The fourth column
is true if the oscillators with phase T + 1 − i would fire given the broadcast
failures in the partial failure vector. We must consider all outcomes of any or
all firings resulting in broadcast failure. The final column therefore indicates
whether the value added to the partial failure vector in the current iteration is
the only possible value (false), or a choice from one of several possible values
(true).

Initially we have an empty partial failure vector. At the first iteration there
are 2 oscillators with a phase of 6. These oscillators will fire so we must consider
each case where 0, 1 or 2 broadcast failures occur. Here we choose 1 broadcast
failure, which is then added to the partial failure vector. At iteration 2, oscillators
with a phase of 5 fire, and again we must consider each case with 0, 1 or 2
broadcast failures occur; here we choose 0. At iteration 3 oscillators with a phase
of 4 would have fired, but since there are no oscillators with a phase of 4 we only
have one possible value to add to the partial failure vector, namely 0. At iteration
4 a single oscillator with a phase of 3 fires, and we choose the case where the
firing did not result in a broadcast failure. In the final iteration oscillators with
a phase of 2 do not fire, hence we can conclude that oscillators with a phase of
1 also do not fire, and can pad the partial failure vector appropriately with 	.

Formally, we define a family of functions f indexed by Φ, where each fΦ takes
as parameters some global state π, and V , a vector of length T −Φ. V represents
all broadcast failures for all oscillators with a phase greater than Φ. The function
fΦ then computes the set of all possible failure vectors for π with suffix V . Here
we use the notation v�v′ to indicate vector concatenation.

Definition 8. We define fΦ : Γ ×{0, . . . , N}T−Φ → P(({0, . . . , N}∪{	})T ), for
1 ≤ Φ ≤ T , as the family of functions indexed by Φ, where π = 〈n1, . . . , nT 〉 and

fΦ(π, V ) =

⎧⎪⎨
⎪⎩

⋃nΦ

k=0 fΦ−1(π, 〈k〉�V ) if 1 < Φ ≤ T and fireΦ(π, {	}Φ�
V )⋃n1

k=0 {〈k〉�V } if Φ = 1 and fire1(π, 〈	〉�V ){{	}Φ�
V

}
otherwise
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Definition 9. Given a global state π ∈ Γ , we define Bπ, the set of all possible
failure vectors for that state, as Bπ = fT (π, 〈〉), and define next(π), the set of
all successor states of π, as next(π) = {succ(π,B) | B ∈ Bπ}.
Note that for some global states |next(π)| < |Bπ|, since we may have that
succ(π,B) = succ(π,B′) for some B,B′ ∈ Bπ with B �= B′.

Given a global state π and a failure vector B ∈ Bπ, we will now compute the
probability of a transition being made to state succ(π,B) in the next time step.
Recall that μ is the probability with which a broadcast failure occurs. Firstly
we define the probability mass function Pfail : {1, . . . , N} × {1, . . . , N} → [0, 1],
where Pfail(n, b) gives the probability of b broadcast failures occurring given
that n oscillators fire, as Pfail(n, b) = μb(1 − μ)n−b

(
n
b

)
. We then denote by

Pτ (π) : Bπ → [0, 1] the function mapping a possible broadcast failure vector B
for π, to the probability of the failures in B occurring. That is,

Pτ (〈n1, . . . , nT 〉)(〈b1, . . . , bT 〉) =
T∏

Φ=1

{
Pfail (nΦ, bΦ) if bΦ �= 	

1 otherwise

Lemma 3. For any global state π, Pτ (π) is a discrete probability distribution
over Bπ. Formally,

∑
B∈Bπ

Pτ (π)(B) = 1.

Proof. By induction over a tree where internal nodes are partially constructed
failure vectors and leaf nodes are failure vectors.

Example 3. We consider again the global states π1 = 〈0, 0, 1, 0, 2, 2〉 and π2 =
〈5, 0, 0, 0, 0, 0〉, given in Fig. 1, of the population model instantiated in Example 1,
and the failure vector B = 〈	, 	, 0, 0, 0, 1〉 given in Example 2, noting that B ∈
Bπ1 , succ(π1, B) = π2, and μ = 0.1. We calculate the probability of a transition
being made from π1 to π2 as Pτ (〈0, 0, 1, 0, 2, 2〉)(〈	, 	, 0, 0, 0, 1〉) = 1·1·Pfail (1, 0)·
Pfail(0, 0) · Pfail(2, 0) · Pfail(2, 1) = 1 · 1 · 0.9 · 1 · 0.81 · 0.18 = 0.13122.

We now have everything we need to fully describe the evolution of the global
state of a population model over time. A run of a population model S is an
infinite sequence of global states Π = π0 → π1 → π2 → π3 · · · , where π0 is called
the initial state, and for all k ≥ 0, πk → πk+1 if, and only if, πk+1 ∈ next(π).
We denote the set of all possible runs of S by Π(S).

3.3 Synchronisation

When all oscillators in a population model have the same phase in a global state
we say that the state is synchronised. Formally, a global state π = 〈n1, . . . , nT 〉
is synchronised if, and only if, there is some Φ ∈ {1, . . . , T} such that nΦ = N .
Hence, for all Φ′ �= Φ, we have that nΦ′ = 0. We use the notation synch(π) to
indicate that some global state π is synchronised. We will often want to reason
about whether some particular run Π of a model leads to a global state that
is synchronised. We say that a run Π = π0 → π1 → . . . synchronises if, and
only if, there exists some k ≥ 0 with synch(πk). We use the notation synch(Π)
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to indicate that some run Π synchronises. Once a synchronised global state is
reached any successor states will remain synchronised. Finally we can say that a
model synchronises if, and only if, synch(Π) for all Π ∈ Π(S). In Fig. 1 global
state π2 is synchronised, since n1 = N .

4 Model Generation

We choose to use the probabilistic model checker Prism [16] to formally verify
properties of our model. Given a probabilistic model of a system, Prism can be
used to reason about both temporal and probabilistic properties of the input
model, by checking some requirement expressed in a suitable formalism against
all possible runs of the model. We define our input models as Discrete Time
Markov Chains (DTMCs). A DTMC is a tuple (Q, init ,P) where Q is a set of
states, init ∈ Q is the initial state, and P : Q×Q → [0, 1] is the function mapping
ordered pairs of states (q, q′) to the probability with which a transition from q
to q′ occurs, where

∑
q′∈Q P(q, q′) = 1 for all q ∈ Q.

Given a population model S = (N,T,R, ε, evol,pert, μ), we construct a
DTMC (Q, init,P). We define the set of states Q to be Γ (S) ∪ {init}. In the
initial state all oscillators are considered to be unconfigured. That is, oscilla-
tors have not yet been assigned a value for their phase. For each q ∈ Q, where
q ∈ Γ (S) and q = 〈n1, . . . , nt〉, we define

P(init , q) =
1

TN
·

T∏
i=1

(
N − (

∑i−1
j=1 nj)

ni

)

to be the probability of moving from init to a state where the oscillators are
configured with the phase values defined in q, since there are N choose n1 ways
to select n1 oscillators to have a phase of 1, then N − n1 choose n2 ways to
select n2 oscillators to have a phase of 2, and so forth. For every q ∈ Q \ init
we consider each q′ ∈ Q \ init where q′ = succ(q,B) for some B ∈ Bq, and set
P(q, q′) = Pτ (q)(B). For all other q ∈ Q \ init and q′ ∈ Q, where q �= q′ and
q′ �∈ next(q), we set P(q, q′) = 0.

A state in Prism is a valuation for a set of variables over the domain con-
sisting of finitely bound booleans and integers. Global states in Γ are encoded
using T finitely bound integer variables ranging over N discrete values. To facil-
itate the analysis of many different oscillator population models we provide a
Python script1 that allows the user to define ranges for N , T , R, ε and μ, for
some fixed definitions for evol and pert. Then, given a list of properties, for each
combination of parameters the script generates a model, checks all properties
using Prism, and writes user specified output (e.g. result, model checking time,
etc.) to a comma separated value file which can be used by statistical analysis
tools. Even though models in Prism can be parametric, the parameters may

1 The model generation script and the results presented in this paper can be found at
https://github.com/PaulGainer/mc-bio-synch.

https://github.com/PaulGainer/mc-bio-synch
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only be used to describe probabilities. Therefore, our generated models can only
be parameterised by μ, since changing the value of μ does not result in the loss
or addition of any transitions to the model.

5 Evaluation

Within this section we will discuss the properties of two instantiations of the for-
mal model defined in Sect. 3. To that end, we created concrete models for Prism
for different parameters of the models, e.g. number of oscillators and different
coupling constants. Each of these models was subsequently checked by Prism
with respect to different properties. Other case studies could also be considered
for alternative models of synchronisation where the dynamics of oscillators, and
their interactions, can be described by some evolution and perturbation function.

Properties to be checked are specified using Probabilistic Computation Tree
Logic (PCTL) [12]. PCTL consists of classical logical operators, temporal opera-
tors including ♦ϕ, “at some future point ϕ holds”, and the probabilistic operator
P��γ [ϕ], where �� is a relational operator and γ ∈ [0, 1] is a probability thresh-
old. We can therefore specify properties such as P≥0.1[♦ϕ], “ϕ holds at some
future point with a probability of at least 0.1”. In addition to assertions, Prism
allows the specification of properties that evaluate to a numerical value, using the
syntax P=?[ϕ], “what is the probability that ϕ holds?”. Furthermore, rewards
can be associated with states, and the reachability reward operator R can be
used to calculate expected rewards. For example R=?[♦ϕ] expresses “what is the
expected reward for reaching a state where ϕ holds?”.

We are interested in the probability of eventual synchronisation and in the aver-
age timeneeded to achieve synchronisation.We formalise these properties inPCTL
as ϕ1 = P=?[♦ synchronised ], and ϕ2 = R{time to synch}=?[♦ synchronised ]. In
these formulas synchronised is a name for the formula

∨T
i=1 ni = N used within

the Prism model, while time to synch is a reward structure associating a value of
1
T with each state where oscillators are configured (i.e., not init) and where the
system is not synchronised, that records the number of cycles taken to achieve
synchrony. As a consequence, the result of model checking with respect to ϕ2 is
the expected value of the reward time to synch accumulated along a path until
synchrony occurs. Observe that Prism gives a result of Infinity for accumulating
time to synch along a run that does not synchronise. Since Prism computes the
expected value over all paths, this implies that a system with non-synchronising
paths will also result in Infinity for ϕ2.

In the following, we present the model checking results for two instantiations
of our model. We will discuss these results and the resulting trade-offs for para-
meter choices. For a network of sensor nodes, several attributes can be weighted
against each other: (i) probability of synchronisation (ii) time for achieving syn-
chrony (iii) battery life of a single oscillator. While we get direct results for the
first two properties from Prism, battery life is dependent on the energy con-
sumption, which can only be estimated from the parameters of the model. In
WSNs, communication is costly with respect to energy consumption. Communi-
cation is either active when sending a message, i.e., when a node fires, or passive,
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when receiving messages from other nodes. Hence, during periods where a sensor
does neither, the antenna can be shut down to save energy. In our models, this
interval of inactivity corresponds to the refractory period. That is, the longer
the refractory period is, the less energy will be consumed.

Mirollo and Strogatz Synchronisation Model. Here, we present the results of
model checking population models where the perturbation function is a discreti-
sation of the Mirollo and Strogatz (M&S) model of synchronisation used by
Perez et al. [18], namely pert(Φ,α, ε) = [Φ · α · ε]. Note that, here, the perturba-
tion induced by the firing of another oscillator increases linearly with the phase
of the perturbed oscillator. The evolution function is simply the successor func-
tion, evol(Φ) = Φ+1. With these functions fixed, we created models for different
numbers of oscillators 3 ≤ N ≤ 7, cycle lengths 4 ≤ T ≤ 10, coupling constants
ε ∈ {0,0.1, . . . ,1.0}, refractory periods 0 ≤ R ≤ T , and probabilities of message
loss μ ∈ {0,0.1, . . . ,1.0}. We used Prism to analyse models with respect to ϕ1

and ϕ2.
Figure 2a plots the probability of synchronisation for different rates of broad-

cast failure against the refractory period for N = 7, T = 10, and ε = 0.1. We can
extrapolate a trade-off between a high refractory period and high synchronisa-
tion probability. As long as the refractory period is less than half the oscillation
cycle, synchronisation will be achieved in almost all cases. Higher values for R
result in a rapid drop in synchronisation probability. The exceptions are the edge
cases μ = 0 and μ = 1. Unsurprisingly, if all firings result in broadcast failures
(μ = 1), the synchronisation probability is almost zero. In fact, the only runs
that synchronise in this case are runs whose initial states are synchronised. The
comparably bad synchronisation probabilities for μ = 0 may seem surprising. If
μ = 0, a model is deterministic. This can lead to unwanted cyclic behaviour,
an artefact of the discreteness of the phase values, where very minor pertur-
bations to phase are ignored due to rounding, leading to groups of oscillators
staying unsynchronised forever. Similar phenomena have also been observed in
other approaches used to model emergent synchronisation [10]. When some level
of uncertainty is introduced to the model perpetually asynchronous cycles no
longer occur.

Figure 2b shows us that a higher refractory period results in shorter synchro-
nisation times when the probability for broadcast failure is low. In general, a
longer refractory period up to half the cycle length improves the rate of conver-
gence to synchrony, which is consistent with the findings of [9]. Furthermore, for
high values of μ the differences in synchronisation times for different refractory
period lengths are negligible. Hence, a refractory period of slightly less than half
the cycle, with a low coupling constant ε, is optimal for this model of synchro-
nisation. As ε is increased the results remain similar, but with a decrease in
synchronisation times.

Mean Phase Synchronisation Model. We now instantiate the evolution and
perturbation functions for a model of synchronisation similar to the work of
Breza [5]. To that end, we set the evolution function to be the successor function,
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Fig. 2. Mirollo & Strogatz synchronisation: synchronisation probabilities for different
refractory periods, and synchronisation times for different rates of broadcast failure.

as in the previous section; however the perturbation function is more involved.
In Breza’s model, an oscillator perturbed by another firing oscillator updates its
phase to be the average of its current phase and the phase of the firing oscillator
(fixed as T in our model). For this model of synchronisation there is no notion of
coupling strength between oscillators, that is, ε is ignored. However our general
oscillator model can still be instantiated to formalise such a protocol. We derive
the following perturbation function: pert(Φ,α, ε) =

[
1
2α (Φ + T (2α − 1))

] − Φ.
Informally, the function calculates the result of iteratively taking the mean of
the phase and T , for α iterations, and returns the difference between this and
the original phase. Note that the perturbation induced by the firing of another
oscillator is inversely proportional to 2Φ.

We generate models for the parameter values examined for the M&S model
of synchronisation, and again analyse the models with respect to ϕ1 and ϕ2.
Figure 3a shows the synchronisation probability for different rates of broadcast
failure and lengths of refractory period. It has similar characteristics to Fig. 2a.
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Fig. 3. Mean phase synchronisation: synchronisation probabilities for different refrac-
tory periods, and synchronisation times for different rates of broadcast failure.
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That is, for almost all cases of μ, the oscillators will always synchronise when
the refractory period is less than half the cycle. Again as expected, μ = 1 results
in almost no synchronising runs, and μ = 0 creates cyclic behaviour that leads
to perpetual asynchrony. We can see that the Mean Phase (MP) synchronisation
model is slightly more robust in this case, than a loosely coupled oscillator with
the M&S synchronisation model. If we increase the coupling strength of the
latter, however, it performs even better.

We now consider the time required to achieve synchronisation. Figure 3b
shows that, in most cases, a short (but non-zero) refractory period results in
shorter synchronisation times. In general, it therefore seems optimal to choose a
short, non-zero length refractory period. For low broadcast failure probabilities,
however, there are negligible differences for refractory periods of different lengths.
If we expect robust communication for a deployed network then we should choose
a longer refractory period and so conserve energy.

Network Synchronisation Scalability. Figure 4a and b plot the synchronisation
time against the population size for different rates of broadcast failure, for the
M&S and Mean Phase synchronisation models respectively. For the M&S model
we see that when μ > 0.3, increasing the population size results in shorter syn-
chronisation times, while a higher rate of broadcast failure yields longer synchro-
nisation times. We conjecture that the surprising peaks for μ ≤ 0.3 are again an
artefact of the rounding, resulting in cyclic behaviour, similar to that observed
in deterministic models, as discussed for the M&S model. For the Mean Phase
synchronisation model, we can again observe that a higher rate of broadcast fail-
ure yields longer synchronisation times. Similarly, increasing the population size
results in shorter synchronisation times. However, in this case the rate at which
synchronisation time decreases, given an increase in the size of the population,
is more pronounced. Unlike the M&S model there are no peaks in the graphs
indicating undesirable asynchronous cyclic behaviour. For the M&S model we
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observed that low coupling strength resulted in minor perturbations to phase
being ignored due to rounding. In the Mean Phase model this does not occur,
since the fractional part of the calculated mean phase is always ≥ 0.5.

Table 2. Memory for model check-
ing (in MB) and time for model con-
struction (in seconds), for T = 10,
RP = 1, ε = 0.1, μ = 0.1.

M&S MP

N Mem. Time Mem. Time

3 124.63 0.09 131.30 0.09

4 161.33 0.37 162.42 0.43

5 262.62 1.65 261.39 1.61

6 592.94 5.28 610.20 5.42

7 1604.76 17.13 1495.59 16.88

Model Checking Scalability. Using formal
population models to analyse networks of
indistinguishable oscillators is a promising
approach. We checked networks with up to
7 oscillators, while to the best of our knowl-
edge, other formal analyses using model
checking turned out to be infeasible for more
than four nodes for fully connected net-
works [13]. Memory and time used for model
checking and construction of a single model,
resp., are shown in Table 2. The increase in
memory usage is as expected, and differences
between the two models are relatively small. The properties can be checked in
under a second. While our approach allows us to postpone the state space explo-
sion problem, we cannot escape it completely. The major bottleneck is not the
model checking time itself, but rather the model construction time. For individ-
ual models this was relatively short, but greatly accumulated for the parameter
combinations we investigated, where thousands of models were constructed.

6 Conclusion

In this paper we presented a formal general model for networks of pulse-coupled
oscillators, whose oscillation cycles are defined as a sequence of discrete states.
We instantiated the general model for two different models of synchronisation
used for the coordination of wireless sensor networks and swarm robotic systems.
For each instantiation, and for a range of different values for model parameters,
we automatically generated input for the probabilistic model checker Prism,
encoded as a discrete time Markov chain. Finally, we used the results of model
checking to analyse parametric influence on both the rate at which synchronisa-
tion occurs, and the time taken for it to occur; in particular, we discussed the
trade-offs for parameter choices to minimise energy consumption in a network.

For future work, we intend to extend our current binary notion of synchro-
nisation by introducing a metric, in the form of a reward structure, allowing us
to reason about different degrees of synchronisation for global states. We also
intend to formally encode energy consumption reward structures that will allow
us to obtain quantitative results for those we reasoned about informally in this
paper. A population model is appropriate when nodes are indistinguishable and
the network is fully coupled. To analyse other network topologies, for instance a
network of fully connected subcomponents, we could encode each such subcom-
ponent as a single population model, and take the cross product of the models
for all subcomponents. To accomplish this it is likely that we would need to
further refine our model, as this would greatly increase the state space.
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Abstract. Spatio-temporal systems exhibiting multi-scale behaviour
are common in applications ranging from cyber-physical systems to sys-
tems biology, yet they present formidable challenges for computational
modelling and analysis. Here we consider a prototypic scenario where
spatially distributed agents decide their movement based on external
inputs and a fast-equilibrating internal computation. We propose a gen-
erally applicable strategy based on statistically abstracting the inter-
nal system using Gaussian Processes, a powerful class of non-parametric
regression techniques from Bayesian Machine Learning. We show on a
running example of bacterial chemotaxis that this approach leads to
accurate and much faster simulations in a variety of scenarios.

1 Introduction

Modelling spatially extended dynamical systems is a task of central importance
in science and engineering. Examples range from cyber-physical systems, to col-
lective adaptive systems of human behaviour, to cellular systems. Despite their
importance, computational modelling and analysis of such systems remains chal-
lenging due to a number of factors: the large number of degrees of freedom, the
intrinsically hybrid nature of discrete systems existing in continuous space, and,
frequently, the existence of multiple temporal scales in the system. As a result
of these features, computational simulation of such systems is generally onerous,
particularly in a stochastic setting [4,6].

In this paper, we consider the scenario where the system consists of mul-
tiple, spatially distributed, identical agents. The agents can sense an external,
deterministic field and use this information to perform a stochastic, internal
computation which determines the agent’s subsequent move. The internal com-
putation is often a system which will quickly reach a steady-state equilibrium
when left unperturbed, e.g. a chemical reaction network. While this scenario is a
special case as the agents do not interact with each other, it is sufficiently generic
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to cover many application scenarios, such as autonomous drones performing a
task in space, or bacteria exploring a nutrient field. Such systems are cumber-
some to handle computationally as the simulation of the internal computation
needs to be repeated at every spatial step, so that simulating a single trajectory
of the overall system may involve hundreds of simulations of the internal model.

Here we propose a novel approach to alleviate this computational burden
based on emulating the statistics of the internal system. The central idea is
to replace the expensive computation of the internal system with a lookup
table which maps external stimulus to the output behaviour of the internal
system. Crucially, we do not aim to model the detail of the internal state,
but only an abstracted version capturing its qualitative behaviour (formalised
as a logical property satisfied by the states). We achieve this by learning a
parameters-to-behaviours regression map using Gaussian Processes (GPs), a
powerful class of non-parametric Bayesian regression models. Our work is moti-
vated by earlier work on using GPs to learn effective characterisations of system
behaviour [1,2,11].

The rest of the paper is organised as follows: background on spatio-temporal
systems and E. coli chemotaxis which serves as a running example (Sect. 2); the
general framework for our statistical abstraction methodology, and its applica-
tion to the chemotaxis system (Sect. 3); results assessing the quality and effi-
ciency of the abstraction (Sect. 4); closing remarks about prospective expansion
of the work (Sect. 5).

2 Background

2.1 Spatio-Temporal Agent Models

We start by defining the class of spatio-temporal agent models we will consider
in this paper. Let D be a spatial domain (usually a compact subset of Rn with
n = 2, 3), and let [0, T ] be the temporal interval of interest. We define the
spatio-temporal field f : D × [0, T ] → R to be a real-valued function defined on
the spatial and temporal domains of interest. A spatio-temporal agent model is
a triple (D, f,A) where A is a collection of point agents whose location follows
a stochastic process which depends on the spatio-temporal field. We note that
this is not the most general case, as agents may be spatially extended, interact
with each other or even influence the evolution of the spatio-temporal field.
Nevertheless, such a level of abstraction is frequently adopted and justifiable in
many practical applications.

Running Example: Chemotaxis in the Escherichia coli Bacterium. Foraging is a
central problem for microbial populations. The bacterium Escherichia coli will
normally perform a random walk within a spatial domain where nutrient concen-
tration is constant (e.g. a Petri dish). When presented with a spatially varying
nutrient field, a phenomenon known as chemotaxis arises. As the bacterium per-
forms a random walk in the nutrient field encountering changing nutrient levels,
its sensory pathway effectively evaluates a temporal gradient of the nutrients
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(or ligands) it experiences; the walk is biased so that the bacterium experiences
a positive temporal gradient more often than not [18,20]. Since the bacterium
is moving in the field, the temporal gradient is implicitly translated into a spa-
tial one, so the bacterium drifts toward advantageous concentrations. Implicitly
translating a temporal gradient to a spatial one through motion is necessary
for the bacterium cell, because its body size is too small to allow for effective
calculation of the spatial gradient of a chemical field at its location. As a result,
we can safely regard the bacteria as point-like agents.

2.2 Multi-scale Models

In many practical situations, one is interested in modelling not only the move-
ment of the agents, but also the mechanism through which sensing and decision
making is carried out within each agent. This naturally leads to structured mod-
els with distinct layers of organisation, with behaviour in each layer informing
the simulation that takes place at the layer above or below. We will assume that
the internal workings of the agent are also stochastic, and we will model them as
a population Continuous Time Markov Chain (pCTMC) 1. Formally, a pCTMC
is defined as follows.

Definition 1. A population CTMC is a continuous-time Markov chain [12] with
a discrete state-space X , and an associated transition rate matrix Q. Each state
in X counts the number of entities of each type or “species” in a population,
X ∈ {

N
0
}d for d species. Transitions in this space occur according to the rates

given by Q.
The transitions can be regarded as occurrences of chemical reactions, written

as

d∑

i=1

riXi
τ(X)−−−→

d∑

i=1

siXi, (1)

where for every species Xi, ri particles of Xi are consumed and si particles are
created. The transition rate τ(X) depends upon the current state of the system,
and is the rate parameter of an exponential distribution governing the waiting
times for this transition. The above transition rates of allowed reactions recon-
struct the rate matrix Q.

Motor Control in E. coli. An E. coli cell achieves motility by operating multi-
ple flagellum/motor pairs (F/M), which can either drive it straight (subject to
small Brownian perturbation), or rotate it in place. Thus, the cell can either be
‘tumbling’ (re-orienting itself while stationary) or ‘running’ (propelling itself for-
ward while maintaining direction) at any time (Fig. 1: left, centre). The motility
state, RUN/TUMBLE, of the cell is determined by the number of flagella found
in particular conformations. The model in [15] suggests three possible conforma-
tions for a flagellum: curly (C), semicoiled (S) and normal (N). The associated
1 The pCTMC is the internal model for a single agent here, not for multiple agents.
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motor is modelled as a stochastic bistable system, which rotates either clockwise
(CW) or counter-clockwise (CCW). Changes in motor rotation induce confor-
mational changes on the associated flagellum. Transition rates between motor
states are given by rate parameters k+ and k− for transitions CW → CCW and
CCW → CW, respectively. The possible transitions between flagellum/motor
states are summarised in the schematic diagram in Fig. 1: right. E. coli nor-
mally has of the order of ten flagella and associated motors; the dynamics of the
pair flagellum/motor population therefore lends itself to be easily described as a
pCTMC. The k± transition rates depend on the temporal gradient evaluated by
the chemotaxis pathway, and represent the functional interface of the bacterium
with its external environment.

Fig. 1. The two motility modes of an E. coli cell. Left: the F/M are in CCW confor-
mations, forming a helical bundle and propelling the cell. Centre: the F/M are in CW
conformations, breaking the bundle apart and causing the cell to re-orient in place.
Right: CTMC for a single F/M, with three conformation states and transition rates
k±(m, L) and fixed μ = 5 s−1.

The classical mathematical model for the sensory response of the cell to exter-
nal ligand concentration changes is provided by the Monod-Wyman-Changeux
(MWC) model [9,15,17]. The model considers sensor clusters which signal infor-
mation about ligand concentration changes to the motors, by triggering a bio-
chemical response in the cell (phosphorylation of the CheY protein which binds
to the motors) affecting the switching rates of rotation direction, k±.

The full MWC model is still highly complex; in practice, we follow [15] and
adopt a simplified model of sensory response to describe the dependency of
motor rates k± on ligand concentrations. This consists in abstracting the CheY
signalling pathway in an effective variable m, which represents the methylation
state of the ligand receptors and whose stochastic evolution is dependent on the
ligand concentration L. Since m depends on past L concentrations the cell has
been in, one may think of it as a chemical memory of sorts which encodes the
value of L at previous times. The time comparison window is determined by how
fast methylation happens—faster methylation leads to a shorter memory.

Sneddon et al. [15] then resolve the entire dependency chain of the chemotaxis
pathway to Eqs. 2 and 3. The motor switching rates k±(m,L) are given by the
deterministic equation

k± =ω · exp
{

±
[
g0

4
− g1

2

(
Yp(m,L)

Yp(m,L) + KD

)]}
, (2)
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where

Yp(m,L) =α ·
[
1 + eε0+ε1m ·

(
1 + L/Koff

TAR

1 + L/Kon
TAR

)nTAR

·
(

1 + L/Koff
TSR

1 + L/Kon
TAR

)nTSR]−1

.

The methylation process can be naturally modelled as a birth/death process
with rates depending on ligand concentration; again following [15] we take a
fluid approximation of this, yielding the Ornstein-Uhlenbeck (OU) process:

dm

dt
= −1

τ
(m − m0(L)) + ηm(t). (3)

In the above stochastic differential equation (SDE), ηm = σm

√
2/τΓ(t), Γ(t) is

the normally distributed random process with 0 mean and unit variance, σm is
the standard deviation of fluctuations in the methylation level, and m0(L) is an
empirically derived function whose output is the methylation level required for
full adaptation at the current external ligand concentration L. The adaptation
rate τ , determines how fast methylation occurs and so, how long the ‘chemical
memory’ of previous L values is in the system. The constants τ , along with mb0

and α involved in the m0(L) function (see [15]), fully parametrise the methylation
evolution. See [19] for reported values of constants used in Eq. 2 and [5,15] for a
detailed derivation of the results. Equations 2 and 3 couple the transition rates
of the pCTMC in Fig. 1: Right, with the external ligand concentrations, and
therefore fully describe the internal model of the E. coli chemotactic response.

2.3 Simulating Multi-scale Systems

Multi-scale spatio-temporal systems are in general amenable to analytical tech-
niques only in the simplest of cases. For the vast majority of real-world models,
simulation-based analysis is the only option to gain behavioural insights.

Simulation of spatio-temporal systems typically employs nested algorithms:
having chosen a time-discretisation for the spatial motion (which is assumed
to have the slower time-scale), a spatial step is taken. Then, the value of the
external field is updated, and the internal model is run for the duration of a
given time-step with the new rates (corresponding to the updated value of the
external field). A sample from the resulting state distribution then determines
the velocity of the agent for the next time-step.

Clearly, this iterative procedure, while asymptotically exact (in the limit of
small time discretisation), is computationally very demanding. This has moti-
vated several lines of research in recent years [1,8,10,13].

Simulating Chemotaxis in E. coli. Simulations of the E. coli model outlined
previously proceed along the general lines discussed above. Given a value of the
ligand field and a characteristic time-step Δt, we draw samples of the SDE (3)
using the Euler-Maruyama method, a standard method for simulating SDEs.
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In the F/M pCTMC system in the reaction equation style, each species rep-
resents a different F/M conformation for a total of three species. The following
transitions occur:

(S CW )
μ−→ (C CW ), (C CW )

k+−−→ (N CCW ),

(S CW )
k+−−→ (N CCW ), (N CCW )

k−−−→ (S CW ).
(4)

Note that in the above rate transitions there are dependencies on both external
(L) and internal (m) states: k±(m,L), where L is an external input to the system
(the external chemoattractant concentration at the time) and m is the current
methylation level (sampled from the OU process in Eq. 3 every Δt). Instead, the
rate transition for (S CW ) → (C CW ) is fixed, μ = 5 s−1.

Using the exact Gillespie algorithm [7], we then simulate the internal pCTMC
for a length of time Δt to draw a sample configuration of the flagella/motor sys-
tem. Formally, trajectories of length Δt are checked against a property specifying
the motility state for the cell (RUN/TUMBLE),

φRUN(s) = (N ≥ 2) ∧ (S = 0), (5)

where s = (S,C,N) is the last state of the flagella/motor pairs in the CTMC
trajectory.

The spatial location of the bacterium is then updated according to a simple
rule: if the sampled internal state corresponds to RUN, the agent moves recti-
linearly and updates its position r ← r + v · Δt, where v = 20μm/s, the speed
of the bacterium. Otherwise, if the internal state corresponds to TUMBLE, the
agent remains still and its velocity is updated v ← R(θ) · v, where R(θ) is the
standard 2D unitary rotation matrix through an angle θ, and θ is a tumbling
angle sampled from a Gamma distribution as reported in Sneddon et al. [15].

The above simulation scheme, outlined in Algorithm1, produces a chemo-
tactic response to a ligand gradient. It takes ∼270 s to simulate a single cell
trajectory of tend = 500 s with a time-step Δt = 0.05.

