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Abstract. Software Denial-of-Service (DoS) attacks use maliciously
crafted inputs aiming to exhaust available resources of the target soft-
ware. These application-level DoS attacks have become even more preva-
lent due to the increasing code complexity and modular nature of Inter-
net services that are deployed in cloud environments, where resources are
shared and not always guaranteed. To make matters worse, many code
testing and verification techniques cannot cope with the code size and
diversity present in most services used to deliver the majority of everyday
Internet applications. In this paper, we propose Cogo, a practical system
for early DoS detection and mitigation of software DoS attacks. Unlike
prior solutions, Cogo builds behavioral models of network I/O events in
linear time and employs Probabilistic Finite Automata (PFA) models to
recognize future resource exhaustion states. Our tracing of events spans
then entire code stack from userland to kernel. In many cases, we can
block attacks far before impacting legitimate live sessions. We demon-
strate the effectiveness and performance of Cogo using commercial-grade
testbeds of two large and popular Internet services: Apache and the
VoIP OpenSIPS servers. Cogo required less than 12 min of training time
to achieve high accuracy: less than 0.0194% false positives rate, while
detecting a wide range of resource exhaustion attacks less than seven
seconds into the attacks. Finally, Cogo had only two to three percent
per-session overhead.

Keywords: Software DoS · Early detection · Slow-rate attacks · Prob-
abilistic Finite Automata

1 Introduction

Software availability is a major concern for the success of today’s interconnected
Internet services. As technologies become more advanced and complex, servicing
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an ever increasing number of users and devices, they become much harder to
properly design and test against inputs and runtime conditions that may result
in resource exhaustion and, eventually, denial-of-service (DoS). Recent surveys
clearly indicate that business owners are concerned about DoS attacks over other
security concerns [6,8]. A system is vulnerable to resource exhaustion attacks
if it fails to properly regulate the resources that can be allocated to individual
user sessions and the service overall. Resource DoS attacks can target system
resources such as memory, computing (CPU), and I/O including file access and
traditional network resources [21,23,37]. Contrary to the common belief, resource
exhaustion attacks are increasing in numbers, becoming even more prevalent and
risky when compared to network layer attacks [1,21].

Recent work by Elsabagh et al. [25] proposed Radmin, a system for detecting
DoS attacks at the application layer. Radmin operated by learning (offline) and
enforcing (online) resource consumption patterns of programs. Radmin showed
promising results; however, it had a quadratic training time complexity in the
training data size that makes it prohibitive to apply to large code bases. More-
over, Radmin was tested on stateless traffic and synthetic attacks rather than
on live traffic and known attacks used in practice. Radmin also did not cover
network state and I/O which are common targets for attacks. Another limi-
tation was that Radmin was heavily dependent on “normal” patterns of pure
resource utilization without modeling the rate at which individual resources were
acquired and released. As we show in our experiments, lack of taking into consid-
eration when individual resources were allocated can lead to prolonged evasion
by Slow-rate [11] attacks, violating the early detection goal of Radmin.

In this paper, we propose Cogo as a novel Probabilistic Finite Automata
(PFA) based system for runtime detection and mitigation of software resource
exhaustion DoS attacks. Cogo fully addresses all the aforementioned limitations
of Radmin, enabling early detection of real-world attacks in many cases before
they are able to affect the service operation or quality. Our approach operates
in two phases: offline and online. In the offline phase, Cogo monitors the entire
resource consumption behavior of the target program — including its network
I/O — and builds PFA models that characterize the program’s resource behavior
over time. Cogo monitors network I/O at the individual socket level and sup-
ports monitoring of containerized processes. To reduce modeling complexity, we
introduce an efficient PFA learning algorithm that operates in linear time. Dur-
ing the online phase, Cogo actively monitors the program and detects deviations
from the learned behaviors. It attributes anomalies to the specific threads and
connections causing them, allowing for selectively limiting resource utilization of
individual sessions that may violate the models.

We built a working prototype implementation of Cogo by extending the code
base of Radmin [25] which offered several integrated user/kernel tracing capabili-
ties and an extensible PFA detection engine. We extended Radmin by supporting
new low-level network I/O monitoring, process migration, and monitoring con-
tainerized processes. Extending Radmin allowed us to benchmark our approach
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in a unified way and provide comparative results.1 We discuss two case stud-
ies using real-world attacks and commercial-grade testbeds against The Apache
HTTP Server [2] and the VoIP OpenSIPS [9] server. In our experiments, Cogo
achieved a significant improvement in training time over Radmin, requiring only
few minutes instead of days to train and build the models. This is significant
since in real-world systems training data are expectantly large in size. In addition
to short training time, Cogo achieved a low false positive rate (FPR) (0.019%
for Apache, 0.063% for OpenSIPS) using small models (76 MB for Apache,
55 MB for OpenSIPS). Moreover, Cogo swiftly detected the attacks in less than
seven seconds into their execution, resulting in zero downtime in some cases.
Its runtime overhead is negligible. it increased the latency by 0.2 ± 0.3 ms per
request on average, resulting in two to three percent per-session overhead.
To summarize, this study makes the following contributions:

– Demonstrates Cogo as a system for early detection and mitigation of resource
exhaustion DoS attacks against real-word complex Internet services. Our app-
roach extends prior work on Radmin [25] by enabling network stack tracing
from the application to the kernel, monitoring containerized processes, and
attaching to running processes.

– Presents and discusses a linear time training algorithm that reduces the train-
ing and model building time complexity.

– Studies the effectiveness of Cogo using realistic testbeds with real-world
attacks on Apache and the VoIP OpenSIPS server. The results demonstrate
that Cogo is suitable for large-scale deployment as it is scalable, accurate,
has low false positives, and can mitigate real-world attacks.

2 Assumptions and Threat Model

Cogo focuses on DoS attacks that occur at the application layer such as algo-
rithmic, state, and protocol-specific attacks. Volumetric attacks targeting the
network and transport layers, as well as other attack vectors such as code exe-
cution and memory exposure are outside the scope of this work. We assume
that attackers have full knowledge of the internals of the attacked program and
can craft benign-looking inputs that prevent the attacked program from serving
legitimate clients (a DoS attack). To protect a program with Cogo, we assume
the availability of benign training inputs that cover the typical desired behav-
ior of the program. Cogo uses kernel tracing; our prototype currently supports
only Linux and Unix-like operating systems since they power the majority of
servers.2 However, the approach itself does not place restrictions on the runtime
environment and can be ported to other operating systems with little effort.3

1 By building on Radmin, Cogo inherits other monitoring sensors from Radmin such
as CPU and memory sensors.

2 Market share of operating systems by category: https://en.wikipedia.org/wiki/
Usage share of operating systems.

3 For Microsoft Windows, kernel tracing can be implemented using the Event Trac-
ing for Windows (ETW) kernel-mode API: https://msdn.microsoft.com/en-us/
windows/hardware/drivers/devtest/adding-event-tracing-to-kernel-mode-drivers.

https://en.wikipedia.org/wiki/Usage_share_of_operating_systems
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems
https://msdn.microsoft.com/en-us/windows/hardware/drivers/devtest/adding-event-tracing-to-kernel-mode-drivers
https://msdn.microsoft.com/en-us/windows/hardware/drivers/devtest/adding-event-tracing-to-kernel-mode-drivers


Practical and Accurate Runtime Application Protection 453

We only focus on detection; proper remediation strategies after attack detection
should be implemented by the operator and are outside the scope of this work.
Nevertheless, Cogo offers the option to migrate the offending process or session
to another server, reduce its resource priority, or terminate it based on a con-
figurable policy. Finally, we assume that attackers can be local or remote, but
cannot overwrite system binaries or modify the kernel.

3 The Cogo System

Cogo operates in two phases: offline training phase and online detection phase. In
the offline phase, Cogo monitors the behavior of the target program on benign
inputs and collects a trace of network I/O measurements. The measurements
are sequences of raw data that include the event type (socket open, close, send,
receive), the consumption amount of the related resource (number of owned
sockets, traffic rate per socket), and meta data such as the PID, the socket inode
number, and timestamps.

The raw resource consumption amounts are encoded (quantized) over a
countable finite alphabet Σ (a finite set of symbols). |Σ| is a tuning parameter,
typically less than 16 for a maximum of 16 different consumption levels. Encod-
ing is done by mapping (many-to-few) each raw resource consumption value to
one symbol from Σ. This is necessary since the PFAs (state machines) only work
with a finite set of values. Since encoding is a typical step in constructing finite
automata from arbitrary values, and due to space constraints, we refer interested
readers to [25,26] for more detail.4

Cogo constructs multiple PFAs from the measurements, one PFA per resource
type. The PFAs capture both the spatial and temporal network I/O patterns
in the measurements. In the online phase, Cogo executes the PFAs as shadow
state machines along with the target program and raises an alarm if a deviation
of the normal behavior is detected. Cogo detects anomalous behavior using the
statistical properties of the PFAs — namely the transition probabilities on the
PFA edges. In the following, we discuss how Cogo monitors network I/O and its
PFA learning and detection algorithms.

3.1 Network Tracing

Cogo monitors the network activity of the target program by intercepting the
traffic and socket events that happen in the context of target processes inside
the kernel. Specifically, it monitors all socket creation and destruction events
triggered by the target processes and tracks traffic sent or received on those
sockets. Cogo computes the transmit (TX) and receive (RX) rates per second
from the size and direction of the monitored traffic.

Cogo differentiates sockets from regular file descriptors inside the kernel as
follows: First, it retrieves a target process task structure in kernel space using

4 We use “measurements” to refer to encoded measurements in the rest of this paper.
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the global process identifier (PID). (The task structure is the actual structure
that represents the process inside the kernel.) It traverses the task structure and
extracts the file descriptors table owned by the process. For each file descrip-
tor, Cogo extracts the inode object associated with the file descriptor. (The
inode object is a kernel structure that contains all needed information to manip-
ulate and interact with a file descriptor. An inode represents each file in a file
system, including regular files and directories, as well as special files such as sock-
ets, devices, and pipes.) Cogo checks if the inode object contains an embedded
(allocated member) socket object. If found, Cogo marks the corresponding file
descriptor of the inode as a socket descriptor. Cogo tracks all identified sockets
by their low-level unique inode numbers throughout their lifetime.

For each identified socket, Cogo extracts the socket Internet protocol family
from the socket kernel structure. (The protocol family defines the collection of
protocols operating above the Internet Protocol (IP) layer that utilize an IP
address format. It can be one of two values: INET6 and INET for the IPv6
and IPv4 protocol families, respectively.) This is essential for determining how
to interpret the socket network addresses. Given a socket protocol family, Cogo
extracts the local and foreign addresses and port numbers, if available. Foreign
port numbers may not be available if the socket is a listening or a datagram
socket.