3 Methodology for Statistical Abstraction

In a multi-scale system, output from a set of processes in one layer in the system
is passed as input to another layer; these processes are often computationally
expensive. We present a methodology to abstract away such a set of processes and
replace them with a more efficient stochastic map from the input to the output,
governed by an underlying probability function. We approximate this probabil-
ity function using Gaussian processes after observing many input-output pairs
from the processes to be abstracted. The output consists of truth evaluations of
properties expressed in logical formulae, which capture some behaviour of the
system that is to be preserved by the abstraction.
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Algorithm 1. Simulation scheme for the E. coli model, based on full simulation
of the pCTMC describing F/M conformation changes. Below, Δt is the fixed
simulation time-step. Smaller functions called here (Run, Tumble, OU-Euler-
Maruyama) can be found in the full version of the algorithm, arXiv:1706.07005.
1: procedure SimulateFineEcoliCell(tend)
2: t ← 0
3: while t < tend do
4: L ← L(r, t) � The ligand field L value, at the cell’s

location r.
5: s ← pCTMC(s, m, L, Δt) � Drawing F/M pCTMC trajectory of

length Δt, with parameters k±(m, L)
and initial state the last pCTMC
state of the cell.

6: ψ ← φRUN(s) � Evaluating the φRUN on (the final
state of) the pCTMC trajectory.

7: if ψ then
8: r ← Run(r, v, Δt)
9: else

10: v ← Tumble(v, Δt)
11: end if
12: m ← OU-Euler-Maruyama(m, L, Δt) � Evolving methylation.
13: t ← t + Δt
14: end while
15: end procedure

3.1 Statistical Abstraction Framework

Consider a CTMC S, which given an initial state s0, running time t, and input
q which completely determines transition rates, generates a trajectory s[0,t].
The trajectory is then checked for satisfaction of a property resulting in output
y = f(s[0,t]), y ∈ {�,⊥}. This layer of the multi-scale system can therefore be
described as a set of operations:

S(s0, t,q) = s[0,t]; (6)
f(s[0,t]) = y. (7)

Note that we consider a single property here for simplicity so a single binary
value, but one could generalise to multiple properties, and hence, multi-valued
output. This output then becomes input to a higher layer in the multi-scale
system.

Our goal is to construct a system S̃ that is cheaper to simulate, whose output
will be consistent with the original system S. Since the system is stochastic, in
this context consistent refers to having the same probability distribution for the
output random variable y. This abstracted system should generate output y′

given the last output of the system y and the same input k as before:

S̃(y,q) = y′. (8)
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Replacing the initial state s0 input with the previous output y allows us to
substitute the whole layer of fine operations (6, 7) with the cheaper abstracted
system S̃ (8), in the multi-scale system. We regard this abstracted system to be a
stochastic map from the internal state of the system and some given input to an
output; we then use Gaussian processes to estimate the underlying probability
function Ψ(y,q) which governs the output of this stochastic map over the input
domain.

Abstracting the E. coli Chemotaxis Pathway. Returning to our model of the E.
coli chemotaxis pathway, we associate the original system S with the pCTMC
system of F/M conformations (Eq. 4), along with the OU methylation process in
Eq. 3. The input starting state s0 is the last F/M state of the pCTMC, and the
last methylation level m. The simulation time T is the variable Δt from Sect. 2.1,
also used for the integration step-size of the OU in the Euler-Maruyama scheme.
The transition rates k± are calculated using the variables m and L, the last
methylation level and external ligand concentration at the position of the cell,
respectively. The output of this system, st, is then a sampled pCTMC trajectory
and new methylation level. Finally, the run property (5) is evaluated on (the last
state of) the drawn pCTMC trajectory and the output determines whether the
cell ‘runs’ or ‘tumbles’.

Fig. 2. DTMC with two states, φRUN ∈ {�, ⊥}. The transition probabilities depend
on internal methylation level m and external ligand concentration L.

In observing the truth value of property φRUN for the state of the pCTMC
at regular intervals of Δt, we cast the original pCTMC model (S) into a DTMC
(Fig. 2). This DTMC has only two states, φRUN ∈ {�,⊥}, and transition prob-
abilities depending on the transition rates k±, μ, of the original pCTMC.

Since this is only a two-state DTMC, the state at the next time-step condi-
tioned on the current one can be modelled as a Bernoulli random variable:

φ′ | φ ∼ Bernoulli(p = pφ′=1|φ(m,L)), (9)

where φ, φ′ are the φRUN DTMC states at time-steps h, h + 1 respectively.
Also, the boolean {⊥,�} truth values of the properties have been mapped to
the standard corresponding integers {0, 1} for mathematical ease.

We recognise that a single step transition of this DTMC (φ′ | φ,m,L) is
the output y′ | y,q produced by the abstracted layer S̃(y,q). Identifying the
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Algorithm 2. Simulation scheme for the abstracted E. coli model, based on
GP approximation for the RUN/TUMBLE probability. Steps 5, 6 here replace
the expensive Steps 5, 6 in Algorithm 1.
1: procedure SimulateAbstractedEcoliCell(tend)
2: t ← 0
3: while t < tend do
4: L ← L(r, t)
5: p ← GPψ(m, L)
6: ψ ∼ Bernoulli(p)
7: if ψ then
8: r ← Run(r, v, Δt)
9: else

10: v ← Tumble(v, Δt)
11: end if
12: m ← OU-Euler-Maruyama(m, L, Δt)
13: t ← t + Δt
14: end while
15: end procedure

corresponding probability function pφ′=1|φ(m,L) as the underlying governing
function Ψ(y,q) completes the setting of E. coli chemotaxis model abstraction
to the methodology framework given above (Sect. 3.1). Note that the OU process
for methylation is retained in the abstracted model as a parallel running process
in the same layer of the multi-scale system. The OU process output m, together
with the ligand concentration L (output of a different layer in the multi-scale sys-
tem), constitute the input q. The altered simulation scheme for this abstracted
model is outlined in Algorithm2. Notice how Steps 5, 6 there replace the more
expensive Steps 5, 6 in Algorithm 1.

3.2 Approximating the Underlying Probability Function Ψ

We use Gaussian process (GP) regression in order to infer the underlying prob-
ability function Ψ(y,q) governing the stochastic S̃ mapping from internal state
y and input k to output y′ in Sect. 3.1. A GP models a normally distributed
stochastic variable over a continuous domain. It can be thought of as a multi-
variate normal distribution over functions. This multivariate normal distribution
can be conditioned on a finite number of (potentially noisy) observations of the
function to be inferred, learning new mean and covariance parameters. These are
computable at any point in the domain and correspond to the expected value of
the function and associated variance at that point, respectively.

GPs are universal function approximators. The choice of covariance kernel
determines the prior over the function and thus how many observations are
required to get a good estimate of the underlying function. However, given
enough observations, a GP with any valid kernel will approximate any smooth
function arbitrarily well. We refer to [14] for a more comprehensive account of
GPs.
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Since training observations are binary samples of a Bernoulli distribution
but GPs regress over a continuous unbounded variable, some adjustments must
be made for correct evaluation of the underlying probability function Ψ . These
are explained in the Gaussian process classification (GPC) method outlined in
[14], and amount to identifying that class probability function with Ψ . We use
Minka’s Expectation-Propagation (EP) technique to approximate the posterior
because it is more accurate than the Laplace approximation. Further, we use
fully independent training conditional (FITC) approximation [16] to allow a large
number of observations to be considered for learning the underlying function,
while maintaining a low cost of predicting at any point of the domain. Note that
the Bernoulli distribution likelihood, used here for GPC, is a special case result
because of both the binary y = φ output and the single observation of transitions
at a particular (m,L) parametrisation.2 Lifting these restrictions would result
in the more general multinomial distribution.

Constructing Ψ in E. coli Chemotaxis. As we mentioned, a single DTMC transi-
tion (φ′ | φ,m,L) corresponds to the output y′ | y,q produced by the stochastic
mapping S̃(y,q). Therefore, S̃(φ, (m,L)) consists of sampling from a Bernoulli
distribution Bernoulli(p = pφ′=1|φ(m,L)) where pφ′=1|φ(m,L) is the underly-
ing probability function Ψ(y = φ, q = (m,L)) in the general formalism. We
approximate Ψ(y,q) = pφ′=1|φ(m,L), using GPs trained on observations from
micro-trajectories, i.e. trajectories of the fine F/M pCTMC system which are
then mapped onto the property space, φ ∈ {0, 1}, to serve as training data.

Therefore, at a given (m,L) the pCTMC with transition rates k±(m,L) is
at a state s0 which maps onto φ(s0). After a time Δt, the same CTMC is found
at a state sΔt, which maps onto φ(sΔt). An observation φ(sΔt) | φ(s0),m,L is
in this way recorded for every parametrisation (m,L) the bacterium has visited
in the micro-trajectories.

Since the output of S̃ is binary (y = φ ∈ {0, 1}) we construct two probability
functions Ψφ(m,L) = pφ′=1|φ(m,L). Each is approximated with a separate GPC
function, where Ψ0(m,L) is trained on observations of transitions originating
from the ‘TUMBLE’ state (pφ′=1|φ=0(m,L)) and Ψ1(m,L) using transitions from
the ‘RUN’ state (pφ′=1|φ=1(m,L)). Notice that we need not estimate separate
functions for φ′ = {0, 1}, since pφ′=1|φ(m,L) = 1 − pφ′=0|φ(m,L). Having access
to these underlying probability functions we are now able to sample the DTMC
at any parametrisation (m,L) the bacterium finds itself in, by using the function
estimate for pφ(m,L) despite not having observations at that m,L.

The function pφ′=1|φ(m,L) is particularly challenging for GPs. This is due
to a sharp boundary in the m, L domain, where there is a transition from
pφ′=1|φ(m,L) ≈ 0 to pφ′=1|φ(m,L) ≈ 1. The bacterium has a steady state very
close to this boundary, determined by the motor bias mb0, and that is where they
are most often found. Therefore, accurate estimation of this boundary is crucial
for this problem. Furthermore, the low probability of finding bacteria away from

2 It is highly unlikely to have more than a single transition since (m, L) are continuous
values that constantly change for the bacterium.
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the boundary (in a relatively smooth ligand field) gives a very narrow window of
where the function is observed. To get a better overall estimate, we sporadically
perturb the position of bacteria in the micro-trajectory phase of collecting obser-
vations, such that the bacterium finds itself producing observations away from
the boundary for a while, before the system returns close to steady state again.
Despite these difficulties, we produce a good reconstruction of the underlying
functions pφ′=1|φ=0 and pφ′=1|φ=1 over the m, L domain (see Fig. 3).

Fig. 3. The probability functions pφ′=1|φ(m, L) (left: φ = �, right: φ = ⊥) produced
by the GP with hyperparameters ln(�) = (3.5, −2.5) and ln(σ) = 5, 100 inducing points
(FITC approximation), and 10000 observations (red crosses). The steep boundary is
accurately captured producing a sharp switch-like transition from the run domain to
the tumble domain. (Color figure online)

4 Results

When assessing performance of our method for statistical abstraction, there are
two things of interest: accuracy and computational savings. Accuracy refers to
how similar behaviour of the abstracted system is to the behaviour of the original
system. In our case of chemotaxis in E. coli, this is seen by comparing popula-
tion distributions in a ligand field, resulting from simulations using the original
fine system and the abstracted one. We also compare run and tumble duration
distributions as another metric of how closely we approximate the output and
behaviour of the original model.

Learning the transition probability functions for the dual-state DTMC
enabled us to simulate bacteria using our abstracted model on a host of dif-
ferent ligand field profiles. Beyond comparing bacteria population distributions
under the original Gaussian ligand field used for learning (see L1 below), we did
the same for a linear and dynamic field (L2, L3 below), using the same learned
functions pφ′=1|φ(m,L), φ ∈ {0, 1}.
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The ligand fields tested were:

L1(r) = 0.1 · exp
[−0.5(r�Σ−1r)

]
, Σ = 3 · I2; (10)

L2(r) = max
(

10−5, 0.1 − 0.05
√

(Ar)�Ar

)
, A =

(
1/5 0
0 1/2

)
; (11)

L3(r, t) = 0.1 · exp
[−0.5(r�Σ(t)−1r)

]
, Σ(t) = 3(t/50 + 1) · I2. (12)

In the fields above, the maximum value is 0.1 (units are mM) and this peak
concentration is at r = (0, 0). The field L2 is a static, non-isotropic, linear
field, whereas L3 is a dynamic field: a Gaussian spreading out over time, simi-
lar to what one might expect to be produced by a diffusing drop of nutrients.
As expected, as long as the stimulus concentrations and their spatial gradients
are within the region observed in training, the population distributions show
consistency with those produced when simulating using the original full model.

Computational Cost Savings. Computational savings are given empirically here
by comparing running times of simulations for both systems. A hundred (100)
cells are simulated in each of the ligand fields, for a time tend = 500 s and
a time-step of Δt = 0.05. Therefore, one million (1000000) iterations of the
main while loop in Algorithms 1 and 2 are compared in the reported speed-up
factor (Table 1). We observe a speed-up factor of ∼8, reducing running times
from ∼460m to ∼60m. Table 1 reports speed-up factors for each ligand field
experiment.

The reported factor values do not include the costs paid for training the
GP and producing the training data. It takes ∼4 m to train GPs for both Ψφ

functions, and ∼10 m for producing 20000 observations of pCTMC transitions
from the original fine system (10000 training points for each Ψφ function). The
relatively low times compared to simulation times, combined with the fact that
one only pays this once, upfront, make these costs negligible.

Accuracy Evaluation. To evaluate how closely results from the abstracted model
are compared to the original one, we applied the Kolmogorov-Smirnov (KS)
two-sample test [3] to the population distributions of the two models at several
time-points in the simulation, as well as to the distributions of running and tum-
bling duration. We have 100 samples from each population distribution since we
simulated 100 cells. However, in the case of ‘Run’ and ‘Tumble’ duration distribu-
tions we have ∼60000 observations from each, because we aggregate observations
from the entire trajectory; we choose a random 1000 sample of these to perform
the KS test.3 In light of these difficulties, a different test which quantifies the
3 We sub-sample because the KS test p-value depends heavily on sample size. Even if

two distributions generating samples might be very close, in the limit of an infinite
sample size one approaches the true distributions. In such a case, the KS test will
reject that the two samples were produced by the same distribution, returning lower
p-values as sample size increases (for the same KS distance). We do not expect
to produce the same distributions here since we are making approximations, so
comparing p-values for very large sample sizes is not of interest.
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distance between the two distributions (e.g. Jensen-Shannon divergence) might
be more useful here, but that requires analytic forms of the distributions.

Inspecting Table 1 we find no KS distance higher than 0.2 indicating very
similar distributions, as supported by the associated high p-values. The latter
do not allow rejecting the null hypothesis with the current sample, which is that
the samples originate from the same distribution. An exception is the ‘Tumble’
duration distributions in the L1 ligand field, where the somewhat higher KS
distance of the large sample sizes gives an exaggerated p-value (see footnote 1).

We note how even in the case of the dynamic L3 field, the resulting population
behaviour of the abstracted model is preserved without any additional training
necessary. The fact that the original training occurred in a static field does not
affect the ability of the abstract model to cope with a dynamic one.

Table 1. KS two-sample test statistics, where the first (top) value reports KS distance
and the second (in brackets, bottom) the associated p-value. One sample came from 100
trajectories of fine E. coli system simulations, and the other from 100 abstracted system
simulations. The first four columns show KS test results of original and abstracted bac-
terial population distances from peak concentration at various times t (shown in Fig. 4).
‘Run’ and ‘Tumble’ columns compare the distributions of run and tumble durations
respectively for 1000 samples from each system. The last column reports the observed
speed-up factor based on running times and normalising for core utilisation.

Field t = 125 s t = 250 s t = 375 s t = 500 s Run Tumble Speed-up

Gaussian:

L1(r)

0.110 (0.556) 0.160 (0.140) 0.170 (0.099) 0.160 (0.140) 0.039 (0.425) 0.101 (7 · 10−5) 7.8

Linear:

L2(r)

0.010 (0.677) 0.150 (0.193) 0.170 (0.100) 0.130 (0.344) 0.022 (0.967) 0.014 (0.100) 9.4

Dynamic

Gaussian:

L3(r, t)

0.140 (0.261) 0.070 (0.961) 0.140 (0.261) 0.080 (0.894) 0.047 (0.214) 0.039 (0.425) 8.9

Fig. 4. Empirical distributions for the distance of bacteria populations (100 E. coli)
at different times t of the simulation. Left: original full system simulations. Right:
abstracted system simulations. Gaussian L1 ligand field.
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5 Discussion

In many domains, ranging from cyber-physical systems to biological and med-
ical processes, consideration of spatio-temporal aspects of behaviour is essen-
tial. However, this comes at great computational expense. We have presented a
methodology that allows layers of a computationally intensive multi-scale model
to be replaced by more efficient abstract representations. This is a stochastic
map, constructed based on some exploratory simulations of the full model and
GP regression. Our results show that we are able to achieve significant speed-up
without sacrificing accuracy. This establishes a framework for such statistical
abstraction on which we plan to elaborate in future work.

Fig. 5. Average (blue) and standard deviation (red) of distance from peak ligand con-
centration for a population of 100 E. coli over a time of 500 s. Left: original full system
simulations. Right: abstracted system simulations. Rows (top to bottom): L1, L2, L3

ligand fields respectively. (Color figure online)
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It should be noted that the specifics of the abstraction are not automati-
cally determined by this framework, but are left to the researcher. Having to
manually specify the abstraction introduces an element of flexibility, since dif-
ferent abstractions may be tested and so one can see which are suitable and
produce accurate approximations, indicating that pertinent elements of the orig-
inal model are preserved in the coarsening. Additionally, there may be various
valid ways to coarsen a model, depending on what the focus of the inquiry is.
On the other hand, it shifts some of the burden of abstracting the model to the
researcher, who has to find a suitable set of properties which capture the output
behaviour of the layer to be abstracted.

Future work avenues include, for example, allowing more properties to be
expressed and using them to guide the abstraction will capture more complex
behaviours. Additionally, we could infer abstracted model parameters or under-
lying functions from real data, instead of synthetic ones. Finally, one would like
to be able to deal with correlated agents which result in emergent behaviour at
the whole population level. This may be readily achieved in this framework if the
interaction between agents happens by altering their modelled external environ-
ment (e.g. by manipulating the nutrient field, or by exuding different chemical
trails which can be modelled by an additional external field). However, the path
is not so clear if the agents are coupled in some other way, where the internal
state of one directly affects that of another.
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Abstract. We present a new method for statistical verification of quan-
titative properties over a partially unknown system with actions, utilis-
ing a parameterised model (in this work, a parametric Markov decision
process) and data collected from experiments performed on the under-
lying system. We obtain the confidence that the underlying system sat-
isfies a given property, and show that the method uses data efficiently
and thus is robust to the amount of data available. These characteris-
tics are achieved by firstly exploiting parameter synthesis to establish a
feasible set of parameters for which the underlying system will satisfy
the property; secondly, by actively synthesising experiments to increase
amount of information in the collected data that is relevant to the prop-
erty; and finally propagating this information over the model parameters,
obtaining a confidence that reflects our belief whether or not the system
parameters lie in the feasible set, thereby solving the verification prob-
lem.

1 Introduction

Formal verification relies on full access to accurate models describing the behav-
iour of systems in order to guarantee their correctness. Such models are often
hard to obtain for systems encompassing partially understood behaviours and
uncertain events. For a partially unknown system, the unknown model charac-
teristics can be represented via non-determinism in the form of parameters. The
resulting parameterised model captures all available knowledge on the underly-
ing system of interest.

We target the verification of a fragment of Probabilistic Computation Tree
Logic (PCTL) on partially unknown systems with actions. We develop a new
approach that incorporates the available information captured by a parame-
terised model with the active collection of a limited amount of data from the
underlying system. The verification problem is tackled in three phases. In the
first phase we use the available parameterised model to synthesise the set of
parameters for which the property of interest is satisfied (called the feasible set).
c© Springer International Publishing AG 2017
N. Bertrand and L. Bortolussi (Eds.): QEST 2017, LNCS 10503, pp. 259–274, 2017.
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In the second phase a series of experiments are designed and executed on the
system to update the knowledge available about the parameters of the parame-
terised model. More precisely, a procedure executes the designed experiments,
obtains data from the system and, by means of Bayesian statistics, updates
distributions over the likely parameter values of the parameterised model. This
updated knowledge is returned to the experiment design module, and the process
is repeated until a preset limit on the total amount of collectible data is reached.
The design of such experiments is important to attain a reasonable level of con-
fidence in the acceptance or rejection of a property with a limited amount of
data.

In the final phase, we combine the output from the parameter synthesis with
the updated distributions over the model parameters to quantify the confidence
that the system satisfies (or does not satisfy) the property.

This work extends the contributions in [19] by focussing on systems with
actions: the presence of (action) non-determinism provides the potential for
experiment design, whereby we select actions to improve the accuracy of our
confidence value. More precisely we design experiments that maximise the use-
fulness of the data collected. Intuitively, this means that we want to design
experiments to prioritise the collection of data that leads to proving or dis-
proving the satisfaction of the property. In this work, we present the complete
approach, and evaluate the contribution of our experiment design procedure. We
argue that automated experiment design allows us to draw sensible conclusions
robustly with a limited amount of data.

Structure of the Paper. Section 2 provides the necessary background infor-
mation for the rest of paper to build upon. Section 3 presents an overview of our
algorithm. Subsequent sections detail the different phases of the algorithm: in
Sect. 4 we show how we collect data; Sect. 5 provides details on the confidence
computation; and the key contribution of this work is Sect. 6, which outlines our
experiment design approach.

1.1 Problem Statement

Consider a partially unknown system S, with external non-determinism in the
form of actions, and suppose we can gather a limited amount of sample tra-
jectories from this system. Assume the partial knowledge about the system is
encompassed within a parameterised model class describing the behaviour of S.

We investigate two sub-problems:

– Can we efficiently use this limited amount of data from a system S to quantify
a confidence that the system S verifies a given PCTL property?

– How should we design an experiment on the system such that the gathered
data allows us to verify the property with the greatest degree of accuracy?
Let the choice of actions of system S be something we can control during the
experiment, and let there only be a limited amount of available experiment
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time; can we optimise the sequence of actions to increase the accuracy of the
confidence quantification?

1.2 Related Work

We compare our work to two branches of research: Statistical Model Checking
(SMC) and research concerned with learning models from system data. We con-
trast our experiment design method with existing strategy synthesis techniques
for fully known Markov decision processes (MDPs).

We emphasise that we tackle a different problem than SMC: we target par-
tially unknown systems and gather data from the underlying system; SMC [16]
targets fully known models that are too big for conventional verification, and
generates large amounts of data from the models themselves. When applied
to model-free scenarios [23,24], SMC generates this data from the underlying
system. By using partial model knowledge, we substantially reduce this data
requirement. In addition, SMC for systems with non-determinism [4,12] consid-
ers only bounded-time properties, and depends on the ability to generate traces
from the model of length greater than the bound. By incorporating parameter
synthesis tools, we are able to consider unbounded-time properties and to draw
conclusions from much shorter traces.

Research on learning models from system data is broad. [18,22] use a
Bayesian approach to learn full Markov models of completely unknown sys-
tems. Our work uses a similar Bayesian method but differs because we include
information from the partial model, which allows us to consider known rela-
tionships between parameters and thus reduce the amount of data needed for
inference. [1,3] use active learning to discover full MDP models from data, pri-
oritising actions by variance minimisation or KL divergence. The inclusion of a
partial model in our method allows us to instead prioritise gathering data that
contributes to the acceptance or rejection of a given property over the system.
Although [3] learns the model with the goal of system verification, the authors
provide no means of quantifying a confidence that the system satisfies the prop-
erty, as they do not have a way to assess which transition probabilities have the
greatest contribution to the satisfaction of the property.

Considering different model classes, experiment design is also used in system
identification [7]. Recent studies [10,11] have incorporated experiment design to
data-driven statistical verification over dynamical systems with partly unknown
dynamics, controllable inputs and noisy measurements. Similar to our approach,
they also compute a confidence estimate on the properties of interest by gathering
data through optimal experiment design.

Action selection for Markov decision processes, though in our context used
for experiment design, is a known problem that in general amounts to syn-
thesising strategies. [15] presents an overview for MDPs with static rewards,
and [8] provides solutions for MDPs with non-Markovian rewards. Closer to our
approach, [9] synthesises strategies for MDPs online, where an agent learns a
state cost only after selecting an action. [13] use inference-based techniques over
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strategies to pick a strategy that maximises the expected reward for an MDP
with arbitrary rewards.

2 Background

We model a fully known system as a Markov decision process [2].

Definition 1. A discrete-time Markov decision process (MDP) M is a tuple
(S,Act, T, ιinit,AP, L), where:

– S is a finite, non-empty set of states,
– Act is a set of actions,
– T : S×Act×S → [0, 1] is the transition probability function, such that ∀s ∈ S

and ∀α ∈ Act,
∑

s′∈S T(s, α, s′) ∈ {0, 1},
– ιinit : S → [0, 1] denotes an initial probability distribution over the states S,

such that
∑

s∈S ιinit(s) = 1,
– The states in S are labelled with atomic propositions a ∈ AP via the labelling

function L : S → 2AP.

An action α ∈ Act is enabled in state s if and only if
∑

s′∈S T(s, α, s′) = 1.
Let Act(s) denote the set of enabled actions in s. For any state s ∈ S, it is
required that Act(s) �= ∅. Each state s′ ∈ S for which T(s, α, s′) > 0 is called an
α-successor of s. Those states s satisfying the condition ιinit(s) > 0 are called
initial states.

We assume that the MDP is not known exactly, and instead belongs to the set
of MDPs represented by a parametric Markov decision process.

Definition 2. A discrete-time parametric Markov decision process (pMDP) is
a tuple MΘ = (S,Act, Tθ, ιinit,AP, L,Θ), where S, ιinit,Act,AP, L are as in
Definition 1. The entries in Tθ are specified in terms of parameters, collected in
a parameter vector θ ∈ Θ, where Θ is the set of all possible evaluations of θ.
Each evaluation gives rise to an induced Markov decision process M(θ).

∀s ∈ S,∀α ∈ Act(s),∀θ ∈ Θ :
∑

s′∈S Tθ(s, α, s′) = 1, namely any θ ∈ Θ induces
an MDP M(θ) where the transition function Tθ can be represented by a sto-
chastic matrix. We also assume a prior distribution on the model parameters
(to be used in Bayesian inference). We assume all non-parameterised transition
probabilities are known exactly.

As in [19], we consider linearly parameterised MPDs, where unknown tran-
sition probabilities can be linearly related. More precisely, given Θ ⊆ [0, 1]n and
parameter vector θ = (θ1, . . . , θn) ∈ Θ with θi ∈ [0, 1], a pMDP is considered lin-
early parameterised if all outgoing transition probabilities of state-actions pairs
have probability gl(θ) or 1 − gl(θ), where gl(θ) = k0 + k1θ1 + . . . + knθn with
ki ∈ [0, 1] and

∑
ki ≤ 1. This restriction is due to the transformations presented

in [19] necessary to perform Bayesian inference over the model parameters. As
before, ∀s ∈ S,∀α ∈ Act(s),∀θ ∈ Θ :

∑
s′∈S Tθ(s, α, s′) = 1.
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2.1 Strategies

A strategy for an MDP resolves nondeterminism by choosing an action in each
state of the model. In our work experiment design amounts to synthesising a
strategy for an MDP, i.e., a sequence of actions, under which we generate data
from the system. We focus on deterministic memoryless strategies in this paper,
i.e., strategies that always pick the same action in any given state, independent
of the history of states already visited. Future work will extend to both memory-
dependent and randomised strategies.

Definition 3. A deterministic memoryless strategy for an MDP M is a function
π : S → Act s.t. π(s) ∈ Act(s) ∀s∈S.

2.2 Properties – Probabilistic Computational Tree Logic

We consider system specifications (aka properties) given in a fragment of Prob-
abilistic Computational Tree Logic (PCTL) [2]. Since we use PRISM [14] for
parameter synthesis, we consider non-nested, unbounded-time “until” properties
expressed in PCTL.

Definition 4. Let a discrete-time MDP be given. Let φ be a formula interpreted
over states s ∈ S, and ϕ be a formula interpreted on paths of the MDP. Also, let
	
∈ {<, ≤, ≥, >}, n ∈ N, p ∈ [0, 1], c ∈ AP . The Syntax of the PCTL fragment
we consider is given by:

φ := true | c | φ ∧ φ | ¬φ | P��p(ϕ), ϕ := © φ | φ U φ.

Definition 5. Consider a PCTL formula φ := P��p(φ1 U φ2). Let P
π
M(s, ϕ)

denote the probability associated to the paths of an MDP M starting from s ∈ S
satisfying the path formula ϕ under the strategy π. Let A(M) denote all deter-
ministic memoryless strategies for M. The satisfaction of the formula φ by M
is given by:

M |= P��p(φ1 U φ2) ⇐⇒ ∀s ∈ S, ιinit(s) > 0 : min
π∈A(M)

P
π
M(s, φ1 U φ2) 	
 p.

We introduce the feasible set of parameters, denoted Θφ, which is the set of
parameter evaluations for which the property is satisfied.

Definition 6. Let M(θ) be an induced MDP of the pMDP MΘ, indexed by
parameter vector θ ∈ Θ. Let φ be a formula in PCTL. The feasible set Θφ is
defined as: θ ∈ Θφ ⇐⇒ M(θ) |= φ.

We use P(A) to denote the probability of an event A, p(·) to represent probability
density functions and P��p(·) for the probabilistic operator in PCTL.
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3 Overview of the Method

Our method is made up of three distinct phases, as shown in Fig. 1.

1. We use a parameter synthesis tool to determine a set of feasible parameters for
which the property is satisfied by the system, based on the given parametric
Markov decision process, see Sect. 3.1.

2. (a) We synthesise a strategy for collecting data, based on the feasible set and
the prior distribution over the parameters, see Sect. 6.

(b) We collect data from the underlying system using the synthesised strategy,
see Sect. 4.

(c) We use Bayesian inference to infer a distribution over the likely values
of the parameters, based on the collected data, and update the respec-
tive prior distributions with the new information, see Sect. 4. If we can
sequentially collect more data, loop back to step 2 (a).

3. We compute the confidence that the system satisfies the property, based on
the data collected, see Sect. 5.

1: Parameter
synthesis

Property φ Model pMDP

2a: Strategy
synthesis

2b: Generate
data from system

2c: Bayesian infer-
ence over parameters

3: Confidence
computationC = P(S |= φ)

Θφ

π D

p(θ|D)

p(θ|D)

Fig. 1. Overview of the verification procedure.

3.1 Parameter Synthesis

The first phase of the method uses parameter synthesis to find the feasible set
of parameters, namely parameter evaluations corresponding to models of the
considered pMDP that satisfy the given PCTL property. This step leads to the
set of parameters Θφ = {θ ∈ Θ : M(θ) |= φ}.

The output of the parameter synthesis procedure is a mapping from hyper-
rectangles (which are subsets of parameter evaluations) to truth values, namely
“true” if the property is satisfied in the hyper-rectangle and “false” otherwise.

Implementation: We use PRISM [14] for parameter synthesis: the tool computes
a rational function of the parameters, which expresses the result obtained from
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model checking the PCTL property on the parameterised model. Our approach
can also make use of Storm [21], which shows potential to be scalable to much
larger systems. Storm lifts a parametric Markov decision process to a parameter-
free Stochastic Game (SG) between two players, and solves the resulting SG via
standard value iteration.

4 Bayesian Inference in Parametric Markov Decision
Processes

In this work, we collect data from the underlying system and use Bayesian learn-
ing to infer a probability distribution over parameters of the pMDP model based
on the collected data. Bayesian inference maintains a probability distribution
over these parameters and updates the distribution by employing Bayes’ rule as
more observations are gathered [22]. An initial prior distribution p(θ) is assumed.

Data. We collect finite traces from the underlying system, in the form of a
sequence of visited states and actions. We use D to denote a set of finite traces.
We split the data into transition counts: Dsk,α1,sl

denotes the number of times
the transition from sk to sl under action α1 appears within the data set D.
Each transition count is the outcome of an independent trial in a multinomial
distribution1 with event probabilities given by the transition probabilities.

Assume for now that the transitions are parameterised either with constants
or with single parameters of the form θi or 1−θi. We can group transition counts
for identically parameterised transitions. We shall denote by Dθj

the transition
counts for all transitions with probability given by θj .

We wish to obtain posterior distributions for each parameter via mar-
ginal distributions (which, in this case, are binomial distributions), by applying
parameter-tying [20] techniques. We thus obtain a number of transition counts
for 1−θj as the sum of all transitions not parameterised with θj , under an action
that has a transition parameterised with θj , and denote it by D¬θj

. Hence Dθj

and D¬θj
are calculated as:

Dθj
=

∑

si∈S,sl∈S,αk∈Act

Dsi,αk,sl
for T(si, αk, sl) = θj , and

D¬θj
=

∑

si∈S,sl∈S,αk∈Act

Dsi,αk,sl
for T(si, αk, sl) �= θj ∧ ∃sm ∈ S : T(si, αk, sm) = θj .

Let Dθj ,¬θj
denote the pair (Dθj

,D¬θj
). For parameterisations where the tran-

sition probabilities are expressed as linear functions of parameters, we obtain
Dθj ,¬θj

by the same procedure that [19] uses. We expand the Markov decision

1 A multinomial distribution is defined by its density function f(· | p, N) ∝∏k
i=1 pni

i ,

for ni ∈ {0, 1, . . . , N} and such that
∑k

i=1 ni = N , where N ∈ N is a parameter and
p is a discrete distribution over k outcomes.
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process, introducing new states and new transitions, allowing us to force all tran-
sition probabilities to be expressed as constants, or in the form of θj or 1−θj , for
any parameter θj ∈ θ. We can then represent the parameter counts over para-
meters in the new transitions as multinomial distributions. We omit the detail
here and refer the reader to the extended version of this paper, and the original
work [19].

Bayesian Inference with Data. Consider a parametric Markov decision
process MΘ = (S, Act, Tθ, ιinit, AP, L, Θ) with Θ ⊆ [0, 1]n. Suppose that
we have obtained Dθj

and D¬θj
for all θj ∈ θ, and that we have assumed non-

informative, uniform prior distributions for all parameters θj ∈ θ, denoted by
p(θj). The posterior density p(θj | D) is given by Bayes’ rule:

p(θj | D) =
P(D | θj)p(θj)

P(D)
=

p(θj)θ
Dθj

j (1 − θj)
D¬θj

P(Dθj ,¬θj
)

.

A standard approach [5,17,22] is to consider the prior to be a Dirichlet
distribution. The posterior distribution is then updated by adding the event
counts to the hyperparameters of the prior. The Dirichlet prior distribution for
the pair (θj , 1 − θj) is denoted as Dir(θj | μθj ) with hyperparameters μθj =
(μθj

1 , μ
θj

2 ). Thus, the updated posterior distribution for the parameter θj is given
as: θj ∼ p(θj | D) = Dir(θj | Dθj ,¬θj

+ μθj ).
The posterior distribution for the entire parameter vector θ, given by p(θ | D)

is equal to the product of the posterior distributions for all θi ∈ θ. This holds
due to the independence of each θi over independent state-action pairs in the
pMDP. Note that, if we have a linearly parameterised MDP, we obtain some of
the transition counts in the form of multinomial distributions. We hence obtain
realisations of the posterior by a sampling procedure from [19] as explained in
the extended version of this paper.

5 Computation of Confidence

We determine a confidence, C, for the satisfaction of a PCTL formula φ by a
system S of interest. We first presented this procedure in previous work [19], and
we need no extension to this due to the external nondeterminism being factored
out in the Bayesian inference calculation given in the previous section.

Definition 7. Given a PCTL formula φ that has a binary satisfaction function,
i.e., the property is either satisfied or not, and posterior distributions p(θi | D)
for all θi ∈ θ, as obtained in the previous section, the confidence in S |= φ can
be quantified by Bayesian inference as

C = P(S |= φ | D) =
∫

Θφ

∏
θi∈θ p(θi | Dθi,¬θi

)dθ, (1)
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The operation shown in Eq. (1) is equivalent to computing the confidence that
each parameter is within its feasible set, and then taking the product of all
the parameter confidence values. The integral of a Dirichlet distribution is hard
to compute using analytical methods, and so we use Monte Carlo integration.
This also allows integration with the calculation of the posterior distribution
for pMDPs with linear parameterisations, where we have obtained the posterior
distribution by means of sampling, as described in [19].

6 Online Experiment Design

The key contribution in this paper is the design of experiments to generate max-
imally useful data. We describe in the preceding sections how we use a limited
amount of data efficiently to obtain a confidence that the system satisfies the
property. In this section, we propose a method for selecting the deterministic
memoryless strategy that provides the most useful data to input into our con-
fidence computation in Sect. 5. This allows us to compute the most accurate
confidence value for the finite data set of limited size, i.e., the confidence should
be high if the underlying system satisfies the property, and low if the underlying
system does not satisfy the property.

6.1 Predicted Confidence

We predict the confidence after taking a transition from state s under action α.
We define the predicted confidence, Cpred

s,α , to be the confidence computed using
the expected parameter counts, after taking a single transition from s under action
α: these are denoted by Es,α (Dθi,¬θi

) for all θi ∈ θ. Formally,

Cpred
s,α =

∫

Θφ

∏

θi∈θ

p(θi | Es,α (Dθi,¬θi
))dθ,

where p(θi | Es,α (Dθi,¬θi
)) is the predicted posterior distribution obtained by

updating the prior, Dir(θi | μθi), with the expected parameter counts, i.e.,
Dir(θi | μθi + Es,α (Dθi,¬θi

)).
We first compute the expected transition counts for the state-action pair,

Es,α (Ds,α), from which we extract the expected parameter counts using the
method in Sect. 4. Consider a state s with an action α, and two transitions
with probabilities Tθ(s, α, s′) = gl(θ) = k0 + k1θ1 + . . . + knθn, and Tθ(s, α, s) =
1−gl(θ). The expected transition counts are given by a multinomial distribution
over the outgoing transitions under that action, with event probabilities equal
to the expected transition probabilities. Note that prior distribution for any para-
meter θi ∈ θ is Dir(θi | μθi). To compute the expected transition probabilities,

we require the expected values of the parameters, given by E (θi) = μ
θi
1

μ
θi
1 +μ

θi
2

for all θi ∈ θ. The expected value of the transition probabilities are then given
by evaluating gl(E (θ)) and 1 − gl(E (θ)). Hence the expected transition counts
Es,α (Ds,α,s′) and Es,α (Ds,α,s), are equal to the expected transition probabilities
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for Tθ(s, α, s′) and Tθ(s, α, s). Consider only the transition parameterised with
Tθ(s, α, s′) = gl(θ):

Es,α (Ds,α,s′) = E (T(s, α, s′)) = gl(E (θ))

= k0 + k1E (θ1) + . . . + knE (θn) = k0 +
∑

i=1:n

ki
μθi
1

μθi
1 + μθi

2

.

We can extract the parameter counts as described in Sect. 4, to obtain
Es,α (Dθi,¬θi

).

6.2 Optimisation of Predicted Confidence Gain

The underlying system either satisfies or does not satisfy the given property, so
we wish to minimise the difference between our confidence value and the closest
among 0 or 1, or to maximise the difference between a confidence of 0.5 and our
confidence, i.e., the maximum absolute value of 0.5 − C. We can therefore define
a predicted confidence gain for a state-action pair (s, α), denoted by Gs,α, as the
maximisation of this difference, i.e., the biggest step towards either 0 or 1.

Gs,α = |0.5 − Cpred
s,α | − |0.5 − C|

For a finite trace of length N , we can calculate the optimal predicted confidence
gain for state s and discrete time step t, denoted by xt

s, as

xt
s =

{
maxα∈Act(s)(Gs,α +

∑
(T(s, α, s′). xt+1

s′ )) if 0 < t < N

0 if t ≥ N.

It is important to note that the confidence gain is not a static quantity, because
Gs,α depends on the distribution over the relevant component parameters of θ
at time t.

6.3 Optimal Confidence Gain: Experiment Design via Strategy
Synthesis

Due to memory dependency of the confidence gain, computing an optimal strat-
egy is intractable, and cannot be solved via conventional dynamic programming
methods [8]. However, we put forward a few alternatives.

Explicitly Evaluated Memoryless Strategies. The conventional way of solving a
MDP with non-Markovian rewards is to translate the model into an equivalent
MDP with Markovian rewards, whose states result from augmenting those of
the original model with extra information capturing enough history to make
the reward Markovian. This is in general computationally expensive [8]. Given
that we will be performing strategy synthesis repeatedly in our method (i.e.,
once each time a new batch of data is sequentially gathered), we compromise
and use a straightforward selection method to find the best memoryless strategy.
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This reduces the number of possible strategies and allows us to consider each pos-
sible strategy individually. We simplify the calculations in Sect. 6.1 to compute
the expected transition counts for a full trace of length N , and then compute the
predicted confidence gain for the entire memoryless strategy. This method works
well for small trace lengths, however computing the expected transition counts
for a full trace of length N amounts to performing a matrix multiplication N
times, so this can be time consuming for large N .

Alternative Off-Line Method. An alternative approach would be to disregard
the memory dependency of the confidence gain. This corresponds to an off-line
approach: we compute a strategy on the model frozen at the time we start gen-
erating traces, assuming that the prior distributions remains unchanged over the
trace horizon N . We assign confidence gains to state-action pairs and treat them
as static rewards. This allows us to use classical dynamic programming to find
the best memoryless strategy, which would require introducing a discount factor
on the rewards, to avoid infinite returns inside strongly-connected components.
This method may be faster for long trace lengths than explicitly evaluating pos-
sible strategies, as done previously; however, the selected strategy may not be
the best memoryless strategy when the trace lengths are large, and specifically
when the prior distributions, which are assumed to remain unchanged, actually
change significantly over time as the trace length is being reached.

Comparison. Consider the small pMDP shown in Fig. 2, parameterised with
θ = (θ1, θ2), and the property P≤0.5(true U s1). Both parameters have the same
prior distributions and both contribute equally to the feasible set. Intuitively,
choosing action α2 or α3 is better than choosing action α1, because any trace
starting with α1 only contains one parameterised transition. However, it is also
intuitive that choosing α2 is better than α3 because any trace starting with α3

only gives us information about θ1, whereas traces with α2 give us information
about both parameters.

The dynamic programming approach will pick nondeterministically between
action α3 and α2 for the first trace, because the reward assigned to (s0, α3) is
the same as the reward assigned to (s0, α2) as the initial priors and the feasible
sets are the same. The priors will not be updated until after the full trace is
collected. Our strategy synthesis approach calculates the expected updates for
these priors, and will thus be able to detect a better strategy, which selects
action α2.

In our experimental evaluation, we use the explicitly evaluated memory-
less strategy. Henceforth, the explicitly evaluated memoryless strategy will be
referred to as the synthesised strategy.

7 Results

We experimentally evaluate the research questions posed in the problem state-
ment: question 1 – given a limited amount of data, can we use it efficiently to
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Fig. 2. Example pMDP where offline strategy synthesis may not be optimal

quantify a confidence that our system satisfies a given property? question 2 – can
we design experiments that increase the accuracy of this confidence?

Experimental Set-Up. Our approach is implemented in C++. We use
PRISM [14] for parameter synthesis, and GSL-2.3 [6] for random number gener-
ation.

To answer question 2, we evaluate our synthesised strategy approach against
two alternatives. The first comparison is against a memoryless strategy, ran-
domly selected from the set of all possible memoryless strategies. We term the
resultant strategy as random static strategy. The second comparison strategy
randomly selects actions at each state as data is collected, and therefore we
term it as no strategy. All three approaches use the same Bayesian inference
framework over parameter counts.

We present the analysis of our approach on the simple pMDP model in Fig. 3
and with the PCTL property P≥0.5(true U complete). We also run our approach
on models up to 1000 states, but find the scalability depends on the number of
actions in the model. We assign non-informative priors to the parameters. Note
that in our model, θ2 does not contribute to the satisfaction of the property,
and having validated that this does not affect the confidence results, we set θ2
equal to θ1. We simulate a range of underlying systems, corresponding to models
M(θ) with different values for θ, which allows us to assess the accuracy of our
confidence values against a ground truth, Gtrue. For a simulated system modelled
by M(θ), this is given by:

Gtrue =
{

0 if θ1 /∈ [0.369, 0.75],
1 if θ1 ∈ [0.369, 0.75]. (2)

We collect data from the simulated system in the form of a history of
state-action pairs visited. We compute the mean squared error (MSE) between
the ground truth from Eq. (2) and the confidence estimate, formally, MSE
= 1

n

∑n
i=1(Gtrue − Gi)2, where n is the number of trials and Gi is the output

confidence estimate for the i-th run.
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Fig. 3. A simple pMDP for the experimental evaluation.
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Fig. 4. Errors produced by the confidence computation for the three strategies consid-
ered. Plots (a) and (b) show the MSE for each type of strategy and for 10 traces of
different trace lengths over different simulated systems. Plot (c) presents the MSE for
the synthesised strategy over different simulated systems and combinations of number
of traces with varying trace lengths. We denote by (t10, l02) a run with 10 traces, each
of length 02.

Observations and Discussion. The MSE in the confidence from all three
strategies, over a range of underlying systems and varying quantities of data
(i.e., for different numbers and lengths of traces), are shown in Fig. 4. The con-
vergence of the confidence outcome is shown in Fig. 5, with box plots showing
the interquartile range (IQR), omitting any outliers, and whiskers extending to
the most extreme data points not considered to be outliers.

Accuracy of Confidence Results. The confidence for all approaches is low around
the lower boundary of Θφ, and the MSE is high, shown in Fig. 4. This is consistent
with the goal of the confidence calculation, where one would need to know the
exact value of the system parameter θ if its value is near this edge, to be able
to decide whether it falls in Θφ or not, and hence the calculation has a high
sensitivity around this boundary This sensitivity increases as the amount of
data increases, as seen by comparing the MSE for θ1 = 0.4 in Fig. 4a, where
the trace length is 2, with Fig. 4b when the trace length has increased up to
10. To explore why this is the case, consider that to compute the confidence
we integrate the posterior distribution over the feasible set Θφ = [0.369, 0.75].
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The posterior distribution for θi = 0.369 should have a peak centred at 0.369
and half of the probability mass falling in the feasible set, leading to C = 0.5.
The height and width of the posterior distribution are determined by the amount
and spread of data available and for a tall and thin distribution (encompassing
a large amount of data), a small change in the position of the peak can move a
large percentage of mass of the distribution in or out of the feasible set. This is
prominent in Fig. 4b since our approach synthesises a strategy that would yield
the highest information gain, i.e., the most useful data. However, as we move
away from the edge, increased data effectively places probability mass away from
the uncertain regions, thus reducing both variance and MSE. Neither of the other
two alternatives has the ability to collect as much useful data and therefore
variance is high even at the far ends of the parameter spectrum. The ability
of our method to collect more useful data is also illustrated in the convergence
graphs shown in Fig. 5, where synthesis approach converges to the ground truth
quicker than both comparison strategies.
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Fig. 5. Convergence of confidence outcomes to the ground truth for a run with 20
traces, each of length 10 over a simulated underlying system with both parameters
(θ1, θ2) set to 0.7.

We conclude that our strategy synthesis does improve the accuracy of the
confidence calculation, unless the parameter value falls close to the boundary of
Θφ, and that away from this boundary the confidence converges to the ground
truth and we are able to verify the property over S based on the data collected.

Robustness. We run our implementation with varying lengths of traces, where
the total number of transitions in the data remains the same, and the results
summarised in Fig. 4c show that our approach, on this case study, is relatively
insensitive to this variation (compare Fig. 4a with b). Our method depends on the
number of parameterised transitions we visit and so depends on the trace length
being long enough to visit some parameterised transitions. This is in contrast
to Statistical Model Checking techniques, where the accuracy of the approach
depends on the trace length being great enough to satisfy the property, e.g., to
reach some desired state. In both cases this will vary depending on the structure
of the model.
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8 Conclusions

In this paper, we have presented an approach for statistical verification of a
fragment of unbounded-time PCTL properties on partially unknown systems,
by automating the design of smart experiments that maximise the amount of
useful data collected from the underlying system. We validate that our approach
increases the accuracy of the confidence that the system satisfies the property,
compared to selecting data randomly. We are able to achieve meaningful confi-
dence outcomes with comparably limited amounts of available data.

We are pursuing extensions of this framework for much wider class of prob-
abilistic models, in particular continuous time models, with a broad range of
applications.
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Abstract. The risk posed by insider threats has usually been
approached by analyzing the behavior of users solely in the cyber domain.
In this paper, we show the viability of using physical movement logs, col-
lected via a building access control system, together with an understand-
ing of the layout of the building housing the system’s assets, to detect
malicious insider behavior that manifests itself in the physical domain.
In particular, we propose a systematic framework that uses contextual
knowledge about the system and its users, learned from historical data
gathered from a building access control system, to select suitable models
for representing movement behavior. We then explore the online usage
of the learned models, together with knowledge about the layout of the
building being monitored, to detect malicious insider behavior. Finally,
we show the effectiveness of the developed framework using real-life data
traces of user movement in railway transit stations.

Keywords: Physical access · Physical movement · Cyber-physical
Systems · Insider threat · Intrusion detection · User behavior

1 Introduction

Insider threats are a top concern of all organizations because they are common
and can have severe consequences. However, insider threats are very difficult to
detect, since the adversary already has physical and cyber access to the organi-
zation’s assets. Much state-of-the-art research [1] and many state-of-the-practice
tools [2,3] focus on the cyber aspect of insider attacks by analyzing the user’s
cyber footprint (e.g., logins and file accesses). However, the strength of an orga-
nization’s defense mechanisms is only as strong as its weakest link. By failing to
consider the physical aspect of users’ behavior, an organization not only leaves
itself unable to detect precursor physical behavior that could facilitate future
cyber attacks, but also opens itself up to less tech-savvy attacks such as vandal-
ism and theft [4].

c© Springer International Publishing AG 2017
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Thus, physical security plays a crucial role in an organization’s overall defense
posture. This is especially true for critical infrastructure systems such as power
grids and transportation systems in which a physical breach can have major real-
world effects. Building access controls [5] are often used to limit the areas that
users can access based on their role in the organization; this is normally achieved
through a relatively static assignment of a set of locations to the user’s tracking
device (e.g., RFID tag or access card). When a user moves between spaces (e.g.,
swiping a card at a door), information about this movement is logged.

Although building access control restricts the spaces that a user is able to
access, it is merely the first step towards physical security. As with other access
control solutions, it faces the same problem of being overly permissive [6]. But
denying access to rarely accessed rooms is a costly solution, as it places the
burden on administrators to grant every access request, which can lead to severe
consequences, especially in time-critical situations (e.g., maintenance). Even with
a restrictive set of granted permissions, the access control solutions in place do
not take into account the context of a user’s access.

Thus, we focus on detecting abnormalities in a user’s movement within an
organization’s buildings. Specifically, we explore how physical access logs col-
lected from a railway transit system can be used to develop a more advanced
behavior-monitoring capability for the purposes of detecting abnormalities in a
user’s movement. In particular, we aim to determine (1) the feasibility of charac-
terizing the movement behavior of users in a complex real-world system, (2) the
techniques that can be applied to this detection problem, and (3) the ability to
integrate real-time detection into physical security.

We provide a systematic approach to tackle these issues in a way that can
be generalized to a diverse set of systems. We observe that since an organization
consists of users who have a diverse set of roles, the movement patterns of users
in different roles may vary vastly because of their job needs. Instead of proposing
a single technique to model all users, we construct a methodical approach that
selects the appropriate model based on the context of the organizational role and
learns that model from historical data. More specifically, we propose metrics to
determine the feasibility of modeling the behavior of certain users in a system.
We then construct a model that factors in contextual information such as time
and location, and show that the model can be used in an online manner. This
study is supported by a set of real-life physical access traces that we collected
from our industrial collaborator.

In summary, our contributions in this paper are as follows:

– We show that abnormal movement of users can be detected from physical
access logs, thus strengthening a system’s physical security.

– We define a framework that characterizes a user’s physical movement behavior
and learns models of the user’s behavior using historical data.

– We evaluate our framework using real-world physical access data obtained
from railway transit stations. We show that our metric properly differentiates
users, allowing us to use appropriate models of user movement behavior to
obtain good false positive and false negative detection rates. We also show
the feasibility of performing detection in an online manner.
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The structure of the paper is as follows. In Sect. 2, we discuss related work in
the domain of anomaly detection of physical movement. Section 3 introduces our
case study of railway transit systems, and Sect. 4 describes our framework for
detecting malicious insiders, applying it to the case study as an example. The
evaluation results are presented in Sect. 5. Finally, future work is summarized in
Sect. 6, and the conclusion is given in Sect. 7.

2 Related Work

In this section, we discuss the related work spanning domains from physical
movement tracking and prediction to anomaly detection of physical movement
and cyber events.

There has been a substantial amount of work on use of cyber logs (e.g., net-
work flows and system logs) to profile users and detect events of interest. For
example, Kent et al. proposed authentication graphs [7] to profile user behavior
and detect threats using computer authentication logs in an enterprise network.
In contrast, our work focuses on physical access logs, where physical-world fac-
tors, like space and time, directly impact the correlation among different access
events. Despite these differences, we also observe the importance of distinguish-
ing different user roles.

In the area of physical access control, there has been work in the route anom-
aly detection area that looked at people or objects moving in a geographical
space that was not delineated by rooms [8–10]. Pallotta et al. [8] and Radon
et al. [9] both detect deviations in the trajectory of a vessel in the maritime
domain. Their approaches use contextual information, such as the speed of the
vessel and weather information, in order to predict the next location of a vessel.
However, in the maritime domain, the source and destination of the vessel are
already known beforehand, and the anomalies are assumed to arise from the dif-
ferences in trajectories. This is unlike our work, in which we focus on an indoor
setting that has unpredictable destinations for each user.

Dash et al. [10] use mobile data to predict the movement of people in a
geographical region. They construct multiple Dynamic Bayesian network mod-
els, each of which includes different granularities of context (e.g., day of the
week vs. time of day). They predict the next visited location by analyzing the
results obtained from each of those models. Unlike their completely data-driven
approach of applying all models before computing the best result, we propose
a more guided approach by first choosing the appropriate model based on an
understanding of a person’s past movement data.

In contrast to the work described above, we consider the more restrictive
setting of indoor location tracking, which reduces the amount of noise in the
data and allows us to identify a user’s location with more confidence. Because
of physical barriers that prevent a user from moving uninhibited from one space
to another, the paths that a user can take are also limited.

For indoor physical access, there has been work in both movement predic-
tion and anomaly detection. In the movement prediction domain, Gellert and
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Vintan [11] use Hidden Markov Models (HMMs) to predict a user’s next loca-
tion. They use real-world physical access data of four users from a single floor
of an office building, although the size and topology of the building are very
small. Their results show that a simple Markov model of order 1 gives the best
performance. Koehler et al. [12] expand on Gellert’s work by using ensemble
classifiers to predict how long a user will stay at a given location.

In the anomaly detection domain, different techniques to detect differences
in a user’s movement have been proposed. Graph models have been studied
by Eberle and Holder [13] and Davis et al. [14]. Eberle and Holder [13] detect
structural anomalies by extracting common subgraph movement patterns [15].
However, they only consider simplified physical layouts and do not distinguish
among different user roles. Davis et al. [14] search labeled graphs for both struc-
tural and numeric anomalies and apply their approach to physical access logs in
an office building.

Other models, ranging from finite state machines to specific rules, have
also been studied. Liu et al. [16] model the normal movements of devices as
transitions in finite state machines. Unlike us, they focus on the movement of
devices (instead of people) in a hospital setting, where their main goal is to
detect missing-device events. Biuk-Aghai et al. [17] focus on suspicious behav-
ioral patterns, including temporal, repetitive, displacement, and out-of-sequence
patterns. These patterns only involve the time interval between movements and
the reachability of locations rather than the sequence of locations that were
visited.

Finally, patents from IBM [18] and Honeywell [19] present the general design
of using physical access data to detect potential security incidents. However, they
do not discuss detailed designs for dealing with complicated building topology
and user roles, and do not provide experimental studies on real-world traces.

3 Motivating Use Case

Physical security is of high priority for industrial control facilities and critical
infrastructures. Through a project partnership, we have gained deep knowledge
about the physical access control challenges faced by railway transit system
operators. We will use this real-world use case to motivate our study.

Background. The railway transit system is an important component of a
nation’s transportation system. The impact of an attack or fault in the sys-
tem can be very severe, ranging from loss of service and station blackouts to
derailment. For example, a Polish teenager rewired a remote control to com-
municate with the wireless switch junctions, causing derailment of a train and
injury of twelve people [20]. Since the track was accessible by the public, the
attack was easily performed. However, in our case study, the underground rail-
way system presents a stronger barrier against such an attack. Potential loss of
revenue and human life motivates the need for both physical and cyber security
of such systems. In particular, the insider threat is of the utmost importance,
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as can be seen in the 2006 case in which two traffic engineers hacked into a Los
Angeles signal system, causing major traffic disruption [21].

System Architecture. A railway station consists of a single building that may
house one or multiple railway lines through it. The general public accesses the
railway lines by passing through fare gates in the concourse area and moving
to the platform. Figure 1 depicts the topology of the railway station in our case
study. In addition to the concourse and platform area, the railway station con-
tains many rooms hidden from the public eye that house the equipment necessary
to maintain the running of the station and its portion of the railway track. Each
room serves a specific function, and there are multiple rooms that share the same
function. The rooms are distributed throughout the station on multiple levels.
The railway staff can access those spaces only by swiping their access cards at
readers on the doors. Although most of the doors inside the staff-only spaces
have card readers, there are a number of doors that allow free access. Different
stations have different floor plans, and the number of rooms within a station
may vary. However, all the stations share the same types of rooms (e.g., power
supply room).

Level 1

Level G

Level B

Staircase 1

Staircase 2

Staircase 3

(a)

Fare gate 
PSC 

Stairwell 
Empty space 

1 

2 

3 
4 

5 

6 

7 

8 

9 

10

11

(b)

8 
1 

6 

3 

9 

4 

5 10

7 
11

2 

(c)

Fig. 1. (a) The different levels of a railway station building with staircases connecting
two or more levels. (b) A small sample floor plan of one of the levels. The PSC room
represents the Passenger Service Center. (c) Graph representation of (b). Each edge in
the graph represents a pair of directed edges between the vertices. Bolded edges imply
that a card reader exists on the door bordering the spaces (vertices).

Threat Model. Our threat model focuses on users who have gained physical
access to the rooms in a railway station. Those users may be malicious railway
staff or an outsider who has gained control over an employee’s access control
device. Since building access control solutions are in place, we assume the adver-
sary’s goal is to tamper with devices in a room to which he or she already has
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physical access. In a railway station, almost all the rooms house critical assets.
Thus, we cannot narrow our focus to any specific portion of the railway station
to reduce the space of possible movement trajectories. The level of risk involved
in letting an adversary achieve his or her goal is too high. However, restricting a
user’s access to rooms in a station can also result in severe consequences. Since
railway staff require access to rooms in order to conduct maintenance on devices
within those rooms, denying them access could cause disruption of service.

Opportunities and Challenges. Unlike an enterprise system for which the
office building has a simple, systematic layout across all levels (e.g., a single
corridor branching out to multiple rooms), a railway station has a complex non-
symmetrical layout. There are multiple paths with varying lengths that a user
can take to get from one room to another. This implies that topology is an
important factor in determining whether a user’s physical movement is anom-
alous. In addition, the railway transit system consists of diverse user roles (e.g.,
station operators and power maintenance staff). The job scopes of such users
vary in terms of work shifts, responsibilities, and work locations, all of which
affect their physical movement behavior. Even users in the same role exhibit dif-
ferent movement behaviors based on their assigned duties and personal habits.

The building access control system that is in place offers a limited view of
users’ physical movement. Since card readers may fail and certain doors are
not outfitted with card readers, we are unable to determine a user’s full move-
ment trajectory. A user may also tailgate another user, and thus the access will
remain invisible to us. Therefore, it is challenging to detect deviations in a user’s
movement behavior. We tackle this problem in the next section by integrating
knowledge of the system layout and by learning models of users’ behaviors from
historical physical access data.

Envisioned Monitoring. Currently, a railway system staff member would need
to look through the physical access logs manually in order to detect malicious
behavior. We aim to reduce the amount of manual effort by automatically pre-
senting a smaller subset of potentially malicious physical accesses in real-time
to the staff member. The staff member can then focus his or her attention on
the smaller subset, using video surveillance to corroborate evidence of mali-
cious activity. To aid the decision-making, we can also supplement the suspicious
accesses with a model of the users’ normal behavior.

4 Malicious Insider Detection Framework

In this section, we describe our framework that systematically analyzes users’
physical movement logs to detect malicious insiders. The framework dissects the
problem into three parts: understanding the characteristics of users’ behaviors,
learning a suitable model representation, and using the model together with
knowledge of the system layout to estimate the probability of an abnormal access.
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4.1 Preliminaries and Definitions

We define a system sys = {U,Env} (e.g., enterprise organization, critical
infrastructure) as the collection of users U who work for it, and the environ-
ment Env that contains the system’s assets. The environment Env consists of
both the physical and cyber aspects of the system. The physical aspect is com-
posed of the building B and the physical assets Q within it. The cyber aspect
consists of the networked computer system and its digital assets. The cyber and
physical aspects are interrelated, but we focus only on the physical aspect in this
paper.

We represent the building topology B as a directed graph G = (V,E) in
which the set of vertices represents the spaces S in the building. A directed edge
e(v1, v2) represents possible movement from v1 to v2.1 For example, the floor
plan in Fig. 1b is represented as the graph in Fig. 1c. The set of spaces S can
be divided into two covering disjoint subsets: rooms R, and common areas C
(e.g., staircases, corridors). The edges have attributes that represent the access
door codes that are associated with user access. We also assign weights to edges
based on the spaces to which they are incident.

The state of the system at time t, Statet(sys), is thus defined as the combina-
tion of the current location of all users Loc(u) and the state of the environment
Statet(Env). The location of the users is defined with respect to the building B,
Loc(U) = {s|Loc(u) = s ∈ S, u ∈ U}. The state of the environment Statet(Env)
is the condition of the physical and cyber topology and assets (e.g., malfunc-
tioning devices, change in networking access).

4.2 Phase 1: Offline

The framework consists of an offline and an online phase as shown in Fig. 2.
The offline phase consists of two stages: characterization of users based on their
past movement behavior, and construction of models based on users’ character-
istics and past movement. The inputs to this phase are the past system states

User behavior 
characterization 

. 

. 
. 
. 

User type-behavior model 
mapping 

Learn 
model 

User User type 
User 

model 

Online detection 

Building topology 

OFFLINE PHASE ONLINE PHASE 

Fig. 2. The framework is divided into offline and online phases, where the offline phase
is fed into the online phase.

1 This implies that if e(v1, v2) exists, the backward edge e(v2, v1) also exists in G.
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StatePast = Statet1(sys) . . . Statetn(sys), and the output of this phase is a col-
lection of tuples (M, g), in which M is a model representing the movement
behavior of a user and g : Statet(sys) → {Ri, pi} is a function that takes in the
current system state, and uses the model M to estimate the probabilities pi of
a user’s entering a set of rooms Ri.

User Types. The first stage of the offline phase is to distinguish between
different users by using their past movement behavior. Typical access control
systems assign roles to users based on the sets of rooms that they need to access.
However, these roles do not directly reflect the user behavior. Instead, we propose
to categorize users according to how they move within a building.

We define the different types of user behavior T based on the users’ “rea-
sons” for movement, where “reason” refers to the context that facilitates users’
movement patterns. For each reason or user type qi ∈ T, we define a metric λi

that characterizes the type of behavior that falls under that reason. The metric
λi takes as input the historical system state pertaining to the user StatePast and
outputs a real number in R. So we map users to user types, type(u) = qi ∈ T,
by calculating a predicate function on the output of λi, qi ≡ pred(λi).

Application: In our railway station case study, there are two main types of
user movement behavior. The first type, q1 ∈ T, involves users who have a very
regular movement behavior, of which the primary members are station operators.
Station operators work a fixed set of hours in the station, and, because of their
job scope, their movement patterns are fairly consistent. They remain in the
Passenger Service Center (PSC) to assist the public and monitor the state of
the station, visit storerooms and staff rooms, and clock in and out.