Cogo intercepts all transmit and receive socket events that occur in the con-
text of the monitored process in kernel space, including regular I/O operations
such as streamed and datagram I/O, asynchronous I/O (AIO) operations, and
operations utilizing a socket iterator. Cogo collects the direction (TX or RX)
and size of the traffic, and associates them with the corresponding socket inode
number. The TX and RX rates are computed periodically per socket. The period
length is configurable (defaults to 1 s). To minimize memory and runtime over-
head, Cogo installs a kernel timer that ticks once per period length, requiring
minimal memory per socket as only the last tick timestamp and total traffic size
need be kept in memory. It also minimizes runtime overhead by avoiding unnec-
essary context switches to compute the rates. Cogo also monitors the socket
status: connected or disconnected. When a socket disconnects or is freed by the
kernel, Cogo purges any structures associated with that particular socket from
its kernel memory.

3.2 Training and Learning

Cogo employs Probabilistic Finite Automata (PFA) based learning and detec-
tion. Cogo builds one PFA for each monitored resource: one PFA for socket
creation and destruction, one PFA for TX rate, and one PFA for RX rate. Cogo
uses the PFAs to compute the probability of observed measurements in the online
phase. In the following, we present a training algorithm that runs in time linear
in the measurements length, making Cogo attractive and realistic for real-world
deployment.
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Constructing Bounded Generalized Suffix Trees. To construct each
resource PFA, first, Cogo builds a bounded Generalized Suffix Tree (GST) from
the resource measurements. (A suffix tree is a tree containing all suffixes of a
given string. A GST is a suffix tree for a set of strings.) Given a set of strings S
over an alphabet Σ (a finite set of symbols), a GST over S contains a path from
the root to some leaf node for each suffix in S. Each edge in the GST is labeled
with a non-empty substring in S; the labels of outgoing edges from the same
node must begin with unique symbols. A GST can be constructed in linear time
and space O(n) where n is the total number of symbols in S, using Ukkonen’s
algorithm [36]. A GST allows efficient implementations of several string query
operations over sets of strings such as linear time substring searching and finding
the longest common substring among all the strings in the set. Cogo limits the
depth of the GST by processing the measurements into non-overlapping subse-
quences of maximum length L.5 This bounds the depth of the GST to L and the
space requirements per GST to O(|S|L).

After constructing the bounded GST, Cogo counts the number of occurrences
of each substring in the tree. This corresponds to the number of leaf nodes in
the subtree rooted at each node in the tree. These counts are computed in a
single depth-first traversal of the GST. For each parent-child nodes in the tree,
the ratio between the child’s count to the parent’s count gives the conditional
probability of seeing the first symbol of the corresponding child substring after
the parent’s. More formally, the prediction probability of a symbol sj after a
substring sisi+1 . . . sj−1 can be computed as:

P (sj |sisi+1...sj−1) =
count(sisi+1...sj−1sj)
count(sisi+1...sj−1)

, (1)

which Cogo computes on-the-fly during the depth-first traversal of the GST to
count the substrings, and stores it in each child node in the tree.

Inferring the PFAs. Cogo infers a PFA from the GST. Each PFA is a 5-tuple
(Σ,Q, π, τ, γ), where: Σ is a finite set of symbols processed by the PFA; Q is
a finite set of states, and q◦ ∈ Q is the start state; τ : Q×Σ → Q is the state
transition function; and, γ : Q×Σ → [0, 1] is the transition probability function.

To infer a PFA from the GST, Cogo starts by creating a forest of unconnected
PFA nodes where each node has a unique ID and corresponds to exactly one
node in the GST. It then traverses the GST in depth-first order: For each edge
between each parent (source) and child (destination) nodes in the GST, Cogo
checks the length of the edge label. If the label has exactly one symbol, Cogo
adds a transition between the corresponding source and destination nodes in the
PFA, sets the transition probability to the child node probability in the GST,
and sets the transition symbol to the edge label. If the edge has a label of length

5 We found that non-overlapping subsequences were sufficient for large-scale deploy-
ments. However, it may be desired to overlap subsequences to maximize fidelity of
very small datasets.
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greater than one, i.e., the label is a substring consisting of multiple symbols,
Cogo adds nodes to the PFA corresponding to each inner symbol in the label;
adds a PFA transition from the source state to the node corresponding to the first
symbol in the label; and adds another transition from the last inner symbol in
the label to the destination node. Formally put, given the edge u

sisi+1...sj−−−−−−−→ v in

the GST, Cogo adds the following path to the PFA: u′ si,count(u[si])/count(u)−−−−−−−−−−−−−−−−→ •
si+1,1.0−−−−−→ . . .

sj−1,1.0−−−−−→ • sj ,1.0−−−→ v′ where u′ and v′ are the corresponding nodes in
the PFA of u and v. Recall that transitions in the PFA hold both a transition
symbol and an emitted probability.

At this stage, this initial PFA contains paths that correspond to the sub-
strings from the GST, and can be used for prediction so long as the entire
substring is in the tree. However, if the next symbol following some substring is
not in the tree, then a Markovian decision need be made since it may still be pos-
sible to predict the symbol using a shorter suffix. For this, the GST suffix links
are used to find the next immediate suffix. In a GST, the node corresponding to
the string si . . . sj has a suffix link (a pointer) to the internal node corresponding
to the string si+1 . . . sj , i.e., its immediate suffix. This enables jumping to the
next available context (history) in constant time. Cogo utilizes the suffix links to
complete the PFA construction in the following manner: For each node u (visited
during the depth-first traversal) and for each symbol σ ∈ Σ that does not mark
any outgoing edge from u, Cogo follows the suffix links starting from u until:

1. An internal node v is reached where the first symbol of the substring repre-
sented by that node equals σ. In this case, Cogo adds a transition between
the corresponding two nodes to u and v in the PFA. It sets the transition
symbol to σ and the transition probability to that stored in v in the GST.

2. The root of the GST is reached and it has an edge with a label that begins
with σ to some child node v. Here, Cogo adds a transition between the cor-
responding u and v nodes in the PFA. It sets the transition symbol to σ and
the transition probability to that stored in v.

3. The root is reached but it has no outgoing edges for σ. In this case, a loop-
back transition on σ from u to itself is added and the transition probability is
set to ρmin (a small predefined value for the minimum transition probability).

Since the GST contains all suffixes, the resulting PFA would contain outgo-
ing edges from the start state that never prefixed the training sequences. This
can result in the PFA accepting anomalous behavior if an attack occurs at the
very beginning of execution of a target process. Cogo eliminates those spurious
transitions by keeping a set of the initials of the training sequences and pruning
outgoing start state transitions from the PFA that do not correspond to those
initials. This is done in constant time (|Σ| comparisons). Using a single depth-
first traversal, Cogo also removes any transitions that have a probability less
than or equal to ρmin and replaces them with loop-back transitions with ρmin

probability. During the same traversal, Cogo normalizes the probabilities across
outgoing edges from each node.
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Minimizing the PFAs. The PFA may contain redundancy such as unreach-
able states (because of eliminated transitions) or overlapping paths, resulting in
unnecessary space overhead. To overcome this, Cogo minimizes the PFA using
the following greedy approach. The goal is to reduce the size of the PFA as much
as possible without incurring excessive training overhead, i.e., reduction time has
to be linear in the size of the PFA. The minimization algorithm is based on the
insight that paths farther away from the PFA root (the start state) are more
likely to overlap sine they represent longer substrings.

Cogo iterates over the PFA in breadth-first order. Each time it visits a new
state u, it searches for all previously visited states that are fully equivalent to
the u. Two states are fully equivalent if they have the same outgoing transitions
with the same transition symbols, probabilities, and destination states for each
transition. Cogo groups all the equivalent states into a single state set. This
process continues till all states in the PFA are visited, producing a set family of
states. After that, all equivalent states set are removed and replaced with a single
state in the PFA. The process is repeated on the resulting PFA till any of the
following conditions occur: (1) Tthe PFA stops changing. (2) The minimization
ratio, i.e., the size of the resulting PFA divided by the size of the old PFA,
drops below some user defined threshold θ (defaults to 0.1). (3) The number of
repetitions exceeds a user chosen threshold ζ (defaults to 100). The 2nd condition
terminates the minimization stage once a diminishing returns point is reached.
The 3rd condition gives the user the ability to control the hidden constant c
of the minimization complexity O(cn). This completes the construction of the
PFA. Figure 1 illustrates an example of a bounded GST and the PFA inferred
by Cogo from the set {01001101, 01010100} where L = 4, i.e., the effective set is
{0100, 1101, 0101, 0100}. The figure also shows how to compute the probability
of the sequence 010 using the PFA.

Fig. 1. Bounded GST and final PFA produced by Cogo from the strings {01001101,
01010100} with maximum depth L = 4. Each edge in the GST has a substring and a
transition probability. Dotted edges are suffix links in the GST. Each edge in the PFA
has one symbol and a transition probability. Low probability edges are not shown for
simplicity. To compute P (010), we walk φ → a → b → c, giving 1 ∗ 2/3 ∗ 3/5 = 2/5.
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3.3 Detection

In the online phase, Cogo executes the PFAs as shadow state machines to the
monitored program. Each measurement symbol results in a transition in the
corresponding PFA of that measured resource type. Computing the probability
of a sequence of symbols using a PFA reduces to walking the path corresponding
to the symbols in the PFA, one transition at a time. This enables constant time
online detection with minimal state keeping overhead, since only the current
state and the transition symbol determine the next state.

For a sequence of n measurements, a PFA allows us to compute the predic-
tion probability in O(n) time and O(1) space. Given a PFA M and a string of
measurements s = s1 . . . sl, and assuming that M is currently in state qj , we
walk M (for each si ∈ s) where each transition emits the transition probability.
The prediction probability of s by M is computed as the multiplication of all
emitted probabilities along the walked path. Cogo decides that the sequence s
is anomalous if the sequence resulted in at least t low probability transition in
the PFA. Specifically, Cogo performs the following test:

∣
∣
∣

{

γ(qj , si) ≤ ρmin, i ∈ 1 . . . l
}
∣
∣
∣

{≤ t → accept
> t → reject

(2)

where γ(qj , si) is the transition probability of symbol si outgoing from state
qj , qj+1 = τ(qj , si) gives the next PFA state, and t is the tolerance level. Recall
that Cogo builds the PFAs such that low probability transitions are loop-back
transitions, therefore they do not result in a state change in the PFA. This
allows Cogo to offer tolerance by forgetting up to t low probability transitions.
If a sequence results in more than t low probability transitions, Cogo raises an
alarm.

3.4 Attaching to a Running Process

It is desirable in practice to be able to attach Cogo to a running process
rather than starting a program under Cogo. For instance, attaching to run-
ning processes is essential for on-demand monitoring of processes that migrate
among a cluster of servers. The main challenge in attaching to a run process
in our context is that Cogo would not know in which states in the PFAs the
process might be, nor how it got to those states. In other words, the process and
the PFAs would not be in sync.