The second type of users, q2 ∈ T, involves those whose movement is triggered
when an event occurs. This applies to maintenance staff who visit rooms to
conduct maintenance of the equipment. Different maintenance staff members
are in charge of different subsystems (e.g., power supply or signaling), and thus
they access different sets of rooms in the station.2

In order to categorize a user into q1 or q2, we define a metric λe based on
the approximate entropy of a time series [22] constructed using the collected
historical access data. The metric is defined as λe = ln(Cm/Cm+1), where Cm

is the prevalence of repetitive patterns of length m in the time series. Each
subsequence of length m in the sequence is compared to other subsequences.
If the number of similar subsequences is high, then Cm is large. This metric is
shown to be able to quantify the predictability of user movement [23,24]. We
choose m to be 3, which provides a good metric for characterizing our trace
as shown in Sect. 5. If the user’s entropy value is low, the user belongs to q1;
otherwise, the user belongs to q2. In other words, q1 ≡ (λe(u) < E), where E is
a numerical threshold. The choice of parameter E is discussed in Sect. 5.

2 This may apply to other systems too. E.g., a security guard doing rotations in a
building belongs to q1, and a technical support staff member who goes to an office
when his or her assistance is required belongs to q2.
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User Behavior Models. Next, we construct behavior models for each behavior
type q ∈ T defined earlier. Since each user is motivated to move within the
building for different reasons, it is not possible to specify a single model for all
users’ behavior. Such a model would be inherently biased towards a certain set
of users and perform badly for others.

Instead, for each q ∈ T, we select an appropriate modeling technique M ∈
UM from a large set of possible modeling techniques UM. The model should
leverage q’s distinct characteristics and provide insight into the likelihood that
a user will access a room given the current system state Statetn+1(sys).

For each user u that has type(u) = q ∈ T, we learn the model by analyzing
past system states StatePast in order to assign probabilities to the rooms in R.
Finally, we define the function g that takes the state Statetn+1(sys) and use
the learned model M to determine the probabilities associated with the user’s
entering a set of rooms next. Based on Statetn+1(sys), M will calculate and
return a set {Ri, pi}, where Ri ∈ R is a room in the building and pi ∈ [0, 1] is
the probability that the user will access Ri next.

Application: Users belonging to q1 have a low entropy value λe(u) < E. This
implies that their movement patterns are highly predictable and repetitive. Thus,
we choose to represent a user’s movement behavior with a Markov model3. The
states in the Markov model are the set of rooms R, and a transition from state
i to state j implies that a user visits room Rj after Ri.

Given the previous system states StatePast, we learn the Markov model of a
user u. The system state at any point of time Stateti(sys) contains the physical
access records for u. We can reconstruct the full movement sequence Seq(u) =
R1 . . . Rn as the sequence of rooms that were visited. The sequence Seq(u) can
be divided into segments based on the lengths of the time intervals between
consecutive physical accesses. Each segment represents a series of movements
that occur close together in time. A period of inactivity (more than 3 hours)
separates any two segments. The initial probability vector π(0) is the normalized
frequency with which each room r ∈ R appears at the beginning of each segment
of Seq(u). The transition probability pij is the normalized frequency with which
the user visits Ri and then Rj .

However, the users belonging to q2 have less regular movements and may
change movement patterns based on events in the system. So we combine the
Markov model with additional contextual knowledge about the states of the
devices in the rooms. After vetting the accesses through the Markov model, we
correlate the remaining suspicious accesses with logs about device state. Intu-
itively, if a device in room Rd fails and then a physical access into Rd is logged,
that physical access is considered non-malicious. Then, given the device failure
incidents in Statetn+1(sys), the probability pd associated with device failures in

3 Although the Markov model imposes certain assumptions about the movement
behavior, such as the memoryless property, it can be extended to include tempo-
ral and spatial correlations. We intend to explore these extensions in future work.
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room Rd in the set {Ri, pi} is suitably changed such that any accesses leading
to Rd are considered non-malicious.

4.3 Phase 2: Online

The online phase involves determining, based on the behavior models derived
from the offline phase, whether a user’s access is an abnormality. The inputs to
this phase are the tuples (M, g) from the offline phase and the current state of
the system Statetn+1(sys). The output of this phase is a real number in R that
indicates the degree of abnormality of the access. The algorithm for this phase
is given below in the OnlineDetection function.

The current system state Statetn+1(sys) includes the location of the user
Loc(u) = R1 ∈ R and the physical access that is being made, A = S1 → S2,
S1, S2 ∈ S. In other words, the user is moving from S1 to S2. We update the
user’s behavior model to reflect the current state of the user in the system by
computing g(Statetn+1(sys)). The output is the set {Ri, pi}, where Ri ∈ R is a
room and pi ∈ [0, 1] is the probability that the user will access Ri next. Using
knowledge of the building topology B, we determine the likelihood that the
access A is anomalous based on the paths from the user’s current location to the
set of rooms Ri.

Given the access A, we want to determine all the rooms that the user is
likely to access. We first find all the rooms that are reachable from S2, i.e.,
PT = {Ri|∃path(S2, Ri)}. For all such vertices Ri ∈ PT , we decide whether the
user is likely to access Ri by moving to S2 from S1. If it’s easier to access Ri

from S2, then we consider Ri as one of the likely rooms. To decide whether Ri is
easily accessed, we calculate path lengths using the weighted edges. We calculate
the shortest path from S1 to Ri, d(S1, Ri), and compare it to the shortest path
from S1 to Ri through S2, d(S1, S2) + d(S2, Ri). If the shortest path through S2

is similar in length to the shortest path, then we consider Ri as a possible room
that the user wants to access. With the resulting shortlisted set of rooms, we
sum up their likelihoods

∑
Ri∈PT

pi to obtain a final score. If the score is below
a threshold value Z, access A is deemed anomalous.

Algorithm 1. OnlineDetection algorithm
Require: (Loc(u), A = S1 → S2) ∈ State

function OnlineDetection(State, g)
score ← 0; {Ri, pi} ← g(State)
for all Ri ∈ {Ri, pi} do

shortestlen ← GetShortestPath(S1 → Ri)
len ← GetShortestPath(S2 → Ri) + ew(S1, S2)
if len < shortestlen × k then score ← score + pi end if

end for
return score

end function

Application: We keep track of the system state, which is the room that the user
has last accessed: Statetn+1(sys) = rC ∈ R. The function g takes Statetn+1(sys)
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and returns the set of probabilities associated with the next visited room {Ri, pi}.
In OnlineDetection, we rely on edge weights to calculate path lengths. We
assign all edges a weight of 1, with the exception of edges that connect different
levels of the building (i.e., staircases, elevators, and escalators). We assume that
users prefer to take as few staircases as possible. So we assign a weight of 10 to
those edges that connect different levels.

We compare the score returned by OnlineDetection with threshold Z. We
choose Z based on the probability distribution prC . If the probability distribution
has a heavy tail, then there are rooms that the user very rarely visits and may
be deemed suspicious. So we choose the threshold value as the 95th percentile.
Otherwise, we choose the threshold value as the minimum probability in the
distribution. The percentile value can be changed by practitioners based on the
system requirements; a higher value reduces the false positives, but potentially
malicious movements are missed, while a lower value catches more malicious
movements but increases the false positives. Since our results focus more on the
trends, the exact value of this threshold is not critical.

5 Evaluation

In this section, we utilize real-world data traces to demonstrate the effectiveness
of our framework in our railway transit station case study. First, by evaluating
our usage of the entropy metric, we answer the question of whether the movement
behavior of users can be characterized effectively in a complex system. Second,
we determine the detection capability of our proposed behavior models. Finally,
we examine the possibility of detecting malicious movement in an online manner.

5.1 Experiment Setup

We use a real-world data set containing physical card accesses to a railway station
in a city. The duration of the accesses is from June to October 2016. The station
has 62 rooms, with a total of 32,100 accesses made by 314 users. While we focus
on one station in this work, the whole railway line consists of 33 stations, 12 of
which are interchange stations. We estimate that the average number of accesses
per hour over all the stations is approximately 450, whereas the highest number
of accesses per hour is around 1,200. This poses a significant challenge if the
associated logs need to be examined manually.

The data set contains the following information regarding physical accesses:
(1) date and time, (2) door code, (3) user identification, and (4) result of access
(success or failure). When the access is a failure, it implies either that the user’s
card had expired or that the user did not have permission to access the room.
Those failed accesses serve as ground truth for known abnormal accesses.

We simulated malicious movement in order to conduct a more thorough
assessment of the detection ability. For each user, we injected accesses into
the testing data. With a certain small probability, we replaced a legitimate
access A = S1 → S with a series of injected accesses. We randomly selected
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a target room RT ∈ R and calculated the shortest path from S1 to RT as
S1e1S2 . . . SnenRT . For each edge ei, i ∈ [1, n] that has a door code, we added
an injected access Ai = Si → Si+1.

We split the data set into 80% training and 20% testing subsets and per-
formed 10-fold cross-validation. We conducted the experiments on a Windows 7
Home Premium machine with a 2.7 GHz CPU core and 4 GB of RAM.

5.2 Results

In this subsection, we present the evaluation results for our approach from Sect. 4
based on the physical card accesses data from the railway station.

Implementation Performance. We evaluated the running time of both the
offline and online phases. The average running time of the construction of Markov
models in the offline phase was 33 ms, whereas the average running time of the
OnlineDetection function in the online phase was 1.3 ms. The offline phase
can be conducted sporadically during system downtime, whereas the online phase
is fast enough to be executed in a real-time manner.

Detection Capability. Our approach marked 2,975 out of 32,100 accesses as
suspicious. Hence, the practitioner’s effort would have been reduced by over 90%.
Figure 3 shows the number of physical accesses over the ten testing subsets. For
each subset, the left bar represents all the accesses, and the right bar represents
the accesses marked as malicious. We can see that most of the injected accesses
and malicious ground truth data are detected as malicious. The numbers of false
positives are also low and fairly constant over the ten subsets. On average, our
approach gives a false positive rate of 0.08 and a false negative rate of 0.34.

Fig. 3. The number of physical accesses over time. Each tick on the x-axis represents a
two-week period; the label indicates the end date of the period. Each bar is divided into
three sections representing the valid (or non-malicious) accesses, the malicious ground
truth accesses, and injected accesses.

To interpret this result in more detail, we compare our solution with a base-
line method that marks any access leading to a previously unvisited room as
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malicious. It is easy to see that both solutions can identify malicious paths that
lead to any previously unvisited room. However, if an attacker carefully selects
his or her path by moving only to previously visited rooms, the baseline method
will not be able to identify any of those paths (i.e., its false negative rate will be
100%). In comparison, our solution can still raise an alarm if the path covers any
unusual transitions among previously visited rooms. The reason that our false
negative rate in Fig. 3 is relatively high (i.e., 0.34) is that we randomly choose
a destination room and generate the shortest path to that destination; thus, a
substantial fraction of the generated malicious paths are indistinguishable from
legitimate paths that a user actually traveled before. In other words, since most
of the generated paths are short, it becomes impossible in a certain fraction of
cases to differentiate anomalous and normal movement behavior.

To study how the length of the attacker’s path affects the performance of
our approach, we experimented with increasing the length of the malicious path
we injected (to consider the case when an attacker wanders around the space to
do a site survey and explore potential attack opportunities). Instead of injecting
paths that ended at a room, we randomly generated paths that went through a
sequence of previously visited rooms. We varied the number of visited rooms in
the path; the results are presented in Fig. 4a. The baseline method is still unable
to detect any of these malicious paths, regardless of their lengths. In contrast,
the probability of our method’s detecting the path approaches 100% as the path
grows longer.

(a) (b)

Fig. 4. (a) The percentage of detected malicious paths vs. number of rooms in the
path. (b) The distributions of false positive rates with respect to the user’s entropy.

User Characterization. Next, we evaluate whether the entropy metric defined
in Sect. 4 is suitable for characterizing user behaviors. If the entropy metric can
differentiate user behaviors, then the Markov models constructed for users with
low entropy (q1 ∈ T) will have a better detection capability (lower false positive
and negative rates) than those constructed for users with high entropy. We plot
the entropy vs. false positive rates in Fig. 4b. Each point in Fig. 4b represents
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a single user in one subset. One user should map to a maximum of 10 points
in the plot. We can see that almost all users whose entropy is below 0.6 (filled
markers) have low false positive rates. When the entropy is above 0.6 (unfilled
markers), the false positive rates are high. So we can set our entropy threshold
E to 0.6 in order to distinguish between the user types. Then, 15% of the users
would belong to q1 and 85% to q2. Although fewer users are categorized under
q1, these users account for 79% of the accesses. Thus, having a low false positive
rate for these users implies that entropy is a suitable metric for characterizing
user behavior.

However, several outliers show a high false positive rate for q1-type users.
We studied each of them individually and found that there were reasons why
the accesses were marked as suspicious. The users represented by triangles in
Fig. 4b accessed rooms that they had not previously visited, whereas the users
represented by squares had a small testing set (<5 accesses), so their false positive
rates are disproportionately high. In actual operation, the training data set and
real-time accesses will be much larger, so there won’t be outliers.

Integration of Device State. In Sect. 4, we proposed to correlate logs about
device state with physical access logs in order to decrease the false positives
for the q2-type users. We assume that the timing information in these logs is
synchronized with that in the physical access logs. The logs collected for each
type of device (e.g., breaker or lights) are different, and thus the amount of
information about the device’s state that can be extracted varies. However, we
only need to know when a device fails, since the failure could trigger entrance of
a maintenance staff member (user of type q2) into the room to repair the device.
In particular, there are four rooms in the station for which we could identify
the failure of a device from the logs with particularly strong confidence. These
rooms contained devices that controlled the environment in the station (e.g., air
chiller and water pumps). We extracted the textual description and alarm values
that indicated device failure and searched the device logs for failure incidents.
We compared the timestamps of the failure incidents to the times of the users’
accesses. If the user was not in the room prior to the failure, entered the room
after the detected failure, and subsequently left the room when the maintenance
was complete, then we consider that physical access to be non-malicious. As a
result, we reduced the false positives for a subset of the users by an average of 0.45
for the four rooms. This preliminary result shows that we can use additional logs
regarding the system environment to determine whether an access is malicious.

Online Detection. We determined the feasibility of detecting malicious move-
ment in an online manner by studying how early on a malicious path of a certain
length can be detected. We considered injected paths with a length of 4, and the
false negative rates for the first, second, third, and fourth injected accesses in the
path were 0.54, 0.25, 0.09, and 0, respectively, in our experiment. This shows that
our approach is able to detect malicious paths (with a certain minimum length)
with high confidence, and even before an attacker reaches the destination room.
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6 Discussion and Future Work

In this paper, we present the first step towards understanding how physical
access logs can be used to enhance the detection capability of a system. In our
case study of railway transit stations, we characterize two different types of
user movement behavior. The first user type, q1, performs well in terms of false
positive rates. In ongoing work, we added a notion of time into the states of the
Markov model and applied it specifically to the set of station operators in q1. By
separating the station operators into a third user type and honing the model, we
have obtained encouraging reductions in false positive rates. For the second user
type q2, the false positive rates are much higher than q1’s. We have shown that
using knowledge of the device states improves the false positive rates. However,
many issues need to be resolved, such as time drifts between the device logs and
physical access logs, differences in contextual understanding of diverse device
logs, and missing data regarding device state. We intend to address these issues
and pursue this line of thought in future work.

We can also enhance our Markov model further by taking into account the
amount of time a user spends in a room, and the function of the room (e.g.,
storeroom vs. power room). The parameters that we use in our approach can be
further tuned and targeted to different users for enhanced detection capability.

In this paper, we only create movement models for each user in isolation.
Thus, we do not handle colluding insiders who may tailor their movements such
that both parties remain within their movement patterns, but they are able to
achieve their malicious goal together. We need to have a more comprehensive
view of the system and user movements as a whole in order to tackle such
adversaries, and we are currently pursuing this direction by using richer models.

This paper also shows favorable results in using online-based detection in
a real-world system. If we can detect a malicious physical access early on in a
user’s movement, we can make suitable responses to prevent a potential breach.
For example, an administrator can temporarily remove a user’s permissions to
certain critical rooms, or place the user under further observation.

7 Conclusion

One way in which organizations address insider threats is through physical secu-
rity. However, the state of the art in building access control is lacking. In this
paper, we study the use of physical access logs for detecting malicious movement
within a building. We propose a systematic framework that uses knowledge of
the system and its users in order to analyze physical access logs. We characterize
users by using a set of metrics that take historical physical access data as input.
Each user type is mapped to a behavior model, and the details of the model
are learned through use of the user’s past physical accesses. Finally, we develop
an online detection algorithm that takes the behavior model and the building
topology as input, and returns a score indicating the likelihood that the user’s
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access is anomalous. We apply our framework to a real-world data trace of phys-
ical accesses in railway stations. The results show that our framework is useful in
analyzing physical access logs for the purpose of detecting malicious movement.

Acknowledgements. This work was supported in part by the National Research
Foundation (NRF), Prime Minister’s Office, Singapore, under its National Cybersecu-
rity R&D Programme (Award No. NRF2014NCR-NCR001-31) and administered by
the National Cybersecurity R&D Directorate, and supported in part by the research
grant for the Human-Centered Cyber-physical Systems Programme at the Advanced
Digital Sciences Center from Singapore’s Agency for Science, Technology and Research
(A*STAR). This work was partly done when Carmen Cheh was a research intern at
ADSC. We also want to thank the experts from SMRT Trains LTD for providing us
data and domain knowledge.

References

1. Salem, M., Hershkop, S., Stolfo, S.J.: A survey of insider attack detection research.
In: Stolfo, S.J., Bellovin, S.M., Keromytis, A.D., Hershkop, S., Smith, S.W.,
Sinclair, S. (eds.) Insider Attack and Cyber Security: Beyond the Hacker. AIS,
vol. 39, pp. 69–90. Springer, Boston (2008)

2. Alien Vault: Insider threat detection software (2016). https://www.alienvault.com/
3. Insider threat security & detection (2016). http://www.tripwire.com/
4. CERT Insider Threat Center: Insider threat and physical security of organiza-

tions (2011). https://insights.sei.cmu.edu/insider-threat/2011/05/insider-threat-
and-physical-security-of-organizations.html

5. Luallen, M.E.: Managing insiders in utility control environments. Technical report,
SANS Institute (2011)

6. Bauer, L., Cranor, L.F., Reeder, R.W., Reiter, M.K., Vaniea, K.: Real life chal-
lenges in access-control management. In: Proceedings of ACM SIGCHI Conference
on Human Factors in Computing Systems, pp. 899–908 (2009)

7. Kent, A.D., Liebrock, L.M., Neil, J.C.: Authentication graphs: analyzing user
behavior within an enterprise network. Comput. Secur. 48, 150–166 (2015)

8. Pallotta, G., Jousselme, A.L.: Data-driven detection and context-based classifica-
tion of maritime anomalies. In: Proceedings of 18th International Conference on
Information Fusion, pp. 1152–1159 (2015)

9. Radon, A.N., Wang, K., Glasser, U., Wehn, H., Westwell-Roper, A.: Contextual
verification for false alarm reduction in maritime anomaly detection. In: Proceed-
ings of IEEE International Conference on Big Data, pp. 1123–1133 (2015)

10. Dash, M., Koo, K.K., Gomes, J.B., Krishnaswamy, S.P., Rugeles, D., Shi-Nash, A.:
Next place prediction by understanding mobility patterns. In: Proceedings of IEEE
International Conference on Pervasive Computing and Communication Workshops,
pp. 469–474 (2015)

11. Gellert, A., Vintan, L.: Person movement prediction using hidden Markov models.
Stud. Inf. Control 15(1), 17–30 (2006)

12. Koehler, C., Banovic, N., Oakley, I., Mankoff, J., Dey, A.K.: Indoor-ALPS: an
adaptive indoor location prediction system. In: Proceedings of ACM International
Joint Conference on Pervasive and Ubiquitous Computing, pp. 171–181 (2014)

13. Eberle, W., Holder, L.: Anomaly detection in data represented as graphs. Intell.
Data Anal.: Int. J. 11(6), 663–689 (2007)

https://www.alienvault.com/
http://www.tripwire.com/
https://insights.sei.cmu.edu/insider-threat/2011/05/insider-threat-and-physical-security-of-organizations.html
https://insights.sei.cmu.edu/insider-threat/2011/05/insider-threat-and-physical-security-of-organizations.html


Data-Driven Model-Based Detection of Malicious Insiders 291

14. Davis, M., Liu, W., Miller, P., Redpath, G.: Detecting anomalies in graphs with
numeric labels. In: Proceedings of 29th ACM Conference on Information and
Knowledge Management, pp. 1197–1202 (2011)

15. Eberle, W., Holder, L., Graves, J.: Detecting employee leaks using badge and net-
work IP traffic. In: IEEE Symposium on Visual Analytics Science and Technology,
October 2009

16. Liu, C., Xiong, H., Ge, Y., Geng, W., Perkins, M.: A stochastic model for context-
aware anomaly detection in indoor location traces. In: Proceedings of IEEE 12th
International Conference on Data Mining, pp. 449–458 (2012)

17. Biuk-Aghai, R.P., Si, Y.W., Fong, S., Yan, P.F.: Individual movement behaviour
in secure physical environments: modeling and detection of suspicious activity. In:
Cao, L., Yu, P.S. (eds.) Behavior Computing, pp. 241–253. Springer, London (2012)

18. Hoesl, M.J.: Integrated physical access control and information technology security
U.S. Patent No. 6641090 B2, granted on 17 June 2014

19. Khurana, H., Guralnik, V., Shanley, R.: System and method for insider threat
detection U.S. Patent No. 8793790 B2, granted on 29 July 2014

20. Baker, G.: Schoolboy hacks into city’s tram system, 11 January 2008.
http://www.telegraph.co.uk/news/worldnews/1575293/Schoolboy-hacks-into-
citys-tram-system.html

21. Grad, S.: Engineers who hacked into L.A. traffic signal computer, jamming streets,
sentenced, 1 December 2009. http://latimesblogs.latimes.com/lanow/2009/12/
engineers-who-hacked-in-la-traffic-signal-computers-jamming-traffic-sentenced.
html

22. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Nat.
Acad. Sci. 88(6), 2297–2301 (1991)

23. Li, X.: Using complexity measures of movement for automatically detecting move-
ment types of unknown GPS trajectories. Am. J. Geogr. Inf. Syst. 3(2), 63–74
(2014)

24. Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human
mobility. Science 327(5968), 1018–1021 (2010)

http://www.telegraph.co.uk/news/worldnews/1575293/Schoolboy-hacks-into-citys-tram-system.html
http://www.telegraph.co.uk/news/worldnews/1575293/Schoolboy-hacks-into-citys-tram-system.html
http://latimesblogs.latimes.com/lanow/2009/12/engineers-who-hacked-in-la-traffic-signal-computers-jamming-traffic-sentenced.html
http://latimesblogs.latimes.com/lanow/2009/12/engineers-who-hacked-in-la-traffic-signal-computers-jamming-traffic-sentenced.html
http://latimesblogs.latimes.com/lanow/2009/12/engineers-who-hacked-in-la-traffic-signal-computers-jamming-traffic-sentenced.html


Tools



Tulsa: A Tool for Transforming UML to Layered
Queueing Networks for Performance Analysis

of Data Intensive Applications

Chen Li1(B), Taghreed Altamimi2, Mana Hassanzadeh Zargari2,
Giuliano Casale1, and Dorina Petriu2

1 Imperial College London, London SW7 2AZ, UK
{chen.li1,g.casale}@imperial.ac.uk

2 Carleton University, Ottawa K1S 5B6, Canada
{taghreedaltamimi,manazargar,petriu}@sce.carleton.ca

Abstract. Motivated by the problem of detecting software performance
anti-patterns in data-intensive applications (DIAs), we present a tool,
Tulsa, for transforming software architecture models specified through
UML into Layered Queueing Networks (LQNs), which are analytical
performance models used to capture contention across multiple software
layers. In particular, we generalize an existing transformation based on
the Epsilon framework to generate LQNs from UML models annotated
with the DICE profile, which extends UML to modelling DIAs based on
technologies such as Apache Storm.

1 Introduction

The objective of our research is to design tools for iteratively enhancing the
quality of data-intensive applications (DIAs) that leverage Big Data technologies
hosted in private or public clouds. We consider that the DIAs are developed in a
DevOps process, where the developers obtain runtime monitoring information,
especially performance metrics, and reflect them back into design time models
to reason about system performance improvements. In order to achieve that, a
performance model needs to be generated from the DIA architecture model and
runtime information. In this work, we use the Unified Modeling Language (UML)
to specify the software architecture at the design stage. The architecture model
characteristics (see Sect. 3) and its performance attributes are mainly captured
by DICE profile [2], a recently proposed UML profile to annotate technology
specific aspects of Storm, Hadoop and Spark into UML diagrams. DICE profile
extends the standard MARTE profile [5], so it inherits the MARTE stereotypes
for non-functional properties and performance attributes [4]. The specific prob-
lems we consider in this paper is how to annotate the runtime performance
measurements in the UML model, and how to transform the UML model into
the performance model for subsequent performance analysis.

This work is partially supported by the European Commission grant no. 644869,
DICE.

c© Springer International Publishing AG 2017
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Fig. 1. High level abstract view of DICE profile

Several approaches have been proposed for generating performance models,
such as queueing networks [1], stochastic Petri nets [3] and layered queueing net-
works (LQNs) [6] from architecture models. While these studies remain relevant,
the advent of Big Data has popularized technologies such as Apache Storm and
Hadoop in the implementation of DIAs. However, there is a shortage of methods
for specifying UML models for these DIAs and automatically deriving perfor-
mance models.

In this paper, we focus on Storm applications and transform the correspond-
ing UML model into a performance LQN model. There are three reasons for
choosing LQNs. First, a Storm topology may be seen as a network of buffers
and processing elements that exchange messages, so it is quite natural to map
them into a queueing network model. Second, the core elements of LQN mod-
els are semantically similar to the corresponding elements of UML activity and
deployment diagrams. Third, LQN solvers such as LINE1 or LQNS2 are available
to provide analytical methods to solve the LQN model. This paper proposes a
new tool called Tulsa, which leverages DICE profile as a better way of annotat-
ing DIA UML models and transforms them to LQN models. Our work extends
an existing UML+MARTE-to-LQN transformation based on the Epsilon frame-
work3 to leverage specific stereotypes of the DICE profile in the generation of
LQN models [6].

2 DICE Profile

The DICE profile expresses some familiar model-driven architecture concepts for
DIAs. In particular, the DICE profile offers three new models, called DICE Plat-
form Independent Model (DPIM), DICE Technology Specific Model (DTSM),
and DICE Deployment Specific Model (DDSM) [2,4]. Figure 1 shows the high
level abstract view of DICE profile. DPIM provides an abstract specification of
the DIA architecture, allowing the inclusion of computation nodes and storage
nodes. At this abstraction layer, DPIMs help the developer to define a high-level
topology, the main services exposed by the DIA and their QoS requirements.

1 http://line-solver.sourceforge.net/.
2 https://github.com/layeredqueuing/V5/tree/master/lqns.
3 http://www.eclipse.org/epsilon/.

http://line-solver.sourceforge.net/
https://github.com/layeredqueuing/V5/tree/master/lqns
http://www.eclipse.org/epsilon/
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The DTSM layer is a refinement of the DPIM layer that encompasses techno-
logical decisions. For example, data processing needs are detailed in a DTSM
through configuration requirements for appropriate Big Data technologies, such
as Hadoop. Lastly, DDSM enables the designer to specify deployment decisions
on cloud infrastructures. In the DICE framework, such decisions can be subse-
quently translated into a concrete deployment blueprint based on TOSCA [7].
Our tool mainly focuses on the DTSM and DDSM layers, which are appropriate
for performance evaluation.

3 Model Transformation

Comparing with our previous work in [6], Tulsa not only implements model
transformation for general distributed systems, but also supports Storm applica-
tions by leveraging DICE profile. The underpinning scripts are mainly written in
Epsilon Object Language (EOL) and Epsilon Transformation Language (ETL).
Tulsa supports complex workflow which is assembled by a set of ANT tasks.

3.1 Model Mapping

The source model accepted by Tulsa considers two types of UML diagrams:
deployment and activity diagram. The deployment diagram specifies the sys-
tem configuration, e.g., indicating the functional components, assigning key
attributes and defining constraints, and the activity diagram defines the behav-
ior of the system. Table 1 shows the corresponding mapping from UML model
annotated with DICE and MARTE stereotypes to LQN model.

DICE UML model uses Device to stand for a VM cluster or a single server.
DDSM provides a stereotype �DdsmVMsCluster� to capture characteristics
of the VM cluster, e.g., instances tag means the number of single server in
the cluster. ExecutionEnvironment represents the platform which is deployed
on the VM. DDSM provides a stereotype �DdsmStormCluster� to annotate
the Storm platform. The related single servers are nested in this ExecutionEnvi-
ronment. Tulsa transforms a single server (i.e., Device), which provides services
to Storm platform, to a Processor in LQN model. An Artifact is used or pro-
duced by a software development process or deployment and operation of a
system, e.g., software component. An Artifact can be transformed into a Task
which stands for the software component in LQN model. In Storm applications,
there are two types of Artifact called Spout and Bolt. DTSM defines stereotypes
�StormSpout� and �StormBolt� for them respectively. These stereotypes
provide tags for specifying the level of parallelism and the execution time, e.g.,
parallelism (i.e., specifying the number of threads).

Due to space limitations, we only describes some core elements and stereo-
types which are mainly considered for Storm applications. More details on the
elements with MARTE stereotypes can be found in [6].

Tulsa is available at https://github.com/dice-project/DICE-Enhancement-
APR. Pre-requirements of running the Tulsa are to install JDK 8, Eclipse 4.6.1,

https://github.com/dice-project/DICE-Enhancement-APR
https://github.com/dice-project/DICE-Enhancement-APR
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Table 1. Model mapping: from UML+DICE+MARTE to LQN element

UML model element DICE+MARTE stereotype LQN model element

model None lqnmodel

Deployment diagram

Device GaExecHost,
DdsmVMsCluster

Processor

ExecutionEnvironment DdsmStormCluster None

Artifact Scheduler, DdsmBigDataJob,
StormSpout, StormBolt

Task

Activity diagram

AcceptEventAction GaStep Entry

InitialNode GaWorkloadEvent Entry

OpaqueAction,
CallOperationAction,
SendSignalAction

GaStep Activity

DecisionNode, MergeNode,
JoinNode, ForkNode

None Precedence

ControlFlow StormStreamStep Precedence, synch-call,
asynch-call

Fig. 2. Fragment of a generated LQN model

Table 2. Performance results produced by the LQN solver

Processor Throughput Service-time Utilization

Server Spout 0.189944 2.117742 0.398882

Server Link1 0.189944 0.9 0.170949

Server Link2 0.189944 4.28414 0.60782



Tulsa: A Tool for Transforming UML to LQN 299

the DICE Profile [4] and the Epsilon framework. Figure 2 and Table 2 show a
screenshot of a LQN model and the results produced by lqns solver respectively.

4 Conclusion

In this paper we have presented Tulsa, a tool for transforming a UML model
annotated with DICE profile into a LQN model. Tulsa is a part of the DICE
project, whose objective is to define a quality-driven framework for developing
data-intensive applications that leverage Big Data technologies hosted in private
or public clouds. Further development of the tool is expected to support other
DIAs such as Hadoop and Spark.
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Abstract. The paper presents the current status of the software tool
TimeNET. It supports modeling and performance evaluation of stochas-
tic models, including extended deterministic and stochastic Petri nets,
colored stochastic Petri nets, and Markov chains as well as UML exten-
sions. Among its main characteristics are simulation and analysis mod-
ules for stationary and transient evaluation of Petri nets including non-
exponentially distributed delays, as well as a simulation module for com-
plex colored models. Recent enhancements include algorithms for the effi-
cient rare-event simulation of Petri nets, a new multi-trajectory hybrid
simulation/analysis algorithm, and a net class for Markov chains.

Keywords: Modeling tool · TimeNET · Stochastic Petri nets · Colored
Petri nets · Performance evaluation

1 Introduction

TimeNET is a software tool for the modeling and performability evaluation with
several variants of stochastic Petri nets including GSPNs, eDSPNs, and colored
SCPNs (for definitions see e.g. [8]). In comparison to other related tools such
as GreatSPN [1], SPNP [4], Möbius [3] and CPN Tools [5], it supports evalua-
tion of models combining exponential and deterministic as well as more general
non-exponentially distributed firing delays. Numerical analysis and simulation
methods both for transient and steady-state solution have been implemented
as well as structural analysis modules. Moreover, TimeNET supports colored
stochastic Petri nets as well as rare-event simulation algorithms for these model
classes. The token game can be run interactively or automatically to validate
and test eDSPN and SCPN models.

The software architecture contains a Java graphical user interface, shell
scripts controlling analysis processes, and evaluation algorithms implemented
mainly in C++ running as background processes. The tool runs in 32 and
64 Bit Linux and Windows environments. It is available free of charge for
non-commercial use from http://timenet.tu-ilmenau.de/. Successful applications
reported in the literature include communication systems, reliability evaluation,
c© Springer International Publishing AG 2017
N. Bertrand and L. Bortolussi (Eds.): QEST 2017, LNCS 10503, pp. 300–303, 2017.
DOI: 10.1007/978-3-319-66335-7 19
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manufacturing and transportation, and business as well as logistics processes.
Numerous papers including application examples are listed in the tool’s web
page.

2 New Features in TimeNET 4.4

This paper presents changes in TimeNET since the previous tool description [9],
which covered version 4.1 in 2012. More in-depth coverage of history and tool
architecture can be found in [8,9].

Among the various changes in the tool since 2012, the scientifically most
relevant extensions cover rare-event simulation methods motivated by reliability
applications. Such examples will otherwise lead to unacceptably long run times
because of the number of events to be simulated until enough samples of interest
are generated.

An example application model is shown in Fig. 1, describing a sample network
architecture of the Avionic Full-Duplex Ethernet used in modern aircraft [11].
Reliability of such systems is a major concern, and a model-based analysis can
show that the required end-to-end message delays are achievable for a certain
setup. This is a typical example of industrial systems in which numerical analysis
is impossible because of the large state space and concurrent non-Markovian
activities, while standard simulation would need exceedingly high run times to
compute the results with acceptable statistical accuracy.

While rare-event simulation is a well-known technique for the efficient eval-
uation of highly reliable systems, the available algorithms require significant

Fig. 1. AFDX network model
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background knowledge or apply to quite restricted model classes only. Our goal
is to make such methods available for tool users, aiming at semi-automatic algo-
rithm configuration using the available model information.

TimeNET implements a variant of the splitting technique RESTART, which
is now extended by automatically deriving an estimation of the result via perfor-
mance bounds to calculate splitting factors, and an online distance estimation
using structural properties analyzed via a linear programming problem [12]. This
avoids the user-defined importance function otherwise necessary. In addition to
that, an automated importance sampling method for rare-event SPN simulation
proposed by Reijsbergen et al. [6] is currently being integrated in the tool.

A new multi-trajectory simulation algorithm for eDSPNs [10] has been imple-
mented recently. It combines elements of simulation and numerical analysis for
the first time such that the behavior of the performance evaluation method fol-
lows either method just depending on the amount of trajectories (state particles)
being stored and followed. This allows a mixed approach, avoiding the pitfalls
of simulation (rare events) and numerical analysis (large state spaces).

Another addition is a simulation method for eDSPN models with incom-
pletely known initial state. Automated and distributed optimization of eDSPN
and SCPN models [2] have been implemented as a separate add-on. The initial
transient phase of steady-state SCPN simulations is now detected and deleted.
Modern random number generators for simulations (Mersenne twister) are used
instead of standard library implementations now.

Model extensions include a new model class stochastic automata that
allows to specify discrete-time and continuous-time Markov chains for teaching
purposes. A standard stationary solution has been implemented. UML state
charts extended with stochastic elements based on the MARTE profile and
energy usage stereotypes have been added as another model class [7]. Such
models can be edited and translated into eDSPNs models for the analysis of
embedded systems. Model parameters (or definitions) are now unified without a
numeric type and may depend on each other in most model classes. Reward defi-
nitions for performance measures have been unified for eDSPNs and SCPNS, and
extended by transition throughputs (impulse rewards). Color-dependent SCPN
model parts were extended and streamlined, including performance measures,
arc expressions, and firing delays.

GUI and user interaction have been improved with several details, includ-
ing a graphical visualization of the reachability graph, and adaptive mouse
pointer appearance when adding objects.

User support outside the tool itself is undergoing a major update in 2017:
A new integrated support web page will be made available until summer 2017. It
contains installation and background information, example models, FAQs, daily
and by-version downloads, and user feedback for bug reports etc.

Efficiency and quality of the internal software development process are
now supported by a build and test server that automatically and regularly checks
out the complete source code on different supported systems, compiles the tool,
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tests it, and makes new builds available for download. The tool is now available
as a native 64 Bit application.

The author wishes to thank the numerous students who have contributed to
the development of TimeNET over the years.
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Abstract. We introduce RODES – a tool for the synthesis of probabilis-
tic systems that satisfy strict reliability and performance requirements,
are Pareto-optimal with respect to a set of optimisation objectives, and
are robust to variations in the system parameters. Given the design space
of a system (modelled as a parametric continuous-time Markov chain),
RODES generates system designs with low sensitivity to required tol-
erance levels for the system parameters. As such, RODES can be used
to identify and compare robust designs across a wide range of Pareto-
optimal tradeoffs between the system optimisation objectives.

1 Introduction

Quantitative verification is an effective technique for analysing the quality
attributes (e.g. performance and reliability) of alternative system designs from
the early stages of the development lifecycle [5]. The quality attributes of interest
are formalised as probabilistic temporal logic properties, and are evaluated over
Markov models of different system designs. The model that achieves the best
tradeoff between the quality attributes is then used as a basis for the implemen-
tation of the system. However, if this implementation cannot precisely match
the parameters of the selected model, the quality attributes of the system may
differ significantly from the values predicted by the quantitative verification of
its model. This limits the applicability of recently proposed approaches for the
automated synthesis of probabilistic system designs [4,7].

Our RObust DEsign Synthesis (RODES) tool addresses this limitation by
generating parametric continuous-time Markov chains (pCTMCs) whose transi-
tion rates are allowed to vary within small bounded intervals that correspond
to user-specified tolerances for the parameters of the system. RODES imple-
ments our theoretical results from [1], which combine probabilistic model syn-
thesis [7] and precise parameter synthesis [2] to generate Pareto-optimal sets of

This work has been supported by the Czech Grant Agency grant No. GA16-17538S.

c© Springer International Publishing AG 2017
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pCTMCs (i.e. designs) using a sensitivity-aware Pareto dominance relation. This
relation [1] acts as a tradeoff between optimality and robustness, and enables
adding robust but suboptimal designs into the Pareto-optimal sets. To this end,
the relation takes into account both a set of optimisation objectives (requiring
the minimisation or maximisation of certain quality attributes) and the benefit
of selecting robust designs, i.e., designs with quality attributes insensitive to the
tolerance-induced variations in the pCTMC transition rates.

The rest of the paper presents RODES and its extensible architecture
(Sect. 2), and the tool scalability and applicability to systems from different
domains (Sect. 3). The RODES code, supplementary case study material, and full
experimental results are available at https://github.com/gerasimou/RODES.

Fig. 1. High-level RODES architecture

2 RODES Functionality and Architecture

RODES (Fig. 1) is a Java-based tool with the inputs described below.

(1) A pCTMC model of the entire design space, expressed in the modelling
language of the model checker PRISM [10] extended with the constructs

evolve double k [kmin..kmax] (1)
evolve int d [dmin..dmax] (2)
evolvemodule ComponentName (3)

which are used to specify ranges for the continuous and discrete parameters
of the system, and alternative component designs, respectively. A RODES
design is also a pCTMC, obtained from the design-space pCTMC by con-
straining its continuous parameters (1) to small bounded intervals

[k0 − δ, k0 + δ] ⊂ [kmin, kmax], (4)

fixing the values of its discrete parameters (2), and selecting one of the
alternative designs (3) for each distinct ComponentName value.

https://github.com/gerasimou/RODES
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(2) Continuous stochastic logic (CSL) properties specifying the optimisation
objectives and constraints for the quality attributes of the system.

(3) Configuration parameters for the design-search metaheuristic algorithm, and
the following parameters of the sensitivity-aware Pareto dominance relation:
• a small tolerance γ > 0 for each continuous parameter (1) such that the

allowed parameter-value variation δ from (4) is δ = γ(kmax − kmin);
• a small sensitivity coefficient ε ≥ 0 such that a design needs to have (1+ε)

times better quality attributes to dominate a more robust design.

The operation of RODES is managed by a Robust-design synthesis engine
(Fig. 1). First, a Model parser (built using the Antlr parser generator, www.
antlr.org) preprocesses the design-space pCTMC. Next, a Sensitivity-aware syn-
thesiser employs the jMetal Java framework for multi-objective optimisation
with metaheuristics (http://jmetal.github.io/jMetal) to evolve an initially ran-
dom population of candidate designs, generating a close approximation of the
sensitivity-aware Pareto front. This involves using a Candidate design analyser,
which invokes the probabilistic model checker PRISM-PSY [3] to obtain the
ranges of values for the relevant quality attributes of candidate designs through
precise parameter synthesis. The Pareto front and corresponding Pareto-optimal
set of designs are then plotted using MATLAB/Octave scripts, as shown in Fig. 2.

A key feature of RODES is its modular architecture. The Sensitivity-aware
synthesiser supports several metaheuristics algorithms, including variants of
genetic algorithms and swarm optimisers. Further, the sensitivity-aware Pareto
dominance relation can be adapted to match better the needs of the system
under development (e.g., by comparing designs based on the worst, best or aver-
age quality attribute values). Finally, different solvers could be plugged in the
probabilistic model checker component, including e.g. the GPU-accelerated ver-
sion of PRISM-PSY [3], or parameter synthesis tools for DTMCs [6].

3 Case Studies and Experimental Results

We evaluate RODES in three case studies: a variant of the producer-consumer
problem;1 a workstation cluster [9]; and a replicated file system used by Google’s
search engine [8]. Runtimes (Table 1) depend on the number of evaluations (using
more typically improves the quality of the Pareto fronts) and by the time required
to analyse a candidate design. These runtimes were obtained using the sequential
version of PRISM-PSY, but we are currently integrating the GPU-accelerated
version, which will significantly improve the scalability of the tool [3].

Figure 2 shows Pareto fronts and designs obtained for a producer-consumer
model comprising a slow high-capacity buffer and a fast buffer of small capac-
ity. The design space has two continuous parameters—overall production rate,
prod rate, and probability of using the fast buffer, p send fast; and a discrete
parameter that selects between two alternative designs (3) so either packets stay

1 E.W. Dijkstra.“Information Streams Sharing a Finite Buffer” Inf. Proc. Letters,
1972. The model can be found at https://github.com/gerasimou/RODES/wiki.

www.antlr.org
www.antlr.org
http://jmetal.github.io/jMetal
https://github.com/gerasimou/RODES/wiki
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Fig. 2. Sensitivity-aware Pareto fronts (top) for the producer-consumer model, and
corresponding synthesised Pareto-optimal designs (bottom). Boxes represent quality-
attribute regions, coloured by sensitivity (red: sensitive, blue: robust). Red-bordered
boxes indicate sub-optimal robust designs. Designs are compared based on the worst-
case quality attribute value (i.e. lower-left corner of each box). (Color figure online)

in the designated buffers, or packets in the slow buffer are redirected to the
fast buffer with probability proportional to the slow buffer occupancy. We aim
to maximise two objectives: the expected system throughput (x-axis), and the
probability that both buffers are utilised at between 20–80% of their capacity
(y-axis). Figure 2 shows results for tolerance γ = 0.01 and for several values of
the sensitivity coefficient ε (cf. Sect. 2). As expected, the number of slightly sub-
optimal but more robust solutions increases with ε. The sensitivity-aware Pareto
fronts provide unique insights into the system behaviour, and facilitates the selec-
tion of designs with a wide range of robustness levels, making RODES an effective
tool for the synthesis of robust designs from multi-objective specifications.

Table 1. Time (mean ± SD) for the synthesis using 10,000 evaluations. variant:
values of scenario parameters. #states (#trans.): number of states (transitions) of
the underlying pCTMC. |K|: number of continuous parameters.

Model/variant: Google file system (|K|=2) Workstation cluster (|K|=2) Prod.-cons.

(|K|=2)

S=5000 S=10000 S=20000 N=9 N=12 N=15

#states 1323 1893 2406 3440 5876 8960 5632

#trans. 7825 11843 15545 18656 32204 49424 21884

Time (m) 104± 4 149± 4 180± 9 185± 19 191± 27 205± 42 29± 1
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Abstract. In this paper, we introduce QUEST, a new tool for auto-
mated controller synthesis of incrementally input-to-state stable non-
linear control systems. This tool accepts ordinary differential equations
as the descriptions of the nonlinear control systems and constructs their
symbolic models using state-space quantization-free approach which can
potentially alleviate the issue of so-called curse of dimensionality while
computing discrete abstractions of the systems with high-dimensional
state-space. The tool supports computation of both minimal and max-
imal fixed points and thus provides natively algorithms to synthesize
controllers enforcing safety and reachability specifications. All the com-
putations are done in C++. Finally, we illustrate the performance of the
tool on a 10-room building temperature control. The tool together with
user manual and some examples are available for download at www.hcs.
ei.tum.de/software.

1 Introduction and Motivation

Controller synthesis techniques using so-called discrete abstractions have gained
considerable attention in the past few years. They provide tools for automated,
correct-by-construction controller synthesis for various systems to enforce com-
plex specifications (usually given in linear temporal logic (LTL) formulae).

There have been recently various software tools on the symbolic controller
synthesis for various classes of nonlinear control systems including Pessoa [3],
CoSyMa [4], and SCOTS [5]. However, the discrete abstractions obtained in these
results and corresponding tools are based on state-space quantization. The need
for state space quantization results in an exponential increase in computational
complexity with the dimension of state space in the concrete system, and, hence,
these techniques suffer severely from the issue of so-called curse of dimensionality
especially for the systems with high-dimensional state-space.

In [2,7,8], it has been shown that one can construct discrete abstractions
without state-space quantization which are approximately bisimilar to incremen-
tally input-to-state stable nonlinear control systems. The technique uses fixed

This work was supported in part by the German Research Foundation (DFG)
through the grant ZA 873/1-1 and the TUM International Graduate School of
Science and Engineering (IGSSE).
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length of quantized input sequence as a symbolic state of the abstraction which
helps to alleviate the curse of dimensionality. The length of input sequences,
referred as temporal horizon N , is used as a parameter to adjust the abstraction
precision; a larger value of N results in a higher precision of the abstraction,
and, consequently, in a larger abstraction in terms of the number of states.

In this paper, we introduce QUEST, an open-source software tool implement-
ing the synthesis of symbolic controllers based on state-space quantization-free
approach proposed in [2,7,8]. QUEST provides algorithms for the construction of
discrete abstractions which are approximately bisimilar to the original incremen-
tally stable dynamics without the need to discretize the state space. Moreover,
it provides algorithms for synthesizing controllers enforcing some classes of LTL
specifications over concrete systems using fixed point computations.

2 Tool Details

QUEST is implemented in C++ and employs binary decision diagrams (BDDs)
as underlying data structure to store and manipulate boolean functions repre-
senting symbolic abstractions and controllers. QUEST provides two fixed point
algorithms for maximal and minimal fixed point computation as described in [6]
and thus, natively, provides algorithms to synthesize controllers for safety and
reachability specifications. Moreover, one can use combinations of these fixed
point algorithms for synthesizing controllers enforcing customized specifications
such as reach and stay.

Inputs: QUEST accepts the description of the dynamics of incrementally input-
to-state stable nonlinear control systems in the form of an ordinary differential
equation; see [1] for a characterization of incremental stability in terms of Lya-
punov functions. Additionally, the user needs to provide an input set, an input
set quantization parameter η, a source state xs, a sampling time τ , and a tem-
poral horizon N ; see [8] for the role of those parameters. The computation of
parameter N for a given desired abstraction precision ε is provided in [8].

Output: QUEST synthesizes controllers with the help of fixed point computations
and stores them in the form of BDD. QUEST also provides an option to simulate
the closed-loop system equipped with the synthesized controller.

Installation and Usage: The detailed discussion about installation and usage
of QUEST along with sample examples are provided in user manual available at
www.hcs.ei.tum.de/software.

3 Example

To demonstrate QUEST, we synthesize a controller regulating temperatures in a
ten-room building shown schematically in Fig. 1(a). QUEST accepts the dynamic
given as an ordinary differential equation as shown below.

www.hcs.ei.tum.de/software
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const int sDIM = 10; /* System dimension */
const double T = 25; /* Sampling time */
size_t N = 12; /* Temporal Horizon */
typedef std::array<double,sDIM> state_type;
auto system_post = [](state_type &x, double* u) -> void {
auto rhs=[u](state_type &dx, const state_type &x) -> void {

const double a=0.05, ae2=0.005, ae5=0.005, ae=0.0033, ah=0.0036;
const double te=12; /* External temperature */
const double th=100; /* Heater temperature */
dx[0]=(-a-ae)*x[0]+a*x[1]+ae*te;
dx[1]=(-4*a-ae2-ah*u[0])*x[1]+a*x[0]+a*x[6]+a*x[8]+a*x[2]+ae2*te+ah*th*u[0];
dx[2]=(-2*a-ae)*x[2]+a*x[1]+a*x[3]+ae*te;
dx[3]=(-2*a-ae)*x[3]+a*x[2]+a*x[4]+ae*te;
dx[4]=(-4*a-ae5-ah*u[1])*x[4]+a*x[3]+a*x[7]+a*x[5]+a*x[9]+ae5*te+ah*th*u[1];
dx[5]=(-a-ae)*x[5]+a*x[4]+ae*te; dx[6]=(-a-ae)*x[6]+a*x[1]+ae*te;
dx[7]=(-a-ae)*x[7]+a*x[4]+ae*te; dx[8]=(-a-ae)*x[8]+a*x[1]+ae*te;
dx[9]=(-a-ae)*x[9]+a*x[4]+ae*te; };

size_t nint = 5; /* no. of time step for ode solving */
ode_solver(rhs,x,nint,h); /* Runga Kutte solver */ }

In this example, we consider that the control inputs u[0] and u[1] corresponding
to heaters H1 and H2 are equal to 1 if the corresponding heaters are on and
equal to 0 if the corresponding heaters are off. Here, we assume that at most one
heater is on at each time instance. Thus, the input set of the system is given as

const int iDIM = 2; /* Input dimension */
const size_t P = 3; /* Number of elements in the input set*/
double ud[P][iDIM]={{0,0},{0,1},{1,0}};

For this example, we consider the objective to synthesize a controller enforcing
all the temperatures to stay within W = [18, 21.5]10. This corresponds to the
LTL specification �W (i.e. safety specification) and is given to the tool as

auto setBounds = [](state_type y) -> bool {
double ul=21.8, ll=18; /*upper and lower bound on the temperature in each room*/
bool s = true;

for(int j = 0; j < sDIM; j++){
if( y[j] >= ul || y[j] <= ll ) {s = false; break;}}

return s;}

We use temporal horizon N = 12, sampling time τ = 25 time units, and source
state xs = [17, 17, 17, 17, 17, 17, 17, 17, 17, 17]T which result in precision ε = 0.1
for the discrete abstraction [8]. The computation of discrete abstraction and con-
troller synthesis have been performed using QUEST on a windows computer with
CPU 3.5GHz Intel Core i7. Figure 1(b) shows the evolution of the temperatures
ξ in all rooms starting from initial condition x0 = [18.9, 19, 19.1, 19.5, 20.8, 19.7,
19.2, 19.9, 19, 19.8]T . Figure 1(c) illustrates the corresponding input trajectories
υH1 and υH2 . Note that, the figures are generated using MATLAB by simulating
system dynamics with the control inputs generated by QUEST. In Table 1, we
show the effect of N on the size of the abstraction (given by the number of
transitions), computation times, and precision ε. Remark that, due to the large
dimension of the state-space, the existing tools such as Pessoa [3], CoSyMa [4],
and SCOTS [5] fail to synthesize any controller.
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Fig. 1. (a) A schematic of ten-room building, (b) Evolution of temperatures in all rooms
under synthesized controller, (c) Input trajectories given by synthesized controller.

Table 1. Performance comparison for different values of N .

N 13 12 11 10 9

Number of transitions in the abstraction 4782969 1594323 531441 177147 59049

Number of transitions in the controller 173980 55808 17888 5582 1722

Abstraction computation time (sec) 5.87 1.6 0.4 0.072 0.014

Controller computation time (sec) 319.63 96.89 29.56 9.12 2.67

Precision ε 0.05 0.1 0.22 0.5 1.4

Acknowledgments. The authors would like to thank S Sairam Akhil for some of the
implementation.
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Abstract. In this paper we present Three-Valued Spatio-Temporal
Logic (TSTL), which enriches the available spatio-temporal analysis of
properties expressed in Signal Spatio-Temporal Logic (SSTL), to give
further insight into the dynamic behaviour of systems. Our novel analy-
sis starts from the estimation of satisfaction probabilities of given SSTL
properties and allows the analysis of their temporal and spatial evolu-
tion. Moreover, in our verification procedure, we use a three-valued app-
roach to include the intrinsic and unavoidable uncertainty related to the
simulation-based statistical evaluation of the estimates; this can be also
used to assess the appropriate number of simulations to use depending on
the analysis needs. We present the syntax and three-valued semantics of
TSTL and a specific extended monitoring algorithm to check the validity
of TSTL formulas. We conclude with two case studies that demonstrate
how TSTL broadens the application of spatio-temporal logics in realistic
scenarios, enabling analysis of threat monitoring and control programmes
based on spatial stochastic population models.

1 Introduction

In many case studies, considering spatial structure is of key importance to better
understand and predict the evolution of the system under study. For example,
dispersive processes such as spread of disease, invasive species or fire spread have
an intrinsic and fundamental spatial dimension that has to be included in the
model. Spatial stochastic models provide a good representation of such system
dynamics, typically studied through simulations. Correspondingly, the formal
analysis of these spatial stochastic models has to also accommodate spatial and
temporal modalities to be able to describe and verify properties about the spatio-
temporal evolution of the specific systems.

Suitable analysis is provided by spatio-temporal logics and model check-
ing. In most cases a statistical approach [1] is needed to estimate satisfaction

c© Springer International Publishing AG 2017
N. Bertrand and L. Bortolussi (Eds.): QEST 2017, LNCS 10503, pp. 317–332, 2017.
DOI: 10.1007/978-3-319-66335-7 22
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probabilities of given properties, expressed using logical formulas. Simulation tra-
jectories alone make it difficult to fully analyse the dynamic behaviour and to
compare different systems, and the exhaustive exploration of all possible spatio-
temporal trajectories is computationally infeasible. Using current simulation-
based approaches the outcome is summary information about the satisfaction of
properties over the spatial domain.

In our work we seek to add value to such information by providing a novel
logic, called Three-Valued Spatio-Temporal Logic, to reason about spatial and
temporal evolution of the satisfaction of these properties, giving further insight
into the dynamic behaviour of the system under study. For example, in the
analysis of the efficacy of a control measure for disease spread, we can verify
whether the spread in a specific area will happen with probability under a given
threshold over time. We can also identify the locations at highest risk, being sur-
rounded by locations with high probability of becoming infected. The new TSTL
atomic propositions are inequalities on the estimated satisfaction probabilities of
given logical formulas (in the spatio-temporal logic SSTL [2] in this case, which
formally describes and verifies properties of spatio-temporal trajectories), which
are estimated using statistical model checking. This simulation-based evaluation
has an intrinsic and unavoidable uncertainty, but frequently it is the only com-
putationally feasible approach, requiring just an executable model. We use a
three-valued approach to keep track of the associated uncertainty in the results
of our model checking and we interpret the inequalities with different degrees of
truth, using true, false and a third value unknown. This extension can be also
used to give an indication of when more simulations are needed to make the
evaluation of atomic propositions more precise and thus allowing stronger con-
clusions to be drawn. Conversely this enables initial explorations with relatively
few simulations and assessment of whether they result in sufficient precision.
We implemented the monitoring algorithms for the TSTL logical operators, to
evaluate the satisfaction function of TSTL properties. The operators and the
procedures are defined in a similar way to SSTL but on a different domain,
dealing with three truth values.

Related Work. Several existing logics can be used to describe spatial properties
of systems and estimate satisfaction probability values. Much of this work is
based on topological models [3], looking at properties of subsets of points of
topological spaces, whilst we take a more concrete representation of space. Other
literature concerns spatial logics for process algebra with locations [4], used to
study the mobility of concurrent systems; here space is represented as a tree and
locations are nested. Based on a graph structure, there are logics such as the
Multiprocess Network Logic [5], which can express spatio-temporal properties
in discrete time. Considering stochastic systems, there are existing logics for
expressing properties on probabilities, such as Probabilistic Computation Tree
Logic (PCTL) [6] and Continuous Stochastic Logic (CSL) [7]. In these cases,
the analysis is limited to temporal aspects, without spatial modalities, while our
novel approach considers both. Three-valued logics, such as ours, with just one
additional truth value, are a simple case in the field of multi-valued logics [8]. The
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initial concept was created by �Lukasiewicz [9] and developed further by different
logicians, such as Kleene [10], introducing the concept of “undefined” dealing
with partial recursive functions. The three-valued approach is used in [11], for
the definition of a new abstraction method for fully probabilistic systems and in
[12], for model checking of Discrete-Time Markov Chains. We are not aware of
any current use of a three-valued logic approach in the field of spatio-temporal
analysis of stochastic systems.

Paper Structure. The paper is structured as follows: Sect. 2 introduces nota-
tion and background work on SSTL while Sect. 3 presents the novel logic TSTL.
Section 4 introduces the process algebra MELA we used to perform stochastic
simulations, the monitor jSSTL we used to verify SSTL properties and how we
linked all these aspects together to verify TSTL properties. Sections 5 and 6
present two different case studies and applications of TSTL. Section 7 reports
discussion and future directions for investigation while conclusions are reported
in Sect. 8.

2 Background

In this section we introduce some fundamental concepts and notation that we
will use in this paper aligned with the syntax and semantics of the existing
spatio-temporal logic SSTL.

Notation. We define a spatial population model, on a discrete representation of
space; it describes a large number of different agents that can perform actions,
take different states, interact and move between different locations. More for-
mally, a spatial population model M is defined as a tuple M = (S, G,X,X0,Tr)
where:

– S = {1, . . . , n} is the set of states that the population agents can take.
– G = (L,E,w), a finite weighted undirected graph that represents the current

choice of underlying spatial structure of the spatial population model:
• L is the finite set of locations (nodes)
• E ⊆ L × L is the set of connections (edges)
• w : E → R≥0 is the function cost (weights). We extend w to E∗, the

transitive closure of E (set containing all the pairs of connected nodes).
w gives the sum of costs of the shortest path between two different nodes,
where this shortest path is the one that minimizes the sum of the costs.

– X : L → R
n, where X(l) = (X1, . . . , Xn) ∈ R

n is the state vector, that
represents the state of the population in each location. The entries of the
vector X(l) represent the number of agents in location l in the ith state;
therefore, to be more specific, these counting variables are Xi ∈ N0.

– X0 : L → R
n, where X0(l) is the initial state of the state vector, for each

location.
– Tr is the set of transitions, τi = (αi, vi, ri), describing the events that change

the global state of the system. Each transition consists of a label αi in the
label set L, an update vector, vi : L → R

n recording the change to each
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counting variable in each location due to the transition, and a rate function
ri, which may depend on the global state of the system.

We can interpret the dynamical evolution of these models either stochastically as
a Markov chain or deterministically as a system of Ordinary Differential Equa-
tions (ODEs); in this work we focus on stochastic spatio-temporal systems. We
can describe the temporal evolution of our spatial population models using:

– σ, a spatio-temporal trajectory of M. σ : L×R≥0 → R
n gives the state of the

population vector for each location l ∈ L and each time t ∈ R≥0

– Σ, a set of spatio-temporal trajectories, that will be used in the analysis.

SSTL Syntax. Signal Spatio-Temporal Logic (SSTL) [2] is a spatial extension
of Signal Temporal Logic (STL) [13], a temporal logic suitable for describing
properties of real-valued signals. The syntax of SSTL is given by:

ϕ ::= μ | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U [t1,t2] ϕ2 | �[w1,w2] ϕ | ϕ1S[w1,w2]ϕ2

The SSTL atomic proposition μ is of the form μ ≡ (f ≥ 0), f : Rn → R, an
inequality on expressions with population counts, given in the spatio-temporal
trajectory. Negation ¬ and disjunction ∨ are the standard boolean operators
and U is the bounded until operator. This temporal operator U is used to verify
that the property ϕ2 will be satisfied at some time instant in the interval [t1, t2]
and that at all preceding time instants ϕ1 holds. SSTL introduces two spatial
operators: the bounded somewhere operator �[w1,w2] and the bounded surround
operator S[w1,w2], with w1, w2 real values, w1 ≤ w2. The bounded somewhere
operator requires that the property ϕ holds in a location reachable from the cur-
rent one, with a cost w, w ∈ [w1, w2]. The operator bounded surround describes
the property of being surrounded by a ϕ2-region, while being in a ϕ1-region: the
formula ϕ1S[w1,w2]ϕ2 is true in a location l, if l belongs to a set of locations A
where ϕ1 holds, such that its external boundary B+(A) contains only locations
satisfying ϕ2. The external boundary of a subset of locations A is defined as
B+(A) := {l ∈ L | l /∈ A ∧ ∃l′ ∈ A s.t. (l, l′) ∈ E}. Moreover, the locations
in the B+(A) have to be reached from location l with a cost w, w ∈ [w1, w2].
Examples of SSTL formulas will be provided throughout the paper.

SSTL Boolean Semantics. SSTL presents a boolean semantics that returns
the value true/false (B = {T, F}) depending on whether the observed trajectory
satisfies the defined SSTL formula or not. The boolean semantics of a SSTL
formula ϕ is interpreted over a spatio-temporal trajectory σ of M, for each
location l ∈ L and at time t ∈ R≥0, given values in the set B:

β(M, σ, l, t, ϕ) ∈ B

The satisfaction function β is defined as follows:

β(M, σ, l, t, μ) = μ(σ(l, t))
β(M, σ, l, t,¬ϕ) = ¬β(M, σ, l, t, ϕ)

β(M, σ, l, t, ϕ1 ∨ ϕ2) = β(M, σ, l, t, ϕ1) ∨ β(M, σ, l, t, ϕ2)
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β(M, σ, l, t, ϕ1 U [t1,t2] ϕ2) =
∨

t′∈[t+t1,t+t2]

(β(M, σ, l, t′, ϕ2) ∧

∧

t′′∈[t,t′)

β(M, σ, l, t′′, ϕ1))

β(M, σ, l, t,�[w1,w2]ϕ) =
∨

l′∈L,w(l,l′)∈[w1,w2]

β(M, σ, l′, t, ϕ)

β(M, σ, l, t, ϕ1S[w1,w2]ϕ2) =
∨

A∈SR
[w1,w2]
l

(
∧

l′∈A

β(M, σ, l′, t, ϕ1) ∧

∧

l′′∈B+(A)

β(M, σ, l′′, t, ϕ2))

where the surrounding region SR
[w1,w2]
l = {A ⊆ L | ∀l′ ∈ A : 0 ≤ w(l, l′) ≤

w2 ∧ ∀l′′ ∈ B+(A) : w1 ≤ w(l, l′′) ≤ w2}.
Monitoring algorithms have been defined to evaluate the validity of SSTL

properties, given a spatio-temporal trajectory, working inductively bottom-up
on the parse tree of the formula. To make the verification procedure tractably
computable, the time-domain has to be discretised, giving as output a piece-
wise constant approximation of the result. For this reason, in the analysis we
talk about time-steps, although we start from discrete-event continuous-time
simulations.