To resolve this, we developed the following non-deterministic PFA executor:
First, Cogo attaches to the running program and starts monitoring at any arbi-
trary point in its execution. As measurements arrive, for each PFA for the target
program, Cogo executes the PFA in a non-deterministic fashion by finding all
paths that correspond to the incoming measurements, producing a set of poten-
tial paths P that the monitored process might have executed along. As more
measurements arrive, Cogo extends each path in P by one transition at a time
and checks if the detector accepts or rejects the new paths. A rejected path is
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eliminated from P. Eventually, either all paths in P are eliminated or only a sin-
gle path remains. If all paths are eliminated, meaning the process has deviated,
Cogo raises an alarm. If a single path remains, then the PFA and the process
have been successfully synchronized and Cogo returns to normal operation.

3.5 Seeing Through Containers

It is typical that web applications are deployed in isolated instances, i.e., multiple
instances of the web server would be running in isolation from each other on the
same host. Each instance gets its own isolated view of the systems resources —
including file system, CPU, RAM, and network interfaces. Common isolation
techniques are either based on full virtualization (e.g., virtual machines) or
operating-system-level virtualization using software containers (e.g., OpenVZ,
LXC, and Docker). Full virtualization does not pose an issue for Cogo since
Cogo can be deployed inside the web server VM itself. On the other hand, con-
tainers abstract out the OS kernel, making it impossible to deploy Cogo inside
an isolated container since Cogo requires kernel access. Therefore, Cogo needs to
be deployed on the host (outside the containers) yet monitor processes running
inside isolated containers.

The main hurdle of seeing through containers is that PIDs inside a container
are local to that container, i.e., they only identify the process inside that con-
tainer PID namespace. Quoting from the Linux kernel manual, “a namespace
wraps a global system resource in an abstraction that makes it appear to the
processes within the namespace that they have their own isolated instance of the
global resource.”6 The local PID serves no meaning outside the container where
a process is running. Instead, the process is identified by a different global PID
only known to the host running the container. Without knowledge of the global
PID of a process, Cogo cannot attach and monitor that process in kernel space
since the global PID is the PID seen by the kernel tracer in kernel space. Note
that there are no containers or namespaces in kernel space.

We implemented a container-aware global PID resolver to be able to identify
processes running in namespaces. First, Cogo starts the process in a suspended
state inside the container and gets the process id in the container namespace
(NSPID). (The NSPID from the loader process is the PID local to the container
where the process is running.) This is possible by creating a custom loader
process that outputs its NSPID and its namespace identifier (NSID), then sends
a stop signal to itself. (The NSID is a unique namespace identifier.) When the
loader process receives a continue signal, it loads the desired target program via
a call to the exec system call. Given the NSPID and NSID, Cogo searches all
namespaces on the host system for a matching child NSID that contains a match-
ing NSPID. Once identified, Cogo extracts the global PID of the process from
the identified child namespace. It then attaches to that process (the loader) using
the global PID and sends it a continue signal. Upon receiving the continue signal

6 The Linux kernel manpage for namespaces is available at: http://man7.org/linux/
man-pages/man7/namespaces.7.html.

http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
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by the loader, it loads and executes the desired target using the exec system
call, replacing the process image but retaining any PIDs. Cogo then continues
normal operation.

4 Implementation

We implemented Cogo by extending the code base of Radmin [25]. Radmin
offered several integrated kernel space and user space tracing capabilities and
an extensible PFA engine, which allowed us to implement and benchmark Cogo
in a unified way. Figure 2 illustrates the architecture of Cogo within Radmin.
We extended Radmin’s kernel tracer to support network I/O monitoring, and
implemented Cogo’s learning and detection algorithms by extending Radmin’s
PFA engine which originally only supported a quadratic time PFA construction
(q-PFA in the figure). We also extended the framework to support attaching to
running processes and monitoring containerized processes.

Fig. 2. Cogo’s architecture within Radmin. Cogo extends Radmin with a network I/O
monitoring module, the linear PFA construction component, a non-deterministic PFA
executor, and a custom loader to resolve namespace PIDs.

We extended Radmin’s kernel tracer to support network I/O monitoring by
attaching handlers to the relevant tracepoints [24] in the kernel. Kernel trace-
points are special points in the executable kernel memory that provide hooks to
various events in the kernel. The hooks call functions (probes) that are provided
at runtime by kernel modules. Cogo provided a handler for each tracepoint where
it collected and reported the measurements to the rest of Radmin as needed. Each
tracepoint executes in the context of the process that triggered the event. Cogo
filters out process contexts using the global PIDs of the monitored processes.
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Table 1. Kernel tracepoints hooked by Cogo for network I/O monitoring.

Kernel tracepoint Description

socket.create A socket is allocated

socket.close A socket is closed and released

socket.sendmsg, socket.writev,

socket.aoi write, socket.write iter

Data is being sent on a socket

socket.recvmsg, socket.readev,

socket.aoi read, socket.read iter

Data is received on a socket

It supports monitoring a single process, all processes part of one program, or
all processes in a process tree. Table 1 lists the relevant tracepoints that Cogo
hooked to monitor network state.

5 Evaluation

We measured the detection accuracy, earliness, and overhead of Cogo on two
large-scale server applications that are commonly targeted by application layer
DoS attacks: Apache [2], the world’s most used web server software; and Open-
SIPS [9], the famous free VoIP server and proxy implementation of the session
initiation protocol (SIP) [33]. The testbeds used Docker containers for isolation
and CORE [15] for network emulation.