As discussed previously, in the study of stochastic systems we are generally
interested in evaluating the probability that given properties are satisfied; a
commonly used approach consists of estimating these values using statistical
methods on a set of trajectories. Therefore, given a SSTL property ϕ, we shift
the analysis from a single trajectory σ to a set of trajectories Σ, assigning to
each trajectory a truth value, according to the boolean semantics. After this step
we can estimate the satisfaction probability p∗ of the formula ϕ, provided with
a confidence interval. We define Pβ over the set of trajectories Σ, in terms of β:

Pβ(M, Σ, l, t, ϕ) = (p∗, δ) (1)

where (p∗, δ) ∈ [0, 1] × [0, 1] and represents the interval [p∗ − δ, p∗ + δ].

p∗ =
|Σ�|
|Σ| and δ = fδ(|Σ|, |Σ�|, ε) (2)

where |ΣT | = {σ ∈ Σ | β(M, σ, l, t, ϕ) = T} and δ is calculated with a given con-
fidence level ε, according to a suitable function fδ. There are several approaches
to compute the confidence interval. For the sake of simplicity in our presenta-
tion we assume this interval to be symmetric. Given the boolean nature of the
observations, SSTL uses the binomial proportion confidence interval and the
most common choice for the calculation presupposes that the error distribution
is approximated by a normal distribution. From this point on, all the results of
SSTL monitoring are given at 95% confidence.
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3 Three-Valued Spatio-Temporal Logic

We now present the novelty of our research, introducing the syntax and three-
valued semantics of TSTL, providing also derived operators and a specific mon-
itoring algorithm.

TSTL Syntax. With the existing SSTL we are able to verify spatio-temporal
properties of stochastic systems and estimate the satisfaction probabilities of
given formulas. After this initial analysis we use our proposed extension to per-
form spatio-temporal analysis of these estimated values. The syntax of Three-
Valued Spatio-Temporal Logic (TSTL) is given by:

ψ ::=P<p(ϕ) | ∼¬ψ | ψ1

∼
∨ ψ2 | ψ1

∼
U

[t1,t2]

ψ2 |
∼
�

[w1,w2]
ψ | ψ1

∼
S
[w1,w2]

ψ2

where p ∈ [0, 1] and ϕ is a given SSTL formula. The atomic TSTL formula
P<p(ϕ) expresses an inequality on the estimated satisfaction probability of the
SSTL formula ϕ, checking if it is below the given threshold p. The logical TSTL
operators link the TSTL propositions in a similar way to the SSTL ones, but
working with estimated values and on a three-valued domain, as explained in
the next section. We have negation

∼¬ and disjunction
∼
∨ operators, bounded until

∼
U , bounded somewhere

∼
�

[w1,w2]
and bounded surround

∼
S
[w1,w2]

. Conceptually all

these operators are identical to the SSTL operators, but they operate on a dif-
ferent domain, reasoning about estimated satisfaction probabilities and not pop-
ulation counts. In the remainder we will show examples and differences between
the two spatio-temporal logics; we will use the letter ϕ for SSTL formulas and
ψ for TSTL ones.

Three-Valued Semantics. TSTL presents a three-valued semantics that
returns a truth values in T = {T,U, F} (true/unknown/false). The truth tables
for TSTL negation

∼¬, disjunction
∼
∨ and conjunction

∼
∧ (that can be defined in

terms of negation and disjunction) are given by:
∼¬ T U F

F U T

∼∨ ψ2

T U F

ψ1

T T T T
U T U U
F T U F

∼∧ ψ2

T U F

ψ1

T T U F
U U U F
F F F F

as for Kleene’s logic of indeterminacy K3 [10]. The three-valued satisfaction
function τ for the atomic TSTL proposition P<p(ϕ) will return a value in T:

τ(M, Σ, l, t,P<p(ϕ)) = �p∗ <δ p� ∈ T

that is evaluated starting from the resulting (p∗, δ) given by Pβ(M, Σ, l, t, ϕ),
as shown in the Eqs. (1), (2). The associated truth value will be:

�p∗ <δ p� =

⎧
⎪⎨

⎪⎩

T if p > p∗ + δ

U if p ∈ [p∗ − δ, p∗ + δ]
F otherwise
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The three-valued satisfaction function τ for the TSTL operators is defined as
follows, in an analogous manner as SSTL:

τ(M, Σ, l, t,
∼¬ψ) =

∼¬τ(M, Σ, l, t, ψ)

τ(M, Σ, l, t, ψ1

∼
∨ ψ2) = τ(M, Σ, l, t, ψ1)

∼
∨ τ(M, Σ, l, t, ψ2)

τ(M, Σ, l, t, ψ1

∼
U

[t1,t2]

ψ2) =
∼∨

t′∈[t+t1,t+t2]

(τ(M, Σ, l, t′, ψ2)
∼
∧

∼∧

t′′∈[t,t′)

τ(M, Σ, l, t′′, ψ1))

τ(M, Σ, l, t,
∼
�

[w1,w2]
ψ) =

∼∨

l′∈L,w(l,l′)∈[w1,w2]

τ(M, Σ, l′, t, ψ)

τ(M, Σ, l, t, ψ1

∼
S
[w1,w2]

ψ2) =
∼∨

A∈SR
[w1,w2]
l

(
∼∧

l′∈A

τ(M, Σ, l′, t, ψ1)
∼
∧

∼∧

l′′∈B+(A)

τ(M, Σ, l′′, t, ψ2))

Note the similarity between the structure of β and τ , with operators that refer to
SSTL and TSTL respectively. We want to clarify that SSTL results are provided
performing SSTL monitoring with a given confidence level. Therefore, we are
not talking about confidence level of TSTL results, but about TSTL results,
given the confidence level for the SSTL monitoring. With the current definition
of TSTL we can derive more operators. We can obtain the operator P>p(ϕ) as:

P>p(ϕ) := P<1−p(¬ϕ)

Moreover, the everywhere spatial operator
∼
�

[w1,w2]
can be defined as:

∼
�

[w1,w2]
ψ := ¬

∼
�

[w1,w2]
¬ψ

This requires ψ to hold in all the locations reachable from the current one with

a total cost between w1 and w2. The eventually
∼
F

[t1,t2]

and the globally
∼
G
[t1,t2]

operators are defined as usual:

∼
F

[t1,t2]

ψ := T
∼
U

[t1,t2]

ψ
∼
G
[t1,t2]

ψ := ¬
∼
F

[t1,t2]∼¬ψ

The eventually formula holds if ψ becomes true within t1 and t2 time units from
the current one, while the globally formula requires ψ to be satisfied for each time
unit in the relative interval [t1, t2]. As we already presented, TSTL provides
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an additional level of analysis for evaluation of spatio-temporal properties of
estimated satisfaction probabilities of SSTL properties. Hence, there is a crucial
difference between both the analysis and the logical operators used in SSTL and
TSTL. For example, the following two TSTL properties ψ1 and ψ2:

ψ1 := P<p(ϕ1 ∧ ϕ2) ψ2 := P<p(ϕ1)
∼
∧ P<p(ϕ2)

are intrinsically different and therefore they can take on different truth values.
For example, let us assume that we are working with a disease spread model and
we have the following SSTL properties on the number of infected agents I:

ϕ1 := I > 5 ϕ2 := I > 10

Let assume that, for a given disease probability threshold p:

τ(M, Σ, l, t,P<p(ϕ1)) = F τ(M, Σ, l, t,P<p(ϕ2)) = T

This can happen if we choose the value of p between the two estimates, outside
their respective intervals. Since ϕ1 ∧ ϕ2 ≡ ϕ2 then:

τ(M, Σ, l, t,P<p(ϕ1 ∧ ϕ2)) = τ(M, Σ, l, t,P<p(ϕ2)) = T

while:
τ(M, Σ, l, t,P<p(ϕ1))

∼
∧ τ(M, Σ, l, t,P<p(ϕ2)) = F

Moreover, the first could perhaps be derived empirically from observations, but
the second is only expressible with the new logical operator

∼
∧ and the domain

T.

Monitoring the Three-Valued Semantics of the Bounded Surround. To
evaluate the validity of TSTL formulas we implemented monitoring algorithms
for each logical operator, structured in a similar way to SSTL monitoring [2]. We
illustrate now the monitoring algorithm for the TSTL bounded surround opera-
tor, which is more elaborate than the other procedures. Given a location l̂ and

a TSTL bounded surround formula ψ = ψ1

∼
S
[w1,w2]

ψ2, the algorithm returns

the piecewise constant approximation sψ,l̂ of the function that maps each time

t with τ(M, Σ, l̂, t, ψ1

∼
S
[w1,w2]

ψ2), in the discrete time set T . The cardinality of

this set T depends on the given SSTL and TSTL formulas; it is the shortest finite
sequence of time-steps for which we have the values of the satisfaction function
of all the formulas involved1. As shown in Algorithm 1, as the first step of the
algorithm, we compute the value sψ1,l for all the locations l : 0 ≤ w(l̂, l) ≤ w2

and the value sψ2,l for all the locations l : w1 ≤ w(l̂, l) ≤ w2. These values are
obtained by recursive invocation of the monitoring algorithm on the TSTL sub-
formulas ψ1 and ψ2. We set these values for the other locations to be F , ∀t ∈ T .
1 We need to take into account that a temporal formula looks Tf time units into the

future, hence the domain [0, T ] becomes [0, T − Tf ].
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After this initial step, we iteratively compute a fixed-point function, on the set
of locations satisfying the cost bounds, to get the value of the bounded surround
formula, for each time step in the discrete time set T . This fixed-point coincides
with the limit of the sequence (χi)i∈N, χi : L → T, defined as follows:

1. χ0(l) = sψ1,l(t)

2. χi+1(l) = χi(l)
∼
∧ (

∼∧
l′:(l,l′)∈E

(χi(l′)
∼
∨ sψ2,l′(t)))

where i indicates the iteration. The upper bound on the number of iterations
of the algorithm is given by the diameter dG of the graph; given χ(l) the fixed
point of χi(l), then χ(l) = χdG+1(l), ∀l ∈ L. The proof of the correctness of the
method follows that of the SSTL monitoring. The cost of this computation for
each location is O(dG|L||T |); therefore, the cost for all locations is O(dG|L|2|T |).
For more details, see [2], where a similar approach is used.

Algorithm 1:
Three-Valued Spatio-Temporal Logic: bounded surround operator

input: l̂, ψ = ψ1S[w1,w2]ψ2, T
for all l ∈ L do

if 0 ≤ w(l̂, l) ≤ w2 then
compute sψ1,l;

else
if w(l̂, l) ≥ w1 then

compute sψ2,l;
else

sψ2,l = F

sψ1,l = F ; sψ2,l = F

for all t ∈ T do
for all l ∈ L do

χprec(l) = T
χ(l) = sψ1,l

while ∃l ∈ L : χprec(l) �= χ(l) do
χprec = χ
for all l ∈ L do

χ(l) = χprec(l)
∼
∧ (

∼∧

l′:(l,l′)∈E

(χprec(l′)
∼
∨ sψ2,l′))

sψ,l̂(t) = χ(l̂)
return sψ,l̂

4 Modelling and Monitoring: MELA and jSSTL

We used the process algebra MELA [14] to formally describe spatial popula-
tion models and to perform stochastic simulations, in order to produce spatio-
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Fig. 1. Σ is the set of spatio-temporal trajectories, Φ the set of SSTL formulas and Ψ
the set of TSTL formulas

temporal trajectories for the SSTL monitoring. This process algebra MELA has
been developed to build spatial population models of ecological systems, since
consideration of the spatial aspect has been recognized as of key importance in
ecology. MELA allows one to build models on different discrete spatial struc-
tures, to define agent behaviours with spatial constraints on their interactions
and probability for these interactions to be effective. Agents can perform dif-
ferent types of actions, that might change their state, their location, or their
number in the system. The components in the MELA model generate the states
of the underlying stochastic model, a Continuous Time Markov Chain (CTMC)
and we perform stochastic simulations using Gillespie’s Stochastic Simulation
Algorithm (SSA) [15], extracting initial configuration, model structure and para-
meter values directly from the MELA model description. We chose to use MELA
to facilitate the creation of spatial population models since it presents features
that fit perfectly with SSTL monitoring settings, such as discrete representa-
tion of space and focus on spatial population models. Accordingly, it has been
used in order to produce spatio-temporal trajectories, used as input for jSSTL
[16], a Java library developed to support monitoring of SSTL properties. Since
SSTL works with a discrete space, in particular with weighted graphs, the grid
spatial structures in MELA are mapped to a weighted graph structure, to fit
with the SSTL framework, with all the weights equal to 1. The results of jSSTL
monitoring are used as input to verify TSTL properties. The structure of our
spatio-temporal analysis is shown in Fig. 1.

5 Case Study: Defining Safety Zones

We now present two case studies, related to fire propagation, using TSTL
properties for the identification of safe zones and exit routes. The actual
MELA models and more details about the spatio-temporal analysis can be
found in https://ludovicalv.github.io/TSTL. For the first case study we build
a MELA model of forest fire: the spatial structure in this model is a 2D grid,
25 × 25, with Von Neumann neighbourhood of range 1 and absorbing bound-
aries. The considered grid is crossed by a road (R), that has a high proba-
bility of causing fire (B) in its neighbouring forest. We have zones of partic-
ular interest (P ) for which we wish to provide strong protection (e.g. picnic
areas, houses, regional parks) and zones of safety (S) that will never burn.
We want to identify safe areas during the spread of fire. The spread can
initiate from the danger zone and it can expand to the neighbouring cells.

https://ludovicalv.github.io/TSTL
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(a) ψsafe5 , ψsafe10 , without control (b) ψsafe5 , ψsafe10 , with control

(c) ψarea5 , ψarea10 , without control (d) ψarea5 , ψarea10 , with control

Fig. 2. (a, b): validity of TSTL formulas ψsafe5 , ψsafe10 at t = 0 (low risk) (c, d): validity
of TSTL formulas ψarea5 , ψarea10 at t = 0 (safe zones)

– Zones of interest (picnic areas P , brown sign)
– Zones of safety (fire assembly points S, green sign)
– Road (R, black line) and danger zone (D, neighbouring

area)
– Green area: vegetation (25 km2)

To reach our goal we start with two SSTL properties: the SSTL property ϕpos ,
a “static” property, that predicates about respective position of locations, and
the property ϕfire5 , related to eventually burning (B) over a given time horizon,
here for example 5 time steps. With the formula ϕpos we identify the locations
that connect P and S with a bounded cost, where the cost bounds are chosen
given the distance between the two areas, and that are not part of the road. We
verify these properties at time 0.

ϕpos := (�[0,17](S > 0)) ∧ (�[0,17](P > 0)) ∧ (¬(R > 0))

ϕfire5 := F [0,5](B > 0)

We find the safe zones using the TSTL property ψarea5 , that identifies the loca-
tions satisfying the position requirements and with low probability of burning.

ψpos := P>0.01(ϕpos) ψsafe5 := P<0.2(ϕfire5 ) ψarea5 := ψpos

∼
∧ ψsafe5

The results of this analysis are shown in Fig. 2a and c. Using TSTL we can also
identify the zone of higher risk: we use the operator everywhere to identify the
locations for which all the closest neighbours have high probability of being on
fire, within the first 10 time steps (ψrisk).

ϕfire10 := F [0,10](B > 0) ψfire10 := P>0.8(ϕfire10 ) ψrisk :=
∼
�

[1,1]
ψfire10

The results are shown in Fig. 3. We can observe that the locations neighbouring
the road and the safe zones do not satisfy ψrisk : in fact, not all their neighbouring
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(a) t = 1 (b) t = 5 (c) t = 10 (d) t = 15

Fig. 3. TSTL property ψrisk : high risk zones, for t = 1, 5, 10, 15 time steps

locations will burn, since both the road and the safe zones will never catch fire.
We can also introduce a control measure, like a firebreak [17], to protect the
areas between the zone of interest and the safe zones. Firebreaks work as a
barrier and they usually consist of a gap in vegetation that slows down the fire
spreads. For this reason, we add in our model fire detectors that, once the fire
is detected at a given distance, will activate the control measure. These control
actions will reduce the probability of fire spread, e.g. cutting the vegetation in the
neighbouring area. Using MELA we can also estimate the expense (accumulated
performance cost) associated with the control measures, such as the cumulative
reward for Continuous Stochastic Reward Logic [18], and use these estimations to
balance between effectiveness and expense of the control actions. The difference
between the two models, without/with control, is shown in Fig. 2, where we can
observe a wider safe zone in the model with the control measure. We verify
the TSTL properties ψpos (for position) and ψsafe5 , ψsafe10 (for low risk of fire
spread in 5 and 10 time steps, respectively), while ψarea5 and ψarea10 are used
to define the safe zones in the different scenarios:

ψsafe5 := P<0.2(ϕfire5 ) ψsafe10 := P<0.2(ϕfire10 )

ψarea5 := ψpos

∼
∧ ψsafe5 ψarea10 := ψpos

∼
∧ ψsafe10

We can expand our analysis using TSTL to identify the limited areas of risk,
in situations where we have isolated danger spots spread in the area, using the
TSTL bounded surround operator and the formula:

ψriskArea := (P>0.8(B > 0))
∼
S
[w1,w2]

(P<0.2(B > 0))

We can also analyse the effectiveness of the control measures, verifying that the
risk probabilities do not exceed a given threshold over time.

ψlowRisk :=
∼
G
[0,t]

P<0.2(B > 0)

In both case studies, for each property we run 30 simulations to perform TSTL
verification. With these relatively few runs we have an overall insight about
the dynamics and about the differences between distinct models, with a simple
representation of complex systems and properties. Nevertheless, this analysis
takes into account the uncertainty, that can be used to determine the need of
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more runs for more precise results. We will expand our current framework to
automatically provide additional simulations to refine the analysis of the atomic
propositions, when a more precise result is needed.

6 Case Study: Emergency Evacuation Route

For the second case study we introduce another fire related model: we want to
identify the most appropriate fire exit in a situation where the evacuation routes
are already defined. We aim to identify the safe evacuation routes from the centre
of the grid to the assembly points, located in the corners, having a fire starting
in the location in the lower left corner, that can spread to the neighbouring
locations. We build a MELA model on a 2D grid (25 × 25) where the fire can
spread everywhere, apart from the assembly points (safe zones). In the parts of
the grid defined as a route we have two agents in parallel, one that identifies
the presence of people and the other one that identifies the presence of fire.

– Fire spread model (on a grid, 25 km2)
– Agents at the center
– Different exit routes (grey lines) to safe zones (located in

the corners)
– For each route: (fire || people)

In this example the movement of people and fire are modelled separately, they do
not influence each other in the model. We will gather both types of information
in the study of TSTL properties. This model focusses more on the concrete safe
path and on actual movement, while in the previous one we were defining the
different safe areas in time, without specifying the route. In the inflammable area
the fire agent can be on fire (B, burning) or not (I, inflammable) while the exit
route locations can be empty (EM), occupied (Occ) or passed (P ); P represents
a cell that was occupied but empty again. To identify the safe evacuation routes,
we use TSTL to identify cells that have low probability of being on fire (ψfire)
and non-zero probability of being occupied (ψocc), given the agent movement in
the model.

ϕocc := Occ > 0 ϕfire := B > 0

ψocc := P>0.01(ϕocc) ψfire := P<0.2(ϕfire) ψsafe := ψocc

∼
∧ ψfire

The verification output of TSTL property ψsafe shows the routes that will lead
to the assembly point safely, as shown in Fig. 4. To be able to identify the
safe evacuation routes from the beginning, instead of observing their temporal
evolution, we can check the TSTL property ψsafeRoute at t = 0. We want to
identify the route that, with probability higher than 0.8, will not be on fire if
occupied, in this case in the first 10 time-steps.

ϕroute := (EM > 0) ∨ (Occ > 0) ∨ (P > 0)

ϕnotFire := ¬((Occ > 0) ∧ (B > 0)) ≡ ¬(Occ > 0) ∨ ¬(B > 0)

ϕGsafe := G[0,10](ϕroute ∧ ϕnotFire) ψsafeRoute := P>0.8(ϕGSafe)
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(a) t = 1 (b) t = 5 (c) t = 7.5 (d) t = 10

Fig. 4. Temporal evolution of safe evacuation routes: TSTL property ψsafe , with move-
ment rate of the agents equal to 2.0

(a) r = 1.0 (b) r = 2.0 (c) r = 3.0 (d) r = 4.0

Fig. 5. Safe evacuation routes: TSTL property ψsafeRoute , with different movement rate
of the agents

We will check this TSTL property changing the rate of agent movement in the
MELA model, as shown in Fig. 5. We can observe that if the rate of movement
is not high enough, there are not safe options to reach the assembly points. As
further analysis, we examine the number of unknown values over time, given
TSTL properties and changing the quantity of spatio-temporal trajectories to
analyse. We study the percentage of locations having unknown as truth value for
different formulas, in both case studies, for different numbers of simulation runs.
We observed that the percentage decreases with the increase of the number of
runs. Since the width of the confidence intervals depends to a large extent on
this value, with an increase in the number of runs we tend to give a more precise
estimation of the satisfaction probability. Therefore we have narrower confidence
intervals as input for TSTL monitoring and a consequent smaller percentage of
unknown values. The three-valued approach is useful to discriminate among
TSTL properties in the process of acquiring spatio-temporal trajectories, until
the satisfaction set is large enough.

7 Discussion

In the current framework development we use verification of SSTL formulas
as input for TSTL monitoring and the starting point for the spatio-temporal
analysis. We want to point out that TSTL can be used to predicate on estimated
satisfaction probabilities of formulas specified with other logics and also on more
general uncertain values with an estimated confidence, as long as the required
format is maintained (estimated value for each location at each time point).
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As future case studies we will apply our framework to model the spread of
invasive species, in particular giant hogweed [19]: we will analyse the effective-
ness of different control measures to protect areas of interest, such as regional
parks, taking into account also the suitability of the different locations for plant
colonisation. In particular, we will analyse the difference between prevention
(control outside the boundaries of the area) and direct action (eradication when
the invasive species are detected inside the area), considering also the expense
associated with the different measures.

As a future extension for TSTL we will define and implement the operator

bounded reachable
∼
R. This operator can be seen as a spatial until with direction

and associated with a path. We will be able to verify properties related with
locations reachable within a given cost range and satisfying defined TSTL prop-
erties, and the existence of a connecting path formed only by locations satisfying
a given set of TSTL properties. In the case studies we presented, the use of this
new operator would have allowed us to identify safe paths without having to
mimic the actual movement, detecting different possible solutions. Using this
new TSTL operator we could verify if there is a safe location (assembly point S)
that we can reach passing only through locations with low probability of burning,
with a cost w, w ∈ [w1, w2]:

ψ := (P<0.2(B > 0))
∼
R

[w1,w2]
(P>0.01(S > 0))

8 Conclusions

In this paper we presented Three-Valued Spatio-Temporal Logic (TSTL), an
extension of Signal Spatio-Temporal Logic (SSTL) that allows us to widen the
analysis of spatio-temporal properties of stochastic systems. We have shown how
this extension is used to study the spatio-temporal evolution of the estimated
satisfaction probabilities of given SSTL formulas. We implemented the monitor-
ing algorithms for each TSTL operator and used them in the case studies to
perform the novel analysis, checking the validity of different TSTL formulas. We
used TSTL to identify the zones that have high risk of catching fire during a
fire spread and to find the safest evacuation routes, checking the ones that have
high probability to be safe over time. We provide the novel spatio-temporal logic
with a three-valued semantics to handle the intrinsic uncertainty related to the
statistical methods used to estimate the satisfaction probabilities. The three-
valued approach allows us to perform initial analysis with a relatively small set
of spatio-temporal trajectories, taking into account the uncertainty; on the other
hand, it also provides a decision tool on the number of simulations needed for
drawing stronger conclusions.
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Abstract. Statistical Model Checking (SMC) is an approximate veri-
fication method that overcomes the state space explosion problem for
probabilistic systems by Monte Carlo simulations. Simulations might be
however costly if many samples are required. It is thus necessary to
implement efficient algorithms to reduce the sample size while preserv-
ing precision and accuracy. In the literature, some sequential schemes
have been provided for the estimation of property occurrence based on
predefined confidence and absolute or relative error. Nevertheless, these
algorithms remain conservative and may result in huge sample sizes if the
required precision standards are demanding. In this article, we compare
some useful bounds and some sequential methods based on frequentist
estimations. We propose outperforming and rigorous alternative schemes,
based on Massart bounds and robust confidence intervals. Our theoret-
ical and empirical analysis show that our proposal reduces the sample
size while providing guarantees on error bounds.

1 Introduction

Probabilistic Model Checking (PMC) [16] is a formal verification method to
analyse quantitative properties of probabilistic systems. PMC algorithms per-
form an exhaustive traversal of the state space of the system. However, real-
world applications often involve multiple interacting components and the result-
ing state space becomes intractable. This limitation has led to the development
of alternative methods like discrete event simulation and Statistical (Probabilis-
tic) Model Checking (SMC) [22]. These simulation-based approaches require the
use of an executable model of the system and then estimate the probability of
a property based on simulations. SMC provides rigorous bounds of the error
of the estimated results, based on robust statistical techniques (e.g., [4,18,20]).
For real-world complex systems, SMC has a lot of potential as it requires little
memory and remains very efficient for large systems. Finally, SMC is sometimes
the only option for verifying many realistic models.

SMC also faces some specific problems. For example, simulations may be
costly and time consuming. Moreover, the specifications of critical or important
events are in practice tight. SMC must thus focus on additional statistical aspects
c© Springer International Publishing AG 2017
N. Bertrand and L. Bortolussi (Eds.): QEST 2017, LNCS 10503, pp. 333–350, 2017.
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to provide optimised sampling schemes while guaranteeing a rigorous confidence
of the estimation. The need of rigorous sampling schemes have been addressed
from the early days in SMC [11,22] to more recent [8,10] just to cite a few. A key
feature in designing a sampling procedure is to determine the number of simu-
lations necessary to generate an estimation within acceptable margins of error
and confidence. Bayesian SMC may be used to address this problem. However,
in this approach, the probability to estimate must be given by a prior random
variable whose density is based on previous experiments and knowledge about
the system [24]. This limitation motivates the alternative frequentist estimation
approaches. The scope of this article is restricted to this class of methods.

In [11], the authors discussed the notion of absolute and relative margin of
error for SMC. To guarantee that the absolute error is bounded, they intro-
duced a procedure relying on the Okamoto bound1 that, given fixed confidence
and error parameters, determines a priori the number of Bernoulli samples
required, which is independent of the probability to estimate. Supporting relative
errors (i.e., errors which depend on the probability to quantify) is more difficult,
although theoretical bounds exist. Dagum et al. [7] proposed an approximate
algorithm based on Bernstein’s inequalities.

Approximate algorithms work by rough parameter estimations that are then
reused in a stopping rule to update the number of simulations achieving the
desired precision task. More recently, Watanabe proposed a sequential algorithm
for bounding the relative error [21] based on a simpler stopping rule. The pro-
cedures described in [11] have been at least partially implemented in statistical
model checkers like PRISM [16], PLASMA [14], APMC [12] and UPPAAL-SMC
[8]. These sampling schemes are however very conservative notably when the
probability to estimate is close to 0 or 1. Moreover, Dagum’s algorithm was ini-
tially used to estimate the mean value of any random variable distributed in
[0, 1] and is thus not optimised for Bernoulli random variables.

In this article, our main goal is to provide better performing sampling schemes
that rigorously fulfil absolute and relative error specifications. The key idea of
our schemes is to define sequentially confidence intervals (CI) of the probability
and then to apply Massart bounds, sharper than the Chernoff bounds, over the
worst value of the CI to decide whether enough traces have been sampled or
not. For this purpose, we also aim to clarify the two-sided “Chernoff” bounds
for absolute and relative error specifications, to promote Massart bounds and last
but not least, to give proofs of all these bounds. Indeed, the original theorems
are one-sided and the two-sided versions must be clearly stated. The proofs are
sometimes straightforward, at least for Theorems 3 and 5, but sometimes require
more arguments. In particular, we could not find clear wordings and proofs of
Theorems 2 and 4 in the literature. Finally, as far as we know, Theorems 6 and 7
are original as well as the algorithms using them. The proofs of the bounds can
be found in the extended version available online2.

1 The Okamoto bound is sometimes called the Chernoff bound in the literature.
2 At least here: http://sav.sutd.edu.sg/publications/.

http://sav.sutd.edu.sg/publications/
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In Sect. 2, we formally state the absolute and relative specifications which we
want to fulfil. We also recall the basics of Monte Carlo estimation and some sub-
tleties concerning coverage and CI. In Sect. 3, we introduce the Massart bounds.
So far, they seem to suffer from a lack of recognition. For that reason, we present
a comparison with the Chernoff bounds. We then describe some existing sam-
pling schemes related to our problem in Sect. 4. In Sect. 5, we propose alterna-
tive sequential algorithms based on two inequalities, previously proven, which
depend on the coverage of the probability. Finally, we show in Sect. 6 that these
new schemes outperform the current approaches for the absolute and relative
error problems by reducing significantly the sampling size. Section 7 concludes
the article and leaves open questions for future work.

2 Background

In the following, a stochastic system S is interpreted as a set of interacting
components in which the state is determined randomly with respect to a global
probability distribution. Let (Ω,F , μ) be the probability space induced by the
system with Ω a set of finite paths with respect to system’s property φ, F a
σ-algebra of Ω and μ the probability distribution defined over F . Before going
further, it is worth mentioning that SMC initially addressed the problem of
verifying whether a property probability exceeds a threshold or not. This problem
can be solved by using the sequential probability ratio test in hypothesis testing
[22]. Other issues have been considered since, notably the estimation of the
probability that a system property holds. In spite of similarities, both problems
are different and in what follows, we focus on the estimation problem.

2.1 Statement of the Problem

Given a probabilistic system S, a property φ and a probability γ, we write S |=
Pr(φ) = γ if and only if the probability that a random execution of S satisfies
φ is equal to γ. In principle, if γ is unknown, we can apply analytical methods
to determine this value. However, due for example to numerical imprecisions, we
often relax the constraints over γ and introduce the following notations:

S |=a
ε Pr(φ) = γ and S |=r

ε Pr(φ) = γ (1)

The left formula means that a random execution of S satisfies φ with probability
γ plus or minus an absolute error ε, i.e. Pr(φ) ∈ [γ − ε, γ + ε]. The right formula
means that a random execution of S satisfies φ with probability γ up to some
relative error ε, i.e. Pr(φ) ∈ [(1 − ε)γ, (1 + ε)γ].

SMC applies on an executable system S and a property φ that is verified in
finite time. In SMC, the satisfaction of property φ is quantified by a Bernoulli
random variable of unknown mean γ. This mean is then approximated using a
Monte Carlo estimation scheme. The output of the scheme is thus not an exact
but an approximate value, given within certain error bounds and a confidence
parameter δ that is the probability of outputting a false estimate. SMC thus
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requires a sampling scheme which outputs, after n samples, an estimate γ̂n close
to γ up to some absolute or relative ε-based error with probability greater or
equal than 1 − δ. Formally, we write:

S |=a
ε,δ Pr(φ) = γ̂n or S |=r

ε,δ Pr(φ) = γ̂n (2)

if and only if an algorithm outputs estimators while guaranteeing:

Pr(|γ̂n − γ| > ε) ≤ δ (3)

or respectively:
Pr(|γ̂n − γ| > εγ) ≤ δ. (4)

We call (3) the absolute error specification and (4) the relative error specification.
The goal of the article is thus to equip SMC with sampling algorithms that fulfil
Specification (3) or (4) with as few samples as possible.

2.2 Monte Carlo Estimation

Let ω be a path sampled from space Ω with respect to distribution μ; z be a
function from Ω to {0, 1} assigning 1 if ω satisfies property φ and 0 otherwise
and γ be the probability that an arbitrary path of the system satisfies φ. In SMC,
the behaviour of function z is interpreted as a Bernoulli random variable Z with
mean parameter γ. By definition, the average value γ is the integral of function
z with respect to distribution μ over space Ω: γ = Eμ[Z] =

∫
Ω

z(ω) dμ(ω) and
an estimator γ̂n is given by the Monte Carlo method by drawing n independent
samples ωi ∼ μ, i ∈ {1, . . . , n}, as follows:

γ̂n =
1
n

n∑

i=1

z(ωi) ≈ Eμ[Z] (5)

Let m =
∑n

i=1 z(ωi) be the number of successes and σ2 = γ(1 − γ) the variance
of Z. In what follows, for sake of simplicity, we use both notations γ̂n and m/n
to denote the estimate.

Confidence Intervals and Coverage. An estimator is given in general within
a CI. However, in order to make use of the theorems presented in Sect. 5, we need
to distinguish the notion of coverage and approximate CI.

Definition 1. Given probability γ and a CI I, we call C(γ, I) = Pr(γ ∈ I) the
coverage of γ (by I).