5.1 HTTP Attacks on Apache

Our Apache testbed is depicted in Fig. 3. It consisted of a server running Apache,
one User Agent (UA) node for benign clients, and one Weaponized User Agent
(W-UA) node for attackers. UA and W-UA consisted of Docker containers run-
ning HTTP clients. We generated benign traffic using an HTTP client model
derived from Choi-Limb [22]. From the mean and standard deviation for various
model parameters for the data set reported in [22], we used a nonlinear solver
to calculate approximate distribution parameters for the distribution found to
be a good fit in Choi-Limb. We represented each client using one instance of the
HTTPerf [7] benchmark. For each client, we generated a workload session using
a unique seed and the distilled distribution parameters. The session consisted of
a series of requests with a variable think time between requests drawn from the
client model. We generated the workload session in HTTPerf’s workload session
log format (wsesslog). Each client request contained as URL parameters a ran-
dom request length padding and a requested response size drawn from the client
model. The Apache server hosted a CGI-bin web application that simulated real
deployments. For each client HTTP request, the server responded with content
equal in byte length to the requested response size.
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Fig. 3. HTTP DoS testbed used in our experiments, including the Apache server, a
User Agent (UA) node where benign clients reside, and a Weaponized User Agent
(W-UA) node where attacks originate from.

Attack traffic originated from the W-UA node. We used the HTTP appli-
cation layer DoS benchmark SlowHTTPTest [4] which bundles several Slow-
rate [11] attack variants. (Slow-rate attacks are low-bandwidth application layer
DoS attacks that use legitimate albeit slow HTTP requests to take down web
servers.) Two famous examples of Slow-rate attacks are Slowloris [12] and
Slowread [5]. In Slowloris, attackers send the HTTP request headers as slowly as
possible without hitting the connection timeout limit of the server. Its Slowread
variant sends the headers at normal speeds but reads the response as slowly
as possible. If enough of these slow requests are made in parallel, they can
consume the entire server’s application layer connections queue and the server
becomes unable to serve legitimate users. Slow-rate attacks typically manifest in
an abnormally large number of relatively idle or slow sockets.

We built Cogo model for Apache using 12 benign traffic runs, each of which
consisted of one hour of benign traffic. We set the number of benign clients
to 100. Note that each benign client is a whole workload session. For testing,
we performed several experiments using blended benign and attack traffic by
injecting attack requests at random points while serving a benign load. Test-
ing is performed by running Apache under Cogo in detection mode, serving
one hour worth of benign requests from 100 benign clients and 100 Slow-rate
clients (attackers). The number of attackers represents the total concurrent
SlowHTTPTest attack connections. We limited the attack duration to 15 min.
We configured Apache to serve a maximum of 100 concurrent connections at any
moment in time.

We performed each experiment with and without Cogo. We configured Cogo
to kill the offending Apache worker process when an attack is detected.7 Finally,
we experimented with two types of attackers: non-aggressive attackers that seep

7 More advanced remediation policies can be used, such as blocking offending source
IPs, rate limiting, or protocol-specific recovery. We opted for process termination for
simplicity as remediation is not the focus of Cogo.
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in the server at a very slow rate, and aggressive attackers that bombard the server
with as many concurrent connections as possible. For non-aggressive attackers,
we set the SlowHTTPTest connection rate to one connection per second. For
aggressive attackers, we set the connection rate to the server capacity, i.e., 100
connections per second.

Detection Results. Table 2 summarizes the results. It took Cogo only about
12 min to build a model for Apache from the benign measurements. This is
about a 505× improvement over Radmin which took more than four days to
construct a model from the same measurements. The savings in training time
came at the expense of a slight increase in the model size (from 34 MB to
76 MB) which is acceptable and does not pose a bottleneck. The model is only
loaded once at startup of Cogo; detection time is invariant of the model size as
each measurement point results in exactly one transition in one of the PFAs.

Cogo achieved a very low false positive rate (FPR) at 0.0194% (about 91%
better than Radmin). We believe the reason for this reduction in FPR is that
Cogo retains longer low-probability paths in the PFA as the detection algorithm
limits transition probabilities rather whole path probabilities as in Radmin. For
the most part, false positives (FPs) were encountered during startup or shutdown
of Apache which from experience has shown considerable variability.

Table 2. Summary of results for Apache. The number of requests was 473,558.

Item Radmin Cogo Improvement

Training time (sec.) 379,661 752 � 505×
Model size (MB) 34 76 � 0.45×
FPs, FPR 1,116, 0.2357% 92, 0.0194% � 12×
Downtime (sec; non-aggressive) 137 0 � ∞
Downtime (sec; aggressive) 58 7 � 8.3×

Figures 4 and 5 depict the availability of Apache against non-aggressive and
aggressive attacks. Cogo successfully prevented Apache from going down against
non-aggressive attacks. As the attack connections were idling at the server side,
Cogo detected anomalous transmit and receive rates and terminated the attacked
Apache workers. This occurred within seven seconds from connection establish-
ment. Against the same attacks, Apache under Radmin remained down for longer
than two minutes. For aggressive attacks, Apache protected with Radmin was
down for one minute, compared to only seven seconds under Cogo.

5.2 VoIP Attacks on OpenSIPS

Next, we considered detection of resource attacks on VoIP servers as telephony
systems have increasingly become targets of DDoS attacks evidenced during the
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Fig. 4. Apache server availability against non-aggressive Slow-rate attacks. With Rad-
min, the server was down for more than two minutes. There was no downtime under
Cogo.

2015 attack on the Ukrainian power grid [13]. To establish and manage calls,
VoIP servers rely on Session Initiation Protocol (SIP) [33] which is known to be
vulnerable to exhaustion and overload, even under benign conditions [29]. Over-
load can be caused by a variety of legitimate SIP behaviors such as response
duplication, call forwarding, and call forking (conference calls) which result in
large numbers of control packets that may congest servers. Similarly, exces-
sive transactions cause system resource exhaustion in stateful servers when the
number of requests exceeds the finite memory available to track each call state
machine. An adversary who wishes to cause DoS can do so by initiating calls
that exercise these legitimate but atypical resource intensive behaviors and thus
degrade server performance — all while blending in with normal traffic (without
malformed packets or specification violations) to circumvent defenses such as
scrubbing or bandwidth limitation. In the following we evaluate Cogo against
these protocol attacks on a representative SIP testbed based on OpenSIPS [9].
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Fig. 5. Apache server availability against aggressive Slow-rate attacks. Cogo reduced
the server down time by at least a factor of eight, down from 58 s to only seven seconds.

Testbed and Procedure. Our SIP DDoS testbed, shown in Figure 6, con-
sisted of a SIP server and pairs of SIP user agents and weaponized agents that
serviced simultaneous callers and attackers. The SIP server ran OpenSIPS 2.2
and was configured using the residential configuration generated by the Open-
SIPS configuration tools. OpenSIPS used fixed-size shared and private memory
across its child processes (32 MB and 16 MB respectively). To exacerbate mem-
ory exhaustion at the server, we adjusted the wt timer of the OpenSIPS to 32 s
(the recommended value in the RFC) which corresponds to the length of time a
transaction is held in memory after it has completed. Though intended to help
absorb delayed messages after the transaction completed, it also inadvertently
reserves memory that could otherwise be made available to handle new calls. For
the following experiments, we considered a small enterprise or large residential
deployment, thus end-to-end delays from UA to server were minimal (ten ms)
and link bandwidth was isolated to SIP traffic at 100 Mbps.

Pairs of UA nodes were used to represent benign SIP callers (UA-1) and
callees (UA-2). These nodes ran instances of the SIP Proxy (SIPp) [10]: a SIP
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Fig. 6. SIP DDoS testbed used in our experiments. UA-1 and UA-2 are benign user
agents. W-UA-1 and W-UA-2 are attack (weaponized) agents.

benchmarking tool to generate SIP caller/callee workloads. While we did not
model the audio portion of the call, we leveraged the log-normal feature of SIPp
to insert a random, lognormal distributed pause between call setup and hang
up to simulate variability among call lengths. Our call length distribution was
log-normal with a mean of 10.28 and variance of one ms equating to an average
call length of 30 s. Each call consisted of an INVITE transaction followed by the
variable pause, and then terminated with a BYE transaction. SIPp can initiate
calls in parallel, allowing us to model many users from a single node.

Attacks were initiated from the W-UAs at caller W-UA-1 and callee
W-UA-2. We staged attacks by repurposing SIPp as an attack tool, supplying
it with scenario files that specify malicious caller/callee behaviors such as flood-
ing requests or excessive duplication of responses. For example, a BYE flood
attack equates to W-UA-1 initiating a number of spurious BYE transactions,
each with a new call id to represent a new transaction. Because SIP does not
associate a BYE with a prior INVITE, the BYE is accepted and transaction
memory is wastefully reserved while the attack is in process. W-UA-2 colludes
with W-UA-1 by purposefully not responding to the request, which adds to the
time transaction memory is held at the server. Like the benign workload, we can
tune the amplitude of SIPp to control the number of simultaneous attack calls.

The Cogo model for OpenSIPS was built from five benign observation col-
lecting runs, totaling 8 h of benign measurements. During this observation run
OpenSIPS was subjected to a benign load between the SIPp clients (UA-1, UA-2)
and the SIP server. The clients initiated calls to the server. Call setup and call
disconnect were specified using XML files input to SIPp and followed standard
SIP call setup conventions for invite, ringing, bye, and appropriate response and
status messages. Call hold used the SIPp log-normal distribution. The SIPp
maximum calls per second rate was set to 10 and call limit to 200. This com-
bination of SIPp settings produced a steady call rate of ∼7 calls every second.
Several additional benign observation runs were made during which OpenSIPS
was started and then terminated to ensure the observations captured startup
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Table 3. Summary of OpenSIPS results. The number of benign call requests was 6,342.

Item Radmin Cogo Improvement

Training time (sec.) 43,493 258 � 169×
Model size (MB) 41 55 � 0.75×
FPs, FPR 9, 0.1419% 4, 0.0631% � 2.25×
Bye flood detection delay (sec.) ∞ 6 � ∞
Invite flood detection delay (sec.) ∞ 4 � ∞

and shutdown which from experience has shown considerable variability. The
total size of the observation data was 515 MB. Processing these observations
resulted in a model of 55 MB. Several test runs were made using the model and
with it Cogo exhibited virtually zero false positives under a load with the same
characteristics as that used for the observation runs.