Denoting Φ(.) the standard normal distribution function and zδ/2 = Φ−1(1−
δ/2) the (1 − δ/2)th quantile of the normal distribution, the notional (1 − δ)-
CI for γ is given by I =

[
γ̂n − zδ/2

σ√
n
, γ̂n + zδ/2

σ√
n

]
in virtue of the central

limit theorem. However, in practice, σ2 is replaced by a sample approximation
σ̂2

n = γ̂n(1−γ̂n)/n (and if n is small, zδ/2 by tδ/2,n−1 the quantile of the Student’s



Sequential Schemes for Frequentist Estimation of Properties 337

t-distribution with n − 1 degrees of freedom). Then, an approximate (1 − δ)-CI
Ĩ is given by:

Ĩ =
[
γ̂n − zδ/2σ̂n, γ̂n + zδ/2σ̂n

]
(6)

Unfortunately, the coverage of γ by an approximate CI Ĩ, may be significantly
below the (desired) notional coverage: C(γ, Ĩ) < C(γ, I) = 1 − δ. More details
about this topic are available in the extended version and in [2].

Exact Clopper-Pearson CI. The algorithms proposed in Sect. 5 require an
iterative computation of CI to evaluate a rigorous coverage of γ. For that pur-
pose, we use the Clopper-Pearson (1 − δ)-CI [6]. This CI guarantees that the
actual coverage is always equal to or above the nominal confidence level. In oth-
ers words, a (1−δ)-Clopper-Pearson CI J guarantees that C(γ, J) ≥ 1−δ and its
closed-form expression is easily computed: J = [β−1

(
δ
2 ,m, n − m + 1

)
, β−1(1−

δ
2 ,m+ 1, n−m) ] with β−1(δ, u, v) being the δ-th quantile of a Beta distribution
parametrised by u and v.

Agresti-Coull CI. As γ decreases, the Clopper-Pearson CI becomes more con-
servative. The Agresti-Coull CI consists in replacing the number of samples n by
n + z2δ and the number of successes m by m + z2δ/2 in the binomial CI (6). The
CI is only approximate but still presents a good coverage close to the boundaries
and may represent a good compromise between exactness and conservativeness
(see [2] for more details).

3 Chernoff-Hoeffding-Okamato and Massart Bounds

In the literature, the Chernoff bounds [4] refer to exponential decreasing bounds,
in the number of simulations, of the probability of deviation between a Monte
Carlo estimate and its mean. However, they exist under various forms, additive
or multiplicative, one or two-sided, more or less “simplified”. Moreover, tighter
bounds have been established, notably in [17], but they still suffer from a lack
of recognition. In this section, we intend to clear up confusion on the bounds by
presenting a brief survey of the two-sided bounds and show the improvements
achieved by the Massart bounds to give them the attention they deserve.

3.1 Absolute Error Bounds

Though the seminal work is due to Chernoff [4], the two-sided absolute error
bound has been first stated for binomial distributions by Okamoto in [19].

Theorem 1 (Okamoto bound). For any ε, 0 < ε < 1, we have the following
inequality:

Pr(|γ̂n − γ| > ε) ≤ 2 exp(−2nε2) (7)
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Given ε, δ, writing out δ = 2 exp(−2nε2), the Okamato bound can be used
to determine a minimal number n of simulations to perform a Monte Carlo plan
fulfilling the absolute error specification (3). The main advantage of this bound
is that it is independent of the value to estimate. However, the bound is very
conservative and in many cases, a much lower sample size would achieve the same
absolute error specification. Hoeffding provided a one-sided tighter exponential
bound in [13]. We present below a two-sided version of his bound.

Theorem 2 (Absolute Error Hoeffding bound). For any ε such that
0 < ε < 1 and γ such that 0 < γ < 1, we have the following inequality:

Pr(|γ̂n − γ| > ε) ≤ 2 exp
(−nε2f(γ)

)
(8)

where f(γ) =
{

1/(1 − 2γ) log((1 − γ)/γ) if γ �= 1/2
2 if γ = 1/2

Surprisingly, we could not find a clear statement and a proof of this result in the
literature. We thus present a proof in the extended version.

In this article, the Hoeffding bound is only presented because of its repute.
Indeed, Massart established in [17] a sharper bound that holds if the absolute
error ε is lower than probabilities γ and 1 − γ. In what follows, we use the
two-sided absolute and relative error versions of Massart bounds.

Theorem 3 (Absolute Error Massart bound). For all γ such that 0 < γ
< 1 and any ε such that 0 < ε < min(γ, 1 − γ), we have the following inequality:

Pr(|γ̂n − γ| > ε) ≤ 2 exp
(−nε2ha(γ, ε)

)
(9)

where ha(γ, ε) =
{

9/2 ((3γ + ε)(3(1 − γ) − ε))−1
if 0 < γ < 1/2

9/2 ((3(1 − γ) + ε)(3γ + ε))−1
if 1/2 ≤ γ < 1

3.2 Relative Error Bounds

In practice, the absolute error is set independently of γ. However, it could be that
the approximation is meaningless, especially if the absolute error is large with
respect to γ. In this case, setting a relative error that remains ‘small’ with respect
of γ may be more adequate. The literature mentions a Chernoff-Hoeffding bound
with relative error (e.g. [1]). This bound is known under multiple forms, more
or less sharp and one or two-sided. For sake of consistency, we here provide a
two-sided bound. As the existing literature adopts slightly different results, some-
times without providing their proof, we give a complete proof in the extended
version adapted from two online references3.

3 http://crypto.stanford.edu/∼blynn/pr/chernoff.html and www.cs.princeton.edu/
courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf.

http://crypto.stanford.edu/~blynn/pr/chernoff.html
www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf
www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf
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Theorem 4 (Relative Error Hoeffding bound). For any ε, 0 < ε < 1 and
γ, 0 < γ < 1, we have the following inequality:

Pr (|γ̂n − γ| > εγ) ≤ 2 exp
(

− nε2γ

2 + ε

)

(10)

Finally, the Massart bound has a two-sided relative form.

Theorem 5 (Relative Error Massart bound). For γ, 0 < γ < 1 and any
ε, 0 < ε < (1 − γ)/γ, we have the following inequality:

Pr(|γ̂n − γ| ≥ εγ) ≤ 2 exp
(−nε2hr(γ, ε)

)
(11)

with hr(γ, ε) =
{

9γ/2 ((3 + ε)(3 − γ(3 + ε)))−1
if 0 < γ < 1/2

9γ/2 ((3 − ε)(3 − γ(3 − ε)))−1
if 1/2 ≤ γ < 1
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Fig. 2. Hoeffding (dot) and Massart
(plain) bounds with relative error ε =
0.1 and confidence parameter δ = 0.05.

Notional Sample Size. If we let δ be equal to any of the right side expression
of the inequalities given in Theorems (1)–(5), we can deduce a notional sample
size n such that specification (3) or (4) is fulfilled. For example, using Theorem5
given ε and δ, we only need to set n > 1/(hr(γ, ε)ε2) log(2/δ) to satisfy the
relative error specification (4). However, Hoeffding and Massart inequalities are
not directly applicable because they depend on γ, in contrast to the Okamoto
bound. But, they still have a theoretical interest: Fig. 1 indicates for any notional
γ the number of simulations necessary to produce an (ε, δ)-estimator according
to the Okamoto, Hoeffding and Massart bounds. Though the bounds are approx-
imately equivalent when γ is 1/2, the bounds are far apart when γ is away from
1/2. Given ε = 0.01, δ = 0.05 and γ = 0.05 for example, the absolute error
specification would be fulfilled with n ≥ 3283 simulations according to the Mas-
sart bound instead of n ≥ 11276 or n ≥ 18445 for the respective Hoeffding and
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Okamoto bounds. Similarly for the relative error specification, Fig. 2 shows that
the Massart sample size is always lower than the Chernoff-Hoeffding sample size.
The gain in sample size is more important when γ is high. With ε = 0.1, δ = 0.05,
the ratio between Hoeffding and Massart sample sizes tends to decrease to 1.086
when γ tends to zero, that may still be non-negligible if sampling is time-costly.

4 Related Work

In this section, we give a brief summary of existing sequential methods based
on frequentis estimations to address specification (3) or (4). Some of them have
already been implemented in SMC. We also recall that the specifications can
be alternatively addressed by Bayesian SMC, not explored in this article, when
beliefs and knowledge about the system are exploitable [24].

4.1 Schemes for the Absolute Error Specification

Given ε and δ, the standard method to satisfy specification (3) is to compute a
sample size n independently of probability γ using the Okamoto bound. Since
there does not exist a bound independent of γ in the relative error case, the
sequential schemes are mostly used to address specification (4) but they are not
limited to it.

Simple Scheme. A simple idea could be to sample and update a (1−δ)-CI until
it is included into an interval γ̂n ±ε. This frequentist approach is implemented in
UPPAAL-SMC [8]. However, though this technique may work more often if the
CI are computed according to the Clopper-Pearson method, this scheme does
not guarantee in general specification (3) for any δ, ε and γ (see for example
[9]). For sake of understanding, we added a brief but technical explanation in
the extended version. It is however possible to pre-compute a value δ∗ that
guarantees a final coverage greater than 1 − δ (see [9]).

Chen’s Scheme [3]. A promising sequential scheme which may work in practice,
at least for some common values of ε and δ, is the work proposed by Chen in
[3]. Chen’s scheme also takes advantage of the Massart bounds. The idea is to
sample while n < 2 log(2/δ)

ε2

[
1/4 − (|γ̂n − 1/2| − 2/3ε)2

]
. Unfortunately, this rule

only guarantees to produce an estimation which does not exceed the error bound
ε on one side. So far, showing the other half of the bound has not been proven
and was conjectured by the authors after some experiments.

4.2 Schemes for the Relative Error Specification

In [11], the relative error specification is addressed by Dagum’s algorithm.
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Dagum’s Scheme [7]. is a three-step procedure to perform an estimation of
the mean of a general [0, 1]-valued random variable X given relative error ε and
confidence δ. The two first steps consist in providing a coarse estimation γ̂k and
a dispersion parameter ρ̂l. Finally, the third step provides the final estimation γ̂n

using γ̂k and ρ̂l. The three steps are independent and depend on three different
stopping rules, omitted here for sake of simplicity (see [7] for more details). The
final sample size is thus given by k+l+n. Nevertheless, Dagum’s scheme is based
on coarser bounds than the Chernoff bounds. Moreover, this algorithm is used to
estimate the mean of any random variable with support in [0, 1]. Consequently,
the scheme has a very general use but is not optimised for Bernoulli random
variables.

Watanabe’s Scheme [21]. In order to guarantee the relative error specification,
Watanabe proposed to sample until the number of successes is greater than
3(1+ε)

ε2 log 2
δ . The main advantage is that this simple scheme does not require to

perform pre-samples as in the first two steps of Dagum’s algorithm. As far as we
know, this scheme, more recent than Dagum’s, is not implemented in SMC.

5 A Sequential Scheme Involving Coverage

In this section, we present our sequential scheme for the absolute and relative
error specification. Our scheme performs better than Watanabe and Dagum’s
scheme in the relative error case and, unlike the simple and Chen’s schemes, is
guaranteed to bound the error on both sides while strictly maintaining a coverage
greater than 1 − δ. Apart from the Okamoto bound, the inequalities presented
in Sect. 3 require the knowledge of γ and they are thus not directly applica-
ble. However, one may still exploit some information about probability γ. For
example, depending on the problem, one may know or numerically evaluate with
certainty a rough interval in which γ evolves. We present in the first subsection
two theorems and the underlying sample sizes and, in the second subsection, our
sampling schemes.

5.1 Bounds with Coverage

The following theorems make use of the Massart bounds presented in Theorems 3
and 5 as they are sharper than the Chernoff-Hoeffding bounds.

Theorem 6 (Absolute Error Massart Bound with coverage). Let a and
b be the extrema of CI I ∈ B([0, 1]) and Ic be the complement of I in [0, 1]:

Pr (|γ̂n − γ| > ε) ≤ 2 exp
(−nε2ha(x, ε)

)
+ C(γ, Ic) (12)

where function ha is defined in Theorem3 and x = a if b < 1/2, x = b if a > 1/2
and x = 1/2 if 1/2 ∈ I.
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By default, a = 0, b = 1, C(γ, [0, 1]c) = 0 and the theorem is consistent
with the Okamoto bound. We remark that even if an accurate estimation of
γ is not feasible to obtain within a reasonable time, Theorem6 can exploit
coarse but exact bounds a, b calculated analytically. In that case, we would
have C(γ, [a, b]c) = 0. Finally, a similar theorem involving relative error can
be established.

Theorem 7 (Relative Error Massart Bound with coverage). Let a be a
(random) element of [0,1] and hr defined as in Theorem5.

Pr(|γ̂n − γ| > εγ) ≤ 2 exp(−nε2hr(a, ε)) + C(γ, [0, a]) (13)

Both theorems state that the probability of absolute or relative error is bounded
by the respective Massart bound applied over the most pessimistic value of a
CI plus the probability that the CI does not contain γ. We deduce from both
theorems the following sample-size result:

Theorem 8. Let δ′ < δ such that C(γ, Ic) < δ′. (i) Under the conditions of
Theorem6, a Monte Carlo algorithm A that outputs an estimate γ̂n fulfils Spec-
ification (3) if n > 1

min(ha(a,ε),ha(b,ε))ε2 log 2
δ−δ′ .

(ii) Similarly, under the conditions of Theorem7, a Monte Carlo algorithm
A that outputs an estimate γ̂n fulfils Specification (4) if n > 1

hr(a,ε)ε2 log 2
δ−δ′ .

The proof is immediate in both cases once we set δ = 2s + δ′ with s being the
respective exponential expressions of Theorems 6 or 7.

The bounds of Theorem 8 are more conservative than the bounds induced
by Theorems 3 and 5 because the Massart bounds are evaluated in the most
pessimistic value of CI [a, b]. In addition, our bound also takes into account the
probability that γ is not in I, that implies an additional number of samples
in the final sample size. In the absolute error case, if a CI I containing 1/2 is
determined, applying the previous theorem is unnecessary because the sample
size is simply bounded with respect to the Okamoto bound. Similarly, if a (or
b) is lower-bounded (or respectively upper-bounded) by 1/2 but still close to
1/2, the Okamoto bound is likely better. However, if γ is closer to 0 or 1, the
logarithmic extra number of samples is largely compensated by the evaluation
of the Massart bound in a or b.

5.2 Sequential Algorithms

In the following, we present two new sampling schemes. Both of them require
three inputs: an error parameter ε, and two confidence parameters δ and δ′

such that δ′ < δ. After each sample, we update a Monte Carlo estimator and
a (1 − δ′)-CI for γ. Then, the most pessimistic bound of the CI is used in the
Massart function to compute a new minimal sample size n that satisfies Theorem
8. The process is repeated until the calculated sample size is lower than or equal
to the current number of runs. We provide the pseudo-code of our Algorithms (1)
and (2). Keywords GENERATE corresponds to a sample path generation and
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Algorithm 1. Absolute Error Sequential Algorithm
Data:
ε, δ, δ′ : the original parameters
M = � 1

2ε2
log 2

δ
�: the Okamoto bound

k = 0
m = 0: the number of successes
nk = M
Ik = [ak, bk] [0, 1]: the initial CI to which γ is known to belong

1 while k < nk do
2 k ← k + 1

3 GENERATE ω(k)

4 z(ω(k)) = 1(ω(k) |= φ)

5 m ← m + z(ω(k))
6 DETERMINE Ik

7 if 1/2 ∈ Ik then
8 nk = M
9 else if bk < 1/2 then

10 nk = � 2
ha(bk,ε)ε2

log 2
δ−δ′ �

11 else
12 nk = � 2

ha(ak,ε)ε2
log 2

δ−δ′ �
13 nk ← min(nk, M)

Output: γ̂k = m/k

DETERMINE to the evaluation of the CI, slightly different in both schemes.
Theorems 6 and 7 guarantee the correctness of our schemes since, for any tuple
(m,n), if we are able to compute a (1 − δ′)-CI I and its exact coverage, the
deviation probability is bounded by δ defined as the sum of the coverage and
the Massart function at n, ε and the most pessimistic value of I.

Absolute Error Sequential Algorithm. We initiate the algorithm with a
CI I0 in which γ belongs (by default, I0 = [0, 1]) and a worst-case (ε, δ)-sample
size n0 = M with M = � 1

2ε2 log 2
δ 	 determined by the Okamoto bound (�.	

denotes the ceiling function). Once a trace ω(k) is generated and monitored, the
number of successes with respect to property φ and the total number of traces
are updated. Then, an exact (1− δ′)-CI Ik is evaluated. Iteration after iteration,
the CI width tends to shorten and becomes more and more accurate. Theorem 8-
i is applied to determine a new sample size nk, bounded from above by M if
necessary. These steps are repeated until k ≥ nk at which specification (3) is
rigorously fulfilled.

Relative Error Sequential Algorithm We first assume the existence, in
a practical case study, of a threshold γmin, supposedly low, corresponding to
a tolerated precision error (e.g. a floating-point approximation). Estimating a



344 C. Jegourel et al.

Algorithm 2. Relative Error Sequential Algorithm
Data:
ε, δ, δ′, γmin : the original parameters
M = � 1

ε2hr(γmin,ε)
log 2

δ
�

k = 0
nk = M
Ik = [ak, 1] = [γmin, 1]: the initial CI in which γ is supposed to belong

1 while k < nk do
2 k ← k + 1

3 GENERATE ω(k)

4 z(ω(k)) = 1(ω(k) |= φ)

5 m ← m + z(ω(k))
6 DETERMINE Ik

7 if γmin ≥ ak then
8 nk = M
9 else

10 nk = � 1
ε2hr(ak,ε)

log 2
δ−δ′ �

11 nk ← min(nk, M)

Output: γ̂k = m/k

value below γmin is then unnecessary. The maximal number of simulations is
consequently bounded by M = � 1

ε2hr(γmin,ε) log 2
δ 	. The relative error scheme is

similar to the absolute error scheme. Note however that it is only necessary to
determine a lower bound of Ik since hr is a decreasing function in γ. Then, we
determine a one-sided Clopper-Pearson (1 − δ′)-CI of shape [ak, 1] with ak =
β−1(δ′,m, n − m + 1). Theorem 8-ii is applied to determine a new sample size
nk, upper bounded by M if ak < γmin and the steps are repeated until k ≥ nk.
If the final output γ̂k ≥ γmin, Specification (4) is rigorously fulfilled. Otherwise,
we can still output that γ is lower than γmin with probability greater that 1− δ.

6 Experiment Results

Our methods significantly reduce the sampling size while rigorously guarantee-
ing the specifications when probability γ gets away from 1/2 in the absolute
error case and for any γ in the relative error case, in comparison to the meth-
ods that have been documented for SMC in [11]. Both methods can be easily
used to improve existing SMC tools. To give a glimpse of their efficiency, we
give the gain in sampling size obtained with our methods in Table 1 over 3 stan-
dard Prism benchmarks described in [23]: the tandem queueing network in which
queue capacities are equal to 3, the 10-station symmetric polling system and the
20-dependable workstation cluster. We refer to the extended version and [23] for
more details concerning the models and the properties. In Prism, the Okamoto
sampling size can be computed with the APMC method. For a given ε and δ, we
report in column “(AE) Gain” the ratio between the Okamoto sampling size and
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our sampling size (average based on 5 experiments). For example, the property of
the cluster model has probability γ = 5.160834 × 10−4 to occur. Given absolute
error ε = 10−4 and confidence parameter δ = 0.05, it requires 184443973 paths
to guarantee Specification (3) when our method only requires 462077 paths to
guarantee the same specification, which is 399 fewer samples. Similarly, given rel-
ative error ε and confidence parameters in column “Dagum (ε, δ)”, “(RE) Gain”
corresponds to the ratio of the 5-experiment average sampling sizes obtained by
Dagum’s algorithm and our method, necessary to fulfil Specification (4). The
sampling sizes of these examples are given in the extended version. Our methods
are general and the class of probabilistic systems on which the sampling schemes
can be applied does not really matter as long as the systems are executable and
the executions can be monitored. In what follows, we evaluate our sampling
schemes on a small benchmark, available in the extended version, that can be
easily investigated using model checker Prism [16] to corroborate our results.

Table 1. Sampling size gains over standard Prism benchmarks

γ APMC (ε, δ) (AE) Gain Dagum (ε, δ) (RE) Gain

Tandem 0.155132 (0.01, 0.001) 1.7 (0.05, 0.001) 5.18

Polling 0.540786 (0.001, 0.01) 1 (0.01, 0.01) 3.65

Cluster 5.160834 × 10−4 (10−4, 0.05) 399 (0.2, 0.05) 9

6.1 Absolute Error Scheme Results

We compare our algorithm with the simple and Chen’s schemes. To guaran-
tee specification (3) in the simple scheme, one can use the algorithm proposed
by Frey in [9]. This procedure pre-computes a value δ∗ that guarantees a final
coverage greater than 1−δ when the CI are computed according to the Clopper-
Pearson method. For each couple of successes and trials (m,n) where n is
smaller than the Okamoto bound M , the algorithm computes the number of
sequences of observations h(m,n, ε) that lead to the output m/n. Unfortunately,
we were unable to get results for ε smaller than 0.1 due to overflows of values
h(m,n, ε) > 10309 in addition to an excessive amount of time required by this
recursive computation. Thus, we used the default δ∗ = δ.

We repeated each set of experiments 200 times with the three schemes for
several values of γ, ε and δ. We estimated the empirical coverage by the number
of times the specification (3) is fulfilled divided by 200 and computed the aver-
age, the standard deviation and the extrema values of the sample size and of the
estimations γ̂. For sake of clarity, as our results are consistent for all ε, δ and
are symmetric with respect to γ = 1/2, we summarize the most relevant results
for ε = 0.01, δ = 0.05 and 0 < γ ≤ 1/2 in Table 2. More details are provided for
every scheme and set of experiments in the extended version. For every ε and
δ, the sampling size is significantly lower for the simple scheme than for Chen
and our schemes. However, the empirical coverage is below 1 − δ for some γ
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Table 2. Results of the absolute error scheme with ε = 0.01 and δ = 0.05

γ 0.005 0.01 0.02 0.05 0.1 0.3 0.5

Coverage (simple) 1 0.965 0.94 0.96 0.965 0.975 0.945

γ̂ min (simple) 0 0 0.007 0.036 0.087 0.288 0.484

γ̂ max (simple) 0.013 0.021 0.029 0.062 0.113 0.316 0.513

N mean (simple) 518 729 1107 2172 3777 8278 9703

Coverage (Chen) 1 0.98 1 0.995 1 0.995 0.995

γ̂ min (Chen) 0 0 0.011 0.04 0.091 0.292 0.492

γ̂ max (Chen) 0.01 0.017 0.028 0.059 0.107 0.31 0.511

N mean (Chen) 810 1171 1900 3946 7035 15684 18444

Coverage (new) 1 0.99 995 0.995 0.995 1 1

γ̂ min (new) 0 0 0.01 0.039 0.089 0.291 0.491

γ̂ max (new) 0.011 0.019 0.027 0.059 0.106 0.309 0.51

N mean (new) 831 1229 2064 4474 8161 18434 18445

(in bold and red in the table). For example, Table (2) indicates an empirical
coverage of 0.94 for ε = 0.01, δ = 0.05, and γ = 0.02. Moreover, we remark
that for every set of experiments, the simple scheme outputs at least one esti-
mation that exceeds γ ± 1.25ε (in bold and red in the table). This indicates
that the difference between the estimation and γ exceeds the absolute error ε
by more than 25%, that may consequently lead to important analysis errors. In
comparison, the difference between γ̂ and γ never exceeds ε by more than 10%
in both other schemes. We thus do not recommend to use the simple scheme if
specification (3) is rigorously prescribed. The theoretical expectations of Chen
and our schemes are empirically confirmed: the coverage is significantly above
1 − δ in each case (>0.95 in Table 2). Specification (3) is thus strictly satis-
fied. Chen’s scheme shows a slightly better performance than our algorithm in
terms of sampling size. However, we recall that Chen only guarantees that the
estimation does not exceed the error bound ε on one side. For that reason, we
recommend to use our algorithm that seems to be reasonably more conservative.

Figure 3a shows an empirical plot of the sample size as a function of proba-
bility γ. In this experiment, we let the sample size be greater than the Okamoto
bound (dotted blue line) to illustrate the gap between the empirical and the
notional bounds. With the sampling Algorithm 1 described in Sect. 5, the sam-
ple size would be bounded in virtue of Okamoto’s inequality between 0.3 and
0.7. Note that the empirical plot has no particular meaning but is a guide to
the eye that illustrates the behaviour of our algorithm. As expected, the gain
is larger close to 0 and 1. For γ = 0.02, the Okamoto sample size (18445) is
divided in average by 9. The empirical sample size is always maintained above
the notional Massart sample size, indicating that the sample size has not been
mistakenly minimised due to a wrong CI.
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6.2 Relative Error Scheme Results

We repeated 200 times Dagum’s, Watanabe’s and our relative error schemes
for eight values of γ with several ε and δ. We reported the results for (ε, δ) =
(0.1, 0.01) in Table 3. More values are provided in the extended version as well
as more detailed tables, containing the descriptive statistics of the sample sizes.

Table 3. Sample size average of the relative error scheme for (ε, δ) = (0.1, 0.01).

γ 0.9 0.7 0.5 0.3 0.1 0.05 0.01 0.001

N mean Dagum 1871 4402 9056 19703 74064 152757 803572 8124356

N mean W 1942 2498 3501 5836 17479 35006 175092 1746713

N mean New 202 623 1373 3043 11365 23812 122426 1236491
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The average sample sizes are drawn for each scheme on Fig. 3c. We did not report
the coverage of the sampling schemes because specification (4) was largely sat-
isfied in the three cases. However, Dagum scheme is very conservative in sample
size as Table 3 and Fig. 3c illustrate. We observe that our scheme is better than
Watanabe’s for all values of γ, especially when γ tends to 1. As γ decreases, the
Clopper-Pearson CI becomes more conservative but our algorithm still presents
better performances. However, when γ is below 0.05, the conservativeness of the
Clopper-Pearson CI becomes too significant and exponentially impacts the sam-
ple size. Once the number of simulations k exceeds 1000 and γ̂k ∈ [1/k, 0.04], we
thus replaced the evaluation of the Clopper-Pearson CI by the Agresti-Coull CI.
The results in the last two columns of Table 3 are obtained using the Agresti-
Coull CI. The approximation maintains the highest performance and seems to be
a good alternative to exact CI. A deeper investigation is left to future work, but
even if the lower bound of the exact CI is below the lower bound of the Agresti-
Coull CI, their difference is likely tight and reusing a slightly too optimistic value
in the Massart bound is unlikely to pose problem.

We compare in Fig. 3b the empirical plot of the sample size as a function
of probability γ with the notional bound. As for the absolute error case, the
empirical plot is always maintained above the notional Massart sample size.
Figure 3d shows the typical evolution of the CI bounds for the absolute and
relative error problem with respectively, γ = 0.05 and γ = 0.1 and shows their
accuracy and reliability over time.

7 Conclusion

The focus of this paper was to minimise using sequential schemes based on fre-
quentist estimations the sampling size necessary to estimate a property with
absolute or relative error in comparison to the standard methods in SMC. To
build estimators that fulfil Specifications (3) or (4), we presented two sequential
algorithms based on Massart bounds and coverage of probability γ. The compar-
ison with the standard SMC schemes showed significant improvements. Finally,
it is worth recalling that all the Monte Carlo sampling schemes anyway require
a lot of samples for rare event estimation. Though the problem of designing
sampling schemes for Binomial estimators is well-documented, the lack of exact
concentration inequalities for importance sampling [5] and splitting estimators
[15] in SMC makes the design of robust sampling procedures challenging in the
rare event context.
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Abstract. We study statistical model checking of continuous-time sto-
chastic hybrid systems. The challenge in applying statistical model check-
ing to these systems is that one cannot simulate such systems exactly.
We employ the multilevel Monte Carlo method (MLMC) and work on a
sequence of discrete-time stochastic processes whose executions approx-
imate and converge weakly to that of the original continuous-time sto-
chastic hybrid system with respect to satisfaction of the property of inter-
est. With focus on bounded-horizon reachability, we recast the model
checking problem as the computation of the distribution of the exit time,
which is in turn formulated as the expectation of an indicator function.
This latter computation involves estimating discontinuous functionals,
which reduces the bound on the convergence rate of the Monte Carlo
algorithm. We propose a smoothing step with tunable precision and for-
mally quantify the error of the MLMC approach in the mean-square
sense, which is composed of smoothing error, bias, and variance. We for-
mulate a general adaptive algorithm which balances these error terms.
Finally, we describe an application of our technique to verify a model of
thermostatically controlled loads.

Keywords: Statistical model checking · Hybrid systems · Multilevel
Monte Carlo · Formal verification · Continuous-time stochastic processes

1 Introduction

Continuous-time stochastic hybrid systems (ct-SHS) are a natural model for
cyber-physical systems operating under uncertainty [5,7]. A ct-SHS has a hybrid
state space consisting of discrete modes and, for each mode, a set of continuous
states (called the invariant). In each mode, the continuous state evolves according
to a stochastic differential equation (SDE) in continuous time. The discrete mode
may change once the continuous state reaches the boundaries of the invariant.

We consider quantitative analysis of temporal properties of ct-SHS [2,3]. The
fundamental analysis problem, called probabilistic reachability, consists in com-
puting the probability that the state of a ct-SHS exits a given safe set within
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-66335-7 24



352 S. Esmaeil Zadeh Soudjani et al.

a given bounded time horizon. Since analytic solutions are not available, there
are two common approaches. The first approach is numerical model checking
that relies on the exact or approximate computation of the measure of the exe-
cutions satisfying the temporal property. The second approach, called statistical
model checking, relies on finitely many sample executions of the system, and
employs hypothesis testing to provide confidence intervals for the estimate of
the probability.

Statistical model checking has proven to be computationally more efficient
than numerical model checking as it only requires the system to be executable.
Thus, it can be applied to larger classes of systems and of specifications [24].
The main underlying assumption in all statistical model checking techniques is
the ability to sample from the space of executions of the system. Unfortunately,
we cannot compute exact simulations for the general class of ct-SHS due to the
process evolution being continuous in both time and space. In this paper, we
describe a statistical model checking approach to ct-SHS using the multilevel
Monte Carlo (MLMC) method [17,20], which does not require exact executions
of the system.

Our procedure works as follows. First, we formulate the quantitative analy-
sis problem as computing the distribution of the first exit time of the system
from the given safe set. Then, we build a sequence of approximate models whose
executions converge weakly (or in expectation) to the execution of the concrete
system. Although these approximate models can be used separately in the classi-
cal setting of statistical model checking in order to compute estimates of the exit
time, the MLMC method can take advantage of coupling between approximate
executions with different time resolutions to provide better convergence rates.

An important challenge in applying the MLMC technique to the quantitative
analysis of ct-SHS is that a discontinuous function is applied to the first exit
time. While MLMC can be applied to discontinuous functions, the convergence
rates we can guarantee are poor. We propose a smoothing step that replaces
the discontinuous function with a continuous approximation and show that the
replacement decreases the overall computation cost.

Finally, we analyze the asymptotic computational cost of the MLMC app-
roach for a given error bound. We propose an adaptive algorithm which balances
errors due to bias, variance, and smoothing, and tunes the hyperparameters of
the algorithm on the fly. We illustrate our technique on an example model of
thermostatically controlled loads.

Related Work. Formal definitions of various classes of continuous-time prob-
abilistic hybrid models are presented in [26], together with a comparison. Over
such models, [4] has formalized the notion of probabilistic reachability, [27] has
proposed a computational technique based on convex optimization, [14] has pro-
vided discretization techniques with formal error bounds, and [15] has developed
an approach based on satisfiability modulo theory. For discrete-time stochastic
hybrid models probabilistic reachability (and safety) has been fully character-
ized in [1] and computed via software tools [10,11] that use finite abstractions.
The methods can be extended to more general probabilistic temporal logics
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[28]. These approaches generally suffer from curse of dimensionality and are not
applicable to large dimensional models.

An overview of statistical model checking techniques can be found in [22–
24]. The paper [9] employs statistical model checking for verifying unbounded
temporal properties. The paper [8] has discussed the use of importance sampling
to address the issue of rare events in statistical verification of cyber-physical
systems. A distributed implementation of statistical model checking is proposed
in [6] and a set-oriented method for statistical verification of dynamical systems
is presented in [29].

A detailed overview of applications of MLMC can be found in [18]. The
MLMC for estimating distribution functions is described in the recent paper
[16] and is adapted to our setting.

The article is structured as follows. In Sect. 2, we define the ct-SHS model
and the probabilistic reachability problem. In Sects. 3 and 4, we discuss the stan-
dard Monte Carlo technique and the MLMC method, respectively, and compare
their convergence rates. We then discuss two technical modifications: applying a
smoothing operator to the discontinuous function of exit time (Sect. 5) and an
adaptive MLMC algorithm (Sect. 6). In Sect. 7, we provide simulation results for
an example.

2 Model Definition

We study statistical model checking for the rich class of continuous-time sto-
chastic hybrid systems (ct-SHS).

2.1 Continuous-Time Stochastic Hybrid Systems

Definition 1. A continuous-time stochastic hybrid system (ct-SHS) is a tuple
H = (Q,X , b, σ, x0, r) where the components are defined as follows.

States Q is a countable set of discrete states (modes) and X : Q → P(Rn) maps
each mode q ∈ Q to an open set X (q) ⊆ R

n, called the invariant for the mode
q. A state (q, z) with q ∈ Q and z ∈ X (q) is called a hybrid state. The hybrid
state space X is defined as X = {(q, z) | q ∈ Q, z ∈ X (q)}. We write ∂Z for
the boundary of a set Z and ∂X := {(q, z) | q ∈ Q, z ∈ ∂X (q)}.

Evolution b : X → R
n is a vector field and σ : X → R

n×m is a matrix-valued
function, with n,m ∈ N0. For each q ∈ Q, define the following SDE:

dz(t) = b(q, z(t))dt + σ(q, z(t))dWt, (1)

where (Wt, t ≥ 0) is an m-dimensional standard Wiener process in a complete
probability space. We assume functions b(q, ·) : X (q) → R

n and σ(q, ·) :
X (q) → R

n×m are bounded and Lipschitz continuous for all q ∈ Q. The
assumption ensures the existence and uniqueness of the solution of (1).

Initial State x0 ∈ X is the initial state of the system;
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Transition Kernel r : ∂X × Q → [0, 1] is a discrete stochastic kernel which
governs the switching between the SDEs defined in (1). That is, for all q ∈ Q,
we assume r(·, q) is measurable and, for all x ∈ ∂X, the function r(x, ·) is a
discrete probability measure.

Intuitively, an execution of a ct-SHS starts in the initial state x0, and evolves
according to the solution of the diffusion process (1) for the current mode until
it hits the boundary of the invariant of the current mode for the first time. At
this point, a new mode q′ is chosen according to the kernel r and the execution
proceeds according to the solution of the diffusion process for q′, and so on.

Let zq(t), q ∈ Q be the solution of diffusion process (1) starting from zq(0) ∈
X (q). Define t∗(q) as the first exit time of zq(t) from the set X (q),

t∗(q) := inf{t ∈ R>0 ∪ {∞}, such that zq(t) ∈ ∂X (q)}. (2)

A stochastic hybrid process, describing the evolution of a ct-SHS, is obtained by
the concatenation of diffusion processes {zq(t), q ∈ Q} together with a jumping
mechanism given by a family of first exit times t∗(q); we make this formal in
Definition 21.

Definition 2. A stochastic process x(t) = (q(t), z(t)) is called an execution of
ct-SHS H if there exists a sequence of stopping times T0 = 0 < T1 < T2 < . . .
such that for all k ∈ N0:

– x(0) = (q0, z0) ∈ X is the initial state of H;
– for t ∈ [Tk, Tk+1), q(t) = q(Tk) is constant and z(t) is the solution of SDE

dz(t) = b(q(Tk), z(t))dt + σ(q(Tk), z(t))dWt;

– Tk+1 = Tk + t∗(q(Tk)) where t∗(q(Tk)) is the first exit time from the mode
q(Tk) as defined in (2);

– The probability distribution of q(Tk+1) is governed by the discrete kernel
r((q(Tk), z(T−

k+1)), ·) and z(Tk+1) = z(T−
k+1), where z(T−

k+1) := limt↑Tk+1 z(t).

2.2 Example: Thermostatically Controlled Loads

Household appliances such as water boilers/heaters, air conditioners, and electric
heaters -all referred to as thermostatically controlled loads (TCLs)- can store
energy due to their thermal mass. TCLs have been extensively studied [12,21,25]
for their role in energy management systems. TCLs generally operate within
a dead-band around a temperature set-point and are naturally modeled using
ct-SHS. The temperature evolution in a cooling TCL can be characterized by
the following SDE:

dθ(t) =
1

CR
(θa − q(t)RPrate − θ(t))dt + σ(q(t))dWt, (3)

1 Solely for simplicity of exposition, we have put two restrictions on the ct-SHS model
H in Definition 1. First, the model includes only forced jumps activated by reaching
the boundaries of the invariant sets ∂X (q), q ∈ Q. Second, the state z(t) remains
continuous at the switching times as declared in Definition 2.
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where θa is the ambient temperature, Prate is the energy transfer rate of the
TCL, and R and C are the thermal resistance and capacitance, respectively.
The noise term Wt in (3) is a standard Wiener process. The model of the TCL
has two discrete modes, q(t) = 0 for the OFF mode and q(t) = 1 for the ON
mode. The temperature of the cooling TCL is regulated by a control signal
q(t+) = f(q(t), θ(t)) based on discrete switching as

f(q, θ) =

⎧
⎨

⎩

0, θ ≤ θs − δd/2 =: θ−
1, θ ≥ θs + δd/2 =: θ+
q, else,

(4)

where θs denotes a temperature set-point and δd a dead-band. Together, θs and
δd characterize an operating temperature range. The model can be described
by the ct-SHS HTCL = (Q,X , b, σ, x0, r), where Q = {0, 1} with the invariants
X (0) = (−∞, θ+) and X (1) = (θ−,+∞), and r(q+ | q, θ) is the Kronecker delta
with q+ = f(q, θ).

2.3 Problem Definition

For a given random variable defined on the executions of a ct-SHS, we study the
problem of estimating its distribution function.

Problem 1. Let Y be a real-valued random variable defined on the executions of
ct-SHS H. Estimate FY (s) := P(Y ≤ s), the distribution of Y for a given s ∈ R.

Problem 2 (Probabilistic Safety). Compute the probability that an execution
of a ct-SHS H, with initial condition x0 ∈ X, remains within a measurable set
A ⊂ X during the bounded time horizon [0, s] ⊂ R≥0:

P(H is safe over [0, s]) = P(Y > s) = 1 − FY (s) (5)

where Y := min{t ∈ R≥0 ∪ {∞} |x(t) /∈ A, x(0) = x0} and FY (s) = P(Y ≤ s).

The random variable Y defined in Problem2 is in fact the first exit time of
the system H from the safe set A and its distribution can be represented as

FY (s) = E
(
1(−∞,s](Y )

)
. (6)

Problem 3 (Specification of interest for TCL). Although the switching mecha-
nism (4) is designed to keep the temperature inside the interval [θ−, θ+], there
is still a chance that the temperature goes out of this interval due to the Wiener
process Wt. Define a random variable Y = max {θt, t ∈ [0, s]}. We aim to esti-
mate the probability P(Y ≤ θ+ + 0.1 · δd).

Analytic solution of Problems 1–3 is infeasible for the class of ct-SHS. In
this work, we propose an approximate computation technique with a confidence
bound. Our technique based on MLMC substantially improves the computa-
tional complexity of the standard Monte Carlo method. We first discuss standard
Monte Carlo (SMC) method in Sect. 3 and then present the MLMC method in
Sect. 4.
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Algorithm 1. State update (qk+1, zk+1) = Update(H, qk, zk,Δ,Wk)

Require: model H = (Q, X , b, σ, x0, r), current state (qk, zk), time step Δ, sampled
noise Wk

1: compute zaux according to the difference equation

zaux = zk + b(qk, zk)Δ + σ(qk, zk)
√

ΔWk (7)

2: if zaux ∈ X (qk) then
3: zk+1 = zaux and qk+1 = qk

4: else
5: set zk+1 to be the normal projection of zaux onto ∂X (qk)
6: select qk+1 sampled from the distribution r(qk, zk+1)
7: end if
Ensure: updated hybrid state (qk+1, zk+1) = Update(H, qk, zk, Δ, Wk)

3 Standard Monte Carlo Method

In order to compute the quantities of interest in Problems 1–2 we need to
estimate EP = Eg (Y ), where Y is a function of the execution of ct-SHS H,
g : R → R is the indicator function over the interval (−∞, s] and P := g(Y ) is
a one-dimensional random variable. The exact executions of H and thus exact
samples of Y are not available is general but it is possible to construct approxi-
mate executions and approximate samples that converge to the exact ones.

Algorithm 1 presents a state update routine based on the Euler-Maruyama
method that can be used to construct approximate executions. Given the model
H and the current approximate state (qk, zk), this algorithm computes the
approximate state (qk+1, zk+1) for the next time step of size Δ. Equation (7)
in step 1 of the algorithm is the Euler-Maruyama approximation of the SDE
(1). If zaux is still inside the invariant of the current mode X (qk), then the mode
remains unchanged and zaux will be the next state (steps 2–3). Otherwise, in
steps 5–6 zaux is projected onto the boundary ∂X (qk) of the invariant and the
mode is updated according to the discrete kernel r(qk, zk+1).

Algorithm 2 generates approximate executions of H and approximate samples
of Y using Algorithm 1. The algorithm requires the model H, the definition of Y
as a function of the execution of H, and the time interval [0, s]. The output of the
algorithm θ� is an approximate sample of random variable Y . In steps 1–2 the
number of time steps n is selected and the discretization time step Δ is computed.
In order to highlight the dependency of the algorithm to the parameter n, we
have opted to use � in the representation n = κ2� as the superscript of the
variables. We call � the level of approximation which is nicely connected to the
MLMC terminology discussed in Sect. 4. Algorithm 2 initializes the approximate
execution in step 3 as x�

0 := (q�
0, z

�
0) according to x0 the initial state of H. Then

the algorithm iteratively computes the next approximate state (q�
k+1, z

�
k+1) by

sampling from the m-dimensional standard normal distribution in step 5 and
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applying Algorithm1 to (H, q�
k, z�

k,Δ,W �
k) in step 6. Finally, step 9 constructs the

continuous-time approximate execution (q�(·), z�(·)) as the piecewise constant
version of the discrete execution (q�

k, z�
k), which enables the computation of θ�

by applying the definition of Y to (q�(·), z�(·)) (step 10).

Algorithm 2. Approximate sampling of random variable Y

Require: model H = (Q, X , b, σ, x0, r), Y a function of execution of H, time interval
[0, s]

1: select the number of time steps n and set κ ≥ 1, � ≥ 0 such that n = κ2�

2: compute the time step Δ := s/n and set k := 0
3: set the initial hybrid state x�

0 := (q�
0, z

�
0) according to x0 = (q0, z0) ∈ X

4: while k < n do
5: sample W �

k from the standard m-dimensional normal distribution
6: update the hybrid state (q�

k+1, z
�
k+1) = Update(H, q�

k, z�
k, Δ, W �

k) using Algo-
rithm 1

7: k = k + 1
8: end while

9: define for all t ≥ 0, z�(t) =
n∑

k=0

z�
k1[kΔ,(k+1)Δ)(t) and q�(t) =

n∑

k=0

q�
k1[kΔ,(k+1)Δ)(t)

10: compute θ� by applying the definition of Y to (q�(·), z�(·))
Ensure: θ� as approximate sample of Y

Algorithm 2 is parameterized by �. Due to the nature of the Euler-Maruyama
method in (7), we expect that the approximate samples θ� converge to Y as
� → ∞ in a suitable way. In fact, it is an unbiased estimator in the limit:
lim�→∞ Eg

(
θ�

)
= Eg (Y ) . The idea behind standard Monte Carlo (SMC)

method is to use the empirical mean of g
(
θ�

)
as an approximation of Eg (Y ).

The SMC estimator has the form

P̂ =
1
N

N∑

i=1

g
(
θ�

i

)
, (8)

which is based on N replications of θ�. The replications {θ�
i , i = 1, . . . , N} can

be generated by running Algorithm2 (with a fixed �) N times, or running any
other algorithm that generates such samples (cf. Algorithm 4 in Sect. 4). The
SMC method is summarized in Algorithm 3, which approximates Eg(Y ) based
on a general sampling algorithm A�. Note that Algorithm 3 can be used for
estimating Eg(Y ) not only with g(·) being the indicator function but also any
other functional that can be deterministically evaluated using the executions
over the time interval [0, s].
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Owing to the randomized nature of algorithm A� embedded in Algorithm 3,
we quantify the quality of its outcome using mean squared error :2

MSE (A�) ≡ E

[(
P̂ − EP

)2
]

= E

[(
P̂ − EP̂

)2
]

+
[
EP̂ − EP

]2
. (9)

The mean square error MSE(A�) is decomposed into two parts: Monte Carlo
variance and squared bias error. The latter is a systematic error arising from
the fact that we might not sample our random variable exactly, but rather use
a suitable approximation, while the former error comes from the randomized
nature of the Monte Carlo algorithm. The Monte Carlo variance (first term in
(9)) is proportional to N−1 as

Var P̂ = Var

(
1
N

N∑

i=1

g(θ�
i )

)

=
1

N2
Var

(
N∑

i=1

g(θ�
i )

)

=
1
N

Var
(
g(θ�)

)
.

The cost of Algorithm 3 is typically taken to be the expected runtime in order
to achieve a prescribed accuracy MSE (A�) ≤ ε. A more convenient approach
for theoretical comparison between different methods is to consider the cost
associated to sampling algorithm A�,

C� (A�) := E
[
#operations and random number generations to calculate g(θ�)

]
,

which facilitates the definition of convergence rate of the algorithm.

Definition 3. We say that Algorithm3 based on sampling algorithm A� con-
verges with rate γ > 0 if lim

�→∞
√

MSE (A�) = 0 and if there exist constants

c > 0, η ≥ 0 such that

C� (A�) ≤ c ·
(√

MSE (A�)
)−γ

·
(
− log

√
MSE (A�)

)η

. (10)

The definition of convergence rate in (10) indicates that for a desired accuracy
MSE (A�) ≤ ε smaller convergence rate γ implies lower computational cost
C� (A�).

The following theorem presents the convergence rate of the SMC method
presented in Algorithm 3.

Theorem 1. Let θ� denote the numerical approximation of the random variable
Y according to an algorithm A�. Assume there exist positive constants α, ζ, c1, c2
such that for all � ∈ N0

∣
∣E[g(θ�)−g(Y )]

∣
∣ ≤ c12−α·�, E[C�] ≤ c2 2ζ·�, and Var g(θ�) < ∞. (11)

Then the standard Monte Carlo method of Algorithm3 based on sampling algo-

rithm A� converges with rate γ = 2 +
ζ

α
.

2 We slightly abuse the notation and indicate by MSE(A�) the mean square error of
Algorithm 3 with the embedded sampling algorithm A�.
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Algorithm 3. Standard Monte Carlo method to estimate Eg(Y )

Require: Sampling algorithm A�, number of samples N , functional g(·)
1: i := 1
2: while i < N do
3: sample θ�

i using algorithm A� (for example Algorithms 2 or 4)
4: evaluate g(θ�

i )
5: i = i + 1
6: end while
Ensure: P̂ = 1

N

∑N
i=1 g(θ�

i ) as approximate estimate of Eg(Y )

Remark 1. Recall the role of � in step 2 of Algorithm 2. Increasing � results in
an exponential increase in the number of time steps thus also in the number
of samples. Therefore we have assumed in (11) an exponential bound on the
increased cost and an exponential bound in the decreased bias as a function of �.

The values of constants α, ζ, c1, c2 in Theorem 1 depend on the regularity
of the functional g, sampling algorithm A� and other parameters. In the next
section we propose to use MLMC method that improves the convergence rate
and substantially reduces the computational complexity of the estimation. We
discuss a smoothing in Sect. 5 that replaces the indicator function g(·) with a
smoothed function and discuss its effect on the algorithm’s error.

4 Multilevel Monte Carlo Method

The multilevel Monte Carlo method (MLMC) relies on the simple observation
of telescoping sum for expectation:

Eg
(
θL

)
= Eg

(
θ0

)
+

L∑

l=1

E
[
g

(
θ�

) − g
(
θ�−1

)]
. (12)

where θ0 and θL correspond respectively to the coarsest and finest levels of
numerical approximation. While any of the approximations {θ0, θ1, . . . , θL} can
be used individually in Algorithm3 to approximate Y , instead, the MLMC
method independently estimates each of the expectations on the right-hand side
of (12) such that the overall variance is minimized for a given computational cost.
The estimator P̂ of Eg

(
θL

)
can be seen as a sum of independent estimators

P̂ =
L∑

�=0

P �, (13)

where P 0 is an estimator for Eg
(
θ0

)
based on N0 samples, and P � are estimates

for E
[
g

(
θ�

) − g
(
θ�−1

)]
based on N� samples. As we saw in the MSC method
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of Sect. 3, the simplest forms for P 0 and P � are the empirical means over all
samples:

P 0 =
1

N0

N0∑

i=1

g
(
θ0i

)
, P � =

1
N�

N�∑

i=1

[
g

(
θ�

i

) − g
(
θ�−1

i

)]
, � = 1, . . . , L. (14)

Using the assumption of having independent estimators {P 0, P 1, P 2, . . . , PL}
and employing the telescoping sum (12) we can compute respectively the variance
of P̂ and bias as

Var P̂ =Var

[
L∑

�=0

P �

]

=
L∑

�=0

Var P �, EP−EP̂ = EP−E

[
L∑

�=0

P �

]

= EP−Eg
(
θL

)
.

The computation of P � in (14) requires the samples θ�
i , θ

�−1
i to be gener-

ated from a common probability space. We utilize the fact that sum of normal
random variables is still normally distributed. Algorithm4 presents generation
of approximate coupled samples θ�

i , θ
�−1
i for the random variable Y defined on

the execution of a ct-SHS H. As can be seen in steps 6–7 and 11, the approx-
imate execution for the finer level � is constructed exactly the same way as in
Algorithm 2 with nf = κ2� time steps. The construction of approximate exe-
cution for the coarser level (� − 1) with nc = κ2�−1 is also similar except that
the noise term in step 8 is obtained by taking the weighted sum of noise terms
from the finer level (W �

2k + W �
2k+1)/

√
2. This choice preserves the properties of

each approximation level while coupling the executions of levels �−1, � thus also
coupling approximate samples θ�−1, θ�.

Now we are ready to present the MLMC method in Algorithm5. The method
is parameterized by the number of levels L, number of samples for each level N�,
� = 0, 1, . . . , L (which are gathered in S), and the initial number of time steps
κ. Steps 2–3 performs the SMC method of Algorithm 3 with embedded sampling
Algorithm 2 in order to estimate Eg(θ0) with N0 samples at the initial level
� = 0. Then the algorithm iteratively estimate E[g(θl) − g(θl−1)] in steps 6–7
using Algorithm 3 with number of samples N = Nl and with the embedded
coupled sampling Algorithm 4. The sum estimated quantity is reported in step
10 as the estimation of Eg(Y ).

Theorem 2. Let θ� denote the level � numerical approximation of the random
variable Y . Assume the independent estimators P� used in Algorithm5 satisfy

∣
∣E[g(θ�)−g(Y )]

∣
∣ ≤ c1 2−α � and E[C�] ≤ c2 2ζ � (15)

E[P �] =

{
E[g(θ0)], � = 0

E[g(θ�)−g(θ�−1)], � > 0
and Var[P �] ≤ c3 N−1

� 2−β � (16)
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Algorithm 4. Approximate coupled samples θ�, θ�−1 of random variable Y

Require: model H = (Q, X , b, σ, x0, r), Y a function of execution of H, time interval
[0, s], level �

1: select the number of time steps nf = κ2� and nc = κ2�−1 for some κ ≥ 1
2: compute the time step Δc := s/nc, Δf := s/nf and set k := 0
3: set the initial states x�,c

0 := (q�,c
0 , z�,c

0 ) and x�,f
0 := (q�,f

0 , z�,f
0 ) according to x0 =

(q0, z0) ∈ X
4: while k < nc do
5: sample W �

2k, W �
2k+1 independently from the standard m-dimensional normal dis-

tribution
6: update hybrid state (q�,f

2k+1, z
�,f
2k+1) = Update(H, q�,f

2k , z�,f
2k , Δf , W �

2k) using Algo-
rithm 1

7: update hybrid state (q�,f
2k+2, z

�,f
2k+2) = Update(H, q�,f

2k+1, z
�,f
2k+1, Δf , W �

2k+1) using
Algorithm 1

8: update hybrid state (q�,c
k+1, z

�,c
k+1) = Update(H, q�,c

k , z�,c
k , Δc, (W

�
2k + W �

2k+1)/
√

2)
using Algorithm 1

9: k = k + 1
10: end while

11: define z�,f (t) =
nf∑

k=0

z�,f
k 1[kΔf ,(k+1)Δf )(t) and q�,f (t) =

nf∑

k=0

q�,f
k 1[kΔf ,(k+1)Δf )(t)

12: define z�,c(t) =
nc∑

k=0

z�,c
k 1[kΔc,(k+1)Δc)(t) and q�,c(t) =

nc∑

k=0

q�,c
k 1[kΔc,(k+1)Δc)(t)

13: compute θ� and θ�−1 by applying the definition of Y to (q�,f (·), z�,f (·)) and
(q�,c(·), z�,c(·)) respectively

Ensure: θ�, θ�−1 as approximate sample of Y

for positive constants α, β, ζ, c1, c2, c3 with α ≥ 1
2 min(β, ζ). Then the MLMC

method in Algorithm5 converges with rate 2 +
max(ζ−β, 0)

α
.

Assumptions in (15) are exactly the same as the ones used in Theorem 1.
Assumptions in (16) put restriction on the statistical properties of the estimators
P �: they first enables us to use the telescoping property (12) and the second
ensures the exponentially decaying variance as a function of level �. In compare
with the convergence rate of SMC method in Theorem1, the improvement is due
to the non-zero factor β which is the decaying rate of the variance of estimators.

Now that we have set up the MLMC method and the coupling technique
that improves the convergence rate of the estimation, we focus on the following
important problems associated with the approach: smoothing the discontinuous
functional that leads to smaller values of α and β in Theorem 2, and defining
the adaptive MLMC algorithm as the optimal values for parameters N�, L and
the constants in Theorem 2 are in general not available.
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Algorithm 5. MLMC method to estimate Eg(Y )

Require: model H = (Q, X , b, σ, x0, r), Y a function of execution of H, time interval
[0, s], functional g(Y )

1: select the parameters: finest level of approximation L, number of samples for each
level S := (N0, N1, . . . , NL), initial number of time steps κ

2: define A0 to be Algorithm 2 with � = 0 and time step n0 = κ20 to generate samples
θ0

3: compute P 0 using Algorithm 3 with number of samples N = N0 and functional
g(θ0) and with the embedded algorithm A0

4: l = 1
5: while l < L do
6: define Al to be Algorithm 4 with time step nf = κ2� to generate samples θ� and

θ�−1

7: compute P � using Algorithm 3 with number of samples N = Nl and functional
[g(θl) − g(θl−1)] and with the embedded algorithm A�

8: l = l + 1
9: end while

10: compute P̂ =
∑L

�=0 P � according to (13)

Ensure: P̂ as approximate estimate of Eg(Y )

5 MLMC with Smoothed Indicator Function

The smoothing is based on the function gδ : R → R, which is the rescaled
translates of a function g0 : R → R of the form

g0(x) =

⎧
⎪⎨

⎪⎩

0, x > 1
1
2 + 1

8

(
5x3 − 9x

)
, |x| ≤ 1

1, x < −1,

and gδ(x) = g0
(

x − s

δ

)

, x ∈ R. (17)

This is not the only possible choice for a smoothing function (see [19]), but is
easy to implement and already provides significant gains in computational cost.

The new MLMC method that includes smoothing is defined by

Mδ,L
S =

1
N0

·
N0∑

i=1

gδ(θ0i ) +
L∑

�=1

1
N�

·
N�∑

i=1

(
gδ(θ�,f

i ) − gδ(θ�,c
i )

)
, (18)

with an independent family of R
2-valued random variables (θ�,f

i , θ�,c
i ) for i =

1, . . . , N� and � = 0, 1, . . . , L such that equality in distribution holds for
(θ�,f

i , θ�,c
i ) and (θ�, θ�−1), where we used the notation (θ0,f

i , θ0,c
i ) = (θ0i , 0) for

the initial level � = 0. The next theorem gives the mean square error decompo-
sition for (18).

Theorem 3. For δ > 0, the error of Mδ,L
S in (18) with smoothing function (17)

can be decomposed as
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MSE
(
Mδ,L

S

)
:= E‖Mδ,L

S − Eg(Y )‖2

≤ δ4 +
∣
∣E(gδ(Y )) − E(gδ(θL))

∣
∣2 + Var(Mδ,L

S ) =: e21 + e22 + e3. (19)

The error terms in (19) are related to smoothing, bias, and variance,
respectively.

6 Adaptive MLMC Algorithm

In this section we present an adaptive algorithm to find the optimal parameters
for the MLMC method. For a given ε > 0 we wish to select the parameters of
the MLMC algorithm such that its error is at most ε and its cost is as small as
possible. The adaptive algorithm assumes no prior knowledge on the smoothing
parameter δ, along with bias and variance dependencies on it. The smoothing
parameter δ is chosen from the discrete set of values δm = 1/2m, where m ∈ N.
With a slight abuse of notation we put gm = gδm . We choose the parameters of
our algorithm such that

e1 ≤ a1ε∗, e2 ≤ a2 · ε∗, e3 ≤ a2
3 · ε2∗, where ε∗ :=

ε

a1 + a2 + a3
. (20)

The MLMC algorithm is parameterized by the value m for smoothing δm =
1/2m, the values of the maximal level L, and the replication numbers S =
(N0, . . . , NL). We use yi,0 to denote actual samples of the random variable θ0

and (yi,�, yi,�−1) to denote the actual samples of the random vector (θ�, θ�−1)
for � = 1, . . . , L as opposed to θ�,f

i , θ�,c
i which were used previously for their

respective random variables.
Theorem 2 relies on the assumption of exponential upper bounds in (15)–

(16), which in general might be difficult to verify. Instead in this section we
study asymptotic upper bounds. We replace assumptions (15)–(16) with the
requirement that for every m there exists c, α > 0 such that

|E(gm(θ�)) − E(gm(θ�−1))| ≈ c · 2−�·α and lim
�→∞

Egm(θ�) = Egm(Y ). (21)

We put Cr = 2r+1 with r = 3, the degree of polynomial in (17), and suppose
that there exists c > 0 such that

∣
∣E(gm(Y )) −E(gm−1(Y ))

∣
∣ ≈ c · δ4m. This yields

the asymptotic upper bound for the smoothing error with parameter δm,
∣
∣Eg(Y ) − E(gm(Y ))

∣
∣ � (Cr − 1)−1 · ∣

∣E(gm(Y )) − E(gm−1(Y ))
∣
∣. (22)

We estimate the expectations and variances with their versions:

b̂0 =
1

N0
·

N0∑

i=1

gm(yi,0), b̂� =
1

N�
·

N�∑

i=1

(gm(yi,�) − gm(yi,�−1)), (23)

v̂0 =
1

N0
·

N0∑

i=1

|gm(yi,0) − b̂0|2, v̂� =
1

N�
·

N�∑

i=1

|gm(yi,�) − gm(yi,�−1) − b̂�|2. (24)
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We get that v̂(S) =
∑L

�=0
1

N�
· v̂� serves as an empirical upper bound for the

variance of the MLMC algorithm with any choice of replication numbers S =
(N0, N1, . . . , NL). If, for the present choice of replication numbers, this bound is
too large compared to the upper bound for Var(Mδ,L

S ) in (20), i.e., if the variance
constraint v̂(S) ≤ a2

3 · ε2∗ is violated, we determine new values of N ′
0, . . . , N

′
L by

minimizing c(N0, . . . , NL) subject to the constraint v̂(S) ≤ a2
3 · ε2∗, leading to

N ′
� =

v̂
1/2
�

(2� + 1)1/2
·

L∑

�=0

(
v̂� · (2� + 1)

)1/2 · ε−2
∗
a2
3

, � = 0, 1, . . . , L, (25)

and extra samples of θ0 and (θ�, θ�−1) have to be generated accordingly.
For estimating |E(gm(θ�))−E(gm(θ�−1))| we can use the values of |b̂�| already

available from (23) for the levels � = 1, . . . , L. We estimate α and c in (21) by
a least-squares fit, i.e., we take α̂ and ĉ through least squares regression. This
geometric upper bound can be used to set the stopping criterion of increasing
the maximal level:

B̂L = max
(|b̂L|, |b̂L−1|/2α̂, |b̂L−2|/22α̂

) ≤ a2 · (2α̂ − 1) · ε∗ for L ≥ 3. (26)

Similarly for the smoothing coefficient the present value m is accepted if

ŝ :=
∣
∣
∣

1
NL

·
NL∑

i=1

(gm(yi,L) − gm−1(yi,L))
∣
∣
∣ ≤ a1 · (Cr − 1) · ε∗. (27)

We combine the above results in Algorithm 6.

Algorithm 6. Adaptive MLMC algorithm with smoothing
Require: sampling algorithm A�, functional g(·), target accuracy ε
1: initialize parameters m = 2; L = 3 N0 = N1 = N2 = 102

2: generate N0 samples of θ0 and N� samples of (θ�, θ�−1) for � = 1, 2
3: compute v̂0, v̂1, v̂2, according to (24)
4: repeat {/* smoothing */}
5: m = m + 1 and newlevel = false
6: repeat {/* bias */}
7: if newlevel then
8: L = L + 1; NL = 100
9: generate NL samples of (θL, θL−1) and compute v̂L according to (24)

10: end if
11: repeat
12: compute the replication numbers N ′

0, . . . , N
′
L (see (25))

13: N� = max(N�, N
′
�) for � = 0, . . . , L

14: generate new samples of θ0 and (θ�, θ�−1) and compute v̂0, . . . , v̂L (see (24))
15: until the variance constraint is satisfied
16: estimate α̂, and B̂L; newlevel = true
17: until the bias constraint (26) is satisfied
18: compute ŝ according to (27)
19: until the smoothing constraint (27) is satisfied
Ensure: Mδ,L

S as an estimation of Eg(Y )
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7 Simulation Results

Recall Problem 3 where the goal is to estimate the probability P(Y ≤ θ+ + 0.1 ·
δd). The random variable Y is defined as Y = max{θt, t ∈ [0, s]}. We set the
parameters of the TCL model (3)–(4) according to Table 1 and select the time
horizon s = 1 h. We implement the MLMC Algorithm 6 for target accuracies
ε = 2−k, where k ∈ {3, . . . , 8}. We set the parameters a1 = 4, a2 = a3 = 2 in
(20). With this choice we put less pressure on the smoothing error because the
influence of the smoothing parameter δ on the variance and thus on the overal
cost is severe. Due to the smoothing step we have to sample executions for the
time duration of at least (s + δ) in order to evaluate the functional g(Y ), thus
sampling executions for 1.5 h is sufficient.

Table 1. Parameters of a residential air conditioner as a TCL [13] modeled in (3)–(4).

Fig. 1. Simulation results for Problem 3. Variance (left) and mean (center) of the esti-
mation decay with respect to level � for different smoothing coefficient. Computational
gain (right) as ratio of the SMC and adaptive MLMC costs.

The left and center plots in Fig. 1 show the impact of the smoothing coefficient
on the variance and mean decays respectively based on 106 runs of the algorithm.
These plots indicate that the adaptive MLMC method is beneficial over SMC
method (plots with � = 1 and with the indicator function) due to the strong
variance and mean decay with respect to level � as well as the use of smoothing
function instead of the indicator function. The computational gain of the MLMC
over SMC is presented on the right plot based on 100 runs. The plot compares
the expected cost of the SMC method with the estimated cost of the adaptive
MLMC method. The cost of SMC method is given by ε−2− 1

ᾱ (see Theorem 1),
which bounds the cost of generating executions and evaluating functionals. The
plot indicates larger computational gains for higher accuracies (smaller ε).
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