Detection Results. Table 3 summarizes the results. Cogo reduced training
time from about 12 h to only 4 min (greater than 169× reduction). The model
size increased by a factor of only 0.75×, from 41 MB to 55 MB. In terms of
accuracy, Cogo only had 4 FPs throughout the experiment. The four FPs all
occurred at startup time of OpenSIPS. Radmin triggered 9 FPs also at startup
time. The impact of BYE and INVITE floods on OpenSIPS, and the detection
behavior of Cogo is shown in Fig. 7. The attacks were not detectable by Radmin
since OpenSIPS uses a fixed size memory pool, therefore preventing memory
exhaustion by the attack calls. In other words, without monitoring network I/O,
it is impossible to early detect BYE and INVITE floods. Cogo, on the other
hand, detected the attacks almost immediately, within less than six seconds after
the attacks onset. Note that we did not implement any remediation policy for
OpenSIPS; proper remediation requires a protocol-specific solution that times
out or hangs up the attack calls.

5.3 Performance Overhead

Cogo effectively had a negligible overhead. We measured the throughput of
Apache and OpenSIPS on the benign workloads with and without Cogo. Apache
maintained a steady rate of 130 requests per second. We benchmarked Apache
with HTTPerf and experienced a very marginal 0.2± 0.3 ms response time
increase per request. The average response time increased from 10.3 ms to
10.5 ms. For OpenSIPS, it maintained a steady call rate of 200 calls per sec-
ond. We experimented with call rates from 300 to 1000 calls per second and did
not observe any degradation in throughput.
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Fig. 7. Cogo detection of bye and invite floods against OpenSIPS.

6 Related Work

Modern operating systems have a number of threshold-based facilities to limit
resource consumption (ulimit, AppArmor [3]). However, these limits are static
upper bounds and disregard different consumption of different program segments
for different inputs. This enables attackers to maximize the DoS time by crafting
inputs that trigger prolonged resource consumption or starvation, such as Slow-
rate attacks [21,23,30]. Several static and dynamic instrumentation tools exist
for profiling, such as Valgrind [32] and Intel Pin [31]. However, the instrumenta-
tion overhead is often too high to enable their continuous usage, especially when
detection of exhaustion is the goal [34,35]. Apostolico [18] presented a theoretic
study for linear prediction using a Generalized Suffix Trees (GST). However, to
the best of our knowledge, there is no implementation or a quantitative study
of [18]. Our approach, builds a simpler model using a PFA construction that
provided tight detection time and space guarantees instead of a GST.

In [14,30] there is a survey of different approaches for anomalous traffic detec-
tion which is not connected directly or indirectly to resource consumption at the
application layer. Antunes et al. [17] proposed a system for testing servers for
exhaustion vulnerabilities using fuzzed test cases from user-supplied specs of the
server protocol. Groza et al. [27] formalized DoS attacks using a protocol-specific
cost rules. Aiello et al. [16] formalized DoS resilience rules that protocols should
meet but they are not feasible requirements in practice [37]. Chang et al. [20]
proposed a static analysis system for identifying source code sites that may result
in uncontrolled CPU time and stack consumption. The system employed taint
analysis and control-dependency analysis to identify source code sites that can be
influenced by untrusted input. Several similar approaches that required manual
code annotation were also developed [28,38]. Closely related, Burnim et al. [19]
used symbolic execution to generate inputs that exhibit worst case complexity.

Cogo substantially differs from those systems in that it does not require
access to the source code or any side information and it covers network resources
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used by an application, not only CPU and memory. Elsabagh et al. [25] proposed
Radmin, a system for early detection of application layer DoS attacks. This is the
system we used as a starting point for Cogo. The system showed good accuracy
and low overhead. However, it did not monitor network I/O, had a prohibitive
quadratic training time, and could not monitor containerized processes or attach
to a running process.

7 Conclusions

This paper presented Cogo, a practical and accurate system for early detection
of DoS attacks at the application layer. Unlike prior solutions, Cogo builds a
PFA model from the temporal and spatial resource usage information in linear
time. Cogo monitors network state, supports containerized processes monitoring
and attaching to running processes. Cogo detected real-world attacks on Apache
and OpenSIPS, both are large-scale servers. It achieved high accuracy, early
detection, and incurred negligible overhead. Cogo required less than 12 min of
training time, incurred less than 0.0194% false positives rate, detected a wide
range of attacks less than seven seconds into the attacks, and had a negligible
response time overhead of only 0.2 ± 0.3 ms. Cogo is both scalable and accurate,
suitable for large-scale deployment.
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17. Antunes, J., Neves, N.F., Veŕıssimo, P.J.: Detection and prediction of resource-
exhaustion vulnerabilities. In: International Symposium on Software Reliability
Engineering (2008)

18. Apostolico, A., Bejerano, G.: Optimal amnesic probabilistic automata. J. Comput.
Biol. 7(3–4), 381–393 (2000)

19. Burnim, J., Juvekar, S., Sen, K.: Wise: automated test generation for worst-case
complexity. In: 31st International Conference on Software Engineering (2009)

20. Chang, R.M., et al.: Inputs of coma: static detection of denial-of-service vulnera-
bilities. In: 22nd Computer Security Foundations Symposium (2009)

21. Chee, W.O., Brennan, T.: Layer-7 ddos. (2010). https://www.owasp.org/images/
4/43/Layer 7 DDOS.pdf

22. Choi, H.K., Limb, J.O.: A behavioral model of web traffic. In: 7th International
Conference on Network Protocols (1999)

23. Crosby, S., Wallach, D.: Algorithmic dos. In: van Tilborg, H.C.A., Jajodia, S. (eds.)
Encyclopedia of Cryptography and Security, pp. 32–33. Springer, USA (2011)

24. Desnoyers, M.: Using the linux kernel tracepoints. https://www.kernel.org/doc/
Documentation/trace/tracepoints.txt
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